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Summary (maximum 200 words) 14 

 A growing number of field studies report isotopic offsets between stem water and its15 

potential sources that prevent the unambiguous identification of plant water origin using16 

water isotopes. We explored the causes of this isotopic offset by conducting a controlled17 

experiment on the temperate tree species Fagus sylvatica.18 

 We measured δ2H and δ18
O of soil and stem water from potted saplings growing on three 19 

soil substrates and subjected to two watering regimes. 20 

 Regardless of substrate, soil and stem water δ2
H were similar only near permanent wilting 21 

point. Under moister conditions, stem water δ2
H was 11±3‰ more negative than soil water22 

δ2
H, coherent with field studies. Under drier conditions, stem water δ2

H became 23 

progressively more enriched than soil water δ2
H. Although stem water δ18

O broadly 24 

reflected that of soil water, soil-stem δ2
H and δ18

O differences were correlated (r = 0.76) and 25 

increased with transpiration rates indicated by proxies. 26 

 Soil-stem isotopic offsets are more likely caused by water isotope heterogeneities within the27 

soil pore and stem tissues, which would be masked under drier conditions due to evaporative28 
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enrichment, than by fractionation under root water uptake. Our results challenge our current 29 

understanding of isotopic signals in the soil-plant continuum. 30 
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1. Introduction 44 

Plant transpiration is the main flux returning water from the land surface to the atmosphere 45 

(Jasechko et al., 2013) emphasising the importance of vegetation in the global water cycle. To 46 

trace variations in land-atmosphere water fluxes it is necessary to identify the water pools 47 

accessed by plants and how these change over time and space. Analysis of the natural abundance 48 

of stable isotopes in water is a commonly used technique for this purpose (Dawson & Ehleringer, 49 

1991; Barbeta & Peñuelas, 2017). This technique is usually applied under  the assumption that 50 

no isotopic fractionation occurs during root water uptake, as suggested by a series of early 51 

observations conducted on plants grown hydroponically (Washburn & Smith, 1934; 52 

Zimmermann et al., 1967). Although hydroponic systems do not have the mechanistic 53 

complexity and heterogeneity of natural systems (Penna et al., 2018), the evidence for root water 54 

uptake not fractionating paved the way for using water stable isotopes to infer plant water 55 

sources (White et al., 1985; Dawson & Ehleringer, 1991), assess their spatiotemporal variability 56 

(Bertrand et al., 2014; Barbeta et al., 2015) and their ecological implications (Moreno-Gutiérrez 57 

et al., 2012; De Deurwaerder et al., 2018). 58 

Improvements in the capability for higher throughput using modern water extraction and isotopic 59 

determination techniques have helped collect water isotopic datasets that are more 60 

comprehensive than ever before (Stumpp et al., 2018). Perhaps more importantly, plant water 61 

source studies are no longer restricted to either oxygen (δ18
O) or hydrogen (δ2

H) isotopic 62 

composition, but routinely present data for both isotopes. An emerging feature of studies using 63 

dual-isotope approaches is that oxygen and hydrogen isotopes do not always agree in the 64 

attribution of the source(s) of plant water. This is caused by isotopic offsets between stem water 65 

and all potential water sources, that is, the isotopic composition of stem water does not match 66 

any of the considered sources in the dual-isotope space. These isotopic offsets have been 67 

observed in field sites encompassing a wide range of soil types and biomes, including semi-arid 68 

shrublands (Wang et al., 2017), conifer forests (Geris et al., 2017 Brooks et al., 2010), broad-69 

leaved forests (Goldsmith et al., 2018; Barbeta et al., 2019 Bowling et al., 2017), urban gardens 70 

(Oerter and Bowen, 2017), tropical rainforests (Brum et al., 2018; De Deurwaerder et al., 2018) 71 

and rice paddy fields (Mahindawansha et al., 2018). In such cases, the use of oxygen or 72 

hydrogen isotopes separately can lead to significantly different attributions of plant water sources 73 



(Lin & Sternberg, 1993; Evaristo et al., 2017; Brum et al., 2018; Barbeta et al., 2019). Some 74 

authors acknowledged this caveat and used either δ2
H or δ18

O to infer plant water sources, or 75 

proposed and discussed potential mechanisms and implications (Bowling et al., 2017; Evaristo et 76 

al., 2017; Barbeta et al., 2019; Oerter & Bowen, 2019; Oerter et al., 2019). However, in many 77 

cases, soil-stem isotopic offsets are not addressed. 78 

An isotopic offset between stem water and all potential water sources cannot be attributed solely 79 

to methodological issues. For example, contamination of soil- or plant-extracted water by 80 

organic compounds can bias measurements of the stable isotopes in water, especially when using 81 

laser-based instruments (e.g. Schultz et al., 2011; Martín-Gómez et al., 2015; Millar et al., 82 

2018). However, these contaminations are now routinely dealt with using custom, post-83 

measurement corrections and are unlikely to cause a systematic bias since (1) isotopic offsets 84 

have been found in studies using both mass spectrometers (Brooks et al., 2010; Bowling et al., 85 

2017; Brum et al., 2018; Goldsmith et al., 2018) and laser-based instruments (Geris et al., 2017; 86 

Barbeta et al., 2019; De Deurwaerder et al., 2018) and (2) both types of analysers render similar 87 

and reproducible results on the same soil water samples (Orlowski et al., 2018). Additional 88 

confounding effects related to water extraction techniques should not be overlooked (Thorburn et 89 

al., 1993; Walker et al., 1994; Millar et al., 2015; Orlowski et al., 2018). For example, cryogenic 90 

vacuum extraction (CVE), is the most widely used technique nowadays but has been shown to 91 

give results sensitive to many parameters such as soil texture, water content, extraction time or 92 

temperature (Orlowski et al., 2018). Alternative soil and stem water extraction techniques exist 93 

(Wassenaar et al., 2008; Munksgaard et al., 2014) and comparative studies often concluded that 94 

contrasting results were caused by differences in extraction yields affecting the isotopic 95 

composition of the extracted water of soil (Walker et al., 1994) and stem (Thorburn et al., 1993) 96 

via Rayleigh distillation processes, or by large differences in organic contamination of the 97 

extracted water (Millar et al., 2015). However, if well conducted, water extraction techniques 98 

such as CVE lead to extraction yields >99% and low levels of organic contamination (Orlowski 99 

et al., 2013; Millar et al., 2015). Another possibility explaining soil-stem isotopic offsets is that 100 

the pools of water extracted vary with different techniques, even though some of these pools 101 

might be less relevant to the study of plant water sources (e.g. water adsorbed on soil particles or 102 

plant storage water). For example, a recent study on wheat showed that the soil-stem isotopic 103 

offset was reduced when using direct vapour equilibration on stems, compared to CVE (Millar et 104 



al., 2018). Unfortunately, for woody species, direct vapour equilibration presents additional 105 

problems related to the interference of volatile organic compounds during isotopic determination 106 

and still needs further development and testing (Volkmann et al. 2016; Raulerson, 2019). 107 

Regardless of the technique, a consistent pattern is observed frequently across studies whereby 108 

stem water generally plots below and to the right of any considered water source in the dual 109 

isotope “space” (i.e., a graphical representation of δ2
H vs. δ18

O values) (Brooks et al., 2010). 110 

Such a systematic pattern is unlikely to be attributed solely to soil and stem water extraction 111 

artefacts but it remains to be tested whether it is reproducible under controlled conditions. 112 

Isotopic offsets between source and stem water have now been reported in ecologically diverse 113 

plant species, but was firstly observed in halophytic and xerophytic plants (Lin & Sternberg, 114 

1993; Ellsworth & Williams, 2007). These drought and salinity tolerant plants have a highly 115 

developed Casparian strip on the radial cell walls of the root endodermis that impedes apoplastic 116 

movement of water, forcing water to move symplastically across cell membranes (Ellsworth & 117 

Williams, 2007 and references therein). Water movement through the symplastic route has been 118 

hypothesized to fractionate hydrogen isotopes in water, leading to a 3-9‰ depletion of stem 119 

water compared to soil water in halophytic and xerophytic plants (Lin & Sternberg, 1993; 120 

Ellsworth & Williams, 2007). More recently, Poca et al., (2019) showed that arbuscular 121 

mycorrhizal associations enhanced the isotopic offset between soil and stem water (up to -15‰) 122 

in potted seedlings of the xerophytic species Acacia caven. They proposed that isotopic 123 

fractionation occurred during trans-membrane water transport via aquaporins, and that this mode 124 

of transport must be enhanced in presence of mycchorizal associations. However, the impairment 125 

of the apoplastic pathway was not demonstrated in this study. More importantly, this mechanism 126 

cannot explain why other studies, including our own results from a temperate deciduous forest 127 

(Barbeta et al., 2019), found similar isotopic offsets (a soil water excess of 8.4‰) in plant 128 

species where root water uptake through the apoplastic route should not be impeded. 129 

It is also increasingly recognised that soil water may exhibit pore-scale isotopic heterogeneity 130 

created by water-surface interaction effects that leads to an isotopic depletion of adsorbed water 131 

compared to bulk soil water (Oerter et al., 2014; Chen et al., 2016; Lin & Horita, 2016; Lin et 132 

al., 2018; Penna et al., 2018; Oerter & Bowen, 2019). Then, a depletion of stem water compared 133 

to bulk soil water could indicate that trees take up water adsorbed onto soil particles. However, 134 



we would expect roots to take up the most mobile (i.e. gravimetric and capillary) soil water (see 135 

the discussion in Bowling et al., 2017) which, in contrast to adsorbed water, should be more 136 

enriched than bulk soil water (Chen et al., 2016; Barbeta et al., 2019). Under low water 137 

availability and high evaporative demand, it has also been shown that stem water loss via 138 

evaporation can create significant isotopic enrichment of stem water (Bowling et al., 2017; 139 

Martín-Gómez et al., 2017) further complicating the inference of plant water sources from stem  140 

water’s isotopic composition. Although such evaporative enrichment of stem water should be 141 

easily detectable in the dual-isotope space and is a process that needs to be considered when 142 

attempting to derive plant water sources, it cannot explain why stem water is more depleted in 143 

δ2
H than any considered water source. 144 

Isotopic heterogeneity in plant water pools was further proposed by Zhao et al. (2016) as an 145 

alternative explanation for the observed soil-stem water isotopic offsets. They directly extracted 146 

sap (i.e. vessel water) from stems of the desert riparian trees Populus euphratica and found that 147 

its isotopic composition matched that of groundwater. On the other hand, total water from stem 148 

or root samples was systematically depleted in 
2
H with respect to sap water and all other likely 149 

water sources. They attributed this observation to a putative discrimination during water 150 

transport and redistribution within the plant. Unfortunately, repeating this experiment with other 151 

species or during the dry season is very challenging, as it requires the xylem sap to be under 152 

positive pressure to be collected. Only indirect evidence can be deducted, once all other 153 

hypotheses have been discarded. 154 

In this context, we conducted a glasshouse experiment with potted saplings of a temperate 155 

deciduous tree (European beech, Fagus sylvatica L.) to quantify potential isotopic offsets 156 

between plant and source water and to elucidate how these vary with water availability, soil 157 

properties and plant physiological performance. We chose this temperate tree species because it 158 

had been shown in a previous field study that isotopic separation between source and xylem 159 

water was likely (Barbeta et al., 2019). In the field, the total extension of the root system is 160 

difficult to assess so the presence of unconsidered water sources can never be completely ruled 161 

out (Barbeta et al., 2019; Oerter & Bowen, 2019). In contrast, the advantage of potted plants is 162 

that the actual water source can be characterized more thoroughly. We thus wanted to verify that 163 

the isotopic offsets observed in the field between xylem and soil water were reproducible under 164 



controlled conditions. Our experimental design builds up on the hypotheses formulated by 165 

previous studies (Zhao et al., 2016; Martín-Gómez et al., 2017; Vargas et al., 2017; Barbeta et 166 

al., 2019; Oerter & Bowen, 2019) and more importantly, expands the range of soil water 167 

availabilities tested to date. The isotopic offset between soil and stem water reported by Vargas 168 

et al. (2017) was based on a glasshouse experiment with potted Persea americana saplings 169 

subjected to a relatively mild water shortage (matching the study species demands) on two 170 

contrasting soil types. Here we not only explored much harsher water shortages, but we also 171 

complemented our experiment with a control treatment whereby plants were regularly watered 172 

throughout the experiment to maintain the soil at field capacity. By doing so, we were revisiting 173 

the early hydroponic experiments at the origin of the idea that root water uptake is a non-174 

fractionating process, while adding the complexity of textured soils. After several weeks of 175 

regular irrigation to compensate for water losses, fractionation during root water uptake (noted εU 176 

in Fig. 1A) should lead to an isotopic enrichment of soil water above irrigation water 177 

(δsoil = δP + εU) while stem water should arrive at isotopic steady state and reflect exactly the 178 

isotopic composition of irrigation water (δsoil = δP), leading to a constant isotopic offset between 179 

bulk soil and stem waters (Fig 1A). If soil evaporation is not fully suppressed, soil water will 180 

become slightly more enriched than δP + εU but the isotopic difference between soil and stem 181 

water should not differ (see Notes S1). Pore-scale isotopic heterogeneity in soil and xylem water 182 

pools may be an alternative explanation for the observed soil-xylem isotopic offsets (Fig. 1B). 183 

Under well-watered conditions, the adsorbed soil water would represent a small fraction (fa) of 184 

total soil water and thus the isotopic composition of bulk soil water (δsoil) would resemble that of 185 

irrigation water (δP). In turn, the isotopic composition of bulk stem water (δstem) would still be 186 

more depleted than δsoil (and δP) because of isotopic heterogeneity within the stem (i.e. isotopic 187 

differences between vessel/sap water and water in non-conductive tissues, Zhao et al., 2016). 188 

This would imply that these non-conductive tissues are depleted compared to sap water, since 189 

sap would have the signal of the water taken up (δP) (Fig. 1B). To test further this alternative 190 

situation, we also used three soil textures, including one containing rock fragments, to play on 191 

the fraction of adsorbed water in soils and help disentangle the separate roles of soil water 192 

content and water potential on the isotopic offsets. To sum up, our aim was to (i) test whether 193 

isotopic offsets between stem water and their sources were reproducible in potted plants with a 194 



unique source of water and (ii) identify the soil physical and/or plant physiological mechanisms 195 

producing these isotopic offsets.  196 

2. Material and Methods 197 

2.1 Plant material and experimental design 198 

From February to July 2018 we grew saplings of F. sylvatica in a temperature-controlled 199 

glasshouse (Talence, France). Climatic conditions inside the glasshouse were monitored with a 200 

temperature and humidity probe (HMP60, Vaisala, Vanta, Finland) and a quantum sensor 201 

(SQ200, Apogee, Logan, UT, US). Over the study period (14 May to 20 June 2018, n = 38 days), 202 

mean air temperature inside the glasshouse (±SE) was 20 ± 0.3 °C during the day and 203 

16.3 ± 0.2 °C at night. A shading cloth was permanently deployed from 24 April 2018 and mean 204 

daily photosynthetic photon flux density (PPFD) was 10 ± 0.9 mol m
-2

 d
-1

. 205 

One-year old beech saplings (mean diameter of 2.1±0.5 cm) were obtained from a commercial 206 

nursery (Naudet pépinières, Leuglay, France) grown from seeds originating from the Armorican 207 

massif (Bretagne, NE France). On 20 February 2018, we transplanted 220 plants into 3.5 L 208 

squared pots filled with three soil types. The three soil types consisted of a volume mix of (1) 209 

soil:sand:commercial substrate (2:1:1), (2) soil:sand:commercial substrate:crushed rocks 210 

(10:5:5:1) and (3) soil:sand:commercial substrate:clay (10:2:5:3). Substrates were: sandy soil 211 

from a nearby pine plantation (Jones et al., 2017) (Cestas, France), with a total organic C of 212 

33 g kg
-1

 and a total N < 1 g kg
-1

 ; washed river sand (Gedimat, Levallois-Perret, France); 213 

commercial peat substrate for plant growth (“Terrau Gazon”, Soufflet Vigne, Martillac, France); 214 

crushed rocks obtained from oven-dried (48 h at 105 °C) limestone rocks collected near the 215 

Ciron river (Pompéjac, France) and commercial soil conditioner (bentonite clay, Magellan-bio.fr, 216 

Cysoing, France). According to texture analyses, the first and second (without the rocks) soil 217 

types were classified as coarse sand and the third type was a sandy loam in the limit of sandy 218 

clay loam, henceforth sandy clay loam. Soil water retention curves estimated from pedotransfer 219 

functions (R package soilwater) are presented in Fig. S1. We transplanted 100 plants onto the 220 

coarse sandy soil, 60 plants onto the coarse sandy soil with rocks and 60 plants onto the sandy 221 

clay loam. 222 



From February 2018 until 13 May 2018 all pots were watered regularly to field capacity with tap 223 

water (2
H = -35.33 ± 0.25 and 18

O = -5.90 ± 0.3) and soil water was allowed to freely 224 

evaporate from the surface. Starting on 14 May 2018, we watered all pots daily to field capacity 225 

for three consecutive days to ensure a homogeneous soil water pool in each pot. A set of 12 226 

plants from each soil type continued to be watered to field capacity regularly (control treatment), 227 

while watering was withheld for all other plants from the 17 May 2018 until the end of the 228 

drying experiment on 20 June 2018 (drought treatment). A plastic top was placed on all pots to 229 

reduce soil water evaporation on 17 May 2018. Mean soil gravimetric water content (GWC) over 230 

time for each treatment and soil type was calculated from the weights of ten and five pots for the 231 

drought and control treatments, respectively, for each soil type. Individual GWC and plant water 232 

contents for sampled pots and plants were estimated from the soil and stem samples used for 233 

cryogenic vacuum distillation. GWC was then converted to volumetric water content (VWC) 234 

using the bulk density of each soil type. Based on the retention curve of each soil type, we 235 

determined the VWC corresponding to the permanent wilting point (VWC at which soil matric 236 

potential is -1500 kPa). For each sampled pot, we calculated rel, the difference between the 237 

VWC of a given pot minus the VWC at permanent wilting point. Thus, positives rel values 238 

corresponded to conditions in which soil water can be taken up by roots whilst negative values 239 

imply that soil water is not extractable by the plant. 240 

In addition to the two watering treatments, we applied a low vapour pressure deficit (VPD) 241 

treatment during the first two sampling campaigns on a subset of plants from the drought 242 

treatment with the rock-free coarse sandy soil. This treatment consisted of covering five plants 243 

with a semi-transparent plastic bag the evening before the day of sampling. The aim was to 244 

reduce transpiration for individual plants over the course of one day to assess its impact on 245 

potential isotopic offsets between soil and stem water pools. 246 

2.2 Ecophysiological measurements and destructive harvests 247 

Over the course of the drying experiment, we performed five campaigns of ecophysiological 248 

measurements and destructive harvests for water isotope analysis (1, 8, 15, 28 and 35 days after 249 

the last watering event of the drought treatment on 17 May 2018). On each campaign and each 250 

soil type, we harvested three plants from the control and five from the drought treatment, except 251 

on the first and second campaigns, where five additional plants from the low VPD treatment (on 252 



rock-free sandy soil) were also sampled. For each pot, a soil core from the surface to the bottom 253 

of the pot was taken, homogenised in a clean plastic tray and sub-sampled for isotopic analysis. 254 

For each plant we cut two 5cm-long lignified segments, one from the root and one from the stem 255 

(separated by at least 2.5 cm below the aboveground stem) and peeled off the bark and phloem. 256 

Soil, root and stem samples were rapidly transferred into screw-cap glass vials, sealed with 257 

Parafilm® and stored in a cool box until transported to the laboratory where they were stored at 258 

4°C until further analysis. 259 

The day of each destructive harvest (conducted in early afternoon), ecophysiological 260 

measurements were also performed on leaves from the harvested plants and included 261 

measurements of stomatal conductance to water vapour (gs) and leaf water potential at predawn 262 

(Ψpd) and midday (Ψmd). Leaf water potential was measured with a custom-made Scholander 263 

type chamber (DG Meca, Gradignan, France) on one leaf per plant. Stomatal conductance was 264 

measured at mid-morning (10:30-11:30, local time) with two cross-calibrated handheld 265 

porometers (SC-1 Leaf Porometer, Decagon Inc., Pullman, WA, US) on one leaf per plant. On 266 

the second campaign, we measured gs with the two handheld porometers and with an infrared gas 267 

analyser (IRGA, LI-COR 6400, LI-COR, Lincoln, NE, US), on the same leaves and matching the 268 

conditions inside the gas exchange chamber (temperature, humidity, PPFD and CO2 269 

concentration) to those prevailing in the glasshouse. The significant correlation between gs 270 

measurements showed that measurements from the handheld porometers neither overestimated 271 

nor underestimated stomatal conductance compared to the IRGA (p = 0.001, R
2
 = 0.45, slope: 272 

1.03 ± 0.25).  273 

2.3 Cryogenic water extraction and analyses of water isotopic composition 274 

The extraction of water from soil, stem, root and rock samples was performed by cryogenic 275 

vacuum distillation using a design and methodology proposed by Orlowski et al. (2013), as 276 

described in Jones et al. (2017). At the onset of the extraction, up to 24 samples kept in sampling 277 

glass vials were inserted in larger extraction glass vials connected to a vacuum extraction line 278 

and frozen in liquid nitrogen. The extraction line was then evacuated down to an atmospheric 279 

(static) pressure of less than 1 Pa and composed of 24 glass U-shape tubes that were then 280 

inserted in liquid nitrogen to create a cold trap. Samples were then immersed in a water bath at 281 

ambient temperature, and the water bath was gradually heated up to 80°C (within 1h) to start the 282 



distillation process. Samples remained in the heated bath at 80°C for 2.5h. Pressure in the 283 

extraction line was continuously monitored with sub-atmospheric pressure sensors (APG100 284 

Active Pirani Vacuum Gauges, Edwards, Burgess Hill, UK) to check that the lines remained 285 

leak-tight throughout the entire extraction and that the water extraction had ended. Samples were 286 

weighed before and after the extraction and before and after being oven-dried for 24h at 105°C to 287 

assess extraction efficiency. GWC was estimated from each sample by using the weight 288 

measured before and after the cryogenic extraction and again after oven-drying (Newberry et al., 289 

2017). 290 

The isotopic composition (2
H and 18

O) of the extracted waters was measured with an off-axis 291 

integrated cavity optical spectrometer (TIWA-45EP, Los Gatos Research, USA) coupled to a 292 

liquid auto-sampler and vaporiser (LC-xt, PAL systems, Switzerland). All isotopic data reported 293 

here are calibrated using two internal standards and expressed on the VSMOW-SLAP scale, as 294 

described in Jones et al. (2017). Because the presence of organic compounds (ethanol, methanol 295 

and/or other biogenic volatile compounds) in water samples can lead to large isotopic 296 

discrepancies in laser-based analyses (Martín-Gómez et al., 2015; Wassenaar et al. 2018), we 297 

developed a post-correction algorithm for the presence of organic compounds based on the 298 

narrowband (for methanol) and broadband (for ethanol) metrics of the absorption spectra (Brian 299 

Leen et al., 2012). Post-corrections relating how these metrics affect the isotopic composition of 300 

waters contaminated with known amounts of ethanol and methanol were developed specifically 301 

for our instrument. Overall, these post-corrections were usually higher for stem water than for 302 

meteoric or soil water samples but always remained quite small (i.e. below 1.5 ‰ for 2
H and 303 

below 0.7 ‰ for 18
O).  304 

2.4 Data analyses 305 

Statistical analysis was conducted in R (R Core Team, 2019) using either general linear models 306 

(GLM) or generalized linear mixed models (GLMM, for those cases where we set some of the 307 

factors as random) from the R package lme4 (Bates et al., 2015). The effect of soil type and 308 

drought treatment over the course of the experiment on GWC, plant water potentials at predawn 309 

(Ψpd), midday (Ψmd), the difference between them (ΔΨ) and the isotopic composition of the 310 

different water pools (soils, stems, roots and rocks) was tested with GLMs with interactions 311 

between all factors. In order to determine the most relevant factors explaining the variability in 312 



isotopic offsets (Δ18
O and Δ2

H, calculated as the difference between plant and soil water isotopic 313 

composition), we conducted a stepwise regression model. In the saturated model, we considered, 314 

rel, soil type, gs, Ψpd and Ψmd. Based on the Akaike Information Criterion (AIC) (Akaike, 1974), 315 

we progressively removed those variables that were not significant, deciding to maintain this 316 

removal if the AIC decreased (better compromise between goodness of fit and model simplicity).  317 

3. Results 318 

3.1 Manipulation effects on soil water content and plant water use  319 

Soil gravimetric water content (GWC) decreased over time (P < 0.001) in the drought treatment, 320 

while it was maintained in the control treatment (Fig. 2). Soil type had a significant effect on the 321 

drying rate (P = 0.001 for the soil type × time × treatment interaction), with fastest drying rates 322 

in the rocky sandy soil and slowest drying rates in the sandy clay loam (Fig. S2). 323 

Predawn leaf water potential (Ψpd) also decreased over time in the drought treatment while it was 324 

maintained in control pots (P < 0.001, for the treatment effect, Fig. 2). The impact of the drought 325 

treatments on GWC was observed rapidly in the different soils, but differences in Ψpd (P > 0.15 326 

for soil type and its interactions) started to decline only 20 days after the last watering event 327 

(Fig. S2). Similarly, plants in the drought treatment had more negative Ψmd and smaller ΔΨ than 328 

plants in the control treatment (P = 0.04 and 0.001, for Ψmd
 and ΔΨ, respectively), but with no 329 

significant difference between soil types (Fig. S3). Plants in the control treatment had higher gs 330 

than plants in the drought treatment (P < 0.001) (Fig. 2) and did not show any difference in 331 

stomatal conductance (gs) between soil types (not shown). The deliberate reduction in VPD 332 

promoted by bagging the plants overnight prior to the first two sampling dates successfully 333 

increased gs, but did not affect predawn water potentials (not shown). 334 

Plant water content was not sensitive to the drought treatment. Both control and drought plants 335 

showed a progressive decrease in root and stem water content (relative to total weight) over the 336 

experiment, with no significant difference between treatments (Fig. 2). Roots always had 337 

significantly higher water content than stems. Overall, the drought treatment had a significant 338 

influence on the plant water status only for the last two sampling campaigns (i.e. when predawn 339 

water potential fell below -1MPa), coinciding with significantly lower leaf stomatal conductance 340 



and predawn water potential despite similar root and stem water contents, compared to the 341 

control plants. 342 

3.2 Manipulation effects on the isotopic composition of water pools 343 

The isotopic composition of soil water was always equal to or more enriched (i.e. had higher 344 

δ18
O and δ2

H) than irrigation water, even in the (regularly irrigated) control treatment (Figs. 3 345 

and 4). This isotopic enrichment above irrigation water of soil water in the control treatment was 346 

stronger when the time between the last irrigation and the date of sampling was longer, and 347 

comparable to the enrichment in the drought treatment during the first three campaigns. In the 348 

drought treatment, and despite our attempt to prevent soil evaporation, the δ18
O of soil water 349 

increased over time, especially over the last two sampling campaigns (Fig. 3). In contrast, soil 350 

water δ2
H did not follow a progressive enrichment as the soil dried, as it is expected from soil 351 

evaporative enrichment theory (Barnes & Allison, 1983). These patterns were visible and 352 

reproducible amongst all soil types (Fig. S4). 353 

Root and stem water δ18
O broadly reflected the δ18

O of the corresponding soil water (Fig. 3). In 354 

contrast, root and stem water δ2
H from the control treatment was always more depleted than soil 355 

water δ2
H (P < 0.001 and P < 0.01, Fig. 3). A similar pattern was also visible in the drought 356 

treatment for the first three sampling campaigns (i.e. until the drought treatment had a significant 357 

influence on the plant water status, see section 3.1). However, for the last two campaigns, root 358 

and stem water δ2
H started to increase and became more enriched than soil water δ2

H (Fig. 3). 359 

No significant difference was found between root and stem water δ2
H. 360 

Differences in the isotopic compositions of stem, root and soil water described above were not 361 

affected by soil type (Fig. S4). However, water extracted from limestone rocks was more 362 

enriched than soil water in response to drought in both δ18
O (P < 0.05) and δ2

H (P < 0.001) but 363 

this did not affect the isotopic composition of plant and soil water pools (Fig. S4). 364 

3.3 Isotopic offsets between plant and soil water pools 365 

Although soil, root and stem water δ18
O and δ2

H behaved differently upon drying, a strong 366 

correlation between δ18
O and δ2

H soil-plant offsets (Δ18
O and Δ2

H), for both roots and stems was 367 

observed (Fig. 5). The slope of the orthogonal distance linear regression (that accounts for errors 368 



on both axes) between Δ18
O and Δ2

H was 7.9 ±0.7 and 7.2 ±0.8 for soil-stem and soil-root 369 

offsets, respectively. 370 

The δ2
H soil-stem water offset (Δ2

H) was significantly different from zero (P < 0.001) for 371 

control plants, with a mean value of 10.6 ± 3.05‰, indicating that stem water was significantly 372 

more depleted than soil water (Figs. S5). In the drought treatment, Δ2
H shifted from positive to 373 

negative values over time (P < 0.001, Fig. S5), indicating that stem water became significantly 374 

more enriched in 
2
H than the corresponding soil water. This shift occurred only when soil water 375 

content was below the permanent wilting point (Fig. S5), and when the drought treatment started 376 

to have significant effects on leaf stomatal conductance and predawn water potential (Fig. 2). 377 

The δ18
O soil-stem water offset (Δ18

O) was not significantly different from zero in both 378 

treatments (Fig. S5a,c), although Δ18
O co-varied with Δ2

H (Fig. 4). Therefore, stem δ18
O 379 

reflected soil water δ18
O. Because root and stem water did not differ significantly in their 380 

isotopic composition, soil-root isotopic offsets followed similar patterns as soil-stem Δ2
H 381 

andΔ18
O (Fig. S5b,d). The effect of rel was significant and negative for Δ18

O, but negligible for 382 

Δ2
H (Fig. 6). For both Δ18

O and Δ2
H, we found positive effects of Ψmd and ΔΨ (Table 1). Leaf 383 

ΔΨ was the variable that explained the largest part of the variance in Δ18
O and Δ2

H. The larger 384 

the leaf ΔΨthe larger the soil-stem isotopic offsets (Fig. 7 and Table 1). Finally, pots exposed to 385 

a low VPD treatment had significantly lower soil-stem Δ2
H than ambient VPD plants (P < 0.05), 386 

but not significantly different Δ18
O (Fig. S6). Plant water content, either in roots or stems, did 387 

not explain the isotopic differences between treatments. 388 

4. Discussion 389 

Our results from a controlled experiment with potted F. sylvatica saplings revealed that hydrogen 390 

isotope offsets between soil and plant water pools (Δ2
H) are consistent over a range of soil types 391 

but highly dependent on plant water status. As long as soil water remained above the permanent 392 

wilting point, stem and root water were significantly more depleted in 
2
H than their 393 

corresponding source water (Figs. 3 and S5), leading to a soil-stem isotopic offset in Δ2
H of a 394 

similar magnitude to those observed in the field for adult F. sylvatica and Quercus robur trees 395 

(Goldsmith et al., 2018; Barbeta et al., 2019) and a number of other species (Lin & Sternberg, 396 

1993; Ellsworth & Williams, 2007; Brooks et al., 2010; Zhao et al., 2016; Evaristo et al., 2017; 397 

Brum et al., 2018; Oerter & Bowen, 2019). The reproducibility of this offset in potted and 398 



irrigated F. sylvatica saplings demonstrates that soil-plant isotopic offset is not restricted to 399 

halophytes (Lin & Sternberg, 1993; Ellsworth & Williams, 2007; Eley et al., 2014; Redelstein et 400 

al., 2018) or xerophytes (Ellsworth & Williams, 2007; Zhao et al., 2016) but is more general and 401 

can occur as well in temperate forests. It further suggests that, in the field, soil-plant δ2
H offsets 402 

cannot be solely attributed to a missing water source (Oerter & Bowen, 2019; Oerter et al., 403 

2019). Our results that the isotope offset can be cancelled or even reversed when predawn water 404 

potential drops below - 1MPa in F. sylvatica may also explain why some field studies do not 405 

observe such an offset, especially in semi-arid sites (e.g. Grossiord et al., 2016) or in temperate 406 

sites during the dry season (e.g. Bariac et al., 1990). The long-standing principle that there is no 407 

isotopic fractionation within soil and stem water pools requires reconsideration, at least for δ2
H. 408 

Meanwhile, oxygen isotope offsets (∆18
O) between soil and plant water were also present and 409 

proportional to ∆2
H (Fig. 5), although not always significant (Fig. S5). 410 

Vargas et al. (2017) performed a similar experiment on potted Persea americana plants and 411 

found soil-stem isotopic offsets that were comparable to those reported here. Their soil-stem ∆2
H 412 

and ∆18
O showed a linear relationship with a slope of 10.6±3.8, i.e., in the same range as the 413 

ones reported here (7.9±0.7 for soil-stem offsets). However, because they explored a narrower 414 

range of soil water availability, they did not detect the sign inversion in both ∆18O and ∆2
H as 415 

found here when Ψpd fell below -1 MPa (Fig. S5). Vargas et al. (2017) explained the observed 416 

soil-stem isotopic offset by a putative isotope fractionation process during root water uptake (see 417 

Introduction). However, our results from the control treatment do not support this hypothesis, as 418 

theoretically, this would result in an enrichment of soil water whilst stem water would reflect 419 

irrigation water (Fig. 1A, see the theoretical framework in Supplementary Information). In 420 

contrast, we found a strong depletion of stem water 2
H compared to irrigation water in the 421 

control treatments that cannot be explained by root discrimination and/or soil evaporation (see 422 

Supplementary Information). A more likely explanation for the isotopic depletion of bulk stem 423 

water compared to soil water in our experiment (and that of Vargas et al.) is that storage water in 424 

the xylem tissue is depleted compared to vessel water (i.e. sap) (Fig. 1B).  425 

Such isotopic offsets between bulk stem water and vessel (sap) water have been reported in 426 

woody plants (Zhao et al., 2016). In addition, large isotopic differences between leaf water pools 427 

from the multiple epidermis (storage tissues) (White et al., 1985) and the spongy parenchyma 428 



(photosynthetic tissues) of the CAM plant Peperomia congesta (HBK) have also been 429 

documented (Yakir et al., 1994). The isotopic difference between storage and photosynthetic 430 

tissues was comparable to the isotopic offsets reported here between soil and stem water (i.e. 431 

>10‰). Interestingly this isotopic difference was maintained only under turgid conditions and 432 

vanished under water limitations (Yakir et al., 1994). This is coherent with our findings that the 433 

isotopic offsets between soil and stem water vanishes around the permanent wilting point 434 

(Fig. 6). However this would imply that, under low transpiration, the mixing of the storage and 435 

vessel water in the stem becomes more pronounced, resulting in a lower fractionation between 436 

the two water pools (x in Fig. 1B). Such a reduction of x under water limitations would need to 437 

be tested using techniques that allow isotopic determination of vessel and stem tissue water 438 

separately. However, a reduction of x cannot explain why stem water becomes more enriched 439 

than soil water below the permanent wilting point (Fig. 6). A plausible explanation for this 440 

pattern is that, when water is limited, stem evaporation (Ex) enriches stem water above the values 441 

of soil water, because the transpiration stream cannot replenish the stem tissue at a fast enough 442 

rate (Martin-Gomez et al., 2017). 443 

It remains to be explained why, in the drought treatment, soil water δ18
O increases continuously 444 

while its δ2
H counterpart remains constant or even decreases once permanent wilting point is 445 

reached (Fig. 3). A very similar pattern had already been observed on wheat and sunflower, and 446 

had been interpreted as a possible effect of plant organic matter decomposition (Allison et al., 447 

1984). Vargas et al. (2017) rejected this idea on the basis that, in their experiment, potted cut 448 

stems (that had decaying roots and no transpiring canopy) did not produce any depletion in soil 449 

water δ2
H. However, soil water in pots with live plants was not depleted either in their 450 

experiment and, as mentioned above, they did not explore the full range of water potentials that 451 

were explored in this study or in Allison et al. (1983). Our data demonstrated that only once 452 

permanent wilting point had been reached and predawn water potential dropped below -1 MPa, 453 

did soil water δ18
O and δ2

H start to exhibit clear opposite trends. Thus, we hypothesise that 454 

Vargas et al. did not observe the same trends as here because the drought treatment they applied 455 

was too mild. In addition, we propose an alternative explanation to that of Allison et al. (1983) 456 

and suggest that this pattern in soil water isotopes under dry conditions results from surface 457 

isotope effects. Indeed, as soil dries adsorbed water becomes an increasingly larger fraction (fa) 458 

of total soil water (Tuller & Or, 2005; Chen et al., 2016; Lu, 2016). In the two last sampling 459 



campaigns of our experiment, soil GWC was below 0.1 g.g
-1

 (11% VWC) in the drought 460 

treatment (Fig. 2). According to Lu (2016), adsorbed water can range from 1.7% VWC in sandy 461 

soils to 12.8% VWC in silty clay soils. It is thus reasonable to assume that the isotopic 462 

fractionation associated with adsorbed water can dominate the isotopic composition of dry soils. 463 

Meanwhile, under sustained drought, the remaining bulk soil water would still become 464 

progressively enriched because of soil evaporation (Es). Depending on the balance between the 465 

enrichment caused by evaporation and the depletion caused by the higher fraction of adsorbed 466 

water, the isotopic composition of bulk soil water could show different trends during drying 467 

periods, either positive or negative. Because soil evaporative enrichment creates a relatively 468 

stronger enrichment in 
18

O than in 
2
H (i.e. the slope of the evaporation line in the dual isotope 469 

space is lower than the slope of the meteoric water line) and surface isotope effects are much 470 

stronger for 
2
H than for 

18
O (Chen et al., 2016; Lin et al., 2018), it is plausible that soil water 471 

δ18
O enriches while soil water δ2

H becomes depleted, at least when the soil water balance is 472 

dominated by root water uptake. In the field, this opposing trend between soil water δ18
O and 473 

δ2
H may be harder to observe as capillary rise may compensate water losses, minimising the 474 

influence of adsorbed water, and the depletion of soil water above the evaporation front may be 475 

dominated by the back diffusion of (depleted) atmospheric vapour into the soil (Barnes & 476 

Allison, 1983). 477 

In conclusion, we propose the following explanation for the dynamics of soil-plant isotopic 478 

offsets reported here and in other studies. This is the most plausible explanation, but it is still 479 

untested in a qualitative sense. Plants take up mobile and capillary soil water during 480 

transpiration. In wet conditions (control treatment), this soil water pool constitutes a large 481 

fraction of bulk soil water with an isotopic composition (δm) close to that of irrigation water. 482 

However, bulk stem water is depleted compared to mobile and capillary soil water (Zhao et al., 483 

2016) because it comprises a mix of vessel water that reflects mobile/capillary soil water, with 484 

storage water that is depleted compared to vessel water (Fig. 8A). The origin of this depletion of 485 

storage water in the stem is unknown, but could be related to surface processes on plant organic 486 

surfaces (Chen et al., 2016). In contrast, during dry conditions (drought treatment), adsorbed 487 

water represents an increasingly larger fraction of bulk soil water, creating a significant depletion 488 

of bulk soil water compared to mobile/capillary water, and thus compared to vessel water in a 489 

transpiring plant. Bulk stem water remains depleted compared to vessel water but, as plant 490 



transpiration becomes strongly reduced under prolonged drought, stem evaporation (Ex) 491 

increasingly enriches bulk stem water above the composition of soil mobile/capillary water (δm) 492 

(Fig. 8B). Our findings that the isotopic offsets between soil and stem water increase with plant 493 

transpiration proxies such as the diurnal amplitude of stem water potential ΔΨ (Fig. 7) or 494 

stomatal conductance (Fig. S7) indicate that soil-stem isotopic offsets also reflect the 495 

competition between transpiration and stem evaporation (Martín-Gómez et al., 2017) and the 496 

matric potential of soil and plant water pools (Gaj & McDonnell, 2019). 497 
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 681 

Table 1. Output of the stepwise regression models for the soil-plant isotopic offsets. Effects 682 

include VWC relative to VWC at the permanent wilting point (rel), leaf midday water potential 683 

(md) and the daily difference between predawn and midday water potential (ΔΨ). ‘Std. Error’ 684 

corresponds to the standard error of the mean. 685 

 686 

    Estimate Std. Error t-value P-value R
2
 

18
O 

Intercept 0.12 0.43 0.76 0.79   

rel -2.59 1.01 -2.56 0.01 0.08 

md 0.81 0.19 4.32 <0.0001 0.19 

 1.57 0.28 5.60 <0.0001 0.24 

  ModelR2         0.36 

2
H 

Intercept 6.36 2.27 2.81 <0.01   

rel 3.87 5.30 0.73 0.47 0.007 

md 5.91 0.98 6.05 <0.0001 0.32 

 9.6 1.47 6.55 <0.0001 0.36 

  Model R
2
         0.55 
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Figure captions 689 

Figure 1. Illustration of the expected isotopic composition of bulk soil (δsoil) and stem (δstem) 690 

water when irrigation (P, with a constant isotopic composition δP) continuously 691 

compensates root water uptake (U) and transpiration (T), and evaporation losses are 692 

negligible (i.e. control treatments). (a) scenario when root water uptake fractionates water 693 

isotopes (fractionation factor U) and (b) scenario when adsorbed water in the soil (fraction fa) 694 

and the stem’s storage tissue water (fraction fx) are depleted with respect to mobile and capillary 695 

water in the soil (fractionation a) and the xylem’s vessel water(fractionation x). 696 

Figure 2. Time course of soil and plant water status over the experiment. Mean soil 697 

gravimetric water content (GWC), leaf predawn water potential (Ψpd), plant water content (roots 698 

and stems) and stomatal conductance (gs) over the course of the experiment in control (left 699 

panels) and drought (right panels) treatments. Error bars are the standard error of the mean 700 

(N = 30 and 15, for soil GWC and 15 and 9 for Ψpd, plant GWC and gs for drought and control, 701 

respectively). 702 

Figure 3. Time course of soil and plant water isotopic composition over the experiment. 703 

Mean δ2H and δ18
O of soil, stem and root water over the course of the experiment in control (left 704 

panels) and drought (right panels) treatments. Error bars are the standard error of the mean (N = 705 

15 and 9, for drought and control, respectively) and can be masked by the symbol when too 706 

small. The solid teal line corresponds to the mean of the isotopic composition of the irrigation 707 

water and the dashed lines its standard error. Vertical arrows in the top panels indicate irrigation 708 

times. On right panels, the vertical dashed line indicates the approximate time when the drought 709 

treatment started to have significant effects on plant water status (Fig. 1). 710 

Figure 4. Dual isotope representation (δ12
H and δ18

O) of soil, stem and root water. (a) 711 

Control treatment. (b) Drought treatment. Blue triangles indicate the isotopic composition of 712 

irrigation water during the experiment and the dotted line represents the local meteoric water 713 

line. 714 

Figure 5. Correlations between soil-plant δ18
O and δ2

H offsets. (a) soil-stem offsets. (b) 715 

soil)root offsets. 716 



Figure 6. Effect of soil moisture on water isotopic compositions. Relationships between rel 717 

(soil VWC relative to VWC at the permanent wilting point) and soil water δ2H and δ18
O (left 718 

panels), stem water δ2H and δ18
O (middle panels) and the soil-stem isotopic offsets Δ18

O and 719 

Δ2
H (right panels). Data were averaged by sampling date and irrigation and VPD treatments. 720 

Error bars are standard errors of the mean, and the dashed line indicates the isotopic composition 721 

of irrigation water (left and middle panels) or the zero (right panels). 722 

Figure 7. Effect of plant ΔΨ on water isotopic compositions. Relationships between plant ΔΨ 723 

(daily difference between Ψpd and Ψmd) and soil water δ2H and δ18
O (left panels), stem water δ2

H 724 

and δ18
O (middle panels) and soil-stem isotopic offsets Δ18

O and Δ2
H (right panels). Data were 725 

averaged by sampling date, and irrigation and VPD treatments. Error bars are standard errors of 726 

the mean, and the dashed line indicates the isotopic composition of irrigation water (left and 727 

middle panels) or the zero (right panels). 728 

Figure 8. Illustration of the proposed effects on the isotopic composition (δ) of bulk soil 729 

(δsoil) and stem (δstem) water in the present experiment, where soil (Esoil) and stem (Estem) 730 

evaporation are not fully suppressed. (a) Control treatment with regular irrigation (P with 731 

constant isotopic composition, δP) compensating water losses through Esoil and root water uptake 732 

(U, further lost via transpiration T and Estem). Here, the isotopic composition of soil mobile and 733 

capillary water (δm) and water inside the xylem vessels are expected to reflect δP with a possible 734 

enrichment due to soil evaporation occurring between irrigations events (≥δP), while soil 735 

capillary water (fraction fa) and stem storage tissue water (fraction fx) are depleted with respect 736 

to mobile soil water (fractionation εa) and to water inside the xylem conduits (fractionation εx). 737 

(b) Drought treatment with water losses via T, Esoil and Estem not being compensated with P. 738 

Here, δm becomes progressively more enriched (due to soil evaporative enrichment) while the 739 

fraction of soil capillary water (fa) increases. Resulting δsoil either becomes more enriched 740 

(following δm) or more depleted (following fa), depending on the balance between the two 741 

processes. Meanwhile, δstem becomes progressively more enriched, following δm because fx 742 

varies proportionally less than fa along the experiment (Fig. 2). 743 
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Figure S1. Soil water retention curves for three soils used in this experiment. Note the different 

scales in the x-axis. 

 

  



 

Figure S2. Boxplots of the soil volumetric water content (VWC, a and b) and predawn leaf water 

potential (Ψpd, c and d) in control (a and c) and drought-stressed pots (b and d), for each soil 

type, over the course of the experiment. Boxplots show the interquartile range, the median 

(black line), the minimum and the maximum values (whiskers) besides outliers (black dots), 

with N = 10 and 5, for VWC and 5 and 3 for Ψpd, for drought and control, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S3. Midday leaf water potential (Ψmd, a and b) and difference between predawn and 

midday Ψ (ΔΨpd-md, c and d) over the course of the experiment in control (a and c) and drought 

(b and d) treatments. Boxplots show the interquartile range, the median (black line), the 

minimum and the maximum values (whiskers) besides outliers (black dots), with N = 15 and 9 

for drought and control, respectively). 

 

 



 

  



 

Figure S4. Isotopic composition (δ2H and δ18
O) of soil, stem, root and rock water over the 

course of the experiment only in the drought treatments pots, and split by soil texture as 

follows: coarse sand (a, d), coarse sand with rocks (b, e) and sandy clay loam (c, e). The teal line 

corresponds to the mean of the isotopic composition of the irrigation water and the dashed 

blue lines are the span of the standard error of the mean. Boxplots show the interquartile 

range, the median (black line), the minimum and the maximum values (whiskers) besides 

outliers (black dots), with = 5 and 3, for drought and control, respectively. 

 

 

 

  



 

Figure S5. Soil-stem water isotopic offsets (Δ18
O (a) and Δ2

H (c)) over the course of the 

experiment in control (teal boxes) and drought (yellow boxes) treatment and the same for soil-

root isotopic offsets (Δ18
O (b) and Δ2

H (d)). Error bars are the standard error of the mean (N = 

15 and 9, for control and drought, respectively). Note that control pots were not sampled in the 

third sampling campaign. 

 

 

 

  



 

Figure S6. Effect of the VPD treatment (low (blue boxes) or ambient (orange boxes)) on soil-

stem isotopic offsets (Δ18
O (a) and Δ2

H (b)). Box heights correspond to the 1
st

-3
rd

 interquartile, 

the line inside the box is the value of the median, whiskers correspond to the minimum and 

maximum values within 1.5 times the interquartile range and data beyond 1.5 times the 

interquartile range are points outside the whiskers. Significant differences are highlighted with 

an asterisk (P <0.05). 

 

 

 



 

Figure S7. Relationships between the soil and plant isotopic composition (δ18
O (a) and δ2

H (b)) 

groups of soil, watering and VPD treatments and stomatal conductance at midday. Error bars 

are standard errors of the mean, and the dashed line indicates the isotopic composition of 

irrigation water. 

 

 

 

 

 

 

 



 

 

Figure S8. Relationships between the soil and plant isotopic composition groups (δ18
O (a) and 

δ2
H (b)) of soil, watering and VPD treatments and twig water potentials at midday (Ψmd). Error 

bars are standard errors of the mean, and the dashed line indicates the isotopic composition of 

irrigation water. 

 

 
 

 

 

 

 



 

Notes S1. Sensitivity analysis on the control treatment. 

In this section, we explore the possible effects of isotopic fractionation during root water 

uptake and soil evaporation (E) on the isotopic composition of soil and stem (xylem) water, 

under nearly continuous irrigation, transpiration and evaporation. This approximates the 

situation in our control treatments, whereby evapotranspiration losses were compensated with 

regular irrigation to ensure that soil moisture content remained the same throughout the 

experiment. 

First we considered the simplest situation where soil evaporation is fully supressed (i.e. the 

purpose of the plastic covers used to cover the soils in our experiment) and irrigation is added 

daily to compensate for the soil water taken up by roots (for practical reasons, irrigation was 

applied only every 3 days in our control treatment but this does not change the reasoning 

below). In this situation, if there is fractionation during root water uptake (say of 3‰, i.e. with a 

fractionation factor U=0.997<1), then for every day when water is added with an isotope ratio 

RP, the same amount is removed by root water uptake with an isotope ratio URs < Rs, where Rs 

is the isotope ratio of soil water (we neglect possible soil water isotope gradients with soil 

depth or distance to the rhizosphere for the moment). In other words, transpiration takes 

relatively fewer heavy water isotopes than there are in the soil, thus soil water becomes 

enriched in the heavy isotopes, whilst irrigation either enriches or depletes soil water 

depending if RP > Rs or not. Over time, the isotope ratio of soil water (Rs) changes until it 

reaches its steady-state (s.s.) value: Rs(s.s.) = RP/U. In this situation, both fluxes into and out of 

the soil have the same isotopic signature because irrigation adds water to the soil with the 

composition RP and root uptake removes water from the soil with a composition URs(s.s.) = RP. 

When the isotopic steady state is reached soil water will have an isotope ratio RP/U that is 

more enriched than irrigation water (by 3‰ in our example). During all this time, stem (xylem) 

water had the same isotope composition as root water uptake, i.e., Rx = URs, which is (over 

time) above or below RP depending on the initial value of Rs compared to RP. However once 

isotopic steady state is reached, Rx reaches Rx(s.s.) = URs(s.s.) = RP, regardless of the initial 

value of Rs. In other words, at isotopic steady state, we should expect the isotope ratio of the 

stem (xylem) water to be the same as irrigation water, and soil water to be more enriched than 



 

U. 

By no means, should we expect stem (xylem) water to become depleted in heavy isotopes 

compared to irrigation water. 

The simple example above was derived assuming no soil evaporation. However, if soil 

evaporation is not completely suppressed, then this should create an isotopic enrichment of 

soil water different from the situation above and could also enrich stem (xylem) water. A 

mathematical treatment of this situation is therefore required. In the situation where water is 

removed from the soil by root uptake and soil evaporation, the soil water mass balance 

becomes: 

dW

dt
=P - E - U » 0                 (S1) 

In this equation, P, E and U (in L of water per day) represent the rates of irrigation, soil 

evaporation and root water uptake, respectively, W is the soil water content (in L) and t is time 

(in days). A similar mass balance equation can also be written for the heavy isotope species 

(either 
1
H2

18
O or 

1
H

2
H

16
O): 

dWRS

dt
=PRP - ERE - URU » W

dRS

dt
              (S2) 

In this equation, Rs, RP, RE and RU are the isotope ratios of bulk soil water, irrigation water, soil 

evaporation and root water uptake, respectively. The second equality in Eq. S2 was obtained by 

decomposing the derivative of the product WRS and noting that, according to Eq. S1, dW/dt = 0. 

In the following, we will express RE and RU with respect to Rs and introduce isotope 

fractionations: RE = E Rs and RU = U Rs. We will also express E as a fraction of the root water 

uptake rate U: E = fE U. (This notation does not imply any functional relationship between E and 

U but is there only to quantify the relative proportion of soil evaporation compared to root 

uptake). With this notation, Eq. S1 simplifies to P = (1 + fE)U and Eq. S2 can be re-arranged as: 

dR
S

dt
+

a
U
P

W

1+ a
E

a
U
f
E

1+ fE
Rs =

P

W
RP

               (S3) 

At isotopic steady state, dRs/dt = 0 and we obtain: 



 

Rs(s.s.)=
1+ fE

1+ a E a U fE

RP

a U

                (S4) 

If fE = 0 we have the situation described above where evaporation is totally suppressed and 

Rs(s.s.) = RP/U. If fE ≠ 0, then soil water will become even more enriched than RP U E U < 1 

but it can also become less enriched if E/U > 1. Note that, because both evaporation and root 

uptake are supposed to enrich soil water, E and U are both smaller than unity. Therefore, 

E/U > 1 means that the isotopic enrichment of soil water caused by soil evaporation is smaller 

than the isotopic enrichment caused by root uptake. This is why the overall effect in this 

situation is to have a soil water pool that is less enriched than if root uptake was the only 

enriching process. 

Equation S3 is also instructive because it gives an indication of the time constant required to 

reach isotopic equilibrium:  ≈ W/P. With P = 0.06 L/day (this is coherent with our irrigation 

records and with Fig. S2b that shows that about 0.2 L L
-1

 is lost in about 10 days at the 

beginning of the drought treatment for a total soil volume of about 3L) and W = 1.5 L (i.e. 3L of 

soil with a water content of about 0.5 L L
-1

, see Fig. S2a), we obtain  ≈ 25 days. This means that 

it takes about 1-2 months to reach isotopic steady state, approximately the duration of the 

irrigation period prior to our first sampling campaign (i.e. from February to mid-May 2018). 

Therefore, we should expect that isotopic steady state was attained by the time of our first 

sampling campaign. 

Equation S4 has been derived by replacing RE by E Rs but E is not independent of U and fE 

(and all other variables affecting the isotopic composition of soil water at the evaporation site). 

Indeed, the isotope ratio of soil evaporation (RE) is related to that of soil water at the 

evaporation site (Res) and also to the isotope ratio of atmospheric vapour at the soil surface (Rv) 

(Barnes & Allison, 1983; Farquhar et al., 2007): 

RE =
Res / a lv - hRv

(1 - h)a k

                  (S5) 

where h denotes air relative humidity at the soil surface and lv and k are the isotopic 

fractionations during liquid-vapour transition and water vapour diffusion from the evaporation 



 

site to the soil surface, respectively. lv is only a function of soil temperature while k depends 

on the intensity of the airflow above the soil surface. 

Because of isotope fractionations associated with soil evaporation and root uptake, the isotope 

ratio of soil water is not uniform, so that Res ≠ Rs, even if root water uptake is uniform 

throughout the soil profile. The isotope ratio of water vapour at the soil surface will also 

depend on the ratio of evaporation and transpiration (fE), and water vapour exchange between 

the glasshouse atmosphere and the air underneath the plastic plate that covers the soil. If this 

exchange is slow we could assume that most of the water vapour at the soil surface comes from 

soil evaporation, so that Rv = RE. In this situation, Eq. S5 can be re-arranged: 

RE =
Res

a lvh+(1 - h)a lv a k

                (S6) 

We can also define Z(U, fE) = Res/Rs so that: 

a E =
Z( a U , fE)

a lvh+(1 - h)a lv a k

               (S7) 

To a good approximation, we can assume that in our control treatment, the soil column stays 

near saturation and we can neglect water vapour fluxes compared to liquid water fluxes. We 

also assume the soil column to be isothermal and root uptake to be uniform throughout the soil 

profile. In this situation, at steady state, the liquid water flux varies linearly with soil depth (z) 

from (P - E)/(Aw) = U/(Aw) = ql0 at the soil surface (z = 0) to zero at the bottom (z = zmax): 

ql = ql0(1 - z/zmax). We normalised the fluxes P, E and U (in L/day or kg/s) by the soil area (A) and 

water density (w) to make sure that ql0 has the dimension of a velocity (m/s). 

At isotopic steady state, the isotope ratio of soil water satisfies the following ordinary 

differential equation (see for example equation 11 of Haverd & Cuntz, 2010): 

Dl,iso
d2R

dz2
- ql0 1 - z / zmax( )

dR

dz
+
ql0

zmax
1 - a U( )R=0                        (S8) 

The water isotope flux at the bottom of the soil column is zero (as for the total water flux ql) 

and the flux at the soil surface is given by qPRP – qERE where qP = P/(Aw) = ql0(1 + fE) and 

qE = E/(Aw) = ql0fE. 

 



 

Because ql,iso = qlR – Dl,iso(dR/dz), these boundary conditions lead to: 

dR

dz
z=zmax

=0

ql0R(0) - Dl,iso
dR

dz
z=0

=qPRP - qERE

ì

í

ï
ï

î

ï
ï

             (S9) 

Defining x = 1 – z/zmax, Pl = ql0zmax/Dl,iso, and y(x) = R(z), Eq. S8 can be re-arranged: 

d2 y

dx2
+Plx

dy

dx
+Pl 1 - a U( ) y =0             (S10) 

Making use of Eq. S6 and noting that Res = R(0) = y(1), the boundary conditions (Eq. S9) become, 

with these new notations: 

dy

dx
x=0

=0

1

Pl

dy

dx
x=1

+ 1+ fE
1

a lvh+(1 - h)a lv a k

é

ë
ê

ù

û
ú y(1)= 1+ fE( )RP

ì

í

ï
ï

î

ï
ï

          (S11) 

A solution of Eq. S10 with the boundary condition at x = 0 is provided by Farquhar and Gan 

(2003) and is a confluent hypergeometric series of the first kind, or Kummer function 1F1(a, b, 

x): 

y(x)=a0 × 1F1
1 - a U

2
,
1

2
, -
Pl

2
x2

æ

è
ç

ö

ø
÷             (S12) 

The constant a0 is obtained using the second boundary condition, knowing that: 

d

dx
1F1 a,b, - 0.5Plx

2( ){ } = -
a

b
Pl × 1F1 a+1,b+1, - 0.5Plx

2( ){ }           (S13) 

 

This gives: 

a0 =
RP 1+ fE( )

( a U - 1)×1F1 0.5(2 - a U),1.5, - 0.5Pl( )+ 1+ fE / a es( )×1F1 0.5(1 - a U),0.5, - 0.5Pl( )
       (S14) 

where es = lvh + (1-h)lwk. From Eqs. S12 and S14 we can compute Res = R(0) = y(1) for any 

values of U and fE. 



 

Integrating Eq. S10 between 0 and 1 also gives: 

Rs = ydx =
1

a U
0

1ò RP(1+ fE) - Res
fE

a es

é

ë
ê

ù

û
ú             (S15) 

We will note that Eq. S15 is simply a re-arrangement of Eq. S4 where E = RE/Rs has been 

replaced by (Res/es)/Rs. From Eq. S15 we can compute Z(U, fE) = Res/Rs and finally E, but this 

extra step is a bit unnecessary if we are only interested in Rs, Res and eventually Rx = RU = URs 

because all these quantities can be computed from Eqs. (S12-S15). 

Steady-state values of Rs, Rx and Res are shown in Fig. S9 as a function of fE and for different 

values of U = U – 1. We assumed a soil surface area of 10 cm
2
 (leading to qP ≈ 70 µm/s), a 

maximum soil depth of 35 cm (leading to a soil volume of 3.5 L) and air temperature and 

relative humidity of 27°C and 70%, respectively. We also indicated the range of values for Rs 

and Rx that we observed in our control experiment (see Fig. 3 in the main text). 

First, we can see that when fE = 0, Rx = Rp and Rs = Rp/U, as already predicted by Eq. S4, and 

also Res = Rs. When fE > 0 Rx becomes slightly more enriched than Rp, but increasing 

fractionation during root uptake (i.e. taking more negative U values) does not affect Rx but only 

enriches Rs above Rx by about -U. For fE ≈ 0.05-0.1 and U = 1, our predictions for Rs match well 

the observations for both 
2
H/

1
H and 

18
O/

16
O ratios, supporting the idea that no fractionation 

during root water uptake occurred. Our predictions for Rx at fE ≈ 0.05-0.1 also match well our 

observations, but only for
 
oxygen isotopes. For hydrogen isotopes, our observations of bulk 

stem (xylem) water cannot be explained by any combination of fE and U. We conclude from 

this analysis that, if soil evaporation was probably not completely suppressed in our control 

treatment(fE ≈ 0.05-0.1), fractionation during root water uptake does not seem to have 

occurred (U = 1) thus another fractionation process must be responsible for the observed 

depletion of bulk stem water compared to soil water in the control treatment. Isotopic 

heterogeneity between vessel water (with isotope ratio URs=Rs) and other xylem tissues could 

explain such depletion if xylem tissues were depleted compared to vessel water. 

 

  



 

Figure S9. Isotope ratios Res, Rs and Rx, expressed as enrichment above irrigation water Rp, and 

computed using Eqs. S13 and S15 for different values of fE and U. Observed ranges are also 

indicated. 

 

 

 

 

 

 



 

Figure S10. Boxplots of the soil gravimetric water content (GWC, a and b), predawn leaf water 

potential (Ψpd, c and d), plant water content (e and f) and stomatal conductance (g and h) in 

control (a, c, e and g) and drought-stressed pots (b, d, f and h). Boxplots show the interquartile 

range, the median (black line), the minimum and the maximum values (whiskers) besides 

outliers (black dots), with N = 10 and 5, for GWC and plant water content, and N=5 and 3 for 

Ψpd and stomatal conductance, for drought and control, respectively. 

 



 

 



 

Figure S11. Boxplots of the isotopic composition of soil, root and stem water in control (a, c) 

and drought-stressed pots (b, d). Boxplots show the interquartile range, the median (black line), 

the minimum and the maximum values (whiskers) besides outliers (black dots), with N = 15 and 

9 for drought and control, respectively. 
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