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Resumen

Esta tesis tiene como objetivo el estudio de transporte en nanohilos
semiconductores con interacción esṕın-órbita e impurezas. A d́ıa de hoy
estos nanohilos son de los materiales más versátiles para el diseño de
dispositivos cuánticos. Ejemplo de ello, es el intenso estudio de los
fermiones de Majorana, que pueden detectarse en los extremos de
nanohilos, cuando éstos están en contacto con un superconductor
[1, 2, 3, 4, 5, 6, 7]. Crucial para la aparición de los fermiones de Majorana
es la interacción esṕın-órbita y el bajo nivel de desorden en los nanohilos.
De hecho, el desorden en nanohilos cuánticos afecta fuertemente a la
conductancia de los modos de Majorana [8, 9, 10, 11, 12, 13, 14].

Por otro lado, las estructuras semiconductoras con interacción
esṕın-órbita nos llevan atrás en el tiempo hasta la propuesta de Datta y
Das de un transistor [15], que propone el control sobre la interacción
esṕın-órbita por medio de un gate para rotar el esṕın del electrón y aśı
controlar el transporte de carga entre dos electrodos ferromagnéticos. Los
intentos de fabricar tal dispositivo han topado con varios
problemas [16, 17, 18], inclúıda la baja eficiencia en la inyección de esṕın del
ferromagneto en el semiconductor, pero también con la relajación del esṕın
inducida por el scattering del electrón debido al desorden en el dispositivo.

De los ejemplos anteriores se desprende que el estudio del desorden
requiere especial atención. En particular en respuesta a la pregunta de
cómo afecta el desorden al transporte de carga y esṕın en un nanohilo
cuasi-unidimensional. Esta pregunta es absolutamente no trivial. En los
nanohilos, el desplazamiento está confinado en una dirección y los
portadores de carga solo pueden desplazarse en la dirección ortogonal a la
del potencial de confinamiento. La combinación del confinamiento con la
presencia de la interacción esṕın-órbita de tipo Rashba induce el
acoplamiento entre subbandas. Esto afecta fuertemente al transporte en el
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hilo cuántico, llegando por ejemplo a suprimir la modulación de esṕın para
valores grandes de la interacción Rashba [19, 20, 21, 22]. Por otro lado, la
presencia de una impureza puede llevar a la formación de estados
cuasi-ligados localizados entorno a la impureza. En trabajos previos se ha
demostrado que la presencia de modos evanescentes lleva a fenómenos poco
usuales en el transporte electrónico, como por ejemplo la perfecta
transmisión en el umbral energético en el que una nueva subbanda es
accesible y comienza a propagar. También se ha observado que cerca, pero
por debajo de este umbral, la aparición de estados cuasi-ligados localizados
en torno a una impureza atractiva es responsable del bloqueo total de
canales de transmisión [23, 24]. La combinación de ambos efectos nunca ha
sido tratada.

En esta tesis abordamos este tema y presentamos un estudio teórico
exhaustivo del transporte electrónico en nanohilos cuánticos
semiconductores con interacción esṕın-órbita en la presencia de impurezas.
Modelamos el nanohilo cuántico como un sistema cuasi-unidimensional en
el que el movimiento de los electrones está confinado en la dirección
perpendicular a la de propagación. La competición entre la interacción
esṕın-órbita, el confinamiento lateral y la impureza hace que el problema
sea altamente no-trivial. Para hacer frente a este problema usamos una
combinación de técnicas y aproximaciones que nos permiten identificar
novedosas propiedades del transporte de carga y del transporte de esṕın.
Espećıficamente, describimos la conductancia mediante el formalismo de
Landauer-Büttiker, extendiéndolo para el caso de campos dependientes del
esṕın. Describimos el transporte a través de este formalismo en función de
los coeficientes de scattering. Para calcular los coeficientes de la matriz de
scattering usamos la ecuación de Lippmann-Schwinger, un método
ampliamente usado en el tratamiento del scattering en la mecánica
cuántica.

Una de las principales dificultades en el tratamiento de la interacción
esṕın-órbita en un potencial de confinamiento es la hibridación de las
subbandas. Para superar este problema introducimos la transformación de
Schrieffer-Wolff, una transformación de gauge que elimina esta hibridación
manteniendo la complicación de los efectos de Rashba en la función de onda
transformada.

Combinando las técnicas mencionadas calculamos de forma anaĺıtica la
coductancia para el transporte de carga y esṕın en un nanohilo con
interacción de tipo Rashba en presencia de una impureza puntual.
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Encontramos que la impureza acopla estados propagantes y estados
evanescentes en el nanohilo cuántico, induciendo estados cuasi-ligados
localizados entorno a la impureza. Por otra parte, la interacción
esṕın-órbita de tipo Rashba permite distintos mecanismos de transporte
electrónico. Como consecuencia, la conductancia presenta transmisión
baĺıstica perfecta en la enerǵıa umbral donde el siguiente canal se vuelve
transmisivo. Además, por debajo de dicha enerǵıa umbral la conductancia
presenta una reducción significativa. Demostramos que para las subbandas
más bajas en esta enerǵıa resonante, todos los electrones inyectados en el
nanohilo cuántico en un estado preparado de tal manera que su esṕın se
aĺınea en cierta dirección preferente, solo tienen una forma de transmitir a
través de la impureza: mediante un proceso en el que su esṕın salta a la
orientación opuesta. No solo es ésta la única forma de propagar hacia el
otro lado de la impureza, sino que la probabilidad de que suceda este
proceso de inversión del esṕın aumenta notablemente respecto a la
probabilidad fuera de la resonancia. Es más, en la enerǵıa exacta de la
resonancia, mientras la probabilidad de transmisión manteniendo la misma
orientación en el esṕın se reduce hasta cero, la probabilidad de transmisión
con inversión del esṕın es máxima.

Más allá del transporte de carga, también derivamos expresiones para las
corrientes de esṕın en el nanohilo y derivamos una expresión para el torque de
esṕın-órbita inducido por la impureza. Demostramos que este torque depende
completamente de los procesos de inversión del esṕın en el scattering. Otro
resultado clave de esta tesis es la relación subyacente entre el campo de gauge
SU(2) y la transmisión con inversión del esṕın.

La tesis está organizada de la siguiente manera: el Caṕıtulo 1 es la
introduccion a la tesis. En los Caṕıtulos 2 y 3 extendemos esta introducción
para hablar de conceptos generales que son usados a lo largo del resto de la
tesis. En particular, en el Caṕıtulo 2 proporcionamos un breve repaso sobre
el tratamiento teórico del scattering en nanohilos mediante la ecuación de
Lippmann-Schwinger. En el Caṕıtulo 3 introducimos la interacción
esṕın-órbita en sistemas de baja dimensionalidad como 2DEG y nanohilos.
En este último caso explicamos la dificultad de diagonalizar el
Hamiltoniano correspondiente debido a la hibridación de las subbandas.

En el Caṕıtulo 4 introducimos el formalismo de Landauer-Büttiker para
la descripción del transporte cuántico. Extendemos la derivación habitual
para incluir un sistema con interacción esṕın-órbita de tipo Rashba y como
consecuencia el sistema mantiene no solo corrientes de carga sino también
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de esṕın. También en este captulo introducimos el concepto de voltaje de
esṕın en los bornes conectados al nanohilo. La ausencia de conservación de
la corriente de esṕın en ambos lados de la impureza es interpretada como
un torque de esṕın-órbita que surge de los mecanismos de transmisión y
reflexión que invierten el sṕın inducidos por la impureza debido a la
interacción esṕın-órbita. El principal resultado de este caṕıtulo es la
expresión para las corrientes y el torque escritos en función de los
coeficientes de transmisión.

En el Caṕıtulo 5 calculamos los coeficientes de scattering expĺıcitamente
para el nanohilo. Para ello, aplicamos una transformación de gauge y
derivamos una expresión para los coeficientes que es exacta hasta segundo
orden en la perturbación. Como primer paso, eliminamos el término
responasable de la hibridación de las subbandas debido a la interacción
esṕın-órbita de Rashba empleando una transformación de Schrieffer-Wolff.
Esto nos permite obtener los estados de scattering en todo el nanohilo
mediante la ecuación de Lippmann-Schwinger del Caṕıtulo 2. Como
segundo paso, calculamos los coeficientes de transmisión que resultan ser
dependientes del esṕın debido a la interacción esṕın-órbita. Identificamos
dos tipos de mecanismos de transmisión: unos que mantienen la orientación
del esṕın y otros que la invierten en el sentido opuesto cuando la part́ıcula
sufre scattering.

En el Caṕıtulo 6 presentamos los principales resultados de las
propiedades del transporte en el nanohilo. Nos centramos tanto en la
corriente de carga como en la de esṕın. Mostramos que para la
conductancia aparecen notables caracteŕısticas relacionadas con la presencia
de estados cuasi-ligados localizados en torno a la impureza. Enseñamos
cómo una impureza no magnética puede invertir el esṕın como consecuencia
de la interacción de Rashba, y cómo la probabilidad de transmisión con
inversión del esṕın refleja un comportamiento resonante similar. Además,
demostramos que cuando el sistema está en la resonancia, la única
transmisión permitida es mediante la inversión del esṕın y debatimos como
esta transmisión que es f́ısicamente medible depende de factores de la
simatŕıa del campo de gauge SU(2).

Cada caṕıtulo tiene su propia conclusión, pero de todas formas resumimos
toda la tesis en el Caṕıtulo Chapter 7, dónde también discutimas ĺıneas
futuras de investigación basadas en los métodos desarrollados en esta tesis.
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Chapter 1

Introduction

Nanowires with spin-orbit interaction provide one of the most versatile
playgrounds for quantum design available to date in condensed matter. A
prominent example is the realization of Majorana fermions (MF) as
solutions of the Bogoliubov-de Gennes equation, combining a particle-like
and a hole-like excitation into a superposition of states, localized at an end
of a nanowire. Such zero-energy modes were first proposed
theoretically [1, 2] and then followed by a large number of
experiments [3, 4, 5, 6, 7] showing solid evidence for these elusive fermionic
states. The spin-orbit interaction plays an important role in these
structures, allowing to convert the usual s-wave pairing of electrons with
opposite spins into a p-wave pairing of electrons with equal spins. The
mechanism of this singlet-to-triplet conversion of superconducting pairing
correlations relies solely on the interplay between the spin-orbit interaction
and a homogeneous Zeeman field, which act together to create a
space-dependent effective exchange field of a helical type [25], equivalent to
an SU(2) ‘electric’ field in the Yang-Mills field theory [26]. This Yang-Mills
electric field, which is the product of Zeeman energy times spin-orbit
interaction strength, can be extracted from transport measurements in the
Coulomb blockade regime of a quantum dot defined in the nanowire by
electrical gating [27]. While signatures of MF have been observed in
nanowire-superconducting structures, the measurement of the helical gap
has proven to be more difficult [28, 29]. Another key premise for this is
ballistic electron transport, however the quantized conductance
measurements have proved to be difficult due to strong electron
backscattering [30, 31]. Furthermore, disorder in Majorana nanowires can
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CHAPTER 1. INTRODUCTION

strongly affect conductance of the zero modes. [8, 9, 10, 11, 12, 13, 14].
On the other hand, the spin-orbit interaction couples efficiently the

electron spin to its orbital degrees of freedom, making it possible to affect
the spin by engineering the scalar potential along the path of the electron.
One can envision designs in which the desired effect of the spin-orbit
interaction is strongly enhanced, which can be used to improve device
functionality. The idea of using the spin-orbit interaction to rotate the
electron spin goes back to the Datta-Das transistor [15], in which the
control over the spin-orbit interaction was proposed to be used to modulate
the conductance of a ferromagnet-semiconductor-ferromagnet device.
Attempts to implement this transistor [16, 17, 18] faced several problems,
including the low spin injection efficiency from ferromagnet into
semiconductor and the detrimental effect of the scattering of the electron
on disorder, which leads to spin relaxation. The interplay between
superconductivity and spin-dependent fields also plays a fundamental role
in the emerging field of superconducting spintronics [32, 33, 34, 35].

Beside possible applications of semiconducting systems with spin-orbit
interaction, there are still fundamental questions regarding the electronic
transport in such structures that still require a theoretical analysis. In
nanowires, an open question is how a defect may affect the spin and charge
transport in a quasi one dimensional wire. The answer to this question is
far from trivial in a quasi-one-dimensional quantum wire formed by
applying a confining potential to a 2DEG . On the one hand the
combination of the quantization of motion along the orthogonal axis and
the presence of an intrinsic Rashba spin-orbit interaction gives rise to
inter-subband mixing that can strongly affect transport properties of the
nanowire, for instance suppressing spin-modulation for large values of
Rashba coupling [19, 20, 21, 22]. On the other hand the presence of a
scattering center, as for example an impurity, may lead to formation of
quasi-bound states localized around the impurity. Previous studies have
shown that the presence of evanescent modes leads to unusual properties in
the transport such as perfect transparency when the Fermi energy
approaches subband minima and the blocking of channels due to
quasi-bound states localized around an attractive impurity [23, 24].
Combination of both spin-orbit interaction and impurity scattering remains
almost unexplored .

In this thesis we address this issue and present a thorough theoretical
study of the electronic transport in semiconducting nanowires with Rashba
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CHAPTER 1. INTRODUCTION

spin-orbit coupling in the presence of impurities. We model the nanowire as
a quasi-one-dimensional system where the motion of the electrons is
confined in the direction perpendicular to the transport direction. The
interplay between the spin-orbit coupling, confinement and impurity
potential, makes the problem highly non-trivial. We tackle this issue
through a combination of theoretical techniques and approximations, which
allows us to identify striking novel properties of both the charge and spin
transport. Specifically, we describe the conductance by using the well
established Landauer-Büttiker formalism, which we extend for the case of
spin-dependent fields. Within this formalism the transport is described in
terms of the scattering coefficients. In order to calculate these coefficients
we use the Lippmann-Schwinger equation, a widely used method to treat
scattering in quantum mechanics [36, 37, 38, 20, 39]. One of the main
difficulties when dealing with spin-orbit coupling in a confining potential is
the intermixing of subbands. In order to overcome this problem we
introduce the Schrieffer-Wolff transformation with which we gauge away
this intermixing while still accounting for its effects.

By the combination of the above techniques we compute the charge and
spin conductances of the Rashba nanowire in the presence of a point-like
impurity. We find that the impurity couples evanescent and propagating
states in the nanowires, inducing quasi-bound states; while the Rashba
spin-orbit interaction allows for different spin-dependent mechanisms for
electronic transport. As a result, the charge conductance presents perfect
ballistic transmission at the threshold energy for a channel that becomes
propagating. In addition, below this threshold energy there appears a dip
in the conductance as a consequence of the quasi-bound states strongly
suppressing transmission. We prove that for the lowest subbands at this
resonant energy all electrons injected in a prepared spin-up state scatter
from the impurity to a spin-down state. Furthermore, this spin-flip
mechanism is not only the only transmission allowed at resonant energy but
it is also enhanced. We derive the expressions for the spin currents in the
nanowire and find out and expression for the spin-orbit torque induced by
the impurity and the spin-flip mechanisms for transport. While the effects
of Rashba spin-orbit coupling in the charge conductance are quite relevant,
our key result consists in finding the underlying relation between the
spin-flip transmission and the SU(2) field.

The thesis is organized as follows:
In Chapters 2 and 3 we extend the introduction, by discussing general
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CHAPTER 1. INTRODUCTION

concepts used in the rest of the thesis. In particular, in Chapter 2 we
provide a brief overview of scattering in semiconducting nanowires and the
Lippmann-Schwinger equation, our theoretical tool to determine the
scattering coefficients. In Chapter 3 we discuss the spin-orbit coupling in
low dimensional systems as 2DEGs and quasi 1D nanowires. In the latter
case we explain the difficulty of diagonalizing the Hamiltonian due to the
subband intermixing.

In Chapter 4 we introduce the Landauer-Büttiker formalism for the
description of quantum transport. We extend the customary derivation to a
system with Rashba spin-orbit coupling. This automatically extends the
formalism to a spin-dependent situation. The system now supports both
spin and charge currents and we introduce the concept of spin-bias in the
leads connected to the nanowire. The non-conservation of the spin-current
at both sides of the impurity is interpreted as a spin-orbit torque arising
from the spin-flip transmission mechanisms induced in the impurity by the
Rashba spin-orbit coupling. The main result of this chapter is the
expression for the currents and torque in terms of the scattering coefficients.

In Chapter 5 we calculate the scattering coefficients explicitly for the
nanowire. In order to do this we perform a gauge transformation and derive
an expression for the coefficients accurate up to second order of
perturbation in the spin-orbit coupling strength. As a first step, we gauge
away the intermixing of subbands due to Rashba spin-orbit interaction by
performing a Schrieffer-Wolff transformation. This allows us to obtain the
scattering states in the whole wire by means of the Lippmann-Schwinger
equation following the discussion of Chapter 2. In a second step, we
calculate the transmission coefficients, which are now spin-dependent due
to the Rashba spin-orbit coupling. We identify two types of transmissions:
one that preserves the spin of the scattered particle and one that flips it.

In Chapter 6 we present the main results for the transport properties of
the nanowire. We focus on both, charge and spin currents. We show that
the conductance presents striking features related to the presence of quasi-
bound states localized around the impurities. We show that a non-magnetic
impurity can flip spin as a consequence of Rashba spin-orbit coupling, and
that the spin-flip transmission reflects similar resonant behavior. As a result,
we prove that at the resonant energy the only transmission allowed is through
the spin-flip mechanism and we discuss how this measurable transmission
SU(2) symmetry factors. This result paves the way for a sensitive interference
technique to measure the SU(2) gauge field in nanowires.
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CHAPTER 1. INTRODUCTION

Each chapter has its own conclusion section. Nevertheless we briefly
summarize the whole thesis in Chapter 7.
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Chapter 2

Theoretical description of
transport in semiconducting
nanowires

Semiconductors are at the heart of modern electronics. In particular, they
are important building blocks of nanostructures with versatile applications
due to the accurate control of electronic transport via doping and external
electric fields [40]. Furthermore, the advances in growth techniques such as
molecular beam epitaxy (MBE) and patterning techniques, allows to create
high-quatlity, meaning higher electron mobility, heterostructures that
exhibit quantum confinement effects and a variety of quantum phenomena.
The discovery of conductance quantization in low-dimensional systems (see
Fig. 2.1)launches an intensive research of transport properties related to
the charge of the electron [41]. In addition, the field of spintronics extended
the research to spin-dependent transport phenomena, and the use of
semicoductors for the design, and fabrication of novel spin-based electronic
devices. The idea behind possible applications in this field relies on the
control of the spin dynamics and relaxation by means of external fields.

The cornerstone of many of the advances in these fields are
two-dimentional electron gas (2DEG) typically formed at the interface of
III-V semiconductor heterostructure which lead to the observation of new
interesting phenomena, absent in bulk systems, such as Shubnikov-de Haas
oscillations [42, 43], the integer [44] and fractional quantum Hall effect
[45, 46, 46, 47] and the quantized conductance [48, 49].

In a two-dimensional electron gas electrons are confined to a narrow
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg = —2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.

The average conductance increases almost linearly
with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.

We propose an explanation of the observed quantiza-
tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p

=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k —kF) g 6' k»—
7C F 8', - ) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For
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Figure 2.1: Quantized conductance for a point-contact as a function of gate
voltage in a GaAs/InGaAs heterostructure. The conductance changes in
quantized steps of 2e2/h. This figure taken from [48].

quantum well (QW) along the growth direction. Electrons can only move in
the plane perpendicular to that direction. Transport properties, and band
structure of 2DEGs can be modified by introducing dopants during growth,
which contribute with electrons or holes to the QW, and by carefully
choosing the materials in the quantum well and the barriers [47].

The two ways of realizing 2DEGs are by band inversion and
heterostructure based systems. In Fig. 2.2 we can see the electrostatic
potential Vz (z) (along the growth direction z) experienced by conduction
band electrons in two situations: one shows a triangular quantum well,
which forms, e.g., at the interface between n-doped AlGaAs and undoped
GaAs and the other square quantum well, where a thin layer of the
semiconducting material supporting the 2DEG, here GaAs, is sandwiched
between layers of a different semiconducting material, here AlGaAs [50, 51].

In the first case, the Fermi energy of both will align at the interface of
the semiconductors, where translational invariance is broken, with electrons
coming out from the n-AlGaAs leaving behind an accumulation of holes
which leads to a bending of the conduction and valence band [52]. For large
enough hole concentration, the conduction band dips below the Fermi
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Figure 2.2: (a) Triangular quantum well in an inversion layer semiconductor
heteroestructure. (b) Square quantum well in sandwich-like heteroestructure.

energy at the surface. We can see then, that the electron density is sharply
peaked near the GaAs-AlGaAs interface forming a thin conduction layer of
thickness comparable to the Fermi wavelength, that is the two-dimensional
electron gas, hence the name inversion layer. This layer is formed naturally,
however, the mobility of layer-inversion 2DEGs is severely limited.
Furthermore, since the electrons live at this interface, the quality of the
2DEG is highly dependent on details of fabrication. To achieve higher
mobilities the quantum well has to be deeper [53, 54].

This can be done by introducing dopants in sandwiches of materials
with differing bandgaps. When two such engineered materials with unequal
bandgaps are brought into contact, the Fermi energy of the two materials
will align and can form a quantum well. To align the chemical potential in
the InGaAs/InAs/InGaAs sandwich structure, charge is transferred from
remote dopants, introduced during growth, and into the quantum well.

With the help of gate electrodes (external electric fields), or by clever
sample fabrication, a large variety of potential energy structures can be
achieved in the 2DEG. This way the motion of electrons can be further
confined within the 2DEG semiconductor heterostructure plane leads to
(quasi) one-dimensional quantum wires and zero dimensional quantum
dots. Quantum confinement gives rise to new and fundamentally important
physics phenomenon, it is therefore interesting to study quantum transport
through these quantum confined mesoscopic systems [55].

The main focus in this thesis is the theoretical study of transport through
a quantum nanowire in the presence of an impurity or defect. Therefore we
summarize in this chapter the main theoretical tools for its description.
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2.1 Theoretical approach to scattering in

nanowires

Quantum wires have been proposed as basic elements in the design of many
quantum devices. Because of their size the electronic transport rely on a
full quantum mechanical approach rather than a classical one. The most
important parameters (or length scales) that describe a semiconductor are
the phase coherence length `φ , Fermi wavelength λF , and the mean free path
`e of electrons. In a mesoscopic device the `φ is much larger than the physical
dimensions (length L and width W ) of the device, while the λF is comparable
to these dimensions. If `e is much larger than L and W the device is in the
ballistic regime in which electrons propagate through the device without
being scattered, either elastically or inelastically, by impurities or phonons
respectively.

In this thesis we are interested in transport through a nanowire in the
presence of an impurity or defect. In particular we describe how the electronic
transport is affected by the presence of the impurity, or in other words how
the nanowire conductance depends on impurity and intrinsic properties of
the wire. Because it is essential for our next analysis, we introduce here
the Lippmann-Schwinger equation, which we will use for the description of
quantum scattering .

We start discussing this approach in a general 3D situation and then
we focus on scattering on a delta-potential in a purely 1D system. We will
discuss the limitations of the Born approximation. Finally we focus on a
more realistic nanowire described by a transverse confining potential

The main goal in scattering theory is to obtain the wave functions
describing the scattering particle given a proper boundary conditions
imposed, by the incoming particle. We can then begin by constructing the
solution of the Schrödinger equation meeting these two criteria in formal
terms.

2.1.1 The Lippmann-Schwinger Equation: theoretical
description

Following Ref.[56], we consider a system described by the following
Hamiltonian

H = H0 + V , (2.1)
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with H0 = p2

2m∗e
describes the free electrons with mass m∗eand V representing

the scattering potential.
The goal is to find a solution for the states |ψ〉 of the Schrdinger equation:

H|ψ〉 = E|ψ〉 , (2.2)

such that in the limiting of a vanishing potential V → 0 the solution recovered
would be that of the unperturbed system H0|φ〉 = E|φ〉, i.e. |ψ〉 → |φ〉.
Formally one can write

|ψ〉 =
V

E −H0

|ψ〉 . (2.3)

Then one can write the solution to Eq. (2.2) as a sum of the particular
solution |φ〉 and the homogeneous solution in Eq.(2.3) as follows,

|ψ〉 =
1

E −H0

V |ψ〉+ |φ〉 . (2.4)

Some complications arise from the singular nature of [E −H0]−1 as the
continuous spectrum of H0 will include E. This problem can be
circumvented by substituting E → E ± iε as a way to encode the boundary
conditions for integration, so one may write the so-called
Lippmann-Schwinger equation as follows,

|ψ(±)〉 = |φ〉+
1

E −H0 ± iε
V |ψ(±)〉 , (2.5)

The physical meaning of (±) will be discussed later by evaluating |ψ(±)〉 at
long distances. For the moment, we write the Lippmann-Schwinger equation
in the coordinate basis,

〈r|ψ(±)〉 = 〈r|φ〉+

∫
dr′〈r| 1

E −H0 ± iε
|r′〉〈r′|V |ψ(±)〉 . (2.6)

In order to solve this integral equation one must first evaluate the kernel
defined by,

G± (r, r′) = 〈r| 1

E −H0 ± iε
|r′〉〈r′| , (2.7)

which is nothing more than the Green’s function for the Helmholtz equation,(
∇2 + k2

)
G± (r, r′) =

2m∗e
~2

δ (r, r′) . (2.8)
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The difficulty of most scattering problems lies in finding the proper Green’s
function that solves Eq. (2.8) for the system. For the moment, in our
derivation we may not write explicitly G± (r, r‘′) so that Eq. (2.6) reads,

〈r|ψ(±)〉 = 〈r|φ〉+

∫
dr′G± (r, r′) 〈r′|V |ψ(±)〉 . (2.9)

Notice that the wavefunction 〈r|ψ(±)〉 in the presence of the scatterer is
written as a sum of the incident wave 〈r|φ〉 and a term that represents the
scattering interaction. In most physical systems one works with the positive
solution for the Green’s function G+ (r, r′) as it satisfies the so called
outgoing boundary conditions (as opposed to the negative solution
G− (r, r′) corresponding to the less intuitive incoming boundary
conditions). This means that G+ (r, r′) garantees an outgoing flow from r′

to r choosing E − H0 + iε in Eq. (6.4), while G− (x, x′) on the other hand
leads to an incoming current from r to r′ choosing E −H0 − iε. From here
on, we assume the positive case and drop the (±) sign reference in our
description for notation simplicity.

Now, in order to evaluate the specific behavior of 〈r|ψ(±)〉 more explicitly
let us consider a local potential, that is a potential diagonal in the coordinate
representation. The potential V is considere to be local if it can be written
as

〈r′|V |r′′〉 = V (r′) δ (r′ − r′′′) , (2.10)

and as a result,

〈r′|V |ψ(±)〉 =

∫
dr′′〈r′|V |r′′〉〈r′′|ψ(±)〉

= V (r′) 〈r′|ψ(±)〉 . (2.11)

If we define the incident wavefunction to be a plane wave φ (r) = 〈r|φ〉,then
the equation Eq. (2.9) simplifies to,

ψ (r) = φ (r) +

∫
dr′G (r, r′)V (r′)ψ (r′) , (2.12)

giving the scattering states for an incoming particle evaluated at position x.
For a finite range potential, the scattering state inside the support region
will have a contribution limited to this space. So in effect the Lippmann-
Schwinger equation provides a way to study scattering processes as a result
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of a scatterer (the finite range potential) at a point far away the range of the
potential. Eq. (2.12) equation can also be written in matrix notation,

|ψ〉 = |φ〉+GV |ψ〉 , (2.13)

and sometimes it is more convenient for clarity sake. From now on, and
specially in the next section, both notations will appear indistinctly.

In summary, we have introduce the Lippmann-Schwinger both in integral
form Eq. (2.12) and in matrix form Eq. (2.13). This is an iterative equation
that we will try to solve in the next section for a simple 1D model system
in two different ways, first introducing the Born approximation and then by
direct integration.

2.1.2 Scattering in a 1D system

The Lippmann-Schwinger is a recursive equation and in most cases its exact
solution is a rather difficult task. Therefore to solve (2.12) we write its
solution in an recursive way, such that

|ψnew〉 = |φ〉+GV |ψold〉 . (2.14)

In zero order approximation |ψold〉 = |φ〉, and from Eq. (2.14) we obtain
the first order approximation: |ψnew〉 = (1 +GV ) |φ〉. After iteration of this
procedure one can formally write the solution of Eq. (2.14) as:

|ψ〉 = (1 +GV +GV GV +GV GV GV + ...) |φ〉 , (2.15)

which is known as the Born series.
The physical picture associated to Eq. (2.15) is that of a free electron

propagation, described by G, suffering instantaneous collisions, described by
V . The first Born approximation consist in truncating the series at firts
order of V , |ψ〉 = (1 +GV ) |φ〉. One must note that the Born series does not
necessarily converge and the Born approximation fails in the description of
certain scattering phenomena.

To illustrate how the Born approximation fails we consider the following
1D case,

H =
p2
x

2m∗e
+ V (x) , (2.16)

where V is a delta potential V = v0δ (x− x0). Here, v0 represents the
strength of the potential and x0 the position of the scatterer center. We
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first solve the problem via the first Born approximation, meaning that in
Eq. (2.12) the wavefunction inside the integral is approximated to be
ψ (x′) ≈ φ (x′), which means the interaction with the scatterer is weak. In
order to obtain the solution for the scattering states we need the Green’s
function as a solution of Eq. (2.8) with outgoing boundary conditions in 1D
(see Appendix A). This reads:

G (x, x′) = −m
∗
e

~2

i

k
eik|x−x′| . (2.17)

If we assume that the incoming wave is a plane wave φ (x) = eikx, then
following the asymptotic form of the wavefunction for the transmission on
the right side of the potential (x→ +∞) we get

ψ (x) = eikx +
i

k

m∗e
~2
v0eikx , (2.18)

which means that the transmission probability of an incident wave φ (x) is
given by ψ (x) = φ (x) t, resulting in the transmission coefficient under the
first Born approximation:

t = 1− i

k

m∗e
~2
v0. (2.19)

In contrast, by direct integration of Eq. (2.12) with the delta-potential we
obtain,

ψ (x) = φ (x) + v0G (x, x0)ψ (x0) , (2.20)

by evaluating Eq. (2.20) at the scatterer center x = x0 it is possible to obtain
the wavefunction at the point of the scatterer:

ψ (x0) =
φ (x0)

1− v0G (x0, x0)
, (2.21)

by substituting Eq. (2.21) in Eq. (2.20) it is possible to obtain the full solution
for the scattering states along the whole system as follows,

ψ (x) = φ (x) +
v0G (x, x0)φ (x0)

1− v0G (x0, x0)
. (2.22)

Substituting Eq. (2.17) in Eq. (2.22) and consider an incoming plane wave
φ (x) = eikx, and looking at the asymptotic form of the wavefunction for the
transmission (x→ +∞) we can write,

ψ (x) = eikx −
i
k
m∗e
~2 v0

1− i
k
m∗e
~2 v0

eikx , (2.23)
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and from here the transmission coefficient in this case for the direct
integration of Eq. (2.12) will be

t = 1−
i
k
m∗e
~2 v0

1− i
k
m∗e
~2 v0

, (2.24)

which is a renormalized version of the transmission coefficient obtained for
the first Born approximation case in Eq. (2.19). One can clearly see that in
the first Born approximation to this system Eq. (2.19) fails to reproduce the
bound state that occurs in Eq. (2.24) for i

k
m∗e
~2 v0 = 1. This renormalization

is trivial as G (x0, x0) is a purely real quantity but if this is not the case
the transmission coefficient will present resonances in the denominator as we
will see for the following quasi-1D problem system. We can conclude that 1st
Born approximation is not enough to represent the nuances of the system,
specially when working on more complex problems like the quasi-1D system
that we will introduce in the following section.

2.1.3 Scattering in a quasi-1D system

In previous section we could see that first Born approximation is not the
best approach to describe the nuances of the scattering problem. Indeed,
the Lippmann-Schwinger equation leads to more accurate results. However,
this approach presents its own problems when dealing with systems higher
dimensionality as we will see in this section.

When an electron scatters elastically from an impurity in an open
geometry, such as the scattering from a potential-energy barrier or well, it
scatters into a traveling wave which propagates away from the defect. In
contrast, if the electron is restricted to a wire such that confinement
subbands are formed, the incident electron can elastically scatter into
evanescent modes available in the wire. We consider a 2DEG system as
described in this chapter, formed by a lateral confinement along the
y-axis,and that allows free propagation along the x-axis and is
translationally invariant along this latter axis. The full Schrodinger
equation as described [23] is,[

− ~2

2m∗e

(
∂2

∂x2
+

∂2

∂y2

)
+ Vconf (y) + Vimp (x, y)

]
ψ (x, y) = Eψ (x, y) ,

(2.25)
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where the confinement potential Vconf (y) depends only on the transverse
direction y and Vimp (x, y) describes the potential of any impurity in the
quasi-1D system. If we had considered a 1D problem along y in the regions
where there are no defects, the confinement potential would give rise to a set
of normal modes Φn (y) satisfying a 1D Schrödinger equation such that,[

− ~2

2m∗e

∂2

∂y2
+ Vconf (y)

]
Φn (y) = EnΦn (y) , (2.26)

where n is the subband index and En are the subband (quantized) energies.
The subband lateral modes Φn (y) form a complete and orthogonal basis such
that ∑

n

Φn (y) Φ∗n (y′) = δ (y − y′) , (2.27)

and ∫
dyΦ∗m (y) Φn (y) = δmn . (2.28)

Therefore, the general solution of (2.25) can be expanded in this set, and

ψ (x, y) =
∑
n

cnΦn (y) eiknx , (2.29)

where kn =
√

2m∗e (E − En) /~2 is the momentum for the n-th subband and
cn are constants. Depending on the energy E, the modes with En > E do
not propagate and become evanescent modes which decay with e−κnx where
κn =

√
2m∗e (En − E) /~2. Energies where a subband becomes propagating

will be called thresholds En,and their specific form depends on the type of
confinement potential. In the case of a harmonic confinement potential such
that Vconf (y) = (1/2)m∗eω

2
0y

2, the solutions of Eq.(2.26) are,

Φn (y) =
1√

2nn!
√
πλy

e−y
2/2λ2

yHn (y/λy) , (2.30)

with Hn as the Hermite polynomials and λy =
√

~/m∗eω0 as the characteristic
length of the harmonic oscillator of corresponding energy levels En = ~ω0(n+
1/2).

While Bagwell [23] uses this description to solve the scattering problem
with an infinite number of coupled modes by wavematching at the boundary
set by the impurity potential, our goal is to describe the scattering from an
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impurity potential Vimp (x, y) and the influence of the evanescent modes in
such a confined system using the Lippmann-Schwinger equation[24]. So the
Lippmann-Schwinger equation for the quasi-1D scattering problem reads,

ψ (x, y) = φ (x, y) +

∫
GQ1D (x, y;x′, y′)Vimp (x′, y′)ψ (x′, y′) dx′dy′ , (2.31)

where the Green’s function is given by,

GQ1D (x, y;x′, y′) =
∑
n

Φn (y) Φn (y′)G1D
n (x, x′)

= −
∑
n

Φn (y) Φn (y′)
m∗e
~2

i

kn
eikn|x−x′| , (2.32)

and the impurity potential Vimp (x′, y′) has to be localized and short-ranged
in order to solve such a system. It is our intention to use a δ-like potential to
model the impurity potential, but one must be extremely careful with such
potential in 2D as the transitions between all the modes lead to divergences in
the integral calculation. For this reason we choose to work with a regularized
δ potential. The precise profile of the potential is unimportant as long as
the electron wave function ψ(x, y) changes little over the length scale of
Vimp(x, y).

For simplicity, and for future convenience, we model such point-like
scatterers by a constant potential inside a circle of small radius r = (x, y),

Vimp(r) =

{
V0, |r − r0| < a,
0, otherwise ,

(2.33)

where V0 is the potential hight/depth, r0 is the position of the impurity, and
a is the range of the potential.

We shall regard Eq. (2.33) as being in the limit of a delta-like function,
which is obtained by simultaneously sending a → 0 and V0 → ∞ while
maintaining V0a

2 constant. Formally, we write Eq. (2.33) as

Vimp(r) = v0δ(r − r0) , (2.34)

where v0 = πa2V0 is the relevant parameter that gives the strength of the
point-like scatterer.

We solve the Lippmann-Schwinger equation in Eq.(2.31), for the Green’s
function and scatterer given by Eq.(2.32) and Eq.(2.34) respectively with
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r0 = (x0, y0). And obtain the following transmission coefficient as a result:

tmn = δmn − i
m∗e
~2 v0

1 + iv0
m∗e
~2

∑
n

Φ2
n

kn

[
ei(kn−km)x0

√
kmkn

]
Φ∗m(y0)Φn(y0) .

One must notice that the denominator of Eq.(2.35) includes a sum over the
infinite set of states, in contrast to Eq.(2.23)). While the latter supports a
bound state, the poles of the denominator in Eq.(2.35) are associated with
quasi-bound states (QBS). The description of quasi-bound states was first
introduced by Bagwell [23]. The presence of quasi-bound states is associated
with resonances in the transmission related to the presence of evanescent
modes (see Fig.2.3). Close to the threshold energy, where a new channel
is opened in the typical ballistic nanowire, the attractive potential is able
to couple the propagating channel with the evanescent channel about to
become propagating. As the evanescent mode is associated with a decaying
length(corresponding to the evanescent κn), these states are not properly
bound as opposed to the stable bound-state of a delta-scatterer in Eq.(2.23),
as discussed by other authors [57, 58, 59].

For energies close to resonances associated with quasi-bound states, the
condition that the electron wave function is nearly constant in the
neighborhood of r0 also means that the impurity is weakly binding
(v0 � ~2/m∗e). Indeed, if the impurity was strongly binding (v0 � ~2/m∗e),
then the wave function inside the impurity region would resemble to some
extent the wave function of a particle in a box, i.e. changing sizeably over
the length scale a (or even a smaller length scale a~2/v0m

∗
e). It is clear that

in the case of a strongly binding impurity a quasi-bound resonance can, in
principle, appear in the energy range of interest, say, between the first and
the second modes of the wire. The incident electrons will admix quite a
large portion of the strongly oscillating wave function inside the scatterer;
the closer to the resonance the more admixed. In that case, the outcome of
the scattering event does depend on the precise profile of Vimp(r) and
writing Eq. (2.34) would not be legitimate. Hence, the strongly binding
impurity case is beyond the limits of our calculation and cannot be treated
via the Lippmann-Schwinger equation. Then we must bear in mind
throughout this work that we are always referring to weakly binding
impurities.

The study of scattering in quasi-1D systems was widely covered either
numerically or analitically for single delta-scatterers [23, 60, 61, 24, 57, 59, 62,
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with increasing strength of the scatterer. This is indeed
true, although not shown in the figures. In Fig. 4 the in-
tersubband transmission is small because the potential is
relatively weak. At the onset of the second subband in

Fig. 4(a} only about 6% of the incident carriers are con-
verted into the second normal mode through T,2, and
4—5% are converted into the third normal mode via T,3

at the bottom of the third subband. Figure 4(b) gives
only between 1%%A and 2%%uo conversion from the second to
the third mode at the bottom of the third subband via
T23 ~

We can understand some features of Fig. 4 by arguing
from the Fermi "golden-rule" scattering rate. To do this
we do not consider the intrasubband transmission T&&,

T~q, or T33 as they are simply the result of leftover parti-
cles which did not scatter and can be obtained from the
requirements of current conservation. Consider first the
intersubband transmission T&2, T&3, and T23. The inter-
subband transmission has a maximum near the onset of a
subband and decays like the inverse square root of energy
away from the maximum. This can be understood from a
Fermi's "golden-rule" viewpoint, where the probability of
scattering is proportional to the final density of states in
the subband which decays like I/~E. In Appendix B

we show that the dominant term in the intersubband
scattering probability is indeed given by an expression
similar to the golden rule. The intersubband transmis-
sion and reffection coefficient T,2=R, z in Fig. 4(a) also
sho~s interesting behavior around the bottom of the
third subband, staying zero on both sides of the subband
minima. There is no scattering out of mode one into
mode two at the bottom of the third subband. We have
yet to find a good explanation for this lack of mode con-
version or reflection at the subband minima. However,
the overall shapes of the transmission and reflection
coefficients are still well understood by golden-rule argu-
ments.

Given the golden-rule-like shapes of the intersubband
transmission and reflection coefficients and the intrasub-
band reflection, we can argue for the shape of the in-
trasubband transmission. Let us do so for T». Because
particles must be conserved so that 1 = T» + T,2

+R,2+R», and since R» =0 on both sides of the sub-
band minima, the drop in T» after reaching perfect
transmission at the second subband must he equal to
T,z+R» =2T&2, or just twice the intersubband transmis-
sion coefficient. This is shown in Fig. 4(a). Similarly, the
discontinuity in T» in Fig. 4(a} at the minima of the
third subband is just twice T,3.

Next, let us examine the scattering coefficients for an
attractive potential. Figure 5 shows a 5-function scatter-
er of comparable strength to the one in Fig. 4, but when

I I I I

0 20 40 60 80 100
Energy {meY}

FIG. 6. Two-probe conductance through a 5-function defect
in the quasi-one-dimensional wire in units of 2e /h. The solid
line corresponds to the repulsive scatterer from Fig. 4, while the
dashed line gives the conductance of the attractive scatterer
from Fig. S. When the electron energy aligns with a subband
minimum, the conductance through the defect is equal to the
ballistic conductance. At these special energies the wire is per-
fectly transparent as if no scatterer were present. There is only
a small difference between the conductance for the weak repul-
sive scatterer and the ideal ballistic conductance throughout the
entire range of electron energies. For the attractive scatterer,
the new dips in conductance correspond to quasi-bound-states
developing in the wire. The distance in energy from these dips
to the subband minimum is the quasi-bound-state energy. Note
also that, even though the repulsive scatterer is stronger, the
conductance of the attractive scatterer is much smaller due to
the presence of the quasi-bound-state.
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FIG. 7. Two-probe conductance in units of 2e /h for an at-
tractive scatterer having y = —8 feV cm (solid line), y = —9
feV cm (dotted line), and y = —20 feV cm (dashed line). Begin-
ning with the dotted line from Fig. 6 showing the weakest at-
tractive scatterer having y= —6 feVcrn, the overall conduc-
tance level decreases and the new dips corresponding to the
quasi-bound-states move lower in energy as the scatterer is
made more attractive. As the scatterer becomes so attractive
that the quasi-bound-states move below the bottom of the next
lowest subband, the new dips first disappear and the conduc-
tance then increases as the scatterer is made stronger. This
unusual effect occurs because the bound states have now moved
below the energy range in which they can block conduction.

Figure 2.3: Conductance through a delta-impurity in the quasi-1D nanowire
in units of 2e2/h. For the attractive scatterer v0 < 0 (dashed line), the
conductance at the threshold energy is the ballistic conductance and below
these threshold energies conductance dips appear in the corresponding to
quasi-bound states present in the nanowire. For the repusive scatterer v0 > 0
(solid line), the resonant dip is not present. This figure taken from [23].
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63, 64, 65], double-delta scatterers[66], finite-size scatterers [67, 68, 69], and
even in for magnetic impurities [70], in the presence of an eternal magnetic
field [71] and for time-dependent potentials [72, 73, 68]. In all these works,
the resonant characteristics of the transmission were discussed in relation to
the presence of quasi-bound states in the system. However, to our knowledge
the scattering from an impurity in the nanowire in the presence of Rashba
spin-orbit coupling remains unexplored.

2.2 Conclusion

In this chapter we introduce the Lippmann-Schwinger equation which we
will use for the theoretical description of quantum scattering for a
semiconducting nanowire. In particular we describe how the electronic
transport is affected by the presence of the impurity in the nanowire. We
first describe the approach in a general system and later focus on scattering
on a delta-potential in a purely 1D system, discussing the limitations of the
Born approximation. Finally we focus on a more realistic nanowire
described by a transverse confining potential, discussing the emergence of
resonant behaviour in the transmission as a consequence of quasi-bound
states present in the nanowire. This effect arises from the localized
impurity coupling the evanescent and propagating modes of the nanowire.

Our interest is in the possible effects arising from the interplay between
the Rashba interaction and quasi-bound states. For this reason, Chapter
3 introduces the key ingredient in our study, namely the Rashba spin-orbit
interaction in quantum nanowires.
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Chapter 3

Spin Orbit Coupling in
semiconductors

The field of spintronics aims to create devices that take advantages of both,
the spin and charge degrees-of-freedom of electrons. In particular,
semiconducting spintronics facilitate the study of the fundamental concepts
in the field thanks to the easy integration with nowadays semiconductor
electronics. One of the key ingredients garnering attention in this field is
the spin-orbit coupling, specially some forms of symmetry-dependent
spin-orbit coupling realized in semiconducting heterostructures hosting a
two-dimensional electron gas (2DEG). Such is the case of the Rashba
spin-orbit interaction.

In this Chapter we provide a brief introduction to spin-orbit interaction
of the Rashba type. We discuss the spectral properties of low dimensional
strcutures with Rashba spin-orbit coupling and provide a brief overview of
two possible applications of materials with Rashba spin-orbit coupling,
namely the Datta-Das spin-transistor and the detection of Majorana Bound
States. Our interest in Rashba spin-orbit coupling is related to
spin-dependent transport in quantum nanowires. For this reason, we first
introduce the Hamiltonian model for a 2DEG and discuss its spectrum and
symmetries. By further confining the 2DEG, one can creates a quasi one
dimensional guide, or quantum nanowire . The confinement potential add
complexity to the problem, and the Hamiltonian is no longer analitically
solvable without approximations. Indeed, the subbands are deformed and
avoided crossings appear in the energy dispersion, as we describe in this
chapter. Later, in Chapter 5, we will treat Rashba spin-orbit interaction in
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a perturbative way. Therefore in the present chapter we present the exact
solution for the momentum in the energy dispersion where the subbands
cross (the only point that presents spin degeneracy) which we will use as
the unperturbed solution.

3.1 Introduction to Spin-Orbit Coupling

The spin-orbit coupling (SOC) is a widely studied effect that describes the
interaction between the spin of a particle with its motion in the presence of
an electric field. And it can be described by following Hamiltonian [56],

HSO =
~

4m2c2
~̂σ (∇V × p) , (3.1)

where ~̂σ = (σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices, m is the rest mass of the
electron, V (r) is the electrostatic potential in which the electron propagates
with momentum p. For example, in atomic physics V (r) is the Coulomb
potential of the atomic core.

In semiconductor physics V (r) is the potential of a crystalline lattice
that arises from the hybridization of the electron orbitals of neighboring
atoms. The spectral properties of these electrons are characterized by the
band energy En(k) and affected by the spin-orbit coupling. The effects of
spin-orbit coupling in InAs, GaAs, InSb or other materials that are commonly
used in the realization of nanowires, where the energy of the top valence band
is strongly splitted in subbands depending on spin. [74, 75, 76].

Furthermore, the lack of centro-symmetry in the zinc-blende structure
of III-V crystals and the confinement of 2DEGs allows for significant
inversion asymmetry spin-orbit coupling effects in the lattice potential,
lifting the spin degeneracy by splitting the energy bands in the absence of a
magnetic field. The effects of this type of spin-orbit coupling can be better
understood by exploring the relation between symmetry and band splitting,
specifically time-reversal symmetry (TRS) and spatial inversion symmetry
(SIS).

Spatial Inversion and Time Reversal Symmetries

The relation between symmetry and the splitting of the bands is
fundamental for the understanding of some types of spin-orbit coupling
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Reversed Preserved

p→ −p q → q
B → −B E → E
σ → −σ p2/2m→ p2/2m

Table 3.1: Observables preserved and reversed under the time reversal
transformation.

[77]. The first symmetry of relevance is the time reversal symmetry. When
a system undergoes a time reversal transformation T : t→ −t characterized
by the time reversal operator T , some observables are preserved while
others are reversed. Some of these observables are presented in table 3.1.
Then,under the reversal of time: because the angular momentum is
reversed L→ −L and the so is the spin σ → −σ, the spin-orbit is preserved
L · σ → L · σ and the momentum k → −k. If a system is symmetric under
time reversal (and the spin is half-integer), the Kramers theorem implies

En (σ,k) = En (−σ,−k) (3.2)

for any band energy for a given spin σ and for a given momentum k,
corresponds a energy degenerate band with opposite spin −σ and opposite
momentum −k.

The other important symmetry is the spatial inversion symmetry. Under
space reversal R : r→ −r , while L→ L and σ → −σ and consequently the
spin-orbit L · σ → −L · σ and momentum k → −k. Then, in the case of a
system with spatial inversion symmetry,

En (σ,k) = En (σ,−k) (3.3)

meaning that for any band with given spin σ and momentum k, there is
another degenerate band with same spin σ and opposite momentum −k.

And if the system presents both time reversal and spatial inversion
symmetries, then

En (σ,k) = En (−σ,k) . (3.4)

Thus, in a system with two spin eigenstates ↑ and ↓ that presents both space
inversion symmetry (SIS) and time reversal symmetry (TRS) the energy
dispersion for the two subbands overlaps. However, for systems with TRS
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Figure 3.1: (a) Degenerate energy dispersion for a system with TRS and
SIS.(b) Gaped spectrum for a system where TRS is broken.(c) Shifted energy
dispersion for a system where SIS is broken and spin-degeneracy is lifted.

but broken SIS the spin-↑ and spin-↓ subbands have different energy at a
given momentum k for the same spin so that,

En (σ,k) 6= En (−σ,k) (3.5)

as is the case for systems with spin-orbit coupling in non-centrosymmetric
materials (see Fig.3.1(c)). Furthermore, if time reversal symmetry is broken
the Kramers degeneracy in Eq.(3.2) is lifted and

En (σ,k) 6= En (−σ,−k) (3.6)

case when an external magnetic field is applied to the system (see Fig.3.1(b)).

Thus a potential that breaks spatial inversion symmetry lifts
spin-degeneracy as stated in Eq.(3.5) while a potential that breaks time
reversal symmetry lifts spin-degeneracy and Kramers degeneracy as seen in
Eq.(3.6).

Symmetry dependent spin-orbit coupling

As described by Eq.(3.1) the main sources of SOC are electric fields,
originating from asymmetries of the crystalline potential through its
gradient ∇V . Therefore, it is an intrinsic effect, strongly depending on the
material and its structure. As we already discussed in the case of
zincblende III-V heterostructures such as GaAs, AlGaAs, InAs, etc., these
asymmetries break down the spatial inversion spin-splitting the spectrum
with two possible origins,

1. The first one is bulk inversion asymmetry (BIA), i.e., contrary to other
crystalline structures such as that of silicon, the zinblende structure
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lacks an inversion center. This asymmetry is fixed for a given sample, is
intrinsic of the system and it is not possible to manipulate it externally.
The spin-orbit coupling caused by this inversion asymmetry is known
as Dresselhaus interaction [78].

2. The second one is only possible in low dimensional systems where the
motion of electrons is confined to two dimension (2DEG), for example
in quantum wells, where there is a lack of inversion symmetry in the
growth direction. This is the structural inversion asymmetry (SIA), and
the importance of this mechanism lies in the fact that the asymmetry in
the confinement potential can be varied by electrostatic means, allowing
to tune the SOC strength by an external gate voltage. The spin-orbit
interaction corresponding to this asymmetry is called Rashba spin-orbit
coupling (RSOC)[79].

The relative importance between both spin-orbit interactions,
Dresselhaus and Rashba, varies depending on the band structure of the
material, the electron density and the geometry of the sample under
investigation. In narrow-gap III-V quantum wells, however, the Rashba
SOC is generally much larger than the Dresselhaus,as well as being more
interesting due to its tunability. As a consequence, in this thesis the focus
will be on the Rashba interaction, neglecting the Dresselhaus term.

3.2 Applications of Rashba Spin-Orbit

Coupling

In 1990 the first application of RSOC was proposed as what is known as
the Datta-Das transistor or spin-Field Effect Transistor (spin-FET)[15] but
it was not realized until later [80, 81]. This toy-model was developed as an
analog to the electro-optic modulator and is based on the spin precession
induced by the Rashba effect.

It follows from the general expression for the spin-orbit coupling in
Eq.(3.1), that the Rashba SOC gives rise to an internal magnetic field
BRSOC and it can be written as BRSOC = α (Ez) (k× z), i.e., the
magnitude of the field is proportional to the momentum k and a
voltage-dependent parameter α, and it is pointing in the direction
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Semiconductor 2DEG

Gate
Voltage

Figure 3.2: Skech of a Datta-Das spin transistor, with 2DEG sandwiched in
between two ferromagnets. The injected spin can be controled by tuning the
RSOC, which in turned is controlled by a gate voltage. If the alignment of
the electron spins, as they reach the drain, is parallel to this ferromagnet,
then the transistor will register a non-zero current. On the contrary, if like
in this figure the magnetization of the drain ferromagnet is antiparallel to
the electron spins, the transistor will register a zero-current.

perpendicular to both k and z (with z being the growth direction of the
quantum well).

In the absence of an externally applied magnetic field, the spin will
precess around this effective magnetic field BRSOC in a similar way as the
Larmor-precession around an external magnetic field. The precession
frequency depends on the magnitude of the internal magnetic field |BRSOC |,
and hence can be tuned by applying a gate voltage [82, 83, 84, 85, 86]. This
property has led to the proposal of a Datta-Das ”toy-model” [15], also
known as the Datta-Das spin-transistor.

Datta and Das consider a ballistic transport channel with Rashba SO
coupling in-between ferromagnetic leads acting as spin polarizers(see Fig.
3.2). When a spin is injected from one of the leads, it precesses around the
Rashba field BRSOC until the spin arrives at the other ferromagnetic lead
(the drain). The electron transmission probability into the drain depends on
the relative alignment of its spin with the magnetization of the drain (this
being fixed). Since the frequency of the precession of the spin during the
travel to the drain can be controlled via gate voltage, so can the source-
to-drain current (or conductance). The importance of this toy-model for
the field of spintronics consists not on its physical realization but on the
scientific discussion sparked around it about the role of Rashba SOC in the
spin dynamics of 2DEG, its interplay with Dresselhaus SOC and Zeeman. In
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return, this research has lead to the discovery of new spin-related phenomena
and their applicability in new devices.NATURE PHYSICS DOI: 10.1038/NPHYS1915 ARTICLES
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in
the limit µ=0, t= |1|. Each spinless fermion in the chain is decomposed in
terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy
end Majoranas γA,1 and γB,N as shown23. b, A spin–orbit-coupled
semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana
modes by applying an external magnetic field21,22. c, Band structure of the
semiconducting wire when B=0 (dashed lines) and B 6=0 (solid lines).
When µ lies in the band gap generated by the field, pairing inherited from
the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H =−it
N−1∑
x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1+ iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend=
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0〉 and |1〉 = dend†

|0〉,
where dend|0〉=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ|< 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
∫

dx
[
ψx

†

(
−

h̄2∂x 2

2m
−µ− ih̄uê ·σ∂x

−
gµBBz

2
σ z

)
ψx+ (|1|eiϕψ↓xψ↑x+h.c .)

]
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = 1 = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on 1
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |1|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |1| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu2, |1| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey+ iex)/gµB|Bz |)∂x9x and
ψ↓x ∼9x , with 9x the lower-band fermion operator. To leading
order, one obtains

Heff ∼

∫
dx
[
9x

†

(
−
h̄2∂x 2

2m
−µeff

)
9x

+
(
|1eff|eiϕeff9x∂x9x+h.c .

)]
(4)

whereµeff=µ+gµB|Bz |/2 and the effective p-wave pair field reads

|1eff|eiϕeff ≈
u|1|

gµB|Bz |
eiϕ(ey+ iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k= 0)=
∣∣∣∣ gµB|Bz |

2
−

√
|1|2+µ2

∣∣∣∣
For |µ|<µc=

√
(gµBBz/2)2−|1|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|1|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Figure 3.3: (a) Sketch of Majorana Fermions appearing at the ends of a
nanowire. Each spinless fermion in the chain is formed by the overlap of
two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1 form
an ordinary fermion with finite energy, leaving two uncombined Majorana
Fermions at the ends of the nanowire. (b) Set-up for the observation of
MF: a semiconducting nanowire with spin-orbit coupling sits on top of a s-
wave superconductor while an external magnetic field B is applied. (c) In
the absence of a magnetic field (dashed lines), the energy spectrum is spin-
split, but if an external magnetic field is applied perpendicular to the HSO a
helical gap opens (solid lines) and superconductivity by proximity can drive
the nanowire to a topological state. Figure taken from [87].

More recently there has been a revival of interest in studying SOC in
semiconducting hybrid structures due to the possibility of finding Majorana
zero modes hosted in Rashba nanowires in contact with superconducting
electrodes, which are possible candidates for topological quantum
computation due to their non-Abelian statistics [88, 89, 90, 87]. The basic
idea is that such a structure can become a topological superconductor
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under the right circumstances and support two non-local Majorana Bound
States at the ends of the nanowire (see Fig. 3.3(a)). The strong SOC
present in the nanowire shifts the two parabolic bands depending on their
spin polarization and applying an external magnetic field perpendicular to
the SO field breaks the TRS of the system opening a gap at the crossing
point of the parabolas (k = 0), as seen in Fig. 3.3(c). If the Fermi energy µ
is inside the opened gap the degeneracy is two-fold instead of four-fold. The
proximity of a s-wave superconductor induces pairing in the nanowire
between electron states of opposite momentum and opposite spins and
induces a superconducting gap, ∆. Combining this two-fold degeneracy
with an induced gap creates a topological superconducting phase for
BZ >

√
∆2 + µ2 lifting electron-hole symmetry and Majoranas arise as

zero-energy (i.e. mid-gap) bound states, one at each end of the wire
[1, 2, 3, 4, 5, 6]. A visualization of such a set-up can be seen in Fig. 3.3(b).

3.3 The Rashba model for 2DEG

In this section we focus on how Rashba spin-orbit coupling affects the spectral
properties of a free electron in a 2DEG, before going into a description of a
quantum nanowire where further confinement is applied to the 2D system to
obtain a quasi-1D system [91].

The effective Hamiltonian for an electron moving in a 2DEG system in
the (x, y)−plane in the presence of the Rashba spin-orbit coupling and with
effective electron mass me is given by,

H0 =
p2

2m∗
+
α

~
(σ × p)z , (3.7)

with eigenvalues

E± (k) =
~2k2

2m∗
± αk =

~2

2m∗
(k ± kR)2 −∆R , (3.8)

where k =
√
k2
x + k2

y is the momentum, kR = αm∗

~2 is the Rashba spin-orbit

coupling constant with momentum dimensions and ∆R =
(
αm∗

~

)2
. The last

term of Eq.(3.8) results in a downward shift of the bands that renormalizes
the chemical potential, altough it is often neglected as it is second order in
α.
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The eigenspinor for the Hamiltonian in Eq. (3.7) with eigenvalues given
by Eq.(3.8) are plane waves:

Ψ± (r) =
eik·r√

2

(
1

±i e−iθ

)
, (3.9)

where θ = arctan (ky/kx) is the angle between the momentum vector and
the kx direction. Notice that the spinor direction is always perpendicular to
the propagation direction according to Eq.(3.9). If an electron propagates
along x, then the angle for the momentum is θ = 0 and the spinors become
(1,±i). This implies that the spin is aligned along the y−axis. On the other
hand, if the electron propagates along the y−axis with θ = π/2, the spinors
are given by (1,±1). This means that the spin is aligned in the x−axis,
see Fig.3.4(b). This phenomenon is often referred to as spin-locking. In

Figure 3.4: (a)Rashba parabola: 2D representation of the energy spectrum.
(b) Cross-section of the parabola shows spin-locking for both spin-species,
where the spin is perpendicular to kx and ky. Figure from [91].

Fig.3.1 we compare the energy spectrum as a function of kx in the 2DEG
for different situations. First, for a free electron in the 2DEG where both
time reversal and spatial inversion symmetries are preserved: the subbands
of the spectrum overlap as due to spin degeneracy. However, if we applied an
external magnetic field the spin degeneracy would be lifted by breaking the
time reversal symmetry opening a gap between the spin-up and spin-down
species. But as we already discussed in the previous section, this lifting
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of spin degeneracy is very different that the one that occurs for the Rashba
spin-orbit coupling. In this case, the spin degeneracy is lifted by breaking the
spatial inversion symmetry everywhere but for kx = 0 where the subbands
cross.

The semiclassical electron velocities are given by

v± (k) =
1

~
∂E± (k)

∂k
=

~k

m∗
± αk =

~
m∗

(k ± kSO) .k (3.10)

It is clear then, that the velocity of the electrons is no longer just the
momentum divided by the effective mass as a consequence of the Rashba
spin-orbit coupling. As a result, the parabola splits into two parabolas with
spin and momentum locked to each other so that electrons with opposite
spin travel in opposite directions (see Fig. 3.4).

3.4 RSOC in quantum wires: subband

mixing

As discussed in Chapter 2, a quasi-1D nanowire can be realized by further
confinement of the 2DEG along one direction (in this case the y direction).
As a result it is not possible to solve analytically the system Hamiltonian,
as in the previous section for the simple case of a 2DEG. However, different
theoretical models have been used to account for the confinement effects
[19, 21, 22]. Here we present one of these approaches. Assuming the
electron propagates freely along the x−direction and the transversal
confinement potential is applied in the y−direction, the Hamiltonian reads

H = H‖ +H⊥ +Hmix (3.11)

with the following terms

H‖ =
p2
x

2m∗
− ~kR

m∗
σypx , (3.12a)

H⊥ =
p2
y

2m∗
+ Vconf (y) , (3.12b)

Hmix =
α

~
σxpy . (3.12c)

Where Vconf (y) = 1
2
m∗ω2y2 is a harmonic confinement potential characterized

by the length λy =
√

~/m∗ω. Neglecting Hmix in Eq.(3.11), the terms from
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Eq.(3.12a) and Eq.(3.12b) make for a solvable Hamiltonian with eigenvalues
and eigenspinors:

E‖+⊥ (n, σy, kx) =
~2k2

x

2m∗
+ ~ω

(
n+

1

2

)
− ~2kRkx

m∗
〈σy〉 , (3.13)

ψnσykx (x, y) = Φ (y)ψkx (x) |σy〉 , (3.14)

where Φn (y) are the n-th eigenfunctions of the harmonic confinement
potential Vconf (y) as given by Eq.(2.30) and ψkx(x) are plane waves shifted
by the RSOC, here 〈σy〉 can get the values ±1. The term Hmix in
Eq.(3.12c) mixes these eigenstates and leading to a deformation of the
subbands and the appearance of anti-crossings in the energy spectrum, and
is usually treated as a perturbation to the system. These anti-crossings
occur between sub-bands corresponding to eigenstates with different band
index n and opposite spin (see Fig. 3.5).

For 1D models there is a strict spin-momentum locking where the spin
is aligned in-plane but perpendicular to the direction of propagating along
the wire given by the momentum. On the other hand, for multi-band
models it is well known that only far away from the anti-crossings is the
spin locked perpendicular to the momentum. This means that the spin
cannot be considered as a good quantum number. This can be seen in
Fig.3.6a, where the expectation value for the spin along the y−direction
〈Sy〉 goes from −1/2 to 1/2 as the momentum kx goes from negative to
positive values. Eq.(3.11) cannot be diagonalized exactly, but several works
attempt a partial analytical/numerical solution by truncating the Hilbert
space and considering a limited amount of lateral modes N . This produces
great accurate results up to the band N − 1. In addition to this truncation
affecting the spectrum, it also affects the the effects polarization of the
system. The effects of such a truncation are very well illustrated in the Fig.
3.6. In Fig. 3.6(a), the polarization of the first subband for a two-band
model (dashed lines) and a N = 50 band model(solid lines) is compared
and result in a reasonable agreement. However, in Fig.3.6(b), the second
subband polarization presents a strong deviation from the behavior of a
two-band model showing opposite values at large energies. The role of the
number of bands in the calculations is of great relevance and is independent
of the geometry of the confinement potential Vconf(y). Bottom line here is
that for a correct interpretation of the problem, enough subbands must be
considered in the calculation.
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Figure 3.5: For a system with intermixing of subbands, spin is no longer a
good quantum number. As a consequence, the 1st subband with spin down
and the second subband with spin-up (both in black) avoid the crossing that
would naturally occur in the absence of Hmix(red dashed lines). This figure
corresponds to diagonalization of a two-band model in a square well of width
W . Figure from [22].

Furthermore, it has been observed that subband hybridization can also
strongly influence results in the transmission of the nanowire which is the
topic of interest in this thesis. Subband mixing has been shown to give rise
to dips in the conductance of nanowires with Rashba spin-orbit coupling as
shown in some works, both analytical and numerical [22, 92].

The authors of Ref.[92] provided a simple argument that shows that a
local Rashba interaction in the 1D limit forms bound states for negative
energies in a similar way to the case of nanowire with an impurity potential
in Chapter 2. Consider the strict 1D limit of a ballistic quantum wire with

40



CHAPTER 3. SPIN ORBIT COUPLING IN SEMICONDUCTORS

-1

0

1
Po

la
ri
za

tio
n

-10 -5 0 5 10

in

-1

0

1

a)

b)

Figure 3.6: (a) Polarization for the first two subbands as a function of the
injection energy, for the two-band model (dashed line) and for a 50-band
model(solid line). (b) Polarization for the second subbands for the 50-band
model (solid line) strongly deviates from the two-band model (dashed line).
Figure from [22].

local Rashba interaction

H1D =
p2
x

2m∗
+
α

~
pxσ̂y , (3.15)

and the electron wave function may be expanded,

ψ (x) = ψ1 (x) |σy〉+ + ψ2 (x) |σy〉− , (3.16)

where |σy〉± are the spinor eigenstates.
By performing the gauge transformation ψ1,2 → ψ1,2 (x) → e±ikRx the

Schrödinger equation becomes

− ~2

2m∗
ψ′′1,2 (x) =

[
E +

~2k2
R

2m∗

]
ψ1,2 (x) , (3.17)

which corresponds to a square-well impurity of strength v0 = −m∗α2/~2.
This is a very similar problem to the delta-like impurity potential solved in
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subsection ??. Therefore, in a quasi-1D system one can expected the term
Hmix to couple propagating states through the bound state in Eq.(??). As
they point out in Ref. [92], with a quasi-1D system as described by the
Hamiltonian in Eq.(3.11) the Rashba spin-orbit coupling plays both the role
of an attractive potential and of the coupling to the continuum of evanescent
modes generated by the confinement potential.

Our interest in going one step further in this system by studying the
interplay between Rashba SOC, confinement and an actual physical impurity
potential. This discussion is a good starting point for the effects of Rashba in
the scattering impurity that will follow in Chaper 6. In our work we avoid the
truncation of the Hilbert space (and its limitations and systematic mistakes),
described in this section and commonly used [19, 21, 22].

Our approach to dealing analytically with the problems exposed in this
section in order to solve Eq.(3.11) relies in gauge transformations and
perturbation theory (see Chapter 5). For this reason, we think it is of
interest to solve in the following subsections some limiting cases of the
above mentioned Hamiltonian making use of these techniques. First, we do
so for kx = 0 and then we extend this result to the proximities of this point
kx ≈ 0 by adding the term αpxσ̂y as a perturbation for the kx = 0 problem.

3.4.1 Exact solution for kx = 0

The case kx = 0 is special, because only the matrix σ̂ is present in the problem
and spin along x becomes a good quantum number again. At kx = 0, we
have

H1D =
p2
y

2m∗e
+
m∗eω

2
0

2
y2 − αpyσx . (3.18)

The term −αpyσx in Eq.(3.18) can be treated exactly. It suffices to choose
the spin basis such that σx becomes ±1,

σx |χ±〉 = ± |χ±〉 , (3.19)

where we may choose

χ+ =
1√
2

(
1
1

)
and χ− =

1√
2

(
−1
1

)
. (3.20)

In the spin basis of Eq.(3.20), the problem separates into two blocks,

H1D
± =

p2
y

2m∗e
+
m∗eω

2
0

2
y2 ∓ αpy. (3.21)

42



CHAPTER 3. SPIN ORBIT COUPLING IN SEMICONDUCTORS

Each block can be solved by shifting py as follows,

ψ±(y) = e±iy/λSOΦn(y) , (3.22)

where Φn(y) can be shown to satisfy the equation for the quantum harmonic
oscillator in Eq.(2.26) and λSO = ~/m∗eα.

Both blocks have identical eigenvalues and their wave functions are related
to each other by a gauge transform. The solution to the initial problem
becomes

ψn,±(y, s) = e±iy/λSOΦn(y)χ±(s) , (3.23)

with degenerate eigenvalues

En,± ≡ En = ~ω0

(
n+

1

2

)
− m∗eα

2

2
. (3.24)

Note that the states ψnσ in Eq.(3.23) obey the orthonormalization
condition 〈ψn′σ′ | ψnσ〉 = δn′nδσ′σ where the scalar product is taken in both
the y-coordinate and the spin spaces,

〈ψn′σ′| ψnσ〉 :=
∑
s

∫ +∞

−∞
dyψ∗n′σ′(y, s)ψnσ(y, s) . (3.25)

However, without summation over the spin degree of freedom the states ψn′σ′
and ψnσ for n′ 6= n are orthogonal only provided σ′ = σ,∫ +∞

−∞
dyψ∗n′σ(y, s′)ψnσ(y, s) ∝ δn′n . (3.26)

This is due to the phase factor e±iy/λSO dropping out only when same spin
states are involved. To emphasize that the wave function in Eq.(3.23) does
not separate into a product of a y-coordinate component and a spin
component, we write the states as

ψnσ(y, s) = eiσ̂xy/λSOΦn(y)χσ(s). (3.27)

A product of two states without summation over the spin indices reduces to
the direct product of the operators eiσ̂xy/λSO taken from each of the states
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in Eq.(3.27). It is convenient to represent such a direct product simply by
supplying an index to the Pauli matrix,

e−iσ̂xy/λSO ⊗ eiσ̂xy/λSO → ei(σ̂a−σ̂b)y/λSO , (3.28)

where σ̂ax and σ̂bx have separate Hilbert spaces for the time being, until we
contract the spin indices. The quantity of interest is, therefore,∫ +∞

−∞
dyΦ∗n′(y)Φn(y)ei(σ̂ax−σ̂bx)y/λSO , (3.29)

which reduces to the following Fourier transform

Fn′n(q) =

∫ +∞

−∞
dyΦ∗n′(y)Φn(y)eiqy. (3.30)

Note that Fn′n(q) = [Fnn′(−q)]∗ and also that Fn′n(0) = δn′n. Actually, we
will need Fn′n(q) evaluated at q = ±2/λSO.

The form-factor Fn′n(q) can be calculated for the case of harmonic
confinement with the functions Φn(y) as given above. Since Φn(y) are
chosen to be real, we have Fn′n(q) = Fnn′(q), which subsequently leads to
the relation Fn′n(−q) = [Fn′n(q)]∗. Then, without loss of generality, we take
n′ ≥ n and obtain

Fn′n(q) =

√
2n′n!

2nn′!
Ln
′−n
n

(
q2λ2

y

2

)
×
(
iqλy

2

)n′−n
exp

(
−
q2λ2

y

4

)
, (3.31)

where Lαn(ξ) is the Laguerre polynomial,

Lαn(ξ) =
1

n!
eξξ−α

∂n

∂ξn
(e−ξξn+α). (3.32)

This limit case for kx = 0 serves as the unperturbed solution to build upon
for the following subsection.

3.4.2 Perturbative solution around kx ≈ 0

In order to build a solution around kx = 0 we take the unperturbed
Hamiltonian to be that of Eq.(3.18) so that the perturbed system is given
by

H = H0 + α~kx . (3.33)
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where the terms proportional to αkx can be treated by perturbation theory.
Let us consider values of kx which are small enough, such that the following
regime holds

α~kxFnn′(q0)� En − En′ , n 6= n′. (3.34)

This condition roughly refers to ”staying away from the avoided crossings”
and is equivalent to λy/λSO � 1. This small parameter is very important
as it appears again in Chapter 5 in the context of perturbation theory but
for the Schrieffer-Wolff transformation. In this case, we treat the term
α~kxσy as perturbation, whereas the term −αpyσx is treated exactly.
However, in Chapter 5 the opposite is true:α~kxσy is treated exactly, while
the term −αpyσx is considered a perturbation. The interest in the
calculation presented in the current subsection is to find possible
contributions of order α2 arising from the term −αpyσx alone. The reason
behing this is because they may present corrections to the second order
(α2) in our calculation in Chapter 5.

One could expect that in order to determine this, it is sufficient to consider
the point kx = 0, which is exactly solvable. However, that point is degenerate
and we have to consider its vicinity to understand how the states propagate
and what are their transport properties when scattering off an impurity.

For this reason, we consider the zeroth-order of perturbation theory in
the small parameter in Eq. (3.34). This corresponds to the degenerate
perturbation theory around the point kx = 0 for each subband n separately.
While this approach is valid for a strong spin-orbit interaction and a very
small kx, we are interested here in answering the question about the role of
the second-order corrections due to −αpyσx. In matrix form, the diagonal
(n′ = n) part of the Hamiltonian of the system is given by,

Ĥ1D
n =

(
En −iαn~kx

iαn~kx En

)
, (3.35)

where the basis is given as before by the states in Eq. (3.23). We denoted
αn = αFn(q0) with q0 = 2/λSO.The form-factor Fn(q) ≡ Fnn(q) is real and
simplifies to

Fn(q) = Ln

(
q2λ2

2

)
exp

(
−q

2λ2

4

)
. (3.36)

Any correction arising from the form factor is is q2
0 ∝ α2 and by multiplying

it by the α~kx of the perturbation theory in Eq.(3.35) it goes with α3 and
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hence is beyond the accuracy of any calculation done in this work. However,
we care about any α2 correction arising from the states and there is also an
α2 overall energy shift, see Eq. (3.24).

The eigenstate of Eq. (3.35) corresponding to the energy

En,+ = En + ~kxαn, (3.37)

is constructed out of the states in Eq. (3.23)

χ+ =
1

2

(
1
1

)
eiy/λSO +

i

2

(
−1
1

)
e−iy/λSO . (3.38)

And the eigenstate corresponding to the energy

En,− = En − ~kxαn, (3.39)

is constructed as

χ+ =
1

2

(
1
1

)
eiy/λSO − i

2

(
−1
1

)
e−iy/λSO . (3.40)

They both are further multiplied by the same Φn(y) and by eikxx, since these
orbital components of the wave function are in common for the subband n.
As expected, to this zeroth order of perturbation theory in α~kx, the states
are not affected at all by the parameter αn. It enters only in the energy and
together with the constant term ~k2

x/2m
∗
e will determine the division into left

and right movers.
The eigenstates of Eq. (3.35) can also be written in a compact form. If

we multiply both states by a phase factor eiπ/4, then we obtain

χ+ =

 cos
(
π
4

+ y
λSO

)
i sin

(
π
4

+ y
λSO

)  ,

χ− =

 i sin
(
π
4

+ y
λSO

)
cos
(
π
4

+ y
λSO

)  . (3.41)

These states reduce at y = 0 to

χ+ =
1√
2

(
1
i

)
, χ− =

1√
2

(
i
1

)
, (3.42)
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which are eigenstates of σy. However, at y 6= 0, they are no longer eigenstates
of σy.

One can verify that the two states in Eq. (3.41) originate from the non-
abelian gauge factor

e
iσx
(
π
4

+ y
λSO

)
, (3.43)

which multiplies the usual up and down states of the σz Pauli matrix. As
a result of this, the corrections to the states of order α2 are not affecting
the scattering potential, because the above gauge factor commutes with the
scattering potential. This is a relevant result for all analytical calculations
done in this thesis, as we now can ensure the accuracy of the calculation
for the perturbative methods, up to the second order α2, use in subsequent
chapters.

3.5 Conclusions

In summary, in this chapter we introduce the Rashba spin-orbit coupling
going over some of its applications in the field of spintronics and in the
detection of Majorana Bound States. We briefly discuss the spectral
properties of a 2DEG with Rashba spin-orbit coupling before reviewing the
complexities involved in the analytical solution of the model Hamiltonian
for a quantum nanowire where the 2DEG is further confined. As a result of
this confinement, not only is the energy spectrum of the system strongly
affected but also the polarization of the spin. The combined effect of RSOC
and confinement gives raise to anti-crossings between branches of opposite
spin, deforming the spectrum. Moreover, we discussed the subbband mixing
at the origin of this phenomena which leads to coupling between
propagating and evanescent states in the quantum nanowire. As a result, a
proper calculation needs to take into account enough subbands. Finally, we
present an exact solution for the kx = 0 that we use as the result for the
unperturbed problem to obtain the solution of the problem in the vicinity
of the point kx ≈ 0. This calculation allows us to ensure the accuracy of our
perturbative approach up to α2 in Chapter 5.
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Chapter 4

The Landauer-Buttiker
description of Transport

The Landauer-Büttiker formalism is widely used as a method to study charge
transport in mesoscopic systems [93, 94, 95]. It provides a very intuitive
description of macroscopic effects in terms of scattering properties, that may
be related to microscopic details of a system. In this chapter we generalize
the Landauer-Büttiker formalism to include the effects of Rashba spin-orbit
coupling. Besides the importance of such generalization, our results will help
us to derive our results on transport properties of a nanowire with Rashba
spin-orbit coupling and a single point-like impurity in the next chapters.

In the next sections we present the Landauer-Büttiker formalism to
describe both the charge and spin conductance. In this way we provide a
simple description of spin-dependent transport that allows us to separate
the spin-bias and voltage-bias contributions to the spin current. The
Landauer-Büttiker formalism approach to deal with spin currents has been
treated numerically or discussed in some models in the presence of Rashba
spin-orbit coupling for either the Sin Hall Effect or three-terminal
spin-filters [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]. Very recently
an extension of the formalism was developed to better understand the
origin and symmetries involved in spin currents in magnetic multi-layered
systems [107]. In this chapter we derive an analytical expression for the
spin current in terms of the spin-dependent transmission coefficients and
discuss further the implications of scattering at an impurity on the
transport. We identify a spin-torque as a consequence of spin-flip
transmission mechanism mediated by such an impurity (see subsection
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Figure 4.1: (a) Two-terminal spin-dependent geometry. (b) Four-terminal
geometry.

4.3.1). In addition, we find a conection between our results and the concept
of the spin-mixing conductance introduced in Ref.[108].

4.1 The Landauer-Büttiker approach for

quantum transport

The goal of the Landauer-Büttiker approach is to write expressions for the
current in terms of transmission probabilities between different terminals
connected by a scattering region. Here we follow we Reference [109], and
generalize the derivation of the formalism for the case of spin-dependent
transport. Indeed, we are considering wires with Rashba spin-orbit
interaction and therefore the scattering amplitudes depends on the spin.

In Fig.4.1 (a) we show the typical two-terminal system. The scattering
region, in our case a nanowire, is connected to two ideal leads that we refer
as left (L) and right (R). We treat each spin species as independent
channels labeled by the index σ =↑, ↓, see sketch in Fig.4.1 (a). The leads
are characterized by temperature Tασ and chemical potential µασ, with
α = L,R.

It is worth noticing that the two-terminal spin-dependent geometry is
equivalent to the four-terminal geometry sketched in 4.1 (b), where the
temperatures for the terminals are T1,2 = TL↑,L↓ and chemical potentials
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µ1,2 = µL↑,L↓, and similarly T3,4 = TR↑,R↓ and µ3,4 = µR↑,R↓. Thus, our
analysis of 2-terminal setup for spin-dependent channels can be mapped to
a 4-terminal situation with independent channels.

It is assumed that the leads are at local equilibrium and therefore the
electronic distribution functions in each lead is given by the Fermi
distribution function:

fα,σ (E) =
[
e(E−µα)/kBTα + 1

]−1
, α = L,R ;σ =↑, ↓ (4.1)

(see Fig.4.1). It is important to note that we are considering the contact
leads to be wide compared to the crosssection of the quasi-1D nanowire, so
that as far as the reservoirs are concerned, the nanowire represents only a
small perturbation, and thus it is valid to describe the local properties in
terms of an equilibrium state. Even though the dynamics of the scattering
problem are described in terms of a Hamiltonian, the problem considered is
irreversible[109]. This means that the processes for a particle entering or
exiting the nanowire are uncorrrelated events; the reservoirs are fully
determined by their respective Fermi distributions, and act as perfect
sources and sinks for the particles independently of the energy of the
particle entering or leaving the nanowire.

Between the leads we consider a ballistic nanowire with Rashba
spin-orbit coupling and a local impurity potential that will act as a source
of scattering inside the nanowire. Far from the impurity we assume that
transverse motion longitudinal motion of particles are separable. As
described in Section 2.1.3 the motion from left to right contact
(longitudinal motion) is not-confined and the system is characterized by the
conserved wave-vector kn, where n denotes the index number of transverse
channels introduced by the quantization across the leads in the transverse
direction corresponding to transverse energies EL,R;n,σ, which can be
different for the left and right leads. We denote with NL,R (E) the number
of incoming channels in the left and right lead, respectively.

We now introduce the creation and annihilation operators denoted by α,
n and σ.The operators â†αnσ (E) and âαnσ (E) create and annihilate electrons
respectively, with total energy E in the transverse channel n in the α lead,
which are incident upon the sample. Similarly, the creation b̂†αnσ (E) and
annihilation b̂αnσ (E) operators refer to electrons in the outgoing states. They
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obey anticommutation relations:

â†Lnσ (E) âαn′σ′ (E
′) + âαn′σ′ (E

′) â†αnσ (E) = δαβδnn′δσσ′δ (E − E ′) , (4.2a)

âαnσ (E) âαn′σ′ (E
′) + âαn′σ′ (E

′) âαnσ (E) = 0 , (4.2b)

â†αnσ (E) â†αn′σ′ (E
′) + â†αn′σ′ (E

′) â†αnσ (E) = 0 . (4.2c)

We introduce creation and annihilation operators, b̂†αnσ (E) and b̂†αnσ (E),
and their anticommutation relations in outgoing states in the same way as
incoming states in eqs. (4.2a) to (4.2c).

The operators âαnσ (E) and b̂αnσ (E) are related trough the scattering
matrix S as follows, 

b̂L1↑

b̂L1↓
...

b̂LN↑
b̂LN↓
b̂R1↑

b̂R1↓
...

b̂RN↑
b̂RN↓


= S



âL1↑
âL1↓
...
âLN↑
âLN↓
âR1↑
âR1↓
...
âRN↑
âRN↓


. (4.3)

We can write a similar equation to Eq. (4.3) for the hermitian conjugated
matrix S† relating the creation operators â†αnσ (E) and b̂†αnσ (E).

The matrix S has dimensions (NL +NR)× (NL +NR). Its elements are
energy-dependent, and it has the following block structure

S =

(
rσσ′ t′σσ′
tσσ′ r′σσ′

)
. (4.4)

Here the diagonal blocks rσσ′ and r′σσ′ describe electron reflection to the left
and to the right reservoir, respectively. The off-diagonal blocks tσσ′ and t′σσ′
correspond to the electron transmission through the sample from the left
to the right reservoir and from the right to the left reservoir, respectively.
As discussed in Section 2.1.3, the flux conservation in the scattering process
implies the unitarity of matrix S. In addition, in the presence of time-reversal
symmetry as discussed in Section ?? the scattering matrix is also symmetric.

Our goal in the following sections is to describe the transport through a
nanowire with an impurity. Specifically, we derive an expression for the total
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current operator ÎL(r, t) in the left lead far away from the localized impurity,
and obtain an expression for the charge and spin-dependent conductances.
In the Landauer-Bütiker formalism the current operator is expressed in terms
of the creation and annihilation operators.

4.2 Charge conductance

The conservation of charge implies the continuity equation in quantum
mechanics for the charge density ρ = eΨ̂†Ψ̂

dρ

dt
+∇ · j = 0 . (4.5)

From this expression and teh Schrödinger equation we can derive an
expression for the charge current density j. To do so we start by
differentiating with respect to time the expression for the charge density

dρ

dt
= e

[
dΨ̂†

dt
Ψ̂ + Ψ̂†

dΨ̂

dt

]
, (4.6)

where Ψ̂ =
(

Ψ̂1, Ψ̂2

)T
is a two-component spinor and Ψ̂† its hermitian

conjugate. We now make use of the Shrödinger equation i~dΨ̂
dt

= HΨ̂ and
its adjoint, where the Hamiltonian of the system is given by,

H = −~2∇2

2m∗e
− i~α (∂xσ̂y − ∂yσ̂x) + Vconf (y) . (4.7)

On the one hand, the kinetic term and the confinement potential in Eq.4.7
leads us to write the kinetic contribution for the evolution of the charge
density in Eq.(4.6) as

dρK
dt

=
e

i~

[
Ψ̂†
(
−−~

2

2m
∇2Ψ̂

)
−
(
−−~

2

2m
∇2Ψ̂†

)
Ψ̂ + Ψ̂†Vconf Ψ̂− Vconf Ψ̂†Ψ̂

]
= − e~

2mi
∇
[
Ψ̂†(∇Ψ̂)− (∇Ψ̂†)Ψ̂

]
, (4.8)

whereas the contribution from the spin-orbit coupling of the Hamiltonian to
Eq.(4.6), usually referred as the anomalous term of the current, leads on the
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other hand to

dρSO
dt

=
e

i~

[
Ψ̂†
(
HSOΨ̂

)
−
(
HSOΨ̂

)†
Ψ̂

]
=

e

i~

[
(Ψ̂∗1, Ψ̂

∗
2)α~

(
−∂xΨ̂2

∂xΨ̂1

)
− α~(−∂xΨ̂∗2, ∂xΨ̂∗1)

(
Ψ̂1

Ψ̂2

)]
+

e

i~

[
(Ψ̂∗1, Ψ̂

∗
2)α~

(
∂yΨ̂2

∂yΨ̂1

)
− α~(∂yΨ̂

∗
2, ∂yΨ̂

∗
1)

(
Ψ̂1

Ψ̂2

)]
=

eα

i

[
−Ψ̂∗1(∂xΨ̂2) + Ψ̂∗2(∂xΨ̂1) + (∂xΨ̂

∗
2)Ψ̂1 − (∂xΨ̂

∗
1)Ψ̂2

]
(4.9)

+
eα

i

[
Ψ̂∗1(∂yΨ̂2) + Ψ̂∗2(∂yΨ̂1) + (∂yΨ̂

∗
2)Ψ̂1 + (∂yΨ̂

∗
1)Ψ̂2

]
.

In Eq.(4.9) the previous expression we made use of the fact that

−iα~σ̂yΨ̂ = −iαx~
(

0 −i
i 0

)(
∂xΨ̂1

∂xΨ̂2

)
= α~

(
−∂xΨ̂2

∂xΨ̂1

)
,

and

iα~σ̂x∂yΨ̂ = iα~
(

0 1
1 0

)(
∂yΨ̂1

∂yΨ̂2

)
= α~

(
∂yΨ̂2

∂yΨ̂1

)
,

while their complex conjugated results in (−iα~σ̂yΨ̂)† = αx~(−∂xΨ̂∗2, ∂xΨ̂∗1)

and (iα~σ̂x∂yΨ̂)† = αx~(∂yΨ̂
∗
2, ∂xΨ̂

∗
1) . Notice also that Ψ̂†σ̂yΨ̂ = −i(Ψ̂∗1Ψ̂2 −

Ψ̂∗2Ψ̂1) and Ψ̂†σ̂xΨ̂ = +i(Ψ̂∗1Ψ̂2 + Ψ̂∗2Ψ̂1) Taking into account both the kinetic
contribution in Eq. (4.8) and the spin-orbit contribution in Eq. (4.9), we can
write Eq.(4.6) as

dρ

dt
= − e~

2mi
∇
[
Ψ̂†(∂xΨ̂)− (∇Ψ̂†)Ψ̂

]
− eα∂x

(
Ψ̂†σ̂yΨ̂

)
+ eα∂y

(
Ψ̂†σ̂xΨ̂

)
.

(4.10)
From this expression and Eq.(4.5) we identify the total current density along
the x-direction as a sum of a kinetic (jx)K and a spin-orbit (jx)SO term:

jx = (jx)K + (jx)SO

=
e~

2mi

[
Ψ̂†(∂xΨ̂)− (∂xΨ̂

†)Ψ̂
]
− eα

(
Ψ̂†σ̂yΨ̂

)
, (4.11)
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𝑅𝑅

Figure 4.2: Energy dispersion spectrum with Rashba spin-orbit coupling
where â states are incoming and b̂ states outgoing.

and the total current density along the y-direction is given by

jy = (jy)K + (jy)SO

=
e~

2mi

[
Ψ̂†(∂yΨ̂)− (∂yΨ̂

†)Ψ̂
]

+ eα
(

Ψ̂†σ̂xΨ̂
)
. (4.12)

In the framework of the second quantization one can write the current
operator as an integral of Eq.(4.11) in terms of the field operators Ψ̂. The
contribution to the current operator from the normal kinetic term in the
left lead (far from the impurity) is then given by

ÎKL (x, t) =
e~

2mi

∫
dr⊥

[
Ψ̂†L(r, t)(∂xΨ̂L(r, t))− (∂xΨ̂

†
L(r, t))Ψ̂L(r, t)

]
.

(4.13)
Here r = (x, r⊥), r⊥ is the transverse coordinate and x is the coordinate
along the wire. The field operators for the problem described in Eq. (4.7)
will be obtained in Chapter 5 via gauge transformation that reduces the
Hamiltonian problem to,

H = −~2∇2

2m∗e
− i~α∂xσ̂y + Vconf (y)−m∗e

α2

2
. (4.14)
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Without getting into details about the solution of Hamiltonian in Eq. (4.7), it
is possible to study dynamic properties of such a system because they remain
unchanged under gauge transformations. Furthermore, it is possible to write
the egienfunctions for a problem described by the Hamiltonian in Eq. (4.14)
if one gauges away the term −i~α∂xσ̂y with the following transformation

Ψ̂ = e−i(mα~ )σ̂yx ˆ̃Ψ . (4.15)

Where the field operators in this transformed problem are typically
expanded in terms of the creation operator in the second quantization:
ˆ̃Ψ =

∑
n eiknxĉαnσ, where α is the lead index and ĉαnσ can take the value

âαnσ the incoming states and b̂αnσ for the outgoing ones. The gauge
transformation adds a spin index σ. Hence the field operators of the
original problem in the left lead Ψ̂L(r, t) and Ψ̂†L(r, t) can be expressed in
terms of the operators defined in Refs. (4.2a-4.2c) as a superposition of
incoming and outgoing states (see Fig. 4.2):

Ψ̂L(r, t) =

∫
dE ′e−iE′t/~

∑
n′,σ′

ΦLn′σ′(r⊥)√
2πvLn′σ′(E′)

×
{
âLn′σ′(E

′)ei(kn′ (E
′)−σ′kR)x + b̂Ln′σ′(E

′)e−i(kn′ (E
′)+σ′kR)x

}
, (4.16)

Ψ̂†L(r, t) =

∫
dEeiEt/~

∑
n,σ

Φ∗Lnσ(r⊥)√
2πvLnσ(E)

×
{
â†Lnσ(E)e−i(kn(E)−σkR)x + b̂†Lnσ(E)ei(kn(E)+σkR)x

}
, (4.17)

where ΦLnσ(r⊥) are the orthonormal transverse wave functions so that∫
dr⊥Φ∗LnσΦLn′σ′ (r⊥) = δnn′δσσ′ , kn = ~−1

√
2m(E − En +mα2) is the

momentum with α = ~kR/m∗e and the velocity of carriers is vLnσ = ~kn/m.
Then, taking into account Eqs.(4.16)-(4.17) the expression in Eq.(4.13)
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for the average of the kinetic current becomes

ÎKL (x, t) =
e~
2m

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

2π~√vLn′σ′vLnσ

×
{

(kn(E) + kn′(E
′)− 2σkR) â†Lnσ(E)âLnσ(E ′)e−i(kn(E)−kn′ (E′))x

− (kn(E) + kn′(E
′) + 2σkR) b̂†Lnσ(E)b̂Lnσ(E ′)ei(kn(E)−kn′ (E′))x

+ (kn(E)− kn′(E ′)− 2σkR) â†Lnσ(E)b̂Lnσ(E ′)e−i(kn(E)+kn′ (E
′))x

− (kn(E)− kn′(E ′) + 2σkR) b̂†Lnσ(E)âLnσ(E ′)ei(kn(E)+kn′ (E
′))x
}
.

(4.18)

The expression in Eq.(4.18) can be significantly simplified by taking into
account that values of E and E ′ are close to each other and that the wave
vectors kn(E) and velocities vary slowly with energy around the Fermi energy
[109, 110]. This simplification leads to:

ÎKL (x, t) =
e

4πm

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

vLn′σ′

×2
{

(kn(E)− σkR) â†Lnσ(E)âLnσ(E ′)− (kn(E) + σkR) b̂†Lnσ(E)b̂Lnσ(E ′)

−σkR
(
â†Lnσ(E)b̂Lnσ(E ′)e−2ikn(E)x + b̂†Lnσ(E)âLnσ(E ′)e2ikn(E)x

)}
.

(4.19)

Following the same procedure we obtain the contribution to the current
operator stemming from the anomalous velocity related to the spin-orbit
coupling term in Eq.(4.11),

ÎSOL (x, t) =
eαx
2π~

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

vLn′σ′

σ
{
â†Lnσ(E)âLnσ(E ′) + b̂†Lnσ(E)b̂Lnσ(E ′)

+â†Lnσ(E)b̂Lnσ(E ′)e−2ikn(E)x + b̂†Lnσ(E)âLnσ(E ′)e2ikn(E)x
}
. (4.20)

Considering that kR = mαx/~, we can see that the terms linear in σkR
from Eq. (4.19) and Eq. (4.20) balance each other out (in agreement with
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Ref.[111])and the velocity in the denominator cancels with ~kn/m in the
numerator. Consequently,

ÎL(t) = ÎKL + ÎSOL

=
e

2π~

∫
dEdE ′ei(E−E′)t/~

∑
nσ

{
â†Lnσ(E)âLnσ(E ′)− b̂†Lnσ(E)b̂Lnσ(E ′)

}
.

(4.21)

Now, we focus on the term within brackets in Eq. (4.21), namely
â†Lnσ(E)âLnσ(E ′) − b̂†Lnσ(E)b̂Lnσ(E ′). The creation and annihilation

operators âLnσ, â†Lnσ,b̂Lnσ and b̂†Lnσ are related through the scattering
matrix S defined in the previous section by Eq.(4.3), so that

b̂Lnσ =
∑
βms

SLnσ,βmsâβms, (4.22)

b̂†Lnσ =
∑
αm′s′

â†αm′s′S
†
αm′s′,Lnσ . (4.23)

These expressions relate the outgoing states on the left lead for a fixed channel
n and spin σ to all the possible incoming states from the leads (β = L,R)
Notice that the spin indices from the leads are denoted by s and s′ With
the help of these expressions for the outgoing scattering states in Eq. (4.22)-
(4.23) we can write Eq. (4.21) in terms of the incoming state creation and
anhilation operatora, â and â†,

ÎL(t) =
e

2π~
∑
αβ

∑
m′m

∑
s′s

∫
dEdE ′ei(E−E′)t/~â†αms′(E)Am

′s′,ms
αβ (L;E,E ′)âβms(E

′) .

(4.24)

Here α and β take the reservoir values L or R and we define
Am

′s′,ms
αβ (L;E,E ′) = δm′mδs′sδαLδβL −

∑
nσ S

†
αm′s′,Lnσ(E)SLnσ,βms(E

′). This
result for the charge current operator, agrees with the results of Rashba
interaction in the coherent scattering formalism in Ref. [111]. In the next
section we follow an analog procedure to obtain the expression for the
spin-current operator.

In order to derive the average current from Eq. (4.24), we need to compute
the average of the product between creation and annihilation operators for
an electron gas at thermal equilibrium. This reads:〈

â†αm′s′(E)âβms(E
′)
〉

= δm′mδs′sδαβδ (E − E ′) fα (E) . (4.25)
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In the averaging process only terms with α = β survive. The corresponding
scattering matrix elements are SLnσ,Lms = rnσ,ms and SLnσ,Rms = t′nσ,ms.
Then it is possible to write the average of Eq. (4.24) as∑

αβ

∑
m′m

∑
s′s

〈
â†αms′(E)Am

′s′,ms
αβ (L;E,E ′)âβms(E

′)
〉

=

=
∑
ms

[
1−

∑
nσ

r†ms,nσrnσ,ms

]
fL (E) δ (E − E ′)

−
∑
ms

∑
nσ

t′†ms,nσt
′
nσ,msfR (E) δ (E − E ′) . (4.26)

The unitarity condition S†S = SS† = 1, implies, among others, the following
identities:

t′†r = −r′†t→ t′† = −r′†tr−1,

rt† = −t′r′† → t′ = −rt†(r′†)−1 ,

resulting in t′†t′ = r′†tr−1rt†(r′†)−1 = r′†tt†(r′†)−1. Then we can prove that
for the scattering coefficients in Eq.(4.26),∑

ms

∑
nσ

t′†ms,nσt
′
nσ,ms = Tr

(
t′†t′
)

= Tr
(
r′†tt†(r′†)−1

)
= Tr

(
(r′†)−1r′†tt†

)
= Tr

(
tt†
)

= Tr
(
t†t
)
. (4.27)

On the other hand r†r + t†t = 1, hence∑
ms

∑
nσ

[
1− r†ms,nσrnσ,ms

]
=
∑
ms

∑
nσ

t†ms,nσtnσ,ms = Tr
(
t†t
)
. (4.28)

Substitution of Eq. (4.28) and Eq. (4.27) into Eq. (4.26), and the latter into
Eq. (4.24), we finally obtain for the average current :〈

ÎL(t)
〉

=
e

2π~

∫
dEdE ′ei(E−E′)t/~ Tr

(
t†t
)

[fL (E)− fR (E)] δ (E − E ′)

=
e

2π~

∫
dE Tr

(
t†t
)

[fL (E)− fR (E)] . (4.29)

If we now consider a voltage bias situation, with different chemical potentials
in the left and right leads, such that µL − µR = eV , we can calculate the
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conductance as G = I/V with current I given by Eq.(4.29), resulting in

G =
1

V

e

2π~

∫
dE Tr

(
t†t
)

[f (E − µL)− f (E − µR)]

=
1

V

e

2π~

∫
dE Tr

(
t†t
)

[−(µL − µR)f ′ (E)]

=
e2

2π~

∫
dE Tr

(
t†t
)
δ (E − EF ) .

In the last step in Eq.(??) we assume in the zero-temperature limit the Fermi
distribution function is a step function whose derivative becomes a delta in
energy −f ′(E) = δ (E − EF ). Finally we obtain:

G =
e2

2π~
Tr
(
t†(EF )t(EF )

)
. (4.30)

Eq. (4.30) is the well-known Landauer-Büttiker expression. It establishes the
connection between the scattering matrix and the conductance of the system.
We must notice that independently of the choice of basis, the conductance
can be expressed in terms of transmission probabilities Tn for each channel,
as the expression t†(EF )t(EF ) is diagonalizable and hence Tr

(
t†t
)

=
∑

n Tn.
Furthermore, another version of Eq. (4.30) allows us to write the conductance
in terms of the transmission probabilities for electrons leaving the left lead
L from a channel n and with spin σ to arrive to the m channel in the right
lead R with spin σ′,

G =
e2

2π~
∑
mσ′,nσ

|tmσ′,nσ|2 . (4.31)

Once we have reviewed the way to write the charge conductance in the
Landauer-Büttiker formalism we will generalize it in the next section for
the case of spin-dependent observables such as the spin-current and
spin-polarized conductance.

4.3 Spin current along the nanowire

As we mention in the previous section, in Chapter 5 we obtain the solutions
for the Hamiltonian described by Eq.(4.7) via a gauge transfromation that
preserves the dynamics of the system. In this transformed system, effectively
described by the Hamiltonian in Eq. (4.14) we can define a spin-density (not
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equivalent to the ”true spin”) the y-component. Since we expect that away
from the impurity of the spin to be conserved we can use the continuity
equation. This way, we are able to derive expressions for the spin currents
in both leads.

In analogy to previous subsection, we start first deriving the
corresponding conservation equation from the spin density Sy = eΨ̂†σ̂yΨ̂ by
differentiating with respect to time,

dSy
dt

= e

[
dΨ̂†

dt
σ̂yΨ̂ + Ψ̂†σ̂y

dΨ̂

dt

]
. (4.32)

For the kinetic term and confinement described by our problem Hamiltonian
in Eq.(4.14) we can write

(dSy)K
dt

=
e

i~

[
Ψ̂†σ̂y

(
−−~

2

2m
∇2Ψ̂

)
−
(
−−~

2

2m
∇2Ψ̂†

)
σ̂yΨ̂

+ Ψ̂†σ̂y

(
Vconf Ψ̂

)
−
(
Vconf Ψ̂

†
)
σ̂yΨ̂

]
= − e~

2mi
∇
[
Ψ̂†σ̂y(∇Ψ̂)− (∇Ψ̂†)σ̂yΨ̂

]
. (4.33)

And for the additional spin-orbit or anomalous term the contribution is given
by,

d(Sy)SO
dt

=
e

i~

[
Ψ̂†σ̂y

(
HSOΨ̂

)
−
(
HSOΨ̂

)†
σ̂yΨ̂

]
=

e

i~

[
(Ψ̂∗1, Ψ̂

∗
2)σ̂yαx~

(
−∂xΨ̂2

∂xΨ̂1

)
− αx~(−∂xΨ̂∗2, ∂xΨ̂∗1)σ̂y

(
Ψ̂1

Ψ̂2

)]
=

eαx
i

[
(Ψ̂∗1, Ψ̂

∗
2)

(
−i∂xΨ̂1

−i∂xΨ̂2

)
− (−∂xΨ̂∗2, ∂xΨ̂∗1)

(
−iΨ̂2

iΨ̂1

)]
= −αe∂x

[
Ψ̂†Ψ̂

]
. (4.34)

Taking into account both kinetic and spin-orbit contributions in Eq.(4.33)
and Eq.(4.34) respectively, we can write the total evolution for the spin-
density polarized along y-axis as follows

dSy
dt

= − e~
2mi

∂x

[
Ψ̂†σ̂y(∂xΨ̂)− (∂xΨ̂

†)σ̂yΨ̂
]
− eαx∂x

(
Ψ̂†Ψ̂

)
. (4.35)
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All the terms in Eq.(4.35) can be gathered under the same partial derivative
∂x and therefore written in the form of dSy

dt
+ ∂xj

y
x = 0, that is to say we can

define a conserved spin current along x with spin-polarization along y such
that,

jyx = (jyx)K + (jyx)SO

=
e~

2mi

[
Ψ̂†σ̂y(∂xΨ̂)− (∂xσ̂yΨ̂

†)Ψ̂
]
− eαx

(
Ψ̂†Ψ̂

)
. (4.36)

Then, in the framework of the second quantization one can write the current
operator as an integral of Eq.(4.36) in terms of the field operators Ψ̂ with a
kinetic contribution given by

(ÎyL)K(x, t) =
e~
2m

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

2π~√vLn′σ′vLnσ

×
{
â†Lnσ(E) (kn(E)σ + σkn′(E

′)− 2kR) âLnσ(E ′)e−i(kn(E)−kn′ (E′))x

−b̂†Lnσ(E) (kn(E)σ + σkn′(E
′) + 2kR) b̂Lnσ(E ′)ei(kn(E)−kn′ (E′))x

+â†Lnσ(E) (kn(E)σ − σkn′(E ′)− 2kR) b̂Lnσ(E ′)e−i(kn(E)+kn′ (E
′))x

−b̂†Lnσ(E) (kn(E)σ − σkn′(E ′) + 2kR) âLnσ(E ′)ei(kn(E)+kn′ (E
′))x
}
.

Again, the expression in Eq.(4.37) can be significantly simplified by taking
into account that values of E and E ′ are close to each other and that the
wave vectors kn(E) and velocities vary slowly with energy around the Fermi
energy. This way,

(ÎyL)K(x, t) =
e

4πm

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

vLn′σ′

× 2
{
â†Lnσ(E) (kn(E)σ − kR) âLnσ(E ′)− b̂†Lnσ(E) (kn(E)σ + kR) b̂Lnσ(E ′)

−2kR

(
â†Lnσ(E)b̂Lnσ(E ′)e−2ikn(E)x + b̂†Lnσ(E)âLnσ(E ′)e2ikn(E)x

)}
.

(4.37)
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And for the spin-orbit contribution Eq.(4.36),

(ÎyL)SO(x, t) =
eαx
2π~

∫
dEdE ′

∑
nσ

ei(E−E′)t/~

vLn′σ′

×
{
â†Lnσ(E)âLnσ(E ′) + b̂†Lnσ(E)b̂Lnσ(E ′)

+â†Lnσ(E)b̂Lnσ(E ′)e−2ikn(E)x + b̂†Lnσ(E)âLnσ(E ′)e2ikn(E)x
}
.

(4.38)

Finally the expression for the spin current polarized along the y-axis in the
left lead is given by the sum of both kinetic Eq. (??) and spin-orbit
contributions Eq. (4.38), so that

ÎyL(t) = ÎKL + ÎSOL

=
e

2π~

∫
dEdE ′ei(E−E′)t/~

∑
nσ

{
â†Lnσ(E)σâLnσ(E ′)− b̂†Lnσ(E)σb̂Lnσ(E ′)

}
.

(4.39)

Now we will focus on the term in between the brackets where the sum over
the σ index is going to influence the final result as we will see. Reorganizing
a bit the different sums it is possible to rewrite the expression for the spin-
polarized current in Eq. (4.39) as given by the following expression only in
terms of the creation and annihilation operators of the incoming basis,

ÎyL(t) =
e

2π~
∑
αβ

∑
m′m

∑
s′s

∫
dEdE ′ei(E−E′)t/~â†αnσ(E)Bm

′s′,ms
αβ (L;E,E ′)âβnσ(E ′) ,

(4.40)

here again, α and β take the reservoir values L or R and
Bm

′s′,ms
αβ (L;E,E ′) = δm′mδs′sδαLδβL s −

∑
nσ S

†
αm′s′,Lnσ(E)σSLnσ,βms(E

′). In
order to derive the average spin-polarized current, we need to know that
the product of the creation and annihilation operators of a electron Fermi
gas at thermal equilibrium is〈

â†αm′s′(E)âβms(E
′)
〉

= δm′mδs′sδαβδ (E − E ′) fαs′ (E) . (4.41)

We have added a spin index in the Fermi distribution,

fαs′ (E) =
[
e(E−µαs′ )/kBTαs′ + 1

]−1
, to describe eventually different spin
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chemical potential and spin temperature in each lead. This means we have
an additional index with respect to Eq.(4.25). Similarly, in the averaging
process we notice that only α = β terms are going to survive and that
SLnσ,Lms = rnσ,ms and SLnσ,Rms = t′nσ,ms . Then, using the previously

derived unitary identities and this other one
∑

s

[
r†s,σrσs + t†s,σtσs

]
= 1 we

can rewrite the integrand in Eq. (4.39) using the Eq.(4.41),as follows∑
αβ

∑
m′m

∑
s′s

〈
â†αms(E)Bm

′s′,ms
αβ (L;E,E ′)âβms(E

′)
〉

=
∑
m′σ′

(
σ′ −

∑
mσ

r†m′σ′,mσσrmσ,m′s′

)
fLσ′ (E) δ (E − E ′)

+
∑
m′σ′

∑
mσ

(
t′†m′σ′,mσσt

′
mσ,m′σ′

)
fRσ′ (E) δ (E − E ′) . (4.42)

Substituing Eq. (4.42) into Eq. (4.39) we obtain the expression for the average
spin-current :

〈
ÎyL(t)

〉
=

e

2π~

∫
dE

[∑
m′σ′

(
σ′ −

∑
mσ

r†m′σ′,mσσrmσ,m′s′

)
fLσ′ (E)

+
∑
m′σ′

∑
mσ

(
t′†m′σ′,mσσt

′
mσ,m′σ′

)
fRσ′ (E)

]
. (4.43)

Due to the spin-dependence of the Fermi distribution we can write explicitly
the spin current of Eq. (4.43) as follows〈

ÎyL(t)
〉

=
e

2π~

∫
dE
[
T↑fL↑ (E)− T↓fL↓ (E)− T ′↑fR↑ (E) + T ′↓fR↓ (E)

+
(
r†↓↑r↑↓ + r†↑↓r↓↑

)
(fL↑ (E)− fL↓ (E))

+
(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑

)
(fR↑ (E)− fR↓ (E))

]
. (4.44)

where T↑ = t†↑↑t↑↑ + t†↓↑t↑↓ is the transmission amplitude with spin-up on

the left lead. Similarly, T↓ = t†↓↓t↓↓ + t†↑↓t↓↑ for the transmission amplitude
with spin-down. In order to keep track of the origin of each transmission
amplitudes we work with T ′↑,↓ = t′†↑↑t

′
↑↑+t

′†
↓↑t
′
↑↓, that is to say, the transmission

amplitudein the left lead for electrons incident from the right, although due
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to the unitarity of the scattering matrix they are equivalent to T↑,↓. In the
absence of spin bias, i.e.(fL,R↑ = fL,R↓ ), Eq. (4.44) is reduced to:〈

ÎyL(t)
〉

=
e

2π~

∫
dE [T↑ − T↓] (fL (E)− fR (E)) ,

where we used T↑,↓ = T ′↑,↓.
In a general case, when no assumption is made regarding the chemical

potentials, we can write in linear response∫
dET↑ (E) (fL↑ (E)− fR↑ (E)) = T↑

(
µ↑L − µ

↑
R

)
,∫

dET↓ (E) (fL↓ (E)− fR↓ (E)) = T↓

(
µ↓L − µ

↓
R

)
.

(4.45)

and similarly,∫
dE
(
r†↓↑r↑↓ + r†↑↓r↓↑

)
(fL↑ (E)− fL↓ (E)) =

(
r†↓↑r↑↓ + r†↑↓r↓↑

)(
µ↑L − µ

↓
L

)
,∫

dE
(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑

)
(fR↑ (E)− fR↓ (E)) =

(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑

)(
µ↑R − µ

↓
R

)
.

(4.46)

These differences in chemical potential are
(
µ↑,↓L − µR↑, ↓

)
= eV ↑,↓L→R and

for the spin-biases
(
µ↑L,R − µ

↓
L,R

)
= eV y

L,R as we polarize the spin along the

y-direction. Substituting Eqs.(??)-(4.46) into Eq.(4.44) that finally we can
express the spin current polarized alon y-direction in the left lead as

〈IsL〉 =
e2

2π~

[
T↑V

↑
L→R − T↓V

↓
L→R +

(
r†↓↑r↑↓ + r†↑↓r↓↑

)
V y
L +

(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑

)
V y
R

]
.

(4.47)
With this expression we close the subsection giving a way to probe the spin
current in the left lead in order to find the spin-dependent conductance for
different spin and charge biases applied. The same calculation for the right
lead is straightforward and is used in the next subsection as we discuss the
appearance of the spin torque related to the spin-flip processes in transport
calculations.
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4.3.1 Spin Torque in the nanowire

In the previous section we derived the spin current on the left lead, far
away from the impurity, due to the presence of Rashba spin-orbit coupling.
However, close to the impurity we can no longer assume continuity of the
spin-density and Eq.(4.32) presents a source term,

∂Sy

∂t
+ ∂xj

y
x = T (x) . (4.48)

the right hand side is a torque term T (x) = T0δ (x− ximp) due to the presence
of the impurity. By integrating the expression for the spin-current for the
static problem (∂S

y

∂t
= 0) around the position of the impurity,

T0 =

∫ ximp+ε

ximp−ε
(∂xj

y
x) dx = −〈IyR〉 − 〈I

y
L〉 . (4.49)

the expression for the spin current on the right side of the impurity ximp + ε
corresponds to a current traveling from left to right, implying a negative sign.

Then, we need to calculate the expression for the average of the spin-
current on the right lead from Eq.(4.40) where the indexes for the L lead
have been substituted with L indexes. This implies a change of the scattering
coefficients involved (t instead of t′ and r′ instead of r),

〈IsR〉 =
e2

2π~

[
T↑V

↑
R→L − T↓V

↓
R→L +

(
r′†↓↑r

′
↑↓ + r′†↑↓r

′
↓↑

)
V y
R +

(
t†↓↑t↑↓ + t†↑↓t↓↑

)
V y
L

]
,

(4.50)
where V ↑,↓R→L = −V ↑,↓L→R. So that the Eq.(4.49) for the torque in combination
with the results of Eq.(4.47) and Eq.(4.50) becomes,

T0 = − e2

2π~

[(
t†↓↑t↑↓ + t†↑↓t↓↑ + r†↓↑r↑↓ + r†↑↓r↓↑

)
V y
L

+
(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑ + r′†↓↑r

′
↑↓ + r′†↑↓r

′
↓↑

)
V y
R

]
. (4.51)

As a result evidence by Eq.(4.51), applying a spin-bias on either the right
or left lead generates a spin-orbit torque expressed here as a function of the
scattering coefficients related to spin-flip processes mediated by the impurity.
In the result section of Chapter 6 we discuss fully the importance of this
result.
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4.3.2 Relation the spin-mixing conductance

The mixing conductance is a concept of great importance for transport
between noncollinear ferromagnets and is responsible for the spin rotation
around the magnetization axis of the ferromagnet [108]. This quantity is
itnroduced as a way to highlight the fact that scattering mixes the two
components in a spinor and one must not see spin species as independent.
In order to show this, they propose a toy model where an electron incides in
the scatterer from the right, ψie

−iikxx and is reflected onto the right side of
the scatterer as ψfe

−iikxx. Both the incident and the final state are related
through the scattering matrix and contribute to the spin current as shown
in the Landauer-Bütiker expression of Eq.(4.39),

j(S)
α =

~
2
vx
(
ψ∗i σ̂αψi − ψ∗f σ̂αψf

)
, (4.52)

with final states given by

ψf =

(
r� 0
0 r⊗

)
ψi , (4.53)

substituting the spinors polarized in the x, y-directions and integrating over
energy we obtain the spin currents:

ISx ≈ (ReG↑↓V
x
R + ImG↑↓V

y
R) (4.54)

ISy ≈ (ReG↑↓V
y
R + ImG↑↓V

x
R ) , (4.55)

where the complex conductance G↑↓ is given by,

G↑↓ = G0

(
1− r�r∗⊗

)
. (4.56)

We want to establish a comparison between the y-component of the spin
current in Eq.(4.55) to our previous result for the spin current on the right
side of the scatterer as described by Eq.(4.50). First, in this toy model
there appears to be spin bias only on the right side of the scatterer, hence
V y
L = 0 in Eq.(4.50). In the toy model the only process considered is the

reflection, resultin in T↑ = T↓ = 0, one must remember that these
transmission amplitudes include both spin-conserved and spin-flip
transmission processes. By this account, the expression in Eq.(4.50)
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becomes for the toy-model where a spin bias is applied on the right side of
the scatterer

〈IsR〉 =
e2

2π~

(
r′†↓↑r

′
↑↓ + r′†↑↓r

′
↓↑

)
V y
R . (4.57)

Nazaroz writes his scattering matrix in the basis of the σ̂z matrix,

Ŝ = |↑z〉〈↑z|Ŝ� + |↓z〉〈↓z|Ŝ⊗ , (4.58)

but when we calculate our S-matrix in Chapter 5 it will be in the basis of
σ̂y. So, by writing the scattering matrix in Eq.(4.58) in our basis,

Ŝ =
1

2

[
(Ŝ� + Ŝ⊗)(|↑y〉〈↑y|+ |↓y〉〈↓y|) + (Ŝ� − Ŝ⊗)(|↑y〉〈↓y|+ |↓y〉〈↑y|)

]
.

(4.59)
From Eq.4.59 we can write the reflexion matrix as,

r̂′ =
1

2

(
r� + r⊗ r� − r⊗
r� − r⊗ r� + r⊗

)
. (4.60)

The out-of-diagonal elements in Eq.(4.60) are the r′↑↓ and r′↓↑ in Eq. (4.57).
This equation written in the language of r� and r⊗ becomes,

〈IsR〉 =
e2

2π~
1

4

[
2(r� − r⊗)†(r� − r⊗)

]
V y
R

=
e2

2π~
1

2

[
r†�r� + r†⊗r⊗ − r

†
�r⊗ − r

†
⊗r�

]
V y
R

=
e2

2π~
1

4

[
2− 2 Re(r†⊗r�)

]
V y
R

=
e2

2π~
Re(1− r†⊗r�)V y

R . (4.61)

If we consider no spin-bias for the polarization along x-direction, V x
R = 0,

it is pretty clear that we recover Eq.(4.55) in Eq. (4.61). We see then that
even in the absence of the traditional conductance T↑ = T↓ = 0, we recover
some mixing conductance on the right side of the impurity. This means that
the spin current flows even in the absence of charge transport.

4.4 Conclusions

In summary, in this chapter we extend the Landauer-Büttiker formalis to
include the effect of the spin-orbit coupling for the description of the
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transport properties of a nanowire. We derive an expression for the spin
current polarized along y-direction in the left lead to be far away from the
impurity. This expression, Eq.(4.47), is the highlight of this chapter. It
allows us to express such a spin current as a function of the scattering
coefficients of the S-matrix making it easy to track the contributions to the
spin current from the different voltage and spin-biases. In combination with
the expression for the spin current on the right lead, Eq.(4.50), allows us to
describe a torque that arises at the impurity position, as a consequence of
the spin-flip transport mechanisms resulting from the Rashba spin-orbit
coupling. This mechanism will have important consequence on the
conductance as it is discussed in subsequent chapters. Furthermore, we are
able to make a connection between our expressions and those obtained in
the context of the spin-mixing conductance in magnetic hybrid structures.
So far we have expressed all transport properties in terms of the scattering
coefficients. In the next chapter we determine such coefficients for the
scattering from an impurity in a nanowire in the presence of Rashba
spin-orbit coupling.
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Chapter 5

Scattering Matrix Coefficients
in a nanowire

In previous chapters we introduced all the necessary ingredients to address
the transport properties of a nanowire with spin-orbit coupling in the
presence of an impurity. In this chapter we determine the scattering
coefficients from a short-range, delta- like impurity in a quasi-1D system,
namely a Rashba nanowire where electrons propagate freely along x and are
confined in the y direction. For this sake we use the Lippmann-Schwinger
approach addressed in Chapter 2. From the knowledge of the scattering
matrix coefficients we can analyse different aspects of the charge and spin
transport in nanowires by using the Landauer-Büttiker formalism
introduced in the previous chapter 4.

The main difficulty in dealing with a system with a confinement and spin-
orbit coupling can be understand already from the model Hamiltonian for a
wire parallel to the x-axis, and a finite Rashba spin-orbit interaction:

Hwire =
p2
x + p2

y

2m∗e
+
m∗eω

2
0

2
y2 +HSO ,

HSO = α (pxσy − pyσx) , (5.1)

As discussed in Chapter 3, the momentum px in Eq. (5.1) is a conserved
quantity as the electron moves ballistically in the x-direction (and can be
written as px = ~kx). The term pxσy in HSO leads to a splitting of the
spectrum branches, by shifting them differently depending on the spin. In
other words there is a lifting of the spin-degeneracy. In addition, the
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harmonic confinement in Eq. (5.1) combined with the term −pyσx of the
Rashba interaction deforms the branches of the spectrum so that subbands
with opposite spin and different label avoid crossings (see Fig. 3.5). This
phenomenon arises from subband mixing, breaking down the
spin-momentum locking of in-plane spin in a way that makes the spin no
longer a good quantum number. Also the term −pyσx of the Rashba
interaction is a problem in the exact analytical treatment of the nanowire.
Nevertheless the problem can be addressed in different limiting cases and in
a number of ways. Usually the mixing of subbands is treated perturbatively
[19, 21, 22] or included in a numerical treatment [20, 112]. Here we focus on
the weak spin-orbit interaction case, and use perturbation theory. We
already introduced the solutions for the kx = 0 and surroundings in a
perturbative way in subsections 3.4.1 and 3.4.2. In this approach we treated
the mixing of subbands αpyσ̂x exactly, while considering αpxσ̂y. The insight
gained from this approach will be of help in the next section where we take
a perturbative approach where αpyσ̂x is considered as the perturbation
instead. The starting point of our analysis is the Schrieffer-Wolff
transformation [113], a unitary transformation which diagonalizes the
Hamiltonian to first order in the Rashba interaction. In such a way we
obtain an effective low-energy model Hamiltonian which simplifies
considerably the problem, but nevertheless catches interesting physics.

5.1 The Schrieffer-Wolff transformation:

effective model Hamiltonian

The Schrieffer-Wolff transformation, transforms a Hamiltonian H = H + V ,
into a diagonal one, up to the desired order of perturbation in the V potential.
If we denote with M the generator of the transformation, such that H̃ =
eMHe−M , we can expand the exponentials with help of the Baker-Campbell-
Haussdorff formula such that the effective Hamiltonian can be formally be
written as

H̃ = H + [M,H] +
1

2
[M, [M,H]] + ... . (5.2)

One writes the Hamiltonian as H = H + V , being V the perturbation
potential, such that Eq. (5.2) reads,

H̃ = H + V + [M,H] + [M,V ] +
1

2
[M, [M,H]] +

1

2
[M, [M,V ]] + ... , (5.3)
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The goal now is to find a transformation which removes the off-diagonal
terms up to first order. For this the following condition needs to be satisfied,

V + [M,H] = 0 . (5.4)

Using this condition Eq. (5.3) results in ,

H̃ = H +
1

2
[M,V ] +O

(
V 3
)
. (5.5)

We now apply the above transformation to our Hamiltonian, Eq. (5.1).
Taking into account the different effects and scales that are going to come
in play it is convenient to rewrite the Hamiltonian as the sum of three
contributions:

Hwire = H0 +Hx +Hmix , (5.6)

with

H0 =
p2
x + p2

y

2m∗e
+
m∗eω

2
0

2
y2 , (5.7)

Hx = αxpxσy , (5.8)

Hmix = −αypyσx . (5.9)

In this way we separate the term responsible for the subbands mixing,
Eq. (5.9), from the rest. This term is considered as the perturbation
potential , i.e. Hmix = V in Eq. (5.2). Thus, the condition Eq. (5.4) which
needs to be satisfied when performing the Schrieffer-Wolff transformation is:

Hmix + [M,H0 +Hx] = 0 =⇒ [H0 +Hx,M ] = Hmix . (5.10)

In the next section we show how to find an explicit expression for the
generator M . Once it is found, the Hamiltonian can then be projected to
any subspace accurately as long as the strength of Hmix is much smaller
than the energy difference between subspaces [114].

Transformation operator

In order to obtain the transformation operator M we will follow a similar
method to the one described in Refs. [115, 116] for a quantum point contact
with both Rashba and Dresselhaus spin-orbit coupling and a Zeeman field.
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To satisfy the condition Eq. (5.10), the operator M can be formally written
as

M =
1

L0 + Lx

Hmix =
1

L0

∞∑
m=0

(
−Lx

1

L0

)m
Hmix , (5.11)

where L is the Liouville superoperator for a given Hamiltonian defined by
LÂ ≡ [H, Â]. For a harmonic confinement Vconf (y) = 1

2
m∗eω

2
0y

2, we have

1

L0

y =
−i

~m∗eω2
0

py ,

1

L0

py = i
m∗e
~
y , (5.12)

which allows us to obtain the generator for the transformation M

M = −iαy
(~ω0)2

(~ω0)2 − (2αxpx)
2

[
m∗e
~

(y · σ̂x) +
2αxpx

(~ω0)2 (py · σ̂z)
]
, (5.13)

as long as 2αxpx/~ω0 < 1. Moreover, besides this condition also
2αxpx/~ω0 � 1 has to be fulfilled, as we are expanding in the small
parameter

λy
λSO

� 1,

with λSO = ~/m∗eαx. This small parameter ensures that one focuse on
energies away from the anticrossing points which ocurr between subbands
of indices n and m at 2αx (~kx) = ±~ω0|m − n|. It is important to bear in
mind that for the previous analysis we use the fact that translational
symmetry in the x-direction, ensures px = ~kx to be good quantum number.

The energies that we are interested in are those close to the edge of the
next subband, so px ∼ ~/λy, then 2αxpx/~ω0 ∼ λy/λSO =⇒ 2αxpx � ~ω0,
and we can write the final expression for the Schrieffer-Wolff transformation
matrix as:

M = −iαy

[
m∗e
~

(y · σ̂x) +
2αxpx

(~ω0)2 (py · σ̂z)
]
. (5.14)

We can now write the effective Hamiltonian of the system as follows:

H̃ =
p2
x + p2

y

2m∗e
+

1

2
m∗eω

2
0y

2 + αxpxσ̂y −
m∗eα

2
y

2
+ Ṽimp , (5.15)
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with a small shift down in the spectrum by an amount m∗eα
2
y/2. The

transformed impurity potential reads:

Ṽimp = Vimp + [M,Vimp] = Vimp + 2i
(αxαy
ω2

0

)
[∂x∂y, Vimp] · σz , (5.16)

since [y, Vimp] = 0. As we see, after the transformation the impurity potential
acquires a small contribution with a spin structure in the form of σz in
spite of it being assumed as a non-magnetic impurity. The presence of the
derivatives is on itself a complicated issue as they would act on the states of
the Lippmann-Schwinger. We will address this problem in the next section of
the chapter. Before this we focus on how the above transformation modifies
the wave functions by performing a step by step analysis.

Transformation of the states

A way of undertanding the Schrieffer-Wolff transformation is to focus on
the states. The states can be obtained in two consecutive unitary
transformations: first, a standard gauge transformation along y, and then a
rotation in spin space such that σy becomes diagonal.

Our starting point is our original Hamiltonian Eq. (5.1)

Hwire =
p2
x + p2

y

2m∗e
+
m∗eω

2
0

2
y2 + αxpxσy − αypyσx . (5.17)

Clearly, we can write the states as

Ψkxn(x, y) =
1√
L
eikxxψkxn(y) , (5.18)

where n is a subband index. The procedure by which bands are labeled is not
clear from the beginning, and in the best case one hopes to map the problem
onto a simple one with independent bands. However, this is not working when
avoided crossing occur. In such a case, one obtains transcendental equations
which set the rules for labelling bands. In other words, it can happen that
the only quantum number is the energy and by solving for energy levels one
introduces a band index (principal quantum number) through a procedure
that is not analytic. This is exactly what we avoid by the transformation
below that allows for a clean label band label.
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For the state ψkxn(y) in Eq. (5.18) we write further

ψkxn(y) = eiσxy/λSOψ̃kxn(y) , (5.19)

which is the gauge along y. Here, we define λSO = ~/m∗eαy. We can recognize
this as the transformation discussed in subsection 3.4.2. In this subsection
we realized that corrections to the states of order αxαy are not affecting the
scattering potential as this gauge factor commutes with said potential. Note
that this second step is interchangeable with the first one, because the two
exponential factors commute.

After these two steps, the effective Hamiltonian becomes

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2

+αx~kx
[
σy cos

(
2y

λSO

)
+ σz sin

(
2y

λSO

)]
(5.20)

+
~2k2

x

2m∗e
−
m∗eα

2
y

2
, (5.21)

which can be written more compactly:

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2 + αx~kxσye

−i 2y
λSO

σx +
~2k2

x

2m∗e
−
m∗eα

2
y

2
. (5.22)

Next we rotate in the spin space such that σy transforms into σz. This is
achieved by the transformation:

ψ̃kxn(y) = eiσxπ/4ψ̄kxn(y) . (5.23)

The effective Hamiltonian becomes

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2

+αx~kx
[
−σy sin

(
2y

λSO

)
+ σz cos

(
2y

λSO

)]
+
~2k2

x

2m∗e
−
m∗eα

2
y

2
. (5.24)

If further we take the diagonal matrix element n = n′, then we obtain the
renormalized αn by the form factor Fn, which arises here from the cosine
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term. At the same time, the sine term drops out, since it has only off-
diagonal matrix elements, i.e. it admixes excited subbands. We expand that
latter Hamiltonian up to order α2,

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2 + αx~kxσz

−2m∗eαxαykxσyy +
~2k2

x

2m∗e
−
m∗eα

2
y

2
, (5.25)

and re-write it as follows

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2

(
y − 2αxαy

ω2
0

kxσy

)2

+ αx~kxσz

+
~2k2

x

2m∗e
−
m∗eα

2
y

2
−

2m∗eα
2
xα

2
y

ω2
0

k2
x . (5.26)

The shift in the harmonic oscillator center can be gauged away in a similar
way as the linear in momentum terms of the spin-orbit interaction, which
also could be interpreted as a shift of the kinetic energy central position as
a function of momentum. The next transformation has the form

ψ̃kxn(y) = e−iσypyy0/~ψ̄kxn(y) , (5.27)

where py = −i~∂y and

y0 =
2αxαy
ω2

0

kx . (5.28)

After this transformation the Hamiltonian reads

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2

+αx~kx
[
σz cos

(
2pyy0

~

)
− σx sin

(
2pyy0

~

)]
+
~2k2

x

2m∗e
−
m∗eα

2
y

2
−

2m∗eα
2
xα

2
y

ω2
0

k2
x . (5.29)

The last term is of fourth order in α and can be omitted, because we are
accurate only to the second order. Similarly the cosine and sine contain y0
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which is proportional to α2 and there is another α in front of the whole term.
As a result, we obtain, up to order α2, the final effective Hamiltonian

Hwire =
p2
y

2m∗e
+
m∗eω

2
0

2
y2 + αx~kxσz

+
~2k2

x

2m∗e
−
m∗eα

2
y

2
. (5.30)

This Hamiltonian is rather simple. It can be solved analytically and the
corresponding Green’s function can be written straightaway, as we will see
in the next sections. The eigenfunctions can be the written by summarizing
up the above transformations:

Ψkxn(x, y) = e
iσx

(
m∗eαy

~ y+π
4

)
e
−iσy

2αxαy

~2ω2
0
pxpy 1√

L
eikxxΦn(y) , (5.31)

where we restored ~kx → px in the second factor. We can also restore
~kx → px in Eq. (5.30), since the Hamiltonian is diagonal in the quantum
number kx. The lateral wavefunctions Φn (y) for a harmonic confinement are
given by Eq.(2.30) as discussed in Chapter 2.

5.2 Scattering states

We now follow the procedure described in Chapter 2 to obtain the
scattering states for the effective system of a multiband quasi-1D nanowire
in the presence of Rashba interaction. We focus first on the Green’s
functions corresponding to the effective Hamiltonian Eq.(5.30). The
Green’s function is a sum of Green’s functions of the independent
sub-bands,

G (r, r′) =
∑
n

Φn(y)Φ∗n(y′)Gn(x, x′) . (5.32)

This expression implies separation of variables for the channel without
impurity. In our case, we take out the spin degree of freedom into a matrix
structure,

Ĝ (r, r′) =
∑
nσ

Φn(y)Φ∗n(y′) |σ〉 〈σ|Gnσ(x, x′) . (5.33)

The Green’s function for each individual channel is given by

Gnσy(x, x
′) =

2m∗e
~2

i

2kn
eikn|x−x

′|e−iσy
m∗eαx

~ (x−x′) , (5.34)
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where

kn =
1

~

√√√√2m∗e

[
E − εn +

m∗e
(
α2
x + α2

y

)
2

]
. (5.35)

For what follows it is convenient to write these Green’s functions as follows,

Gnσy(x, x
′) = gnσy

{
unσy(x)u∗nσy(x

′) , x > x′ ,

vnσy(x)v∗nσy(x
′) , x < x′ ,

(5.36)

where

unσy(x) =

√
m∗e
~kn

eiknxe−iσy
m∗eαx

~ x , (5.37)

vnσy(x) =

√
m∗e
~kn

e−iknxe−iσy
m∗eαx

~ x . (5.38)

These functions are normalized to carry unit flux density. With such a
normalization, we have the common factor to be

gnσy =
i

~
. (5.39)

The state unσy(x) is the outgoing state on the right side of the impurity(x > x′

or x → +∞). It is a right mover and we shall choose this state also as an
incident state from the left, ΦL(x) = unσy(x). Similarly, the state vnσy(x) is
the outgoing state on the left side of the source (x < x′ or x→ −∞). It is a
left mover and we shall choose this state also as an incident state from the
right, ΦR(x) = vnσy(x).

The Lippmann-Schwinger equation after the Schrieffer-Wolff
transformation reads:

Ψ(r) = Φ(r)−
∫
Ĝ(r, r′)eMVimp(r′)e−MΨ(r′)d2r′ , (5.40)

where we explicitly write the transformed V̂imp(r′). Notice that in the basis
Eq. (5.36), the incoming state Φ(r) can be written as

ΦL
nσ(x, y) = unσ(x)Φn(y) |σ〉 , (5.41)

for incident from the left, and similarly

ΦR
nσ(x, y) = vnσ(x)Φn(y) |σ〉 , (5.42)
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for incident from the right. Because of the small support of Vimp(r′), the
exponents get projected on a state with r′ = r0, and effectively behaves as a
delta-like function. After introducing the dimensionless projector

|r0〉 〈r0| , (5.43)

we obtain from Eq. (5.40) in the limit of a point-like scatterer,

Ψ(r) = Φ(r)− v0e
M(r0)Ĝ(r, r0) |r0〉 〈r0| e−M(r0)Ψ(r0) . (5.44)

By expanding the exponential functions and using Eq. (5.14) we obtain:

Ψ(r) = Φ(r)− v0

×
{
Ĝ(r, r0) +

2iαxαy
ω2

0

[
∂x0∂y0Ĝ(r, r0)

]
σ̂z

}
×

{
Ψ(r0)− 2iαxαy

ω2
0

σ̂z [∂x0∂y0Ψ(r0)]

}
. (5.45)

In order to determine the wave function e−SΨ(r) at position r = r0, we act
with e−S on the Lippmann-Schwinger equation

e−SΨ(r) = e−SΦ(r)−
∫
e−SĜ(r, r′)eSVimp(r′)e−SΨ(r′)d2r′ , (5.46)

and set r = r0:[
1 +

∫
e−SĜ(r0, r

′)eMVimp(r′)d2r′
]
e−SΨ(r0) = e−MΦ(r0) . (5.47)

The contribution of evanescent states to the sum over n in the Green’s
function diverges if we simply set r′ = r0 for a δ-like Vimp(r′). However, we
can do that for the propagating states and this is the reason why one can
take the term e−MΨ out of the integrand.

The bound states are determined by the condition:

det

[
1 +

∫
e−SĜ(r0, r

′)eSVimp(r′)d2r′
]

= 0 . (5.48)

The expression e−SĜ(r0, r
′)eS represents the exact Green’s function of the

channel (without impurity). However our treatment is perturbative in the
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spin-orbit interaction, and thefore:

e−SĜ(r, r′)eS ≈ Ĝ(r, r′)

+
2iαxαy
ω2

0

[
∂x′∂y′Ĝ(r, r′)

]
σ̂z

−2iαxαy
ω2

0

σ̂z

[
∂x∂yĜ(r, r′)

]
+ . . . .

(5.49)

To attain unitarity of the scattering matrix, additional (overcounting) terms
might be necessary, as explained in the next section.

Notice that the Green’s function is diagonal in the basis of σy,

|+〉 =
1√
2

(
1
i

)
,

|−〉 =
1√
2

(
1
−i

)
, (5.50)

and therefore σz reads.

σ̂z = |+〉 〈−|+ |−〉 〈+| . (5.51)

In this basis the Green’s function is a diagonal 2× 2 matrix

Ĝ(r, r′) =

(
G++ 0

0 G−−

)
, (5.52)

where G±± is the Green’s function projected onto the state with σy = ±1.
We construct symmetric and antisymmetric combinations with respect to the
change of sign of x− x′,

Gs =
G++ +G−−

2
=
∑
nσ

Φn(y)Φ∗n(y′)
im∗e
~2kn

eikn|x−x
′| cos

[
m∗eαx
~

(x− x′)
]
,

(5.53)

Ga =
G++ −G−−

2
=
∑
nσ

Φn(y)Φ∗n(y′)
m∗e
~2kn

eikn|x−x
′| sin

[
m∗eαx
~

(x− x′)
]
.(5.54)

Because of the translational invariance over x, the single band Green’s
function obeys

∂xGnσ(x, x′) = −∂x′Gnσ(x, x′) . (5.55)
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This is also valid to the full Green’s function Ĝ(r, r′), but only with respect
to x and x′. Therefore, we can write Eq. 5.49 as

e−SĜ(r, r′)eS ≈ Ĝ(r, r′)

−2iαxαy
ω2

0

[
∂x∂y′Ĝ(r, r′)

]
σ̂z

−2iαxαy
ω2

0

σ̂z

[
∂x∂yĜ(r, r′)

]
, (5.56)

or in a matrix form

e−SĜ(r, r′)eS ≈

(
G++ −2iαxαy

ω2
0
∂x (∂y′G++ + ∂yG−−)

−2iαxαy
ω2

0
∂x (∂y′G−− + ∂yG++) G−−

)
.

(5.57)
The scatterer potential is assumed to be symmetric. In particular Vimp(r)
has mirror symmetry with respect to x→ −x, where x is measured for this
purpose with respect to x0. Therefore, in Eq. (5.48) only the symmetric part
of G contributes to integrals of the form∫

G++(r0, r
′)Vimp(r′)d2r′ . (5.58)

Notice that because G has a block structure in spin space, we can consider
each block contribution to Eq. (5.48) independently. On the other hand he
anti-symmetric part of G contributes to the integrals of the form∫

[∂xG++(r, r′)]|r=r0
Vimp(r′)d2r′ , (5.59)

only the anti-symmetric part of G enters. As a result, the matrix in Eq. (5.57)
which enters in Eq. (5.48) can be written as(

Gs −2iαxαy
ω2

0
∂x (∂y′ − ∂y)Ga

2iαxαy
ω2

0
∂x (∂y′ − ∂y)Ga Gs

)
. (5.60)

We introduce the short notations:

⟪Gs⟫ =
1

v0

∫
Gs(r0, r

′)Vimp(r′)d2r′,

⟪∂2Ga⟫ =
1

v0

∫
[∂x (∂y′ − ∂y)Ga(r, r′)]|r=r0

Vimp(r′)d2r′ .

(5.61)
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and rewrite Eq. (5.48) as

det
[
1 + v0 ⟪Ĝ⟫

]
= 0 , (5.62)

where

⟪Ĝ⟫ =

(
⟪Gs⟫ −2iαxαy

ω2
0
⟪∂2Ga⟫

2iαxαy
ω2

0
⟪∂2Ga⟫ ⟪Gs⟫

)
. (5.63)

Or explicitly

(1 + v0 ⟪Gs⟫)2 −
(

2αxαyv0

ω2
0

)2

⟪∂2Ga⟫2
= 0 . (5.64)

This is the condition for bound states, which can be written also as

1 + v0

(
⟪Gs⟫± 2αxαy

ω2
0

⟪∂2Ga⟫
)

= 0 . (5.65)

According to the Kramers theorem, the two solutions obtained from this
equation (for the ± sign) must be degenerate and therefore, ⟪∂2Ga⟫ has to
vanish at the leading order of our approximation (a rigorous proof is presented
in Appendix A. Such that Eq. (5.47) results in

e−SΨ(r0) =
1

1 + v0 ⟪Gs⟫e
−SΦ(r0) . (5.66)

Inserting this result into Eq. (5.45) we finally obtain

Ψ(r) = Φ(r)− v0

1 + v0 ⟪Gs⟫
×

{
Ĝ(r, r0) +

2iαxαy
ω2

0

[
∂x0∂y0Ĝ(r, r0)

]
σ̂z

}
×

{
Φ(r0)− 2iαxαy

ω2
0

σ̂z [∂x0∂y0Φ(r0)]

}
. (5.67)

The scattering matrix

we can now calculate the scattering matrix. For this, we send a sate ΦL
nσ(r)

incident from the left and look at x→ +∞. The Green’s function at x→ +∞
is

Ĝ (r, r′) =
∑
nσ

Φn(y)Φ∗n(y′) |σ〉 〈σ| gnσunσ(x)u∗nσ(x′) . (5.68)
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The transmission amplitude to scatter from left to right is found from

tRLmσ′,nσ =
δΨ(r)

δΦL
mσ′(r)

∣∣∣∣
Φ(r)→ΦLnσ(r)

. (5.69)

The final expression for the transmission is the obtained from Eqs(5.67-5.69).
In the absence of scatterer, the transmission amplitude is unity

tRLmσ′,nσ = δmnδσ′σ . (5.70)

In the presence of a scatterer, an additional term appears

tRLmσ′,nσ = δmσ′,nσ + ARLmσ′,nσ , (5.71)

where ARLmσ′,nσ ≡ Amσ′,nσ is the forward scattering amplitude. It is convenient
to write Amσ′,nσ as a 2 × 2 block-matrix in the spin space. In fact we can
write

Âm,n = −iÂmB̂n , (5.72)

with Âm and B̂n given by

Âm = −iv0ĝm

[
Φ∗mû

†
m +

2iαxαy
ω2

0

Φ′∗mû
′†
mσ̂z

]
,

B̂n =
1

1 + v0 ⟪Gs⟫
[
Φnûn −

2iαxαy
ω2

0

σ̂zΦ
′
nû
′
n

]
. (5.73)

Here, all functions are evaluated at the position of the scatterer. We have
also introduced such matrices:

ûn(x) =

√
m∗e
~kn

eiknxe−iσ̂y
m∗eαx

~ x,

û†n(x) =

√
m∗e
~kn

e−iknxeiσ̂y
m∗eαx

~ x,

v̂n(x) =

√
m∗e
~kn

e−iknxe−iσ̂y
m∗eαx

~ x,

v̂†n(x) =

√
m∗e
~kn

eiknxeiσ̂y
m∗eαx

~ x . (5.74)

Similarly, to obtain the reflection amplitude we calculate

rRLmσ′,nσ =
δΨ(r)

δΦR
mσ′(r)

∣∣∣∣
Φ(r)→ΦLnσ(r)

, (5.75)
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where we adopted the basis for the outgoing states on the left to be ΦR
mσ′(r),

i.e. to be the incident states from the right. It is important that the Green’s
function is now taken for x→ −∞, which reads

Ĝ (r, r′) =
∑
nσ

Φn(y)Φ∗n(y′) |σ〉 〈σ| gnσvnσ(x)v∗nσ(x′) . (5.76)

In a similar way we obtain

r̂m,n = −iĈmB̂n , (5.77)

where

Ĉm = −iv0ĝm

[
Φ∗mv̂

†
m +

2iαxαy
ω2

0

Φ′∗mv̂
′†
mσ̂z

]
, (5.78)

and B̂n is given by Eq. (5.73).

5.3 Brief discussion of the unitary of the S-

matrix

The problem with our approach to obtain the scattering coefficients is that
being a perturbative method the unitarity of the scattering matrix is affected
and Ŝ†Ŝ 6= 1 but some other hermitian matrix Â, such that Ŝ†Ŝ = Â. One
can device a method to recover unitarity. Being Hermitian, the matrix Â has
real eigenvalues and is diagonalizable via a unitary transformation,

Â = Û †ÂdiagÛ , (5.79)

where the eigenvalues of Â are the diagonal elements of Âdiag and the

eigenvectors of Â are the colums of Û . Now this means

Ŝ†Ŝ = Û †ÂdiagÛ =⇒ Û Ŝ†Û †Û ŜÛ † = Âdiag . (5.80)

As the matrix Âdiag is diagonal with real values, it is possible to write it as the

square of
√
Âdiag in order to invert them on the left hand side of Eq. (5.80)

and rewrite the new unitary scattering matrix,

Ŝ ′ = Û ŜÛ †
(
Âdiag

)−1/2

. (5.81)
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This implies renormalization of the scattering coefficients which can be
recalculated from the above expression. In the next chapter when we
present the main results we impose unitarity for the calculation of all
observables.

5.4 Conclusions

In this chapter we present a detail derivation of the scattering coefficients
for a short-range, delta- like impurity in a nanowire with Rashba spin-orbit
coupling where electrons motion is confined in the y direction. We do so by
probing the scattering states at the extremes of the nanowire via the
Lippmann-Schwinger equation. The intersubband mixing arising from the
interplay between Rashba spin-orbit coupling and the harmonic
confinement complicates the analytical solution of the Lippmann-Schwinger
equation. Our way to deal with these difficulties is by performing a
Schrieffer-Wolff transformation. In this manner, we gauge away the
intersubband mixing, up to second order in perturbation theory. As a
result, the Green’s function in the Lippmann-Schwinger can be obtained
straightforwardly. On the other hand the complexity is absorbed into the
impurity potential or the eigenfunctions of the system. Consequently, the
impurity, that is assumed from the beginning to be a scalar, acquires a
spin-structure. From the form of the scattering coefficients we already
understand that by scattering at the the impurity the electron spin may
flip. Such spin-flip processes will have important consequence on the
transport properties of the wire, as discussed in the next chapter, where we
will use the results of the preset and previous chapters. We close the
chapter describing a method to recover unitarity of the S-matrix, after the
perturbative approach used in the calculation.
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Chapter 6

Quasi-bound states in a
nanowire: Effects of the Rashba
spin-orbit coupling

In this chapter we derive the conductance for a nanowire with Rashba
spin-orbit coupling in the presence of an impurity potential. The latter
couples propagating and evanescent states. This coupling results in
quasi-bound states (QBS) that strongly affect charge transport.
Furthermore, the presence of Rashba spin-orbit coupling allows for different
spin-dependent mechanisms for electronic transport. As a result, the
conductance presents perfect ballistic transmission at the threshold energy
of the opening of the next propagating channel, as well as a dip that
strongly suppresses the conductance just below such threshold. In order to
study the interplay between both, RSOC and the impurity potential, we
make use of the scattering coefficients obtained in Chapter 5 via the
S-matrix formalism and the expression for the charge conductance,
Eq. (4.30) in Chapter 4. We present also a systematic study of the
conductance dependence on the strength and lateral position of the
impurity potential. We also make a comparison between an effective 1D
model, derived in Appendix C, and the full quasi-1D situation analysed in
Chapter 5. By using the results in Chapter 4 on the spin-dependent
conductance and the the spin-orbit torque, Eq. (4.44), we provide an
exhaustive study of the spin transport in the wire. We find the underlying
relation between the spin-flip transmission and the SU(2) field. At the
resonant energy, the only transmission allowed is through spin-flip allowing
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us to connect a physical quantity with the corresponding SU(2) symmetry.
We complete the presentation with systematic study of the spin-flip
transmission as a function of the lateral position of the impurity, to
maximize the spin-flip transmission, and in turn the spin torque per
discussed in Chapter 4.

6.1 Electronic Transport: effect of Rashba

spin-orbit coupling in the charge

conductance

From Eqs.(5.69-5.73), derived in Chapter 5, it follows the transmission
coefficient:

tRLmσ′,nσ = δmσ′,nσ − i
m∗e
~2 v0

1+iv0
m∗e
~2

∑
n

Φ2
n
kn

[
Φ∗mΦn

ei(kn−km)ximp√
kmkn

+2αxαy
ω2

0
(knΦ∗mΦ′n + kmΦ′∗mΦn) ei(kn+km−2kR)ximp√

kmkn
σ̂z

]
. (6.1)

This coefficient describes the transmission probability of an incident electron
with spin σ from a channel n on the left side of the nanowire to a channelm on
the right end with spin σ′. As in section 5.1, Φn are the lateral modes of the
nanowire for a harmonic confinement described by Eq. (2.30) and evaluated
at the impurity position yimp. One should bear in mind that within our basis

choice σ̂z =

(
0 1
1 0

)
.

As discussed in Chapter 4, the total conductance of the nanowire can be
expressed in terms of the transmission amplitudes

G =
e2

2π~
∑
mσ′,nσ

|tmσ′,nσ|2 , (6.2)

summed over all the spin and conduction channels. As a direct result of the
presence of Rashba spin-orbit coupling the spin-degeneracy is lifted and
consequently there are two possible scattering processes for an electron
prepared in a spin-up state: The spin is either conseeved or flip to a
spin-down state. From now on we will refer to the transmission
probabilities associated to these mechanisms as spin-conserved transmission
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and spin-flip transmission, respectively. In this section we explore the
characteristics of the conductance and the effect that Rashba spin-orbit
coupling has on them. We will do so by first introducing the resonant
characteritics in the conductance in the absence of Rashba spin-orbit
coupling and then focusing on the effects of RSOC is finite. As we see in
the Subsection 6.1.2 the main result is the absence of the full suppression of
the charge conductance at the resonant energy associated with the
quasi-bound state.

6.1.1 Resonant characteristics of the
conductance:perfect transmission and
quasi-bound states

The effect of delta-like impurities in electron transmission though nanowires
is well known in the absence of Rashba interaction. While for a clean
nanowire the transport is ballistic and the conductance shows the typical
e2

2π~ steps for every new opened channel, in the presence of an impurity
potential the transmission amplitude, and hence the conductance, is
detrmined by Eq. (6.1) for αx = αy = 0. Namely, the conductance for such
a system is determined by the sum of transmission amplitudes of all the
channels, T =

∑
n Tn with Tn =

∑
m |tm,n|2. The latter can be written as

T = N − Im2 (G)[
~2

m∗ev0
+ Re (G)

]2

+ Im2 (G)
, (6.3)

where N is the number of opened channels and G is the Green’s function for
the clean nanowire at the impurity position rimp = (ximp, yimp), see Eq. (2.32).
It is convenient to write it as:

G (rimp, rimp) = Re (G) + i Im (G)

=
ev∑
n

Φ2
n

κn
+ i

prop∑
n

Φ2
n

kn
. (6.4)

Energies for a propagating channel are denoted as threshold energies
εn = ~ω0(n − 1/2) and are governed by the harmonic confinement. For
energies below the threshold energies, the channels are evanescent with
κn =

√
2m∗e(εn − E)/~2. The real part of the Green’s function in Eq. (6.4)
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corresponds to the sum over all the evanescent modes with energy below
the threshold and similarly, the imaginary part of the Green’s function
corresponds to the sum over all the propagating states with energies above
their corresponding threshold energies.
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Figure 6.1: Conductance (in units of the quantum conductance G0 = e2/2π~)
as a function of the Fermi energy (in units of the confinement energy ~ω0)
for a nanowire with an impurity potential of strenghts v0 = 0.9 (solid red
line) and v0 = −0.9 (dashed red line). The black dashed line indicates
the ballistic conductance of a clean nanowire. Every time the Fermi energy
reaches the bottom of a new subband a new propagaing state is allowed. In
the absence of the impurity (black dashed lines) the transmission probability
is 1 for each subband, hence the conductance is proportional to the number
of propagating channels N . However, in the presence of an impurity, perfect
transmission is only achieved at the threshold energies εn. In addition, for an
attractive impurity (dashed red line) the conductance is further reduced and
it presents a resonance just below the threshold energy effectively blocking a
propagating channel reducing the conductance to N − 1.

In Fig. 6.1 we show the behaviour of the conductance as a function of the
Fermi energy in units of the confinement energy, ~ω0, for both an attractive
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(dashed red line) and a repulsive (solid red line) delta-like impurity of the
same strength. This behaviour can be understood from Eqs. (6.3)- (6.4):
whenever a new subband minima is reached at the threshold E = εn, the
momentum of this subband becomes κn = 0. As a consequence the real part
of the Green’s function Re (G) → ∞ outweight the rest of contributions in
the denominator of Eq. (6.3). This occurs for both, repulsive (dashed red
line) and repulsive (solid red line) impurities, while only attractive impurities
exhibit the resonant feature. Close to the opening of the next subband with
threshold energy given by εns, Eq. (6.3) can be rewritten as,

T = N − Im2(G)[
~2

m∗ev0
+

Φ2
ns
κns

+
∑
n=ns+1

Φ2
n
κn

]2

+Im2(G)

∼ N − Im2(G)[
~2

m∗eṽ0
+

Φ2
ns
κns

]2

+Im2(G)

. (6.5)

In the last equation we have renormalized the impurity strength in order to
include the weight of all evanescent modes except the next subband, such
that 1

~2

m∗eṽ0

=
~2

m∗ev0

+
∑

n=ns+1

Φ2
n

κn
. (6.6)

This renormalization absorbs the relatively small contribution of the higher
evanescent modes. To verify this, we plot in Fig.6.2 the real part of the
Green’s function with a solid red line and the individual contributions of
each evanescent mode with dashed red lines . One can see that close to the
first threshold (vertical black lines), the contribution from the next
subband (dashed blue line)is much larger than that from the tails of the
rest of evanescent modes. As a result of this renormalization we can write
the resonant energy as

E = εns −
ṽ2

0Φ4
ns

2
, (6.7)

1It is important to note that in a full symmetric case, when the impurity is located in
the center of the wire, y = 0, the evanescent weight vanishes for even modes, and hence
the dip is suppressed. Therefore, in following plots we choose the position of the impurity
such that yimp 6= 0. A detailed analysis of the dependence of the conductance on the
impurity position is given in next sections.
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Figure 6.2: Real part of the Green’s function as a function of the energy (red
solid line). As the energy approaches a threshold E → εn (black lines), the
contribution of the next subband to become propagating (blue dashed line)
is much larger than the sum of the individual contributions from the tails of
the higher evanescent modes(dashed red lines).

from the resonant condition ~2

m∗e ṽ0
+ Φ2

ns

κns
= 0. This condition is only possible

to fullfill for negative values of ṽ0, that is to say for attractive scatterers.
Then, at these resonant energies Eq. (6.5) is reduced to

T ∼ N − Im2 (G)

+ Im2 (G)
= N − 1 , (6.8)

as the attractive impurity compensates the contribution from the next
evanescent mode, about to become propagating. If the energy is close, but
smaller than the threshold energies a dip in the conductance shows up, as
shown with a red dashed line in Fig. 6.1. For the particular case where
there is only one propagating channel, Eq. (6.8) implies that all incoming
electrons are reflected and no transport is allowed. These dips are
associated to the formation of quasi-bound states splitting from the next
subband and localized around the impurity . Description of quasi-bound
states, as the poles of the transmission coefficient, requires the inclusion of
the evanescent modes. As discussed in Chapter 2 this description of
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Figure 6.3: Fano line-shape f (ε) as a function of the dimensionless energy
parameter ε for: (a) q → ∞, where the transmission occurs through the
discrete state, (b) q = 1 and the transition through the discrete the discrete
and the continuum of states is of equal strength with minimum at Emin =
ER − Γ/2q and maximum at Emax = ER + Γ/2q, and (c) q = 0 for the
resonant symmetric line-shape.

quasi-bound states was first introduced by Bagwell [23]. This discussion
was later picked up by [24] and related to the sum over evanescent modes
throught the Green’s function. As the evanescent mode is associated with a
decaying length(corresponding to the evanescent κn), these states are not
properly bound as opposed to the stable bound-state of a delta-scatterer in
Eq.(2.23)), as discussed by other authors [57, 58, 59].

At this point, it is worth emphasizing the advantages of using the
Lipmann-Schwinger approach. As noted by Ref. [65], many other approach
the system by solving the Schrödinger equation through matching the
wavefunctions for the modes on both sides of the impurity potential and
obtaining an infinite set of coupled equations[23, 117, 118]. In order to
solve such a problem one needs to truncate the system of equations, and
correspondingly rescale the coupling constants. In contrast, by using the
Lippmann-Schwinger equation the system is analytically solvable, as all the
information for the coupling is encoded in the Green’s function of the bare
nanowire.

Quasi-bound states as Fano resonances

As pointed out before, the presence of quasi-bound states is due to the
coupling between a discrete state and the continuum of subbands available
in the nanowire. This is nothing but a Fano resonance, described by the
asymmetric Fano line-shape [119],

f (ε) =
(ε+ q)2

1 + ε2
, (6.9)

91



CHAPTER 6. QUASI-BOUND STATES IN A NANOWIRE: EFFECTS
OF THE RASHBA SPIN-ORBIT COUPLING

where ε = (E − ER)/Γ is the dimenssionless energy measured from the
resonance, Γ is the resonance width and q is the asymmetry parameter
introduced by Fano in his original paper[120]. By equation Eq.(6.9) we see
that the minimum fmin = 0 occurs at ε = −q and the maximum
fmax = 1 + q2 at ε = 1/q.

In the limit |q| → ∞, the transition occurs through a discrete state as
the transition trough the continuum becomes very weak. This results in a
Lorentzian peak of the form f (ε) → 1/(1 + ε2) (see Fig. 6.3 (a)). If the
asymmetry parameter is close to unity q → 1, transition through both the
discrete and the continuum and Eq.(6.9) leads to curves of the type shown
in in 6.3 (b). Finally, for the case q → 0 the Fano resonance becomes
f (ε) → q2/(1 + q2) forming a dip at E = ER with a symmetrical lineshape
(see Fig. 6.3 (c)). This last case is unique to Fano resonance and is sometimes
referred in the literature as anti-resonance [119].

We can now fit our result for the conductance as expressed in Eq. (6.3)
to Eq. (6.9) and obtain, the following expressions for the Fano parameters,

ER = En −
[
v2

0 Im2 (G)− 1

v2
0 Im2 (G) + 1

]2
v2

0Φ4
n

2
, (6.10)

q = ± 2v0 Im (G)

|v2
0 Im2 (G)− 1|

, (6.11)

Γ = ±v3
0 Im (G) Φ4

n

[
|v2

0 Im2 (G)− 1|
v2

0 Im2 (G) + 1

]
. (6.12)

The resonance energy in Eq. (6.10) coincides, up to a correction factor, with
Eq. (6.7). In the limit of weak impurity such factor equals unity and we
recover that result. This is equivalent to a Lorentzian when q →∞.

The possibility of destructive interference leading to asymmetric line-
shapes due to disorder has been widely studied in quasi-one-dimensional
waveguides [72, 58, 67, 121, 122]. But the inclusion of RSOC as a source of
Fano resonances is even more interesting, either in nanowires [92, 123, 124].

6.1.2 Effect of Rashba spin-orbit coupling in the
conductance

So far we have described the effect of delta-like impurity in a simple
nanowire. In this section we study how the Rashba spin-orbit coupling
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Figure 6.4: (a) Conductance in the presence of a scatterer of strenght
v0 = −0.9 and RSOC αx = αy = 0.2 (solid red line). The ballistic
conductance is shown in black dashed lines. At the threshold energy below
1.5~ω, the transmission is perfect. Close and below the threshold the
conductance exhibits a dip related to the quasi-bound state forming in the
nanowire as explained in the main text. (b) A zoom into the quasi-bound
state resonance. One clearly see that the transmission is not fully suppressed.
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affects the nanowire conductance. The expression for the conductance is no
longer as simple as the one describe in Eq. (6.3). As mentioned in the
introduction to this section, in the presence Rashba spin-orbit coupling
transport properties are spin-dependent. The combination of the Rashba
spin-orbit coupling with the delta-like impurity leads to striking transport
properties, both in the charge and spin conductances, due to spin-flip
events discussed below. At first glance, the charge conductance shown in
Fig.6.4(a) shows similar resonant features as those in a wire without
Rashba spin-orbit coupling (see previous section and Fig.6.1): a perfect
ballistic transmission at the threshold and the dips just below the
threshold. However, a closer look shows important differences. One is the
shift to lower energies of threshold energy given by
εn = ~ω0(n − 1/2) −m∗e(α2

x + α2
y)/2) as a consequence of the sinking in the

subband energy dispersion. As mentioned in the introduction of this
chapter, the presence of Rashba spin-orbit coupling allows for different
transmission mechanisms mediated by the impurity embedded in the
nanowire. As a result, tranmission of an incoming electron can occur
conserving the spin-alignment with probability |t↑↑|2 for states prepared
with spin-up (|t↓↓|2 for states prepared with spin-down) or with a flip in the
alignment of the spin with probability |t↑↓|2 for states prepared with
spin-up(|t↓↑|2). Although spin-flip transmission is much smaller than
spin-conserved transmission as it depends on 2αxαy/ω

2
0 as shown in

Eq. (6.1), it is not negligible. The relevance of this factor will become clear
in Section 6.2, where we study the spin transport and its relation with a
SU(2) field. As in the case where Rashba spin-orbit coupling is absent, the
resonant behaviour of the conductance is dictated by the denominator in
Eq. (6.1). When the energy approaches the threshold for the opening of the
next subband, the dominant nature of Re (G) → ∞ in the denominator
results in a zero-probability of the spin-flip transmission. This is the same
characteristic that responsible for the perfect transmission of the
spin-conserved component. Consequently, the conductance at the threshold
energy is 2N due to the lifting of spin-degeneracy (see Fig.6.4(a)).

The main effect of Rashba spin-orbit coupling is the absence of the full
supression of the conductance at the resonant energy, as shown in detail in
Fig.6.4(b). To clarify the origin of this, we refer again to Eq. (6.1) in order
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Figure 6.5: (a) Conductance for a scatterer of strenght v0 = −0.9. The
different colour correspond to different position of the impurity yimp. The

position is given in units of the confinement length λy =
√
~/m∗eω0. The

chosen RSOC is αx = αy = 0.2. (b) Zoom in of the resonance for the same
plots.

to write the following expression for the transmission of a spin-up state,

T0↑ ∼ N − Im2 (G)

Im2 (G)
+

(
2αxαy
ω2

0

)2
(2Φ0Φ′0)2 /k0

Im2 (G)
, (6.13)
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It becomes clear from Eq. (6.13) that while the spin-conserved contribution
to the transmission will be fully suppressed when there is only one
propagating band, there is a finite contribution to the spin-flip
transmission. We can conclude then, that the effect of the quasi-bound
state in the charge conductance is strongly spin-dependent in the presence
of RSOC interaction. Specifically , at the resonant energy only spin-flip
transmission is allowed while spin-conserved transmission is completely
suppressed. In a next section we discuss this in more detail and the
consequences on the spin-dependent transport. But before that we present
a systematic study of the charge conductance as a function of the impurity
strength and lateral position.

Dependence on the impurity position and strength

As briefly mentioned above, due to the translational symmetry along x-axis,
the impurity position ximp is irrelevant. However, the lateral position yimp is
important. As the even lateral modes Φn(yimp) vanish at the center of the
harmonic oscillator, resulting in the decoupling of the subbands as the
imaginary part of the Green’s function in the denominator of Eq. (6.1)
vanishes Re (G) = Φ2

n(0)/κ0 = 0. This is a consequence of the symmetric
states of the quantum harmonic oscillator for even modes, n = 0, 2, 4, .... As
a consequence there is no propagating weight for the impurity potential to
compensate. The lack of coupling between subbands suppresses the dip
resonance. In most of the plots, when not explicitly said, it is assumed that
the impurity is located at yimp 6= 0, in order to study the dip.

In Fig.6.5(a) we present the conductance as a function of different lateral
positions for the impurity. One can see the suppression of the resonant dip for
yimp = 0, which only appears when the transverse position of the impurity
breaks the mirror symmetry. We define the binding energy of the quasi-
bound state as the energy difference between the threshold and the resonant
energy EQBS = Eth −ER. Focusing into energies close to the resonance (see
Fig. 6.5(b)), we can appreciate that first EQBS increases with the distance
from the centre up to a certain maximum value at around yimp = 1.0λy, and
then decreases for larger values.

It is also worth noticing that the further away the impurity is from the
center, the higher conductance minima is, implying there is a higher spin-flip
transmission probability. This becomes clear from Eq. (6.13), as the spin-flip
transmission depends on the derivative of the wave-function at the impurity
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position Φ′0(yimp). Similarly, in Fig. 6.6(a) we study the dependence of the
quasi-bound state resonant energy with the impurity strength for a fixed
position, yimp = λy . We can see in Fig. 6.6 (b) that while the binding
energy of the quasi-bound state, EQBS, strongly increases with the strength
of the impurity potential v0, the conductance minima weakly depends on
v0. This can be understood from Eq. (6.13) since both spin-conserved and
spin-flip transmission probabilities depend on the impurity strength in the
same way.

Effective 1D potential

We have also derived an effective one-dimensional model (see Appendix C
for details). Within such effective model, the effect of all higher subbands is
projected onto the a single band. This results in the following transmission
coefficient,

tRL00,σ′σ = δσ′σ − i
m∗e
~2 v0

1+iv0
m∗e
~2

Φ2
0
k0

[
Φ∗0Φ0

k0
+ 2αxαy

ω2
0

(2k0Φ∗0Φ′0) ei2(k0+kR)ximp

k0
σ̂z

]
.(6.14)

Comparison between Eq. (6.14) and Eq. (6.1) reveals similarities. However, in
the strict 1D situation the sum over all the evanescent modes is not taken into
account. This sum, which appear in the denominator of Eq. (6.1) for the quasi
1D case, is absence in Eq. (6.14). As discussed in Section 6.1.1, evanescent
modes are required to form a quasi-bound state. As for the numerator in
Eq. (6.1), we recover the previous result of Eq. (6.14), but of course for a
single propagating band per spin species (m = n = 0) and energy E0.

The absence of the quasi-bound state in the 1D model prevent the
resonant behaviour to be observed, blue curve in Fig.6.7. Thus the result
for the conductance obtained from Eq. (6.1) is a good approximation for
the energies close to the bottom of the propagating band. However, there is
a way to recover the results obtained in the quasi 1D case from the pure
1D, by adding ”by hand” in the denominator of the second term in
Eq.(6.14), the contribution of the evanescent modes. By doing this one
obtains an excellent agreement between the full solution and the one
obtained from the 1D model, as shown in Fig.6.8.
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Figure 6.6: The dependence of the conductance on the impurity strength
for a nanowire with RSOC: (a) Conductance for different strength v0 of the
attractive scatter. We have chosen RSOC αx = αy = 0.2, and yimp = 1.0λy.
(b) Zoom of the resonance for the same values.

6.2 Spin-dependent transport properties

We understand from previous sections the relevant role of Rashba spin-orbit
coupling on the charge transport properties of a nanowire with an impurity.
In previous sections, we identified two different scattering mechanisms
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Figure 6.7: Conductance for an effective 1D model (blue) vs conductance
for the full quasi-1D model (red) in units of G0 for an impurity potential
of strength v0 = −0.9 at position yimp = 1.0λy respect to the center of the
nanowire with Rashba parameters αx = αy = 0.2.
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Figure 6.8: (a)Conductance and (b) spin-flip transmission for the quasi-1D
model (solid red line) and for the effective 1D model (dashed blue line) after
adding by hand the contribution from the evanescent modes.

99



CHAPTER 6. QUASI-BOUND STATES IN A NANOWIRE: EFFECTS
OF THE RASHBA SPIN-ORBIT COUPLING

mediated via the impurity potential, which are distinguished by whether
the spin is conserved or flipped after scattering. The interplay between
these two mechanism manifest on a modification of the quasi-bound states
resonance in the charge conductance. Specifically, as shown in Fig. 6.4 and
Eq. (6.13), at the resonant energy the dip in the conductance does not
reach zero as was the case in for transport in the absence of Rashba
spin-orbit interaction. Because this effect is due to spin-dependent
processes, one expects that it has consequences on the spin transport itself.
Therefore in this section we focus on the spin-dependent transport.

In Fig. 6.9(a) we plot the spin-flip transmission as a function of the
injection (Fermi) energy. Even though it is small in comparison to the total
conductance, spin-flip transport is not negligible. We can observe two
features that are closely related to the resonant characteristics discussed in
Section 6.1.2. To begin with, the spin-flip transmission is exactly zero at
the threshold energy where the next propagating subband in opened. This
is in agreement with our conclusions in Section from Eq. (6.1), namely: the
dominant nature in the denominator of the real part of the Green’s function
Re (G) → ∞ at the threshold energy results in perfect transport for the
spin-conserved transmission while the spin-flip transport is completely
suppressed. On the other hand, below the threshold energy the spin-flip
transmission presents a significant enhancement. In Fig.6.9(b) we plot the
ratio between spin-flip transmission probability and total transmission
probability T↑↓/(T↑↑ + T↑↓) for an incoming spin-up state. We can observe
that at certain energy below the threshold the only transport allowed is
spin-flip transport.
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Figure 6.9: Spin-dependent transport properties for a nanowire with an
attractive impurity of strength v0 = −0.9 and in the presence of Rashba
spin-orbit coupling given by αx = αy = 0.2 at position yimp = 1.0λy.(a)
The spin-flip transmission, T↑↓, presents a strong enhancement close to but
below the threshold energy where it is fully suppressed. (b) At the threshold
energy this percentage is zero, while below such threshold there is an energy
at which all transmission allowed is spin-flip transmission.
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Figure 6.10: Resonant behavior in the transmissions for a n impurity of
strength v0 = −0.9 at position yimp = 1.0λy in a nanowire with Rashba
parameters αx = αy = 0.2.Both the spin-conserved transmission (red line)
and spin-flip transmission (blue line) present resonant behavior at the same
energy below the threshold. When T↑↑ is suppressed, T↑↓ is enhanced. In
addition, at the threshold energy this behaviour is reversed.

In Fig.6.10 we plot both the spin-conserved transmission T↑↑ (red line)
and the spin-flip transmission T↑↓ (blue line). This confirms that at the
resonant energy where the spin-conserved transmission is suppressed, the
spin-flip transmission is enhanced. Similarly, for the threshold energy where
the spin-conserved transmission reaches perfect transport, the spin-flip
transmission is fully suppressed. Interpreting the spin-channels as
independent, this result makes us conclude that the presence of the
resonant dip is associated to quasi-bound states that affect spin-conserved
transport by fully blocking the same-spin channel while not only allowing
spin-flip transport but also enhancing it at the resonant energy below the
threshold. Finally, to unify this result with the one on the charge transport
from previous section, we compare the charge conductance (red line) to the
total spin-flip transmission T↑↓ + T↓↑ (blue line) in Fig. 6.11.

This result suggests that the impurity acts as a spin-filter if it is tuned
to be at resonant energy, so that only spin-flip transmission is allowed.
Furthermore, from the results of section 4.3.1, the impurity is at the origin
of the torque generated in the presence of Rashba spin-orbit coupling
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Figure 6.11: (a)Comparison between the conductance (red lines) and the
spin-flip transmission,T↑↓ (blue line). (b) Zoom iton the main feature of the
resonant behavior. Both plots consider an attractive impurity potential of
strength v0 = −0.9 at position yimp = 1.0λy in a nanowire with Rashba
parameters αx = αy = 0.2.

whenever a spin-bias is applied either on the left (V s
L) or the right lead

(V s
R). Namely, by using the Landauer-Büttikker formalism we express the

torque as,

T0 = − e2

2π~

[(
t†↓↑t↑↓ + t†↑↓t↓↑ + r†↓↑r↑↓ + r†↑↓r↓↑

)
V s
L (6.15)

+
(
t′†↓↑t

′
↑↓ + t′†↑↓t

′
↓↑ + r′†↓↑r

′
↑↓ + r′†↑↓r

′
↓↑

)
V s
R

]
.

Clearly the torque depends only on the spin-flip transmission and reflection
mechanisms, and hence it is enhance at the resonant energy where the spin-
flip mechanisms reaches its maximum value.

We next study the spin-flip mechanism as a function of the lateral position
of the impurity. This is shown in Fig.6.12.

When the impurity is situated in the middle of the nanowire (yimp = 0),
that is to say, in the middle of the harmonic confinement potential the
symmetry of the even modes Φn(yimp) results in a suppression of the
quasi-bound state and the dip associated with it as the evanescent and
propagating modes are decoupled. Consequently, spin-conserved
transmission is not suppressed and there is no spin-flip transmission. For
out-of-center positions of the impurity we recover the features discussed for
Fig.6.5(b). Firstly, the further away from the center the impurity is the
higher the enhancement wich corresponds the a shallower dip in Fig.6.5(b).
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Figure 6.12: Spin-flip transmission as a function of energy and lateral
position of the impurity in units of λy for an energy window close to the
resonance. We find that at the center of the wire yimp = 0 the spin-flip
transmission is suppressed due to the symmetry of the lateral wavefunction.
The further away from the center the higher the enhancement ot the spin-flip
transmission. Regarding the energy axis, the position of the peak for the spin-
flip transmission occurs the furthest from the threshold energy ε0 = 1.46~ω0

at yimp ≈ 1.0λy. This means that at this position, the quasi-bound state
energy is he highest.

And secondly, when we move away from the center of the nanowire the
binding energy of the quasi-bound state EQBS (energy difference between
the threshold energy and the resonant energy), occurs at lower energies at
first (and further away from the threshold energy) to later return back to
the same value. Thus, one can track where the enhancement of the spin-flip
conductance is at largest with respect to the Fermi energy. In other words,
the position of the attractive impurity provides a tool for control of the spin
degree of freedom.
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Spin-flip transmission as a SU(2) probe
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Figure 6.13: Behavior of the spin-orbit SU(2) gauge field for a nanowire in
the xy-plane. (a) In the 2DEG, the electron cyclic motion on a closed path
gives rise to a spin-orbital SU(2) field FSO. (b) The field FSO changes sign
when the path is traversed in the opposite direction. (c) In the nanowire, the
electron moving with speed vn(E) along x oscillates along y with frequency
ωy given by size quantization due to the potential V (y). As a result,the
field FSO fluctuates, despite being zero on average, effectively coupling the
electron spin to the central position y0 of the electron wave function.

In this section we provide a physical picture that explains the found spin-
flip mechanism. We find that in the process of transmission of an electron one
to other side of the impurity, at certain resonant energy where there is a dip
in the conductance, the transmission probability for the processes where the
spin of the electron is flipped is enhanced, while the transmission probability
of the process where the spin is conserved is completely suppressed. In this
section we explain how this can be traced to the effects of a SU(2) field.

In systems with Rashba spin-orbit coupling, there is a contribution to
spin currents from the SU(2) gauge field that gives rise to a spin-torque in
the spin-transport (see Eq. (6.15)), consistent with the semi-classical theory.
Similar to the electromagnetic field inducing forces on charge and charge
current, one can derive forces acting on spin and spin currents induced by
Rashba spin-orbit coupling [125, 126, 127, 128].

The underlying physics can be described by making use of the Yang-
Mills gauge theory. Within a gauge theory, the dynamics of a system remain
unchanged under some local transformation acting on a field (a fermionic field
in the case of the Yang-Mills theory, ψ = (ψ1(x), ψ2(x))T which transform
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into one another via a rotation [26],

ψ → eiαi(x)σi/2ψ , (6.16)

with i = x, y, z. The rotation if the spin in the physical space is generated
by the Puali matrices σi. In order to maintain the system invariant under a
local gauge transformation we need to introduce the three-component gauge
field Aµ in the expression of the covariant derivative,

Dµ = ∂µ − iAiµ
σi

2
. (6.17)

Mathematically, Aµ is a connection and acts as a comparator of local
symmetries. That is to say, the gauge field Aµ is introduced as a way to
compare how the transformation in Eq. (6.16) acts differently in different
points in space. As a result of introducing this gauge field, the
field-strength of the Yang-Mills theory adopts the following form

Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] . (6.18)

The presence of the commutator term in Eq. (6.18) is a direct consequence of
the non-commuting nature of the generators of the SU(2) symmetry, which
is why it receives the name of non-Abelian gauge theory. For a nanowire
with Rashba spin-orbit coupling described by Hamiltonian Eq. (5.17) [129],
the gauge field components are given by

Ax = −m∗eαxσy , (6.19)

Ay = m∗eαyσ
x . (6.20)

Substituting Eq. (6.19) into the expression for the field-strenght in Eq. (6.18)
we obtain an additional term responsible for the spin precession

−i [Ax,Ay] = m2
e (2αxαyσ

z) . (6.21)

We now write the semiclassical equation of motion for the trajectory of an
electron in the nanowire

¨̂y + ω2
0

[
ŷ +

2αxαy
~ω2

0

p̂xσ̂z

]
= 0 . (6.22)

Eq. (6.22) reflects the oscillatory movement of an electron inside a
confinement potential with the center displace by a factor proportional to
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(2αxαyσ
z) that appears in Eq. (6.21). The physical interpretation of this

displacement is that depending on the orientation of the spin-orbit field
FSO ∼ (2αxαyσ

z) the particle will ”see” the center of the confinement in
one direction or the opposite.

In Fig.6.13 we illustrate the behaviour of the SU(2) field in the nanowire
as an electron propagates along it. One see that an electron describing a
cyclic motion on a closed path in the 2DEG (xy− plane) gives rise to a spin-
orbital SU(2) field FSO, while in (b) the field FSO changes sign when the
path is traversed in the opposite direction. Fig.6.13(c) sketches an electron
moving uniformly in the nanowire with speed vn(E) along x. The trajectory
undergoes an oscillatory motion along y with frequency ω0, as governed by
size quantization due to the potential V (y). The area swept by the radius-
vector of the electron during its motion is oscillating about zero average value,
resulting in a consistently positive (negative) FSO for the lower (upper) half
of the wire. The fluctuating field FSO, despite being zero on average, couples
the electron spin to the central position y0 of the electron wave function
that is displaced with respect to to the center of the wire according to the
orientation of the FSO field. We can see the emergence of the ∼ (2αxαy) with
origin in the SU(2) symmetry in Eq. (6.1). This equation directly relates the
spin-flip transmission probability to the effect of SU(2) gauge.

In Fig.6.14 we sketch the different transport processes that may occur for
an electron traveling in the x-direction. If the electron is prepared with spin-
up, and its trajectory is in the lower half of the nanowire plane that results in
a positive SU(2) field FSO, then the electron will ”see” the impurity potential
as if it were displaced from its position by a quantity y0 ≈ 2αxαykx/ω

2
0. On

the other hand, if the electron is describing a trajectory in the upper half
of the nanowire plane that results in a negative SU(2) field FSO, then the
electron will ”see” the impurity potential as if it were displaced from its
position by a quantity −y0. Upon interference of both possible tranmission
paths, we pick up a phase ϕ resulting in a tilt of the spin. In other words, at
the resonant energy where the only allowed tranmission is through spin-flip
a measurement of the conductance would serve to probe the SU(2) gauge
field.
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Figure 6.14: Transport mechanisms for an incoming spin-up state. Due to
the SU(2) there is a shift in the position of the impurity that depends on
spin, as a consequence the spin picks up a phase translating in a tilt with
respect to the quantization axis.

6.3 Conclusions

To summarize, in this the chapter we use the approaches developed in
previous chapters of the thesis to study the transport properties of a
nanowire with RSOC and a delta-like impurity. We first discuss the dip in
the conductance that appears in the absence of Rashba spin-orbit
interaction and its relation with the Fano resonance. In Subsection 6.1.2 we
discuss the effect of RSOC on the transport and found a spin-flip
transmission contribution as a consequence of the inter-band mixing
mediated via an attractive impurity. As a consequence, we show that the
presence of a quasi-bound state blocks the transmission channel that
preserves spin, while it enhances the spin-flip transmission. In addition, we
make a systematic study of the quasi-bound state resonant energy with
respect to the lateral position and the strength of the impurity and
recovering a result from the Chapter 4 that depends entirely on the
spin-flip transmission, namely the torque. While there are effects of Rashba
spin-orbit interaction of relevance in the charge conductance, our key result
consists in finding the underlying relation between the spin-flip
transmission and the SU(2) field. At the resonant energy, the only
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transmission allowed is through spin-flip permitting us to connect a
physical quantity with the corresponding SU(2) symmetry.
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Conclusions

The goal of this thesis is to formulate a theoretical model to study
analytically electronic transport in quantum nanowires in the presence os
Rashba spin-orbit interaction. The topic may have direct impact on the
field of semiconducting and superconducting spintronics, and Majorana
fermions. In general terms we have shown that the Rashba interaction in
combination with an impurity and confinement potential affects drastically
the charge and spin transport. At certain energies we found a hitherto
unknown spin-flip transmission which is related to the appearance of a
spin-orbit torque. Our theoretical results can be used in multiple ways to
further studies on transport properties of confined systems in the presence
of spin-dependent fields and impurities.

In the introductory Chapters 1 and 2, we describe the motivation
behind our work and our goal of studying the properties of scattering from
an impurity in a quasi-1D semiconducting nanowire with intrinsic
spin-orbit coupling of Rashba type. We introduce the Lippmann-Schwinger
equation, a useful method for the theoretical description of quantum
scattering. In particular, we use this method to describe how the electronic
transport is affected by the presence of the impurity in the nanowire. We
first describe the approach in a general 3D system and later focus on
scattering on a delta-potential in a purely 1D system, discussing the
limitations of the Born approximation. Finally we focus on a more realistic
nanowire described by a transverse confining potential, discussing the
emergence of resonant behavior in the transmission as a consequence of
quasi-bound states present in the nanowire. This effect arises from the
localized impurity coupling the evanescent and propagating modes of the
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nanowire. We focus the possible effects arising from the interplay between
the Rashba interaction and the quasi-bound states.

Because the Rashba spin-orbit interaction plays a central role in this
thesis, in Chapter 3 we provide an introduction in this topic. Specifically,
we briefly discuss the spectral properties of a 2DEG with Rashba spin-orbit
coupling before reviewing the complexities involved in the analytical solution
of the model Hamiltonian for a quantum nanowire where the 2DEG is further
confined. As a result of this confinement, the energy spectrum is strongly
affected,as well as the spin polarization. The combined effect of RSOC and
confinement gives raise to anti-crossings between branches of opposite spin
and different band index, deforming the spectrum.These are a consequence
of the subband mixing that couples propagating and evanescent states. We
conclude that to address this problem enough subbands have to been taken
into account. At the end of the chapter, we present an exact solution for
the kx = 0 that we use later as the zeroth order solution in our perturbation
around the point kx = 0. This calculation allows us to ensure the accuracy
of our perturbative approach up to α2 in Chapter 5.

In Chapter 4 we extend the widely used Landauer-Büttiker formalism to
include the effect of the spin-orbit coupling for the description of the
transport properties of the nanowire. We derive an expression for the spin
current polarized along y-direction in the left lead considered to be far away
from the impurity. This expression allow us to express such spin current as
a function of the scattering coefficients of the S-matrix. Within this
representation it is easy to track the contributions from the voltage and
spin-biases. This result in combination with the expression for the spin
current allowed us to describe the torque that arises at the impurity
position, as a consequence of the spin-flip transport mechanisms resulting
from the Rashba spin-orbit coupling. These mechanisms have important
consequences on the conductance as discussed in subsequent chapters.
Furthermore, we make a connection between our expressions and those
obtained in the context of the spin-mixing conductance in magnetic hybrid
structures.

In Chapter 5 we present a detailed derivation of the scattering
coefficients for a short-range, delta- like impurity in a nanowire with
Rashba spin-orbit coupling where electrons motion is confined in the y
direction. We do this with the help of the Lippmann-Schwinger equation
introduced in Chapter 2. The intersubband mixing, arising from the
interplay between Rashba spin-orbit coupling and the harmonic
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confinement, complicates the analytical solution of the equation. However,
we deal with these difficulties by performing a Schrieffer-Wolff
transformation. In this manner, we gauge away the intersubband mixing,
up to second order in perturbation theory. As a result, the Green’s function
in the Lippmann-Schwinger can be obtained straightforwardly. On the
other hand, the complexity is absorbed into the impurity potential or the
eigenfunctions of the system. Consequently, the impurity, that is assumed
from the beginning to be a scalar, acquires a spin-structure. From the form
of the scattering coefficients we already understand that by scattering at
the the impurity the electron spin may flip. Such spin-flip processes have
important consequences on the transport properties of the wire, as
discussed in the next chapter, where we use the results of Chapter 5 and
previous chapters. We close the Chapter by describing a method to recover
unitarity of the S-matrix within the perturbative approach used in the
calculation.

Finally, we present the transport results in Chapter 6. Specifically, we
use the approaches developed in previous chapters to study the transport
properties of a nanowire with RSOC and a delta-like impurity. We first
discussed the dip in the conductance that appears by scattering at a
delta-like impurity in a nanowire in the absence of Rashba spin-orbit
interaction and its relation with the Fano resonance. In Subsection 6.1.2 we
discuss the effect of RSOC on the transport and found a spin-flip
transmission contribution as a consequence of the inter-band mixing
mediated via an attractive impurity. We show that the presence of a
quasi-bound state blocks the transmission channel that preserves spin,
while it enhances the spin-flip transmission. In addition, we make a
systematic study of the quasi-bound state resonant energy with respect to
the lateral position and the strength of the impurity. Another key result is
the underlying relation between the spin-flip transmission and the SU(2)
field. At the resonant energy, the only transmission allowed is through
spin-flip permitting us to connect a physical quantity with the
corresponding SU(2) symmetry.

Besides the effects discussed in this thesis, the methods developed here
can be used in future research. We envision a possible application of the
results from Chapter 6, namely the enhancement of spin-flip transmission,
in the spirit of the Datta-Das spin-transistor introduced in Chapter 3.
Indeed, one can design a device based on a nanowire in which one can
externally tune the strength of the impurity potential and so, control the
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spin-flip probability of injected electrons from a ferromagnetic lead. By
tuning the chemical potential at the resonant energy, we can ensure that
the spin of transmitted electrons is flipped. This application is in the spirit
of previous works that extend the spin filter model to take advantage of
Fano resonances in quantum dots [130] or side rings coupled to nanowires
[131]. Moreover, the use these resonances has been already proposed in spin
inversion devices based in semiconducting lattices with spin
orbit-interaction and magnetic fields [132]. Furthermore, we can think of
other ways to extend the study of disorder in nanowires. For example,
placing a second defect and studying the possible spin-dependent
transmission. In principle our methods, based on the scattering matrix, can
be extended straightforwardly to two and more impurities.

One further perspective of the present work is its extension to include
superconductivity and a Zeeman field and see what are the effects in the
context of Majorana physics. Taking these two ingredients into account will
be the next step in the theoretical approach to the scattering problem
proposed in this thesis. Adding Zeeman to the Hamiltonian described in
Eq.(5.1) would imply further work since the Greens function will be
spin-dependent even in the absence of the impurity and additional terms in
the Schriffer-Wolff transformation will appear. Moreover, introducing
superconductivity require enlargement of the space to include the Nambu
structure.

Another possible extension of our results, is the study of the Josephson
current in a nanowire attached to two superconducting reservoirs. The
Josephson current is an equilibrium current that can be determined from
the knowledge of the subgap spectrum, Andreev bound sates . One can
address the question how the quasi-bound states affects such spectrum and
hence the Josephson current. According to Beennakker theory[133], the
transport properties of such junction can be fully determine by the
knowledge of the scattering matrix scattering matrix, that we know from
our analysis. Moreover, if the superconducting leads consist of
superconductors with a spin-split spectrum, induced by the proximity of a
ferromagnetic insulating film [134], one can study how the Josephson
current depends on the mutual direction of the magnetizations in the
spin-split superconductors. By tuning the nanowire into the conductance
dip, we know from our results, that transmission occurs together with
spin-flip. This suggest that the Josephson current will be larger when the
spin-split superconducting leads are in an antiparallel configuration. This
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idea can be extended to multiterminal Josephson junctions where different
topological states can be artificial created [135].
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H. Lüth, “Effect of the heterointerface on the spin splitting in
modulation doped in x ga 1- x as/inp quantum wells for b 0,” Journal
of applied physics, vol. 83, no. 8, pp. 4324–4333, 1998.

[84] D. Grundler, “Large rashba splitting in inas quantum wells due to
electron wave function penetration into the barrier layers,” Physical
review letters, vol. 84, no. 26, p. 6074, 2000.
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[100] B. K. Nikolić, L. P. Zârbo, and S. Souma, “Mesoscopic spin hall effect
in multiprobe ballistic spin-orbit-coupled semiconductor bridges,”
Physical Review B, vol. 72, no. 7, p. 075361, 2005.

[101] L. Sheng, D. Sheng, and C. Ting, “Spin-hall effect in two-dimensional
electron systems with rashba spin-orbit coupling and disorder,”
Physical review letters, vol. 94, no. 1, p. 016602, 2005.

[102] P. Brusheim and H. Xu, “Spin filtering through magnetic-field-
modulated double quantum dot structures,” Physical Review B, vol. 73,
no. 4, p. 045313, 2006.
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Appendix A

1D Green’s function

For the resolution of the Lippmann-Schwinger equation for a 1D system,
Eq.(2.16), we will need the Green’s function for the Helmholtz equation,(

∇2 + k2
)
G± (x,x′) =

2m∗e
~2

δ (x,x′) . (A.1)

This requires the evaluation of,

G± (x,x′) = 〈x| 1

E −H0 ± iε
|x′〉 . (A.2)

Then,

G± (x,x′) =

∫ ∞
−∞

dp

2π~
〈x| 1

E −H0 ± iε
|p〉〈p|x′〉

=

∫ ∞
−∞

dK

2π

eipx/~

p2

2m∗e
− (E ± iε)

e−ipx′/~

=
1

2π

2m∗e
~2

∫ ∞
−∞

dK
eiK(x−x′)

K2 − 2m∗e
~2 (E ± iε)

, (A.3)

with poles given by

K = ±k
√

1± i
2mε

~2k2
' ±k

(
1± i

m∗eε

~k

)
. (A.4)

The problem then can be solved using Cauchy’s integral formula,∮
C

f(z) dz = 2πi× (sum of residues enclosed by C) , (A.5)
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APPENDIX A. 1D GREEN’S FUNCTION

where C is the contour defining the path of integration, taken
counter-clockwise for the upper half-plane and clockwise for the lower
half-plane. For E ≥ 0 and taking into account Eq.(A.5) for the poles in Eq.
(A.4) in Eq.(A.3), then

G± (x,x′) =
2m∗e
~2

i

2k
{∓e±ik(x−x′)|x>x′ ∓ e∓ik(x−x′)|x<x′}

= ∓2m∗e
~2

i

2k
e±ik|x−x′| . (A.6)

The ± in the Green’s function G± (x,x′) corresponds to the incoming (−)
or outgoing (+) boundary conditions, which means taht for the positive
exponent we close in the upper half-plane and include the pole (+k + iε)
and for the negative exponent we close in the lower half-pane and include
(−k − iε).
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Appendix B

Ensuring Kramers reversivility

The introduction of the notations ⟪Gs⟫ and ⟪∂2Ga⟫ in Chapter 5, led us to
the following expression for the bound-states,

1 + v0

(
⟪Gs⟫± 2αxαy

ω2
0

⟪∂2Ga⟫
)

= 0 . (B.1)

According to the Kramers theorem, the two solutions obtained from this
equation (for the ± sign) must be degenerate. Therefore, we strongly suspect
that ⟪∂2Ga⟫ has to vanish.

In Chapter 5 we introduce the short notations:

⟪Gs⟫ =
1

v0

∫
Gs(r0, r

′)Vimp(r′)d2r′, (B.2)

⟪∂2Ga⟫ =
1

v0

∫
[∂x (∂y′ − ∂y)Ga(r, r′)]|r=r0

Vimp(r′)d2r′ . (B.3)

(B.4)

Let us model the scatterer potential as

Vimp(x, y) = V0e
− (x−x0)2

2σ2 e−
(y−y0)2

2σ2

= v0δσ(x− x0)δσ(y − y0), (B.5)

where v0 = 2πσ2V0 is the strenght of the impurity, V0 is the height and we
define the δ-like potential as

δσ(x) :=
1√
2πσ

e−
x2

2σ2 . (B.6)
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The support of the integral, Eq.(B.2), is centered around r′ = r0 within a
circle of radius a ∼ σ.

The following integral is useful∫ +∞

−∞
dx′eikn|x0−x′|δσ(x′ − x0) = e−

1
2
k2
nσ

2

[
1 + erf

(
i
knσ√

2

)]
. (B.7)

Since erf(0) = 0 and the exponential tends to 1, we have this integral to be
1 in the limit σ → 0. Another useful integral is∫ +∞

−∞
dy′Φ∗n(y′)δσ(y′ − y0) = 1√

2nn!
√
πλ

√
λ2

λ2+σ2

(
λ2−σ2

λ2+σ2

)n/2
×Hn

(
y0λ√
λ4−σ4

)
exp

[
− y2

0

2(λ2+σ2)

]
. (B.8)

This integral in the limit σ → 0 is equal to the transversal wavefunction at
the impurity position Φn (y0). As a result, from Eqs.(B.7) and (B.8) in the
point-like limit, Eq. (B.2) becomes,

⟪Gs⟫ = Φ∗n (y0) Φn (y0) . (B.9)

For the calculation of Eq.(B.3) it is sufficient to focus on the y′ integral.
Taking into account that the partial derivative of Ga as defined in (5.54) is,

∂y′Ga =
1√

2nn!
√
piλ

{
2n

λ
Hn−1 (y′/λ)− y′

λ2
Hn (y′/λ)

}
e−y

′2/λ2

Φn (y) ,

(B.10)
we can write the following integral for the y′ dependence of Eq.(B.3),∫ ∞
−∞

dy′ (∂y′ − ∂y)Gaδσ (y − y0) =
e−y

2
0/2(λ2+σ2)Φn (y0)√

2nn!
√
piλ

×

{
2n

λ2 + σ2

(
λ2 − σ2

λ2 + σ2

)n−1/2

Hn−1

[
λy0√
λ4 − σ4

]

− σ2

λ2 + σ2

(
λ2 − σ2

λ2 + σ2

)n−1/2

Hn−1

[
λy0√
λ4 − σ4

]
−y0

1

λ2 + σ2

√
λ2

λ2 + σ2

(
λ2 − σ2

λ2 + σ2

)n/2
Hn

[
λy0√
λ4 − σ4

]}
(B.11)
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Then, in the limit of σ → 0 the term with factor σ2/λ2 +σ2 becomes zero
while the two other terms cancel each other by the recursion relation of the
Hermite polynomials.
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Appendix C

Effective One-Dimensional
Impurity Potential

This result is used in Chapter 6. In this appendix we derive an effective 1D
potential for a point-like impurity that takes into account the Rashba spin-
orbit effect in the first subband with n = 0. We first calculate the matrix
elements given by

V 1D
σ′σ = 〈ψ0σ′ |Vimp|ψ0σ〉 . (C.1)

In a two-point representation the effective impurity potential is given by,

V̂eff =

∫
dxdx′Ψ†α′ (x

′) veff (x′,x) Ψα (x) , (C.2)

with α = n, k, σ,

Ψ0kσ (x,y) =

[
1 + i

2αxαy
ω2

0

(−i∂x) (−i∂y) σ̂z

]
eikxΦ0 (y)χσ (s) (C.3)

Ψ†0k′σ′ (x,y) =

[
1− i2αxαy

ω2
0

(i∂x) (i∂y) σ̂z

]
e−ik′xΦ0 (y)χ∗σ′ (s) (C.4)
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for the transformed problem Ψ0kσ (x, y) = [1−M ] Ψ̃kσ (x,y, s) with the
Schrieffer-Wolff transformation matrix obtained in Eq.(5.14). Then,

〈Ψ0k′σ′ |v|Ψ0kσ〉 =

∫
dxdyΨ†0k′σ′ (x,y) v0δ (x− x0) δ (y − y0) Ψ0kσ (x,y)

(C.5)

= u0Φ2
0 (y0) ei(k−k′)x0 (C.6)

− iu0
2αxαy
ω2

0

i (k + k′) ei(k−k′)x0Φ0 (y0) ∂yΦ0 (y0)σz . (C.7)

We Fourier transform back Eq.(C.5) and we obtain the following expression
for the effective potential in the two-point representation,

Veff (x′,x) = v0Φ2
0 (y0) δ (x− x0) δ (x′ − x0)− iv0

2αxαy
ω2

0

Φ0 (y0) ∂yΦ0 (y0)σz

× [δ′x (x− x0) δx′ (x
′ − x0)− δx (x− x0) δ′x′ (x

′ − x0)] .
(C.8)

The Lippmann-Schwinger equation for this effective potential in the two-
point representation can be written in the position representation as

〈x|ψ〉 = 〈x|φ〉+

∫
dx′〈x| 1

E −H0

|x′〉〈x′|V |ψ〉

= 〈x|φ〉 −
∫
dx′G (x, x′)

∫
dx′′〈x′|V |x′′〉〈x′′|ψ〉 . (C.9)

resulting in

ψ (x) = φ (x)−
∫
dx′dx′′G (x, x′)V (x′, x′′)ψ(x′′) . (C.10)

Combining both Eq.(C.10) and Eq.(C.8) we obtain the following expression
for the scatttering state at the impurity position:

ψ (x) = φ (x)−v0Φ2
0 (y0)G (x, x0)ψ (x0)1− iv0

2αxαy
ω2

0

[∂yΦ0 (y0)] Φ0 (y0)

× {∂x0G (x, x0) σ̂zψ (x0)−G (x, x0) σ̂z∂x0ψ (x0)} . (C.11)

In order to obtain the value of the scattering state inside the impurity at
x = x0 we have to close the system of equations for ψ (x0) and ∂x0ψ (x0).
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We do so by differentiating the expression in Eq. (C.11) and evaluating it at
x = x0:

∂xψ (x) = ∂xφ (x)−v0Φ2
0 (y0) ∂xG (x, x0)ψ (x0)1− iv0

2αxαy
ω2

0

[∂yΦ0 (y0)] Φ0 (y0)

× {∂x [∂x0G (x, x0)] σ̂zψ (x0)−G (x, x0) σ̂z∂x0ψ (x0)} .
(C.12)

The Green’s fuction for the 1D model transformed under the SU(2)
symmetry given by Eq.(5.34) as,

G (x, x′) = g0eikn|x−x′| (cos [kR(x− x′)]− iσ̂y sin [kR(x− x′)]) , (C.13)

with g0 = i/~ and kR = m∗eαx/~. For the derivatives in Eq.(C.12), when
x→ x0:

G (x, x0) → g0 (C.14)

∂x0G (x, x0) → ig0kRσ̂y (C.15)

∂xG (x, x0) → ig0kRσ̂y (C.16)

∂x [∂x0G (x, x0)] → ∞ (C.17)

It is worth noticing, that both derivatives ∂x0G (x, x0) and ∂xG (x, x0) in
Eq.(C.11) are of order O (α2

xαy) whereas the ∂x [∂x0G (x, x0)] as a term of
order O

(
α2
xα

2
y

)
, and therefore they can all be neglected. Thus, we can write

the solutions for the wavefunction and its derivative, ψ (x0) and ∂x0ψ (x0),as

ψ (x0) =
[
1 + v0g0Φ2

0

]−1
{
φ (x0) + iv0

2αxαy
ω2

0

(∂yΦ0) Φ0g0σ̂z∂x0φ (x0)

}
∂x0ψ (x0) = ∂x0φ (x0) , (C.18)

where we are only going to keep the terms up to second order in Rashba
interaction, αxαy.

Finally, the scattering states are given by,

ψ (x) = φ (x)− v0

1 + v0g0Φ2
0 (y0)

Φ2
0 (y0)G (x, x0)φ (x0)1

−i
v0

1 + v0g0Φ2
0 (y0)

2αxαy
ω2

0

[∂yΦ0 (y0)] Φ0 (y0)

× {∂x0G (x, x0) σ̂zφ (x0)−G (x, x0) σ̂z∂x0φ (x0)} . (C.19)
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If we write the Green’s function as G = φL0σ′ (x)φ∗L0σ′ (x
′) with an incoming

state propagating in the first band φL0σ′ (x) = (
√
~/mk0)ei(k0−kRσ̂y)xχσ′ we

can probe (C.19) on the right side of the impurity by sending an incoming
state from the left and looking at the asymptotic expression at
x→∞,obtaining the transmission for the state scattering from left to right

tLR0σ′,0σ = 1− v0

1 + g0Φ2
0

Φ2
0φ
∗
L0σ′φL0σ

−i
v0

1 + g0Φ2
0

2αxαy
ω2

0

(∂yΦ0) Φ0 {∂x0φ
′∗
L0σ′σ̂zφL0σ − φ∗L0σ′σ̂z∂x0φ

′
L0σ} .

(C.20)

The rest of the terms of the scattering matrix can be found in a similar
fashion. We have to remember that we are dealing with spinors, and that
this scattering coefficients are matrices in spin. Then, similarly for the
reflexion coefficient from the left side rLL0σ′,0σ, we write the Green’s function

as G = φR0σ′ (x)φ∗R0σ′ (x
′) with φR0σ′ (x) =

√
~

mk0
e−i(k0+kRσ̂y)xχσ′ we can

probe (C.19) at x → −∞ by sending and incoming state from the left
φL0σ′ (x), such that

rLLmσ′,nσ = − v0

1 + g0Φ2
0

Φ2
0φ
∗
Rmσ′φLnσ

−i
v0

1 + g0Φ2
n

2αxαy
ω2

0

(∂yΦ0) Φ0 {∂x0φ
′∗
R0σ′σ̂zφL0σ − φ∗R0σ′σ̂z∂x0φ

′
L0σ} .

(C.21)

The validity and limitations of this approach are discussed in Chapter 6.
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