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Summary 
 

Binary therapeutic approaches, in which two low-toxicity components are only activated when 

combined and co-localized in tumors, are a promising strategy to reduce morbidity and improve 

mortality. One of such approaches is Boron Neutron Capture Therapy (BNCT). In this 

therapeutic modality, high levels of boron atoms are accumulated in tumors, which are 

subsequently irradiated with thermal neutrons to trigger cellular damage via the 10B(n, α, γ)7Li 

nuclear reaction. To date, two compounds have been tested in clinical practice showing 

promising results, but with limitations and only in specific tumor types.   

The successful application of BNCT has been thwarted by a number of problems, not least the 

unease around conducting clinical irradiations in nuclear research reactors. This drawback has 

been recently mitigated by the installation of hospital-based accelerators delivering high intensity 

epithermal neutron beams. Apart from this, the main limitation of BNCT is the need to develop 

drugs that are able to deposit a sufficient number of 10B atoms specifically (or preferentially) in 

tumor cells or tissues. Abnormal metabolism and the over-expression of certain membrane 

receptors have previously been exploited to accumulate 10B nuclei in cancer cells. Small boron 

molecules have been used to prepare carbohydrate, amino acid, peptide, and nucleic acid 

derivatives and immunoconjugates, although results have been far from optimal. 

The recent emergence of nanotechnologies has opened new avenues for the development of 

nanomaterial-based boron carriers. Nanomaterials have the advantage that, when appropriately 

designed, have a long circulating half-life and preferentially accumulate in cancer tissues due to 

the enhanced permeability and retention (EPR) effect. In the current PhD thesis, we have worked 

on the development of gold-nanomaterial based boron carriers with potential application in 

BNCT. 

First, we synthesized and characterized spherical gold nanoparticles (AuNPs) with a core 

diameter of ca. 20 nm. The AuNPs were functionalized simultaneously with poly(ethylene)glycol 

(PEG) and the boron rich anion cobalt-bis(dicarbollide), commonly known as COSAN. 

Radiolabeling of the NPs both at the core and the shell was achieved by using the positron 

emitter Iodine-124, in order to enable in vivo tracking using positron emission tomography. The 
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biodistribution of the AuNPs was monitored in a mouse tumor model, generated by subcutaneous 

inoculation of HT 1080 cells. PET images revealed high accumulation of the radioactivity in the 

liver at short times after administration, suggesting sequestration of the NPs by the mononuclear 

phagocytic system and consequent low bioavailability, which resulted in low tumor 

accumulation. Comparison of the results obtained with the NPs labeled both at the core and the 

shell confirmed good stability of the NPs in vivo. These results are included in Chapter 3. 

The results obtained in chapter 3 suggested the need for the modification of the characteristics of 

the NPs, in order to prolong circulation time and enhance tumor accumulation. Hence, we 

synthesized and characterized smaller NPs with a similar surface functionalization. With that 

aim, NPs with core sizes of ca. 3 and 10 nm and functionalized with PEG and COSAN were 

prepared and characterized using different techniques. The NPs showed low toxicity and good 

internalization properties in cells. Radiolabeling to enable in vivo imaging was achieved by 

incorporation of the positron emitter copper-64 into the gold core. Biodistribution studies 

confirmed that medium sized NPs (core size of ca. 10 nm) rapidly accumulated in the liver and 

showed low accumulation in the tumor. However, the smallest NPs, with a cores size of ca. 3 nm, 

showed long circulation time, lower accumulation in the liver and higher accumulation in the 

tumor, with maximum values at t = 24 hours (5.3±1.3 %ID/cm3). These values progressively 

decreased afterwards (3.92±1.7 %ID/cm3 at t = 48 hours). Additionally, good tumor 

discrimination could be observed on the PET images.   

In spite of the improvement in tumor accumulation obtained in chapter 4, the concentration of 

boron in the tumor was insufficient to tackle therapeutic efficacy experiments. Hence, the next 

step was to design therapeutic agents enabling the combination of BNCT with another 

therapeutic modality. Taking advantage of the capacity of gold nanorods to interact with infrared 

light to generate local heating, we decided to prepare gold nanorods simultaneously 

functionalized with PEG and COSAN, in order to enable simultaneous or sequential BNCT and 

photothermal therapy. The resulting GNRs showed good internalization capacity in MKN45 cells 

and low toxicity both in MKN45 and human dermal fibroblasts (HDFa). Treatment of the GNRs 

with 64CuCl2 in the presence of a reducing agent enabled the incorporation of the positron emitter 

at the gold core, resulting in stable labeling in different media. In vivo biodistribution 

experiments in a xenograft mouse model generated by inoculation of MKN45 cells demonstrated 

significant tumor accumulation and favorable tumor-to-muscle ratios at 24–48 hours after 
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administration. Such multidecorated GNRs carry large amounts of boron, and hence bear the 

potential to become a valuable tool for the development of nanoparticle-based BNCT agents. 

This, together with the capability to absorb near infrared light, opens new avenues for their use in 

combined therapies (BNCT + photothermal therapy). 
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Resumen 
 

A pesar de los avances recientes, el cáncer sigue siendo un problema urgente de salud pública. 

Los avances en el diagnóstico temprano y el tratamiento del cáncer han elevado la tasa de 

supervivencia a 5 años para todos los cánceres del 50% (1974) al 68% (2007). Sin embargo, el 

cáncer todavía representó 8.2 millones de muertes en todo el mundo en 2012. Por lo tanto, se 

requiere con urgencia el desarrollo de nuevos tratamientos y terapias, pero dado que muchas 

terapias resultan altamente tóxicas para los pacientes, la eficacia terapéutica debe equilibrarse con 

los efectos secundarios y tóxicos derivados de la propia terapia.  

Los enfoques binarios para la terapia contra el cáncer, en los que dos componentes del 

tratamiento de forma individual presentan baja toxicidad pero al combinarse presentan efecto 

terapéutico, son estrategias prometedoras para mejorar los resultados terapéuticos y reducir los 

efectos secundarios.  

Una opción es la terapia de captura de neutrones de boro (BNCT). Esta terapia se basa en la alta 

propensión del boro-10 (10B) a capturar neutrones térmicos, lo que da como resultado la reacción 

nuclear 10B(n, α, γ)7Li. Las partículas alfa y los iones de 7Li presentan una transferencia de 

energía lineal muy elevada, y alcances en el rango del diámetro de una sola célula. Por lo tanto, si 

se acumula una cantidad suficiente de 10B de manera selectiva o preferente en las células 

tumorales y posteriormente se irradia la zona tumoral con neutrones, es posible generar daño 

selectivo en el tumor, con afectación mínima del tejido sano circundante (Figura 1).  

La aplicación de la BNCT se ha visto limitada por una serie de problemas, entre ellos la 

inconveniencia de requerir una fuente de neutrones, lo que obligaba a realizar las pruebas en las 

inmediaciones de un reactor nuclear. Sin embargo, este inconveniente ha sido mitigado 

recientemente por la instalación de aceleradores hospitalarios capaces de generar haces de 

neutrones de alta intensidad. La segunda limitación se debe a la necesidad de desarrollar 

fármacos que puedan depositar un número suficiente de átomos de 10B específicamente (o 

preferentemente) en células o tejidos tumorales. Históricamente, se han explotado el metabolismo 

acelerado y la sobreexpresión de ciertos receptores de membrana que tienen lugar en las células 

tumorales, para generar fármacos con alto contenido en boro y capaces de acumularse en el 
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tumor, si bien los resultados no han sido muy prometedores y en la actualidad sólo hay dos 

compuestos que se utilizan en el entorno clínico. Además, éstos muestran poca especificidad y su 

aplicación se limita a un número restringido de tumores.  

Célula sana

Célula cancerígena

Molécula rica en 10B

Ion Li/partícula alfa
 

Figura 1. Esquema del principio de la BNCT. Si se acumula una cantidad suficiente de 10B de manera 
selectiva o preferente en las células tumorales y posteriormente se irradia la zona tumoral con neutrones, 
es posible generar daño selectivo en el tumor, con afectación mínima del tejido sano circundante.  

Los avances recientes en el área de la nanotecnología han abierto nuevos horizontes para la 

BNCT. Los nanomateriales, tras ser administrados por vía intravenosa, tienen la capacidad de 

acumularse de forma pasiva en los tumores gracias al llamado efecto enhanced permeability and 

retention (EPR). Durante el crecimiento tumoral, se produce neo-angiogénesis, de modo que se 

generan nuevos vasos sanguíneos de forma rápida y generalmente desestructurada. Por ese 

motivo, los vasos sanguíneos son imperfectos, dejando huecos por los cuales los nanomateriales 

pueden permear. Este hecho, unido a un drenaje linfático deficitario, facilita la acumulación de 

nanomateriales en los tumores.  

El efecto EPR ha contribuido a que una de las mayores aplicaciones de los nanomateriales en 

biomedicina sea en el desarrollo de fármacos para diferentes tipos de cáncer. En este contexto, el 

desarrollo de fármacos con aplicación en BNCT no ha quedado al margen, y se han descrito un 
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gran número de nanosistemas ricos en boro que podrían solventar el problema histórico asociado 

a la BNCT. 

En esta tesis doctoral, se pretende el desarrollo de diversos nanosistemas base oro, con un alto 

contenido en boro, como posibles candidatos para su aplicación en BNCT. Con el fin de probar 

su capacidad de acumularse en el tejido diana (tumor), se han desarrollado diferentes estrategias 

de marcaje con isótopos emisores de positrones (PET), con el fin de permitir su monitorización 

tras administración a animales utilizando tomografía por emisión de positrones.  

En primera instancia (trabajo incluido en el capítulo 3), se optó por la utilización de 

nanopartículas (NPs) de oro (AuNPs) de un tamaño de núcleo alrededor de 20 nm, ya que este es 

un tamaño adecuado para la acumulación de nanomateriales en tumores debido al efecto EPR. 

Con el fin de conferir estabilidad in vivo a las NPs, se decidió incorporar polietilenglicol (PEG) 

en la superficie de las NPs. Asimismo, se incorporó el anión cobalto bis(dicarballuro), 

denominado comúnmente COSAN, un clúster de boro y carbono que contiene 18 átomos de boro 

en la estructura. El anclaje de ambos (PEG y COSAN) en la superficie de las NPs se llevó a cabo 

mediante la bien conocida química de tioles. Las NPs resultantes se caracterizaron mediante un 

conjunto de técnicas, incluyendo microscopía electrónica de transmisión (TEM), dispersión 

dinámica de luz, espectrofotometría UV-Vis, espectroscopía Raman y espectroscopía 

fotoelectrónica de rayos X. Los análisis demostraron la formación de NPs con diámetro de núcleo 

de 19.2±1.4 nm, diámetro hidrodinámico de 37.8±0.5 nm, y un valor de potencial zeta de 

−18.0±0.7 mV a pH neutro. Además, quedó confirmada la presencia de boro en la superficie. Con 

el fin de permitir la realización de estudios in vivo mediante PET, se abordó la incorporación del 

isótopo emisor de positrones yodo-124 tanto en el núcleo (mediante adsorción aniónica sobre la 

superficie de oro) como en la corteza (mediante incorporación del átomo de yodo sobre el clúster 

de boro). Para determinar el tiempo de circulación en sangre y la capacidad de los nanosistemas 

de acumularse en el tumor, se realizaron ensayos en un modelo tumoral de ratón, generado 

mediante inoculación subcutánea de células HT 1080 (fibrosarcoma). Los estudios PET 

demostraron una rápida acumulación de las NPs en el hígado, con la consecuente baja 

biodisponibilidad, que resultó en última instancia en una muy baja acumulación en el tumor. Sin 

embargo, los estudios efectuados con el doble marcaje secuencial demostraron una buena 

estabilidad de los nanosistemas in vivo.  
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Los resultados obtenidos en el capítulo 3 sugirieron la necesidad de modificar las características 

de las NP para prolongar el tiempo de circulación y mejorar la acumulación en tumor. En 

consecuencia, se optó en este segundo trabajo (incluido en el capítulo 4) por preparar y 

caracterizar NPs similares a las incluidas en el capítulo 5, pero con dos tamaños de núcleo 

diferentes, alrededor de los 3 y los 10 nm. En este caso, se optó por una estrategia para el marcaje 

radioactivo basado en la incorporación del isótopo emisor de positrones cobre-64 (64Cu) en el 

núcleo de las NPs, para de este modo minimizar la pérdica del radioisótopo durante los estudios 

in vivo. Las NPs diseñadas demostraron una baja toxicidad in vitro en tres líneas celulares, y una 

buena capacidad de internalización en la línea celular MKN45 (carcinoma gástrico). Tras efectuar 

el marcaje con buena eficiencia, se abordaron estudios de imagen utilizando PET-CT en un 

modelo murino de cáncer, generado mediante inoculación de células MKN45 en ratones 

inmunodeprimidos. Los estudios efectuados con las NPs con tamaño de núcleo de ca. 10 nm 

mostraron una rápida acumulación en el hígado, resultando en una baja biodisponibilidad y en 

consecuencia en una baja acumulación en el tumor a los diferentes tiempos de estudio (1-48h). 

Sin embargo, las NPs con tamaño de núcleo de ca. 3 nm mostraron una mayor circulación en 

sangre, una menor retención en el hígado y una mayor acumulación en el tumor (Figura 2), con 

valores de 5.3±1.3 %de dosis inyectada por cm3 a las 24 horas tras administración. 

Posteriormente, se observe una disminución progresiva en este tejido.  

A pesar de la mejora en la acumulación tumoral obtenida en el capítulo 4, la concentración de 

boro en el tumor puede considerarse insuficiente para abordar los experimentos de eficacia 

terapéutica únicamente atendiendo a la modalidad de BNCT. Por lo tanto, el siguiente paso fue 

diseñar agentes terapéuticos que permitieran la combinación de BNCT con otra modalidad 

terapéutica. Aprovechando la capacidad de los nanorods de oro (GNRs) para interactuar con la 

luz infrarroja para generar calentamiento local, se decidió preparar nanorods de oro 

funcionalizados simultáneamente con PEG y COSAN, de manera similar a lo llevado a cabo en 

los capítulos anteriores. El hecho de disponer de nanorods funcionalizados con moléculas ricas 

en boro debería permitir combinar dos modalidades terapéuticas, BNCT y terapia fototérmica. La 

síntesis y funcionalización de los NRs se llevó a cabo mediante métodos previamente 

establecidos, si bien se ajustaron los parámetros experimentales para obtener nanosistemas con un 

tamaño de núcleo de 37±3 × 10±1 nm (ratio de aspecto de 3.7), según demostraron los estudios 

de TEM, y con un potencial-zeta de -12±2 mV. La presencia de boro en la superficie se demostró 
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mediante análisis por EDX y espectrofotometría UV-Vis. Los GNR resultantes mostraron buena 

capacidad de internalización en células MKN45 y baja toxicidad tanto en células MKN45 como 

en fibroblastos dérmicos humanos (células HDFa).  

 

Figura 2. Imágenes PET (vistas coronales y axiales) representativas, obtenidas a las 1, 6, 24 y 48 horas 
después de la administración de NPs con tamaño de núcleo de ca. 3 nm, marcadas con 64Cu, en un modelo 
animal de ratón generado por inoculación subcutánea de células MKN-45. Las imágenes PET son 
proyecciones de máxima intensidad, y se muestran corregistradas con cortes representativos de imágenes 
CT correspondientes al mismo animal, para facilitar la localización de la señal radiactiva. La posición del 
tumor se indica con flechas blancas. 

Posteriormente, se abordó el marcaje de los GNRs con un isótopo emisor de positrones, en este 

caso 64Cu, que se incorporó en el núcleo mediante proceso de reducción in situ en presencia de 

hidracina. El marcaje mostró alta estabilidad en diferentes medios de incubación. Finalmente, se 

aboradron estudios de biodistribución in vivo en un modelo tumoral de ratón generado por 

inoculación de células MKN45. Los GNRs mostraron una buena acumulación en el tumor, con 

valores por encima del 3% de dosis inyectada por gramo de tejido, y ratios de concentración 

respecto a tejido sano favorables a las 24-48 horas tras la administración (Figura 3). 

La acumulación en tumor de los GNRs permite anticipar que sería posible llevar a cabo estudios 

terapéuticos combinando las dos modalidades terapéuticas, BNCT y terapia fototérmica.  
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Figura 3. mágenes PET (vistas coronales) representativas, obtenidas a las 1 (a), 4 (b), 24 (c) y 48 (d) 
horas después de la administración de GNRs marcados con 64Cu, en un modelo animal de ratón generado 
por inoculación subcutánea de células MKN-45. Las imágenes PET son proyecciones de máxima 
intensidad, y se muestran corregistradas con cortes representativos de imágenes CT correspondientes al 
mismo animal, para facilitar la localización de la señal radiactiva. La posición del tumor se indica con 
flechas blancas. 

 



 

 
 



Chapter 1 – General introduction 

1 
 

Chapter 1: General Introduction 

1.1 The global burden of cancer 

Cancer is a disease that occurs when cellular changes cause the uncontrolled growth and division 

of cells. According to the World Health Organization (WHO), cancer is still one of the leading 

causes of death worldwide, accounting for about 1 in every 6 deaths. In 2018, there were 18.1 

million new cases of cancer diagnosed around the world and caused 9.6 million deaths [1]. By 

2040, the global cancer incidence is expected to reach 27.5 million new cancer cases and 16.3 

million cancer deaths, due to the aging of the population. Unfortunately, cancer is a 

heterogeneous disease, which makes treatment difficult. Currently, chemotherapy, radiotherapy, 

immunotherapy, and surgery are the main treatment options established in the clinical field. 

However, the efficacy of all these approaches is compromised by their risk to normal, healthy 

cells, and their potential to destroy the immune system. Therefore, a large body of cancer therapy 

research focuses on developing effective alternative treatments that can replace conventional 

therapies by improving therapeutic efficacy and reducing off-target side effects. 

1.2 Boron Neutron Capture Therapy 

1.2.1 General description 

Boron neutron capture therapy (BNCT) is a promising radiotherapeutic modality to treat cancer. 

Gordon Locher was the first person to propose the concept of BNCT in 1936 [2]. This binary 

therapeutic modality is based on the neutron capture and nuclear fission reactions that occur 

when the non-radioactive stable atom boron-10 (~ 20% of natural boron) is irradiated with low 

energy thermal neutrons (E < 0.5 eV) or high energy epithermal neutrons (0.5 eV < E < 10 eV) to 

yield high energy alpha particles (α2+ = 4He2+) and recoil lithium ions (7Li3+) (Figure 1.1).  Alpha 

particles and 7Li recoil ions have high linear energy transfer (LET) properties (150 keV µm-1 and 

175 keV µm-1, respectively) and path lengths in the range of 4 to 10 µm. Thanks to their strong 

ionization capacity, these particles are capable to create localized damage within the diameter of 

a single cell. Hence, if cancer cells selectively accumulate a sufficient amount of 10B and are 

irradiated with thermal or epithermal neutrons, the ions produced as a consequence of the 10B(n, 

α, γ)7Li nuclear reaction trigger cell death, while sparing healthy surrounding tissue and 

decreasing unwanted off-target side effects (Figure 1.2). 
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Figure 1.1. 10B(n, α, γ)7Li nuclear reaction. The neutron is captured by the boron-10 atom, resulting in the 
formation of an unstable 11B atom which rapidly undergoes a fission reaction with subsequent emission of 
one alpha particle, one recoil lithium ion and one gamma ray.  

 

Figure 1.2. The principle behind BNCT: 10B atoms preferentially accumulate in cancer cells (1). Neutron 
beam irradiation (2) produces the rapid nuclear reaction 10B(n, α, γ)7Li. Alpha particles and 7Li ions have 
high linear energy transfer, triggering cell damage while sparing healthy surrounding tissue. 

1.2.2 Boron delivery agents: Ideal properties 

To find application in BNCT, drugs must fulfill certain requirements: (i) they should be able to 

selectively accumulate 20-35 µg of 10B (natural abundance of 10B 19.9%) per gram of tumor, 
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preferentially inside the cells, in order to guarantee that a sufficient amount of neutrons is 

absorbed producing the above mentioned nuclear reaction; (ii) they should show rapid clearance 

from blood and healthy tissues, in order to prevent damage in surrounding tissue during neutron 

irradiation; it is generally accepted that tumor-to-normal tissue (TtT) and tumor-to-blood (TtB) 

concentration ratios above 4-to-1 are sufficient to minimize off-target damage; (iii) they must 

exhibit low systemic toxicity since they are usually injected intravenously; and (iv) ideally, they 

should incorporate a means for external tracking in real time, in order to identify the optimal time 

window for neutron irradiation after administration of the drug. To date, many different drug 

candidates over a wide range of molecular modalities have been developed. A brief overview of 

the most relevant examples is provided below from an historical perspective.  

1.2.3 First and second-generation boron delivery agents.  

First compounds proposed as BNCT drug candidates were small molecules containing boron 

atoms in their structure. In the 1950s and early 1960s, BNCT clinical trials were conducted using 

boric acid and some of its derivatives. These chemical compounds were nonselective and had 

poor tumor retention. Hence, low TtT ratios could be achieved [3, 4]. In the 1960s, second-

generation compounds covering a wide variety of small molecules emerged, being the two most 

prominent examples sodium mercaptoundecahydro-closo-dodecaborate (Na2B12H11SH), 

commonly known as sodium borocaptate or BSH [5], and the boron-containing amino acid (L)-4-

dihydroxy-borylphenylalanine [6], known as boronophenylalanine or BPA (Figure 1.3). 

BSH, a polyhedral mercaptoboron molecule, was first applied to patients in 1968 [7] for the 

treatment of tumors in the central nervous system (CNS). Subsequent clinical trials using this 

boron-rich compound were focused in the treatment of patients with brain tumors [8-10], while 

BPA was also evaluated in patients suffering from malignant melanoma [11]. Despite the positive 

results, the major drawback of both BSH and BPA is the low selectivity and the significant inter-

subject variability in tumor uptake, especially in brain tumors, as demonstrated by Goodman and 

co-workers. In a biodistribution and pharmacokinetic study involving 20 patients with high-grade 

gliomas [8], the authors found that boron concentrations varied among patients who received the 

same dose of BSH. Additionally, heterogeneous tumor accumulation was also observed. In spite 

of these drawbacks, BSH and BPA are still the only compounds used in the clinical field [12], 

suggesting the need for further investigation.  
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Figure 1.3. Chemical structures of boric acid (left), sodium borocaptate (BSH, middle) and 
boronophenylalanine (BPA, right). 

1.2.4 Third-generation boron delivery agents.  

Polyhedral heteroboranes, and more specifically dicarba-closo-dodecaboranes (commonly 

referred to as carboranes) with the general formula C2B10H12, have been extensively used as 

boron-rich structures for the preparation of third-generation boron delivery agents. Carboranes 

exist as ortho-, meta-, and para-isomers (Figure 1.4), which differ in the relative positions of the 

carbon atoms in the cluster. The cobalt bis(dicarbollide) anion [3,3’-Co(1,2-C2B9H11)2]- (Figure 

1.4) is a stable complex in which the cobalt atom is held between two η5-bonding [C2B9H11]2- 

ligands derived from nido-carborane, which can be obtained by withdrawing one of the boron 

atoms adjacent to both Cc atoms in the o-carborane cluster [13].  

 

Figure 1.4. Chemical structure of ortho-, meta- and para-carborane and the cobalt bis(dicarbollide) anion. 
White dots denote B-H; black dots denote C-H; blue dot denotes Co(III). 

Third-generation compounds mainly consist of a stable boron group or cluster connected via a 

hydrolytically stable linkage with a low molecular weight biomolecule, which is expected to aid 
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in tumor accumulation by acting as a vector. Commonly used vectors include amino acids [14, 

15], peptides [16, 17], nucleosides [18], carbohydrates [19] and porphyrins [20, 21].  

The use of boron-rich antibodies (Abs) has also been proposed, due to their exquisite selectivity 

towards the epitope. It is estimated that a boronated Ab should contain 103 10B atoms per Ab unit 

to provide a therapeutic dose to the tumor [22], but the incorporation of such a large amount of 

boron results in a significant loss of immunoreactivity and hence therapeutic efficacy might be 

compromised.  

In spite of more than 50 years of efforts and considerable advances, a third generation compound 

suitable for application in the clinical practice has not been found. At his point, the emergence of 

nanotechnology opened new opportunities in the pursuit of effective and safe boron delivery 

agents. 

1.2.5. Nanostructures for BNCT 

Nanomedicine involves the use of nanoscale materials, e.g. nanoparticles (NPs), for the 

diagnosis, monitoring and/or treatment of diseases. Nanoparticles are generally defined as small 

particles with dimensions approximately from 1 to 100 nm according to the American Society for 

Testing and Materials (ASTM international 2006). NPs have unique physical and chemical 

properties compared to their bulk materials, including a large surface area-to-volume ratio, and 

exclusive optical and electrical properties [23]. Due to their small size, and depending on their 

composition and surface-functionalization, NPs can show high biocompatibility and can carry a 

significant amount of cargo. Hence, they have been proposed as drug delivery agents, especially 

in cancer applications because of their capacity to passively accumulate in tumor tissue. Indeed, 

tumor growth is accompanied by angiogenesis. In this process, rapid blood vessel formation leads 

to imperfect vessel walls with large fenestrations, which facilitate extravasation of large 

circulating entities (e.g. NPs) from the blood vessel to the tissue. This, together with a 

compromised lymphatic drainage, favors tumor accumulation of nanomaterials after intravenous 

administration. This process is known as enhanced permeability and retention or EPR [24] 

(Figure 1.5).  
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Figure 1.5. Schematic illustration showing nanoparticles accumulation in tumor due to enhanced 
permeability and retention (EPR) effect. 

The passive targeting via enhanced permeability and retention effect has been widely exploited to 

accumulate different drugs in tumors, also in the context of BNCT. The clearest example on the 

use of nanosized materials to achieve high accumulation of boron in tumors are liposomes, which 

proven capable to accumulate large amounts of drugs in cancer cells [25-27]. Moreover, 

liposomes can be conveniently functionalized with antibodies, peptides, or other targeting 

moieties which may enhance retention in the tumor or cell internalization via specific interaction 

with receptors over-expressed in cancer cells [28, 29]. Similar to other drugs, BNCT agents can 

also be encapsulated inside liposomes, which passively accumulate in the tumor where the cargo 

is released via diffusion through the liposome or by degradation. This has been demonstrated in 

several works, showing promise for their translation to the clinical setting [30]. For example, 

Hawthorne and coworkers have designed a liposome system containing boron not only in the 

aqueous core but also in the lipid bilayer, which showed BNCT efficacy in a mouse model of 

mammary adenocarcinoma [31] (Figure 1.6a).  

Other nanosystems have been employed to accumulate boron atoms in tumors, taking advantage 

of the EPR effect. One example is dendrimers, which thanks to their structure can be 

functionalized with a large number of boron cages. These can be attached to antibodies, in order 

to achieve high boron content without severely compromising the immunoreactivity of the 

antibody. In one of the most representative examples reported so far, the boronated 

Tumor 

Tumor 

Nanoparticles 

Nanoparticles accumulation 

Blood stream 
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polyamidoamine dendrimer BD‐C225 was linked with cetuximab (Figure 1.6b). This compound 

showed BNCT efficacy in EGFR gene‐transfected rat glioma cells [32] 

a b
 

Figure 1.6. Schematic representation of boronated liposomes (a) and boronated polyamidoamine 
dendrimer (BD-C225) (b). Reprinted with permission from original sources [31] and [33].  

Carbon nanotubes (CNTs) have also attracted great attention in biomedical applications due to 

their unique properties such as high thermal stability, magnetic properties, excellent conductivity, 

and superb chemical and mechanical properties [34]. CNTs are widely used in therapeutic drug 

delivery due to their high surface area and nanodimensionality, which allows them to adsorb or 

conjugate with a wide variety of therapeutic drugs. Additionally, surface engineered (i.e., 

functionalized) CNTs enhance their solubility and biocompatibility, resulting in low cytotoxic 

effects in therapeutic drug delivery [35]. In the context of BNCT, CNTs have been modified with 

nido-carborane units [36]. These water-soluble CNTs were tested in 3T3 fibroblasts and HL60 

cells, where it was found that CNTs were able to transport large amount of functional groups into 

cells without apparent toxicity (Figure 1.7a).  

Besides CNTs, boron nitride nanotubes (BNNTs) have also been proposed as BNCT drug 

candidates due to their inherent boron content. For example, transferrin coated boron nitride 

nanotubes (tf-BNNTs) were tested on human umbilical vein endothelial cells (HUVEC), as 

model of the BBB endothelium. Results revealed that transferrin played a key role during 

internalization of tf-BNNTs by HUVEC [37] (Figure 1.7b).   
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Figure 1.7. Carbon nanotubes (CNTs) decorated with nido-carboranes (a) and transferrin conjugated 
BNNTs (b). Reprinted with permission from original sources [36] and [37] 

Boron phosphate (BPO4) has also been used for the preparation of nanosized BNCT agents. In 

one example of targeted approach, folic acid conjugated BPO4 NPs were prepared with amine 

terminated BPO4 and folic acid via condensation reaction [38]. However, these functionalized 

BPO4 NPs showed high cytotoxicity in several cell lines.  

Besides the above mentioned examples, other boron rich nanosystems have been prepared and 

eventually evaluated in the context of BNCT. These include magnetic nanoparticles [39], 

borosilicate nanoparticles [40], and polymeric NPs [41, 42]. 

1.2.6. Gold nanoparticles: potential boron carriers for BNCT  

Gold nanoparticles (AuNPs) are extensively investigated NPs and have potential applications in 

medicine due to their unique physical and chemical properties, which significantly differ from the 

bulk material. The attractive features of AuNPs include their low level of toxicity, easy 

modification, biocompatibility, tunable stability and optical properties, and small dimensions. 

Additionally, they have straightforward functionalization chemistry through the well-known 

sulfur-gold bond formation. These unique features turn AuNPs into excellent candidates for a 

wide range of biomedical applications including drug delivery, cancer treatment, biomedical 

imaging, diagnosis and many others. 
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There are several ways of synthesizing AuNPs. They can be divided into physical, chemical and 

biological methods, although the most common approach is via chemical methods, which offer 

the possibility to precisely controlling the size and shape of the NPs. Indeed, AuNPs with 

different shapes can be synthesized including nanospheres, nanoshells, nanorods, nanoclusters, 

nanocages, and nanostars, among others [43-45] (Figure 1.8).  

 

Figure 1.8. Different forms of gold nanoparticles (reprinted with permission from original source [45]) 

Among different forms of AuNPs, gold nanospheres are the simplest nanostructures of gold and 

can be synthesized by controlled reduction of an aqueous solution of HAuCl4 using a reducing 

agent such as citrate ion (sodium salt of citric acid) [46]. Citrate ion acts both as a reducing agent 

and also as particle stabilizer. The size of gold nanospheres can be easily tuned by varying the 

amount of reducing agent and gold precursor. This method has greatly impacted the preparation 

of biomedical-grade AuNPs in the range of 20 nm. Brust et al. developed a one pot protocol to 

synthesize gold nanospheres in the range of 1.5 nm to ∼6 nm. In this preparation, the aqueous 

HAuCl4 solution is transferred to an organic phase (e.g. toluene) using tetraoctylammonium 

bromide (phase-transfer agent) and reduced with NaBH4 in the presence of a thiol ligand 

(stabilizer) [47]. In this process, the thiol ligand/gold stoichiometry affects the size of the 

nanospheres. To get smaller and monodisperse gold nanospheres, faster addition of the reducing 

agent in a cooled solution to the thiol/gold precursors is mandatory. Later, this method was 

modified in different ways to achieve shape and size control, as well as to incorporate 

functionalities on the surface. 

Gold nanospheres exhibit a strong absorption band in the visible region due to the collective 

oscillations of electrons in the conduction band in strong resonance with frequencies of visible 
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light. This phenomenon is called surface plasmon resonance (SPR) (Figure 1.9a, A). This effect 

induces a strong absorption of the light that depends on different properties including size, shape, 

surface functionality and aggregation state of the particles; when the size of the gold nanosphere 

is increased, the plasmon shifts towards higher wavelengths (Figure 1.9b, B). 

Gold nanorods (GNRs), which are rod-shaped nanomaterials, have gained special attention in 

biological/biomedical fields, especially in the context of photothermal therapy, biosensing, 

imaging, and gene delivery for the treatment of cancer. Because of their rod-like shape, SPR 

spectrum exhibits two absorption bands: the first band stems from the visible region (around 520 

nm) due to the interaction of light with the electrons from the diameter width, and the second one, 

red-shifted, stems from the NIR region (around 780 nm) due to the interaction of light with 

electrons from the length width of the nanorods (Figure 1.9b, B). The aspect ratio of GNRs 

affects the absorption spectra, with higher aspect ratios resulting in a shift towards higher 

wavelength values. 

 

Figure 1.9. (a, A) Schematic representation of LSPR excitation for gold nanospheres; (a, B) typical LSPR 
absorption band of gold nanospheres; (b, A) Schematic illustration of LSPR excitation for GNRs and (b, 
B) LSPR absorption bands of GNRs: longitudinal and transverse plasmon bands corresponding to the 
electron oscillation along the long axis (b, A (top)) and the short axis (b, A (below)) of GNR, respectively 
(reprinted with permission from original source[48]) 
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Several methods have been reported to synthesize GNRs, including both seed-mediated and 

seedless mediated methods [49, 50]. The seed-mediated growth method is the most widely used 

approach to synthesize GNRs with different aspect ratios by changing the stoichiometry of gold 

seeds and gold tetrachloride in the presence of the surfactant. In this method, a known amount of 

gold seeds are added to the growth solution which contains cetyltrimethylammonium bromide 

(CTAB) as the surfactant. The seeded crystals grow into GNRs with a certain aspect ratio with 

the help of surfactant. Recently, Ye et al. reported a new method for the synthesis of GNRs by 

seed-mediated growth method [51]. In this method, aromatic salicylates are used as an additive to 

improve the CTAB-micelle interaction, leading to a more stable structure, and resulting in the 

formation of monodispersed GNRs with high yield.  

The use of gold-based nanomaterials in the context of BNCT is not widely exploited, although 

some examples can be encountered in the literature. In one of the first examples reported in 

which gold NPs were proposed as potential BNCT agents, Cioran et al. described the use of 

mercaptocarborane as a capping agent on the AuNPs via Au-thiol interaction (Figure 1.10a) [52]. 

These NPs displayed high cellular uptake due to the oxidation of NPs. However, these NPs 

showed high toxicity towards HeLa cells. In another study, ortho-carborane moieties were 

incorporated onto PEG-stabilized AuNPs through click chemistry. The addition of PEG resulted 

in water soluble functionalized AuNPs. The stability of these NPs and their capacity to 

accumulate in tumors, however, remains to be investigated (Figure 1.10b) [53].  

 

Figure 1.10. Mercaptoborane-capped AuNPs (a) and PEG-stabilized AuNPs incorporating ortho-
carboranes (b) (reprinted with permission from original source [33]) 
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1.3. Tracking NPs in vivo: Nuclear Imaging 

As mentioned in the previous sections, nanoparticles (NPs) have been widely applied as drug 

delivery agents, especially in cancer applications where they can preferentially accumulate in the 

tumor thanks to the EPR effect. However, in most scenarios NPs are extremely difficult to detect 

and quantify once distributed in a biological system. Hence, the determination of the 

pharmacokinetic properties and biological fate of NPs becomes an extremely challenging task. 

Such determination is especially relevant in the context of BNCT, because neutron irradiation 

needs to be applied when the concentration of boron in the tumor is maximum, and the 

concentration of boron both in blood and in surrounding tissue are low, the latter to prevent off-

target side effects. Hence, a suitable tool for the determination, in vivo and in real time, of the 

concentration of boron in at the whole body level is paramount in order to predict therapeutic 

efficacy and select the optimal time-window for neutron irradiation.  

When using small experimental animals (e.g. rodents such as mice and rats), this information can 

be obtained after animal sacrifice by classical chemical analysis of the different organs to identify 

elements or molecules from the nanoparticles. The results can then be extrapolated to other 

animals to evaluate treatment efficacy. However, this requires animal sacrifice, and hence results 

have to be extrapolated from one group of individuals to other groups, as the biodistribution is 

not evaluated in a case-by-case basis. Additionally, natural or background levels of chemical 

components may be mistakenly considered as the signature of NPs presence. Finally, this 

approach cannot be translated to the clinical setting and is ethically questionable in large animal 

species.  

One alternative to overcome this problem consists of labeling the NPs with radionuclides that can 

lead to their detection in biological systems by means of nuclear imaging techniques, this is, 

Positron Emission Tomography (PET) or Single Photon Emission Computerized Tomography 

(SPECT), which are in vivo, minimally invasive and very sensitive molecular imaging 

techniques. The most critical part in this approach is the incorporation of the radionuclide into the 

NP, and to date different strategies have been developed. The selection of the strategy for the 

radiolabeling depends on many different factors, e.g. the radionuclides available, the chemical 

composition of the NPs or the physical half-lives of the radionuclides. In the current PhD thesis, 

PET imaging has been used to assess the biodistribution of newly developed NPs and to 
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investigate tumor accumulation. Because of this, a brief introduction covering the principles of 

nuclear imaging and PET in particular are included below. A brief description of the 

radionuclides used in the context of the PhD thesis and the most common labeling strategies 

applied with those radionuclides is also included.   

1.3.1. Positron emission tomography  

Nuclear imaging techniques rely on the administration of small amounts of radioactive materials 

called radiotracers or radiopharmaceuticals, i.e., a compound labeled with a positron or gamma-

emitting radionuclide. When a positron or gamma-emitter disintegrates, high energy gamma rays 

are ultimately generated. Gamma rays can travel through biological tissues without suffering 

significant scatter or attenuation. These gamma rays (or high energy photons) can be detected by 

specific equipment in such way that the original concentration of the radiotracer can be 

accurately quantified using specific tomographic reconstruction algorithms. Positron emission 

tomography (PET), single photon emission computed tomography (SPECT) and planar 

scintigraphy are nuclear imaging techniques. Nowadays, these techniques are available in 

combination with anatomical imaging such as computerized tomography (CT) or magnetic 

resonance imaging (MRI). 

Positron emission tomography (PET) is the most sensitive nuclear imaging technique. This 

technique relies on the detection of the coincident high energy gamma rays (or high energy 

photons) resulting from the emission of a positron emitting radiotracer. Typical positron emitters 

used in the biomedical field include Fluorine-18, Carbon-11, Nitrogen-13, Oxygen-15, Galium-

68, Copper-64, Zirconium-89 and Iodine-124. 

In positron emission tomography, a PET radiotracer (any molecule labeled with a positron 

emitter) is administered to the subject under investigation. The spontaneous radioactive decay of 

a positron emitter produces a positron, which travels a certain distance (positron range; typically 

a few millimeters in water) to finally annihilate with the electron of a surrounding atom. As a 

result of the annihilation process, two gamma photons (511 keV each) are emitted in opposite 

direction (Figure 1.11). These high energy gamma rays can travel though biological tissues 

without suffering significant attenuation or scattering effects. Hence, they can be detected by an 

external ring of detectors (placed around the investigated subject) as coincident events. When two 

detectors detect two gamma rays simultaneously, a line of response is generated, so as the 
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disintegration took place somewhere within this line. The detection of hundreds of thousands of 

coincident events permits the accurate reconstruction of three-dimensional images that contain 

information about the spatiotemporal distribution of the radiotracer within the organism.  

e-

 

Figure 1.11. Schematic representation of the detection of photons using PET. (A) The positron travels a 
certain distance (positron range) and annihilates with an electron, resulting in the emission of two gamma 
rays in opposite direction; (B) the two gamma rays resulting from the annihilation are detected as a 
coincidence event by two detectors. Hence, a line of response is defined. 

In order to get high quality PET images, the selection of the right positron emitter is paramount. 

In table 1.1, half-life values (time required to decrease the number of radioactive atoms to one 

half) and the energies of the emitted positrons for the most widely used PET radionuclides in the 

biomedical field are shown. Both half-life and energy of the emitted positron are indeed key 

factors to be considered.  

The energy of the positron defines the positron range. The longer the positron range is, the higher 

the distance between the location of the disintegration event and the location of the annihilation. 

Hence, larger positron energy values usually result in lower resolution images. The other key 

parameter is physical half-life of the radionuclide, as this should match the biological half-life of 

the molecule to be investigated, in our case the NPs. If the physical half-life of the radionuclide is 

too short, NP tracking will be only possible during a short period of time after injection (4-5 half-

lives), and hence the biological process will be only partially investigated. If the half-life is too 
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long, the investigated subject will be submitted to a higher radiation dose and waste disposal will 

be more costly.  

Table 1.1. Physical properties (half-life and positron energy) of the most commonly used positron 
emitters in biomedicine. 

Isotope Half-Life ß
+ 

Energymax (ß
+
 fraction) 

18F 109.8 min 0.63 MeV (0.97) 
11C 20.4 min 0.96 MeV (1.00) 
13N 9.97 min 1.20 MeV (1.00) 
15O 122 sec 1.73 MeV (1.00) 

68Ga 67.7 min 1.89 MeV (0.89) 
64Cu 12.7 hours 0.66 MeV (0.18) 
89Zr 78.4 h 0.90 MeV (0.23) 
124I 4.18 days 2.14 MeV (0.23) 

 

1.3.2. Positron emitters for NP labeling 

When dealing with NPs, as they show long residence time in the body, long-lived radionuclides 

are perceived to be appropriate. Among the most commonly used positron emitters (see Table 

1.1), mainly Copper-64 (64Cu), Iodine-124 (124I) and Zirconium-89 (89Zr) have appropriate 

physical half-lives for the purpose. In this PhD thesis, Copper-64 and Iodine-124 have been used 

for radiolabeling the nanosystems. Therefore, the preparation methods, main properties and 

radiolabeling strategies concerning these radionuclides are briefly presented below. 

Copper-64 

Copper-64 (64Cu) has a physical half-life of 12.7 h, which enables in vivo tracking of the labeled 

entity over a period of a few days. 64Cu is effectively produced by both reactor- and accelerator-

based methods. Reactor based methods usually entail the irradiation of materials with thermal or 

fast neutrons. Thermal neutrons have relatively low energy; in low energy neutron irradiation 

processes, the target (irradiated) material is of the same element as the product radionuclide; 

therefore, low-specific activity radionuclides are obtained. 64Cu, for example, can be produced by 

irradiation of stable 63Cu (69.1% natural abundance) with thermal neutrons via the 63Cu(n,γ)64Cu 

nuclear reaction. However, if this approach is used, 64Cu will be “diluted” with the starting 63Cu. 

Both isotopes cannot be separated, and hence low specific activity of the radionuclide is obtained. 
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This implies certain limitations, although discussion is beyond the scope of this thesis. For the 

production of high-specific activity 64Cu, fast neutrons can be used. Unlike a thermal neutron, a 

highly energetic neutron has sufficient energy to eject a particle from the target nucleus, and the 

irradiated material can undergo (n,p) reactions. Thus, 64Cu can be efficiently produced from 64Zn 

via the 64Zn(n,p)64Cu nuclear reaction [54]. The main drawback of this methodology arises from 

the fact that fast neutron reactions using reactor neutrons are always accompanied by thermal 

neutron reactions, which may produce significant quantities of undesirable impurities. 

Alternatively, 64Cu can be effectively produced using biomedical cyclotrons via the 64Ni(p,n)64Cu 

nuclear reaction [55]. For the production, enriched 64Ni is electroplated on to a gold disk and is 

irradiated with 14-16 MeV protons. After irradiation, the target material is dissolved in 

concentrated HCl and the solution is passed through an ion exchange column with different acid 

concentrations to separate 64Cu from the target nickel and other impurities. The enriched 64Ni can 

be successfully recovered and used for subsequent production and labeling experiments. 

Despite the half-life of copper-64 is appropriate to investigate chemical species with long 

residence time in the organism, its decay scheme is far from optimal for PET studies. 64Cu decays 

by ꞵ- emission to the ground state of 64Zn (ꞵ- = 38.48 %) and by ꞵ+ emission to 64Ni (ꞵ+ = 17.52 

%) with 43.8 % electron capture (EC) (Figure 1.12) [56]. The positron-branch makes it a useful 

candidate for diagnostic imaging, while the beta-minus branch along with the emission of Auger 

electrons following electron-capture decay make it an attractive candidate also for therapy. 

However, the low positron branching is a limitation when used exclusively for imaging purposes, 

as almost 85% of the radioactive decay is not detected by the PET camera. 

 

Figure 1.12. 64Cu decay scheme (adapted from [57]) 
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Copper is a thoroughly explored element with well-known coordination chemistry. Because of 

this, the most traditional approach to attach 64Cu to NPs is via a metal chelator. In this traditional 

radiolabeling approach, 64Cu is conjugated to the surface of NPs through macrocyclic chelators 

such as 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA), previously attached 

via covalent bonds to the surface of the NP. Although this approach has the advantage that the 

radiolabeling is carried out at the very late stage of the process, thus minimizing radiation 

exposure and loss of radioactivity due to radioactive decay, it also has a few disadvantages, 

including the possible detachment of radiometal from the complex, that may lead to 

misinterpretation of the images [58], and the modification of the surface properties of the 

nanoparticle. As an lternative with particular application to gold NPs, Zhao et al. recently 

reported a chelator‐free 64Cu radiolabeling strategy for gold nanoparticles via formation of an Au-
64Cu alloy [59]. They were able to radiolabel the AuNPs and investigate the capability of the 

resulting nanosystems to accumulate in the tumor in a mouse breast cancer model using a 

PET/CT. This labeling protocol results in the formation of highly stable labeled NPs, paving the 

way towards reliable in vivo evaluation of gold NPs using PET imaging.  

Iodine-124  

Iodine 124 (124I) is a positron emitter with a long half-life (4.17 days) playing an important role in 

nuclear medicine for long-term clinical and PET studies. 124I can be produced using different 

nuclear reactions. Generally, 124I is produced in solid targets. The most widely used strategy is 

the irradiation of enriched 124Te via the 124Te(p,n)124I or the 124Te(d,2n)124I  nuclear reactions 

[60]. The irradiated material is tellurium or tellurium oxide, and 124I is recovered easily from the 

irradiated material by dry distillation, or by dissolution of the target in oxidizing alkaline medium 

followed by reduction of tellurium and iodine and purification using solid phase extraction. 

Iodine-124 has complex radioactive decay scheme (Figure 1.13) [61], which includes several 

high-energy gamma emissions (0.603 MeV, 63.0% abundance) and high energy positron emission 

(Eþmax = 2.14 MeV, 23% abundance). As in the case of 64Cu, the emission spectrum is not optimal 

for application in PET imaging. However, due to its long half-life, it finds application when the 

user of more convenient radionuclides (from an emission spectrum point of view) cannot be 

applied.   



Chapter 1 – General introduction 

18 
 

ε

ε

ε

ε

ε

 

Figure 1.13. Simplified decay scheme of 124I (adapted from [61])  

In general terms, radiolabeling with 124I can be approached using three main synthetic routes: (i) 

direct incorporation into activated aromatic rings by electrophilic substitution using the anionic 

species of the radionuclide (I-) in the presence of oxidizing reagents, e.g. chloramine-T or N-

chloro tosylamide [62]. In this chemical reaction, iodide in oxidation state −1 is oxidized to form 

a reactive electrophilic species in the oxidation state +1, which simply substitutes an hydrogen 

atom on aromatic rings containing electron-donating groups. The method is simple and usually 

high yields are obtained, although the reaction conditions may compromise the stability of the 

chemical entity to be labeled. Iodogen (1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril) is another 

alternative oxidizing agent [63], which was developed to conduct the reaction under milder 

conditions to prevent the damage of labeled molecules by oxidation. This strategy is widely 

applied to the molecules like proteins and antibodies containing tyrosine (or histidine) residues; 

(ii) the covalent attachment of pre-labeled prosthetic groups to the biomolecule. The most 

common conjugation reagent is N-succinimidyl 3-(4-hydroxyphenyl) propionate (Bolton–Hunter 

reagent) [64], which readily reacts with primary amines to form the corresponding amides; and 

(iii) nucleophilic substitution reaction using radioiodine to replace a stable iodine atom (isotopic 

exchange reaction) in the molecule under investigation [65]. In this isotopic exchange reaction, 

both starting material and radiolabeled molecule have the same chemical structure, and hence low 

molar activity values are achieved. 

The three methodologies briefly described above have been extremely useful for the 

radiolabeling of chemical entities over a wide range of molecular modalities, ranging from small 
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molecules to large proteins and antibodies. In the context of NPs, another strategy has been 

developed, which has been very useful in the context of this PhD thesis. This methodology is 

based on the well-known affinity of iodide towards gold. The relative binding strengths of gold 

halide ions are in the order of I > Br > Cl. Iodine has a high affinity for AuNPs via chemisorption 

to the particle surface, and hence iodine labeling on gold surface can be achieved quickly and 

efficiently by simply incubating the nanoparticles with the radioactive anion. This strategy has 

been exploited using different radioisotopes of iodine, including 125I [66], and 131I [67]. However, 

to the best of our knowledge, this strategy has not been applied so far to radiolabeling of NPs 

using the positron emitter 124I.  

1.4. References 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A 

Cancer Journal for Clinicians. 2018;68(6):394-424.  

2. Locher GL. Biological effects and therapeutic possibilities of neutrons. American Journal of 

Roentgenology Radium Therapy and Nuclear Medicine. 1936;36(1):1-13.  

3. Farr LE, Sweet WH, Robertson JS, Foster CG, Locksley HB, Sutherland DL, Mendelsohn ML, 
Stickley EE. Neutron capture therapy with boron in the treatment of glioblastoma multiforme. The 

American journal of roentgenology, radium therapy, and nuclear medicine. 1954;71(2):279-93.  

4. Godwin JT, Farr LE, Sweet WH, Robertson JS. Pathological study of eight patients with 
glioblastoma multiforme treated by neutroncapture therapy using boron 10. Cancer. 1955;8(3):601-15.  

5. Soloway AH, Hatanaka H, Davis MA. Penetration of Brain and Brain Tumor. VII. Tumor-
Binding Sulfhydryl Boron Compounds. Journal of Medicinal Chemistry. 1967;10(4):714-7.  

6. Snyder HR, Reedy AJ, Lennarz WJ. Synthesis of Aromatic Boronic Acids. Aldehydo Boronic 
Acids and a Boronic Acid Analog of Tyrosine. J Am Chem Soc. 1958;80(4):835-8.  

7. Hatanaka H. A revised boron-neutron capture therapy for malignant brain tumors - II. Interim 
clinical result with the patients excluding previous treatments. J Neurol. 1975;209(2):81-94.  

8. Goodman JH, Yang W, Barth RF, Gao Z, Boesel CP, Staubus AE, Gupta N, Gahbauer RA, 
Adams DM, Gibson CR, Ferketich AK, Moeschberger ML, Soloway AH, Carpenter DE, Albertson BJ, 
Bauer WF, Zhang MZ, Wang CC. Boron neutron, capture therapy of brain tumors: Biodistribution, 
pharmacokinetics, and radiation dosimetry of sodium borocaptate in patients with gliomas. Neurosurgery. 
2000;47(3):608-22.  

9. Hideghéty K, Sauerwein W, Wittig A, Götz C, Paquis P, Grochulla F, Haselsberger K, Wolbers J, 
Moss R, Huiskamp R, Frankhauser H, De Vries M, Gabel D. Tissue uptake of BSH in patients with 
glioblastoma in the EORTC 11961 phase I BNCT trial. J Neurooncol. 2003;62(1-2):145-56.  



Chapter 1 – General introduction 

20 
 

10. Katalin Hideghéty WS, Andrea Wittig, Claudia Götz, Philippe Paquis, Frank Grochulla, Klaus 
Haselsberger, John Wolbers, Ray Moss, Rene Huiskamp, Heinz Fankhauser, Martin de Vries & Detlef 
Gabel. Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial. J 

Neuro-Oncol 2003;62:145-56.  

11. Mishima Y, Ichihashi M, Hatta S, Honda C, Yamamura K, Nakagawa T, Obara H, Shirakawa J, 
Hiratsuka J, Taniyama K, Tanaka C, Kanda K, Kobayashi T, Sato T, Ishida MR, Ujeno Y, Takahashi M, 
Abe M, Nozaki T. First human clinical trial of melanoma neutron capture. Diagnosis and therapy. 
Strahlenther Onkol. 1989;165(2-3):251-4.  

12. Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang SH, Zhang MR. Boron agents 
for neutron capture therapy. Coord Chem Rev. 2020;405.  

13. Hawthorne MF, Young DC, Wegner PA. Carbametallic Boron Hydride Derivatives. I. Apparent 
Analogs of Ferrocene and Ferricinium Ion. J Am Chem Soc. 1965;87(8):1818-9.  

14. He T, Musah RA. Evaluation of the Potential of 2-Amino-3-(1,7-dicarba- closo-dodecaboranyl-1-
thio)propanoic acid as a boron neutron capture therapy agent. ACS Omega. 2019;4(2):3820-6.  

15. Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, Chen X, Liu Z. A Metabolically Stable Boron-
Derived Tyrosine Serves as a Theranostic Agent for Positron Emission Tomography Guided Boron 
Neutron Capture Therapy. Bioconjug Chem. 2019;30(11):2870-8.  

16. Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Lerchen HG, Köbberling J, Riedl B, 
Hey-Hawkins E, Beck-Sickinger AG. A Selective Carborane-Functionalized Gastrin-Releasing Peptide 
Receptor Agonist as Boron Delivery Agent for Boron Neutron Capture Therapy. J Org Chem. 2020.  

17. Worm DJ, Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Köbberling J, Riedl B, Hey-
Hawkins E, Beck-Sickinger AG. Selective Neuropeptide y Conjugates with Maximized Carborane 
Loading as Promising Boron Delivery Agents for Boron Neutron Capture Therapy. J Med Chem. 2019.  

18. Lesnikowski ZJ. Nucleoside-boron cluster conjugates - Beyond pyrimidine nucleosides and 
carboranes. J Organomet Chem. 2009;694(11):1771-5.  

19. Satapathy R, Dash BP, Mahanta CS, Swain BR, Jena BB, Hosmane NS. Glycoconjugates of 
polyhedral boron clusters Dedicated to Professor Russell Grimes on the occasion of his 80th birthday. J 

Organomet Chem. 2015;798:13-23.  

20. Ol'Shevskaya VA, Zaitsev AV, Kalinin VN, Shtil AA. Synthesis and antitumor activity of novel 
tetrakis[4-(closo-carboranylthio)tetrafluorophenyl]porphyrins. Russ Chem Bull. 2014;63(10):2383-7.  

21. Vicente MGH, Wickramasinghe A, Nurco DJ, Wang HJH, Nawrocky MM, Makar MS, Miura M. 
Synthesis, toxicity and biodistribution of two 5,15-di[3,5-(nido-carboranylmethyl)phenyl]porphyrins in 
EMT-6 tumor bearing mice. Bioorganic & medicinal chemistry. 2003;11(14):3101-8.  

22. Alam F, Soloway AH, Barth RF, Mafune N, Adams DM, Knoth WH. Boron Neutron Capture 
Therapy: Linkage of a Boronated Macromolecule to Monoclonal Antibodies Directed against Tumor-
Associated Antigens. J Med Chem. 1989;32(10):2326-30.  

23. Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular 
imaging. Annu Rev Biomed Eng2013. p. 253-82. 



Chapter 1 – General introduction 

21 
 

24. Jasim A, Abdelghany S, Greish K. Current Update on the Role of Enhanced Permeability and 
Retention Effect in Cancer Nanomedicine.  Nanotechnology-Based Approaches for Targeting and 
Delivery of Drugs and Genes2017. p. 62-109. 

25. Gifford I, Vreeland W, Grdanovska S, Burgett E, Kalinich J, Vergara V, Wang CKC, Maimon E, 
Poster D, Al-Sheikhly M. Liposome-based delivery of a boron-containing cholesteryl ester for high-LET 
particle-induced damage of prostate cancer cells: A boron neutron capture therapy study. Int J Radiat Biol. 
2014;90(6):480-5.  

26. Lee W, Sarkar S, Ahn H, Kim JY, Lee YJ, Chang Y, Yoo J. PEGylated liposome encapsulating 
nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem 

Biophys Res Commun. 2020;522(3):669-75.  

27. Olusanya TOB, Calabrese G, Fatouros DG, Tsibouklis J, Smith JR. Liposome formulations of o-
carborane for the boron neutron capture therapy of cancer. Biophys Chem. 2019;247:25-33.  

28. Gabizon A, Price DC, Huberty J, Bresalier RS. Effect of Liposome Composition and Other 
Factors on the Targeting of Liposomes to Experimental Tumors: Biodistribution and Imaging Studies. 
Cancer Res. 1990;50(19):6371-8.  

29. Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to 
cancer: An overview. J Drug Deliv Sci Technol. 2020;56.  

30. Pan XQ, Wang H, Shukla S, Sekido M, Adams DM, Tjarks W, Barth RF, Lee RJ. Boron-
containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. 
Bioconjug Chem. 2002;13(3):435-42.  

31. Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, Brockman JD, Nigg 
DW, Hawthorne MF. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors 
following selective delivery of boron by rationally designed liposomes. Proceedings of the National 

Academy of Sciences of the United States of America. 2013;110(16):6512-7.  

32. Barth RF, Yang W, Adams DM, Rotaru JH, Shukla S, Sekido M, Tjarks W, Fenstermaker RA, 
Ciesielski M, Nawrocky MM, Coderre JA. Molecular targeting of the epidermal growth factor receptor for 
neutron capture therapy of gliomas. Cancer Res. 2002;62(11):3159-66.  

33. Xuan S, Vicente MdGH. Recent Advances in Boron Delivery Agents for Boron Neutron Capture 
Therapy (BNCT). In: Hey-Hawkins E, Viñas C, editors. Boron-Based Compounds2018. p. 298-342. 

34. Sharma P, Mehra NK, Jain K, Jain NK. Biomedical applications of carbon nanotubes: A critical 
review. Curr Drug Del. 2016;13(6):796-817.  

35. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, 
Gutkind JS, Rusling JF. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon 
nanotube-based drug delivery. ACS Nano. 2009;3(2):307-16.  

36. Zhu YH AT, Carpenter K, Maguire J, Hosmane N, Takagaki M. Substituted carborane‐appended 
water soluble single‐wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. 
J Am Chem Soc. 2005;127:9875–80.  



Chapter 1 – General introduction 

22 
 

37. Ciofani G, Del Turco S, Genchi GG, D'Alessandro D, Basta G, Mattoli V. Transferrin-conjugated 
boron nitride nanotubes: Protein grafting, characterization, and interaction with human endothelial cells. 
International Journal of Pharmaceutics. 2012;436(1-2):444-53.  

38. Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, Cansolino L, Tomasi C, 
Balduini A, Fagnoni M, Merli D, Mustarelli P, Canobbio I, Balduini C, Minetti G. Biocompatibility of 
functionalized boron phosphate (BPO<inf>4</inf>) nanoparticles for boron neutron capture therapy 
(BNCT) application. Nanomedicine: Nanotechnology, Biology, and Medicine. 2014;10(3):589-97.  

39. Oleshkevich E, Morancho A, Saha A, Galenkamp KMO, Grayston A, Crich SG, Alberti D, Protti 
N, Comella JX, Teixidor F, Rosell A, Viñas C. Combining magnetic nanoparticles and icosahedral boron 
clusters in biocompatible inorganic nanohybrids for cancer therapy. Nanomedicine: Nanotechnology, 

Biology, and Medicine. 2019;20.  

40. Grandi S, Spinella A, Tomasi C, Bruni G, Fagnoni M, Merli D, Mustarelli P, Guidetti GF, Achilli 
C, Balduini C. Synthesis and characterisation of functionalized borosilicate nanoparticles for boron 
neutron capture therapy applications. Journal of Sol-Gel Science and Technology. 2012;64(2):358-66.  

41. di Meo C, Panza L, Campo F, Capitani D, Mannina L, Banzato A, Rondina M, Rosato A, 
Crescenzi V. Novel types of carborane-carrier hyaluronan derivatives via "click chemistry". 
Macromolecular Bioscience. 2008;8(7):670-81.  

42. Xiong H, Zhou D, Qi Y, Zhang Z, Xie Z, Chen X, Jing X, Meng F, Huang Y. Doxorubicin-
Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer 
Therapy. Biomacromolecules. 2015;16(12):3980-8.  

43. Venditti I. Engineered gold-based nanomaterials: Morphologies and functionalities in biomedical 
applications. a mini review. Bioengineering. 2019;6(2).  

44. Yang X, Yang M, Pang B, Vara M, Xia Y. Gold Nanomaterials at Work in Biomedicine. 
Chemical Reviews. 2015;115(19):10410-88.  

45. De Freitas LF, Varca GHC, Batista JGS, Lugão AB. An overview of the synthesis of gold 
nanoparticles using radiation technologies. Nanomaterials. 2018;8(11).  

46. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the 
synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11:55-75.  

47. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold 
nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical 

Communications. 1994(7):801-2.  

48. Meng L, Zhang J, Li H, Zhao W, Zhao T. Preparation and Progress in Application of Gold 
Nanorods. Journal of Nanomaterials. 2019;2019.  

49. Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold 
nanorods. Journal of Physical Chemistry B. 2001;105(19):4065-7.  

50. Ali MRK, Snyder B, El-Sayed MA. Synthesis and optical properties of small Au nanorods using a 
seedless growth technique. Langmuir. 2012;28(25):9807-15.  



Chapter 1 – General introduction 

23 
 

51. Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan 
CR, Murray CB. Improved size-tunable synthesis of monodisperse gold nanorods through the use of 
aromatic additives. ACS Nano. 2012;6(3):2804-17.  

52. Cioran AM, Musteti AD, Teixidor F, Krpetić Z, Prior IA, He Q, Kiely CJ, Brust M, Viñas C. 
Mercaptocarborane-capped gold nanoparticles: Electron pools and ion traps with switchable 
hydrophilicity. Journal of the American Chemical Society. 2012;134(1):212-21.  

53. Li N, Zhao P, Salmon L, Ruiz J, Zabawa M, Hosmane NS, Astruc D. "Click" star-shaped and 
dendritic PEGylated gold nanoparticle-carborane assemblies. Inorganic Chemistry. 2013;52(19):11146-
55.  

54. Zinn KR, Chaudhuri TR, Cheng TP, Steven Morris J, Meyer WA. Production of no‐carrier‐added 
64Cu from zinc metal irradiated under boron shielding. Cancer. 1994;73(3 S):774-8.  

55. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR. 
Efficient preparation of high-quality 64Cu for routine use. Nuclear Medicine and Biology. 
2016;43(11):685-91.  

56. Bé MM, Cassette P, Lépy MC, Amiot MN, Kossert K, Nähle OJ, Ott O, Wanke C, Dryak P, Ratel 
G, Sahagia M, Luca A, Antohe A, Johansson L, Keightley J, Pearce A. Standardization, decay data 
measurements and evaluation of 64Cu. Applied Radiation and Isotopes. 2012;70(9):1894-9.  

57. Martín IG, Frigell J, Llop J, Marradi M. Radiolabelling of NPs using radiometals: 99mTc, 68Ga, 
67Ga, 89Zr, and 64Cu.  Isotopes in Nanoparticles: Fundamentals and Applications2016. p. 183-229. 

58. Iceta LG, Gómez-Vallejo V, Koziorowski JM, Llop J. Radiochemical stability studies of 
radiolabelled nanoparticles.  Isotopes in Nanoparticles: Fundamentals and Applications2016. p. 429-53. 

59. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y. Copper-64-alloyed 
gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angewandte 

Chemie - International Edition. 2014;53(1):156-9.  

60. Lambrecht RM, Sajjad M, Qureshi MA, Al-Yanbawi SJ. Production of iodine-124. Journal of 

Radioanalytical and Nuclear Chemistry Letters. 1988;127(2):143-50.  

61. Preylowski V, Schlögl S, Schoenahl F, Jörg G, Samnick S, Buck AK, Lassmann M. Is the Image 
Quality of I-124-PET Impaired by an Automatic Correction of Prompt Gammas? PLoS ONE. 2013;8(8).  

62. Hunter WM, Greenwood FC. Preparation of iodine-131 labelled human growth hormone of high 
specific activity. Nature. 1962;194(4827):495-6.  

63. Fraker PJ, Speck Jr JC. Protein and cell membrane iodinations with a sparingly soluble 
chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochemical and Biophysical Research 

Communications. 1978;80(4):849-57.  

64. Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation 
to a 125I containing acylating agent. Application to the radioimmunoassay. Biochemical Journal. 
1973;133(3):529-38.  

65. Wager KM, Jones GB. Radio-Iodination methods for the production of SPECT imaging agents. 
Current Radiopharmaceuticals. 2010;3(1):37-45.  



Chapter 1 – General introduction 

24 
 

66. Walsh AA. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation 
and potential use in nanomedicine. Journal of Nanoparticle Research. 2017;19(4).  

67. Zhang Y, Yin L, Xia X, Hu F, Liu Q, Qin C, Lan X. Synthesis and bioevaluation of Iodine-131 
directly labeled cyclic RGD-PEGylated gold nanorods for tumor-targeted imaging. Contrast Media and 

Molecular Imaging. 2017;2017.  

 

 

 



Chapter 2 – Motivation and objectives 

25 
 

Chapter 2: Motivation and objectives 

2.1. Motivation 

This PhD thesis has been conducted in the Radiochemistry and Nuclear Imaging Group at CIC 

biomaGUNE, led by Dr. Llop. One of the main research lines of the group during the last years 

has been focused in merging the experience gained in boron chemistry and radiochemistry, with 

the ultimate goal of developing potential therapeutic agents with application in boron neutron 

capture therapy (BNCT), and evaluate their suitability in relevant animal models using in vivo 

imaging techniques, mainly positron emission tomography (PET) in combination with anatomical 

techniques, i.e. computerized tomography (CT).  

Previous works performed by other PhD students in the group have focused on the development 

of small molecules containing boron clusters and labeled with positron emitters [1-5]. Despite 

some of these compounds could be successfully labeled, preliminary evaluation in vivo showed in 

most of the cases unfavorable pharmacokinetic properties.  

Recently, and taking advantage of the knowledge gathered at CIC biomaGUNE in the area of 

nanotechnology, the Radiochemistry and Nuclear Imaging Group has progressively incorporated 

nanoparticles in the development of drug candidates for BNCT, often in collaboration with other 

groups within the institute. This PhD thesis is the first example in the group of gold nanoparticles 

(AuNPs) used as boron carriers.  

The first approach (described in chapter 3) was the development of spherical AuNPs with a core 

diameter close to 20 nm (as we expected this to be an ideal particle size for tumor accumulation) 

functionalized simultaneously with Poly(ethylene glycol) methyl ether thiol and the inorganic, 

boron-based molecule cobalt bis(dicarbollide), [3,3’-Co(1,2-C2B9H11)2]-, commonly known as 

COSAN. The resulting multifunctionalized NPs were radiolabeled with 124I to enable in vivo 

tracking. Additionally, and in order to investigate also the biological fate and stability of the NPs 

in vivo, the radiolabel was incorporated both at the core and at the shell of the NPs. Whole body 

imaging studies using PET demonstrated good stability of the NPs, although low accumulation 

was observed in the tumor when evaluated in a mouse xenograft model, generated by 

subcutaneous inoculation of HT 1080 (human fibrosarcoma) cells. Additionally, accumulation of 

radioactivity was observed in stomach and thyroid gland at long times after administration, 
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suggesting progressive release of the radiolabel. This work, which was recently published [6], 

suggests that: (i) particle size was not appropriate for tumor accumulation, as major accumulation 

was observed in the liver; and (ii) the labeling strategy should be improved.  

In view of these previous results, we tackled the investigation of spherical particles with two 

different sizes, around 3 and 10 nm core size, respectively. Additionally, we modified the 

labeling strategy, by incorporating the radionuclide (in this case, 64Cu) at the core of the NPs. We 

also decided to change the tumor model, and assayed a xenograft mouse model generated by 

subcutaneous administration of MKN45 (human gastrointestinal adenocarcenoma) cells. In this 

case, whole body imaging studies using PET demonstrated the increased capacity of the newly 

developed particles to accumulate in the tumor, with higher accumulation for the smaller NPs. 

Additionally, combination of PET studies with ex vivo inductively coupled plasma-mass 

spectrometry (ICP-MS) studies demonstrated good correlation, proving thus the stability of the 

label and the reliability of PET results. The manuscript corresponding to this work is currently 

under preparation.  

In spite of the improved results, tumor accumulation was not sufficient to guarantee therapeutic 

efficacy. In view of this, we decided to investigate boron-rich gold-based nanosystems enabling 

dual therapeutic approaches, i.e. BNCT combined with photothermal therapy (chapter 5). With 

that aim, we developed and evaluated in the same tumor model gold nanorods (GNRs) again 

functionalized simultaneously with PEG and COSAN. The resulting multifunctionalized GNRs 

were radiolabeled with 64Cu following a parallel strategy to that used in chapter 4. In vivo PET 

studies confirmed good tumor accumulation. Although not proven, the presence of boron-rich 

GNRs in the tumor should enable combined therapy. This work, which should prove efficient 

therapeutic effect, is currently ongoing in the research group, although the results have not been 

included in this PhD thesis.  

2.2. Objectives 

The main goal of the PhD thesis was to develop gold-based, boron-rich nanosystems as 

therapeutic agents suitable for BNCT. To achieve this ambitious goal, the following specific 

objectives were defined: 
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1. To synthesize, functionalize and characterize water soluble and biocompatible AuNPs 

containing PEG and boron-rich clusters with potential application in BNCT. 

2. To evaluate cytotoxicity and cellular uptake of the multifunctionalized AuNPs in relevant 

cancer cell lines. 

3. To develop the radiolabeling strategies for the incorporation of positron emitters in the 

nanoparticles to enable subsequent investigation in vivo using nuclear imaging techniques. 

4. To evaluate stability and pharmacokinetic properties of the novel multifunctionalized AuNPs 

using positron emission tomography (PET) in relevant tumor models. 
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Chapter 3: Gold nanoparticles as boron carriers for BNCT (I) 

3.1. Introduction 

As mentioned in the introductory section of this PhD thesis, boron neutron capture therapy 

(BNCT) is a binary radio-therapeutic modality for the treatment of different types of cancer, 

mainly high grade gliomas and head and neck cancers [1]. Historically, the delivery of a 

sufficient amount of 10B atoms into tumor tissue ((~109 atoms/cell, tumor-to-blood and tumor-to-

normal tissue boron concentration ratios >3), which is paramount for effective BNCT, has been 

one of the main limitations for the unconditional establishment of BNCT in the clinics. Indeed, 

despite decades of effort, only two agents are routinely used in BNCT clinical trials: sodium 

mercaptoundecahydro-closo-dodecaborate (BSH) and L-4-dihydroxyborylphenylalanine (BPA) 

[2]. Additionally, their use is quite limited due to the low tumor-to-blood and tumor-to-healthy 

tissue 10B ratios achieved. As a consequence, there is an urgent need for the development of new 

therapeutic boron delivery systems. 

The hurdle of optimal boron drug delivery has long been recognized in the BNCT community. 

Taking advantage of the recent developments in nanotechnology, different classes of 

nanomaterial-based drug delivery systems have been evaluated and positioned as promising 

boron carriers, as nanosystems can carry a large amount of boron atoms selectively to the tumor 

cells via enhanced permeability retention effect (EPR) (see chapter 1 for more details). 

Surprisingly, despite showing unique physical and chemical properties that include 

biocompatibility, low toxicity, and tunable surface functionalities, gold nanomaterials have been 

barely exploited in this context [3-5].  

Among all gold nanosystems, spherical AuNPs have received considerable interest since their 

successful synthesis was first described in 1951 [6]. Most commonly used spherical AuNPs are in 

the range of few nm to 100 nanometers. Generally, non-PEGylated AuNPs are rapidly uptaken by 

the reticuloendothelial system (RES, currently known as the mononuclear phagocyte system, 

MPS) and are rapidly eliminated from blood circulation to the liver, spleen, lungs or bone 

marrow. Hence, they are not bioavailable anymore and tumor uptake is severely hampered. To 

overcome this problem, most gold nanostructures are functionalized with thiol-terminated 

polyethylene glycol (PEG), which is one of the most commonly used biopolymers to 
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functionalize the surface of AuNPs. Multiple studies have shown that the PEG polymer on 

AuNPs surface increases biological half-life by reducing the opsonization process (Figure 3.1), 

thus preventing uptake by macrophages, allowing the AuNPs to remain in the blood pool and 

accumulate in tumors through passive targeting [7, 8].   

 

 

Figure 3.1. Polyethylene glycol (PEG) prevents uptake by the reticuloendothelial system. (A) 
Nanoparticles (1) are coated with opsonin proteins (2) and associate with macrophages (3) for transit to 
the liver (4). Macrophages stationary in the liver, known as Kupffer cells, also participate in nanoparticle 
scavenging; (B) coating nanoparticles with PEG (1) prevents opsonization (2), resulting in decreased liver 
accumulation (3) and increased availability of the nanoparticles for imaging or therapy (reprinted with 
permission from original source [9]). 

As a first approach for the development of gold NP-based BNCT agents, we decided to work 

with spherical gold particles functionalized with PEG, the latter to achieve prolonged circulation 

time. As a boron source, we decided to incorporate a boron cluster. Indeed, boron clusters such as 

carboranes, metallacarboranes, and other polyhedral boron hydrides have been attached to 

biologically active molecules capable to selectively accumulate in tumor cells [10]. Among the 

different possibilities, we selected the cobalt bis(dicarbollide) anion [3,3´-Co(1,2-C2B9H11)2]–
 

(COSAN). COSAN and its derivatives have attracted considerable attention for the development 

of pharmaceutical agents due to their high thermal and chemical stability, rich boron content, and 

low toxicity. Due to their negative charge covering the whole molecule, COSAN derivatives 

exhibit both electrostatic interactions and non-bonding intermolecular interactions between its 

weakly polarized B-H and C-H bonds. Due to this dual nature, COSAN derivatives possess both 

hydrophobic and hydrophilic character, being soluble in both water and oils. These properties, 
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together with its rich derivative chemistry, turn COSAN derivatives into valuable building blocks 

for the preparation of boron-rich drugs with potential application in BNCT. 

In this chapter, we discuss the preparation, characterization and evaluation of size and shape-

tuned gold NPs functionalized simultaneously with Poly(ethylene glycol) methyl ether thiol and 

COSAN. To attach the COSAN cluster to the NPs, thiolated COSAN derivatives were prepared. 

The thiolated group was incorporated into one of the boron atoms of one of the [C2B9H11]2- 

ligands using an inert spacer. Concretely, we prepared the cyclooxonium derivative using 

tetrahydropyran, which was subsequently used to produce the thiolated COSAN derivative, 

which was ultimately attached to PEG-stabilized AuNPs via thiol-gold chemistry. The resulting 

functionalized AuNPs were radiolabeled with 124I to enable in vivo imaging using PET, using two 

different strategies; namely, the radiolabel was incorporated either on the surface of the gold core 

or covalently attached to the COSAN structure. To incorporate the radiolabel on the COSAN 

structure, a new COSAN derivative incorporating one iodine atom directly attached to one of the 

boron atoms of the cluster was synthesized, and successfully radiolabeled with 124I via palladium 

catalyzed iodine exchange reaction. To incorporate the label on the gold core, chemisorption was 

used, as this strategy has proven efficient with other radioisotopes of iodine [11]. Finally, whole 

body imaging studies using Positron Emission Tomography (PET) were carried out in a mouse 

cancer model, generated by subcutaneous inoculation of HT 1080 (human fibrosarcoma) cells, in 

order to assess the in vivo stability of multifunctionalized AuNPs and their capability to 

accumulate in the tumor by passive targeting.  

3.2. Objectives 

The specific objectives of this chapter are: 

1- To synthesize and characterize stable and biocompatible spherical AuNPs functionalized with 

PEG and COSAN.  

2- To perform radiolabeling studies for the incorporation of positron emitters in the core and 

shell of the multifunctionalized AuNPs. 

3- To evaluate pharmacokinetic properties of the novel multifunctionalized AuNPs using 

positron emission tomography (PET) in a human fibrosarcoma mouse tumor model. 
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3.3. Results and discussion 

3.3.1. Synthesis of COSAN derivatives 

The first step for the preparation of the multifunctionalized gold NPs was the development of the 

appropriate COSAN derivatives. First, COSAN derivatives bearing a thiol group were 

synthesized following a previously published methodology [12] with minor modifications 

(Scheme 3.1).  

 

Scheme 3.1. Synthesis of functionalized COSAN derivatives 4.2, [4.3]
-, [4.4]

-, [4.5]
- and [4.6]

-. (i) THP, 
dimethylsulphate, H2SO4; (ii) DMF, KSAc; (iii) NaOMe, MeOH; (iv) CH3CN, NaI, Chloramine-T; (v) 
NaOMe, MeOH 

To conduct this reaction, we took advantage of the fact that boron atoms of the cobalt 

bis(dicarbollide) anion possessing high electron density can be easily functionalized with an inert 

spacer. B-substitution is explained by electrophile-induced nucleophilic substitution (EINS) 

mechanism. It involves the abstraction of the B–H hydrogen by an electrophile and subsequent 

attack by the nucleophile present in the reaction mixture. EINS mechanism has been described 

with different nucleophiles, such as tetrahydrofuran, tetrahydropyran and 1,4-dioxane, resulting 
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in the formation of charge-compensated derivatives. In our case, nucleophilic ring opening 

reaction of COSAN derivative (4.2; synthesized as previously described [12]) with potassium 

thioacetate (KSAc) in DMF yielded [4.3]
- with overall yield of 52%. The reaction of [4.3]

- with 

sodium methoxide in methanol at room temperature yielded [4.4]
- in almost quantitative yield.  

In parallel, COSAN derivatives bearing simultaneously a thiol group and an iodine atom were 

also synthesized the latter to enable radiolabeling with the positron emitter 124I before attachment 

to the AuNPs (shell labeling) using isotopic exchange. The incorporation of the iodine atom was 

achieved by reaction of [4.3]
- with sodium iodide, chloramine-T and acetic acid in acetonitrile 

overnight at room temperature to yield [4.5]
- in 69% yield after purification. Basic hydrolysis of 

[4.5]
- in sodium methoxide and methanol yielded the thio-derivative [4.6]

- ready for 

incorporation into NPs or for radiolabeling using isotopic exchange reaction. Characterization 

using 1H-, 11B-, and 13C-NMR confirmed the presence of the desired compounds (see 

experimental section for NMR data and Annex I for NMR spectra). 

3.3.2. Synthesis of functionalized AuNPs 

For successful clinical application, a BNCT drug should deposit a concentration of 10B in the 

tumor in the range 20-35 µg 10B/g of tissue, although lower amounts might be sufficient if the 

boron atoms are internalized into cells [13]. Additionally, high tumor-to-normal tissue and tumor-

to-blood ratios should be achieved in order to prevent damage to healthy tissue and blood 

vasculature during neutron irradiation. Achieving these values is highly challenging, and 

nanotechnology has opened new opportunities due to the well-known EPR effect, which results 

in passive accumulation of nanosized materials in tumor tissue. Here, and inspired by the work 

reported by Cioran et al. [5, 14] we envisaged the possibility of using gold nanoparticles as boron 

carriers. Besides the easy functionalization chemistry, gold nanomaterials are chemically inert 

and non-toxic and both shape and size can be easily tuned [15]. Among all the possibilities, we 

decided to start with spherical particles with a size within the optimal range to achieve tumor 

accumulation [16]. In addition to the boron clusters, we decided to incorporate PEG chains on the 

NP surface in order to enhance the stability of the NPs in biological media and increase 

circulation time. 

AuNPs were prepared by reduction of HAuCl4.3H2O with trisodium citrate following a protocol 

based on the Turkevich method [6]. The aqueous solution of HAuCl4.3H2O was heated to the 
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boiling point while stirring vigorously and then trisodium citrate was added quickly. A color 

change from pale yellow to deep red occurred within 10 minutes, indicating the formation of 

citrate-AuNPs. The solutions were kept at the boiling point for 15 minutes to assure the 

completion of the reaction and finally allowed to cool to room temperature (Figure 3.1). 

 

 

Figure 3.1. Schematic representation of the preparation of citrate-AuNPs and PEG-AuNPs@[4.4]- 

The formation of citrate-AuNPs was confirmed by UV-absorption spectroscopy and transmission 

electron microscopy (TEM). UV-absorption spectra showed the longitudinal surface plasmon 

resonance (SPR) band at 524 nm (Figure 3.2a), indicating the formation of AuNPs with particle 

size in the range of 20 nm. TEM images revealed the presence of non-aggregated citrate-AuNPs 

with average particle size of 19.2±1.4 nm (Figure 3.2c).  

After successful preparation of citrate-AuNPs, the next step was to attach the functionalities, 

namely PEG and COSAN, on the surface of AuNPs. Thiolated polyethylene glycol (mPEG5k-SH) 

and [4.4]
- were covalently attached to the surface of the citrate-AuNPs based on a previously 

reported methodology with slight modifications [17]. The ultimate goal was to achieve a 

maximum amount of boron atoms on the surface of the NPs, without compromising stability and 

aggregation status. Hence, we first performed a set of experiments by using various molar ratios 

of PEG and COSAN (1:4, 1:6, 1:8, 1:10, 1:12 and 1:14), which were added to the citrate-AuNPs 

(Au concentration, 1 mg/mL). After addition of PEG and COSAN, the solution was stirred at 

room temperature for 2 h to allow for complete exchange of the citrate molecules with PEG and 

COSAN. The PEG-AuNPs@[4.4]- solutions were then centrifuged and analyzed by ICP-MS to 

investigate the relative amount (PEG to COSAN) for the resulting PEG-AuNPs@[4.4]-. We 

found that, in all cases, NPs were stable and dispersible. However, ratios above 1:10 (PEG to 

COSAN) did not result in an increase in the COSAN concentration on the surface. Under these 
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conditions, the amount of ligand on the surface of the NPs was 200 µg/mg of gold, which results 

in a boron concentration of 90 µg per mg of gold. 

 

Figure 3.2. (a) UV-Vis spectra corresponding to citrate stabilized AuNPs (AuNPs-Citrate, blue, 
λmax=524 nm) and PEG-stabilized AuNPs@[4.4]- (PEG-AuNPs@[4.4]-, red, λmax=531 nm for the gold 
plasmon; λmax=310 nm corresponds to compound [4.4]

-); (b) Size distribution ranges as determined by 
DLS (volume distribution) for AuNPs-Citrate and PEG-AuNPs@[4.4]- (same color code as in (a)); (c) 
representative TEM images of AuNPs-Citrate and PEG-AuNPs@[4.4]-; (d) Particle size distribution of 
PEG-AuNPs@[4.4]- as determined by TEM. 

The characterization of the final particles PEG-AuNPs@[4.4]- was carried out first using UV-vis 

spectrophotometry (Figure 3.2a). As it can be seen, the simultaneous incorporation of PEG and 

COSAN on the surface of the citrate AuNPs resulted in a bathochromic shift in the longitudinal 

surface plasmon resonance (SPR) band from 524 nm to 531 nm. Noteworthy, another absorption 

band appeared at ca. 310 nm, close to the maximum absorption of COSAN (314 nm), confirming 

successful incorporation of the boron cluster on the surface of the AuNPs. 
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Figure 3.3. Raman spectra for PEG-AuNPs@[4.4]- (blue) and [4.4]- (red), (b) XPS spectra of PEG-
AuNPs@[4.4]-. 

Dynamic light scattering (DLS) analysis performed on citrate-AuNPs and PEG-AuNPs@[4.4]- 

showed a monodisperse distribution with average hydrodynamic diameter of 24.4±0.5 nm and 

37.8±0.5 nm respectively (Figure 3.2b). The increase in hydrodynamic size from 24.4±0.5 nm 

and 37.8±0.5 nm is largely due to the addition of PEG molecule, as the small size of the COSAN 
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moiety (~ 1-2 nm) is expected to have a minimal impact on hydrodynamic size when compared 

to the effect of the large molecule PEG-5000. Transmission electron microscopy (TEM) images 

show non-aggregated spherical AuNPs before and after PEG and COSAN addition (Figure 3.2c) 

with average particle core size of 19.2±1.4 nm (Figure 3.2d). Zeta potential measurements of 

citrate-AuNPs showed a ξ-potential of −32.3±2.5 mV; after incorporation of both PEG and 

COSAN, PEG-AuNPs@[4.4]- showed a ξ-potential value of −18.0±0.7 mV at neutral pH, the 

negative value due to the presence of COSAN anions on the surface of the NPs. 

To further confirm the presence of COSAN moieties on the surface of the AuNPs, we performed 

Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Raman spectra of PEG-

AuNPs@[4.4]-
 showed the presence of absorption bands at 2596−2573 cm−1, corresponding to 

B−H stretching and confirming the presence of the sandwich complex on the NP surface (Figure 

3.3a). Finally, XPS analysis of PEG-AuNPs@[4.4]- showed a peak at 780.2 eV in the Co 

spectrum, corresponding to Co-B bonds; peaks at 192.8 and 188.5 eV, corresponding to B-O and 

C-B bonds; peaks at 87.5 and 83.5 eV, corresponding to Au; and a peak at 162.5 eV, 

corresponding to Au-S-C bond (Figure 3.3b) [18]. These results confirmed the presence of both 

cobalt and boron on the surface of AuNPs; altogether, our results confirm that the NPs have a 

significant boron load and appropriate size for eventual tumor accumulation. 

3.3.3. Radiolabeling of AuNPs 

One of the main challenges in BNCT is the determination of the biodistribution of the boron 

carrier after administration, in order to establish the optimal time window for neutron irradiation, 

for the therapeutic effect to be optimal, while minimizing side effects and destruction of the 

surrounding healthy tissue (Figure 3.4). This drawback is even more evident when nanomaterials 

are used as boron carriers, as the determination of the biodistribution and fate of NPs after 

administration into living systems is extremely challenging. One alternative to overcome this 

drawback consists of incorporating a positron or gamma emitter into the nanoparticle in order to 

track the location in a time-resolved fashion using Positron Emission Tomography (PET) or 

Single Photon Emission Computerized Tomography (SPECT) imaging. This approach has been 

widely reported in the literature in NPs with very different nature [19, 20]. Additionally, 

incorporation of the label both at the core and at the shell of NPs can provide very relevant 

information about the in vivo stability of the NPs [21]. 



Chapter 3 – GNPs as boron carriers for BNCT (I) 

38 
 

 

 

Figure 3.4. Fictitious boron concentration curves vs. time for the tumor (blue), blood (red) and healthy 
tissue (green). The optimal time-window for the application of neutron irradiation, when the concentration 
of boron is maximum in the tumor and low in both blood and healthy tissue, is shown. 

Here, we decided to tackle the radiolabeling of the NPs using a positron emitter, as PET offers 

better spatiotemporal resolution and higher resolution than SPECT. We anticipated that the 

positron emitter 124I (half-life of 4.2 days) was appropriate due to the following reasons: (i) its 

reasonably long half-life should enable long-term monitoring (up to 2 weeks if needed) of the in 

vivo behavior of the NPs; (ii) due to the versatile chemistry of the radionuclide, it could be 

incorporated both at the core, taking advantage of the capacity of iodine to absorb onto gold 

surfaces [11], and on the shell, by generating first a iodinated analogue of COSAN and 

performing in a second step isotopic exchange reaction, as previously described [22]. Our 

hypothesis is that the iodinated analogue of COSAN should behave quite similarly to the non-

iodinated counterpart, and hence the properties of the AuNPs should not be significantly altered 

by the incorporation of the label.  

We first tackled the incorporation of 124I at the shell (Figure 3.5). With that aim, compound 124I-

[4.5]
- was prepared by isotopic exchange, following a methodology previously described in our 

group with minor modifications (Scheme 3.2) [22]. In brief, acetonitrile was added to Na[124I]I 

(obtained from the supplier as a solution in diluted NaOH) and the resulting solution was 

evaporated to dryness under nitrogen flow. Compound [4.5]
- was dissolved in acetonitrile was 

added to the dry residue, together with trans-bis(acetate)bis[o-(di-o-tolylphosphino)benzyl] 

dipalladium (II) (Herrmann’s catalyst), the later dissolved in toluene. The reaction mixture was 

heated at 100°C for 5 min, the solvent was removed under a constant helium flow and the 
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resulting solid was dissolved in acetonitrile and water. The crude solution was passed through a 

C-18 cartridge (Sep-Pak® Light, Waters) and washed with ultrapure water to remove free iodine-

124. The labeled compound, retained in the C-18 cartridge, was finally eluted with acetonitrile, 

which was finally evaporated to yield the labeled compound as an orange solid. 

 

Figure 3.5. Schematic representation for the preparation of shell radiolabeled PEG-AuNPs@[4.4]-. [i] 
PEG-SH (5 Kda), 124I-[4.6]- + [4.4]-. 

 

 

Scheme 3.2. Reaction for the preparation of 124I-[4.6]- 

Quality control was performed by high performance liquid chromatography (HPLC) coupled to a 

radioactivity detector. With that aim, the solid residue was diluted with mobile phase (see 

experimental section for details) and analyzed. Incorporation ratios of the radiolabel (measured 

directly from chromatographic profiles, radioactivity detector) of 69±6% were achieved when the 

reaction was conducted at 100°C for 5 min. These values are in good agreement with those 

previously described [22]. Purification by semi-preparative HPLC resulted in a solution of 

chemically and radiochemically pure compound 124I-[4.5]- (Figure 3.6) with radiochemical yield 

(non-decay corrected) of ca. 60%.  
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Figure 3.6. Chromatographic profiles (UV and radiometric detection) for reference compound [4.5]- (top) 
and purified 124I-[4.5]- (bottom). The difference in the position of the two peaks is due to the dead volume 
between the UV and the radioactivity detectors.  

The isotopic exchange reaction was carried out using [4.5]
-, which had the thiol group protected, 

because the presence of a free thiol group may interfere in the isotopic exchange reaction. Hence, 

to enable attachment of the labeled COSAN analogue to the gold NPs, deprotection was required. 

With that aim, 124I-[4.5]
- was reacted with sodium methoxide in methanol at room temperature 

for 6 h, yielding 124I-[4.6]
- in quantitative yield, which was used without further purification. The 

preparation of the radiolabeled AuNPs was carried out following the same process described 

above, but compound [4.4]
- was spiked with 124

I-[4.6]
-. Radiolabeling efficiency, calculated as 

the amount of radioactivity present in the NPs related to the starting amount of 124
I-[4.6]

- was 

55%.  

The second approach for the preparation of radiolabeled AuNPs was based on the absorption of 

radioiodine on the surface of the gold core [11, 23]. First, we tried to incorporate radioiodine 

directly on PEG-AuNPs@[4.4]- (Figure 3.7). However, low incorporation efficiencies (<10%) 

were achieved when PEG-AuNPs@[4.4]- were incubated with the radionuclide. These results are 

not in agreement with previously reported works, in which almost quantitative labeling yields 

were obtained [11, 23]. We suspected that the presence of the COSAN anions on the surface of 
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the NPs hampered the adsorption of radioiodide on the gold surface, probably due to electrostatic 

repulsion or steric hindrance. 

  
Figure 3.7. Schematic representation for the preparation of core radiolabeled PEG-AuNPs@[4.4]-. [i] 
PEG-SH (5 Kda), [4.4]-, [ii] [124I]NaI.  

To overcome this limitation, we assayed a second strategy, based on the incorporation of the 

radionuclide on citrate-stabilized NPs, which were functionalized with PEG and COSAN 

derivatives in a second step.  

 

Figure 3.8. Schematic representation for the preparation of core radiolabeled PEG-AuNPs@[4.4]-. [i] 
[124I]NaI; (ii) PEG-SH (5 Kda), 124I-[4.6]- + [4.4]-.  

With that aim, citrate-stabilized NPs were incubated with radioiodine and incorporation ratios 

were determined at different incubation times. Experimental results demonstrated that the 

reaction took place very rapidly, as incorporation ratios >95% were achieved in just 10 minutes 

of incubation. These results are more in line with those previously reported in the literature. In 

view of these results, we decided to incorporate the radiolabel on citrate-stabilized NPs and 

incorporate both the PEG and COSAN derivatives in a second step (Figure 3.8). This approach 
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was successful and core-labeled NPs with size and zeta-potential values equivalent to those 

obtained for non-labeled NPs could be determined using DLS.   

3.3.4. Radiochemical stability of AuNPs 

One of the main limitations of the second labeling approach is the risk of detachment of the 

absorbed radionuclide. Ideally, radiochemical stability of the labeled particles should be 

evaluated in vivo. However, this is extremely challenging. An alternative approach consists of 

incubating the labeled particles in different media, trying to mimic in vivo conditions [24]. In our 

case, in order to evaluate the radiochemical stability of core-labeled [124I]PEG-AuNPs@[4.4]-, 

NPs were incubated in different media, including water, saline, PBS (10 mM), DMEM (Cell 

culture media), plasma and potassium iodide (10 µM).  

 

Figure 3.9. Radiochemical stability of core-labeled PEG-AuNPs@[4.4]- in different media for 24 h; 
Water; NaCl: physiologic saline solution (0.9%); PBS (10 mM); DMEM: Culture media, cocktail of 8 
salts, 15 amino acids, 8 vitamins and glucose;  KI: potassium iodide solution (10 µM). 

After incubation at 37 °C for 24 h, the NPs were separated from the media by centrifugal 

filtration and washed three times, and the radiochemical stability was determined as the ratio 

between the amount of radioactivity in the NPs and the total amount of radioactivity (NPs + 

media + washings). Good radiochemical stability (>90%) was observed in all media except 

potassium iodide (Figure 3.9), thus confirming the chemisorption of 124I and the suitability of the 

labeling strategy for in vivo studies.  
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3.3.5.  Biodistribution studies in tumor bearing animals 

The capacity of the newly developed AuNPs (PEG-AuNPs@[4.4]-) to accumulate in tumor tissue 

was investigated in a subcutaneous mouse model generated by inoculation of HT 1080 cells in 

nude mice. Traditionally, BNCT has been investigated mainly for brain (gliomas) and head & 

neck cancers. However, this therapeutic approach can in principle be evaluated in any cancer 

type, and those cancers with high mortality or lack of efficient therapeutic alternatives are worth 

to be assayed. Hence, we decided to investigate human fibrosarcoma tumor model. This is a quite 

rare cancer type. However, it is highly aggressive and metastasizes at early stages. The standard 

therapy, which includes surgical resection and adjuvant chemotherapy, is ineffective due to local 

recurrence and distant metastasis [25]. 

Imaging studies performed in mice enabled the determination of the biodistribution pattern of the 

labeled particles. Additionally, the inclusion of the label in the two different positions (the core 

and the shell) was used to gain information about the stability of the core-shell structure, an issue 

that is rarely tackled in preclinical in vivo investigations. With that aim, animals were injected 

with the labeled particles and images were acquired immediately after administration (total 

acquisition time of 60 min). Additionally, 30 min static acquisitions were recorded also at t=10, 

24, 72 and 144 h post-administration (Figure 3.10).  

Visual inspection of the images showed a similar biodistribution pattern for both PEG-

AuNPs@[4.4]-, irrespectively of the position of the label. High accumulation was observed in the 

liver at short times after administration (0-1 hour). Delineation of volumes of interest (VOIs) in 

major organs (lungs, liver, bladder, stomach, kidneys, spleen, tumor, heart and thyroid gland) and 

determination of the uptake as % of injected dose per cm3 tissue (%ID/cm3, see Figure 3.11) 

revealed similar profiles irrespective of the position of the label, this confirming the in vivo 

stability of the core-shell structure. Major accumulation at short times after administration was 

observed in the liver. For this organ, values at the first time point were 42.2 ± 4.8 and 39.1 ± 5.8 

%ID/cm3 for core and shell labeled particles, respectively. These values, which are statistically 

equivalent, progressively decreased with time to reach values close to 10% ID/cm3 at t=144 h. 

Accumulation in the stomach peaked at t=24 h after administration, with progressive elimination 

from this organ at later time points. Accumulation in the lungs was also significant. Of note, the 

detection of radioactivity in the heart reflects the presence of labeled NPs in the bloodstream, 
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even at long times after administration. The presence of radioactivity in the bladder at long times 

after administration confirms slow elimination via urine. This result, together with the detection 

of radioactive signal in the thyroid gland, suggests the progressive (although very slow) 

detachment of the radiolabel in both cases (core and shell labeling). 
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Figure 3.10. PET images (coronal projections) obtained at different time points after intravenous 
administration of [124I]PEG-AuNPs@[4.4]- labeled at the core and at the shell. PET images have been 
corregistered with representative CT slices for localization of the radioactive signal. The image labeled as 
“0-1 hour” corresponds to the image obtained immediately after administration of the labelled NPs 
(imaging time = 1 hour).    

Our biodistribution data, in general terms, correlates well with previous results obtained with 

negatively charged NPs. In general, it has been found that, upon single intravenous 

administration, spherical AuNPs localize in liver, kidneys, spleen and lungs, with this 

phenomenon being size- and shape-dependent. For NPs in our size range, major accumulation 

should be expected in liver, spleen and lungs, as observed in our studies [26]. 
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Figure 3.11. Concentration of radioactivity in the different organs as determined from PET images using 
the two radiolabeling approaches. Values are expressed as %ID/cm3. Values correspond to mean ± 
standard deviation, n=2 per labeling strategy and time point.    

Next, we conducted ex vivo analysis to confirm the NPs accumulation in the liver observed 

during in vivo studies. With that aim, after the last imaging session, animals were sacrificed and 

the liver organ was collected and investigated using ion beam microscopy (IBM) and confocal 

Raman microspectroscopy (CRM) (Figure 3.12). These label-free techniques have proven to be 

efficient for simultaneous quantification and visualization of a variety of NPs in biological 

environments [27, 28, 29, 30, 31]. The µPIXE spectrum extracted from the region of interest 

(ROI; see Figure 3.12b) reveals X-ray emission of intrinsic tissues elements, i.e., P, S, Ca etc., as 

well as of gold. Characteristic Lα, Lβ and Lγ X-ray lines of gold at 9.7 keV, 11.4 keV and 13.4 

keV were detected in the ROIs shown as green regions in Figure 3.12a. The structure of several 

connected hepatic lobules could be identified due to P and S distribution in the PIXE images. 
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PIXE maps of Au distribution showed a rather homogenous distribution all over those lobules. 

However, a high resolution image with a size of 100 × 100 µm revealed small gold clusters in the 

hepatocytes (white circles in Figure 3.12a). 

 

 

Figure 3.12. (a) µPIXE images of intrinsic tissue elements (P, S, Fe) as well as Au in mouse liver at t = 72 
h after intravenous administration of [124I]PEG-AuNPs@[4]−. The area in the white rectangle was 
subsequently scanned with higher resolution. The concentration of elements was calculated from regions 
of interest (ROIs) shown in green on the right side. White arrows denote hepatic lobules. White circles 
show small gold clusters; (b) PIXE spectrum extracted from ROIs; (c) CRM images of hepatocytes and 
distribution of [124I]PEG-AuNPs@[4]− in in mouse liver at t = 72 h after intravenous administration of 
[124I]PEG-AuNPs@[4]−. The color-coded image (left) shows the overlapping of nucleus, cytoplasm, 
collagen and COSAN- functionalized Au NPs. 

CRM imaging was additionally used to visualize the distribution pattern of NPs in the liver at 

subcellular level (Figure 3.12c). Au NPs were localized in hepatic lobules by using 

photoluminescence signals of Au. Cytoplasm, nuclei and collagen were visualized on the basis of 
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Raman fingerprint regions of biomolecules [32, 33, 34], which are predominantly present in the 

corresponding constituents of cell. As it can be seen, lobules are surrounded by supporting 

connective tissue, which was identified in CRM imaging by the presence of collagen. Au NPs 

were found in the cytoplasm of hepatocytes as well as in close vicinity to their nuclei. Some Au 

NP aggregates were also detected between adjacent lobules showing a co-localization with the 

connective tissue. 

The data obtained in our in vivo study confirm that the position of the label does not have an 

effect on the biodistribution of the NPs, hence confirming that the label is relatively stable in 

vivo. However, the high uptake in the liver already at early times after administration of the NPs 

compromises the usefulness of our nanosystems for in vivo applications. The high uptake in the 

liver results in a low bioavailability, and as a consequence the circulation time is low and the 

tumor accumulation is almost negligible, with values below 0.5% ID/cm3, irrespective of the 

labeling approach and time point. Considering that the boron load of our NPs is ca. 9% and that 

the administered dose of NPs was 150 µg (ca. 7.5 mg NP/Kg body weight; 0.675 mg B/Kg body 

weight), the boron accumulation in the tumor is close to 0.06 µg B/g of tumor. This value is by 

far too low to plan any therapeutic experiments. The results demand for modifications in the 

physic-chemical properties of the NPs in order to improve pharmacokinetic properties, which 

ultimately may lead to increased accumulation in the tumor. This was carried out as described in 

the following chapters. 

3.4. Conclusions 

The reaction of citrate-stabilized gold NPs with COSAN bearing a thiol moiety and thiolated 

polyethylene glycol (mPEG5k-SH) yields NPs with ca. 9% boron content on the surface. 

Radiolabeling of the NPs with the positron emitter 124I could be achieved both at the core (by 

absorption of 124I on the gold surface) or at the shell (by using isotopic exchange). The labeled 

particles showed good stability both in vitro and in vivo, although progressive detachment of the 

label could be observed in vivo. Investigation of the biodistribution pattern in a mouse cancer 

model using positron emission tomography confirmed high accumulation of the NPs in the liver 

at short times after administration, and very low accumulation in the tumor, the latter demanding 

for modification in the physico-chemical properties of the NPs in order to achieve higher tumor 

uptake.  
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3.5. Experimental section  

3.5.1. Reagents 

Cesium cobalt(III) bis(dicarbollide) (COSAN) (Katchem Ltd., Prague, Czech Republic), gold(III) 

chloride trihydrate (HAuCl4·3H2O, Aldrich), sodium citrate tribasic dihydrate (Sigma-Aldrich), 

poly (ethylene glycol) methyl ether thiol (MW 5000, Sigma-Aldrich) tetrahydropyran (Sigma-

Aldrich) and trans-bis(acetate)bis[o-(di-o-tolylphosphino)benzyl] dipalladium (II) (Herrmann’s 

catalyst, Sigma-Aldrich), were used as purchased. All other reagents and anhydrous solvents, 

stored over 4 Å molecular sieves, were purchased from Aldrich Chemical Co. (Madrid, Spain) 

and used without further purification. HPLC grade solvents were purchased from Scharlab 

(Sentmenat, Barcelona, Spain). For radiolabeling experiments, Iodine-124 (124I) was obtained 

from PerkinElmer. (Le petten, The Netherlands) in 0.2 M NaOH solution. 

In chemical reactions, experiments were carried out (except noted otherwise), under dinitrogen 

atmosphere. Column chromatography was performed using silica gel 60 (Scharlab, Spain). 

Analytical thin layer chromatography (TLC) measurements were conducted with silica gel 60 

F254 plates (Macherey-Nagel); and the spots were visualized under UV lamp. Synthesis of 

compound 4.2 was carried out according to the previously reported protocol [12]. 

3.5.2. Instrumentation 

The 1H-NMR (500 MHz), 13C-NMR (126 MHz) and 11B-NMR (160 MHz) spectra were recorded 

on a 500-MHz Avance III Bruker spectrometer. All NMR spectra were performed in deuterated 

solvents at 22°C. The 11B-NMR shifts were referenced to external BF3·OEt2, while the 1H and 
13C-NMR shifts were referenced to SiMe4. Chemical shifts are reported in units of parts per 

million downfield from the reference, and all coupling constants are reported in Hertz.  

UPLC/ESI-MS analyses were performed using an AQUITY UPLC separation module coupled to 

a LCT TOF Premier XE mass spectrometer (Waters, Manchester, UK), using an Acquity BEH 

C18 column (1.7 µm, 5 mm, 2.1 mm) as the stationary phase. The elution buffers were A (water 

and 0.1% formic acid) and B (Methanol and 0.1% formic acid). The column was eluted with a 

gradient: t=0 min, 95% A, 5% B; t=0.5 min, 95% A, 5% B; t=5.5 min, 25% A, 75% B; t=16 min, 

1% A, 99% B;  t=20min, 1% A, 99% B. Total run was 20 min, injection volume was 5 µL and 
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the flow rate 300 µL/min. The detection was carried out in both negative and positive ion mode, 

monitoring the most abundant isotope peaks from the mass spectra (M-H+) or (M+H+). 

Transmission electron microscopy (TEM) was performed using a JEOL JEM-1400 plus 

microscope (Jeol, Tokyo, Japan) working at 120 kV. The carbon film of copper grids (CF400-

Cu) was treated under air plasma in a glow discharge system (Emitech K100X, 40mA during 2 

min) just before sample preparation. For TEM examinations, a single drop (1 μL) of the NPs 

solution was placed onto a copper grid coated with a carbon film (Electron Microscopy 

Sciences). After 1 minute, the drop was removed with filter paper and the sample was incubated 

with 3 μL of uranyl acetate 0.5% (3 min). 

XPS experiments were performed in a SPECS Sage HR 100 spectrometer with a non-

monochromatic X ray source (Aluminium Kα line of 1486.6 eV energy and 252 W), placed 

perpendicular to the analyser axis and calibrated using the 3d5/2 line of Ag with a full width at 

half maximum (FWHM) of 1.1 eV. The selected resolution for the spectra was 15 eV of Pass 

Energy and 0.15 eV/step. All measurements were made in an ultra-high vacuum (UHV) chamber 

at a pressure around 6×10-8 mbar. An electron flood gun was used for charge neutralisation. 

Gaussian Lorentzian functions were used for fittings (after a Shirley background correction) 

where the FWHM of all the peaks were constrained while the peak positions and areas were set 

free. Main C1s peak was used for charge reference and set at 284.8 eV. 

ICP-MS measurements were performed on a Thermo iCAP Q ICP-MS (Thermo Fisher Scientific 

GmbH, Bremen, Germany). An ASX-560 autosampler was coupled to the ICP-MS (CETAC 

Tech, Omaha, NE, USA). UV-Vis spectra were measured in an Agilent 8453 UV-Vis diode-array 

spectrophotometer. DLS and ξ-potential measurements were performed using a Malvern 

Zetasizer Nano ZS system (Malvern Instruments, Malvern, UK). The particle size measurement 

settings were: 3 measurements/14 runs/10s in scattered mode at 173° angle. Measurements were 

conducted at T=25°C and neutral pH. 

Raman characterization was performed with a Renishaw InVia Raman Microscope. A 633 nm 

laser (50 % power) was used with 10x objective.  
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3.5.3. Chemistry 

Synthesis of [4.3]
-  

To a solution of compound 4.2 (750 mg, 1.209 mmol) in DMF (8 mL), potassium thioacetate 

(165.7 mg, 1.451 mmol) was added and stirred at room temperature for 14 h. After finalization of 

the reaction, water (50 mL) was added and extracted with ethyl acetate (3x50 mL). The organic 

layers were combined and washed with cold water and brine solution before drying over 

anhydrous sodium sulphate. The solvent was evaporated and the crude was purified using column 

chromatography (silica gel, 10% MeOH in dichloromethane) to yield a [4.3]
- as yellow solid (705 

mg, 84%).  

1H NMR (500 MHz, Methanol-d4) δ 4.15 [Cc–H, 2H, s], 4.07 [Cc–H, 2H, s], 3.49 [CH2O, 2 H, t], 

2.87 [CH2-S, 2 H, t], 2.31 [CH3, 3 H, s], 1.59 – 1.54 [CH2-CH2-O, 2 H, m], 1.52 – 1.47 [CH2-

CH2S, 2 H, m], 1.42 – 1.37 [CH2-CH2CH2O, 2 H, m]; 11B NMR (160 MHz, MeOD) δ 23.03[1B, 

s], 4.63 [1B, d, 1J(B-H)=140.3], 0.48 [1B, d, 1J(B-H)=143.3], -2.10 [1B, d, 1J(B-H)=142.8], -

4.59[2B, d, 1J(B-H)=138.7], -8.46 [6B, td, J 162.8, 150.9, 63.5], -17.22 [2B, d, 1J(B-H)=154.4], -

20.42 [2B, d], -22.59 [1B, d], -28.26 [1B, d, 1J(B-H)=159.4]; 13C NMR (126 MHz, Methanol-d4): 

188.24, 68.93, 53.54, 46.70, 30.89, 29.21, 29.14, 28.61, 25.10; LCMS (ESI) Experimental [M]-  

m/z = 482.66 (theoretical [M]- m/z = 482.98). 

Synthesis of [4.4]
-  

To a solution of [4.3]
- (890 mg, 1.440 mmol) in methanol (30 mL), sodium methoxide (77.8 mg, 

1.440 mmol) was added and stirred at room temperature for 14 h. The reaction mixture was 

neutralized with IR-120 resin (3g), filtered and washed with 10 mL of methanol. The combined 

methanol layers were concentrated and purified using column chromatography (silica gel, 12% 

MeOH in dichloromethane) to yield [4.4]
- as a yellow solid (505 mg, 60.5%).  

1H NMR (500 MHz, MeOD) δ 4.14 [Cc–H, 2H, bs], 4.06 [Cc–H, 2H, bs], 3.51 [CH2O, 2 H, t], 

2.50 [CH2-S, 2 H, t], 1.60 [CH2-CH2-O, 2 H, p], 1.58, 1.53 [CH2-CH2S, 2 H, dq], 1.42 [CH2-

CH2CH2O, 2 H, qd]; 11B NMR (160 MHz, MeOD) δ 23.02 [1B, s], 4.64 [1B, d, 1J(B-H)=140.0], 

0.52 [1B, d, 1J(B-H)=142.0], -2.11 [1B, d, 1J(B-H)=144.5], -4.56 [2B, d, 1J(B-H)=142.4], -7.41 

[6B, m], -17.20 [2B, d, 1J(B-H)=157.7], -20.46 [2B, d, 1J(B-H)=159.0], -22.05 [1B, d], -28.22 
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[1B, d, 1J(B-H)=174.3]; 13C NMR (126 MHz, MeOD) δ 69.08, 53.46, 46.70, 33.90, 30.83, 24.71, 

23.65. LCMS (ESI) Experimental [M]-  m/z = 440.52 (theoretical [M]- m/z = 440.94). 

Synthesis of [4.5]
- 

To a solution of [4.3]
- (50 mg, 0.081 mmol) in acetonitrile (2 mL), chloramine-T (37 mg, 0.129 

mmol), sodium iodide (15 mg, 0.097 mmol) and acetic acid (130 μL) were added. The reaction 

mixture was allowed to stir at room temperature for 10 h. After reaction, water (20 mL) was 

added and extracted with ethyl acetate (3x15 mL), the organic layers were combined and washed 

with brine solution before drying over anhydrous sodium sulphate. The solvent was evaporated 

and the crude was purified using column chromatography (silica gel, 10% MeOH in 

dichloromethane) to yield [4.5]
- as a yellow solid (25 mg, 41.6%).  

1H NMR (500 MHz, MeOD) δ 4.27 [Cc–H, 2H, s], 4.13 [Cc–H, 2H, s], 3.37 [CH2O, 2 H, t], 2.85 

[CH2-S, 2 H, t], 2.31 [CH3, 3 H, s], 1.55 [CH2-CH2-O, 2 H, m], 1.45 [CH2-CH2S, 2 H, m], 1.36 

[CH2-CH2CH2O, 2 H, m]; 11B NMR (160 MHz, MeOD) δ 21.47 [1B, s], -0.42[2B, d, 1J(B-

H)=145.4], -4.39 [1B, s], -5.71 [4B, d, 1J(B-H)=140.0], -7.27 [4B, d, 1J(B-H)=152.8], -18.07 [2B, 

d, 1J(B-H)=152.4], -20.04 [2B, d, 1J(B-H)=161.3], -23.45 [1B, d, 1J(B-H)=161.3], -27.37 [1B, d, 
1J(B-H)=170.4]; 13C NMR (126 MHz, CDCl3) δ 191.05, 70.24, 58.99, 56.52, 34.78, 33.10, 32.97, 

32.52, 29.24. LCMS (ESI) Experimental [M]- m/z = 606.6 (theoretical [M]- m/z = 607.6). 

Synthesis of [4.6]
- 

To a solution of [4.5]
- (9 mg, 0.0144 mmol) in methanol (3 mL), sodium methoxide (1 mg, 

0.0144 mmol) was added and the resulting solution was allowed to stir at room temperature for 

14 h. For the workup, the reaction mixture was neutralized with IR-120 resin (100 mg), filtered 

and washed with 2 mL of methanol. The combined methanol layer was concentrated and the 

residue was purified using column chromatography (silica gel, 12% MeOH in dichloromethane) 

to yield [4.6]
- as a yellow solid (4.5 mg, 55%). 

1H NMR (500 MHz, MeOD) δ 4.28 [Cc–H, 2H, s], 4.14 [Cc–H, 2H, s], 3.40 [CH2O, 2 H, t],  2.67 

[CH2-S, 2 H, t], 1.66 [CH2-CH2-O, 2 H, m], 1.46 [CH2-CH2S, 2 H, q], 1.38 [CH2-CH2CH2O, 2 H, 

m]; 11B NMR (160 MHz, MeOD) δ 21.55 [1B, s], -0.34 [2B, d, 1J(B-H)=146.7], -4.32 [1B, s], -

5.57 [4B, d, 1J(B-H)=170.0], -6.90 [4B, d], -17.94 [2B, d, 1J(B-H)=167.3], -20.58  [2B, d, 1J(B-

H)=153.2], -23.13 [2B, d, 1J(B-H)=266.4], -26.79 [2B, d]; 13C NMR (126 MHz, MeOD) δ 68.68, 
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56.57, 53.91, 38.38, 31.04, 28.70, 24.81. LCMS (ESI) Experimental [M]- m/z = 566.64 

(theoretical [M]- m/z = 566.84). 

3.5.4. Radiochemistry 

The manipulation of radioactive material was carried out in authorised facilities and using the 

common and personnel protection equipment as described in internal protocols and following 

current national and international regulations.  

Synthesis of 124I-[4.5]
-  

Acetonitrile (200μL) was added to Na[124I]I (50 µL, 37 MBq) and the resulting solution was 

introduced in a 2.5 mL conic vial. The solvent was evaporated to dryness (100°C, 5 min, constant 

helium flow at 20 mL/min) and 1 mg of [4.5]
- dissolved in acetonitrile (100 μL) was added 

together with trans-bis(acetate)bis[o-(di-o-tolylphosphino)benzyl] dipalladium (II) (Herrmann’s 

catalyst, HC, 0.1 mg, 0.101 μmol) dissolved in toluene (100 µL). The reaction mixture was 

heated at 100°C for 5 min, the solvent was removed under a constant helium flow and the 

resulting solid was dissolved in 0.5 mL acetonitrile and 30 mL of ultrapure water. The crude 

solution was passed through a C-18 cartridge (Sep-Pak® Light, Waters) and washed with water 

(5 mL × 2) to remove free iodine-124. The final product (124I-[4.5]
-), retained in the C-18 

cartridge, was eluted with ethanol (500 μL). The solvent was finally evaporated to dryness. 

Quality control was performed by radio-HPLC after diluting the solid residue with mobile phase. 

Analytical conditions were: Stationary phase: Mediterranea Sea18 column (4.6x150 mm, 5 μm 

particle size, Teknokroma, Spain); mobile phase A: 0.1M ammonium formate (AMF) buffer pH= 

3.9; B: acetonitrile; flow rate = 1mL/min; gradient: 0 min: 60% A- 40% B; 2min: 60% A- 40% 

B; 6min: 20% A- 80% B; 14min: 0% A- 100% B; 16min: 0% A- 100% B; 18min: 60% A- 40% 

B; 20min: 60% A- 40% B (retention time: 11.5min).  

Synthesis of 124I-[4.6]
-  

Dry 124I-[4.5]
- obtained from the previous step was dissolved in 250 μL of methanol. Sodium 

methoxide (2 mg) was added and stirred at room temperature for 6 h. After Completion of the 

hydrolysis, confirmed by analytical radio-HPLC, reformulation was carried out by dilution with 

water, retention on a C-18 cartridge (Sep-Pak® Light, Waters), further elution with ethanol (500 

μL, Sigma-Aldrich) and evaporation to dryness. Quality control was performed by HPLC. 
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Analytical conditions were: Stationary phase: Mediterranea Sea18 column (4.6x150 mm, 5 μm 

particle size, Teknokroma, Spain); mobile phase A: 0.1M ammonium formate (AMF) buffer pH= 

3.9; B: acetonitrile; flow rate = 1mL/min; gradient: 0 min: 60% A- 40% B; 2min: 60% A- 40% 

B; 6min: 20% A- 80% B; 14min: 0% A- 100% B; 16min: 0% A- 100% B; 18min: 60% A- 40% 

B; 20min: 60% A- 40% B (retention time: 13.1min). 

3.5.5. Preparation of AuNPs 

Synthesis of citrate-stabilized gold NPs (CIT-AuNPs) 

CIT-AuNPs with an average diameter of 18-20 nm and with Au concentration of 1 mg/mL were 

synthesized following the Turkevich method [6]. In brief, 97.1 mg (0.33 mmol) trisodium citrate 

dihydrate were dissolved in 150 mL water (concentration = 2.2 mM) and the solution was heated 

to reflux in a 250 mL three-necked flask equipped with a Dimroth condenser. After 15 min 

boiling, 1 mL precursor solution (HAuCl4∙3H2O in water, 25 mM) was quickly injected under 

rapid stirring. When the colour of the solution changed to the characteristic wine-red, which 

indicates formation of AuNPs, the heating-mantle was switched off but not removed until the 

temperature of the solution was 70 °C. The resulting NPs were centrifuged at 12000g for 20 min 

to remove free citrate and resuspended in ultrapure water. 

Synthesis of PEG-stabilized, COSAN-functionalized AuNPs (PEG-AuNPs@[4.4]-) 

CIT-AuNPs prepared as described above (2 mL) were placed into a vial. Then 100 μL of 

mPEG5k-SH (3 mg/mL) were slowly added under vigorous stirring. After 15 minutes, 100 μL of a 

fresh solution of [4.4]
- in ethanol (3 mg/mL) were quickly added and stirring was maintained for 

2h. The resulting NPs were centrifuged at 12000g for 25 min and resuspended in ultrapure water 

three times. 

Synthesis of PEG-AuNPs@[4.4]- labeled at the core  

CIT-AuNPs prepared as described above (2 mL) were placed into a vial. [124I]NaI (15 μL, 

solution in 0.1M NaOH) was added and the solution was stirred for 10 min. Then, mPEG5k-SH 

(100 μL, 3 mg/mL) was slowly added under vigorous stirring. After 15 minutes, 100 μL of a 

fresh solution of [4.4]
- in ethanol (3 mg/mL) were quickly added and stirring was maintained for 
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2h. The resulting NPs were centrifuged at 12000g for 25 min and resuspended in ultrapure water 

three times.  

Synthesis of PEG-stabilized, COSAN-functionalized AuNPs labeled at the shell  

CIT-AuNPs prepared as described above (1 mL) were placed into a vial. Then, mPEG5k-SH (100 

μL, 3 mg/mL) was slowly added under vigorous stirring. After 15 minutes, 100 μL of a fresh 

solution of [4.4]
- in ethanol (3 mg/mL) and freshly prepared 124I-[4.6]

- (22.2 MBq) dissolved in 

ethanol (15 μL) were quickly added and stirring was maintained for 2h. The resulting NPs were 

centrifuged at 12000g for 25 min and resuspended in ultrapure water three times.  

3.5.6. In vivo experiments 

Animals 

The animals were maintained and handled in accordance with the Guidelines for Accommodation 

and Care of Animals (European Convention for Protection of Vertebrate Animals Used for 

Experimental and Other Scientific Purposes) and internal guidelines. Experimental procedures 

were approved by the ethical committee and local authorities. All animals were housed in 

ventilate cages and fed on standard diet ad libitum. 

HT1080 mouse tumor model development  

 In order to study the biodistribution of the labeled AuNPs in tumor-bearing mice, Rj:NMRI-

Foxn1
nu/nu female mice (7-8 weeks old, Janvier) were subcutaneously inoculated with 2×106 

HT1080 tumor cells in to the right flank. Prior to each inoculation, cells were diluted in sterile 

PBS:Matrigel (1:1) and Mycoplasma test (Lonza) was carried out to ensure that cells were not 

contaminated. Mice weights were measured daily. Tumors were measured and recorded 3 times 

per week with a digital caliper and volumes were calculated as V (mm3) = [(short diameter)2 x 

(long diameter)]/2. Biodistribution studies were carried out when tumor volume was 

approximately 200–300 mm3 (~15-20 days after tumor inoculation).  

Biodistribution studies 

PET studies with labeled NPs were carried out in mice (n=2 per compound) using an eXplore 

Vista-CT small animal PET-CT system (GE Healthcare). Anaesthesia was induced with 5% 

isoflurane and maintained by 1.5 to 2% of isoflurane in 100% O2. For intravenous administration 
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of the radiotracer, the tail vein was catheterized with a 24-gauge catheter and the labeled NPs 

(3.8±0.6 MBq for NPs labeled at the core; 2.7±0.3 MBq for NPs labeled at the shell, volume=150 

μL) were injected concomitantly with the start of a PET dynamic acquisition. Mice were kept 

normothermic throughout the scans using a heating blanket (Homeothermic Blanket Control 

Unit; Bruker).   

Whole body scans were acquired just after administration during 60 min. At time points 10 h, 24 

h, 72 h and 144h, 30 min whole body static acquisitions were performed. All the scans were 

recorded in the 400-700 KeV energetic window. CT acquisitions were also performed at the end 

of each PET scan, providing anatomical information for unambiguous localization of the 

radioactive signal and the attenuation map for PET image reconstruction. 

PET images were reconstructed (decay and CT-based attenuation corrected) with filtered back 

projection (FBP) using a Ramp filter with a cut off frequency of 1 Hz. Images were analysed 

using PMOD image analysis software (PMOD Technologies Ltd, Zürich, Switzerland). With that 

aim, volumes of interest (VOIs) were manually drawn in the lungs, liver, bladder, stomach, 

kidneys, spleen, tumor, heart and thyroid gland using the CT images as anatomical reference. 

VOIs were then transferred to the PET images and time activity curves (decay corrected) were 

obtained for each organ as cps/cm3. Curves were transformed into real activity (Bq/cm3) curves. 

Injected dose normalization was finally applied to data to get time activity curves as percentage 

of injected dose per cm3 of tissue.  

Ex vivo Studies 

Ion beam microscopy (IBM) studies were performed at the LIPSION nanoprobe at Leipzig 

University using a 2.25 MeV proton beam with a spot size of approximately 1 µm and supplied 

by Singletron™ particle accelerator (HVEE, Amersfoort, NL). Under vacuum of 10−6 Torr two 

ion beam microscope techniques, such as micro-proton induced X-ray emission (µPIXE) and 

micro-Rutherford backscattering (µRBS), were used simultaneously to study the spatial 

distribution of elements originated from tissue and NPs. Extracted µRBS spectra from the region 

of interest were analyzed by using SIMNRA 6.06 software (Dr. Matej Mayer, MPI of 

plasmaphysic, Garching, GE) to determine accumulated charge, area density (atoms/cm2) and 

element matrix composition (C, N, O). These parameters were used as input for µPIXE analysis 

by means of GeoPIXE 5.1 software (CSIRO Earth Science and Resource Engineering, Clayton, 
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Australia) to quantify element concentration in the tissue of NP treated mice. The detailed 

procedure is described elsewhere [29, 35]. 

Confocal Raman microspectroscopy (CRM) analyses were performed using an Alpha300 R 

microscope (WITec GmbH, Ulm, Germany) equipped with a 532 nm laser source, a 600 g 

mm−1 grating and a charge-coupled device (CCD) cooled down to −61 °C. All measurements 

were conducted using a 63x water immersion objective (W Plan-Apochromat 63x/1.0, Zeiss, 

Oberkochen, Germany). Raman spectra were collected pixel-wise in x-y plane with an integration 

time of about 70 µs. Acquired spectra were processed using the Project FOUR PLUS 4.0 

software (WITec GmbH, Ulm, Germany). 
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Chapter 4: Gold Nanoparticles as boron carriers for BNCT (II) 

4.1. Introduction 

As mentioned in the previous chapter, gold nanoparticles (AuNPs) have attracted increasing 

attention in a wide range of biomedical applications due to their unique optical, physical and 

chemical properties [1, 2]. Due to their non-toxic nature and biocompatibility, we considered 

them as potential boron carriers for boron neutron capture therapy (BNCT). This said, it is worth 

mentioning that both the core size and the surface functionalization of the NPs play a pivotal role 

when applied in biomedicine. First, it is well known that the surface-to-volume ratio of AuNPs is 

inversely proportional to their size; the smaller the particle, the higher the surface-to-volume 

ratio, and high surface-to-volume ratios offer the possibility to attach a higher amount of drug, 

targeting moieties or stabilizers on the surface.  

In our particular case, the possibility to incorporate a higher amount of boron on the surface of 

the particles should lead to higher therapeutic efficacy while using a lower net amount of AuNPs, 

with the consequent decrease both in cost and eventual off-target side effects.  

Besides the above mentioned effect, the size of the AuNPs in drug delivery also plays an 

important role in the general biodistribution. Small core-sized AuNPs, when properly stabilized, 

have prolonged plasma circulation time due to the fact that larger AuNPs are more easily cleared 

by the Mononuclear Phagocytic System (MPS), previously known as reticuloendothelial system 

(RES). Terentyuk et al. reported that 15 nm AuNPs showed prolonged blood circulation time and 

concentrations in the plasma than those of 50 and 160 nm 24 h after injection [3]. Therefore, for 

prolonging circulation of AuNPs and enable higher tumor accumulation, tuning surface 

functionality and core sizes are important factors. 

In the previous chapter, we have evaluated AuNPs (core size 18-21 nm) stabilized with 

polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide). 

The incorporation of the positron emitter 124I enabled the pharmaciokinetic evaluation 

(biodistribution, elimination) of the NPs by means of Positron Emission Tomography (PET). 

Additionally, incorporation of the label in different positions (core and shell) confirmed stability 

in vivo of the NPs. Despite the suitability of this approach, high accumulation of the NPs in the 

liver suggested that the core size was probably too large, resultin in a very low accumulation of 
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the NPs in the tumor. Additionally, minor accumulation of radioactivity in the stomach and the 

thyroid gland confirmed progressive detachment of the radiolabel, thus suggesting that the 

radiolabeling strategy was not optimal. These results pointed to the need to slightly modify 

particle size and radiolabeling strategy in subsequent studies.  

In this chapter, as a second approach for the development of gold NP-based BNCT agents, we 

decided to prepare spherical gold NPs with smaller sizes, this is, with core sizes of ~3-4 nm 

(named GNSs) and ~9-11 nm (named GNSm). In both cases, NPs were stabilized with PEG-thiol. 

For the tracking in vivo, the positron emitter copper-64 (64Cu, half-life of 12.7 hours) was 

incorporated at the core by adapting previously reported methods [4, 5]. As the boron source, we 

used the boron cluster [4.4]
- (see chapter 3) on the gold surface via Au-thiol interaction. PET 

studies were carried out in a mouse model of human gastrointestinal adenocarcinoma, generated 

by subcutaneous inoculation of MKN45 human cells in nude mice, in order to assess the in vivo 

stability of the size tuned multifunctionalized GNSs and GNSm and their capability to 

accumulate in the tumor by passive targeting (Scheme 4.1). 

 

Scheme 4.1. General scheme of the experimental part of this chapter. Radiolabeled multifunctionalized 
64Cu alloyed GNSs and GNSm nanosystems were evaluated by positron emission tomography (PET) 
imaging after intravenous administration in a mouse model of gastrointestinal adenocarcinoma.  
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4.2 Objectives 

The specific objectives of this chapter are: 

1- To synthesize and characterize stable and biocompatible copper alloyed, size-tuned small 

(GNSs) and medium gold nanospheres (GNSm) functionalized with PEG and COSAN. 

2- To develop strategies for the radiolabeling of the nanosystems with the positron emitter 64Cu. 

3- To perform in vitro studies (cytotoxicity and cell internalization) of multifunctionalized 

GNSs and GNSm in different cell lines. 

4- To evaluate the pharmacokinetic properties of the novel multifunctionalized GNSs and 

GNSm using positron emission tomography (PET) in a human gastrointestinal 

adenocarcinoma mouse model (MKN45 human cell line) after intravenous administration. 

4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of the gold nanospheres  

The synthesis of [3,3’-Co(1,2-C2B9H10)(8’-O-(CH2)5-SH-1’,2’-C2B9H11)]- ([4.4]
-) was designed 

to generate thiol group-bearing COSAN derivatives for easy attachment to small sized gold 

nanospheres (GNSs, core size ~3-4 nm) and medium-sized gold nanospheres (GNSm, core size 

~9-11 nm). The boron-rich ligand was prepared as described in Chapter 3.  

For the preparation of the nanoparticles, we first tackled the synthesis of stabilized, copper-

alloyed small gold nanoparticles (Cu-GNSs@PEG) by using previously published protocols with 

slight modifications [5]. In brief, non-radioactive copper chloride dihydrate (CuCl2.2H2O) and 

HAuCl4 were dissolved in water, followed by the addition of methoxy poly(ethylene glycol) 

methyl ether thiol (mPEG-SH, 2 kDa). After 2 min, a sodium borohydride (NaBH4) solution was 

added under quick stirring for 2 min. The reaction was allowed to occur for 2 h at room 

temperature prior to centrifugation (Figure 4.1). 

Next, we prepared copper alloyed medium gold nanoparticles (Cu-GNSm@PEG), also following 

previously reported methods with slight modifications [6]. In brief, HAuCl4, copper(II) 

acetylacetonate ([Cu(acac)2]) and 1,2-hexadecanediol were mixed and oleylamine was used as a 

solvent and reducing agent in the reaction. The reaction solution was heated in a microwave to 

160°C with a programmed temperature ramp of 4°C/min. Then, the reaction mixture was held at 
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160°C for 2 h prior to cooling to room temperature. After centrifugation, the hydrophobic Cu-

GNSm NPs were dissolved in hexane to form a homogeneous reddish solution. Subsequently, the 

hydrophobic Cu-GNSm NPs were modified with a thiol-terminated poly(ethylene glycol) 

(methoxy-PEG-SH, 2 kDa). With that aim, mPEG2k-SH was dissolved in water and added 

dropwise to the Cu-GNSm NPs in a tetrahydrofuran (THF) solution and stirred for 24 h at room 

temperature prior to centrifugation to get hydrophilic Cu-GNSm@PEG (Figure 4.2). 

 

Figure 4.1. Schematic representation of the preparation of Cu-GNSs@PEG. 

 

Figure 4.2. Schematic representation of the preparation of Cu-GNSm@PEG 

In the next step, PEG-stabilized GNSs and GNSm NPs were functionalized with COSAN-thiol 

([4.4]
-). With that aim, compound [4.4]

- was dissolved in ethanol, and this solution was added to 

the Cu-PEG-GNSs and Cu-PEG-GNSm solution drop-wise. The resulting solution was stirred for 

2 h at RT and purified by centrifugation to get Cu-GNSs-PEG@[4.4]- (Figure 4.3) and Cu-

GNSm-PEG@[4.4]- (Figure 4.4).  

THF, 24 h, rt 
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Figure 4.3. Schematic representation of the preparation of Cu-GNSs-PEG@[4.4]- 

 

Figure 4.4. Schematic representation of the preparation of Cu-GNSm-PEG@[4.4]- 

One of the important parameters to take into consideration when preparing new BNCT drug 

candidates is the boron-load capacity. In order to check the loading capacity of [4.4]
- on Cu-PEG-

GNSs and Cu-PEG-GNSm, optimization studies were performed by adding different amounts of 

[4.4]
- (GNSs/GNSm to [4.4]

- molar ratios: 1, 2 and 0.66) to the nanosystems. The absorbance and 

loading capacity of both nanosystems after purification was analyzed by UV-vis absorption 

spectroscopy (UV-Vis). The surface functionalized nanosystems showed a longitudinal surface 

plasmon resonance (LSPR) band at 521 nm for Cu-GNSs-PEG@[4.4]-, while for Cu-GNSm-

PEG@[4.4]- the LSPR band observed at 529 nm. Additionally, another absorption band appeared 

at ca. 310 nm, close to the maximum absorption of COSAN (314 nm), confirming successful 

attachment of the boron cluster on the surface of the Cu-GNSs-PEG@[4.4]- and Cu-GNSm-

PEG@[4.4]- nanosystems (Figure 4.5). In all experimental scenarios, NPs showed good stability, 
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and hence we decided to move forward using the NPs prepared with a GNSs/GNSm to [4.4]
- 

molar ratio of 0.66, as this was expected to result in the higher concentration of boron on the 

NPs.  

 

Figure 4.5. UV-vis-NIR spectra of Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]- with different 
molar ratios of GNSs or GNSm to [4.4]-.  

Transmission electron microscopy (TEM) images showed that Cu-GNSs-PEG@[4.4]- had 

uniform distribution with a core diameter of 3.5 ± 1.8 nm (Figure 4.6a) and zeta potential 

measurements showed a negative ξ-potential of −36.0±2 mV (Figure 4.6b). 

 

 

Figure 4.6. Transmission electron micrograph (TEM) (a) and Zeta potential distribution for Cu-GNSs-
PEG@[4.4]- (-36±2 mV). 
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Cu-GNSm-PEG@[4.4]- showed the similar uniform distribution with a core diameter of 9.5 ± 2.5 

nm (Figure 4.7a), and a negative ξ-potential of −19.0±2 mV (Figure 4.7b) at neutral pH. The 

negative zeta potential values confirm the incorporation of the anionic COSAN complex on the 

surface of both nanosystems. 

 

Figure 4.7. Transmission electron micrographs (TEM) (a) and Zeta potential distribution for Cu-GNSm-
PEG@[4.4]- (-19±2 mV) (b). 

As additional structural evidence, the presence of COSAN on the surface of gold nanoparticles 

was confirmed by X-ray photoelectron spectroscopy (XPS). XPS analysis of Cu-GNSs-

PEG@[4.4]- and Cu-GNSm-PEG@[4.4]- showed boron and cobalt peaks at 780.2 eV and 192.8 

eV respectively (Figure 4.8) [7].  

 

Figure 4.8. XPS spectra of Cu-GNSs-PEG@[4.4]-  (a) and Cu-GNSm-PEG@[4.4]- (b). 

The relative quantification of carbon, oxygen, boron and cobalt present in the samples was 

carried out (Table 4.1). The quantification data showed that Cu-GNSs-PEG@[4.4]- have a higher 
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amount of boron when compared with Cu-GNSm-PEG@[4.4]-. These results confirmed the 

presence of both boron and cobalt on the surface of both nanosystems. 

Table 4.1. Elemental composition of different elements present in the Cu-GNSs-PEG@[4.4]- and Cu-
GNSm-PEG@[4.4]- nanosystems measured by XPS analysis. 

 C(at.%) O(at.%)  Co(at.%) B(at.%) 

Cu-GNSs-PEG@[4.4]
-
 46.5 26.1 0.4 13.4 

Cu-GNSm-PEG@[4.4]
-
 48.4 25.4 0.3 8.9 

 

In order to determine the loading capacity of the both nanosystems, ICP-MS analysis were 

performed to measure the gold and boron content in the final Cu-GNSs-PEG@[4.4]- and Cu-

GNSm-PEG@[4.4]-, (GNSs and GNSm to [4.4]
- molar ratios 0.66). The amount of [4.4]

- was in 

Cu-GNSs-PEG@[4.4]- estimated to be 472 µg per mg of gold, which results in ca. 210 µg of 

boron/mg of gold. The amount of [4.4]
- in Cu-GNSm-PEG@[4.4]- was calculated to be 348 µg 

per mg of gold, which results in ca. 155 µg of boron/mg of gold. These results confirm that both 

Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]- have a significant boron load and ready for 

for eventual in vitro and in vivo studies. 

4.3.2. In vitro studies 

Cytotoxicity studies 

To determine cytotoxicity of the Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]-, human 

dermal fibroblasts (HDFa), MKN-45 gastric adenocarcinoma cells and 3T3 cells (cell line 

originally established from primary mouse embryonic fibroblast cells) were treated with 20, 40, 

and 60 μM (gold concentration) of the nanosystems for up to 72 hours prior to analysis using the 

MTT assay. Both nanosystems did not induce cell death at up to 60 μM (gold concentration) in 

any of the tested cell lines (Figure 4.9), indicating negligible cytotoxicity. 



Chapter 4 – GPSs as boron carriers for BNCT (II)  

67 
 

 

Figure 4.9. Cell viability in the presence of Cu-GNSs-PEG@[4.4]- (a) and Cu-GNSm-PEG@[4.4]- (b), 
for 24, 48 and 72 hours: a) human (HDFa) dermal fibroblasts; b) MKN-45 gastric cell line and c) 3T3 
healthy mouse cell line. In all cases, cells were incubated with increasing concentrations of GNSs and 
GNSm and cell viability was determined by the MTT assay. Data are shown as the mean ± standard 
deviation of three independent experiments. 

Cell internalization studies 

The cellular uptake of multifunctionalized GNSs and GNSm was evaluated in MKN-45 cells 

using fluorescence microscopy. For that purpose, the first step was to incorporate a fluorescent 

moiety in the NPs. With that aim, Cu-GNSs-PEG@[4.4]- was reacted with PEG-amine-thiol 

(5 kDa) at room temperature for 2 h and centrifuged at 14000 rpm for 10 min and washed two 

times with water. Then, Cyanine 3 N-hydroxysuccinimide ester (Cy3-NHS) dissolved in DMSO 

was added to the amino-functionalized Cu-GNSs-PEG@[4.4]- (pH 7.4-8.0) and stirred for 2 h at 

room temperature. The resulting particles were centrifuged at 14000 rpm for 10 min and washed 

two times with water. A parallel synthesis strategy was applied to prepare fluorophore-labeled 

Cu-GNSm-PEG@[4.4]- NPs.  
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Figure 4.10. Live cell fluorescence microscopy of multifunctionalized GNSs and GNSm after 2 h 
incubation with MKN45 cells. In green: Cu-GNSs-mPEG@[4.4]- (a) and Cu-GNSm-mPEG@[4.4]- (b), 
fluorophore-labeled with NHS-Cy3, in red: Lysosomes, stained with LysoTracker deep red, in blue: 
nucleus, stained with Hoechst33342. Merged signals of fluorophore-labeled (a) and (b), colocalizing with 
lysosomes appear in yellow. 

Both fluorophore-labeled NPs (Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]-) were 

incubated with MKN45 cells for 2 h. To enable visualization of co-localization between the 

fluorophore-labeled Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]- with the lysosomes, the 

lysosomes were stained with Lysotracker-deep-red. Images were taken using a live cell Axio 

Observer (Zeiss) fluorescence microscope and analyzed by the ZEN-ZEISS software, showing a 

clear co-localization of Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]- and the lysosomes 

(Figure 4.10). Our results confirm that both nanosystems can efficiently internalize in MKN45 

cells in 2 hours. 

4.3.3. Radiolabeling of nanoparticles 

Radiolabeled GNSs and GNSm with the positron emitter 64Cu were synthesized by using 

previously published protocols with minor modifications [5, 6]. In brief, 64Cu-GNSs-PEG@[4.4]- 
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labeled NPs were synthesized as Cu-GNSs-PEG@[4.4]- NPs, but radioactive [64Cu]CuCl2 was 

added instead of CuCl2.2H2O (Figure 4.11). In order to remove all the 64Cu absorbed on (or 

loosely bound to) the NPs, the synthesized 64Cu-GNSs-PEG NPs were challenged with 

ethylenediaminetetraacetic acid (EDTA, 10 mM in neutral 50 mM phosphate buffer, 5 µL), and 

then purified using a centrifuge filter (Amicon, MWCO 10 kDa). The radiochemical purity was 

above 95%, as determined by instant radio-thin layer chromatography (radioTLC) (Figure 4.12). 

In the second step [4.4]- was attached as described in non-radioactive Cu-GNSs-PEG@[4.4]- 

preparation (Figure 4.12). After purification, the radiochemical yield of 64Cu-GNSs-PEG@[4.4]- 

was 15% and purity was above 98% (Figure 4.13). 

 

Figure 4.11. Schematic representation of the preparation of 64Cu-GNSs-PEG@[4.4]-. 

 

Figure 4.12. Radiochemical purity of 64Cu-GNSs-PEG analyzed by radioTLC. 
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Figure 4.13. Radiochemical purity of 64Cu-GNSs-PEG@[4.4]- analyzed by radioTLC. 

64Cu-radiolabeled GNSm NPs were synthesized following the same protocol used for the 

preparation of non-radioactive Cu-GNSm-PEG@[4.4]-, although 64CuCl2 was added to the 

reaction mixture. In brief, 64Cu labeled hydrophobic GNSm NPs were prepared by addition of 

radioactive [64Cu]CuCl2 to the HAuCl4, copper(II) acetylacetonate ([Cu(acac)2]) and 1,2-

hexadecanediol solution. To this mixture oleylamine was added. The reaction solution was heated 

in a microwave to 160°C with a programmed increase of 4°C/min. The reaction was then held at 

160°C for 2 h, and was then cooled to room temperature. After centrifugation, the hydrophobic 
64Cu-GNSm NPs were obtained and dissolved in hexane to form a homogeneous reddish 

solution. The synthesized 64Cu-GNSm NPs were further functionalized with PEG and COSAN-

SH by following the same procedure as nonradioactive Cu-GNSm-PEG@[4.4]- (Figure 4.14). 

The radiochemical yield of 64Cu-GNSm-PEG@[4.4]- was 18% (non-decay corrected) and 

radiochemical purity was determined by radioTLC as above 98% (Figure 4.15). 
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Figure 4.14. Schematic representation of the preparation of 64Cu-GNSm-PEG@[4.4]- 

 

Figure 4.15. Radiochemical purity of 64Cu-GNSm-PEG@[4.4]- analyzed by radioTLC. 

4.3.4. Radiochemical stability 

Radiochemical stability of both 64Cu-GNSs-PEG@[4.4]- and 64Cu-GNSm-PEG@[4.4]- 

nanosystems was tested in phosphate buffered saline (PBS), PBS with a challenging agent 

(ethylenediaminetetraacetic acid; EDTA, 2.5 mM), saline solution (0.9% NaCl), saline solution 

with EDTA and mouse serum. The stability was checked by incubating the nanoparticles at 37°C 

THF, 24 h, rt 
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for up to 48 h. Both nanosystems showed excellent stability in all the media without any 

significant detachment of 64Cu from the gold core (Figure 4.16). 

 

Figure 4.16. Radiochemical stability of 64Cu-GNSs-mPEG@[4.4]- (a) and 64Cu-GNSm-mPEG@[4.4]- (b) 
at different incubation times (1, 6, 24 and 48 h) in physiological saline (0.9% NaCl), physiological saline 
solution containing EDTA (0.9% NaCl + 2.5 mM EDTA), phosphate buffered saline (PBS), phosphate 
buffered saline containing EDTA (PBS + 2.5 mM EDTA), and mouse serum. 

4.3.5 In vivo biodistribution studies 

The in vivo distribution of the labeled particles, 64Cu-GNSs-PEG@[4.4]- and 64Cu-GNSm-

PEG@[4.4]-, was carried out using PET in combination with Computerized Tomography (CT). 

To evaluate the capacity of the nanosystems to accumulate in tumor, a human gastrointestinal 

adenocarcinoma mouse model (generated by subcutaneous inoculation of MKN45 cells) was 

used. The general biodistribution of both radiolabeled nanosystems and the accumulation in the 

tumor after intravenous administration were determined by acquiring static PET images at 

different time points (1, 6, 24 and 48 hours; see Figures 4.17 and 4.20 for representative images). 
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Figure 4.17. Representative PET images (coronal and axial views) obtained at 1, 6, 24, and 48 hours after 
administration of 64Cu-GNSs-PEG@[4.4]- in mice bearing MKN-45 tumor. Maximum intensity projection 
(MIP) PET images were co-registered with representative CT coronal slices. The position of the tumor is 
indicated with white arrows. 

Volumes of interest (VOIs) were drawn in major organs and tumor tissue based on reconstructed 

CT images, and used to quantify PET images. The amount of radioactivity in each region was 

determined as percentage of injected dose per cubic centimeter of tissue (%ID/cm3) (Figure 4.18). 

In the case of 64Cu-GNSs-PEG@[4.4]- NPs, at t = 1 hour time point, high amount of radioactivity 

was observed in the heart (13.29±3.0 %ID/cm3), indicating the presence of a significant amount 

of labeled GNSs in the blood pool. This value progressively decayed with time, to reach a value 

of 2.27±1.0 %ID/cm3 at t = 48 hours. 
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Figure 4.18. Accumulation of 64Cu-GNSs-PEG@[4.4]- in different organs at different time points after 
intravenous administration, analyzed by PET imaging (values are expressed as mean ± standard error 
mean, n = 3). 

At t = 1 hour, high accumulation of GNSs was observed in liver (31.42±3.0 %ID/cm3), while 

accumulation in lungs (4.33±2.3 %ID/cm3) and spleen (4.82±1.6 %ID/cm3) was lower. In the 

liver and lungs, a progressive decrease of radioactivity concentration was observed over time, 

reaching values of 10.37±2.5 %ID/cm3 and 1.96±0.7 %ID/cm3, respectively, at t = 48 hours 

(Figure 4.18). These results suggest that GNSs NPs were moderately sequestrated by organs of 

the mononuclear phagocyte system (MPS). Lower accumulation in kidneys (i.e. 4.15±0.9 

%ID/cm3), and no significant elimination via urine were observed. A progressive accumulation of 

GNSs in spleen was observed over time. Noteworthy, the concentration of radioactivity in the 

tumor progressively increased with time (Figure 4.19) to reach the maximum value at t = 24 

hours (5.3±1.3 %ID/cm3) and slowly decreased afterwards (3.92±1.7 %ID/cm3 at t = 48 hours).  

 

Figure 4.19. Accumulation of 64Cu-GNSs-PEG@[4.4]- in tumor at different time points after 
administration (1, 6, 24 and 48 h). 
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In the case of 64Cu-GNSm-PEG@[4.4]- NPs, high accumulation was observed in the liver at all 

times) and low accumulation was observed in all other major organs (Figures 4.20 and 4.21). The 

concentration of radioactivity in the tumor increased to 1.3±1.1 %ID/cm3 at t = 48 hours (Figure 

4.22).  

 

Figure 4.20. Representative PET images (coronal and axial views) obtained at 1, 6, 24, and 48 hours after 
administration of 64Cu-GNSm-PEG@[4.4]- in mice bearing MKN-45 tumor. Maximum intensity 
projection (MIP) PET images were co-registered with representative CT coronal slices. The position of the 
tumor is indicated with white arrows. 

 

Figure 4.21. Accumulation of 64Cu-GNSm-PEG@[4.4]- in different organs at different time points after 
intravenous administration, analyzed by PET imaging (values are expressed as mean ± standard error 
mean, n = 3). 
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Figure 4.22. Accumulation of 64Cu-GNSm-PEG@[4.4]- in the tumor at different time points (1, 6, 24 and 
48 h) after intravenous administration. 

4.3.6 Ex vivo studies 

Ex vivo gamma-counting experiments were conducted for both 64Cu-GNSs-PEG@[4.4]- and 
64Cu-GNSm-PEG@[4.4]- nanosystems immediately after finalizing the last imaging session at 48 

h time point. Organs of interest were harvested and the amount of radioactivity in each organ was 

measured in an automated gamma-counter (Wallach Wizard, PerkinElmer, Waltham, MA, USA) 

(Figure 4.23). The ex vivo results of both nanosystems were in good agreement with in vivo PET 

quantification. 

 

Figure 4.23. Accumulation of 64Cu-GNSs-PEG@[4.4]- and 64Cu-GNSm-PEG@[4.4]- in different organs 
after ex vivo analysis at 48 h time point, analyzed by gamma counter (values are expressed as mean ± 
standard error mean, n = 3 per NP type). 
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As mentioned previously, one of the problems to follow the biodistribution of the NPs may arise 

from eventual detachment of the radiolabel. In order to prove that the distribution data obtained 

by in vivo PET and ex vivo gamma counting actually reflect the distribution of the particles, we 

carried out ICP-MS analysis of selected organs. The boron and gold concentration determined by 

ICP-MS confirmed the stability of the NPs and correlated well with data obtained from studies 

conducted with radioactivity measurements, thus confirming the suitability of our approach and 

the capacity of the nanoparticles to reach the tumor (Figure 4.24).  

 

Figure 4.24. Amount of gold and boron in, liver, spleen and the tumor at 48 hours after intravenous 
administration of 64Cu-GNSs-PEG@[4.4]- and 64Cu-GNSm-PEG@[4.4]-, as determined by ICP-MS and 
ex vivo gamma counting.  

With the results obtained, we made some estimation of the potential therapeutic efficacy of the 

small gold NPs, which showed enhanced accumulation in the tumor. Considering that: (i) the 

injected dose to the animal was 200 µg of 64Cu-GNSs-PEG@[4.4]- (amount of gold); (ii) GNSs 

contain 210 µg boron per mg of gold; and (iii) the concentration of GNSs in the tumor at t = 24 

hours after administration is 5.3±1.3 %ID/cm3, the average concentration of boron in the tumor at 

t = 24 hours is 2.22 µg/cm3. In the case of 64Cu-GNSm-PEG@[4.4]-, the injected dose to the 
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animal was 180 µg (amount of gold); (ii) GNSm contain 155 µg boron per mg of gold; and (iii) 

the concentration of GNSs in the tumor at t = 48 hours after administration is 1.3±0.3 %ID/cm3, 

the average concentration of boron in the tumor at t = 48 hours is 0.3 µg/cm3. These values, 

despite they could be improved by administering a higher dose to the animals, are below the 

threshold perceived as sufficient to guarantee therapeutic efficacy. Hence, we next tackled the 

design of nanosystems suitable for dual therapeutic approaches (see chapter 5). 

4.4. Conclusions  

The synthesis of medium- (ca. 10 nm) and small- (ca. 3 nm) sized gold NPs, containing copper at 

the core and functionalized with COSAN and thiolated polyethylene glycol can be achieved by 

using adapted methods. The presence of the copper at the core enables the radiolabeling using the 

positron emitter 64Cu. The labeled particles showed good stability in vivo, low toxicity in vitro  

and fast internalization in MKN45 cells. PET images following the intravenous administration of 

small gold nanospheres showed significant accumulation in the tumor at 24–48 hours after 

administration, whereas medium size particles showed moderate tumor uptake and major 

accumulation in the liver. In both cases, the accumulation of boron in the tumor is insufficient to 

tackle therapy experiments. These results suggest that nanosystems enabling dual therapeutic 

approaches may be required.  

4.5. Experimental section 

4.5.1. Reagents 

Cesium cobalt(III) bis(dicarbollide) (COSAN) (Katchem Ltd., Prague, Czech Republic), 

tetrahydropyran (sigma Aldrich), gold(III) chloride trihydrate (HAuCl4·3H2O, Aldrich), copper 

(II) acetylacetonate (Cu(acac)2), oleylamine, 1,2-hexadecanediol (TCI, Spain), hydrochloric acid 

(HCl, 37%, TraceSELECT®), nitric acid (HNO3, 70%, ≥99.999% trace metals basis), sodium 

borohydride, copper chloride (CuCl2.2H2O), poly (ethylene glycol) methyl ether thiol (MW 2000, 

Sigma-Aldrich) and cyanine 3 N-Hydroxysuccinimide ester (Cy3-NHS) from BroadPharm®, 

were used as purchased. All other reagents and anhydrous solvents, stored over 4 Å molecular 

sieves, were purchased from Aldrich Chemical Co. (Madrid, Spain) and used without further 

purification. HPLC grade solvents were purchased from Scharlab (Sentmenat, Barcelona, Spain). 
64Cu2+ dissolved in 0.1M HCl was produced at CIC biomaGUNE Radiochemistry facility by 
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proton irradiation of 64Ni via the 64Ni(p,n)64Cu nuclear reaction using standard protocols [Kume, 

2012 #49]. 

In chemical syntheses, experiments were carried out, except when noted, under a dry, oxygen-

free dinitrogen atmosphere. The microwave synthesis of GNSm NPs was performed on a CEM 

Discover-SP. Column chromatography was performed using silica gel 60 (Scharlab, Spain). 

Analytical thin layer chromatography (TLC) measurements were conducted with silica gel 60 

F254 plates (Macherey-Nagel); and the spots were visualized under UV lamp.  

4.5.2. Instrumentation: 

The 1H-NMR (500 MHz), 13C-NMR (126 MHz) and 11B-NMR (160 MHz) spectra were recorded 

on a 500-MHz Avance III Bruker spectrometer. All NMR spectra were performed in deuterated 

solvents at 22 °C. The 11B-NMR shifts were referenced to external BF3·OEt2, while the 1H and 
13C-NMR shifts were referenced to SiMe4. Chemical shifts are reported in units of parts per 

million (ppm) downfield from the reference peak and all coupling constants are reported in Hertz 

(Hz).  

UPLC/ESI-MS analyses were performed using an AQUITY UPLC separation module coupled to 

LCT TOF Premier XE mass spectrometer (Waters, Manchester, UK). An Acquity BEH C18 

column (1.7 µm, 5 mm, 2.1 mm) was used as stationary phase. The elution buffers were A (water 

and 0.1% formic acid) and B (Methanol and 0.1% formic acid). The column was eluted with 

gradient: t=0 min, 95% A, 5% B; t=0.5 min, 95% A, 5% B; t=5.5 min, 25% A, 75% B; t=16 min, 

1% A, 99% B; t=20min, 1% A, 99% B. Total run was 20 min, injection volume was 5 µL and 

flow rate 300 µL/min. The detection was carried out in both, negative and positive ion mode, 

monitoring the most abundant isotope peaks from the mass spectra (M-H+) or (M+H+). 

Ultraviolet-Visible-Near infrared (UV-Vis-NIR) spectra were measured in an Agilent 8453 UV-

Vis-NIR diode-array spectrophotometer.  

ξ-potential measurements were performed at neutral pH using a Malvern Zetasizer Nano ZS 

system (Malvern Instruments, Malvern, UK).  

Transmission electron microscopy (TEM) was performed using a JEOL JEM-1400 plus 

microscope (Jeol, Tokyo, Japan) working at 120 kV. The carbon film of copper grids (CF400-

Cu) was treated under air plasma in a glow discharge system (Emitech K100X, 40mA during 2 
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min) just before sample preparation. For TEM examinations, a single drop (1 μL) of the NPs 

solution was placed onto a copper grid coated with a carbon film (Electron Microscopy 

Sciences).  

X-ray photoelectron spectroscopy (XPS) experiments were performed in a SPECS Sage HR 100 

spectrometer with a non-monochromatic X ray source (Aluminium Kα line of 1486.6 eV energy 

and 252 W), placed perpendicular to the analyser axis and calibrated using the 3d5/2 line of Ag 

with a full width at half maximum (FWHM) of 1.1 eV. The selected resolution for the spectra 

was 15 eV of Pass Energy and 0.15 eV/step. All measurements were made in an ultra-high 

vacuum (UHV) chamber at a pressure around 6×10-8 mbar. An electron flood gun was used for 

charge neutralisation. Gaussian Lorentzian functions were used for fittings (after a Shirley 

background correction) where the FWHM of all the peaks were constrained while the peak 

positions and areas were set free. Main C1s peak was used for charge reference and set at 284.8 

eV. 

Gamma counting experiments were carried out using a Wallach Wizard, PerkinElmer (Waltham, 

MA, USA) gamma counter. 

ICP-MS measurements were performed on a Thermo iCAP Q ICP-MS (Thermo Fisher Scientific 

GmbH, Bremen, Germany). An ASX-560 autosampler was coupled to the ICP-MS (CETAC 

Tech, Omaha, NE, USA).  

Cell observer microscopy experiments were carried out using a Zeiss Axio Observer 

Fluorescence microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and 

analyzed by ZEN2012-ZEISS. 

Confocal cell microscopy experiments were carried out using a Zeiss 880 Confocal Fluorescence 

microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and analyzed by 

ZEN2012-ZEISS. 

Radio-thin layer chromatography (radio-TLC) was performed using iTLC-SG chromatography 

paper (Agilent Technologies, CA, USA) and 20 mM citric acid + 60 mM EDTA/acetonitrile 

solution (9/1 v/v) as the stationary and mobile phases, respectively. TLC plates were analyzed 

using a TLC-reader (MiniGITA, Raytest). 
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4.5.3 Chemistry and radiochemistry 

Synthesis of non-radioactive Cu-GNSs@PEG 

In a typical reaction, water (1.0 mL), HAuCl4 (10 mM, 94 µL), and CuCl2.2H2O (10 mM, 94 µL) 

were mixed in a glass vial, followed by the dropwise addition of mPEG-thiol (MW = 2000 Da, 7 

mM, 200 µL). To this mixture was added sodium borohydride (20 mM, 200 µL) under quick 

stirring for 2 min at room temperature and then kept for 2 hours. The Cu-GNSs-PEG NPs were 

purified using a centrifuge filter (Amicon, 10 kDa MWCO) and washed with MilliQ water (MQ) 

three times to remove unbound mPEG. 

Synthesis of Cu-GNSs-PEG@[4.4]- 

To the obtained Cu-GNSs-PEG NPs (210 µg of gold) was added COSAN-SH ([4.4]
-) (10 mM, 

200 µL) under quick stirring at room temperature and then continued for 2 hours. The Cu-GNSs-

PEG@[4.4]- were purified using a centrifuge filter (Amicon, 10 kDa MWCO) and washed with 

MilliQ water three times to remove unbound [4.4]
-.  

Synthesis of 64Cu-GNSs-PEG@[4.4]- 

Synthesis of 64Cu-GNSs-PEG@[4.4]- was carried out following the same procedure as that used 

for preparing non-radioactive Cu-GNSs-PEG@[4.4]-. Instead of adding CuCl2.2H2O in the first 

step, radioactive 64CuCl2 (222 MBq) was added. The synthesized 64Cu-GNSs-PEG NPs were 

treated with ethylenediaminetetraacetic acid (EDTA, 10 mM in neutral 50 mM phosphate buffer, 

5 µL) and then purified using a centrifuge filter (Amicon, 10 K). The radiochemical purity was 

determined by instant radio-thin layer chromatography (RadioTLC). In the second step COSAN-

SH was attached as described above.  

Synthesis of non-radioactive Cu-GNSm NPs 

Cu-GNSm NPs nanoparticles were synthesized by reducing Cu(acac)2 and HAuCl4 in 

oleylamine. Typically, HAuCl4.3H2O (0.08 mmol, 0.0256 g), Cu(acac)2 (0.026 mmol, 0.007 g) 

and 1,2-hexadecanediol (0.4 mmol, 0.010 g ) were mixed and dissolved in oleylamine (2 mL) 

under N2 atmosphere. Then the resulting solution was heated to 160°C in microwave (CEM 

Discover-SP) at the heating rate of 4°C/min. After the reaction temperature was kept at 160°C for 

2 hours, the solution was cooled to room temperature. The solution was centrifuged and washed 
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twice with ethanol (2 mL) to remove impurities. The Cu-GNSm NPs nanoparticles were 

dispersed in hexane. 

Synthesis of non-radioactive Cu-GNSm-PEG NPs 

The mPEG-thiol (MW = 2000 Da, 7 mM) was dissolved in THF (0.5 mL), added to the Cu-

GNSm NPs and stirred for 24 h at room temperature. The mixture was then centrifuged at 10.000 

rpm for 8 min to obtain PEGylated GNSm NPs. The Cu-GNSm-PEG was dissolved in MilliQ 

water (3 mL) and centrifuged at 10.000 rpm for 10 min with centrifuge filter (Amicon, 30K, 3 

mL). The procedure was repeated three times to remove unbound mPEG. 

Synthesis of Cu-GNSm-PEG@[4.4]-  

The COSAN-SH ([4.4]
-) (0.5 mg) in EtOH (100 µL) was added to the Cu-GNSm-PEG 

nanoparticles purified by MilliQ water washing (0.3 mg/mL). Afterwards, the solution was 

stirred at room temperature for 2 h. The mixture was then centrifuged at 10.000 rpm for 8 min 

using centrifuge filter (Amicon, 30K, 4 mL). The procedure was repeated three times to remove 

unbound [4.4]-. 

Synthesis of 64Cu-GNSm-PEG@[4.4]- 

The synthesis of 64Cu-GNSs-PEG@[4.4]- was carried out following the same procedure as the 

preparation of non-radioactive Cu-GNSs-PEG@[4.4]- nanoparticles except for the extra addition 

of 64CuCl2 (370 MBq, 10μL) to the mixture. Then the solution was heated in microwave to 160°C 

using a heating ramp of 4°C/min. After 2 hours, the solution was cooled to room temperature. The 

synthesized 64Cu-GNSs-PEG@[4.4]- was purified and functionalized with mPEG-SH and [4.4]- 

by following the same procedure as nonradioactive Cu-GNSs-PEG@[4.4]-. 

Synthesis of fluorophore labeled GNSs and GNSm 

The synthesis was performed as described previously, but a mixture of 10 % PEG-amine and 90 

% PEG-methoxy was used to enable subsequent attachment of the fluorophore Cyanine3-NHS. 

To attach the fluorophore, 200 µL of functionalized AuNP (1 mg/mL for GNSs or GNSm 

medium in MQ water) were adjusted to pH 8.6-8.9 and 5 µL Cy3-NHS (1 mg/mL in DMSO) 

were added. After 1 h incubation at room temperature, the resulting NPs were centrifuged at 
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8.000×g for 20 min and resuspended in MilliQ water. The labeling was confirmed by UV-VIS 

spectrophotometry. 

4.5.4. In vitro studies 

Cytotoxicity studies 

To determine cell viability, MKN45 human cancer cells, 3T3 healthy mouse cells and human 

dermal healthy fibroblasts (HDFa) cells were incubated with the multifunctionalized GNSs and 

GNSm over 24, 48 and 72 hours. Cells were seeded (3×104 cells/well, 100 μL/well, 96-well 

plate), allowed to adhere overnight in complete media (10% Fetal Bovine Serum (FBS) and 1% 

Penicillin/Streptomycin in RPMI 1640 medium for MKN45 cells, DMEM medium for HDFa 

cells and 3T3 healthy cells) and maintained in a humid atmosphere at 37°C and 5% CO2. Then, 

media was removed and cells were left untreated (blank) or incubated with the GNSs and GNSm-

containing formulations, diluted accordingly in media. The experiments were performed in 

triplicates. After the desired time, cell supernatant was removed and 100 μL/well of MTT reagent 

(Roche), diluted in the corresponding media to the final concentration of 0.25 mg/mL, was added. 

After 1 hour incubation at 37°C and 5% CO2, the excess reagent was removed and formazan 

crystals were solubilized by adding 200 μL of DMSO per well. The optical density of each well 

was measured in a TECAN Genios Pro 96/384 microplate reader at 550 nm. Data was 

represented as the percentage of cell survival compared to control wells. 

Cell internalization studies 

MKN45 cells were seeded in an ‘Ibidi’ µ-slide 8-well-plate (20.000 cells/well in 0.3 mL) and 

incubated overnight to adhere (37 °C, 5% CO2, humid atmosphere). The media was removed and 

0.1 mL Hoechst 33342 (1 µg/mL in media) added to stain the nucleus. After 10 min incubation 

(37 °C, 5% CO2, humid atmosphere) 0.1 mL LysoTracker deep red (1 µg/mL in media) was 

added to stain the lysosomes. After 20 min incubation (37 °C, 5% CO2, humid atmosphere) 

media was removed and 0.3 mL of Cy3-labeled GNSs or GNSm (20 µg/mL in medium) were 

added. After 2 h incubation (37 °C, 5% CO2, humid atmosphere) the media was removed and 

replaced with fresh media. The images were taken with a Cell Axio Observer Fluorescence 

Microscope. Controls of single staining for each fluorophore were included. Images were 

analyzed by ZEN-ZEISS software. 
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4.5.5. In vivo experiments 

Animals 

The animals were maintained and handled in accordance with the Guidelines for Accommodation 

and Care of Animals (European Convention for Protection of Vertebrate Animals Used for 

Experimental and Other Scientific Purposes) and internal guidelines. Experimental procedures 

were approved by the ethical committee and local authorities. All animals were housed in 

ventilate cages and fed on standard diet ad libitum. 

MKN45 mouse tumor model development 

 In order to study the biodistribution of the GNSs and GNSm in tumor-bearing mice, Rj:NMRI-

Foxn1
nu/nu female mice (7-8 weeks old, Janvier) were subcutaneously inoculated with 2×106 

MKN45 tumor cells in the right back. Prior to each inoculation, cells were diluted in sterile PBS: 

Matrigel (1:1) and Mycoplasma test (Lonza) was carried out to ensure that cells were not 

contaminated. Tumors were measured every 2–3 days with a digital caliper and volumes were 

calculated as V (mm3) = [(short diameter)2 x (long diameter)]/2. Biodistribution studies were 

carried out when tumor volume was approximately 200–300 mm3 (~15 days after tumor 

inoculation).  

Biodistribution studies 

PET studies with 64Cu-labeled multifunctionalized GNSs and GNSm were carried out in MKN45 

tumor-bearing mice (n=3 per NP type) using an eXplore Vista-CT small animal PET-CT system 

(GER healthcare). Anesthesia was induced with 3% isoflurane and maintained by 1.5 to 2% of 

isoflurane in 100% O2. For intravenous administration of the radiotracer, the tail vein was 

catheterized with a 24-gauge catheter and the labeled NPs (ca. 3–10 MBq) were injected. PET 

images were analyzed using PMOD image analysis software (PMOD Technologies Ltd, Zürich, 

Switzerland). Volumes of interest (VOIs) were manually drawn in lungs, liver, heart, kidneys, 

spleen, brain, stomach, tumor and bladder using CT images as anatomical reference. VOIs were 

then transferred to the PET images and time activity curves (decay corrected) were obtained for 

each organ as cps/cm3. Curves were transformed into real activity (Bq/cm3) curves. Injected dose 

normalization was finally applied to data to get time activity curves as percentage of injected 

dose per cm3 of tissue (%ID/cm3).  
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In vivo imaging studies using PET in combination with Computerized Tomography (CT) were 

carried out in a human gastrointestinal adenocarcinoma mouse model (MKN45 human cell line) 

with Cu-GNSs-PEG@[4.4]- and Cu-GNSm-PEG@[4.4]-. Static images were acquired (total 

acquisition time of 30 min) after 1h administration of Cu-GNSs-PEG@[4.4]- and Cu-GNSm-

PEG@[4.4]- and further static acquisitions were recorded at t = 6 h, 24 h and 48 h post-

administration.  

4.5.6. Ex vivo studies 

Mice submitted to imaging sessions were sacrificed at 48 hours post injection, after the last 

imaging session. Organs of interest were collected and weighed, and the radioactivity was 

measured in a well gamma-counter (Wallach Wizard, PerkinElmer, Waltham, MA, USA). The 

uptake of 64Cu in the different organs was calculated as a percentage of the injected dose per 

gram of tissue (%ID/g) according to the prepared standards. The weighed organs (liver, spleen 

and tumor) were then immersed in digest solution (HNO3/HCl = 1:1) with a volume of 5 mL. The 

dispersions were heated to boiling until organs were completely dissolved. 1 mL of H2O2 was 

then added into the solution, and heating continued until the solution became clear and 

transparent. The solution was then cooled to room temperature, diluted by 2% HNO3 to 15 mL, 

and subsequently analyzed by ICP-MS to determine the concentration of Au and B in each 

sample. 
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Chapter 5: Gold Nanorods as boron carriers for BNCT 

5.1. Introduction 

In the last two chapters, the application of spherical gold NPs as boron-carriers with potential 

application in Boron Neutron Capture Therapy (BNCT) has been explored. The results obtained 

suggest that the amount of boron accumulated in the tumor models investigated is insufficient to 

tackle in vivo therapeutic experiments. In view of the results, we decided to explore nanosystems 

enabling the combination of two therapeutic approaches, and the natural selection is gold 

nanorods (GNRs). Indeed, the shape of nanoparticles has been recognized as a key factor 

influencing biodistribution, blood circulation time and cellular uptake in cancer drug delivery [1, 

2]. This is also the case for gold nanosystems [3], and hence in our case the use of nanosystems 

with other shapes may increase circulation time and eventually enhance tumor accumulation. 

Besides this, GNRs exhibit strong surface plasmon band in the visible (~520 nm) and near 

infrared (~900 nm) regions corresponding to the transverse and longitudinal surface plasmon 

oscillations of free electrons, respectively. The interaction of incident infrared light with the 

GNRs produces ultimately localized heating, which can be used to trigger thermal damage 

locally. Because infrared light can penetrate deeply into tissues, photothermal therapy using 

GNRs as the sensitizing agent has been investigated in the recent years, both to induce local 

heating and to trigger drug release upon interaction with incident light [4-6]. 

In this chapter, as a third approach for the development of gold NP-based BNCT agents, we 

selected rod-shaped gold particles functionalized with PEG-thiol (to improve GNRs stability and 

prolong circulation time during in vivo biodistribution studies). As the boron source, we decided 

to incorporate the boron cluster [4.4]
- (see chapter 3) on the GNRs surface via Au-S interaction. 

The resulting multifunctionalized GNRs were radiolabeled with 64Cu, a positron emitter with a 

half-life of 12.7 hours, to enable in vivo imaging using Positron Emission Tomography (PET). 

The radiolabel was incorporated on the surface of the GNR core via chemical reduction of 
64CuCl2 under mild reaction conditions. The presence of gold nanorods and boron atoms in the 

tumor tissue, as demonstrated in our in vivo experiments, should enable the application of 

simultaneous BNCT and photothermal therapy, with the consequent improved therapeutic 

efficacy.  
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5.2 Objectives 

The specific objectives of this chapter are: 

5- To synthesize and characterize stable and biocompatible GNRs functionalized with PEG and 

COSAN. 

6- To perform radiolabeling studies for the incorporation of positron emitters in the core of the 

multifunctionalized GNRs. 

7- To perform in vitro studies (cytotoxicity and cell internalization studies) of 

multifunctionalized GNRs in different cell lines; namely, MKN45 gastric cell line and human 

dermal fibroblasts (HDFa) cell line. 

8- To evaluate pharmacokinetic properties of the novel multifunctionalized GNRs using positron 

emission tomography (PET) in a human gastrointestinal adenocarcinoma mouse model 

(MKN45 human cell line) after intravenous administration. 

5.3 Results and Discussion 

5.3.1 Synthesis and Characterization of GNR-mPEG@[4.4]- 

The approach that we followed for the preparation of boron-rich GNRs was similar to that used in 

previous chapters, this is, we used the same stabilising agent and the same boron cluster, [3,3’-

Co(1,2-C2B9H10)(8’-O-(CH2)5-SH-1’,2’-C2B9H11)]- ([4.4]
-), which was synthesized following the 

method described in Chapter 3.  

In parallel, cetyltrimethylammonium bromide (CTAB)-stabilised GNRs (GNR-CTAB) were 

prepared following the seedless method [7]. The conditions were adjusted in order to achieve 

monodisperse GNRs with average dimensions (length × width) of 37 × 10 nm, in a one-pot 

reaction. In brief, HAuCl4 was added to CTAB solution and shaken for 1 min. To this solution, 

silver nitrate was added and shaken gently for 1 min. Hydrochloric acid was introduced to obtain 

a pH close to 2.0. After that, ascorbic acid was added under gentle stirring until the solution 

became clear. In the final step, ice-cold sodium borohydride was injected into the growth solution 

and allowed to react for 6 h. The growth solution was maintained at 27-30 °C in a water bath 

(Figure 5.1). The synthesized GNR-CTAB were centrifuged twice at 14500 rpm to remove the 

excess CTAB as well as other reagents, and re-dispersed in water.  
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Figure 5.1. Schematic representation of the preparation of GNR-CTAB. 

The obtained GNR-CTAB were analysed by UV-Vis-NIR spectrophotometry, transmission 

electron microscopy (TEM) and dynamic light scattering (DLS). UV-Vis-NIR showed the 

longitudinal surface plasmon resonance (SPR) band centred at 811 nm (Figure 5.2a). TEM 

images showed uniform gold nanorods with sizes 37±3 × 10±1 nm (length × width; aspect ratio 

of 3.7) (Figure 5.2b). Zeta-potential values of +35±1 mV were obtained, as expected due to the 

positively charged CTAB surfactant bilayer [8] (Figure 5c). 

The biological application of GNRs requires the removal of CTAB surfactant bilayer due to its 

high toxicity and the poor colloidal stability in biological media [9]. Therefore, to increase the in 

vivo stability, biocompatibility and blood circulation half-life of GNRs, several GNRs surface 

modifications by ligand exchange with different polymers have been proposed [10-12]. Among 

the many different polymers and ligands, poly(ethylene glycol)thiol (PEG-SH) is one of the most 

commonly used in the modification of gold nanostructures. PEG polymers provide high degree of 

stability, low toxicity and high biocompatibility for GNRs and several PEGylated products have 

been approved by the FDA (Food and Drug Administration) for clinical use.  
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Figure 5.1. UV-Vis-NIR absorption spectra (a); TEM (b) and Zeta potential (c) of GNR-CTAB. 

CTAB-protected GNRs were functionalized with PEG by reacting with methoxyPEG5k–SH for 

20–24 h in pure water based on previously reported protocols [11, 13]. In this work, mPEG-

stabilized GNRs (GNR-mPEG) were prepared by mixing GNR-CTAB solution with 5 kDa 

mPEG (PEG:Au molar ratio of 1.5) for 24 hours at room temperature in water (Figure 5.3).  

 

Figure 5.3. Schematic representation of the preparation of GNR-mPEG. 
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The functionalization of GNRs with mPEG–SH was much more complex than that of the citrate-

AuNPs because of a strong capping surfactant (CTAB) on the nanorods. In the case of spherical 

gold nanoparticles the citrate monolayer can be very easily replaced by the thiol group (reaction 

time 2 h); however, the double-layered CTAB on GNRs hinders the binding of PEG–SH to the 

GNR surface, leading to a slow loading speed of PEG–SH. After 24 h reaction, the synthesized 

GNR-mPEG were centrifuged twice at 14500 rpm to remove the excess PEG, and re-dispersed in 

water. The minimal bathochromic shift in the longitudinal SPR band from 800 to 819 nm (Figure 

5.4a) after replacement of CTAB by mPEG confirms the retention of structural and optical 

properties of the GNRs after modification. Replacement of positively charged CTAB with neutral 

PEG chains resulted in zeta potential values close to neutral (8±2 mV; Figure 5.4b). TEM images 

revealed the similar size and aspect ratio of GNRs before and after PEGylation (Figure 5.4c). 

 

 

Figure 5.4. UV-vis-NIR of GNR-CTAB and GNR-mPEG (a); Zeta potential (b) and TEM images (c) of 
GNR-mPEG. 

After successful functionalization of GNRs with mPEG-thiol, we next tackled the attachment of 

thiolated COSAN derivative ([4.4]
-) on the GNR-mPEG surface. This was carried out by 
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incubation of GNR-mPEG solution and compound [4.4]
- in ethanol under stirring for 2 h at room 

temperature (Figure 5.5).  

 

Figure 5.5. Preparation of GNR-mPEG@[4.4]- from GNR-mPEG. 

In order to evaluate the loading capacity of the boronated ligand into the GNRs, these were 

incubated with different amounts of [4.4]
- (GNR/[4.4]- molar ratios: 12, 10, 8, 6, 4, 2, 1.5 and 

1.0). Upon surface modification of GNR-mPEG with different concentrations of [4.4]
-, no tailing 

or broadening was observed in the normalised UV-vis spectra, indicating excellent stability of the 

synthesized GNRs (Figure 5.6). However, broadening of the longitudinal peak and increase in the 

intensity of the transversal absorption band indicate the instability of the functionalized GNRs for 

GNR/[4.4]
- molar ratio 1.0 (blue line, Figure 5.6). Therefore, the GNR/[4.4]

- molar ratio 1.5 was 

considered as optimal ratio to load the boron rich compound on GNR surface, as under these 

conditions we expected to obtain maximum concentration of boron on the NPs without affecting 

the stability and aggregation status of the nanorods.  

After purification by centrifugation and repeated washing, boron-rich GNRs (GNR-

mPEG@[4.4]-) were obtained. The size and aspect ratio remained the same as for GNR-mPEG 

(Figure 5.7a). While UV-Vis-NIR spectroscopy showed unchanged absorption maximum at 819 

nm (Figure 5.7b), a new absorption band appeared at 320 nm, related to the absorption by 

COSAN (314 nm), suggesting successful adsorption of the boron cluster on the surface of GNRs. 

The recorded shift of the zeta potential value, from 8±2 mV to -12±2 mV (Figure 5.7c), confirms 

the attachment of negatively charged cobalt-bis-dicarbollide complexes on the GNR surface.  
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Figure 5.6. Normalised UV-Vis-NIR spectra of GNR-mPEG@[4.4]- with different GNR/[4.4]
- molar 

ratios. 

 

Figure 5.7. a) Representative transmission electron micrograph (TEM) of GNR-CTAB (left),  GNR-
mPEG (middle) and GNR-mPEG@[4.4]- (right); b) UV-vis-NIR absorption spectra of GNR-CTAB (blue 
line), GNR-mPEG (red line), GNR-mPEG@[4.4]- (green line) and compound [4.4]- (yellow line); and c) 
Zeta-potential values measured for GNR-CTAB, GNR-mPEG and GNR-mPEG@[4.4]-. 
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As an additional structural evidence, the presence of COSAN on the surface was confirmed by 

scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray 

spectroscopy (EDXS). The energy bands in STEM-EDXS corresponding to cobalt and boron 

were observed, confirming the presence of [4.4]
- on the surface of particles (Figure 5.8). 

 

 

Figure 5.8. a) STEM images of GNR-mPEG@[4.4]-; the areas analyzed with EDXS are delineated in 
blue; b) sum EDXS spectrum of the selected GNRs. 

Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of GNRs-mPEG@[4.4]- showed a 

peak at 780.2 eV in the Co spectrum, corresponding to Co-B bonds, and peaks at 192.8 and 188.5 

eV, corresponding to B-O and C-B bonds, respectively (Figure 5.9) [14]. These results confirmed 

the presence of both cobalt and boron on the surface of the nanorods.  

In order to determine the loading capacity of the system, ICP-MS analysis were performed to 

measure the gold and boron content in the final GNR-mPEG@[4.4]- (GNR/[4.4]- molar ratio 1.5). 

The amount of [4.4]
- was estimated to be 225 µg per mg of gold, which results in ca. 100 µg of 

boron/mg of gold.  
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Figure 5.9. X-ray photoelectron spectroscopy (XPS) analysis of GNRs-mPEG@[4.4]- 

5.3.2 In vitro studies 

Cytotoxicity studies 

To evaluate the cell cytotoxicity of the multifunctional GNR-mPEG@[4.4]-, the MKN-45 gastric 

adenocarcinoma and human dermal fibroblasts (HDFa) cell lines were used as in vitro models. 

These cell lines were treated with 10, 20, 40, 60, 80, and 100 μM (gold concentration) of the 

GNRs for up to 72 hours prior to analysis using the MTT assay.  

The results (Figure 5.10) confirm that treatment of MKN-45 and HDFa cells with GNR-

mPEG@[4.4]- did not reduce the viability of the cells at any of the concentrations assayed, 

indicating negligible cytotoxicity in this range of concentrations.  
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Figure 5.10. Cell viability in the presence of GNR-mPEG@[4.4]- for 24, 48 and 72 hours: a) MKN45 
gastric cell line and b) human dermal fibroblasts (HDFa); in both cases, cells were incubated with 
increasing concentrations of GNRs and cell viability was determined by the MTT assay. Data are shown 
as the mean ± standard deviation of three independent experiments. 

Cell internalization studies 

Incubation of nanoparticles with cells seeded on a surface [two-dimension (2D) cell culture] is 

the most common method to evaluate the cellular uptake of nanoparticles. The cellular uptake of 

multifunctionalized GNRs was investigated in MKN-45 cells (as these are the cells inoculated for 

the generation of the tumor model, vide infra) using live cell fluorescence microscopy. With that 

aim, a fluorophore needed to be incorporated on the NPs. To enable conjugation with a 

fluorophore, GNR-mPEG@[4.4]- were reacted with PEG-amine-thiol (5kDa) at room 

temperature for 2h, centrifuged at 14000 rpm for 10 min and washed two times with water. Then, 

the fluorophore Cy3-NHS ester dissolved in DMSO was added to amino-functionalized GNR-

mPEG@[4.4]- (pH 7.4-8.0) and stirred for 2h at room temperature, centrifuged at 14000 rpm for 
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10 min and washed two times with water. The fluorophore-labeled GNR-mPEG@[4.4]- were 

incubated with MKN-45 cells for 2 h. To enable co-localization between the GNR-mPEG@[4.4]- 

and the lysosomes, these were stained with Lysotracker-deep-red. Images were obtained using a 

live cell Axio Observer (Zeiss) fluorescence microscope and analyzed by the ZEN-ZEISS 

software, showing a clear co-localization between the GNR-mPEG@[4.4]- and the Lysosomes 

and therefore demonstrating internalization (Figure 5.11). 

 

 
Figure 5.11. Live cell fluorescence microscopy of GNRs after 2 h incubation. In green: GNR-
mPEG@[4.4]-, fluorophore-labeled with NHS-Cy3; in red: Lysosomes, stained with LysoTracker deep 
red; in blue: nucleus, stained with Hoechst33342. Merged signals of GNR-mPEG@[4.4]-, colocalizing 
with lysosomes appear in yellow. 

5.3.3. Radiolabeling of GNRs-mPEG@[4.4]- with 64Cu  

To introduce PET imaging capabilities to nanosystems, one of the most common way consists of 

attaching the radionuclide 64Cu via a metal chelator [15]. However, the possible detachment of 

the 64Cu atom by transchelation from the chelator complex could lead to a significant difference 

between the radionuclide signal and the distribution of GNRs. A few years ago, Sun et al. 

reported a straightforward, facile synthesis of 64Cu labeled gold nanomaterials for PET imaging 

guided therapy in a U87MG glioblastoma xenograft model [16]. Based on this protocol, 

multifunctional GNRs were labeled with 64Cu radionuclide. In brief, [64Cu]CuCl2 was reduced in 
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the presence of hydrazine (N2H4) on the surface of GNRs-mPEG@[4.4]- at room temperature for 

1 hour (Figure 5.12).  

 

Figure 5.12. Schematic representation of radiolabeling of GNRs-mPEG@[4.4]- with 64Cu. 

After 1h, the synthesized GNRs-mPEG@[4.4]- were challenged with ethylenediaminetetraacetic 

acid (EDTA, 10 mM in neutral 50 mM phosphate buffer, 5 μL) and centrifuged at 14000 rpm for 

10 min and washed two times with water. The radiochemical purity of [64Cu]GNRs-

mPEG@[4.4]- was monitored by using instant thin-layer chromatography (iTLC) paper (Agilent 

Technologies) with 20 mM citric acid and 60 mM EDTA/acetonitrile solution (9/1 v/v) as the 

stationary and mobile phases, respectively.  

 

Figure 5.13. Radiochemical purity of [64Cu]GNRs-mPEG@[4.4]- 
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Radiochemical yields close to 70% were achieved and radiochemical purity was > 98% (Figure 

5.13), as derived from the presence of one single peak in the chromatogram at the seeding 

position. Noteworthy, TEM images and UV-Vis-NIR spectra of GNRs-mPEG@[4.4]- (after 

radioactive decay) remained unaltered after incorporation of the 64Cu radiolabel on the gold core, 

confirming the suitability of labeling method to tackle in vivo experiments (Figure 5.14). 

 

Figure 5.14. TEM image (a) and UV-Vis-NIR spectra (b) of [64Cu]GNRs-mPEG@[4.4]- after complete 
radioactive decay). 

5.3.4. Radiochemical stability 

As mentioned in previous chapters, the stability of the radiolabel is paramount when performing 

in vivo experiments, because detachment of the radiolabel may lead to wrong interpretation of the 

imaging data. When radiometals are employed for radiolabeling, one of the most conclusive 

approaches to determine stability in vitro consists of incubating the labeled species in the 

presence of a chelator capable of sequestrating the radionuclide. Following this rationale, we 

investigated the radiochemical stability of [64Cu]GNRs-mPEG@[4.4]- by incubation in three 

different media at 37 °C: (i) Physiological saline solution containing EDTA as a chelator (0.9% 

NaCl + 2.5 mM EDTA); (ii) phosphate buffered saline containing EDTA (PBS + 2.5 mM 

EDTA); and (iii) mouse serum.  

The experiments confirmed the excellent stability of the radiolabel, as expected due to the 

incorporation on the gold core. Irrespective of the medium, >92% of the initial 64Cu remained 

attached to GNRs-mPEG@[4.4]- at 48 h of incubation (Figure 5.15), thereby proving that the 

labeled GNRs are sufficiently stable to proceed to in vivo experiments.  
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Figure 5.15. Radiochemical stability of GNR-mPEG@[4.4]- at different incubation times in: 
physiological saline solution containing EDTA (0.9% NaCl + 2.5 mM EDTA); phosphate buffered saline 
containing EDTA (PBS + 2.5 mM EDTA); and mouse serum. 

5.3.5. In vivo studies 

Following the investigation of in vitro toxicity and cell internalization, we tackled the 

determination of the biodistribution of the labeled nanorods in a xenograft mouse model 

generated by subcutaneous administration of MKN-45 cells, using PET imaging in combination 

with computerized tomography (CT) (Figure 5.16).  

 

Figure 5.16. Schematic representation of in vivo analysis of [64Cu]GNR-mPEG@[4.4]- using PET-CT  

General biodistribution of the labeled GNRs and the accumulation in the tumor were determined 

by acquiring static PET images at different time points after administration of the labeled species 
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(1, 4, 24 and 48 hours; see Figure 5.17 for representative images). Volumes of interest (VOIs) 

were drawn in major organs and tumor tissue based on reconstructed CT images, and used to 

quantify PET images. The concentration of radioactivity in each region was determined as 

percentage of injected dose per cubic centimeter of tissue (%ID/cm3) (Figure 5.18a).  

 

a b c d

 

Figure 5.17. Representative PET images (coronal views) obtained at 1 (a), 4 (b), 24 (c), and 48 (d) hours 
after administration of [64Cu]GNR-mPEG@[4.4]- in mice bearing MKN-45 tumor. Maximum intensity 
projection (MIP) PET images were co-registered with representative CT coronal slices. The position of the 
tumor is indicated with white arrows. 

At t = 1 hour, high accumulation of radioactivity was observed in the heart (28.7±3.2 %ID/cm3), 

suggesting the presence of a significant amount of labeled GNRs in the blood pool. This value 

progressively decayed with time, to reach a value of 2.22±0.16 %ID/cm3 at t = 48 hours. A 

mono-exponential equation was fitted to the obtained values, to determine an estimated half-life 

of GNRs in blood of 1.4 hours (Figure 5.18d).  

High accumulation of GNRs was observed in liver at short times after administration (26.3±2.8 

%ID/cm3), as well as in the lungs (14.6±3.0 %ID/cm3) and spleen (13.7±1.8 %ID/cm3). In these 

organs, a progressive decrease of radioactivity concentration was observed over time, reaching 

values of 15.5±3.9 %ID/cm3, 0.96±0.5 %ID/cm3 and 4.3±3.4 %ID/cm3, respectively, at t = 48 

hours after administration. These results suggest moderate sequestration of the NPs by organs of 

the mononuclear phagocyte system (MPS). Lower accumulation in kidneys (i.e. 9.3±1.0 
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%ID/cm3), and no significant elimination via urine were observed, suggesting a very slow 

glomerular filtration rate, and hence confirming the stability of the label. A progressive decrease 

of the amount of GNRs found in liver and kidneys is important because this trend may reduce 

local side- or toxic effects in eventual long-term treatments. 

 

 

Figure 5.18. (a,b) Accumulation of [64Cu]GNR-mPEG@[4.4]- in different organs (a) and the tumor (b) at 
different time points after intravenous administration, as determined by PET imaging; (c) tumor-to-muscle 
ratios at different time points; (d) Time activity curve in blood; (e) correlation of results obtained by in 

vivo imaging and dissection/gamma counting. In all cases, values are expressed as mean ± standard 
deviation (n=4).  
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Noteworthy, the concentration of radioactivity in the tumor progressively increased with time 

(Figure 5.18b) to reach the maximum value at t = 24 hours (3.3±1.2 %ID/cm3) and slowly 

decreased afterwards (2.7±1.8 %ID/cm3 at t =48 hours). The tumor-to-muscle ratio showed a 

similar trend, reaching the maximum of 5.4±2.7 at t = 24 hours after administration (Figure 

5.18c).  

5.3.6. Ex vivo studies 

In vivo biodistribution results were confirmed by ex vivo gamma-counting experiments, 

conducted immediately after finalizing the last imaging session. Mice were sacrificed after 48 h 

time point, organs of interest were harvested and the amount of radioactivity in each organ was 

measured in an automated gamma-counter (Wallach Wizard, PerkinElmer, Waltham, MA, USA). 

As depicted in Figure 5.18e, a good correlation between in vivo and ex vivo results was achieved. 

Major differences were encountered in the lungs. This is somehow expected, as the values 

determined in vivo (using PET imaging) are expressed as %ID/cm3, because volumes of interest 

are delineated. However, values obtained ex vivo correspond to %ID/g, and hence in vivo and ex 

vivo data should match only when the density of the tissue investigated is close to 1. This is not 

the case for a breathing lung under physiological conditions, where the density is assumed to be 

close to 0.5 g/cm3 due to the presence of a large volume of air. 

Our results above assume that the GNRs are chemically and radiochemically stable over the 

whole duration of the study, this is, that the imaging results reflect the real accumulation of GNR-

mPEG@[4.4]- in different organs and tumor tissue. Despite the low elimination via urine suggest 

that the radiolabel does not detach from the NPs, it is not a proof of the chemical stability of the 

NPs.  

In order to prove that the presence of radioactivity in the tumor (as well as other organs) can be 

correlated with the actual concentration of nanoparticles (and boron), the concentration of boron 

and gold in selected organs (spleen, liver) as well as in the tumor were determined by ICP-MS 

(Figure 5.19). As it can be seen, a good correlation between results obtained by ICP-MS and in 

vivo imaging was achieved, confirming the stability of our functionalized GNRs and their 

capacity to reach the tumor. 
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Figure 5.19. Amount of gold and boron in the spleen, the liver and the tumor at 48 hours after intravenous 
administration of GNR-mPEG@[4.4]-, as determined by ICP-MS and PET imaging. Values for PET 
imaging are obtained by multiplying the %ID/cm3 (values from Figure 5.18a) by the relative load of boron 
and gold in the nanosystems. 

Our biodistribution data are in good agreement with results reported in the literature. Although no 

examples of boron-rich GNRs have been reported, GNRs bearing other functionalities have been 

assayed in vivo. In one of the examples reported, non-targeted, PEG-stabilized GNRs were 

evaluated in a xenograft mouse model of breast cancer and maximum accumulation in the tumor 

was observed at 6–24 hours after administration, with values slightly above 5% ID/g. These 

uptake values could be significantly increased by covalently attaching a bombesin peptide to the 

GNRs. The authors also observed high accumulation in liver and kidneys  [17].  In a more recent 

work [18], slightly larger (93.4 nm in length, 24.8 nm in width; aspect ratio = 3.8) PEG-stabilized 

GNRs functionalized with  Arg-Gly-Asp- (RGD-) peptides were assayed in a mouse model of 

melanoma generated by subcutaneous inoculation of  𝛼v𝛽3-positive B16F10 mouse malignant 

melanoma cells. Maximum accumulation at 6 hours after administration was observed in liver 
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(26.51±4.93 %ID/g), lungs (7.07±0.25 %ID/g) and spleen (5.55±0.69 %ID/g), while 

accumulation in the tumor was 5.09±0.68 %ID/g and the tumor-to-muscle ratio was close to 10. 

We calculated the amount of boron accumulated in the tumor at different times after 

administration based on PET imaging results. Considering that: (i) the injected dose to the animal 

was 150 µg of GNR-mPEG@[4.4]- (amount of gold); (ii) GNRs contain 100µg boron per mg of 

gold; and (iii) the concentration of GNRs in the tumor at t = 24 hours after administration is 

3.3±1.2 %ID/cm3, the average concentration of boron in the tumor at t = 24 hours is 0.5 µg/cm3. 

This value is below the commonly accepted threshold to guarantee therapeutic efficacy in stand-

alone BNCT therapy. Higher values could however be easily achieved by administering higher or 

repeated doses.  

The values obtained with our nanosystems are significantly lower than those achieved with other 

nanocarriers. For example, the administration of carborane-appended water-soluble single-wall 

carbon nanotubes (administered dose per animal 4.6-10 mg) in a mouse model of mammary 

carcinoma resulted in boron concentration of almost 30 µg/cm3 [19]. In another, more recent 

work, boron-conjugated micelles with a boron load of 7.7 wt% were investigated in a mouse 

model of colon cancer, resulting in tumor uptake values close to 5 %ID/g in a time window 

between 24 and 48 hours after administration [20]. Intravenous administration of a dose of 15.6 

mg/kg to tumor-bearing mice was sufficient to retard growth significantly after neutron 

irradiation. 

It is worth mentioning that comparison of tumor accumulation of different boron-rich 

nanosystems should be performed with care, as different tumor models could lead to very 

different tumor accumulation values, even when experiments are performed at the same site and 

under identical experimental conditions. Our nanosystems, despite resulting in lower 

accumulation than that required to guarantee efficacious therapy, have the advantage of being 

capable to respond to light stimulus generating local heat, thus enabling combined BNCT and 

photothermal therapies.  

5.4. Summary and conclusions 

In this chapter, we developed a synthetic strategy for the preparation of GNRs simultaneously 

functionalized with mPEG5k-SH and a thiolated COSAN analogue (GNR-mPEG@[4.4]-). 
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Monidisperse and stable GNRs could be obtained with an aspect ratio of 3.7 (37±3 × 10±1 nm; 

length × width). The resulting GNRs showed good internalization capacity in MKN45 cells and 

low toxicity both in MKN45 and human dermal fibroblasts (HDFa). Treatment of the GNRs with 
64CuCl2 in the presence of a reducing agent enabled the incorporation of the positron emitter at 

the gold core, resulting in stable labeling in different media. In vivo experiments in a xenograft 

mouse model generated by inoculation of MKN45 cells showed significant accumulation of the 

GNR-mPEG@[4.4]- in the tumor and good tumor-to-muscle ratios at 24–48 hours after 

administration. Such multidecorated GNRs carry large amounts of boron, and hence bear the 

potential to become a valuable tool for the development of nanoparticle-based BNCT agents. 

This, together with the capability to absorb near infrared light, opens new avenues for their use in 

combined therapies (BNCT + photothermal therapy) 

5.5. Experimental section 

5.5.1. Reagents 

Cesium cobalt(III) bis(dicarbollide) (COSAN) (Katchem Ltd., Prague, Czech Republic), 

tetrahydropyran (sigma-Aldrich), hexadecyltrimethylammonium bromide (CTAB, Sigma), 

gold(III) chloride trihydrate (HAuCl4·3H2O, Aldrich), sodium borohydride (NaBH4, Aldrich), 

silver nitrate (AgNO3, Sigma-Aldrich), ascorbic acid (Sigma), potassium carbonate (K2CO3, 

Sigma-Aldrich), poly (ethylene glycol) methyl ether thiol (MW 5000, Nektor), Cy3-NHS 

(BroadPharm®), and hydrazine hydrate (50–60%) (Sigma-Aldrich) were used as purchased. All 

other reagents and anhydrous solvents, stored over 4 Å molecular sieves, were purchased from 

Aldrich Chemical Co. (Madrid, Spain) and used without further purification. HPLC grade 

solvents were purchased from Scharlab (Sentmenat, Barcelona, Spain). 64Cu2+ in 0.1 M HCl was 

produced at CIC biomaGUNE Radiochemistry facility using cyclotron via the 64Ni(p,n)64Cu 

nuclear reaction. 

For chemical reactions, experiments were carried out under a dry, oxygen-free dinitrogen 

atmosphere unless otherwise noted. Analytical thin layer chromatography (TLC) measurements 

were conducted with silica gel 60 F254 plates (Macherey-Nagel). 
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5.5.2. Instrumentation: 

The 1H-NMR (500 MHz), 13C-NMR (126 MHz) and 11B-NMR (160 MHz) spectra were recorded 

on a 500-MHz Avance III Bruker spectrometer. All NMR spectra were performed in deuterated 

solvents at 22 °C. The 11B-NMR shifts were referenced to external BF3·OEt2, while the 1H and 
13C-NMR shifts were referenced to SiMe4. Chemical shifts are reported in units of parts per 

million (ppm) downfield from the reference peak and all coupling constants are reported in Hertz 

(Hz).  

UPLC/ESI-MS analyses were performed using an AQUITY UPLC separation module coupled to 

LCT TOF Premier XE mass spectrometer (Waters, Manchester, UK). An Acquity BEH C18 

column (1.7 µm, 5 mm, 2.1 mm) was used as stationary phase. The elution buffers were A (water 

and 0.1% formic acid) and B (Methanol and 0.1% formic acid). The column was eluted with 

gradient: t=0 min, 95% A, 5% B; t=0.5 min, 95% A, 5% B; t=5.5 min, 25% A, 75% B; t=16 min, 

1% A, 99% B; t=20min, 1% A, 99% B. Total run was 20 min, injection volume was 5 µL and 

flow rate 300 µL/min. The detection was carried out in both, negative and positive ion mode, 

monitoring the most abundant isotope peaks from the mass spectra (M-H+) or (M+H+). 

Transmission electron microscopy (TEM) was performed using a JEOL JEM-1400 plus 

microscope (Jeol, Tokyo, Japan) working at 120 kV. The carbon film of copper grids (CF400-

Cu) was treated under air plasma in a glow discharge system (Emitech K100X, 40mA during 2 

min) just before sample preparation. For TEM examinations, a single drop (1 μL) of the NPs 

solution was placed onto a copper grid coated with a carbon film (Electron Microscopy 

Sciences). After 1 minute, the drop was removed with filter paper and the sample was incubated 

with 3 μL of uranyl acetate 0.5% (3 min). The drop was removed with filter paper and the grid 

placed on top of a drop of water twice and dried with a filter paper. Scanning transmission 

electron microscopy (STEM) images were taken in a JEOL JEM-2100F (200kV, HAADF 

detector, coupled with an EDXS-INCA Oxford system). Energy dispersive X-ray spectroscopy 

(EDXS) of selected areas was carried out for thirty minutes, in which the sample displacement 

was automatically corrected every two minutes. A clear grid region without particle presence was 

analysed to evaluate the presence of scattered signals coming from the detector, grid and 

equipment microscope composition (Copper, Silicon and Iron, among others). These non-

relevant signals were omitted (<0.1 keV) or asterisk-labeled in the spectrum.  
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XPS experiments were performed in a SPECS Sage HR 100 spectrometer with a non-

monochromatic X ray source (Aluminium Kα line of 1486.6 eV energy and 252 W), placed 

perpendicular to the analyser axis and calibrated using the 3d5/2 line of Ag with a full width at 

half maximum (FWHM) of 1.1 eV. The selected resolution for the spectra was 15 eV of Pass 

Energy and 0.15 eV/step. All measurements were made in an ultra-high vacuum (UHV) chamber 

at a pressure around 6×10-8 mbar. An electron flood gun was used for charge neutralisation. 

Gaussian Lorentzian functions were used for fittings (after a Shirley background correction) 

where the FWHM of all the peaks were constrained while the peak positions and areas were set 

free. Main C1s peak was used for charge reference and set at 284.8 eV. 

ICP-MS measurements were performed on a Thermo iCAP Q ICP-MS (Thermo Fisher Scientific 

GmbH, Bremen, Germany). An ASX-560 autosampler was coupled to the ICP-MS (CETAC 

Tech, Omaha, NE, USA). UV-Vis-NIR spectra were measured in an Agilent 8453 UV-Vis-NIR 

diode-array spectrophotometer. ξ-potential measurements were performed using a Malvern 

Zetasizer Nano ZS system (Malvern Instruments, Malvern, UK). Radio-thin layer 

chromatography (radio-TLC) was performed using iTLC-SG chromatography paper (Agilent 

Technologies, CA, USA) and 20 mM citric acid + 60 mM EDTA/acetonitrile solution (9/1 v/v) as 

the stationary and mobile phases, respectively. TLC plates were analyzed using a TLC-reader 

(MiniGITA, Raytest). 

Cell observer microscopy experiments were carried out using a Zeiss Axio Observer 

Fluorescence microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and 

analyzed by ZEN2012-ZEISS. 

Confocal cell microscopy experiments were carried out using a Zeiss 880 Confocal Fluorescence 

microscope using Ibidi clear bottomed µ-slide 8-well microscopy plates and analyzed by 

ZEN2012-ZEISS. 

5.5.3. Chemistry 

Synthesis of GNRs using seedless growth method 

Gold Nanorods (GNRs) were synthesized following a seedless growth method. HAuCl4 (100 µL, 

0.05 M) was added to 10.0 mL of cetyltrimethylammonium bromide (CTAB; 0.1 M) and shaken. 

Following this, AgNO3 (250 µL, 4.0 mM) was added, and the solution was gently shaken. HCl 



Chapter 5 – GNRs as boron carriers for BNCT  

109 
 

(12.0 µL, 37 wt%) was introduced to obtain a pH close to 1.0 followed by addition of 70 µL of 

ascorbic acid (78.8 mM) under gentle stirring until the solution became clear. In the final step, 

ice-cold NaBH4 (10 µL, 0.01 M) was injected into the growth solution and allowed to react for 6 

h. The growth solution was maintained at 27 °C in a water bath. The synthesized GNRs were 

centrifuged twice at 10.000×g to remove the excess CTAB as well as other reagents, and re-

dispersed in water. 

Synthesis of PEG-modified GNRs 

A GNR solution as prepared above was centrifuged at 10.000×g for 10 min, decanted, and 

resuspended in water to remove excess CTAB. A thiol-terminated PEG solution (300 µL, 10 

mM, Nektor, MW ca. 5000, mPEG-SH) was added to the centrifuged GNR solution (2 mL; 1mM 

Au). The mixed solution was stirred for 24 hours at room temperature, and centrifuged twice at 

10.000×g for 10 min, decanted, and re-suspended in water to remove excess PEG reagent. 

Synthesis of PEG-stabilized, COSAN-functionalized GNRs 

To the PEG-modified GNRs (2 mL; 1 mM Au), 150 μL of a fresh solution of COSAN-SH [4.4]- 

in ethanol (3 mg/mL) were quickly added and stirring was maintained for 2 hours. The resulting 

NPs were centrifuged at 8.000×g for 20 min and resuspended in ultrapure water three times to 

remove excess COSAN-SH reagent, and re-dispersed in 1.0 mL ultrapure water.  

Synthesis of 64Cu-Integrated GNR-mPEG-COSAN 

64CuCl2 produced by proton irradiation of 64Ni as previously described [21], was diluted into 0.4 

M ammonium acetate buffer (NH4Ac, pH 5.5). A 500 μCi 64Cu solution was then added dropwise 

into the mPEG-stabilized, COSAN-functionalized GNRs solution (Au Concentration=250 

μg/mL). After stirring for 5 min, 3 μmol of N2H4 was added, and the solution was allowed to 

react at room temperature for 1 hour before it was washed by centrifugation to remove the excess 

reagents as well as the unreacted 64Cu. The labeling efficiency was calculated based on radiation 

dosimeter readings before and after purification. The labeling efficiency was determined by using 

instant thin-layer chromatography (ITLC) plates with 20 mM citric acid and 60 mM 

EDTA/acetonitrile solution (9/1 v/v) as an eluent.  
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Synthesis of fluorophore labeled PEG-stabilized, COSAN-functionalized GNRs 

The synthesis was performed as described previously with the difference of using 20 % PEG-

amine and 80 % PEG-methoxy to enable labeling with the fluorophore Cyanine3-NHS. Therefore 

200 µL of functionalized AuNP (1 mg/mL for rods and medium in MQ water) were adjusted in 

pH to 8.6-8.9 and 5 µL Cy3-NHS (1 mg/mL in DMSO) were added. After 1 h incubation at room 

temperature, the resulting NPs were centrifuged at 8.000×g for 20 min and resuspended in 

ultrapure water. The labeling was confirmed by UV-VIS spectrophotometry. 

5.5.4. In vitro studies 

Cytotoxicity studies 

To determine cell viability, MKN45 human gastric cancer cells and human dermal healthy 

fibroblasts (HDFa) cells were incubated with the GNRs over 24, 48 and 72 hours. Cells were 

seeded (3×104 cells/well, 100 μL/well, 96-well plate), allowed to adhere overnight in complete 

media (10% Fetal Bovine Serum (FBS) and 1% Penicillin/Streptomycin in RPMI 1640 medium 

for MKN45 cells and DMEM medium for HDFa cells) and maintained in a humid atmosphere at 

37°C and 5% CO2. Then, media was removed and cells were left untreated (blank) or incubated 

with the GNR-containing formulations, diluted accordingly in media. The experiments were 

performed in triplicates. After the desired time, cell supernatant was removed and 100 μL/well of 

MTT reagent (Roche), diluted in the corresponding media to the final concentration of 0.25 

mg/mL, was added. After 1 hour incubation at 37°C and 5% CO2, the excess reagent was 

removed and formazan crystals were solubilized by adding 200 μL of DMSO per well. The 

optical density of each well was measured in a TECAN Genios Pro 96/384 microplate reader at 

550 nm. Data was represented as the percentage of cell survival compared to control wells. 

Cell internalization studies 

MKN45 cells were seeded in an ‘Ibidi’ µ-slide 8-well-plate (20 000 cells/well in 0.3 mL) and 

incubated over night to adhere (37 °C, 5% CO2, humid atmosphere). The media was removed and 

0.1 mL Hoechst 33342 (1 µg/mL in media) added to stain the nucleus. After 10 min incubation 

(37 °C, 5% CO2, humid atmosphere) 0.1 mL LysoTracker deep red (1 µg/mL in media) was 

added to stain the lysosomes. After 20 min incubation (37 °C, 5% CO2, humid atmosphere) 

media was removed and 0.3 mL of Cy3-labeled AuNP (20 µg/mL in medium) added. After 2 h 
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incubation (37 °C, 5% CO2, humid atmosphere) the media was removed and replaced with fresh 

media. The images were taken with a Cell Axio Observer Fluorescence Microscope. Controls of 

single staining for each fluorophore were included. Images were analyzed by ZEN-ZEISS 

software. 

5.5.5. In vivo experiments 

Animals 

The animals were maintained and handled in accordance with the Guidelines for Accommodation 

and Care of Animals (European Convention for Protection of Vertebrate Animals Used for 

Experimental and Other Scientific Purposes) and internal guidelines. Experimental procedures 

were approved by the ethical committee and local authorities. All animals were housed in 

ventilate cages and fed on standard diet ad libitum. 

MKN45 mouse tumor model development 

In order to study the biodistribution of the GNRs in tumor-bearing mice, Rj:NMRI-Foxn1
nu/nu 

female mice (7-8 weeks old, Janvier) were subcutaneously inoculated with 2×106 MKN45 tumor 

cells in the right back. Prior to each inoculation, cells were diluted in sterile PBS:Matrigel (1:1) 

and  mycoplasma test (Lonza) was carried out to ensure that cells were not contaminated. Tumors 

were measured every 2–3 days with a digital caliper and volumes were calculated as V (mm3) = 

[(short diameter)2 x (long diameter)]/2. Biodistribution studies were carried out when tumor 

volume was approximately 200–300 mm3 (~15 days after tumor inoculation).  

Biodistribution studies 

PET studies with 64Cu-labeled multifunctionalized GNRs were carried out in MKN45 tumor-

bearing mice (n=4 per compound) using an eXplore Vista-CT small animal PET-CT system (GE 

Healthcare). Anesthesia was induced with 3% isoflurane and maintained by 1.5 to 2% of 

isoflurane in 100% O2. For intravenous administration of the radiotracer, the tail vein was 

catheterized with a 24-gauge catheter and the labeled NPs (ca. 3–10 MBq) were injected. PET 

images were analyzed using PMOD image analysis software (PMOD Technologies Ltd, Zürich, 

Switzerland). Volumes of interest (VOIs) were manually drawn in lungs, liver, heart, kidneys, 

spleen, brain, stomach, tumor and bladder using CT images as anatomical reference. VOIs were 



Chapter 5 – GNRs as boron carriers for BNCT  

112 
 

then transferred to the PET images and time activity curves (decay corrected) were obtained for 

each organ as cps/cm3. Curves were transformed into real activity (Bq/cm3) curves. Injected dose 

normalization was finally applied to data to get time activity curves as percentage of injected 

dose per cm3 of tissue (%ID/cm3).  

Ex vivo studies 

The mice were sacrificed at 48 hours post injection, after the last imaging session. Organs of 

interest were collected and weighed, and the radioactivity was measured in a well gamma-counter 

(Wallach Wizard, PerkinElmer, Waltham, MA, USA). The uptake of 64Cu in the various organs 

was calculated as a percentage of the injected dose per gram of tissue (%ID/g) according to the 

prepared standards. The weighed organs (liver, spleen and tumor) were then immersed in digest 

solution (HNO3/HCl = 1:1) with a volume of 5 mL. The dispersions were heated to boiling until 

organs were completely dissolved. 1 mL of H2O2 was then added into the solution, and heating 

continued until the solution became clear and transparent. The solution was then cooled to room 

temperature, diluted by 2% HNO3 to 10 mL, and subsequently analyzed by ICP to determine the 

concentration of Au and B in each sample. 
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Chapter 6: Conclusions and future directions 

6.1. General conclusions 

1. Four gold-based, water-soluble, biocompatible and shape and size-tuned nanosystems, 

stabilized with polyethylene glycol and functionalized with the boron-rich anion cobalt 

bis(dicarbollide) (COSAN) could be successfully synthesized and characterized for their 

evaluation as drug candidates in the context of boron neutron capture therapy (BNCT).   

2. The nanosystems showed low In vitro cytotoxicity and good cell internalization capacity in 

different cell lines.  

3. The nanosystems could be efficiently radiolabeled with different positron emitters, namely 

iodine-124 and copper-64, enabling the in vivo monitoring using positron emission 

tomography (PET) imaging.  

4. Incorporation of the positron emitter iodine-124 both at the core and the shell of spherical 

gold nanoparticles with core size 18-21 nm and subsequent investigation using PET imaging 

in a xenograft mouse model of human fibrosarcoma, confirmed in vivo stability of the 

nanosystems, high accumulation in the organs of the mononuclear phagocytic system (MPS) 

and low accumulation in the tumor. 

5. Incorporation of the positron emitter copper-64 at the core of spherical gold nanoparticles 

with core size 9-11 nm and subsequent investigation using PET imaging in a xenograft mouse 

model of human gastrointestinal cancer, showed significant accumulation in the organs of the 

MPS and low accumulation in the tumor. Reduction of the core size of the spherical particles 

to 3-4 nm in diameter resulted in a higher bioavailability and increased accumulation in the 

tumor, with values of 5.3±1.3 %ID/cm3 at 24 hours after intravenous administration. These 

results were confirmed by ex vivo analysis using Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS).  

6. Incorporation of the positron emitter copper-64 at the core of gold nanorods with core size 

37±3 × 10±1 nm (length × width; aspect ratio of 3.7) and subsequent investigation using PET 

imaging in a xenograft mouse model of human gastrointestinal cancer, showed accumulation 

in the organs of the MPS and significant accumulation in the tumor, with values of 3.3±1.2 
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%ID/cm3 at 24 hours after administration. These results, which were confirmed by ex vivo 

analysis using ICP-MS, suggest the potential use of the nanosystems as boron carriers for 

BNCT and sensitizers for photothermal therapy.  

6.2. Future directions 

The work conducted in this PhD thesis has demonstrated that stable and biocompatible gold 

nanosystems functionalized with boron-rich compounds can be prepared, characterized and 

radiolabeled for the subsequent evaluation using in vivo positron emission tomography imaging. 

Despite the accumulation of boron in the tumor was not sufficient to guarantee therapeutic 

efficacy, the work conducted here may represent the first step towards the development of gold-

based BNCT agents.  

From the work reported, it is clear that size and shape tuning of the core of the nanosystems has a 

clear effect on the biodistribution and tumor accumulation. Hence, future work should tackle the 

investigation of other particle sizes, stabilizing agents and core-shapes, aiming at maximizing the 

boron content in the nanosystems and the accumulation of the nanosystems in the tumor. Also, 

the results obtained in chapter 5 related to the application of boron-rich gold nanorods, open new 

avenues for the preparation of nanosystems suitable for combined therapies. Hence, the use of 

gold nanosystems with favorable plasmonic properties, such as nanostars, is worth to be 

explored.   

 

 

 



Annex I – NMR spectra 

116 
 

Annex I. NMR spectra 

 



Annex I – NMR spectra 

117 
 

 



Annex I – NMR spectra 

118 
 

 



Annex I – NMR spectra 

119 
 

 



Annex I – NMR spectra 

120 
 

 



Annex I – NMR spectra 

121 
 

 


