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1 Introduction

The low energy description of many higher dimensional theories involve a large number

of fields (moduli fields) that need to be stabilized. This is normally achieved by the

existence of a potential that fixes the values of these fields to a local minimum of that

potential function. A typical example of this procedure can be found in String Theory

compactification scenarios. In particular, models of flux compactification have been shown

to lead to an enormous set of possible 4d potentials that can have many local minima.

The typical number of moduli fields in these cases is quite large, reaching often the order

of a few hundred. This makes prohibitively difficult to study these potentials in detail

and one is forced to look for simple models where the field space has been truncated to a

small subset of fields. Alternatively, one can try to study these models by taking a more

statistical approach, where the scalar potential is regarded as a random field whose sample

space is the set of 4d low-energy effective potentials. These ideas have been pursued in

relation to the study of the stability of critical points in these potentials in [1–3], as well

as the description of cosmological models for the early universe in [4–6].

In many of these studies one is interested in particular points of the landscape such

as, for example, a minimum with some value of its cosmological constant, or an inflection

point with a particular set of conditions in its derivatives necessary for it to sustain infla-

tion. However, depending on the restrictions imposed, it may be very difficult to obtain

an example of the potential with these characteristics by producing random realizations

of the scalar potential. Indeed, metastable de Sitter vacua and inflationary points com-

patible with observations are very rare in generic landscapes, with probabilities scaling as

P ∼ exp(−Np
f ), where Nf is the number of scalar fields in the theory, and p > 0 is a

number of order one [7–12]. To obtain realizations with the desired properties, one can

of course use a Taylor expansion around the point in question and take into account the

probability distribution for its coefficients [13, 14]. However this becomes quite compli-

cated as one increases the number of fields and the field range that one is interested in.1

Moreover, with this type of procedures it is not possible to capture correctly the global

properties of the scalar potential, which are essential to study quantum decay processes

in the landscape. Here we present a different strategy to generate these potentials that

locally will be constrained to have a particular form, but that globally will still represent

a faithful realization of the random landscape, the so-called Slepian models [16].

Several different methods have been suggested as a way to represent these random

potentials in the landscape. In this paper we will concentrate on potentials described by

Gaussian Random Fields (GRFs). This is based on the assumption that the 4d potential

can be thought of as a sum of many different terms, of classical and quantum origin, coming

from the compactification mechanism rendering the final result a Gaussian random field.

This type of models have also been studied in connection to the distribution of vacua and

its stability [9, 17, 18] as well as inflation [13–15, 19, 20] in the landscape. As an illustration

of the mathematical techniques presented here for the construction of constrained GRFs we

develop Slepian models that are locally described by critical points (maxima, minima and

1For another method of generating a specific class of constrained Gaussian random fields, see [15].
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saddle points) as well as inflection points and use these realizations to extract important

statistical information about them.

In particular, we will first study the quantum mechanical stability of local minima

in these landscapes. In order to do so, we will compute numerically the decay rate of

these minima using the quantum tunneling techniques first described in a series of papers

in [21, 22]. The result of this quantum instability is the creation of a bubble instanton that

interpolates between the false vacuum and the true vacuum states. Using these Euclidean

methods one can evaluate the probability of this decay channel and therefore estimate the

lifetime of any specific vacuum. The calculation of these tunneling events in a multidimen-

sional potential is however notoriously difficult. Recently some work on this direction has

been done in relation to the stability of vacua in models with large number of dimensions

in field space. It has been argued that the probability of the decay depends exponentially

on the number of fields although the particular scaling is still uncertain [23–26].

In this paper we will study these tunneling events in models of Gaussian random

potentials. In particular we are interested in studying the dependence of the tunnelling rate

with the height of the potential at the false vacuum. For large values of the cosmological

constant this calculation would be impossible without constraining methods, since the

number of these minima is negligible compared to the minima at lower values of the field.

Our techniques allowed us to efficiently generate the same number of minima for different

heights and have a good sample of cases from where we can extract statistical information.

The obtained distribution for the instanton actions SE (which determines the decay rate

Γ ∼ e−SE ) is displayed in figures 5 and 6, where we found that the average dependence of

the decay rate on the false vacuum height Vfv is given by〈
log10

(
SE

U−10 Λ4

)〉
≈ 3.29 exp

(
−0.18

Vfv
U0

)
,

where U0 and Λ are the characteristic energy and length scale (in field space) of our potential

respectively. The distribution for the Euclidean action becomes increasingly peaked around

its mean, and thus more predictive, for larger values of Vfv. As we show in the main text,

this enhancement of the predictability can be explained using Slepian models for very

atypical extrema of the potential, such as high minima.

Our second application involves the generation of inflection points. These are some of

the most likely points in the landscape where cosmological inflation can happen. However

this does not mean that an arbitrary inflection point would lead to inflation. Obtaining

a successful inflationary period consistent with the current cosmological observations still

requires some amount of fine tuning of the potential around the inflection point. Therefore,

to characterise the distribution of observables for these inflationary models in the landscape

one should again use some sort of constraining method, and look at a particular set of

non-generic inflection points. In the present paper we will explore the dependence of the

observable parameters of inflation to its initial conditions in the landscape. In particular we

will take the initial conditions for the fields to be the ones determined by the exit point of an

instanton describing the transition from a nearby parent false vacuum. Note that in order

to perform this analysis, one requires not only the knowledge of the potential around the

– 2 –
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inflection point but also its relation to nearby minima. Hence our method, which accurately

captures the global statistical properties of the potential, is particularly suitable to carry

out this investigation. It is worth noting that, to the best of our knowledge, this is the first

time that an Slepian model for inflection points is presented in the literature. The effect

of the tunneling in the initial stages of inflation has also been discussed in [14, 27–29].

The remaining of the paper is organized as follows. In section 2 we introduce the

notation that we will be using for describing our random potential function as a GRF.

In section 3 we will outline the method for generating constrained random potentials as

Slepian models. In section 4, we implement these ideas for a 2d field space landscape

and generate a large set of random potentials with a minimum at a specific point in field

space. This allows us to compute the tunneling paths from these minima and determine

the statistics of the decay rate. In section 5, we condition the random potential to have

an inflection point suitable for inflation, and study the effect of the initial conditions

set by the tunneling process from a nearby minimum. We conclude in section 6 with

some comments on the results and some further ideas that can be implemented with these

numerical techniques. Some of the mathematical details and numerical proofs have been

left for the appendices. In the present work, unless otherwise stated, we will use reduced

Planck units M−2pl = 8πG/(~c) = 1.

2 Preliminaries for Gaussian random fields

In this paper we will take our random potential, V (φ), to be a Gaussian random field

defined over a N -dimensional field space, which we will parametrize with the vector φ =

{φi}, with i = 1, . . . , N . Furthermore, we will consider the probability distribution for

the random potential to be homogeneous and isotropic, so its covariance function will only

depend on the distance between the points at which it is evaluated, in other words it is of

the form

〈V (φ1)V (φ2)〉 = C(|φ1 − φ2|) . (2.1)

We will additionally require the potential to have a null mean:

〈V (φ)〉 = 0 . (2.2)

In the rest of the paper we will evaluate our expressions using the following simple

covariance function:

C(φ) = U2
0 exp

(
− φ

2

2Λ2

)
, (2.3)

for the case of N = 2 field space dimensions. The parameter U0 sets the energy scale

of the potential while Λ represents the correlation length in field space. It is important

to realize that the techniques used in this paper are generic and can be applied to other

interesting situations like, for example, non-Gaussian covariance functions so in this sense

these constructions are quite more generic than the ones presented in [15]. We have decided
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to use the simple Gaussian covariance function since it considerably simplifies some of the

expressions in this paper.2

In the following we will be interested in the value of the field and its derivatives at a

particular point in field space, which we can take to be φ = 0 without loss of generality,

and we will refer to it as the center of field space. In order to simplify the notation we

introduce the following definitions for the value of the potential and its derivatives:

u = V (φ)|φ=0, ηi =
∂V (φ)

∂φi

∣∣∣∣
φ=0

, ζij =
∂2V (φ)

∂φi∂φj

∣∣∣∣
φ=0

, ρijk =
∂3V (φ)

∂φi∂φj∂φk

∣∣∣∣
φ=0

.

Furthermore, we will denote the eigenvalues of the Hessian matrix by λi with i = 1, 2

which will single out the directions 1, 2 in our field space. Note that the derivatives of

the scalar potential are also Gaussian random variables, and therefore any collection of

the previous quantities forms a Gaussian random vector. In appendix A.4 we will give

the expressions for the correlators between these different derivatives of the potential as a

function of the derivatives of the covariance function C(φ). These correlations will play an

important role in some parts of our discussions.

3 Slepian models for constrained Gaussian random fields

A key point in our construction of the GRF rests on the fact that a conditioned GRF

maintains its Gaussian nature. More specifically, homogeneous and isotropic processes

(such as the GRFs we are dealing with) can be conditioned using the Kac-Rice formula [30]

in order to obtain new mean and covariance functions which generate GRFs with the

required constraints.3 The models for stochastic processes dealing with conditional events

and crossings where pioneered by David Slepian [16], and have thus been coined in the

mathematical literature as Slepian models.

We can describe these constrained processes in a generic form in the following way.

For simplicity, let us consider first a Gaussian random p-dimensional vector, composed

of jointly Gaussian variables, xT = (x1, . . . , xp), whose probability distribution function

(PDF) is given by,

f(x) =
1

(2π)p/2
√

det Σ
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
(3.1)

whereµ=〈x〉 is the mean vector and Σ is the covariance matrix, whose elements are given by

Σab = 〈(xa − µa)(xb − µb)〉 , (3.2)

with a, b = 1, . . . , p.

Let us now consider the following decomposition of the random vector x = (x1,x2),

where x2 are pc components of the vector x that will be constrained by a condition x2 = x̃,

2Note, however, that this covariance function leads to a somewhat special form of the Hessian matrix

for the minima in this GRF (See for example the discussion of this point in [18].) It would be interesting

to check whether this could have any quantitative effect on the conclusions of our paper.
3See a brief description of the Kac-Rice formula in the current context in appendix A.5.
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and x1 are the remaining p− pc unconstrained elements. Then one can show [30, 31] that

the distribution probability for x1 holding x2 fixed to the desired values is given by,

f̃(x1|x2 = x̃) =
1

(2π)
p−pc

2

√
det Σ̃

exp

[
−1

2
(x1 − µ̃)T Σ̃−1 (x1 − µ̃)

]
, (3.3)

which shows that the distribution for the variables x1 is indeed a Gaussian distribution

but now with a mean and covariance functions given in terms of the original ones as

µ̃ = µ1 + Σ12Σ
−1
22 (x̃− µ2) , Σ̃ = Σ11 − Σ12Σ

−1
22 Σ21 , (3.4)

where µ1 and µ2 are the means of the vectors x1 and x2 respectively, and

Σ11 = 〈(x1 − µ1)(x1 − µ1)〉 ,
Σ12 = Σ21 = 〈(x1 − µ1)(x2 − µ2)〉 ,
Σ22 = 〈(x2 − µ2)(x2 − µ2)〉 . (3.5)

This is possible because one can always find a new Gaussian random vector

x′ = (x′
1,x

′
2), connected to the original one with a non-singular linear transformation

x′ = A · x, such that x′
2 = x2 is uncorrelated to x′

1. We show in appendix A.2 a proof of

this statement. In the rest of the paper we will use this fact in several different ways, apply-

ing this technique for Gaussian random vectors made of different quantities of our potential.

3.1 Slepian models for critical points

In this section we will use the methods described earlier to generate a Gaussian random

field with a critical point with a specific height at the center, φ = 0. In other words, we will

find a description of the new GRF conditioned so that the point at its center satisfies the

following properties: V (0) = u and V ′i (0) = ηi = 0 for i = 1, 2. In order to do this we will

follow the prescription used in the mathematical literature for maxima in GRF [32] and

adapt it to our case. Let us start by introducing the following Gaussian random vector:

x = {V (φ1), . . . , V (φq), V (0), η1, η2, ζ11, ζ22, ζ12} (3.6)

where we denote by φa, with a = 1, . . . , q, the position in field space of a discrete set

of q points. One can show that the Gaussian random vector x has zero mean, and a

probability distribution that can be readily computed using the form of the covariance

function and its derivatives. This is a somewhat lengthy calculation and we have given the

general expression in appendix A.6. According to the description for constrained Gaussian

random vectors given above this is all we need to obtain the new mean and covariance

function for the new conditioned vector (and thus, also for the constrained GRF).

Using the results in appendix A.6, one can show that the new mean function for the

GRF with the constrained conditions is given by,

µ̃(φ) = e−
φ2

2Λ2

[
u

(
1 +

φ2

2Λ2

)
+

1

2

2∑
i=1

φ2iλi

]
. (3.7)

– 5 –
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This result corresponds to the particular choice of covariance function in eq. (2.3), and

is written in terms of the value of the field V (0) = u and the eigenvalues of the Hessian

matrix at the center, λi, which are to be drawn from the distribution in eq. (3.9) below.

The new covariance function is

C̃(φ1,φ2) = U2
0 exp

[
−|φ1|2 + |φ2|2

2Λ2

](
exp

[
φ1 · φ2

Λ2

]
− 1− φ1 · φ2

Λ2
− (φ1 · φ2)2

2Λ4

)
,

(3.8)

which is no longer homogeneous, but it is still isotropic.

It is important to note that the eigenvalues of the Hessian are not statistically indepen-

dent of the height of the potential. This is intuitively clear since, for example, one would

expect the typical minimum at a large height to be quite shallow compared to the minima

situated well bellow the mean value of the potential. This expectation can be translated

to the existence of important correlations between the field and its second derivatives at a

point, and in particular at critical points. In order to take this effect into account one can

calculate the joint probability distributions for the Hessian eigenvalues (λi) and heights (u)

at critical points to obtain4

Pu,λ du
∏
i

dλi = N exp

[
− u2

2U2
0

]
|λ1 − λ2|

2∏
i=1

|λi| exp

[
−
(

Λ2λi + u

2U0

)2
]
dλi du , (3.9)

where N is a normalizing constant. This distribution includes all types of critical points,

namely maxima, minima and saddle points. Depending on the kind we are interested in,

we simply need to impose positivity or negativity conditions on the values of each λi.

Using these results we can generate a Gaussian random field with a critical point with

the desired properties by the following procedure. Let us consider for example a minimum

with fixed height u. Our first step will be to generate a set of eigenvalues drawn from the

distribution (3.9) taking into account the value of u, imposing the non-negativity condition

λi ≥ 0, and fixing the normalization factor accordingly.

Using these values for λi we can then generate realizations of the potential using the

expression

V (φ) = e−
φ2

2Λ2

[
u

(
1 +

φ2

2Λ2

)
+

1

2

2∑
i=1

φ2iλi

]
+ ∆(φ) (3.10)

where we have denoted by ∆(φ) an inhomogeneous, zero-mean Gaussian random field

whose covariance function is given by C̃(φ1,φ2) in eq. (3.8). We show in figure 1 an

example of the different ingredients that make up a Slepian model for a local minimum

in a 1d GRF. We can use a similar procedure to generate other critical points, such as

saddle points with different number of negative eigenvalues, by generating the appropriate

samples of λi’s.

An important conclusion that can be derived from the Slepian model (3.10), first

noticed in [32], is that for highly non-generic extrema |u| � U0 (such as very low maxima

or high minima), the shape of this GRF becomes very deterministic around the critical

4See the calculation in appendix A.6.
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μ(ϕ)

Δ(ϕ)

-4 -2 2 4
ϕ

-2.0

-1.5

-1.0

-0.5

0.5

-4 -2 2 4
ϕ

-2.0

-1.5

-1.0

-0.5

0.5

V(ϕ)

Figure 1. A 1d example of a Slepian model of a constrained minimum in a GRF. We show, for

a particular realization, the two separate components of the construction on the left, namely, the

constrained mean field form µ(φ) in eq. (3.7) and the inhomogenous new GRF ∆(φ) with covariance

function given by eq. (3.8). The total GRF is shown on the right.

point, and it is described very accurately by the first two terms in eq. (3.10). Indeed, one

can see from eq. (3.8) that the standard deviation of the random component ∆(φ) is always

smaller than U0, and that it approaches zero near the extremum located at φ = 0 (see also

figure 1). Therefore the last contribution in (3.10) can be neglected in a neighbourhood

of the extremum where |∆(φ)| . U0 � |V (0)| holds. On the other hand, in the limit

|u| � U0 the eigenvalue distribution of the Hessian (3.9) is approximately given by5

Pλ dλ1 dλ2 ∼ |λ1 − λ2||λ1||λ2| exp

[
−Λ2|(λ1 + λ2)u|

2U2
0

]
dλ1 dλ2 , (3.11)

which indicates that in this limit the magnitude of the eigenvalues is very suppressed

|λi| � U0/Λ
2. Then, as we mentioned above, for highly non-generic extrema the decom-

position (3.10) is dominated by its deterministic part (the first term), what makes these

Slepian models very predictive in those situations. As we shall see bellow, this result is

particularly important when we consider the distribution of non-perturbative decay rates

from minima with a large vacuum energy. For an example of a realization with a high

minimum see figure 2(a).

This deterministic character of large fluctuations of Gaussian Random Fields plays an

important role in various areas of Cosmology, such as the analysis of the CMB data, and

the study of Large Scale Structure formation in the universe (see e.g. [33–37]).

3.2 Slepian models for inflection points

As we discussed in the Introduction, we are also interested in inflection points in the

landscape. The reason is that in a cosmological context these points could be one of the

regions of the potential that give rise to a cosmological inflationary period. However, in

order to be compatible with the latest cosmological observations, one needs to restrict the

form of these inflection points. This leads us to consider an inflection point at φ = 0 as a

realization of the GRF with a small gradient of the potential in the φ1 direction, denoted

by η1, and the rest of the coefficients of the Taylor expansion of the field around that point

5Note that for very high minima u > 0 and λi > 0, while for very low maxima all signs are reversed.
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of the form

η2 = 0 , λ1 = 0 , λ2 > 0 , η1 · ρ111 > 0 . (3.12)

The intuitive picture of these choices is clear, we are looking for a one dimensional

inflection point that allows the slow-roll conditions to be satisfied along the direction φ1

while the perpendicular directions have positive curvature. In other words, we are looking

for a potential where inflation is effectively one dimensional locally. This also explains

the last condition, which is imposed in order to allow for enough slow-roll inflation in the

vicinity of this inflection point.

This is admittedly a very particular form of the potential around the inflection point

and, even though it could be interesting to identify this type of points in a GRF in other

contexts, we have not seen any studies of this class of constrained points on GRFs in the

mathematical literature. However, it is not difficult to follow a similar procedure to the

one for critical points in order to obtain Slepian models in this case. The first thing we

should do is to enlarge the form of our initial Gaussian random vector (3.6), since we now

want to constrain not only first derivatives but second derivatives as well. This suggests

that we should take the vector of the form,

x = {V (φ1), . . . , V (φq), V (0), η1, η2, ζ11, ζ22, ζ12, ρ111, ρ122, ρ222, ρ112} (3.13)

which, similarly to the critical point case, can now be conditioned to have the desired

properties given in eq. (3.12).

Following the computations given in the appendix A.7 one arrives to the result that a

GRF with an inflection point at φ = 0 is described by the expression

V (φ) = exp

[
− φ

2

2Λ2

](u+φ ·η)

(
1+

φ2

2Λ2

)
+

1

2

2∑
i=1

λiφi
2+

1

6

2∑
i,j,k=1

φiφjφkρijk

+Γ(φ) ,

(3.14)

where Γ(φ) is an inhomogeneous zero-mean GRF with covariance function

C̃(φ1,φ2) =U2
0 exp

[
−|φ1|2+|φ2|2

2Λ2

](
exp

[
φ1 ·φ2

Λ2

]
−1−φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4
− (φ1 ·φ2)3

6Λ6

)
.

(3.15)

In these expressions u, λi and ρijk should be drawn from the joint probability distribution

for heights, first, second and third derivatives of the potential at inflection points6

Pinf du dλ2 dη1 dρ = N|λ2|2|ρ111| P (u, λ2 | λ1 = 0) P (η1, ρijk | η2 = 0) du dλ2 dη1 dρ

(3.16)

where

P (u, λ2 |λ1 = 0) du dλ2 = N|λ2| exp

[
−4u2 − 2Λ2uλ2 − Λ4λ22

2U0

]
du dλ2,

P (η1, ρijk | η2 = 0) dη1 dρijk = (3.17)

N exp

− Λ2

12U2
0

18η21 + 6Λ2η1(ρ111 + ρ122) + Λ4
2∑

i,j,k=1

ρ2ijk

 dη1 dρijk .
6See the computation of these distributions in appendix A.7.
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In the last distribution, the condition η1 ·ρ111 > 0 should also be imposed if one is interested

in ‘inflationary’ inflection points.

We have checked the accuracy of these distributions by numerically computing them

from a large set of generic (unconstrained) GRF examples. We have identified all the

inflection points of our sample, and used this information to compute the distributions of

the parameters of the inflection points we are interested in. See appendix B for the details

of these numerical checks, which are summarised in figure 14.

3.3 2D numerical implementation

All GRFs generated for this work were constructed following the Karhunen-Love expansion

(see e.g. [31]), which is briefly described in appendix B. This algorithm generates values

for a GRF discretized over a lattice which is to be interpolated afterwards.

Based in the criteria developed in [14], we used 5 lattice points per correlation length

(25 per length squared). The resulting grid was then interpolated with fourth-order splines

in order to analyse up to third-order derivatives of the field as faithfully as possible. The

generated GRFs were found to follow successfully the initial mean and covariance function,

as well as other properties such as the distribution of critical points and eigenvalues thereof.

Two examples of (rather extreme) GRFs generated following the steps in this section

have been plotted in figure 2.

4 Tunneling in a Gaussian random landscape

A Gaussian random landscape possesses a large number of perturbatively stable minima.

However, we know that quantum mechanically these vacua are not completely stable and

can decay by the nucleation of a bubble of the new state. This means that a typical

vacuum in our landscape will have many channels to decay into, each of them with a

different probability. Here we would like to study the statistics of these decay channels

in a controlled way by generating a large number of GRF realizations, and analyse their

dependence on the parameters of the central minimum.

In order to do that we will use the instanton techniques first described by Coleman

and collaborators [21] where it was shown that for a given minimum of the potential the

decay probability per unit time and per unit volume is given by

Γ/V ∼ Ae−SE (4.1)

where SE is the Euclidean action for the bounce solution that interpolates between the

new state and the original one.7

In the absence of gravity, one can show that the most likely decay channel is given by

the O(4)-symmetric instanton solution in a 4-dimensional Euclidean spacetime; therefore

we will be interested in solving the following set of Euclidean equations of motion

φ′′i +
3

r
φ′i =

∂V (φ)

∂φi
, (4.2)

7Here we will not be concerned with the pre factor A. See [22] for a detailed description of its compu-

tation.
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(a)

(b)

Figure 2. A pair of realizations of a 2d Gaussian random fields with zero mean, covariance

function (2.3), and conditioned to have a minimum at center of height (in units of U0) 4 (a) and

−4 (b). The higher the minimum is, the lower its eigenvalues will typically be and vice versa (see

text). The location of the minima of each realization has been marked with a white dot.

where the prime denotes a derivative with respect to the radial coordinate in 4-dimensional

Euclidean spacetime, r, and we have assumed that the fields φ(r) = {φ1(r), . . . , φN (r)}
are canonically normalized. Finally the boundary conditions are

φ(∞) = φFV , φ′i(0) = 0, (4.3)
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where φFV is the location of the false vacuum in field space, the minimum of the potential

from which the decay happens. Once the field equations have been solved, the action in

the exponent of (4.1) reads

SE = 2π2
∫ ∞
0

dr r3
[

1

2
|φ′|2 + V (φ)− V (φFV )

]
. (4.4)

Computing the coupled system of the instanton equations (4.2) is no easy task; partic-

ularly, as the dimensionality of the field space grows, the solutions tend to be increasingly

unstable. There are, however, several publicly available algorithms in the literature to

tackle the problem (see, e.g., [38, 39]); additionally, some alternative methods have been

recently proposed to find the action and escape point for the instanton, as in [40, 41].

In this work, we use AnyBubble [42] to compute the instanton actions for our realiza-

tions. AnyBubble is a Mathematica Package based on efficient numerical methods for the

solution and optimization of the tunneling equations, see [42] for details.

In order to obtain statistics of the tunneling action in terms of the properties of the

central minimum, we sampled false vacua with heights between -2 and 5 (in units of U0, see

eq. (2.3)) in uniform intervals. As explained in [14], we can write the Euclidean action as

SE =
Λ4

U0
S̄ (4.5)

so that S̄ corresponds to the Euclidean action of a potential with covariance function (2.3)

with U0 = Λ = 1. Unless otherwise specified, all histograms corresponding to the action

are given in terms of S̄ due to numerical simplicity.

Following the procedure of the Slepian models described the previous sections, for each

value of the false vacuum height, we generated 2 · 104 Gaussian random field realizations

centered around the minimum. All of these minima have the correct distribution of the

Hessian eigenvalues, and the potentials are quite different from one another as one moves

away from the minimum by one correlation length. This means that each realization has

different vacua situated in different directions and lengths from the false vacuum, although

the typical number of minima below V (φFV ) is quite similar in all cases.

We can readily see the power of the machinery described in the previous section when

constraining the field to have a minimum with a vacuum energy higher than 1.5U0. If we

tried to find a minimum higher than that drawing samples from an unconstrained GRF,

we would need to generate tens (if not hundreds) of random fields before finding a single

minimum satisfying that condition, see figure 13(a) in appendix B. For example, from

equations (B.5), we can easily check that the probability of any minimum being higher

than 5U0 is O(10−16), so finding one by chance happens to be quite remarkable. With

the aid of conditioning methods, we are able to construct very efficiently large samples of

random fields subject to a condition as difficult to meet as this one.

In order to study tunneling processes on each generated example, we identified all the

minima near the center of field space and computed the tunneling rate between the central

minimum (which always acts as a false vacuum, in our analysis) to all lower minima. An

example of this procedure is plotted in figures 3 and 4, where we show the paths followed in
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Figure 3. A typical example of the considered tunneling events. After generating a GRF with

a minimum at the center with height 1 (in terms of U0), we compute possible tunnelings with

AnyBubble. The plot shows the GRF along with its minima (green), saddles (yellow), maxima

(red) and inflection points (blue) as well as 3 of the instanton trajectories in field space for 3 decay

channels.

ϕ1,A

ϕ2,A

ϕ1,B

ϕ2,B

ϕ1,C

ϕ2,C

2 4 6 8 10 12 14
r

-3

-2

-1

0

1

2

ϕ


Figure 4. Field trajectories for the decays channels shown in figure 3 in terms of the distance r in

Euclidean space.
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Figure 5. Obtained distribution of tunneling action (S̄) in terms of false vacuum height.

field space by the different instanton decay channels.8 We have only considered tunneling to

minima around the center to avoid problematic issues with minima close to the boundaries

of our realizations.

4.1 Statistics of the instanton action

4.1.1 Dependence with the height

Figure 5 shows the resulting distributions9 for the tunneling action, for different values of

the false vacuum height. There is an interesting correlation between the mean and width

of this distribution and the height of the false vacuum. Namely, we find that the higher

the false vacuum is the lower the action and thus, the higher the probability of tunneling

is. This behaviour is quite intuitive; as we can see from the examples in figure 2, tunneling

from a minimum high up in field space requires crossing a lower barrier to the true vacuum,

which in turn results in a lower action for those transitions. Figure 6 (blue dots) shows

the median of each distribution along with the range of actions between the first and third

quartiles. We see, once again, that higher false vacua lead to accumulation over lower

values of the action.

The obtained data for each potential height was found to be easily fitted to a log-

normal distribution. More specifically, the logarithm of the median of each distribution

S̄med (which, in this case, is very similar to the mean of log10 S̄) can be fitted by the

following expression 〈
log10 S̄med

〉
≈ 3.29 exp

(
−0.18

Vfv
U0

)
(4.6)

where Vfv stands for the height of the false vacuum. As we see from figure 6, increasing

Vfv reduces the width of the distribution significantly, thus increasing the predictive power

8We have also identified the rest of critical points as well as inflection points with different colours in all

of our GRF realizations.
9Unless otherwise specified, all histograms represent the normalized probability distribution function of

the obtained results.
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Figure 6. Evolution of the median of the action, with error bars representing data between the

first and third quartiles of each distribution, for the optimal path, the linear (straight-path) and

the thin wall approximations, along with a fitting curve (see (4.6)).

of (4.6) for the expected value of the action. This enhancement of the predictability of the

Slepian model for large values of Vfv corresponds precisely to what we anticipated in the

previous section. Indeed, there we showed that near high minima the random potential

becomes dominated by the first term in the decomposition (3.10), and therefore the land-

scape is very deterministic in a neighbourhood of false vacua with large Vfv. Consistent

with this result, when studying the non-perturbative stability from these vacua we observe

a reduction of the variance of tunneling actions for large heights of the false vacuum. This

agreement also suggests that in the case of minima with a large Vfv the value of the instan-

ton action is dominated by the local structure of the minimum. We will provide further

evidence for this claim below.

4.2 Approximations for the calculation of the action

Due to the inherent instability of the equations to be solved to compute tunneling profiles,

it is clear that as we increase the domain and dimensionality of the potential under study,

the required computational time to solve the system will grow accordingly. Evidently,

this makes the study of higher-dimensional GRFs and their tunneling properties almost

prohibitive in this sense. Motivated by these limitations, we turn to computing several

different approximations of tunneling actions suggested in the literature, and compare

them with our exact results.

4.2.1 Thin wall approximation

The thin-wall prescription was already discussed in the original papers by Coleman in [21].

In this approximation the instanton action is given in terms of the difference between

potential at the false vacuum (Vfv) and true vacuum (Vtv) and σ, the tension of the wall
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interpolating between them, namely,

S̄tw =
27π2σ4

2(Vfv − Vtv)3
, σ =

∫ φFV

φTV

dφ
√

2(V (φ)− V (φTV )) . (4.7)

This approximation is accurate as long as the difference between Vfv and Vtv is small.

We evaluated (4.7) for each bounce we previously found with AnyBubble in order to

check this expression and its predictive power for GRFs. In the computation we restricted

the field to a straight line in field space connecting the true and false vacua. Figure 6 shows

the evolution of the median of S̄tw as a function of the false-vacuum height. While the width

and median of the distribution in this case follow the same pattern as the optimal action,

the values diverge rapidly from the optimal ones as the false vacuum height increases. This

is not too surprising since, as one increases the height of the false vacuum minimum, the

field can tunnel to a minimum with quite different values of the potential, what violates

one of the premises of the thin wall approximation.

4.2.2 Straight-path approximation

While the thin-wall prescription provides a solid upper bound on the bounce action [43],

it does not provide any useful estimation on the actual value on the bounce in our case.

This fact calls for an alternative way to estimate the action, mostly for higher-dimensional

landscapes.

A straightforward simplification to this problem was introduced in [44], which we

will denote by straight-path approximation. This prescription is based on reducing the field

space to a single straight line connecting the false and true vacua, thus making the problem

of tunneling effectively one-dimensional. As can be seen from figure 3, this approximation

may not be too unreasonable. Even though there are some paths which do curve over the

field space, many (if not most) of them follow a straight trajectory in field space. Note,

however, that this restriction in field space may yield effective potentials where the bounce

does not exist or might even correspond to a different bounce in the full theory. For more

details on the properties of this approximation, see [45].

For each optimal path, we considered a straight line in the two-dimensional GRF

connecting the true and false vacua, and computed the corresponding estimate of the action,

S̄sp, in each case. In principle, S̄sp represents an upper bound on the optimal action S̄, as

the former only considers variations of the action in the direction of the straight path [44].

It is thus expected (and explicitly shown in [45]) that this approximation will diverge from

the full solution as the dimensionality of the potential is increased.

We found that in this case the distribution of actions in terms of false vacuum height

is identical to the optimal one shown in figure 5, though slightly shifted to higher values.

As we can see from figure 6, the change in the median is minimal when the straight-path

approximation is considered. Although, as we just mentioned, the straight-path approxima-

tion is not expected to give precise results for potentials in a higher field space dimension,

this result suggests that it would be interesting to explore the validity of this method with

GRFs in higher dimensions. Indeed, due to the computational complexity of such an anal-
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Figure 7. Exit angle distribution with respect to direction of the lowest eigenvalue for the instanton

path of the most probable decay channel in each generated potential.

ysis, a rough statistical estimate of the decay rate obtained with this approximation would

still be very valuable.

4.3 The lowest action

In many circumstances one will be interested in the lowest action for a particular kind of

minima. This will of course correspond to the path that would dominate the decay for

those minima. In this subsection we will investigate the characteristics of such trajectories

in field space.

4.3.1 Exit angle

An intuitive way to think about the most likely decay process would be to imagine that

the tunneling occurs along the trajectory with the lowest barrier. One can check this idea

in our case by first identifying the angle (in our 2d field space), θ, that the instanton

trajectory makes with respect to the direction of the lowest eigenvalue of the Hessian at

the minimum. A distribution of such angles obtained for different values of the height is

plotted in figure 7. We see that there is a clear tendency of the tunnelings to occur around

θ ≈ 0 but the correlation is not very strong.

4.3.2 Estimating the lowest action

The correlation of the instanton path with the lowest eigenvalue direction at the false

vacuum suggests that one can try to estimate the lowest action by analyzing the potential

along the lowest eigenvalue direction alone. This has been recently proposed in the context

of the landscape in [26]. In the following we will use our large sample of realizations to test

this idea in detail in our 2d GRF model of the landscape.
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Figure 8. Distribution of lowest action per potential and Sarid approximation [46] along the lowest

barrier direction, in terms of false vacuum height. The fit in eq. (4.6) is shown for comparison with

previous results.

In order to evaluate the instanton action along the lowest eigenvalue direction we first

take a slice of the potential along that direction and fit it to be of the form,

Vle(φ1) = V0 +
1

2
λ1φ

2
1 +

1

3!
ρ111φ

3
1 +

1

4!
δφ41 . (4.8)

Note that this procedure does not guarantee that the resulting one-dimensional poten-

tial is suitable for a tunneling process. In fact, in many cases the potential constructed this

way does not have a lower minimum along this direction and therefore it cannot be used

to estimate the decay rate. In the following we will only compute the instanton action in

the successful cases where this 1d truncation gives an acceptable form, what in particular

requires ρ111 < 0.

Considering this simple form of the potential as the most likely exit path for the

decay transition we can estimate the instanton action. In order to do that we will use the

parametrization of the Euclidean action for the bounce that was obtained by Sarid in [46].

In our notation this becomes,

S̄S =


18λ1

ρ1112

(
45.4− 46.1 + 2π2

12(1−4κ)3 + 16.5
(1−4κ)2 + 28

1−4κ

)
, κ > 0

18λ1

ρ1112 45.4
(
1 + (136.2

2π2 )1.1|κ|1.1
)−1/1.1

, κ ≤ 0
(4.9)

where

κ =
3

4
δ
λ1
ρ2111

. (4.10)

We show in figure 8 the distributions of the lowest action from the exact computation

and compare it to this estimate along the lowest barrier direction. We notice that the

agreement between these two results is pretty good, what suggest that one can use this
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approximation to estimate the decay rate of vacua in a Gaussian random landscape. More-

over, it is worth noting that this approximation depends only on the local structure of the

minimum, precisely where the Slepian model has a large predictive power for large values of

Vfv. The expression (4.9) becomes increasingly accurate for large values of the false vacuum

energy Vfv, what indicates that in this regime instanton action is mostly determined by the

local form of the minimum. On the other hand, according to the Slepian model, the scalar

potential around all high minima should look very similar in all realizations, with its shape

dominated by the first term in (3.10). This explains why the distribution of instanton

actions becomes more deterministic (figure 5) for larger values of Vfv, and therefore also

the agreement between the Sarid approximation (4.9) for the lowest action and our fit in

eq. (4.6) for the median of the distribution.

It would be interesting to check if this good agreement persists on a much larger

landscape with hundreds of directions in field space,10 and whether the approximation (4.9)

can be used in combination with our Slepian model make robust predictions regarding the

tunneling rates of high vacua.

5 Inflation in a Slepian random landscape

Up to now we have been using all the software and mathematical tools described above for

the computation of bounce profiles and actions with Gaussian random fields conditioned

to have a minimum at φ = 0. In this section, we turn to studying constrained GRFs with

inflection points at the origin of field space focusing on their application to cosmological

inflation.

Inflation in random potentials has already been extensively studied [13, 14, 19, 20, 47].

More specifically, inflation around inflection points has received special attention for being

capable of sustaining enough e-folds to make contact with observations, while taking place

in a small region of field space with an effectively one-dimensional potential.

While most of the obtained results and distributions seem promising, they have only

been tested within Taylor expansions around these points, instead of using full GRFs.

As we mentioned before, such methods do not capture correctly the global features of

the potential, what is essential for characterising the non-perturbative stability of vacua.

Therefore, this procedure is unsuitable for studying models of inflation where the initial

conditions are determined by the decay of a parent false vacuum.

In this section we will apply Slepian models to constrain Gaussian random fields to

have inflection point with the desired properties to sustain inflation, and then we will study

the dependence of its cosmological observables on the initial conditions, set by different

realizations of the parent vacuum.

10Note that in our calculation we kept the quartic term of the potential while in reference [26] the

authors drop this term arguing that for large number of fields (N) this coefficient becomes irrelevant. We

have checked that in our case this is not the case and in order to obtain a good agreement it is necessary to

take this term into account. This is due to the fact that we have limited our investigation to the N=2 case.
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5.1 1D inflection point inflation

Let us briefly review the main results for one-dimensional inflection-point inflation

(see [20, 48] and references therein for more details). Let us consider a potential of the form,

V (φ) = u+ ηφ+
1

6
ρφ3 , (5.1)

where, in order to satisfy the slow-roll conditions around the inflection point, we will

assume that η � u. Note that we do not need to assume that the third derivative is too

small. In fact, following typical conditions for a GRF we will consider the case where

u � ρ. Taking this into account one can show that slow-roll inflation conditions will be

satisfied in the interval

−u
ρ
< φ <

u

ρ
, (5.2)

which together with the condition u � ρ implies that we are describing small field

inflation. Using the slow-roll conditions, it is easy to check that the expected number of

e-folds, Nexp, that can be achieved within that region is

Nexp =

∫ u/ρ

−u/ρ

dφ√
2ε
≈ π
√

2
u
√
ηρ
− 4 ≡ Nmax − 4, (5.3)

where ε = (V ′′(φ)/
√

2V (φ))2 and Nmax is the maximal number of e-folds achievable in the

whole potential. Moreover, defining

x ≡ πNCMB

Nmax
, y ≡ Nmax

2π
, (5.4)

where NCMB is the e-fold number at which the CMB scales leave the horizon, the spectral

index of scalar perturbations can be shown to be given by

ns = 1 +
2

y

(
tanx− y

1 + y tanx

)
. (5.5)

Finally, the amplitude of scalar perturbations can be expressed as

∆2
R =

1

12π2
V 3(φ)

V ′(φ)2
≈
N4

CMBρ
2

48π2u
f2(x, y) (5.6)

where

f(x, y) =
cos2(x)(y tan(x) + 1)2

x2(y2 + 1)
, (5.7)

satisfies f(x, y) ∼ 1 for y � 1 and x ∼ 1.

With these expressions at hand, we can easily obtain a set of parameters for the inflec-

tion point (u, η and ρ) that are in agreement with the current cosmological observations,

namely, Nexp > NCMB ≈ 50, ns ≈ 0.965 and ∆2
R ≈ 2× 10−9 (see eq. (5.8) below).
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5.2 Numerical inflection points in a 2D landscape

We now want to embed 1d inflection-point inflation in our 2d GRF landscape. In order

to do that we can follow the procedure explained in section 3.2 for Slepian models in the

case of inflection points. In the notation introduced earlier, the 1d parameters η = η1 and

ρ = ρ111, correspond to the derivatives along the flat direction of the multidimensional

inflection point. Note that, in principle, u and ρ111 (when evaluated at the same point) are

uncorrelated, but the same is not true for u and the second derivative along the inflaton

direction λ1; similarly η1 and ρ111 are also correlated, see eq. (3.17). Here we are interested

in studying the global properties of the landscape on the cosmological observables so we

will focus on a particular type of inflection point where we have fixed its 1d parameters.11

Following the steps from the previous section, we built two-dimensional GRFs with an

inflection point whose inflating direction has fixed features. In the forthcoming sections

we set

u = 0.5 U0 , η1 = 6.8 · 10−6
U0

Λ
, ρ111 = 2.5

U0

Λ3
(5.8)

where U0 = 6.0 · 10−16 M4
Pl and Λ = 0.5 MPl define the energy scale and correlation length

respectively, with the Planck masses written explicitly for clarity.

Once u, η and ρ have been fixed, using the probability distributions listed in (3.16)

and (3.17), we can obtain the remaining parameters of the two-dimensional inflection point

set at the origin of field space φ = 0, and generate in a efficient way a large sample of

GRFs with the listed properties.12

As an example, we show in figure 9 a field constructed with the above constraints. We

then used AnyBubble to tunnel from a higher false vacuum to the central inflection point.

We note that even though in every realization the inflection point has the same properties

along the φ1 direction up to third order, the potentials are different away from that point.

This means that the false vacuum, which decays to the region around the inflection point,

is located in a different place and it also has different features in each realization, e.g.

vacuum energy and barrier height. Using AnyBubble we computed the exit points of a

large set of realizations. After that we used these exit points of the instanton decay as the

starting points of a Lorentzian evolution of a FRW universe with this potential.

In order to study the inflationary trajectory we used mTransport [49], a Mathematica

code developed to compute inflationary observables using the transport method. The

cosmological evolution inside of a bubble universe created from tunneling is described by

an open FRW universe [50]. Here, for simplicity, we used the flat-space approximation for

the evolution of the cosmological interior of the bubble.13

11It is also interesting to study the effects of varying these parameters together with the global properties

of the GRF. We leave the details of this calculation for a future publication.
12Note that following our earlier definition of the inflection point in our 2d landscape, we have set η2 = 0

and λ2 > 0.
13Note that in reality the initial cosmological evolution is dominated by the spatial curvature of the open

FRW slices that describe the bubble interior. This will have some effect on the initial stages of the evolution

of the scalar field in a multidimensional potential. See [19, 28] for a discussion of these effects.
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Figure 9. A Gaussian random field conditioned to have an inflection point in the middle. The

dashed line represents the tunneling from a minimum to a lower inflection point. The inflationary

slow-roll phase starts at the exit point, inflates for around 124 e-folds following the solid line, and

evolves towards the closest minimum. We only show the inflationary part of the trajectory. Green,

yellow and red dots represent minima, saddle points and maxima of the potential. The inflection

point is marked with a blue dot.

In the example from figure 9, the dashed line represents the tunneling trajectory, while

the solid one marks the inflationary one. We found this path to sustain a total of 124.1

e-folds and a spectral index of ns = 0.964 at the observable scale.

5.3 Statistics of inflationary parameters

In order to test the method described above to generate inflationary random fields, we

generated 5000 GRFs constrained to have an inflection point with the same properties as

the one in the example of figure 9 (see eq. (5.8)). Next, in each of these realizations, we

found all minima lying above the central inflection point and used anyBubble to compute

the tunneling trajectory from the former to the latter in each case. Considering the exit

point as the starting point of an inflationary phase, we used mTransport to find the number

of e-folds, power spectrum, tensor-to-scalar ratio, spectral index and its running. The

distributions of the e-fold number and the spectral index are shown in figure 10, for a pivot

scale of 50 e-folds, whereas the action associated to the tunneling to the inflection point is

shown in figure 11. This is a different distribution than the ones we found earlier, since the

common factor in these decays is the final point and we do not impose anything about the

initial (false vacuum) state. It is interesting to see that this distribution is quite peaked

around an action of the order of 103.
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Figure 10. (a) Distribution of number of e-folds, with Nexp shown with a dashed line (b) Histogram

of the obtained spectral index, with the analytic prediction marked with a dashed line. Both figures

represent 4000 inflationary trajectories (see text).

We have also obtained the distributions for the amplitude of scalar perturbations,

tensor-to-scalar ratio and running of spectral index which turned out the be centered

around the values

∆2
R = (2.02±0.04) ·10−9, r= (8.0±0.1) ·10−9 and α= (−2.49±0.02) ·10−3, (5.9)

respectively.14 Our results in this section are fully compatible with the 1d studies in [14].

Finally, in figure 12, we show several inflationary trajectories corresponding to tun-

nelings in different GRFs with an inflection point in the middle with the same features.

Note that all trajectories, no matter how far they start from, have a similar behavior.

After oscillating in the vertical φ2 direction, they all stabilize around the inflection point

and inflate along it. Most of the e-folds happen in the vicinity of the inflection point, as

predicted by the analytic estimation.

We have obtained successful results from this analysis around 80% of the times. The

rest of the times the procedure did not yield a cosmological solution in agreement with

our universe either because inflation ended too soon or because the exit point was too far

from the central inflection point and the inflaton trajectory went astray. The successful

paths show very good agreement with the 1d results presented in the previous section. We

see that even though some of the trajectories have some substantial deviation from the 1d

inflationary direction, the cosmological observables are still in pretty good agreement with

the single field inflection point inflation. The distributions of the results are quite peaked

around their central values, so we can conclude that the dependence of the observables on

the initial conditions seems to be quite mild.

14The cosmological evolution of these Lorentzian trajectories continue after inflation until they reach

a lower minimum. We have not fine-tuned this minimum to be in Minkowski space, so in general the

evolution leads to eternal de Sitter or to an Anti-deSitter crunch. We are only interested in the statistics

of the inflationary period so we have stopped this evolution after the field leaves the slow-roll regime.
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Figure 11. Distribution of the tunneling action from a minimum to the central inflection point,

right before inflation begins.
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Figure 12. Showcase of several inflationary trajectories from different tunnelings to the central

inflection point. Each exit point is marked by a blue dot.

It is important to remember that all these realizations have the same 1d inflection point

parameters. In order to extract the complete statistical information about the predictions

of a particular GRF we should combine these results with the ones obtained from inflection

points with other parameters with their correct statistical weight. This is a much more

numerically intensive problem and we leave it for a future publication.
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6 Summary and conclusions

Slepian models are a powerful mathematical technique for modelling the statistics of ran-

dom landscapes conditioned to satisfy a certain set of constraints. For this reason they are

particularly useful to characterise phenomenologically interesting corners of the landscape,

e.g. de Sitter vacua or inflationary regions consistent with the cosmological data, which

are known to have highly suppressed probability to occur in generic random potentials.

On the one hand, Slepian models provide a way to generate numerically large samples

of a random landscape containing the region of phenomenological interest to be studied,

regardless of the low probability of the realizations. On the other hand, this technique can

also be used as an analytical description of conditioned random potentials, and thus to

obtain valuable insight about properties of the landscape around these regions of interest.

A particularly attractive feature of Slepian models, as opposed for example to the use of

Taylor expansions, is that they can capture the global features of the random potential,

and therefore they are specially useful for studying quantum mechanical instabilities in

the landscape. In this paper we have presented the mathematical techniques for studying

conditioned Gaussian random landscapes. We have applied these method to condition a

2d random potential to have a de Sitter minimum with a specific vacuum energy and also

to study 2d landscapes containing an inflection point capable of sustaining a period of

inflation compatible with the data.

More specifically, regarding our discussion of de Sitter minima, we have considered the

non-perturbative decay of these vacua to lower minima, and characterised the statistical

distribution of their decay rate as a function of the height of the false vacuum. For this

purpose we have used our Slepian model to generate numerically large samples of vacua with

varying values of the vacuum energy, and then computed the corresponding decay rates

both solving the full instanton equations, and using various approximate methods present

in the literature: the thin-wall approximation [21], the straight-path approximation [44],

and the estimate proposed by Sarid [46] for the lowest instanton action (see eq. (4.9)).

Our analysis shows that the thin-wall approximation is in good qualitative agreement

with the numerical results, but only provides an accurate estimate of the instanton action

for minima with a relatively small vacuum energy. Indeed, consistently with the thin-wall

prediction of the instaton action, we observe that the decay rate increases (on average) for

increasing values false vacuum height. This can be understood noticing that, in a Gaussian

random landscape, the barrier height that needs to be crossed to escape from the vacuum

decreases when the vacuum energy of the minimum increases. However, for minima with a

large vacuum energy the tunneling typically occurs to much lower vacua, what violates the

assumptions of the thin-wall approximation, and thus it cannot provide a good quantitative

estimate of the decay rate.

In the straight-path approximation one assumes the decay is effectively one-dimensional,

so that it occurs along the line connecting the false and true vacua. We have shown this

simplification agrees remarkably well with the results of our full numerical analysis in all

cases we studied in a 2d Gaussian landscape. It is interesting to check if this simplification

still provides a rough estimate (see [45] for a discussion) for the instanton action in higher
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dimensional landscapes where the numerical resolution of the full instanton equations be-

comes prohibitively difficult. In the particular case of a Gaussian random landscape this

approach is specially attractive, since the statistics of the random field along the straight

line connecting the false and true vacua can be fully described by simply restricting its

covariance function to that line. Therefore, if this method would prove useful to estimate

the non-perturbative stability of vacua in large-dimensional Gaussian landscapes, it would

not be necessary to produce a sample the full higher dimensional GRF, it would suffice to

generate one dimensional realizations of the random field with the same covariance.

Regarding the estimate of Sarid [46] for the lowest action (the most likely decay chan-

nel), our numerical analysis shows that this approximation provides an accurate quantita-

tive estimate of the instanton action in the case of minima with a large vacuum energy.

Interestingly, this estimate depends only on the form of the potential in a neighbourhood

of the false vacuum which, according to the predictions of the Slepian model, does not

experience large variations between different realizations. In plain words, all high minima

look locally very similar to each other. Indeed, Gaussian random potentials conditioned to

have high minima exhibit a very deterministic shape in a large region around it, which is

dominated by the first term in equation (3.10). As we argued in the main text, combining

the estimate of [46] for the lowest action, with the Slepian analysis one concludes that the

distribution for the instanton actions should become increasingly peaked and deterministic

for higher minima. Our numerical results, displayed in figures 5 and 8, match perfectly

this expectation. This suggests that the estimate for the instanton action in eq. (4.9), in

combination with the Slepian techniques, might also provide a very good prediction for

the decay rates of high false vacua in higher dimensional landscapes. For this purpose, the

alternative methods proposed in [15] to generate constrained multidimensional Gaussian

random landscapes might also proof very useful.

With respect to our second application of Slepian models, the analysis of inflection

point inflation in a Gaussian random landscape, we have considered the dependence of the

cosmological observables on the initial conditions for inflation. This initial conditions in

our model are determined by the exit point of a quantum tunnelling process from a parent

false vacuum. This study would have been very difficult without the aid of our conditioning

techniques, since generating numerically a large sample of potentials with an inflection

point with the right properties is exceedingly costly in terms of computation time. With

our methods, however, we were able to generate easily a large number of realizations of the

landscape with an inflection point capable of sustaining more that 60 e-folds of inflation, and

with observables consistent with the current cosmological data. Note also that the ability of

Slepian models to reproduce faithfully the global features of the potential was also essential

in this analysis, in particular for modelling the preinflationary phase of false vacuum decay.

Our results are summarised by figure 10 and equation (5.9), which display the computed

values of the cosmological observables. We see that the dependence of the inflationary

parameters on the initial conditions is quite mild. The obtained distributions for the

observables are very peaked around their expected value in the 1d slow roll model where

inflation happens around the inflection point. The typical realizations in our landscape

have some variation on the observable parameters ranging between 1% and 10% depending
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on the quantity under consideration. It is important to emphasise that in this study we

kept fixed the local properties of the inflection point. In order to perform a complete

characterisation of inflection point inflation in a Gaussian landscape we would also need

to study the effect of changing the inflection point parameters on the observables. We will

leave this analysis for a later publication.15

It is worth mentioning that the present work has potentially very interesting appli-

cations to characterise the landscape of 4d effective field theories in String Theory flux

compactifications at tree-level. Actually, as was discussed in [1], the superpotential defin-

ing the effective supergravity description of flux compactifications can be modelled as a

(complex) Gaussian random field with a specific covariance function determined by the

geometry of the compact dimensions. The superpotential encodes a large amount of in-

formation about the low energy theory: the critical points of the superpotential represent

minima of the tree-level moduli potential; the supersymmetry breaking scale is given by its

absolute value; and the eigenvalues of its Hessian encode the mass spectrum of the moduli

fields and their fermionic superpartners. Thus, the conditioning methods presented in this

paper can be immediately translated into this context, allowing to study the statistical

properties of the 4d effective theory when constrained to satisfy one or various conditions

(see [2, 3]), e.g. the existence of a vacuum with a particular supersymmetry breaking scale,

or to have a mass spectrum containing a certain number of light modes.

Finally, one may also use the techniques presented in this paper to analyze the possi-

bility of a non-Gaussian Landscape. In fact similar methods have already been discussed

in the mathematical literature for various non-gaussian random fields, and in particular

were used to describe constrained extrema in these models [52–54]. One could in principle

use the methods developed in those papers to implement a more accurate description of

the String Theory Landscape potential or some sectors of it. This will allow us to explore

the possibility that the results presented here could be modified by the relaxation of the

Gaussian assumption. However the non-gaussian nature of the statistical description of

the model seems to further complicate the calculations in a significant way in these cases

so we will leave the implementation of these ideas for future work.
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A Construction of Slepian models

Throughout this appendix, we will give a detailed description of the tools and derivations

needed in order to generate conditioned Gaussian random fields, such as the ones we have

been using throughout the main text. We will be mainly following [31, 32].

A.1 Introductory remarks and some properties of Gaussian random variables

A random variable x is said to follow a normal or Gaussian distribution if its probability

distribution function (PDF) is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (A.1)

where µ = 〈x〉 and σ =
〈
x2
〉

are the mean and variance of the distribution, respectively.

Likewise, a p-dimensional vector xT = (x1, . . . , xp) is defined as a Gaussian random vector

(composed of jointly Gaussian variables) if every linear combination satisfies

a · x =

p∑
i=1

aixi ∼ N(µ̃, σ̃), (A.2)

that is, it follows a normal distribution. The PDF of the whole vector is

f(x) =
1

(2π)p/2
√

det Σ
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(A.3)

where µ = 〈x〉 is the mean vector and Σ is the (non-degenarate) covariance matrix, whose

elements are given by

Σij = 〈(xi − µi)(xj − µj)〉 . (A.4)

A.2 Conditioned Gaussian random vectors

Let A be a p × p matrix and xT = (x1, . . . , xp) a Gaussian random vector. Then, by

definition,

y = Ax → yj = Aijxi (A.5)

is also a Gaussian random vector with mean µ′ and covariance matrix Σ′. Since (A.5) is a

linear transformation, the new mean is given by

µ′ = Aµ, (A.6)

whereas the new covariance matrix is

Σ′ij =
〈
(yi − µ′i)(yj − µ′j)

〉
= 〈(xaAai − µbAbi)(xcAcj − µdAdj)〉

= 〈xaxc〉AaiAcj − µd〈xa〉AaiAdj − µb〈xc〉AbiAcj + µbµdAbiAdj

= 〈(xa − µa)(xb − µb)〉AaiAbj = (AT )iaΣabAbj (A.7)

or, more compactly,

Σ′ = ATΣA. (A.8)
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In order to introduce conditional probability notions to jointly Gaussian random vari-

ables, let us discuss some interesting properties of grouped random variables. If we split

some Gaussian vector x into two parts, namely,

x = (x1,x2) = ((x1, . . . , xd), (xd+1, . . . , xp)) (A.9)

then the mean vector and covariance matrix will also split accordingly:

µ = (µ1,µ2) = ((µ1, . . . , µd), (µd+1, . . . , µp)) (A.10)

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (A.11)

each block in Σ having the proper dimensions to accommodate the covariances among the

vectors x1 and x2.

With these remarks at hand, let us perform a linear transformation on x, choosing

A =

(
1d −Σ12Σ

−1
22

0 1p−d

)
. (A.12)

After some straightforward algebra, one can show that the new Gaussian vector y is

yT =
(
x1 − Σ12Σ

−1
22 x2,x2

)
= (y1,x2) (A.13)

whose associated mean vector and covariance matrix are

µ′T =
(
µ1 − Σ12Σ

−1
22 µ2,µ2

)
(A.14)

Σ′ =

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)
, (A.15)

meaning that the new y1 and x2 are uncorrelated and, therefore, independent.

Given a bivariate joint probability distribution function f(x1, x2), the conditional prob-

ability f ′(x1|x2 = x̃) is defined by [55]

f ′(x1|x2 = x̃) ≡ f(x1, x̃)∫
dx1 f(x1, x̃)

=

∫
dx2 δ(x2 − x̃)f(x1, x2)∫

dx1 dx2 δ(x2 − x̃) f(x1, x2)
. (A.16)

Let x be a Gaussian random vector, a subset of which has been set to x2 = x̃. We

could, in principle, substitute the value of the variables x1 into (A.3) and proceed with

the remaining (and normalized) expression. However, more interesting conclusions can be

drawn if the above results are applied. Instead of working with x = (x1,x2), let us use the

PDF associated to y = Ax, where A is given by (A.12):

f(y) =
1

(2π)p/2
√

det Σ22

√
det(Σ11 − Σ12Σ

−1
22 Σ21)

exp

[
−1

2
(y1 − µ′

1)
T (Σ11 − Σ12Σ

−1
22 Σ21)

−1(y1 − µ′
1)−

1

2
(x2 − µ2)

TΣ−122 (x2 − µ2)

]
= f̃(x1,x2) (A.17)
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Fixing x2 = x̃ and applying (A.16) to the resulting probability distribution function,

we find

f̃ ′(x1|x2 = x̃) =
1

(2π)d/2
√

det Σ̃
exp

[
−1

2
(x1 − µ̃)T Σ̃−1 (x1 − µ̃)

]
(A.18)

where

µ̃ = µ1 + Σ12Σ
−1
22 (x̃− µ2) (A.19)

Σ̃ = Σ11 − Σ12Σ
−1
22 Σ21 (A.20)

From the expression above, we can conclude that conditioned Gaussian random vec-

tors retain their Gaussian nature with mean and covariance matrix given by µ̃ and Σ̃

respectively.

A.3 Gaussian random fields

The idea of Gaussian random vectors can be generalized to random variables dependent

on a certain set of parameters. Instead of having p Gaussian variables, we will have an

infinite amount of them; the mean vector and covariance matrix will thus transform into a

mean and covariance functions.

A Gaussian random field (GRF) {V (t), t ∈ Rn} is defined as a function satisfying

r∑
i=1

aiV (ti) ∼ N(µ̃, σ̃) ∀r ∈ N, ∀ai ∈ R (A.21)

at every point of its domain. The mean function will be given by µ(t) = 〈V (t)〉 whereas

the covariance function must satisfy C(t, s) = 〈V (t)V (s)〉. If C(t, s) = f(t−s) the GRF is

said to be homogeneous ; if, on the other hand, C(t, s) = g(t ·s, |t|, |s|) the field is isotropic.

GRFs which are both homogeneous and isotropic are referred to as stationary, and satisfy

C(t, s) = C(|t− s|). (A.22)

In the main text, we will we working with this last type of covariance function.

Finally, note that any GRF V (t) with mean µ(t) can always be decomposed as

V (t) = µ(t) +W (t) (A.23)

where W (t) is a mean-zero GRF sharing the same covariance function V (t). This con-

struction will be useful to construct GRFs numerically (see appendix B).

A.4 Useful correlations

Since linear combinations of Gaussian variables are Gaussian as well, it is straightforward

to see that the derivatives of Gaussian random fields at any point of their domain are

Gaussian too. Some of the most important covariance functions relating different Gaussian

variables are the following [31, section 5.5]:〈
∂α+βV (φ)

∂αφi∂βφj

∂γ+δV (φ)

∂γφk∂δφl

〉
= (−1)α+β

∂α+β+γ+δ

∂αφi∂βφj∂γφk∂δφl
C(φ)

∣∣∣∣
φ=0

. (A.24)
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Let us change the notation to ∂φjV (0) = V ′j (0) and evaluate the previous expression for

some useful cases:

〈V (0)V (0)〉 = U2
0 (A.25)

〈V (0)V ′i (0)〉 =
〈
V ′i (0)V ′′jk(0)

〉
= 0 (A.26)

〈
V ′i (0)V ′j (0)

〉
= −

〈
V (0)V ′′ij (0)

〉
= −∂

2C(0)

∂φi∂φj
= α2δij (A.27)

〈
V ′′ij (0)V ′′kl(0)

〉
=

∂4C(0)

∂φi∂φj∂φk∂φl
=


α22 if i = j 6= k = l (and perms.)

α4 if i = j = k = l

0 otherwise.

(A.28)

〈
V (0)V ′′′jkl(0)

〉
=
〈
V ′′ij (0)V ′′′klm(0)

〉
= 0 (A.29)

〈
V ′i (0)V ′′′jkl(0)

〉
= −

〈
V ′′ij (0)V ′′kl(0)

〉
=


−α22 if i = j 6= k = l (and perms.)

−α4 if i = j = k = l

0 otherwise.

(A.30)

〈
V ′′′ijk(0)V ′′′lmn(0)

〉
= − ∂6C(0)

∂φi∂φj∂φk∂φl∂φm∂φn

=


α222 if i = j 6= k = l 6= m = n (and perms.)

α24 if i = j 6= k = l = m = n (and perms.)

α6 if i = j = k = l = m = n

0 otherwise.

(A.31)

In the above expressions, αi, αij and αijk are numerical constants which depend only on

the covariance function of the (unconstrained) Gaussian random field. Note that in the

two-dimensional case α222 will be absent from all derivations, since the indices appearing

in the correlation function between the third derivatives can only take two different values.

Note also that odd derivatives of the GRF are uncorrelated with even ones when they

are evaluated at the same point in field space. This is due to the isotropy of the covariance

function: if it is written as a power series, only even powers such as φ2i , φ
2
iφ

2
j will be

involved. Therefore, only those correlations which end up involving even derivatives of the

covariance function are non-zero.

This however, does not mean the fields V (φ) and, say, V ′i (φ) are completely uncorre-

lated. If we evaluate them at different points in field space, it can be shown [30, theorem 2.3]

that

〈
V (φ)V ′i (0)

〉
= − ∂

∂φi
C(φ) (A.32)

〈
V (φ)V ′′ij(0)

〉
=

∂2

∂φi∂φj
C(φ) (A.33)

〈
V (φ)V ′′′ijk(0)

〉
= − ∂3

∂φi∂φj∂φk
C(φ) (A.34)

therefore, a GRF and any of its derivatives are correlated as processes.
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A.5 The Kac-Rice formula and conditioned Gaussian random fields

Consider a Gaussian random vector field with components V(φ) = {V1(φ), . . . , Vn(φ)}.
The multidimensional16 Kac-Rice formula for this field gives us the expected number of

times a certain event, say, V(φ) = u, happens in an interval φ ∈ I of volume V:

E#,I [V(φ) = u] =

〈∫
I
dφ | detV ′(φ)| δ(V(φ)− u)

〉
(A.35)

where detV ′(φ) stands for the Jacobian determinant of the vector field,17 that is,

V ′(φ) =

∂φ1V1(φ) · · · ∂φ1Vn(φ)
...

...

∂φnV1(φ) · · · ∂φnVn(φ)

 . (A.36)

If the field is stationary, that is, homogeneous and isotropic, we can simplify the expression

above. Denoting V0 = V(0) and V ′
0 = V ′(0), we find, assuming ergodicity,

E#,I [V(φ) = u] = V
∫
dV0 dV0

′ | detV0
′| δ(V0 − u) P (V0,V0

′) (A.37)

where the integral is performed over the whole domain of V0 and V ′
0 and P (V0,V0

′) is the

joint PDF of V0 and its derivatives.

More than one simultaneous event can be considered in the expressions above by

enlarging the vector V and introducing more Dirac deltas representing each event.18

While the above expression can certainly be used to obtain the number of times a

certain event happens in a given interval, it can also be used to obtain distribution functions.

More specifically, applying ergodicity theorems, it can be shown [30] that the probability

of an event A happening, given that B has happened, that is, P (A|B), can be obtained by

P (A|B) =
E#,I [A ∩B]

E#,I [B]
. (A.38)

If A depends on continuous parameters (such as the position in field space of the GRF),

then the expression above represents a probability distribution function.

A.6 Conditioned Gaussian random field for a critical point

With the tools presented in the sections above, we are now ready to begin conditioning

GRFs. We can begin applying (A.38) and specializing it for critical points. We denote

by A the event describing the field V (φ) taking a particular configuration, while B im-

poses V (0) ≡ V0 = u and V ′i (0) ≡ ηi = 0, that is, a critical point lying in the center

of field space at height u. In order to proceed more easily, we shall discretize V (φ) as

{V (φ1), . . . , V (φq)} ≡ {V1, . . . Vq} ≡ V .

16Note that this formula is only valid for fields mapping Rn → Rn.
17For critical points, the Jacobian is identical to the Hessian of the GRF at the critical point.
18See, however, [30, ch.8] for a discussion on different types of conditioning events and how to deal with

them. The reason why we consider the V0 = u event simply with a Dirac delta is that it is a vertical window

conditioning event.
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In this case, the conditioning event involves the Gaussian random vector field V = ∇V ,

whose Jacobian is the Hessian of the original field V evaluated at φ = 0. Therefore, its

determinant is simply the product of the eigenvalues of the Hessian evaluated at the origin,∏n
i=1 λi.

Applying the Kac-Rice formula (A.37) into (A.38) yields

P
(
V (φ)

∣∣∣V0 = u,∇V0 = 0
)
≡ Pcp[V (φ)] =

=

∫ n∏
i=1

(
dηiδ(ηi)dλi|λi|

)
∆(λ) δ(V0−u)

q∏
j=1

(
dṼjδ(Ṽj−Vj)

)
P
(
V0,V ,η,λ

)
∫ n∏

i=1

(
dηiδ(ηi)dλi|λi|

)
∆(λ) δ(V0−u) P

(
V0,η,λ

) (A.39)

=N
∫ n∏

i=1

(dλi|λi|)∆(λ)P
(
V (φ),λ1, . . . ,λn

∣∣∣ V0 = u, ∇V0 = 0
)

(A.40)

where the integration domain will depend on the kind of critical point we are working

with. ∆(λ) ∝
∏
i<j |λi − λj | is the Jacobian of the variable change from components

of the Hessian matrix to its eigenvalues, the proportionality constant depending on the

dimensionality of the field space. For simplicity, the denominator in (A.39) has been

considered as a normalization factor for the distribution in the numerator.

We can rewrite (A.39) in a more useful way:

Pcp[V (φ)] =
∏
i

∫
dλi qu(λ1, . . . , λn) P

(
V (t)

∣∣∣ V0 = u, ∇V0 = 0, λ1, . . . , λn

)
(A.41)

where

qu(λ1, . . . , λn) =
∏
i

|λi| ∆(λ) P
(
λ1, . . . , λn

∣∣∣ V0 = u, ∇V0 = 0
)

(A.42)

represents the distribution of the Hessian eigenvalues at the origin for a critical point of

height u. However, due to the homogeneous and isotropic nature of the original GRF, the

latter distribution is valid for any critical point in the GRF, thus giving us a distribution

for the parameters at critical points in the unconstrained field.

Equations (A.41) and (A.42) are central results in this derivation. Note that the∏
i |λi| ∆(λ) factor is a direct consequence of the Kac-Rice formula, and as we shall ex-

plicitly see in appendix B, it carries important consequences in the distribution of the

eigenvalues at critical points.

We can now see the power of this method. Assuming we have discretized our field space,

we can readily compute the conditional probability distributions in (A.41) and (A.42) using

the results from section A.2. This leads, together with (A.42), to a distribution from which

we can draw eigenvalues for a minimum of height u. These can be plugged in (A.41) to

generate iterations of GRFs with a minimum (or any other critical point) at their origin.

In order to apply all this machinery, let us introduce the following Gaussian random

vector:

{V (φ1), . . . , V (φq), V (0), V ′1(0), . . . , V ′n(0), V ′′11(0), . . . , V ′′nn(0), V ′′12(0), . . . , V ′′(n−1)n(0)︸ ︷︷ ︸
V ′′ij (0) i<j

}

(A.43)
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where we denote by φq the position in field space of a discrete set of points whose center is

located at 0, V ′i (0) describes the first derivative along φi and V ′′ij(0) is the (i, j)-th element

of the Hessian matrix. In order to unclutter the notation, we will compactify the previous

vector as

{V , V (0),V ′(0),V ′′(0)} (A.44)

which has dimension q + 1 + n + n + 1
2n(n − 1). The mean of (A.43) is zero, and the

covariance matrix of these quantities can be computed from the results in section A.4:

Σ =


SV V SV 0 SV 1 SV 2

S0V U2
0 0 S02

S1V 0 S11 0

S2V S20 0 S22

 (A.45)

where

S02 =
(
−α2 · · · −α2 0 · · · 0

)
= ST20 (A.46)

S11 = α2 × 1n (A.47)

S22 =



α4 α22 · · · α22

α22 α4 · · · α22 0
...

...
. . .

...

α22 α22 · · · α4

α22 0

0
. . .

0 α22


(A.48)

SV V =


C(0) C(φ1 − φ2) · · · C(φ1 − φq)

C(φ2 − φ1) C(0) · · · C(φ2 − φq)
...

...
. . .

...

C(φq − φ1) C(φq − φ2) · · · C(0)

 (A.49)

S0V =
(
C(φ1) C(φ2) · · · C(φq)

)
= STV 0 (A.50)

S1V =


−C ′1(φ1) −C ′1(φ2) · · · −C ′1(φq)
−C ′2(φ1) −C ′2(φ2) · · · −C ′2(φq)

...
...

. . .
...

−C ′n(φ1) −C ′n(φ2) · · · −C ′n(φq)

 = STV 1 (A.51)

S2V =



C ′′11(φ1) · · · C ′′11(φq)
...

. . .
...

C ′′nn(φ1) · · · C ′′nn(φq)

C ′′12(φ1) · · · C ′′12(φq)
...

. . .
...

C ′′(n−1)n(φ1) · · · C ′′(n−1)n(φq)


= STV 2 (A.52)
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In order to simplify the notation, since the jointly Gaussian probability distribution in

the end depends on two-point functions, we can actually write19 (A.45) in the following way:

Σ =


U2
0 C(φ1 − φ2) C(φ1) SV 1(φ1) SV 2(φ1)

C(φ2 − φ1) U2
0 C(φ2) SV 1(φ2) SV 2(φ2)

C(φ1) C(φ2) U2
0 0 S02

S1V (φ1) S1V (φ2) 0 S11 0

S2V (φ1) S2V (φ2) S20 0 S22

 (A.53)

where

SV 1(φ) =
(
−C ′1(φ) · · · −C ′n(φ)

)
= ST1V (A.54)

SV 2(φ) =
(
C ′′11(φ) · · · C ′′nn(φ) C ′′12(φ) · · · C ′′(n−1)n(φ)

)
= ST2V (A.55)

With these arrangements, the Gaussian random vector corresponding to (A.53) is{
V (φ1), V (φ2), V (0),V ′(0),V ′′(0)

}
. (A.56)

We have decomposed (A.53) into blocks so it can be plugged into (A.57) and (A.58)

to obtain the mean function and covariance matrix of the conditioned process.20 Using

the results given above, one gets that the expectation value for the GRF around a critical

point where V0 = u and V ′
0 = 0, is given by,

µ̃(φ) = µ(φ) +
(
C(φ) SV 1(φ) SV 2(φ)

) U2
0 0 S02

0 S11 0

S20 0 S22


−1 u

0

h


=
(
C(φ) SV 2(φ)

)( U2
0 S02

S20 S22

)−1(
u

h

)
(A.57)

where h =
{
h11, . . . , hnn, h12, . . . , h(n−1)n

}
represents a certain configuration of the Hessian

components of the field around the origin.

Furthermore, the covariance function for the conditioned GRF is now

C̃(φ1,φ2) = C(φ1 − φ2)−
(
C(φ1) SV 1(φ1) SV 2(φ1)

) U2
0 0 S02

0 S11 0

S20 0 S22


−1 C(φ2)

S1V (φ2)

S2V (φ2)


= C(φ1 − φ2)−

(
C(φ1) SV 2(φ1)

)( U2
0 S02

S20 S22

)−1(
C(s)

S2V (φ2)

)
− SV 1(φ1)S−111 S1V (φ2) (A.58)

19We basically have evaluated the first row for a given φ1 and the first column for a given φ2, just as

in [32]. Doing so allows us to treat the independent variable as a continuous one, rather than a discrete one.
20Strictly speaking, we should be getting the mean and covariance of the random vector {V (φ1), V (φ2)}.

Due to the isotropy of the GRF, φ1 and φ2 can be any points in field space. Thus, in order to unclutter

the notation, we will only keep track of a single component of the resulting mean vector. Likewise, we will

only keep the 〈V (φ1)V (φ2)〉 component of the covariance matrix.
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We can also obtain (A.42), the distribution of eigenvalues at a critical point of a given

height u, following the same steps as above, using as initial covariance matrix the bottom-

right block of (A.53).

A.6.1 Analysis of a conditioned 2D Gaussian field

Let us apply these expressions to a two-dimensional isotropic and homogeneous GRF with

covariance function

C(φ) = U2
0 exp

(
− φ

2

2Λ2

)
, (A.59)

and zero mean. For this case, we obtain the conditioned mean from (A.57), which gives

µ̃(φ) = e−
φ2

2Λ2

[
u

(
1 +

φ2

2Λ2

)
+

1

2

(
φ1 φ2

)( h11 h12
h21 h22

)(
φ1
φ2

)]
, (A.60)

where h21 = h12, by definition. Since we are free to choose the basis of φ, in order

to simplify the expression we will employ the eigenvector basis of the Hessian matrix,

therefore transforming (A.60) to

µ̃(φ) = e−
φ2

2Λ2

[
u

(
1 +

φ2

2Λ2

)
+

1

2

2∑
i=1

λiφ
2
i

]
, (A.61)

where λi denote the two eigenvectors, drawn from (A.42) specialized to this case (see

below). As for the conditioned covariance, from (A.58) we obtain

C̃(φ1,φ2) =U2
0 exp

[
−|φ1|2+|φ2|2

2Λ2

](
exp

[
φ1 ·φ2

Λ2

]
−1−φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4

)
. (A.62)

Note that the covariance function of the conditioned process is not homogeneous anymore!

This, however, makes complete sense. We have actually made the center of every realization

special, meaning that homogeneity is broken in this sense. In fact, the new covariance is

isotropic with respect to φ = 0, further stating that the center of the GRF is somehow

different from the rest of the points.

All the presented machinery works not only for minima, but also for maxima and

saddle points as well; the only difference among these being the sign of each λi.

A.6.2 Distribution of heights and eigenvalues of the Hessian at a critical point

In order to calculate the probability distribution of the eigenvalues of the Hessian at a

certain height of the potential at critical points we should pay attention to two ingredients.

The first one is the fact that the height and the second derivatives are correlated, so

we need to calculate the multivariate covariance function for these quantities together.

Furthermore, we also want to calculate this at critical points which can be done with the

use of the generalized Kac-Rice formula.

Assuming a critical point located at φ = 0, the probability distribution to be com-

puted is

P
(
V0, λ1, λ2

∣∣∣∇V0 = 0
)

(A.63)
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We can easily compute the PDF by conditioning the following random vector:

{V0, h11, h22, h12, η1, η2} (A.64)

of mean zero and covariance matrix  U2
0 S02 0

S20 S22 0

0 0 S11

 (A.65)

Applying (A.19) and (A.20) to obtain the mean and covariance of the conditioned

process and plugging them into (A.42), we get

Pcp(V0, λ1, λ2) du
2∏
i=1

dλi = N |λ1||λ2| ∆(λ) P
(
V0, λ1, λ2

∣∣∣∇V0 = 0
)

(A.66)

= N|λ1 − λ2||λ1||λ2| exp

[
− V 2

0

2U2
0

]
exp

[
−
(

Λ2λi + V0
2U0

)2
]
dλi dV0

(A.67)

whereN is a normalization factor and, in this two-dimensional example, ∆(λ)=|λ1−λ2|·π/2.

Setting V0 to a constant value, say V0 = u, in (A.67) yields the distribution qu(λ1, λ2),

defined in (A.42). On the other hand, integrating out either V0 or the eigenvalues, gives

the marginal distribution for the remaining variables in critical points (see appendix B for

more detail).

Another interesting application of (A.66) is that it can be used to count the expected

number of critical points in a certain region of field space. For example, to compute the

expected number of minima per correlation volume Λ2 in the example above, a direct

application of (A.37) yields

E(#min)

Λ2
=

∫ +∞

−∞
du

∫ +∞

0
dλ1

∫ +∞

0
dλ2

π

2
λ1λ2 |λ1 − λ2|P

(
V0, λ1, λ2

∣∣∣∇V0 = 0
)

=
1

2
√

3
. (A.68)

In this case, the eigenvalues have been assumed to be positive. Setting other integration

limits can give the expected number of maxima and saddle points, for example.

A.7 Conditioned Gaussian random field for an inflection point

We shall define an inflection point on our GRF as a point where the gradient of the field

points in the direction of a Hessian eigenvector whose corresponding eigenvalue is zero.

Furthermore, we will also demand that the non-zero eigenvalue of the Hessian to be positive

at this point.

In order to do this we can expand the discussion of the previous section by taking

into account the third derivatives of the GRFs along with the lower ones. In order to

simplify this description we will give a detail account of this construction for a 2d GRF
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only. Extending this to higher dimensions is straightforward. In particular we will be

interested in the Gaussian random vector{
V (φ1), V (φ2), V0, V

′
1(0), V ′2(0), V ′′11(0), V ′′22(0), V ′′12(0), V ′′′111(0), V ′′′122(0), V ′′′222(0), V ′′′112(0)

}
(A.69)

whose components have zero mean. As for the covariance matrix, it can be expressed as

Σ =



U2
0 C(φ1 − φ2) C(φ1) SV 1(φ1) SV 2(φ1) SV 3(φ1)

C(φ2 − φ1) U2
0 C(φ2) SV 1(φ2) SV 2(φ2) SV 3(φ2)

C(φ1) C(φ2) U2
0 0 S02 0

S1V (φ1) S1V (φ2) 0 S11 0 S13
S2V (φ1) S2V (φ2) S20 0 S22 0

S3V (φ1) S3V (φ2) 0 S31 0 S33


(A.70)

where (for the 2D case)

SV 3(φ) =
(
−C ′111(φ) −C ′122(φ) −C ′222(φ) −C ′112(φ)

)
= ST3V (A.71)

S13 =

(
−α4 −α22 0 0

0 0 −α4 −α22

)
= ST31 (A.72)

S33 =


α6 α24 0 0

α24 α24 0 0

0 0 α6 α24

0 0 α24 α24

 (A.73)

and the other matrix blocks have been defined in (A.46)–(A.52).

Following the same steps as in the critical point case, we can obtain (for the covariance

function (A.59)) the expression for a GRF once we conditioned everything up to the third

derivative. In order to do this we can first compute the mean value of the GRF in the

vicinity of our inflection point, which is given by

µ̃(φ) = 0+
(
C(φ) SV 1(φ) SV 2(φ) SV 3(φ)

)
U2
0 0 S02 0

0 S11 0 S13
S20 0 S22 0

0 S31 0 S33


−1

u

η

h

ρ

 (A.74)

=
(
C(φ) SV 2(φ)

)( U2
0 S02

S20 S22

)−1(
u

h

)
+
(
SV 1(φ) SV 3(φ)

)(S11 S13
S31 S33

)−1(
η

ρ

)

= exp

[
− φ

2

2Λ2

](u+φ·η)

(
1+

φ2

2Λ2

)
+

1

2

2∑
i=1

λiφ
2
i +

1

6

2∑
i,j,k=1

φiφjφkρijk

 , (A.75)

where the basis of φ has been chosen to be the eigenbasis of the Hessian matrix (whose

components are described by h and its eigenvalues by λi) and we have denoted by η and

ρ the components of the first and third derivatives at the origin along the eigenbasis.
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The conditioned covariance, on the other hand, reads

C̃(φ1,φ2) =C(φ1−φ2)−
(
C(φ1) SV 1(φ1) SV 2(φ1) SV 3(φ1)

)
U2
0 0 S02 0

0 S11 0 S13

S20 0 S22 0

0 S31 0 S33


−1

C(φ2)

S1V (φ2)

S2V (φ2)

S3V (φ2)


=U2

0 exp

[
−|φ1|2+|φ2|2

2Λ2

](
exp

[
φ1 ·φ2

Λ2

]
−1−φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4
− (φ1 ·φ2)3

6Λ6

)
(A.76)

which, once again, is isotropic around the origin of the field.

A.7.1 Probability distribution for the inflection point parameters

We can extend the treatment for the eigenvalues of the hessian that we did for the critical

points to inflection points. The difference is that we will now impose that one of the

eigenvalues vanishes while the other one is positive. Furthermore we will also impose

that the gradient in the second eigenvalue direction also vanishes. These conditions have

to be included in the calculation of the PDF of the parameters of the inflection points

(V0, η1, λ2,ρ). Using a generalized version of the Kac-Rice procedure we arrive to,

Pinf dV0 dλ2 dη1 dρ = N|λ2|2|ρ111| P
(
V0, λ2 | λ1 = 0

)
P (η1, ρijk | η2 = 0) (A.77)

where

P
(
V0, λ2 |λ1 = 0

)
dV0 dλ2 = N exp

[
−4V 2

0 − 2Λ2V0λ2 − Λ4λ22
2U0

]
dV0 dλ2 (A.78)

P (η1, ρijk | η2 = 0) dη1 dρijk =

N exp

− Λ2

12U2
0

18η21 + 6Λ2η1(ρ111 + ρ122) + Λ4
2∑

i,j,k=1

ρ2ijk

 dη1 dρijk (A.79)

In (A.77), one of the |λ2| factors comes from the Jacobian of the variable change to the

eigenbasis of the Hessian (though with λ1 = 0); the remaining |λ2||ρ111| factor is just the

determinant appearing in Kac-Rice’s expression.

These last expressions can be used as in (A.68) to compute the expected number

of inflection point per correlation volume Λ2, which yields, for our choice of covariance

function,

E(#ip)

Λ2
=

√
5−
√

3

3π
. (A.80)

B Numerical implementation and tests of the probability distributions

B.1 Generation of Gaussian random fields: Karhunen-Loève expansion

In order to generate realizations of two-dimensional Gaussian random fields, we resorted

to the so-called spectral or Karhunen-Loève decomposition, due to its mathematical and

computational simplicity.
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Given a certain mean function µ(t), covariance function C(t, s) and a discretized space

{ta} (where a runs over all n points in the lattice space) of a GRF, we can build the matrix

Cab = C(ta, tb), which by construction is symmetric and positive definite; therefore, we

can always decompose Cab as

C = UΛUT (B.1)

where Λ = diag(λ1, . . . , λn) is the diagonal eigenvalue matrix, consisting of non-negative

entries, and U is constructed by inserting all eigenvectors along its rows. Since Λ > 0, we

can further decompose C as

C = U
√

Λ
√

ΛUT =
(
U
√

Λ
)(

U
√

Λ
)T

= L LT . (B.2)

This procedure is tantamount to performing a Cholesky decomposition [56] on C; which is

by far the most expensive step in this algorithm, in terms of computational cost.

Once we have computed L, constructing the GRF on the discretized space is straight-

forward. We only need to construct a random vector ξ of length n whose entries are

independently distributed as Gaussian variables of zero mean and unit variance, and intro-

duce the following variables:

Va = µa + Labξb, (B.3)

where µa = µ(ta). It can be easily shown that this gives the correct correlations among

the values of the GRF evaluated at different points ta,

〈(Va−µa)(Vb−µb)〉= 〈LacξcLbdξd〉=LacLbd〈ξcξd〉
=LacLbdδcd =LacLbc =LacL

T
cb = (LLT )ab =Cab =C(ta, tb). (B.4)

The main advantage of using this procedure to generate GRFs is that the main compu-

tationally costly step, constructing the L matrix, needs to be performed only once. The rest

of the algorithm is highly trivial from this perspective and allows for further simplification,

as we have seen.

B.2 Numerical evaluations of critical points

Using the expressions above we can compute the normalized distribution of heights of

minima, maxima and saddle points for a 2d GRF,

Pu,mindu=

√
3

4πU0
e−u

2/U2
0

(
− 2u

U0
+2
√
πeu

2/4U2
0 erfc

[
u

2U0

]
+
√

2π

(
u2

U2
0

−1

)
eu

2/2U2
0 erfc

[
u
√
2U0

])
du

Pu,maxdu=

√
3

4πU0
e−u

2/U2
0

(
2u

U0
+2
√
πeu

2/4U2
0 erfc

[
− u

2U0

]
+
√

2π

(
u2

U2
0

−1

)
eu

2/2U2
0 erfc

[
− u
√
2U0

])
du

Pu,sp du=

√
3

2
√
πU0

exp

[
− 3u2

4U2
0

]
. (B.5)
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Figure 13. Histograms of (a) heights and (b-d) eigenvalues for critical points, normalized to

expected values, from a 105Λ2 GRF. Distributions (B.5) and (B.6) are plotted along with their

respective histograms, normalized with respect to (A.68).

Furthermore, we can also compute the marginal distribution for the Hessian eigenvalues at

critical points regardless of their height. This distribution is given by,

Psp,λidλ1dλ2 =

√
3

π

Λ10

32U5
0

2∏
i=1

(
|λi|exp

[
− Λ4

8U2
0

λ2i

])
|λ1−λ2|exp

[
− Λ4

16U2
0

(λ1−λ2)2
]
dλ1dλ2

=
1

2
Pmin,max,λidλ1dλ2. (B.6)

We have checked the distributions above with numerical realizations of unconstrained Gaus-

sian random fields in Mathematica. Regarding the heights of critical points, the numerical

results fit the analytical prediction perfectly, as shown in figure 13(a).

As for the eigenvalue distribution, figure 13(b)-(d) shows that the histograms fit the

analytical predictions perfectly once again. An important feature of these distributions is

the fact that critical points with one of the eigenvalues close to zero or both eigenvalues

close to each other are very rare; this effect (referred to as eigenvalue repulsion) is a direct

consequence of the presence of the Vandermonde determinant in the distributions, as well

as the Jacobian of the gradient field in the Kac-Rice formula.
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Figure 14. Normalized histograms of (a) height (b) η1 (c) λ2 (d) ρ111 for inflection points and

their expected PDFs (B.7)–(B.10), constrained by the condition λ2/η1 > 4.

B.3 Numerical evaluations of inflection points

Using the results given above, we can obtain the following distributions for the parameters

of the inflection points in a typical GRF.

Pudu=
3
√

3

16πU3
0

exp

[
− u2

U2
0

](
−2U0u+

√
π(u2+2U2

0 )exp

[
u2

4U2
0

]
erfc

[
u

2U0

])
du (B.7)

Pλ2dλ2 =

√
3

π

3

16

Λ6

U3
0

λ22 exp

[
− 3Λ4

16U2
0

λ22

]
dλ2 (B.8)

Pη1dη1 =
(3+
√

15)Λ

12U2
0

exp

[
− 5Λ2

4U2
0

η21

](√
12

π
U0−3Λ|η1|exp

[
3Λ2

4U2
0

η21

]
erfc

[√
3Λ

2U0
|η1|
])

dη1

(B.9)

Pρ111dρ111 =
(5+
√

15)Λ6

60U2
0

|ρ111|exp

[
− Λ6

30U2
0

ρ2111

]
erfc

[
Λ3

2
√

5U0

|ρ111|
]
dρ111 (B.10)

where the complementary error function is defined as

erfc(x) =
2√
π

∫ ∞
x

dt e−t
2
.

Once again, we found these expressions to be fully consistent with the numerical results,

as shown in figure 14.
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In order to find inflection points in our numerically generated potentials, we looked for

roots of the system {
ηT H η
ηT H η⊥

(B.11)

where H is the Hessian matrix, ηT = (η1, η2) represents the gradient at any point of the

field and ηT⊥ = (−η2, η1). It can be easily shown that simultaneous roots of eq. (B.11) are

either critical or inflection points.

Finding inflection points numerically is quite tricky and the algorithm sometimes in-

corporates spurious points that, upon further study, are proven to be fictitious inflection

points. In order to make a proper comparison to the general expressions we have found

analytically and avoid the inclusion of those spurious inflection points, we only considered

those points which satisfied λ2/η1 > 4. This cut removes around 30% of the potential inflec-

tion points. Note that even though we might be removing a portion of real inflection points,

the distributions above are still in perfect agreement with the analytic computations.
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