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• Tropical stream functional integrity was
assessed through litter decomposition.

• Decomposition decreased following a
rising agricultural influence gradient.

• The reduction was due to impaired de-
tritivore assemblages.

• Microbial decomposition increased but
did not compensate for effects on
detritivores.
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Ecosystem functional integrity
The expansion of agriculture is particularly worrying in tropical regions of the world, where native forests are
being replaced by crops at alarming rates, with severe consequences for biodiversity and ecosystems. However,
there is little information about the potential effects of agriculture on the functioning of tropical streams,which is
essential if we are to assess the condition and ecological integrity of these ecosystems.We conducted a litter de-
composition experiment in streamswithin a tropical catchment,whichwere subjected to different degrees of ag-
ricultural influence: low (protected area, PA), medium (buffer area, BA) and high (agricultural area, AA). We
quantified decomposition rates of litter enclosedwithin coarse-mesh and fine-mesh bags, which allowed the dis-
tinction of microbial and detritivore-mediated decomposition pathways. We used litter of three riparian species
representing a gradient in litter quality (Alnus acuminata N Ficus insipida N Quercus bumelioides), and examined
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Detritivore assemblages
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detritivore assemblages through the contents of litterbags and benthic samples.We found that the increasing ag-
ricultural influence promoted microbial decomposition, probably due to nutrient-mediated stimulation; and
inhibited detritivore-mediated and total decomposition because of reduced detritivore numbers, most likely
caused by pesticides and sedimentation. Effects were evident for Alnus and Ficus, but not for Quercus, which
was barely decomposed across the gradient. Our study provides key evidence about the impact of agriculture
on tropical stream ecosystem functioning, which is associated to changes in stream assemblages and may have
far-reaching repercussions for global biochemical cycles.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human population growth and expansion throughout the world
have placed agriculture as a dominant and increasing form of landman-
agement globally (Vitousek, 1997; Tilman et al., 2001), which currently
occupies ca. 40% of the Earth's land surface (Graeber et al., 2015). The
spread of agriculture into native forests is particularly worrying in trop-
ical regions of the world, where forests are being replaced by crops at
alarming rates (Gibbs et al., 2010), with severe consequences for biodi-
versity and ecosystems (Laurance et al., 2014). Within this context,
stream ecosystems are of particular concern for two main reasons:
firstly, they are substantially impacted by agriculture through inputs
of nutrients, sediments and contaminants and the replacement or re-
moval of riparian vegetation (Sala, 2000); and secondly, they experi-
ence the largest biodiversity declines, particularly in the tropics, and
are among the most endangered ecosystems on Earth (Dudgeon et al.,
2006).

It is well known that agricultural practices can negatively impact
tropical stream habitats and invertebrate assemblages (Egler et al.,
2012; Rizo-Patron et al., 2013; Ruiz-Picos et al., 2016). In general,
water quality is reduced, the physical habitat is altered and assemblages
are simplified, with a replacement of sensitive by tolerant taxa and loss
of biodiversity (Castillo et al., 2006; Rasmussen et al., 2016; Cornejo
et al., 2019). However, there is little information about the potential ef-
fects of agriculture on the functioning of tropical streams, which is es-
sential if we are to assess the condition and ecological integrity of
these ecosystems (Clapcott et al., 2010; von Schiller et al., 2017).

Leaf litter decomposition is a key process in streams, often used as
indicator of their ecological integrity (Gessner and Chauvet, 2002;
Young et al., 2008).Many streams rely on allochthonous organicmatter,
mainly in the form of leaf litter (hereafter litter) from riparian plants, as
their main energy source (Webster and Benfield, 1986). Once in the
water, litter is broken down as a result of physicochemical
(i.e., shear stress and leaching of soluble compounds) and biological
processes (i.e., decomposition mediated by microorganisms and
litter-consuming detritivorous invertebrates; Gessner et al., 1999).
Importantly, the rate at which litter is decomposed, and the relative
importance of both decomposition pathways (i.e., microbial vs.
detritivore-mediated), can inform about the fate of litter carbon
and nutrients and the efficiency of the stream food web in capturing
and using these elements (Marks, 2019).

Different environmental change drivers can modify the rates and
pathways of litter decomposition. For example, the gradual increase in
mean temperature promotes microbial decomposition in detriment of
detritivore-mediated decomposition (Boyero et al., 2011), while
extreme climatic events inhibit microbial decomposition (Correa-
Araneda et al., 2020). Agricultural practices involve multiple environ-
mental changes that can act as stressors for stream ecosystems,
including nutrient enrichment from fertilizer runoff, increased sedi-
mentation, and the presence of pesticides (Matthaei et al., 2010;
Cornejo et al., 2019). Evidence from temperate streams and microcosm
experiments indicates that nutrient enrichment can stimulatemicrobial
decomposition (Ferreira et al., 2006; Fernandes et al., 2014; Rossi et al.,
2019) while nutrients, pesticides and sedimentation can impair detriti-
vore assemblages and detritivore-mediated decomposition (Woodward
et al., 2012; Pérez et al., 2013; Brosed et al., 2016; Chará-Serna and
Richardson, 2018).

In many tropical streams, litter decomposition is driven mainly by
microorganisms, with a minor contribution of detritivores (Irons et al.,
1994; Boyero et al., 2011). Under this scenario, impacts of agriculture
on decomposition rates could be expected to be lower than those re-
ported for temperate streams. However, this may not always be the
case, because the role of detritivores can be important in some cases,
such as at high altitudes (Yule et al., 2009) or in some biogeographic
areas (Boyero et al., 2015). Furthermore, decomposition rates and path-
ways can vary depending on litter type (Martínez et al., 2013), with
higher-quality litter generally showing faster detritivore-mediated de-
composition rates than more recalcitrant litter (Boyero et al., 2015;
Boyero et al., 2016).

We explored the above topics by conducting a litter decomposition
experiment in streams within a tropical catchment, which were sub-
jected to different degrees of agricultural influence: low (protected
area, PA), medium (buffer area, BA) and high influence (agricultural
area, AA). We quantified decomposition rates of litter enclosed within
fine-mesh and coarse-mesh bags, which allowed the distinction of
microbial and detritivore-mediated decomposition pathways; and
used litter of three riparian species in order to explore differences due
to litter quality. Additionally, we examined detritivore assemblages
through the contents of litterbags and benthic samples. We tested the
following hypotheses: (1) microbial decomposition increases with
agricultural activity (PA b BA b AA) in relation to nutrient enrichment;
(2) detritivore-mediated decomposition decreases with agricultural
activity (PA N BA N AA) due to a reduction in detritivore abundance
and diversity, in relation to increased pesticide concentration and sedi-
mentation; (3) total decomposition decreases with agricultural activity
(PA N BA N AA) because the reduction in detritivore-mediated decom-
position is higher than the increase in microbial decomposition; and
(4) effects of agriculture on decomposition are greater on higher-
quality litter types because these are more consumed by detritivores.

2. Material and methods

2.1. Study area and site selection

Our study area was the upper catchment of the Chiriquí Viejo river,
located on the Pacific coast of western Panama (8.25–9.00°N,
82.25–83.00°W; Fig. 1). Catchment area is 1376 km2, the length of the
main river is 161 km and the highest altitude is 3474 m a.s.l. at the
Barú volcano (ETESA, 2008). The climate is tropical, with minimum, av-
erage and maximum temperatures of 17.8, 28.0 and 35.5 °C, respec-
tively (ANAM and CATIE, 2014). Total annual precipitation is
3400 mm on average, with a maximum of 7000 mm at high altitudes
and 87.7% occurring in the wet season from May to December (ETESA,
2008).

The catchment is subjected to agricultural practices, but three dis-
tinct areas with different degree of alteration can be distinguished:
protected, buffer and agricultural areas (PA, BA and AA, respectively).
We selected 3 stream sites within each of these areas, with PA sites
(S1–S3) located at 2237–2303 m a.s.l. and showing high canopy cover
and diverse riparian vegetation (N70%, N40 species); BA sites (S4–S6)
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Fig. 1. Location of 9 study sites (S1–S9) in 3 areas with different degree of agricultural influence (protected area, PA; buffer area, BA; and agricultural area, AA) within the Chiriquí Viejo
river catchment in western Panama.

3A. Cornejo et al. / Science of the Total Environment 745 (2020) 140950
at 1675–2143 m a.s.l., with intermediate canopy cover and riparian
diversity (40–69%, 21–40 species); and AA sites (S7–S9) at
1708–1888 m a.s.l., with low canopy cover and riparian diversity
(b39%, b10 species; Table 1). More altered areas showed higher erosion
as a result of vegetation removal (which increases sediment mobiliza-
tion and deposition or siltation; Izaguirre et al., 2009) and reduced
water quality due to pesticide and nutrient release (Cornejo et al.,
2019). All sites were 1st or 2nd order independent tributaries of the
Chiriquí Viejo river. The study was conducted in April – May 2019.

2.2. Site characterization

At each site we selected a 100-m long representative stream reach,
where we characterized the habitat; measured several physicochemical
variables in situ; collected water samples for further physicochemical
analyses and determination of pesticides; and sampled benthic inverte-
brates. We characterized the habitat by measuring mean stream width
(m), water depth (cm) and current velocity (m s−1), and visually esti-
mating sediment deposition (%), riparian vegetation cover (%), sub-
strate composition (% of different size classes of mineral substrate:
boulder, cobble, gravel, coarse andfine sand, and clay), and organicmat-
ter presence [% of streambed covered by CPOM (N1 mm) and FPOM
(0.5–1 mm)] (Barbour et al., 1999). We measured pH, temperature
(°C), conductivity (μS cm−1), turbidity (NTU) and dissolved oxygen sat-
uration (%) in situ using a multiparametric probe (HACH HQ40d), and
current velocity using a flowmeter (Flowatch 12300).
We collected two sets of 2-L water samples from the mid column in
the middle of the stream, which were transported to the laboratory on
ice and kept at 4 °C for 24 h until their analysis. We analysed the first
set of water samples at theWater and Physicochemical Services Labora-
tory (LASEF-UNACHI, Panama) following standard methods (Rice et al.,
2012) for concentrations (mg L−1) of total solids (method SM 2540 B),
nitrate (NO3; SM 4500-NO3 B), phosphate (PO4; SM 4500 PE), faecal co-
liforms (SM 9222D) and biological oxygen demand (BOD5; SM 5210 B).
We analysed the second set of water samples for pesticides at the Plant
Health Laboratory from the Agricultural Development Ministry (MIDA,
Panama), using two methods: liquid-liquid microextraction (De
Romedi et al., 2011) and direct injection (Reemtsma et al., 2013) We
used the first method for organophosphates, organochlorines and pyre-
throids; we extracted pesticides with ethyl acetate and residuals and
quantified them by gas chromatography and mass spectrophotometry
(GC-MSMS; limit of quantification: 0.11 μg L−1). We used the second
method for triazines, carbamates andother polar pesticides;we injected
samples and analysed themwith high performance liquid chromatogra-
phy and triple quadrupole mass spectrophotometer (LC-MSMS; limit of
quantification: 0.10 μg L−1) and electrospray ionization with dynamic
acquisition (DyMRM mode), which avoids solid phase extraction. The
percentage of recovery ranged between 70 and 110% (CV = 11%). We
measured linearity by the R2 coefficient for the individual pesticide cal-
ibration curves, which always resulted in R2 ≥ 0.99. We analysed each
set of samples in duplicate, simultaneously with a laboratory blank; to
avoid matrix effects, we used a matrix-matched calibration curve. We



Table 1
Location and physico-chemical characterization of the 9 study sites (S1-S9) located in 3 areas with different degree of agricultural influence (protected area, PA; buffer area, BA; and ag-
ricultural area, AA); –, not detected.

Areas PA
Canopy cover N70%
No. riparian species N40
Little human influence

BA
Canopy cover 40–69%
No. riparian species 21–40
Moderate human influence

AA
Canopy cover b39%
No. riparian species b10
Large human influence

Sites S1 S2 S3 S4 S5 S6 S7 S8 S9

Coordinates 322070 329004 328888 322910 328382 327912 326313 325782 325009
984322 981464 981464 983345 979384 980842 980152 979555 979941

Altitude (m asl) 2237 2325 2303 2143 1791 1675 1708 1887 1888

Habitat characterization
Stream width (m) 10.2 9.8 5.7 10.5 8.7 8.8 9.4 8.2 6.9
Water depth (cm) 52.0 47.0 24.0 57.0 31.0 39.0 35.0 37.0 25.0
Current velocity (m s−1) 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.1
Sediment deposition (%) 35 40 40 75 60 75 90 80 80
Riparian vegetation cover (%) 100 100 100 20 15 10 15 15 5

Inorganic substrate (%)
Boulder (N256 mm; %) 10 5 0 20 10 30 20 5 0
Cobble (64–256 mm; %) 50 50 20 40 30 55 10 10 0
Gravel (2–64 mm; %) 20 20 20 20 30 5 30 20 10
Coarse sand (0.06-2 mm; %) 10 10 50 10 10 5 20 40 60
Fine sand (0.004–0.006 mm; %) 10 10 10 5 10 5 15 20 20
Clay (b0.004 mm; %) 0 5 10 5 10 0 5 5 10

Organic matter (%)
Coarse Particulate Organic Matter (CPOM) 70 60 70 60 60 60 40 30 30
Fine Particulate Organic Matter (FPOM) 30 40 30 40 40 40 60 70 70

Physicochemical variables
pH 7.65 7.05 7.28 7.52 7.33 7.42 7.95 7.63 7.46
Temperature (°C) 13.9 13.6 14.0 13.9 16.6 17.1 17.2 16.7 17.4
Conductivity μS cm−1) 25.70 12.08 36.00 15.25 89.30 109.60 115.30 81.80 200.20
Turbidity (NTU) 0.7 0.3 2.9 1.0 5.0 0.5 0.5 11.0 12.8
Oxygen saturation (%) 98.3 96.9 96.0 98.3 93.4 96.0 96.6 96.0 97.2
Biological Oxygen Demand (BOD5; mgL−1) 1.00 1.00 1.00 1.00 1.00 1.00 2.03 1.00 2.14
Total solids (mgL−1) 56 80 56 54 113 58 104 105 262
NO3 (mgL−1) 6.6 2.9 12.5 5.9 37.7 15.7 29.9 17.8 58.6
Water-quality-index 77 86 73 75 80 70 68 65 62

Pesticides
Chlorpyrifos (μgL−1) 0.14 10.47 0.32
Cypermethrin (μgL−1) 0.38
Diazinon (μgL−1) 1.57
Pyrazophos (μgL−1) 0.58
TUmax – – – −0.11 −0.33 0.21 −0.23 1.54 0.03
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determined pesticide toxicity as the maximum toxic units (TUmax) and,
when these were below the quantification limit, we considered the
values previously reported by Cornejo et al. (2019). Given that toxicity
data for tropical stream invertebrates are unavailable, we calculated
TUmax based on data available for Daphnia magna (Liess and Ohe,
2005) calculated according to the following formula:

TU D:magnað Þ ¼ maxni¼1 log Ci=LC50ið Þð Þ ð1Þ

where TU(D. magna) is the TUmax of n pesticides detected in the study site,
Ci is the concentration of pesticide i (μg L−1), and LC50i is the 48-h acute
median lethal concentration (μg L−1) reported for pesticide i in
D. magna.

2.3. Litter decomposition experiment

We selected 3 riparian tree species that were common in the study
area and differed in litter quality, which was assessed through specific
leaf area [SLA; the ratio of leaf area (mm2) to leaf dry mass (DM; mg)]
and nitrogen (N) concentration (%); SLA was quantified by cutting 20
discs from different air-dried leaves of each species using a 17-mm di-
ameter cork borer, avoiding main leaf nerves, and weighing them to
the nearest 0.01mg; N concentrationswere obtained from unpublished
data (mean± SE; L. Boyero, unpubl.). The species were Alnus acuminata
Kunth. (Betulaceae), with high-quality litter (SLA = 10.8 ±
1.9 mm2 mg−1; N = 2.40 ± 0.08%); Ficus insipida Willd. (Moraceae),
with intermediate-quality litter (SLA = 10.7 ± 1.1 mm2 mg−1; N =
1.09 ± 0.09%); and Quercus bumelioides Liedm. (Fagaceae), with low-
quality litter (SLA = 6.2 ± 1.2 mm2 mg−1; N concentration
unavailable).

We collected recently senesced litter of the 3 species from the ripar-
ian forestfloor in streamsof the study catchment. In the laboratory, litter
was air dried and cut in ca. 2 × 2 cm fragments, excluding the basal pet-
iole insertion.We used extra litter to estimate littermass loss (LML) due
to the leaching of soluble compounds: we introduced this litter in glass
jars with 400 mL of filtered (100 μm) stream water collected at the ex-
perimental site (1 g per species and replicate, n = 3) for 48 h, with
water replacement after 24 h; litter from each replicate was oven-
dried (70 °C, 72 h) and weighed to estimate the relationship between
initial air DM and post-leaching oven DM (López-Rojo et al., 2020).

We prepared 486 sets of fragments (18 per species per site),
weighed them individually (1.00 ± 0.05 g), hooked them on safety
pins, and introduced them within fine-mesh (0.5 mm) and coarse-
mesh (10 mm) bags (20 × 15 cm), with different species in separate
bags. On April 23, 2019, we deployed the litterbags at the 9 studied
sites, attached with nylon rope to stakes that were hammered into the
stream substrate. We collected one third of the bags on day 0 in order
to estimate litter mass handling losses (which were observed to be
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negligible); and the other two thirds on days 14 and 28, respectively.
Bags were collected by placing a net immediately downstream and in-
troducing them into ziplock bags,whichwere transported to the labora-
tory on ice. In the laboratory, litter was carefully rinsed using filtered
(100-μm) streamwater on a 500-μmsieve to remove sediments and in-
vertebrates. Then it was oven dried (70 °C, 72 h), weighed to estimate
final DM, incinerated (500 °C, 4 h) and re-weighed to estimate final
ash-free dry mass (AFDM). We quantified decomposition through the
proportion of LML, calculated as the difference between initial and
final AFDM (g) divided by initial AFDM (g), with initial AFDM corrected
by the proportion of LML due to leaching. Litter ash content (%)was also
used as a proxy for sedimentation to be compared among PA, BA and AA
streams.

2.4. Invertebrates

Invertebrates collected from coarse-mesh bags were preserved in
70% ethanol, identified under a stereoscopic microscope to the lowest
possible taxonomic level, and separated into litter-consuming
detritivores and other invertebrates. Each group was separately oven
dried (70 °C for 72 h) andweighed to calculate detritivore and total bio-
mass (mg) per bag. We also recorded detritivore and total invertebrate
abundance and taxonomic richness (i.e., number of individuals and
taxa, respectively) per bag.

Additionally, we sampled benthic invertebrates twice at each study
site (on days 0 and 28 of the decomposition experiment) using a 30-
cm wide, 0.5 mm mesh D-net. We used a multihabitat sampling
approach,whichproportionally covered themain streamhabitats (min-
eral substrate, fine sediment, litter, bank vegetation and submerged
macrophytes) present in the study stream reach, with a total of twenty
0.5-m sample units per site (i.e., a total of 3 m2 per site; Barbour et al.,
1999; Cornejo et al., 2019). The net contents were transferred to a
0.5-mm sieve first and then to a white tray, where mineral substrate
and organic material were discarded. Samples were introduced in
500-mL bottles, preserved with 96% ethanol and transported to the lab-
oratory, where invertebrates were identified and separated into litter-
consuming detritivores and other invertebrates.

Invertebrates from litterbags and benthic samples were sorted and
identified to family level at the Freshwater Macroinvertebrate Labora-
tory at the COZEM-ICGES (Panama) and then identified to genus level
and classified based on their feeding type at theMuseum of Freshwater
Fish and Invertebrates (MUPADI-UNACHI, Panama), using available lit-
erature (Hawkes, 1998; Tomanova et al., 2006; Beketov et al., 2009;
Gutiérrez-Fonseca, 2010; Menjivar Rosa, 2010; Pacheco-Chaves, 2010;
Springer et al., 2010; Ramírez and Gutiérrez-Fonseca, 2014).

2.5. Statistical analyses

We first compared the stream habitat characteristics indicating
streammorphology (i.e., stream width, water depth and current veloc-
ity) among our 3 study areas to ensure there were no confounding ef-
fects, using linear models [lm function in R (R Core Team, 2019)]. We
used principal component analysis [PCA; rda function, vegan package
(Oksanen et al., 2018)] to explore variation among sites in terms of
physicochemical and habitat variables that could be indicative of stream
impairment due to agriculture (i.e., TUmax,water temperature, dissolved
oxygen saturation,NO3 concentration, sediment deposition and riparian
vegetation cover; Fig. S1).

To explore how litter decomposition responded to the agricultural
influence gradient we used linear mixed-effects models [lme function
and restricted maximum likelihood (REML) estimation, nlme package
(Pinheiro et al., 2018)] with microbial (hypothesis 1), detritivore-
mediated (hypothesis 2) and total decomposition (hypothesis 3) as re-
sponse variables, and different influence degrees (PA, BA and AA) and
litter types (Alnus, Ficus and Quercus) as categorical predictors. We in-
cluded the interaction between agricultural influence and litter type in
the models to test whether litter type mediated the agricultural influ-
ence on decomposition (hypothesis 4). We included stream sites as a
random component (due to our nested sampling design), and tested
the improvement of model fit after the inclusion of this component
using the Akaike Information Criterion corrected for sample size
(AICc; Table S1). We used a variance structure (varIdent function,
nlme package) to consider different variances across influence degrees
and litter types and thus avoid violation of thehomogeneity of variances
assumption for linear models (Zuur et al., 2009). We defined the opti-
mal variance structure through initial data exploration using multi-
panel boxplots for each response variable vs. influence degree and litter
type, and comparing models with different structures using AICc (Zuur
and Ieno, 2015). We inspected residuals from each model to ensure
there were no visual patterns or violation of linear model assumptions.

When there was an interaction between influence degree and litter
type, we explored and quantified the magnitude of such difference by
calculating the average and ordinary nonparametric bootstrapped 95%
confidence intervals for microbial, detritivore-mediated and overall de-
composition for each litter type. We calculated these confidence inter-
vals using the bias-corrected and accelerated (BCa) method with the
boot function in the boot package, and based on 1000 bootstrap repli-
cates (Davison and Hinkley, 1997; Canty and Ripley, 2016). Non-
overlapping 95% confidence intervals indicated statistically significant
differences (Wood, 2005).

Lastly, we investigated the variation in invertebrate assemblages
separately for litterbags and benthic samples with several methods:
we (i) examined assemblage structure with non-metric dimensional
scaling (NMDS) based on the Bray Curtis similarity index of abundance
data, using the metaMDS function of the vegan package; (ii) explored
differences among degrees of agricultural influence (PA, BA and AA)
and collection times (14 and 28 d) with permutational multivariate
analysis of variance (adonis function, vegan package); (iii) assessed
the contribution of each invertebrate taxon with the similarity percent-
age procedure SIMPER (simper function, vegan package); (iv) examined
howdetritivore and total invertebrate abundance, richness and biomass
in coarse-mesh bags at day 28 responded to the agricultural influence
gradient (PA, BA and AA) and litter type (Alnus, Ficus and Quercus)
with linear mixed-effects models and confidence intervals (as above);
and (v) explored detritivore and total invertebrate abundance and rich-
ness variation in benthic samples across the agricultural influencegradi-
ent, again with linear mixed-effects models and confidence intervals.

3. Results

3.1. Site characterization

The environmental variables measured at the study sites had the
following value ranges: stream width, 5.7–10.5 m; water depth,
25–57 cm; current velocity, 0.1–0.3 m s−1; pH, 7.05–7.95; water
temperature, 13.6–17.4 °C, conductivity, 12.18–200.20 μS cm−1; turbid-
ity, 0.33–12.8 mg L−1; dissolved oxygen saturation, 93.4–98.3%; BOD5,
1.00–2.14 mg L−1; total solids, 54.00–262.00 mg L−1; NO3 concentra-
tion, 2.9–58.6 mg L−1; values for each site are given in Table 1. Stream
width, water depth and current velocity did not vary among the 3
study areas (width: F2,8 = 0.36, p = 0.71; depth: F2,8 = 0.60, p =
0.58; velocity: F2,8 = 1.33, p = 0.33), which discarded any potential
confounding effects of habitat morphology on our results. We detected
4 pesticides in total, including3 insecticides (chlorpyrifos, cypermethrin
and diazinon) and 1 fungicide (pyrazophos); TUmax ranged from 0 to
1.54 (Table 1). The first two PCA axes explained 77.6% of the variability
among sites; axis 1 (57.4%) separated sites S1–S3 (PA) and S4 (BA) from
other sites mainly based on the better status of their riparian vegetation
and the lowerwater temperature andNO3 concentration; axis 2 (20.2%)
further separated sites S1 and S4 based on their higher dissolved oxygen
saturation, and sites S6, S7 and S8 based on their higher sediment depo-
sition and TUmax (Fig. S1).



Table 2
Results of linear models testing the effects of agricultural influence degree (PA, BA and
AA), litter type (Alnus, Ficus and Quercus) and their interaction on microbial, detritivore-
mediated and total decomposition (quantified as the proportion of litter mass loss);
df = degrees of freedom, F = F statistic; p = p-value.

Response variable Factor/interaction df F p

Microbial decomposition Agricultural influence
degree (AI)

2 4.86 0.0557

Litter diversity (LD) 2 104.47 b0.0001
AI × LD 4 8.32 b0.0001

Detritivore-mediated
decomposition

AI 2 0.24 0.7913
LD 2 13.21 b0.0001
AI × LD 4 7.23 0.0001

Total decomposition AI 2 71.25 0.0001
LD 2 133.34 b0.0001
AI × LD 4 4.56 0.0026
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3.2. Litter decomposition experiment

After 28 d of instream incubation, the proportion of LML ranged from
0.00 to 0.78 in fine-mesh bags and from 0.02 to 0.93 in coarse-mesh
bags (Fig. 2). Linearmixed-effects models revealed a significant interac-
tion between agricultural influence degree and litter type for microbial,
detritivore-mediated and total decomposition (Table 2). Microbial de-
composition was higher in AA than in PA and BA streams for Alnus
and Ficus, but not for Quercus, which showed no differences across the
agricultural gradient; detritivore-mediated decomposition was higher
in PA than in BA and AA streams for Alnus, with Ficus showing a similar
pattern albeit not significant, and no pattern for Quercus; and total de-
composition was higher in PA than in BA and AA streams for Alnus,
and similar across areas for Ficus andQuercus (Fig. 2). Litter ash contents
varied across the agricultural influence gradient after 28 d of incubation;
for both mesh types, ash contents were higher in AA than in PA and BA
streams for Alnus and Ficus, but not forQuercus, which showed nodiffer-
ences (Table S2, Fig. S2).

3.3. Invertebrates

We collected 256 invertebrate individuals from coarse-mesh litter-
bags, which belonged to 13 genera, 15 families, 8 orders and 4 classes
(Table S3); the most common families (representing 86% of all
Fig. 2.Microbial, detritivore-mediated and total decomposition (mean ± SE proportion of litte
located at 3 study areaswith different degree of agricultural influence (protected area, PA; buffer
areas (p b 0.05).
invertebrates collected in litterbags) were the Physidae
(Basommatophora; 34.77% of total abundance), Lepidostomatidae (Tri-
choptera; 19.92%), Tubificidae (Haplotaxida; 14.84%), Simuliidae (Dip-
tera; 9.38%) and Chironomidae (Diptera; 7.42%). In benthic samples
there were 2371 individuals belonging to 45 genera, 39 families, 16 or-
ders and 7 classes (Table S4); the most common families (70.72% of all
invertebrates found in benthic samples) were the Chironomidae
r mass loss) of 3 litter types (Alnus, Ficus and Quercus) after 28 d of incubation in streams
area, BA; and agricultural area, AA).Different letters indicate significant differences among



Table 3
Results of linear models testing the effects of agricultural influence degree (PA, BA and
AA), litter type (Alnus, Ficus and Quercus) and their interaction on the abundance, taxo-
nomic richness and biomass of litter-consuming detritivores and total invertebrates found
in coarse-mesh bags (Lit.) and benthic samples (Bent.); biomass data unavailable from
benthic samples; df = degrees of freedom, F = F statistic; p = p-value.

Response variable Factor/interaction df F p

Detritivore abundance
Bags

Agricultural influence degree
(AI)

6 12.57 0.0072

Litter type (LT) 12 0.89 0.4342
AI × LT 12 1.48 0.2686

Detritivore richness Bags AI 6 19.11 b0.0001
LT 12 1.44 0.2619
AI × LD 12 2.11 0.1215

Detritivore biomass Bags AI 6 12.30 0.0075
LT 12 1.70 0.2244
AI × LT 12 0.95 0.4700

Invertebrate abundance
Bags

AI 6 0.24 0.7931
LT 12 1.70 0.2245
AI × LD 12 5.20 0.0115

Invertebrate richness Bags AI 6 1.00 0.4219
LT 12 1.30 0.3083
AI × LD 12 1.30 0.3245

Invertebrate biomass Bags AI 6 0.12 0.8246
LT 12 0.18 0.8359
AI × LT 12 1.55 0.2502

Detritivore abundance
Bent.

AI 6 10.36 0.0113

Detritivore richness Bent. AI 6 2.89 0.1317
Invertebrate abundance
Bent.

AI 6 0.04 0.9596

Invertebrate richness Bent. AI 6 0.18 0.8328
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(Diptera; 21.31% of total abundance), Simuliidae (Diptera; 13.02%),
Physidae (Basommatophora; 12.22%), Tubificidae (Haplotaxida; 7.92%),
Baetidae (Ephemeroptera; 5.77%), Hyalellidae (Amphipoda; 5.52%) and
Ptilodactylidae (Coleoptera; 4.97%).

The NMDS showed a clear separation of invertebrate assemblages
from the 3 areas whit different agricultural influence degree, both for
coarse-mesh bags (p b 0.001; Fig. 3A) and benthic samples (p b 0.005;
Fig. 3B). In both cases, PA streams were characterized by the presence of
litter-consuming detritivores (mostly Lepidostomatidae), while BA and
AA areas had more generalist detrivorous invertebrates (i.e., collector-
gatherers and filterers; mostly Chironomidae and Simuliidae in BA
and Physidae in AA). We observed a general pattern of greater abun-
dance, richness and biomass of litter-consuming detritivores in litter-
bags in PA (345 individuals in total; 3–6 genera per site) compared to
BA (45 individuals; 0–4 genera); these invertebrates were absent in
AA, where dipterans and gastropods were dominant (Table 3, Fig. S3).
These differences were significant for Alnus and for richness in Ficus,
with others being similar albeit not significant. In benthic samples, PA
showed greater abundance of litter -consuming detritivores than BA
and AA (Table 3).

4. Discussion

Studies of litter decomposition in tropical streams flowing through
agricultural land are rare, and have provided little evidence about the
impacts caused by this human activity. For example, Parnrong et al.
(2002) found no differences in litter decomposition between forested
and agricultural sites in Thailand; and Torres and Ramírez (2014)
found reduced decomposition in agricultural compared to forested
streams in Puerto Rico, but did not separate effects mediated by micro-
organisms and detritivores. Here we show how an increasing degree of
agricultural influence within a tropical catchment in Panama (from
protected to buffer to agricultural areas) significantly altered decompo-
sition through effects onmicrobial activity and detritivore assemblages,
Fig. 3. Non-metric multidimensional scaling (NMDS) ordination of invertebrate assemblages fr
collected from 9 streams located at 3 areas with different degree of agricultural influence (sites
names are indicated, with litter-consuming detritivores highlighted in bold (Ana, Anacrone
Atrichopogon; Baeti, Baetis; Baeto, Baetodes; Cal, Calosopsyche; Cam, Camelobaetidius; Cer, Cera
Crambidae; Cul, Culoptila; Dry, Dryops; Dug, Dugesia; Elm, Elmidae; Elo, Elodes; Ento, Entomob
Hydrachnidae; Hydropt; Hydroptila; Hydroph, Hydrophilidae; Lam, Lampyridae; Lep, Lepidopt
Limo, Limonia; Lispe, Lispe, Mar, Maruina; Metr, Metrichia; Molo, Molophilus; Mori, Moribaet
Physa; Phyl, Phylloicus; Plan, Planariidae; Pol, Polycentropus; Por, Porcellionidae; Prob, Probez
Thraulodes; Tip, Tipula; Tricor, Tricorythodes; Tub, Tubificidae; Wor, Wormaldia).
and discuss the potential abiotic and biotic drivers of such effects and
their consequences for stream ecosystem functioning and global bio-
geochemical cycles.
om coarse-mesh bags (A; stress: 0.05953776) and benthic samples (B; stress: 0.1199857)
S1–S3: protected area, PA; S4–S6: buffer area, BA; and S7–S9: agricultural area, AA). Taxon
uria; Anch, Anchytarsus; Aph, Aphrosylus; Arg, Argia; Ath, Atherix; Ato, Atopsyche; Atri,
topogonidae; Che, Chelifera; Chim, Chimarra; Chir, Chironomidae; Con, Contulma; Cram,
ryidae; Far, Farrodes; Gyr, Gyraulus; Het, Hetaerina; Hex, Hexatoma; Hyal, Hyallela; Hydra,
era; Lepidos, Lepidostoma, Leptohy, Leptohyphes; Lepton, Leptonema; Limno, Limnophora;
is; Morto, Mortoniella; Necto, Nectopsyche; Ochro, Ochrotrichia; Phan, Phanocerus; Phy,
zia; Pse, Psephenus; Pseudo, Pseudothelphusa; Sim, Simulium; Smin, Sminthuridae, Thra,
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4.1. Agriculture enhanced microbial decomposition

We found that microbial decomposition increased with the degree
of agricultural influence, although effects varied with litter type. De-
composition of Alnus acuminata increased in the agricultural area com-
pared to the buffer and pristine areas; decomposition of Ficus insipida
increased in both agricultural and buffer areas compared to the pristine
area; and decomposition of Quercus bumelioides showed no change
across areas and was very low, most likely in relation to its low quality.
The faster microbial decomposition of high-quality compared to low-
quality litter is well known from temperate areas; for example, Alnus
glutinosa often decomposes faster than Quercus robur in fine-mesh
bags (e.g., Lecerf et al., 2005; Monroy et al., 2016), and even intra-
specific differences in litter quality of these species induce changes in
microbial decomposition (Graça and Poquet, 2014). However, the role
of litter quality on microbial sensitivity to environmental impacts is un-
clear, as different studies have found lower (Gonçalves et al., 2013;
Pérez et al., 2014), higher (Chamier, 1987; Pearson and Connolly,
2000) or similar sensitivity (Gulis and Suberkropp, 2003; Bergfur and
Friberg, 2012) of high-quality compared to low-quality litter.While dis-
solved nutrients could be expected to enhancemicrobial decomposition
of recalcitrant litter such as that of Q. bumelioides (Esquivel et al., 2019),
this was not the case in our study.

Increased microbial decomposition was most likely due to the
higher nutrient concentrations in streams affected by agriculture,
which were approximately 3- and 5- fold in the buffer and agricultural
areas, respectively, compared to the pristine area. Nutrient enrichment
is well known to stimulate microbial activity (Woodward et al., 2012)
through increased fungal biomass accrual and sporulation (Gulis et al.,
2006) and, possibly, enhanced fungal diversity (Pérez et al., 2018).
Such effects have mostly been shown for temperate streams, but there
is also evidence of increased microbial decomposition due to eutrophi-
cation from the tropics, as shown in studies not related to agriculture
(Pearson and Connolly, 2000; Connolly and Pearson, 2013). One tropical
study assessing microbial decomposition through an agricultural gradi-
ent found an inverse pattern, that is, lower decomposition in agricul-
tural sites (Silva-Junior et al., 2014); however, the number of sites
under different degrees of agricultural influence in that study was
highly unbalanced and some sites were also affected by urbanization,
which makes the interpretation of their results difficult. In our study,
the increase inmicrobial decompositionwith agricultural influence sug-
gested that nutrient enrichment effects were greater than any potential
negative effects of pesticides (Cornejo et al., 2020) or sedimentation
(Martínez et al., 2020) on microorganisms. Such negative effects could
be expected to be low, due to the generally high functional redundancy
of microbial assemblages (Allison and Martiny, 2008).

4.2. Agriculture impaired detritivore-mediated decomposition

We found that increasing agricultural influence caused a decrease in
detritivore-mediated decomposition. Differences were significant only
for A. acuminata in both the buffer and agricultural areas; F. insipida
followed a similar trend, but it was not significant; and, again,
Q. bumelioides showed no differences across the agricultural gradient.
The role of litter quality in the sensitivity of detritivore-mediated de-
composition to environmental changes is again unclear, due to contrast-
ing results of different studies (Lecerf et al., 2005; Bruder et al., 2011;
Woodward et al., 2012; Monroy et al., 2016); in our study, however,
only high-quality litter reflected environmental changes, both for mi-
crobial and detritivore-mediated decomposition. In contrast, Masese
et al. (2014) found reduced detritivore-mediated decomposition in ag-
ricultural compared to forested streams in Kenya for both high-quality
and low-quality litter (Croton macrostachyus and Syzygium cordatum,
respectively).

Patterns in detritivore-mediated decomposition could be explained
by the changes suffered by detritivore assemblages, as reflected in
coarse-mesh bags and benthic samples. In both types of samples, we
found a clear impact of agriculture on these organisms, which signifi-
cantly reduced their abundance (30- and 6-fold reduction in bags and
benthic samples, respectively) and richness (3-fold reduction in bags
and absence in benthic samples from 2 sites) in the buffer area, and
almost disappeared in the agricultural area (only 1 individual, found
in benthic samples). The litter-consumng detritivores found in the
buffer area were Anchytarsus (Coleoptera), Tipula (Diptera), Molophilus
(Diptera) and Hyalella (Amhipoda), but the Trichoptera present in the
pristine area (Phylloicus and Lepidostoma) were absent. Invertebrate
assemblages from buffer and agricultural areas were dominated by
other functional groups such as collectors-gatherers and filterers,
many of them typical of impacted sites and previously identified in
streams affected by agriculture in our study area (Cornejo et al., 2019).

Reduced detritivore abundance and richness were most likely due to
the combined effects of sedimentation and pesticide toxicity, as indicated
by our measures of litter ash contents and TUmax (which were highest in
the agricultural area followed by the buffer area) and shown in a previous
study that included 13 streams in our study catchment (Cornejo et al.,
2019). Sedimentation can promote invertebrate drift downstream
(Suren and Jowett, 2001), and pesticides can be toxic and produce lethal
and sublethal effects on detritivores (Zubrod et al., 2014; Zubrod et al.,
2015; Cornejo et al., 2020); the pesticide chlorpyrifos, in particular, de-
tected at very high concentrations at the agricultural area, was shown to
reduce decomposition through sublethal effects on detritivores in an ex-
periment conducted in Canada (Chará-Serna and Richardson, 2018). Ex-
perimental evidence of such effects is, however, lacking for tropical
detritivores, and reports of comparable patterns from tropical streams
are rare. One study conducted in Borneo found reduced detritivore abun-
dance, richness and detritivore-mediated decomposition in streams
flowing through areas logged for palm oil plantations and attributed
these differences to increased sedimentation, but pesticide concentra-
tions were not examined (Jinggut et al., 2012).

4.3. Decomposition as a key tool for assessing tropical stream integrity

Total decomposition followed a similar pattern to detritivore-
mediated decomposition, indicating that enhancement of microbial de-
composition did not compensate for the negative effects on detritivores.
A similar result was obtained for pesticide effects on total decomposi-
tion in a study conducted in France (Magali et al., 2016). Our results
thus indicate that the impairment of tropical invertebrate assemblages
caused by agriculture (Rasmussen et al., 2016; Cornejo et al., 2019)
goes beyond structural changes and has functional repercussions in
the ecosystem. Litter decomposition has been long used to assess
stream functional integrity in temperate areas (Gessner and Chauvet,
2002), and our study suggests that its use should be extended to the tro-
pics as a complement to structural measures such as biotic indices
(Cornejo et al., 2019).

Despite the greater abundance and richness of invertebrates in the
buffer area compared to the agricultural area,we found little differences
in litter decomposition between both areas: they both showed reduced
total and detritivore-mediated decomposition of high-quality litter. This
suggests that buffer areas were not efficient in moderating the impacts
of agriculture on stream ecosystem functioning, a result that should be
considered in management and conservation plans of agricultural
catchments. Finally, the consequences of reduced litter decomposition
go beyond the altered functioning of the stream ecosystem, because
changes in the relative importance of microbial and detritivore-
mediated decomposition rates determine howmuch of the organic car-
bon contained in litter is outgassed to the atmosphere as carbon dioxide
and how much is retained and incorporated into the stream food web
(Boyero et al., 2011; Marks, 2019). Given that the extent of agricultural
land is rapidly growing in tropical regions (Gibbs et al., 2010), the con-
sequences of these changes for the global carbon cycle could be ex-
pected to be large.
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