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Abstract 

The European Union low-carbon strategy includes a range of complementary policies. Potential 

interactions between instruments and different timing of their implementation can influence the cost 

and likelihood of achieving the targets. We test the interactions between the three main pillars of the 

European Union strategy through a dynamic Computable General Equilibrium model (GDynEP) with 

a time horizon of 2050. Main results are: i) going for the unilateral European Union carbon mitigation 

target without any complementary technological policy will produce large economic losses; ii) by 

investing in clean energy technologies (energy efficiency and renewable energy) with a carbon tax 

revenue recycling mechanism, these losses will decrease substantially; iii) when complementary 

clean energy technology policies are implemented, the optimal timing of binding targets changes; iv) 

the higher the public support to clean energy technologies, the larger the economic gains in early 

adoption of challenging abatement targets. 
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1. Introduction 

The Climate and Energy Policy Framework approved by the European Union (EU) in October 2014 

and submitted to the United Nations Framework Convention on Climate Change (UNFCCC) as the 

EU’s Intended Nationally Determined Contribution (INDC) in view of the Paris Conference of Parties 

(COP21) - hereafter briefly referred to as the EU2030 strategy and commonly cited in the documents 

published by the European Commission (EC) during 2014 (EC, 2014a,b,c,d) - constitutes a very 

challenging objective for the EU in climate mitigation policy. The EU2030 strategy follows the 

previous EU climate agenda, the so-called EU2020, and explicitly combines different policy 

instruments and objectives in a unique strategy defining three goals to be achieved by 2030: a 40% 

reduction in greenhouse gas (GHG) emissions with respect to 1990 levels; an EU-wide binding target 

of at least 27% of final energy consumption from renewable sources (RS); and a 27% increase in 

energy efficiency (EE) with respect to a business as usual scenario (BAU).1 

While GHG reduction is clearly a target and deserves a policy instrument, the other two targets 

are simultaneously instruments themselves designed to address potential negative effects deriving 

from excessive costs in achieving the GHG reduction target. Indeed, the European Emission Trading 

System (ETS) as the instrument historically chosen by the EU for respecting the reduction target 

(Sáenz de Miera and Muñoz Rodríguez, 2015), has been found not to be dynamically efficient and 

needs to be complemented with incentives for innovation in clean energy technologies (CET) in order 

to reduce negative economic impacts on regulated firms (Martin et al., 2016). The co-occurrence of 

the two as policy targets and instruments implies the need to analyse the effectiveness of the policy 

mix design of the EU energy strategy. 

Recent contributions emphasize the need for adopting a broad perspective in the analysis of the 

EU energy transition policy mix design that not only examines the interaction of instruments, but also 

captures other aspects related to the policy mix in terms of its coherence, consistency, and the 

                                                      
1 This 27% renewable energy target share in 2030 would translate in a 45% share in renewable electricity, in a range from 

43% to 47% according to domestic technological capabilities and energy mix of Member States (EC, 2014a,c). 
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correspondence of policy strategies with their long-term targets (Rogge et al., 2017; Rosenow et al., 

2017). 

The present paper contributes to this debate by focussing on three specific aspects: i) the reciprocal 

influence of instruments and targets forming the EU2030 strategy; ii) the potential benefits deriving 

from the application of a revenue recycling mechanism of carbon taxation; iii) the linkages between 

different timing of abatement profiles and policy mix effectiveness under different evaluation criteria. 

Henceforth, the EU2030 strategy is analysed by considering the effects of alternative mixes of 

policy tools and of different distributions of reduction targets over time on selected issues, namely 

cost effectiveness and economic impacts. For this purpose, we have developed a dynamic Computable 

General Equilibrium (CGE) model that simulates the EU2030 strategy under different combinations 

of the three main policy pillars and tests alternative timing profiles of decarbonisation path up to 

2050. 

The rest of the paper is structured as follows. Section 2 reviews the literature on open issues on 

ex-ante evaluation of the EU energy transition strategy with respect to policy mix setting and timing; 

Section 3 describes the dynamic CGE model; Section 4 provides the numerical simulation results; 

Section 5 outlines main conclusions and policy implications. 

 

2. Literature review 

The ambitious targets of the EU long term energy transition policy raise at least five open questions 

that deserve further empirical analysis in order to provide policy makers quantitatively grounded 

advices to improve effectiveness of the policy mix design while minimizing the costs for such energy 

transition process. 

The first concern regards the effectiveness of the EU-ETS in achieving the abatement targets. The 

ETS was initially partly designed as a compensating mechanism for energy intensive industries that 

would face large economic losses from a comprehensive carbon mitigation policy. Such a policy 

would have implied the implementation of a carbon policy for the whole economic system. In 
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practice, however, a carbon tax at the national level, including all emitting sectors, has been adopted 

only in 11 EU countries with varying mechanisms, tax rates and temporal application.2 Accordingly, 

the ETS sectors emerge as the ones contributing substantially to mitigation targets through a market-

based instrument, and this implies increasing mitigation costs precisely for those sectors that need to 

be protected. For this reason Tol (2013) proposed a carbon tax be applied to EU Member States in a 

coordinated approach in preference to the current ETS in order to achieve the abatement targets at 

lower costs. 

The second issue is the choice of the criteria to evaluate the policy mix performance, once it is 

acknowledged that complementary CET policies are required but their effectiveness is affected by 

the double role of targets and instruments. When designing the policy framework, it must be 

recognized that a number of dimensions are relevant to instrument choice, such as cost effectiveness, 

equity in distributive effects, etc., and that no single instrument is best along all dimensions (Goulder 

and Parry, 2008). Accordingly, a combination of different instruments would not violate Tinbergen’s 

rule as long as the different policy evaluation dimensions correspond to different policy targets, or in 

other words if there are coexisting market failures that should be addressed (Tinbergen, 1952, 1956). 

As an example, while a carbon tax is justified by the existence of the negative environmental 

externality, additional policies to promote CET are needed to the extent that they address other market 

failures, such as the free riding behaviour of agents in exploiting knowledge created by others. As 

another example, while CET development and diffusion for EE and RS are instruments for reducing 

the costs of the transition on the economic system, they are targets themselves from an energy security 

strategy perspective. In the case of a such complex framework, policy evaluation exercises should 

look at the performance of the entire policy mix bearing in mind the multiple targets under 

investigation (Görlach, 2014). 

The third critical point refers to the effects of the interaction of such complementary policies with 

                                                      
2 The 11 European Union Member States that implemented at least for one year a carbon tax system from 1990 are: 

Denmark, Estonia, Finland, France, Ireland, Italy, Latvia, Poland, Portugal, Slovenia, Sweden. For a detailed description 

on implementation issues see World Bank (2017). 
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the carbon pricing mechanism. Several authors have analysed the EU energy and climate strategy 

focussing on the cost effectiveness of the policy mix and potential economic losses for the EU 

economy, especially in a unilateral climate policy perspective, by considering: the 2020 targets 

(Böhringer et al., 2009a,b; Capros et al., 2011; Tol, 2012), the long-term implications (Capros et al., 

2014; Hübler and Löschel, 2013), and the potential costs of overlapping climate and energy 

instruments (de Vos et al., 2014; Enerdata, 2014; Flues et al., 2014; Fraunhofer ISI, 2014). As a 

general conclusion the literature argues that the existence of externalities, market failures and other 

economic, social, environmental and technology goals may justify additional policy instruments but 

the appropriate instruments mix should be designed to avoid additional costs caused by the 

overlapping regulation (Böhringer et al., 2016; OECD, 2011). 

Selected contributions typically analyse single interaction mechanisms. A first example is given 

by the mutual influence of support measures for RS and a carbon pricing mechanism. In a cap-and-

trade system where emissions are fixed, the introduction of support measures for RS could result in 

a reduced demand for allowances with the consequence of increasing the production of the carbon-

intensive technologies and shifting of emissions to other sectors not covered by the permits scheme 

(Böhringer, 2014; Delarue and van den Bergh, 2016; Lehmann and Gawel, 2013). On the contrary, 

Duscha et al. (2016) suggest that even if RS are not the most cost-effective option, they can help 

achieve a triple dividend (environmental protection, energy security and jobs creation), resulting in 

positive but uncertain economic gains. Accordingly, energy and climate policy should be designed 

taking account of factors beyond the pure market mechanism and integrated with industrial and 

innovation policies (Ćetković and Buzogány, 2016). 

A second example of policy interaction concerns the mutual influence between EE and the carbon 

pricing mechanism. From one side EE contributes to the emissions reduction goal and also reduces 

the vulnerability of consumers to high and volatile energy prices, thus enhancing the security of the 

energy system. From the other side, if substantial energy savings are achieved, energy becomes 

cheaper. Accordingly, the reduction in energy prices could further lead to an increase in energy 
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demand due to a rebound effect mechanism (Barker et al., 2007; Bentzen, 2004; Gillingham et al., 

2013). 

A third example of interaction refers to the co-existence of the three policy pillars under scrutiny. 

While the ETS increases the market price for fossil energy, support for RS and EE tends to mitigate 

the price rise, partly reducing the decarbonisation trend. Moreover, the promotion of RS technologies 

tends to reduce the incentives for energy saving and investment in EE (reducing, ceteris paribus, the 

level of fossil fuel demand and, consequently, the carbon price). These interactions strongly depend 

on the specific instruments in place and the optimality of the policy mix depends on how the 

interactions of each instrument with the others could support the set of targets the policy makers have 

in mind (del Río González, 2008, 2010). An optimal climate policies portfolio should include both 

carbon pricing and support for CETs because while the latter can address knowledge-related market 

failures, only the former can stimulate demand for low-emission technologies and their diffusion and 

adoption, thus providing enough incentives for radical innovation and backstop technologies in the 

long-term (Gerlagh et al., 2014; Popp, 2016). At a more general level, the overall policy mix should 

present consistency of the instruments mix with the policy strategy in order to work in a unique 

direction (Rogge and Reichardt, 2016). 

The fourth relevant issue regarding the EU2030 strategy concerns the financing mechanisms of 

complementary instruments, especially technology development and diffusion. Although according 

to Directive 2009/29/EC (EC, 2009) the financing mechanism of CET policies has been already 

determined, as at least half of the ETS auctioning revenues should be used to reduce GHG emissions 

by promoting EE and RS (Esch, 2013; Grießhaber, 2011),3 empirical analyses on the effects 

associated with such revenue recycling mechanism are few, and mainly look at where revenues are 

                                                      
3 Revenues from the auction process of emission permits in the ETS over the period 2013-2015 were allocated as follows: 

80% to “green spending” (energy efficiency, renewable energy, R&D and any other effort for GHG reduction) and 20% 

to general government funds without spending obligations. No share of the carbon revenue, however, was recycled for 

reducing other tax rates on firms or individuals (Carl and Fedor, 2016). In particular, according to Vaidyula and Alberola 

(2016), over the same period about 29% and 28% of the ETS revenue were used for, respectively, RS and EE support on 

average, inherently linking the first pillar of the EU climate policy (GHG reduction via carbon pricing) with the other 

two. 
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allocated, as for instance to support the overall tax system (Bowen, 2015), or to finance innovation 

policies (Bosetti et al., 2011), without any assessment on effectiveness and performance of the overall 

policy mix. 

The last issue is the influence of alternative timing profiles on policy mix effectiveness. The cost 

of achieving the abatement target depends not only on the amount of emissions to be reduced and the 

multiple forms of policy support but also on the timing of the reduction path. On the one side, the 

early adoption of stringent targets might face public opposition given the gap between the large (and 

quite concrete) short term economic costs of abatement and long term potential and uncertain benefits 

from mitigating global warming, referred to as the climate policy dilemma (Pindyck, 2013). On the 

other side, efforts in fast-tracking the adoption of low-carbon transition pathways might bring first 

mover comparative advantages due to technological competitiveness, thus reducing welfare costs due 

to delaying interventions (Acemoglu et al., 2016). 

 

3. Model settings and scenarios 

To address the questions posed above we have developed a dynamic CGE model based on a modified 

version of the GTAP (Global Trade Analysis Project) model, hereafter referred to as GDynEP. Given 

the ex-ante nature of such scenario analysis and the large number of behavioural parameters, input-

output data at the sector and country level, and inter-sectoral and international linkages to be included, 

a CGE framework allows for all these factors to be examined relying on well-established and already 

existing databases and modelling methodologies. 

GDynEP results from merging the GDynE (the energy version of the dynamic GDyn) developed 

by Golub (2013) and improved by Markandya et al. (2015) with the new GTAP-Power (Peters, 2016), 

which introduces for the first time in GTAP a detailed representation of the renewable electricity 

sector. GDynEP relies on the version of the GTAP-Database 9.1 updated to 2011. It is a recursive 

dynamic model that allows the representation of long-term policies, including assessment exercises 

related to different timing in implementing climate policies. 
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GDynEP contains two additional policy instruments in addition to the standard carbon price 

instrument in GDynE, represented by public support for EE and RS, and a novel financial mechanism 

for such public policy support modelled via a carbon tax revenue (CTR) recycling mechanism.4 

Regarding the standard carbon pricing as the core instrument to achieve the GHG reduction target, 

we consider a market-based mechanism driven by a target on CO2 emissions based on a carbon tax 

(CT) applied to the whole EU economic system. Such a design corresponds to a full participation of 

all sectors to the ETS achieving the emission target at the minimum cost. As a general remark, by 

modelling EU as an aggregate and covering all sectors, the two available market-based policy options, 

CT and ETS, are perfectly equivalent, since the Pigouvian CT in the whole EU corresponds to the 

minimum cost for achieving the target, which is equivalent to the permit price level reached if the 

whole economy of all EU countries is involved into ETS. The inclusion of all sectors (industries, 

services, households) under the umbrella of a carbon tax policy addresses the criticism of ETS failures 

as claimed by Tol (2013).5 Accordingly, in the following we refer to CT as the market-based 

instrument representing the first policy pillar of the EU2030 strategy, that is equivalent to an ETS 

involving all sectors. As one standard procedure, the whole CTR collected by the EU central authority 

is transferred to consumers as a lump sum in the Equivalent Variation (EV) measure. 

The other two policy instruments (support to EE and RS) financed by a CTR recycling mechanism 

involve the introduction of a percentage rate of the total CTR (𝛾) directed to finance the two CET 

options explored here. The implementation of such a policy is reflected in the reduction of CTR 

directed as a lump sum to consumers. To the best of our knowledge this is the first contribution 

                                                      
4 In order to describe how we modelled in GDynEP the three policy instruments forming the EU low carbon strategy, we 

have developed a simplified theoretical model available as Supplementary Material Appendices A and B. Such a stylized 

model is also helpful in disentangling and interpreting the multiple interactions across the three policy pillars (given a 

specific abatement target) and the influence played by selected behavioural parameters. In addition, all details on GDynEP 

in terms of merging different model versions and databases together with details on sectors and regional aggregation are 

described in Supplementary Material, Appendix C. 
5 We acknowledge that this carbon pricing design is far from the real functioning of the EU-ETS. By differentiating 

economic sectors into ETS and non-ETS, the interactions across the three policy instruments become extremely 

complicated and unpredictable, given that the carbon pricing in that case operates only on ETS sectors, while the other 

two policy instruments related to CETs support interact with the whole economy. Further modelling efforts on this side 

will be part of future research activities. 
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directly assessing the effectiveness and economic impact of the whole EU2030 strategy by explicitly 

analysing a financial mechanism for supporting CET and thus also including the cost of public support 

into the policy impact evaluation. 

In order to quantify how public investments might be translated into clean energy innovation at an 

empirical level, two elasticity parameters are required, namely (𝜑) for EE and (𝜃) for RS. Their 

computation is based on considering data on the last ten years of investments in the EU in these fields 

with respect to the starting date of GDynEP (2011). 

More specifically, in order to transform investment efforts (millions of USD) into input-

augmenting technical change in energy efficiency (𝜑) we use a standard elasticity computation 

method based on changes over time of total innovation efforts (here represented by R&D stock) and 

gains in energy efficiency expressed as energy service improvements (Griliches and Lichtenberg, 

1984; Hall and Mairesse, 1995). For the sake of simplicity, we assume that EE uniformly influences 

productivity across all sectors and that the diffusion path of innovation is not affected by technical 

barriers. The elasticity has been calibrated according to latest data on the sectoral efficiency gain and 

the public investment in energy efficiency innovation during the decade 2002-2011 given by IEA 

R&D statistics, as an average value for industry, residential sector and transport for the EU. The 

simplifying assumption here is that the reaction parameter homogeneously influences input efficiency 

of all energy inputs in every output. The value for (𝜑) adopted is 1.8, and can be interpreted as 

follows: an increase by 1% of public R&D stock in EE produces an improvement in energy efficiency 

on average of the whole energy system (industries, transport, households) of 1.8%.6 

With respect to financial support to RS, for the sake of simplicity we have implemented it only in 

the electricity sector where the target settled by the EU is a 45% share of renewables in electricity 

                                                      
6 R&D stock values are computed by applying the standard Perpetual Inventory Method (PIM) formulation as in OECD 

(2009) to R&D expenditure flows data available from IEA. Considering the GDynEP structure here developed, an 

increase in R&D stock for CET corresponds to the current R&D expenditure flow in the period under investigation, that 

is exactly how the CTR mechanism works in GDynEP, as explained in mathematical terms in Appendix A. The effect of 

R&D investment in CET in terms of increased energy efficiency starts in the first period after the CTR is collected and 

reinvested, given the temporal lag between the decision to invest in innovation and the effective deployment of new 

technologies at the commercial level. 
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generation by 2030 (EC, 2014a).7 In this case, the reactivity parameter of the electricity sector to 

public investments is calibrated considering the public R&D investment in renewable energies given 

by the IEA R&D database, accounted as R&D stock as for EE, and the corresponding increase in 

installed capacity in renewable electricity in EU countries during the same period (1992-2011 IEA 

Energy Balance dataset available online), resulting as an output-augmenting technical change.8 

According to Andor and Voss (2016), promoting renewable energies by capacity investments (rather 

than by generation subsidies) must be chosen under uncertainty about demand conditions and capacity 

availability.9 The value for (𝜃) here adopted is 4.5, and is to be interpreted as follows: an increase by 

1% of public R&D stock in renewable energies produces an 4.5% increase in the installed capacity 

of electricity produced by RS. 

In this simulation exercise we are not able to define the exact way the policy support is designed 

in practical terms (e.g., a tax exemption, a fiscal subsidy, etc.). Rather we only consider broad 

financial support to CET development, assuming that the coefficients (𝜑) and (𝜃) include all aspects 

of technology development, deployment, diffusion and adoption. In addition, we model the two CET 

options as completely independent from each other. We recognize this is a conservative assumption 

that excludes the possibility of synergies between technologies in EE and RS (as for instance the 

                                                      
7 We have decided to exclude renewable energy sources for the transport sector since they necessitate additional modelling 

efforts on the raw material side, which will complicate the analysis considerably. 
8 It is worth noting that, by working in a dynamic setting, this corresponds to a conservative assumption of constant returns 

to scale over time. In order to better shape this dynamic pattern, in addition to the consequences of barriers to diffusion 

and adoption that are here ignored, it will be necessary to link the macro CGE model with bottom-up energy models, 

which is out of the scope of the current work but it will constitute the next research agenda together with a sensitivity 

analysis of alternative calibration procedures for parameters to 𝜑 and 𝜃. 
9 The introduction of RS in the electricity sector derives from merging GDynE with GTAP-Power and requires the 

introduction of an additional nest into the production function tree and also an elasticity of substitution parameter between 

electricity from fossil fuels and electricity from renewable sources. While standard elasticity parameters in the energy 

nests are based on Antimiani et al. (2015), the elasticity parameter in the electricity sector has been calibrated by the 

ENEA research team combining results of MARKAL/TIMES model for the EU and GDynEP. Bearing in mind that such 

behavioural parameters must account for all aspects (not only technical ones) that influence the choice in the input demand 

decision by the production (and consumption) system, although the substitutability of the two forms of electricity is almost 

complete at the technical level, the final value adopted is 0.6. This allows for infrastructural and technical barriers in the 

electricity system from the supply side that impede electricity from RS to completely replace electricity from fossil fuels 

in the demand system. We are aware that further work for empirical estimation of elasticity of substitution parameters 

based on historical data is required and it will be part of future research. Also in the case of RS, the effect of R&D 

investment in CET in terms of increased installed capacity in RS starts in the first period after the CTR is collected and 

reinvested, given the temporal lag between the decision to invest in RS production and the effective entry into service of 

new power plants. 
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development of more efficient storage systems) as emphasized in IRENA (2017).10 

Summing up, the three policy targets here considered are: emissions reduction, increase in EE, 

increase in the share of RS on energy consumption. The three instruments designed for achieving the 

targets are: carbon pricing, financial support to EE, financial support to RS. By considering CTR as 

the practical fiscal mechanism to finance both CET options, we include in the modelling design the 

mutual interaction between the carbon pricing mechanism and the achievement of the EE and RS 

policy targets. Given a fixed abatement target, support for CET will reduce the carbon price level 

(represented by the Pigouvian carbon tax) and consequently the total amount of carbon tax revenue 

will decrease. A smaller amount of investments will be then available for supporting CET 

development with a mutual interaction that raises the need for additional evaluation criteria for the 

optimality of the policy mix that is not a priori predictable. 

With regard to scenario building, projections for macro variables as GDP, population and labour 

force are based on a combination of sources. In particular, GDP projections are the simple average 

values of four sources: the OECD Long Run Economic Outlook, the GTAP Macro projections, the 

IIASA projections used for the OECD EnvLink model, and the CEPII macroeconomic projections 

used in the GINFORS model. Population projections are taken from the UN Statistics (UNDESA) 

while projections for the labour force (modelled as skilled and unskilled separately) are taken by 

comparing labour force projections provided by ILO (which result as aggregate) with those provided 

                                                      
10 In the case of GDynEP we consider exogenous CO2 emissions in BAU in order to calibrate them with IEA projections 

that are derived from a bottom-up energy-technology approach. Given that CO2 emissions in GDynEP are directly linked 

to fossil fuels demand, by fixing emissions we also determine fossil fuels demand. Accordingly, in the BAU case energy 

prices are endogenous, since they have to adjust to market demand. In order to obtain an energy demand that is compatible 

with the emission path, energy intensity adjusts for each sector due to an homogenous technical change. This assumption 

corresponds to an unchanged energy mix over time in terms of relative share of each fossil fuel in the energy composite. 

As a robustness check we have compared changes in oil prices endogenously obtained in BAU with GDynEP with IEA 

projections. In GDynEP BAU case oil price increases by an average 1.4% per year over the period 2025-2050, while in 

IEA Current Policies scenario (that corresponds to our BAU) oil price increases by an average 2.6% per year over the 

period 2025-2040. By considering oil price as exogenous we should consider energy demand (and also CO2 emissions) 

as endogenous with a reduced accuracy in BAU calibration. By looking at the theoretical model developed in Appendix 

A in the Supplementary Material, if oil prices are considered as exogenous, we can expect that for higher values of oil 

prices the carbon tax in ad valorem term would be lower. At the same time, the convenience to shift from fossil fuels to 

renewable sources to produce electricity will increase. The final effect could be a reduction in the cost of achieving the 

abatement target. The opposite will occur for lower oil prices. Nonetheless, the interactions across the three policy pillars 

would not change in sign but only in magnitude. 
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by the GTAP Macro projections (where skilled and unskilled labour force are separated).11 

As for the calibration of CO2 emissions, the baseline case corresponds to a BAU scenario with a 

regional distribution of emissions assigned according to projections provided by the International 

Energy Agency (IEA, 2015). Such a distribution embodies the effects of only those government 

policies and measures that had been adopted by mid-2013. 

The CO2 emissions profiles for the policy options are based on two emission paths that correspond 

to two different timing profiles, labelled EU2030 and EU450. The former is based on the EU2030 

abatement target until 2030 as expressed in the EU2030 strategy (EC, 2014a) and it is complemented 

by the target of the 450ppm scenario developed by IEA (2015) up to 2050. Accordingly, two targets 

need to be achieved: a reduction of CO2 emissions by 40% by 2030 with respect to 1990 levels 

(EU2030), and an 80% reduction by 2050 (450ppm), in line with the global target to limit the 

concentration of GHG in the atmosphere to around 450 parts per million of CO2-equivalent. The 

EU450 is based only on the 450ppm IEA scenario (IEA, 2015) and implies the same long-term target 

by 2050 as before, but it has a different temporal profile in the abatement path with respect to the 

EU2030 case. Accordingly (Figure 1) the EU2030 target of 40% by 2030 is lower than the 450ppm 

case, whose corresponding target implies a 52% reduction by 2030, while the 80% reduction by 2050 

is the same for the two timing profiles. 

 

Figure 1 

 

Therefore, while in the EU2030 timing profile in order to achieve both the 2030 and the 2050 

targets, the EU abatement rate should increase after 2030, in the 450ppm profile a constant rate of 

emissions reduction is assumed along the time horizon, implying that the reduction is more 

                                                      
11 The integrated GTAP database used for the Reference year (2011) derives from merging the following databases: GTAP 

Database 9, GTAP-E Database, GTAP-Power Database (Aguiar et al., 2016; Peters, 2016). For a detailed description of 

the merging process, see Appendix C in the Supplementary Material. The statistical sources for macro projections are: 

CEPII macroeconomic projections (Fouré et al., 2013); GTAP macro projections (Chappuis and Walmsley, 2011); IIASA 

projections used for the OECD EnvLink (Dellink et al., 2017); ILO Labour force projections (ILO, 2017); OECD Long 

Run Economic Outlook (OECD, 2014); UNDESA Population projections (UNDESA, 2017). 
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challenging in the early periods with respect to EU2030. Figure 1 also shows a “EU2030 trend” path, 

calculated assuming a CO2 abatement trend that enables EU to reach the 40% reduction target (w.r.t. 

1990) in 2030 and that remains unchanged in terms of percentage reduction trend until 2050. This is 

not an emission profile corresponding to a policy scenario but it allows us to visualize the gap in 2050 

with the EU abatement target necessary to respect the Paris Agreement. The two emission profiles, 

EU2030 and EU450, represent the CO2 abatement targets to be achieved by implementing alternative 

policy mix designs. Accordingly, the scenarios tested in this analysis are: 

1. Business As Usual (BAU); 

2. CT: only the EU reduces emissions with a market-based instrument implemented as a 

homogeneous carbon tax (for both EU2030 and EU450 emission paths); 

3. CT-Policy Mix: only the EU reduces emissions with a CT and a percentage of the CTR is 

invested in CET (for both EU2030 and EU450 emission paths).12 

Scenarios (2) and (3) are evaluated considering the two different emission paths, EU2030 (40% 

emission reduction by 2030 with respect to 1990 level and the achievement of the 450ppm target by 

2050, which is about 80% with respect to 1990) and EU450 (450ppm target by 2050). 

Scenario (3) is evaluated also considering alternative values for the share of CTR directed to CET 

(𝛾) and for the distribution of financial support (𝛿) to EE and RS: 

i) Ten different shares of the CTR (𝛾) to be invested in CET (10%, 20%, 30%, 40%, 50%, 60%, 

70%, 80%, 90%, 100%); 

ii) For each value assumed by (𝛾), eleven alternative allocations of the resources received for 

mitigation purpose (𝛿) (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), going from financing 

entirely RS (𝛿 = 0) to financing entirely EE (𝛿 = 1). 

                                                      
12 In both cases we assume that only EU will act and no other region will make any further abatement policy except for 

those already included in BAU as current policies. Although it might seem an extreme view, this is due to the fact that 

the main objective of this work is to analyse the potential interactions between policy instruments in a unilateral climate 

policy case. Obviously, the unilateral abatement policy implies greater costs compared to the case in which also other 

countries implement mitigation actions (Antimiani et al., 2016). Additional work on how the EU policy mix could interact 

with alternative global scenarios will be part of future research. 
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Summing up, there are 223 numerical simulations, organized as described in Figure 2, where the 

BAU scenario corresponds to CO2 emissions path without implementing any of the three policy 

pillars, while the EU2030 and EU450 correspond to policy scenarios with reduced emissions. The 

fulfilment of the overall energy strategy with the three pillars jointly working or not is then tested 

according to different options in terms of carbon recycling levels and distribution shares between EE 

and RS. 

 

Figure 2 

 

As for the country and sector coverage, we consider 19 regions and 22 sectors. With regard to the 

former, following the Kyoto Protocol scheme, we differentiate between Annex I (European Union, 

United States, Russian Federation, Rest of Europe, Rest of OECD East and Rest of OECD West) and 

non-Annex I countries (Brazil, China, India, Asian Energy Exporters, Continental Asia, Rest of South 

Asia, South East Asia, African Energy Exporters, Western Africa, East and South Africa, American 

Energy Exporters, South America and Central America and Caribbean). 

For the sectoral aggregation, we distinguish 22 industries: Agriculture; Food, Beverage and 

Tobacco; Textile; Wood; Pulp and paper; Chemical and petrochemical; Non-metallic Minerals; Basic 

metals 1 (ferrous metals); Basic metals 2 (non-ferrous metals); Machinery equipment; Transport 

equipment; Other manufacturing industries; Transport; Water Transport; Air transport and Services, 

while energy commodities have been disaggregated in Coal, Oil, Gas, Oil products, electricity from 

fossil and nuclear sources and electricity from RS. Finally, in terms of the temporal dimension (t), we 

consider a time horizon to 2050, in steps of five years. 

A robustness check for model calibration has been carried by comparing results in GDynEP with 

those described in Fragkos et al. (2017) obtained by performing the GEM3 model. The comparison 

has been performed on GDP percentage losses between the BAU and the EU2030 strategy scenarios 

(with the three targets fully respected). GDP losses in GDynEP are -0.3% and -1.9% in 2030 and 
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2050, respectively, while in Fragkos et al. (2017) GEM3 provides for the same temporal dimensions 

GDP losses of -0.4% and -1.0% respectively. To the best of our knowledge this is the only 

contribution available in literature that considers the interaction of the three pillars jointly, but it does 

not describe the financial mechanism for supporting CETs. Accordingly, the novel modelling options 

developed in GDynEP for CET investment support and interaction with a carbon pricing mechanism 

have no comparison terms in the literature. 

 

4. Discussion on numerical results 

4.1 Carbon pricing and CET policy support: instruments and targets interactions 

Given the large number of scenarios and the multiple relationships of interest, we first comment on 

the interactions between the three policy instruments considering the EU2030 emission path, and then 

we look at how different timing profiles in emission reduction (EU2030 and EU450) change the 

effectiveness of the EU energy transition strategy according to alternative policy mix designs and 

different evaluation criteria. 

Figure 3 reports the carbon price trend with respect to the share of carbon tax revenue invested in 

CET (𝛾) and its redistribution between EE and RS (𝛿) in the EU2030 Scenario.13 Results for 

numerical simulations are reported for the range (𝛾 ∈ [10 − 50]) for graphical reasons. The reported 

relationships also hold for higher values of 𝛾 and results are available upon request. 

Starting with the relation between carbon price and the share of CTR allocated to CET (𝛾), note 

first that when 𝛾 increases the carbon price decreases. Second, when 𝛾 increases, the reaction of 

carbon price with respect to 𝛿 increases too. In other words, the higher is the share of the CTR 

allocated to support CET the greater is the carbon price reduction, and such reduction increases with 

a relatively higher share of public support directed to EE w.r.t. RS.14 

                                                      
13 We show the results associated to the EU2030 emission path because this is the path coherent with the current European 

climate strategy. However, the direction of the interactions also holds in the EU450 case. 
14 The numerical simulations help finding an inverse relationship between carbon price and 𝛾 according to a combination 

of behavioural parameters that are mathematically synthesized by the conditions 𝛼1 > 0 and 𝛼2 < 0 in eq. (41) in 

Supplementary Material, Appendix A. 
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Figure 3 

 

Let us now look at the relation between carbon price and 𝛿. If resources are entirely allocated to 

finance renewables (𝛿 = 0), the carbon price remains very high, although it slightly decreases when 

𝛾 increases. Although decreasing, the level of CT remains close to the level observed in the absence 

of a revenue recycling mechanism, namely in the CT Scenario (537 USD per ton of CO2).  This is in 

line with other studies according to which investments in renewables do not contribute to lowering 

emission prices (Boeters and Koornneef, 2011; Böhringer, 2014; Fan et al., 2017). 

On the other hand, increasing investments in EE decreases the CT significantly. The investments 

directed to improve EE provide new and more efficient technologies that contribute to generating a 

lower carbon equilibrium price. Thus, while financing only renewable energy has an almost neutral 

effect on the emission price, the greatest reductions are observed when only EE is financed. For 

example, with a 10% of carbon tax revenue allocated to EE, the price drops from 536 USD to 392 

USD per ton of CO2; in case of a 50% share of the recycling mechanism, the difference between the 

two policy options increases dramatically (from 528 USD to 176 USD). This is on account of the fact 

that EE has a leading role in lowering the emission price required to achieve the desirable abatement 

target, and the more it is financed, the greater is the reduction in CT level. Obviously, the absolute 

values in carbon tax gaps between scenarios must be taken as only informative, given the simplifying 

assumptions of constant returns to scale for investments in CET and no diffusion and adoption 

barriers. 

From these results we can conclude that the numerical simulations find an inverse relationship 

between CT and 𝛿. Furthermore the combined action of the two parameters (𝛾𝛿) that result in the 

lowest emission prices is a scenario in which the recycled CTR is maximum (𝛾 = 50%) and it is 

entirely invested to finance EE (𝛿 = 1). 

An additional point refers to the impacts of the share of revenues generally allocated to CET and 
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the relative allocation to EE (𝛾 and 𝛿 respectively) on the use of RS. Figure 4 illustrates this relation.  

 

Figure 4 

 

Not surprisingly, higher levels of renewable electricity consumption occur with lower values of 𝛿, 

that is when all or most of resources are invested to increase the RS installed capacity. Accordingly, 

it emerges that while the best solution in terms of cost-effectiveness (minimum carbon price) is 

associated with a 100% investment of recycled carbon tax revenues in EE (Figure 4), the highest level 

of renewable electricity consumption, which is a target itself in the EU2030 strategy (Figure 4), occurs 

when resources are entirely allocated towards RS (in particular in the scenario with 𝛾 = 50% and 𝛿 = 

0). Moreover, there is a threshold value of 𝛿 (around 40% in this set of numerical simulations) above 

which an increased share of CTR invested in CET (𝛾) produces a reduction in renewable consumption 

that brings the share of renewables on total electricity consumption below the value obtained with 

carbon price as the only policy instrument inforce. If the share of renewables in electricity 

consumption is a target itself rather than a complementary instrument to reduce private mitigation 

costs, there are selected combinations of investment distribution between the two CET options that 

turn to be harmful for the RS-related target. 

Finally, consider the achievement of the EE objective (Figure 5). Quite intuitively, unlike the 

previous case, the best outcomes occur when both 𝛾 and 𝛿 are high, that is when a large amount of 

money is invested in EE. The opposite holds when a high percentage of CTR is used to finance 

renewables (𝛿 =0). Indeed, in this case the policy mix might generate a contrasting effect due to an 

increase in the overall energy availability that might turn into an increase of energy consumption, 

thus raising energy intensity. 

Last, if the three pillars are all included in the policy mix, it might seem desirable to invest in 

renewables but not the entire amount of resources (e.g. a scenario with γ = 50% and δ = 40%). In this 

way, an increase in RS consumption can be attained without compromising the achievement of the 
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EE target. At the same time, a reduction in emission prices with respect to a simple CT mechanism 

is also attained. 

As already emphasized in aforementioned contributions, however, there are several additional 

issues and interactions that might influence the choice of the best policy mix and, consequently, the 

success of the entire EU low-carbon strategy. First, the optimal policy mix strictly depends on the 

evaluation criteria adopted. Second, optimality conditions might substantially change when different 

timing in abatement profiles is of interest. Accordingly, the next step is to analyze policy options in 

a general equilibrium framework applied to the EU climate strategy. The purpose is twofold: i) to 

investigate the effects of alternative combinations of γ and δ, in light of the three pillars of the EU 

climate strategy; ii) to examine the issue of timing, through the comparison of two emission paths 

(EU2030 and EU450). 

 

Figure 5 

 

4.2 General equilibrium economic impacts and timing options 

We consider as a first evaluation criterion the abatement cost minimization. Figure 6 compares the 

marginal abatement cost (MAC) curves for alternative policy mixes applied to the two alternative 

emission paths. The four policies depicted in Figure 6 combine the extreme values of both γ and δ 

used for graphical representation of results. Accordingly, for each mitigation path, we show the 

following combinations: i) 10% of CTR entirely directed towards renewables (γ = 10%_RS); ii) 10% 

of CTR entirely directed towards EE investments (γ = 10%_EE); iii) 50% of CTR entirely directed 

towards renewables (γ = 50%_RS); iv) 50% of CTR entirely directed towards EE investments (γ = 

50%_EE). We select these scenarios in order to represent the situations in which mitigation cost 

reaches its minimum (scenario iv) and maximum (scenario iii) values, as reported in Figure 3. By 

fixing the same abatement target to be reached in 2050 for all scenarios (about 80% reduction in CO2), 

Figure 6 might be interpreted as the trends in MACs over the period 2015-2050 where alternative 
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emission paths entail a different temporal allocation of abatement efforts. 

 

Figure 6 

 

As already mentioned, the options with higher costs are those in which all resources are invested 

in renewables, whatever the share of CTR gathered. On the contrary, when investments are directed 

toward energy efficiency, marginal mitigation costs are much lower. Furthermore, in this case the 

parameter γ also plays a role, since the distance between the RS and EE related MAC curves increases 

with a higher amount of invested resources. 

With respect to the choice of the best emission path, Figure 6 shows EU2030 to be superior in the 

short-term, since it entails a smaller abatement effort in the earlier years before 2030 (see Figure 1, 

corresponding to an amount of Gton abated up to 600 units in Figure 6). However, in the long-term 

the EU450 solution is preferable given the lower MAC associated with the 2050 emission target. This 

result is valid only if cost effectiveness in carbon price terms is the unique policy evaluation criterion 

adopted. When multiple objectives are under scrutiny, the lowest CT level does not ensure that the 

corresponding policy set is necessarily the most desirable. 

Let us consider now a second evaluation criterion namely the EE target (the second pillar of the 

EU climate strategy). As already mentioned, the objective is a target of at least 27% energy savings 

in 2030 compared with a BAU scenario. Accordingly, Table 1 shows the state of compliance with 

respect to the EE objective in the alternative scenarios. Starting from a BAU scenario in which the 

level of EE (as the inverse of energy intensity) in 2030 is 14.15, an increase of 27% means that the 

EU is compliant with the EE target whenever values reported in Table 1 exceed 17.97. 

 

Table 1 

 

From Table 1, it is clear that with the current emission path (EU2030) EU never reaches this target 

by 2030 and is compliant only from 2035 on. However, the EU could reach and overtake the target 
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by taking more challenging actions in the short-term – that is by undertaking the EU450 emission 

path. Indeed, in this case the target is always reached in 2030 in almost every scenario (CT included); 

the only scenarios in which the target is not reached is when recycled CTR is completely used to 

increase installed capacity in electricity production from RS, especially with high values of γ. 

Conversely, the largest benefits occur when all resources are invested in EE. 

It is also worth noting the interactions between these policies. Therefore, while so far the 

investment of 50% of CTR in EE seems to be the best solution both in terms of cost effectiveness and 

in terms of the EE target itself, this strategy can also have negative consequences. According to our 

results large investments in EE might lower the price of electricity produced by fossil fuels, leading 

to a rebound effect that might compromise the success of the overall energy policy or, at least, the 

fulfillment of the last pillar.15 

Finally, we consider what happens in terms of compliance with respect to the third policy pillar (a 

target of at least a 27% share of renewable energy consumption in 2030). Given that the model only 

takes into account renewable sources in electricity production, this target corresponds to at least 45% 

share of renewable electricity consumption (EC, 2014a). Table 2 compares the alternative scenarios 

for the two emission paths. The first thing to note is that, unlike the EE case, the target is never 

reached in 2030, whatever emission path is considered. We first reach the objective in 2035, but only 

in the EU450 case and under some conditions: at least 30% of CTR mostly invested in renewables 

(δ=0; δ=10%), although with a 20% carbon revenues entirely directed towards renewables the EU 

gets very close to the expected share. Furthermore, the share of resources to renewables (δ) needed 

to reach the target decreases when the total amount of available investments increases, that is for 

higher values of γ. In particular, with γ equal to 40% and 50% it is sufficient to direct 80% of CTR 

resources to renewables (δ = 20%). 

As for scenario EU2030, the EU gets very close to the target in 2035 only if 50% of CTR is entirely 

                                                      
15 Results on interaction with price of electricity produced with fossil fuels are provided in Appendix D in the 

Supplementary Material, Figure D.2. 
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invested in renewables. However, the objective is not completely reached up to 2040, when huge 

investments in renewables contribute to fully achieving the target. 

To sum up, while in terms of both cost effectiveness and energy efficiency it might be desirable to 

invest in energy efficiency, Table 2 shows that this might compromise the success of the third pillar, 

reached only through impressive efforts in renewables financing. 

The trade-offs are thus becoming clear: if we go for such a high investment in renewables this 

might increase the overall energy consumption, thus affecting the energy efficiency pillar. The 

combination of results therefore highlights the deep interactions that exist between the three 

objectives and the need for policy makers to take them into account when discussing and 

implementing policies. 

 

Table 2 

 
This interaction is also evident when the amount of resources available to finance CET are 

compared in alternative emission paths. Figure 7 highlights the multiple interactions between the 

three pillars. Given the dynamic nature of this optimal policy mix design exercise, if the emission 

price is high, the amount of resources for CTR recycling increases, but when such resources are 

invested in CETs, then the total available revenues will be reduced due to a reduction in emission 

prices thanks to CET deployment. If policy makers would adopt the target of maximizing financial 

resources directed to develop CETs, the optimality of the policy mix would imply to maintain high 

carbon prices in order to obtain large amount of carbon tax revenues. 

 

Figure 7 

 

The last reflection brings into consideration an additional optimality criterion that addresses 

different policy feasibility dimensions. In this regard, the impacts that alternative policy mixes have 

on the whole economy might add further elements of uncertainties in choosing the optimal policy 
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mix. 

Table 3 shows the GDP percentage changes with respect to BAU considering data on the 

cumulated GDP from 2015 to 2050. Data are expressed in terms of Net Present Value (NPV) with a 

4% social discount rate, which is the one recommended by the European Commission.16 Table 3 also 

compares the EU2030 Scenario with the EU450 one, in order to investigate the current preference 

towards a mitigation path rather than the other. 

In the CT case, there is a GDP loss with respect to BAU due to the implementation of the mitigation 

policy that results higher for the EU450 scenario.17 Accordingly, the current choice of the EU to adopt 

the mitigation path described by the EU2030 scenario (that is less stringent abatement targets in the 

short-term) seems to be preferable on these grounds. 

If, however, we take into account the additional issues related to the three pillars of the energy 

strategy by introducing a mechanism to finance CET, the situation changes. GDP losses decrease and 

in some cases turn into gains, especially for high values of γ and δ (as before the turning point is 

associated to lower values for δ when γ increases). Moreover, the preference for one mitigation path 

over another strictly depends on the combination of the three policy pillars. In this regard, the first 

result is that the preference for the EU450 emission path increases when δ is high. In fact, Table 3 

shows that the more the investments in energy efficiency, the more the incentive to mitigate in the 

short-term, because of lower emission prices associated to these scenarios. 

 

Table 3 

 
Furthermore, when γ increases, the shift in convenience from the EU2030 to the EU450 emission 

                                                      
16 It corresponds to the intermediate level between the highest (6%) and lowest (2%) discount rates resulting, respectively, 

from the ethical and descriptive approach and representing lower or higher social preference for the future (IPCC, 1996, 

SAR Chapter 4). See http://ec.europa.eu/smart-regulation/guidelines/tool_54_en.htm. 
17 Even if the loss of GDP might seem small considering that the rest of the world is free riding, these results can be 

explained due to: i) the adoption of the new version of the GTAP database that includes renewables; ii) a lower distance 

between the emissions in BAU and in CT given the CO2 reduction already obtained by current climate policies. Moreover, 

values reported in Table 3 refer to a NPV for the whole period 2015-2050. However, the GDP loss by 2050 comparing 

CT with BAU is 6.9% for the EU, in line with results obtained in Antimiani et al. (2016). 
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path occurs for lower δ. In other words, if a higher amount is invested, it is sufficient to use a minor 

part of it to finance EE in order to reach a preference for immediate more stringent actions (e.g. when 

γ = 10%, EU prefers the EU2030 path up to δ = 80%; when γ = 40% and 50%, EU prefers the EU2030 

path just up to δ = 20%).18 

It is worth mentioning that this long term perspective in policy evaluation should be combined 

with the short term social acceptability of policies. As an example, by comparing the abatement cost 

in 2030 in terms of GDP changes w.r.t. BAU, the abatement target in EU2030 would result in a 0.96% 

GDP reduction, while in the EU450 the GDP loss would be rather larger (-2.43%). This reveals a 

trade-off for policy makers in choosing the optimal policy mix. From one side the likelihood of a 

broad acceptance of abatement policies increases with a less ambitious mitigation target, at least in 

the medium term. From the other side more ambitious targets help in gaining resource efficiency with 

first mover advantages that will more than compensate short term costs in the long term. 

The final perspective we consider is the welfare maximization. Accordingly, Table 4 shows the 

impacts in terms of welfare, here given by changes in the EV, following the same configuration of 

Table 3.19 

 

Table 4 

 

First, considering the two CT policy scenarios, and in accordance with GDP results, the EU2030 

strategy seems preferable in terms of welfare impact. This is consistent with van der Ploeg (2016) 

according to which in a second-best perspective (as opposed to the first-best case) a postponed 

increase in mitigation reduction (and consequently in carbon prices), as in our EU2030 scenario with 

                                                      
18 It is worth noting that the simplifying assumptions adopted for transforming R&D investments into efficiency gains, 

namely constant returns to scale over time and the absence of barriers to diffusion and adoption of CETs, might well 

affect the results. Accordingly, values for GDP gains in Table 3 should be considered only as an indication of how the 

interactions across the three instruments work. Efforts in linking GDynEP model with bottom-up energy models will 

constitute the next research agenda in order to provide more robust and reliable results. It is also worth mentioning that 

these results hold also in case of a discount rate equal to 2% and 6%. 
19 The EV in GTAP reproduces the income that must be given to an agent, at some fixed set of prices, to make them as 

well-off as they would be under some policy change. Accordingly, it represents a monetary measure of the welfare effects 

of different policies, for it constitutes a quantitative evaluation of how much better or worse off the households are. 
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respect to the 450ppm, is likely to reduce the negative welfare effects. 

If we compare Tables 3 and 4, the preference for one emission path over another is quite similar, 

in terms of both GDP and EV changes, when investments in clean energy technologies are taken into 

account.  The EU450 path is preferable when most resources are directed towards energy efficiency. 

However, especially when not so many resources are available (e.g. γ = 10%), in the EV case the 

turning point happens for lower levels of δ, compared to the GDP case. 

Nevertheless, some differences also occur. First, while Table 3 shows that the introduction of a 

CTR recycling system always entails an improvement in terms of GDP change compared to CT, 

consequences in terms of welfare depend on δ, that is on the allocation of resources between different 

clean energy technologies. Indeed, Table 4 shows that if all resources were allocated towards 

renewables, the EU would face a larger welfare loss than the one associated to the CT scenario, 

whatever the emission path considered. 

Moreover, in this specific case (i.e. resources entirely invested in renewables) an increase in γ 

would worsen the situation, while in all the other scenarios higher availability of resources entails an 

improvement in terms of both GDP and welfare. Nevertheless, if a part of the money is invested 

towards energy efficiency, (even a small part, from δ = 10% onwards), the opposite holds: there is a 

welfare improvement with respect to CT and benefits increase when both γ and δ increase, perfectly 

in line with what happens in terms of GDP (Table 3). 

This result can be explained by considering differences in how investments in CET influence the 

energy system in GDynEP. Resources directed to EE increase input-augmenting technical change for 

all sectors including households. This brings a reduction in carbon tax level that positively influences 

EV levels. On the contrary, resources directed to RS help augmenting the quantity of electricity 

available at the national level. For a fixed emission target, the system reacts using energy input as 

much as possible, given a fixed amount of fossil fuels consistent with the emission target. This in turn 

helps reducing production costs for firms, but it does not reduce the burden of carbon tax on 

households budget. Hence the small reduction in EV for the case of full employment of CTR in RS 
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with respect to the CT policy case is entirely explained by losses welfare for households. 

 

5. Conclusions and policy implications 

This work has analyzed the interactions among the different policy targets and instruments within the 

EU low-carbon strategy and their impacts in terms of different evaluation criteria. We compare policy 

mix scenarios sharing the same timing in abatement targets, with a market-based mechanism (carbon 

price) including (or not) investments in clean energy technologies through a revenue recycling 

mechanism. The increasing abatement targets over time require an increase in the carbon tax level, 

which ensures a growth in the amount of resources to be invested in CET, given the fixed levy on 

carbon tax revenue. Therefore, by investing in CET through the introduction of a higher levy on the 

carbon tax revenue, the economic losses of GDP (which are general small anyway) with respect to 

the baseline case can be compensated by efficiency gains in the energy sector up to a point where 

efficiency gains are higher than losses due to the abatement costs. Additionally, the introduction of 

measures to foster energy efficiency and renewable energies also have a positive effect in reducing 

the electricity price and the energy intensiveness of economic activities. Nonetheless, when the three 

pillars are combined, not all the policy mix designs ensure the achievement of the multiple targets 

forming the EU low-carbon strategy, revealing severe concerns in term of overlapping regulation 

effects and potential trade-offs across policy instruments and targets. 

When considering the comparison among policy scenarios with different timing in abatement 

targets, a first observation is that the choice on delaying or not the more stringent targets to the future 

also depends on the selected mitigation options. Indeed, when only the carbon price is in place, 

postponing the achievement of more stringent CO2 reduction seems preferable. On the contrary, when 

introducing energy efficiency and renewable energy support, the relative suitability of anticipating 

more challenging abatement targets seems to increase. Therefore, the time path of these emission 

reductions influences the effectiveness of the investment in CET. Certainly, this is also due to the 

specific modelling strategy used, where the greater the emissions reduction are, the higher will be the 
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carbon tax level, together with the carbon tax revenue and the flow of public investment in CET. 

However, considering a policy maker perspective, this seems reasonable in term of the actual 

feasibility to propose strategies to finance additional investments in clean energy technologies. 

As a general remark, our results show the selection of the ‘best’ policy mix design to be strongly 

influenced by the evaluation criterion adopted. Consequently, the choice of the optimal mix of the 

three pillars needs to be considered in accordance with negotiated criteria, which all have to be 

politically feasible. 

From a methodological perspective, several improvements can be pursued. In order to introduce a 

better representation of specific alternative technologies, which would better ensure the achievement 

of mitigation and technology innovation targets, model developments would involve linking up with 

technology-specific models that distinguish between innovation and diffusion phases. Additionally, 

different assumptions about the returns to scale effect associated to technological innovation in the 

energy system, as well as assumptions on adoption and diffusion paths are also relevant in terms of 

the conclusions drawn from the analysis. 
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