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Abstract

This paper presents an analysis of EU peripheral (so-called PIIGS) stock market indices and
the S&P Europe 350 index (SPEURO), as a European benchmark market, over the pre-crisis
(2004–2007) and crisis (2008–2011) periods. We computed a rolling-window wavelet correlation
for the market returns and applied a non-linear Granger causality test to the wavelet decom-
position coefficients of these stock market returns. Our results show that the correlation is
stronger for the crisis than for the pre-crisis period. The stock market indices from Portugal,
Italy and Spain were more interconnected among themselves during the crisis than with the
SPEURO. The stock market from Portugal is the most sensitive and vulnerable PIIGS mem-
ber, whereas the stock market from Greece tends to move away from the European benchmark
market since the 2008 financial crisis till 2011. The non-linear causality test indicates that in
the first three wavelet scales (intraweek, weekly and fortnightly) the number of uni-directional
and bi-directional causalities is greater during the crisis than in the pre-crisis period, because of
financial contagion. Furthermore, the causality analysis shows that the direction of the Granger
cause-effect for the pre-crisis and crisis periods is not invariant in the considered time-scales,
and that the causality directions among the studied stock markets do not seem to have a pref-
erential direction. These results are relevant to better understand the behaviour of vulnerable
stock markets, especially for investors and policymakers.

Keywords: Non-stationary time series; nonlinear causality test; MODWT; PIIGS;

rolling-window wavelet correlation.

1. Introduction 1

International stock markets have become the focus of increasing empirical research in 2

recent years. Of particular interest has been the analysis of European stock markets [10, 3

22, 29, 70], with special attention to stock markets that belong to the European Monetary 4

Union (EMU) [25, 27, 33, 70]. A better knowledge of these stock markets is of vital 5

importance for investors, economists and policymakers, seeing that the economic crisis 6
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recently experienced in the Eurozone in the period 2008–2011 has been recognized as one 7

of the most serious ever reported [25]. For example, several studies have shown [5, 6, 74] 8

that this financial crisis caused uneven effects on the informational efficiency of European 9

corporate bond sectors, especially those related to financial services (banks, insurance, 10

etc.). In contrast, some non-financial sectors (chemicals, automobiles, construction, etc.) 11

suffered only a transitory efficiency loss [5, 6, 74]. This recent financial crisis provides 12

a unprecedented opportunity to measure the performance of traditional risk estimators 13

and the different impacts across international markets, such as the EMU stock markets. 14

For instance, developed markets tend to be more stable, and traditional risk measures 15

based on past behavior tend to underestimate risk when a systemic crisis occurs [64]. 16

Since the financial sub-prime crisis (2007) and the Lehman Brothers bankruptcy 17

(2008), five members of the EMU (the so-called PIIGS countries: Portugal, Italy, Ire- 18

land, Greece and Spain) have become the economies most affected by recent high pu- 19

blic debt/deficit, low competitiveness and/or unemployment [71]. These EU peripheral 20

economies, and their respective stock markets, are under intense scrutiny as doubts arise 21

concerning their growth and stability, with important consequences for the future of the 22

EMU. One of the key questions that emerges is how the stock markets of these countries 23

have been interlinked prior to and during the financial crisis. 24

A vast number of studies investigating the correlation and relationships among Euro- 25

pean stock markets are based mainly on the estimation of a correlation matrix of returns, 26

bivariate and multivariate cointegration theory, or by using generalized VAR or (G)ARCH 27

models [27, 34, 39, 62]. However, cointegration theory can only tackle short-run versus 28

long-run time horizons and the VAR or (G)ARCH approaches are sensitive to model spec- 29

ifications [41]. In contrast, from a practical point of view, we may point out that stock 30

markets are not stationary and involve heterogeneous agents who make decisions across 31

different time horizons and operate on different time scales (frequencies) [28, 31, 54]. 32

A mathematical tool that can handle non-stationary time series and works in the 33

combined time-and-scale domain is the Discrete Wavelet Transform (DWT) [31, 47]. 34

There are different algorithms to compute the DWT. In this paper, we make use of the 35

Maximal Overlap Discrete Wavelet Transform (MODWT) because of its advantages over 36

the classical DWT [31, 47]. Over the past few years, some of the most used wavelet 37

tools to study the relationship between non-stationary time series have been the wavelet 38

correlation [28, 31, 41, 45, 51, 73], the wavelet multiple correlation [24] and, more recently, 39

the rolling-window wavelet correlation [1, 9, 16, 53, 65]. The wavelet correlation is a very 40

useful statistical tool to be used in bivariate analysis. However, it does not take into 41

account the presence of “causality” between two time series, and in many studies, it is 42

necessary to use a causality test in order to understand the direction of the causality (in 43

case it exists) between two time series [18, 49]. 44

The main objective of the present work is to analyse and compare the PIIGS stock 45

markets, using the S&P Europe 350 as a European benchmark market index, within 46

two different time intervals. The first interval (2004:1:2–2007:12:31) is characterized by 47

market growth and low volatility, while the second period (2008:1:2–2011:12:31) shows 48

a high volatility due to the financial crisis (Fig. 1). In order to achieve this aim, we 49
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use the rolling-window wavelet correlation (RWWC) computed via the MODWT. More- 50

over, we propose to use a novel graphical tool to visualise the RWWC in a simpler and 51

more efficient way than the classical use of the RWWC. In order to analyze the intere- 52

lationships among the stock markets during the pre-crisis and crisis periods, we apply a 53

non-parametric and non-linear causality test to the wavelet decompositions of the stock 54

market returns. It is worth mentioning that this kind of causality test has not been widely 55

explored to study stock markets indices, and in particular, peripheral EU stock markets. 56

The remainder of this article is organized as follows. Section 2 describes the data used 57

and the employed methodologies. Section 3 presents the results and discussion. Finally, 58

Section 4 concludes the paper. 59

2. Materials and methods 60

2.1. Data 61

The data employed in this study are composed of daily closing prices indices of 62

PSI20 (Portugal), ISEQ (Ireland), MIB30 (Italy), ASE20 (Greece), IBEX35 (Spain) and 63

SPEURO (S&P Europe 350; used as an EU stock market benchmark). All data sets 64

encompass the interval from January 2, 2004 to December 31, 2011. However, the anal- 65

ysis is performed in two sub-intervals: the first (pre-crisis period) from January 2, 2004 66

to December 31, 2007 (1042 datapoints), and the second (crisis period) from January 2, 67

2008 to December 31, 2011 (1044 datapoints). The number of datapoints in each interval 68

is practically the same to improve comparability. In order to cope with the different 69

official holidays, we have adjusted the indices using the last closing price correspond- 70

ing to each official holiday. Data were obtained from Yahoo,1 except for the PSI20 and 71

SPEURO stock market indices, which were taken from BolsaPT 2 and OnVista Group,3 72

respectively. 73

The analysis was conducted using daily returns, that is, Rt = log(St/St−1) = ∆ logSt, 74

where St are the adjusted stock market indices at time t. Figure 1 shows the daily log 75

returns Rt, in which we can easily identify an increase of volatility after the first half of 76

2008. 77

2.2. Wavelet decomposition 78

Discrete Wavelet Transform (DWT) is a time series analysis technique that can han- 79

dle non-stationarity by working in the combined time-and-scale domain [31, 47]. One 80

of the most common algorithms for computing the DWT is the Maximal Overlap Dis- 81

crete Wavelet Transform (MODWT) because of its advantages over the classical DWT 82

[47]. Firstly, the MODWT can handle samples of any size N , while the DWT restricts 83

the sample size to a multiple of 2J , where J is the level of the decomposition. More 84

1https://finance.yahoo.com/world-indices
2http://www.bolsapt.com/historico/PSI20.NX/
3http://www.onvista.de/index/S-P-EUROPE-350-Index-8404704
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importantly, the MODWT is invariant to circular shifting of the time series under anal- 85

ysis, while the DWT is not. Furthermore, while both the DWT and MODWT can be 86

used for an analysis of variance based on wavelet and scaling coefficients, the MODWT 87

wavelet variance estimator can be shown to be asymptotically more efficient than the 88

same estimator based on DWT [31, 46, 47, 49, 50]. 89

We decomposed4 the daily log returns Rt for the two time intervals (pre-crisis and 90

crisis periods) applying the MODWT with a Daubechies least asymmetric (LA) wavelet 91

filter of length L = 8, commonly denoted as LA(8) [17, 31]. The maximum decomposition 92

level J is given by log2(N) [31, 47], which in this case translated into a maximum level 93

of 10 (the number of datapoints for the pre/crisis period are close to 1040). Since the 94

number of feasible wavelet coefficients becomes critically small for high levels, and to avoid 95

boundary coefficients, we chose the wavelet analysis with J = 7, so that the MODWT 96

produced seven wavelet coefficients and one scaling coefficient, that is, w̃1,t, . . . , w̃7,t and 97

ṽ7,t, respectively. It is also noted that for the rolling-window wavelet correlation (RWWC) 98

J is equal to four (it is technically possible to estimate the RWWC up to the level five, 99

but the correlation values on this upper level show such a high variability that does 100

not provide any useful information; cf. Sect. 2.4). This is due to the length of the 101

rolling-window (250 days), which causes a reduction in the maximum level. 102

The level of the transform defines the scale of the respective wavelet coefficients w̃t,j. 103

In our particular case, for all families of Daubechies compactly supported wavelets, the 104

level j wavelet coefficients are associated with changes at the effective scale λj = 2j−1 105

days [28]. Moreover, the MODWT utilizes approximately ideal bandpass filters within 106

the frequency interval [1/2j+1, 1/2j) for scale levels 1 ≤ j ≤ J . Inverting this frequency 107

range and multiplying it by the appropriate time unit ∆t (one day, in our case), we have 108

the equivalent periods of (2j, 2j+1]∆t days for scale levels 1 ≤ j ≤ J [69]. This means 109

that in our case study, with daily data, the scales λj of the wavelet coefficients (with 110

j = 1, . . . , 7, viz. time horizons associated with changes of 1, 2, 4, 8, 16, 32, and 64 111

days) are associated to day periods of, respectively, 2–4 (includes most intraweek scales), 112

4–8 (including the weekly scale), 8–16 (fortnightly scale), 16–32 (monthly scale), 32–64 113

(monthly to quarterly scale), 64–128 (quarterly to biannual scale) and 128–256 (biannual 114

scale) [28, 49]. 115

2.3. Wavelet correlation 116

In order to analyse the relationships among the five daily log returns of the PIIGS 117

countries at different time horizons and periods, we have computed the MODWT wavelet 118

correlation (WC). We followed the methodology to compute the MODWT and WC pro- 119

posed by Gencay et. al. [31], as implemented in the R packages Waveslim [67] and 120

W2CWM2C [50]. The MODWT unbiased estimator of the wavelet correlation for scale λj 121

between two times series X and Y can be expressed as follows [31] 122

4All the MODWT decompositions are available from the Corresponding Author upon request.
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ρ̃XY =
cov (W̃X,j,t, W̃Y,j,t)√

var {W̃X,j,t} var {W̃Y,j,t}
=

γ̃XY (λj)

σ̃X(λj) σ̃Y (λj)
(1)

where γ̃XY (λj) is the unbiased estimator of the wavelet covariance between wavelet coef- 123

ficients W̃X,j,t and W̃Y,j,t, while σ̃2
X(λj) σ̃

2
Y (λj) are the unbiased estimators of the wavelet 124

variances for X and Y respectively, associated with scale λj. The unbiased estimator of 125

the wavelet variance based on the MODWT is defined [31] by 126

σ̃2
X(λj) =

1

Ñj

N−1∑
t=Lj−1

W̃ 2
j,t (2)

where {W̃j,t} are the jth level MODWT wavelet coefficients for the time series X, Lj = 127

(2j − 1)(L − 1) + 1 is the length of scale λj wavelet filter, and Ñj = N − Lj + 1 is the 128

number of the coefficients not affected by the boundary. 129

The confidence interval 100(1−2p)% for the WC is based on the extension proposed by 130

Witcher et al. [68] of the classical result on the Fisher Z-transformation of the correlation 131

coefficient [69]. Thus, an approximate 100(1−2p)% confidence interval for the WC is given 132

by tanh
{
h[ρ̃XY (λj)] ±φ−1(1−p)/

√
Ñj − 3

}
, where φ−1(p) is the 100p% percentage point 133

for the standard normal distribution, and the function h(ρ̃XY ) = tanh−1(ρ̃XY ) defines the 134

Fisher Z-transformation [31, 69]. 135

2.4. Rolling-window wavelet correlation 136

To analyze the temporal variation of the wavelet correlation(WC), a dynamic measure 137

is needed. For this reason, we calculated the rolling-window wavelet correlation (RWWC), 138

that is, wavelet correlations computed in moving windows. Since the introduction of 139

the RWWC in economic studies by Ranta [52], this technique has been used in several 140

economical/financial studies [9, 16]. One of the advantages of the RWWC is its ability to 141

analyze distinct time intervals (for instance, in our case, the pre-crisis and crisis periods). 142

We have followed the methodology implemented by Benhmad [9], Dajcman et al. [16] 143

and Ranta [52]. We have computed the pairwise rolling-window wavelet correlation with 144

windows w = 250 datapoints (one trading year), rolling forward one datapoint at a time, 145

and centered around the time t as in Dajcman et al. [16] and Benhmad [9]. For this reason, 146

the effective number of wavelet scales is in principle limited to five (J = 5). However, 147

we have decided to analyze only the first four wavelet scales because, after applying the 148

MODWT to a sub-sample (or “window”) with 250 datapoints and trying to avoid the 149

boundary wavelet coefficients, the number of datapoints is much smaller than 250 for 150

scale D5. Thus, we have obtained N − w (where N = 1043 and w = 250, then, N − w 151

= 793) windows, and therefore, correlation coefficients. Finally, we have introduced a 152

new way of visualizing the RWWC. The code is available from the Corresponding Author 153

upon request, and it will also be available in the next version of our R package W2CWM2C 154

freely available from CRAN repository [50]. 155
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2.5. Nonlinear Causality Test 156

The linear Granger causality test is a statistical tool frequently used to investigate 157

potential “causal” relationships among different kinds of time series. However, this tool 158

does not take into account “potential” nonlinear causal relationships among time series. 159

For instance, it is well known that financial and commodity markets are dynamical sys- 160

tems that may manifest nonlinearities (e.g., structural breaks, regime shifts, extreme 161

volatility, among others), especially when the data sets are relatively large [60]. In order 162

to address the non-linear Granger causality in the bivariate analysis, many non-linear 163

tests have been developed. For instance, Baek and Brock [4] proposed a nonparametric 164

test for detecting nonlinear causal relationships. Later, Hiemstra and Jones [35] provided 165

an improved version of Baek and Brock [4]. The test of Hiemstra and Jones [35] is one of 166

the most used nonlinear causality tests in economics and finance5. However, it tends to 167

over-reject the null hypothesis when the test is satisfied [19, 20]. For this reason, Diks and 168

Panchenko [20] proposed a new nonparametric and nonlinear Granger causality test to 169

avoid the over-rejection. In this work, we use this later causality test applied to the two 170

time intervals of study (pre-crisis and crisis periods), as implemented in the C program 171

GCTtest, which is freely available online6. The description of the test is presented in the 172

following lines, and it is based on Diks and Panchenko [20] and Bekiros and Diks [7]. 173

Testing Granger causality between two time series Xt and Yt is based on the null 174

hypothesis that Xt does not contain additional information about Yt+1 [7, 20]. Now, 175

assuming as delay vectors XlX
t = (Xt−lX+1,...,Xt) and YlY

t = (Yt−lY +1,...,Yt), where lX , lY ≥ 1 176

denote the delays for Xt and Yt, respectively, the null hypothesis can be defined [7] as 177

Ho : Yt+1|(XlX
t ;YlY

t ) ∼ Yt+1|YlY
t . (3)

By assuming Zt = Yt+1 and dropping times indices in (3), the conditional distribution 178

of Z given (X, Y ) = (x, y) is the same as that of Z given Y = y under the null hypothesis 179

[7, 20]. The null hypothesis (3) can be expressed in terms of joint distributions that the 180

joint probability density function fX,Y,Z(x, y, z) and its marginals satisfy the relationship 181

fX,Y,Z(x, y, z)

fY (y)
=
fX,Y (x, y)

fY (y)

fY,Z(y, z)

fY (y)
(4)

This explicitly states that X and Z are conditionally independent of Y = y for each 182

fixed value of y [7, 20]. Diks and Panchenko [20] demonstrated that the null hypothesis 183

(3) can be expressed as 184

q ≡ E[fX,Y,Z(X, Y, Z)fY (Y )− fX,Y (X, Y )fY,Z(Y, Z)] = 0 (5)

5In the literature there are several nonlinear causality tests (e.g. Bell et al. [8], Su and White [61],
Dionision et al. [21]; among others), but these are less frequently used.

6http://research.economics.unsw.edu.au/vpanchenko/software/2006_GC_JEDC_c_and_exe_

code.zip
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where E denotes the expectation operator. An estimator for q according to Diks and 185

Panchenko [20] is 186

Tn(εn) =
(2ε)−dX−2dY −dZ

n(n− 1)(n− 2)

∑
i

[ ∑
k,k 6=i

∑
j,j 6=i

(IXY Zik IYij − IXYik IY Zij )

]
(6)

where IWij = I(||Wi − Wj|| < ε) (I is the indicator or characteristic function), Wi 187

and Wj are elements of a dW -variate random vector W , ε is the bandwidth, and n is the 188

sample size [7, 20]. Taking into account that the local density estimators of a dW -variate 189

random vector W can be described as f̂W (Wi) = (2ε)−dW (n − 1)−1
∑

j,j 6=i I
W
ij , then the 190

T-statistics according to Diks and Panchenko [20] can be defined as 191

Tn(εn) =
(n− 1)

n(n− 2)

∑
i

[
f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)

]
(7)

For the case εn = Cn−β, with β ∈ (1/4, 1/3) and C > 0, and for the lag-1 lX = lY = 1, 192

the T-statistics (7) is asymptotically normally distributed and satisfies 193

√
n

(Tn(εn)− q)
Sn

d−→ N(0, 1) (8)

where
d−→ indicates convergence in distribution and Sn is an estimator of the asymptotic 194

variance of Tn [7, 20]. 195

3. Results and discussion 196

3.1. Descriptive statistics and Pearson’s correlation. 197

Basic descriptive statistics of daily log returns Rt are presented in Table 1. The 198

mean and median values have practically the same values (around zero) for the pre-crisis 199

and crisis periods for all daily log returns. The maximum/minimum values for the crisis 200

period are between two and three times greater/smaller than for the pre-crisis. On the 201

other hand, the standard deviation, which is a simple measure of volatility, is practically 202

twice as large for the crisis period than for the pre-crisis period. The skewness (a measure 203

of asymmetry or more precisely the lack of symmetry) shows that for all cases the Rt 204

has an asymmetric probability distribution. Additionally, the kurtosis values show that 205

none of them have a value close to 3 (the theoretical value for a Gaussian probability 206

distribution) indicating that none of the probability distributions of these time series 207

appears to be normally distributed. In order to confirm this finding, we performed the 208

Jarque–Bera test of the null hypothesis that the respective probability distribution of Rt 209

were Gaussian (chi-square with df = 2). The reported p-values led to the rejection of 210

the null hypothesis in all cases. We notice that this lack of normality for Rt is consistent 211
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with the well-known “stylized facts” of the market returns, as pointed out in previous 212

studies [15, 43]. 213

Table 2 presents the correlation matrix, obtained by means of the Pearson’s correla- 214

tion coefficients, among the six daily stock market log returns analysed. The maximum 215

correlations for the pre-crisis period take place for the pairs MIB30–SPEURO, IBEX35– 216

SPEURO and MIB30–IBEX35, whereas for the crisis period occur for the pairs MIB30– 217

IBEX35, MIB30–SPEURO and PSI20–IBEX35. The minimum correlations occur in the 218

pairs PSI20–ASE20 for the pre-crisis period and ASE20–SPEURO (but closely followed 219

by ISEQ–ASE20) for the crisis period. This indicates to some extent that the PIIGS 220

members are more correlated among themselves than with one of the main European 221

stock market benchmarks [Notice that the S&P Europe 350 index is dominated by the 222

behaviors of the four greatest European markets, viz. the UK, France, Germany, and 223

Switzerland, which together comprise 73 % of the index (viz. 28 % from the UK and 224

roughly 15 % from each of the other three countries7)]. 225

Following the same line of argument, the correlations for the crisis period between 226

PIIGS members and SPEURO are not greatest than for the pre-crisis period (except 227

PSI20–SPEURO). Indeed, the correlation decrease slightly for the pairs MIB30–SPEURO 228

and IBEX35–SPEURO although the correlation remain practically the same for ISEQ– 229

SPEURO and ASE20–SPEURO. This implies that the PIIGS stock markets do not seem 230

to show a direct transmission of information through the European market during the 231

crisis period, at least when the PIIGS are compared with the S&P Europe 350 index. 232

However, the Pearson’s correlation is a global measure and it is not able to provide 233

detailed information on this matter. For this reason, a deeper analysis is presented in 234

section 3.2. 235

The strong correlation in MIB30–IBEX35, as well as the weak correlations in ASE20– 236

ISEQ and ASE20–PSI20, are all well-known results [23, 65], and will therefore not be 237

further considered here. Undoubtedly, the most evident result in Table 2 is that the cor- 238

relation in the crisis period is greater than during the pre-crisis period for all the pairwise 239

correlation coefficients for PIIGS members. However, the increase in the correlation for 240

the crisis period is much more noticeable for the pairs PSI20–MIB30, PSI20–ASE20 and 241

PSI20–IBEX35, clearly indicating that the stock market index from Portugal is markedly 242

present. This result is in accordance with other PIIGS stock markets analyses, some of 243

which are relatively close to the time intervals used in our study [32, 36, 37]. 244

Classical correlation analysis is a useful starting point to examine the correlation 245

among market returns. However, this statistical technique provides a global measure of 246

the correlation between two time series in the time domain and co-movements among 247

market returns vary in time and also at different scales (frequencies or periods) [48, 55]. 248

Moreover, Livan et al. [42] have shown that the use of the standard Pearson estimator 249

to compute correlation coefficients between financial markets in the presence of non- 250

stationary behaviour can be problematic. Therefore, it is necessary to use a statistical 251

7Standard & Poor’s 350 Europe Factsheet as of 31 May 2017. http://eu.spindices.com/indices/
equity/sp-europe-350
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tool, such as wavelet analysis, that can handle non-stationary time series and is able to 252

work in the combined time-and-scale domain [28, 31, 54]. An adequate tool to face these 253

drawbacks is the rolling-window wavelet correlation (RWWC) [9, 16, 53, 65]. 254

3.2. Dynamic correlation in the time-frequency domain 255

Our RWWC analysis (Figure 2) shows that the rolling window wavelet correlations are, 256

in general, greater than zero, with coefficient values that range from -0.31 to 0.95, but also 257

reveals some interesting details that cannot be obtained with the correlation matrix. For 258

example, the co-movements between the stock market returns under study are time-scale 259

(frequency) dependent and the degree of correlation is not constant in time. This suggests 260

that correlation dynamics among the PIIGS stock markets consist of interactions between 261

heterogeneous investors with different time horizons of trading. This corroborates some 262

previous studies where the RWMC is used for other stock markets [9, 16]. The correlation 263

coefficients for the four wavelet scales, that is, from D1 to D4, imply time horizons 264

associated with changes of 1 to 8 days and intraweek to monthly periods. This implies that 265

the first two/three wavelet scales are more related with volatility events, whereas upper 266

scales like D4 represent processes that take place at lower frequencies, such as fundamental 267

macroeconomic factors (trade, monetary policy, common shocks, etc.) [9, 12, 26, 29]. 268

We found maximum correlations for the pairs MIB30–SPEURO, IBEX35–SPEURO 269

and MIB30–IBEX35, followed to lesser extend by PSI20–MIB30 and PSI20–IBEX35, 270

while the minimum correlations take place for ASE20–SPEURO, ISEQ–ASE20, ASE20– 271

IBEX35 and MIB30–ASE20 (Figure 2). These results confirm our findings obtained by 272

means of the correlation matrix (Table 2). On the other hand, the RWWC reveals a very 273

interesting finding: correlations during the crisis period for the pairs MIB30–SPEURO 274

and IBEX35–SPEURO are less stronger than for the pair MIB30–IBEX35. This is more 275

evident for the shortest wavelet scales D1 and D2 and for some particular time intervals, 276

like the period between SPC and DJS or the first quartile of 2011. Furthermore, for the 277

rest of the PIIGS stock market returns, the strongest correlations occur with the stock 278

market from Portugal, in particular for the pairs PSI20–IBEX30 and PSI20-MIB30. One 279

exception is the stock market from Ireland, which shows the strongest correlation with 280

SPEURO during all the time interval of study, and especially during the crisis period. 281

This result suggests that the stock market indices from Portugal, Italy and Spain were 282

more interconnected among themselves during the crisis than with the European market 283

benchmark. 284

The strong correlation between ISEQ and SPEURO is a simple consequence of the 285

fact that the UK is not only the main economic partner of Ireland [13, 38], but also the 286

major influence on the SPEURO index, with a weight of 28% (cf. Footnote 7). On the 287

other hand, it is somewhat surprising to observe the low correlation at shorter time scales 288

(D1-D3) between ASE20 and MIB30, as well as between ASE20 and SPEURO, seeing 289

that Italy and Germany are Greece’s top trading partners. This can be mainly explained 290

by two reasons. First, stock market indices are not only composed by financial services 291

companies (banks, insurance, etc.) but also by others kind of companies (industry, con- 292

struction, services, etc). However, the 2008 financial crisis affected notably the financial 293
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sector (banks, insurance, etc.) [5, 6, 58, 74]. Second, ASE20 as an economical indicator 294

of a country with serious economical problems, which produces a very volatile index. In 295

any case, what can be clearly seen is the increased medium-term (D4) correlation after 296

each major crisis event (in particular after the subprime crisis, the Lehmann-Brothers col- 297

lapse, and the sovereign debt crisis). Furthermore, our findings show that for all pairwise 298

comparisons with respect to Greece and during the pre-crisis interval, the correlations 299

show values with an ascending trend (Figure 2). On the contrary, for the crisis period, 300

the correlations tend to decrease (except for the pair PSI20–ASE20 that does not show 301

a clear trend). This decreasing trend is much more marked for ASE20–SPEURO and 302

in a lower degree for MIB30–ASE20 and ASE20–IBEX35. This means that ASE20, and 303

despite the high correlation during the crisis with respect to the pre-crisis period, tends 304

to move away from the European benchmark market since the 2008 financial crisis till at 305

least to the end of 2011. 306

Across practically all wavelet scales and in almost every pairwise comparison, we 307

observe higher correlations during the crisis period than during the pre-crisis period 308

(Figure 2). It should be pointed out, however, that the most remarkable result in our 309

RWWC analysis is that in many cases the strongest correlations coincide with the main 310

financial turmoil events during the crisis period, such as, the subprime crisis (SPC), 311

and in particular manner during the Lehman-Brothers collapse (LBC) and the Greece’s 312

sovereign debt crisis (SDC). As is well known, an increase in correlation during financial 313

crisis has been reported in other works where PIIGS stock markets indices have been 314

used [23, 65] and for others stock market indices from several regions around the world 315

[9, 16, 59, 66]. 316

3.3. Nonlinear multiscale causality 317

In order to gain more insight into the interrelations between pairs of all daily stock 318

market log returns under scrutiny in the time-scale domain, we present and discuss the 319

results obtained with the nonlinear causality test applied to wavelet decomposition coef- 320

ficients of these returns (Figure 3 and Tables 3 and A.2). However, before discussing the 321

multi-scale and bivariate causality test results, it is important to take into account the 322

following two points: 1) a uni-directional causality indicates that changes in one stock 323

market can cause changes in another one; 2) a bi-directional (or simultaneous) causality8
324

indicates that changes in one stock market can affect a second one, but changes in this 325

second market can also affect the first one. Bi-directional causality indicates a high de- 326

gree of interaction between two markets. From a financial point of view, the existence of 327

causality in two stock markets implies that, to some extent, one market might sometimes 328

be used to forecast the other. This means that this information should be taken into 329

account in the portfolio diversification strategy. 330

The most relevant result from our multi-scale causality test is that the number of uni- 331

directional and bi-directional causalities is greater during the crisis than in the pre-crisis 332

period (41 versus 22 statistically significant causal relationships) in the first three wavelet 333

8It is also relatively common to use the term “feedback” to refer to a bidirectional causality.
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scales (Table 3). There are several studies that have established that different financial 334

markets tend to be more closely linked during financial crisis, with contagion9 being the 335

main mechanism to explain this phenomenon [30, 36, 57, 72]. The transmission of shocks 336

due to contagion in financial markets is very fast and can take place within a few days, 337

tending to vanish with five days or less [3, 29]. On the other hand, the first wavelet 338

scales D1, D2 and D3 are associated to changes of 1, 2 and 4 days. For this reason, it 339

is feasible that contagion could explain our strong cross-country causation in the highest 340

frequencies. 341

This contagion during the crisis period could be due to transmission among PIIGS 342

stock markets or it can be introduced by “external factors”, for example, instabilities 343

contained in other European or even more overseas stock markets, such as the burst of 344

the subprime bubble at the end of July 2007 in the USA, although a corroboration of 345

this last hypothesis is beyond the aim of our paper. However, our non-linear bi-variate 346

causality analysis applied for the crisis period (Table 3 and Figure 3) reveals that when 347

the stock market from Greece is implicated, the total number of relationships statistically 348

significant that leads the other markets is zero, but this number is maximum when ASE20 349

is a follower (indeed the stock markets that show the highest number of leads among the 350

six markets analysed, come from Italy and Spain, with 5 and 4 relationships, respec- 351

tively). On the other hand, there is only one bidirectional causality (ASE20–SPEURO 352

for scale D2), which implies that there is not a direct transmission of information between 353

ASE20 and the other markets analysed. Nevertheless, a volatile financial process, such 354

as financial contagion, could be transmitted via a third PIIGS stock market. Figure 3 355

illustrates how the stock markets are interconnected among them. For the case of Greece, 356

it is easy to observe an increase in the number of interconnections for the crisis period 357

and for the first three scales, and especially for the last two ones. 358

This last intriguing result is in apparent contradiction to the expectation that Greece 359

would transmit its high volatility to other PIIGS stock markets during the crisis period, 360

since it is one of the EMU members most affected by the sovereign debt [14, 36, 40, 361

56]. However, there are some studies in the same line with our results. For example, 362

Bhanot et al. [11] analysed the relationship between sovereign yields of PIIGS and other 363

EMU members during the financial crisis (from 7/2007 to 4/2011). Despite identifying a 364

significant increase in the unconditional correlation between the yield spreads of Greece 365

and the other EMU markets during the crisis, they found that the conditional correlation 366

between yield spreads of Greece, the rest of PIIGS, and other EMU members decreased 367

during the crisis, after accounting for time-varying volatility and changes in fundamental 368

factors. This suggests that there was no contagion from Greece to PIIGS and other 369

EMU countries. Bhanot et al. [11] finally concluded that news announcements and the 370

banking channel were the main transmission pathways in the crisis period. Moreover, 371

Tamakoshi and Hamori [63] pointed out that contagious linkages of equity markets, due 372

9Contagion can be defined, according to [26], as a “significant increase in cross-market linkages after a
shock to one country or group of countries, and it is only contagion if cross-market co-movement increases
significantly after a shock”; for example, a financial crisis.
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to the sovereign debt crisis from Greece to neighbouring countries, may have occurred at 373

the level of speculative bubble portions rather than among stock indices themselves. 374

Another plausible explanation for this result is that our time interval for the cri- 375

sis period could be too long and might reduce the effectiveness of the causality test. To 376

address this point we computed the nonlinear causality test for the time interval 10/2009– 377

10/2010, which covers one of the most turbulent stages during the Greece sovereign debt 378

crisis (SDC). However, the results obtained with this test (results not shown) are practi- 379

cally identical to the previous ones obtained for the interval 2008–2011 and presented in 380

Table 3. Therefore, we can rule out this possibility. 381

In addition to this, we would like to denote that the previous result related with 382

financial contagion, is in partial concordance with the findings of Samitas and Tsakos 383

(2013) who found contagion effect from Greece to other PIIGS members during the 2008 384

financial crisis, but not during the SDC. On other hand, and as we have discussed earlier, 385

PIIGS stock markets are not isolated, so that contagion and other financial shocks could 386

come from external factors (including European or overseas stock markets) [2, 36, 37, 387

44, 72]. For example, recently Sandoval Jr. [58], based on a transfer entropy method 388

and a nonlinear generalization of Granger causality test, analysed the stocks of the 197 389

largest financial companies (which are components of the S&P 1200 Global index) in the 390

world. This work analysed which of those institutions were the most affected by the stock 391

markets of Portugal, Ireland, Italy, Greece, Spain and Cyprus. The main result found 392

was that stocks from Belgium, Denmark, France, Germany, Greece, the Netherlands, 393

Spain and UK were the most affected [58]. This result indicates that there is also a large 394

amount of transfer entropy between those countries and the PIIGS. Therefore, this result 395

should be taken into consideration or at least to be aware of it when a subset of European 396

stock markets are analysed. 397

A further analysis in the pairwise multi-scale bivariate causality test for the wavelet 398

scales from D1 to D3 (Table 3) reveals that the pairs with the most statistically significant 399

causalities are ISEQ–IBEX35 (with 6 out of 6) followed closely by the pairs PSI20– 400

MIB30, PSI20–ISEQ, PSI20–IBEX35, MIB30–ISEQ, PT–SPEURO, IT–SPEURO and 401

IE-SPEURO (with 5 out of 6). Before the crisis ISEQ leads IBEX35 (Scale D1) or 402

vice versa (Scale D3) and there does not seem to be a preferential causality direction, 403

whereas after the crisis there is a bidirectional causality on the three scales. As we 404

have discussed earlier, volatile financial process (e.g., contagion) could be transmitted 405

via a third PIIGS stock market. For instance, for the case of ISEQ-IBEX35, it is easy to 406

appreciate (Figure 3) that ISEQ and PSI20 are ever connected with the European market 407

benchmark (SPEURO) showing a bidirectional causality all the time for the first three 408

wavelet scales, which supports the hypothesis of an indirect influence. This market could 409

be PSI20 or ISEQ, but PSI20 shows a bidirectional causality with ISEQ and IBEX35 410

in the three scales, guaranteeing a interactive flow of information. Thus, it is highly 411

probable that the “third market” belongs to Portugal. The strong interrelation during 412

the crisis between IBEX35 and PSI20 can be explained due to the fact that Spain and 413

Portugal are neighbouring countries and both maintain a strong commercial exchange. 414

Thus, the existence of instabilities (including financial contagion) in any of these markets 415
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could amplify more easily the effects between them. Furthermore, PSI20 is almost always 416

present in the second group of pairs with more causalities, indicating that PSI20 is the 417

most sensitive and therefore most vulnerable PIIGS member. These results are similar 418

to those obtained by other authors [14, 36] where stock and CDS markets were analysed 419

before and after the 2008 financial crisis. In contrast, PSI20–ASE20 is the pair that 420

shows the smallest number of statistically significant causalities (2 out of 6). Indeed, 421

PSI20–ASE20 is one of the pairs that show a weak correlation before (0.3393) and during 422

(0.5949) the crisis (Table 2). It is therefore not surprising that we find for this pair a low 423

number of causalities for the first three wavelet scales. 424

Finally, the analysis for the last three scales (D5, D6 and D7), which are related 425

with the lower frequencies, shows that the number of uni-directional and bi-directional 426

causalities for the pre-crisis and crisis periods are practically the same statistically signif- 427

icant causal relationships. Moreover, there are some pairs of markets that maintain their 428

causality direction before and during the crisis, for example, MIB30–IBEX35 (D5–D7) 429

and IBEX35–SPEURO (D5–D7); this is the only pair that never changes its causality 430

directions before and during the crisis, ISEQ–ASE20 (D5 and D7), ISEQ-IBEX35 (D5), 431

ASE20-IBEX35 (D6), PSI20–MIB30, PSI20–MIB30 (D7) and PSI20–ASE20 (D7). From 432

the causality test it is straightforward to deduce that IBEX35 causes MIB30 in the scales 433

D5 and D6 (time horizons associated with changes of 16 and 32 days and in the frequency 434

domain from monthly to quarterly scales), but MIB30 causes IBEX35 in the scale D7 435

(time horizon associated with changes of 64 days and in the frequency domain it is related 436

to a biannual scale). On the other hand, there are other pairs that change causality di- 437

rections in at least two of these scales, e.g., MIB30–ASE20 (D5–D6) and PSI20–IBEX35 438

(D5–D7); the latter is the only pair that ever changes causality directions, which is not 439

strange because PSI20 is the most sensitive and vulnerable PIIGS member. Moreover, 440

there are some pairs where the causality is not statistically significant in at least one 441

direction10. These results indicate that the direction of causality depends on the wavelet 442

scale. In addition, the six markets analysed, at the higher scales D6 and D7 (long time 443

horizons), show a clear evidence of high integration, especially once SPEURO is also 444

considered, and where the PIIGS are led in the long run by overall European system 445

(represented by SPEURO). 446

4. Conclusions 447

In this work we presented a statistical analysis of PIIGS and S&P Europe 350 index 448

(SPEURO) stock market indices over two characteristic periods. The first one, called 449

the pre-crisis period (2004–2007), was characterized by market growth and low volatility, 450

while the second, called the crisis period (2008–2011), was distinguished by its high 451

volatility due to the global financial crisis. 452

To analyze the temporal variation of the wavelet correlation for the market returns, we 453

10E.g., PSI20–ISEQ and PSI20–AS20 in D5 and D6, PSI20–MIB30 in D5, ISEQ–ASE20 in D6 and
MIB30-ISEQ and ASE20–IBEX35 in D6 and D7
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used the rolling-window wavelet correlation (RWWC) with five wavelet scales, computed 454

via the Maximal Overlap Discrete Wavelet Transform (MODWT). The first three wavelet 455

scales (corresponding to time horizons of 1 to 8 days and intraweek to monthly periods) are 456

more related with volatility events, whereas the fourth wavelet scale represents processes 457

that take place at lower frequency, such as fundamental macroeconomic factors (trade, 458

monetary policy, common shocks, etc.). This analysis revealed that the co-movements 459

among PIIGS stock market returns are time-scale (frequency) dependent and the degree 460

of correlation is not constant in time. This suggests that correlation dynamics among 461

the PIIGS stock markets consists of interactions between heterogeneous investors with 462

different time horizons of trading. The most relevant results obtained from the WMCC 463

analyses are : 1) the correlation among the PIIGS stock market returns is stronger for 464

the crisis than for the pre-crisis period and the strongest correlations coincide with the 465

main financial turmoil events during the crisis period; 2) the stock market indices from 466

Portugal, Italy and Spain were more interconnected among themselves during the crisis 467

than with the European benchmark market; and 3) the stock market from Greece (despite 468

the high correlation during the crisis with respect to the pre-crisis period) tends to move 469

away from the European benchmark market since the 2008 financial crisis till at least to 470

the end of 2011. 471

In order to analyze the interrelationships among the stock markets during the pre- 472

crisis and crisis periods, we applied a non-parametric non-linear Granger causality test 473

to the wavelet decompositions of the stock market returns. The test indicates that the 474

number of uni-directional and bi-directional causalities is greater during the crisis than in 475

the pre-crisis period, in the first three wavelet scales (intraweek, weekly and fortnightly) 476

because of financial contagion. On the other hand, the causality analysis has shows 477

that the direction of the Granger cause–effect for the pre-crisis and crisis periods is 478

not invariant in the considered time-scales, and that the causality directions among the 479

studied stock markets do not seem to have a preferential direction. However, the most 480

remarkable results are the followings: 1) the contagion during the crisis period could be 481

due to transmission among PIIGS stock markets or it can be introduced by “external 482

factors”, indicating that the PIIGS are not an isolated system; 2) the stock market 483

from Portugal is the most sensitive and therefore most vulnerable PIIGS member; 3) the 484

causality test at the higher scales (quarterly and biannual scale) shows a clear evidence 485

of high integration, especially when SPEURO is also considered, and where PIIGS are 486

led in the long run by overall European system (represented by SPEURO). 487

A better understanding of these stock markets is vital for investors, economists and 488

policymakers, specially since the economic crisis recently experienced in the Eurozone has 489

been recognized among the most serious ever reported. Thus, these results are relevant 490

to better understand the behaviour of vulnerable stock markets. 491
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Rt PSI20 MIB30 ISEQ ASE20 IBEX35 SPEURO
Country Portugal (PT) Italy (IT) Ireland (IE) Greece (GR) Spain (ES) S&P Europe 350
Pre-crisis
PSI20 1
MIB30 0.5153* 1
ISEQ 0.4899* 0.6201* 1
ASE20 0.3393* 0.4858* 0.4199* 1
IBEX35 0.5662* 0.8267* 0.6231* 0.4810* 1
SPEUROEurope350 0.5566* 0.8700* 0.6924* 0.4911* 0.8545* 1
Crisis
PSI20 1
MIB30 0.7886* 1
ISEQ 0.6305* 0.6918* 1
ASE20 0.5949* 0.5653* 0.5105* 1
IBEX35 0.8060* 0.9012* 0.7050* 0.5726* 1
SPEUROEurope350 0.6756* 0.8056* 0.6996* 0.4975* 0.7878* 1

Table 2: Pairwise correlation matrix for daily log returns (Rt) for the stock market indices under
study. The pre-crisis interval come from 2004 to 2007 and crisis period come from 2008 to
2011. The symbol * indicates that the correlation values are statistically significant at 95% of
confidence level.
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Figure 1: Daily stock market indices (log returns) for the time interval 02/01/2004 - 30/12/2011
(the total number of datapoints is 2086).
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Figure 2: Rolling window (with 250 datapoints) for the pairwise wavelet correlation coefficients
for the stock market indices under study. The colour bars represent the wavelet correlations,
where the red and blue colours correspond to the highest and lowest wavelet correlation values
respectively. The wavelet coefficients are within of the 95% confidence interval for each wavelet
scale. The labels are: start of subprime crisis (SPC), the Lehmann-Brothers collapse (LBC),
Dow Jones slump (DJS) and soveriegn debt crisis (SDC). The labels PT, IT, IE, GR, ES and
SPEURO correspond to the log returns of PSI20 (Portugal), MIB30 (Italy), ISEQ (Ireland),
ASE20 (Greece), IBEX35 (Spain) and SPEURO (S&P Europe 350).
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Figure 3: Non-linear Granger causality test for the wavelet coefficients, D1, ..., D7 for the log
returns (Rt) of PIIGS and a European benchmark stock markets (SPEURO Europe 350) for
the pre-crisis (from 2004 to 2007 ) and crisis periods (from 2008 to 2011). The arrows in the
solid lines indicate the causality direction between each stock matket pair with a significance at
5% level. The labels PT, IT, IE, GR, ES and SPEURO correspond to the log returns of PSI20
(Portugal), MIB30 (Italy), ISEQ (Ireland), ASE20 (Greece), IBEX35 (Spain) and S&P Europe
350.
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