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Abstract

A large and increasing number of data mining domains consider data
that can be represented as permutations. Therefore, it is important to
devise new methods to learn predictive models over datasets of permu-
tations. However, maintaining models, such as probability distributions,
over the space of permutations is a hard task since there are n! permu-
tations of n elements. Recently the Fourier transform has been success-
fully generalized to functions over permutations and offers an attractive
way to represent uncertainty over the space of permutations. One of its
main advantages is that the Fourier transform compactly summarizes ap-
proximations to functions by discarding high order marginals information.
Moreover, a lately proposed framework for making inference completely
in the Fourier domain has opened new doors for efficiently reasoning over
a space of permutations. In this paper, we present a method to learn
a probability distribution that approximates the generating distribution
of a given sample of permutations. Particularly, this method learns the
Fourier domain information representing this probability distribution.

1 Introduction

Permutations and orders appear in a wide variety of real world combinatorial
problems such as multi object tracking, structure learning of Bayesian networks,
election, etc. Particularly, in the machine learning domain, the application of
permutations which is receiving the most attention by the community is that of
ranking [2], [4].

Exact probability representation over the space of permutations of n ele-
ments is intractable, in general, with the exception of very small n, since this
space has size n!. However, different simplified models for representing or ap-
proximating probability distributions over a set of permutations can be found
in the literature [3], [5], [7]. The most basic approach consists of storing the
first order marginals [5]. However, the accuracy of the obtained approxima-
tion is limited to very smooth distributions. Two well-known approaches from
the distance based exponential family models are the Mallows and Generalized
Mallows Model [3], [14]. They compactly summarize distributions even when
dealing with permutations of large n. While the Mallows Model defines a two pa-
rameter probability distribution, the central or consensus ranking and a spread
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parameter, the Generalized Mallows Model considers n parameters, which are
the consensus ranking and an n − 1 spread parameters.

Another way to represent probability distributions over permutations is the
Fourier-based approach. This is based on a generalization of the well-known
Fourier transform in the real line for permutations. Permutations form an al-
gebraic group under the composition operation, also known as the symmetric
group, so we will use both expressions, permutations and symmetric group, in-
terchangeably along this paper. Although the use of the Fourier transform for
representing functions over permutations is not novel, recently this topic has
once again come to the attention of the researchers. This is partly due to a
framework recently provided by [7] and [13] which allows to carry out inference
tasks entirely in the Fourier domain. Moreover, new concepts have been intro-
duced, such as the probability independence over permutations in the Fourier
domain [8], [6], [9]. Furthermore, the Fourier representation of functions has
been also used in other data mining contexts. Particularly, in [12] it is shown
that by using the Fourier analysis, some kernels can be efficiently computed.

The Fourier transform on the symmetric group decomposes a given function
over the space of permutations of n elements into n! complex numbers. These
complex numbers that result from the transformation of the function into the
Fourier domain are called Fourier coefficients. The Fourier coefficients can be
inverse-transformed into the original function. The idea of bandlimiting func-
tions (the use of a limited number of Fourier coefficients) over the real line to
approximate functions has its equivalent in the Fourier transform over the sym-
metric group. In addition, this approximation in the context of probability dis-
tributions over permutations has a very interesting property: by bandlimiting a
probability distribution, the higher order marginal probabilities are discarded.
As a bandlimited approximation of a function over the real line smooths the
original signal by discarding high frequency terms, its analogous in the symmet-
ric group smooths the probability distribution, bringing it closer to the uniform
distribution. Therefore, this approach approximates smooth distributions more
accurately than sharp ones.

In this paper, we focus on the problem of learning the generating distribu-
tion of a given sample of permutations. We present a method for learning a
limited number of Fourier coefficients that represent this probability distribu-
tion. Particularly, we propose a constrained formulation for finding the Fourier
coefficients that maximize the likelihood of the sample.

The first attempt to learn a probability distribution by means of the Fourier
coefficients was presented in [10]. The authors concentrated on getting a con-
sensus ranking and a probability distribution under constrained sensing, when
the available information is limited to the first order marginals. However, to the
best of our knowledge, this work is the first attempt to do it in a general way.

The rest of the paper is organized as follows. The next section introduces
the basis of the Fourier transform over permutations, including intuitive ideas
about group representation theory. In Section 3 we detail how we formulate the
maximum likelihood method in order to find the most likely Fourier coefficients
for a given sample of permutations. Section 4 presents the experimental results
of several tests over different kinds of probability distributions. In Section 5, we
conclude the paper.
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2 The Fourier Transform on the Symmetric Group

2.1 Preliminary Concepts

Formally, a permutation is defined as a bijection of the set {1,...,n} into it-
self which can be written as σ = [σ(1), ..., σ(n)]. Sn designates the set of all
permutations of n elements.

The Fourier transform on the real line has been successfully generalized to
several spaces of functions. We will focus our attention on the generalization
to the symmetric group. Analogously to the operation on the real line, the
Fourier transform over permutations decomposes a given function as a linear
combination of a set of orthogonal basis functions. The elements playing the
role of basis functions in the group theory generalization of the Fourier transform
are the irreducible representations.

Since it is out of the scope of this paper to be a proper tutorial neither on
the Fourier transform on the symmetric group nor in representation theory, we
just give some ideas for intuition and refer the interested reader to [1] and [15]
for further discussion. A representation ρ : Sn → Cdρx dρ is a linear map from
a group, such as Sn, that associates each element s ∈ Sn with an invertible
complex matrix ρ(s) such that for every s, t ∈ Sn

ρ(st) = ρ(s)ρ(t). (1)

The matrices in the image of ρ are called representation matrices and are
said to be irreducible if they cannot be written as the direct sum of two represen-
tations. A set of basis for the Fourier transform in the symmetric group is given
by ln irreducible representation matrices. An order can be defined among those
ln irreducible representation matrices so they can be indexed as λ = 1, ..., ln.
The construction of irreducible representation matrices can be done in different
ways by considering different basis vector spaces. Like other authors such as [7]
we have chosen to construct these matrices with respect to the Gel’fand-Tsetlin
(GZ) basis. An interesting property of the irreducible representation matrices
constructed with respect to this basis is that they are real valued. The dimen-
sion of each irreducible representation matrix is denoted as dρ. Table 1 shows
a set of irreducible representation matrices of S3.

2.2 Fourier Transform and Inverse Fourier Transform

Now that the basic concepts have been introduced, we can define the Fourier
transform on the symmetric group. Let f : Sn → R be a function on the set
of permutations of n elements, Sn, and ρλ the λ-th irreducible representation.
The Fourier transform of f is the set of Fourier coefficients at the irreducible
representations ρλ, f̂ = {f̂ρλ}

ln
λ=1, where each coefficient [f̂ρλ ]ij is computed as:

[f̂ρλ ]ij =
∑

σ∈Sn

f(σ)[ρλ(σ)]ij (2)

where σ indexes the permutations in Sn. Note that, since the irreducible repre-
sentation matrices are real valued, the obtained Fourier transforms are also real
valued matrices.
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σ ρ1(σ) ρ2(σ) ρ3(σ)

(1, 2, 3) [1]
[
1 0
0 1

]
[1]

(2, 1, 3) [1]
[
−1 0
0 1

]
[−1]

(1, 3, 2) [1]
[

1/2
√

3/2√
3/2 −1/2

]
[−1]

(3, 2, 1) [1]
[

1/2 −
√

3/2
−
√

3/2 −1/2

]
[−1]

(3, 1, 2) [1]
[
−1/2 −

√
3/2√

3/2 −1/2

]
[1]

(2, 3, 1) [1]
[
−1/2

√
3/2

−
√

3/2 −1/2

]
[1]

Table 1: A set of irreducible representation matrices of S3

Naturally, the function can be recovered from the Fourier domain by the
Inversion Theorem, which can be expressed as:

f(σ) =
1

|Sn|
∑

λ

dρλTr[f̂ T
ρλ

· ρλ(σ)] (3)

where ”Tr” refers to the trace, i.e. the sum of the diagonal elements of the
matrix that results from the product of [f̂ T

ρλ
· ρλ(σ)].

As for the operation on the real line, several efficient algorithms have been
designed and implemented for computing the fast Fourier transform on the
symmetric group [11]. In this way, this operation that would naively run in
O(n!2), can be computed in O(n2 n!).

2.3 Representing Probability Distributions by Means of
the Fourier Coefficients

In order to store the probability distribution of the set of permutations of n
elements, the total number of required Fourier coefficients is n! (which is, in
fact, the total number of different permutations). However, one of the most
attractive properties of transforming a probability distribution to the Fourier
domain is the way in which probability distributions can be approximated. Since
it is not our aim to go into detailed discussion, we will just drop some intuitive
ideas. Further discussion can be found in [1].

As we have already stated, the irreducible representations can be indexed.
There exists an order that corresponds to the one that can be defined over the
marginal probabilities of a distribution in the sense that the Fourier transform
at low index irreducible representations contains the low order marginal prob-
abilities and the Fourier transform at high irreducible representations contains
the high order marginal probabilities. Moreover, the (k − 1)-th order marginal
information is kept in the Fourier transform at the first k irreducible represen-
tations, {f̂ρ1 , ..., f̂ρk}. Therefore, to approximate a distribution by keeping its
first (k − 1)-th order marginal probabilities, it is enough to save the Fourier
transform at the first k irreducible representations and discard the rest. While
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this bandlimited model correctly approximates smooth distributions, it should
be noted that its accuracy decreases as the probability distribution gets sharper.

Another interesting property of representing probability distributions by
means of the Fourier coefficients is that storing the Fourier transform at the
first k irreducible representations is more efficient than storing the first k − 1
order marginals. Moreover, given the coefficients {f̂ρ1 , ..., f̂ρk} and some con-
stant real valued matrices, the first (k − 1)-th order marginal probabilities can
be computed in polynomial time. For a detailed description on the computation
of such matrices see [7].

3 Learning Probability Distributions over the
Fourier Domain

In this section we describe our proposed formulation for learning the Fourier
coefficients from a given sample of permutations. The inverse Fourier transform
in equation 3 defines the probability distribution in terms of the Fourier coeffi-
cients. Our proposal consists of finding the Fourier coefficients that maximize
the likelihood of this function given a sample of permutations. However, due to
the exponential nature of the symmetric group, we are interested in obtaining a
bandlimited distribution which considers the (k − 1)-th lowest marginal proba-
bilities. In order to learn such an approximation, the Fourier coefficients in the
formulation are restricted to the ones in the Fourier transform corresponding to
the first k irreducible representations {f̂ρ1 , ..., f̂ρk}.

Maximizing the likelihood of a sample {σ1, ...,σt} given the model in equa-
tion 3 means solving the following nonlinear optimization problem:

(f̂mle
ρλ1

, ..., f̂mle
ρλk

) = arg max
f̂ρ1 ,...,f̂ρk

L̂(σ1, ..., σt|f̂ρ1 , ..., f̂ρk)

= arg max
f̂ρ1 ,...,f̂ρk

t∏

i=1

( 1
|Sn|

k∑

λ=1

dρλTr[f̂ T
ρλ

· ρλ(σi)]
)

Unfortunately, not every set of Fourier coefficients leads to a valid probability
distribution. Actually, maximizing the likelihood in this formulation will lead
to a function whose values do not sum 1 and does not actually correspond
to a probability distribution. Compactly describing the coefficients of a valid
distribution is still an open problem [7]. We will restrict the search space by
the addition of some constraints that forbid searching in regions of the space
where no coefficient representing a valid distribution can be found. We have
considered two kinds of constraints.

The first kinds of constraints ensure that the Fourier coefficients take values
between the maximum and the minimum values of the irreducible representa-
tions that multiply it. It can be seen in equation 2 that each Fourier coefficient
is the result of the product of a probability value and an irreducible represen-
tation term. Since the probability values range in the interval [0,1], the bounds
of the Fourier coefficients for a valid probability distribution are constrained as
follows:

minσ([ρλ(σ)]ij) ≤ [f̂ρλ ]ij ≤ maxσ([ρλ(σ)]ij)
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In addition, by setting the constraint which makes the trivial coefficient (i.e.
the Fourier transform at the first irreducible representation) equal 1, we ensure
that the sum of the probability values at of the permutations is 1. However,
this does not guarantee a positive distribution. The number of constraints is
2 ∗ c + 1, where c is the number of estimated Fourier coefficients, c =

∑k
λ=2 d2

λ.
The second kinds of constraints ensure a positive probability for each per-

mutation in the sample. The number of this second kinds of constraints is equal
to the number of different elements in the sample.

The Fourier coefficients obtained by maximizing the likelihood restricted to
these constraints correspond to a distribution whose sum is guaranteed to be 1.
However, this does not ensure a valid probability distribution, so it is possible to
have negative ’probabilities’. In that case we perform a normalization process.
Let m be the minimum probability value associated to a permutation. This
process consists of adding to every value of the probability distribution the
absolute value of m and normalizing it. Note that if we add a second kind
constraint for each σ ∈ Sn the estimated distribution is valid. The experimental
section describes several experiments in this scenario. However, it should be
pointed out that this framework is intractable with the exception of very small
values of n.

4 Experiments

In this section we will show the performance of the proposed formulation for
learning probability distributions. Our aim is to demonstrate two points: (i) we
will show that the learned distribution is significantly better than any random
distribution and (ii) we will see how the algorithm behaves when the search
space is restricted to the space of valid probability distributions. Particularly,
we will show the accuracy of the estimated distributions as the sample size grows
and higher order marginals are learned.

4.1 Experimental setup

In order to evaluate our approach on the two above described statements we
have designed two different experimental frameworks.

In the first one, the next procedure is followed. First of all, a probability
distribution is randomly generated. Then, departing from this distribution,
several permutation samples are generated. For these samples, the proposed
algorithm learns the Fourier coefficients and the distributions corresponding
to these coefficients are calculated. Finally, the Kullback-Leibler divergence
between the reference and the resulting estimated distributions are calculated.

In order to prove our first point and see that the learned distributions are
a significantly better approximation than a random distribution, we propose a
comparison test based on Monte Carlo technics. The test consists in sampling
a large number of random distributions and measuring the Kullback-Leibler
divergence between the reference and each of the random distributions.

The reference and the random distributions are generated by sampling a
Dirichlet distribution. In this way, the generation of each distribution requires
n! hyper-parameters α1, ...,αn!. We have set these hyper-parameters, for every
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distribution, as α1 = α2 = ... = αn! = α, where α is uniformly drawn from the
interval [0.05, 0.25].

The hyper-parameter α in the Dirichlet distribution is related with the
smoothness of the generated distribution. The smaller it is, the sharper the dis-
tribution. It seems reasonable thinking that, by learning higher order marginals,
it will be possible to more accurately approximate the reference distribution. In
order to prove this intuition, the Fourier coefficients corresponding to three dif-
ferent marginals have been learned for each test, that is, the ones at the second,
third and fourth irreducible representations.

This first experimental framework has been set as follows. The tests have
been made over the set of permutations of 5, 6 and 7 elements, S5, S6 and S7

respectively. For each different Sn, three sample sizes are defined which are 5,
10 and 25 % of n! for S5 and S6 and 1, 5 and 10% of n! for S7. Also, for each n
and sample size, ten different samples are randomly generated and the average
results are computed. The number of random distributions for the comparison
test is 100,000, and their divergences with the reference distributions are used
to draw a histogram.

The second experimental framework has been designed to show how this
algorithm behaves when the search space is restricted to the space of valid
probability distributions. In order to restrict the search space, some constraints
have been added to the model described in the above section. Particularly, these
constraints ensure that every value of the probability distribution is positive.
Although this approach is not efficient for large values of n, we find these exper-
iments particularly illustrative to see how the estimation algorithm behaves as
the sample size and the number of learned Fourier coefficients increase. In the
same way as in the first framework, a reference distribution is generated and
several samples are obtained from it. Then, the Fourier coefficients for those
samples are learned and the distributions corresponding to those coefficients are
obtained. Finally, the Kullback-Leibler divergences between the estimated and
the reference distributions are given.

The parameters of this second framework have been set as follows. The
experiments have been performed for S5. The Fourier transform of a function
on S5 consists on 120 Fourier coefficients which are grouped in seven matrices.
For each sample seven different probability distributions are learned by using
the coefficients corresponding to the first k irreducible representations, k = 1..7.
We have considered two different reference distributions. The first one has also
been generated by sampling a Dirichlet distribution. Its 5! parameters are equal
to 0.05. The second one is a Mallows distribution with the spread parameter
θ = 1.4 and the central permutation π0 = [1, 2, 3, 4, 5]. For each of them,
one reference distribution is generated for which four different sample sizes are
defined, 5%, 10%, 25% and 50 % of 5!. As in the previous case, for each reference
distribution and sample size ten different samples are randomly generated and
the given Kullback-Leibler divergence is the average of these ten runs.

The resulting constrained nonlinear optimization problems from both frame-
works have been solved using MATLAB. Particularly, the fmincon function in
the optimization toolbox.
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(a) Sample size of 5%

        



































(b) Sample size of 10%

        



































(c) Sample size of 25%

Figure 1: Kullback-Leibler divergence between the reference and estimated dis-
tributions and the reference random distributions S5

4.2 Results

In this section we give a detailed description of the results of the experiments
in the two described frameworks. The result of the experiments considering the
first framework for S5, S6 and S7 are shown in Figures 1, 2 and 3 respectively.

Figures 1a, 1b and 1c show the results of estimating a sample of 5%, 10%
and 25% of n! respectively. Particularly, these figures show the Kullback-Leibler
divergence between the reference and the estimated distributions and the refer-
ence and random distributions. The first point to consider in each figure is that
the divergence between the reference and the random distributions are spanned
in a wide interval, being the higher concentration in the first half of the range.
However, none of the random distributions is closer to the reference distribution
than any of the ones obtained by learning the Fourier coefficients, which are plot
with a vertical line. Note that each line represents the average divergence of
ten distributions obtained from ten different samples of the same size. The esti-
mated distributions are significantly better than any random distribution. The
three lines correspond to the distributions obtained by estimating the Fourier
coefficients at the first 2, 3 and 4 irreducible representations. Since the differ-
ences cannot be clearly appreciated in the plots, a zoom over them is done in
the top right side of each figure. In every figure the line in the right corresponds
to the estimation of the lowest order marginals (k = 2) and the line in the left to
the estimation of highest order marginals considered (k = 4). This means that
as the number of learned Fourier coefficients grows, the resulting distribution
gets closer to the reference distribution.

Figures 2a, 2b and 2c show the results of the tests over the group S6 using
sample sizes of 5% 10% and 25% of n!. Similar conclusions can be drawn, since
none of the random distributions is closer to the reference one than any of the
distributions recovered from the learned Fourier coefficients. Here again, the
larger the number of estimated Fourier coefficients, the better the approxima-
tion.

Figures 3a, 3b and 3c show quite a similar performance on the group S7.
Moreover, one can see that, as the number of elements in the set of permuta-
tions grows, the divergences between the reference and the random distributions
quickly increase, while the divergence of the learned distributions are quite sta-
ble.

The results of the second experimental framework can be seen in Figure 4.
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(a) Sample size of 5%

         





























(b) Sample size of 10%

         




























(c) Sample size of: 25%

Figure 2: Kullback-Leibler divergence between the reference and estimated dis-
tributions and the reference random distributions S6

       





























(a) Sample size of 1%

       





























(b) Sample size of 5%

       




























(c) Sample size of 10%

Figure 3: Kullback-Leibler divergence between the reference and estimated dis-
tributions and the reference random distributions S7
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(a) Kullback Leibler divergence, Dirichlet
generated distribution over S5
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distribution over S5
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(d) Likelihood of the sample, Mallows dis-
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Figure 4: Kullback-Leibler divergence between the reference and the estimated
distributions for different sample sizes and different number of coefficients con-
sidered in 4a and 4b. Figures 4c and 4d plot the likelihood of the samples for
different sample sizes and different number of coefficients considered.

Figures 4a and 4b show the Kullback-Leibler divergence between the estimated
and the reference distributions, which have been generated by sampling a Dirich-
let and a Mallows distribution respectively. In both figures one can see how, as
the sample size grows, the estimated distribution tends to get closer to the refer-
ence distribution. Moreover, in Figure 4a we can also see how as the number of
estimated Fourier coefficients grow, the divergence between the distribution rep-
resented by these coefficients and the reference Dirichlet generated distribution
tends to decrease. However, this is not the case for the samples coming from the
Mallows distribution. Initially, the Kullback Leibler divergences decrease, but
after k = 3 the divergences increase. In order to better understand the behavior
of the estimated distributions it is illustrative to compare the likelihood of the
samples for both estimated, e, and reference distributions, r, which is shown in
Figures 4c and 4d. Particularly, these figures plot log((r − e)/r) for positive
values of (r− e). As it can be seen in Figure 4d the likelihood of the estimated
distribution from the Mallows samples quickly increases from k = 3. This is not
the case of the Dirichlet generated distribution, Figure 4c. The main difference
between both distributions is the number of parameters. While the Dirichlet
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generated distribution needs n! parameters in its definition, for the Mallows
distribution only two parameters are required. Therefore, we can conclude that
when learning the Mallows distribution an overfitting phenomenon is happening
due to the fact that the number of parameters we are learning is much bigger
than the number of parameters that describe the distribution.

5 Conclusions and Future work

In this paper we propose a novel method for learning probability distributions
from a set of permutations. The model for representing such distributions is the
Fourier-based approach. We have described a formulation that, by maximizing
the likelihood function, learns the Fourier coefficients that best represent the
probability distribution of a given sample.

We have tested this formulation on two different models of probability dis-
tributions over permutations. The experiments showed that the original dis-
tribution can be better approximated when the sample sizes grow and higher
order marginals are learned.
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