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Preface

Having achieved his objective of solving the so-called Basel problem, Leon-
hard Euler (1707-1783) turned to the arithmetic properties of a more general
series, that consisting of the sum of integer powers of all natural numbers.
While he was investigating topics concerning prime numbers, he discovered
a remarkable identity expressing this series as a product over all prime num-
bers. More than a century later, Bernhard Riemann (1826-1866) published
a short but ground-breaking paper entitled On the Number of Primes Less
Than a Given Magnitude [17], in which he used Euler’s identity as the start-
ing point. In this memoir, Riemann went much further and realized that
the key to a deeper study of the distribution of prime numbers lies in con-
sidering this series as a function of a complex variable s. In particular, he
introduced its analytic continuation along with its functional equation, and
he outlined the eventual proof of the prime number theorem, which con-
stitutes one of the crowning achievements of analytic number theory. The
resulting function, denoted by ζ(s), became worldwide known simply as the
Riemann zeta function.

Nowadays, the Riemann zeta function is just the prototype of a whole
family of zeta functions of various kinds. However, we have limited our
work to the analytic structure and the special values of ζ(s), whereas its
connection with number theory and its generalizations are only mentioned
briefly. The main purpose of this work is to bring together two fields which
are apparently unrelated. Namely, we show how ζ(s) can be used to derivate
the Casimir effect, which describes a non-classical attraction arising between
two parallel plates located in vacuum.

This work is divided into three chapters. The aim of Chapter 1 is to
introduce some basic tools that will be used throughout the rest of the dis-
sertation, in order to make it as self-contained as possible. In Chapter 2, an
elementary overview of the main features of the Riemann zeta function is
presented. In Chapter 3, we introduce the more general concept of zeta func-
tion associated with a differential operator, showing that it can be used as
a summation method for divergent series. Finally, we introduce the Casimir
effect and we compute the value of the Casimir force in the simplest scenario.

v





Chapter 1

Preliminaries

The purpose of this chapter is to set all the material we need to proceed
with the theory of the Riemann zeta function, in order to make the work
almost self-contained. In the following section, we will limit ourselves to
review, without proofs, some well-known results from complex analysis, in
which much of the work relies on. We follow [19] as the main reference.

1.1 Complex analysis

Complex analysis is devoted to the study of holomorphic functions. Let Ω
be an open set in C and f a complex-valued function on Ω. Then, f is said
to be holomorphic at z0 ∈ Ω if it is complex differentiable on some open disk
around z0. Moreover, f is said to be holomorphic on Ω if it is holomorphic
at every point of Ω, and entire if it is holomorphic in all of C.

It turns out that this property has much stronger consequences than
its real counterpart. For instance, any holomorphic function is indefinitely
differentiable, and can be locally expanded into a convergent power series,
being therefore also analytic. This means that both notions are actually
equivalent. We call a domain to a non-empty connected open set in C.

Theorem 1.1.1. (Identity theorem) Let f be holomorphic on a domain
Ω, vanishing on a sequence of distinct points with a limit point in Ω. Then,
f vanishes identically in Ω.

As a consequence, zeros of non-trivial holomorphic functions are isolated,
which showcases their strong rigidity. Moreover, as a simple corollary of the
theorem, we deduce that any holomorphic function is uniquely determined
by its restriction to any arbitrarily small curve segment of its domain. Thus,
given a pair of holomorphic functions f and F in domains Ω and Ω′ respec-
tively, where Ω ⊂ Ω′, if they both agree on the smaller set Ω, we say that F
is the unique analytic continuation of f to Ω′.

1



2 1.1. Complex analysis

Example. Consider the geometric series f(z) =
∑∞

n=0 z
n and g(z) = 1

1−z .
f only converges and equals g when |z| < 1, defining there an holomorphic
function, whereas g is holomorphic everywhere except for a simple pole at
z = 1. Thus, g is said to be the analytic continuation of f to C \ {1}.

Throughout this work we will have to deal with infinite series, products,
integrals, or even some combinations of these. Therefore, instead of working
on them separately, we will make use of the following results so that we can
verify more easily that they are holomorphic.

Theorem 1.1.2. (Weierstrass) Let {fn}∞n=1 be a sequence of holomor-
phic functions on an open set Ω, converging uniformly to f on every compact
subset of Ω. Then, f is holomorphic on Ω and the sequence of derivatives
{f ′n}∞n=1 converges uniformly to f ′ on every compact subset of Ω.

We now turn to holomorphic functions defined in terms of integrals de-
pending on a real parameter t, quite usual among special functions.

Theorem 1.1.3. Let I be a finite interval of real numbers and Ω an open
set in C, such that F (t, z) is continuous on I×Ω and holomorphic on Ω for
every fixed t ∈ I. Then, the function defined by

f(z) =

∫
I
F (t, z) dt

is holomorphic on Ω.

On the other hand, infinite products are useful to represent holomorphic
functions while showing their zeros explicitly. The Weierstrass factorization
theorem states that every entire function can be factorized as a product
involving its zeros, as exemplified by Euler’s sine product formula

sinπz = πz
∞∏
n=1

(
1− z2

n2

)
,

which is used to prove certain values of the Riemann zeta function.

Theorem 1.1.4. Let {fn}∞n=1 be a sequence of holomorphic functions on
the open set Ω, with constants Mn > 0 such that

∞∑
n=1

Mn <∞ and |fn(z)| ≤Mn for all z ∈ Ω.

Then, P (z) =
∏∞
n=1(1+fn(z)) is holomorphic on Ω and P (z0) = 0 for some

z0 ∈ Ω if and only if one of its factors vanishes in z0. In addition, if P (z)
never vanishes, we can take its logarithmic derivative as

P ′(z)

P (z)
=
∞∑
n=1

f ′n(z)

1 + fn(z)
.
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Finally, recall that complex analysis is especially interested in singular
behaviour. A function f , holomorphic on a domain Ω except for some poles,
is said to be meromorphic in Ω. On the other hand, the residue of f at a
pole z0 is the coefficient a−1 in its Laurent series at that point. Therefore,
if a pole is simple at z0, its residue is just given by

Res(f ; z0) = lim
z→z0

(z − z0)f(z).

Keeping the standard notation, from now on s will denote a complex
number with real part Re(s) = σ. Also, in order to avoid confusion, the set
of all integers greater than or equal to a ∈ Z will be represented as Z≥a.

Now we will study some integral transforms, which are simply linear
operators mapping a function into another, sometimes making it easier to
work with or giving us otherwise hard to figure out information. It turns
out that some of them are useful when dealing with zeta functions.

1.2 The Mellin transform

The Mellin transform, which is closely related to the Fourier and Laplace
transforms, constitutes a basic tool for analyzing the behavior of many spe-
cial functions. In the next chapter we will see that it allows to transform
symmetries of theta functions into those of zeta functions. Our main refer-
ence are [8] and the appendix from Zagier in [23].

Definition 1.2.1. (Mellin transform) Let f(t) be a locally Lebesgue
integrable function over (0,+∞). Then, the Mellin transform of f(t) is
defined by

M[f(t); s] = f∗(s) =

∫ ∞
0

f(t)ts−1 dt.

Its domain of definition is the largest open strip α < Re(s) < β, also
denoted as 〈α, β〉, in which the integral converges. This strip is usually called
the fundamental strip, and it is essentially determined by the behaviour of
f(t) near zero and infinity, as we show in the following proposition.

Proposition 1.2.1. Let f(t) be continuous and a < b reals such that

f(t) =
t→0+

O(t−a), f(t) =
t→+∞

O(t−b). (1.1)

Then, f∗(s) is holomorphic in 〈a, b〉.

Proof. It is straightforward to check that∣∣∣∣∫ ∞
0

f(t)ts−1 dt

∣∣∣∣ ≤ c1 ∫ 1

0
tσ−a−1 dt+ c2

∫ ∞
1

tσ−b−1 dt,
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where c1 and c2 are constants, so the first integral converges for Re(s) > a,
whereas the second converges for Re(s) < b. The function F (t, s) = f(t)ts−1

satisfies the hypotheses of Theorem 1.1.3 for all (t, s) ∈ [1/n, n] × 〈a, b〉
with n > 1. Thus, each fn(s) =

∫ n
1/n F (t, s) dt is holomorphic in 〈a, b〉.

Furthermore, they converge uniformly to f∗(s) in every strip in 〈a, b〉, and
therefore, also in every compact subset contained in 〈a, b〉. Hence, it follows
from Weierstrass’ theorem that f∗(s) is holomorphic in 〈a, b〉.

Simple changes of variables in the definition of the Mellin transform yield
many interesting transformation rules. For instance, provided that λ is a
positive real, the substitution t 7→ λt gives us the scaling property

M[f(λt); s] = λ−sf∗(s)

for all s ∈ 〈α, β〉. From here, by the linearity of the transform, it also follows
that whenever K is a finite index set and λk > 0 for all k ∈ K, we have

M

[∑
k∈K

akf(λkt); s

]
=

(∑
k∈K

ak
λsk

)
f∗(s). (1.2)

The following proposition generalizes this result to infinite sums, which in
the future will enable us to work with exponential series instead of Dirichlet
series (see Section 2.1.1), making it easier to study the latter.

Proposition 1.2.2. The property (1.2) holds in the intersection of the fun-
damental strip of f∗(s) and the domain of absolute convergence of the gen-
eralized Dirichlet series

∑
k∈K ak/λ

s
k for any K.

Proof. If the intersection is not empty, the interchange of summation and
integration is justified by Lebesgue’s dominated convergence theorem.

Remark. Although we will not follow this approach, the Hankel integral
representation can also be used to transform holomorphic functions. If f
is holomorphic in some open set containing [0,+∞) and satisfies suitable
growth conditions, then Hankel’s formula

M[f(t); s] =
i

2 sinπs

∫
H
f(w)(−w)s−1dw

holds for all s ∈ 〈0, β〉, where H is the Hankel contour, which starts in the
upper half-plane at +∞, circles the origin once counter-clockwise and re-
turns to +∞ in the lower half-plane.
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As we have seen, provided that f(t) is well-behaved, i.e., continuous
and with ideal growth and decay conditions, f∗(s) actually defines an entire
function. Otherwise, it may happen being analytically continuable to a
larger region of the plane than the original strip in which it was defined,
making use of more precise estimates than the ones from (1.1). In fact,
there is a fundamental correspondence between terms in the asymptotic
expansion of f(t) (either at zero or infinity) and the set of singularities of
the extension of f∗(s) (in a left or right half-plane respectively). Here we
will only consider the following case of our interest.

Proposition 1.2.3. Let f(t) have a Mellin transform f∗(s) with non-empty
fundamental strip 〈α, β〉 and admit as t→ 0+ a finite asymptotic expansion
of the form

f(t) =

N−1∑
n=0

ant
in +O(tiN ),

where the real exponents satisfy −α = i0 < · · · < iN−1 < iN and the co-
efficients an are non-vanishing. Then, f∗(s) can be analytically continued
to a meromorphic function in the strip 〈−iN , β〉, with only simple poles, of
residue an, at each s = −in.

Proof. Let us split the integral for f∗(s) defined on 〈α, β〉 as follows,

f∗(s) =

∫ 1

0

(
f(t)−

N−1∑
n=0

ant
in

)
ts−1 dt+

N−1∑
n=0

an
s+ in

+

∫ ∞
1

f(t)ts−1 dt.

Hence, as in Proposition 1.2.1, we deduce that the first integral is holomor-
phic for Re(s) > −iN while the last is holomorphic for Re(s) < β. Note
that its singularities and residues are exhibited by the finite sum.

Remark. If f(t) is analytic at zero, since the theorem holds for every N ,
f∗(s) becomes meromorphic in a complete left half-plane (or even the whole
plane given that f(t) is of rapid decay at infinity). In fact, it extends likewise
towards the right by the symmetry relation −f∗(−s) =M[f(1/t); s].

1.3 The Poisson summation formula

While offering a powerful symmetry between a function and its Fourier trans-
form, the Poisson summation formula has many noteworthy consequences.
It is used to prove many transformation properties of theta functions, and
it will be indeed a key tool in our proof of Theorem 1.4.3, which then leads
to the functional equation of the Riemann zeta function.
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For the formula to hold, we need the involved function to be well-
behaved. For the sake of simplicity, we will restrict our attention to a special
class of integrable functions, even though their conditions can be weakened.

Definition 1.3.1. A Schwartz function is an infinitely differentiable func-
tion which, along with all its derivatives, decays at infinity faster than any
negative power of |x|, i.e.,

sup
x∈R
|xk||f (l)(x)| <∞ for every k, l ≥ 0.

We call the Schwartz space S(R) to the vector space of all Schwartz
functions on R, which can be proved to be closed under differentiation,
multiplication by polynomials, and linear change of variable. In fact, the
Fourier transform of f ∈ S(R), given by

f̂(y) =

∫
R
f(x)e−2πixy dx, y ∈ R,

also belongs to S(R). We are now ready to prove the following theorem.

Theorem 1.3.1. (Poisson summation formula) Let f̂ be the Fourier
transform of a function f ∈ S(R). Then, the following identity holds:∑

n∈Z
f(n) =

∑
m∈Z

f̂(m). (1.3)

Proof. Let us introduce the auxiliary function F (x) =
∑

n∈Z f(x+n), which
is clearly periodic. Since f is a Schwartz function, F converges absolutely
and uniformly on every compact subset of R, and thus, it is continuous ev-
erywhere. Applying the same argument to the derivatives of f , we conclude
that F is also infinitely differentiable, so that it admits a Fourier expansion

F (x) =
∑
m∈Z

cme
2πimx,

which converges uniformly to F , and whose coefficients are given by

cm =

∫ 1

0
F (x)e−2πimx dx =

∑
n∈Z

∫ 1

0
f(x+ n)e−2πimx dx

=

∫
R
f(y)e−2πimy dy = f̂(m).

Note that the interchange of the sum and the integral is valid since the
convergence is uniform. Hence, we conclude that∑

n∈Z
f(x+ n) = F (x) =

∑
m∈Z

cme
2πimx =

∑
m∈Z

f̂(m)e2πimx.

In particular, the desired formula is obtained by setting x = 0.
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1.4 Some special functions

Some particular functions emerge in many unrelated contexts in mathemat-
ics. This is the case of gamma and theta, both playing a crucial role in the
theory of the Riemann zeta function. Let us recall some of their properties.

1.4.1 The gamma function

The gamma function originally arose when it turned out convenient to find
a factorial expression for non-integer real values, and it was subsequently
extended to the complex numbers. From the two natural approaches to the
function, we will introduce it by means of a Mellin transform, while the
other is based on the Weierstrass product, which will not be needed here.

Definition 1.4.1. (Gamma function) The gamma function, denoted Γ(s),
is defined for all s with Re(s) > 0 by the integral

Γ(s) =

∫ ∞
0

e−tts−1 dt.

An easy computation shows that Γ(1) = 1, along with the fundamental
recurrence relation

Γ(s+ 1) = sΓ(s), (1.4)

which can be proved integrating by parts. Thus, by induction, it follows
that Γ(n) = (n− 1)! for every positive integer n.

Note that Γ(s) corresponds simply to the Mellin transform of e−t. Using
previous results, this observation enables us to deduce some of its analytic
properties and to extend its domain of definition further.

Proposition 1.4.1. Γ(s) is holomorphic for all s with Re(s) > 0.

Proof. Since f(t) = e−t is continuous and satisfies the conditions

e−t ∼
t→0+

1, e−t =
t→+∞

O(t−N ), ∀N > 0,

by Proposition 1.2.1, f∗(s) = Γ(s) is holomorphic for Re(s) > 0.

Proposition 1.4.2. Γ(s) can be analytically continued to a meromorphic
function in C, with only simple poles, of residue (−1)n/n!, at each non-
positive integer s = −n, n ∈ Z≥0.

Proof. By Proposition 1.2.3, it follows easily from the power series expansion
of f(t) = e−t at zero.
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However, these well-known properties can also be obtained from the
functional equation (1.4), m applications of which gives the analytic contin-
uation

Γ(s) =
Γ(s+m)

s(s+ 1) · · · (s+m− 1)

to Re(s) > −m. Therefore, since m is arbitrary, we can extend Γ(s) to a
meromorphic function in the whole complex plane from merely its values in
the strip 0 < Re(s) ≤ 1. Note that the above expression also gives us all the
information about its poles and residues. From now on, the function Γ(s)
will denote this unique continuation to C \ Z≤0.

Furthermore, many other remarkable identities of Γ(s) can be proven
(see for example [20, pp. 45-48]), such as Euler’s reflection formula

Γ(s)Γ(1− s) =
π

sinπs
, (1.5)

which relates gamma directly with the sine function and shows its symmetry
about the line Re(s) = 1/2, or Legendre’s duplication formula

Γ(2s) =
22s−1√
π

Γ (s) Γ

(
s+

1

2

)
, (1.6)

which allows us to express values of gamma at half-integers in terms of its
values at integers.

Note that the reflection formula proves that Γ(s) never vanishes. If we
assume Γ(s0) = 0, since the right-hand side of (1.5) is never zero, then
Γ(1 − s) should have a pole at s0 ∈ Z≥1, which is clearly a contradiction.
As a consequence, the reciprocal gamma function, Γ−1(s), is entire with
simple zeros at non-positive integers. Furthermore, setting s = 1/2 yields
Γ (1/2) =

√
π (since Γ(x) > 0 for x > 0), which determines all values at

half-integers by the functional equation.

1.4.2 The theta function

The arc-length of an ellipse and of many other curves cannot be expressed in
terms of elementary functions, which leads to a wide class of integrals, whose
inverses are called elliptic functions. The theta functions appeared then as
auxiliary tools in such calculations. Jacobi introduced four of them of com-
plex variables z and τ , and he derived their properties purely algebraically.
Following Riemann, one emphasizes the theta function

ϑ3(z, τ) =
∑
n∈Z

eπin
2τe2πinz,
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which is holomorphic for all z ∈ C and Im(τ) > 0. Jacobi also discovered
the fundamental transformation formula

ϑ3(z, τ) =
1√
−iτ

e−πiz
2/τϑ3

(
z

τ
,−1

τ

)
,

where
√
−iτ denotes the branch of the square root defined on the upper

half-plane. This formula is actually a generalization of our next theorem.

When viewed as a function of z, they can be seen as quasi doubly-periodic
elliptic analogues of the basic trigonometric functions, while if considered
as a function of τ , they reveal their modular nature. In some contexts like
number theory, ”the theta function” means ϑ3(z, τ) evaluated at z = 0. In
our case, we are especially interested in setting τ = it for real t > 0 to define

ϑ3(0, it) = θ(t) =
∑
n∈Z

e−πn
2t, t ∈ R>0,

which we will simply call the theta function.

As an application of the Poisson summation formula, the following theo-
rem shows the modularity of the theta function and gives us a fundamental
tool to derive the functional equation of the Riemann zeta function.

Theorem 1.4.3. θ(t) satisfies for t > 0 the functional equation

θ(t) =
1√
t
θ

(
1

t

)
.

Proof. It is straightforward to check that f(x) = e−πx
2t is a Schwartz func-

tion. Taking its Fourier transform and completing the square we reach to

f̂(m) =

∫
R
f(x)e−2πixm dx = e−πm

2/t

∫
R
e−πt(x+im/t)

2

dx.

Now, changing variables, it is easy to justify the movement in the line of
integration by using limits and Cauchy’s theorem, so we get∫

R
e−πt(x+im/t)

2

dx =

∫
u=im/t+R

e−πtu
2
du =

∫
R
e−πtu

2
du,

which is no more than the well-known Gauss integral∫ ∞
−∞

e−πtu
2
du =

1√
πt

∫ ∞
0

e−vv−1/2 dv =
Γ (1/2)√

πt
=

1√
t
.

Thus, we have proved the Fourier transform of f(x) to be

f̂(m) =
1√
t
e−πm

2/t.
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Finally, it suffices to apply the Poisson summation formula (1.3) to obtain

θ(t) =
∑
n∈Z

e−πn
2t =

∑
n∈Z

f(n) =
∑
m∈Z

f̂(m) =
1√
t

∑
m∈Z

e−πm
2/t =

1√
t
θ

(
1

t

)
.

Remark. This can also be proved by showing that the Gaussian function
g(x) = e−πx

2
is its own Fourier transform and using the scaling property.

Note that we can deduce the asymptotic behaviour near zero of the theta
function from its functional equation. Let N > 0 be arbitrary. Thus, since
we have θ(t) = 1+O(t−N ) as t→ +∞, we deduce that θ(t) = t−1/2 +O(tN )
as t → 0+. At first sight, it seems unsuitable to take its Mellin transform.
However, we can correct this issue by expressing the function as

θ(t) = 1 + 2ψ(t) where ψ(t) =
∞∑
n=1

e−πn
2t.

In this case, we actually have ψ(t) = O(e−πt) as t→ +∞, since

∞∑
n=1

e−πn
2t ≤

∞∑
n=1

e−πnt =
e−πt

1− e−πt
< 2e−πt

for all t ≥ 1. This replacement will enable us to obtain the functional
equation of the Riemann zeta function by means of its Mellin transform.
For doing so, we also need its transformation formula, which is immediately
inherited from the ordinary theta function.

Corollary 1.4.4. ψ(t) satisfies for t > 0 the functional equation

ψ(t) =
1√
t
ψ

(
1

t

)
+

1

2

(
1√
t
− 1

)
.

We are almost done with the preliminaries. We only need to recall some
basic notions of the so-called Bernoulli numbers, which play an important
role in the remainder of this work.

1.5 The Bernoulli numbers

The Bernoulli numbers were discovered while trying to give a closed expres-
sion for the sum of equal powers of the first n integers. Their most common
definition was posed by Euler as follows.
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Definition 1.5.1. (Bernoulli numbers) The Bernoulli numbers, denoted
Bn, are the coefficients of the exponential generating function

z

ez − 1
=
∞∑
n=0

Bn
zn

n!
, |z| < 2π. (1.7)

Note that expanding the left-hand side as a Maclaurin series and match-
ing coefficients on both sides allows us to compute the first terms of the
sequence. However, we can rewrite the expression in the alternative form

z

ez − 1
+
z

2
=
z

2

(
ez + 1

ez − 1

)
=
z

2
coth

z

2
,

which is actually an even function. Therefore, we already know B1 = −1/2
and B2n+1 = 0 for all n ≥ 1. In passing, we have also derived the expansion

z

2
coth

z

2
=
∞∑
n=0

B2nz
2n

(2n)!
, |z| < 2π,

and making the substitution z 7→ 2iz we obtain

z cot z =

∞∑
n=0

(−1)n
B2n22nz2n

(2n)!
, |z| < π, (1.8)

which will be used at the end of the next chapter.

From (1.7) we can also derive a simple recurrence relation, useful to
generate all Bn efficiently. Replacing ez − 1 with its power series, working
out the Cauchy product between both series and equating coefficients yields

B0 = 1,
n∑
k=0

(
n+ 1

k

)
Bk = 0 for all n ≥ 1,

which proves that they form a rational sequence and leads to an intuitive
understanding of their structure. The very first non-zero Bernoulli numbers
are B2 = 1/6, B4 = −1/30 and B6 = 1/42, which give the misleading im-
pression that they converge to zero. However, the sequence B2n actually
grows unbounded very rapidly in absolute value.

The Bernoulli numbers hold a wide variety of connections with many
different topics, such as the Euler-Maclaurin summation formula or even
Kummer’s regular primes in Fermat’s last theorem. In fact, we will prove
them to hold a deep relationship with the Riemann zeta function, as they
are particularly useful to evaluate some of its values at integer arguments.





Chapter 2

The Riemann zeta function

We are finally in a position to study the main properties of the Riemann zeta
function. To begin with, we will present its initial definition along with its
analytic properties. Then, two essential representations will be given. There
exists a vast literature on this function, our main references are [21][4][5].

2.1 Definition and basic properties

Definition 2.1.1. (Riemann zeta function) The Riemann zeta function,
denoted ζ(s), is defined for all s with Re(s) > 1 by the series

ζ(s) =

∞∑
n=1

1

ns
. (2.1)

Proposition 2.1.1. ζ(s) is holomorphic for all s with Re(s) > 1. Further-
more, its derivative in this region is given by

ζ ′(s) = −
∞∑
n=1

lnn

ns
.

Proof. Note that for any s ∈ C with Re(s) = σ we have

|n−s| = |e−s lnn| = e−σ lnn = n−σ.

Then, ζ(s) converges absolutely for s if and only if Re(s) > 1, since
the series ζ(σ) converges for any real σ > 1 (the integral test may be used
since all its terms are monotonically decreasing) and diverges otherwise (by
comparison with the harmonic series, which does not converge). It follows
from the Weierstrass M-test that partial sums of ζ(s), which are entire,
converge uniformly in the half-plane Re(s) ≥ 1 + δ for every δ > 0, and
therefore, also in every compact subset contained in Re(s) > 1. Hence, by
Weierstrass’ Theorem, ζ(s) is holomorphic in the half-plane Re(s) > 1 and
its derivatives can be obtained by termwise differentiation of the series.

13
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Remark. In number theory, the analogue to the Riemann zeta function for
an unspecified algebraic number field is called the Dedekind zeta function,
where the sum is taken likewise over the non-zero ideals of its ring of integers.
The interested reader is referred to [12, p. 132] or [16, p. 457].

Actually, this behaviour is not exclusive to this series, but there is a whole
family (which includes the Riemann zeta function) acting very similarly in
this sense. These are the so-called Dirichlet series, for which we will give
now a brief description. Proofs can be found at [11, pp. 116-119].

2.1.1 Dirichlet series

Definition 2.1.2. A Dirichlet series is a series of the form

f(s) =

∞∑
n=1

an
ns
, s ∈ C, (2.2)

where {an}n∈N is an arbitrary sequence of complex numbers.

For each Dirichlet series, there exists a unique number σa ∈ R ∪ {±∞},
called the abscissa of absolute convergence, such that (2.2) converges abso-
lutely in the half-plane Re(s) > σa but does not in the half-plane Re(s) < σa.
Furthermore, a similar argument to that of the Riemann zeta function shows
that the convergence is uniform on compact subsets in its half-plane of abso-
lute convergence, so that the series is holomorphic there. Also, even though
it is trickier to prove, the abscissa of convergence σc, defined analogously,
satisfies the same analytic properties. However, both numbers do not have
to be necessarily equal, as seen in the following example.

Example. Consider the Dirichlet eta function (or alternating zeta series)

η(s) =
∞∑
n=1

(−1)n−1

ns
. (2.3)

Its abscissa of absolute convergence is of course σa = 1. However, conver-
gence of η(σ) at any real σ > 0 is easily proved by the alternating series
test, while it clearly diverges for σ ≤ 0. Hence, its abscissa of convergence
is in fact σc = 0, so that η(s) is holomorphic for Re(s) > 0.

Therefore, we have just shown that σa can be strictly larger than σc. But
this strip of conditional convergence is never wider, since it can be proved
that the inequality σc ≤ σa ≤ σc + 1 is always satisfied.

Remark. If the sequence {an} from (2.2) is non-negative, as in the case of
the Riemann zeta function, we necessarily have σc = σa. This implies that
the expression (2.1) actually diverges for any s with Re(s) < 1.
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2.1.2 The Euler product

Euler observed that the sum over all natural numbers defining ζ(s) can be
developed as an infinite product over all prime numbers. However, while he
studied this duality for real arguments, it was Riemann who considered it
for the first time for all complex values of s. The Euler product plays a key
role in the analytic theory of primes and it is usually stated as the analytic
equivalent to the law of unique prime factorization of integers.

Theorem 2.1.2. (Euler product) For all s with Re(s) > 1, the following
identity holds:

ζ(s) =
∏
p∈P

1

1− p−s
, (2.4)

where P denotes the set of all primes. Moreover, ζ(s) has no zeros there.

Proof. For all s with Re(s) > 1 we have

∑
p∈P
|p−s| =

∑
p∈P

p−σ ≤
∞∑
n=1

n−σ <∞,

which means, by Theorem 1.1.4, that the right-hand side of (2.4) is holo-
morphic. Moreover, since none of its factors vanishes, we can also deduce
that the equality would imply ζ(s) 6= 0 for Re(s) > 1. Let us prove now that
it actually holds. Since p ≥ 2, each factor in the product can be written as
an absolutely convergent geometric series (indeed for Re(s) > 0), i.e.

1

1− p−s
=

∞∑
k=0

1

pks
,

which allows termwise multiplication in the product. Suppose now that
P ⊂ P is any finite set of primes. Thus, by the Fundamental Theorem of
Arithmetic, taking the product of these series over P yields

∏
p∈P

1

1− p−s
=
∏
p∈P

( ∞∑
k=0

1

pks

)
=

∑
n∈N(P)

1

ns
,

where N(P) is the set of all positive integers whose prime decomposition
contains only primes from P. Letting P = Pm be the set of all primes up
to m and taking the limit as m→∞, we obtain the desired result.

Remark. The infinitude of primes can be proved as a corollary. If the set P
were finite, the Euler product would have a finite limit as s→ 1+, whereas
the limit on ζ(s) actually diverges. The stronger assertion that the sum of
the reciprocals of all primes diverges can also be proved from here.
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Exercise. Let n ∈ N. Prove that the probability Pn of k randomly chosen
positive integers up to n being relatively prime as n→∞ is 1/ζ(k).

Solution. Consider each of the possible nk choices as a k-tuple (a1, a2, . . . , ak)
with n fixed and 1 ≤ ai ≤ n for all 1 ≤ i ≤ k, and let p1, . . . , pr be all the
prime numbers less than or equal to to n. Therefore, by the inclusion-
exclusion principle expressed in its complementary form, the number of tu-
ples whose elements share no common prime divisor is given by

nk −
∑

1≤i≤r

⌊
n

pi

⌋k
+

∑
1≤i<j≤r

⌊
n

pipj

⌋k
− · · ·+ (−1)r

⌊
n

pi · · · pr

⌋k
.

Thus, dividing by nk to compute Pn and taking the limit n → ∞ (so that
bn/ac/n→ 1/a for any a), the expression obtained is seen to be

lim
n→∞

Pn =
∏
p∈P

(
1− p−k

)
=

1

ζ(k)
.

2.1.3 An integral representation

So far we have expressed the Riemann zeta function as an infinite sum and
as an infinite product. Surprisingly, it turns out that ζ(s) can also be written
as an infinite integral. Let us consider for t > 0 the function

f(t) =
∞∑
n=1

e−nt =
e−t

1− e−t
=

1

et − 1
, (2.5)

which can indeed be expanded as a geometric series since e−t < 1. Hence,
by Proposition 1.2.2, the Mellin transform of f(t) is given by

f∗(s) =

( ∞∑
n=1

n−s

)
M[e−t; s] = Γ(s)ζ(s) (2.6)

whenever Re(s) > 1, a condition that simultaneously ensures absolute con-
vergence of the Dirichlet series and of the Mellin transform. Therefore, we
have incidentally obtained the following integral representation of ζ(s).

Proposition 2.1.3. For all s with Re(s) > 1, we have

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1

et − 1
dt. (2.7)

Many of the properties of ζ(s) are determined by this integral represen-
tation. In fact, as we shall see, it turns out to be a very appropriate starting
point to extend its domain to a larger region of the plane.
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2.2 Analytic continuation of the zeta function

All we have done so far applies only for values in the half-plane Re(s) > 1.
However, many of the deeper properties of the Riemann zeta function take
place for other values of s, i.e., they concern its analytic continuation. There
are several techniques that permit to extend its domain of definition, but as
we already know, they all give rise to the same function, due to the unique-
ness of analytic continuation.

Now, we will take advantage of the results from last section to charac-
terize its analytic continuation to the whole complex plane. Note that the
function f(t) from (2.5), which decays exponentially, also admits at t = 0
the complete asymptotic expansion

f(t) =
1

et − 1
=

∞∑
n=−1

Bn+1

(n+ 1)!
tn, t < 2π,

where the coefficients Bn are the Bernoulli numbers. Thus, it follows from
Proposition 1.2.1 that f∗(s) = Γ(s)ζ(s) is holomorphic for Re(s) > 1, which
we already knew. However, by Proposition 1.2.3, this also means that it can
be analytically continued to a meromorphic function in C. What is more,
its only singularities are simple poles at each integer less than or equal to 1,
except for negative even integers, where the corresponding Bernoulli number
is zero and thus, they are regular points. In any case, we have

lim
s→−n

(s+ n)(Γ(s)ζ(s)) =
Bn+1

(n+ 1)!
, n ∈ Z≥−1.

On the other hand, recall from Proposition 1.3.2 that Γ(s) is also meromor-
phic in C, and that its only singularities are simple poles of residue (−1)n/n!
at each non-positive integer s = −n, that is,

lim
s→−n

(s+ n)Γ(s) =
(−1)n

n!
, n ∈ Z≥0.

Hence, since Γ(s) never vanishes and Γ(1) = 1, we deduce the following.

Proposition 2.2.1. ζ(s) can be analytically continued to a meromorphic
function in C with a unique simple pole of residue 1 at s = 1. Furthermore,
the values of ζ(s) at non-positive integers are simply given by

ζ(−n) = (−1)n
Bn+1

n+ 1
, n ∈ Z≥0.

In particular, this proposition proves values at non-positive integers to
be rational, and gives some remarkable values as ζ(0) = −1/2, or even the
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famous ζ(−1) = −1/12, which is often misunderstood as the sum of all
positive integers, corresponding to the original series (for which is obviously
not defined). In addition, for all n ∈ Z≥1, B2n+1 = 0 implies ζ(−2n) = 0.
Anyway, each of these results will be proved again later by other means.

We have just shown that the definition of ζ(s) can be extended beyond
the half-plane of convergence of the original series, where we have also de-
duced some of its main properties. Nevertheless, we have not given yet any
expression of this analytic continuation. In the following two subsections,
we will try to make sense of ζ(s) for larger regions of the plane.

2.2.1 Extension to the critical strip

Before extending ζ(s) to the whole complex plane, we shall start first by
doing so, by elementary means, to the right half-plane Re(s) > 0. This,
together with the functional equation, will give us a full insight of the func-
tion. Let us consider the Dirichlet eta function η(s) from (2.3), which is
holomorphic for Re(s) > 0. Note that for Re(s) > 1 we have

η(s) =

∞∑
n=1

(−1)n−1

ns
=

∞∑
n=1

1

ns
−
∞∑
n=1

2

(2n)s
=

(
1− 2

2s

)
ζ(s),

or equivalently,

ζ(s) =
η(s)

1− 21−s
. (2.8)

Hence, we have just shown ζ(s) to be extended to a meromorphic func-
tion in Re(s) > 0, with perhaps some poles where 1−s is an integer multiple
of 2πi/ ln 2. However, η(s) can be proved to vanish at each of these points
except s = 1, but it is not evident at first sight. Note that the classical
result η(1) = ln 2 shows that ζ(s) has indeed a simple pole at s = 1.

On the other hand, we can immediately deduce from the expression (2.8)
that ζ(σ) < 0 on the real segment 0 < σ < 1, since in that section, the terms
from η(σ) can be grouped pairwise so that each of them is positive, and the
denominator is clearly negative. In particular, ζ(s) has no zeros there.

Another elementary approach to this partial extension consists in com-
paring the sum

∑∞
n=1 n

−s with its corresponding integral
∫∞
1 x−s dx. It is

straightforward to check that for Re(s) > 1 we have

ζ(s)− 1

s− 1
=
∞∑
n=1

n−s −
∫ ∞
1

x−s dx =
∞∑
n=1

∫ n+1

n
(n−s − x−s) dx, (2.9)
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where each integral on the right-hand side is holomorphic on Re(s) > 0 by
Theorem 1.1.3. Using the basic relations

|f(b)− f(a)| =
∣∣∣∣∫ b

a
f ′(t) dt

∣∣∣∣ ≤ max
a≤t≤b

|f ′(t)||b− a|,

we see that for fixed s with Re(s) > 0 and x ∈ [n, n+ 1] where n ≥ 1, each
integrand satisfies the estimate

|n−s − x−s| =
∣∣∣∣∫ x

n
st−s−1 dt

∣∣∣∣ ≤ |s| ∫ x

n

∣∣t−s−1∣∣ dt ≤ |s|
nσ+1

,

which follows easily from (2.9) to∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ ≤ |s|ζ(σ + 1).

Therefore, ζ(s)− 1/(s− 1) is a sum of holomorphic functions converging
uniformly for every Re(s) ≥ δ, and thus, holomorphic in Re(s) > 0. Note
that this incidentally exhibits the pole of ζ(s) at s = 1 with residue 1. Next,
we could develop this idea to extend ζ(s) to the half-plane Re(s) > −n for
any positive integer n. However, once we have defined it on this right half-
plane, the entire analytic continuation is obtained in one step much more
easily from Riemann’s functional equation, which we present below.

Remark. As an immediate consequence of (2.9), we note that the zeta
function has a certain symmetry about the real axis, namely ζ(s) = ζ(s).

2.2.2 Further extension by means of its functional equation

Riemann realized that the further study of primes was related with the ana-
lytic continuation of ζ(s) to the rest of the plane. However, he did not only
develop this analytic continuation, but he also derived a functional equation
relating the values of ζ(s) to those of ζ(1 − s). This symmetry about the
line Re(s) = 1/2 allows us to easily study the behaviour of ζ(s) on the left
half-plane, where the function is not naturally defined.

The functional equation can be proved in several different ways (see for
example [21, pp. 13-27], where seven methods are presented), but here we
will follow one of Riemann’s original proofs (he also proved it from (2.7) by
contour integration and applying the residue theorem), which is still one of
the most elegant and maintains a great significance in number theory. How-
ever, the proof is slightly modified, since we are using the theory of Mellin
transforms to save explanations on convergence.
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For this proof we will approach ζ(s) in an alternative way. Recall that
the theta function is defined for real t > 0 by

θ(t) =
∑
n∈Z

e−πn
2t where ψ(t) =

θ(t)− 1

2
=
∞∑
n=1

e−πn
2t.

Now, we introduce after Riemann the following meromorphic function.

Definition 2.2.1. The completed zeta function is given for Re(s) > 1 by

ξ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

First, we will express ξ(s) by means of the Mellin transform of ψ(t),
which is of exponential decay, as opposed to θ(t). Finally, using the identity
of ψ(t) derived in Chapter 1, we will show that ξ(s) can be analytically
continued to all of C and that it is invariant under the substitution of s by
1− s. The following provides the integral representation we need for ξ(s).

Lemma 2.2.2. For all s with Re(s) > 1, we have

ξ(s) =

∫ ∞
0

ψ(t)t
s
2
−1 dt. (2.10)

Proof. Growth and decay conditions of ψ(t) assure its Mellin transform to
be holomorphic for Re(s) > 1/2. Then, by Proposition 1.2.2 we obtain

ψ∗(s) =

( ∞∑
n=1

(
πn2

)−s)M[e−t; s] = π−s

( ∞∑
n=1

n−2s

)
Γ(s) = π−sΓ(s)ζ(2s),

where the sum and the integral converge absolutely. Consequently, we have

ξ(s) = ψ∗
(s

2

)
=

∫ ∞
0

ψ(t)t
s
2
−1 dt

for Re(s) > 1, as it was needed.

Considering the asymptotic behaviour of ψ(t), its transform offers weaker
information about the analytic continuation of ζ(s) than the one from (2.6),
as it does not give any expression for non-positive arguments. However, the
advantage of this second approach relies on the fact that the transformation
formula of ψ(t) leads to the symmetric form of the functional equation.

Theorem 2.2.3. The function ξ(s) can be analytically continued to a mero-
morphic function in C with simple poles at s = 0 and s = 1. Furthermore,
it satisfies the functional equation

ξ(s) = ξ(1− s) (2.11)

for all s ∈ C.
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Proof. Recall from Corollary 1.4.4 that the functional equation for ψ(t) is
given by the expression

ψ(t) = t−
1
2ψ

(
1

t

)
+

1

2

(
t−

1
2 − 1

)
, t > 0.

Substituting this expression in the integral (2.10) of ξ(s) from 0 to 1 yields∫ 1

0
ψ(t)t

s
2
−1 dt =

∫ 1

0
ψ

(
1

t

)
t
s−1
2
−1 dt+

1

2

∫ 1

0

(
t
s−1
2
−1 − t

s
2
−1
)
dt,

valid for Re(s) > 1, where the last integral can be evaluated explicitly, i.e.

1

2

∫ 1

0

(
t
s−1
2
−1 − t

s
2
−1
)
dt =

1

s− 1
− 1

s
=

1

s(s− 1)
.

On the other hand, we can make the change of variables t↔ 1/t to get∫ 1

0
ψ

(
1

t

)
t
s−1
2
−1 dt =

∫ ∞
1

ψ(t)t
1−s
2
−1 dt.

Finally, bringing back all the pieces together gives

ξ(s) =
1

s(s− 1)
+

∫ ∞
1

ψ(t)
(
t
s
2
−1 + t

1−s
2
−1
)
dt. (2.12)

This has been proved under the assumption that Re(s) > 1, but the
exponential decay of ψ(t) at infinity shows as usual that the above integral
defines an entire function. Therefore, we conclude that ξ(s) has an analytic
continuation to a meromorphic function in the whole complex plane, with
only simple poles at s = 0 and s = 1. Moreover, it remains unchanged when
replacing s by 1− s. Thus, it satisfies ξ(s) = ξ(1− s) as we wanted.

Remark. ξ(s) is sometimes considered including the factor s(s−1) or even
s(s−1)/2, which do not affect the functional equation and make the function
entire (of order 1), leading to its product representation.

As a by-product, the expression (2.12) provides an explicit form of the
analytic continuation of ζ(s) to a meromorphic function in C, given by

ζ(s) =
π
s
2

Γ
(
s
2

) [ 1

s(s− 1)
+

∫ ∞
1

ψ(t)
(
t
1−s
2
−1 + t

s
2
−1
)
dt

]
.

Then, since Γ−1 (s/2) is entire with simple zeros at non-positive even inte-
gers, we know that ζ(s) has a unique simple pole at s = 1 of residue 1, and
that it vanishes at each negative even integer. Let us see this more clearly
by the following asymmetrical formulation of the functional equation.



22 2.2. Analytic continuation of the zeta function

Corollary 2.2.4. (Functional equation) For all s ∈ C it holds that

ζ(1− s) = 2(2π)−s cos
(πs

2

)
Γ(s)ζ(s). (2.13)

Proof. Starting from the identity (2.11) we have

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

Now, isolating ζ(s) and with the aid of Euler’s reflection formula (1.5) and
Legendre’s duplication formula (1.6), we obtain the expression

ζ(s) = 2(2π)s−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (2.14)

Equivalently, substituting s by 1− s proves the corollary.

Remark. Note that the functional equation is useless to be evaluated at
s = 0. However, since Γ(2− s) = (1− s)Γ(1− s), equation (2.14) implies

−1 = lim
s→1

(1− s)ζ(s) = lim
s→1

2(2π)s−1 sin
(πs

2

)
Γ(2− s)ζ(1− s) = 2ζ(0),

that is, ζ(0) = −1/2, agreeing with Proposition 2.2.1.

Note that since the Euler product tells us ζ(s) never vanishes in the
half-plane Re(s) > 1, we immediately deduce that the only (simple) zeros in
Re(s) < 0 come from the cosine function. These are located at the negative
even integers, and they are usually called the trivial zeros of the zeta func-
tion. Therefore, in conjunction with the fact that ζ(s) does not vanish on
the line Re(s) = 1 either (see [19, pp. 185-187]), which is a key fact in the
proof of the prime number theorem (in fact, both results are equivalent), it
follows that all non-trivial zeros lie in the critical strip 0 < Re(s) < 1. This
is the only strip in which ζ(s) is allowed to behave erratically.

On the other hand, by (2.8) we have already proved that ζ(σ) has no
zeros in the real segment 0 < σ < 1. Furthermore, since that expression
also shows ζ(σ) to be real whenever σ > 0, the functional equation (2.13)
gives that ζ(s) is real on the real axis, which is equivalent by the Schwarz
reflection principle (see [19, pp. 57-60]) to ζ(s) = ζ(s). Hence, non-trivial
zeros are all complex and they are distributed symmetrically with respect
to both the real axis and the critical line Re(s) = 1/2. Moreover, Riemann
proved that these zeros get denser as we go up the critical strip.
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What is more, the famous Riemann hypothesis strengths these results,
claiming that all such zeros actually lie on the critical line. The conjec-
ture seems true, since Hardy proved in 1914 that there are infinitely many,
while it has been numerically checked that the first 1013 zeros belong there.
However, it still remains as one of the most important open problems in all
mathematics, due primarily to the substantial improvement its assumption
implies over the estimate of the error term in the prime number theorem.
In fact, the Riemann hypothesis is equivalent to

π(x) = Li(x) +O(
√
x log x),

where π(x) is the prime-counting function and Li(x) is the offset logarithmic
integral, so that its failure would create havoc in the distribution of primes.

2.3 Special values of the zeta function

In the previous section, we gave a rough picture of how ζ(s) looks like as
a whole in the complex plane. Instead, we will now seek exact values of
the zeta function in the positive real axis, in particular, for those integer
arguments lying in the original domain of convergence.

2.3.1 Values at positive integers

We have already shown that values for non-positive integer arguments are
expressible in terms of the Bernoulli numbers, and that they are given by

ζ(1− n) = (−1)n−1
Bn
n
, n ∈ Z≥1. (2.15)

Furthermore, evaluating the functional equation at 2n and using the above
yields the following expression for even positive integer arguments,

ζ(2n) = (−1)n−1
(2π)2n

2(2n)!
B2n, n ∈ Z≥1.

However, this formula can be obtained independently of the functional equa-
tion and of other values of ζ(s). For this reason, we will try to verify both
results following an alternative approach.

Remark. Euler computed all the values from (2.15) by formal manipulation
of power series, using what we now know as Abel summation. Actually,
he compared them with those at the positive even integers and essentially
conjectured the functional equation for real values a century before Riemann
proved it. See [1] for a detailed explanation.
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The Basel problem and positive even arguments

Euler’s early work on the zeta function was motivated by the so-called Basel
problem, which consists on finding an exact solution to the sum of the re-
ciprocals of all perfect squares. After long effort, he managed to solve it
by equating two different expressions for the sine function, which is quite
remarkable, taking into account the tools he had available at the time. On
the one hand, applying the infinite product for the sine termwise we have

sinπz

πz
=
∞∏
n=1

(
1− z2

n2

)
= 1−

( ∞∑
n=1

1

n2

)
z2 +O(z4).

On the other, the Maclaurin series for the sine gives

sinπz

πz
= 1− π2

3!
z2 +O(z4).

Hence, comparing coefficients of the quadratic term yields

ζ(2) =

∞∑
n=1

1

n2
=
π2

6
.

This is, arguably, one of the most beautiful results in all mathematics, since
it tells us about deep connections between very distant concepts. Other
values like ζ(4) = π4/90 can also be computed similarly. In fact, Euler
noticed that values of ζ(2n) are always a rational multiple of π2n. As we
have already anticipated, it turns out that they can also be expressed in
terms of the Bernoulli numbers as follows.

Theorem 2.3.1. The values of ζ(s) at positive even integers are given by

ζ(2k) = (−1)k−1
(2π)2k

2(2k)!
B2k, k ∈ Z≥0. (2.16)

Proof. The sketch of the proof is very similar to the one above, but this time
we are using the cotangent as a bridge. We compare the expression (1.8)
derived in Chapter 1 in terms of Bernoulli numbers with another expansion
in terms of the zeta function, obtained from the sine product formula

sin z = z

∞∏
n=1

(
1− z2

(nπ)2

)
. (2.17)

For all z ∈ C with |z| < π, all the hypotheses from Theorem 1.1.4 are
satisfied. Therefore, the product is holomorphic in C and since none of its
factors vanishes there, we can take its logarithmic derivative as

cot z =
1

z
+
∞∑
n=1

2z

z2 − (nπ)2
.



Chapter 2. The Riemann zeta function 25

As long as |z| < π, we can use the formula for the geometric series to get

z cot z = 1− 2

∞∑
n=1

( z

nπ

)2 1

1−
(
z
nπ

)2
= 1− 2

∞∑
n=1

∞∑
k=1

( z

nπ

)2k
= 1− 2

∞∑
k=1

z2k

π2k

∞∑
n=1

1

n2k

= 1−
∞∑
k=1

2ζ(2k)

π2k
z2k,

where the interchange of summations is justified since both series converge
absolutely in that region. Finally, manipulating the expression from (1.8) it
follows that

z cot z = 1−
∞∑
k=1

(−1)k−1
22kB2k

(2k)!
z2k.

Hence, by uniqueness of the Maclaurin expansion, equating coefficients from
both expressions and rearranging terms, we obtain the desired result.

Remark. This theorem additionally proves some of our preliminary obser-
vations about the Bernoulli numbers of even index. Also, it proves that they
alternate in sign and enables us to estimate their asymptotic growth.

Finally, applying the functional equation to (2.13) yields

ζ(1− 2k) = −B2k

2k
, k ∈ Z≥0,

which combined with trivial zeros and the value at zero, verifies our result
from Proposition 2.2.1 and offers an almost complete scope about the values
of the zeta function at integer arguments. However, the reader may have
noticed that there is an exception, which we discuss below.

Apéry’s constant and positive odd arguments

Euler had the goal to present a closed-form formula of ζ(k) for every k ∈ Z\1.
Unfortunately, he failed in doing so for odd positive integers. In fact, their
arithmetical nature is still a mystery, since no similar expression to (2.16)
has been discovered yet (note that the functional equation is useless in this
case). Trying to give an answer to this fact has become a tremendous open
problem in number theory. Actually, it took until 1979 to shed some light
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on this issue, when Apéry proved the irrationality of ζ(3), also known as
Apéry’s constant. In his proof, he used the rapidly converging series

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) .
In 2000, Rivoal proved that there exist infinitely many odd arguments for
which the value of zeta is irrational, while Zudilin proved that at least one
among ζ(5), ζ(7), ζ(9) and ζ(11) is irrational. Besides, any results concern-
ing if they are transcendental or not seems far from being proved today.

2.3.2 Some values arising in physics

Values of the Riemann zeta function are not only relevant in number the-
ory, but they are also found during many physical calculations. In fact, the
aforementioned Apéry’s constant ζ(3) is used in quantum electrodynamics
to compute the second and third order corrections of the electron magnetic
moment, which is one of the best measured and calculated numbers in all of
physics. On the other hand, they arise naturally quite often together with
the gamma function, when solving certain integrals of the form of (2.6). For
instance, ζ(4) appears in the derivation of the Stefan-Boltzmann law from
Planck’s law, and ζ(3/2) is used to calculate the critical temperature for the
transition to Bose-Einstein condensation.

Furthermore, the value of ζ ′(0) is sometimes needed in the context of zeta
function regularization, as we present in the next chapter. A way to compute
this value is to apply the Euler transformation of series to the Dirichlet eta
function η(s) (see [18]), obtaining for Re(s) > −1 the expression

(1− 21−s)ζ(s) =
1

2
+

1

2

∞∑
n=1

(−1)n−1
[
n−s − (n+ 1)−s

]
.

Taking the derivative on both sides and evaluating at s = 0 yields

−ζ ′(0)− ln 2 =
1

2

∞∑
n=1

(−1)n ln
n

n+ 1
=

1

2
ln
π

2
,

where the last equality follows easily from the basic identities of the loga-
rithm and the famous Wallis product, which is an immediate consequence
of applying z = π/2 in (2.17). Therefore, we have

ζ ′(0) = −1

2
ln 2π. (2.18)
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Zeta function regularization

The Riemann zeta function is known to be of extreme importance in analytic
number theory. Actually, it is regarded mostly as falling completely within
the realm of pure mathematics, since for example, it is not a solution to
any physically motivated differential equation. However, zeta functions are
often used in physics, especially quantum field theory, where calculations
are plagued with formally divergent expressions from which one needs to
extract physically meaningful information.

Among the different procedures for giving meaning to these ill-defined
expressions, the so-called zeta function regularization is one of the most
powerful and elegant methods, since it provides finite results via analytic
continuation at once, with no need to remove or subtract divergent quanti-
ties. In practice, we need to extrapolate the initial definition of the Riemann
zeta function to the relevant differential operator in each case (where the
natural numbers are replaced by the eigenvalues of the operator). The zeta
function encoding the eigenvalues of the Laplacian on a compact Rieman-
nian manifold was first constructed by Carleman (for the case of a compact
region of the plane). Later, Minakshisundaram and Pleijel showed its con-
vergence and its analytic continuation to a meromorphic function in the
whole complex plane. Here we will consider a slightly more general setting
and study the structure of the associated zeta function.

The use of divergent series has been quite controversial within the math-
ematical community for many centuries, since giving sense of them is not
justified in any logical way (only by the pragmatic discovery that they give
useful results). The classical monograph [10] is recommended to the reader.
Nevertheless, it has been proved experimentally to give accurate predictions
in physics, as in the case of the Casimir effect, for which we will provide an
alternative and more modern approach.

27
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3.1 Introduction

Let us see how the Riemann zeta function can be used as a summation
method by giving two simple examples. We first consider the sum of all
positive integers S =

∑∞
n=1 n, which is obviously divergent. This series

arises naturally in string theory, in particular, in the discussion of trans-
verse Virasoro operators. Roughly speaking, a string is a 1-dimensional
object that replaces the notion of a point particle, and whose time-evolution
sweeps out a 2-dimensional surface called a world-sheet, as it moves in a
d-dimensional spacetime Rd = R×Rd−1, usually known as target. In partic-
ular, for bosonic string theory (where the strings correspond only to bosons
and there are no fermions) certain Virasoro constraints force the spacetime
dimension d to assume a specific value. Specifically, a condition of the form

a = −
(
d− 2

2

)
S

arises, where a = 1 must be imposed to preserve Lorentz invariance. This
gives a motivation for reinterpreting S as the analytic continuation of the
Riemann zeta function ζ(s) =

∑∞
n=1 n

−s at s = −1. Thus, if we formally
assign to S the unique and finite value ζ(−1) = −1/12, the critical dimension
of the bosonic string is forced to be d = 26. More can be found at [22].

Similarly, this can also be done with infinite products. We now consider
the product of all positive integers P =

∏∞
n=1 n. Recall from Proposition

2.1.1 that the derivative of ζ(s) is given for Re(s) > 1 by

ζ ′(s) = −
∞∑
n=1

(lnn)n−s.

Then, if we formally evaluate this expression at s = 0, we find

−ζ ′(0) =
∞∑
n=1

lnn = lnP.

Therefore, since we already know the value ζ ′(0) = −1
2 ln 2π from (2.18), it

seems natural to formally assign to P the finite value

P = e−ζ
′(0) =

√
2π. (3.1)

Remark. If a > 0, the Hurwitz zeta function ζ(s, a) =
∑∞

n=0(n+ a)−s can
be used in the same way to generalize (3.1) to the classical Lerch’s formula

∞∏
n=0

(n+ a) =

√
2π

Γ(a)
,
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which actually exhibits the structure of relations involving the gamma func-
tion in a much clearer way. In fact, it respects the location of its simple
poles and helps us understand its functional equation intuitively.

Giving a meaning in this way to otherwise divergent series or products
by interpreting them as special values of suitable zeta functions is what we
usually call zeta regularization. In fact, these ideas can be generalized to any
suitable sequence {λn} of non-vanishing complex numbers. In particular,
we will now consider the discrete spectrum of a certain (partial) differential
operator, and encode it by means of its associated zeta function.

3.2 Spectral zeta functions

In this section, we will study boundary value problems and their associated
zeta functions. However, we will not give any proof, since many of them are
similar to the ones concerning the Riemann zeta function and we are not
really going to make use of them. Our main reference is [13], the interested
reader may consult [14] from the same author or any of the books [3][6][7].

Fundamental properties of physical systems are often encoded in the
spectrum of certain differential operators, which leads to the analysis of the
so-called spectral functions. Many of the following results can be generalized
to any elliptic pseudo-differential operator on a compact manifold. But in
our case, we are only interested in the most classical setting, that is, the
class of Laplace-type operators on a d-dimensional Riemannian manifold
M , possibly with a boundary ∂M . By a Laplace-type operator P we mean
that it can be written in the unified form

P = −gij∇Vi ∇Vj − E,

where gij is the metric of M , ∇V is the connection on M acting on a smooth
vector bundle V over M and E is an endomorphism of V .

The advantage of this particular class of operators lies on the fact that,
imposing suitable boundary conditions, the eigenvalue spectrum is real, pos-
itive, discrete and explicitly known. Suppose that we have a positive increas-
ing sequence of eigenvalues {λn}∞n=1 with eigenfunctions {φn}∞n=1 given by

Pφn(x) = λnφn(x).

Then, we can define the spectral zeta function ζP (s) associated to P as

ζP (s) =

∞∑
n=1

λ−sn

for sufficiently large Re(s).
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From now on we consider M to be a d-dimensional smooth compact
Riemannian manifold with a smooth boundary ∂M , and we suppose that
Dirichlet or Neumann boundary conditions have been imposed. Under these
conditions, it follows from the classical Weyl’s law, which states that the
eigenvalues λn behave asymptotically for n→∞ as

λd/2n ∼ 2d−1πd/2Γ(d/2)d

vol(M)
n,

that ζP (s) converges in the half-plane Re(s) > d/2.

Example. Consider the Laplacian operator P = −∂2/∂x2 on the interval
M = [0, L] and the corresponding Dirichlet boundary value problem

Pφn(x) = λnφn(x), φn(0) = φn(L) = 0,

which is well-known to have eigenvalues

λn =
(nπ
L

)2
, n ∈ N.

In this case, the zeta function ζP (s) associated with the boundary value
problem turns out to be a multiple of the Riemann zeta function, i.e.,

ζP (s) =
∞∑
n=1

λ−sn =
∞∑
n=1

(nπ
L

)−2s
=

(
L

π

)2s

ζ(2s) (3.2)

for Re(s) > 1/2. Note that its domain of definition agrees with the half-
plane of convergence mentioned above, since in this case we have d = 1.

Remark. The Riemann zeta function and many of its generalizations, such
as the ones from Hurwitz, Barnes or Epstein, can all be thought of as being
generated by eigenvalues of specific boundary value problems (see [13]). The
first ones are associated with a linear spectrum, while Epstein-type zeta
functions are associated with spectra of a quadratic form.

As it happens with the Riemann zeta function, most of the relevant
properties of ζP (s) lie to the left of its half-plane of convergence. Indeed,
most of the ideas from the previous chapter remain applicable here, and its
analytic continuation is performed by a similar method to the one applied
to the Riemann zeta function. Its meromorphic structure is revealed by
considering the corresponding heat kernel θP (t), given by

θP (t) =
∞∑
n=1

e−λnt,
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which is of exponential decay and clearly diverges as t tends to zero. As
usual, by Proposition 1.2.2 we can express the spectral zeta function ζP (s)
in terms of the heat kernel θP (t) as the Mellin transform

ζP (s) =
1

Γ(s)

∫ ∞
0

θP (t)ts−1 dt,

still valid for Re(s) > d/2. Therefore, we know that possible residues and
special values of the analytic continuation of ζP (s) arise exclusively from the
asymptotic behaviour of θP (t) as t→ 0. Although it is certainly not easy to
read off, the asymptotic expansion of the heat kernel θP (t) as t→ 0 is well
known to be (see for example [9]) of the form

θP (t) ∼
∞∑
k=0

akt
k−d
2 , (3.3)

where the ak are the so-called heat kernel coefficients. These coefficients
depend explicitly on the operator P , the geometry of the manifold M under
consideration and the chosen boundary conditions. In fact, if the manifold
has no boundary, the coefficients ak with odd index vanish.

Hence, we deduce as always from Proposition 1.2.3 that ζP (s) admits
an analytic continuation to a meromorphic function in the whole complex
plane, possessing only simple poles in one to one correspondence with the
half-integer powers of t in (3.3), and with its residues and special values
being determined by the heat kernel coefficients ak. In particular, we have

Res(ζP (s)Γ(s))|s=(d−k)/2 = ak,

or equivalently, the residues of ζP (s) are given by

Res(ζP (s)) =
ad−2s
Γ(s)

, s =
d

2
,
d− 1

2
, . . . ,

1

2
,−2n+ 1

2
, ∀n ∈ Z≥0,

and its values at non-positive integers are given by

ζP (−m) = (−1)mm!ad+2m, ∀m ∈ Z≥0.

This means that for manifolds without boundaries, where the coefficients ak
with odd index vanish, the behaviour of ζP (s) depends crucially on whether
the dimension d is even or odd. For d even, its poles are simple, finite in
number, and can only be located at points s = 1/2, 1, . . . , d/2, whereas for
d odd, it will generally have in addition infinitely many simple poles located
at points s = −(2n+ 1)/2 for n ∈ Z≥0, and it vanishes at each non-positive
integer. If we recall the example (3.2), we see that these additional points
may not exist due to the vanishing of the corresponding residues.
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Remark. The explicit calculation of heat kernel coefficients for different
boundary conditions has been an important issue during the last decades.
In mathematics, this interest was originated in the connections between the
heat equation and the Atiyah-Singer index theorem.

In any case, ζP (s) can be analytically continued to a neighbourhood of
the origin s = 0 and it is holomorphic there (actually vanishing in manifolds
without boundary and with odd dimension). Therefore, similarly to the
example we gave in the beginning, by formal differentiation we have

− d

ds
ζP (s)

∣∣∣∣
s=0

=
∞∑
n=1

lnλn = ln

( ∞∏
n=1

λn

)
,

which suggests the definition of the zeta regularized determinant of P in
terms of its associated zeta function, given by

det P =
∞∏
n=1

λn = e−ζ
′
P (0).

Remark. This definition was introduced by the mathematicians Ray and
Singer in the context of analytic torsion, and later used by Hawking in
physics due to ambiguities of dimensional regularization when applied to
quantum field theory in curved spacetime.

Furthermore, since ζP (s) is also holomorphic at s = −1, we can define
the zeta regularized trace of P to be

tr P =

∞∑
n=1

λn = ζP (−1).

As we shall see in the next section, it turns out to be physically useful to
assign such finite values to certain divergent series.

It is worth mentioning that explicit knowledge of the spectrum is in gen-
eral only guaranteed for highly symmetric manifolds, such as the torus, the
sphere or regions bounded by parallel planes. However, in the specific exam-
ple of physical application chosen later we will make sure that the spectrum
of the operator is indeed known. In fact, the associated zeta function will
be closely related to the Riemann zeta function, for which we have a good
knowledge at our disposal. As an example of the many applications of zeta
regularization within quantum field theory under the influence of external
conditions, we next consider the so-called Casimir effect.
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3.3 Physical application: the Casimir effect

This phenomenon takes its name after the Dutch prominent physicist H.B.G.
Casimir, who in 1948 predicted theoretically an attractive force between two
uncharged, perfectly conducting parallel plates in vacuum. The literature
on this subject is very extensive, see for example [15].

3.3.1 Background

More than a century ago, Planck described how energy of emitted radiation
is quantized, i.e., how it can only assume integral multiples of the basic en-
ergy value hν, where ν is the frequency of the radiation and h is what now
is called the Planck constant. This theory led him to his second radiation
law, in which oscillators possessed a non-vanishing residual energy of aver-
age value hν/2. This marked the birth of the concept of zero-point energy,
as the lowest possible energy that a quantum system may have.

According to quantum field theory, a field in the vacuum does not really
vanish, but rather fluctuates, allowed by the fundamental Heisenberg uncer-
tainty principle. Casimir showed that van der Waals interactions could be
successfully explained in terms of the change in the zero-point energy of the
electromagnetic field, caused by the presence of external constraints. In the
original setting considered by Casimir, the presence of the plates determines
a boundary condition, so that the frequencies of the radiation between the
plates are restricted to a discrete set of values. Therefore, the difference
between the energies (with and without plates) is finite, which gives rise to
a mechanical pressure on the plates of value

P (a) = − ~cπ2

240a4
, (3.4)

where a is the distance between the plates, ~ is the reduced Planck constant
and c is the speed of light in a vacuum. Note that the negative sign indicates
that the force is attractive, and that its quantum mechanical character is
revealed by the fact that it vanishes in the classical limit ~→ 0.

As we can see, the strength of the force is tiny and falls off very rapidly
with distance, which means that it is only measurable when the distance
between the objects is extremely small, where it becomes dominant. The
importance of this topic lies on the continuing miniaturization of techno-
logical devices towards the nanometer range. In fact, Casimir forces are of
direct practical relevance in nanotechnology, where, for instance, sticking
of mobile components in micromachines might be caused by them. Instead
of fighting the occurrence of the effect, the tendency now is to try taking
technological advantage of it.
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Nowadays, the Casimir effect is not only considered in its original form,
but also assuming any other kind of external constraint or boundary con-
dition. In fact, the pressure exerted on the surfaces delimiting the bound-
aries may be either positive or negative, depending on the exact form of
the constraints and on the nature of the fields. Actually, two decades after
Casimir predicted the effect, Boyer found a repulsive pressure of magnitude
F (R) ∼ 1/R4 for a perfectly conducting spherical shell of radius R. In the
absence of general answers on the dependence of the Casimir energy on the
underlying geometry, one approach consists in accumulating further knowl-
edge by studying specific configurations.

Taking into account the small distances required and the corrections im-
posed by the experimental setup, the early attempts to measure the Casimir
force did not verify sufficiently well the effect. But, in spite of the technical
difficulties in detecting such an weak force, its verification proved to be fea-
sible in the experiment carried out by Lamoreaux in 1997, which is usually
considered to be the first actual reliable measurement of the Casimir force.
Since then, this field has undergone an impressive progress, where experi-
mental data and theoretical predictions have been proved to be in excellent
agreement. The best tested configurations are those of parallel plates, a
plate and a sphere or even a plate and a cylinder. This interplay between
theory and experiments and its possible technological applications are the
main reasons for the revival of this issue in recent years.

On the other hand, the nature of these forces, as well as their distinction
from van der Waals forces, has been far from being clear for many years.
Recently, Jaffe stated that experimental verification of the Casimir effect
does not establish by itself the reality of zero-point fluctuations. In fact,
whether direct evidence of these fluctuations exists or not is still a very
controversial topic. Since Einstein’s theory of general relativity has much
wider consensus, a search at the cosmological level has been proposed, as the
accelerated expansion of the universe might indicate its existence. However,
quantum theoretical calculations of the contribution of zero-point energy
to Einstein’s cosmological constant lead to a value which is off by roughly
120 orders of magnitude as compared with observational tests. This large
discrepancy is known as the cosmological constant problem and it is one of
the greatest unsolved mysteries in theoretical physics.

3.3.2 The Casimir energy

Before we restrict ourselves to any specific setting, we will first introduce
briefly the zeta function regularization of the Casimir energy, for the case of
a massless scalar field. The extension to, for instance, an electromagnetic
field, should be straightforward from here. Since we are only concerned
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on the influence of boundary conditions, we will only have to consider the
negative of the Laplacian P = −∆, for a smooth compact d-dimensional
Riemannian manifold with a smooth boundary.

The Casimir energy of a quantum scalar field Φ(t,x) in a (d + 1)-
dimensional ultrastatic spacetime, satisfying the field equation

(∂2t + P )Φ(t,x) = 0, (3.5)

and fulfilling suitable boundary conditions, is formally given by

ECas =
1

2

∑
n

ωn,

where the one-particle energies ωn =
√
λn are obtained from the eigenvalues

λn of the Laplacian P . Note that the time-dependent part of (3.5) can be
separated out from the spatial one and that Φ(t,x) = e−iωtφ(x) has been
set. Therefore, taking the above expression for granted, we have reached to

ECas =
1

2

∑
n

λ1/2n

for the Casimir energy. But note that this expression is purely formal, since,
in general, the sequence λn grows unbounded for n → ∞ and the series

diverges. Naively, we could try to regularize it by considering the term λ
1/2
n

as λ−sn for s = −1/2 and formally assigning to it the value

ECas =
1

2
ζP

(
−1

2

)
, (3.6)

where ζP (s) is the analytic continuation of the spectral zeta function asso-
ciated to P , as seen in the previous section.

Note that the above expression is only valid when ζP (s) is regular at
s = −1/2. In fact, it depends crucially on the boundary conditions im-
posed, and on whether the dimension d is even or odd, since as we have
already seen, ζP (s) may possess a simple pole at that point whenever d is
odd. Thus, the kernel coefficient a(d+1) is usually an obstacle for giving a
finite definition for the Casimir energy. In such cases, we would require a
more general expression applying a principal part prescription [2, 13], but
giving rise to a finite ambiguity, and which reduces to (3.6) when the latter
is also well-defined. Nevertheless, for many interesting geometries, we are
guaranteed to have a(d+1) = 0, so that the residue vanishes and we do not
encounter any pole. Thus, we obtain a unique physical result for the Casimir
energy. Let us see that this actually happens for the original configuration
of parallel plates considered by Casimir.



36 3.3. Physical application: the Casimir effect

3.3.3 Derivation for parallel plates

We now take d = 3 space dimensions and derive the Casimir effect for the
idealized configuration considered by Casimir, where two identical parallel
plates are held a distance a apart. For the sake of simplicity, we consider a
massless scalar field instead of an electromagnetic field.

Without loss of generality, we may assume the plates to be of infinite
extension and perpendicular to the x-axis, and we fix the left plate at x = 0.
Therefore, the boundary value problem to be solved is simply

−∆uk(x, y, z) = λkuk(x, y, z),

where k is a multi-index and Dirichlet boundary conditions are imposed on
the fixed plates x = 0 and x = a, that is,

uk(0, y, z) = uk(a, y, z) = 0.

Now, we compactify for the moment the (y, z)-directions to a torus with
perimeter length R, and impose periodic boundary conditions in both di-
rections, which means that the eigenfunctions have to satisfy

uk(x, 0, z) = uk(x,R, z),
∂

∂y
uk(x, 0, z) =

∂

∂y
uk(x,R, z),

uk(x, y, 0) = uk(x, y,R),
∂

∂z
uk(x, y, 0) =

∂

∂z
uk(x, y,R).

Later we will consider the limit R → ∞ so that the initial configuration is
recovered. By the usual process of separation of variables, we can obtain
the normalized eigenfunctions in the form

un,m,l(x, y, z) =

√
2

aR2
sin

(
πl

a
x

)
ei

2πn
R
yei

2πm
R

z,

with their corresponding eigenvalues being

λn,m,l =

(
2πn

R

)2

+

(
2πm

R

)2

+

(
πl

a

)2

, (n,m) ∈ Z2, l ∈ N.

Therefore, taking P = −∆ we have to study the spectral zeta function

ζP (s) =
∑

(n,m)∈Z2

∞∑
l=1

[(
2πn

R

)2

+

(
2πm

R

)2

+

(
πl

a

)2
]−s

and its behaviour at a neighbourhood of s = −1/2, in which we are espe-
cially interested. As we already know, this expression is only valid for the
half-plane Re(s) > 3/2, which means that we need its analytic continuation
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to the left of the plane, where singularities may exist. Fortunately, it turns
out as we will see that in this case it can be expressed in terms of the Rie-
mann zeta function and things will not get too complicated.

The sums can be obviously interchanged, and since we are assuming the
limit R→∞, the distance a between the plates is much smaller than R, so
that we may replace the Riemann sum by a double integral. Therefore, by
a simple change of variables we reach to the expression

ζP (s) =

(
R

2π

)2 ∞∑
l=1

∫ ∞
−∞

∫ ∞
−∞

[
k21 + k22 +

(
πl

a

)2
]−s

dk1 dk2.

Now, converting the integral to polar coordinates yields

ζP (s) =

(
R

2π

)2 ∞∑
l=1

2π

∫ ∞
0

k

[
k2 +

(
πl

a

)2
]−s

dk,

which follows easily by direct integration to

ζP (s) =
R2

2π

1

2(1− s)

∞∑
l=1

[
k2 +

(
πl

a

)2
]−s+1

∣∣∣∣∣∣
∞

0

,

since s is such that Re(s) > 3/2. For this reason, the integral converges to

ζP (s) = − R2

4π(1− s)

∞∑
l=1

(
πl

a

)2(−s+1)

.

As a consequence, the above expression can be reduced to obtain

ζP (s) = − R2

4π(1− s)

(π
a

)2−2s
ζR(2s− 2),

where ζR(s) is just the ordinary Riemann zeta function. Recall that ac-
cording to the results from previous section, since we are in odd dimensions
(d = 3), the function ζP (s) may diverge at s = −1/2 due to the presence of
a simple pole. However, we have been lucky enough and there is actually no
singularity, which means that the Casimir energy is simply given by

ECas =
1

2
ζP

(
−1

2

)
= −1

2

R2

4π

2

3

(π
a

)3
ζR(−3) = −R

2π2

12a3
ζR(−3).

At this point, we just have to recall from (2.15) the value

ζR(−3) = −B4

4
=

1
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to obtain that the corresponding Casimir energy is precisely

ECas(a) = − R2π2

1440a3
. (3.7)

The Casimir force per unit surface (that is, the pressure) between two par-
allel plates at a distance a from each other is therefore given by

FCas(a) = − ∂

∂a

ECas(a)

R2
= − π2

480a4
. (3.8)

The negative sign on the above equation indicates that the right plate
x = a is attracted to the left, and we notice that the force decreases much
faster than gravity due to the factor a4 in the denominator. This is a truly
remarkable result, which shows that the force is independent of the nature
of the plates and depends exclusively on the distance between them.

Remark. The pressure on an electromagnetic field given by (3.4) differs
to ours by the fundamental constants ~ and c, along with a factor of 2,
as a consequence of the physical fact that the two possible polarizations of
the electromagnetic field double the number of modes. Note that we have
obtained the correct result without any explicit subtractions.

Note that in this computation only those vacuum fluctuations from be-
tween the plates have been considered. In case we wanted to find the force
acting on, for instance, the plate at x = a, we would also have to take into
account the contribution from the right to this plate. This can be done by
placing a third plate at the position x = L, and taking the limit L→∞ at
the end. Following the above calculation, we only need to replace a by L−a
on (3.7) to prove that the contribution to the force on the plate at x = a is

FCas(a) =
π2

480(L− a)4
, (3.9)

which shows that the plate at x = a is always attracted to the closer plate.
As L→∞ we see that (3.9) vanishes and that (3.8) also describes the total
force on the plate at x = a for the parallel plate configuration.



Conclusions

In pure mathematics, many topics are of great intrinsic interest. We have
proved the Riemann zeta function to be a clear example. This object ap-
pears in a wide variety of beautiful results and open problems in number
theory, such as the Euler product, the distribution of prime numbers or the
well-known Riemann hypothesis. What is more, the role of other special
functions in its functional equation is of great significance, and the relation
of some of its particular values with Bernoulli numbers is captivating.

During the last part of the work, we have realized that aside from all
these outstanding results, it also encounters applications in other disciplines.
At first glance, the Riemann zeta function and physics are clearly disjoint
fields of study. But we have shown that if we extend the definition of the
zeta function to the eigenvalues of a suitable differential operator, we can
use its analytic continuation as a summation method to give physical mean-
ing in a formal way to many divergent expressions arising in quantum field
theory. In particular, we have applied these ideas to derivate the famous
Casimir effect for the simplest setting, where the relevant zeta function is
essentially reduced to the one of Riemann.

Mathematics are undeniably influenced by their applications in other
fields. However, they often find many uses which were not initially expected.
Sometimes, as in our case, these applications are by no means obvious, so
that they would be unknown if it were not for the early development of
the theory. This is the reason why, in my humble opinion, mathematics
should be studied not only for the sake of usefulness but also for their inner
beauty. Otherwise, we would not let the curious minds of tomorrow unveil
the deepest secrets of mathematics and enjoy the thrills these have to offer.
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