eman ta zabal zazu

ZIENTZIA

ETA TEKNOLOGIA
FAKULTATEA
FACULTAD
Universidad Euskal Herriko DE CIENCIA |
del Pais Vasco Unibertsitatea Y TECNOLOGIA

Gradu Amaierako Lana / Trabajo Fin de Grado
Fisikako Gradua / Grado en Fisica

Quantum Genetic Algorithms

Towards the design of evolutionary algorithms in a quantum
computer

Egilea/Autor/a:
Rubén Ibarrondo Lopez
Zuzendaria/Director/a:

Prof. Inigo L. Egusquiza
Zuzendarikidea/Codirector/a:

Dr. Mikel Sanz
© 2020, Rubén Ibarrondo

Leioa, 2020ko ekainaren 17a /Leioa, 17 de junio de 2017

Contents

1

2

Fundamentals of Quantum Computation
1.1 Fundamentals of quantum computation
1.1.1 Thequbit
1.1.2 Quantum logic gates L.
Single qubit gates oo
Two qubit gates
1.1.3 Measurements
1.2 No-cloning theorem
1.3 Quantum searching algorithms
1.3.1 Theoracle
1.3.2 Quantum search with many solutions
1.3.3 Quantum search for an unknown number of solutions

1.3.4 Finding the minimum

Introduction to Genetic Algorithms

2.1 What is a genetic algorithm?

2.1.2 The genetic operators
2.2 Example 1: Optimisation of a two-variable function
2.2.1 The choice of the parameters
2.3 Example 2: Evolution of strategies to win games

2.4 Applications

Towards Quantum Genetic Algorithms

3.1 Quantum enhanced selection
3.1.1 Selection with truncated Dir-Hgyer optimisation
3.1.2 Selection with multiply compared amplification

Numerical examples

o L N o o O

10
11
12
13
13
14
16

17
17
18
19
19
21
23
25

CONTENTS

Previously amplified threshold 28

3.2 Completely quantum version 32
3.2.1 Case problem and general procedure 32
3.2.2 Sorting subroutine 32
3.2.3 Crossover subroutine L. 33
3.2.4 Mutation 34
3.2.5 Resources needed 35
326 Results. 35

Introduction and objectives

Quantum computation is a computational paradigm which makes use of quantum
phenomena, such as quantum superposition and interference, in order to obtain
algorithms with speed-ups unattainable in a classical computer. Although implementations
in physical platforms are relentlessly progressing, achieving a quantum processor
sufficiently large to tackle realistic problems is undoubtedly challenging and will take
some years, maybe a decade. Additionally, not only is the implementation challenging,
but also the development of algorithms which are often quite counterintuitive.

Bioinspired algorithms are computational tools that mimic certain natural processes.
For instance, genetic algorithms are inspired in the principles of Darwinian evolution in
order to find robust solutions to a constrained optimisation problem. They are typically
used when the implementation of the constraints is cumbersome within the framework of
other optimisation methods and a robust approach is required. The naturally subsequent
question is whether it is possible to enhance quantum mechanically these bioinspired
algorithms.

The development of a quantum genetic algorithm is undoubtedly intriguing . On the
one hand, we face the challenge of creating a crossover [1] quantum subroutine which
does not violate the no-cloning theorem. On the other hand, either faster convergence
or more robust solutions might be obtained. Additionally, genetic algorithms are
straightforwardly distributable. Therefore, they are natural candidates as algorithms
in distributed quantum computation, which may be implemented in available noisy
intermediate-scale quantum (NISQ) processors.

In this work, we pursue three main goals. The first one is to understand and explain
some fundamental concepts of quantum computation, such as the qubit, quantum
circuits and quantum states, among others. The second one is to explain the principles
of genetic algorithms and analyse the effect of the different choices available to us, such
as the codification or the choice of parameters. The third objective merges the previous
concepts, aiming at stablishing the first steps towards the design of quantum genetic
algorithms. The work required developing Python 3 programs which are available in
the repository of the University of the Basque Country (ADDI).

Along these lines, this work is divided into three chapters, apart from the introduction
and conclusions. In the first chapter, we review the grounds of quantum computation,
as well as some relevant quantum algorithms. The second one revisits the fundamentals
of genetic algorithms and the influence of the codification, the selection method and the
choice of parameters in the performance of these algorithms. Finally, in the last chapter,
we explain two different approaches for the design of a quantum genetic algorithm. In
the first one, we revisit a previous work which employs a quantum algorithm in one of
the subroutines of a classical genetic algorithm in order to speed it up. We also explore

CONTENTS

a possible variation of this algorithm which shows advantage in certain regimes. Finally,
we develop the first building blocks of a fully quantum genetic algorithm. This paves
the way for he future design of distributable quantum algorithms based on genetic
algorithms, which might show quantum advantage in respect to classical ones.

Chapter 1

Fundamentals of Quantum
Computation

Quantum computation is a novel computational paradigm which employs quantum
entanglement and superposition as resources to accelerate classical algorithms. This
chapter reviews the fundamentals of quantum computation and quantum information
required to understand the rest of the work and it it is mainly based on Ref. [2].

This introduction is mainly addressed to readers that are not familiar with quantum
computation. Firstly I review the concepts of qubit, quantum gate, quantum measurement
and quantum circuit notation (Section 1.1). Finally, I revisit in the next sections the
quantum no-cloning theorem (Section 1.2) and quantum searching algorithms (Section
1.3), which will be of great importance to understand the final chapter.

1.1 Fundamentals of quantum computation

1.1.1 The qubit

The bit is a two-state classical system that represents the fundamental unit of
classical computational information, these states are denoted by 0 or 1. The qubit is its
quantum counterpart, it is a two-state quantum system, which states are denoted by |0)
or |1), following Dirac notation. There is a clear difference between them: superposition.
While the classical bit can only be in one of those states, for the quantum bit the most
general state reads as

0 , 0
|Y) :cos§|0>+ewsin§]1>, (1.1)

with 6 and ¢ any real numbers in the range [0,27). The states |0) and |1) are known
as computational basis states.

While the qubit is allowed to evolve following quantum mechanics, it may keep the
superposition, but if it is measured it may collapse. The probability to measure each
state is the square modulus of its amplitude, here py = cos? g and p; = sin? g. Once
a quantum state is measured, it collapses to the measured state, leaving |0) if 0 was
obtained or |1) if 1 was obtained.

When two bits are combined we get four possible values: 00, 01, 10 and 11. We also get

1.1. FUNDAMENTALS OF QUANTUM COMPUTATION

four states in the computational basis for the qubit. And the most general two-qubit state
can be described by complex numbers a, b, ¢ and d, satisfying |a|* + [b]* + |¢|* + |d|* = 1,

) = a|00) + b]01) + ¢ |10) + d |11) . (1.2)

When many qubits are involved, another quantum property arises: entanglement.
If the global state of the two-qubits can be described by the tensor product of two
single qubit states, it is called separable. Otherwise, the state is called entangled. The
computational-basis states satisfy it, that is [01) = |0) ® |1). But also |0) ® (|0) +
1)/v/2 = (00} +01))/v/3 or (10) — [1))/v2 @ [0) = (]00) — [10))/+/2 are examples of

this, where we can safely define the state of a qubit without considering the other.

This cannot be done in states like (|00) + |11))/v/2 or (]01) — |10) + |11))/v/3. In
entangled states, measuring one of the qubits alters the information we have about the
others.

1.1.2 Quantum logic gates

Classical logic gates are the representation of Boolean functions. They describe
operations performed in bits that yield a 1 or a 0 as a classical result. Take the AND
gate as an example, it gets a two bit input and returns a 1 if and only if both are 1,
otherwise it returns a 0. This is described in its truth table shown in Fig. 1.1 where
other classical gates are also described with their circuit representation.

AND EXOR
in out in out NOT
00 O 00 O in out
01 O 01 1 0 1
10 O 10 1 1 0
11 1 11 0

in1 in1 .

. out . out in out
1o 1o
Figure 1.1: Truth tables and circuit representations for some classical gates.

These logic gates are straightforwardly implemented with electronic circuits. The
0 or 1 binary states can be represented as two-level tensions or currents, and gates
can be implemented with transistors. As a natural extension, a practical manner to
manipulate quantum states of qubits is needed.

According to quantum mechanics a quantum state evolves following Schrédinger
equation,
- Ht
WO)=URO), U =expl-itt]. (13)
where H is the time independent Hamiltonian of the system, a Hermitian operator, and
thus the operator U is a unitary. With a proper Hamiltonian and time lapse, we can
implement any U. In order to describe operations in a n-dimensional Hilbert space, we
must operate with 2" x 2" matrices.

The unitary operators that describe the evolution of the state are known as quantum
logic gates or quantum gates. Notice that unitarity implies that the quantum logic gates

7

1.1. FUNDAMENTALS OF QUANTUM COMPUTATION

are reversible. It is worth mentioning that non-reversible computation can be represented
with reversible gates, which supports the universality of quantum computation [2].

Single qubit gates

10) X 1) 0) H [0)+1L)

(a) (b)

Figure 1.2: Circuit notation examples for a) X gate, also known as NOT gate and b) Hadamard
gate, H.

Quantum gates acting on a single-qubit are known as single qubit gates. For a single
qubit, the operation performed by the quantum evolution can be described by a 2 x 2
matrix. The classical NOT gate, described in Fig. 1.1, can be implemented with the

Pauli-X gate
0 1 1 0
X = (1 O) , where [0) = (O) and [1) = <1> : (1.4)

The action of these operators in qubits is usually represented in circuit notation. In
Fig. 1.2a an example for the X gate is shown. Quantum gates enable operations which
are not possible with classical bits. As an example, the Hadamard gate, H, can create
a superposition of the |0) and |1) states, a Pauli-Z gate can introduce a -1 phase in the
|1) state. Some usual single qubit gates are

w5) (D 0) v 0) e s (1Y), s

When single qubit gates act on several qubits their matrix representation can be
computed with the Kronecker product of matrices. For instance, if the identity gate is
applied in the first qubit and a Hadamard gate is applied in the second one this can be
described by
1

1 0

1 |11 -1 0

o=, X (1.6)
0

_ = O O

0
0 -1

Two qubit gates

Although single qubit gates can act in different qubits, they operate separately.
Multi-qubit gates, in turn, act on many qubits simultaneously. Let us take the case of a
two-qubit circuit aimed to change the value of the second qubit, target qubit, depending
on the first one, control qubit. If the control qubit is in |¢;) = |0) state, the other qubit
will not be touched, while if it is in |¢;) = |1) the target will be flipped, apply a X

1.1. FUNDAMENTALS OF QUANTUM COMPUTATION

gate. This two-qubit gate is known as the CNOT gate, and it can be written in the
computational basis ({|00),|01),|10),|11)} for |g1q2)) as

0 0
(1.7)

UCNOT =

o O O =
OO = O

0 0
0 1)’
10

and it is depicted in Fig. 1.3a in circuit notation. If the state of |¢;) was known
beforehand to be 0 or 1, this gate could be implemented with the classical logic-like
circuits shown in Fig. 1.4, activating or deactivating the X gate depending on the value
of the control qubit.

Besides the obvious fact that we do not usually know the state of the control qubit,
this approach dismisses many important cases. For instance, this classical approach
would not work if the initial state in the control qubit was a superposition, such as
lq1) = % (|0) 4+ |1)). We could guess that such a superposition generates a similar
superposition in the target qubit, thus apply an H gate instead of X, but that is not
correct. In Fig. 1.3, a simple example illustrates the difference between both cases. Note
that if we apply a CNOT gate on a two-qubit state which may initially be separable, as
in Fig. 1.3a, we can get an entangled state.

There are also multi-qubit gates, which can act in the whole quantum system
comprising an arbitrary number of qubits.

10)+]1) 10)[1) 10)+]1)
o) 00} +]11) 72 e
0 1

0y —d—— V2 10) H Bl

(a) (b)

Figure 1.3: Difference between a) applying a controlled-not with a superpostion state in the
control and b) applying a Hadamard gate in the target qubit. Note that in both
cases a superposition is obtained in the output state, but only the CNOT creates
an entanglement.

!02
’CI2

0) 1) 1)
qa) |g2) X X |qa)

(a) (b)

Figure 1.4: Desired behaviour for a controlled qubit flip. a) when first qubit is in |0) state
no change in qubit two, but b) when qubit one is in |1) state a flip is performed,
that is |0) — |1) or |1) — |0).

Uniform superposition. It is a common step in quantum algorithms to initialize
the state with a uniform distribution. Nevertheless, it is usually assumed that the
natural initial state for a qubit is the |0) state. Thus, how can it be transformed from

1.1. FUNDAMENTALS OF QUANTUM COMPUTATION

|00..00) to (]00...00) +]00...01) ... + |11...11))/v/2N? Or in matrix notation,

1 1
0 T 1 |1
. N 1.8
: VN | (18)
0 1

It is straightforward to obtain this transformation by applying the H gate in every
qubit, thus T'= H ® Hy ® ... ® Hy.

CNOT basis transformation. This example shows the key importance of the basis
in which gates work. As an example, the CNOT gate was thought to have a control qubit
and a target qubit, but that works strictly in the computational basis. If the cNOT
gate is transformed to operate in a different local basis, its effect in the computational
basis can vary. In order to change the basis of an operator, a unitary transformation is
needed PUcyorPt. Considering, for instance, the case of P = H; ® H,, P' = P, then,

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

—_

1
P=H, ® Hy = 5 i , PUCNOTPT = (1'9>
1

o O O
_ o O O
O = O O
S O = O

which is in fact a CNOT gate, but swapping the control and target qubits. The circuit
representation for this identity is shown in Fig. 1.5.

—H H]— —O—

—|H}o{u} ——

Figure 1.5: Applying a unitary transformation to the CNOT gate we can change the control
and target qubits.

1.1.3 Measurements

We already pointed out that the amplitude of a state is related to its probability to be
measured. Then, through measurements information about the quantum state can be
extracted. Measurement implies plugging a quantum system to classical instrumentation,
which implies an evolution that does not strictly follow the quantum evolution stated
in Eq. 1.3. In fact, it performs a non-reversible process, causing the system to collapse
according to the measured magnitudes value. When the general qubit state in Eq. 1.1
was described we mentioned that the probability of measuring each possible outcome
in the computational basis depends on its amplitude, which can be used to infer the
parameter 6 for the state.

To obtain ¢, a gate H can be applied before measuring, that is,

1 (1 1 cos ¢ 1 (cos?+esin?
= — . 2 —)
H |17D> \/§ (1 —1) (eﬂp sin g) \/§ (COS 5~ ¥ gin é . (110)

10

1.2. NO-CLONING THEOREM

Now, the probability to measure |0) or |1) is pg = (1 4 cossinf)/2 and p; =
(1 — cos psinf) /2, respectively. Hence, a dependence of the probabilities with ¢ was
introduced, allowing us to infer its value. The procedure to obtain the whole information
about a quantum state is known as quantum state tomography, and it implies a huge
number of measurements in many different bases when many qubits are involved.
Determining the whole state is a expensive task in terms of computational time and it
can spoil any quantum advantage previously obtained in many algorithms.

Let us show an example of a measurement with two qubits in the 2-qubit state given
by Eq. 1.2. If the first qubit was measured we could get 0 with probability |a|> + |b]?
and 1 with |c|*> + |d|?, each leaving the system in different states

0 b1 0 d|1
®7a\)+) and 1—>|1>®C’>+ D

jal* + (bl Vel +lal”

this logic also applies when measuring multiple qubits.

0 — |0) (1.11)

1.2 No-cloning theorem

In 1982, N. Herbert published a procedure that was supposed to enable faster-than-
light communication [3]. This method relied on using a mechanism to clone an arbitrary
quantum state. Let us explain how Herbert’s proposal works before going into the
no-cloning issue. Alice and Bob share an entangled state |¥) = (]01) + |10))/v/2, Alice
can operate in the first qubit and Bob in the second. If Alice would like to send a
message to Bob she could choose between measuring in basis {|0) , [1)} or {|+),|—)}. As
summarized in Table 1.1, the choice which Alice makes affects Bob’s state, a difference
that Bob can infer from the probabilities to measure each possible state. Nevertheless,
to distinguish between both he would need to clone his qubit, as shown in the table.

Alice’s measurement basis

{10}, 11)} {I), =)}

Bob’s result

|0) prob. 1/2 |+) prob. 1/2
Gets

|1) prob. 1/2 |—) prob. 1/2

|00) prob. 1/2 |[++) prob. 1/2
Clones

|11) prob. 1/2 |——) prob. 1/2

00) prob. 1/2 | [00Y,]01),

Measures 00) p /2 | 100,017 prob. 1/4
|11) prob. 1/2 | |10),|11)

Table 1.1: Step by step process for faster than light communication, where |£) = (|0)+£(1))/v/2.

A posterior publication by W. K. Wootters and W. H. Zurek proved the impossibility
of such a cloning procedure [4], currently known as the no-cloning theorem, invalidating
the faster-than-light communication method proposed by Herbert. Here a similar proof
is provided. If a copy of an unknown g-qubit quantum state is desired, an additional

11

1.3. QUANTUM SEARCHING ALGORITHMS

g-qubit register to codify the copy is needed. In one of them the data to be copied is
stored, 1), and the other is in a predetermined known pure state to be overwritten
by the copy, for instance |0). A hypothetical unitary cloning transformation U should
perform the cloning action on any state, so U [¢) |0) = |¢) |¢)). Therefore, we can also
clone the state |¢),

) [0) % [) [¥) and [6)]0) > |9) |6) . (1.12)

By using the property that under a unitary transformation the inner product is
preserved, we calculate the inner product for both the initial states and the states after
applying the cloning operation U, which leads to

1
—~

(W]9) (010) = (]9) (V]o) = (¥]) = ((¥|¢))* = (¥lo) =0or 1. (1.13)

This proves that two arbitrary states cannot be cloned with a single unitary operator,
unless they are the same or they are orthonormal.

Nevertheless, this proof does not forbid cloning two pure states in a given basis, as
they are orthonormal. That is the case of the CNOT gate, which can clearly clone |0) and
|1) states, but not |+), as shown in Fig. 1.3, where ideal cloning would perform something
like Fig. 1.3b. We can check this with a most general case |¥) |0) = a|0) |0) + b]|1) |0),
with |a|> + |b]* = 1, and compare what is obtained by cloning and by applying a CNOT,

Uevor |¥) |0) = a0) 0) +b[1) 1), (1.14)
Ucrons |) [0) = [W) [¥) = a*|0) |0) 4+ ab|0) [1) + ab|1) |0) + b* 1) 1) . (1.15)

In both cases the probability to measure independently in each qubit a 0 is |a|2 and
alis]b\2. Indeed although applying a ¢NOT gate produces entanglement and actual
cloning keeps the whole state separable, the probability distribution of measuring 0 or 1
in each qubit, separately, has been successfully transferred.

Exploring the limits of an imperfect cloning process has motivated multiple investigations.
Some looking for cloning systems that worked with similar fidelity for any input state,
called universal quantum cloning machines [5]. Others focus on the idea of cloning
only part of the quantum information of a state, known in the bibliography as partial
quantum cloning [6]. The latter consists of cloning the statistics of a state related to
a given observable, that is, cloning an observable. In Ref. [7], the authors develop a
unitary transformation that performs the cloning of a observable, extending previous
results to larger dimensions. For instance, a CNOT gate can be employed to clone the
statistics of an observable in a one qubit state.

In our main approach to develop quantum genetic algorithms in Section 3.2, a cloning
mechanism will be crucial, as genetic evolution relies on a crossover process which
requires some kind of information transfer.

1.3 Quantum searching algorithms

Optimisation algorithms can be understood as particular cases of searching algorithms,
making the field relevant for the development of a quantum genetic optimisation

12

1.3. QUANTUM SEARCHING ALGORITHMS

algorithm. Searching in an unsorted list is an ubiquitous but hard problem. Classically
the expected number of iterations to find a desired index among N different elements
is proportional to the length of the set O(N). Quantum algorithms step ahead and

provide a lower complexity of O(\/N), as first pointed out by L. K. Grover [8].

Searching in an unsorted database is essentially identical to searching the appropriate
index associated with the searched object. In other words, searching can be regarded as
seeking for the binary string, x, representing the index that fits a given condition only
when associated to the sought object. That condition can be described by a Boolean
function satisfying f(z) = 1 for the searched element and f(z) = 0 for all others.

Although the original algorithm published by L. K. Grover studied the case of
searching a single object, the description below is based on a extension to an arbitrary
number of solutions [9].

1.3.1 The oracle

In this procedure, the availability of a gate which can distinguish between the states
we are looking for is assumed. This quantum operator is known as an oracle. It
acts on a qubit depending on the result for x encoded in the remaining qubits in the
computational basis,

Olz)lg) = =) lg @ f(2)) - (1.16)

Usually the qubit is initialized in |0), so that |1) is obtained if the state is found, i.e.

) |0), if f(x)
) [1),if f(x)

0,

) (1.17)

Olz) !0>={

It can be also useful to initialize the oracle qubit to (|0) — |1))/+/2, in which case we
obtain oo
oy DB if f(a)
—) P i f ()

This setup is known as phase oracle, as it shifts the phase of the state only if the
searching condition is met |z) — (—1)f(®) |z). This feature will be useful to develop
the searching algorithm. It is worthy to remark that, although the oracle is able to
identify the solution, it does not know the solution in advance. For problems as integer
factorization or Sudoku puzzles, for which possible solutions are easily checked but
difficult to find, a suitable oracle can be built without knowing the answer. In order to
do so, the proper circuit representation for the oracle is needed. This representation is
feasible, since any Boolean function f(x) can be implemented, as explained in Section

3.2.5 of Ref. [2].

0,
1.

Oz} [0) = { (1.18)

1.3.2 Quantum search with many solutions
In this section I explain the quantum algorithm to find one of ¢ possible solutions, in

a list of length N. We will consider the phase oracle in Eq. 1.18. In this operator the
extra qubit can be neglected and we only consider the phase shift in the state. This

13

1.3. QUANTUM SEARCHING ALGORITHMS

allows us to focus on the evolution of the state of the qubits containing the possible
solutions.

For this algorithm the state is initialized in a uniform distribution of all the possible

computational states,

W) =D ko li) + > loli), (1.19)

i€A ieB

with kg =1p =1/ VN, the subspace A contains the solution states and B the remaining
ones. The algorithm consists in applying the Grover operator, defined below, as many
times as needed. This operator consists in the sequential application of the following
gates, as shown in Fig. 1.6. First the phase oracle, O, is applied shifting the phase of the
states © € A. Then the Hadamard gate, H, is applied to each qubit. The next action
requires shifting the phase of every state except the |0) state, described by (2 |0)0] — I).
Finally the Hadamard gate in each qubit is applied again. Summing up, the Grover

operator reads
G = H®"(2|0X0| — I)H®"O = (2 |¥)v| — I)O. (1.20)

Each time the Grover operator is applied to the state the coefficients in subspaces A
and B will change. By defining sinf = m and performing the appropriate algebra,
the evolution of the coefficients after j applications of G can be obtained. k; denotes
the coefficients for the desired solutions and [; the coefficients of the undesired states,

k= \2 sin((2] + 1)0), (1.21)
lj = \/% cos((27 + 1)0). (1.22)

Thus the desired number of applications of the Grover operator, j — m, is obtained
from the best possible outcome k,, — 1 and [,, — 0. This can be approximated
by m = | (7 — 20)/46], rounded to the nearest smaller integer. The setup in circuit
representation is depicted in Fig. 1.7.

Considering that § > /t/N the upper bound for m is

T — 20 T T I[N
< — < —y[—. .
=T w1\ (1.23)

In Ref. [9] the upper bound for m is reduced to 0.5827,/N/t.

1.3.3 Quantum search for an unknown number of solutions

The performance of previous result depends strongly on the number of solutions
t. In Fig. 1.8, the evolution of the probability of the desired states with the number
of Grover steps is shown, for different t/N values. Although the initial steps always
increase the desired probabilities for ¢ < N, an excess of applications may jeopardize
the chances of finding one of the desired states.

M. Boyer, G. Bassard, P. Hgyer and A. Tapp developed the following algorithm
which works efficiently when the number of solutions is unknown [9], but restricted to

14

1.3. QUANTUM SEARCHING ALGORITHMS

[
]

|
SIRE
r—O———O0
SIRE

Figure 1.6: Circuit representation for the Grover operator.

G applied m times — G™

|
|
|
|
|
SN

Figure 1.7: Circuit representation for the Grover algorithm.

1.0

0.8 4

0.6 4

Prob.

0.4

0.21

0.0

Figure 1.8: Probability of success in finding a desired state with j applications of Grover
operator for different values of the number of possible solutions, sin? @ = t/N.

1 <t <3N/4. A maximum for the number of iteration steps, m, and an increasing
factor, 1 < A\ < 4/3, are employed. First, initialize m = 1 and A = 6/5 (any value in
the allowed range can work). Then, iterate until a solution is found by

1. choosing j at random in [1,m],

2. applying Grover’s operator j times starting form |¢) of Eq. 1.19.

15

1.3. QUANTUM SEARCHING ALGORITHMS

3. Measuring the register, let x be the outcome,
4. if f(x) =1 is met, finish the procedure;

5. otherwise, set m = min(Am, v N) and repeat from step 1.

The cited algorithm finds a solution in expected time O(w/N / t). In fact, they find

an upper bound for the expected number of iterations of % \/h ~ %ﬁ . This is

only about 4 times greater than the expected number of iterations if ¢ were known
beforehand. That is, this algorithm is a suitable alternative to the searching algorithm
for a known number of solutions.

1.3.4 Finding the minimum

C. Diirr and P. Hgyer proposed an algorithm to find the minimum of an unsorted
table [10] , based on the previous algorithm. We desire to find the minimum in a table
T allowing indexes from 0 to N — 1.

Initially a threshold index 0 < x4, < N — 1 is chosen uniformly. Then, the following
steps are repeated more than 22.5v/N + 1.4log? N times:

1. Initialize the quantum state to >-; \/% 17) |en)-

2. Apply the searching algorithm in Ref. [9] and described in the previous subsection,
with an oracle which indicates whether T'[j] < T'[y].

3. Observe the first register, let ' be the outcome.

4. If T[x'] < T[xy], then set zy, to .

This procedure takes advantage of the fact that in step (2) a suitable value, T'[2'] <
T'[x4p], is obtained with high probability, thus lowering the value for x;, in most of the
iterations.

16

Chapter 2

Introduction to Genetic Algorithms

On March 22, 2006 the first mission with computer evolved antennas launched in
NASA’s Space Technology 5 mission [11], even though it was in the 1960’s that J.
Holland invented genetic algorithms [12].This algorithms were inspired by evolution and
genetics. The computer evolved antennas are an example of the engineering optimisation
problems that can be solved with genetic algorithms.

In this chapter, which is a review of chapter 1 of Ref. [1] and [12], we will present
the grounds of genetic algorithms (GAs). We will see some variants of the algorithms
and the parameters that must be chosen when applying them. First we will review the
most common structure for the paradigmatic algorithm. After that we will see some
examples and different parameters and implementations will be discussed.

The Python 3 programs I developed to get the results shown for the examples in this
chapter are available in the repository of the University of the Basque Country (ADDI).

2.1 What is a genetic algorithm?

A genetic algorithm is a procedure to search for an optimum solution to a problem,
making use of numerical operations that resemble natural evolution. There are many
ways to implement such algorithms, we will focus on a typical genetic algorithm [1, 12].
In any case, to address a problem with these algorithms a method is required to encode
each possible solution, as well as a fitness criteria that tells us how well that solution
deals with the problem at hand.

(1) First a number of random solutions is generated. These are chromosomes
which form the initial population. (2) Then, the fitness criteria is evaluated for each
chromosome of the population. (3) According to those values, the members of the
population are selected by pairs randomly, assigning higher probabilities to higher fitness
solutions. With some probability p. a crossover operation is applied to those members,
combining their encoded information. Each bit of the new pair of chromosomes is
mutated with probability p,,. Step (3) is repeated until a complete set of offspring
is generated. Iterations of steps (2) and (3) are called generations and they are
concatenated until an ending criteria is met. This typical algorithm is depicted in the
flow diagram in Fig. 2.1.

17

2.1. WHAT IS A GENETIC ALGORITHM?

Initialize the

population

Compute Fitness

Selection

Genetic

Crossover New generation
operators

Mutation

!

yes

Repeat?

no

Figure 2.1: Flow diagram representation of a simple genetic algorithm.

2.1.1 Search space and fitness landscape

In biology, the term referring to the genetic makeup of an organism is genotype, while
the features that an organism shows are denoted by phenotype. The latter is determined
by the genotype and the environment in which the living being grows. In the terms
of GAs, the genotype is the particular code that is assigned to a certain member of a
population. The phenotype is related with the fitness of that member, which may also
depend on other external factors, such as the genotype of other individuals. Choosing
an encoding method for the individuals is an important task, as we will see in the
examples below.

By extension, we introduce two main concepts in GAs: Search space and fitness
landscape. The search space is the set of solutions that could possibly be encoded. The
fitness landscape is the set of possible fitness that can be achieved with each individual
of the search space. On the grounds of these concepts, GAs try to find an individual in
the search space that has a high value in the fitness landscape. GAs implicitly assume
there is a relation between the values encoded in the search space and the corresponding
fitness value. This relation is leveraged in the selection, crossover and mutation process.

18

2.2. EXAMPLE 1: OPTIMISATION OF A TWO-VARIABLE FUNCTION

2.1.2 The genetic operators

Selection. This is the process of choosing pairs of chromosomes from the population.
It applies the evolving pressure to the population, selecting with higher probability
the fitter chromosomes. A typical method is the fitness-proportionate selection, which
assigns a selection probability proportional to the fitness. There are other methods,
such as elitism that only selects from the best chromosomes.

The choice of the selection method can affect the performance of the algorithm. If
there is too much pressure, the best chromosomes rapidly dominate the population
and the exploration of the search space will be left to mutation. However, if selection
pressure is too small, the population will have no incentive to improve. The proper
selection method is problem dependent and balances the exploration with the improving
motivation. In the terms of function optimisation methods, a good selection pressure
searches for the best maximum without getting stuck too early in local maxima.

Crossover. This operator takes two parent chromosomes in order to spawn two new
ones. Single point crossover consists on choosing a random index ¢ in the chromosome.
Then, one of the offspring members is generated by taking the first part, from 0 to 7, of
the first chromosome combined with the second part, from ¢ to the end, of the second
chromosome. The other offspring chromosome combines the remaining parts of the
parents. Some other methods use two crossover indexes or choose the index using a
probability distribution.

Mutation. This is the only operator that adds new information to the evolving
process. Usually, each bit of the chromosome is flipped with a probability p,,, which
leads the population towards the exploration of the search space. If the mutation does
lead to an improvement, it will probably survive and make the average fitness better.
Nevertheless, if the mutation rate is too big that may jeopardize the convergence of the
algorithm.

2.2 Example 1: Optimisation of a two-variable function

Although the optimisation of an analytic function is not the best example of the
performance of a genetic algorithm, it is instructive. Suppose we want to find an
optimum point in the surface in Fig. 2.2. In this example, we can easily identify the
fitness landscape (height of the surface in each point) and the search space (the z and
y coordinates that can be chosen).

More precisely, the search space will be the binary representation of z and y. I use
32 bit numbers to run the test and I use a binary representation so that the number of
combinations per area is uniform. This is a good chance to understand the importance
of the encoding. If I choose a 32-bit floating-point representation with one bit for
the sign, 8 bits for the exponent and 23 bits for the fraction, I would have two main
problems. On the one hand, the interesting part of the surface is limited in the x and
y axis, so there would be a lot of incorrect chromosomes (out of that area) if I took
floating-point representation, as it is designed to have a wide range. On the other hand,

19

2.2. EXAMPLE 1: OPTIMISATION OF A TWO-VARIABLE FUNCTION

K3

Figure 2.2: Surface for optimisation.

that representation has a highly non-uniform distribution of the points it can represent
(there are more condensed near very small numbers), so as a matter of probability our
algorithm would be strongly biased towards small numbers. Once I ensured a uniform
distribution for the point that could be encoded in each axis, I will have 32 bits for =
followed by 32 bits for y*.

For this example, I choose N = 20 chromosomes in the population, fitness proportional
selection, single point crossover with probability p. = 0.7 and bit-mutation rate p,, =
0.001. These are typical values [1], although they may work poorly in other problems.

We can follow the evolution of the population from different viewpoints. I will
follow a similar approach to K. A. De Jong in Genetic Algorithms Are NOT Function
Optimizers [13]. There he stated three different perspectives and emphasized that none
of them captures the whole dynamics of GAs.

()

Figure 2.3: Evolution of the points in the population, for generation 1 in (a) , 50 in (b) and
190 in (c).

We can see the evolution of the phenotype, that is, the coordinates of each point of
the population. In Fig. 2.3, we can see the population for different generations. Initially
(Fig. 2.3a), we have 20 points distributed at random in the surface. For 50 generations
(Fig. 2.3b), we can see that all of the points share the same y value and, as we can only
distinguish 5 different points, all of the 20 points are allocated in 5 groups. For the case

Lg’s bits with y’s could be intercalated if a strong correlation between them was expected.

20

2.2. EXAMPLE 1: OPTIMISATION OF A TWO-VARIABLE FUNCTION

of 190 generations we can only distinguish two points, which means that in that stage
there are only two types of chromosomes. That will not be true forever, as mutation
will introduce variations sooner or latter.

From this viewpoint we can clearly see one of the features of GAs. The tendency of
these evolutionary algorithms is to converge to a resilient maximum. In this case that
is not the global maximum. Crossover and mutation transform the population in a way
that makes the convergence to sharp maxima difficult.

We can also see the performance of GAs as function optimisers. This approach may
be useful to see how selection effectively leads towards the convergence in a high value
in the fitness landscape. Nevertheless, it is not a recommended approach as it hides
many features of the evolution. An example for the same process in Fig. 2.3 is shown in
Fig. 2.4. In the latter figure, we cannot understand the disappearance of the peaks near
generation 20 without keeping other pictures of the evolution in mind. We can also see
that mutation affects the mean value, sometimes bringing in better chromosomes or
those fading out in the next generation due to selection.

16 A

14

M . -
s 12~

10 4

0 25 50 75 100 125 150 175
generation

Figure 2.4: Evolution of the mean fitness (orange) and the maximum fitness (blue).

The last viewpoint would consist in analysing the raw genome of the chromosomes.
This would imply the detection of the repeated structures in the bit strings and the
detection of bit structures which are promoted along the evolution. This analysis is
particularly interesting when we are not only looking for a solution, but also trying to
learn what makes that solution good. As it would require deeper explanations I forward
the interested reader to Ref. [13].

2.2.1 The choice of the parameters
For the above example N = 20, p. = 0.7 and p,, = 0.001 worked well. Now we will

see what happens when some of those parameters are changed. Clearly, by increasing
the number of chromosomes in the population N, better results can are obtained. The

21

2.2. EXAMPLE 1: OPTIMISATION OF A TWO-VARIABLE FUNCTION

greater the population number is, the better the ability to explore it will provide. Big
populations ensure a constant search in new areas of the search space, while keeping
the stability for the overall population. We can see in Fig. 2.5 what is obtained if 100
chromosomes are used, while keeping other parameters fixed. The genetic diversity is
kept for longer as we can see in Fig. 2.5a and a smother evolution of the mean fitness is
obtained, Fig. 2.5b. Once again, the maximum obtained is a resilient one.

S S ——

. /M/\/W\,/'m

o 25 50 75 100 125 150 175

(a) (b)

Figure 2.5: GA performance with population number N = 100 (a) point distribution in the
surface at generation 190 and (b) evolution of the maximum fitness (blue) and
mean fitness (orange) .

The effect of changing the bit-mutation ratio p,, is complex. In Fig. 2.4, we portrayed
the performance for p,,, = 0.001, that is, 1 bit out of 1000 was mutated in each generation.
In Fig. 2.6a, we see the effect of turning off mutation, p,, = 0.000. Once a chromosome
prevails in the population there is no way new information can go into the following
generations, in this case evolution stops radically near generation 40. At the other
extreme, there is the result obtained in Fig. 2.6b where mutation was increased too
much, p,,, = 0.1000, which means that 1 bit out of 10 was mutated. Such a high value
hinders the population from converging. We can see that many good solutions are
found, but the evolution cannot prosper near them.

w 12 /‘A/_\ w 12
. . ‘/V“\/VWWW\WWW

0 25 50 75 100 125 150 175 4 25 50 75 100 125 150 175
generation generation

(a) (b)

Figure 2.6: Evolution of the maximum fitness (blue) and mean fitness (orange) with different
mutation ratios (a) p,, = 0.000 and (b) p,, = 0.100.

The change in the crossover parameter cannot be seen in a couple of images. Thanks
to crossover and selection we improve the overall performance of the population in each
generation, while keeping similarity in the chromosomes. They are similar because

22

2.3. EXAMPLE 2: EVOLUTION OF STRATEGIES TO WIN GAMES

they are likely to come from similar parents and have inherited some bit structures
within. In the main example shown in Fig. 2.3, we see that in generation 50 most of
the chromosomes have a common axis coordinate, which means that at least they share
32 bits. Turning down crossover, p. = 0.0, means that only selection happens, thus
we could have completely different chromosomes in the beginning and then smaller
groups of families. In the families we would have very small variations (only due to
mutation) and between families we would have completely different bit strings. Within
a few generations one of the families will domain, reducing the overall searching ability.
Crossover should not be always applied either, p. = 1.0, so as to promote the survival
of the best chromosomes.

2.3 Example 2: Evolution of strategies to win games

In a game, players have to take decisions in order to maximize their payoff. We will
go through an example to see how decisions can be encoded and their payoff be used as
the fitness function. The example I chose is based on the Prisoner’s Dilemma described
in Section 1.9 in Ref. [1].

Alice and Bob are criminals in a band that in their last theft were caught by the
police. The officer has enough evidence to send them to prison, but with their confession
a higher sentence can be obtained. To acquire this the officer offers them, separately, a
deal: "If you keep quiet we can send you 2 years into prison, while if you confess you
can go free and only your friend will be sentenced, for 5 years. If both of you confess,
you will go 3 years, collaboration reduces the sentence'. They are not allowed to speak
to each other while they make a decision. Is it a matter of trust? If each of them
confesses, maximizing their personal payoff, they end up in a situation worse than if
both of them trusted each other.

The situation can be described in terms of positive payoff 5 - years_in_ prison,
obtaining the payoff Table 2.1. Obviously, if this game is repeated once and again the
most profitable strategy is to agree to cooperate. But what if they do not rely on the
other player? I will try to evolve the best strategy with a genetic algorithm.

Player B

¢ B

3,310,5
Player A

5,012, 2

Table 2.1: Payoff table for the Prisoner’s Dilemma. C stands for cooperate and B for betray.

First of all, I have to choose the encoding for the strategies. The players will be
provided with the memory code of what they and the other player did in the previous
three games. Then, they will make a decision according to that memory code. Cooperate
will be encoded with a 1 and betray with a 0. Consequently, a strategy is a function
of the six binary values in the memory code which returns whether to cooperate or
to betray. Strategies will be encoded in 70-bit chromosomes. 64 bits tell what to do
according to the memory code and the other 6 hold a memory code to be used if no

23

2.3. EXAMPLE 2: EVOLUTION OF STRATEGIES TO WIN GAMES

previous game is registered. For example, if strategy A faces strategy B both will be
given what they did in the previous three games, e.g. 01 10 10’ for A and ’10 01 01’ for
B. The corresponding integer number is 26 for A and 37 for B, thus each strategy will
look at that position in the 64-bit string and decide to cooperate if a 1 is encoded or to
betray if a 0 is encoded. Finally, each strategy will get a score according to Table 2.1.

I will have 10 initial chromosomes which will play 100 times against each other and
their fitness will be their overall score. For this problem, I run for 50 generations and
perform 10 different runs.

0 NC 4 NC — 7C —— ONC —— 4NC 7C
4.5 1C — 5C 8 NC 4.5 1C 5C 8 NC
— 2C 6 NC — 9C 2C 6 NC 9C

3NC

427 2427 QAN RN S =
201 201 pu.

0 10 20 30 40 50 0 10 20 30 40 50
generation generation

(a) (b)

Figure 2.7: Evolution of the fitness for the best strategy for the Prisoner’s Dilemma. Those
marked as C highlighted in figure (a) are the trials that evolve strategies that score
3, related with cooperation. In the other hand, those marked as NC highlighted
in (b) are the strategies that do not converge to 3 in 50 generations.

In Fig. 2.7a, we see that some trials converged to a score of 3. We can assume this is
due to a cooperating pattern in the population. This does not mean that they always
cooperate (a strategy full of ones), but that they always cooperate with each other.
We can think of it as if they cooperated in the first 3 games and got memory codes
of cooperation, 111111, then to keep cooperating they only need to have a 1 in index
63. From this figures we cannot tell if they would act similarly against other kind of
strategies. In Fig. 2.7b, we see that other strategies did not converge to any value.
Within those populations sometimes they will cooperate and others they will not.

The stability of cooperating strategies can only be understood if we keep in mind
that 100 games are played against each member of the population, i.e. strategy. If
a strategy got a high score based on betrayal, it will get more chances to have more
offspring, which will consequently be prompt to betray others. That quickly tends to a
lower overall score. In this sense cooperating strategies are more stable when they face
players that follow similar strategies.

In order to get a further insight on how this strategies work, I performed a tournament
in which each final population faced all the others. In Fig. 2.8a, I show the score that
each strategy has obtained against the others. The strategies are ordered based on the
overall performance that can be seen in the ranking of Fig. 2.8b.

Figure 2.8a shows that chromosomes behaving similarly when playing within their
own population act very differently against different populations. This accounts for the
different results obtained from the cooperating strategies. Some of them, as the 7th

24

2.4. APPLICATIONS

7e ¢ Sc do %c fme e ne Tae One

7c
- DEEEEn e B
. DD o N
- DOEOEEsEEEE f. -

9c
Yl 30|30 30]30]30]25]27 BEN 25 |25
8Nc— 22 21 18 18 16 16

3NC
- EARIRIE = EI
o DEOENEEEEE |- o
o N EE = = o

1.50

0Nc— 21 22 17 18 18 0.0 05 10 15 20 25 30

(a) (b)

Figure 2.8: Mean score of each evolved strategy for the Prisoner’s Dilemma (a) score of
columns against rows and (b) average of the score against all the strategies, the
black bars reflect the deviation from that average value.

N
N
&

21035
@
=
o

against the 4th or Oth, clearly betrayed sometimes in order to get a higher than 3 profit.
Anyway, cooperating populations tend to cooperate with each other, obtaining higher
overall profit in Fig. 2.8b.

2.4 Applications

GAs have been used in a wide variety of disciplines, such as natural sciences,
economics, engineering, social sciences... As an example, evolutionary algorithms are
frequently used in electronics design [14].

In the introduction of chapter I mentioned the antenna created for NASA’s ST5
mission [11]. For this mission, a contractor was hired to design an antenna that
could met the requirements for the mission efficiently. An evolutionary algorithm
was also developed to obtain a suitable antenna. The success of the evolved antenna
was unquestionable: The energy consumption efficiency was 93% for the evolved
antenna versus the 38% obtained by the conventionally designed one. Moreover, the
evolution procedure took only 3 person-months of work, even with several performance
requirements being changed, compared to 5 person-months of work. The evolved
antenna also provided a more uniform coverage.

To sum up, genetic algorithms perform well when the fitness landscape is unfamiliar
or complex constraints are considered. They are also useful to simulate evolutionary
behaviour. Genetic algorithms are robust algorithms that can easily be implemented to
solve almost any problem. Usually, a problem specific algorithm may perform better in
getting a global optimum, as in the example of the two dimensional function where an
steepest-ascent could find better maxima. A great benefit GAs will always provide is
that they find resilient solutions.

25

Chapter 3

Towards Quantum (enetic
Algorithms

Quantum computation and genetic algorithms have been combined in recent years.
On the one hand, some researchers have used genetic algorithms to develop quantum
circuits. On the other hand, a genetic algorithm with an enhanced selection procedure
has already been developed. That selection subroutine was enhanced employing quantum
searching algorithms. In Section 3.1, I explain that algorithm and propose a variation
for the selection procedure.

In Section 3.2, I develop a quantum genetic algorithm. This was obtained combining
the quantum version of each step in the genetic algorithm. A first test is performed
and a preliminary performance measurement is obtained. Although further study is
needed, the structure of the proposed algorithm is developed in separated registers
(qubit arrays) and could be distributed. This algorithm could be a suitable example to
explore distributed quantum computation.

The Python 3 programs I developed to obtain the results shown in this chapter are
available in the repository of the University of the Basque Country (ADDI).

3.1 Quantum enhanced selection

In Ref. [15], a quantum genetic optimisation method is proposed. Recalling the
genetic operators in Section 2.1.2; in this work the selection procedure is performed by
applying a truncated version of the Diirr-Hgyer quantum optimisation routine, explained
in Section 1.3. My aim in this section is to explore other quantum selection methods
that could also be used to enhance the classical genetic algorithm.

3.1.1 Selection with truncated Diir-Hgyer optimisation

The quantum selection procedure stated in Ref. [15] needs log, N qubits to represent
the whole search space, x € {0,1,..., N — 1}, and starts assuming a reference individual
Zy,, which implies a threshold value F(zy,). Each value is stored in different qubit
strings called registers. The value x;, can be retrieved from the previous generation.
Then, Diirr-Hgyer optimisation is applied, explained in Section 1.3.4, with iterations

26

3.1. QUANTUM ENHANCED SELECTION

truncated to a value ny, and the oracle shifted to indicate T'[j] > T[y]. This results in

1. Initializing the quantum state to 3=, ﬁ 17) |en)-

2. Applying the searching algorithm in Ref. [9], with an oracle that marks T'[j] > T'[y].
3. Observing the first register, let 2’ be the outcome,

4. if T[x'] > T[xy,], then set xy, to 2.

5. After ny, iterations, return xy,.

This implies that the selected individual will have high fitness. This improvement
reduces the cost of the selection step, while keeping a wide range of selection possibilities.
In the classical selection procedure O(N log N) calls to the oracle are needed, to get
the individuals sorted and achieve a good chance to find a high value. Meanwhile, in
the quantum selection procedure the number of oracle calls strictly depends on the
parameter ny,, which does not vary with V.

3.1.2 Selection with multiply compared amplification

As a variation to the previous quantum selection procedure (step 2), I have developed
a multiply compared amplification based selection. Amplitude amplification is the
technique of enhancing the amplitude of some desired states by means of quantum gates.
Multiply compared amplification highlights the fact that several threshold values are
used at the same time. We will use index notation, so that we get generalized solutions
and so that we can implement and study case examples. In that sense, the Grover
operator defined in Eq. 1.20 performs,

2

{iGl7) = Gi; = (N - 5ij) 0(j), with O(j) = {_1 JEeA

3.1
1 jeB. (31)

A being the subspace of desired solutions, 7 € A if F(j) > F(xy,), and B the
complementary subspace, where F' is the fitness criteria. This operator is used to
amplify the amplitude of the states that satisfy j € A. To perform this we can take a
second register that will work as a threshold register so that,

2
N

: . . -1 F(j)>F 7
_ 5@]) 5x,iﬂth0(]7 .Tth), Wlth O(], xth) — {1 FE:;; _ FEitZ; '
=~ th)-

(3.2)

Note that as the operator O can be checked to be unitary G is also unitary.
The operator G transforms a given state [¢)|z;) = X, a;]j) [vm) to W) |zwm) =
; al |2y |z), where

(i.01Gljs) = (

i =3 (5~ 04) OG.zua; (3.3)

J

This operator is used in the above mentioned quantum selection procedure, initializing
the state to a; = 1/v/N. As long as the chosen threshold is above the median value
of the fitness, the state resulting from G |¢) |z4,) returns an individual with higher

27

3.1. QUANTUM ENHANCED SELECTION

fitness than a threshold with high probability. The probability distribution governing
the values that can be obtained is a step function, small for the lower than threshold
individuals and high for the higher than threshold individuals. I propose a modification
close to achieving a probability distribution monotonically increasing with the fitness of
the returned individual.

The desired behaviour can be achieved replacing |z;,) by a superposition in the
computational basis }°, b, |[v). Then, the initial state reads |¢) = >, a;|7) >, b, |v),
and the transformation achieved applying the operator in Eq. 3.2 is,

2 . .
Gl¢) =S h {z (2 -5) 00 u)aj} 1), (3.4)

J

Appropriately tuning b, we can achieve the desired distribution. We name the first
register searching register encoding the searching state, and the second one threshold
register encoding the threshold state.

Numerical examples

I will also assume an initial uniform superposition in the searching register, that is
a; = 1/vN. I will focus on the analysis of the output probability of each state |i) after
a single application of G. Thus the distribution to be tuned is

Pl = W (2 - o) - ale)’ 35

i) = - 0(i,v) — 4— .
N ’ N)

where t, is the order number denoting the number of j values that satisfy O(j,v) = —1,

or F(j) > F(v). Note that the searching state space and the threshold search space are
dimensionally equivalent.

To begin with, we will consider a fitness proportional to the integer expressed in
the base-2 numeral system. I show in Fig. 3.1 the output probability I obtained for
different initial distributions of |b,|*.

In Fig. 3.1a and 3.1b I performed the amplification setting the threshold register to
a single value. Clearly, the higher we choose the threshold, the better the result we
will obtain. Moreover, as we can see in Fig. 3.1b, going below the center value in the
threshold amplifies lower values instead of higher ones.

In Fig. 3.1c, I employed a uniform distribution in the threshold register. The
symmetry in Eq. 3.5 implies that amplifying the highest fitness individuals involves
amplifying the lowest ones too. This symmetry can be broken with an asymmetric
distribution in the threshold register, as shown in Fig. 3.1d. But, if we were able to
get such a distribution our aim would be easily achieved! That is not the case. For
this examples, I used an small toy model and every calculation can be tailored to our
desires with classical computers. Therefore, a quantum procedure in order to amplify
the greater values without boosting the lower ones must be developed.

Previously amplified threshold

We can easily achieve a good enough initial individual so that its fitness is above the
median value. This means we can obtain the case shown in Fig. 3.1a efficiently. Our

28

3.1. QUANTUM ENHANCED SELECTION

z z
& 304 & 304
20 20
10 10
0l— ‘ . ‘ . . ' 0l ! . ‘ . . ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
F(i) F(i)
(a) (b)
3.5 |
2.0 |
3.0 |
2.5 1
151
= =20
g g
1.07 15
1.0
05
05 ‘
00 00
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Fi) Fi)
(c) (d)

Figure 3.1: Output probabilities (orange) for different threshold distributions (blue). I show
P(i) - N to provide a better insight of the redistribution of probabilities. The
search register initially always has P(i) - N = 1.

proposal is to first initialize the search register to a single individual (as the blue bar
shown in Fig. 3.1a), then, use the search register as a threshold for the threshold register
(previously initialized in a uniform superposition), so that we get a distribution like
that I obtained for the orange bars in Fig. 3.1a. Both registers are in separable states,
so one can safely reset the search register and get a uniform superposition. Finally,
apply the amplification operator using the distribution in the threshold register as the
threshold. In practice this result is similar to amplifying the search register with a step
distribution in the threshold register. Performing this steps, I obtained the result shown
in Fig. 3.2a.

In this procedure, each state ¢ is only distinguishable by its order number {;.
Individuals with the same fitness have the same order number and are affected in
the same way by the algorithm. This implies that any bijective fitness function will
obtain the same results. If the number of repeated fitness values is small, the result is
similar. As examples we can see results in Fig. 3.2.

The efficiency of this procedure depends on the order number of the first threshold,
t.. As I show in Fig. 3.1a and 3.1b, if the initial threshold is too bad the lower states
are amplified. Similarly, if a threshold among the best is employed the step obtained
will be sharper and will enhance the higher values better. In Fig. 3.2, the threshold
value was chosen to fulfil ¢,/N ~ 0.25. Those figures show the proportional increasing

29

3.1. QUANTUM ENHANCED SELECTION

amplification of the computational basis states that exceed the threshold fitness, which
is imposed by the threshold index.

k10
RN

6 F 60 6
< B el
S ST | 51 S I % [os
4 k40
4 los
E _ E _
T3 30 T3 =
Fo.4
5 20)
o2
10
1 14
-. .c
Lo Wt f% 0.0
0l— - - - - 0l— - - - - -
] 10 20 30 40 50 60 0 10 20 30 40 50 60
i i
(a) (b)
F 50
6 6

F60
51 °] O . k50

° o
4 u o k40
. N °

F(i)

r20

rio

Figure 3.2: Relative output probabilities (orange) for different fitness functions (green). The
threshold distributions (blue) are obtained with single threshold amplification,
using a threshold individual with order number ¢,/N =~ 0.25. The functions F'(7)
are (a) i, (b) sin?(7i/64), (c) i mod 20 +i mod 30 and (d) unsorted i.

Although I obtained an increasing probability, associated with the fitness of the
individuals, I paid the cost of amplifying the lower fitness states too. In fact, regarding
the probability to get a state strictly above the threshold, the procedure I proposed gets
worse results. Regarding a bijective function with single threshold I obtain a probability
to measure above the threshold index z of

1 t.\2
Psca(i) = — (347 (36)
> >y (-45)

©F (1 z) ©:F(1)>F(z)
S Pea(i) = 2. (3 — 4a,)?, (3.7)
:F(1)>F(z)

obtained from Eq. 3.5 setting b, = §,. and summing over all possible solutions, also
defining =, = t./N and noting that ¢, goes from 0 to N — 1. On the other hand,
for the multiply compared amplification we have to divide the summation over v in
three subspaces: A for v satisfying F'(v) < F(z) with N — ¢, terms, B for v satisfying
F(z) < F(v) < F(i) with t, — t; terms and C for v satisfying F(v) > F(i) with ¢

30

3.1. QUANTUM ENHANCED SELECTION

terms,
Poneali = (1) > F(2)) = 3]§Q<1 —42.)*(3 — 4x,)*+

1V 2 2 1 2 2
3 73— 42:)°(3 — 4z,)* + > 28 —dw) (1 —4)" (38)

veB veC

Which summing over all ¢ satisfying F'(i) > F(z) and approximating to N — oo but
x, finite,

Y Prcli) = “% (7+ 52z, — 24822 + 32022 — 1282?). (3.9)
i:F(i)>F(2)

Comparing both in the range 0 < z, <1 in the Fig. 3.3 we clearly see that for the
interesting values, x, < 0.5, single compared amplification gets better chances to find a
higher fitness index.

1.0 4 — P

0.8

0.6

P{F(i) = F(z))

0.4 1

0.2

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0
Xz

Figure 3.3: Probability to get a better than threshold index with single compared amplification,
Psco, and multiply compared amplification, Py,cq, as a function of the thresholds
order number, x, =t,/N.

Moreover, our procedure cannot be adapted to fit into something like Diirr-Hgyer
minimum finding algorithm, as it does not strictly match the operation of a Grover
operator. Nevertheless, that was not our intention. Genetic algorithms do not seek the
straight way up. Usually, we are also interested in obtaining low fitness individuals, in
case their genetic codification can add some interesting information to the population.

31

3.2. COMPLETELY QUANTUM VERSION

3.2 Completely quantum version

3.2.1 Case problem and general procedure

The problem studied will be the task of finding the six bit string corresponding to
the integer number that maximizes the fitness function

flz) =2 —(2° — 1) = 1024 — (32 — 2)*. (3.10)

Analytically, this is found to be the central value = = 32, which is the string ’100000’,
with fitness 1024. The population number is chosen to be 8, so the population will be
encoded in an array of 8 registers with 6 qubits each. All the registers form the quantum
system, so a quantum state in the computational basis corresponds to a population in
the genetic algorithm. The procedure that I will follow is:

1. Initialize the population, assigning a quantum state.

2. Sort the registers so that the best 4 individuals are in the first 4 registers.

@

Clear the last 4 registers, so that only the best individuals remain.

e~

Pseudo-clone each individual in the first 4 registers to the empty ones.
5. Perform a crossover, swapping the last 3 qubits of register 5 with 6 and 7 with 8.
6. Apply a mutation unitary with probability p,, in each qubit.

7. If the ending criteria is met measure the registers, if not go to step 2.

3.2.2 Sorting subroutine

For this purpose we need a procedure that gets 8 registers in an unknown quantum
state and sorts them. Sorting will be well defined for the states that represent a classical
population, so the procedure will be developed in that basis and then it will be shown
that the procedure also works with other states.

For sorting I will define a sorting oracle, Og, as was shown for the Grover algorithm
in Section 1.3. This will be a unitary that taking two registers applies a X gate in an
ancilla qubit if they are unsorted and identity if they are sorted. That is,

) |y) [0) if f(x) < f(y),
0 0) = 3.11
slz 10 {|as> W) i () < () (310
I also require a gate that performs a control swap of two registers,
_JImy)e) ife=0,

In both Eq. 3.11 and 3.12 |x) |y) |¢) was assumed to be a separable state and x and
y to represent a state of the computational basis. Nevertheless, these definitions are
enough to define the operation of the quantum gate in an arbitrary state.

32

3.2. COMPLETELY QUANTUM VERSION

These gates allow us to perform the quantum version of Bubble Sort algorithm. For
the sake of simplicity I will explain the method for 8 registers and assume I have 4
ancillas initialized at |0), while the generalization is simple.

1. Apply the sorting oracle, Og, to the register pairs marking the associated ancilla
(r1, 2) = a1, (rs, ra) = as, (r5, r6)—> az and (r7, rs)— aa.

2. Apply the controlled swap, Cswap, to the register pairs controlled by the associated
ancilla a1 — (71, r2) , ag = (r3, r4) , ag — (15, 176) and ag — (17, 3).

3. Set the ancillas to |0), as explained below.

4. Apply the sorting oracle, Og, to the register pairs marking the associated ancilla
(r9, r3) = @y, (r4, r5) — ag and (14, 77)— as.

5. Apply the controlled swap, Cswap, to the register pairs controlled by the associated
ancilla a1 — (79, r3) , ag — (ry4, r5) and a3 —(rg, r7).

6. Repeat 3 times from 1 to 4 and finally apply steps 1, 2 and 3.

The circuit representation of the sorting algorithm for 4 registers is shown in Fig. 3.4.
In order to reset the ancilla qubits to zero a projection through a single shot measurement
is needed. The simplest way is to use the Z basis, if a 0 is obtained no action is required,
while if a 1 is obtained an X gate should be applied. However, these steps can spoil
the superposition in the computational basis. Take the case of a[¢g) |0) + 5 [¢1) [1),
there would be two possible outcomes: [t) [0) with probability |a|* and [;) |0) with
probability |3 |2. To avoid this I will perform the projection in X basis, applying a
Hadamard gate before the measurement in Z basis. This transforms the state to,
(o) [0) + |2} [1)) + \%(I%) 10) = [¢1) [1)). (3.13)

«

V2

Performing a single shot measurement in the ancilla we can obtain 0 or 1, with
probability 1/2; and apply X only in the second case. The possible outcome states are
a|thg) [0) + B |¢1) 0), if O was obtained, and « |1)g) [0) — /5]11) |0), if 1 was obtained.
I employed this resetting method, as it preserves the statistics of the states in the
unobserved qubits.

3.2.3 Crossover subroutine

The crossover subroutine is implemented in 3 steps: clearing the lowest half, clone
the best individuals to the lower ones and swap part of the copied individuals. To clear
the lowest half I employed the same procedure as to reset the ancillas in the sorting
subroutine for registers 5 to 8. Then, the cloning was performed from r; to r5, from ry
to rg, from r3 to r7 and from r4 to rg. Finally, the last three qubits of registers r5 were
swapped with the last three registers of rg, similarly for r; and rg.

As it was explained in Section 1.2, cloning the whole quantum state of a register
to another is not possible in general. Later in that section the partial cloning unitary
in Ref. [7] was mentioned. This method perfectly clones the quantum states of the

33

3.2. COMPLETELY QUANTUM VERSION

| | |

T - ’$1> — : : :
Os I 1| Os |

| | |

rasfes) —L : L :
1| Og [|

| | |

rs : |s) L :
Os I | Og |

| | |

T4 |Ta) —¥ : %+
| | |

ay : |0) S —D —® ;
| | |

az : |0) S5 ; ; S :

Figure 3.4: Circuit representation for the sorting subroutine with 4 registers.

computational basis, that only contain classical information, and ensures the transfer
of the statistics of a chosen observable for any state.

The partial cloning unitary adapted from Ref. [7] satisfies,

(WIMp) = (¥, ¢ [(M @D, ¢) = (¥, [T M)y, ¢), (3.14)

where U [¢)|0) = [¢,4"), which is not a separable state in general. This property
ensures the correct cloning of the statistics according to observable M, which must be
diagonal in the computational basis.

The partial cloning unitary in the computational basis is computed by

- <
T L R B ERE)
lk+i—1—n) ifk>n—i+1,
i=1

where x,,; represents a translation group, s,; represents the projection into each subspace
and U, is the partial cloning unitary. This representation allows the partial cloning of
a state |1)) represented in n dimensions. The result is a state space of dimension n X n.
The operator U, is defined in n subspaces of n dimension, each with index ¢. Within
each n dimensional subspace the translation operator z,; is defined. The piecewise
definition ensures that |k) and the state it goes to range from |1) to |n) keeping within
the initial subspace. With the notation used ¢ ranges from 1 to n. With this definition
the pseudo cloning operator can be built as a matrix for computational simulation. For
the quantum genetic algorithm I wanted to clone 26 = 64 dimensional states so Ugy was
used operating on the parent and children register.

3.2.4 Mutation

As I mentioned in Section 2.1.2, mutation is essential to introduce new information
to the evolution process. In a classical computer there is a single mutation operation

34

3.2. COMPLETELY QUANTUM VERSION

to do this, bit flip. The difference is in the criteria used to choose which bit to flip,
usually by selecting randomly with probability p,,. The direct analogue in a quantum
structure is to decide whether to apply a bit flip, X gate, to each qubit with probability
pm- When the initial state can be described by a single classical state, performing
the sorting, crossover and this kind of mutation results in a similar behaviour for the
quantum and classical algorithms.

The proposal to avoid this is to substitute X gate with another one that introduces
superposition, as the Hadamard gate. In this sense, not only would mutation introduce
new information, but it would also add superposition to the state.

3.2.5 Resources needed

As mentioned above, there are 6 x 8 = 48 qubits needed to represent the population
and 4 needed for the ancillas, for a total of 52 qubits. Moreover, in this preliminary
development issues like quantum error correction were not considered, as qubits were
assumed to be noiseless. Taking this into account would increase the number of resources
needed.

To get quick results the circuit was simulated using classical resources representing
operations by means of linear algebra. This involves some restrictions too. As explained
in Section 1.1 to represent a state space of n qubits, 2" dimensional vectors are needed.
In this case each operation would imply a 2°2 x 252 dimensional matrix. For the
sake of simplicity restricted cases were studied. For instance, most of the operations
involved in the quantum genetic algorithm only apply transitions, meaning that in
matrix representation they are sparse matrices which only have a non-zero value in each
row and column. This implies that if the initial state can be represented with a few
non-zero coefficients the computation may be efficiently run in a standard computer.

To this aim we must ensure that the number of non-zero amplitudes does not grow
too much in each generation. This implies restrictions in the initial population chosen
and in the mutation method used.

If X is used as a mutation unitary, there is no restriction as it only performs the
change |0) — |1) and |1) — |0), conserving the number of non-zero coefficients in
the vector representation. But the H gate can introduce |0) — (|0) + |1))/v/2 and
1) — (J0) — |1))/+/2. If we consider a probability p,, to mutate a qubit, 48 qubits and
G generations. This results in an expected value of 48Gp,, mutations, resulting in a
final state with 2*¥P= non-zero coefficients.

Object oriented programming was used, creating our own classes to take advantage of
the particular properties of the matrices. Nevertheless, better computational resources
would allow further results, such as bigger mutation probability, larger populations or
longer chromosomes.

3.2.6 Results

I compared the results obtained with the quantum genetic algorithm comparing
(QGA) to a classical genetic algorithm (CGA). Both created the new generation
performing selection by sorting and choosing the first half, cloning them to the lower

35

3.2. COMPLETELY QUANTUM VERSION

half and making crossover with these. In the classical version this resembles the logic
used for the quantum genetic procedure explained above. The actual difference is that
the population state in the quantum genetic algorithm may represent many classical
populations at the same time and that mutation was performed with H gate.

To perform a meaningful comparative I first determined a reasonable number of
generations. I ran several CGAs with 100 generations and show that by generation
50 80 % of the CGAs run had found an optimum value that did not change in the
following 50 generations. I took 50 generations as a reference for the convergence of
most of the trials performed.

I performed 200 trials with 50 generations, each trial using the same initial population
for CGA and QGA [?]. Their evolution was stored for latter analysis. The parameters
chosen were big enough to perform the analysis, but limited because of the QGAs where
many mutations occurred which had great computational complexity. The reasons for
that are the increase in the non-zero amplitude coefficients due to mutation with a
Hadamard gate.

A basic comparative of the performance of each GA requires fixing a threshold value
for the fitness of the population in order to see how many trials overcome that limit.
More concretely I measured the ratio of final populations that have an individual above
a given fitness, for the CGA. For the QGA, I also considered the probability of that
population to be measured. That is, define the probablhty to measure the population ¢
with an individual above the given threshold as pt) for a certain trial . Consider Dt as
the Sum of the probabilities of each population meeting the required condition for that

(a)

(b)

trial, pt . Then the measured magnitude was
1 i
_sztzzzptk (3.17)
t t
We can interpret the result in the CGAs as if p; could only be 0 or 1,
1
= —) 3.18
T zt:pt ()
Tolerance (%) | R, | R. Tolerance (%) | R, | R.
0.0 0.42 | 0.48 0.0 0.23 | 0.30
2.5 0.78 | 0.86 2.5 0.27 | 0.31
5.0 091 | 0.94 5.0 0.35 | 0.34
10.0 0.95 | 0.97 10.0 0.90 | 0.92
15.0 0.97 | 0.98 15.0 0.96 | 0.96

Table 3.1: Ratio of final populations above a given tolerance for QGA, R,, and CGA, R.. a)
for parabolic fitness function and b) for z mod 20 +z mod 3.

With this definitions we can see that the result obtained for both are very similar in
Table 3.1a. The tolerance was defined as the proportion of individuals in the search
space that are higher or equal to a given threshold. I tried also with a different fitness
function, f(x) = z mod 20 + x mod 30 as shown in Fig. 3.2c with green dots. I
performed the same measurement and obtained the results in Table 3.1b.

36

Conclusions

Technological advances developed with genetic algorithms show their ability to find
robust solutions to problems under complex constraints. Nevertheless, these algorithms
require elaborated selection procedures and an unknown number of iterations. It is
reasonable to explore if quantum resources can eventually provide any advantage to
genetic algorithms, as it has been the case for other quantum algorithms. Moreover,
developing a quantum genetic algorithm can also provide a new insight for quantum
computation as they are natural candidates to be useful distributed quantum algorithms.

This work starts describing the grounds of quantum computation. We have review the
concepts of qubit, quantum gate and measurement. Then, we briefly explored the state
of the art in searching and minimum finding algorithms, recalling their speed-ups. We
have also reviewed one of the principal results in quantum information: the no-cloning
theorem. It was shown that a quantum state can not be completely copied which leads
to the design of approximated cloning procedures for the development of a quantum
genetic algorithm.

In the second chapter a survey on some fundamental concepts about genetic algorithms
is proposed. I deepen in the building blocks of these algorithms: selection, crossover and
mutation. Explained through a couple of examples, the behaviour of these algorithms
in terms of their performance is studied, especially focusing on the influence of the
available choices when implementing them, such as, the codification of the chromosomes,
the choice of a fitness function or the freedom in tuning the parameters.

The last chapter is entirely dedicated to merging genetic algorithms with quantum
information. Indeed, two approaches are analysed concerning the merging of quantum
computation and genetic algorithms. In the first one, I reviewed previous work [15],
and I tried a different approach to obtain an improvement in the selection procedure of
a classical genetic algorithm employing quantum searching algorithms. I numerically
show that the proposal may resemble the evolutionary selection philosophy, making it
monotonically increasing with the fitness criteria and not suppressing individuals with
low fitness. In the future, it would be meaningful to compare the performance of each
selection subroutine with different fitness functions, in order to better understand the
conditions under which the approach shows and advantage with respect to previous
one.

In the second part, we focused on the development of a fully quantum genetic
algorithm. FEach building block of the quantum genetic algorithm is explained by
means of quantum gates. Finally, the developed algorithm is simulated in a classical
computer and the results are positively compared against a classical version of the
genetic algorithm. A further study of the properties of this algorithm must be carried
out with other fitness functions and performance measurements in order to understand

37

3.2. COMPLETELY QUANTUM VERSION

the limits of the approach.

Besides, the procedure could be implemented in different registers which could in fact
be different connected quantum processors. That is, its structure is especially suitable
for distributed quantum computing. If each register is in a different quantum processor,
we would need to be able to perform SWAP operations between them. In the quantum
genetic algorithm, SWAP is the only operation required between the registers, except
for the pairwise sorting oracle. But the pairwise sorting oracle could be implemented
in a master processor with twice the capacity. The importance of this stems from the
difficulty to build big quantum processors, while building smaller ones is nowadays
achievable.

I performed the calculations for the examples about genetic algorithms of the second
chapter and the simulation of quantum algorithms of the third chapter with Python 3
programs, which are available in the repository of the University of the Basque Country
(ADDI).

Future work would require a deeper analysis of the quantum genetic algorithm.
Understanding its performance and its advantages could lead to more efficient optimization
algorithms for some problems. Beyond the algorithm itself, the limitations of distributed
quantum computing could also be tested employing this algorithm.

38

Bibliography

[1]

[10]

[11]

[12]

[13]

M. Mitchell, An introduction to genetic algorithms. Cambridge, MA, USA: MIT
Press, 1996.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge: Cambridge University Press, 2000.

N. Herbert, “FLASH-A superluminal communicator based upon a new kind of
quantum measurement,” Foundations of Physics, vol. 12, no. 12, pp. 1171-1179,
1982.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,
vol. 299, pp. 802-803, 1982.

Y

V. Buzek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,’
Physical Review A - Atomic, Molecular, and Optical Physics, vol. 54, no. 3, pp.
18441852, 1996.

A. Ferraro, M. Galbiati, and M. G. Paris, “Cloning of observables,” Journal of
Physics A: Mathematical and General, vol. 39, no. 14, p. L219-L228, 2006.

U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano, “Biomimetic cloning of
quantum observables,” Scientific Reports, vol. 4, pp. 4-7, 2014.

L. K. Grover, “A fast quantum mechanical algorithm for database search,” pp.
1-8, 1996. [Online]. Available: arXiv:quant-ph/9605043v3

M. Boyer, G. Brassard, P. Hgyer, and A. Tapp, “Tight bounds on quantum
searching,” Fortschritte der Physik, vol. 46, no. 4-5, pp. 493-505, 1998.

C. Diur and P. Hgyer, “A Quantum Algorithm for finding the minimum,” pp. 1-2,
1996. [Online]. Available: arXiv:quant-ph/9607014

G. S. Hornby, A. Globus, D. S. Linden, and J. D. Lohn, “Automated antenna
design with evolutionary algorithms,” Collection of Technical Papers - Space 2006
Conference, vol. 1, pp. 445-452, 2006.

J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
Cambridge, MA, USA: MIT Press, 1992.

K. A. De Jong, “Genetic Algorithms Are NOT Function Optimizers,” in
Foundations of Genetic Algorithms, ser. Foundations of Genetic Algorithms, 1993,
pp- 5-17.

39

arXiv:quant-ph/9605043v3
arXiv:quant-ph/9607014

BIBLIOGRAPHY

[14] R. S. Zebulum, M. A. C. Pacheco, and M. M. B. Vellasco, Evolutionary electronics:
Automatic design of electronic circuits and systems by genetic algorithms, 2001.

[15] A. Malossini, E. Blanzieri, and T. Calarco, “Quantum genetic optimization,” IEEE
Transactions on Evolutionary Computation, vol. 12, no. 2, pp. 231-241, 2008.

40

	Fundamentals of Quantum Computation
	Fundamentals of quantum computation
	The qubit
	Quantum logic gates
	Single qubit gates
	Two qubit gates

	Measurements

	No-cloning theorem
	Quantum searching algorithms
	The oracle
	Quantum search with many solutions
	Quantum search for an unknown number of solutions
	Finding the minimum

	Introduction to Genetic Algorithms
	What is a genetic algorithm?
	Search space and fitness landscape
	The genetic operators

	Example 1: Optimisation of a two-variable function
	The choice of the parameters

	Example 2: Evolution of strategies to win games
	Applications

	Towards Quantum Genetic Algorithms
	Quantum enhanced selection
	Selection with truncated Dür-Høyer optimisation
	Selection with multiply compared amplification
	Numerical examples
	Previously amplified threshold

	Completely quantum version
	Case problem and general procedure
	Sorting subroutine
	Crossover subroutine
	Mutation
	Resources needed
	Results

