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1. Environmental protection of the marine and coastal ecosystems 

1.1. The anthropogenic pressure 

Concerns on environmental protection first emerged half a century ago and was strongly 

focused on human interest. The United Nations Conference on the Human Environment 

declared in 1972: 

“Man has the fundamental right to freedom, equality and adequate conditions of life, in 

an environment of a quality that permits a life of dignity and well-being, and he bears a 

solemn responsibility to protect and improve the environment for present and future 

generations.” 

The consciousness for marine environment pollution was already present in this 

declaration with the Principle 7: 

 “States shall take all possible steps to prevent pollution of the seas by substances that 

are liable to create hazards to human health, to harm living resources and marine life, to 

damage amenities or to interfere with other legitimate uses of the sea.” 

Indeed, the aquatic environment has always attracted humans’ interest for its diverse 

advantages such as fishing activities, water transportation, offshore oil and gas 

exploitation, among others (Figure 1). Coastal and estuarine areas are particularly used 

as a strategic point for communication through navigation, for industrial development 

(e.g. metallurgy, smelters, paper milling, oil refineries, shipbuilding and power stations), 

agricultural activities and recreation (tourism, housing, water sports). Inevitably, the 

extensive use of marine resources and the extreme settlement of humans along the 

coastline have generated a high anthropogenic pressure on the aquatic ecosystem putting 

at risk its survival and the viability of its resources (Islam and Tanaka, 2004; Law et al., 

2010; Pan and Wang, 2012). Discharge wastewaters reach the aquatic environment and 

Figure 1. Main anthropogenic activities along estuarine and coastal areas and subsequent 

sources of hazardous substances reaching the aquatic ecosystem. Scheme modified from 

OSPAR, 2010). 
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tend to accumulate in confined areas such as estuaries (Law et al., 2010). These areas are 

also victims of dredging activities, essential for water transportation but at the origin of 

habitat deterioration (Martins et al., 2012). Coastal and estuarine environments are  

particularly crucial for the marine ecosystem as they serve as nursery grounds for many 

marine species (Le Pape et al., 2007). Thus, the decline in estuarine ecosystem quality 

generated by pollution loading and habitat loss may affect species and species recruitment 

level and lead to severe consequences on the survival of the biota.  

1.2. Awareness and actions 

In response to the clear deterioration of marine environmental conditions, legislative 

measures and policies have been taken to protect the aquatic ecosystem. In the European 

Union, the Water Framework Directive (WFD, 2000/60/EC) provides a list of chemicals 

described as priority substances to be surveyed to reach “good ecological status”. This 

implies that contaminants found in the ecosystem (water, sediment and biota) are at levels 

not leading to harmful effects in aquatic organisms. Likewise, the Marine Strategy 

Framework Directive (MSFD, 2008/56/EC) aims to ensure that “concentrations of 

contaminants are at levels not giving rise to pollution effects” in both coastal and offshore 

environments (Law et al., 2010). To do so, the concentration of contaminants in the 

environment and the measurement of biological parameters in relation with pollutants 

effects are used together to assess the general health status of the aquatic ecosystem. The 

protection of the European marine environment is also under the implementation of 

Regional Sea Conventions (RSCs): OSPAR (North-East Atlantic), HELCOM (Baltic 

Sea), Barcelona Convention (coastal region of the Mediterranean Sea) and Bucharest 

Convention (Black Sea). These international legal requirements provide strategies to 

prevent environmental pollution and preserve aquatic ecosystems. In the case of the 

North-East Atlantic, the Joint Assessment and Monitoring Programme (JAMP) and the 

International Council for the Exploration of the Sea (ICES) guide the assessment of the 

general health status of the aquatic environment under the OSPAR Commission. They 

include the regulation of priority chemical substances, the development of appropriate 

environmental management and guidelines to assess the general status of the marine 

environment with the implementation of monitoring programmes (Hylland et al., 2017a). 

1.3. From chemical analysis to biological effects 

Monitoring programmes were first developed to prevent contaminants consumption for 

human health. Programmes were based on chemical analysis for the detection and 

quantification of pollutants in the different compartments of the aquatic environment 

(water column, sediment and biota). The Mussel Watch Program was one of the first 

biomonitoring programmes to assess contaminants accumulation and concentrations in 

aquatic organisms such as mussels and oysters, based on chemical analysis (Farrington et 

al., 1983; Goldberg et al., 1983; Martin, 1985). Later on, the development of biological 

approaches allowed for the assessment of biological effects of this chemical 

contamination (Bayne, 1989). Thus, biological parameters were used in parallel with 

chemical analysis to detect and quantify contaminants in the environment and to assess 



General Introduction 

 

5 

their impact on the ecosystem (Gray, 1992; OSPAR, 1998). Nowadays, most 

environmental risk assessments integrate both chemical and biological monitoring of 

contaminants, which include the identification and quantification of pollutants and their 

effects on the surrounding biota (OSPAR, 2000, 2008; Davies and Vethaak, 2012; 

HELCOM, 2018; Hylland et al., 2017a, 2017b; Vethaak et al., 2017).  

Biological effects of environmental stressors (e.g. exposure to pollutants, changes in 

temperature, low food availability) are assessed in selected marine organisms called 

sentinel species (Beeby, 2001). At first, sentinel species were used for their capacity to 

accumulate contaminants in order to simply assess the chemicals bioavailability in the 

ecosystem (Philips and Segar, 1986). However, sentinel species are also characterised by 

a wide but specific geographical distribution, they are abundant, they have a well-

documented biological cycle and they are sensitive to pollutants and suitable to life in 

captivity and to laboratory conditions (Widdows, 1985; Cajaraville et al., 2000; Beeby, 

2001). The Mussel Watch Program (Goldberg et al., 1983) was one of the first 

biomonitoring programmes that used marine organisms (mussels and oysters) as sentinel 

species to assess environmental concentrations of pollutants. Together with molluscs, 

teleosts (e.g. Gadus morhua, Merluccius merluccius, Mullus sp.) are also considered 

target organisms due to their abundance, diversity, ecological and economical relevance, 

availability and morphological similarity with other vertebrate models (De La Torre et 

al., 2005; Marigómez et al., 2006; Viarengo et al., 2007; Hylland et al., 2017a, 2017b). In 

Europe, they have been included in several national and international biomonitoring 

programmes (MEDPOL-UNEP Mediterranean Biomonitoring Program, OSPAR 

Convention, RAMOGE; Thain et al., 2008; Law et al., 2010; Lyons et al., 2010, 2017; 

Burgeot et al., 2017; Vethaak et al., 2017). 

In particular, flatfish have attracted great interest as sentinel species for the assessment of 

the general health status of coastal and estuarine ecosystems (Köhler et al., 1992; Myers 

et al., 1994; Stehr et al., 2003; Einsporn et al., 2005; Dabrowska et al., 2012; Fricke et al., 

2012). Due to their benthic behaviour, their health status is closely related to sediment 

contamination (Feist et al., 2004; Lang et al., 2006; Jimenez-Tenorio et al., 2008; Costa 

et al., 2013; Solé et al., 2016). In Northern Europe, dab (Limanda limanda), European 

flounder (Platichthys flesus), olive flounder (Paralichthys olivaceus) and English sole 

(Parophrys vetulus) are the main flatfish species used for biomonitoring programmes in 

different regional areas (Köhler et al., 1992; Myers et al., 1994; Vethaak et al., 1996; 

Myers et al., 2003; Stehr et al., 2003; Stentiford et al., 2003; Lang et al., 2006). These 

species are less abundant along the Atlantic Iberian coast, which is an inconvenient for 

their use as sentinels in biomonitoring programmes in this region. Instead, the common 

sole (Solea solea) and the Senegalese sole (Solea senegalensis) are two very common 

flatfish species in the Iberian Peninsula (Figure 2; Quincoces et al., 2011). They are found 

in sandy-muddy bottoms, where they scavenge the sediment to feed on small benthic 

invertebrates such as polychaetes, amphipods and bivalves. Soles are also of ecological 

and economical importance due to their great potential for fish farming (Dinis et al., 1999; 

Imsland et al., 2003). The extensive and intensive culture of sole in France, Italy, Portugal 
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and Spain has generated a growing interest in the scientific community with great 

advances in the study of the life cycle, reproduction and culture conditions (e.g. diet 

development, density adaptation) of various sole species. This knowledge has largely 

contributed to the use of sole as either sentinel species or model assay organism in 

toxicological researches, as below detailed.   

2. Solea spp. as sentinel species for the assessment of coastal and estuarine 

ecosystem health status 

 

2.1. Biology and ecology of Solea spp. 

The geographic distribution of the two common sole species found along the Eastern 

Atlantic coasts differs in latitude. S. solea (Quensel, 1806) can be found from Norway to 

the North coast of Africa, including the Mediterranean Sea, whereas S. senegalensis 

(Kaup, 1858) is present from Senegal to La Rochelle and in the Western Mediterranean 

Sea (Figure 2; Lagardère et al., 1979; Rodriguez and Rodriguez, 1980; Quéro et al., 1986; 

Quéro and Vayne, 1997). Both species are found in sandy-muddy bottoms along coastal 

areas. S. senegalensis is well adapted to warm climate and can reach areas up to 100 m 

depth whilst S. solea can be found up to 200 m depth (Whitehead et al., 1986; Durieux et 

al., 2007). Their feeding activity is mainly nocturnal, peaking at dawn and dusk, and is 

strongly influenced by olfactory substances (Marchand, 1991). Amongst them, the 

glycine-betaine is a component of polychaetes, mollusc and crustaceans, which constitute 

the main elements of sole diet (Molinero et al., 1991). Feeding conditions of flatfish 

strongly influences their adaptation from larval pelagic stage to benthic behaviour 

(Marchand, 1991). Sole reproduction is temperature-dependent (>7ºC for S. solea and 

from 13 to 23ºC for S. senegalensis) and different geographic areas show different 

spawning grounds and season. In the North Sea, the breeding period for S. solea occurs 

Figure 2. Geographic distribution of Solea solea and Solea senegalensis in the Eastern 

Atlantic and the Mediterranean Sea (Desoutter, 1990, 1992). 

 

S. solea 

S. senegalensis 

Both species 

present 
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in spring in coastal and estuarine areas whilst in the Bay of Biscay, spawning occurs in 

late winter and beginning of spring, 50 to 80 km from the coast (Laffargue, 2004; Le Pape 

et al., 2007). In the case of S. senegalensis, the main spawning period occurs from 

February to June with a secondary peak in autumn (Cabral, 2003; Anguis and Cañavate, 

2005). Once the eggs have hatched, pelagic larvae are dispersed around the spawning 

grounds and adopt a circadian vertical migration. The duration of this period is controlled 

by temperature and can last from 25 to 40 days. Pelagic larvae initiate the metamorphosis 

whilst migrating towards coastal and estuarine areas where they concentrate closer to the 

bottom and slowly adopt a benthic behaviour (Figure 3; Marchand, 1991; Lagardère et 

al., 1999; Amara et al., 2000). As the spawning period of S. senegalensis is spread on a 

long duration, the production of larvae occurs as batches and newly metamorphosed 

juvenile S. senegalensis reach coastal and estuarine areas in different cohorts (Rodríguez 

Martínez, 1984; Andrade, 1992; Cabral, 2000). Nursery grounds for sole are shallow bays 

and estuaries (<20 m depth) characterised by high food availability, optimal growth 

conditions and low predation (Haedrich, 1983; Cabral et al., 2007; Vinagre et al., 2009). 

The distribution of sole throughout nurseries is influenced by environmental factors such 

as temperature, salinity, depth, nature of the sediment, food availability and predation 

(Durieux et al., 2007; Le Pape et al., 2007). Typically, newly metamorphosed benthic 

larvae (12 mm) are found in upstream areas (muddy bottom and <5 m depth), young 

juveniles (1 to 6 cm) are present throughout the estuary and older individuals or young 

adults (7 to 24 cm) concentrate in the outer part of the estuary, bays and coastal areas 

(Figure 3; Cabral and Costa, 1999; Primo, 2013). Once they become sexually mature, 

soles migrate out of estuarine areas to reach the deeper spawning grounds (Laffargue, 

2004; Primo, 2013). Sexual maturity occurs at similar age (2-4 yr) and size (25-30 cm) 

for S. solea. and S. senegalensis (Rogers, 1989; Dinis et al., 1999; Durieux et al., 2007; 

Vinagre, 2007).  

 

 

Figure 3. Life cycle of Solea spp. in the Iberian Peninsula and the Bay of Biscay. 



8 

2.2. Anatomy and physiology of Solea spp. 

S. solea and S. senegalensis belong to the order of pleuronectiformes and are characterised 

by an asymmetric morphology that they acquire after metamorphosis. During this 

process, the left eye migrates to the right side, which corresponds to the pigmented upper 

ocular side. S. solea and S. senegalensis are morphologically very similar (Figure 4 A-

B). They can be distinguished by observation of the pectoral fin of the eyed-side; in the 

case of S. solea, the margin of the fin is coloured with a black spot whilst for S. 

senegalensis, the interradial membrane on the pectoral fin appears black (Figure 4 A-B).  

Figure 4. Illustration of S. solea (A) and S. senegalensis (B) showing the distinct 

colouration of the pectoral fin (Source: fao.org). 

 

10 cm 

A 
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Apart from the evident completion of the metamorphosis, the transition from larvae to 

juvenile stage is also characterised by the development of the digestive system. It is 

composed of an oesophagus, a small stomach, a pyloric sphincter and a long intestine. In 

fact, the ratio stomach length to intestine length is typically small in Soleidae species 

(Yúfera and Darías, 2007). The liver, gall bladder and pancreas also appear soon in the 

larval period (Boulhic and Gabaudan, 1992). The liver of sole, like most teleost, has a 

tubular architecture and is mainly composed of hepatocytes (the parenchyma) arranged 

in a bi-layer (Hardman et al., 2007; Figure 5 A-B). The general appearance of hepatocytes 

varied from eosinophilic to clear cytoplasm, depending on the nature and quantity of 

material stored. Sinusoids and larger vessels separate the tubule units and are connected 

to the portal vein. The apical membranes of hepatocytes form the tubule lumen where the 

bile is secreted (Hardman et al., 2007). Bile ducts are lined with a cuboidal epithelium 

and surrounded by connective tissue. Unlike mammals, the liver of sole also contains the 

exocrine pancreas. Melanomacrophage centres composed of pigmented cells may also be 

identified throughout the tissue (Zorita and Cuevas, 2014). 

An anatomical review of fish gills is available from Wilson and Laurent (2002). Gills are 

composed of pairs of arches of osseous structure from which radiate the primary lamellae, 

supported by cartilage, and the secondary lamellae, originating perpendicularly from the 

filaments (Figure 5C). The primary lamella is mainly composed of a squamous 

epithelium, blood sinuses and pillar cells (Figure 5D). The interlamellar space contains 

pavement, mucous and chloride cells (Figure 5D). The latter are essential for respiration, 

osmoregulation and to protect the individual from disease, parasites and pathogens. Both 

mucous and chloride cells are sensitive to environmental changes such as exposure to 

contaminants (Arellano et al., 2004; Alvarado et al., 2006; Costa et al., 2010a; Martins et 

al., 2015; Macirella and Brunelli, 2017). The secondary lamellae arise from the primary 

filaments and are composed of a simple epithelium where direct gas exchanges with the 

environment occur (Lujić et al., 2013). This thin epithelium is supported by pillar cells 

inserted between lamellar blood vessels. 

Solea spp. males are oligospermic and are characterised by a low gonadosomatic index, 

as typically observed in flatfish (García-López et al., 2005). Gonads are made of two 

testicular lobes with two main areas: the cortex with seminiferous lobules and the 

medulla, which contains the spermatic ducts where the sperm is being collected and stored 

(Figure 5E). The spermatogenesis is initiated by mitosis where spermatogonial stem cells 

become spermatogonia (SPG). During the meiosis, SPG are differentiated into 

spermatocytes (SPC) which evolve into spermatids (SPD). Unlike most flatfish species, 

the spermatogenesis in Solea spp. is asynchronous and semi-cystic: the differentiation of 

spermatocytes (SPC) and spermatids (SPD) into spermatozoa (SPZ) occurs in the 

seminiferous lumen (García-López et al., 2005, 2006a, 2006b; Cerdà et al., 2008; Figure 

5F). The histological identification of gamete developmental stages is based on the 

presence and frequency of each type of germ cells in the gonads (García-López et al., 

2006a). 
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The ovary is a paired organ composed of follicles that contain oogonia, which will 

develop into oocytes. The organ also comprises the stroma (supporting tissue) and 

vascular and nervous tissues (Blazer, 2002). Females follow a group synchronous ovarian 

development, which is characterised by the production of at least two populations of 

oocytes at the same time with one group of larger developing oocytes and another one 

composed of pre-vitellogenic or resting oocytes (Blazer, 2002; Murua and Saborido-Rey, 

2003; Figure 5 G-H). This strategy explains how female soles can produce several batches 

of mature eggs during a same spawning period (Agulleiro, 2008). The oogenesis is 

initiated by the cellular proliferation of germ cells. After the complete mitosis of oogonia, 

the meiosis is stopped at the first prophase and oocyte growth is initiated. This phase is 

characterised by the accumulation of the hepatic protein, the vitellogenin, in the ooplasm 

and draws the beginning of the vitellogenesis. In S. senegalensis, oocytes grow from 50 

µm when immature to more than 500 µm before maturation. It is during the maturation 

stage that the oocyte nuclear membrane breaks and the meiosis continues until the second 

metaphase and will not be completed until fertilisation. If not ovulated, a mature oocyte 

will initiate the phagocytic process of atresia (Figure 5H). Atretic oocytes present a 

fragmented zona radiata and are highly vacuolated and hypertrophied. It is a natural event 

that is most commonly detected in post-spawning period, although it can be observed at 

any stage of the reproductive cycle (Agulleiro, 2008).  

In females, sexual maturity can be assessed by external appearance with the detection of 

abdominal swelling caused by the increase in size of mature gonads (García-López et al., 

2006b). This technique is efficient for culture purposes but does not permit to distinguish 

the different gamete developmental stages to assess the reproduction cycle of wild 

animals for biomonitoring programmes. Instead, gamete developmental stages are 

identified by histological observation and can be classified into four categories, based on 

the frequency of each oocyte phase detected in the gonads (Murua and Motos, 2006).  

 

Figure 5. Anatomy of S. senegalensis (A-C) and normal histology of the liver (B), gills 

(D), male gonads (E-F), pre-vitellogenic female gonads (G) and late vitellogenic female 

gonad (H). White asterisk: central skeletal portion overlapping the kidney; l: liver; black 

arrow head: ocular side testicular lobe; white arrow head: blind side testicular lobe; black 

arrow: spermatic duct ending with the urogenital pore; s: sinusoids; bv: blood vessel; h: 

hepatocytes; white arrow: pectoral fin from the eyed-side showing the black colouration 

of the interradial membrane, characteristic of S. senegalensis; g: gills; ga: gills arch; m: 

mouth; pf: pelvic fins; c: capillary; cc: chloride cell; mc: mucous cell; pc: pillar cell; pl: 

primary lamella; sl: secondary lamellae; C: cortex; sl: seminiferous lobules; M: medulla; 

spz: spermatozoa present in the lumen of the lobules; black asterisks: different phases of 

atretic oocytes.  
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2.3. The use of Solea spp. in ecotoxicology 

Based on the species characteristics (e.g. wide geographic distribution, high trophic 

position, benthic behaviour), Solea spp. shows great potential as sentinel species for the 

assessment of the general health status of the coastal and estuarine ecosystems in the SE 

Bay of Biscay, along the Iberian coast and in the Mediterranean Sea. Indeed, it has been 

introduced in previous field studies in the Bay of Biscay (Claireaux et al., 2004; Gilliers 

et al., 2006; Cuevas et al., 2015a, 2015b; Chapter 1), in Portugal (Vinagre et al., 2006; 

Fonseca et al., 2011a, 2011b; Gonçalves et al., 2013, 2014) and in the Mediterranean Sea 

(Jebali et al., 2013; Siscar et al., 2013, 2015; Oliva et al., 2010, 2012a, 2012b, 2013, 2014; 

Solé et al., 2013, 2016). In parallel, its sensitivity to contaminants has been studied in 

laboratory conditions upon exposure to waterborne pollutants (Solé et al., 2008; Oliva et 

al., 2009; López-Galindo et al., 2010a, 2010b; Díaz-Garduño et al., 2018), natural 

sediments (Riba et al., 2004; Costa et al., 2008, 2009a, 2009b; Jiménez-Tenorio et al., 

2008; Ribecco et al., 2012; Ghribi et al., 2019), contaminated sediments (Salamanca et 

al., 2008; Martins et al., 2015) or via direct injections of chemicals (Costa et al., 2010b; 

Kalman et al., 2010). However, most of these experimental studies are focused on early 

life stages whereas studies using older juveniles or adults are rare. Alas, juveniles 

comprise an interesting age-class for biomonitoring programmes, as they are regularly 

found in estuarine and coastal areas where they inhabit for 2 to 3 years (Koutsikopoulos 

et al. 1989). Thus, juveniles have the potential to be representative of specific geographic 

areas where they spend enough time to become good indicators of ecosystem health 

disturbance (Gilliers et al., 2006). As a matter of fact, field studies using sole as sentinel 

species of estuarine and coastal ecosystems often use 2-3 yr old juveniles and adults 

(Claireaux et al., 2004; Oliva et al., 2010, 2012a, 2012b, 2013, 2014; Gonçalves et al., 

2013, 2014; Jebali et al., 2013; Sànchez-Nogué et al., 2013; Siscar et al., 2013, 2015; Solé 

et al., 2013; Cuevas et al., 2015a, 2015b; Chapter 1). Therefore, laboratory studies on the 

biological responses of sole juveniles to environmental stressors (e.g. exposure to 

pollutants) are necessary to properly design sampling and interpret data in biomonitoring 

programmes. 

3. Biological responses to pollutants 

Whilst chemical data inform on the presence of contaminants in the different 

compartments of the environment (water column, sediment, biota), biological responses 

provides data for assessing the effects of pollutants on the biota (Bayne, 1989; Peakall 

and Walker, 1994; Cajaraville et al., 2000; Lyons et al., 2010; Hylland et al., 2017a, 

2017b). Biological responses need to be interpreted upon the integration of various levels 

of biological complexity including (a) alterations at molecular, biochemical, cellular and 

histopathological level, (b) disease prevalence, (c) growth and reproduction impairment, 

and (d) survival (OSPAR, 1998; Broeg et al., 2005; Law et al., 2010). Most commonly 

investigated target organs in fish are liver, gills, brain and gonads, as their cells are known 

to react to a direct or indirect exposure to a variety of contaminants. 
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3.1. The choice of target organs 

Liver is a major target organ in ecotoxicology because it is involved in xenobiotic 

metabolism, storage and detoxification (Health, 1995; Hinton et al., 2001; van der Oost 

et al., 2003; Au, 2004). In fish, liver is not in direct contact with the chemicals found in 

the milieu but it is continuously exposed to them or their derivatives through blood and 

plays an important role in xenobiotic accumulation and detoxification (Yancheva et al., 

2015; Salamat and Zarie, 2016). Detoxification mechanisms include the 

biotransformation of endogenous and xenobiotic compounds into metabolites (phase I 

and phase II reactions) that can be eliminated from the cell or sequestered to avoid adverse 

toxic effects (Newman, 2015). The liver is also essential for the production of 

vitellogenin, an oestrogen-induced protein essential for female gamete development, 

which has been previously detected in males exposed to pollutants such as endocrine 

disruptors (Gonçalves et al., 2014). Liver samples are commonly used for chemical 

analysis to demonstrate the bioavailability and bioaccumulation of toxic compounds 

(Hinton and Laurén, 1990; van der Oost et al., 2003; Yancheva et al., 2015).  

Brain, which is sensitive to a wide variety of contaminants (Soengas and Aldegunde, 

2002), has attracted great interest in ecotoxicology due to its central role? in neural 

activities (e.g. swimming behaviour), crucial for fish survival (Birnie-Gauvin et al., 

2017). This organ is also involved in the neuroendocrine control of reproduction through 

the synthesis of neurosteroids (Diotel et al., 2011). Neurotoxicity effects include 

neurodegenerative damage, altered sensory capacities, brain necrotic lesions and 

behavioural changes (e.g. muscular twitching, paralysis, altered swimming capacity). 

Moreover, the brain is also considered a target organ for assessing oxidative stress (Vieira 

et al., 2018). 

Gills are also a major target organ for ecotoxicological studies, as it is continuously in 

direct contact with the milieu (Bernet et al., 1999; Au, 2004; Alvarado et al., 2006, 2007; 

Costa et al., 2009b; Lujić et al., 2013; Yancheva et al., 2015). Thus, gills are the first 

contact with waterborne pollutants and the main site for their uptake (Alvarado et al., 

2006, 2007; Costa et al., 2009b; Lujić et al., 2013), and the concentrations of chemicals 

in gills seemingly reflect their concentration in the surrounding water (Yancheva et al., 

2015). Based on the same principle of direct contact, gill histopathology can provide 

earliest evidence of biological effects exerted by pollutants (Costa et al., 2009b; Kalman 

et al., 2010). 

In addition to their role in gamete development and reproductive functions, gonads have 

also attracted great interest as target organ for toxicology studies to detect the effects of 

xenobiotic compounds and in particular endocrine disrupting chemicals (Stentiford et al., 

2003; Ortiz-Zarragoitia and Cajaraville, 2010; Bizarro et al., 2014; Dias et al., 2014; 

Gonçalves et al., 2014). Indeed, exposure to chemicals may impair reproductive function 

(Kime, 1995; Blazer, 2002) and generate specific biological effects such as e.g. the 

presence of plasma vitellogenin in males (Sumpter and Jobling, 1995; Gonçalves et al., 

2014), abnormal sex hormone levels (Solé et al., 2016), the occurrence of intersex (Minier 
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et al., 2000; Bateman et al., 2004; Stentiford and Feist, 2005; Bizarro et al., 2014; Feist 

et al., 2015) and oocyte atresia (Blazer, 2002; Reynolds et al., 2003; Ortiz-Zarragoitia and 

Cajaraville, 2010). 

3.2. The biomarker approach 

The biomarker approach was developed for biomonitoring programmes to complement 

chemical analysis and to achieve an integrative assessment of the general health status of 

aquatic ecosystem (JAMP, 2003; Davies and Vethaak, 2012; OSPAR Commission, 

2013). From molecular to community levels, biomarkers are early-warning biological 

responses to chemical(s) that can be classified into two categories: exposure and effect 

biomarkers (McCarthy and Shugart, 1990; Peakall and Walker, 1994; UNEP/RAMOGE, 

1999; Lam, 2009). Exposure biomarkers focus on the assessment of specific reactions 

such as biotransformation and detoxification processes (Broeg et al., 2005) and are 

assessed at molecular and cellular levels. Effect biomarkers indicate the magnitude of the 

biological response to exposure to contaminants. They integrate the toxicity of various 

contaminants and thus are used as signs of general environmental deterioration. Different 

biomarkers from molecular to community levels are applied in a suite as they differ in 

specificity, sensitivity, response-time and ecological relevance (Figure 6; van der Oost et 

al., 2003). The use of batteries of biomarkers is a key strategy for biomonitoring 

programmes aimed at understanding the biological effects of exposure to contaminants in 

an integrative way (UNEP/RAMOGE, 1999; Cajaraville et al., 2000; Beliaeff and 

Burgeot 2002; Broeg et al., 2005; Kopecka et al., 2006; Viarengo et al., 2007).   

Figure 6. Relationships between ecological relevance and time-scales of pollutant-

induced biomarker responses. Modified by van der Oost et al. (2003) from Adams et al. 

(1989). 
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Oxidative stress. In fish, like in most marine organisms, the antioxidant system is 

responsible for the maintenance of the prooxidant-antioxidant balance (Regoli and 

Giuliani, 2014). Exposure to environmental stressors can perturb this equilibrium and 

generate oxidative damage with enhanced production of reactive oxygen species (ROS), 

disturbed antioxidant defences and altered xenobiotic metabolism (Sies et al., 1991; 

Livingstone, 2001; Regoli and Giuliani, 2014).  

The production of ROS, stimulated by natural and anthropogenic compounds, is linked 

to several cellular pathways of aerobic metabolism. The two main biochemical reactions 

involved in ROS formation are the Haber Weiss and Fenton reactions (Figure 7). 

Antioxidant defences to prevent the effects of oxyradicals are based on the activity of 

scavengers and antioxidant enzymes working in a complex network (Regoli and Giuliani, 

2014). Scavengers interact directly with ROS for their neutralisation and can react with 

different types of ROS. In comparison, antioxidant enzymes are specific to their 

substrates. Amongst the different pathways involved in antioxidant defences, the 

superoxide dismutase (SOD) is responsible for the scavenging of superoxide anion 

radicals (Figure 7). This enzyme is present in different cellular components such as the 

cytoplasm, mitochondria and peroxisomes. The reaction catalysed by SOD produces 

hydrogen peroxide (H2O2) which implies the activity of H2O2 reducing enzymes, namely 

the catalase (CAT) and the glutathione peroxidases (GPx). CAT is mainly found in 

peroxisomes and is also involved in the detoxification of phenols and alcohols as coupled 

Figure 7. Main biochemical reactions involved in ROS production (Haber Weiss and 

Fenton reactions) and in cellular antioxidant defenses. Scheme adapted from Regoli and 

Giuliani, 2014.  
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reactions to the reduction of H2O2. The role of CAT is essential in antioxidant defences 

as it permits to reduce the availability of H2O2 for the production of highly reactive 

initiators of membrane lipid peroxidation by the Fenton reaction (Figure 7; Regoli et al., 

2002). H2O2 is also reduced by the glutathione peroxidase (GPx) in parallel with the 

oxidation of reduced glutathione (GSH) into the oxidized glutathione (GSSG). 

Xenobiotic and damaged endogenous compounds can be eliminated via their conjugation 

with GSH into the metabolite GS-X (Figure 7). This reaction is one of the many 

conjugation reactions catalysed by the glutathione-S-transferase (GST; Regoli and 

Principato, 1995).   

Changes in the activity of antioxidant enzymes are well-known biological responses to 

environmental stressors in animals (Jee and Kang, 2005; Valavanidis et al., 2006; 

Salamanca et al., 2008; Oliva et al., 2010, 2012b; Siscar et al., 2015; Kroon et al., 2017); 

however, their interpretation can be controversial (van der Oost et al., 2003). In sole, the 

activity of these enzymes in response to pollutants can be either induced (Jiménez-

Tenorio et al., 2008; Salamanca et al., 2008; López-Galindo et al., 2010a; Fonseca et al., 

2011a) or inhibited (López-Galindo et al., 2010b; Oliva et al., 2012b; Gonçalves et al., 

2013; Díaz-Garduño et al., 2018), or both (Wu et al., 2006; Gravato et al., 2009; Mani et 

al., 2014). 

Neurotoxicity. The potential neurotoxic effect of contaminants can be assessed by 

changes in acetylcholinesterase (AChE) activity, an enzyme involved in neural 

transmission (Davies and Vethaak, 2012; Oliva et al., 2012a; Burgeot et al., 2017). In 

vertebrates such as fish, the acetylcholine (ACh) is released in the nerve synapses where 

it acts as an excitatory transmitter (Fulton and Key, 2001). AChE catalyses the hydrolysis 

of ACh to regulate the presence of the neurotransmitter in the synaptic gap. Enzymatic 

inhibition results in the accumulation of ACh, which generates a continuous stimulation 

of receptors located in the post-synaptic membrane. Subsequent abnormal nervous 

functions include rapid muscular twitching and paralysis. Initially, AChE inhibition was 

mainly used as neurotoxic biomarker of organophosphate and carbamate pesticides 

(WHO 1986a, 1986b; Grue et al., 1997; Heath et al., 1997; Davies and Vethaak, 2012). 

AChE sensitivity has been demonstrated for a wide range of chemicals and the enzyme 

is now used as biomarker of general stress in aquatic organisms, including sole (López-

Galindo et al., 2010a, 2010b; Oliva et al., 2012a; Solé et al., 2012; Jebali et al., 2013; 

Siscar et al., 2013). 

Lysosomal responses. As part of the endo-lysosomal system (Figure 8), lysosomes are 

responsible for the recycling of damaged cellular components and the accumulation and 

degradation of exogenous substances that reached the intracellular compartment (De 

Duve, 1983; Lin and Steichen, 1994; Hu et al., 2015). They contain a high amount of 

hydrolases whom activity is pH-dependent. The acidic pH of the lysosome ensures their 

activation in the vesicle and the neutral pH of the cytosol keeps them inactive, preventing 

from autodegradation. Lysosomal pH is maintained via the action of a proton pump in the 

lysosomal membrane (Figure 8). The description of the endo-lysosomal system and 
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lysosomal dysfunctions in human medicine has attracted great interest for toxicological 

studies to identify potential cellular effects of pollutants. Amongst the material reaching 

lysosomes, a wide range of chemicals such as metallic and organic contaminants can be 

found sequestrated in the vesicle where they are detoxified (Moore, 2004; ICES, 2011; 

Davies and Vethaak, 2012). Pollutants load in lysosomes may exceed the vesicle's storage 

capacity and alter its structure (e.g. lysosomal enlargement) and the integrity of its 

membrane (membrane destabilisation; Einsporn et al, 2005).  

Lysosomal changes for environmental research were first studied and applied in marine 

molluscs (Moore, 1976, 1982, 1985; Regoli, 1992; Lin and Steichen, 1994; Cajaraville et 

al., 1995; Marigómez et al., 1996) and later in fish species (Köhler, 1991, 2002; Köhler 

et al., 1992; Broeg et al., 1999; Diamant et al., 1999). They are considered sublethal to 

lethal responses to environmental factors; they are not specific to the action of pollutants 

but instead are representative of the subsequent adverse health effects of exposure to 

contaminants or other stress factors (Davies and Vethaak, 2012). Changes in lysosomal 

structure and membrane integrity are considered biomarkers of general stress (Regoli, 

1992; Broeg et al., 1999, 2002; UNEP/RAMOGE 1999; Köhler et al. 2002; JAMP, 2003; 

Moore, 2004; Moore et al., 2008, 2013; ICES, 2006; Davies and Vethaak, 2012). In 

laboratory studies, lysosomal changes have been reported in response to a variety of 

contaminants such as metals (Roméo et al., 2000; Alvarado et al., 2005; Giambérini and 

Cajaraville 2005; Marigómez et al., 2005a; Izagirre et al., 2014; Brooks et al., 2015; 

Benito et al., 2017) and PAHs (Marigómez and Bay-bay-Villacorta, 2003; Marigómez et 

al., 2005a; Blanco-Rayón et al., 2018). Their application in biomonitoring programmes 

Figure 8. Schematic representation of the endo-lysosomal system showing different 

entry pathways of exogenous substances into lysosomes. Scheme adapted from Cooper, 

2000. 
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allowed for the assessment of the general health status of the marine ecosystem, using 

bivalves (Cajaraville et al., 2000; Domouhtsidou and Dimitriadis 2001; Koukouzika and 

Dimitriadis, 2005; Marigómez et al., 2006; Da Ros et al., 2007; Viarengo et al., 2007; 

Diaz de Cerio et al., 2018; Benito et al., 2019), fish (Bilbao et al. 2006; Schiedek et al. 

2006; Zorita 2008) and in particular flatfish species (Kohler 1991; Broeg et al. 2002, 

2005; Alvarado et al. 2005; Einsporn et al., 2005; Baršienė et al., 2006; Burgeot et al., 

2017).   

Lysosomal membrane stability. Among lysosomal alterations, cellular effects of exposure 

to environmental factors include the destabilisation of the vesicle’s membrane 

(UNEP/RAMOGE, 1999; Köhler et al., 2002; Davies and Vethaak, 2012). Damage of the 

lysosomal membrane may affect the permeability of the vesicle and let hydrolases reach 

the cytosol (Lin and Steichen, 1994). Although the enzymes activity is pH-dependent and 

should be inactive in the cytoplasm, hydrolases leakage from several lysosomes may 

affect the cytosolic pH and generate degenerative processes with cellular autolysis and 

potential cell death (Bayne et al., 1976; Einsporn et al., 2005).  

The lysosomal membrane integrity is a cellular biomarker of sublethal effects of 

environmental stressors and is used to assess changes in the general health status of the 

aquatic environment (Cajaraville et al., 1995; Marigómez and Bay-bay-Villacorta, 2003; 

Moore, 2004; Moore et al., 2007, 2013; Izagirre et al., 2008; Davies and Vethaak, 2012; 

ICES, 2015). It can be assessed based on the lysosomal membrane stability test, which 

was recognised by the UN Environment Programme (UNEP) for its application in the 

Mediterranean Pollution programme (MED POL) and included in marine monitoring 

frameworks (Baršienė et al., 2006; OSPAR Commission, 2010; Davies and Vethaak, 

2012; HELCOM, 2012; UNEP/MAP, 2014). The test is based on the demonstration of 

the latent activity of lysosomal hydrolases found in fish hepatocytes such as the acid 

phosphatase (AcP) (Figure 9A; UNEP/RAMOGE, 1999; ICES, 2004). The integrity of 

the membrane is tested by application of different intervals of acid labilisation. Membrane 

destabilisation generates an input of the enzyme’s substrate into the vesicle, which is 

detected by an increased staining of the lysosome. The destabilisation time leading to the 

maximum staining intensity is defined as the labilisation period (LP, in min). Thus, longer 

LP shows higher lysosomal membrane integrity whilst lower values demonstrate an 

increased lysosomal permeability (Köhler et al., 2002). Based on this technique, sublethal 

effects of general stressors are detected by decreased LP values. As a general observation, 

healthy animals tend to show a LP>20 min and severely stressed individuals would show 

values <10 min (Viarengo et al., 2000, 2007; Broeg et al., 2005; Moore et al., 2006). 

Lysosomal membrane destabilisation has been reported in fish liver in response to 

environmental stressors (Broeg et al., 1999, 2002; Köhler et al., 2002; Baršienė et al., 

2006; Zorita et al., 2008; Burgeot et al., 2017). However, changes in lysosomal membrane 

stability are not always so clear, in particular in case of low contaminant concentrations 

where lysosomes may appear more stable (Marigómez et al., 2005b; Izagirre and 

Marigómez, 2009). Thus, the assessment of the lysosomal membrane stability in 
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combination with other lysosomal 

biomarkers is essential for a correct 

interpretation of contaminants effects. 

Lysosomal Structural changes. 

Possible lysosomal responses to 

exposure to stress factors also include 

changes in lysosomal structure such as 

changes in size and number. Lysosomal 

size varies with the nature and quantity of 

material (e.g. pollutants) reaching the 

organelle where it is either metabolised 

and eliminated or accumulated (Köhler et 

al., 2002).  

Alterations in lysosomal structure can be 

assessed by measurement of stereological 

parameters after demonstration of the 

latent activity of the lysosomal enzyme β-

glucuronidase (Figure 9B). Lysosomal 

enlargement for instance, may be 

characterised by an increase in lysosomal 

volume density (VvL), a decrease in 

lysosomal surface-to-volume ratio (S/VL, 

value inverse to lysosomal size) and a 

decrease in lysosomal numerical density 

(NvL). Lysosomal enlargement has been 

recorded in fish hepatocytes as cellular 

responses to environmental stressors 

(Köhler, 2004; Alvarado et al., 2005). 

Reference values for lysosomal 

parameters are available for bivalves 

(Davies and Vethaak, 2012); however, 

less data are available from flatfish 

species (Köhler, 2004; Alvarado et al., 

2005). 

Changes in lysosomal content. 

Environmental stressors may also alter 

the lysosomal content notably with 

increased accumulation of neutral lipids 

(Viarengo et al., 2007). The storage of 

neutral lipids such as triglycerides, steryl 

esters, and retinyl esters in intracellular 

 

Figure 9. Micrographs of hepatic 

histochemical sections of S. senegalensis 

showing the demonstration of lysosomal 

enzymes activities, the acid phosphatase 

(A) and β-glucuronidase (B), and the 

accumulation of neutral lipid droplets (C). 

White scale: 50 µm. 
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droplets is essential for energy homeostasis and lipid metabolism (Welte, 2015). These 

lipid droplets are also involved in the sequestration of toxic compounds. Intracellular 

accumulation of neutral lipids in fish hepatocytes can be quantified after staining of liver 

sections with Oil Red O (ORO; Culling, 1974; Figure 9C) and is expressed as volume 

density of neutral lipids (VvNL). Increased neutral lipid accumulation has been recorded 

in fish species after exposure to contaminants (Viarengo et al., 2007) and was recognised 

as an early indicator of liver injury (Köhler et al., 2002; Köhler, 2004).  

Histopathology. Biological responses to exposure to environmental stressors identified 

by cellular biomarkers (oxidative stress, neurotoxicity, altered endo-lysosomal system) 

may progress to autophagy and apoptosis (Moore et al., 2006; Chiarelli et al., 2016) and 

potentially generate tissue-level alterations (Köhler et al., 2002, 2004). Histopathological 

lesions are considered indicators of biological effects of sub-lethal and chronic exposures 

to environmental stressors (Bernet et al., 1999; Reynolds et al., 2003; van der Oost et al., 

2003; Stentiford et al., 2003; Stentiford and Feist, 2005; Costa et al., 2009b, 2010a, 

2010b; Gonçalves et al., 2013; Feist et al., 2015). They are considered non-specific 

biological responses as they may originate from exposure to various environmental 

stressors such as mixtures of contaminants (Yancheva et al., 2015). Histopathological 

approaches are advantageous for ecotoxicology studies because they allow for the 

assessment of medium-term responses that can be extrapolated to community and 

ecosystem levels (Hinton and Lauren, 1990; Au, 2004; Lang et al., 2006). Fish 

histopathology has been applied as an integrative method for environmental health 

assessment in monitoring programmes (OSPAR QSR 2000; HELCOM, 2002; Stentiford 

et al., 2003, 2009; Lang et al., 2006; Salamat and Zarie, 2016). 

In particular, liver histopathology is recognised as a sensitive tool for the assessment of 

the biological effects of environmental stressors (Bucke et al., 1996; Bernet et al., 1999; 

Feist et al., 2004; Costa et al., 2009b, 2013; Fricke et al., 2012), and has been implemented 

in the OSPAR Joint Assessment and Monitoring Programme (JAMP) together with 

quality guidelines pursuing standardised procedures (ICES, 1997; BEQUALM, 2001; 

Feist et al., 2004). Liver histopathology in sole has been investigated in laboratory 

(Arellano et al., 1999; Salamanca et al., 2008; Costa et al., 2009b, 2011, 2013; Oliva et 

al., 2009) and field studies (Gonçalves et al., 2013; Oliva et al., 2013; Cuevas et al., 2015a, 

2015b; Chapter 1). 

As previously mentioned, melanomacrophage centres may be identified throughout the 

parenchyma of healthy tissues. However, their frequency and staining intensity are also 

known to change with infectious diseases or chemical exposure (melanomacrophage 

centres accumulation: MMCs; Zorita and Cuevas, 2014). Along with lymphocytic 

infiltration, increased prevalence of MMCs is a common inflammatory response recorded 

as indicator of altered immune system (Agius and Roberts, 2003; Stentiford et al., 2003). 

They are often coupled with circulatory disturbances such as hyperaemia (Noreña-

Barrose et al., 2004; Zorita and Cuevas, 2014) and haemorrhage (Costa et al., 2011). 

These lesions are early tissue-level indicators of environmental stressors and are 
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considered of minor severity, as they are reversible. In comparison, necrosis is an 

irrevocable degenerative alteration characterized by loss of cellular structure and 

functions (Oliveira Ribeiro et al., 2005; Costa et al., 2013). Another example of regressive 

change is the identification of hepatocellular and nuclear pleomorphism (HNP), often 

observed after exposure to carcinogenic compounds (Köhler, 1990). One of the liver’s 

main functions is the storage of lipids as source of energy. The degree of hepatocytes fat 

content varies with food availability and gamete development but excessive fat 

vacuolation has also been observed in response to exposure to xenobiotic compounds 

(Costa et al., 2009b, 2011). Other progressive changes include the hydropic vacuolation 

of epithelial cells of bile duct and concentric periductal fibrosis which are commonly 

related to parasitic infection. Cases of neoplastic lesions have been described in response 

to exposure to contaminants in fish and in particular in flatfish species (Köhler and Pluta, 

1995; Vethaak et al., 1996; WGBEC, 2002; Lang et al., 2006; Stentiford et al., 2009, 

2010; Zorita and Cuevas, 2014; Feist et al., 2015; Chapter 1). 

Gill histopathology allows for the assessment of the biological effects of recent stressors 

(Costa et al., 2009b; Kalman et al., 2010). This approach is not contaminant-specific; 

instead, it is representative of the general health status of individuals and of environmental 

quality (Arellano et al., 1999; Au, 2004). Gill histopathological lesions are indicative of 

potential physiological effects such as altered osmoregulation and respiration, which can 

have severe consequences on survival (Sensini et al., 2008).  

Direct exposure to environmental stressors may damage the structure of gills and alter its 

physiological functions (Au et al., 2004; Lowe et al., 2015). For instance, suspended 

sediments, among other stressors, are known to affect the length of gill lamellae and alter 

the gill epithelium (Smart, 1976; Mallat, 1985; Hinton and Laurén, 1990; Arellano et al., 

2004; Hess et al., 2017). This can be translated by the histological observation of 

regressive changes (epithelial lifting and desquamation). One strategy to compensate 

epithelial damage and to reduce the effect of toxic compounds is to increase the thickness 

of gill epithelium by proliferation of lamellar cells. This histological lesion is called 

epithelial hyperplasia (Roberts, 2001) and can progress into lamellar fusion, both lesions 

impeding gas exchanges (Skidmore and Tovel, 1972). Other common progressive 

changes include hypertrophy of pavement cells and chloride cells. Severe exposure to 

environmental stressors can also damage the structure of pillar cells, which would alter 

the lamellar blood flow and generate circulatory disturbances such as blood congestion, 

aneurysm and haemorrhage (Martinez et al., 2004; Camargo and Martinez, 2007). They 

are considered more severe than epithelial alterations in the sense that recovery is more 

difficult. Gills histopathological alterations have been reported in response to a variety of 

contaminants including contaminated sediments (Stentiford et al., 2003; Jímenez-Tenorio 

et al., 2008; Costa et al., 2009b, 2010a; Oliva et al., 2013; Martins et al., 2016; Chapter 

1), waterborne metals (Arellano et al., 1999; Martinez et al., 2004; Oliva et al., 2009; 

Costa et al., 2013) and PAHs and pesticides (van der Oost et al., 2003; Noreña-Barroso 

et al., 2004; Camargo and Martinez, 2007; Salamanca et al., 2008; Lopez-Galindo et al., 

2010; Martins et al., 2016; Salamat and Zarie,  2016). 
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Gonad histo(patho)logy gives essential data on the reproduction status of a population 

and on its preservation for future generations (Blazer, 2002; Solé et al., 2016). The 

identification of histopathological lesions can also contribute to identify the effects of 

endocrine disrupting chemicals. These lesions include the occurrence of intersex based 

on the detection of ovotestis or testis-ova (Minier et al., 2000; Bateman et al., 2004; 

Stentiford and Feist, 2005; Bizarro et al., 2014; Feist et al., 2015) and oocyte atresia 

(Blazer, 2002; Reynolds et al., 2003; Ortiz-Zarragoitia and Cajaraville, 2010). Oocyte 

atresia can occur naturally as part of the gamete development but it has also been 

identified in response to environmental stressors (Witthames et al., 1995; Reynolds et al., 

2003; Chapter 1). 

Although histopathological approaches provide essential data on the general health status 

of individuals, one major limitation remains on the lack of quantitative methods. The 

acquisition of numerical data aims to help evaluating the biological significance of 

histopathological lesions and to enhance studies comparability. The calculation of lesion 

prevalence gives a first numerical data that informs on the lesion commonness or rarity 

in a group of individuals but lacks to represent the differences in lesion severity. 

Histopathological indices can be calculated based on semi-quantitative methods that takes 

into account the severity of the lesion identified (weight) and the level of dissemination 

in the organ (score) (Bernet et al., 1999; Lang et al., 2006; Van Dyk et al., 2007; 

Triebskorn et al., 2008; Costa et al., 2009b). They are suitable for the assessment of 

biological effects of exposure to contaminants and have been applied in sole and other 

flatfish species (Costa et al., 2009b, 2011; Gonçalves et al., 2013; Cuevas et al., 2015). 

Similarly, biological responses assessed through the application of a battery of 

biomarkers can be integrated into indices to obtain a numerical representation of changes 

in ecosystem health. Amongst the different integrative indices proposed (Chèvre et al., 

2003; Broeg et al., 2005; Dagnino et al., 2007; Izagirre and Marigómez, 2009; Marigómez 

et al., 2013), the Integrated Biomarker Response (IBR) index is calculated based on the 

area defined by biomarkers when arranged into a star plot (Beliaeff and Burgeot, 2002; 

Sanchez et al., 2013; Devin et al., 2014). The method is considered to be a sensitive tool 

for the assessment of changes in general health status of the aquatic biota for 

biomonitoring programmes (Broeg and Lehtonen 2006; Brooks et al., 2011; Cravo et al., 

2012; Serafim et al., 2012; Marigómez et al., 2013; Rementeria et al., 2016). 

4. Ecotoxicological experimentation with fish 

Ecotoxicology assays are developed to understand how contaminants may affect 

organisms, populations and communities. Acute toxicity tests are usually the first step to 

estimate potential adverse effects of a new contaminant. They are based on the calculation 

of quantitative indicators such as the LC50 (median lethal concentration; Erhirhie et al., 

2018). Nevertheless, the environmental relevance of these tests for European ecosystems 

has been questioned as their application is recommended for certain fish species that are 

not present in European waters (Braunbeck et al., 2005). Instead, fish embryo tests using 

natural population are suggested as substitute of acute toxicity tests (Braunbeck et al., 
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2005; Lammer et al., 2009; Halder et al., 2010; Belanger et al., 2013). They are considered 

reproducible, time and cost-effective and may include different toxicological endpoints 

(Wedekind et al., 2007). As embryo toxicity tests are not suitable for cases of chronic 

contamination, laboratory assays including larvae, juveniles and adults are also necessary.  

In the attempt to resemble the complexity of the environment, ecotoxicology assays using 

older individuals must take into account a variety of contaminants at different 

concentrations, and a variety of exposure patterns and exposure time (Table 1). Typically, 

chemical toxicity assessment includes exposure to different concentrations of the studied 

contaminant. High concentrations of single contaminant are applied to induce rapid and 

acute biological effects whilst the use of environmentally relevant concentrations aims to 

establish the association between levels of chemicals encountered in the field and 

alterations in the health status recorded in the biota. Similarly, the exposure pattern may 

vary between toxicity assays (Table 1); it must be relevant to the environmental pathways 

of the studied contaminant. In the case of selenium for instance, environmental toxicity 

is based on dietary exposure and progresses through the food chain (Chapman, 1999). 

Thus, although standard ecotoxicology assays using waterborne contaminant were 

essential to demonstrate the acute toxicity of selenium, it was also crucial to include 

assays using dietary exposure to selenium (Janz et al., 2010). Dietary exposure is also 

commonly used to assess potential bioaccumulation of contaminants and to help 

understanding mechanisms involved in detoxification processes (Le Croizier et al., 2019). 

In the environment, contaminants rarely occur isolated; instead, they are found as a 

complex mixture. Toxicity assays using chemical mixtures are considered 

environmentally realistic and assess antagonistic or synergistic effects of contaminants. 

Costa et al. (2010) for instance, demonstrated that the combination of Cd and B[a]P upon 

hepatic injection in sole induced different toxicity than isolated contaminants. In the 

environment, mixtures of contaminants are also found in the sediment. The complexity 

of this milieu is related to its dual capacity to trap and release chemical compounds to the 

water column (Eggleton and Thomas, 2004). This changing bioavailability of 

contaminants depends on environmental conditions (pH, salinity, temperature) and 

sediment characteristics (granulometry, redox potential). Sediment toxicity is also 

influenced by the different relative concentration, speciation and mobility of each 

contaminant (Chapman, 1990). Toxicity tests assessing sediment contamination include 

exposure to naturally contaminated sediments and spiked sediments (Table 1; Hallare et 

al., 2011). Most ecotoxicology studies on sediment contamination focus on toxicity for 

the benthic community including crustaceans (e.g. amphipods), polychaete, molluscs and 

fish, in particular flatfish (Table 1). This diversity of ecotoxicological assays (wide range 

of contaminants, various exposure pathways, mixture of contaminants, among others) is 

essential to support field studies surveying the health status of the aquatic ecosystem 

prone to a complex and fluctuating contamination.



 

Table 1. The place of Solea spp. in fish ecotoxicology. Different exposure patterns, contaminants and exposure time in recent toxicological 

experiments. WE: Waterborne Exposure; SE: Sediment Exposure; INJ: Injection; FS: Field Study; DE: Dietary Exposure; T: Temperature; 

NA: Not Applied. 

Reference Exposure pattern Contaminants Exposure time Fish sp. Biological endpoints 

Arellano et al., 1999 WE Metals (Cu) 7 d S. senegalensis Liver and gill histopathology 

Briaudeau et al., 2019 FS Natural sediments 7 yr Solea spp. Multi-organ histopathology 

Claireaux and Davoodi, 2002 WE PAHs (oil) 5 d S. solea Impaired cardio-respiratory responses 

Claireaux et al., 2004 WE PAHs (oil) 5 d S. solea Biochemistry and histopathology 

Costa et al., 2008 SE Natural sediments 28 d S. senegalensis Genotoxicity 

Costa et al., 2009a SE Natural sediments 28 d S. senegalensis Biochemistry 

Costa et al., 2009b SE Natural sediments 28 d S. senegalensis Liver and gill histopathology 

Costa et al., 2010a SE Natural sediments 28 d S. senegalensis Gills and kidney histopathology 

Costa et al., 2010b INJ Multiple NA S. senegalensis Proteomic and liver histopathology 

Costa et al., 2011 SE Natural sediments 28 d S. senegalensis Liver histopathology 

Costa et al., 2013 WE Metals (Cd) 28 d S. senegalensis Multi-organ histopathology 

Cuevas et al., 2015a FS NA 1 yr S. solea Multi-organ histopathology 

Cuevas et al., 2015b FS Natural sediments 2 yr S. solea Multi-organ histopathology 

Díaz-Garduño et al., 2018 WE Urban effluent 7 d S. senegalensis Biochemistry 

Fonseca et al., 2011a FS Natural sediments <1 yr S. senegalensis Biochemistry 

Fonseca et al., 2011b FS Env. Param. <1 yr S. senegalensis Biochemistry 

Ghribi et al., 2019 SE Natural sediments 28 d S. senegalensis Biochemistry and histopathology 

Gilliers et al., 2006 FS Oil spill 1 m S. solea Growth indicators and biochemistry 

Gonçalves et al., 2013 FS Multiple <1 yr S. senegalensis Biochemistry and histopathology 

Gonçalves et al., 2014 FS Organic toxicants <1 yr S. senegalensis Biochemistry and gonad histopathology 

González-Mira et al., 2016 INJ Pharmaceutical drugs NA S. senegalensis Biochemistry 

Hampel et al., 2008 SE Spiked sediments 30 d S. senegalensis Histopathology and larvae survival 

Jebali et al., 2013 FS Multiple 1 m S. solea Biochemistry and histopathology 

      



 

 

      

Reference Exposure pattern Contaminants Exposure time Fish sp. Biological endpoints 

Jiménez-Tenorio et al., 2008 SE PAHs (oil) 42 d S. senegalensis Biochemistry and histopathology 

Kalman et al., 2010 INJ Metals (Cd) NA S. senegalensis Histopathology 

Le Croizier et al., 2018 WE Metals (Cd) 2 m S. senegalensis Organotropism and metallothionein 

Le Croizier et al., 2019 DE Metals (Cd) 2 m S. senegalensis Metal partitioning 

Lefrançois and Claireaux, 2003 O2 and T Env. Param. 48 h S. solea Heart rate and growth 

López-Galindo et al., 2010a WE Organic antifoulant 7 d S. senegalensis Biochemistry and histopathology 

López-Galindo et al., 2010b WE Organic antifoulant 15 d S. senegalensis Biochemistry 

Martins et al., 2015 SE Natural sediments 28 d S. senegalensis Histopathology 

Oliva et al., 2009 WE Metals (Cu) 96 hr S. senegalensis Histopathology 

Oliva et al., 2010 FS PAHs 4 yr S. senegalensis Biochemistry 

Oliva, et al. 2012a FS Multiple 4 yr S. senegalensis Biochemistry 

Oliva et al., 2012b FS Metals 4 yr S. senegalensis Biochemistry 

Oliva et al., 2013 FS Multiple 4 yr S. senegalensis Histopathology 

Oliva et al., 2014 FS Multiple 4 yr S. senegalensis Biochemistry 

Riba et al., 2004 SE Natural sediments 30 d S. senegalensis Metallothionein 

Ribecco et al., 2012 SE Natural sediments 96 hr S. solea Molecular biomarkers 

Salamanca et al., 2008 WE PAHs (oil) 21 d S. senegalensis Biochemistry and histopathology 

Sànchez-Nogué et al., 2013 in vitro Pesticides 30 min Solea spp. Biochemistry 

Siscar et al., 2013 FS Metals 1 yr Solea spp. Biochemistry 

Siscar et al., 2014 T Env. Param. 2 m S. senegalensis Metallothionein and metal bioaccumulation 

Siscar et al., 2015 FS NA <1 yr Solea spp. Biochemistry 

Solé et al., 2008 WE PAHs (oil) 72 hr S. senegalensis Biochemistry 

Solé et al., 2013 FS Natural sediments <1 yr Solea spp. Immunological test 

Solé et al., 2016 FS NA <1 yr Solea spp. Biochemistry 

Trisciani et al., 2011 FS PAHs (oil) <1 yr S. solea Molecular biomarkers and biochemistry 

Vieira et al., 2018 FS Env. Param. 2 yr S. solea Physiology and biochemistry 

Wessel et al., 2010 WE PAHs 28 d S. solea Biotransformation and biochemistry 
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State of the Art 

The anthropogenic pressure on the aquatic environment is undeniable and environmental 

protection has become a clear importance over the last 50 yr. Although legislative 

measures have been implemented, the improvement of environmental quality/health is a 

slow and complex process. Thus, even after the regulation of priority substances, 

contaminants are still present in the environment, in particular in the confined ecosystems 

of coastal and estuarine areas. Pollution monitoring programmes aim to detect and 

quantify contaminants present in the environment and to assess their potential effects on 

the surrounding biota. In relation with the increasing awareness on sediment 

contamination, a particular interest has been drawn towards the use of benthic organisms 

as sentinel species to assess the health status of coastal and estuarine ecosystems. The 

flatfish Solea spp. is abundant throughout the Iberian Peninsula and the Bay of Biscay. 

Its distribution, benthic behaviour, economic and ecological importance, and the 

knowledge acquired from previous studies on the species make the sole an attractive 

species for the assessment of estuarine and coastal ecosystems health status. 

However, the sensitivity of the species to environmental contamination was mainly 

established in early life stages, based on biochemical and histopathological approaches. 

They correspond to larvae that migrate from deep spawning grounds to coastal areas 

during metamorphosis or to newly metamorphosed individuals that recently reached 

estuarine ecosystems. Thus, the use of sole larvae and fry for the assessment of estuarine 

ecosystem health may be limited by their age and short stay in the area. Instead, juveniles 

and young adults remain in estuaries and coastal areas during the first 2 to 3 years of life. 

Indeed, individuals of this age class are starting to be used in field studies to observe the 

health status of these ecosystems. In the laboratory, there is a growing number of 

ecotoxicology assays assessing the sensitivity of sole juveniles to environmental stressors 

(e.g. exposure to pollutants). This responsiveness can be assessed in an integrative way 

based on the application of a battery of biomarkers at different biological organization 

levels. Biochemical, cell and tissue-level biomarkers together with histopathology are 

considered early warning biological responses to exposure to chemicals. 

In the attempt to approximate the complexity of environmental contamination, laboratory 

experiments consider a wide range of stressors such as contaminants, applied at different 

concentrations and in a variety of exposure patterns and exposure time. The use of native 

sediments for instance, allow for the assessment of their complex toxicity considering the 

mixture of contaminants, the relative concentration, speciation and mobility of each 

chemical and the influence of physicochemical parameters and sediment characteristics. 

However, the association between sediment contaminants present as a mixture and 

alterations in the health status recorded in the biota is intricate. Model contaminants used 

at different concentrations are also essential to identify toxicopathic effects of 

environmental stressors in controlled conditions. 
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Hypothesis 

Solea spp. is responsive to environmentally realistic concentrations of pollutants, which 

can be quantified upon the application of an integrative battery of biomarkers and 

histopathology, and therefore it is suitable as sentinel species for the assessment of the 

biological effects of pollution in OSPAR Region IV biomonitoring programmes in the 

context of EU Marine Strategy Framework Directive. 

 

 

Objectives 

In order to demonstrate the hypothesis, the following objectives are to be achieved: 

1- To assess and survey the ecosystem health status of an estuarine area experiencing 

recovery from a deteriorated situation, by implementation of a monitoring programme 

based on sediment chemistry and sole juveniles multi-organ histopathology. 

 

2- To establish the association between sediment contamination and toxicopathic effects 

in sole juveniles upon a 28-day laboratory exposure based on chemical analysis and 

on the application of an integrative battery of biomarkers including biochemical, 

cellular and histopathological endpoints. 

 

3- To confirm the suitability of a 7-day toxicity assay using a waterborne model metal 

(Cd) at different concentrations for the assessment of toxicopathic effects of 

environmental stressors in sole juveniles based on an integrative battery of biomarkers 

including biochemical, cellular and histopathological endpoints. 

 

4- To confirm the suitability of a 7-day toxicity assay using a waterborne model organic 

contaminant (B[a]P) at different concentrations for the assessment of toxicopathic 

effects of environmental stressors in sole juveniles based on an integrative battery of 

biomarkers including biochemical, cellular and histopathological endpoints. 
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Abstract 

The Bilbao estuary (SE Bay of Biscay) is a recovering ecosystem whose sediments are 

still contaminated. They represent a potential risk for the biota including benthic and 

demersal species living in direct contact with the sediment. In this context, the present 

study aims to survey trends of the health status of the Bilbao estuary based on sediment 

chemistry and sole (Solea spp.) histopathology. Monitoring campaigns were carried out 

every autumn from 2011 to 2017 along the estuary. Contaminant levels were measured 

in sediments; liver, gills and gonads of juvenile fish were collected for histopathology. 

Overall, contaminant levels fluctuated throughout the years, with highest values recorded 

in the earlier years of the study period. Sole histopathology showed alterations of mild 

severity. Results permitted to assess the environmental health status of the Bilbao estuary 

during 7 years, although no clear temporal trend was detected. Longer-term monitoring 

programmes are necessary to confirm the ecosystem recovery. 
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Résumé 

L’estuaire de Bilbao (SE du golfe de Gascogne) est un écosystème en cours de 

rétablissement dont les sédiments sont encore considérés contaminés. En effet, ils 

représentent un risque potentiel pour le biote marin telles que les espèces benthiques et 

démersales qui vivent en contact direct avec le substrat. L’étude présente a pour objectif 

de surveiller l’évolution de l’état de santé de l’estuaire de Bilbao en se basant sur l´analyse 

chimique du sédiment et l’histopathologie de la sole (Solea spp.). Des campagnes de 

surveillance ont été conduites le long de l’estuaire, chaque automne de 2011 à 2017. Les 

concentrations en contaminants métalliques et organiques ont été mesurés dans le 

sédiment et des échantillons de foie, branchies et gonades ont été prélevés pour les 

analyses d’histopathologie. Dans l'ensemble, les niveaux de contaminants variaient au 

cours des années.  Les niveaux les plus élevés ayant été enregistrées durant les premières 

années de campagne. L’analyse histopathologique chez la sole a montré des lésions de 

sévérité moyenne. Les résultats ont permis de suivre l’évolution de l’état de santé 

environmentale de l’estuaire de Bilbao pendant 7 ans bien qu’aucune tendance temporelle 

n’ait été détectée. Des campagnes de surveillance à long terme sont nécessaire afin de 

confirmer le rétablissement de l’écosystème. 
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Laburpena 

Bilboko estuarioa (Bizkaiko badian) berreskuratzen dagoen ekosistema da, bere baitan 

oraindik kutsaturiko sedimentuak dituena. Hauek, biotarekiko arriskutsuak suerta 

daitezke, espezie bentikoekiko edota sedimentuari erlazio zuzena  dituzten espezie 

demertsalekiko batez ere. Gauzak horrela, lan honen helburua Bilboko estuarioaren 

osasun egoera ikertzea da.Horretarako, sedimentuen kimika eta mihi-arrainaren (Solea 

spp.) histopatologia aztertuko da. Udazkenetan 2011-2017 bitartean, kutsaduraren 

jarraipen kanpainak bideratu ziren Bilboko estuarioan zehar. Kutsatzaileen mailak 

estuarioko sedimentuetan neurtu ziren eta mihi-arrain gazteen gibeletan, zakatzetan eta 

gonadetan analisi histopatologikoak egin ziren.  Oro har, urteetan zehar kutsatzaileen 

mailak gorabeherak izan zituzten, balio altuenak lehenengo laginketa urteetan zehar eman 

zirelarik. Mihi-arrainen histopatologiak larritasun baxuko alterazioak erakutsi zituen. 

Emaitz hauek Bilboko estuarioaren ingurumen osasun maila 7 urteetan zehar aztertzea 

baimendu du, denborarekiko joerarik garbiak aurkitu ez izan arren. Izan ere, epe luzeko 

monitorizazio programak beharrezkoak dira ekosistemaren berreskurapen prozesua 

konfirmatu nahi bada. 
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1. Introduction 

The marine environment is exposed to a large variety of persistent chemicals, which even 

at low levels can cause adverse effects to the ecosystem (Bernet et al., 1999; Haynes and 

Johnson, 2000; Moore et al., 2004). Pollution monitoring programmes are therefore 

developed to survey status and trends of the affected aquatic environments over time. In 

the Bay of Biscay and the Atlantic Iberian coast, chemical long-term data were recorded 

for the past years in offshore, coastal and estuarine areas (Besada et al., 2011; 2014; Borja 

et al., 2011; 2016; Legorburu et al., 2013; 2014). Amongst these areas, the Bilbao estuary 

(SE Bay of Biscay) attracted great interest for its industrial past and its recent recovery 

processes (Borja et al., 2006; 2010; 2016; Cajaraville et al., 2016; Irabien et al., 2018). 

This estuary suffered from intense industrial and domestic pollution of the Bilbao 

metropolitan area since the 19th century and was consequently highly contaminated (Soto 

et al., 1995; González-Oreja and Saiz-Salinas, 1998; Orbea and Cajaraville, 2006; 

Fernández-Ortiz de Vallejuelo et al., 2010; Gredilla et al., 2013). Over the last decades, 

the industrial decline and improvement of wastewater-treatment in the area enhanced the 

recovery of both water and sediment quality, as well as the diversity and abundance of 

the planktonic and benthic communities and fish populations (Saiz-Salinas and González-

Oreja, 2000; Cearreta et al., 2004; Borja et al., 2006; García-Barcina et al., 2006; Díez et 

al., 2009; Fernández-Ortiz de Vallejuelo et al., 2010; Villate et al., 2013; Pouso et al., 

2018). 

Nevertheless, the recovery of sediment quality is a slow process and thus, some areas of 

the estuary were still considered moderately toxic (Borja et al., 2015; Cajaraville et al., 

2016). Based on sediment analysis, the estuary was chronically impacted by metals, PCBs 

and PAHs contamination (Montero et al., 2013; Borja et al., 2015). These sediments 

represented a potential source of pollutants for the surrounding biota (Eggleton and 

Thomas, 2004). 

A particular interest has been drawn towards the use of flatfishes as sentinel species for 

biomonitoring programmes (Köhler et al., 1992; Myers et al., 1994; Stehr et al., 2003; 

Dabrowska et al., 2012; Fricke et al., 2012). This is mainly related to their benthic 

behaviour, which links their general health status to sediment quality (Feist et al., 2004; 

Lang et al., 2006; Jimenez-Tenorio et al., 2008). In this respect, the common sole (Solea 

solea) and the Senegalese sole (Solea senegalensis) are two frequent flatfishes found 

along the coast of Southern European countries (Quéro et al., 1986). Their suitability as 

sentinel species for biomonitoring programmes has been proposed in many works. They 

include laboratory studies (Claireaux et al., 2004; Salamanca et al., 2008; Costa et al., 

2010; Ribecco et al., 2012; González-Mira et al., 2016) and short field research carried 

out in the Mediterranean Sea (Dierking et al., 2009; Sànchez-Nogué, 2013; Siscar et al., 

2013; Oliva et al., 2014; Solé et al., 2016), in Portugal (Vinagre et al., 2006; Costa et al., 

2013; Gonçalves et al., 2013) and in the Bay of Biscay (Budzinski et al., 2004; Gilliers et 

al., 2006; Cuevas et al., 2015a, 2015b). 
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In sole, as well as in other marine organisms, biological responses to contaminants can 

be measured at different biological organization levels. Tissue-level alterations represent 

a powerful indicator of medium-term effects of exposure to xenobiotics (Bernet et al., 

1999; Feist et al., 2004). In several species of flatfish, including sole, the diagnosis of 

diseases and histopathological lesions has been successfully linked to exposure to 

contaminants (Stentiford et al., 2003; Alvarado et al., 2005; Salamanca et al., 2008; Costa 

et al., 2009). These tissue-level biological responses can be recorded in different organs 

such as liver, gills and gonads (Hinton and Lauren, 1990; Myers et al., 1994; ICES, 1997; 

Arellano et al., 1999; Alvarado et al., 2005; 2006; Stentiford and Feist, 2005; Reddy and 

Waskale, 2013). Their use as target organs for the assessment of biological effects caused 

by pollution is related to their biological role. Liver, specifically, is involved in xenobiotic 

transformation, storage and elimination (Hinton et al., 2001; Alvarado et al., 2005). In 

gills, the contact with water allows a direct uptake of contaminants (Alvarado et al., 2006; 

2007; Costa et al., 2009; Lujić et al., 2013). The reproductive cycle and the liability for 

upcoming generations can be observed through gonad assessment (Blazer, 2002; Solé et 

al., 2016) since exposure to toxicants can be responsible for gonad histopathological 

alterations such as intersex (Bateman et al., 2004; Stentiford and Feist, 2005; Minier et 

al., 2000; Feist et al., 2015; Bizarro et al., 2014) and occurrence of atresia (Blazer, 2002; 

Reynolds et al., 2003; Ortiz-Zarragoitia et al., 2010). 

Considering the above, the objective of the present work was to survey the evolution of 

the health status of the Bilbao estuary based on data on sediment contamination and 

histopathological analysis of juvenile Solea spp. used as sentinel species during a 7-year 

survey (2011-2017). 

2. Material and Methods  

2.1 Study area 

The Bilbao estuary is located in the SE Bay of Biscay, on the E Cantabrian Coast (Spain). 

It is a mesotidal system with a semidiurnal tidal regime and drains a watershed of 1700 

km2, with an annual freshwater inflow of about 36 m3 s-1. The estuary is 22 km long and 

two areas can be distinguished: an inner part around 15 km long, with a narrow and 

relatively shallow channel (maximum depth of about 10 m) that crosses the metropolitan 

area of the city of Bilbao, and an outer part, a semi-enclosed coastal embayment, with a 

maximum depth of about 30 m (Figure 1). The inner part is highly stratified all year round, 

but stratification weakens gradually towards the outer part, where, at bottom, salinity 

values approach those of the surrounding shelf waters. 

The original morphology of the estuary has been modified by extracting large intertidal 

areas and by extensive dredging activities to maintain the navigation on the channel. Due 

to these changes and according to the European Water Framework Directive 

(2000/60/EC), the Bilbao estuary is a heavily modified water body. 
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From the second half of the 19th century, the industry, urban and port developments in the 

estuarine municipalities transformed the area into one of the most important economic 

zones in Spain, mainly due to the development of iron and steel industries. However, the 

economic development also turned the estuary into a highly polluted coastal area, 

changing and degrading its morphology and the ecological conditions (Cearreta et al., 

2000, 2004). Non-treated industrial wastes and domestic sewage that were discharged 

directly into the estuary (Belzunce et al., 2004; Borja et al., 2006) caused intense pollution 

in its waters and sediments (Borja et al., 2010) and a great degradation of the biological 

communities (Saiz-Salinas and González-Oreja, 2000). 

In 1979, a sewerage scheme for the area was approved; it consisted of more than 300 km 

of interceptors and a central wastewater treatment plant (Galindo WWTP). The main 

objective of this scheme was the recovery of the aquatic life in all the system, as well as 

the rehabilitation, for the public use, of the beaches located in the outer part of the estuary. 

From 1990, waters were being cleaned with a physicochemical (primary) treatment. The 

population served by the sewerage system and the volume of water treated progressively 

increased. In addition, a biological (secondary) treatment started in 2001. 

Figure 1. Map of the Bilbao estuary showing the trawling stretches (dotted lines), the 

location of the sewage treatment plant and the sediment sampling sites (triangles). 
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The implementation of the sewerage scheme and the decline of industrial activities at the 

end of the 20th century allowed the progressive recovery of the estuarine waters 

(Cajaraville et al., 2016), with a consequent improvement in the ecological quality (Borja 

et al., 2016), biological value (Pascual et al., 2012) and positive effects in cultural 

ecosystem services such as recreational fishing and beach recreation (Pouso et al., 2018a, 

2018b). 

2.2 Sampling campaigns 

Sampling campaigns were carried out along the Bilbao estuary every autumn (Sept.-Oct.) 

from 2011 to 2017. At the beginning of the study, from 2011 to 2013, 30 fish specimens 

were collected in the innermost part of the estuary and 30 others in the outermost part 

(Figure 1). As primary results showed no significant difference between general health 

status of individuals from different stretches based on histopathological analysis (data not 

shown), 30 individuals were collected throughout the whole estuary since 2014 (ESM: 

1). Solea spp., including common sole (Solea solea) and Senegalese sole (Solea 

senegalensis), were collected by bottom trawling (beam trawl, 2.5 m wide, 40 mm mesh 

size and 14 mm mesh size cod end; towed for 10 min at 1.5 knots) at 4 stretches from the 

head to the mouth of the estuary and were grouped together in order to consider the whole 

estuary as one same sampling area. In total, 268 fish were caught throughout the 7 years 

of campaigns. Immediately after sampling, fish were anaesthetised by use of benzocaine 

dissolved in water and transported to the laboratory for dissection.  

Each year, sediment samples were collected by a Van Veen grab at four sampling sites 

situated along the estuary (obtaining in total 28 sediment samples) for contaminant 

determination (Figure 1). Since fish samples were brought together as originating from 

one same sampling site, average of chemical data obtained from the four sediment 

samples was calculated each year for each of the contaminants studied. 

2.3 Sediment contamination levels and toxicological significance 

Metal (Cd, Cr, Cu, Hg, Ni, Pb and Zn) content was measured in triplicate in acid extracts 

from the fine fraction of the sediments (<63 mm). In brief: dried sediment was digested 

in an acid mixture (2HCl:1HNO3) using microwave system (MARS 5 Xpress CEM 

Corporation Instrument). Afterwards, metal levels were determined by Atomic 

Absorption Spectrometry, AAS (AAS800 Perkin Elmer): Cd was analysed by THGA 

graphite furnace, using Zeeman background correction; Cr, Cu, Ni, Pb and Zn were 

determined in an air acetylene flame; finally, total Hg was measured by quartz furnace 

AAS following cold vapour method. Analytical accuracy was checked by the PACS-2 

reference material (National Research Council of Canada, NRC) and the measured values 

were found to be within the certified range. Organic compounds such as polychlorinated 

biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were also determined. 

Sediment samples (5-10 g) were pre-concentrated with a mixture of solvents (pentane: 

dicloromethane; 50:50) by Accelerated Solvent Extraction, ASE (200 system DIONEX). 

Organic extract was purified by Gel Permeation Chromatography (GPC) and different 
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extracts were collected, evaporated and reconstituted by isooctane for PCBs or by ethyl 

acetate for organochlorides. 8 ml of sulphuric acid were added to PAHs extract and then 

it was centrifuged. Organic phases were collected and determined by Gas 

Chromatography-Mass Spectrometry, GC-MS (Agilent 6890 GC coupled with an Agilent 

5973 MSD instrument).  

Contaminant levels were compared with the values of the Effect Range Low (ERL) and 

Effect Range Median (ERM) for metals, PCBs and PAHs (Long et al., 1995). The 

contaminant potential to cause adverse biological effects was assessed through the 

estimation of Sediment Quality Guideline Quotients (SQG-Qs). The SQG-Qs were 

calculated as the ratio between the content of individual chemicals and their respective 

ERM value. The sediments were then ranked as proposed by MacDonald et al. (2004) 

according to their toxicological risk for each class of contaminants (metals, PCBs and 

PAHs): SQG-Q < 0.1 as non-impacted sediments; 0.1 - 1 as moderately impacted and > 

1 as strongly impacted. In this approach, the mean of individual SQG-Qs of each chemical 

group was calculated. 

2.4 Biometric parameters 

Biometric data (total wet weight (g) and total length (cm)) were used to calculate the 

condition factor of each individual (K) = total weight × 100 / total length3 (g.cm-3) (Ricker, 

1975). 

2.5 Dissection and histological procedure 

Liver and gonad samples were collected every autumn from 2011 to 2017, while gill 

samples were obtained from 2013 to 2017. All biological samples were excised and 

immediately fixed in 4% neutral buffered formaldehyde (Martoja and Martoja, 1967). 

Formalin-fixed samples were dehydrated in a graded series of ethanol, cleared and 

embedded in paraffin (Leica ASP 300S). Sections of 5 µm were obtained using a rotary 

microtome (Leica RM2125 RTS) and stained with hematoxylin-eosin (H&E; Martoja and 

Martoja-Pierson, 1970). Histological examination of liver, gill and gonad samples was 

carried out under a light microscope (Nikon Eclipse E200). 

2.6 Gamete developmental stages 

Gonad samples were analysed at the microscope for gender and gamete developmental 

stages determination. Gamete developmental stages in males were determined according 

to García-López et al. (2006) and were classified in five stages as follows: Stage I (early 

spermatogenesis); Stage II (mid spermatogenesis); Stage III (late spermatogenesis); Stage 

IV (mature); Stage V (recovery). The identification of gamete developmental stages for 

females was mainly based on Murua and Motos (2006). Stages were classified as follows: 

Stage I (growth); Stage II (early vitellogenesis); Stage III (late vitellogenesis); Stage IV 

(maturation). 
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2.7 Histopathological analysis 

The prevalence of histopathological alterations (% = [number of cases/total cases 

analysed] ×100) was estimated per sampling year for liver and gills and per sampling year 

and gender for gonads. 

Alterations were classified into four categories for liver, gills and gonad: (1) circulatory 

disturbances; (2) inflammatory responses; (3) regressive changes; (4) progressive 

changes. 

For each lesion categorie, semi-quantitative histopathological indices were measured 

according to Bernet et al. (1999) and adapted by Costa et al. (2009). A global 

histopathological index was calculated for each individual and each organ: 

Ih = ∑ 𝑤𝑗𝑎𝑗ℎ
𝑗
1  

where wj is the weight of the jth histopathological alteration and ajh the score given to the 

jth alteration for the individual h. Weights were given to each lesion based on their 

pathological importance as: (1) minimal; (2) moderate and (3) severe. Scores were 

classified from 0 to 6 according to the level of dissemination of the alteration in the organ 

where 0 is absence and 6 is high degree of dissemination.  

2.8 Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics Base 22.0. Homogeneity 

of variance (Levene´s test) and normality of data (Kolmogorov-Smirnov’s test) were 

tested before statistical analysis. For non-normal data set, the non-parametric Kruskal-

Wallis test and Mann-Whithney U test were used to analyse differences in biometric data 

and in histopathological data throughout the years. The Chi-squared test was used to 

compare histopathological lesion prevalence between years and between genders. The 

non-parametric Spearman's rank-order (R) was used to assess correlations between the 

different surveyed variables and between variables and year. The level of significance 

considered for all analyses was  = 0.05. 

3. Results 

3.1. Sediment contamination levels and toxicological significance 

Contaminant levels were recorded yearly in sediment samples collected in the Bilbao 

estuary (Table 1). There was no significant trend between contaminant content (annual 

averages for the whole estuary) and years of the study (p>0.05, n=7). Nevertheless, the 

highest levels of PAHs (26464.69 µg kg-1) and PCBs (582.55 µg kg-1) were observed in 

2011, while the lowest levels were found in 2017 (PAHs: 5027.50 µg kg-1 and PCBs: 

74.53 µg kg-1). For metals, a higher temporal variability was recorded when compared 

with organic contaminants. Several metals such as Cu, Fe, Hg, Pb and Zn showed two 

peaks in concentrations, one in 2011 and the other one in 2016. As for the toxicological 

significance (SQG-Qs), sediments from the Bilbao estuary were moderately or strongly  
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Years Cd Cr Cu Fe Hg Mn Ni Pb Zn SQG_Q metals ∑PCBs SQG_Q PCBs ∑PAHs SQG_Q PAHs 

2011 1.25 89.4 266.9 45230 5.90 436.4 30.90 515.0 626.9 2.02 (S) 582.6 3.24 (S) 26465 0.59 (M) 

2012 0.71 69.1 66.2 34784 1.10 252.3 38.55 81.6 234.1 0.54 (M) 179.3 1.00 (M) 2699 0.06 (N) 

2013 1.81 93.7 122.3 39364 1.41 405.6 61.88 187.7 307.1 0.81 (M) 127.7 0.71 (M) 16612 0.37 (M) 

2014 0.84 82.6 80.0 35369 0.79 365.7 38.10 99.8 266.2 0.51 (M) 246.6 1.37 (S) 3867 0.09 (N) 

2015 0.81 81.3 89.3 36765 0.49 334.8 40.58 128.1 335.0 0.50 (M) 115.9 0.64 (M) 12060 0.27 (M) 

2016 3.50 134.3 266.8 47003 3.48 387.5 46.75 703.0 938.5 1.86 (S) 308.7 1.71 (S) 11290 0.25 (M) 

2017 1.24 72.3 77.0 34596 0.58 367.3 34.50 88.3 285.5 0.46 (M) 74.5 0.41 (M) 5028 0.11 (M) 

Note: ∑PCB: is the sum of 28, 52, 101, 118, 138, 153 and 180 congeners; ∑PAH: is the sum of fluorene, naphthalene, anthracene, dibenz(a,h)anthracene, 

acenaphthene, acenaphthylene, phenantrene, pyrene, chrysene, fluoranthene, benzo(a)anthracene, benzo(a)pyrene. 

Table 1. Annual mean of metals (mg/kg in d.w.) and organic contaminants content (µg/kg in d.w.) and toxicological significance (SQG-

Qs) of sediments derived from the four stations located along the Bilbao estuary during 2011 to 2017. N: non-impacted; M: moderately 

impacted; S: strongly impacted. 
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impacted by metals and PCBs, and non-impacted or moderately impacted by PAHs. The 

toxicological risk fluctuated throughout the study period; nevertheless, metals and PCBs 

were the contaminants most likely to cause adverse effects as, according to MacDonald 

et al. (2004), they were ranked as strongly affected (SQG-Qs >1) in several years. 

3.2. Biometric parameters 

A summary of annual Solea spp. captures and corresponding biometric data is shown in 

Table 2. Overall, soles measured 23.7 ± 4.5 cm and weighted 130.8 ± 96.8 g. Individuals 

were significantly smaller in 2011 (20.3 ± 3.2 cm; 77.9 ± 36.5 g) and larger in 2016 (29.2 

± 4.5 cm; 249.0 ± 140.5 g). K was significantly lower in soles from 2015 and 2017 than 

in soles from the rest of campaigns.  

 

3.3. Gamete developmental stages 

Sex ratio and gamete developmental stages were recorded for each gender in soles 

collected each sampling year (Table 3). Throughout the 7 years of campaigns, the 

histological analysis of gonads mainly showed fish in early stages of gamete 

development. Similar gamete developmental stages were observed among years in males 

and females. Males mostly showed early (74.7%) and mid spermatogenesis (22.1%) 

stages. Cases of mature (2.1%) and recovery (1.1%) stages were sporadically identified. 

Over the 7 years of campaigns, 97.8% of females showed gametes in growth stage, but 

residual cases of late vitellogenesis (0.7%) and maturation (1.5%) were also identified. 

 

Sampling 

year 
n 

Sex ratio 

(M:F) 
N.D Length (cm) Weight (g) K 

2011 64 1:2.0 17 20.3 ± 3.2
 a
 77.9 ± 36.5

 a
 0.9 ± 0.1

a
 

2012 53 1:1.4 3 23.8 ± 5.1
 b
 134.6 ± 123.3

 bc
 0.9 ± 0.1

a
 

2013 31 1:1.4 2 25.9 ± 3.9
 c
 175.4 ± 86.9

 de
 0.9 ± 0.1

b
 

2014 30 1:0.9 0 22.3 ± 1.5
 ad

 96.3 ± 22.1
 bf

 0.9 ± 0.1
a
 

2015 30 1:1.0 2 23.5 ± 2.5
 bdf

 108.2 ± 31.9
 cf

 0.8 ± 0.2
c
 

2016 30 1:2.1 5 29.2 ± 4.5
 e
 249.0 ± 140.5

 d
 0.9 ± 0.3

a
 

2017 30 1:1.1 0 24.8 ± 2.7
 cf

 129.8 ± 49.9
 ce

 0.8 ± 0.1
c
 

Total 268 1:1.4 29 23.7 ± 4.5 130.8 ± 96.8 0.9 ± 0.2 

n: sample size; N.D: number of individuals where gender could not be determined; K: condition factor. 

Table 2. Mean and standard deviation of biometric parameters in Solea spp. collected in 

the Bilbao estuary every autumn from 2011 to 2017. Different letters indicate significant 

differences between years (p<0.05).  
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3.4. Hepatic, gill and gonad histopathological analysis 

The liver of Solea spp. was characterised by a bi-layer of hepatocytes arranged around 

sinusoids showing the typical cord-like structure of fish liver (Figure 2A). The general 

cell appearance varied from eosinophilic to clear cytoplasm. It was also common to 

observe the exocrine pancreas distributed in the liver tissue and various bile ducts 

typically delimited by connective tissue.  

The most frequent liver histopathological alterations identified in Solea spp. were 

inflammatory and progressive changes followed by regressive and circulatory 

disturbances (Table 4). The most prevalent circulatory disturbance was hyperaemia 

(Figure 2B) characterised by blood congestion and sinusoidal swelling. This hepatic 

lesion was significantly more abundant in 2011 and 2012 (46.2-54%) than in the rest of 

the years (3.7-29%). Only few cases of haemorrhage ranging from 0% in the last three 

years to 9.6% in 2012 were detected and were restricted to small foci. Melanomacrophage 

centres (MMCs) were the most common inflammatory responses (Figure 2C). In 2011, 

2015 and 2016 the prevalence of MMC exceeded 84%. Regressive changes were neither 

frequent nor severe. Few cases of necrosis ranging from 6.3% in 2011 to 38.7% in 2013 

(Figure 2D) and nuclear pleomorphism presenting a mean value of 15.4% were identified. 

Among progressive changes, fat vacuolation of hepatocytes, the most prevalent lesion 

identified, was homogeneously distributed throughout the parenchyma (Figure 2E). The 

lowest prevalence of fat vacuolation of hepatocytes was recorded in 2011 (14.3%) while 

the highest levels were observed in 2017 (90%). The highest prevalence of spongiosis 

hepatis was detected in 2012 (23.1%) and was absent from 2014 onwards. The frequency 

of concentric periductal fibrosis (CPF) of bile ducts decreased from a maximum value in 

2011 (30.2%) to a minimum value in 2016 (3.3%). From the seven-year survey, one case 

of hepatic malignant neoplasm was detected in 2016 in a female sole (Figure 2G-I). 

 2011 2012 2013 2014 2015 2016 2017 Total 

Males n=16 n=21 n=12 n=16 n=8 n=8 n=14 n=95 

Stage I 75.0 95.2 66.7 50.0 75.0 62.5 86.7 74.7 

Stage II 25.0 4.8 25.0 50.0 25.0 25.0 6.7 22.1 

Stage III 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Stage IV 0.0 0.0 0.0 0.0 0.0 12.5 6.7 2.1 

Stage V 0.0 0.0 8.3 0.0 0.0 0.0 0.0 1.1 

Females n=32 n=29 n=17 n=13 n=11 n=17 n=16 n=135 

Stage I 100.0 96.6 94.1 100.0 100.0 94.1 100.0 97.8 

Stage II 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Stage III 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.7 

Stage IV 0.0 0.0 5.9 0.0 0.0 5.9 0.0 1.5 

Indeterminate n=16 n=3 n=2 n=1 n=11 n=5 n=0 n=38 

n: sample size  
       

Table 3. Gamete developmental stages (%) determined in Solea spp. collected in the 

Bilbao estuary every autumn from 2011 to 2017. 
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Figure 2. Hepatic sections of Solea spp. stained with hematoxylin-eosin. (A) Hepatic tissue 

showing the bi-layer arrangement of hepatocytes around sinusoids; s: sinusoid; v: vein (B) 

Hepatic hyperaemia with high abundance of erythrocytes in blood vessels; h: hyperaemia; s: 

sinusoid. (C) Hepatic tissue showing melanomacrophage centres (dotted circle) and lymphocytic 

infiltration (arrow). (D) Severe case of hepatic necrosis (arrow). (E) Hepatic fat vacuolation 

showing multiple vacuoles (arrow). (F) Hepatic tissue presenting severe concentric periductal 

fibrosis (segment) and hydropic vacuolation of bile duct epithelial cells (arrow). (G-I) Hepatic 

nodule identified in a female S. solea collected in the Bilbao estuary in autumn 2016 at (G) 

macroscopic level and (H, I) histological level showing the delimitation of the nodule (arrow). 

Scale bar (a-d, f, i): 100 µm; scale bar (e): 50 µm; scale bar (h): 1 mm. 
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Hepatic histopathological indices calculated in Solea spp. for each sampling year are 

presented in Figure 3A. The highest total hepatic histopathological indices were measured 

in the earlier years of the study period with a maximum value detected in 2013 (10.00 

±0.86). In 2014, a significant decrease was observed in the index (7.71 ±0.97) and values 

were maintained lower than in 2013 throughout the following years with no significant 

differences. The highest total hepatic histopathological index recorded in 2013 was 

mainly related to regressive and progressive changes, which reached their highest levels 

in the year (2.97 ±0.23 and 3.68 ±0.68, respectively). Amongst the other categories of 

lesion, the highest levels of circulatory disturbances and inflammatory responses were 

recorded in 2011 (1.46 ±0.23 and 4.16 ±2.95, respectively). Circulatory disturbances 

showed a decreasing temporal trend, with values in 2011 significantly different from the 

following years.  

 

Hepatic alterations 

 2011 2012 2013 2014 2015 2016 2017 

w n=63 n=52 n=31 n=28 n=30 n=27 n=30 

Circulatory disturbances 
        

Haemorrhage 1 6.3 9.6 3.2 3.6 0.0 0.0 0.0 

Hyperaemia 1 54.0 a 46.2 ab 29.0 bc 21.4 cd 10.7 cd 3.7 d 10.0 cd 

Inflammatory responses 
        

MMCs 1 84.1 a 57.7 b 58.1 bc 78.6 ac 89.3 a 92.6 a 73.3 abc 

Lymphocytic infiltration 2 42.9 46.2 38.7 46.4 35.7 48.2 50.0 

Regressive changes 
        

Necrosis 3 6.3 a 13.5 ab 38.7 c 14.3 ab 25.0 bcd 22.2 bc 10.0 ad 

HNP 2 20.6 15.4 16.1 10.7 3.6 14.8 26.7 

Progressive changes 
        

Spongiosis hepatis 2 6.3 a 23.1 b 3.2 a 0.0 a 0.0 a 0.0 a 0.0 a 

FV of hepatocytes 1 14.3a 44.2 b 77.4 ce 50.0 bd 60.7 bcd 70.4 cde 90.0 e 

HV of epithelial cells of bile duct 2 7.9 5.8 6.5 7.1 10.7 7.4 3.3 

CPF of bile ducts 2 30.2 a 21.2 a 19.4 ab 14.3 ab 3.6 b 11.1 ab 3.3 b 

Neoplastic lesions         

Malignant tumour  0.0 0.0 0.0 0.0 0.0 3.7 0.0 

w: biological significance of each alteration; n: sample size for hepatic histopathology; MMCs: 

Melanomacrophage Centres; HNP: Hepatocellular Nuclear Pleomorphism; FV: Fat Vacuolation; HV: 

Hydropic Vacuolation; CPF: Concentric Periductal Fibrosis. 

Table 4. Prevalence (%) of hepatic alterations in Solea spp. collected every autumn from 

2011 to 2017. Different letters indicate significant differences between years (p<0.05). 
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Amongst the histopathological alterations identified in gills, regressive changes were the 

most frequent (Table 5). Epithelial lifting was significantly more abundant in 2017 

(89.3%) than in any other year and epithelial desquamation was significantly more 

frequent in Solea spp. from 2015 to 2017 (66.7%-89.7%) than in earlier years (23.1-

40.7%). Amongst progressive changes, epithelial hyperplasia was the most prevalent 

lesion (36.7-72.4%). Hypertrophy of pavement cells was significantly higher in 2013  

(19.2%) than in 2014, 2015 and 2017 (0%, 3.4%, and 0%, respectively). Cases of lamellar 

fusion and hypertrophy of chloride cells were rarely identified (<10%). The only 

circulatory disturbance observed in gills was aneurysm, showing a stable prevalence 

(46.4-76.7%). No inflammatory responses were recorded in gills. 

Figure 3. Mean and standard error of total histopathological index and corresponding 

lesion categories calculated in Solea spp. for each sampling year in (A) liver, (B) gill and 

(C) male and (D) female gonad. Different letters indicate significant differences between 

years (p<0.05). 

 

Inflammatory responses          Progressive changes          Circulatory disturbances Regressive changes  
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Total gill histopathological indices were calculated in Solea spp. for each sampling year 

(Figure 3B). The highest total gill histopathological index recorded in fish from 2017 

(11.29 ±0.90) was significantly higher from indices detected in fish collected in 2013 

(5.85 ±1.02), 2014 (7.11 ±0.95) and in 2016 (6.93 ±0.66). The lesion category that 

contributed the most to achieve the highest total gill histopathological index was 

regressive changes (Figure 3B).  

The frequency of histopathological lesions identified in gonads was measured for each 

gender and each sampling year (Table 6). Hyperaemia was the only circulatory 

disturbance detected and was limited to small areas for both genders. Hyperaemia 

frequencies varied from 3.1% in females collected in 2011 to 62.5% in females sampled 

in 2017. MMCs were the most frequent inflammatory alteration followed by lymphocytic 

infiltration and the presence of granulomatous tissue. The frequency of MMCs decreased 

in both genders from 2011 onwards. No progressive changes were detected in males, but 

a few cases of lipid droplets accumulated in pre-vitellogenic oocytes were shown in 

female gonads. Regressive changes were identified as necrotic foci (0-38.5%) and 

pyknotic oocytes/spermatocytes (0-50%). Additionally, female gonads showed few cases 

of oocyte atresia (0-41.4%) in early gametogenic stages. No cases of intersex were 

detected in male gonads from the present study. 

Total gonad histopathological indices calculated in Solea spp. per gender and year are 

presented in Figure 3C-D. Total male gonad histopathological indices did not 

significantly differ throughout the sampling years. In females, the highest total gonad 

histopathological index was measured in fish from 2012 (6.55 ±0.87) and was related to 

the increase in prevalence of lipid accumulation, hyperaemia, pyknotic nuclei and atresia.  

Gill alterations 

 2013 2014 2015 2016 2017 

w n=26 n=27 n=29 n=30 n=28 

Circulatory disturbances       

Aneurysm 1 53.8 70.4 55.2 76.7 46.4 

Regressive changes       

Epithelial lifting 1 23.1
a
 29.6

a
 24.1

a
 43.3

a
 89.3

b
 

Epithelial desquamation 1 23.1
a
 40.7

a
 89.7

c
 66.7

c
 82.1

c
 

Progressive changes       

Lamellar fusion 1 0.0 7.4 6.9 10.0 10.7 

Epithelial hyperplasia 2 53.8 51.9 72.4 36.7 53.6 

Hypertrophy of pavement cells 1 19.2
a
 0.0

b
 3.4

b
 10.0

ab
 0.0

b
 

Hypertrophy of chloride cells 2 7.7 0.0 0.0 6.7 7.1 

w: biological significance of each alteration; n: sample size for gill histopathology 

Table 5. Prevalence (%) of gill histological alterations identified in Solea spp. collected 

every autumn from 2013 to 2017. Different letters indicate significant differences 

between years (p<0.05). 
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  2011 2012 2013 2014 2015 2016 2017 

Gonad alterations 
w 

M 

n=16 

F 

n=32 

M 

n=21 

F 

n=29 

M 

n=12 

F 

n=17 

M 

n=16 

F 

n=13 

M 

n=8 

F 

n= 11 

M 

n= 8 

F 

n= 17 

M 

n= 14 

F 

n= 16 

Circulatory disturbances                

Hyperaemia 1 6.3 3.1a 38.1 27.6b 8.3
 
 17.6ab 31.3 15.4ab 25.0 9.1ab 37.5 11.8ab 28.6 62.5c 

Inflammatory responses                

MMCs 1 62.5a 56.3a 47.6a 34.5b 58.3a 17.6bc,* 6.3b 0.0c 0.0b 0.0c 25.0ab 0.0c,* 0.0b 0.0c 

Granulomatous tissue 2 0.0 0.0 0.0 6.9 0.0 11.8 6.3 15.4 0.0 0.0 0.0 5.9 0.0 6.3 

Lymphocytic infiltration 2 0.0 0.0a 14.3 0.0*, a 0.0 0.0a 6.3 23.1b 25.0 9.1ab 0.0 17.6b 0.0 18.8b 

Regressive changes                
Pyknotic 

spermatocytes/oocytes 2 0.0a 28.1a,* 0.0a 31,0a,* 0.0a 17.6ab 43.8b 0.0b,* 50.0b 0.0b,* 25.0ab 0.0b,* 35.7b 0.0b 

Necrosis 3 0.0 0.0a 9.5 3.4ad 8.3 11.8ac 6.3 38.5b 0.0 27.3bcd 0.0 23.5bcd 7.1 25.0bc 

Atresia 3 NA 34.4ac NA 41.4a,* NA 35.3ac,* NA 7.7c NA 0.0bc NA 5.9bc NA 0.0bc 

Progressive changes                

Lipids in oocytes 1 NA 21.9ab NA 37.9a NA 5.9b NA 0.0b NA 0.0b NA 0.0c NA 0.0c 

M: Males; F: Females; n: sample size; w: biological significance of each alteration; MMCs: Melanomacrophage Centres. 

Table 6. Prevalence (%) of gonad histological alterations identified in males and females Solea spp. collected every autumn from 2011 to 

2017. NA: Not Applied. Different letters indicate significant differences between years for the same gender (p<0.05). Asterisks indicate 

significant differences between genders of the same sampling year. 
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The maximum values found in 2012 were significantly higher than indices recorded in 

females collected from 2015 (2.45 ±1.27) and 2016 (3.29 ±1.04). A secondary peak was 

observed in 2017 (4.50 ±0.79) and was significantly higher than the histopathological 

index measured in 2015. The high index value recorded in females from 2017 was mainly 

related to circulatory disturbances. The value of this lesion category was significantly 

higher than any other year. 

3.5. Correlation analysis between sediment contaminant levels and 

histopathological alterations 

There was not any direct correlation between the annual mean of the total liver, gills and 

gonad histopathological indices and sediment contaminant levels (p>0.05, n=7 for liver 

and gonad; n=5 for gills). However, total liver histopathological index and female total 

gonad histopathological index were significantly and positively correlated (R=0.8571, 

p=0.035, n=7).  

4. Discussion 

The 7-year biomonitoring study carried out in the Bilbao estuary showed fluctuations in 

sediment contaminant levels and general health status of Solea spp. According to SQG-

Qs based on Long et al. (1995), sediment contaminant levels were classified as 

moderately to strongly impacted by metals and PCBs and non-impacted to moderately-

impacted by PAHs. The magnitude of liver and gonad histopathological alterations was 

comparable to previous levels recorded in adult S. solea from the Basque coast (offshore), 

which was considered a low-impacted area (Cuevas et al., 2015a, 2015b). In the case of 

gills, there was no histopathological data available from field studies using juvenile Solea 

spp. of similar size. The histopathological alterations were not in accordance with 

fluctuations observed in chemical levels of the same year. The lack of direct relation 

between chemical and biological data could be related to the time scale of the recovering 

processes in aquatic ecosystems, where the improvement of the health status, after a long 

exposure to contaminants, can be slow and incomplete, depending on the severity and 

duration of pollution events (Mason, 1988; Orbea and Cajaraville, 2006; Garmendia et 

al., 2011). On the other hand, considering the short length of the Bilbao estuary (22 km) 

and the movement of soles throughout the area, histopathology in soles may not reflect 

site-specific sediment pollution levels. Furthermore, similar observations have been made 

using small sedentary fish (gobies) and sediment contaminant levels in previous research 

(Cuevas et al., 2016).  

The majority of previous field studies using Solea spp. lasted from only few months to 

few years (Budzinski et al., 2004; Laubier et al., 2004; Dierking et al., 2009; Oliva et al., 

2012a, 2012b, 2013, 2014; Gonçalves et al., 2013; Cuevas et al., 2015a; Solé et al., 2016); 

long-term biomonitoring programmes using Solea spp. are scarce. To our knowledge, the 

present work is the longest biomonitoring programme until now (7 years) using juvenile 

Solea spp. as sentinel species. These long-term monitoring programmes combining 

chemical and biological approaches are essential for the assessment of human pressure 
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on the ecosystem and for the consequent management of future actions (Borja et al., 2016; 

Parera et al., 2018). 

Chemical data recorded throughout the years of campaign showed fluctuations in 

contaminant levels from sediment of the Bilbao estuary. Although no clear temporal trend 

was recorded in sediment contamination, data from the year 2011 described higher 

contaminant levels than the following years. This is in agreement with previous studies 

in this estuary describing the temporal improvement of environmental quality measured 

in terms of metal concentrations (Fernández-Ortiz de Vallejuelo et al., 2010). However, 

high variability of contaminant levels was recorded in sediment of the Bilbao estuary 

throughout the 7 years of survey. These fluctuations could be related to natural physical 

and hydrological processes commonly observed in estuarine areas (Kennish, 1998; 

Chakraborty et al., 2014) and/or the influence of urban, commercial and industrial 

activities (Johnston, 1981; Spencer, 2002; Durán and Nieto, 2012). Additionally, we 

cannot exclude that sporadic peaks in sediment contamination levels may be related to 

sediment remobilization works occurring in the estuary (Rodriguez-Iruretagoiena et al., 

2016). Even though the overall contamination of the estuary reflected an improvement in 

environmental quality, sediment chemistry still represented a potential risk for the aquatic 

biota, including for benthic species. 

For the assessment of the general health status of the biota from the Bilbao estuary, 

juvenile soles were collected each year, in the same area and during the same season. 

These homogeneous sampling conditions are essential in biomonitoring programmes and 

permit to reduce the potential influence of confounding factors such as individuals' age, 

food availability and seasonality (ICES, 1997; Bernet et al., 1999). Indeed, based on 

biometric data, individuals recorded for the present study were juveniles of similar age 

and were approximately less than 2 years old (Gonçalves et al., 2013; Morat et al., 2014; 

Cuevas et al., 2015a). S. solea spends this period of life in estuaries where they grow until 

maturation, implying that they have not yet reached deeper coastal areas to spawn. S. 

senegalensis stay in estuarine areas for the first 8 month of their life and migrate to coastal 

areas to grow; they reach maturation after three years (Le Pape et al., 2003). Accordingly, 

juvenile Solea spp. collected in autumn mainly showed immature gonads since less than 

1.5% of individuals were mature. Thus, the general health status of juvenile soles 

collected from the Bilbao estuary are not influenced by the reproduction process and 

individuals from different sampling years are in comparable life stage. Therefore, less 

than 2 year old juvenile Solea spp. collected yearly from the Bilbao estuary can be used 

to assess and survey the general health status of the estuary. 

In the present study, the use of liver, gills and gonad as target organs for the assessment 

of the general health status of juvenile soles permitted to integrate biological responses 

to both direct and indirect exposure to contaminants. Histopathological lesions identified 

in the three organs throughout the 7 years of campaign were of mild severity, although 

one case of hepatic malignant neoplasm was detected. Overall, levels of histopathological 

indices were comparable to previous studies showing non-severe cases of contamination 
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(Costa et al., 2011; Cuevas et al., 2015a, 2015b). Changes detected in liver and gonad 

histopathological indices throughout the years were similar to changes described in 

previous work from the same area (Cuevas et al., 2016). Histopathological data obtained 

in the present work suggest a moderate effect of contaminants on juvenile soles with a 

tendency to recover from the past contamination observed in the Bilbao estuary. 

Hepatic histopathology is considered a robust approach to assess biological effects of 

xenobiotics in fish (Bucke et al., 1996; Stentiford et al., 2003; Feist et al., 2004; Lang et 

al., 2006; Fricke et al., 2012). In the present study, most of the prevalence of hepatic 

alterations were similar to those registered in previous works using juvenile S. 

senegalensis from a contaminated estuary in Portugal (Oliva et al., 2013) or with adult S. 

solea from the Basque continental shelf (Cuevas et al., 2015a). The prevalence of MMCs 

was higher than the levels detected in adult soles collected offshore (Cuevas et al., 2015a) 

which could indicate a greater activation of the immune system in juvenile soles (Bucke 

et al., 1992; Fricke et al., 2012). Similarly, frequencies of CPF of bile ducts measured in 

juvenile Solea spp. in 2011 and 2012 in this study were higher than the levels previously 

detected in adults collected along the Basque continental shelf (Cuevas et al., 2015a). 

Differences in lesions prevalence between juveniles and adults suggest a higher 

sensibility of young individuals to environmental conditions. 

Previous studies based on hepatic histopathological approaches in flatfish identified cases 

of neoplastic lesions in adults (Vethaak et al., 1996; Lang et al., 2006; Stentiford et al., 

2009, 2010; Feist et al., 2015). However, cases of neoplasms in fish are not expected in 

juveniles less than 3 years old (Myers et al., 1992). Yet, one case of malignant neoplasm 

was detected in 2016. The lifetime of juvenile Solea spp. could imply early exposure to 

xenobiotics present in estuaries, which may justify the eventuality of tumour development 

in relatively young flatfish individuals (Köhler, 2004). Although the lesion has been 

detected at very low prevalence (1 case out of 268 fish), this is the first case of malignant 

neoplasm detected in a Solea spp. from the Bilbao estuary. 

The highest values of the hepatic histopathological index were observed in earlier years 

(2011-2013); further on, a significant decrease was observed in the index in 2014 and 

values were maintained lower than in 2013 throughout the following years. This trend 

suggests an improvement in environmental conditions in the estuary. A similar trend in 

hepatic histopathological indices was also observed previously in Pomatoschistus spp. 

from the Bilbao estuary (Cuevas et al., 2016). Overall, hepatic histopathological index 

values were comparable to reported data on Solea spp. that had been associated to non-

severe cases of contamination (Costa et al., 2011; Cuevas et al., 2015a, 2015b). 

The lesions identified in gills from soles collected for the present work were of the same 

type as those reported in fish from contaminated sites (Stentiford et al., 2003; Camargo 

and Martinez, 2007; Santos et al., 2014) and in fish exposed to pesticides (Cengiz, 2006), 

contaminated sediments (Martins et al., 2015) or organic toxicants (Rosety-Rodríguez et 

al., 2002). Epithelial lifting, hyperplasia and hypertrophy of the gills epithelial cells are 

commonly interpreted as tissue-level responses to contaminant exposure that enhance the 
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barrier against the entry of environmental xenobiotics through the gills (Martinez et al., 

2004). As counterpart, by increasing the distance between water and blood, these lesions 

affect respiratory and osmoregulatory functions, which would indirectly cause 

disturbance of the individual health status (Mallat, 1985; Reddy and Waskale, 2013). In 

the present study, the most frequent alteration identified in gills of juvenile Solea spp. 

was aneurysm. A high prevalence of this lesion is seemingly linked to pollutant exposure 

or to environmental stress conditions (Camargo and Martinez, 2007; Costa et al., 2009). 

However, since baseline gill histopathology data in Solea spp. are lacking hitherto, the 

environmental relevance of the prevalence of aneurysm herein recorded cannot be 

certainly concluded. 

Unlike in the case of hepatic histopathology, higher prevalence and total gill 

histopathological index were recorded in the latest years of the study period. As gills are 

the first organ in contact with the environment, this increase in gill histopathological 

alterations might indicate recent stress conditions such as a new contaminant input or the 

remobilisation of older xenobiotics contained in the sediment (Costa et al., 2009). 

Prevalence of most gonad lesions recorded in juvenile Solea spp. from the Bilbao estuary 

was comparable to levels measured in previous studies on adults from the Basque 

continental shelf (Cuevas et al., 2015a). Exceptionally, the MMC prevalence was lower 

in juvenile Solea spp. from the Bilbao estuary than in offshore adults. This is conceivable 

because the prevalence of MMCs is known to increase with the age of fish (Agius and 

Roberts, 2003). Interestingly atresia was recorded in female gonads of juveniles. Atresia 

has been described in adult soles from the Basque continental coast (Cuevas et al., 2015b). 

It is known that atresia occurs naturally prior or during the spawning period (Whitthames 

and Greer Walker, 1995), but the phenomenon has also been detected in response to 

unfavourable environmental conditions (Blazer, 2002; Reynolds et al., 2003). Thus, the 

occurrence of atresia in juveniles should be less common than in adults. Nevertheless, 

atresia levels decreased throughout the years suggesting an improvement in 

environmental conditions. On the other hand, it is known that fish populations inhabiting 

downstream of wastewater treatment plant effluents show alterations in gonad and gamete 

development such as intersex (Jobling et al., 2002; Woodling et al., 2006; Puy-Azurmendi 

et al., 2013). Although in a previous study intersex condition was detected in thicklip grey 

mullet (Chelon labrosus) of the Bilbao estuary (Valencia et al., 2017), no intersex cases 

were found in Solea spp. during the 7-year study suggesting low oestrogenic effects. 

Gonad alteration prevalence and total gonad histopathological indices were higher in 

females than in males, which seems to be a general rule in flatfish (Cuevas et al., 2015a; 

Köhler, 2004). In females, the highest total gonad histopathological index was observed 

in 2012 and decreased until 2015 in parallel with the decreasing trend observed in hepatic 

histopathology. In contrast, a significant increase was observed from 2015 to 2017 

coinciding with the rise observed in gills histopathological lesions in 2017; thus, 

reinforcing the idea that the health status of Solea spp. was somehow disturbed in the 

latest study years. 
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Overall, chemical and histopathological data obtained throughout seven years of 

campaigns from the Bilbao estuary showed fluctuations with no clear temporal trend nor 

data correlations. Previous studies from the Bilbao estuary demonstrated the 

improvement of the ecosystem quality based on longer-term data including 

physicochemical, geochemical and biological data (Cearreta et al., 2004; García-Barcina 

et al., 2006; Borja et al., 2016; Pouso et al., 2018a, 2018b). The collection of chemical 

and biological samples carried out in the present study should be maintained in the future 

to confirm the recovery of the health status of the ecosystem. The selection of several 

sampling areas for sediment and fish collection permitted to assess contaminant levels 

and their effects in the whole estuary. The application of a histopathological approach in 

sentinel juvenile sole, which live in estuaries until maturation, permitted to spot signs of 

disturbance of ecosystem health status. 

Concluding remarks 

The 7-year campaigns carried out in the Bilbao estuary permitted to survey the general 

health status of the area, a system experiencing a recovery process of its ecological quality 

from a very much deteriorated situation. Contaminant levels detected in the sediments 

from the present study suggested that some toxicological adverse effects could still be 

occurring. The application of histopathological approaches to diagnose the health status 

of juvenile Solea spp. revealed alterations of mild severity fluctuating throughout the 

years of the study period (2011-2017). The lack of a clear temporal trend in contaminant 

levels or histopathological approaches can be explained by the high variability that 

characterises estuarine ecosystems. This drawback can be compensated by the application 

of long-term monitoring programmes, which would contribute to reliably identify 

existing temporal trends by combining data on sediment chemistry and the health status 

of juvenile soles that live in the estuary. 
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Abstract 

Adverse pollution effects persist in estuaries experiencing ecological recovery after long-

term deterioration caused by pollution, as suggested in field studies by the presence of 

elevated levels of contaminants in the sediments and of disturbed health condition in 

resident benthic fish. Although the association between the presence of contaminants in 

sediments and the toxicopathic effects in fish is intricate, it can be elucidated by applying 

whole-sediment toxicity assays. Presently, Solea senegalensis juveniles were exposed 

under laboratory conditions to contaminated sediments from the Basque Coast (SED1: 

from the moderately polluted Plentzia Estuary; SED3: from the highly polluted Pasaia 

Harbour; and SED2: 1:1 v/v mixture of SED1 and SED3), for which physicochemical 

properties and levels of contaminants were determined. Sole juveniles (n=12 per group) 

were retrieved after 7 and 28 d exposure. Biometry data were recorded. Liver, brain, gills, 

and gonads were dissected out and processed to determine biomarkers of oxidative stress 

and neurotoxicity, lysosomal biomarkers and histopathology. Sediments differed in 

organic matter content, granulometry and redox potential, as well as in contaminant 

profile and levels. In the three whole sediments, moderate concentrations of metals were 

recorded, the highest being found in SED3, and levels of organic chemicals (PAHs, PCBs 

and pesticides) were low. Overall, biological responses were consistent with levels of 

contamination reported in source sediments, the most marked toxicopathic effects being 

detected upon exposure to SED3 and particularly at day 28. Enhanced hepatic GST 

activity was detected in soles from all experimental groups, demonstrating a toxic effect 

from all sediments whilst CAT inhibition was most pronounced in SED3 exposed soles. 

Lysosomal enlargement was initiated in all experimental groups but early lysosomal 

membrane destabilisation and changes in lysosomal content were more clearly detected 

in soles exposed to SED3. Histopathological analysis indicated that liver was the most 

affected target organ and showed higher toxicity from SED3. The IBR/n index 

(Integrative Biological Response) confirmed that exposure to the three sediments caused 

significant biological responses and toxicopathic effects of diverse magnitude 

(IBR/nSED3>IBR/nSED2>IBR/nSED1). The present sediment toxicity assay based on 

chemical analysis of sediments and biomarkers and histopathology in sole juveniles has 

confirmed the association between the presence of contaminants in sediments and the 

emergence of toxicopathic effects in sole juveniles. 
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Résumé 

Les effets de la pollution marine persistent dans les estuaires en reconstitution, même 

après une diminution majeure de la pression anthropique. En effet, de nombreux 

contaminants sont encore détectés dans les différents compartiments de l’écosystème tels 

que les sédiments. Néanmoins, l’association entre la présence de contaminants dans les 

sédiments et les effets toxicopathologiques enregistrés dans le biote peut être complexe. 

L’application de tests de toxicité utilisant des sédiments naturels permet d’évaluer en 

laboratoire les effets biologiques potentiels des contaminants contenus dans le substrat. 

Dans l’étude suivante, des soles juvéniles (Solea senegalensis) ont été exposées à des 

sédiments de la côte basque (SED1: mélange provenant de l'estuaire de Plentzia, 

moyennement pollué; SED3: du port très pollué de Pasaia Harbour; et SED2: 1:1 v/v, 

mélange de SED1 et SED3 ), pour lesquels les propriétés physicochimiques et les niveaux 

de contaminants ont été déterminés. Des échantillons de foie, cerveau, branchies et 

gonades ont été prélevés dans chaque groupe expériemental (n=12) après 7 et 28 jours 

d’exposition aux sédiments afin d’y analyser des biomarqueurs de stress oxidatif, de 

neurotoxicité et de lysosomes, ainsi que l’histopathologie des branchies, du foie et des 

gonades. La teneur en matière organique, la granulométrie et le potentiel rédox, ainsi que 

le profil et les concentrations de contaminants variaient entre sédiments. Globalement, les 

niveaux de contaminants métalliques étaient modérés dans les trois sédiments, les plus 

élevés ayant été détectés dans SED3. Les contaminants organiques tels que les HAP, PCB 

et pesticides, étaient présents à faibles concentrations. Dans l’ensemble, les réponses 

biologiques concordaient avec les niveaux de contamination de chaque sédiment, les 

effets toxicopathologiques les plus marqués ayant été enregistrés dans le cas de soles 

exposées au SED3, en particulier après 28 jours. L’induction enzymatique de la 

glutathion-S-transférase hépatique a révélé des effets toxiques pour les trois sédiments 

tandis que l'inhibition de la catalase du foie était plus prononcée chez les soles exposées 

au SED3. Des signes d’altération de structure lysosomale (élargissement lysosomal) ont 

été détecté dans tous les groupes expérimentaux, mais la déstabilisation de la membrane 

lysosomale et les changements du contenu lysosomal ont été plus clairement détectées 

dans les soles exposées au SED3. Selon les analyses histopathologiques, le foie était 

l’organe le plus touché par la toxicité des sédiments, en particulier dans le cas de SED3. 

L’intégration des réponses biologiques sous forme de l’index « Integrative Biological 

Response index » (IBR/n) a confirmé la toxicité de chaque sédiment, à différents niveaux 

de sévérité (IBR/nSED3>IBR/nSED2>IBR/nSED1). L'analyse chimique des sédiments et 

l’intégration de biomarqueurs mesurés chez la sole juvénile a permis de confirmer le lien 

entre la présence de contaminants dans les sédiments et les effets toxicopathologiques 

détectés chez la sole. 
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Laburpena  

Zelai ikerketetan antzematen diren kutsatzaile maila altuak zein arrain bentonikoen 

osasun eskasak, agerian usten dute kutsaduraren efektuak iraunkorrak izan daitezkeela 

epe luzez kaltetuak egon diren estuarioetan.  

Sedimentuen dauden kutsatzaileen eta hauek eragin ditzaketen efektu toxikopatikoen 

arteko erlazioa konplexua den arren, sedimentu gordinekin aplika daitezkeen toxizitate 

entseguek erlazio horien nondik norakoak argitzeko lagungarriak izan daitezke. Honen 

harira, ikerlan honetan, Solea senegalensis jubenilak euskal kostaldeko sedimentu 

desberdinetara esposatu ziren laborategi baldintzetan (SED 1: Plentziar estuarioko  

moderatuki kutsatutako sedimentua; SED3: Pasaia portuko sedimentu oso kutsatuak; eta 

SED2: SED1 eta SED3 sedimentuen nahastea 1:1 v/v proportzioan). Aurretiaz, 

sedimentuen propietate fisikokimikoak eta kutsadura mailak aztertu ziren. 7 eta 28 

egunetako esposizioa eta gero, mihi-arrain jubenilen (n=12 talde bakoitzeko) biometria 

datuak erregistratu ziren eta gibel, garun, zakatz eta gonadak disekzionatuak eta 

prozesatuak izan ziren, estres oxidatibo eta neurotoxizitate biomarkatzaileak, 

biomarkatzaile lisosomikoak zein, azterketa histopatologikoak burutzeko. Sedimentuek 

ezberdintasunak ageri zituzten materia organiko kantitatean, granulometrian eta erredox 

potentzialean; baita, kutsadura perfil eta mailetan ere. Hiru sedimentuetan metal 

kontzentrazio moderatuak eta  altuenak SED3 sedimentuan erregistratu ziren. Aitzitik, 

produktu kimiko organikoen mailak (HAP, PCB eta pestizidak) baxuak izan ziren. 

Orokorrean, kutsatzaileekiko erantzun biologikoak bat zetozken neurtutako kutsadura 

mailekin. Efektu toxikopatiko azpimarragarrienak SED3 sedimenturako esposizioan 

antzeman ziren, bereziki 28. egunean. GST aktibitate hepatikoaren gorakada eman zen 

talde esperimental guztietan, aztertutako sedimentu guztien toxikotasun maila minimo bat 

bermatuz. Aldiz, CAT inhibizioa azpimarragarriagoa izan zen SED3 sedimenturetara 

esposatutako banakoetan. Hasiera batean, talde esperimental guztietan sistema 

lisosomikoaen emendapena nabaria izan zen arren, mintz lisosomikoaren desegonkortze 

goiztiarra eta eduki lisosomikoaren aldaketak bereziki SED3 sedimentura esposatutako 

arrainetan antzeman ziren. Analisi histopatologikoei begira, gehien kaltetutako organoa 

gibela izan zen, afekzio/toxikotasun handiena SED3 sedimentuan hauteman zelarik. IBR 

indizeak (Integrative Biological Response) hiru sedimentuetarako esposizioak 

eragindako erantzun biologiko esanguratsuak berretsi zituen 

(IBR/nSED3>IBR/nSED2>IBR/nSED1). Sedimentuen analisi kimikoetan, zein Solea 

jubeniletan neurtutako erantzun biologikoetan eta histopatologikoetan oinarritzen den 

entsegu honek, sedimentuetako kutsatzaileen eta Solea jubeniletan antzeman daitezkeen 

efektu toxikopatikoen arteko asoziazioa berresten du. 
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1. Introduction 

Due to degradation over decades by anthropogenic activities, many estuaries from 

developed countries have undergone processes of recovery for years; however high levels 

of contaminants are still detected in their sediments (e.g. in the Bilbao Estuary; Borja et 

al., 2016; Cajaraville et al., 2016; Chapter 1). Indeed, estuarine sediments can remain 

contaminated for extended periods even after the cessation or reduction of pollutant 

sources (Wolanski and Richmond, 2008). Sediments are a complex milieu that can act as 

a sink for chemical compounds and also as a source of pollutants by releasing previously 

trapped chemicals (Eggleton and Thomas, 2004); therefore, they may pose a potential 

ecological risk for the resident biota, as recorded for instance in the case of flatfish, Solea 

spp. (Oliva et al., 2010, 2012a, 2012b, 2013; Fonseca et al., 2011a; Gonçalves et al., 2013; 

Chapter 1). 

In natural sediments, toxicity not only depends on the presence of cocktails of 

contaminants but also on the different relative concentration, speciation and mobility of 

each chemical in the cocktail (Chapman, 1990; Eggleton and Thomas, 2004). Thus, 

toxicity testing using whole (native) sediments represents the widest variety of possible 

exposure routes for sediment toxicity assessment (Hallare et al., 2011). Toxicity assays 

using flatfish and other benthic fish have been often applied to assess the complex toxicity 

of these sediments. These organisms live in direct contact with the sediment and their 

general health status can be thus directly linked to the presence of pollutants in this 

environmental compartment (Jiménez-Tenorio et al., 2008; Costa et al., 2009a, b; 

Vicente-Martorell et al., 2009; Kerambrun et al., 2012). Sole is a common flatfish 

inhabiting along the Atlantic Iberian coast (Lagardere et al., 1979; Quéro et al., 1986; 

Quéro and Vayne, 1997) where it is subject to intensive farming (Fuchs, 1981; Dinis et 

al., 1999; Imsland et al., 2003). This provides environmentalists with an invaluable 

opportunity for its use as test organism for sediment toxicity assays.  

The biological effects of pollutants in sole have been investigated in laboratory 

experiments using early life stages (larvae and fries) and juveniles exposed both to 

waterborne pollutants and to whole-sediment (Claireaux et al., 2004; Riba et al., 2004; 

Jiménez-Tenorio et al., 2008; Salamanca et al., 2008; Costa et al., 2009a, b; Ribecco et 

al., 2012; Martins et al., 2015). Yet, whereas 2-3 yr old sole juveniles are commonly 

selected in field studies as sentinels representative for estuaries (Oliva et al., 2010, 2012a, 

2012b, 2013, 2014; Gonçalves et al., 2013; Sànchez-Nogué et al., 2013; Cuevas et al., 

2015b; Chapter 1), whole-sediment toxicity assays with juveniles of that age class are 

rare (Jiménez-Tenorio et al., 2008). Indeed, assays are usually conducted using small 

(young) juveniles or fries (Riba et al., 2004; Costa et al., 2009a, b; Ribecco et al., 2012; 

Martins et al., 2015). The transfer of toxicity results from laboratory assays to risk 

assessment in estuaries demands more research studies dealing with whole-sediment 

toxicity assessment in 2-3 yr old sole juveniles. 

The toxicity of chemicals in mixtures (e.g. contaminated sediments) can be assessed 

based on several biological endpoints to demonstrate exposure to, bioavailability and 
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effects of chemicals. Determining biological responses at different levels of biological 

complexity is critical to assess pollutant toxicity in an integrative way (Davies and 

Vethaak, 2012; OSPAR Commission, 2013). Biochemical, cell and tissue-level 

biomarkers are considered early warning biological responses to exposure to chemicals, 

among other stressors, and are indicators of the general health status of the biota 

(UNEP/RAMOGE, 1999).  

Oxidative stress, reported in liver of fish exposed to chemical pollutants (Regoli et al., 

2011; Alijani et al., 2017), can be reflected in enhanced production of reactive oxygen 

species (ROS), disturbance of antioxidant defences and alterations in xenobiotic 

metabolism (Di Giulio et al., 1989; Livingstone, 2001; Roméo et al., 2013; Regoli and 

Giuliani, 2014). Particularly, changes in certain antioxidant enzyme activities, such as 

superoxide dismutase (SOD) and catalase (CAT), are considered early warning 

biomarkers indicative of disturbance of antioxidant defences in aquatic animals 

(Valavanidis et al., 2006; Kroon et al., 2017). In sole, the different levels of SOD and 

CAT activities recorded in the field are seemingly related to the presence of pollutants in 

the sediment (Oliva et al., 2010, 2012b; Fonseca et al., 2011a, 2011b; Gonçalves et al., 

2013; Jebali et al., 2013; Siscar et al., 2015; Kroon et al., 2017; Ghribi et al., 2019). Alas, 

antioxidant responses in sole in the laboratory have been investigated only on exposure 

to waterborne chemicals (Solé et al., 2008; López-Galindo et al., 2010a, 2010b) and hence 

whole-sediment toxicity assays are needed.  

Xenobiotic metabolism in fish involves the action of several enzymes, amongst which the 

glutathione-S-transferase (GST) is responsible for the biotransformation of chemicals and 

their conjugation by reduced glutathione (van der Oost et al., 2003; Kroon et al., 2017). 

Particularly, enhanced GST activity was reported in sole exposed to diverse chemicals 

both in the field and in waterborne toxicity assays (Fonseca et al., 2011a; 2011b; 

Salamanca et al., 2008; Díaz-Garduño et al., 2018); yet, whole sediment toxicity assays 

are rare (Jiménez-Tenorio et al., 2008; Ghribi et al., 2019).  

Neurotoxicity can be exerted on aquatic organisms by many contaminants found in the 

sediment (Legradi et al., 2018), affecting their behaviour (swimming activity, visual or 

breathing impairments) and survival (Massei et al., 2019). A neurotoxicity biomarker 

frequently used in fish is brain acetylcholinesterase (AChE) inhibition (Grue et al., 1997; 

Heath et al., 1997; Minier et al., 2000; Davies and Vethaak, 2012; Burgeot et al., 2017), 

which has been also investigated in sole (López-Galindo et al., 2010a, b; Oliva et al., 

2012a; Solé et al., 2012; Jebali et al., 2013; Siscar et al., 2013; Ghribi et al., 2019). 

Lysosomal alterations are considered precursors of early histopathological lesions 

(Köhler et al., 1992, 2002) and hence they are used as early-warning biomarkers of the 

general health status of marine organisms subject to a variety of environmental stressors 

(UNEP/RAMOGE, 1999; JAMP, 2003; ICES, 2006; Davies and Vethaak, 2012). They 

have been commonly reported in fish hepatocytes as non-specific toxic responses (Hinton 

et al., 2001; van der Oost et al., 2003; Au, 2004). Particularly, lysosomal enlargement, 

membrane destabilisation and changes in lysosomal content have been described in wild 
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flatfish from polluted sites (Broeg et al., 2002, 2005; Einsporn et al., 2005; Baršienė et 

al., 2006; Burgeot et al., 2017). Moreover, these lysosomal responses have been related 

with sediment pollution (Baršienė et al., 2006; Burgeot et al., 2017). 

Histopathology can provide valuable data to assess the general biological effects of 

contaminants in fish, including when these occur in mixtures and complex environments, 

like it happens in the case of sediments (Bernet et al., 1999; Gonçalves et al., 2013; Feist 

et al., 2015). Moreover, histopathological lesions represent medium-term responses to 

pollutants that can be used to link molecular and cellular responses to their ecological 

consequences e.g. at population level (Hinton and Lauren, 1990; Au, 2004; Lang et al., 

2006). In fish, the target tissues most commonly used for histopathological diagnosis are 

gills, liver and gonad (Arellano et al., 1999; Hinton et al., 2001; Costa and Costa, 2008; 

Jiménez-Tenorio et al., 2008; Costa et al., 2009b; 2011; Lujić et al., 2013; Feist et al., 

2015). Additionally, gonad examination at the microscope is frequently used to identify 

the gender and reproductive status of the fish (Blazer, 2002; Solé et al., 2016).  

Overall, histopathological lesions in fish can be classified into four categories (Takashima 

and Hibiya, 1995; Bernet et al., 1999): (1) circulatory disturbances; (2) inflammatory 

responses; (3) regressive changes; and (4) progressive changes. Circulatory disturbances 

inform on the condition of blood and fluid flow (Bernet et al., 1999). For instance, 

haemorrhage has been reported in the liver in sole exposed to contaminated sediments 

(Costa et al., 2011). Inflammatory responses are interpreted as indicators of disturbance 

of the general health status as a result of age, infectious disease or exposure to chemicals 

(Zorita and Cuevas, 2014). Thus, enhanced occurrence of melanomacrophage centers in 

liver is considered a sign of environmental deterioration due to pollution or other causes 

(Manera et al., 2000). Regressive changes lead to reduction or loss in the function of the 

affected organ. In gills, epithelial lifting increases the distance between blood vessels and 

the milieu, hampering gas exchange and thus interfering with respiratory and 

osmoregulatory functions (Reddy and Waskale Kusum, 2013). Necrotic foci are 

degenerative lesions characterised by an irreversible loss of cellular integrity and have 

been identified in sole liver in response to contaminated sediments bearing cocktails of 

xenobiotics (Costa et al., 2011). Oocyte atresia is considered a regressive change that 

occurs during the normal reproductive cycle in fish but has been also identified in 

response to environmental stressors (Witthames et al., 1995; Chapter 1). Progressive 

changes are the consequence of an abnormally enhanced activity of cells leading to tissue 

hypertrophy (cell enlargement) or hyperplasia (cell proliferation) (Bernet et al., 1999); 

which can ultimately produce organ malfunction through e.g. fusion of secondary 

lamellae in gills (López-Galindo et al., 2010a; Movahedinia et al., 2012). Upon 

examination of lesions included in the aforementioned four categories, results can be 

integrated into indices of the biological effects exerted by pollutants (Bernet et al., 1999; 

Lang et al., 2006; Costa et al., 2009b, 2011; Cuevas et al., 2015a, 2015b; Ghribi et al., 

2019; Chapter 1).  
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In addition, biomarkers recorded at different levels of biological complexity and based 

on diverse biological endpoints and technological approaches (biomarkers of oxidative 

stress, biotransformation, neurotoxicity and general stress, and histopathology) can be 

integrated into indices of health disturbance (Broeg et al., 2005; Marigómez et al., 2013). 

This integration is helpful to understand the effects of pollution when chemicals occur in 

mixtures in the complexity of the field and to support environmental managers in risk 

assessment and monitoring practice. Within this framework, the Integrative Biological 

Response (IBR) index has been previously applied in fish and other marine organisms 

based on a variety of combinations of biomarkers (Broeg and Lehtonen, 2006; Brooks et 

al., 2011; Cravo et al., 2012; Serafim et al., 2012; Marigómez et al., 2013; Rementeria et 

al., 2016). 

The current investigation aimed at relating the occurrence of contaminants mixture in 

sediments with biological responses elicited in Solea senegalensis juveniles upon 

exposure to whole sediments under controlled laboratory conditions for 28 d. Biomarkers 

of oxidative stress and neurotoxicity, lysosomal biomarkers and histopathology were 

determined after 7 and 28 d exposure and integrated as IBR/n index. 

2. Material and methods 

2.1.  Experimental setup 

Sediments used for the present study were collected from two estuaries with different 

levels of pollution along the Basque coast, Bay of Biscay (Figure 1). The first sampling 

site was located in the Plentzia estuary (43° 25’ N, 2° 57’ W). Sediment was collected 

nearby the village of Plentzia. The area is considered relatively clean with no significant 

industrial activity and low levels of PAHs and PCBs (Saiz-Salinas, 1997; Borja et al., 

2006; Orbea and Cajaraville, 2006; Cortada and Collins, 2013). It is worth mentioning 

that the population in this area increases significantly during summer. The second 

sampling site was situated in the Pasaia harbour (43º 20’ N, 01º 56’ W), which is subject 

to relevant industrial activities, dredging operations, and hydrometallurgical and mining 

related discharges (Belzunce et al., 2004; Tueros et al., 2009; Montero et al., 2013). 

Sediments used for the present study were collected using shovels in Plentzia and a Day 

grab in Pasaia. In both cases, the sediments were transported to the laboratory, where they 

were homogenised and preserved at 4ºC until use. A third sediment was prepared in the 

laboratory by gently mixing (1:1 v/v) the two source sediments. Experimental sediments 

are referred to as SED1 (Plentzia), SED2 (mixture) and SED3 (Pasaia). Prior to the 

exposure experiment (48 h) each sediment was placed at the bottom (8 cm layer) of a 500 

L-capacity polypropylene tank with constant aeration and water flow. Water circulation 

(1.2 l/min) was equivalent to four water renewals per day and was so set to minimise 

sediment loss.  

Solea senegalensis juveniles (22.2±2.2 cm standard length; 112.5±31.7 g total wet-wt) 

were exposed to the three experimental sediments (SED1, SED2 and SED3) for 28 d at 

optimal stocking density (4-6 kg/m2; Schram et al., 2006). Water parameters were 
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monitored daily to ensure optimal conditions: pH=8, salinity=31-33 PSU, 

temperature=19-20ºC, dissolved O2=6-8 mg/l and total ammonia=0 mg/l. Photoperiod 

throughout the experiment was set at 12:12 h light:dark. Fish were daily fed with 

commercial food (0.3 g/fish; BioMar Iberia S.A., Dueñas, Spain). 

2.2.  Physicochemical and chemical analyses of sediments and water 

Samples of experimental sediments were collected from each experimental group at days 

3 and 28.  

Sediment granulometry was determined after running dried sediment samples (60ºC, 24 

h) through a column of sieves according to Holme and McIntyre (1971). The proportion 

(%) of gravel (>2 mm), sand (2 mm-63 µm) and mud (<63 µm) was calculated and 

particle size distribution was interpreted using the GRADISTAT software (Blott and Pye, 

2001). The organic matter content was determined as weight loss (%) on ignition at 450ºC 

for 5 h (Dean, 1974). The redox potential was determined by using a silver combined 

electrode (Orion 977800) connected to a pH/mV meter (Orion 710A). 

Metals in sediments (Cd, Cr, Cu, Hg, Ni, Pb and Zn) were measured in acid extracts from 

the sediment fine fraction (<63 µm). Briefly, dried sediment was digested in an acid 

mixture (2HCl:1HNO3) using a microwave system (MARS 5 Xpress CEM Corporation 

Instrument). Afterwards, metal levels were determined by Atomic Absorption 

Spectrometry (AAS; AAS800 Perkin Elmer). Cadmium was analysed by Transversely 

Heated Graphite Atomizer (THGA) graphite furnace, using Zeeman background 

correction (Katskov et al., 1998). Chromium, Cu, Ni, Pb and Zn were determined in an 

Figure 1. Map of the Basque Coast showing the sediment sampling sites in the Plentzia 

estuary (left) used to produce SED1 and the Pasaia harbour (right) used to produce SED3. 
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air acetylene flame (Allan, 1962). Total Hg was measured by quartz furnace AAS 

following cold vapour method (Deng et al., 2009). Analytical accuracy was checked by 

the PACS-2 reference material (National Research Council of Canada, CNRC) and the 

measured values were found to be within the certified range (Larreta et al., 2012). 

Polycyclic aromatic hydrocarbons (PAHs; 18 in total) in sediments were measured in the 

bulk fraction (<2 mm). Samples (5-10 g) were pre-concentrated with a mixture of solvents 

(pentane:dicloromethane; 50:50) by accelerated solvent extraction (Dionex ASE200 

System). Organic extract was purified by Gel Permeation Chromatography (GPC). 

Sulphuric acid (8 ml) was added to PAH extract prior to centrifugation. Organic phases 

were collected and determined by Gas Chromatography-Mass Spectrometry (GC-MS) 

using Agilent 6890 GC coupled with Agilent 5973 MSD. 

Contaminant levels were compared with the values of the Effect Range Low (ERL) and 

Effect Range Median (ERM) for metals, PCBs and PAHs (Long et al., 1995). The 

contaminant potential to cause adverse biological effects was assessed through the 

estimation of Sediment Quality Guideline Quotients (SQG-Qs). The SQG-Qs were 

calculated as the ratio between the content of individual chemicals and their respective 

ERM value. The sediments were then ranked as proposed by MacDonald et al. (2004) 

according to their toxicological risk for each class of contaminants (metals, PCBs and 

PAHs): SQG-Q < 0.1 as non-impacted sediments; 0.1-1 as moderately impacted and > 1 

as strongly impacted. In this approach, the mean of individual SQG-Qs of each chemical 

group was calculated. 

2.3. Fish biometry 

Individual wet-wt (W in g) and length (L in cm) and liver and gonad wet-wt (LW and 

GW in g, respectively) were recorded to calculate (a) K=W×100/L3; (b) HSI= 

LW×100/W; and (c) GSI=GW×100/W; where K is the condition factor, HSI is the 

hepatosomatic index, and GSI is the gonadosomatic index. 

2.4. Analysis of contaminants in liver 

Due to the high fat content of the liver of sole, only metals concentrations could be 

reliably measured. For this purpose, liver tissue of 6 fish per treatment were pooled to 

obtain a minimum of 1 g dw per group. After lyophilisation, tissue samples were digested 

in an acid mixture (2HCl:1HNO3) using a microwave system (MARS 5 Xpress CEM 

Corporation Instrument). Metal content (Cr, Mn, Fe, Ni, Zn, Cd, Hg and Pb) was 

determined by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS; Bartolomé et 

al., 2010; Navarro et al., 2010). Copper concentration was analysed by Atomic Emission 

Spectroscopy (ICP-AES). 

2.5. Biochemical determination of enzyme activities 

At days 7 and 28 of exposure, liver and brain samples were dissected out, rapidly frozen 

and maintained at -80ºC until use. Samples were processed for biochemical analysis; they 
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were homogenised (1:4 for liver and 1:5 for brain) in 0.1 M potassium phosphate buffer 

(pH 7.4) and centrifuged for 30 min at 12000 g at 4ºC to obtain the post-mitochondrial 

supernatant (PMS). Catalase (CAT), superoxide dismutase (SOD) and glutathione-S-

transferase (GST) enzyme activities were determined in liver PMS and 

acetylcholinesterase (AChE) activity in brain PMS using a BioTek Eon microplate 

spectrophotometer. Enzyme activities were expressed as a function of the protein 

concentration in the samples. Total protein content in the homogenates was measured in 

triplicate at 595 nm following Bradford's method adapted to microplate and using bovine 

serum albumin as standard (Bradford, 1976; Guilhermino et al., 1996). All enzyme assays 

were performed at 25ºC. 

Catalase (CAT). CAT activity was determined by the method of Claiborne (1985) by 

measuring the rate of enzyme decomposition of hydrogen peroxide (H2O2) determined as 

absorbance decrease at 240 nm. The reaction medium (final volume of 10 ml) contained 

9977 µl of 50 mM phosphate buffer (pH 7.0) and 23 μl of hydrogen peroxide (H2O2; 30% 

v/v). The reaction was started by the addition of 5 µl of samples to 295 µl of reaction 

medium. Absorbance decrement was measured for 3 min at 240 nm. Results were 

expressed as μmol H2O2/min/mg protein. 

Superoxide dismutase (SOD). SOD activity was determined by a colorimetric method 

using a SIGMA kit (SOD Determination kit; ref: SIGMA 19160) to measure the 

superoxide anion reduction as proportional to the SOD inhibition activity. Each well 

contained 200 μl of WST (water soluble tetrazolium salt) working solution, 20 μl of 

enzyme working solution and 20 μl of sample and were left incubating at 37ºC for 20 

min. Three different blanks were prepared for the assay: Blank 1 (200 μl of WST working 

solution, 20 μl of enzyme working solution and 20 μl of ultrapure water); Blank 2 (200 

μl of WST working solution, 20 μl of dilution buffer and 20 μl of sample); and Blank3 

(200 μl of WST working solution, 20 μl of dilution buffer and 20 μl of ultrapure water). 

Absorbance was measured at 450 nm and SOD activity (inhibition rate %) was calculated 

as follow: 

SOD activity (inhibition rate %)  =
(𝐴1−𝐴3)−(𝐴𝑆−𝐴2)

(𝐴1−𝐴3)
× 100; 

where A1 is the absorbance of Blank 1, A2 is the absorbance of Blank 2, A3 is the 

absorbance of Blank 3 and AS is the absorbance of the samples. 

Glutathione-S-transferase (GST). GST activity was determined by the Habig's method 

(Habig et al., 1974) adapted to microplate and using bovine serum albumin as standard 

(Guilhermino et al., 1996). Enzyme activity was measured following the formation of 

thioether by conjugation of reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene 

(CDNB). The reaction medium contained 9.9 ml of 100 mM potassium phosphate buffer 

(pH 7.4), 1.8 ml of 10 mM GSH solution and 300 μl of 60 mM CDNB solution. Each 

well contained 100 μl of samples and 200 μl of reaction medium. Enzyme activity was 

measured at 340 nm for 6 min and expressed as nmol/min/mg protein. 
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Acetylcholinesterase (AChE). AChE activity was determined according to the Ellman 's 

colorimetric method of (Ellman et al., 1961) adapted to microplate (Guilhermino et al., 

1996) by measuring the formation of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) at 412 

nm. The reaction medium contained 200 µl of 75 mM acetylcholine solution, 1 ml of 10 

mM DTNB and 30 ml of 100 mM potassium phosphate buffer (pH 7.4). Each well 

contained 50 µl of samples and 250 µl of reaction medium. After 10 min of incubation, 

enzyme activity was recorded over 10 min. AChE activity was expressed as specific 

activity (nmol DTNB/min/mg protein). 

2.6. Lysosomal biomarkers 

At days 7 and 28 of exposure, liver samples were dissected out, rapidly frozen and 

maintained at -80ºC until use. Frozen samples were processed using Tissue Array (TA) 

technology (Array Mold® Kit; n°20015-A) and TA blocks were cut at -27ºC using a Leica 

CM 3050S cryotome. 

 Lysosomal membrane stability (LMS). The determination of lysosomal membrane 

stability was based on the time of acid labilisation treatment required to produce the 

maximum staining intensity according to UNEP/RAMOGE (1999), after demonstration 

of acid phosphatase (AcP) activity in hepatocyte lysosomes. Ten serial cryotome sections 

(10 µm) were subject to acid labilisation in intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 

and 50 min in 0.1 M citrate buffer (pH 4.5, containing 2.5% NaCl) in a shaking water 

bath at 37ºC. The demonstration of AcP activity was performed by incubation of the 

sections in a substrate incubation medium (naphthol AS-BI-phosphate, 

dimethylsulfoxide, 0.1 M citrate buffer at pH 4.5, containing 2.5% NaCl and low viscosity 

polypeptide, Polypep®) for 20 min at 37ºC, in a shaking bath. Rinsed sections (3% NaCl 

at 37ºC for 5 min) were stained at room temperature with diazonium dye Fast Violet B 

salt (1 mg/ml in 0.1 M phosphate buffer, pH 7.4) for 9 min. Slides were fixed in Baker's 

formol calcium containing 2.5% NaCl for 10 min at 4ºC, rinsed in distilled water and 

mounted in Kaiser´s glycerine gelatine. 

The time of acid labilisation treatment required to produce the maximum staining 

intensity was assessed under a light microscope as the maximal accumulation of reaction 

product associated with lysosomes (UNEP/RAMOGE, 1999) and was denoted as the 

Labilisation Period (LP; in min). Four determinations were made per individual; for each 

area, the first maximum staining peak was considered to determine the LP value (ICES, 

2015). A final LP value was calculated for each individual fish as the mean of the four 

LP values determined in each area. 

Lysosomal Structural Changes (LSC). The determination of changes in the size and 

numbers of lysosomes was made according to the method described by Cajaraville et al. 

(1989) for mussels, further on adapted to fish liver by Alvarado et al. (2005), after 

histochemical demonstration of β-glucuronidase activity in fish hepatocytes. Cryotome 

sections (8 µm) were incubated in freshly prepared β-glucuronidase substrate incubation 

medium (naphthol AS-BI-β-glucuronidep, 50 mM sodium bicarbonate, 0.1 M acetate 



Results 

93 

buffer at pH 4.5, containing 2.5% NaCl and polyvinyl alcohol at 15%) for 20 min at 37ºC. 

Slides were rinsed (2.5% NaCl at 37ºC for 2 min) and transferred to a postcoupling 

medium (Fast Garnet, 0.1 M phosphate buffer at pH 7.4 containing 2.5% NaCl) for 10 

min at room temperature, in the dark. Sections were fixed in Baker’s formol calcium 

solution containing 2.5% NaCl for 10 min at 4 ºC, rinsed in distilled water and mounted 

Kaiser’s glycerol gelatine. 

The structure of lysosomes was assessed through a stereological procedure based on 

image analysis (BMS, Sevisan) according to Cajaraville et al. (1991). Five measurements 

using a 100× objective lens were made per individual. The mean value of the following 

stereological parameters was determined for the lysosomes of each liver sample (Lowe et 

al., 1981): volume density (VvL=VL/VC), surface density (SvL=SL/VC), surface-to-volume 

ratio (S/VL=SL/VL) and numerical density (NvL=NL/VC); where V=volume, S=surface, 

N=number, L=lysosomes and C=liver cytoplasm. 

Intracellular accumulation of neutral lipids. Changes in levels of neutral lipids were 

determined according to Marigómez and Baybay-Villacorta (2003), after Oil Red O 

(ORO) staining to visualise neutral lipids (Culling, 1974). Cryotome sections (8 μm) were 

fixed in Baker's formol calcium containing 2.5% NaCl for 15 min at 4ºC. Air dried 

sections were washed in isopropanol (60%) and stained with ORO for 20 min. The 

staining solution (stable for 1-2 h) was freshly made from a saturated stock ORO solution 

(0.3% in isopropanol) and kept protected from the light. Stained sections were 

differentiated in 60% isopropanol, rinsed in water, counterstained with 1% Fast Green 

FCF for 20 min and mounted in Kaiser's glycerine. 

Five measurements using a 40× objective lens were made per individual. The mean value 

of the volume density (VvNL=VNL/VC) of neutral lipids was determined; where 

V=volume, NL=neutral lipids and C=liver cytoplasm. 

2.7. Histological processing and histopathological examination 

At days 7 and 28 of exposure, gill, liver and gonad samples were dissected out (n=12 per 

experimental group). Gills were fixed in Bouin's solution for 24 h at 4ºC and rinsed in 

formic acid (8% v/v) for 24 h at room temperature. Liver and gonad samples were fixed 

in 4% neutral buffered formol for 24 h at 4ºC. Fixed samples were dehydrated in a graded 

series of ethanol, cleared and embedded in paraffin (Leica ASP 300S). A minimum of 

two sections (5 µm) per sample were obtained using a rotary microtome (Leica RM 

2125RTS) and were stained with hematoxylin-eosin (H&E; Martoja and Martoja-Pierson, 

1970).  

Histopathological examination. The examination of histological samples was made under 

a light microscope (Nikon Eclipse E200) starting with a 4× objective lens for a general 

description of the organs. Higher power objective lenses (10×, 20×, 40× and 100×) were 

used for the identification of histopathological lesions. 
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Hepatic samples were analysed for histopathology based on the recommendations 

provided by ICES (1997) and the Biological Effects Quality Assurance in Monitoring 

Programmes (BEQUALM, 2001). The publications by Costa et al. (2009b) on liver and 

gill histopathology of wild sole juveniles, Zorita and Cuevas (2014) on hepatic lesions 

commonly recorded in sole and Blazer (2002) on gonad histopathological lesions were 

used as guidelines to identify lesions in the particular case of sole. Amongst lesions 

identified, only persistent cases were considered for the calculation of histopathological 

indices and point alterations were discounted. 

Histopathological indices. The semi-quantitative histopathological approach in liver was 

performed following two different methods. 

The first approach was based on the scoring system proposed by Lang et al. (2006) for 

hepatic histopathology. For this purpose, hepatic lesions were classified into five 

categories as presented by Feist et al. (2004): (1) non-specific lesions; (2) early non-

neoplastic toxicopathic lesions; (3) foci of cellular alteration (FCA); (4) benign 

neoplasms; and (5) malignant neoplasms. The stage (S) of each lesions recorded was 

determined as mild, medium and severe, depending on the size of the tissue area affected 

in the sections and the degree of cellular change observed. Lang’s scoring system 

consisting of 15 lesion scores was used for the assessment of spatial and temporal 

variation in the lesions recorded. Lesions’ scores were determined based on the lesion 

category and the lesion stage (S). If more than one lesion category was recorded in one 

specimen, the highest lesion score was used for assessment purposes. From the individual 

scores, mean histopathology liver lesion scores (LSliver) were calculated for each sampling 

station and time. 

The second semi-quantitative approach was based on the weighted histopathological 

index developed by Bernet et al. (1999). Accordingly, hepatic lesions were classified into 

five categories based on their reaction pattern: (1) circulatory disturbances; (2) 

inflammatory responses; (3) regressive changes; (4) progressive changes; and (5) tumours 

(neoplams). Each alteration was assigned an importance factor (w) as: (1) minimal 

pathological importance (the lesion is reversible after the cessation of pollutant exposure); 

(2) moderate pathological importance (the lesion is reversible in most cases if the 

exposure ends); (3) marked pathological importance (the lesion is generally irreversible 

and may lead to partial or total loss of organ function). The stage (a) of each lesion 

identified was ranked in 4 categories (0, 2, 4 and 6) according to the level of dissemination 

of the alteration in the organ; where 0 is absence and 6 is high degree of dissemination 

depending on the size of the tissue area affected in the sections and the degree of cellular 

change observed. Different histopathological indices were calculated using the lesion 

importance factor (w) and the lesion stage (a): 

- the organ index Iorg. was calculated for each individual and for each organ as 

follow: 

Iorg = Σrp Σalt (worg rp alt × aorg rp alt) 
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- the reaction index of an organ Iorg rp was calculated for each individual, each organ 

and each lesion category: 

Iorg rp = Σalt (worg rp alt × aorg rp alt) 

Gills and gonads lesions were also classified according to Bernet et al. (1999) in order to 

calculate the total histopathological indices integrating the histopathological results from 

the three organs: 

- the total index Itot was calculated for each individual, for all organs: 

Itot = Σorg Σrp Σalt (worg rp alt × aorg rp alt) 

- the total reaction index Irp was calculated for each individual and each lesion 

category, for all organs: 

Irp = Σorg Σalt (worg rp alt × aorg rp alt) 

Histopathological indices. The prevalence of each histopathological alteration was 

determined as the percentage occurrence of an alteration within each experimental group 

for gills and liver and within each combination of experimental group and gender for 

gonads.  

Characterisation of the reproductive cycle. Gonad histological sections were analysed at 

a light microscope for gender and gamete developmental stages determination. Male 

gamete developmental stages were determined according to García-López et al. (2006) 

and were classified in five stages as follow: Stage I (early spermatogenesis); Stage II (mid 

spermatogenesis); Stage III (late spermatogenesis); Stage IV (mature); Stage V 

(recovery). The identification of gamete developmental stages for females was mainly 

based on Murua and Motos (2006). Stages were classified as followed: Stage I (growth); 

Stage II (early vitellogenesis); Stage III (late vitellogenesis); Stage IV (maturation). 

2.8. Integrative Biological Response (IBR/n) index 

The IBR index (Beliaeff and Burgeot, 2002) was calculated based on the integration of 

biochemical (GST, CAT), histochemical (VvL, LP) biomarkers and hepatic 

histopathology (Iliver) following the calculation method described by Marigómez et al. 

(2013). The calculation method is based on relative differences between the biomarkers 

in each given data set. Thus, the IBR index is computed by summing-up triangular starplot 

areas (multivariate graphic method) for each two neighbouring biomarkers in a given data 

set, according to the following procedure (Beliaeff and Burgeot, 2002; Devin et al., 2014): 

(1) calculation of the mean and standard deviation for each sample; (2) standardization of 

data for each sample: xi´=(xi-x)/s; where, xi´=standardized value of the biomarker; 

xi=mean value of a biomarker from each sample; x=general mean value of xi calculated 

from all compared samples (data set); s=standard deviation of xi calculated from all 

samples; (3) addition of the standardized value obtained for each sample to the absolute 

standardized value of the minimum value in the data set: yi=xi´ + |xmin´|; (4) calculation 

of the Star Plot triangular areas as Ai=(yi × yi+1 × sinα)/2, where yi and yi+1 are the 

standardized values of each biomarker and its next biomarker in the star plot, respectively, 
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and α is the angle (in radians) formed by each two consecutive axis where the biomarkers 

are represented in the Start Plot (α=2π/n; where n is the number of biomarkers); and (5) 

calculation of the IBR index which is the summing-up of all the Star Plot triangular areas 

(IBR=ΣAi).Since the IBR value is directly dependent on the number of biomarkers in the 

data set, the obtained IBR value must be divided by the number of biomarkers used 

(IBR/n; Broeg and Lehtonen, 2006). 

In the present work, five biomarkers were integrated for the calculation of the index as 

IBR/n. Parameters were selected to represent effects of estuarine sediments at different 

biological organisation levels where biochemical and histochemical parameters 

demonstrate sub-cellular effects of contaminants and liver histopathology indicate 

subsequent tissue-level effects. 

2.9. Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics Base 22.0. Homogeneity 

of variance (Levene´s test) and normality of data (Shapiro’s test) were tested before 

statistical analysis. Two-way ANOVAs were performed to analyse the effects of 

contaminant, time of exposure and their combination on biomarkers and histopathology. 

Logarithmic transformation was applied to non-parametric variables (CAT, GST, LP, 

VvL, S/VL, NvL and VvNL). For normal data, differences between experimental groups 

and throughout exposure time were tested using the parametric one-way Anova test and 

the T Student test, respectively. For non-normal data set, the non-parametric Kruskal-

Wallis test and Mann-Whithney U test were used to analyse differences in biological data 

between experimental groups and throughout exposure time. The z-score test and the 

Pearson’s Chi test were used to determine significant differences in histopathological 

lesion prevalence between experimental groups and throughout exposure time. 

Significant differences in chemical data were tested with the z-score test. The non-

parametric Spearman's rank-order (R) test was used to assess correlations between metal 

contaminants detected in sediment and liver samples. Level of significance for all 

analyses was p =0.05. 

 Untreated 

sediments 

Experimental sediments 

  Day 3   Day 28  

 SED1 SED3 SED1 SED2 SED3 SED1 SED2 SED3 

Redox 208 -168.2 368a 318a 92b 106 33 -49 

OM 2.2 3 2.9a 3.6b 3.7b 1.8a 3.7b 4.0b 

Mud 6.8 7.1* 43.2a 68.0b 64.8b 62.5 65.9 67.2 

Sand 89.9 89.2* 56.5a 31.7b 35.1b 37.4 34.0 32.7 

Gravel 3.3* 3.7* 0.2a 0.2a 0b 0 0 0 

Table 1. Physicochemical profiles of untreated sediments sediments and 

experimental group at day 3 and 28: redox potential value (mV), organic matter 

content (OM, %) and granulometry (gravel >2 mm, sand >63 µm, mud <63 µm, %). 

Asterisks indicate significant differences between untreated and experimental 

sediments (z score, p<0.05); different letters indicate significant differences between 

experimental groups (z score, p<0.05). 
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3. Results 

3.1. Sediment physicochemical properties and contamination 

Untreated SED3 had a negative redox potential that transiently became positive after 3 d 

experimentation with water renewal under laboratory conditions; SED2 and SED1, 

however, had always a positive redox potential (Table 1). OM did not differ between 

untreated and experimental sediments and was higher in experimental SED3 and SED2 

than in SED1 (Table 1). Regarding granulometry, it is worth noting that both SED1 and 

SED3 lost gravel and sand in experimental conditions, more markedly in SED3 (Table 

1). Thus, although granulometry was originally similar between untreated sediments, the 

sand fraction was higher in experimental SED1 than in SED2 and SED3 and the mud 

fraction was lower (Table 1). However, at day 28 granulometry was similar in the three 

experimental sediments (Table 1).  

The concentrations of Cd, Fe, Hg, Mn, Ni and Pb were comparable in the two source 

sediments; however, the concentration of Cr, Cu and Zn were higher in SED3 than in 

SED1 (Larreta et al., 2012). After 3 d experimentation, the concentration of metals raised 

in both sediments, more markedly in SED3 (e.g., regarding Cd, Cu, Mn, Pb, Zn and the 

total sum of metals), with the exception of Hg, which was higher in SED1 than in SED3; 

and remained as such until day 28 (Table 2). However, the concentration of Cr, Fe, Mn 

and Ni was lower in both sediments after 3 d exposure conditions than in untreated 

sediments; in contrast, Cd, Cu and Hg concentrations were higher (Table 2).  

 

 Untreated 

sediments 

Experimental sediments 

 Day3 Day28 

 SED1 SED3 SED1 SED2 SED3 SED1 SED2 SED3 

Cd 0.18 0.43 0.70a 0.77a 1.37b 0.59 a 1.02 b 0.99 b 

Cr 21.1* 33.2* 12.7 13.6 16.1 12.3 15.7 14.7 

Cu 20.4 47.4* 61.4 80.6 104.9 51.5 89.6 109.0 

Fe 17775* 17921* 11863 10786 11380 13017 14084 11885 

Hg 0.13 0.1* 0.99a 0.89a 0.47b 0.77 a 0.81 a 0.50 b 

Mn 236* 358* 64.5 68.9 84.7 60.8 a 76.0 b 79.0 b 

Ni 15.4* 28.2* 11.8 16.2 21.8 12.0 18.7 22.3 

Pb 24.2 30.7 46.8a 47.7a 59.5b 37.3 52.7 48.2 

Zn 108 213 99.4 122.1 156.3 88.1 a 134.4 b 141.0 b 

∑Metals 189.41 353.03 233.75 281.92 360.45 202.56a 312.93 b 336.69 b 

Table 2. Metals concentrations (mg/kg dw) determined in the fine fraction (<63 µm) of 

untreated sediments and experimental sediments from days 3 and 28. ∑Metals: sum of 

Cr, Ni, Cu, Zn, Cd, Hg and Pb. Asterisks indicate significant differences between 

untreated and experimental sediments (z score, p<0.05); different letters indicate 

significant differences between experimental groups of a same sampling size (z score, 

p<0.05). 
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 Untreated 

sediments 

Experimental sediments   

  Day3  Day28   

 SED1 SED3 SED1 SED2 SED3 SED1 SED2 SED3 ERL ERM 

Cd 0.02 0.04 0.07 0.08 0.14 0.06 0.11 0.10 1.2 9.6 

Cr 0.06 0.09 0.03 0.04 0.04 0.03 0.04 0.04 81 370 

Cu 0.08 0.18 0.23 0.30 0.39 0.19 0.33 0.40 34 270 

Hg 0.18 0.14 1.40 1.26 0.66 1.08 1.14 0.70 0.15 0.71 

Ni 0.30 0.55 0.23 0.31 0.42 0.23 0.36 0.43 20.9 51.6 

Pb 0.11 0.14 0.21 0.22 0.27 0.17 0.24 0.22 46.7 218 

Zn 0.26 0.52 0.24 0.30 0.38 0.21 0.33 0.34 150 410 

∑Metals 0.144 0.237 0.346 0.358 0.331 0.284 0.365 0.321 - - 

Acenaphthene (1) 0.133 0.166 0.004 0.002 0.0 0.012 0.0 0.0 16 500 

Anthracene (1) 0.028 0.011 0.028 0.039 0.022 0.163 0.005 0.007 85.3 1100 

Fluorene (1) 0.030 0.054 0.020 0.011 0.004 0.181 0.002 0.006 19 540 

Naphthalene (1) 0.068 0.080 0.0 0.0 0.003 0.0 0.0 0.0 160 2100 

Phenanthrene (1) 0.078 0.173 0.028 0.039 0.022 0.112 0.022 0.023 240 1500 

Benzo(a)anthracene (2) 0.120 0.019 0.050 0.0 0.011 0.056 0.0 0.0 261 1600 

Benzo(a)pyrene (2) 0.111 0.022 0.008 0.004 0.0 0.024 0.003 0.0 430 1600 

Chrysene (2) 0.094 0.026 0.019 0.021 0.005 0.033 0.005 0.0 384 2800 

Dibenzo(a,h)anthracene (2) 0.112 0.0 0.0 0.031 0.0 0.027 0.0 0.0 63.4 260 

Fluoranthene (2) 0.056 0.015 0.018 0.015 0.003 0.012 0.007 0.003 600 5100 

Pyrene (2) 0.099 0.042 0.024 0.019 0.008 0.013 0.010 0.005 665 2600 

∑LMWPAHs ∑(1) 0.120 0.178 0.021 0.027 0.015 0.145 0.013 0.015 552 3160 

∑HMWPAHs ∑(2) 

(carcinogenic) 
0.126 0.034 0.031 0.021 0.007 0.033 0.008 0.003 1700 9600 

∑PAHs (∑(1) + ∑(2)) 0.035 0.020 0.008 0.006 0.002 0.017 0.003 0.002 4022 44792 

Table 3. Toxicological significance (SQG-Qs) from untreated sediments and 

experimental sediments from days 3 and 28. Effects Range Low (ERL) and Effects Range 

Median (ERM) calculated by Long et al. (1995). ∑Metals: sum of Cr, Ni, Cu, Zn, Cd, Hg 

and Pb. LMW PAHs: low molecular weight PAHs; HMW PAHs: high molecular weight 

PAHs. 
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 Untreated 

sediments 

Experimental sediments 

 Day3 Day28 

 SED1 SED3 SED1 SED2 SED3 SED1 SED2 SED3 

Acenaphthene (1) 66.7* 83.2* 2 1 0 6 a 0 b 0 b 

Acenaphthylene (1) 0 0 0 0 0 0 0 0 

Anthracene (1) 30.8 12.4 11 19 4 179 a* 6 b 8 b 

Fluorene (1) 16 29.1* 11 6 2 98 a* 1 b 3 b 

Naphthalene (1) 142* 167.5* 0 0 6 0 0 1 

Phenanthrene (1) 116.5 260.1* 42 59 33 168 a 33 b 34 b 

Benzo(b)fluoranthene 345.5* 82.1* 28 a 32 a 0 b 85 a 14 b 0 b 

Benzo(k)fluoranthene 108.2 15.1* 26 a 0 b 1 b 55 a 0 b 0 b 

Benzo(g,h,i)perylene 120.1* 49.8* 21 27 6 29 8 0 

Benzo(e)pyrene ND ND 0 0 0 0 0 0 

Indeno (1,2,3-c,d)pyrene 104.6* 19.1* 17 28 3 25 13 0 

Perylene ND ND 0 0 0 0 0 0 

Benzo(a)anthracene (2) 192* 31 80 0 17 89 a 0 b 0 b 

Benzo(a)pyrene (2) 178.2* 35* 12 7 0 39 a 4 b 0 b 

Chrysene (2) 262.2* 73.4* 53 a 58 a 13 b 91 a 13 b 0 b 

Dibenzo(a,h)anthracene (2) 29.1 0 0 a 8 b 0 a 7 a 0 b 0 b 

Fluoranthene (2) 287.5* 77.9* 93 a 78 a 14 b 60 35 16 

Pyrene (2) 256.3* 109.6* 63 50 22 35 25 12 

∑LMWPAHs ∑(1) 372 552.3* 66 85* 45 451 a 40 b 46 b 

∑HMWPAHs ∑(2) (carcinogenic) 1205.3* 326.9* 301 201 66 321 a 77 b 28 b 

∑PAHs (∑(1) + ∑(2)) 1577.3 879.2* 367 286 111 772 a 117 b 74 b 

∑PAHs (16) 2255.7 1045.3* 459 373 121 966 a 152 b 74 b 

Phe/Ant 3.78 20.98* 3.82 a 3.11 a 8.25 b 0.94* 5.50 4.25 

Flr/Pyr 1.12 0.71 1.48 a 1.56 a 0.64 b 1.71 a 1.40 b 1.33 b* 

∑LMWPAHs/∑HMWPAHs (%) 30.9 169.0 21.93 42.29 68.18* 140.5* 51.9 164.3 

Ind / B[ghi]P 0.87 0.38 0.81* 1.04 0.50 0.86 1.63 - 

Ind / (Ind + B[ghi]P) 0.47 0.28 0.45 0.51 0.33 0.46 0.62 - 

Table 4. Concentrations and total sum of polycyclic aromatic hydrocarbons (PAHs, 

µg/kg dw) determined in the bulk fraction (<2 mm) of untreated sediments and 

experimental sediments from days 3 and 28. LMW PAHs: low molecular weight PAHs; 

HMW PAHs: high molecular weight PAHs. Asterisks indicate significant differences 

between laboratory and experimental conditions (z score, p<0.05); different letters 

indicate significant differences between experimental groups (z score, p<0.05). 
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In experimental SED1, Hg was at a concentration higher than ERM (and SQG-Q > 1) and 

Cu (always) and Pb (at day 28) were at concentrations between ERL and ERM values 

(Table 2). In experimental SED3, the concentrations of Cd, Cu, Hg, Ni, Pb and Zn were 

always between ERL and ERM values (Table 2). As a result, all experimental sediments 

had SQG-Q values above 0.1 for Cu, Ni, Pb and Zn; whereas SED2 (day 28) and SED3 

(days 3 and 28) had SQG-Q values above 0.1 for Cd (Table 3). Considering the total sum 

of metals, SQG-Q values were in the range of 0.144 and 0.365 in the three sediments 

(Table 3). In untreated SED3, Ni, Cu and Zn concentrations were between ERL and ERM 

values, whilst no metal was at higher levels than their corresponding ERM in any 

untreated sediment. 

Source SED3 had more total PAHs than source SED1 (Table 4; Larreta et al., 2012); 

however, after 3 d exposure conditions total PAHs diminished in both sediments (all 

levels below ERL; SQG-Qs < 0.1, Table 3); most drastically in SED3, resulting in levels 

much lower than in SED1 (Table 4). As a result, the concentrations of total HMWPAHs at 

day 3 and of individual PAHs (Ant, Pyr, Phe) and total LMWPAHs at day 28 were higher 

in SED1 than in SED3. Thus, levels of Ant and Fl detected in SED1 at day 28 were higher 

than the ERL values and SQG-Qs for Ant, Fle, Phe and ΣLMW PAHs were 0.1-0.2 (Table 

3). Finally, in untreated SED3 the concentrations of individual LMWPAHs (Ace, Flu, Nph 

and Phe) was between ERL and ERM values, and in untreated SED1 only Ace (Table 4). 

This resulted in SQG-Q values above 0.1 for the sum of LMWPAHs for untreated SED1 

and SED3 and for HMWPAHs in SED1 (Table 3).  

3.2. Biological responses and toxicopathic effects 

In total, 72 individuals were used. Length (22.5±2.1 cm), W (115.5±29.6 g), condition 

index K (1.0±0.1) and HSI (0.8±0.2) did not change throughout the experiment. Likewise, 

male GSI (GSI7d=0.02±0.02; GSI28d=0.04±0.02) and female GSI (GSI7d=0.90±0.12; 

GSI28d=0.96±0.16) did not differ between exposure groups although they tended to raise 

with time.  

  Day28  

 SED1 SED2 SED3 

Cd 2.29 2.1 1.46 

Cr 0.66a 0.14b 0.11 b 

Cu 692 781 441 

Fe 65.6 38.8 30.3 

Hg 0.05 0.04 0.03 

Mn 9.28 7.71 5.17 

Ni 0.61 0.31 0.21 

Pb 0.24 a 0.09 b 0.08 b 

Zn 62 54 40 

Table 5. Metals concentrations (µg/g dw) determined in liver samples collected from 

each experimental group at day 28. Different letters indicate significant differences 

between experimental groups (z score, p<0.05). 
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The concentration of metals in liver after 28 d exposure tended to be higher in SED1 soles 

than in those exposed to SED2 and SED3, except for Cu (Table 5). Yet, significant 

differences were found only in the cases of Cr and Pb, which were at much higher 

concentrations in SED1 soles than in the other ones (e.g.: [Cr]SED1=([Cr]SED3×6); 

[Pb]SED1=([Pb]SED3×3)).  

Hepatic CAT activity was significantly affected by the sediment type (S), time (T) and 

sediment × time (S×T) interaction (2-way ANOVA; Table 6), varying from 10.75±3.78 

µmol/min/mg prot in SED3 soles at day 7 to 31.61±11.30 µmol/min/mg prot in SED1 

soles at day 28 (Figure 2A). Thus, at day 7, CAT activity was lower in SED3 soles than 

in other exposure groups and was lower than levels detected at day 28 whilst activities 

from other exposure groups remained constant. In contrast, hepatic GST activity only 

varied with T (2-way ANOVA; Table 6), being higher at day 28 than day 7 for all 

exposure groups and tended to be higher in SED1 soles (Figure 2B). Sediment type, T 

and S×T interaction did not exert any effect on hepatic SOD activity. Conversely, the S×T 

interaction affected brain AChE activity (2-way ANOVA; Table 6), which raised in SED3 

after 28 d treatment (Figure 2C).   

  

Parameter 
Residual 

d.f. 
F(Sediment) F(Time) F(S×T) 

CAT 30 5.023* 19.922*** 6.611** 

GST 30 2.366 36.832*** 0.074 

AChE 29 2.407 0.474 3.739* 

LP 64 8.380*** 7.344** 2.234 

VvL 61 4.265* 2.024 5.449** 

S/VL 61 8.985*** 5.904 9.107*** 

NvL 61 10.312*** 7.968** 10.267*** 

VvNL 69 5.854** 7.765** 3.214* 

Epithelial 

lifting 72 11.171*** 6.696* 1.059 

Itot 72 3.413* 4.078* 0.816 

Iliver 72 4.185* 4.661* 0.432 
No significant effect of S, T or S×T was detected for SOD, gills, liver and 

gonad lesion stages (with the exception of epithelial lifting), LSliver, Igills, male 

Igon and female Igon. 

Table 6. Summary of the 2-way ANOVAs performed to analyse the effects of sediments 

(d.f.: 2), time of exposure (d.f.: 1) and their combination (“Sediment × Time”, d.f.: 2) on 

biomarkers and histopathology (lesion stages and indices) in S. senegalensis exposed to 

different sediments for 7 and 28 days. Logarithmic transformation was applied to CAT, 

GST, LP, VvL, S/VL, NvL and VvNL (non-parametric variable). d.f.: degrees of freedom; 

F: Fisher’s F; *: p<0.05; **: p<0.01; ***: p<0.001. 
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Lysosomal LP was significantly affected by S and T (2-way ANOVA; Table 6); ranging 

from 17.98±4.76 min in SED1 soles at day 7 to 5.64±0.18 min in SED3 at day 28 (Figure 

3A). At day 7, LP was lower in soles exposed to SED3 than in those exposed to SED1 

and SED2 and remained low at day 28, when the LP values dropped, as well in soles 

exposed to SED1 and SED2 (Figure 3A). Lysosomal VvL and S/VL were significantly 

affected by S and S×T; whilst NvL was affected by S, T and S×T (2-way ANOVA; Table 

6). Thus, S/VL and NvL were lower in SED2 and SED3 than SED1 at day 7 and in SED3 

than in SED1 at day 28 (Figure 3B). At day 28, in soles exposed to SED3, VvL raised and 

S/VL and NvL decreased (Figure 3B). VvNL was significantly affected by S, T and the S×T 

interaction (2-way ANOVA; Table 6); ranging from 0.032±0.021 µm3/µm3 (SED1, at day 

7) to 0.195±0.029 µm3/µm3 (SED3, at day 28; Figure 3E). VvNL did not differ between 

experimental groups at day 7 but increased in soles exposed to SED3 at day 28.  

  

 7         28 

Time (days) 

 7         28 

Time (days) 

Figure 2. Hepatic catalase (A) and 

glutathione-S-transferase (B) and brain 

acetylcholinesterase (C) enzyme activities 

measured in S. senegalensis exposed to 

different sediments for 7 and 28 days. 

Different letters indicate significant 

differences between experimental groups 

of the same sampling time; asterisks 

indicate significant differences between 

experimental times (p<0.05); CAT: 

catalase; GST: glutathione-S-transferase; 

AChE: acetylcholinesterase. 

SED1  SED2  SED3 
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 7       28 

Time (days) 

Figure 3. Lysosomal membrane stability 

(A), lysosomal structural changes (B-D) 

and intracellular neutral lipid accumulation 

(E) assessed in liver of S. senegalensis 

exposed to different sediments for 7 and 28 

days. Different letters indicate significant 

differences between experimental groups 

of a same sampling time; asterisks indicate 

significant differences between 

experimental times (p<0.05). LP: 

labilisation period; VvL: lysosomal volume 

density; S/VL: lysosomal surface to volume 

ratio; NvL: lysosomal numerical density; 

VvNL: volume density of neutral lipids. 

 

SED1  SED2  SED3 
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Figure 4. Histological sections (5 µm) of S. senegalensis exposed to different sediments 

for 7 and 28 days, stained with hematoxylin-eosin. (A) Normal gills showing well-

arranged secondary lamellae. (B) Capillary aneurysm (arrow) in gills. (C) Severe 

epithelial lifting (arrow) in gills. (D) Hyperaemia in liver (note masses of erythrocytes in 

blood vessels). (E) Severe necrosis and presence of a MMCs (arrow) in liver. (F) Fat 

vacuolation in hepatocytes (arrow). (G) Hydropic vacuolation of epithelial cells of bile 

duct (arrow). (H) Immature female gonad showing a case of atresia (arrow). c: capillary; 

cc: chloride cell; mc: mucous cell; pc: pillar cell; pl: primary lamella; sl: secondary 

lamellae. Black scale bar: 50 µm; white scale bar: 100 µm. 
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In all the experimental groups the histological structure of the gills was readily 

recognised, exhibiting well-arranged secondary lamellae along the gill filaments and an 

epithelium composed of pavement, mucous and chloride cells (Figure 4A). Yet, 

practically all the examined soles presented lamellar capillary aneurysm at mild lesion 

stage (Figure 4B; Table 7), epithelial hyperplasia at moderate lesion stage and epithelial 

lifting at high lesion stage (Figure 4C; Table 7). In the case of epithelial lifting, the lesion 

stage was significantly affected by S and T but not by their interaction S×T (2-way 

ANOVA; Table 6) with the lowest value found in SED1 soles. No tumours were detected 

in gills.  

Overall the liver presented a normal histological appearance with a conspicuous bi-layer 

of hepatocytes aligned with sinusoids, and with sparse bile ducts and blood vessels. The 

exocrine pancreatic tissue was occasionally observed in the parenchyma. Hyperaemia 

was the only circulatory disturbance identified (Figure 4D) showing the highest lesion 

stage and prevalence in SED3 soles (Table 8). Similarly, lymphocytic infiltration was 

only identified in soles exposed to SED3 for 28 d (8.3%; 0.17±0.17). In contrast, the 

lesion stage of MMCs did not vary during the exposure period, yet the lesion prevalence 

increased with time in all experimental groups (Table 8). The highest lesion stage and 

prevalence of necrosis (Figure 4E) were found in soles exposed to SED3. Fat vacuolation 

of hepatocytes was identified in all animals (Figure 4F) with a higher lesion score detected 

in soles exposed to SED3 (Table 8). Hydropic vacuolation of epithelial cells of bile ducts 

and concentric periductal fibrosis were seldom detected (Figure 4G). The highest lesion 

stage of concentric periductal fibrosis was recorded after 28 d, particularly in SED3 soles. 

No neoplastic lesions were found in liver. 

Upon microscopic examination of gonad tissue most soles were at an early stage of 

gamete development. Males presented immature testis (24.2%) or early spermatogenesis 

   Day7   Day28  

Gill lesions w SED1 SED2 SED3 SED1 SED2 SED3 

Circulatory disturbances       

Lamellar capillary 

aneurysm 

1 100.0a 91.7b 100.0a 100.0 100.0 100.0 

 (2.2±0.2) (2.0±0.0) (2.2±0.2) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Regressive changes        

Epithelial lifting 1 100.0 100.0 100.0 100.0 100.0 100.0 

 (3.0±0.4a) (4.3±0.5b) (5.0±0.4b) (4.0±0.3a) (5.5±0.3b) (5.2±0.3b) 

Progressive changes        

Lamellar fusion 1 66.7 58.3 75.0 58.3 83.3 75.0 

 (2.5±0.3) (2.3±0.3) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Epithelial hyperplasia 2 100.0 100.0 100.0 100.0 100.0 100.0 

 (3.8±0.5) (3.8±0.5) (3.2±0.5) (3.5±0.4) (3.5±0.4) (3.7±0.6) 

w: lesion importance factor. 

Table 7. Lesions prevalence (%) and means and standard errors of lesions stages (n=12; 

lesion intensity when detected) for gill histopathological lesions identified in S. 

senegalensis collected from each experimental group at days 7 and 28. Different letters 

indicate significant differences between experimental groups (p<0.05). 
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stage (75.8%); and although one case of early vitellogenesis (Stage II) was identified, 

most females (91.1%) presented primary growth oocytes (Stage I). Testis lesions were 

scarce and only few cases of necrosis (20.0%) and lymphocytic infiltration (33.3%) were 

recorded in SED1. Atresia was the most frequent alteration in ovary, being present in all 

experimental groups (>25.0%; Table 9). The highest lesion stage and prevalence for 

atresia were detected in soles exposed to SED3 (Table 9). Granulomatosis and oocyte 

necrosis and lipidosis were rarely found (3.1%). No tumours were detected in gonad 

tissue.  

   Day7   Day28   

Hepatic lesions w SED1 SED2 SED3 SED1 SED2 SED3  

Circulatory disturbances     

Hyperaemia 1 8.3a 8.3a 16.7b 8.3 16.7 33.3  

 (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0)  

Inflammatory responses      

MMCs 1 16.7a 8.3b 8.3b 33.3 50.0* 25.0  

 (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0)  

Regressive changes         

Necrosis 3 50.0 16.7 83.3 50.0 33.3 83.3   
(2.3±0.3) (2.0±0.0) (2.0±0.0) (2.3±0.3) (2.5±0.5) (2.4±0.3)  

Progressive changes         

FV of hepatocytes 1 100.0 100.0 100.0 100.0 100.0 100.0  

 (2.8±0.4) (2.8±0.5) (3.7±0.4) (3.2±0.3) (3.7±0.3) (4.0±0.3)  

HV of epithelial cells of 

bile ducts 

2 8.3a 8.3a 0.0b 8.3 8.3 8.3  

 (2.0±0.0) (4.0±0.0) (0.0) (2.0±0.0) (2.0±0.0) (4.0±0.0)  

CPF of bile ducts 2 16.7a 0.0b 0.0b 33.3a 33.3a* 25.0b  

 (2.0±0.0) (0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.7±0.7)  

w: lesion importance factor; MMCs: Melanomacrophage Centres; FV: Fat Vacuolation; HV: 

Hydropic Vacuolation; CPF: Concentric Periductal Fibrosis. 
 

   Day7   Day28   

  SED1 SED2 SED3 SED1 SED2 SED3  

Gonad lesions in females w n=5 n=3 n=6 n=8 n=4 n=6  

Inflammatory responses         

Lymphocytic infiltration 2 20.0a 0.0b 16.7a 12.5 25.0 16.7  

 (2.0±0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0)  

Regressive changes         

Atresia 3 40.0a 33.3a 83.3b 37.5 25.0 66.7  

 (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0)  

w: lesion importance factor. 

Table 8. Lesions prevalence (%) and means and standard errors of lesions stages (n=12; 

lesion intensity when detected) for liver histopathological lesions identified in S. 

senegalensis collected from each experimental group at days 7 and 28. Different letters 

indicate significant differences between experimental groups (p<0.05); asterisks indicate 

significant differences between sampling days (Pearson’s Chi test, p<0.05). 

 

Table 9. Lesions prevalence (%) and means and standard errors of lesions stages for 

female gonad histopathological lesions identified in S. senegalensis collected from each 

experimental group at days 7 and 28. Different letters indicate significant differences 

between experimental groups (p<0.05). 
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LSliver did not differ between exposure 

groups. The lowest LSliver was measured 

in SED1 after 7 d experimentation 

(1.58±0.26) and the highest in SED3 after 

28 d (2.33±0.26). S and T exerted 

significant effects on Itot and on Iliver but 

not on Igill (2-way ANOVA; Table 6). 

Thus, Itot and Iliver were higher in SED3 

than in SED1 and SED2 (Figure 5A and 

C), whilst Igill did not vary between 

experimental groups (Figure 5B).  

The IBR/n index ranged from 0.16 in 

soles exposed to SED1 for 7 d to 3.05 in 

soles exposed to SED3 for 28 d (Figure 

6). Overall, IBR/n index was higher at 

day 28 than at day 7 and higher in SED3 

than in SED 1 and SED 2 at day 28 

(Figure 6).  

  

SED1  SED2  SED3 

Figure 5. Total index (Itot), gill index 

(Igills) and liver index (Iliver) of S. 

senegalensis exposed to different 

sediments for 7 and 28 days. Different 

letters indicate significant differences 

between experimental groups of the 

same sampling time; asterisks indicate 

significant differences between 

experimental times (p<0.05). 

 

7        28 

Time (days) 
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7        28 

Time (days) 

SED1  SED2  SED3 Figure 6. Radar plots 

constructed using five 

selected biological 

parameters (GST, CAT, 

VvLYS, LP, Iliver) for each 

experimental group of 

juvenile S. senegalensis 

exposed to different 

sediments for 7 and 28 

days; and IBR/n index 

calculated on the basis of 

these radar plots. 
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4. Discussion 

Consequences of the experimental setup on sediment properties  

The sediments used in this study presented different profiles and levels of chemical 

contaminants and were characterised by different degrees of potential toxicity. For 

instance, Cd and Hg were present in the source sediments in Plentzia and Pasaia but the 

overall levels of metals were higher in Pasaia than in Plentzia (Solaun et al., 2009). Pasaia 

harbour is largely contaminated with Cd and other heavy metals resulting from the 

geological composition of the basin and mining and industrial activities (Belzunce et al., 

2004). Plentzia estuary is one of the least contaminated along the coast of Bizkaia 

(Belzunce et al., 2004); however, upstream mining and industrial activities may be a 

source for metals in sediments (Borja et al., 2002; Cortada and Collins, 2013). Likewise, 

sediments in Pasaia have more total PAHs than in Plentzia (Solaun et al., 2009; Larreta 

et al., 2012). Indeed, PAH levels in Pasaia are amongst the highest recorded in Basque 

estuaries and seem to be related with paper mill and fishing fleet activities (Legorburu 

and Cantón, 1991; Franco et al., 2001). According to different diagnostic ratios Phe/Ant 

and Flr/Pyr (Baumard et al., 1998; Soclo et al., 2000; Neff et al., 2005), Pasaia sediment 

PAHs would be of pyrolytic origin whereas Plentzia sediment PAHs would be of  

petrogenic origin. In agreement, metal levels in untreated sediments used in this study 

were higher in SED3 (from Pasaia) than in SED1 (from Plentzia), and showed a distinct 

profile depending on the source (Cd, Cu, Pb, and Zn in SED3; and Cr, Cu, Fe, Hg, Mn, 

Ni, Pb and Zn in SED1). Nevertheless, metals in untreated sediments only posed a minor 

toxic risk since Ni, Cu and Zn were between ERL and ERM values in SED3 and no metal 

was at levels beyond ERM values in any case. Likewise, the concentration of individual 

PAHs in untreated SED3 was between ERL and ERM values, like Ace in the case of  

untreated SED1. Based on the sediment quality guidelines provided by Long et al. (1995), 

the presence of pollutants in the different sediments at levels exceeding the ERL and ERM 

levels suggests potential biological effects.  

Metal contaminant profiles in experimental sediments were comparable to those 

aforementioned for untreated sediments. Overall, concentrations were moderately low 

since e.g. SQG-QΣMetals values were around 0.3 (Long et al., 1995). Yet, Hg, which was 

found to be at moderately toxic levels in untreated SED1 and SED2, was at concentrations 

that would result toxic (SQG-Q>1) in those experimental sediments. Likewise, in 

comparison with untreated sediments, the levels of total PAHs, which were low (SQG-

Qs<0.1), resulted in even lower levels in experimental sediments, more severely in SED3. 

As a result, the concentrations of total and certain individual PAHs were higher in SED1 

than in SED3, unlike for the case of source sediments in which PAH levels were higher 

in Pasaia than in Plentzia (Legorburu and Cantón, 1991; Franco et al., 2001). This 

apparent inconsistency may be explained by changes in chemical profile of sediments  

during transportation, storage and manipulation as a result of the changes in 

physicochemical properties (redox potential, OM and granulometry) and biological 

activity (bioturbation and biotransformation) (Eggleton and Thomas, 2004). Thus, 

changes in granulometry recorded in SED1 and SED3 suggested a loss of sediment during 
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the experiment, potentially related to the experimental continuous water flow and the 

presence of soles. This may imply a subsequent loss of chemicals from the sediments, in 

agreement with chemical data showing lower PAHs concentrations in experimental 

sediments compared to untreated and source sediments. Granulometry also indicated a 

quicker sediment loss in SED3 than SED1, suggesting a greater decrease in pollutant 

concentrations. In the case of organic contaminants, PAHs can also be degraded by 

induction of the activity of PAH degrading aerobic microorganisms as suggested by the 

shift from negative to positive values in redox potential recorded in SED3 (Eggleton and 

Thomas, 2004; DeLaune and Reddy, 2005). Besides, an increase in redox potential might 

be related with an enhanced mobilisation of sediment metals that are released to the water 

column (Zhang et al., 2014). Consequently, if contaminants were importantly released 

from the SED3, waterborne exposure cannot be disregarded for soles under the present 

experimental conditions, even though contaminant levels in SED3 are low. 

Biological responses and toxicopathic effects 

Biometry, condition, sex and reproductive status did not differ between exposure groups. 

Individuals were shown to be juveniles with gonad at an early stage of gamete 

development.  

In agreement with previous field studies (Vicente-Martorell et al., 2009; Oliva et al., 

2012b), metals such as Cr, Fe, Mn, Ni and Pb were accumulated in the liver under the 

present exposure conditions. Levels of sediment contaminants reported in these field 

studies were considerably higher than metal concentrations measured in the present 

experiment. However, the concentrations and the final accumulation ranking of metals 

(Cu>Fe>Zn>As>Cd>Pb) were similar (Oliva et al., 2012b). Although the levels of 

metals, other than Hg, are comparable in the experimental sediments, the concentrations 

of Cr and Pb in liver were higher in SED1 exposed soles than in those exposed to SED2 

and SED3. Moreover, although Hg levels in SED1 and SED2 were higher than in SED3, 

Hg does not seem to be differentially accumulated in liver. 

Oxidative stress 

Induction of antioxidant enzymes has been reported in a variety of fish species, including 

sole, as a signal of antioxidant defence activation in response to exposure to diverse 

contaminants (Regoli and Principato, 1995;Pedrajas et al., 1996; Pinto et al., 2003; van 

der Oost et al., 2003; Atli et al., 2006; do Carmo Langiano and Martinez, 2008; Fonseca 

et al., 2011a; dos Santos Carvalho et al., 2012; Ghribi et al., 2019).  

CAT activity in fish liver may respond in a dose dependent manner (either induction or 

inhibition) albeit the type of response may be different depending on the pollutant and on 

the duration of the exposure (Pedrajas et al., 1996; Regoli et al., 2002). Accordingly, in 

the present study hepatic CAT activity varied with S, T and S×T with values ranging 

approximately from 10 to 30 µmol/min/mg prot. Thus, with the exception of soles 

exposed to SED3 for 7 days, the values of CAT activity presently recorded resembled 

those measured in control sole juveniles maintained under laboratory conditions (Solé et 

al., 2008; Oliva et al., 2012b; Chapters 3 and 4). However, in individuals exposed to 
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SED3 for 7 days, CAT activity (10.75±3.78 µmol.min-1.mg-1prot) was reduced to levels 

comparable to those recorded on extreme exposure to waterborne Cd (Chapter 3) and BaP 

(Chapter 4) or to those recorded in wild sole juveniles from highly contaminated sites 

(Oliva et al., 2012b). Conversely, CAT activity in fish liver is known to be induced as a 

part of the antioxidant defence mechanisms elicited on exposure to pollutants (Di Giulio 

et al., 1989). Thus, the reduction observed herein may suggest that SED3 pollutants 

exceeded the antioxidant capacity of soles leading to toxic damage and enzyme activity 

inhibition, as previously reported (Roméo et al., 2000; Kalman et al., 2010). It seems that 

during the experimental setup higher levels of waterborne metals and PAHs are mobilised 

from SED3 than from SED1, as above discussed; which might explain the more marked 

effect of SED3 on CAT in comparison with SED1 on day 7. Interestingly, CAT levels in 

SED3 exposed soles return to levels comparable to those recorded in the other exposure 

groups. Since the release of pollutants from sediment to water seems to be lowered 

beyond 7 experimental days, it is conceivable that soles are less exposed to waterborne 

pollutants during this experimental period. Alternatively, some acclimatization cannot be 

disregarded, as the antioxidant enzyme responses can be either attenuated or reversed 

when exposure to pollutants is long-lasting (Regoli and Principato, 1995).  

Hepatic GST is enhanced in juvenile soles and other fishes exposed to a variety of 

pollutants both through waterborne and sediment exposure (Regoli et al., 2002; 

Salamanca et al., 2008; Ghribi et al., 2019; Chapters 3 and 4). Presently, however, unlike 

in the case of CAT, GST was equally enhanced on exposure to the three experimental 

sediments raising from values around 20-35 µmol.min-1.mg-1prot at day 7 to up to 70 

nmol.min-1.mg-1prot at day 28.  

Likewise, SOD activity may be enhanced in fish liver exposed to pollutants (Pedrajas et 

al., 1996; Regoli et al., 2002); however, hepatic SOD activity did not respond to the 

present experimental treatments, average activity being ≈115 nmol.min-1.mg-1prot. 

Overall, SOD responses to environmental stressors in fish liver have been controversial 

and previous studies have reported both enzyme induction and inhibition (Wu et al., 2006; 

dos Santos Carvalho et al., 2012; Souid et al., 2013).  

Neurotoxicity 

AChE activity is known to be inhibited by chemicals; especially but not only by pesticides 

(van der Oost et al., 2003; Davies and Vethaak, 2012). Presently, brain AChE activity did 

not show remarkable differences between experimental groups, activity values being 

similar to those recorded in control juvenile soles in other experimental setups (≈ 80 

nmol.min-1.mg-1prot; Chapters 3 and 4). Thus, neurotoxic chemicals might be absent or 

only present at non-effective concentrations in the experimental sediments; or maybe the 

exposure time was too short to elicit any change in this enzyme activity.  

Lysosomal responses 

Fish liver lysosomes are key organelles for sequestration and detoxification of chemical 

pollutants resulting in changes in lysosomal structure and membrane integrity used as 

core biomarkers in biological effects assessment (Köhler et al., 2002; Alvarado et al., 
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2005; Baršienė et al., 2006; Zorita et al., 2008; ICES, 2011; Burgeot et al., 2017; Moore 

et al., 2013; Le Croizier et al., 2019).  

Presently, lysosomal membrane stability in liver of sole juveniles exposed to SED3 was 

reduced after 7 days whereas a similar reduction was observed in SED1 and SED2 

exposed soles only at day 28. In sole exposed to SED1 for 7 days, LP was comparable to 

that recorded in healthy fish in previous studies (Köhler et al., 1992; Köhler and Pluta, 

1995; Broeg et al., 1999, 2002; Viarengo et al., 2007; Zorita et al., 2008). Likewise, the 

lowest LP values found herein resembled those reported in sole and other fish species 

exposed to pollutants (Baršienė et al., 2006; Zorita et al., 2008; Burgeot et al., 2017; 

Chapters 3 and 4). According to Köhler et al. (1992), this destabilisation of the lysosomal 

membrane recorded would reflect a non-specific toxic effect distinctly exerted by the 

different sediments; SED3 being the most toxic. Interestingly, this degree of effect 

(LP<10 min) has been suggested to be linked to further potential pathological alterations 

at tissue level (Köhler, 1990; Köhler et al., 2002; Viarengo et al., 2007).  

Early lysosomal responses to pollutants in aquatic animals include increase in size and 

reduction in numbers, which is interpreted as lysosomal enlargement (Köhler et al., 1992; 

Cajaraville et al., 1995; Marigómez et al., 2005; Alvarado et al., 2005; Dagnino et al., 

2007; Izagirre and Marigómez, 2009). Presently, VvL (≈0.002-0.004 µm3/µm3) was 

higher and S/VL (≈2-4 µm2/µm3) and NvL (≈0.0005-0.0020 1/µm3) lower in all the 

treatments than those reported for control sole juveniles in other studies (VvL: ≈0.0003 

µm3/µm3; S/VL: ≈5 µm2/µm3; NvL: ≈0.0004 1/µm3; Chapters 3 and 4). Thus, a certain 

lysosomal enlargement (low S/VL and NvL values) can be envisaged in all the 

experimental treatments. Moreover, additional lysosomal enlargement was observed in 

SED2 and SED3 at day 7 and more markedly in SED3 at day 28, when VvL values 

resulted to be extremely high. In agreement with lysosomal membrane destabilisation, 

lysosomal enlargement would also indicate that all the experimental sediments exert a 

non-specific toxic effect, which is extreme in soles exposed to SED3 for 28 days.  

Similarly, intracellular accumulation of neutral lipids was only observed in soles exposed 

to SED3 for 28 days, whilst levels recorded in the other groups were similar to values 

recorded in control soles in other experimental studies (Chapter 3). Lipid accumulation 

in fish liver has been recorded previously in response to exposure to contaminants and 

was related to the storage of liposoluble xenobiotics (PAHs and organochlorides) in the 

organ (Köhler, 1990).  

Histopathology 

The toxicological relevance of histopathological alterations can be determined upon the 

use of categorized lesions as indicators for monitoring biological effects of contaminants 

in fish (Feist et al., 2004; Lang et al., 2006). Many of these alterations were identified in 

sole juveniles in the present study. Overall, the lesion stage and prevalence of 

histopathological alterations and the related histopathological indices recorded in gills, 

liver and gonad advocate for the suitability of juvenile S. senegalensis histopathology as 

a tool for assessing the biological effects of contaminated sediments.  
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Lamellar capillary aneurysm, epithelial hyperplasia and lifting were found in practically 

all the gills of all the specimens examined, with prevalence values close to 100%. 

However, lesion stages were mild for lamellar capillary aneurysm, moderate for epithelial 

hyperplasia and high for epithelial lifting, especially in SED2 and SED3, and more 

remarkably at day 28. These lesions could be related with the above discussed different 

toxicity of the sediments. Indeed, the occurrence of these lesions in gills has been reported 

to be associated to the presence of pollutants in the sediment (Arellano et al., 1999; 

Stentiford et al., 2003; Jímenez-Tenorio et al., 2008; López-Galindo et al., 2010a, 2010b; 

Oliva et al., 2013; Chapter 1). Likewise, hyperplasia in fish gills has been correlated with 

the waterborne levels of PAHs and pesticides (Noreña-Barroso et al., 2004). Gills are 

usually the first contact and the primary and main uptake site for contaminants (Mallat, 

1985) and therefore histopathological lesions in gills are considered indicators of recent 

stress situation (Costa et al., 2009a; Kalman et al., 2010). On the other hand, exposure to 

suspended sediment and associated turbidity are known to alter the gill structure leading 

to further effects on the physiology and condition of the fish (Lowe et al., 2015; Cumming 

and Herbert, 2016; Hess et al., 2017). Therefore, although it cannot be disregarded that 

pollutants in the experimental sediments can cause these lesions, it is not unlikely that 

they might also be caused by sediment itself, especially if considering that sole juveniles 

(acquired in a farm) had not been kept on sediment before the present experiment.  

In liver, no signs of neoplasia were found and hydropic vacuolation of epithelial cells of 

bile ducts and concentric periductal fibrosis were only eventually recorded. However, 

mild lesion stages of hyperaemia, lymphocytic infiltration, MMCs and necrosis were 

found. These lesions have been previously described in sole, both after laboratory 

exposure to pollutants and in field studies (Costa et al., 2011; Oliva et al., 2013; Zorita 

and Cuevas, 2014; Chapters 1, 3 and 4). Mild occurring lesions can be found in normal 

liver and may be less important in pollution effects assessment (van Dyk et al., 2012; 

Feist et al., 2004); however it has been recommended that they should be always recorded 

(Feist et al., 2004). The prevalence of MMCs did not vary between experimental 

sediments but was higher at day 28 than at day 7 in all the cases. The highest prevalence 

of hyperaemia, lymphocytic infiltration and necrosis was recorded in soles exposed to 

SED3 for 28 days. The prevalence of hyperaemia and necrotic foci has been described to 

raise moderately in gills and liver on exposure to a variety of pollutants including e.g. Cd, 

pesticides and B(a)P (Au, 2004; Noreña-Barroso et al., 2004; Oliveira Ribeiro et al., 2005; 

van Dyk et al., 2007;  Chapters 3 and 4). Thus, the higher prevalence of these lesions may 

be related to a higher toxicity elicited by the pollutants present in or released from SED3 

than in SED1 and SED2.  

In gonad, no tumour was recorded whilst lymphocytic infiltration and necrosis in testis 

and granulomatosis, necrosis and lipidosis in oocytes were only rarely found. In contrast, 

oocyte atresia was most frequently found in soles exposed to SED3. These lesions were 

also reported in soles and other fish species subject to environmental stress (Blazer, 2002; 

Reynolds et al., 2003; Cuevas et al., 2015a; Chapters 1, 3 and 4). Oocyte atresia may 

occur during the normal reproductive cycle but enhanced atresia has been reported in 
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response to environmental stressors (Witthames et al., 1995; Chapter 1). Therefore, the 

presently recorded higher prevalence of oocyte atresia found in SED3 exposed soles 

might be attributed, like mentioned herein for other biological effects endpoints, to a 

higher toxicity of sediment in comparison with SED1. 

Histopathological indices may contribute to establish cause-effect relationships between 

pathology in sole and pollutants in sediments by integrating the biological significance 

(w: lesion importance factor) and the extension of the lesions (Costa et al., 2009a). 

Presently, the LSliver index developed for flounder (Lang et al., 2006) was applied for 

hepatic lesions and the weighted histopathological indices (Bernet et al., 1999) adapted 

for sole by Costa et al. (2009a) were used for gills and liver. The LSliver did not reveal any 

relevant difference between experimental groups; conversely, some differences were 

found in weighted histopathological indices. Thus, Iliver and Itot were higher in SED3 than 

in SED1 and SED2 and Igills was seemingly higher in all the experimental groups (Igills=6-

18) than in control soles of other experimental setups (Igills<8; Chapters 3 and 4). As a 

result and in agreement with other endpoints studied herein, Igills seems to indicate that 

exposure to the three sediments exert a certain biological effect on sole juveniles under 

the present experimental conditions. Moreover, Iliver was higher on exposure to SED3 for 

28 days (Iliver =12.00±2.23) than in other experimental groups of the present study 

(Iliver=4.5-8.5), in control groups in other experimental setups (average Iliver<11; Chapters 

3 and 4) and in reference or less polluted sites in field studies (average Iliver<10; Costa et 

al., 2009a; 2011). Therefore, Iliver values also support that SED3, and especially at day 28, 

is the most toxic of the experimental sediments. Indeed, comparable Iliver values were 

reported in fish exposed to pollutants in the lab and collected from polluted sites (Costa 

et al., 2009a; Cuevas et al., 2015b; Chapter 1). Finally, since in the present study Iliver was 

the main contributor to Itot, both indices reflected essentially the same.  

Integrative assessment 

The integration of biological responses into an IBR/n index aims to illustrate the overall 

effect of each treatment using five key biological parameters: GST and CAT activities, 

VvLYS, LP and liver histopathology. The IBR/n values confirmed that exposure to the 

three sediments caused significant biological responses and toxicopathic effects of 

diverse magnitude (IBR/nSED3>IBR/nSED2>IBR/nSED1). Thus, according to the IBR/n 

index SED3 was the experimental sediment that exerted the most marked effect on sole 

health status, which was evident already after 7 days treatment. In the cases of SED1 and 

SED2, however, the impact on sole health was seemingly delayed and observed only at 

day 28. Moreover, the differences in the shapes of the radar plots reflected the presence 

of dissimilar profiles and levels of pollutants in the different exposure groups. These, as 

above discussed, can be related to differences between the source sediments but also to 

the changes observed along the present experimental setup in the physicochemical 

properties and contaminant burdens of the sediments. Thus, whereas in SED1 the main 

contributors to IBR/n at day 28 were biochemical responses related to antioxidant defence 

(GST and CAT), all the levels of biological response and especially toxicopathic effects 

and their early signal, the lysosomal responses, contributed to IBR/n in SED3, with SED2 
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in between (GST, CAT and LP). The IBR approach combining biomarkers and 

histopathology has been previously applied for a general scoring of the health status in 

fish exposed to a variety of waterborne pollutants (Oliveira et al., 2009; Kim et al., 2010; 

Serafim et al., 2012; Valerio-García et al., 2017; Iturburu et al., 2018), with results fully 

comparable to ours. The use of this index herein contributed to an overall evaluation of 

biological responses to contaminated sediments and minimized the potential uncertainty 

due to the inherent variability of individual biomarkers (Marigómez et al., 2013; Baudou 

et al., 2019). 

Concluding remarks 

Sediments used in this present study differed in pollutant concentrations and, although 

they were present at mild concentrations, the mixture of chemicals indicated different 

degrees of potential toxicity. Additionally, sediments reacted differently in experimental 

conditions suggesting distinct release of pollutants from each sediment, depending on 

their physicochemical properties. Chemical analysis demonstrated the complexity of 

sediments as source of pollutants, characterised by an alterable toxicity. Differences in 

toxicity associated with each sediment was supported by the biological responses elicited 

in sole juveniles. Thus, enhanced hepatic GST activity showed toxicity from all 

experimental sediments whilst CAT inhibition revealed a more pronounced toxicity in 

SED3. Similarly lysosomal responses (lysosomal enlargement, membrane destabilisation 

and changes in lysosomal content) indicated a non-specific toxic effect from all the 

sediments, more severe in the case of SED3 exposure. Accordingly, gill alterations were 

equally detected in all experimental groups whilst liver histopathology permitted to 

highlight a higher toxicity exerted by SED3. 

In conclusion, the integration of biological responses assessed at different levels of 

biological complexity and based on diverse biological endpoints in sole allowed to 

highlight and differentiate toxicity profiles of contaminated sediments. Toxicopathic 

effects were related with the contamination reported for source sediments indicating 

higher toxicity from SED3 than SED1 and SED2, unlike suggested by chemical levels 

detected in experimental sediments after the exposure period. Thus, although levels of 

sediment contaminants changed under experimental conditions, the overall biological 

responses were representative of the source sediment toxicity; seemingly linked to the 

release of contaminants to the water column during experimentation. The present study 

confirms the suitability of whole-sediment toxicity assays to elucidate the association 

between the presence of contaminants in sediments and the emergence of toxicopathic 

effects in sole juveniles based on chemical analysis, biomarkers and histopathological 

approaches. 
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Abstract 

Estuarine areas experiencing anthropogenic pressure may receive a wide variety of 

contaminants present as a mixture. The bioavailability of each chemical varies according 

to the nature of the element, environmental conditions (pH, salinity, temperature) and 

sediment characteristics (granulometry, redox potential), making the assessment of 

chemical toxicity complicated. In laboratory conditions, the use of single contaminant for 

toxicity assays allows for the clarification of biological responses to environmental 

stressors. In the present investigation, S. senegalensis juveniles were exposed to different 

concentrations of waterborne Cd. Sole juveniles (n=13 per group) were retrieved after 3 

and 7 d exposure. Brain, liver, gills and gonads were dissected out and processed to 

determine biomarkers of neurotoxicity and oxidative stress, lysosomal biomarkers and 

histopathology. Additional liver and muscle samples were collected for chemical analysis 

at day 7. Biological responses were consistent with waterborne Cd concentration and 

exposure time. Brain acetyl cholinesterase was inhibited, and liver catalase and 

glutathione-S-transferase were first induced and then inhibited in a dose dependent 

manner. A dose dependent lysosomal membrane destabilisation was more pronounced at 

day 7. Histopathological lesions in gills, liver and gonad were more frequent at day 7 in 

soles exposed to high Cd concentrations. In agreement, the Integrative Biological 

Response index (IBR/n) indicated a dose-dependent decline in health condition upon 

exposure to waterborne Cd (IBR/nHigh Cd>IBR/nMid Cd>IBR/nLow Cd>IBR/nControl). The 

present investigation evidenced toxicopathic effects of waterborne Cd in sole juveniles 

and supports the use of biomarkers and histopathology approaches as early-warning 

indicators of altered health status in sole. 
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Résumé 

Les zones estuaires sous forte pression anthropique sont susceptibles de recevoir une 

grande variété de polluants sous forme de mélange. La biodisponibilité de chaque 

contaminant varie en fonction de la nature de l'élément, de facteurs environnementaux 

(pH, salinité, température) et des charactéristiques du sédiment (granulométrie, potentiel 

redox), ce qui complique l'évaluation de la toxicité chimique. En laboratoire, l’utilisation 

de contaminants isolés pour des tests de toxicité permet de clarifier les effets biologiques 

de la contamination environmentale. Dans cette expérience, des soles juvéniles ont été 

exposées à différentes concentrations de Cd. Des échantillons de cerveau, foie, branchies 

et gonades ont été prélevés dans chaque groupe expériemental (n=13) après 3 et 7 jours 

d’exposition au métal afin d’y analyser des biomarqueurs de neurotoxicité, de stress 

oxidatif et de lysosomes, ainsi que l’histopathologie des branchies, du foie et des gonades. 

Des échantillons de foie et de muscle ont également été prélevés pour des analyses 

chimiques. Globalement, les réponses biologiques étaient cohérentes avec les niveaux de 

contaminant détectés dans l’eau et la durée d’exposition. L'inhibition enzymatique de 

l’acétylcholinestérase, enzyme du cerveau, a révélé des effets neurotoxiques évidents du 

Cd. La catalase et la glutathion-S-transférase du foie étaient induites après 3 jours 

d’exposition au Cd mais inhibées après 7 jours, en particulier dans le cas de fortes 

concentrations. De même, la déstabilisation de la membrane lysosomale était 

proportionnelle à la concentration en contaminant, notamment après 7 jours. Les lésions 

histopathologiques identifiées dans les branchies, le foie et les gonades étaient plus 

fréquentes après 7 jours d’exposition au Cd, en particulier à plus fortes concentrations. 

L’intégration des réponses biologiques sous forme de l’index « Integrative Biological 

Response index » (IBR/n) a permis de détecter une diminution de l’état de santé des soles 

en relation avec les concentrations de Cd appliquées (IBR/nHigh Cd>IBR/nMid Cd>IBR/nLow 

Cd>IBR/nControl). La recherche suivante met en évidence les effets toxicopathologiques du 

Cd chez la sole juvénile et soutient l’utilisation de biomarqueurs et de l’histopathologie 

comme indicateurs rapides d’altérations d’état de santé de la sole face au stress 

environnemental.  
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Laburpena 

Presio antropogenikoa jasaten duten estuarioek kutsatzaile desberdinak jaso ditzakete 

nahaste moduan. Elementu kimiko bakoitzaren bioeskuragarritasuna, elementuaren 

izaeraren, ingurumen baldintzen (pH-a, gazitasuna, tenperatura) eta sedimentuaren 

ezaugarrien (granulometria, erredox potentziala) arabera aldatzen da, toxizitate 

kimikoaren ebaluazioa zailduz. Laborategi baldintzetan, toxizitate esperimentuetan 

banakako kutsatzaileen aurkako erantzun biologikoak argitzea ahalbidetzen du. Ikerketa 

honetan, S. senegalensis gazteak uretan Cd kontzentrazio desberdinetara esposatuak izan 

ziren. Mihi-arrain gazteak (n=13 taldeko) 3 eta 7 esposizio egunen ostean jasoak izan 

ziren. Garun, gibel, zakatz eta gonadak disekzionatuak eta prozesatuak izan ziren 

neurotoxizitate eta estres oxidatiboko biomarkatzaileak, biomarkatzaile lisosomikoak eta 

histopatologia determinatzeko. Gibel eta muskulu lagin gehigarriak jaso ziren analisi 

kimikoetarako 7. egunean. Erantzun biologikoak uretako Cd kontzentrazio eta esposizio 

denborarekiko koherenteak izan ziren. Garuneko azetilkolinisterasa inhibitu zen, eta 

gibelean katalasa eta glutationa-S-transferasa lehenik induzitu ziren eta ondoren inhibitu 

ziren Cd dosiaren menpe. Dosiaren araberako mintz lisosomikoaren desestabilizazioa 

esanguratsua ikusi zen 7. egunean. Lesio histopatologikoak zakatz, gibel eta gonadetan 

sarriagoak izan ziren 7. egunean Cd kontzentrazio altuetara esposatutako mihi-arrainetan. 

Honekin guztiarekin bat egin zuen “Integrative Biological Response Index (IBR/n)” 

indizeak, uretako Cd esposizioaren araberako osasun egoeraren beherakada adieraziz 

(IBR/nAltua Cd>IBR/nErtaina Cd>IBR/nBaxua Cd>IBR/nKontrola). Ikerketa honek, uretako Cd 

esposizioak mihi-arrain jubeniletan efektu toxikopatikoak dituela frogatu du eta baita 

biomarkatzaile zein histopatologiaren hurbilketak arrainen osasun egoeraren aldaketak 

antzemateko adierazle goiztiarrak direla babestu ere.   
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1. Introduction 

Estuarine ecosystems under anthropogenic pressure are exposed to a wide variety of 

contaminants present as a mixture. Chemicals can be found dissolved in water or 

accumulated in the sediment where they can stay trapped for extended periods (Pan and 

Wang, 2012). Nevertheless, sediment contaminants can also be released back to the 

overlying water and become potentially toxic for the resident benthos (Eggleton and 

Thomas, 2004). Thus, the association between the environmental levels of chemicals and 

alterations in the general health status recorded in the biota is intricate, and laboratory 

assays using model contaminants under controlled conditions are essential to establish 

this association.  

Amongst benthic species, sole juveniles and adults are used in the field as sentinels for 

the environmental risk assessment of estuarine ecosystems (Claireaux et al., 2004; Oliva 

et al., 2010, 2012a, 2012b, 2013, 2014; Gonçalves et al., 2013, 2014; Solé et al., 2013, 

2016; Cuevas et al., 2015a, 2015b; Siscar et al., 2015; Chapter 1). Likewise, changes in 

general health status elicited by pollutants have been investigated in sole under  laboratory 

conditions both in sediment (Riba et al., 2004; Costa and Costa, 2008, Costa et al., 2009a, 

2009b; Ribecco et al., 2012; Ghribi et al., 2019; Chapter 2) and waterborne exposure 

experiments (Claireaux and Davoodi, 2002; Claireaux et al., 2004; Salamanca et al., 

2008; Kalman et al., 2010; López-Galindo et al., 2010a, 2010b; Costa et al., 2013; 

Sànchez-Nogué et al., 2013; Martins et al., 2015).  

Heavy metals are contaminants of major concern; they have attracted great interest in 

toxicological studies due to their abundance, their persistence and their toxicity (Pan and 

Wang, 2012; Islam et al., 2015). Amongst them, Cd is known to be highly toxic leading 

to genotoxic effects as well as to severe metabolic, cellular and tissue-level damage 

(Hallare et al., 2005; Costa and Costa, 2008; Levit, 2010). Thus, it has been used in 

laboratory experiments as model contaminant to understand bioaccumulation and toxicity 

of metals (Pan and Wang, 2012; Pereira et al., 2016). Biological responses to Cd exposure 

include biochemical, cellular and tissue-level biomarkers (UNEP/RAMOGE, 1999; 

Davies and Vethaak, 2012; OSPAR Commission, 2013). 

Acetylcholinesterase (AChE) is an enzyme involved in the degradation of 

neurotransmitters (Méndez-Armenta and Ríos, 2007; Pretto et al., 2010). Changes in this 

enzyme activity in the brain are used in sole and other fish species as biomarkers of 

exposure to neurotoxic pollutants (Grue et al., 1997; Heath et al., 1997; Minier et al., 

2000; López-Galindo et al., 2010a, 2010b; Davies and Vethaak, 2012; Oliva et al., 2012a; 

Solé et al., 2012; Jebali et al., 2013; Siscar et al., 2013; Burgeot et al., 2017). Amongst 

them, Cd and other metals (Cu, Hg, and Zn) are known to inhibit brain AChE activity 

(Frasco et al., 2005; Davies and Vethaak, 2012). Metals can also produce oxidative stress 

(Méndez-Armenta and Ríos, 2007; Regoli et al., 2011; Alijani et al., 2017), which is 

reflected by enhanced production of reactive oxygen species (ROS), disturbance of 

antioxidant defences and alterations in xenobiotic metabolism (Di Giulio et al., 1989; Sies 

et al., 1991; Livingstone, 2001; Roméo et al., 2013; Regoli and Giuliani, 2014). In sole 
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and other fish species, changes in superoxide dismutase (SOD) and catalase (CAT) 

activities in the liver were related to the presence of Cd, both in metal contaminated sites 

and upon exposure in the laboratory (Atli et al., 2006; Oliva et al., 2012b; Souid et al., 

2013). On the other hand, the activity of hepatic glutathione-S-transferase (GST) is 

enhanced in sole exposed to metals and other pollutants in mixtures (Fonseca et al., 

2011a; 2011b; Ghribi et al., 2019).  

Lysosomal alterations are effect biomarkers used in fish as non-specific responses to a 

variety of environmental stressors (Köhler, 1991; Heath, 1995; Hinton et al., 2001; Köhler 

et al., 2002; JAMP, 2003; van der Oost et al., 2003; Au, 2004; Baršienė et al., 2006; ICES, 

2006; Zorita et al., 2008; Davies and Vethaak, 2012; Burgeot et al., 2017). The lysosomal 

membrane integrity is a core biomarker in biological effects assessment (Law et al., 2010; 

Davies and Vethaak, 2012).  Typically, lysosomal enlargement, membrane destabilisation 

and changes in lysosomal content were recorded in fish collected from polluted sites 

(Broeg et al., 2002, 2005; Köhler et al., 2002; Einsporn et al., 2005; Baršienė et al., 2006; 

Zorita et al., 2008; Burgeot et al., 2017). Lysosomal changes have been reported upon Cd 

exposure in laboratory studies for molluscs (Viarengo et al., 1987; Marigómez et al., 

1989, 2005; Lekube et al., 2000; Izagirre et al., 2014) and fish species, including sole 

(Alvarado et al., 2005; Le Croizier et al., 2019).  

Gill and liver histopathology are considered powerful indicators of medium and long-

term effects of exposure to pollutants in flatfish, including sole (Myers et al., 1994; Bernet 

et al., 1999; Stentiford et al., 2003; Feist et al., 2004; Salamanca et al., 2008; Costa et al., 

2009a; Gonçalves et al., 2013). Gonad histo(patho)logy is also essential to survey the 

reproduction status of a population and to assess potential tissue-level lesions, both 

indicative of the liability of the future generations (Blazer, 2002; Solé et al., 2016). Multi-

organ histopathological approaches have been applied in sole in field and laboratory 

studies (Jímenez-Tenorio et al., 2008; Costa et al., 2009b; Oliva et al., 2013; Cuevas et 

al., 2015a, 2015b; Chapter 1). Cadmium toxicity has been reported based on fish 

histopathology (Rani and Ramamurthi, 1989; van Dyk et al., 2007; Kumar and Singh, 

2010) and in particular in sole (Costa et al., 2010, 2013). 

A previous experiment demonstrated that sediment toxicity in sole was related to the 

transfer of contaminants from the sediment to the water column, in particular for metals 

(Chapter 2). Thus, the present investigation aimed at identifying toxicopathic effects of 

waterborne metal contamination in juvenile Solea senegalensis upon laboratory exposure, 

using Cd as a model of metal toxicity. Biomarkers of oxidative stress and neurotoxicity, 

lysosomal biomarkers and histopathology were determined after 3 and 7 d exposure. All 

these biomarkers can be synthetized into the Integrative Biological Response (IBR) index 

(Beliaeff and Burgeot, 2002; Broeg et al., 2005; Marigómez et al., 2013).  
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2. Material and Methods  

2.1 Experimental setup 

Solea senegalensis juveniles (24.5±1.8 cm standard length; 165.0±37.1 g total wet-wt) 

were exposed to different concentrations of Cd (Control; Low Cd: 1 µg/l; Mid Cd: 10 

µg/l and High Cd: 1000 µg/l) for 7 d at optimal stocking density (4-6 kg/m; Schram et 

al., 2006). Each experimental group was placed in a closed-system and water changes 

were performed every two days to ensure optimal water conditions: pH=8, salinity=31-

33 PSU, temperature=13-14 ºC, dissolved O2=6-8 mg/l and total ammonia=0 mg/l. 

Photoperiod throughout the experiment was set at 12:12 h light:dark. Fish were daily fed 

with commercial food (0.3g per fish; BioMar Iberia S.A., Dueñas, Spain). 

2.2 Chemical analysis of water samples 

Water samples were collected from each experimental group 3, 24 and 48 hours after 

contaminant load. Analyses of Cd content in water (1:10, v/v) were performed by 

inductively coupled plasma with mass detector (7700x, Agilent Technologies, Palo Alto, 

USA) using a MicroMist micro-uptake glass concentric nebulizer (Glass Expansion, West 

Melbourne, Victoria, Australia). In order to reduce MO+ formation in the plasma, the 

spray chamber was Peltier cooled at 2ºC. Finally, standard nickel cones (sample and 

skimmer) were generally used. The acquisition masses and integration times provided 

more than sufficient sensitivity to meet all certified values. The optimization of the ICP-

MS conditions was achieved by adjusting the torch position and tuning for reduced oxide 

and doubly charged ion formation with a standard tuning solution containing 1.0 g/l of 

7Li, 24Mg, 59Co, 89Y, 140Ce and 205Tl in 1.0% HNO3. This equipment includes a 

collision cell (He gas, ORS3 system, Agilent Technologies ©) for discriminate spectral 

interferences with high performance for all the trace metals considered in here. In 

addition, EPA 6020 recommendations were followed for interference overcoming such 

as correction equations for cadmium. 

2.3 Fish biometry 

Individual wet-wt (W in g) and length (L in cm) and liver and gonad wet-wt (LW and 

GW in g, respectively) were recorded to calculate (a) K=W×100/L3; (b) HSI= 

LW×100/W; and (c) GSI=GW×100/W; where K is the condition factor, HSI is the 

hepatosomatic index, and GSI is the gonadosomatic index. Analysis of Cd levels in liver 

and muscle 

Liver and muscle samples were collected at day 7 for chemical analysis. Liver and muscle 

tissue from 6 individuals per treatment were pooled to obtain a minimum of 1 g dw. After 

lyophilisation, tissue samples were digested in acid (HNO3) at 180ºC for 15min, using a 

microwave system (MARS 5 Xpress CEM Corporation Instrument). Cadmium content 

was determined by inductively coupled plasma with mass detector (7700x, Agilent 
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Technologies, Palo Alto, USA) using a MicroMist micro-uptake glass concentric 

nebulizer (Glass Expansion, West Melbourne, Victoria, Australia). 

2.4 Biochemical analysis 

At days 3 and 7 of exposure, liver and brain samples were dissected out, rapidly frozen 

and maintained at -80ºC until use. Samples were processed for biochemical analysis; they 

were homogenised (1:4 for liver and 1:5 for brain) in 0.1 M potassium phosphate buffer 

(pH 7.4) and centrifuged for 30 min at 12000 g at 4ºC to obtain the post-mitochondrial 

supernatant (PMS). Catalase (CAT), superoxide dismutase (SOD) and glutathione-S-

transferase (GST) enzyme activities were determined in liver PMS and 

acetylcholinesterase (AChE) activity in brain PMS using a BioTek Eon microplate 

spectrophotometer. Enzyme activities were expressed as a function of the protein 

concentration in the samples. Total protein content in the homogenates was measured in 

triplicate at 595 nm following Bradford's method adapted to microplate and using bovine 

serum albumin as standard (Bradford, 1976; Guilhermino et al., 1996). All enzyme assays 

were performed at 25ºC. 

Catalase (CAT). CAT activity was determined by the method of Claiborne (1985) by 

measuring the rate of enzyme decomposition of hydrogen peroxide (H2O2) determined as 

absorbance decrease at 240 nm. The reaction medium (final volume of 10 ml) contained 

9977 µl of 50 mM phosphate buffer (pH 7.0) and 23 μl of hydrogen peroxide (H2O2; 30% 

v/v). The reaction was started by the addition of 5 µl of samples to 295 µl of reaction 

medium. Absorbance decrement was measured for 3 min at 240 nm. Results were 

expressed as μmol H2O2/min/mg protein. 

Superoxide dismutase (SOD). SOD activity was determined by a colorimetric method 

using a SIGMA kit (SOD Determination kit; ref: SIGMA 19160) to measure the 

superoxide anion reduction as proportional to the SOD inhibition activity. Each well 

contained 200 μl of WST (water soluble tetrazolium salt) working solution, 20 μl of 

enzyme working solution and 20 μl of sample and were left incubating at 37ºC for 20 

min. Three different blanks were prepared for the assay: Blank 1 (200 μl of WST working 

solution, 20 μl of enzyme working solution and 20 μl of ultrapure water); Blank 2 (200 

μl of WST working solution, 20 μl of dilution buffer and 20 μl of sample); and Blank3 

(200 μl of WST working solution, 20 μl of dilution buffer and 20 μl of ultrapure water). 

Absorbance was measured at 450 nm and SOD activity (inhibition rate %) was calculated 

as follow: 

SOD activity (inhibition rate %)  =
(𝐴1−𝐴3)−(𝐴𝑆−𝐴2)

(𝐴1−𝐴3)
× 100; 

where A1 is the absorbance of Blank 1, A2 is the absorbance of Blank 2, A3 is the 

absorbance of Blank 3 and AS is the absorbance of the samples. 

Glutathione-S-transferase (GST). GST activity was determined by the Habig's method 

(Habig et al., 1974) adapted to microplate and using bovine serum albumin as standard 
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(Guilhermino et al., 1996). Enzyme activity was measured following the formation of 

thioether by conjugation of reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene 

(CDNB). The reaction medium contained 9.9 ml of 100 mM potassium phosphate buffer 

(pH 7.4), 1.8 ml of 10 mM GSH solution and 300 μl of 60 mM CDNB solution. Each 

well contained 100 μl of samples and 200 μl of reaction medium. Enzyme activity was 

measured at 340 nm for 6 min and expressed as nmol/min/mg protein. 

Acetylcholinesterase (AChE). AChE activity was determined according to the Ellman 's 

colorimetric method of (Ellman et al., 1961) adapted to microplate (Guilhermino et al., 

1996) by measuring the formation of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) at 412 

nm. The reaction medium contained 200 µl of 75 mM acetylcholine solution, 1 ml of 10 

mM DTNB and 30 ml of 100 mM potassium phosphate buffer (pH 7.4). Each well 

contained 50 µl of samples and 250 µl of reaction medium. After 10 min of incubation, 

enzyme activity was recorded over 10 min. AChE activity was expressed as specific 

activity (nmol DTNB/min/mg protein). 

2.5 Lysosomal biomarkers 

At days 3 and 7 of exposure, liver samples were dissected out, rapidly frozen and 

maintained at -80ºC until use. Frozen samples were processed using Tissue Array (TA) 

technology (Array Mold® Kit; n°20015-A) and TA blocks were cut at -27ºC using a Leica 

CM 3050S cryotome. 

 Lysosomal membrane stability (LMS). The determination of lysosomal membrane 

stability was based on the time of acid labilisation treatment required to produce the 

maximum staining intensity according to UNEP/RAMOGE (1999), after demonstration 

of acid phosphatase (AcP) activity in hepatocyte lysosomes. Ten serial cryotome sections 

(10 µm) were subject to acid labilisation in intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 

and 50 min in 0.1 M citrate buffer (pH 4.5, containing 2.5% NaCl) in a shaking water 

bath at 37ºC. The demonstration of AcP activity was performed by incubation of the 

sections in a substrate incubation medium (naphthol AS-BI-phosphate, 

dimethylsulfoxide, 0.1 M citrate buffer at pH 4.5, containing 2.5% NaCl and low viscosity 

polypeptide, Polypep®) for 20 min at 37ºC, in a shaking bath. Rinsed sections (3% NaCl 

at 37ºC for 5 min) were stained at room temperature with diazonium dye Fast Violet B 

salt (1 mg/ml in 0.1 M phosphate buffer, pH 7.4) for 9 min. Slides were fixed in Baker's 

formol calcium containing 2.5% NaCl for 10 min at 4ºC, rinsed in distilled water and 

mounted in Kaiser´s glycerine gelatine. 

The time of acid labilisation treatment required to produce the maximum staining 

intensity was assessed under a light microscope as the maximal accumulation of reaction 

product associated with lysosomes (UNEP/RAMOGE, 1999) and was denoted as the 

Labilisation Period (LP; in min). Four determinations were made per individual; for each 

area, the first maximum staining peak was considered to determine the LP value (ICES, 

2015). A final LP value was calculated for each individual fish as the mean of the four 

LP values determined in each area. 
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Lysosomal Structural Changes (LSC). The determination of changes in the size and 

numbers of lysosomes was made according to the method described by Cajaraville et al. 

(1989) for mussels, further on adapted to fish liver by Alvarado et al. (2005), after 

histochemical demonstration of β-glucuronidase activity in fish hepatocytes. Cryotome 

sections (8 µm) were incubated in freshly prepared β-glucuronidase substrate incubation 

medium (naphthol AS-BI-β-glucuronidep, 50 mM sodium bicarbonate, 0.1 M acetate 

buffer at pH 4.5, containing 2.5% NaCl and polyvinyl alcohol at 15%) for 20 min at 37ºC. 

Slides were rinsed (2.5% NaCl at 37ºC for 2 min) and transferred to a postcoupling 

medium (Fast Garnet, 0.1 M phosphate buffer at pH 7.4 containing 2.5% NaCl) for 10 

min at room temperature, in the dark. Sections were fixed in Baker’s formol calcium 

solution containing 2.5% NaCl for 10 min at 4 ºC, rinsed in distilled water and mounted 

Kaiser’s glycerol gelatine. 

The structure of lysosomes was assessed through a stereological procedure based on 

image analysis (BMS, Sevisan) according to Cajaraville et al. (1991). Five measurements 

using a 100× objective lens were made per individual. The mean value of the following 

stereological parameters was determined for the lysosomes of each liver sample (Lowe et 

al., 1981): volume density (VvL=VL/VC), surface density (SvL=SL/VC), surface-to-volume 

ratio (S/VL=SL/VL) and numerical density (NvL=NL/VC); where V=volume, S=surface, 

N=number, L=lysosomes and C=liver cytoplasm. 

Intracellular accumulation of neutral lipids. Changes in levels of neutral lipids were 

determined according to Marigómez and Baybay-Villacorta (2003), after Oil Red O 

(ORO) staining to visualise neutral lipids (Culling, 1974). Cryotome sections (8 μm) were 

fixed in Baker's formol calcium containing 2.5% NaCl for 15 min at 4ºC. Air dried 

sections were washed in isopropanol (60%) and stained with ORO for 20 min. The 

staining solution (stable for 1-2 h) was freshly made from a saturated stock ORO solution 

(0.3% in isopropanol) and kept protected from the light. Stained sections were 

differentiated in 60% isopropanol, rinsed in water, counterstained with 1% Fast Green 

FCF for 20 min and mounted in Kaiser's glycerine. 

Five measurements using a 40× objective lens were made per individual. The mean value 

of the volume density (VvNL=VNL/VC) of neutral lipids was determined; where 

V=volume, NL=neutral lipids and C=liver cytoplasm. 

2.6 Histological processing and histopathological examination 

At days 7 and 28 of exposure, gill, liver and gonad samples were dissected out (n=12 per 

experimental group). Gills were fixed in Bouin's solution for 24 h at 4ºC and rinsed in 

formic acid (8% v/v) for 24 h at room temperature. Liver and gonad samples were fixed 

in 4% neutral buffered formol for 24 h at 4ºC. Fixed samples were dehydrated in a graded 

series of ethanol, cleared and embedded in paraffin (Leica ASP 300S). A minimum of 

two sections (5 µm) per sample were obtained using a rotary microtome (Leica RM 

2125RTS) and were stained with hematoxylin-eosin (H&E; Martoja and Martoja-Pierson, 

1970).  
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Histopathological examination. The examination of histological samples was made under 

a light microscope (Nikon Eclipse E200) starting with a 4× objective lens for a general 

description of the organs. Higher power objective lenses (10×, 20×, 40× and 100×) were 

used for the identification of histopathological lesions. 

Hepatic samples were analysed for histopathology based on the recommendations 

provided by ICES (1997) and the Biological Effects Quality Assurance in Monitoring 

Programmes (BEQUALM, 2001). The publications by Costa et al. (2009b) on liver and 

gill histopathology of wild sole juveniles, Zorita and Cuevas (2014) on hepatic lesions 

commonly recorded in sole and Blazer (2002) on gonad histopathological lesions were 

used as guidelines to identify lesions in the particular case of sole. Amongst lesions 

identified, only persistent cases were considered for the calculation of histopathological 

indices and point alterations were discounted. 

Histopathological indices. The semi-quantitative histopathological approach in liver was 

performed following two different methods. 

The first approach was based on the scoring system proposed by Lang et al. (2006) for 

hepatic histopathology. For this purpose, hepatic lesions were classified into five 

categories as presented by Feist et al. (2004): (1) non-specific lesions; (2) early non-

neoplastic toxicopathic lesions; (3) foci of cellular alteration (FCA); (4) benign 

neoplasms; and (5) malignant neoplasms. The stage (S) of each lesions recorded was 

determined as mild, medium and severe, depending on the size of the tissue area affected 

in the sections and the degree of cellular change observed. Lang’s scoring system 

consisting of 15 lesion scores was used for the assessment of spatial and temporal 

variation in the lesions recorded. Lesions’ scores were determined based on the lesion 

category and the lesion stage (S). If more than one lesion category was recorded in one 

specimen, the highest lesion score was used for assessment purposes. From the individual 

scores, mean histopathology liver lesion scores (LSliver) were calculated for each sampling 

station and time. 

The second semi-quantitative approach was based on the weighted histopathological 

index developed by Bernet et al. (1999). Accordingly, hepatic lesions were classified into 

five categories based on their reaction pattern: (1) circulatory disturbances; (2) 

inflammatory responses; (3) regressive changes; (4) progressive changes; and (5) tumours 

(neoplams). Each alteration was assigned an importance factor (w) as: (1) minimal 

pathological importance (the lesion is reversible after the cessation of pollutant exposure); 

(2) moderate pathological importance (the lesion is reversible in most cases if the 

exposure ends); (3) marked pathological importance (the lesion is generally irreversible 

and may lead to partial or total loss of organ function). The stage (a) of each lesion 

identified was ranked in 4 categories (0, 2, 4 and 6) according to the level of dissemination 

of the alteration in the organ; where 0 is absence and 6 is high degree of dissemination 

depending on the size of the tissue area affected in the sections and the degree of cellular 

change observed. Different histopathological indices were calculated using the lesion 

importance factor (w) and the lesion stage (a): 
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- the organ index Iorg. was calculated for each individual and for each organ as 

follow: 

Iorg = Σrp Σalt (worg rp alt × aorg rp alt) 

- the reaction index of an organ Iorg rp was calculated for each individual, each organ 

and each lesion category: 

Iorg rp = Σalt (worg rp alt × aorg rp alt) 

Gills and gonads lesions were also classified according to Bernet et al. (1999). Only Iliver 

and Igills were used to calculate the total histopathological indices integrating the 

histopathological results from different organs: 

- the total index Itot was calculated for each individual, for all organs: 

Itot = Σorg Σrp Σalt (worg rp alt × aorg rp alt) 

- the total reaction index Irp was calculated for each individual and each lesion 

category, for all organs: 

Irp = Σorg Σalt (worg rp alt × aorg rp alt) 

Histopathological indices. The prevalence of each histopathological alteration was 

determined as the percentage occurrence of an alteration within each experimental group 

for gills and liver and within each combination of experimental group and gender for 

gonads.  

Characterisation of the reproductive cycle. Gonad histological sections were analysed at 

a light microscope for gender and gamete developmental stages determination. Male 

gamete developmental stages were determined according to García-López et al. (2006) 

and were classified in five stages as follow: Stage I (early spermatogenesis); Stage II (mid 

spermatogenesis); Stage III (late spermatogenesis); Stage IV (mature); Stage V 

(recovery). The identification of gamete developmental stages for females was mainly 

based on Murua and Motos (2006). Stages were classified as followed: Stage I (growth); 

Stage II (early vitellogenesis); Stage III (late vitellogenesis); Stage IV (maturation). 

2.7 Integrative Biological Response (IBR/n) index 

 

The IBR index (Beliaeff and Burgeot, 2002) was calculated based on the integration of 

biochemical (AChE, GST), histochemical (LP) biomarkers and hepatic histopathology 

(Igills, Iliver) following the calculation method described by Marigómez et al. (2013). The 

calculation method is based on relative differences between the biomarkers in each given 

data set. Thus, the IBR index is computed by summing-up triangular starplot areas 

(multivariate graphic method) for each two neighbouring biomarkers in a given data set, 

according to the following procedure (Beliaeff and Burgeot, 2002; Devin et al., 2014): 

(1) calculation of the mean and standard deviation for each sample; (2) standardization of 

data for each sample: xi´=(xi-x)/s; where, xi´=standardized value of the biomarker; 

xi=mean value of a biomarker from each sample; x=general mean value of xi calculated 

from all compared samples (data set); s=standard deviation of xi calculated from all 

samples; (3) addition of the standardized value obtained for each sample to the absolute 
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standardized value of the minimum value in the data set: yi=xi´ + |xmin´|; (4) calculation 

of the Star Plot triangular areas as Ai=(yi × yi+1 × sinα)/2, where yi and yi+1 are the 

standardized values of each biomarker and its next biomarker in the star plot, respectively, 

and α is the angle (in radians) formed by each two consecutive axis where the biomarkers 

are represented in the Start Plot (α=2π/n; where n is the number of biomarkers); and (5) 

calculation of the IBR index which is the summing-up of all the Star Plot triangular areas 

(IBR=ΣAi).Since the IBR value is directly dependent on the number of biomarkers in the 

data set, the obtained IBR value must be divided by the number of biomarkers used 

(IBR/n; Broeg and Lehtonen, 2006). 

In the present work, five biomarkers were integrated for the calculation of the index as 

IBR/n. Parameters were selected to represent effects of waterborne Cd at different 

biological organisation levels where biochemical and histochemical parameters 

demonstrate sub-cellular effects of contaminants and gill and liver histopathology 

indicate subsequent tissue-level effects. 

2.8 Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics Base 22.0. Homogeneity 

of variance (Levene´s test) and normality of data (Shapiro’s test) were tested before 

statistical analysis. Two-way ANOVAs were performed to analyse the effects of the 

wateborne concentration of Cd ([Cd]water), exposure time (T) and their combination 

(Cd×T) on biomarkers and histopathology. Logarithmic transformation was applied to 

non-parametric variables (CAT, NvL and VvNL). For normal data, differences between 

experimental groups and throughout exposure time were tested using the parametric one-

way Anova test and the T Student test, respectively. For non-normal data set, the non-

parametric Kruskal-Wallis test and Mann-Whithney U test were used to analyse 

differences in biological data between experimental groups and throughout exposure 

time. The z-score test and the Pearson’s Chi test were used to determine significant 

differences in histopathological lesions prevalence between experimental groups and 

throughout exposure time. Significant differences in chemical data were tested with the 

z-score test. The parametric Pearson’s correlation test was used to assess associations 

between concentrations of Cd in water and in liver samples. Level of significance for all 

analyses was p =0.05. 

3. Results 

3.1.  Contaminant levels in water and biological samples 

The concentrations of Cd measured in water are in agreement with the gradient of 

contaminant originally applied to each exposure group, with the highest concentration 

measured in the High Cd group at each sampling time (3, 24 and 48 hr; Table 1). Likewise, 

Cd content measured in liver after 7 d exposure was higher in High Cd exposed soles than 

the other experimental groups (Table 1). Levels of Cd in liver were significantly and 

positively correlated with Cd concentrations recorded in water (R=0.999, n=4, p<0.05). 

No Cd was detected in muscle samples (Table 1).  
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3.2. Biological responses and toxicopathic effects 

In total, 104 individuals were used. Length (24.5±1.8 cm) and W (165.0±37.1 g) were 

constant throughout the experiment. Likewise, the indices K (1.1±0.1), HSI (1.0±0.3), 

GSImale (0.08±0.10) and GSIfemale (0.94±0.19) did not differ between exposure groups.  

Brain AChE activity was significantly affected by Cd×T (2-way ANOVA; Table 2), 

varying from 88.50±4.12 nmol/min/mg prot in Low Cd exposed soles at day 7 to 

66.19±2.85 nmol/min/mg prot in High Cd exposed soles at day 7 (Figure 1A). Thus, 

AChE activities tended to increase in Control and Low Cd exposed soles at day 7 whilst 

activities from High Cd exposed soles decreased at day 7 and were lower than levels 

detected in other exposure groups. Hepatic CAT activity was significantly affected by 

[Cd]water and Cd×T (2-way ANOVA; Table 2). The highest CAT activity, detected in 

High Cd exposed soles at day 3, decreased significantly at day 7, being lower than levels 

recorded in the other exposure groups (Figure 1B). Hepatic GST activity was affected by 

T and Cd×T (2-way ANOVA; Table 2). Thus, levels of GST activity detected at day 3 

  [Cd]sw  [Cd]liver [Cd]muscle 

 H3 H24 H48   

Control 0.77 a 0.63 a 0.36 a 2.29 a <0.01 

Low Cd 1.40 a 1.82 a 1.23 a 2.43 a <0.01 

Mid Cd 7.98 a 7.82 a 8.36 a 2.36 a <0.01 

High Cd 773 b 720 b 789 b 4.48 b <0.01 

Parameter 
Residual 

d.f. 
F(Cdsw) F(T) F(CdswxT) 

AChE 39 0.431 0.041 6.694** 

CAT 39 3.057* 2.255 7.296*** 

SOD 39 0.165 5.665* 1.189 

GST 39 1.866 49.534*** 3.561* 

LP 76 53.150*** 38.750*** 50.628*** 

VvL 70 10.355*** 1.498 6.722** 

NvL 70 3.939* 1.232 3.010* 

VvNL 70 4.307** 3.724 0.293 

ITot 104 4.433** 4.770* 1.317 

Igills 104 4.772** 2.965 1.452 

Iliver 104 3.445* 9.610** 1.146 

Female Igonad 54 7.855*** 1.647 0.426 

No significant effect of S, T or S×T was detected for S/VL, 

gills, liver and gonad lesion stages, LSliver, male Igon. 

Table 1. Cd concentrations (µg/l) determined in water samples after 3, 24, and 48 hr of 

contaminant load. Cd content (µg/g wet-wt) determined in pools of liver and muscle 

samples collected from each experimental group at day 7. Different letters indicate 

significant differences between experimental groups (z score, p<0.05). 

Table 2. Summary of the 2-way 

ANOVAs performed to analyse 

the effects of Cd (d.f.: 3), time 

of exposure (d.f.: 1) and their 

combination (“Cd × Time”, 

d.f.: 3) on biomarkers and 

histopathology (lesion stages 

and indices) in S. senegalensis 

exposed to different 

concentrations of Cd for 3 and 7 

days. Logarithmic 

transformation was applied to 

CAT, NvL and VvNL (non-

parametric variables). d.f.: 

degrees of freedom; F: Fisher’s 

F; *: p<0.05; **: p<0.01; ***: 

p<0.001. 
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were higher in Cd exposed soles than in Control soles and decreased in all experimental 

groups at day 7 (Figure 1C). In contrast, hepatic SOD activity only varied with time (2-

way ANOVA; Table 2), being higher at day 7 than at day 3 for all the exposure groups 

(Figure 1D).  

Lysosomal LP was significantly affected by [Cd]water, T and Cd×T (2-way ANOVA; 

Table 2); ranging from 30.48±1.64 min in Control soles at day 7 to 7.48±1.00 min in High 

Cd exposed soles at day 7 (Figure 2A). LP increased at day 7 in Control soles whilst it 

decreased in all Cd exposed groups, in particular in the case of Mid Cd and High Cd 

groups (Figure 2A). Lysosomal VvL and NvL were significantly affected by [Cd]water and 

Cd×T (2-way ANOVA; Table 2). At day 3, the lowest VvL was recorded in High Cd 

exposed soles whilst the values of other lysosomal biomarkers were constant between 

Figure 1. Brain acetylcholinesterase (A) and hepatic catalase (B), superoxide dismutase 

(C) and glutathione-S-transferase (D) enzyme activities measured in S. senegalensis 

exposed to different concentrations of Cd for 3 and 7 days. Different letters indicate 

significant differences between experimental groups of the same sampling time; asterisks 

indicate significant differences between exposure times (p<0.05); AChE: 

acetylcholinesterase; CAT: catalase; SOD: superoxide dismutase; GST: glutathione-S-

transferase. 

 3       7 

Time (days) 

 3       7 

Time (days) 

Control        Low Cd        Mid Cd        High Cd 
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exposure groups (Figure 2B-D). At day 7, the highest VvL and the lowest S/VL were 

detected in Mid Cd exposed soles (Figure 2B-C) and NvL only decreased in Low Cd 

exposed soles (Figure 2D). VvNL was significantly affected by [Cd]water (2-way ANOVA; 

Table 2); ranging from 0.046±0.013 µm3/µm3 (High Cd soles, at day 7) to 0.252±0.106 

µm3/µm3 (Low Cd soles, at day 3; Figure 2E). Thus, VvNL raised transiently in Low Cd 

exposed soles at day 3 and then returned to levels similar to those of the other 

experimental groups at day 7.  

Control        Low Cd        Mid Cd        High Cd 

Figure 2. Lysosomal membrane stability 

(A), lysosomal structural changes (B-D) 

and intracellular neutral lipid volume 

density (E) assessed in liver of S. 

senegalensis exposed to different 

concentrations of Cd for 3 and 7 days. 

Different letters indicate significant 

differences between experimental groups 

of a same sampling time; asterisks indicate 

significant differences between exposure 

times (p<0.05). LP: labilisation period; 

VvL: lysosomal volume density; S/VL: 

lysosomal surface to volume ratio; NvL: 

lysosomal numerical density; VvNL: 

volume density of neutral lipids. 

 

 3       7 

Time (days) 

 3       7 

Time (days) 
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Gill histopathological lesions included lamellar capillary aneurysm (Figure 3A), 

epithelial lifting (Figure 3B), hypertrophy of squamous epithelium (Figure 3C) and 

chloride cell hyperplasia (Figure 3D). Overall, lesions were recorded at low lesion stages 

(Table 3). The high prevalence of lamellar capillary aneurysm and epithelial lifting did 

not vary between experimental groups (Table 3). In contrast, hypertrophy of squamous 

epithelium was more frequently recorded upon Cd exposure, in particular at day 7. At day 

3, chloride cell hyperplasia was recorded at mild prevalence in all groups, except in Mid 

Cd exposed soles where prevalence was high. At day 7, the prevalence of this lesion 

increased with Cd concentration (Table 3). Yet, the prevalence of hypertrophy of 

squamous epithelium and chloride cell hyperplasia in the Control group was lower at day 

7 than day 3. No tumours were detected in gills. 

 

   Day3   Day7  

Gill lesions w Control Low Cd Mid Cd High Cd Control Low Cd Mid Cd High Cd 

Circulatory disturbances          

Lamellar capillary 

aneurysm 

1 100.0 100.0 100.0 92.3 92.3 100.0 92.3 100.0 

 (2.5±0.2) (2.5±0.2) (2.9±0.3) (2.3±0.2) (2.2±0.2) (2.0±0.0) (2.5±0.3) (2.8±0.3) 

Regressive changes          

Epithelial lifting 1 92.3 100.0 92.3 100.0 76.9 76.9 84.6 100.0 

 (2.3±0.2a) (2.2±0.2a) (2.8±0.3ab) (3.2±0.3b) (2.6±0.3) (2.6±0.3) (2.9±0.3) (2.6±0.3) 

Progressive changes          

Hypertrophy of 

squamous epithelium 

1 53.8 61.5 69.2 46.2 23.1 76.9 69.2 69.2 

 (2.3±0.3) (2.3±0.3) (2.9±0.4) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0*) (2.0±0.0) 

Chloride cell hyperplasia 2 46.2 38.5 76.9 38.5 23.1 38.5 61.5 84.6* 

  (2.0±0.0) (2.4±0.4) (2.2±0.2) (2.4±0.4) (2.7±0.7) (2.0±0.0) (2.0±0.0) (2.7±0.3) 

w: lesion importance factor. 

Table 3. Lesions prevalence (%) and means and standard errors of lesions stages (n=13; 

lesion intensity when detected) for gill histopathological lesions identified in S. 

senegalensis collected from each experimental group at days 3 and 7. Bold values 

indicate significant differences between experimental groups from the same sampling 

time (p<0.05); asterisks indicate significant differences between sampling days (p<0.05). 

Figure 3. Histological sections (5 µm) of S. senegalensis exposed to different 

concentrations of Cd for 3 and 7 days, stained with hematoxylin-eosin. (A) Gill tissue 

showing capillary aneurysm (arrows); (B) severe case of gill epithelial lifting (arrows); 

(C) high degree of hypertrophy of squamous epithelium; (D) gill section showing a case 

of chloride cell hyperplasia (segment) with slight epithelial lifting (arrow); (E) hepatic 

tissue containing melanomacrophage centres (dotted circle) and fat vacuolation (arrow); 

(F) hepatic hyperaemia with accumulation of erythrocytes in blood vessels; h: 

hyperaemia; s: sinusoid; (G) presence of a large lymphocytic infiltration in liver (arrow); 

(H) severe case of hepatic necrosis. Black scale bar: 50 µm; white scale bar: 100 µm. 
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Hepatocytes often appeared extensively occupied by fat vacuoles in all experimental 

groups (98.1%; 3.76±0.12; Figure 3E). Conversely, other hepatic lesions were always 

recorded at low lesion stage (Table 4). Haemorrhage, hyperaemia (Figure 3F) and 

hydropic vacuolation of epithelial cells of bile ducts were recorded at mild prevalence 

(<40%), with higher values detected in Cd exposure groups at day 7 (Table 4). Similarly, 

lymphocytic infiltration (Figure 3G) was observed at mild prevalence in all experimental 

groups (<25%), except in soles exposed to High Cd for 7 days where this lesion was 

moderately frequent (61.5%). Necrosis (Figure 3H) was recorded at moderate to high 

prevalence, with highest values detected in soles exposed to High Cd (days 3 and 7) and 

to Mid Cd (day 7). The prevalence of MMCs (Figure 3E) and concentric periductal 

fibrosis of bile ducts increased in all experimental groups from day 3 to day 7 and did not 

show a clear relation with Cd concentration (Table 4).  

Upon microscopic examination of gonad tissue, most soles were at an early stage of 

gamete development. Males mostly presented immature testis (42.6%) and early 

spermatogenesis stage (53.2%); and although one case of early vitellogenesis (Stage II) 

was identified, most females (98.2%) presented primary growth oocytes (Stage I). The 

only histopathological lesion identified in testis was the necrosis and was recorded in 

soles exposed to Mid Cd for 3 d (14.3%) and High Cd for 7 d (28.6%). In females, 

   Day3   Day7  

Hepatic lesions w Control Low Cd Mid Cd High Cd Control Low Cd Mid Cd High Cd 

Circulatory disturbances         

Haemorrhage  1 7.7 7.7 7.7 7.7 0.0 30.8 15.4 30.8 

 (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Hyperaemia 1 23.1 7.7 0.0 15.4 7.7 0.0 0.0 38.5 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Inflammatory responses          

MMCs 1 15.4 15.4 30.8 15.4 69.2* 53.9* 69.2 46.2 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.2±0.2) (2.3±0.3) (2.0±0.0) (2.0±0.0) 

Lymphocytic infiltration 2 23.1 15.4 0.0 23.1 0.0 7.7 7.7 61.5* 

  (2.0±0.0) (2.0±0.0) (0.0) (2.0±0.0) (0.0) (0.0) (2.0±0.0) (2.3±0.3) 

Regressive changes          

Necrosis 3 46.2 69.2 38.5 84.6 76.9 69.2 84.6* 84.6 

  (2.3±0.3) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.2±0.2) (2.4±0.2) 

Progressive changes          

HV of epithelial cells of 

bile ducts 

2 7.7 0.0 0.0 7.7 0.0 7.7 15.4 0.0 

 (2.0±0.0) (0.0) (0.0) (2.0±0.0) (0.0) (2.0±0.0) (3.0±1.0) (0.0) 

CPF of bile ducts 2 23.1 30.8 30.8 38.5 53.8 46.2 38.5 38.5 

  (2.0±0.0) (2.5±0.5) (2.5±0.5) (2.0±0.0) (2.0±0.0) (2.3±0.3) (2.0±0.0) (2.0±0.0) 

w: lesion importance factor; MMCs: Melanomacrophage Centres; HV: Hydropic Vacuolation; CPF: 

Concentric Periductal Fibrosis. 

Table 4. Lesions prevalence (%) and means and standard errors of lesions stages (n=13; 

lesion intensity when detected) for liver histopathological lesions identified in S. 

senegalensis collected from each experimental group at days 3 and 7. Bold values 

indicate significant differences between experimental groups from the same sampling 

time (p<0.05); asterisks indicate significant differences between sampling days (p<0.05). 
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histopathological lesions were identified at low lesion stage (≤3.0). Hyperaemia, MMCs 

and pyknotic oocytes were only occasionally observed (Table 5). Lymphocytic 

infiltration was rarely recorded, except in soles exposed to High Cd for 3 days (50%). 

Similarly, a mild prevalence of necrosis was recorded in most experimental groups but in 

High Cd exposed soles it was high at day 7 (Table 5). Highest prevalence of atresia was 

recorded in High Cd soles at day 3 (75.0%) and day 7 (66.7%). The prevalence of lipids 

in oocytes varied with Cd concentration at day 7, reaching 100% in soles exposed to High 

Cd (Table 5).  

LSliver did not differ between exposure groups. The lowest LSliver was measured in the 

Mid Cd group after 3 d exposure (0.85±0.15) and the highest in the Mid Cd group after 7 

d (1.54±0.37). Total index (Itot) and liver index (Iliver) were significantly affected by 

[Cd]water and T; whilst the gill index (Igills) and female gonad index (Igonad) were only 

affected by [Cd]water (2-way ANOVA; Table 2). Thus, Itot and Iliver increased in Cd 

exposed soles at day 7, with higher values at increasing Cd concentration (Figure 4A and 

4C). In contrast, no significant increase was detected from day 3 to day 7 in Igills Yet, 

higher Igills values were recorded in Mid Cd and High Cd exposed soles than in Control 

soles at day 7 (Figure 4B). In the case of Igonad, the lowest index values were recorded in 

Control soles and the highest values in soles exposed to High Cd (Figure 4D). 

   Day3   Day7  

  Control Low Cd Mid Cd High Cd Control Low Cd Mid Cd High Cd 

Gonad lesions in females w n=7 n=6 n=5 n=4 n=10 n=8 n=9 n=6 

Circulatory disturbances         

Hyperaemia 1 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 

  (0.0) (0.0) (0.0) (0.0) (0.0) (2.0±0.0) (0.0) (0.0) 

Inflammatory responses          

MMCs 1 0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 

  (0.0) (2.0±0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

Lymphocytic infiltration 2 0.0 0.0 20.0 50.0 0.0 0.0 0.0 16.7 

  (0.0) (0.0) (2.0±0.0) (2.0±0.0) (0.0) (0.0) (0.0) (2.0±0.0) 

Regressive changes          

Pyknotic oocytes 2 0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 

  (0.0) (2.0±0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

Necrosis 3 0.0 33.3 0.0 0.0 10.0 25.0 11.1 50.0 

  (0.0) (3.0±1.0) (0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Atresia 3 0.0 0.0 20.0 75.0 10.0 37.5 22.2 66.7 

  (0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Progressive changes          

Lipids in oocytes 1 28.6 33.3 0.0 25.0 20.0 25.0 55.6 100.0* 

  (2.0±0.0) (2.0±0.0) 0.0 (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.4±0.4) (3.0±0.4) 

w: lesion importance factor. 

Table 5. Lesions prevalence (%) and means and standard errors of lesions stages for 

female gonad histopathological lesions identified in S. senegalensis collected from each 

experimental group at days 3 and 7. Bold values indicate significant differences between 

experimental groups from the same sampling time (p<0.05); asterisks indicate significant 

differences between sampling days (Pearson’s Chi test, p<0.05). 
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The IBR/n index ranged from 0.07 in Control soles at day 7 to 3.47 in soles exposed to 

High Cd for 7 d (Figure 5). Overall, higher IBR/n index levels were recorded in Cd 

exposed soles than in Control soles, in a dose dependent manner at day 7 (Control<Low 

Cd<Mid Cd<High Cd; Figure 5). 

 

3         7 

Time (days) 
3        7 

Time (days) 

Control Low Cd Mid Cd High Cd 

Figure 4. Total index (Itot), gill index (Igills), liver index (Iliver) and female gonad index 

(Igonad) of S. senegalensis exposed to different concentrations of Cd for 3 and 7 days. 

Different letters indicate significant differences between experimental groups of the same 

sampling time; asterisks indicate significant differences between exposure times 

(p<0.05). 
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3         7 

Time (days) 

Figure 5. Radar plots constructed using 

five selected biological parameters (GST, 

AChE, LP, Igills and Iliver) for each 

experimental group of juvenile S. 

senegalensis exposed to different 

concentrations of Cd for 3 and 7 days; and 

IBR/n index calculated on the basis of 

these radar plots. 

Control        Low Cd        Mid Cd        High Cd 
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4. Discussion 

The low and mid concentrations of Cd used herein are representative of levels of this 

metal detected in contaminated areas where soles can be found (Eisler, 1985; Waeles et 

al., 2004; Costa et al., 2013). The highest concentration of Cd was used to induce rapid 

and acute biological effects of Cd in an attempt to identify response mechanisms to 

metals. The liver Cd concentration was positively correlated with waterborne Cd 

concentration. Moreover, upon exposure to 1000 µg Cd/l (High Cd) for 7 days it was 

noticeably higher than in Control soles and comparable to that reported in wild sole from 

a metal polluted estuary (Vicente-Martorell et al., 2009). Thus, waterborne Cd is 

accumulated in liver of sole juveniles, as previously reported in laboratory studies for 

other fish species (Hollis et al., 2001; Kim et al., 2004; Jayakumar and Paul, 2006; Kumar 

et al., 2008). Likewise, Cd accumulation in sole liver also occurs after dietary or 

intraperitoneal treatment with the metal (Kalman et al., 2010; Le Croizier et al., 2018). In 

contrast, no Cd was detected in muscle samples. Indeed, fish muscle usually presents 

limited capacity for metal accumulation (except for Hg in a few species; Jezierska and 

Witeska, 2006). The evidence of Cd presence in sole liver in proportion with Cd 

concentrations in water confirms the uptake of metal by individuals and suggests different 

levels of toxicity from each exposure concentration. 

Neurotoxicity. 

Cadmium was reported to inhibit AChE activity in brain (van der Oost et al., 2003; Davies 

and Vethaak, 2012; Oliva et al., 2012a). Presently, AChE activity recorded in Control 

soles resembles the values of the normal range elsewhere reported in sole. Thus, although 

they are higher than those recorded in farmed fry and adult S. senegalensis (Solé et al., 

2012), they are absolutely comparable to those measured in wild juvenile S. solea from a 

reference site (Jebali et al., 2013). However, AChE activity was reduced to around a 30-

40% in individuals exposed to 1000 µg Cd/l sw for 7 days and to a lesser extent in those 

exposed to 10 µg Cd/l sw. It is accepted that a 20% reduction in AChE in fish indicates 

exposure to neurotoxic compounds (Davies and Vethaak, 2012). This is in agreement 

with previous studies demonstrating the AChE inhibition in the brain of fish exposed Cd 

and other metals (Lavado et al., 2006; Richetti et al., 2011; Oliva et al., 2012a; Jebali et 

al., 2013; Ghribi et al., 2019). In comparison, exposure to environmentally relevant 

concentrations of 1-10 µg Cd/l does not seem to cause AChE enzyme inhibition in the 

short term (7 days) in the present experimental conditions; however, some signs of 

response on exposure to 10 µg Cd/l suggest that effects might occur at longer exposure 

periods. 

Oxidative stress. 

Cadmium accumulation in fish liver stimulates ROS production, activating antioxidant 

defences (e.g., CAT, GST and SOD induction; Atli et al., 2006; Souid et al., 2013). 

Accordingly, CAT activity was affected by exposure to Cd with values ranging 10-90 

µmol/min/mg prot. In soles from the present Control group, CAT activity (≈25-30 

µmol/min/mg prot) was comparable to that registered in control sole juveniles in other 
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experimental setups (Solé et al., 2008) and in wild sole from reference sites (Oliva et al., 

2012b; Jebali et al., 2013). The transient increase of CAT activity recorded at day 3 in Cd 

exposed soles indicates an activation of the antioxidant defence system, particularly in 

High Cd exposed soles (51.1±15.9 µmol/min/mg prot). This is in agreement with 

observations made by Souid et al. (2013), where CAT activity was quickly induced (24 

hr) in S. aurata exposed to waterborne Cd at a concentration similar to the highest used 

herein (1000 µg Cd/l). However, 7 day exposure to 1000 µg Cd/l led to a decline in CAT 

activity to low levels (9.6±3.7 µmol/min/mg prot), comparable to those recorded upon 

laboratory exposure to naturally contaminated sediments (Chapter 2) and to waterborne 

BaP (Chapter 4). CAT inhibition was also reported in wild juvenile soles from polluted 

sites (Oliva et al., 2012b). Indeed, CAT inhibition may occur in response to ROS 

overproduction exceeding the antioxidant protection capacity of the cell (Regoli and 

Principato, 1995; Roméo et al., 2000; Kalman et al., 2010). Certainly, the pattern of CAT 

activity in response to pollutants in fish liver may be disparate (induction or inhibition) 

depending on the exposure time and the concentration of chemicals (Pedrajas et al., 1996; 

Regoli et al., 2002). GST enzyme induction has been recorded in fish liver upon exposure 

to a variety of pollutants both through waterborne and sediment exposure (Regoli et al., 

2002; Salamanca et al., 2008). Accordingly, a brief increase of GST activity  was recorded 

herein in response to Cd exposure at day 3 (60-70 nmol/min/mg prot), reaching levels 

similar to those recorded in sole juveniles after laboratory exposure to naturally 

contaminated sediments (Chapter 2) and waterbone B(a)P (Chapter 4). Thus, it seems 

that, in all the Cd exposed soles, GST enzyme activity is at least transiently induced at 

day 3, indicating an activation of the antioxidant defence system (Regoli et al., 2002; Van 

der Oost et al., 2003). However, a longer exposure to Cd  for 7 days led to a decline in 

GST activity (30-40 nmol/min/mg prot). Interestingly, GST inhibition was described in 

wild sole juveniles from highly polluted areas (Fonseca et al., 2011a). Overall, the 

response pattern of GST activity may be intricate depending on the chemical and on the 

exposure conditions (Hamed et al., 2003; Van der Oost et al., 2003; Fonseca et al., 2011a; 

Mani et al., 2014). For instance, in Cd exposed catfish hepatic GST activity was induced 

after 24 to 72h Cd exposure but inhibited after 96h exposure (Mani et al., 2014). SOD 

activity is enhanced upon exposure to pollutants (Pedrajas et al., 1996; Regoli et al., 2002; 

Wu et al., 2006; Dos Santos Carvalho et al., 2012); however it seems to be a fast transient 

response. For instance,  SOD activity was quickly induced in S. aurata after 4 hr exposure 

to waterborne Cd (0.5 mg/l) and further on  inhibited (35% decrease) within 24 hr (Souid 

et al., 2013). Presently hepatic SOD activity did not change with Cd exposure but was 

higher at day 7 (≈155 mmol/min/mg prot) than at day 3 (≈125-130 mmol/min/mg prot) 

in all the experimental groups. It is thus conceivable that SOD response time was shorter 

that 3 days and therefore, we only recorded the effects of experimentation on this enzyme 

activity.  

Lysosomal responses.  

Changes in lysosomal structure and membrane integrity are core biomarkers for 

biological effects assessment and they have been applied in laboratory experiments to 

demonstrate sub-cellular effects of Cd exposure in molluscs (Giambérini and Cajaraville 
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2005; Marigómez et al., 2005; Izagirre et al., 2014) and fish species (Roméo et al., 2000; 

Alvarado et al., 2005). Presently, LP values recorded in hepatocytes of Control soles 

(≈20-30 min) are similar to those previously recorded in healthy fish (Köhler et al., 1992, 

1995; Broeg et al., 1999, 2002; Viarengo et al., 2007; Zorita et al., 2008). Conversely, in 

Cd exposed soles LP decreased from around 20 min at day 3 to 7-12min at day 7, 

especially in soles exposed to 1000 µg Cd/l sw. Lysosomal membrane destabilisation may 

occur when autophagy is enhanced to maintain cellular health status (Moore et al., 2013), 

once the antioxidant defence system is overloaded, as recorded herein. The reduced LP 

values observed after Cd exposure resemble those reported in sole and other fish species 

exposed to pollutants (Baršienė et al., 2006; Zorita et al., 2008; Burgeot et al., 2017; 

Chapters 2 and 4). Lysosomal membrane impairment may generate an outflow of 

hydrolases thus affecting cellular functions and potentially leading to histopathological 

alterations (Köhler et al., 1992, 2002; Viarengo et al., 2007). Likewise, it may be 

accompanied with lysosomal enlargement evidenced by changes in size and numbers of 

the lysosomes (Köhler et al., 1992; Cajaraville et al., 1995; Marigómez et al., 2005; 

Alvarado et al., 2005; Dagnino et al., 2007; Izagirre and Marigómez, 2009). However, in 

the present study, we have not obtained clear evidence of lysosomal enlargement. In most 

of the experimental groups, lysosomes observed were overall scarce and small (e.g. in 

comparison with control and reference individuals of other fish species; Alvarado et al., 

2005; Izagirre, 2007). Similarly, although lipid accumulation in fish liver may be 

considered an early indicator of liver injury (Köhler et al., 2002; Köhler, 2004) the present 

results on intracellular accumulation of neutral lipids are not conclusive. 

 

Histopathology.  

Histopathological lesions are typically described as medium-term consequences to 

contaminant exposure (Bernet et al., 1999), and herein they were already recorded in gills, 

liver and gonads after 7 days exposure to Cd. However, overall they were recorded at low 

lesion stages, suggesting a low impact of Cd at tissue-level.  Gill histopathology is useful 

for assessing early biological responses to Cd in sole (Costa et al., 2013) used to detect 

tissue-level effects of recent stress conditions. Gill lesions identified in the present study 

were reported previously in wild fish from contaminated sites (Stentiford et al., 2003; 

Camargo and Martinez, 2007; Oliva et al., 2013; Santos et al., 2014; Chapter 1) and after 

laboratory exposure to metals (Arellano, 1999; Martinez et al., 2004; Oliva et al., 2009). 

Hypertrophy of squamous epithelium and chloride cell hyperplasia in gills were more 

frequently observed in Cd exposed sole than in control, especially at day 7. Alike, 

haemorrhage, hyperaemia, hydropic vacuolation of epithelial cells of bile ducts, 

lymphocytic infiltration and necrosis were observed at higher prevalence in the liver of 

soles exposed to 10-1000 µg Cd/l sw for 7 days than in controls. These lesions were 

previously reported in fish liver upon exposure to a variety of pollutants including e.g. 

Cd, pesticides and B(a)P (Au, 2004; Noreña-Barroso et al., 2004; Oliveira Ribeiro et al., 

2005; van Dyk et al., 2007; Chapters 2 and 4). Particularly,  exposure to up to 10 µg Cd/l 

sw for 28 days elicited comparable histopathological lesions in the liver of younger (L: 

46±7 mm) sole specimens (Costa et al., 2013). In contrast, several lesions previously 

described in sole in response to pollutants such as MMCs and concentric periductal 
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fibrosis of bile ducts (Costa et al., 2011; Zorita and Cuevas, 2014; Chapters 1, 2 and 4) 

were not related to the concentration of Cd in the present study. In female gonad, 

lymphocytic infiltration, oocyte atresia and necrosis, and lipidosis were recorded at mild 

lesion stages and were more frequently found in Cd exposed soles, especially upon 1000 

µg Cd/l sw, than in control ones. These lesions were previously reported in fish subject 

to environmental stress (Blazer, 2002; Reynolds et al., 2003; Cuevas et al., 2015a; 

Chapters 1, 2 and 4). The use of histopathological indices integrating pathological 

importance and degree of severity of each lesion in different organs permitted to observe 

a clear general tissue-level effect of Cd. This was more remarkable in the case of the 

weighted histopathological indices (Bernet et al., 1999; Costa et al., 2009b). Values of 

Iliver (≈10) and Igonad (0.5-2) calculated for the control soles were comparable with those 

measured in wild fish from non-severely contaminated areas (Cuevas et al., 2015a, 

2015b). Overall, the highest indices (Iliver=16.3±1.3; Igonad=10.7±2.2) were detected in Cd 

exposed soles, particularly in those exposed to 1000 µg Cd/l sw at day 7. Similarly, 

comparably high Iliver and Igonad were recorded in sole juveniles exposed to contaminated 

sediments and to waterborne BaP exposure (Chapters 1, 2 and 4).  

IBR/n index.  

The use of the IBR/n index contributed to an integrated evaluation of biological responses 

and minimized the potential uncertainty of individual biomarkers (Marigómez et al., 

2013; Baudou et al., 2019). Thus, IBR/n values were related with Cd concentration and 

exposure time (IBR/nHighCd>IBR/nMidCd>IBR/nLowCd>IBR/nControl). Alike, successive 

biological responses elicited by Cd were depicted by radar plot profiles: neurotoxicity 

and altered antioxidant enzyme activities and lysosomal system anticipated 

histopathological lesions. Besides, at day 3 the main contributors to IBR/n were 

biochemical responses related to neurotoxicity (AChE) and antioxidant defence (GST) 

along with gill histopathological lesions; whereas at day 7 all the biological responses in 

the star plots contributed to IBR/n. Likewise, a dose dependent effect was only clearly 

envisaged at day 7.  

Concluding remarks 

The assessment and integration of biological responses elicited in Solea senegalensis 

juveniles upon Cd waterborne exposure for 7 d indicated different degrees of Cd toxicity 

depending on concentration and time of exposure. Thus, 3-day exposure to Cd caused 

dose-dependent oxidative stress (CAT and GST induction/inhibition) and lysosomal 

membrane destabilisation, whereas neurotoxicity (AChE inhibition) and gill, liver and 

gonad histopathological lesions were mainly recorded at day 7. These effects were very 

remarkable upon exposure to a non-environmentally relevant Cd concentration (e.g. 1000 

µg Cd/l sw) but also were to some extent elicited at environmentally relevant 

concentrations of the metal (10 µg Cd/l sw). Thus, as the effects are clearly time 

dependent, it is conceivable that more severe biological effects would be elicited by these 

low concentrations of the metal at longer exposure periods. Therefore, the present study 

evidences the toxicopathic effects of waterborne Cd in sole juveniles and supports the use 

of biomarkers and histopathology approaches as early-warning indicators of altered 

general health status in sole. 
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Abstract 

Organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) are widely 

found in the aquatic environment and are considered high priority contaminants for the 

biota, in particular for coastal and estuarine ecosystems largely affected by anthropogenic 

pressure. In toxicological studies, flatfish are becoming a more prominent sentinel species 

for the assessment of the estuarine ecosystem health status. In the present investigation, 

Solea senegalensis juveniles were exposed to different concentrations of waterborne 

benzo[a]pyrene (B[a]P) using dimethyl sulfoxide (DMSO) as a carrier. Sole juveniles 

(n=13 per group) were retrieved after 3 and 7 d exposure. Brain, liver, gills and gonads 

were dissected out and processed to determine biomarkers of neurotoxicity and oxidative 

stress, lysosomal biomarkers and histopathology. Biological responses were consistent 

with waterborne B[a]P concentration and exposure time. Hepatic CAT inhibition 

indicated clear oxidative effects of exposure to B[a]P, even at low concentration. In 

comparison, exposure to low concentrations of B[a]P led to hepatic GST induction whilst 

higher concentrations produced enzyme inhibition, evidencing a biomarker dose-

dependence. Similarly, a clear gradient in lysosomal membrane destabilisation was 

observed in relation with B[a]P concentration. Histopathological lesions in gills, liver and 

gonad were more frequent at day 7, in particular in soles exposed to higher B[a]P 

concentrations. In agreement, the Integrative Biological Response index (IBR/n) 

indicated a dose-dependent decline in health condition upon exposure to waterborne B[a]P 

(IBR/nHigh B[a]P>IBR/nMid B[a]P>IBR/nLow B[a]P>IBR/nControl). The present investigation 

evidenced toxicopathic effects of waterborne B[a]P in sole juveniles and supports that 

biomarkers and histopathology are responsive early-warning indicators of altered general 

health status in sole juveniles. 
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Résumé 

Les hydrocarbures aromatiques polycycliques (HAP) sont largement présents dans le 

milieu aquatique et sont des contaminants de haute priorité pour le biote marin, en 

particulier pour les écosystèmes côtiers et estuariens sous forte pression anthropique. Les 

études toxicologiques surveillant l’état de santé de ces écosystèmes se basent de plus en 

plus sur l’utilisation des poissons plats comme espèce sentinelle. Dans l’étude suivante, 

des juvéniles de Solea senegalensis ont été exposés à différentes concentrations de 

benzo[a]pyrène (B[a]P) en utilisant du diméthyl sulfoxyde (DMSO) comme vecteur. Des 

échantillons de cerveau, foie, branchies et gonades ont été prélevés dans chaque groupe 

expériemental (n=13) après 3 et 7 jours d’exposition au contaminant afin d’y analyser des 

biomarqueurs de neurotoxicité, de stress oxidatif et de lysosomes, ainsi que 

l’histopathologie des branchies, du foie et des gonades. Globalement, les réponses 

biologiques concordaient avec la concentration de B[a]P détectée dans l’eau et la durée 

d'exposition. L'inhibition enzymatique de la catalase hépatique a révélé des effets 

oxydatifs évidents de l'exposition au B[a]P, même à faible concentration. L’activité de la 

glutathion-S-transférase du foie variait en relation avec les concentrations de B[a]P. En 

effet, l’enzyme était induite par de faibles concentrations en B[a]P mais inhibée par des 

concentrations plus élevées. De même, la déstabilisation de la membrane lysosomale était 

proportionnelle à la concentration en contaminant. Les lésions histopathologiques 

identifiées dans les branchies, le foie et les gonades étaient plus fréquentes après 7 jours 

d’exposition au B[a]P, en particulier à plus fortes concentrations. L’intégration des 

réponses biologiques sous forme de l’index « Integrative Biological Response index » 

(IBR/n) a permis de détecter une diminution de l’état de santé des soles en relation avec 

les concentrations de B[a]P et la durée d’exposition (IBR/nHigh B[a]P>IBR/nMid 

B[a]P>IBR/nLow B[a]P>IBR/nControl). La recherche suivante met en évidence les effets 

toxicopathologiques du B[a]P chez la sole juvénile et soutient l’utilisation de 

biomarqueurs et de l’histopathologie comme indicateurs rapides d’altérations d’état de 

santé de la sole face au stress environnemental.  
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Laburpena 

Hidrokarburo polizikliko aromatikoak bezalako kutsatzaile organikoak ingurumen 

urtarretan aurkitu daitezke eta biotarentzako efektu handiko kutsatzaile bezala 

kontsideratuta daude, bereziki presio antropogenikoarengatik kaltetuta dauden itsas eta 

estuario ekosistematan. Arrain lauak espezie-zentinela garrantzitsuak ari dira bihurtzen 

ikerketa toxikologikoetan estuarioen osasuna o aztertzeko. Ikerketa honetan, Solea 

senegalensis espeziearen jubenilak dimetil sulfoxidoa (DMSO) disolbatzaile bezala 

erabilita uretan diluitutako benzo[a]pyreno (B[a]P) kontzentrazio desberdinetara esposatu 

dira. Mihi-arrain jubenilak (n=13 talde bakoitzeko)  3 eta 7 egun esposatuta egon ondoren 

disekzionatuak izan ziren. Garuna, gibela, zakatzak eta gonadak neurotoxikotasun eta 

estres oxidatibo biomarkatzaileak, biomarkatzaile lisosomikoak eta histopatologia 

determinatzeko prozesatu ziren. Erantzun biologikoak koherenteak ziren uretako B[a]P 

kontzentrazio eta esposizio denborarekin. Katalasa (CAT) hepatikoaren inhibizioak 

B[a]P-ren esposizioaren estres oxidatiboaren efektu argiak adierazten zituen 

kontzentrazio baxuetan ere. Glutation transferasa (GST) hepatikoaren aktibitateak berriz, 

B[a]P kontzentrazio baxuetan indukzioa eta kontzentrazio altuetan inhibizioa erakusten 

zuen, biomarkatzailearen dosiarekiko menpekotasuna nabarmenduz. Antzeko gradientea 

ikusi zen mintz lisosomikoaren desegonkortzea gora egitean B[a]P kontzentrazioarekin 

batera. Zakatz, gibel eta gonadetako lesio histopatologikoak ugariagoak ziren 7. egunean, 

bereziki B[a]P kontzentrazio handietara esposatutako mihi-arrainetan. Honekin batera, 

erantzun biologikoen indize integratzaileak (IBR/n), uretan disolbatutako B[a]P-aren 

esposizioan dosiaren menpeko osasun-baldintzaren beherakada adierazi zuen (IBR/nAltua 

B[a]P>IBR/nErtaina B[a]P>IBR/nBaxua B[a]P>IBR/nKontrola). Lan honek uretan diluitutako B[a]P-

ren efektu toxipatikoak nabarmentzen ditu mihi-arrain jubeniletan eta biomarkatzaileak 

eta histopatologia mihi-arrainenosasun-baldintzaren alterazioen alerta-goiztiarreko 

indikatzaileak direla indartzen du. 
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are largely found in the aquatic environment 

and in particular in coastal and estuarine areas where the anthropogenic pressure is 

significant (industrial discharges, urban runoff, among other sources). Their ubiquitous 

presence in the aquatic environment and toxicity to the marine biota classify them as high 

priority contaminants for biomonitoring programmes (US EPA; Directive 2000/60/EC). 

Due to their hydrophobic nature, PAHs tend to concentrate in the particulate phase and 

to accumulate in the sediment but they can also be found dispersed in water (Hylland, 

2006; Cousin and Cachot, 2014). Likewise, they can be naturally biotransformed into 

metabolites, potentially more toxic than the initial PAH compound (Luthe et al., 2002). 

Moreover, PAHs and their derivatives are known to be released from the sediment 

towards the water column as a result of bioturbation and biotransformation processes 

(Tronczynski, 1992; Zhang et al., 2000; Eggleton and Thomas, 2004; Neff et al., 2005; 

Chapter 2). Thus, they contribute to the waterborne exposure of marine organisms to 

dispersed and particulate PAHs accumulated in the sediment and their derivatives. 

Accordingly, bioaccumulation and toxicity of PAHs in marine organisms has been 

assessed by complementary diverse approaches including experimental exposure to 

complex mixtures of petroleum compounds suspended in water (e.g., oil water 

accommodated fraction WAF, chemically dispersed crude oil), to oiled sediments or to 

waterborne individual model compounds such as, for instance, benzo[a]pyrene (B[a]P), 

pyrene or anthracene (Claireaux and Davoodi, 2002; Claireaux et al., 2004; Jiménez-

Tenorio et al., 2008; Salamanca et al., 2008; Solé et al., 2008; Vieira et al., 2008; Trisciani 

et al., 2011; Almeida et al., 2012; Ruiz et al., 2012, 2014; Cousin and Cachot, 2014; 

Larcher et al., 2014; Vieweg et al., 2018). 

In sole, exposure to PAHs has been reported to cause altered health condition both in the 

field (Costa and Costa, 2008; Costa et al., 2009a, 2009b; Oliva et al., 2010; Chapter 1) 

and upon laboratory exposure conditions (Jiménez-Tenorio et al., 2008; Salamanca et al., 

2008; Chapter 2). These laboratory studies dealt with the responses on exposure to oil 

WAF or oiled sediments, where the presence of chemicals in mixture may hinder data 

interpretation. In order to understand the impact of these cocktails of PAHs and other 

contaminants, these studies need to be complemented with toxicological experiments 

based on the waterborne exposure to individual model PAHs. B[a]P, which originates 

from incomplete combustion or burning of carbon-containing products, is one of the most 

commonly used model PAHs in ecotoxicological experimentation in marine organisms, 

both in molluscs (Cancio et al., 1998; Orbea et al., 2002; Marigómez and Baybay-

Villacorta, 2003; Cheung et al., 2004; Marigómez et al., 2005; Speciale et al., 2018; 

González-Soto et al., 2019) and in fish (Hylland, 2006; Wu et al., 2006; Friesen et al., 

2008; Gravato and Guilhermino, 2009; Bilbao et al., 2010 ; Costa et al., 2010a; Batel et 

al., 2018). 

The toxicity of PAHs for marine organisms can be assessed using a battery of 

biochemical, cellular and tissue-level biomarkers as early warning indicators of biological 
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effect (UNEP/RAMOGE, 1999; Davies and Vethaak, 2012; OSPAR Commission, 2013). 

In fish, metabolites and reactive oxygen species (ROS) can be found accumulated in liver 

upon PAH exposure where they can generate oxidative stress. The response includes 

changes in activities of antioxidant enzymes such as glutathione-S-transferase (GST), 

catalase (CAT) and superoxide dismutase (SOD), which are considered early signals of 

oxidative stress in response to exposure to pollutants (Livingstone, 2001; Jee and Kang, 

2005; Oliva et al., 2010). In addition, hepatic GST is also responsible for xenobiotic 

metabolism (Regoli and Principato, 1995; van der Oost et al., 2003; Kroon et al., 2017). 

Accordingly, these enzyme activities are induced in sole and other fish species on 

exposure to PAHs (Jiménez-Tenorio et al., 2008; Salamanca et al., 2008; Fonseca et al., 

2011a; 2011b; Díaz-Garduño et al., 2018). Neurotoxicity has also been reported in fish 

exposed to a variety of organic compounds including PAHs and can lead to 

environmentally crucial effects such as alterations in behaviour (e.g. impaired swimming 

activity, vision or breathing) and survival (Massei et al., 2019). The inhibition of brain 

acetyl cholinesterase (AChE), an enzyme involved in neural transmission, is used as 

biomarker of neurotoxicity in sole (López-Galindo et al., 2010a, 2010b; Oliva et al., 

2012a; Solé et al., 2012; Jebali et al., 2013; Siscar et al., 2013) and in other fish species 

(Grue et al., 1997; Heath et al., 1997; Minier et al., 2000; Davies and Vethaak, 2012; 

Burgeot et al., 2017). Lysosomal biomarkers are not pollutant specific but allow for the 

assessment of general stress responses in aquatic organisms (UNEP/RAMOGE, 1999; 

JAMP, 2003; ICES, 2006; Davies and Vethaak, 2012). Lysosomal enlargement, 

membrane destabilisation and changes in lysosomal content occur in the hepatocytes of a 

variety of fish species on exposure to PAHs and other pollutants (van der Oost et al., 

2003; Au, 2004; Broeg et al., 2002, 2005; Alvarado et al., 2005; Einsporn et al., 2005; 

Baršienė et al., 2006; Bilbao et al., 2006; Zorita et al., 2008; Burgeot et al., 2017). Finally, 

PAHs are known to provoke histopathological lesions in fish gills and liver (Myers et al., 

2003; Salamanca et al., 2008; Costa et al., 2010a; Beyer et al., 2010). In addition, gonad 

histology can provide further indication of environmental relevant biological effects such 

as reproduction impairment or endocrine disruption (Minier et al., 2000; Blazer, 2002; 

Reynolds et al., 2003; Bateman et al., 2004; Stentiford and Feist, 2005; WHO/UNEP, 

2013; Bizarro et al., 2014; Ortiz-Zarragoitia et al., 2014; Feist et al., 2015; Ibor et al., 

2016; Solé et al., 2016). 

Sediment toxicity in sole seems to be related to the transfer of contaminants from the 

sediment to the water column, in particular for metals and PAHs (Chapter 2). A parallel 

investigation revealed that toxicopathic effects in sole juveniles were consistent with 

waterborne Cd concentration and exposure time (Chapter 3). Thus, the present 

investigation aimed at recognizing the toxicopathic effects elicited after waterborne 

expsure to B[a]P, a model individual PAH compound, in juvenile Solea senegalensis. 

Biomarkers of oxidative stress and neurotoxicity, lysosomal biomarkers and 

histopathology were determined after 3 and 7 d exposure and integrated into the 

Integrative Biological Response (IBR) index (Beliaeff and Burgeot, 2002). 
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2. Material and Methods 

2.1 Experimental design 

Solea senegalensis juveniles (24.5±1.8 cm standard length; 165.0±37.1 g total wet-wt) 

were exposed to different nominal concentrations of benzo[a]pyrene (B[a]P) using 

dimethyl sulfoxide (DMSO) as a carrier (Control; DMSO; Low B[a]P: 100 ng/l; Mid 

B[a]P: 1000 ng/l and High B[a]P: 100000 ng/l) for 7 d at optimal stocking density (4-6 

kg/m; Schram et al., 2006). The Control group did not receive any contaminant or carrier. 

All other experimental groups received the same concentration of DMSO (100 µl 

DMSO/l sw). Each experimental group was placed in a closed-system and water changes 

were performed every two days to ensure optimal water conditions: pH=8, salinity=31-

33 PSU, temperature=13-14ºC, dissolved O2=6-8 mg/l and total ammonia=0 mg/l. 

Photoperiod throughout the experiment was set at 12:12 h light:dark. Fish were daily fed 

with commercial food (0.3 g per fish; BioMar Iberia S.A., Dueñas, Spain). 

2.2 Chemical analysis of water samples 

Water samples were collected from each experimental group, 48 hours after contaminant 

load. Analyses of B[a]P content in water were determined by solid-phase microextraction 

(SPME; Ouyang and Pawliszyn, 2006) and gas chromatography-mass spectrometry 

analysis (GC-MS). 

2.3 Fish biometry 

Individual wet-wt (W in g) and length (L in cm) and liver and gonad wet-wt (LW and 

GW in g, respectively) were recorded to calculate (a) K=W×100/L3; (b) HSI= 

LW×100/W; and (c) GSI=GW×100/W; where K is the condition factor, HSI is the 

hepatosomatic index, and GSI is the gonadosomatic index. 

2.4 Biochemical analysis 

At days 3 and 7 of exposure, liver and brain samples were dissected out, rapidly frozen 

and maintained at -80ºC until use. Samples were processed for biochemical analysis; they 

were homogenised (1:4 for liver and 1:5 for brain) in 0.1 M potassium phosphate buffer 

(pH 7.4) and centrifuged for 30 min at 12000 g at 4ºC to obtain the post-mitochondrial 

supernatant (PMS). Acetyl cholinesterase (AChE) activity was determined in brain PMS 

and glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) 

enzyme activities in liver PMS, using a BioTek Eon microplate spectrophotometer. 

Enzyme activities were expressed as a function of the protein concentration in the 

samples. Total protein content in the homogenates was measured in triplicate at 595 nm 

following Bradford's method adapted to microplate and using bovine serum albumin as 

standard (Bradford, 1976; Guilhermino et al.,1996). All enzyme assays were performed 

at 25ºC. 
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Acetylcholinesterase (AChE). AChE activity was determined according to the Ellman's 

colorimetric method of (Ellman et al., 1961) adapted to microplate (Guilhermino et al., 

1996) by measuring the formation of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) at 412 

nm. The reaction medium contained 200 µl of 75 mM acetylcholine solution, 1 ml of 10 

mM DTNB and 30 ml of 100 mM potassium phosphate buffer (pH 7.4). Each well 

contained 50 µl of samples and 250 µl of reaction medium. After 10 min of incubation, 

enzyme activity was recorded over 10 min. AChE activity was expressed as specific 

activity (nmol DTNB/min/mg protein). 

Glutathione-S-transferase (GST). GST activity was determined by the Habig's method 

(Habig et al., 1974) adapted to microplate and using bovine serum albumin as standard 

(Guilhermino et al., 1996). Enzyme activity was measured following the formation of 

thioether by conjugation of reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene 

(CDNB). The reaction medium contained 9.9 ml of 100 mM potassium phosphate buffer 

(pH 7.4), 1.8 ml of 10 mM GSH solution and 300 μl of 60 mM CDNB solution. Each 

well contained 100 μl of samples and 200 μl of reaction medium. Enzyme activity was 

measured at 340 nm for 6 min and expressed as nmol/min/mg protein. 

Catalase (CAT). CAT activity was determined by the method of Claiborne (1985) by 

measuring the rate of enzyme decomposition of hydrogen peroxide (H2O2) determined as 

absorbance decrease at 240 nm. The reaction medium (final volume of 10 ml) contained 

9977 µl of 50 mM phosphate buffer (pH 7.0) and 23 μl of hydrogen peroxide (H2O2; 30% 

v/v). The reaction was started by the addition of 5 µl of samples to 295 µl of reaction 

medium. Absorbance decrement was measured for 3 min at 240 nm. Results were 

expressed as μmol H2O2/min/mg protein. 

Superoxide dismutase (SOD). SOD activity was determined by a colorimetric method 

using a SIGMA kit (SOD Determination kit; ref: SIGMA 19160) to measure the 

superoxide anion reduction as proportional to the SOD inhibition activity. Each well 

contained 200 μl of WST (water soluble tetrazolium salt) working solution, 20 μl of 

enzyme working solution and 20 μl of sample and were left incubating at 37ºC for 20 

min. Three different blanks were prepared for the assay: Blank 1 (200 μl of WST working 

solution, 20 μl of enzyme working solution and 20 μl of ultrapure water); Blank 2 (200 

μl of WST working solution, 20 μl of dilution buffer and 20 μl of sample); and Blank3 

(200 μl of WST working solution, 20 μl of dilution buffer and 20 μl of ultrapure water). 

Absorbance was measured at 450 nm and SOD activity (inhibition rate %) was calculated 

as follow: 

SOD activity (inhibition rate %)  =
(𝐴1−𝐴3)−(𝐴𝑆−𝐴2)

(𝐴1−𝐴3)
× 100; 

where A1 is the absorbance of Blank 1, A2 is the absorbance of Blank 2, A3 is the 

absorbance of Blank 3 and AS is the absorbance of the samples. 
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2.5 Lysosomal biomarkers 

At days 3 and 7 of exposure, liver samples were dissected out, rapidly frozen and 

maintained at -80ºC until use. Frozen samples were processed using Tissue Array (TA) 

technology (Array Mold® Kit; n°20015-A) and TA blocks were cut at-27ºC using a Leica 

CM 3050S cryotome. 

Lysosomal membrane stability (LMS). The determination of lysosomal membrane 

stability was based on the time of acid labilisation treatment required to produce the 

maximum staining intensity according to UNEP/RAMOGE (1999), after demonstration 

of acid phosphatase (AcP) activity in hepatocyte lysosomes. Ten serial cryotome sections 

(10 µm) were subject to acid labilisation in intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 

and 50 min in 0.1 M citrate buffer (pH 4.5, containing 2.5% NaCl) in a shaking water 

bath at 37ºC.The demonstration of AcP activity was performed by incubation of the 

sections in a substrate incubation medium (naphthol AS-BI-phosphate, 

dimethylsulfoxide, 0.1 M citrate buffer at pH 4.5, containing 2.5% NaCl and low viscosity 

polypeptide, Polypep®) for 20 min at 37ºC, in a shaking bath. Rinsed sections (3% NaCl 

at 37ºC for 5 min) were stained at room temperature with diazonium dye Fast Violet B 

salt (1 mg/ml in 0.1 M phosphate buffer, pH 7.4) for 9 min. Slides were fixed in Baker's 

formol calcium containing 2.5% NaCl for 10 min at 4ºC, rinsed in distilled water and 

mounted in Kaiser´s glycerine gelatine. 

The time of acid labilisation treatment required to produce the maximum staining 

intensity was assessed under a light microscope as the maximal accumulation of reaction 

product associated with lysosomes (UNEP/RAMOGE, 1999) and was denoted as the 

Labilisation Period (LP; in min). Four determinations were made per individual; for each 

area, the first maximum staining peak was considered to determine the LP value (ICES, 

2015). A final LP value was calculated for each individual fish as the mean of the four 

LP values determined in each area. 

Lysosomal Structural Changes (LSC). The determination of changes in the size and 

numbers of lysosomes was made according to the method described by Cajaraville et al. 

(1989) for mussels, further on adapted to fish liver by Alvarado et al. (2005), after 

histochemical demonstration of β-glucuronidase activity in fish hepatocytes. Cryotome 

sections (8 µm) were incubated in freshly prepared β-glucuronidase substrate incubation 

medium (naphthol AS-BI-β-glucuronide, 50 mM sodium bicarbonate, 0.1 M acetate 

buffer at pH 4.5, containing 2.5% NaCl and polyvinyl alcohol at 15%) for 20 min at 37ºC. 

Slides were rinsed (2.5% NaCl at 37ºC for 2 min) and transferred to a postcoupling 

medium (Fast Garnet, 0.1 M phosphate buffer at pH 7.4 containing 2.5% NaCl) for 10 

min at room temperature, in the dark. Sections were fixed in Baker’s formol calcium 

solution containing 2.5% NaCl for 10 min at 4 ºC, rinsed in distilled water and mounted 

Kaiser’s glycerol gelatine. 

The structure of lysosomes was assessed through a stereological procedure based on 

image analysis (BMS, Sevisan) according to Cajaraville et al. (1991). Five measurements 
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using a 100× objective lens were made per individual. The mean value of the following 

stereological parameters was determined for the lysosomes of each liver sample (Lowe et 

al., 1981): volume density (VvL=VL/VC), surface density (SvL=SL/VC), surface-to-volume 

ratio (S/VL=SL/VL) and numerical density (NvL=NL/VC); where V=volume, S=surface, 

N=number, L=lysosomes and C=liver cytoplasm. 

Intracellular accumulation of neutral lipids. Changes in levels of neutral lipids were 

determined according to Marigómez and Baybay-Villacorta (2003), after Oil Red O 

(ORO) staining to visualise neutral lipids (Culling, 1974). Cryotome sections (8 μm) were 

fixed in Baker's formol calcium containing 2.5% NaCl for 15 min at 4ºC. Air dried 

sections were washed in isopropanol (60%) and stained with ORO for 20 min. The 

staining solution (stable for 1-2 h) was freshly made from a saturated stock ORO solution 

(0.3% in isopropanol) and kept protected from the light. Stained sections were 

differentiated in 60% isopropanol, rinsed in water, counterstained with 1% Fast Green 

FCF for 20 min and mounted in Kaiser's glycerine. 

Five measurements using a 40× objective lens were made per individual. The mean value 

of the volume density (VvNL=VNL/VC) of neutral lipids was determined; where 

V=volume, NL=neutral lipids and C=liver cytoplasm. 

2.6 Histological processing and histopathological examination 

At days 3 and 7 of exposure, gill, liver and gonad samples were dissected out (n=12 per 

experimental group). Gills were fixed in Bouin's solution for 24 hr at 4ºC and rinsed in 

formic acid (8% v/v) for 24 hr at room temperature. Liver and gonad samples were fixed 

in 4% neutral buffered formol for 24 hr at 4ºC. Fixed samples were dehydrated in a graded 

series of ethanol, cleared and embedded in paraffin (Leica ASP 300S). A minimum of 

two sections (5 µm) per sample were obtained using a rotary microtome (Leica RM 

2125RTS) and were stained with haematoxylin-eosin (H&E; Martoja and Martoja-

Pierson, 1970). 

Histopathological examination. The examination of histological samples was made under 

a light microscope (Nikon Eclipse E200) starting with a 4× objective lens for a general 

description of the organs. Higher power objective lenses (10×, 20×, 40× and 100×) were 

used for the identification of histopathological lesions. 

Hepatic samples were analysed for histopathology based on the recommendations 

provided by ICES (1997) and the Biological Effects Quality Assurance in Monitoring 

Programmes (BEQUALM, 2001). The publications by Costa et al. (2009b) on liver and 

gill histopathology of wild sole juveniles, Zorita and Cuevas (2014) on hepatic lesions 

commonly recorded in sole and Blazer (2002) on gonad histopathological lesions were 

used as guidelines to identify lesions in the particular case of sole. Amongst lesions 

identified, only persistent cases were considered for the calculation of histopathological 

indices and point alterations were discounted. 
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Histopathological indices. The semi-quantitative histopathological approach in liver was 

performed following two different methods. 

The first approach was based on the scoring system proposed by Lang et al. (2006) for 

hepatic histopathology. For this purpose, hepatic lesions were classified into five 

categories as presented by Feist et al. (2004): (1) non-specific lesions; (2) early non-

neoplastic toxicopathic lesions; (3) foci of cellular alteration (FCA); (4) benign 

neoplasms; and (5) malignant neoplasms. The stage (S) of each lesions recorded was 

determined as mild, medium and severe, depending on the size of the tissue area affected 

in the sections and the degree of cellular change observed. Lang's scoring system 

consisting of 15 lesion scores was used for the assessment of spatial and temporal 

variation in the lesions recorded. Lesions’ scores were determined based on the lesion 

category and the lesion stage (S). If more than one lesion category was recorded in one 

specimen, the highest lesion score was used for assessment purposes. From the individual 

scores, mean histopathology liver lesion scores (LSliver) were calculated for each sampling 

station and time. 

The second semi-quantitative approach was based on the weighted histopathological 

index developed by Bernet et al. (1999). Accordingly, hepatic lesions were classified into 

five categories based on their reaction pattern: (1) circulatory disturbances; (2) 

inflammatory responses; (3) regressive changes; (4) progressive changes; and (5) tumours 

(neoplams). Each alteration was assigned an importance factor (w) as: (1) minimal 

pathological importance (the lesion is reversible after the cessation of pollutant exposure); 

(2) moderate pathological importance (the lesion is reversible in most cases if the 

exposure ends); (3) marked pathological importance (the lesion is generally irreversible 

and may lead to partial or total loss of organ function). The stage (a) of each lesion 

identified was ranked in 4 categories (0, 2, 4 and 6) according to the level of dissemination 

of the alteration in the organ; where 0 is absence and 6 is high degree of dissemination 

depending on the size of the tissue area affected in the sections and the degree of cellular 

change observed. Different histopathological indices were calculated using the lesion 

importance factor (w) and the lesion stage (a): 

- organ index Iorg. was calculated for each individual and for each organ as follow: 

Iorg = Σrp Σalt (worg rp alt× aorg rp alt) 

- reaction index of an organ Iorg rp was calculated for each individual, each organ 

and each lesion category: 

Iorg rp = Σalt (worg rp alt× aorg rp alt) 

Gills and gonads lesions were also classified according to Bernet et al. (1999). Only Iliver 

and Igills were used to calculate the total histopathological indices integrating the 

histopathological results from different organs: 

- the total index Itot was calculated for each individual, for all organs: 

Itot= Σorg Σrp Σalt (worg rp alt × aorg rp alt) 
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- the total reaction index Irp was calculated for each individual and each lesion 

category, for all organs: 

Irp= Σorg Σalt (worg rp alt× aorg rp alt) 

Histopathological indices. The prevalence of each histopathological alteration was 

determined as the percentage occurrence of an alteration within each experimental group 

for gills and liver and within each combination of experimental group and gender for 

gonads. 

Characterisation of the reproductive cycle. Gonad histological sections were analysed at 

a light microscope for gender and gamete developmental stages determination. Male 

gamete developmental stages were determined according to García-López et al. (2006) 

and were classified in five stages as follow: Stage I (early spermatogenesis); Stage II (mid 

spermatogenesis); Stage III (late spermatogenesis); Stage IV (mature); Stage V 

(recovery). The identification of gamete developmental stages for females was mainly 

based on Murua and Motos (2006). Stages were classified as followed: Stage I (growth); 

Stage II (early vitellogenesis); Stage III (late vitellogenesis); Stage IV (maturation). 

2.7 Integrative Biological Response (IBR/n) index 

The IBR index (Beliaeff and Burgeot, 2002) was calculated based on the integration of 

biochemical (GST, CAT), histochemical (LP) biomarkers and hepatic histopathology 

(Igills, Iliver) following the calculation method described by Marigómez et al. (2013). The 

calculation method is based on relative differences between the biomarkers in each given 

data set. Thus, the IBR index is computed by summing-up triangular starplot areas 

(multivariate graphic method) for each two neighbouring biomarkers in a given data set, 

according to the following procedure (Beliaeff and Burgeot, 2002; Devin et al., 2014): 

(1) calculation of the mean and standard deviation for each sample; (2) standardization of 

data for each sample: xi´=(xi-x)/s; where, xi´=standardized value of the biomarker; 

xi=mean value of a biomarker from each sample; x=general mean value of xi calculated 

from all compared samples (data set); s=standard deviation of xi calculated from all 

samples; (3) addition of the standardized value obtained for each sample to the absolute 

standardized value of the minimum value in the data set: yi=xi´ + |xmin´|; (4) calculation 

of the Star Plot triangular areas as Ai=(yi × yi+1 × sinα)/2, where yi and yi+1 are the 

standardized values of each biomarker and its next biomarker in the star plot, respectively, 

and α is the angle (in radians) formed by each two consecutive axis where the biomarkers 

are represented in the Start Plot (α=2π/n; where n is the number of biomarkers); and (5) 

calculation of the IBR index which is the summing-up of all the Star Plot triangular areas 

(IBR=ΣAi).Since the IBR value is directly dependent on the number of biomarkers in the 

data set, the obtained IBR value must be divided by the number of biomarkers used 

(IBR/n; Broeg and Lehtonen, 2006). 

In the present work, five biomarkers were integrated for the calculation of the index as 

IBR/n. Parameters were selected to represent effects of waterborne Cd at different 

biological organisation levels where biochemical and histochemical parameters 
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demonstrate sub-cellular effects of contaminants and gill and liver histopathology 

indicate subsequent tissue-level effects. 

2.8 Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics Base 22.0. Homogeneity 

of variance (Levene´s test) and normality of data (Shapiro’s test) were tested before 

statistical analysis. Two-way ANOVAs were performed to analyse the effects of the B[a]P 

waterborne concentration ([B[a]P]sw), the exposure time (T) and their combination 

([B[a]P]sw×T) on biomarkers and histopathology. Logarithmic transformation was applied 

to non-parametric variables (GST, LP, VvL, S/VL and VvNL). For normal data, differences 

between experimental groups and throughout exposure time were tested using the 

parametric one-way Anova test and the T Student test, respectively. For non-normal data 

set, the non-parametric Kruskal-Wallis test and Mann-Whithney U test were used to 

analyse differences in biological data between experimental groups and throughout 

exposure time. The z-score test and the Pearson’s Chi test were used to determine 

significant differences in histopathological lesions prevalence between experimental 

groups and throughout exposure time. Significant differences in chemical data were tested 

with the z-score test. Level of significance for all analyses was p=0.05. 

3. Results 

3.1.  Chemical analysis 

Overall, concentrations of B[a]P measured in water samples 48 h after contaminant load 

were lower than the nominal concentrations. However, the B[a]P concentration gradient 

was maintained. Thus, the highest waterborne concentration was measured in the High 

B[a]P group (17000 ng/l) and the lowest in the Low B[a]P group (40 ng/l), with the Mid 

B[a]P group (260 ng/l) in between. The B[a]P concentration in the DMSO and Control 

groups was below detection limits. 

3.2. Biological responses and toxicopathic effects 

In total, 130 individuals were used. Length (24.3±2.0 cm) and W (160.3±39.6 g) were 

constant throughout the experiment. Likewise, the condition index K (1.1±0.1), HSI 

(1.0±0.3) and male GSI (0.05±0.02) did not differ between exposure groups. In contrast, 

female GSI varied between groups at day 7, with the lowest index recorded in Mid B[a]P 

exposed soles and the highest in DMSO exposed soles. 

3.3. Biochemical analysis 

Brain AChE activity was significantly affected by [B[a]P]sw, T and [B[a]P]sw×T (2-way 

ANOVA; Table 1), varying from 110.2±2.0 nmol/min/mg prot in Mid B[a]P soles at day 

3 to 66.1±3.1 nmol/min/mg prot in Low B[a]P soles at day 7 (Figure 1A). At day 3, the 

lowest AChE activity was recorded in Control soles and the highest in DMSO and Mid 
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B[a]P treated soles. However, at day 7, AChE activity decreased in DMSO and B[a]P 

treated soles and reached levels similar to Control values.  

Hepatic GST activity was affected by [B[a]P]sw and B[a]P×T (2-way ANOVA; Table 1). 

Thus, the lowest GST activity values were recorded in High B[a]P soles at day 3 and in 

Mid B[a]P and High B[a]P soles at day 7 (Figure 1B). In contrast, enzyme activity 

measured in Low B[a]P exposed soles increased at day 7. Hepatic CAT activity was 

significantly affected by [B[a]P]sw (2-way ANOVA; Table 1). Thus, the lowest CAT 

activity was recorded in Mid B[a]P and High B[a]P soles (Figure 1C). At day 7, soles 

exposed to Low B[a]P also showed lower enzyme activity than Control and DMSO soles. 

There were no significant differences between CAT activity values of the Control and 

DMSO groups. Hepatic SOD activity was affected by [B[a]P]sw, T and B[a]P×T (2-way 

ANOVA; Table 1). Thus, SOD activity increased at day 7 in all the experimental groups 

and levels recorded in Control soles were always higher than in the other experimental 

groups (Figure 1D). 

Parameter 
Residual 

d.f. 
F([B[a]P]sw) F(T) F([B[a]P]swxT) 

AChE 50 3.134* 68.314*** 9.346*** 

GST 51 27.579*** 0.715 7.275*** 

CAT 52 16.157*** 1.428 1.635 

SOD 59 176.035*** 1568.478*** 23.649*** 

LP 105 63.576*** 22.955*** 1.332 

VvL 95 0.995 38.507*** 4.302** 

S/VL 95 4.287** 36.646*** 5.013** 

VvNL 90 3.462* 6.630* 2.427 

Epithelial lifting 119 1.719 19.596*** 2.025 

Chloride cell hyperplasia 55 0.675 5.021* 1.218 

FV of hepatocytes 126 6.412*** 0.011 2.669* 

LSliver 129 6.130*** 0.408 4.239** 

Itot 129 5.345** 1.370 2.477* 

Igills 129 4.561** 4.678* 5.322** 

Iliver 129 3.656** 0.286 2.696* 

Igonad 61 6.456*** 2.827 0.848 

FV: Fat Vacuolation; CPF: Concentric Periductal Fibrosis. No significant effect of S, 

T or S×T was detected for NvL, gills, liver and gonad lesion stages (with the 

exception of epithelial lifting, chloride cell hyperplasia and FV of hepatocytes), Igills, 

male Igon and female Igon. 

Table 1. Summary of the 2-way ANOVAs performed to analyse the effects of [B[a]P]sw 

(d.f.: 4), time of exposure (d.f.: 1) and their combination (“[B[a]P]swxT”, d.f.: 4) on 

biomarkers and histopathology (lesion stages and indices) in S. senegalensis exposed to 

different sediments for 3 and 7 days. Logarithmic transformation was applied to GST, 

LP, VvL, S/VL and VvNL (non-parametric variable). d.f.: degrees of freedom; F: Fisher’s 

F; *: p<0.05; **: p<0.01; ***: p<0.001. 
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Lysosomal LP was significantly affected by [B[a]P]sw and T (2-way ANOVA; Table 1); 

ranging from 30.5±1.6 min in Control soles at day 7 to 5.7±0.4 min in High B[a]P soles 

at day 3 (Figure 2A). LP values from B[a]P exposed soles were significantly lower than 

levels recorded in the Control groups, in particular for High B[a]P exposed soles. In 

contrast, LP values from the DMSO group were similar to Control and Low B[a]P LP 

levels at day 3 and to Low B[a]P and Mid B[a]P LP levels at day 7. LP from the Control, 

Low B[a]P and High B[a]P groups increased at day 7. VvL and S/VL were significantly 

affected by T and B[a]P×T and S/VL was also affected by [B[a]P]sw (2-way ANOVA; 

Table 1). Thus, VvL and S/VL were constant between experimental groups at day 3 whilst 

VvL increased and S/VL tended to decrease in all experimental groups, except in Control 

soles, at day 7 (Figure 2B-C). The highest VvL values were recorded in DMSO soles at 

day 7. In contrast, NvL (0.00036±0.00002 1/µm3) did not vary between experimental 

3         7 
Time (days) 

3         7 
Time (days) 

Control        DMSO         Low B[a]P        Mid B[a]P        High B[a]P 

Figure 1. Brain acetylcholinesterase (A) and hepatic glutathione S-transferase (B), 

catalase (C) and superoxide dismutase (D) enzyme activities measured in S. senegalensis 

exposed to different concentrations of BaP for 3 and 7 days. Different letters indicate 

significant differences between experimental groups of the same sampling time; asterisks 

indicate significant differences between exposure times (p<0.05); AChE: 

acetylcholinesterase; CAT: catalase; GST: glutathione S-transferase; SOD: superoxide 

dismutase. 
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Control        DMSO         Low B[a]P        Mid B[a]P        High B[a]P 

groups (Figure 2D). VvNL was significantly affected by [B[a]P]sw and T (2-way ANOVA; 

Table 1). Levels of VvNL did not vary between experimental groups at day 3 and were 

maintained constant in Control and High B[a]P soles (Figure 2E). In contrast, higher VvNL 

values were recorded in the other experimental groups at day 7, in particular in DMSO 

treated soles.  

3        7 
Time (days) 

3      7 
Time (days) 

Figure 2. Lysosomal membrane stability 

(A), lysosomal structural changes (B-D) 

and intracellular neutral lipid volume 

density (E) assessed in liver of S. 

senegalensis exposed to different 

concentrations of BaP for 3 and 7 days. 

Different letters indicate significant 

differences between experimental groups 

of a same sampling time; asterisks indicate 

significant differences between exposure 

times (p<0.05). LP: labilisation period; 

VvL: lysosomal volume density; S/VL: 

lysosomal surface to volume ratio; NvL: 

lysosomal numerical density; VvNL: 

volume density of neutral lipids. 
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Practically all the examined soles presented lamellar capillary aneurysm and epithelial 

lifting in the gills (Figure 3A-B). Hypertrophy of squamous epithelium was detected at 

mild to high prevalence and chloride cell hyperplasia (Figure 4C) at low to mild 

prevalence (Table 2).The lowest prevalence of hypertrophy of squamous epithelium was 

recorded in the Control group. Lesion stages of epithelial lifting and chloride cell 

hyperplasia were significantly affected by T (2-way ANOVA; Table 1).

Figure 3. Histological sections (5 µm) of S. senegalensis exposed to different 

concentrations of BaP for 3 and 7 days, stained with haematoxylin and eosin. (A) Gill 

tissue showing capillary aneurysm (arrow); (B) gill epithelial lifting (arrow); (C) chloride 

cell hyperplasia; (D) hepatic hyperaemia with accumulation of erythrocytes in blood 

vessels; h: hyperaemia; s: sinusoid; (E) severe case of hepatic necrosis; (F) Concentric 

Periductal Fibrosis. Black scale bar: 50 µm; white scale bar: 100 µm. 
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    Day3     Day7   

Gill lesions w Control DMSO Low BaP Mid BaP High BaP Control DMSO Low BaP Mid BaP High BaP 

Circulatory disturbances            

Lamellar capillary 

aneurysm 

1 100.0 100.0 100.0 76.9 100.0 92.3 76.9 84.6 100.0 100.0 

 (2.5±0.2) (2.1±0.2) (2.2±0.2) (2.0±0.0) (2.2±0.2) (2.2±0.2) (2.2±0.2) (2.0±0.0) (2.2±0.2) (2.3±0.2) 

Regressive changes            

Epithelial lifting 1 92.3 75.0 92.3 100.0 100.0 76.9 100.0 92.3 100.0 100.0 

 (2.3±0.2) (2.2±0.2) (2.3±0.3) (2.5±0.2) (2.3±0.2) (2.6±0.3) (3.1±0.4) (3.0±0.3) (2.9±0.3) (4.0±0.2)* 

Progressive changes            

Hypertrophy of 

squamous epithelium 

1 53.8 76.9 76.9 61.5 84.6 23.1 84.6 53.8 84.6 76.9 

 (2.3±0.3) (2.0±0.0) (2.2±0.2) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.5±0.3) (2.0±0.0) 

Chloride cell hyperplasia 2 46.2 69.2 46.2 38.5 53.8 23.1 38.5 69.2 30.8 15.4* 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.3±0.3) (2.7±0.7) (2.4±0.4) (2.2±0.2) (3.0±0.6) (2.0±0.0) 

w: lesion importance factor. 

Table 2. Lesions prevalence (%) and means and standard errors of lesions stages (n=13; lesion intensity when detected) for gill 

histopathological lesions identified in S. senegalensis collected from each experimental group at days 3 and 7. Bold values indicate 

significant differences between experimental groups from the same sampling time (p<0.05); asterisks indicate significant differences 

between sampling days (p<0.05). 
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    Day3     Day7   

Hepatic lesions w Control DMSO Low BaP Mid BaP High BaP Control DMSO Low BaP Mid BaP High BaP 

Circulatory disturbances            

Haemorrhage  1 7.7 0.0 7.7 0.0 15.4 0.0 0.0 0.0 7.7 7.7 

 (2.0±0.0) (0.0) (2.0±0.0) (0.0) (2.0±0.0) (0.0) (0.0) (0.0) (2.0±0.0) (2.0±0.0) 

Hyperaemia 1 23.1 15.4 23.1 7.7 15.4 7.7 0.0 0.0 15.4 23.1 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (0.0) (0.0) (3.0±1.0) (2.0±0.0) 

Inflammatory responses            

MMCs 1 15.4 61.5 53.8 61.5 61.5 69.2* 61.5 76.9 61.5 76.9 

  (2.0±0.0) (2.5±0.5) (2.9±0.4) (2.3±0.3) (2.3±0.3) (2.2±0.2) (2.0±0.0) (2.4±0.4) (2.3±0.3) (2.4±0.4) 

Lymphocytic infiltration 2 23.1 15.4 30.8 30.8 15.4 0.0 0.0 15.4 53.8 7.7 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (0.0) (0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Regressive changes            

Necrosis 3 46.2 69.2 61.5 76.9 84.6 76.9 61.5 76.9 76.9 61.5 

  (2.3±0.3) (2.2±0.2) (2.3±0.3) (2.0±0.0) (2.2±0.2) (2.0±0.0) (2.0±0.0) (2.2±0.2) (2.0±0.0) (2.0±0.0) 

Progressive changes            

FV of hepatocytes 1 100.0 100.0 100.0 92.3 100.0 92.3 100.0 92.3 100.0 100.0 

  (4.3±0.4) (4.6±0.3) (4.9±0.4) (4.7±0.4) (5.5±0.2) (3.3±0.4)a (4.9±0.4)bc (4.8±0.3)b (5.8±0.2)c* (5.2±0.4)bc 

HV of epithelial cells of 

bile ducts 

2 7.7 7.7 0.0 7.7 15.4 0.0 0.0 38.5* 0.0 0.0 

 (2.0±0.0) (2.0±0.0) (0.0) (2.0±0.0) (2.0±0.0) (0.0) (0.0) (2.4±0.4) (0.0) (0.0) 

CPF of bile ducts 2 23.1 30.8 30.8 16.7 69.2 53.8 38.5 69.2* 53.8 38.5 

  (2.0±0.0) (2.5±0.5) (2.0±0.0) (2.7±0.7) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

w: lesion importance factor; MMCs: Melanomacrophage Centres; FV: Fat Vacuolation; HV: Hydropic Vacuolation; CPF: Concentric 

Periductal Fibrosis. 

Table 3. Lesions prevalence (%) and means and standard errors of lesions stages (n=13; lesion intensity when detected) for liver 

histopathological lesions identified in S. senegalensis collected from each experimental group at days 3 and 7. Bold values indicate 

significant differences between lesion prevalence of experimental groups from a same sampling time (p<0.05); different letters indicate 

significant differences between lesions stages of experimental groups from a same sampling time (p<0.05); asterisks indicate significant 

differences between sampling days (p<0.05). 
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    Day3     Day7   

  Control DMSO Low BaP Mid BaP High BaP Control DMSO Low BaP Mid BaP High BaP 

Gonad lesions in females w n=7 n=6 n=8 n=7 n=5 n=10 n=4 n=6 n=4 n=5 

Circulatory disturbances            

Hyperaemia 1 0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  (0.0) (2.0±0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

Inflammatory responses            

Lymphocytic infiltration 2 0.0 16.7 0.0 42.9 20.0 0.0 25.0 0.0 50.0 0.0 

  (0.0) (2.0±0.0) (0.0) (2.0±0.0) (2.0±0.0) (0.0) (2.0±0.0) (0.0) (2.0±0.0) (0.0) 

Regressive changes            

Necrosis 3 0.0 50.0 25.0 57.1 20.0 10.0 75.0 16.7 75.0 60.0 

  (0.0) (2.0±0.0) (2.0±0.0) (2.5±0.5) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) 

Atresia 3 0.0 16.7 0.0 0.0 0.0 10.0 0.0 0.0 25.0 60.0* 

  (0.0) (2.0±0.0) (0.0) (0.0) (0.0) (2.0±0.0) (0.0) (0.0) (2.0±0.0) (2.0±0.0) 

Progressive changes            

Lipids in oocytes 1 28.6 16.7 37.5 42.9 40.0 20.0 0.0 50.0 50.0 40.0 

  (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (2.0±0.0) (0.0) (2.0±0.0) (3.0±1.0) (2.0±0.0) 

w: lesion importance factor;  n: sample size for female gonad histopathology. 

Table 4. Lesions prevalence (%) and means and standard errors of lesions stages (n=13; lesion intensity when detected) for female gonad 

histopathological lesions identified in S. senegalensis collected from each experimental group at days 3 and 7. Bold values indicate 

significant differences between experimental groups from the same sampling time (p<0.05); asterisks indicate significant differences 

between sampling days (p<0.05). 
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Control        DMSO         Low B[a]P        Mid B[a]P        High B[a]P 

Higher lesion stages of epithelial lifting were detected at day 7, in particular in High B[a]P 

exposed soles (Table 2). No tumours were detected in gills. 

Often, liver samples appeared largely vacuolated showing important lipid accumulation 

in hepatocytes in all experimental groups. Haemorrhage, hyperaemia (Figure 3D) and 

lymphocytic infiltration were rarely observed in Control and DMSO soles but they were 

occasionally identified in B[a]P exposed soles (Table 3). Cases of melanomacrophage 

centre accumulation (MMCs), necrosis (Figure 3E) and concentric periductal fibrosis 

(Figure 3F) were detected at moderate prevalence in most groups and in particular in High 

B[a]P exposed soles (Table 3). The lesion stage of fat vacuolation in hepatocytes was 

moderate-to-high in all the soles examined; however, it was significantly affected by 

[B[a]P]sw and [B[a]P]sw×T (2-way ANOVA; Table 1). Thus, the highest lesion stages were 

recorded at day 7, in particular in soles exposed to Mid B[a]P and High B[a]P (Table 3). 

On the other hand, all the other hepatic lesions were recorded at mild lesion stage (Table 

3) and did not change during experimentation (2-way ANOVA; Table 1).  

Upon microscopic examination of gonad tissue, most soles were shown to be at an early 

stage of gamete development. Males mostly presented immature testis (46.3%) and early 

spermatogenesis stage (50.7%); and although one case of early vitellogenesis (Stage II) 

was identified, most females (98.4%) presented primary growth oocytes (Stage I). No 

histopathological lesions were identified in testis of Control soles. Moreover, the only 

lesions recorded in testis of DMSO and B[a]P exposed soles were scarce with only few 

cases of granulomatous tissue (<20.0%) and necrosis (<35.0%). 

In females, lymphocytic infiltration, necrosis, atresia and pre-vitellogenic oocyte lipidosis 

were rarely detected in Control soles and were at mild to moderate prevalence in the other 

experimental groups. Highest prevalence levels for these lesions were measured in soles 

exposed to Mid B[a]P or High B[a]P (Table 4). Lesions stages were low (<4.0) and did 

not vary between experimental groups (2-way ANOVA; Table 1, Table 4). 

LSliver was significantly affected by [B[a]P]sw and B[a]P×T (2-way ANOVA; Table 1); 

ranging from 1.62±0.18 (Control group, at day 7) to 3.08±0.26 (Low B[a]P group, at day 

7). Thus, LSliver from Control soles decreased at day 7 and was lower than in the other 

experimental groups (Figure 4).  

3       7 
Time (days) 

Figure 4. Histopathology liver lesion 

scores (LSliver) of S. senegalensis 

exposed to different concentrations of 

BaP for 3 and 7 days. Different letters 

indicate significant differences 

between experimental groups of the 

same sampling time; asterisks 

indicate significant differences 

between exposure times (p<0.05). 
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Itot, Igills and Iliver were significantly affected by [B[a]P]sw and B[a]P×T; whereas Igills also 

varied with T (2-way ANOVA; Table 1). Itot, Igills and Iliver from the Control and DMSO 

groups were similar whilst higher values were recorded in B[a]P exposed soles, in 

particular at day 7 (Figure 5A-C). Similarly, female Igonad was significantly affected by 

B[a]P (2-way ANOVA; Table 1). Although female Igonad did not differ between 

experimental groups at day 3, highest values were recorded in Mid B[a]P and High B[a]P 

groups at day 7 (Figure 5D). The highest male Igonad was recorded in individuals from the 

DMSO group, at day 7 (4.67±1.94) but significant differences were not detected between 

experimental groups (2-way ANOVA; Table 1).  

Control        DMSO         Low B[a]P        Mid B[a]P        High B[a]P 

3         7 
Time (days) 

3         7 
Time (days) 

Figure 5. Total index (Itot), gill index (Igills), liver index (Iliver) and female gonad index 

(Igonad) of S. senegalensis exposed to different concentrations of BaP for 3 and 7 days. 

Different letters indicate significant differences between experimental groups of the same 

sampling time; asterisks indicate significant differences between exposure times 

(p<0.05). 
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Figure 6A. Radar plots constructed using five selected biological parameters (GST, 

CAT, LP, Iliver and Igills) for each experimental group of juvenile S. senegalensis exposed 

to different concentrations of BaP for 3 and 7 days. 
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The IBR/n index ranged from 0.01 in Control soles at day 7 to 3.63 in soles exposed to 

High B[a]P for 7 d (Figure 6A-B). Higher IBR/n index levels were recorded in High 

B[a]P soles at days 3 and 7 and in Mid B[a]P soles at day 7.   

4. Discussion 

The application of individual model PAH compounds like B[a]P for ecotoxicological 

studies implies the need of a carrier to counteract the hydrophobicity of the contaminant. 

DMSO has been previously applied as an effective solvent vehicle for organic compounds 

that is considered to have a low toxicity for fish species (Willford, 1967). The OECD 

recommends a maximum DMSO concentration of 1.1 mg/l to avoid biological effects of 

the carrier in fish. Hutchinson et al. (2006) provided a review of previous studies testing 

the toxicity of low concentrations of DMSO in aquatic animals. Among them, Pawlowski 

et al. (2004a, 2004b) demonstrated that DMSO at 0.01% (v/v) may affect egg production 

in fathead minnow but did not alter liver and gonad histology. Similarly, after long-term 

exposure (100 days) to 0.01-2.0% (v/v) DMSO did not generate histopathological lesions 

in gills and kidney in Coho salmon (Benville et al., 1968). Thus, the DMSO concentration 

(100 µl DMSO/l sw) used herein was not expected to elicit confounding biological 

responses in sole juveniles. Accordingly, only minor differences were occasionally found 

between soles of Control (seawater) and DMSO experimental groups. Yet, exposure to 

DMSO for 7 days seemed to have some influence on SOD enzyme activity and lysosomal 

biomarkers. Nevertheless, although the toxicity of the carrier used herein cannot be fully 

neglected it is worth noting that the responses to B[a]P exposure were clearly 

demonstrable in comparison with the Control and DMSO groups. 

The B[a]P concentrations used in the present study were selected to ensure that biological 

effects would be exerted in sole juveniles, as it could be expected after preceding reports 

on other fish species (Vieira et al., 2008; Gravato and Guilhermino, 2009). Chemical 

analysis of water samples permitted to confirm that the B[a]P concentrations in 

experimental tanks were congruent with the gradient of nominal concentrations originally 

selected. Yet, the measured concentrations were noticeably lower than the nominal ones; 

this might be due to the low solubility of B[a]P in seawater or to the loss of waterborne 

B[a]P (samples were taken 48 hr after dosing) either by relatively fast evaporation during 

the running of the experiment at 18ºC and with aeration in open tanks or by binding to 

Figure 6B. IBR/n index calculated on 

the basis of the radar plots constructed 

using five selected biological parameters 

(GST, CAT, LP, Iliver and Igills) for each 

experimental group of juvenile S. 

senegalensis exposed to different 

concentrations of BaP for 3 and 7 days. 

 

Control        DMSO         Low B[a]P        Mid B[a]P        High B[a]P 
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solid matter. Indeed, heavy PAHs (<3 rings) such as B[a]P occur at low concentration in 

soluble forms in seawater due to their low seawater solubility and to their strong binding 

to particulate matters and solid materials (Qingling et al., 2006). In agreement, waterborne 

PAH concentration in experimental setups is known to be reduced as a result of their 

adsorption to particulate matter or to the basin surface, as well as due to their 

photochemical degradation, biotransformation and uptake by fish (Budzinski et al., 2004). 

Presently, the consequences of these confounding factors in the mid-term were somehow 

buffered because seawater and B[a]P were renewed every second day, thus contributing 

to maintain for 7 days the differences in the B[a]P exposure level between the 

experimental groups even though the measured concentrations of the PAH were lower 

than the nominal ones. 

Neurotoxicity. 

AChE enzyme activity recorded in soles from the seawater Control group was similar to 

values reported in farmed individuals (Solé et al., 2008). However, a decrease in AChE 

activity was recorded at day 7 on exposure to DMSO and to different concentrations of 

B[a]P. AChE enzyme inhibition was reported previously in fish Pomatoschistus microps 

exposed to B[a]P (Vieira et al., 2008) and in S. senegalensis exposed to the biocide sodium 

hypochlorite (López-Galindo et al., 2010a). Overall, exposure to PAHs such as B[a]P is 

known to inhibit AChE activity in fish brain (Baršienė et al., 2006); however, to our 

knowledge DMSO was not expected to cause neurotoxic effects at the used 

concentrations (Yen et al., 2011). Nevertheless, behavioural toxicity of the carrier was 

reported in early life stage of other fish species exposed to higher DMSO concentration 

(Chen et al., 2011) and therefore a certain neurotoxicity of this compound cannot be fully 

disregarded for sole juveniles under the present experimental conditions. In any case, the 

present findings indicate that more research is needed to properly use DMSO or other 

alternative carriers in experimental setups in which the toxicity of waterborne PAHs (or 

that of other hydrophobic organic chemicals) is investigated.  

Biotransformation of organic contaminants. 

GST activity values recorded herein for Control and DMSO exposed soles resemble those 

reported for farmed individuals (Solé et al., 2008) and for wild sole from reference sites 

(Oliva et al., 2012b; Jebali et al., 2013). On this basis, GST was seemingly induced upon 

exposure to 100 ng B[a]P/l, which suggests that Phase II detoxification processes were 

activated. Indeed, GST is a Phase II enzyme known to contribute to PAH 

biotransformation (van der Oost et al., 2003). Alike, GST induction was described in other 

fish species after exposure to waterborne B[a]P (Vieira et al., 2008; Gravato and 

Guilhermino, 2009) and in sole juveniles after exposure to oiled sediments (Salamanca et 

al., 2008). In contrast, under the present experimental conditions exposure to waterborne 

B[a]P concentrations in the range of 1000-100000 ng B[a]P/l caused GST inhibition. 

Almeida et al. (2012) also reported that GST enzyme activity decreased in juvenile 

seabass exposed to waterborne pyrene. In agreement with the present observations, 

Gravato and Guilhermino (2009) also reported that GST enzyme activity was either 

induced or inhibited in seabass depending on the contaminant concentration: GST activity 
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was induced after exposure to a nominal concentration of 4000 ng B[a]P/l in seawater and 

inhibited by higher concentrations (8000-16000 ng/l). Thus, the decrease in GST activity 

observed herein may imply that the capacity of sole juveniles to detoxify B[a]P and its 

metabolites through the pathway of glutathione conjugation is limited when waterborne 

concentrations of this individual PAH compound exceed a nominal concentration of 1000 

ng B[a]P/l. Interestingly, this concentration is comparable to the range of B[a]P 

concentration reported in highly contaminated estuarine waters, which in addition occur 

along in combination with other chemicals (Maskaoui et al., 2002). 

Oxidative stress. 

Exposure to contaminants induces CAT activity in fish liver indicating the activation of 

antioxidant defences (Jee and Kang, 2005; López-Galindo et al., 2010a, 2010b; Oliva et 

al., 2012b; Chapter 3). However, CAT activity can result also inhibited when the 

overproduction of ROS exceeds the antioxidant capacity of the cell (Roméo et al., 2000; 

Kalman et al., 2010; Oliva et al., 2012b). Presently, exposure to a nominal concentration 

of B[a]P in the range of 1000-100000 ng B[a]P/l clearly inhibited CAT activity at day 3, 

whereas the inhibition was more attenuated and recorded only after 7 days upon exposure 

to the nominal concentration of 100 ng B[a]P/l. Therefore, the degree oxidative stress 

seems to vary depending on the B[a]P concentration, with early and more marked ROS 

excess in sole juveniles exposed to a waterbone nominal concentration of B[a]P higher 

than 100 ng B[a]P/l (measured 48 hr-[B[a]P]sw = 40 ng B[a]P/l). Likewise, as a parallel 

evidence of the antioxidant capacity overload at those exposure concentrations, lysosomal 

responses revealed signs of membrane disruption and potential pathogenesis (see below). 

A comparable profile of pollutant concentration dependent induction/inhibition profile 

was observed in sole juveniles exposed to waterborne Cd (Chapter 3). Regarding SOD 

activity, obtained results are not conclusive as changes in this enzyme activity could not 

be related to B[a]P exposure; quite the contrary, SOD activity was lower in DMSO and 

B[a]P exposed soles that in control ones and higher at day 7 than at day 3 in all the 

experimental groups. Inconsistent results have been reported in other studies and seem to 

be related to the complexity and timing of the antioxidant defence network. Thus, for 

instance, SOD induction was reported in fish upon exposure to waterborne B[a]P (2000-

20000 ng B[a]P/l) for 6 days, SOD was inhibited after 12 days exposure to 20000 ng 

B[a]P/l (Wu et al., 2006).  

Lysosomal responses. 

Preceding laboratory experiments revealed that individual PAH compounds like B[a]P 

can provoke lysosomal enlargement and membrane destabilisation in marine organisms 

(Marigómez and Baybay-Villacorta, 2003; Marigómez et al., 2005; Zorita et al., 2008). 

Present LP values recorded in Control and DMSO groups (≈15-30 min) are similar those 

previously recorded in healthy fish (Köhler et al., 1992; Köhler and Pluta, 1995; Broeg et 

al., 1999, 2002; Viarengo et al., 2007; Zorita et al., 2008). Meanwhile, reduced LP values 

recorded in B[a]P exposed soles range from 14.42±0.98 (100 ng B[a]P/l) to 5.68±0.39 min 

(100000 ng B[a]P/l), with a clear concentration-dependent profile. These values are 

similar to those reported in wild Platichthys flesus affected by an oil spill event (Baršienė 

et al., 2006) and in wild Limanda limanda collected from the polluted Seine estuary 

(Burgeot et al., 2017). Altered lysosomal membrane stability is commonly accompanied 

with lysosomal structure changes evidenced by changes in size and numbers of the 
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lysosomes (Köhler et al., 1992; Cajaraville et al., 1995; Marigómez et al., 2005; Alvarado 

et al., 2005; Dagnino et al., 2007; Izagirre and Marigómez, 2009). Yet, in the present 

study lysosomal enlargement (high VvL and low S/VL) was evident only in DMSO and 

B[a]P exposed soles at day 7, especially in the former. A comparable profile was observed 

regarding intracellular accumulation of neutral lipids. It seems therefore that the carrier 

exerted some effects on juvenile soles, thus rendering present results on changes in 

lysosomal structure and content not fully conclusive regarding B[a]P effects. 

Histopathology. 

Gill lesions identified in the present study were similar to those previously described in 

wild fish from contaminated sites (Stentiford et al., 2003; Camargo and Martinez, 2007; 

Oliva et al., 2013; Santos et al., 2014; Chapter 1) and from laboratory experiments using 

organic compounds (Jímenez-Tenorio et al., 2008; Martins et al., 2016). Overall, higher 

lesion prevalence were recorded in B[a]P exposed soles than in Control or DMSO groups 

at day 7. Similarly, higher lesion stage of epithelial lifting was recorded at day 7, in 

particular in soles exposed to 100000 ng B[a]P/l. Haemorrhage, hyperaemia, increased 

MMCs, lymphocytic infiltration, hydropic vacuolation of epithelial cells of bile ducts and 

concentric periductal fibrosis, and necrosis were observed at higher prevalence in B[a]P 

exposed soles than in Control or DMSO groups. These lesions were previously described 

in sole, both after laboratory exposure to pollutants and in field studies (Costa et al., 2011, 

2013; Oliva et al., 2013; Zorita and Cuevas, 2014; Chapters 1, 2 and 3). In testis, only 

few cases of granulomatous tissue and necrosis were recorded, with no clear relation with 

B[a]P exposure; in agreement, histopathological lesions in testis were also only 

circumstantial in sole juveniles exposed to Cd (Chapter 3). In contrast, lymphocytic 

infiltration, necrosis, atresia and lipids in oocytes were identified at mild to moderate 

prevalence in the ovaries of B[a]P exposed soles, especially upon exposure to 1000-

100000 ng B[a]P/l. These lesions were previously reported in fish subject to 

environmental stress (Blazer, 2002; Reynolds et al., 2003; Cuevas et al., 2015a, 2015b; 

Chapters 1, 2 and 3). Lesions were integrated into weighted histopathological indices 

(Bernet et al., 1999; Van Dyk et al., 2007; Costa et al., 2009a) to identify potential cause-

effect relationship between exposure to B[a]P and disease condition in sole juveniles. 

Thus, higher total index (Itot), gill index (Igills) and liver index (Iliver) were recorded in soles 

exposed to B[a]P than in the Control and DMSO groups, in particular at day 7. In 

agreement, previous works reported increased histopathological indices after exposure to 

pollutants (Bernet et al., 2004; Van Dyk et al., 2007; Jímenez-Tenorio et al., 2008; Costa 

et al., 2009a; Chapter 1). Moreover, the highest Iliver (≈16) and Igonad (≈10) values recorded 

upon exposure to 1000-100000 ng B[a]P/l are not dissimilar from the values reported in 

sole juveniles exposed to contaminated sediments and to waterborne Cd (Chapters 1, 2 

and 3). 

IBR/n index. 

IBR/n values clearly showed that the biological responses and toxicopathic effects 

elicited by waterborne B[a]P on sole juveniles were dose and time dependent 

(IBR/nHighB[a]P>IBR/nMidB[a]P>IBR/nLowB[a]P>IBR/nDMSO>IBR/nControl; especially at day 7). 
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The successive biological responses elicited by B[a]P were depicted by radar plot profiles: 

altered antioxidant enzyme activities and lysosomal system anticipated histopathological 

lesions. At day 3, the main contributors to IBR/n were biochemical responses related to 

antioxidant defence (GST and CAT) along with altered lysosomal system and to a lesser 

extent, liver histopathology. Meanwhile, all the selected biological responses contributed 

to IBR/n at day 7. Whilst the response profile in sole juveniles exposed to 100 ng B[a]P/l 

was comparable to the one depicted in the DMSO group, exposure to nominal 

concentrations of B[a]P in the range of 1000-100000 ng B[a]P/l provoked inhibition of 

GST and CAT enzyme activities, severe lysosomal membrane destabilisation and 

outstanding hitopathological lesions in liver and, most remarkably, in gills. 

Concluding remarks 

The assessment and integration of biological responses elicited in Solea senegalensis 

juveniles upon B[a]P exposure for 7 d indicated different degrees of B[a]P toxicity 

depending on the waterborne B[a]P concentration and the exposure time. Whilst a 3-day 

exposure to a nominal concentration in the range of 1000-100000 ng B[a]P/l caused 

oxidative stress (CAT inhibition; GST induction/inhibition) and lysosomal membrane 

destabilisation, a 7-day exposure also caused gill, liver and gonad histopathological 

lesions. Upon exposure to 100 ng B[a]P/l, the effects were not distinguishable from those 

elicited by the experimental carrier DMSO. However, they were elicited both upon 

exposure to a non-environmentally relevant B[a]P concentration (e.g. 100000 ng B[a]P/l) 

and also upon exposure to an environmentally relevant concentration (1000 ng B[a]P/l). 

Therefore, it seems that environmentally relevant waterborne concentrations of B[a]P 

would suffice to cause toxicopathic effects on sole juveniles in relatively short exposure 

times. Moreover, if B[a]P alone is a potential toxicopathic pollutant, its co-occurrence in 

the water column with other PAHs and chemicals derived from polluted sediments (as 

described in Chapters 1 and 2) would be expected to represent a veiled but real hazard 

that should entail future research efforts.  
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General Discussion 

The suitability of flatfish as sentinel species to monitor the health status of coastal and 

estuarine ecosystems has been demonstrated for various species of Northern Europe 

(Köhler et al., 1992; Myers et al., 1994; Vethaak et al., 1996; Myers et al., 2003; Stehr et 

al., 2003; Stentiford et al., 2003; Lang et al., 2006). However, these species are not so 

abundant along the Iberian Peninsula and the Bay of Biscay, which is an inconvenient for 

their use in biomonitoring programmes of this region. Instead, Solea spp. is commonly 

found along the N-E Atlantic coasts. In particular, juveniles concentrate in estuarine and 

coastal areas for the first 2-3 yr of life. Thus, sole juveniles and adults have been 

introduced in previous field studies to assess the health status of coastal and estuarine 

ecosystems (Jebali et al., 2013; Oliva et al., 2010, 2012a, 2012b, 2013, 2014; Gonçalves 

et al., 2013, 2014; Siscar et al., 2013, 2015; Cuevas et al., 2015a, 2015b; Vieira et al., 

2018). Most of these studies assessed biological effects of environmental contamination 

by comparing levels of responses (mainly based on biochemical and histopathological 

approaches) in soles collected from different sampling sites and changes in the health 

status of sole were rarely surveyed throughout time (Oliva et al., 2010; Cuevas et al., 

2015a, 2015b; Vieira et al., 2018). The application of monitoring campaigns for several 

years is essential to identify biological effects of environmental contamination and to 

survey the potential recovery of the ecosystem over time. 

The possible implementation of a long-term monitoring programme using sole juveniles 

was demonstrated in Chapter 1 for the Bilbao estuary. Enough individuals (n≥30) of 

similar size were obtained annually for 7 years. The Bilbao estuary was used as a case 

study for the assessment of the health status of an estuarine ecosystem experiencing 

recovery after intense contamination, based on sediment chemistry and multi-organ sole 

histopathology. Although industrial decline and improvement of wastewater-treatment of 

the area allowed for the recovery of water and sediment quality, contaminants can still be 

found trapped in the sediment (Wolanski and Richmond, 2008). Indeed, chemical analysis 

of the sediment suggested an overall decrease in contaminants concentration throughout 

the year with episodes of chronical contamination by metals, PCBs and PAHs (Montero 

et al., 2013; Borja et al., 2015). This fluctuating toxicity of the sediment was reflected on 

changes in the health status of sole juveniles, assessed by liver, gills and gonad 

histopathology. Liver histopathology revealed alterations of mild severity and suggested 

an overall improvement in environmental conditions of the estuary, in agreement with 

sediment chemistry. Nevertheless, gills which are considered as an organ indicator of 

early biological responses, elicited histopathological alterations in the recent years of 

campaigns suggesting new environmental threat (e.g. input of new contaminant, 

remobilization of older contaminants trapped in the sediment). The 7-yr monitoring 

programme of the Bilbao estuary using sole juveniles confirms the possibility of 

surveying the health status of the ecosystem, based on sediment chemistry and sole 

juveniles’ histopathology. However, the identification of a clear temporal trend in data 

from sediment contamination or sole juveniles’ health was intricate. Indeed, the influence 

of other parameters such as water contamination and environmental factors (e.g. 
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temperature, salinity, pH) may also generate changes in sediment contamination and 

ecosystem health status. In the field, the implementation of long-term monitoring 

programmes is essential to overcome the complexity of the ecosystem and identify 

general trends in environmental quality/health. Moreover, ecotoxicology assays in 

laboratory conditions can complement field studies to elucidate the association between 

water and sediment contamination and changes in the health status of juvenile soles. 

Chapter 2 aimed at relating contaminants mixture in natural sediments with biological 

responses elicited in sole juveniles upon laboratory exposure. Chemical analysis 

demonstrated that each sediment used for the study reacted differently in experimental 

conditions affecting their toxicity. The release of contaminants from the sediment to the 

water column varied depending on the presence of chemicals as a mixture and the 

concentration, speciation and mobility of each chemical. This inconsistency in sediment 

toxicity supports the need for biological approaches to assess the overall toxicopathic 

effects of sediment contamination. Biological responses in sole juveniles were assessed 

after 7 and 28 d of exposure, at different levels of biological complexity based on 

biochemical (CAT, SOD, GST, AChE) and lysosomal biomarkers (lysosomal 

enlargement and membrane stability, intracellular neutral lipid accumulation), and multi-

organ histopathological approaches (liver, gills and gonad). Overall, oxidative stress 

(CAT inhibition, GST induction), alterations in lysosomal responses (lysosomal 

enlargement, membrane destabilisation and changes in lysosomal content) and multi-

organ histopathology were elicited by all the sediments. Differences in sediment toxicity 

were suggested for particular biomarkers and were more clearly defined upon the 

integration of biomarkers assessed at different levels of biological complexity. Exposure 

to relatively low sediment contamination induced the antioxidant defence system (CAT 

and GST induction) with no severe biological effects recorded at higher level of biological 

complexity. In contrast, higher sediment contamination incited early oxidative stress 

(CAT inhibition), which was reflected onto the lysosomal system (altered lysosomal 

structure, membrane destabilisation and content). These early biological effects were 

maintained in time and passed at higher levels of biological complexity with tissue-level 

responses detected in different organs, in particular in the liver. The present study 

confirms the suitability of sediment toxicity assays to elucidate the association between 

the presence of a mixture of contaminants and toxicopathic effects recorded in sole 

juveniles based on chemical analysis, biochemical, cellular and tissue-level biomarkers, 

including histopathology. 

As demonstrated in Chapters 1 and 2, alterations in the health status of sole can be 

complex to interpret in the presence of a mixture of contaminants as encountered in 

sediments and/or in the water column. Thus, toxicity assays using single contaminants 

(e.g. model metals and PAHs) at different concentrations allow to identify levels of 

biological responses and are essential to support biological effects of contamination 

recorded in the field. Chapter 3 aimed to assess toxicopathic effects of different 

concentrations of Cd in sole juveniles after 3 and 7 d of exposure. Overall, biological 

responses assessed in Cd exposed soles were consistent with the contaminant 
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concentrations, as established for the experiment and confirmed by chemical analysis, 

and exposure time. A 3-day exposure to different concentrations of Cd caused oxidative 

stress (CAT and GST induction) with no severe biological effects at higher level of 

biological complexity. At day 7 however, Cd toxicopathic effects included dose-

dependent oxidative stress (CAT and GST inhibition), neurotoxicity (AChE inhibition), 

and lysosomal membrane destabilisation. The lysosomal membrane destabilisation is a 

core biomarker recognised by UNEP and recommended for marine monitoring 

programmes for several marine organisms (OSPAR Commission, 2010; Davies and 

Vethaak, 2012; HELCOM, 2012; UNEP/MAP, 2014); the present experiment 

demonstrates its suitability for sole juveniles to assess cellular effects of exposure to 

different concentrations of Cd, including environmental levels. In comparison, changes 

in lysosomal structure recorded in sole hepatocytes upon Cd exposure were more 

ambiguous. Alterations recorded at cellular level were reflected at higher level of 

biological complexity with histopathological alterations detected in different organs 

(liver, gills and gonad). The present toxicity assay elucidates the association between 

concentrations of Cd and exposure time with subsequent toxicopathic effects assessed in 

sole juveniles, based on the integration of a battery of biomarkers assessed at different 

levels of biological complexity. 

Similarly, Chapter 4 aimed to identify levels of biological responses in sole juveniles 

exposed to different concentrations of a model PAH (B[a]P) for 3 and 7 days. Overall, 

toxicopathic effects of B[a]P recorded in soles were consistent with contaminant 

concentration and exposure time. A 3-day exposure to different concentrations of B[a]P 

caused oxidative stress (changes in CAT and GST activities) and lysosomal membrane 

destabilisation. Thus, as observed upon exposure to Cd, the core lysosomal biomarker is 

suitable to assess cellular effects of exposure to B[a]P in sole juveniles, even at 

environmental concentrations. Early biological effects of B[a]P exposure recorded at day 

3 were maintained at day 7 and passed to higher biological level of complexity with 

histopathological alterations detected in different organs (liver, gills and gonad). Unlike 

in the case of Cd exposure, B[a]P neurotoxicity could not be clearly identified here as the 

contaminant carrier (DMSO, 100 µl DMSO/l sw) seemed to slightly interfere with the 

activity of this enzyme. Nevertheless, the integration of biological responses assessed at 

different levels of biological complexity and based on different biological endpoints 

clearly illustrated the time and dose-dependent toxicity of B[a]P in sole juveniles. The 

present toxicity assay elucidates the association between concentrations of B[a]P and 

exposure time with levels of biological responses recorded in sole juveniles based on a 

integrative biomarker approach. 
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Conclusions 

1. The 7-yr monitoring programme of the estuary of Bilbao permitted to survey the 

health status of an ecosystem experiencing recovery after intense contamination, 

based on sediment chemistry and sole juveniles’ histopathology. Although the estuary 

is involved in a recovery process, levels of contaminants detected in the sediment 

fluctuated over the years and indicated that the ecosystem was still chronically 

impacted by metals, PCBs and PAHs. 

 

2. Toxicological adverse effects of the Bilbao estuary pollution were reflected on the 

health status of sole juveniles based on histopathological approaches. Liver 

histopathological lesions were of mild severity and suggested an improvement in 

environmental conditions of the estuary, in agreement with sediment chemistry. In 

contrast, gills considered as an organ indicator of early biological responses, elicited 

histopathological alterations in the recent years of campaigns suggesting new 

environmental threat (e.g. input of new contaminant, remobilization of older 

contaminants trapped in the sediment). 

 

3. The identification of temporal trends in Bilbao estuary sediment contamination and 

in histopathological alterations in sole juveniles is intricate. The assessment of the 

ecosystem health status of the estuary demands for the implementation of long-term 

monitoring programmes, the application of ecotoxicology assays in laboratory 

conditions and the development of a battery of biomarkers for a better interpretation 

of contaminant toxicopathic effects elicited in sole juveniles. 

 

4. The complexity of sediment contamination relies on the presence of chemicals as a 

mixture; the concentration, speciation and mobility of each chemical influences the 

overall toxicity profile of the milieu. Sediment granulometry, OM content, redox 

potential and chemical analysis are essential data to assess and survey sediment 

contamination. 

 

5. Laboratory exposure to contaminated sediments caused a clear decline in the health 

status of sole juveniles. Although sediment toxicity proved to vary under experimental 

conditions, the overall biological responses elicited in sole were representative of 

sediment toxicity confirmed by chemical analysis. Toxicity was recorded for all the 

sediments through the determination of biological effects as oxidative stress (CAT 

inhibition, GST induction), alterations in lysosomal responses (lysosomal 

enlargement, membrane destabilisation and changes in lysosomal content) and multi-

organ histopathology. Differences in sediment toxicity were suggested for individual 

biomarkers especially observed in CAT enzyme activity and in lysosomal membrane 

stability at day 7 and liver histopathology at day 28. This association between 

sediment contamination and biological effects was clearly defined at day 28, 

particularly upon the integration of the battery of biomarkers assessed at different 

levels of biological complexity. 
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6. The suitability of whole-sediment toxicity assays to elucidate the association between 

the presence of contaminants in sediments and the emergence of toxicopathic effects 

in sole juveniles based on chemical analysis, biomarkers and histopathological 

approaches is confirmed. 

 

7. Impairment in the health status of sole juveniles exposed to Cd were concomitant to 

contaminant concentration and exposure time. A 3-day exposure to Cd caused a dose-

dependent oxidative stress (CAT and GST induction) with no evident effects at higher 

biological levels of complexity. At day 7, biological effects of Cd were maintained 

and passed to higher biological levels of complexity with dose-dependent oxidative 

stress (CAT and GST inhibition), neurotoxicity (AChE inhibition), altered lysosomal 

system (lysosomal membrane destabilisation) and multi-organ histopathology. The 

integration of biological responses assessed based on different biological endpoints 

clearly illustrates the time and dose dependent toxicity of Cd in sole juveniles. 

 

8. Impairment in the health status of sole juveniles exposed to B[a]P were related to 

contaminant concentration and exposure time. A 3-day exposure to B[a]P caused a 

dose-dependent oxidative stress (CAT and GST inhibition) and lysosomal membrane 

destabilisation. At day 7, toxicopathic effects of B[a]P exposure were maintained and 

spread to higher biological levels of complexity as evidenced by multi-organ 

histopathology. The integration of biological responses assessed at different levels of 

biological complexity and based on different biological endpoints clearly illustrates 

the time and dose dependent toxicity of B[a]P in sole juveniles.  

 

9. The suitability of toxicity assays using waterborne model contaminants (Cd and 

B[a]P) at different concentrations (below and above environmentally effective 

concentrations) to identify toxicopathic effects of environmental stressors based on a 

battery of biomarkers in sole juveniles is confirmed. 
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Thesis 

 

Solea spp. is responsive to environmentally realistic concentrations of waterborne 

pollutants, both dissolved and released from sediments, which can be quantified upon de 

application of a "biomarkers+histopathology" toolbox;  therefore, sole is suitable as 

sentinel species for the assessment of the biological effects of pollution in OSPAR Region 

IV biomonitoring programmes in the context of EU Marine Strategy Framework 

Directive. 
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1. Biochemical protocols 

1.1. Samples processing 

0.1 M potassium phosphate buffer (pH 7.4) 

Dissolve 17.42 g of potassium phosphate dibasic (K2HPO4) in 1000 ml of distilled water. 

Dissolve 0.265 g of monosodium phosphate (KH2PO4) in 1000 ml of distilled water. Mix 

both solutions and set the pH at 7.4 using NaOH and HCl (at 0.1M, 1M and 5M). 

- Dilute each samples in 0.1 M potassium phosphate buffer (pH 7.4) in a 1:4 ratio 

for liver samples and 1:5 ratio for brain samples. 

- Homogenise the samples (Precellys homogenizer at 6500 rpm for 30 sec at 4ºC). 

- Centrifuge the samples at 12 000 g for 30 min and extract the supernatant. 

- Dilute the samples using 0.1 M potassium phosphate buffer (pH 7.4) in 1:5 for the 

analysis of Catalase and Superoxide Dismutase, in 1:20 for the analysis of 

Acetylcholinesterase in brain, in 1:40 for the analysis of Glutathione-S-

transferase. 

 

1.2. Protein quantification (Bradford) 

- The dye reagent used for this protocol should be brought to room temperature 

before use. 

- Pipet 5 µl of samples in each well, preparing three replicates per sample including 

the blank samples and the pre-made standard samples. Two sets of blank samples 

should be prepared with distilled water and dye reagent. 

- Add 250 µl of dye reagent. 

- Incubate at room temperature for 5 min. 

- Read the absorbance at 595 nm. 

  



 

218 

1.3. Acetylcholinesterase (AChE) 

0.1 M potassium phosphate buffer (pH 7.4) 

Dissolve 17.42 g of potassium phosphate dibasic (K2HPO4) in 1000 ml of distilled water. 

Dissolve 0.265 g of monosodium phosphate (KH2PO4) in 1000 ml of distilled water. Mix 

both solutions and set the pH at 7.4 using NaOH and HCl (at 0.1M, 1M and 5M). 

0.075 M acetylcholine solution 

Dissolve  0.10835 g of acetylthiocholine (C₇H₁₆INOS, M=289.7 g/mol; SIGMA A5751) 

in 5 ml of ultra-pure water. The solution should be kept protected from the light and stored 

in the fridge (for maximum five days). 

10mM DTNB solution 

Dissolve 0.0198 g of DTNB (C₁₄H₈N₂O₈S₂; M=196.3 g/mol; SIGMA D8130) and 

0.0075 g of NaHCO₃ (M=84.01 g/mol; MERCK 6329) in 5 ml of 0.1 M potassium 

phosphate buffer (pH 7.4). The solution should be stored in the fridge (for maximum five 

days). 

Reaction solution 

Mix 30 ml of 0.1 M potassium phosphate buffer (pH 7.4) with 0.2 ml of 0.075 M 

acetylcholine solution and 1 ml of 10mM DTNB solution. The solution should be freshly 

prepared at the time of use. 

- Prepare the reaction medium. 

- Pipet 50 µl of samples including blank samples (0.1 M potassium phosphate 

buffer, pH 7.4) in triplicate. 

- Add 250 µl of reaction medium. 

- Incubate for 10 min. 

- Read the absorbance at 412 nm for 10 min. 
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1.4. Glutathione-S-transferase (GST) 

0.1 M potassium phosphate buffer (pH 7.4) 

Dissolve 17.42 g of potassium phosphate dibasic (K2HPO4) in 1000 ml of distilled water. 

Dissolve 0.265 g of monosodium phosphate (KH2PO4) in 1000 ml of distilled water. Mix 

both solutions and set the pH at 7.4 using NaOH and HCl (at 0.1M, 1M and 5M). 

10 mM GSH solution 

Dissolve 30.73 mg of GSH in 10 ml of 0.1 M potassium phosphate buffer (pH 7.4). The 

solution should be freshly prepared and kept in ice. 

60mM CDNB solution 

Dissolve 60.78 mg of CDNB in 5 ml ethanol. This solution should be freshly prepared 

and kept protected from the light. 

Reaction medium 

Mix 9900 µl of 0.1 M potassium phosphate buffer (pH 7.4) with 1800 µl of 10 mM GSH 

solution and 300 µl of 60mM CDNB solution. 

- Pipet 100 µl of samples including blank samples (0.1 M potassium phosphate 

buffer, pH 7.4) in triplicate. 

- Add 200 µl of reaction medium to each well. 

- Read the absorbance at 340 nm every 40 sec for 6 min. 
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1.5. Catalase (CAT) 

Reaction medium 

Mix 9977 µl of 0.05 M potassium phosphate buffer (pH 7.0) with 23 µl of H2O2 (30% 

v/v). 

- Prepare the standard solutions according to the following table. 

- Pipet 5 µl of samples. 

- Add 295 µl of reaction medium 

- Read the absorbance at 240 nm every 40 sec for 3 min. 

 

Standard Curve 0.05 M potassium 

phosphate buffer 

Reaction medium 

1 0 1000 

2 400 600 

3 600 400 

4 800 200 

5 900 100 

6 950 50 

7 975 25 

8 1000 0 
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1.6. Superoxide Dismutase (SOD) 

This analysis was made using the SOD Determination kit (SIGMA 19160). 

WST working solution 

Dilute 1 ml of WST Solution with 19 ml of Buffer Solution. 

Enzyme working solution 

Centrifuge the Enzyme Solution tube for 5 sec. Mix 15 μl of Enzyme Solution with 2.5 

ml of Dilution Buffer. 

- Pipet 20 μl of sample solution to the sample and blank 2 wells 

- Pipet 20 μl of ddH₂O to the blank 1 and blank 3 wells. 

- Add 200 μl of WST Working Solution to each well, and mix. 

- Pipet 20 μl of Enzyme Working Solution to the sample and blank 1 wells, and 

mix. 

- Incubate for 20 min at 37º C. 

- Read the absorbance at 450 nm. 

- Calculate the SOD activity (inhibition rate %) using the following equation: 

SOD activity (inhibition rate %) = {[Ablank 1 - Ablank 3} - (Asample - Ablank 2)] / 

(Ablank 1 - Ablank 3)} x 100 
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2. The Tissue-Array (TA) technology 

2.1. Overview of the TA procedure 

 

TA blocks were prepared using the Array Mold® Kit (n°20015-A) containing the silicon 

mould suitable for paraffin embedded and frozen samples. Each TA block has a total 

capacity of 60 cores of 2mm diameter. Frozen or paraffin embedded donor samples are 

cored and transferred to the receptor block according to a clear core layout previously 

drawn (see Orientation Model worksheet). Cored donor tissue are brought back to storage 

conditions and kept available for future analysis. Complete TA blocks are cut as standard 

blocks in a microtome (5 µm sections for H-E staining) or a cryostat (10 µm sections for 

LMS test and 8 µm sections for LSC test and the assessment of intracellular accumulation 

of neutral lipids). Final TA blocks can be preserved at room temperature for paraffin 

blocks or at -80°C for frozen blocks. 

A: TA equipment showing the punching needle, silicon Array mold with frozen receptor 

block made from OCT medium (optimal cutting temperature compound) and 

Orientation Model worksheet. B: Donor blocks embedded in paraffin before and after 

punching with corresponding H-E micrographs; scale bar: 2 mm. C: Examples of 

complete TA blocks. D: TA slides after a variety of staining procedures including 

histological (H-E), histochemical and immunohistological staining. 
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2.2. Orientation Model worksheet 
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2.3. The TA technology for histochemical procedures 

 

 

 

  

SOPs procedure  TA procedure 

Hepatic TA histochemical sections (8 and 10 µm) of S. senegalensis showing the 

demonstration of lysosomal enzymes activities, the acid phosphatase (A) and β-

glucuronidase (B), and the accumulation of neutral lipid droplets (C). Data comparison 

between standard and TA procedures for lysosomal biomarkers: lysosomal membrane 

stability (LMS) assessed as labilisation period (D), lysosomal surface to volume ratio 

(S/VL, E) and intracellular neutral lipid volume density (VvNL, E). * indicates significant 

differences between the two procedures (p<0.05); white scale: 50 µm. 
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3. Histochemical protocols 

 

3.1.  Lysosomal Membrane Stability (LMS) test using acid phosphatase 

The determination of lysosomal membrane stability (LMS) was based on the time of acid 

labilisation treatment (LP, in min) required to produce the maximum staining intensity 

according to UNEP/RAMOGE (1999) and Broeg et al. (1999), after demonstration of 

acid phosphatase (AcP) activity in hepatocyte lysosomes. 

3.1.1. Reagents and solutions 

Sodium citrate buffer (2.5% NaCl, pH 4.5) 

Dissolve 3.35 g of trisodium citrate dihydrate C6H5Na3O7 2H2O in 100 ml of distilled 

water. Set the pH at 4.5 using NaOH and HCl (at 0.1M, 1M and 5M). Add 2.5 g of sodium 

chloride (NaCl). 

Incubation medium 

Dissolve 80 mg of naphthol AS-BI-phosphatase (Sigma, N-2125) in 8ml of Dimethyl 

sulfoxide (DMSO). Add 392 ml of sodium citrate buffer (2.5% NaCl, pH 4.5) and 28 g 

of POLYPEP (Sigma, P5115). 

0.1 M phosphate buffer (2.5% NaCl, pH 7.4) 

Dissolve 2.892 g of disodium phosphate (Na2HPO4 12H2O) (Fluka, 71650) in 80.8 ml of 

distilled water. Dissolve 0.265 g of monosodium phosphate (NaH2PO4 H2O) in 19.2 ml 

of distilled water. Mix both solutions and set the pH at 7.4 using NaOH and HCl (at 0.1M, 

1M and 5M). Add 2.5 g of sodium chloride (NaCl). 

Diazonium Dye 

Dissolve 0.4 g of Fast Violet in 400 ml of 0.1 M phosphate buffer (2.5% NaCl, pH 7.4). 

3.0% Saline solution 

Mix 24 g of NaCl in 800 ml of distilled water. 

Baker buffer (2.5% NaCl, pH 7) 

Neutralise (pH 7) 10 ml of formaldehyde 40% using few drops of sodium hydroxide 

(NaOH). Mix with 1.325 g of calcium chloride dihydrate (2H2O CaCl2, 10%). Add 80 ml 

of distilled water and 2.5 g of sodium chloride (NaCl). The solution should be kept at 

4°C. 
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3.1.2. Staining procedure 

 

- Histochemical slides (10 µm) should be slowly brought to room temperature before 

staining. 

- Prepare the incubation medium 

- Place the slides in sodium citrate buffer (2.5% NaCl, pH 4.5) for 50, 40, 30, 25, 20, 

15, 10, 8, 6, 4, 2 and 0 min at 37ºC. 

- Incubate the samples in the incubation medium, for 20 min at 37ºC, in a shaking bath. 

- Rinse the slides in saline solution (3.0%) for 5 min at 37ºC. 

- Dye the sections with the Diazomium dye for 9 min at room temperature. 

- Rinse the slides in tap water for 10 min. 

- Fix the tissue samples in Baker buffer solution (2.5% NaCl, pH 7) for 15 min at 4ºC. 

- Rinse the slides in distilled water. 

- Mount the slides in Kaiser’s glycerine gelatin. 

- The edge of the coverslip can be sealed with nail’s protector. 
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3.2. Lysosomal Structural Changes (LSC) using β-glucuronidase 

The lysosomal structural changes (LSC) test is a quantitative technique which informs 

about the state of lysosomes in a cell, in response to specific environmental conditions. 

The visualisation of lysosomes in fish hepatocytes was based on the histochemical 

demonstration of β-glucuronidase activity, according to the procedure described by 

Moore (1976) with the modifications made by Cajaraville et al. (1989) for mussels and 

later adapted to fish liver by Alvarado et al. (2005). 

3.2.1. Reagents and solutions 

Sodium Bicarbonate 

Dissolve 0.042 g of sodium bicarbonate (NaHCO3) in 10 ml of distilled water. The 

solution should be kept at 4ºC.  

0.1 M acetate buffer (2.5% NaCl, pH 4.5) 

Dissolve 1.224 g of crystallized sodium acetate trihydrate (NaCH3COO 3H2O) (Sigma, 

S-8625) in 45 ml of distilled water and 0.63 ml of glacial acetic acid (CH3COOH) in 55 

ml of distilled water. This step should be undertaken in a fume cupboard. Mix both 

solutions and set the pH at 4.5 using NaOH and HCl (at 0.1M, 1M and 5M). Add 2.5 g of 

sodium chloride (NaCl). The solution should be kept at 4°C. 

Incubation medium 

Dissolve 28 mg of naphthol AS-BI-β-D-glucuronide (Sigma, N-1875) in 1.2 ml of 50 mM 

sodium bicarbonate. Add 98.8 ml of 0.1 M acetate buffer (2.5% NaCl, pH 4.5). Add 15 g 

of polyvinyl alcohol (Sigma, P-8136). This last step should be undertaken using a hot 

plate with continuous stirring. The incubation medium should be kept in a shaking bath 

at 37ºC until the target temperature is reached. 

Saline solution (2.5%) 

Dissolve 2.5 g NaCl in 100 ml of distilled water. The solution should be kept in a shaking 

bath at 37ºC.  

Post-coupling medium 

Dissolve 0.04 g of Fast Garnet GBC (Sigma, F-8761) in 40 ml of 0.1 M phosphate buffer 

(2.5% NaCl, pH 7.4). The solution is stable for only few hours at 4°C and should be used 

immediately. 

0.1 M phosphate buffer (2.5% NaCl, pH 7.4) 

Dissolve 2.892 g of disodium phosphate (Na2HPO4 12H2O) (Fluka, 71650) in 80.8 ml of 

distilled water. Dissolve 0.265 g of monosodium phosphate (NaH2PO4 H2O) in 19.2 ml 

of distilled water. Mix both solutions and set the pH at 7.4 using NaOH and HCl (at 0.1M, 

1M and 5M). Add 2.5 g of sodium chloride (NaCl).  

Baker buffer (2.5% NaCl, pH 7) 

Neutralise (pH 7) 10 ml of formaldehyde 40% using few drops of sodium hydroxide 

(NaOH). Mix with 1.325 g of calcium chloride dihydrate (2H2O CaCl2, 10%). Add 80 ml 

of distilled water and 2.5 g of sodium chloride (NaCl). The solution should be kept at 

4°C. 

3.2.2. Staining procedure 

 

- Prepare the incubation medium and the saline solution. 
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- Histochemical slides (8 µm) should be slowly brought to room temperature before 

staining. 

- Incubate the samples in the incubation medium for 20 min at 37ºC, in a shaking 

bath. 

- Prepare the Post-coupling medium. The solution should be protected from the light 

with constant stirring. 

- Rince the slides in the saline solution (2.5%) for 2 min at 37ºC, in a shaking bath. 

- Transfer the slides to the Post-coupling medium for 10 min at room temperature, in 

the dark and with constant shake. 

- Fix the tissue samples in Baker buffer solution (2.5% NaCl, pH 7) for 10 min at 4ºC. 

- Rinse the slides in distilled water. 

- Mount the slides in Kaiser’s glycerine gelatin. 

- The edge of the coverslip can be sealed with nail’s protector. 
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3.3.  Oil Red O staining 

3.3.1. Reagents and solutions 

Baker buffer (2.5% NaCl, pH 7) 

Neutralise (pH 7) 10 ml of formaldehyde 40% using few drops of sodium hydroxide 

(NaOH). Mix with 1.325 g of calcium chloride dihydrate (2H2O CaCl2, 10%). Add 80 ml 

of distilled water and 2.5 g of sodium chloride (NaCl). The solution should be kept at 

4°C. 

Oil Red O solution 

Dissolve 0.25 g of 0.5% ORO in 50 ml of isopropilic alcohol. Add 33.3 ml of distilled 

water (dilution 3:2). Mix the solution for 15 min. Filter the dye and protect from the light 

and use in the next couple of hours. 

Isopropilic alcohol (60%) 

Mix 60 ml of isopropilic alcohol with 40 ml of distilled water without stirring. The 

solution should be kept in the fridge and covered with film to avoid its evaporation. 

3.3.2. Staining procedure 

 

- Fix the tissue samples (8 µm) in Baker solution (2.5% NaCl, pH 7) for 15 min at 4ºC. 

- Dry the sections in the air. 

- Rinse the sections in isopropilic alcohol (60%). 

- Dye the sections in Oil Red O solution for 20 min at room temperature. 

- Transfer the slides to isopropilic alcohol (60%) for 1 min. 

- Counterstain the sections in 0.1% Fast Green FCF dye for 30 min. 

- Rinse the slides in distilled water. 

- Mount the slides in Kaiser’s glycerine gelatin. 

- The edge of the coverslip can be sealed with nail’s protector.  
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4. Histological protocols 

4.1. Fixative solutions for histology 

4% neutral buffered formol, pH 7.2: 

57.84g Na2HPO4·H2O + 5.12g NaH2PO4·H2O + 200ml of Formaldehyde (37%), to be 

completed with dH2O (VolTot: 2 l). Samples fixed in formalin should be kept in the 

solution at 4ºC for 24 hr. They can be preserved in 70% ethanol. 

Bouin’s solution: 

100 ml of Formaldehyde (37%) + 70 ml of acetic acid + acid picric (at saturation) + 830 

ml dH2O. Samples fixed in Bouin should be kept in the solution at 4ºC for 24 hr. They 

should then be transferred in 8% formic acid at room temperature for 24hr. They can be 

preserved in 70% ethanol. 

4.2. Tissue processing 

After fixation, samples are dehydrated following procedure as below, before being 

embedded in paraffin: 

 

70% ethanol 1 hr 

96% ethanol 1 hr 

96% ethanol 1 hr 

100% ethanol 1 hr 

100% ethanol 1 hr 

IMS 1 hr 

Xylene 1 hr 

Xylene 1 hr 

Paraffin 2 hr 

Paraffin 2 hr 

Paraffin 2 hr 

IMS: ratio 1:1 100% ethanol and Xylene 
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4.3. Hematoxylin-eosin (H-E) staining 

Xylene 10 min 

Xylene 10 min 

100% ethanol 2 min 

100% ethanol 2 min 

96% ethanol 2 min 

70% ethanol 2 min 

dH2O 5 min 

Hematoxylin 4 min 

dH2O 4 min 

Acid alcohol 10 s 

dH2O 5 min 

Lithium carbonate 10 s 

dH2O 1 min 

Eosin 1 min 30 sec 

dH2O 5 sec 

dH2O 1 min 30 sec 

70% ethanol 5 sec 

96% ethanol 10 sec 

100% ethanol 15 sec 

100% ethanol 20 sec 

Xylene 1 min 

Xylene 1 min 
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5. Characterisation of the reproductive cycle 

5.1. Male gamete developmental stages 

Gamete developmental stages in males were determined according to García-López et al. 

(2006) and were classified into the following stages: 

- Immature (or resting). The seminiferous lobules are forming. SPG and SPC can 

be detected at this stage. 

- Stage I. Early spermatogenesis. This stage is characterised by the presence of 

numerous germinal cysts in the testis cortex containing SPG. It is possible to 

identify few SPD in the lumen of seminiferous lobules and some SPD and SPZ in 

the medullar efferent ducts. Empty spaces can be observed in the cortex and the 

medullar areas. 

- Stage II. Mid spermatogenesis. At this stage, germ cells at all developmental 

stages can be observed, from SPG to SPZ. In the cortex, the number of SPG is 

decreasing as they differentiate into SPC (initiation of the meiosis). In comparison 

with the previous stage, no empty spaces are observed in the seminiferous lobule. 

Instead, the small central lumen is filled with SPD. It is possible to identify some 

SPD and SPZ in the medullar efferent ducts. 

- Stage III. Late spermatogenesis. The number of SPC in germinal cysts decreases 

and SPD become the main cell type. They are found in the lumen of the 

seminiferous lobule (semi-cystic spermatogenesis). More SPZ are observed in the 

medullar efferent ducts. 

- Stage IV. Functional maturation. SPD are becoming less abundant in the cortex 

as they are differentiated into SPZ, which accumulate in the lumen of the medullar 

efferent ducts. SPG associated with Sertoli cells can be identified in the cortex. 

- Stage V. Recovery (or post-spawning). The number of SPD in the cortex and SPZ 

in the lumen of the medullar efferent ducts decreases. Numerous SPG and Sertoli 

cells can be observed in the distal part of the cortical seminiferous lobules showing 

the initiation of germ cell proliferation.  
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5.2. Female gamete developmental stages 

Gamete developmental stages in females were determined according to Murua and Motos 

(2006) and were classified into four categories, based on the frequency of each oocyte 

phase detected in the gonads: 

- Stage I. Growth (or pre-vitellogenesis). The growing oocyte progress from a 

Central Nucleolar Stage (1) with a small nucleus and a unique and central 

nucleolus to a Perinuclear Nucleoli Stage (S1) with a larger nucleus, larger 

ooplasm and several nucleoli placed in the periphery of the nucleus. Several types 

of germ cells can be detected at this stage including oogonia and S1 oocytes, 

cortical alveolar oocytes (S2), late cortical alveolar oocytes (S3) and early 

vitellogenic oocytes (S4) (Figure 5A). 

- Stage II. Early vitellogenesis. This stage is characterised by the presence of S5 

oocytes, which are bigger in size and show a wide zona radiata, small yolk 

inclusions and lipid vesicles. The nucleus of S5 oocytes is central and surrounded 

by several nucleoli located at its periphery. 

- Stage III. Late vitellogenesis. S6 oocytes can be identified at this stage (Figure 

5B). They typically present a larger zona radiata, lipid granules and yolk granules 

occupying most of the ooplasm. At this stage, the presence of the theca and 

granular layer is indicative of the development of the follicular layer. The nucleus 

starts migrating towards the animal pole and the nuclear membrane starts 

breaking. Atretic oocytes may be detected at this stage. 

- Stage IV. Maturation. Mature female gonads are characterised by the presence of 

S7 oocytes showing a migrating nucleus towards the animal pole and nuclear 

membrane breakage. Atretic oocytes may be detected at this stage. 
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6. Histopathological guidelines 

6.1. Categories of hepatic histopathological lesions in flatfish species (modified 

after Feist et al., 2004) and scoring system used for their quantification in sole 

adapted from Lang et al., 2006. 

  

Lesion categories Lesions Lesion 

stages 

Lesion 

scores 

Non-specific lesions Inflammatory changes (infiltration, 

granulomatosis) 

 
 

 Degenerative changes (coagulative 

or single cell necrosis, atrophy) 

 
 

 Proliferative changes 

(hepatocellular regeneration, 

fibrosis, bile duct hyperplasia) 

 

 

 Increased number/area of 

macrophage aggregates Mild 1 

 Lipidosis Medium 2 

 Parasites Severe 3 

Early non-neoplastic 

toxicopathic lesions 

Hepatocellular/nuclear 

pleomorphism 

 
 

Hydropic vacuolation 

(hepatic/biliary/pancreatic) 

 
 

 Phospholipidosis of hepatocytes Mild 4 

 Fibrillar inclusions Medium 5 

 Peliosis and spongiosis hepatis Severe 6 

Foci of cellular alteration Clear cell   

 Vacuolated   

 Eosinophilic Mild 7 

 Basophilic Medium 8 

 Mixed Severe 9 

Benign neoplasms Hepatocellular adenoma   

 Cholangioma   

 Haemangioma Mild 10 

 Pancreatic acinar cell adenoma Medium 11 

 Other Severe 12 

Malignant neoplasms Hepatocellular carcinoma   

 Cholangiocarcinoma   

 Pancreatic acinar cell carcinoma Mild 13 

 Haemangiocarcinoma Medium 14 

 Other Severe 15 
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6.2. Categories of gill histopathological lesions in flatfish species and scoring 

system used for their quantification in sole adapted from Bernet et al., 1999. 

  

Lesion categories Functional unit Lesions w 

Circulatory disturbances  Haemorrhage/Hyperaemia/

aneurysm 

1 

  Intercellular oedema 1 

Regressive changes Epithelium Architectural and 

structural alterations 

1 

  Plasma alterations 1 

  Deposits 1 

  Nuclear alterations 2 

  Atrophy 2 

  Necrosis 3 

 Supporting tissue Architectural and 

structural alterations 

1 

 Plasma alterations 1 

  Deposits 1 

  Nuclear alterations 2 

  Atrophy 2 

  Necrosis 3 

Progressive changes Epithelium Hypertrophy 1 

  Lamellar fusion 1 

  Hyperplasia 2 

 Supporting tissue Hypertrophy 1 

 Hyperplasia 2 

Inflammatory responses  Exudate 1 

  Activation of RES 1 

  Infiltration 2 

Tumours (neoplasms)  Benign tumour 2 

  Malignant tumour 3 

w: lesion importance factor. 
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6.3. Categories of liver histopathological lesions in flatfish species and scoring 

system used for their quantification in sole adapted from Bernet et al., 1999. 

  

Lesion categories Functional unit Lesions w 

Circulatory disturbances  Haemorrhage/Hyperaemia 1 

  Intercellular oedema  

Regressive changes Liver tissue Architectural and structural 

alterations 

1 

  Plasma alterations 1 

  Deposits 1 

  Nuclear alterations 2 

  Atrophy 2 

  Necrosis 3 

  Vacuolar degeneration  

 Interstitial tissue Architectural and structural 

alterations 

1 

 Plasma alterations 1 

  Deposits 1 

  Nuclear alterations 2 

  Atrophy 2 

  Necrosis 3 

 Bile duct Architectural and structural 

alterations 

1 

  Plasma alterations 1 

  Deposits 1 

  Nuclear alterations 2 

  Atrophy 2 

  Necrosis 3 

Progressive changes Liver tissue Hypertrophy 1 

  Hyperplasia 2 

 Interstitial tissue Hypertrophy 1 

 Hyperplasia 2 

 Bile duct Hypertrophy 1 

  Hyperplasia 2 

  Wall proliferation of bile ducts  

Inflammatory responses  Exudate 1 

  Activation of RES 1 

  Infiltration 2 

Tumours (neoplasms)  Benign tumour 2 

  Malignant tumour 3 

w: lesion importance factor; RES: Reticuloendothelial system. 
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6.4. Categories of gonad histopathological lesions in flatfish species and scoring 

system used for their quantification in sole based on Cuevas et al., 2015a and 

adapted to the classification provided by Bernet et al., 1999. 

Lesion categories Lesions w 

Circulatory disturbances Haemorrhage/Hyperaemia 1 

Regressive changes Architectural and structural alterations 1 

Plasma alterations 1 

Deposits 1 

Nuclear alterations 

(pyknotic oocytes/spermatocytes) 

2 

Atresia 3 

Intersex 3 

Necrosis 3 

Progressive changes Hypertrophy 1 

Hyperplasia 2 

Inflammatory responses Exudate 1 

Activation of RES 1 

Granulomatosis 2 

Infiltration 2 

Tumours (neoplasms) Benign tumour 2 

Malignant tumour 3 

w: lesion importance factor. 
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