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2 
 

As an introduction to this work I describe the genes and pathways that are involved 
in the development of the gonad, from the undifferentiated gonad to the completely 
developed testicles and ovaries. Implicated genes in the formation of internal and 
external genitalia that lead to sexual differentiation are also explained. Then, the 
widely varied disorders of sex development caused by impaired alterations in those 
previously mentioned genes are explained. Finally, I describe current clinical 
management of the sex anomalies and the role of next generation sequencing in the 
molecular diagnosis of this pathology.  
 
 
1. SEX DEVELOPMENT AND GENETIC REGULATION  
 

In humans and other mammals, sex development is a sequential process that 
involves a large number of genes and pathways acting to completely acquire functional 
gonads and consecutive differentiation of internal and external genitalia to finish with 
secondary sexual characterization at puberty (Figure 1A and 1B). The first step, sex 
determination refers to the decision of the bipotential gonad to continue through the 
testicular or ovarian pathway. In contrast to other organs, the early gonads have the 
potential to differentiate into two functionally different organs, testes or ovaries. 
Later, sex differentiation comprises the formation of the internal and external genitalia 
due to the sex-specific hormones secreted by the developing gonads and the 
secondary sexual characterization at puberty. 

 
In males and females, sex determination and the correct development of the 

gonad and genitalia depend on a tightly controlled network of transcription factors 
and signalling pathways. Moreover, sex steroid hormone production is dependent on 
consecutive enzymatic steps and functional hormone receptors. Any changes in this 
delicate genetic system result in atypical sex development leading to disorders of sex 
development (DSD) in humans.  
 
 

1.1. FORMATION OF THE UNDIFFERENTIATED GONAD  
 

This process starts during the fourth week of embryonic life with the formation 
of the undifferentiated urogenital ridge, comprising the pronephros, mesonephros and 
metanephros, which gives rise to the adrenal cortex, gonadal and urinary systems, 
respectively (1). 
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Figure 1. A, Overview of the development of male and female genitalia. B, Overview of the genes and 
pathways involved in the sex development.Black arrows indicate activation of a downstream target. Red 
lines ending in bars show repression of a downstream target. Modified from Ohnesorg T., 2014 (2). 
 
 

In humans, the testis and the ovary arise from a sexually undifferentiated 
precursor, the genital ridge (GR) which appears as a thickening of the coelomic 
epithelium (CE) on the ventromedial surface of the mesonephros, creating a thick 
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epithelial cell layer. Together with the proliferation of the CE, the epithelial cells from 
the underlying membrane move towards the mesonephros and as mesenchymal cells 
colonize the space between the coelomic epithelium and the mesonephros. The 
mesenchymal cells of the GR are gonadal precursors that differentiate into interstitial 
and somatic supporting cells of the early differentiated gonad. For the testicular 
development, supplementary cells are recruited from the mesonephros into the 
genital ridge to increase the endothelial cell population that establish the male 
vascular system (1). Prior to gonadal determination, primordial germ cells, precursors 
of sperm and oocytes, migrate into the GR. In case of male sex determination, the 
mesonephros also gives rise to the mesonephric or Wolffian duct and to a primordial 
urogenital tissue that develops epididymis, vas deferens and seminal vesicles. In 
females, the paramesonephric or Müllerian duct is also comprised in the mesonephros 
(3).  
 

At 5 weeks, the early gonad is bipotential and has the ability to differentiate 
into a testis or an ovary, depending on the presence or absence of the SRY (Sex 
determining region of Y chromosome) gene on the Y chromosome. However, at this 
point no morphological differences are observed between the XX and XY early gonads. 
Furthermore, genes that are later associated with the testicular fate such as Sox9 (SRY-
Box 9) or ovarian fate, as Wnt4 (Wnt Family Member 4), are expressed equally in XX 
and XY gonads, until the beginning of the differentiation (4). 
 

In mice at least seven genes, including Nr5a1 (Nuclear Receptor Subfamily 5 
Group A Member 1), Wt1 (WT1 Transcription Factor), Lhx9 (LIM Homeobox 9), Emx2 
(Empty Spiracles Homeobox 2), Cbx2 (Chromobox 2), Pbx1 (Pre-B-Cell Leukemia 
Transcription Factor 1) and Gata4 (GATA Binding Protein 4) have been demonstrated 
to be necessary for the initial thickening of the coelomic epithelium, progression and 
maintenance of the genital ridge (5). Knock-out (KO) mouse studies have revealed that 
mutations or absence of these gene products might lead to a failure in the gonadal 
progress or to the presence of streak gonads (3, 6), emphasising the critical role of 
some genetic factors in both males and females.  

 
Despite their early role in gonadal development, the loss-of-function of these 

genes in humans, result in a range of phenotypes that vary from complete gonadal 
dysgenesis to adult infertility (3). 
 

1.1.1. Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1) 
 

NR5A1, encoding steroidogenic factor 1 (SF1) is a member of the orphan 
nuclear receptor located on 9q33. It plays a central role in regulating adrenal 
development, gonadal determination and differentiation and in the hypothalamic-
pituitary axis. In the mouse, Nr5a1 is expressed in the GR from 9 dpc (days post-
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conception) and thereafter, in the Sertoli and Leydig lineages, as well as in the adrenal 
gland. Nr5a1-null models showed gonadal agenesis and lack of adrenal glands (7).  
 

Human SF1 is a 461 amino acid protein that contains a DNA (Deoxyribonucleic 
Acid) binding domain (DBD) with two zinc fingers, an accessory “A”-box that extends 
the DBD and mediates specific DNA binding, and a hinge region followed by a ligand-
binding domain (LBD) that forms two activation function domains (AF-1 and AF-2) 
(Figure 2). The expression of NR5A1 has been demonstrated during the formation of 
the bipotential gonad and adrenal glands (32-33 dpc), but also in gonad development 
and steroidogenesis (8).  
 

 
Figure 2. Diagram of the SF1 protein. The critical functional domains found in SF1, a DNA-binding 
domain (DBD) at the amino terminal (From amino acid 13 to 112), the flexible hinge region (amino acid 
112-225) and a ligand-binding domain (LBD) (amino acid 225-458). Modified from Tantawy S., 2014 (9). 
 
 

SF1 upregulates a number of testis-determining genes, such as SOX9 in the 
somatic cells of early testis, anti-Müllerian hormone (AMH) in Sertoli cells, and the 
enzymes included in the steroidogenic system in Leydig cells (8, 10). While the 
expression of Nr5a1 continues during testicular development in mice, it is 
downregulated during ovarian development. However, SF1 has been detected in 
Granulosa and theca cells of an adult ovary in humans but its role is unclear (8). It has 
been suggested that SF1 may promote the expression of FOXL2 (Forkhead Box L2), 
which ultimately suppresses SOX9 (8) and exemplifies the outcome of antagonistic 
pathways that compete to manage the differentiation and repression of supporting 
cell precursors to develop the bipotential gonad into a testis or an ovary.  
 

In 1999, Achermann et al identified the first NR5A1 heterozygous mutation in a 
patient with 46,XY gonadal dysgenesis, Müllerian structures and primary adrenal 
failure (11). Now, human variations in NR5A1 show variable phenotypic expressivity 
and incomplete penetrance and have been widely characterized in 46,XY DSD, primary 
ovarian insufficiency (POI) and 46,XX testicular (T DSD) and ovotesticular DSD (OT DSD) 
(12-14).  

 
1.1.2. Wilms’ tumour Suppressor 1 (WT1) 

 
The WT1 gene, located on 11p13, codifies a zinc finger transcription factor and 

is known to act as a repressor or activator of numerous genes involved in the 
establishment of the bipotential gonad and in testicular development. In adults, WT1 is 
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expressed in Sertoli and Granulosa cells. Among the multiple protein isoforms that are 
generated in mammals through complex regulatory mechanisms, two main WT1 
isoforms are important in the gonadal development and are defined by the presence 
or absence of three amino acids, lysine, threonine and serine (KTS) between zinc finger 
three and four (15). 
 

Wt1-null mice of both sexes fail to develop gonads and kidneys, suggesting an 
early role in the formation of the bipotential gonad (16). Moreover, the expression of 
Wt1 begins with that of Nr5a1 and the DNA-binding form WT1 (-KTS) acts together 
with Sf1 to ensure proper formation of the urogenital system (2). The other WT1 
isoform (+KTS), is involved in the early testis development. Mice lacking the gene, 
presented male-to-female sex reversal through the failure in the Sry expression 
regulation, which influences cell proliferation and Sertoli cell differentiation (3). Other 
genes regulated by WT1 (-KTS) are Sry, Amh, Sox9, Wnt4 and Nr0b1 (Nuclear Receptor 
Subfamily 0 Group B Member 1) (10).  
 
 Mutations in the WT1 gene have been classically identified in anomalies of 
testicular development leading to 46,XY DSD. Also, WT1 gene deletions in the Wilms’ 
tumour (OMIM 194070) and missense variants in the zinc finger domains or in intron 9 
in Denys-Drash (DDS, OMIM 194080) and Frasier syndromes (FS, OMIM 136680), 
respectively, have been reported (2, 17). However, the application of NGS to the 
molecular diagnosis of DSD patients and associated syndromes has enlarged the 
phenotypic spectrum, like the WT1 frameshift activating variant in a zinc-finger domain 
found in a 46,XX T DSD girl (18) or the six intronic and two missense changes identified 
in a cohort of women presenting with POF (Premature ovarian failure, OMIM 311360). 
Further in vitro analyses showed that missense variants downregulated AMH and 
CDH1 (Cadherin 1), while increased expression of FSHR (Follicle Stimulating Hormone 
Receptor) and CYP19A1 (Cytochrome P450 Family 19 Subfamily A Member 1) (19).  
 

1.1.3. GATA binding protein 4 (GATA4) 
 

The human GATA4 gene on chromosome 8p23.1 encodes an essential 
transcription factor for the developing gonad and heart (20). GATA proteins have two 
zinc fingers (ZNI and ZNII), which are highly conserved and are necessary for protein–
protein interactions with other transcription factors (Figure 3). The sequences of the 
carboxyl-terminal and amino-terminal domains are required for the DNA recognition 
and binding, and contribute to stability (21). 

 
Gata4-null mice die due to severe abnormalities in heart tube formation and 

ventral morphogenesis. Gata4 expression and function seems not only essential for 
normal testicular and genital development (22), but also to initiate formation of genital 
ridge. Furthermore, mouse embryos conditionally lacking Gata4, show no signs of GR 
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formation and failure of LHX9 and SF1 gonadal markers, suggesting an earlier role in 
gonadogenesis than Sf1, Wt1, Lhx9 and Emx2 (3). In humans, GATA4 interacts with 
several proteins, including SF1, WT1, and FOG2 (Friend Of GATA Protein 2) to regulate 
the expression of sex determining genes SRY, SOX9, and AMH, as well as genes 
involved in sex differentiation such as STAR (Steroidogenic acute regulatory protein), 
CYP17A1 (Cytochrome P450 family 17 subfamily A member 1), CYP19A1, INHA (Inhibin 
subunit alpha) and HSD3B2 (Hydroxy-delta-5-steroid dehydrogenase, 3 Beta and 
steroid delta-Isomerase 2) (22-24). 

 

 
Figure 3. Scheme of the structure of the GATA4 protein. GATA4 contains two distinct zinc finger domains 
(ZNI and ZNII) and a carboxi terminal nuclear localization sequence (NLS) which consists of a DNA-
binding domain and a protein-protein interaction domain. Transcriptional activation domains (TAD) are 
located in the N-terminus. Modified from Martinez de LaPiscina I., 2018 (25). 

 
 
GATA4 haploinsufficiency has been described in patients with different forms of 

congenital heart defects (CHD) since 1999, while only few studies have reported 
mutations related to a 46,XY DSD phenotype (12, 25-29). 
 

1.1.4. Chromobox Homolog 2 (CBX2) 
 

This gene, located on 17q25.3, codifies for a component of the polycomb group 
complex of proteins responsible for epigenetic regulation through the recognition of 
methylated histones. Among other adrenal and spleen defects, the targeted deletion 
of Cbx2 caused male-to-female sex reversal in XY gonads. Posterior forced expression 
of Sry and Sox9 in this murine model resulted in smaller testes and indicated its role in 
testis differentiation through regulation of Sry. Cbx2 is also involved in the 
upregulation of other genes, such as Nr5a1 and Wt1, and downstream targets such as 
Sox9 (30). Variants in this gene are associated with gonadal dysgenesis in humans (31, 
32). 
 

1.1.5. Pre-B-Cell Leukemia Transcription Factor 1 (PBX1) 
 

PBX1 encodes a three amino acid loop extension (TALE) class homeodomain 
protein that plays an important role in the adrenal and urogenital development. Pbx1-/- 
mice decreased cell proliferation in the genital ridge and thus, testicular development 
was impaired. In the female reproductive system, the inactivation of the gene led to 
the absence of uterus and vagina (33). More recently, a missense mutation in the TALE 
domain was found in a child with 46,XY gonadal dysgenesis. This study suggested that 
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the loss-of-function results in an altered interaction with CBX2 and EMX2, driving to 
irregular downstream events that interrupted the gonadal development in the patient 
(34). 
 

1.1.6. Empty-Spiracles Homeobox 2 (EMX2) 
 

EMX2, encoding a homeobox-containing transcription factor is expressed in the 
urogenital system and in the early stages of the cerebral cortex and olfactory system. 
The role of this protein in the early gonadal development was supported when KO 
mice (Emx2-/-) showed complete gonadal and genitourinary system agenesis (35). As 
mentioned, it interacts with other partners to bind DNA regulatory targets and activate 
transcription (34). In males, few deletions that encompass the gene in 10q26.11 have 
been reported (35). 
 

1.1.7. Lim Homeobox 9 (LHX9) 
 

LHX9, encodes a protein of the LIM gene family and contains a homeodomain and 
two cysteine domains involved in protein interactions. During mice embryonic 
development, Lhx9 protein transcripts are present in urogenital ridge. In Lhx9-deficient 
mice, somatic cells of the genital ridge don’t proliferate and gonad fails to form. In the 
absence of testosterone and AMH the genetically XY mice develop a female phenotype 
with reduced expression of Nr5a1 (36). In vitro studies demonstrated the regulation of 
Nr5a1 gene through the direct binding of Lhx9 and Wt1 to the promoter (22, 37). 
Recently, two heterozygous variants in LHX9 have been reported in two 46,XY DSD 
patients with variable degrees of undervirilization (38). 
 
 

1.2. MOLECULAR GENETICS IN MALE GONADAL DETERMINATION 
 

In humans, gonadal differentiation occurs from 6 to 10 gestational weeks and in 
mice from embryo day 11 to 12. During sex development, the gonadal precursors 
differentiate into two somatic cell lineages. The supporting cell precursors contribute 
to Sertoli and Granulosa cells in the XY and XX gonads respectively, whereas 
steroidogenic progenitors give rise to Leydig cells in the male gonads or theca cells in 
the ovary. The differentiation of the germ cell depends on the surrounding niche, then 
the sex role chosen by the cell lineage begins a differentiation cascade that finishes 
with a complete functional gonad (39). 
 

Differentiation of the bipotential gonad into testis or ovary is the result of the 
antagonistic male and female pathways that take part to control the differentiation of 
supporting cell precursors, via regulation of SOX9 and others. The commitment of the 
Sertoli or Granulosa cell fate supposes the activation of one program and the 
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repression of the alternative pathway of development as well as the control of the 
gonad field and the fate of other somatic lineages and germ cells. The SRY gene works 
as a switch that guides the initial gonadal determination to a testicular fate, while 
RSPO1 (R-Spondin 1) and FOXL2, among others, direct gonadal development to an 
ovarian destiny. 
 

SRY gene is necessary and sufficient to initiate testicular development. At 
around week 6 of gestation in humans and embryo day 11 in mice, pre-Sertoli cells 
express the SRY in the XY gonad and together with NR5A1, trigger the testis 
development program through activation and maintenance of the SOX9 signalling 
pathway. Other important target genes and components of the early testis 
development are NR0B1, AMH and GATA4 and its co-factor FOG2 (40). In the absence 
of SRY, female-specific pathway is initiated which includes genes such as RSPO1, WNT4 
and NR0B1 to promote the organogenesis of the ovaries (22).  
 

1.2.1. Sex determining region Y (SRY) 
 

This single-exon gene encodes a member of the high-mobility group (HMG) box 
family of transcription factors. It is characterized by the presence of the highly 
conserved HMG box DNA-binding domain and acts as the testes determining factor. 
Approximately 80% of the 46,XX T DSD and 10% of OT DSD had SRY material 
translocated into one of their X chromosomes. Moreover, nearly 20% of the 46,XY DSD 
females with gonadal dysgenesis had a loss-of-function variant in the SRY gene. Female 
mice transgenic for Sry developed testes, which finally demonstrated that this gene 
triggers male sexual determination and testis formation (2). 
 

In mice, the expression of Sry begins in pre-Sertoli cells at 10 days post-
conception (dpc), stimulating the development of testicular cords and Leydig cell 
formation. Its expression reaches the highest levels at 11.5 dpc and diminishes at 
around 12.5 dpc, thus Sry is not required for the maintenance or function of the testis. 
In contrast, in humans SRY is expressed in male somatic cells at 6 weeks and continues 
to be expressed in the adult testis (2). It seems that SRY acts upregulating Sox9 and 
stimulates Sertoli cell formation and thus, testicular differentiation. In the absence of 
Sry, Sox9 is suppressed and female gonadal development begins (41).  
 

Positive regulators of the Sry gene expression include GATA4, FOG2, WT1 and 
NR5A1. As mentioned before, Cbx2 regulates the expression of Sry itself (30). 
 

1.2.2. SOX family genes  
 

The SOX (SRY-Box) genes encode transcription factors involved in the 
development of several tissues and cell lineages. These transcription factors bend the 
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DNA after binding to the minor groove, which allows the interaction of activating or 
repressing cofactors to the promoter or regulatory regions of target genes. Thus, Sox 
proteins modulate the expression of downstream genes to correctly differentiate and 
preserve the distinct tissues and cell types (42). Besides SRY, three other members of 
the SOX family are expressed in the XY gonad but SOX9 was the first to be related to 
testis development.  

 
In mice, Sox9 is slightly expressed in the genital ridge at embryo day 10.5. 

Immediately after the onset of Sry expression in XY pre-Sertoli cells, expression levels 
of Sox9 increase. At this time Sox9 becomes sexually dimorphic as XX gonads decrease 
its expression levels. Up to date Sox9 is the only known target of SRY (2). 
 

Sox9 is also essential in the chondrogenic lineage specification and 
differentiation. Then, SOX9 loss-of-function alterations cause campomelic dysplasia 
(OMIM 114290), a condition characterized by skeletal defects and typical facies. 
Approximately 75% of 46,XY individuals present with campomelic dysplasia combined 
with complete or partial gonadal dysgenesis (2, 43). Furthermore, genomic 
rearrangements upstream the regulatory region of the SOX9 gene have been identified 
in a wide spectrum of DSD, including 46,XX T DSD and 46,XY OT DSD (44, 45). Studies in 
Oddsex mice showed sex reversal phenotypes when a 150Kb deletion occurred 
upstream Sox9 (46) and a testis-specific enhancer (TES) was found as a gene 
expression regulator. Sf1 and Sry bind the testis-specific enhancer core element 
(TESCO), located 13Kb upstream Sox9, to upregulate its expression. Once Sox9 is 
increased, it displaces Sry and synergizes with Nr5a1 to regulate its own expression by 
a positive feedback loop (47). This positive regulatory loop occurs via Fgf9 (Fibroblast 
growth factor 9), which in turn activates the FGF receptor 2 (Fgfr2) and Prostaglandin 
D synthase (Ptgds), resulting in the secretion of Prostaglandin D2, Amh or Vnn (Vanin 
1) (48, 49). Other genes have been identified downstream Sry and Sox9 and might act 
as potential targets of these, but evidence is still insufficient. On the other side, Sox9 
represses the WNT4/FOXL2 pathways, involved in the ovarian formation. Fgf9/Wnt4 
double mutant XY mice developed male gonads which indicated that the principal role 
of Fgf9 is to repress Wnt4 (50). 

 
Studies in murine models have suggested that Sox9 could effectively replace Sry 

as the sex-determining gene. Transgenic Sox9 XX mice developed testes while KO XY 
embryos led to the formation of ovaries. Moreover, specific annulation of the gene in 
Sertoli cells resulted in normal testicular development and fertile mice (46, 51). This 
phenomenon may be due to the functional redundancy amongst the Sox gene family 
members, which means that functionality of the Sertoli cells might have been rescued 
by either Sox8 or Sox10 (42).  
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SOX8 and SOX10 are also expressed in the XY gonad. In mouse model, Sox8 is 
expressed in the testis cords at embryo day 13.5 and in vitro it upregulates the 
expression of anti-Müllerian hormone (Amh). Sox8-deficient male mice have abnormal 
Sertoli cells and infertility, but normal male internal structures (22, 52). Moreover, 
SOX8 variants have been recently described in a range of reproductive anomalies (53). 
In contrast, Sox8 and Sox9 double KO mice lack testis cord, which supports the 
functional redundancy between these two proteins in testicular differentiation, either 
by the mediation of the HMG-box or to the inadequate expression of HMG-box 
proteins (42). The transgenic expression of Sox10 in XX gonads has resulted in the 
development of testes and male phenotype, suggesting that Sox10 is able to activate 
transcriptional targets of Sox9 (2). On the other hand, SOX3 a single-exon gene located 
on the X chromosome is expressed in brain and gonads. Studies in animal models 
demonstrated that Sox3-null female mice were able to develop defective ovaries while 
male mice (-/Y) developed testes with loss of germ cells and disruption of seminiferous 
tubules. They conclude that Sox3 is important for testicular differentiation and 
gametogenesis (54). In humans, SOX3 gene variants have been identified in X-linked 
mental retardation (OMIM 309530) and in a 46,XX DSD patient with bilateral ovotestes 
(55). 
 

1.2.3. Fibroblast growth factor 9 (FGF9) 
 

The FGF9 gene encodes a member of growth factors critical in cell proliferation, 
survival, migration and cell differentiation (22). It is expressed after Sry in the 
bipotential gonad. Studies with Fgf9-deficient mice have shown different results, 
either a male to female sex-reversed phenotype or mutant mice that died with 
gonadal abnormalities after birth (56). Some data support that Sry and Nr5A1 begin 
the upregulation of Sox9, increasing the expression of Fgf9 which in turn further 
increases Sox9 expression (48). Therefore, in the absence of Fgf9, the expression of 
Sox9 is not maintained, and Sertoli cells don’t differentiate. Then, the balance between 
Fgf9 and Wnt4 favours to female development  
 

The molecular function of FGF9 is mediated through its receptor FGFR2, which 
is embedded in the membrane of progenitor Sertoli cells. Although an important 
crucial role of both genes is suspected in human sex development, a single variant in 
FGFR2 has been identified in a patient with 46,XY sex reversal and craniosynostosis 
(57) and a FGF9 gain of copy number in a 46,XX male with elevated FSH (Follicle 
Stimulating Hormone) level, low testosterone and ambiguous genitalia (58). 
 

1.2.4. Nuclear Receptor Subfamily 0 Group B Member 1 (NR0B1) 
 

The NR0B1 gene encodes DAX1 (DSS-AHC, dosage-sensitive sex reversal, 
adrenal hypoplasia congenital critical region on the X chromosome protein 1), on 
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chromosome Xp21.2, which is an orphan nuclear hormone receptor. The carboxil-
terminal region of the protein, shows similarities to ligand-binding domain of other 
nuclear receptors and contains twelve helices, whereas the N-terminal represent a 
domain involving 3.5 repeats of a 65 to 67 amino acid motif with two putative zinc 
fingers, which possibly act as nucleic acid-binding domain (41). DAX1 acts throught the 
retinoic acid receptor as an inhibitory protein of the SF1 nuclear receptor, estrogen 
receptor and androgen receptor (59).  
 

In humans, loss-of-function mutations or deletions of NR0B1 results in patients 
with X-linked congenital adrenal hypoplasia (AHC, OMIM 300200) and 
hypogonadotropic hypogonadism (HH). Patients with AHC have poorly differentiated 
adrenal gland after fetal stage and present with steroidogenesis disturbances and a 
disorganized testis cord (59). On the other side, duplications of NR0B1 have been 
shown to cause 46,XY gonadal dysgenesis and a female phenotype (60).  
 

It has been proposed that DAX1 functions as a dosage-based mechanism. In 
46,XY males, NR0B1 is maintained inactive by SRY and the testicular differentiation 
pathway continues. When duplications occurs, SRY is not enough to block the amount 
of DAX1 and the female pathway is followed after DAX1 has repressed testis-specific 
enhancer (TES), the enhancer of SOX9, and the testicular formation is stopped. Lack of 
testosterone and AMH blocks development of external genitalia and the regression of 
Müllerian ducts (59).  
 

As mentioned, NR0B1 also promotes the ovarian pathway and loss-of-function 
heterozygous and homozygous nonsense mutations in XX individuals have been 
associated with delayed puberty and hypogonadotropic hypogonadism (61, 62), which 
disagrees with mouse modelling studies. Due to the dimorphic expression between 
ovary and testis NR0B1 was considered an “anti-testes” gene. It has been indicated 
that DAX1 inhibits the interaction of SF1 and WT1 and thus, reduces the activation of 
SOX9, which blocks steroidogenesis and the production of anti-Müllerian hormone 
(59). 
 

This was validated when Dax1-/Ypos murine models, testes were not 
differentiated due to Sox9 low levels and absence of Amh (63), suggesting that Sry and 
Dax1 may act to upregulate Sox9. These genetic males had female external and 
internal genitalia. SRY and DAX1 interact in early development of the gonadal ridges 
and are expressed in both testicular and ovarian tissue. In the absence of Nr0b1 male 
mice showed complete gonadal sex reversal, suggesting its role in testicular 
determination (64). After sex-determining period, Dax1 is downregulated in the testes 
to be upregulated again at 17.5 days post-conception. This break is necessary for the 
male correct differentiation, since Dax1 inhibits the expression of Amh and Hsd3B2, 
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both important in the testicular development (65). In differentiating ovaries, Dax1 is 
upregulated downstream Wnt4, which indicates that Dax1 support Sry (66).  
 

1.2.5. GATA binding protein 4 (GATA4) and Friend of GATA 2 (FOG2) 
 

The role of GATA4 in male sex determination has been explained before (See 
1.1.3, page 6). 
 

FOG2 is a zinc finger cofactor that binds the N-terminal zinc finger of the GATA4 
protein and acts as a transcriptional coactivator or corepressor. Fog2 (or ZFPM2, Zinc 
Finger Protein, FOG Family Member 2) is co-expressed with Gata4 in XY gonad during 
Sertoli cell formation and although the exact mechanism is unknown, the physical 
interaction between Gata4 and fog2 proteins is needed for testicular development 
(67). Indeed, an impaired interaction between GATA4 and FOG2 was reported in a 
46,XY DSD patient presenting with a missense variant in the zinc finger of GATA4 (27). 
In humans, mutations in the FOG2 gene have demonstrated to cause 46,XY DSD due to 
modulation of the expression of target genes involved in testes development (67). It 
was found that Fog2-null mice died before embryo day 15.5 with a complex cardiac 
defect, failure of testis differentiation and reduced gene expression, such as those 
required for Sertoli cell differentiation and Leydig cell function. Moreover, 
haploinsufficiency of either Gata4 or Fog2 is sufficient to induce gonadal sex-reversal 
in murine model.  
 

1.2.6. Desert Hedgehog (DHH) 
 

DHH, located on 12q12 and encoding a 396-amino acid protein, is a member of 
the hedgehog family of signalling molecules. Among them, Dhh is expressed at 11.5 
days post-conception in Sertoli cell precursors, after the expression of Sry had begun. 
This protein is also expressed in Schwann cells, vascular endothelium, endocardium 
and seminiferous epithelium of the mouse embryo (39) and no expression has been 
detected in female gonads. Dhh-/- mutant mice were sterile and showed abnormal 
peripheral nerves (68). Dhh signalling is also required for the upregulation of Nr5A1 
and receptor Patched 1 (Ptch1) expression in Leydig cells (69). Several mutations have 
been associated with complete or partial 46,XY gonadal dysgenesis (22, 69). 
 

1.2.7. Doublesex and Mab-3 Related Transcription Factor 1 (DMRT1) and 2 
(DMRT2) 

 
DMRT1 protein is a transcription factor with a DNA-binding domain similar to a 

zinc finger, named DM (DNA-binding motif) domain. In mice, Dmrt1 is expressed in the 
primordial gonads of both sexes at 10.5 days post-conception (dpc). Later it is only 
increased and maintained in Sertoli and premeiotic germ cells until adulthood, 
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whereas its expression is decreased in the ovary. In humans, DMRT1 is expressed in 
undifferentiated XY gonadal primordium at 6 weeks of gestation and in Sertoli cells 
between gestation weeks 8 to 40. During childhood and postpuberty it is also 
abundant in spermatogonia. At about gestation week 20, it has been detected in 
oogonia and oocytes but is downregulated when germ cells enter at meiosis (70). 
 

Studies in mice revealed that the gene important in the maintenance and 
growth of the testis in the postnatal and adult period, whereas in humans is required 
for the development of the testis during foetal period (71). DMRT1 is involved in sex 
determination and gonadal development across a broad range of species. In humans, 
the role of DMRT1 in male sex determination was confirmed when subtelomeric 
deletions causing sex reversal and gonadal dysgenesis in 46,XY individuals, were 
mapped to gene location 9p24.3. 
 

In mice, Dmrt1 activated testis-promoting genes including Sox9, Sox8 and 
Ptgds, and repressed ovary-promoting genes such as Foxl2, Wnt4 and Rspo1, as well as 
retinoic acid (RA) signalling and its feminizing effects (70, 72). Moreover, it has been 
shown that the loss of Dmrt1 in mouse Sertoli cells activates Foxl2, and thus, Sertoli 
cells differentiate to Granulosa and theca cells, with its consequent oestrogen 
production (73). Dmrt1-/- mice showed postnatal defects in testis maturation and germ 
cells died at 7 dpc. This gene may not have a critical role in the early stages of 
gonadogenesis in mice, however the default in germ cell migration and survival is 
related to the expression pattern in both somatic and germ cell types. 
 

Further analysis of the 9p locus showed that DMRT2 also maps to 9p24.3. The 
two DMRT1 and DMRT2 are 80% identical in the core region of the DM domain and are 
expressed in testis, suggesting that it might potentially be involved in 9p sex reversal. 
Although it was not believed to be a common cause of 46,XY sex reversal, it has been 
probed that deletions in 9p include the removal of both DMRT1 and DMRT2 genes 
(71). Individuals with distal monosomy 9p presented with both normal or ambiguous 
external genitalia and varying degrees of mixed gonadal dysgenesis, including fibrous 
streak gonads, hypoplastic testicles, or ovotestes (74, 75).  
 

1.2.8. a-Thalassemia/Mental retardation X-linked gene (ATRX) 
 

The ATRX protein is a member of the SW1/SNF (SWItch/Sucrose Non-
Fermentable) DNA family, involved in chromatin remodelling. It is  a nuclear protein 
found at heterochromatic structures, such as pericentromeric heterochromatin and 
ribosomal DNA (rDNA) repeats. These repeat elements are essential for the 
transcriptional regulation. ATRX modulates gene expression by binding to G-rich 
tandem repeat sequences. Variations in the size of the tandem repeats associated to 
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diverse gene expression levels could explain the phenotypic variability observed within 
families with the same mutation (39). 
 

The amino-terminal of the ATRX protein is an ATRX-DNMT3-DNMT3L (ADD) 
domain with a plant homeodomain-like zinc finger. In the middle of the protein lies the 
helicase/adenosine triphosphatase (ATPase) domain that displays nucleosome-
remodelling activity. Most of the mutations described so far, lie in the helicase and 
ADD domain. Mutations in this last region are associated with more severe 
psychomotor impairments. The C-terminus encodes the conserved P-box domain, 
involved in transcriptional regulation and a Q-box responsible for protein interaction. 
This region seems to be in charge of the urogenital formation. Patients lacking this C-
terminal region have severe urogenital anomalies such as female external genitalia 
with streak gonads or ambiguous genitalia (76). 

 
Mutations in this gene cause alpha-thalassemia/mental retardation syndrome 

X-linked (ATR-X, OMIM 301040), a sex-linked condition characterized by alpha-
thalassemia, psychomotor retardation, distinct dysmorphic facies, skeletal, renal and 
cardiac anomalies, as well as genital abnormalities (76). Testicular irregularities are 
present in 80% of the XY patients, ranging from complete gonadal dysgenesis to mild 
hypospadias or micropenis. Histopathological analysis of dysgenetic testis in two ATRX 
positive patients confirmed its function after sex determination, possibly during 
neonatal period (77).  
 

1.2.9. Anti-Müllerian hormone (AMH) and its receptor AMHR2 
 

AMH is a member of the transforming growth factor-b family and is released by 
immature Sertoli cells at sex differentiation in foetal life. AMH expression begins in the 
pre-Sertoli cells, declines in the perinatal period and is highly maintained until Sertoli 
cells are mature in puberty. In females, its expression begins during the perinatal 
period and remains low in Granulosa cells until menopause (39). AMH is coded by a 5-
exon gene located on 19p13.3 (78) and is translated as a dimeric precursor comprising 
2 polypeptide chains, containing a large N-terminal fragment important for the correct 
folding of the protein, and smaller C-terminal mature domain.  
 

In contrast, AMHR2 (Anti-Müllerian Hormone Receptor Type 2) gene, located 
on 12q13 contains 11 exons and codifies for a protein with an intracellular domain 
with serine/threonine kinase activity, a transmembrane domain and an amino-
terminal extracellular domain that binds AMH.  
 

Anti-Müllerian hormone is responsible for regression of the female Müllerian 
ducts during male sex differentiation and mutations in AMH or its receptor AMHR2 
cause persistent Müllerian duct syndrome (PMDS, OMIM 261550). Transcription 
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factors NR5A1, SOX9, GATA4 and WT1 regulate the transcription of AMH through a 
critical DNA-binding region on its minimal promoter. In mice, SOX9 demonstrated to 
be essential to start Amh expression, whereas NR5A1 interacts with either SOX9 or 
WT1 through its DNA-binding domain to upregulate Amh transcripts. GATA4 alone or 
together with NR5A1 upregulates the expression of AMH too. On the other side, 
NR5A1 can cooperate physically with DAX1 to repress the expression of AMH, but with 
lower affinity compared to NR5A1-WT1. In women, AMH has an important role as an 
ovarian reserve marker (79).  
 

1.2.10. Mitogen-activated protein kinase pathway (MAP3K1) 
 

The mitogen-activated protein kinase (MAPK) pathway was linked to the early 
stages of male gonadal development when the Map3k4 (Mitogen-Activated Protein 
Kinase Kinase Kinase 4) gene responsible for a male to female sex reversal in XY mice 
was discovered by Bogani et al. Moreover, expression analysis in Map3k4 KO models 
showed a decrease of Sox9 and Sry production which lead to the absence of Sertoli 
cells and the development of ovaries (80).  
 

Later, sequencing analyses revealed gain-of-function mutations in the MAP3K1 
(Mitogen-Activated Protein Kinase Kinase Kinase 1) gene in patients with streak gonads 
and female genitalia (12, 81, 82). In mice, Map3k1 is expressed during testicular 
development at embryo day 11.5 but KO mice do not have testicular abnormalities. 
The molecular mechanism behind the gain-of-function mutations in humans differs 
from mouse models. Mutations in MAP3K1 gene stimulate the ovarian-determining 
pathway, resulting in augmented β-catenin, WNT4 and FOXL2 expression and 
decreased SRY and SOX9 (82). 
 

1.2.11. Insulin receptor tyrosine kinases and insulin-like growth factors 
 

Insulin and insulin-like growth factors (IGFs) are also involved in cell regulation 
during embryonic and postnatal development and mediate their functions by 
membrane-associated tyrosine kinase receptors. Genes codifying for Insr (Insulin 
receptor), Igf1r (Insulin-like growth factor type 1 receptor) and Insrr (Insulin receptor-
related protein) are necessary for testicular determination pathway. Triple 
(Insr/Igf1r/Insrr) KO XY mice showed complete male-to-female sex reversal and 
reduced expression levels of Sry and Sox9 (83). Later, it was demonstrated that only 
Insr and Igfr1 were involved in genital ridge (GR) development and its absence is 
enough to cause the XY sex reversal phenotype (84). These mice embryos showed 
delayed Sry expression at embryo day 11.5, downregulation of several genes and 
delayed ovarian differentiation until embryo day 16.5. Genes which expression was 
decreased were Wt1, Lhx9, Nr5a1, Gadd45g and Wnt4, indicating the influence of 
insulin/IGF signalling in the GR development. 
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In humans, sequence variants in these genes have not been described in DSD. 

 
1.2.12. Testis-Specific Y-Encoded-Like Protein 1 (TSPYL1) 

 
The TSPYL1 protein is a member of the TSPY/TSPYL/SET/NAP-1 (Testis-specific 

protein Y-encoded, Testis-specific protein Y-encoded like, Drosophila proteins 
Su(var)3-9, Enhancer-of-zeste and Trithorax, Nucleosome assembly protein 1) family of 
chromatin modifiers. Its expression is limited to male germ cells and contains a NAP 
and SET domain that interact with cyclin B to regulate the cell cycle. Actually, NAP 
domain containing proteins act as histone chaperones to control chromatin and 
nucleosome assembly and control gene expression of a variety of proteins, like HMG 
box containing proteins SRY, SOX8 and SOX9 key elements. This fact may propose the 
mechanism whereby TSPYL1 causes defects in testicular development (85). 
 

Variants in TSPYL1 were recognized in an autosomal recessive syndrome called 
Sudden infant death with dysgenesis of the testes (SIDDT, OMIM 608800) (86). 
Affected males presented with either 46,XY partial or complete gonadal dysgenesis at 
birth and developed later viscero-autonomic dysfunction followed by death. Sexual 
development in 46,XX individuals was normal (86). Further studies associated TSPYL1 
gene variants with isolated testicular dysgenesis (85).  
 

1.2.13. Mastermind-like domain-containing 1 (MAMLD1)  
 

MAMLD1 was firstly identified as the responsible gene for X-linked myotubular 
myopathy (MTM1, OMIM 310400) and abnormal genitalia in two patients with a 
deletion in Xq28. MAMLD1 acts as a transcription factor by transactivating the 
promoter of the non-canonical Notch targeted Hes promoter, and increases 
testosterone through the regulation of SF1. The possible role in sex differentiation was 
probed when studies in mouse models showed increasing Mamld1 expression in fetal 
Sertoli and Leydig cells at embryo day 12.5 to E14.5. Moreover, Mamld1-null mice 
showed reduced testicular expression of Cyp11a1, Cyp17a1, Hsd3b1, Star and Insl3, all 
Leydig-cell specific genes, although external genitalia and reproduction capacity was 
normal (13)(87).  
 

In humans, MAMLD1 sequence variations have been detected in 46,XY DSD in 
patients with a broad range of mild to severe phenotypes (87). A role in ovarian 
development was also suggested after a gain-of-function mutation was found in a 
46,XX DSD woman with virilization (88). However, further evidence has questioned 
whether MAMLD1 gene variants are able to explain the DSD phenotype. Besides the 
MAMLD1 variants found in normal population (89) and the aforementioned KO mice 
with normal genital phenotype, promoter activation assays show similar results in 
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MAMLD1 mutations compared to Wt (87, 89-91). In fact, an oligogenic mechanism 
explaining the phenotype in MAMLD1 positive patients has been recently published 
(91). 

1.2.14. WW Domain-Containing Oxidoreductase (WWOX)  
 
WWOX (Tryptophan, Tryptophan Domain-Containing Oxidoreductase) gene is 

located at 16q23.1-q23.2 and is a tumour suppressor gene with causative 
rearrangements described in several cancers. This gene encodes a protein with two 
WW domains at the amino-terminal and a short chain oxidoreductase (SDR) domain in 
the middle, thought to have a role in steroid metabolism. The WW domains are 
involved in protein-protein interactions. KO mouse models showed defects of Leydig 
cell function. This is possibly explained because WWOX inhibits the Wnt/β-catenin 
pathway in a dose-dependent manner, even though this inhibition is reduced when 
the SDR domain is eliminated. In humans, WWOX is expressed in pituitary, testis and 
ovary and has been suggested to have a role in gonadotrophin or sex-steroid 
biosynthesis (92). Missense variants as well as duplications and exon deletions have 
been identified in 46,XY DSD patients with ambiguous genitalia and in a 46,XX DSD 
patient that was referred with primary amenorrhea and hypergonadotropic 
hypogonadism (92, 93). 
 
 

1.3. PATHWAYS INVOLVED IN THE DETERMINATION OF THE FEMALE GONAD  
 

Although the noteworthy increase in the identification of the essential 
regulatory genes associated with ovarian development, little is known compared to 
testicular formation.  
 

Female development has been considered the passive pathway in mammals, 
since the removal of male embryonic gonads before sex determination or the loss-of-
function mutations in early gonad genes led to a female phenotype (2). In the last 
years, genetic factors involved in ovarian development have been identified and it has 
become apparent that both male and female pathways actively suppress the alternate 
state to maintain the somatic sex identity of the gonad as either male or female.  

 
In the absence of SRY gene, the undifferentiated gonad activates a signalling 

pathway responsible for commitment to an ovarian fate. Ovarian sex determination 
requires Rspo1/Wnt4/b-catenin and Foxl2 signalling pathways. 
 

1.3.1. Rspo1/Wnt4/b-catenin signalling pathway 
 

WNT4 (Wingless-type MMTV integration site family member 4) and RSPO1 (R-
spondin family member 1) ensure appropriate levels of stable b-catenin signalling, 
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essential for starting the ovarian development (94). In mouse models, the activation of 
b-catenin in male gonads promoted ovarian development, leading to XY sex reversal, 
while conditional ablation of Ctnnb1 (Catenin B 1 gene) in XX somatic cells did not 
interrupt ovarian differentiation, suggesting that the loss of the Ctnnb1 causes sex 
reversal when happening in both somatic and germ cells (95).  
 
 Rspo1 and Wnt4 expression is increased in the ovary at embryo day 12.5 and 
although both are secreted by the somatic cells, Rspo1 has been detected in the 
membrane of germ cells too. In mice, loss-of-function mutations in either Rspo1 or 
Wnt4 cause complete or partial XX sex reversal and ovotestes (96). In Wnt4-deficient 
mice the expression of Rspo1 remains undamaged, whereas in Rspo1-null mice Wnt4 
expression is absent. Thus, Rspo1 might collaborate with Wnt4 in a linear pathway to 
stabilize b-catenin. Igfr1 expression is also diminished in these deficient mice, 
suggesting that feedback interactions may exist between these two signaling 
pathways. Rspo1 and Wnt4 also contribute in the early coelomic proliferation and 
double mutant null mice display a significant reduction in cell proliferation between 
embryo days 10.5 and 11.5 (97). 
 

In humans, mutations in RSPO1 are associated with a syndrome characterized 
with palmoplantar hyperkeratosis, predisposition to squamous cell carcinoma and 
46,XX DSD (98). Regarding WNT4, dominant heterozygous mutations have been 
reported in association with anomalies of Müllerian structures, androgen excess and 
different virilization degrees (97). A homozygous mutation was found in three XX 
foetuses with an embryonic lethal syndrome (SERKAL, OMIM 611812) encompassing 
female-to male sex reversal and kidney, adrenal and lung dysgenesis (99). 
  

RSPO1 and WNT4 activate other backup pathways that ensure the ovarian fate, 
including the insulin signalling pathway, Runx1 gene (Runt-related transcription factor 
1), which maintains Wnt4 expression (100), Fst (Follistatin) and Bmp2 (Bone 
Morphogenetic Protein 2. 
 

1.3.2. Forkhead transcription factors  
 

FOXL2 (Forkhead Box L2) is part of the forkhead box family of transcription 
factors and is required to maintain the ovarian phenotype at the postnatal stage. In 
mice, Foxl2 is one of the earliest markers of ovarian development, however in Foxl2-/- 

mice the male differentiation pathway is started in the ovaries, where cells acquire the 
Sertoli cells’ characteristics and Sox9 expression is observed (101). Similarly, lack of 
Dmrt1 in Sertoli cells resulted in the upregulation of Foxl2 and transdifferentiation into 
Granulosa and theca cells (73). These data support the hypothesis that the 
development and maintenance of the gonad is a biological process regulated by a 
double-repressive system. 
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 In human, FOXL2 protein is expressed in the mesenchyme of developing 
eyelids, fetal and adult Granulosa cells of the ovary, in the developing pituitary and 
adult gonadotroph and thyrotroph cells. FOXL2 heterozygous mutations are 
responsible for the blepharophimosis ptosis epicanthus inversus syndrome (BPES, 
OMIM 110100), a dominant condition characterized by palpebral malformations 
associated with premature ovarian failure (POF). For the moment few sequence 
variants have been found in patients with POF (101). Although FOXL2 does not play a 
central role in sex differentiation in humans and mice, it seems to regulate the 
maintenance of gonad fate. Chromatin immunoprecipitation experiments showed that 
TESCO element, which regulates the expression of Sox9, is reactivated after deletion of 
Foxl2. Moreover, FOXL2 antagonises Wt1 and represses the expression of Sf1 (102).  
 

Other forkhead transcription factor demonstrated to have a role in ovarian 
function is FOXO3 (Forkhead Box O3). This function was highlighted when Foxo3a 
female KO mice showed early formation of ovarian follicles, followed by oocyte death 
and infertility (101), whereas constitutive expression of the gene demonstrated to 
cause delay in follicular development, oocyte growth and finally infertility. Further 
studies, revealed that Foxo3a reduced the expression of Bmp15 (Bone Morphogenetic 
Protein 15) (103). Although few gene variant have been found in POF presenting 
patients the pathologic role of FOXO3 remains unknown (101). 

 
In addition to these genes necessary for the determination of the ovary, other 

genes are required for the ovarian follicle development and are reviewed later (See 
1.4.5, page 33).  
 
 

1.4. SEX DIFFERENTIATION  
 
In the developing gonads Sertoli and Granulosa cells activate the formation of 

the steroidogenic Leydig (XY gonad) and theca (XX gonad) cells, which produce the 
necessary hormones for the subsequent correct differentiation of the fetus. The 
steroid hormones responsible for the phenotype of internal and external genitalia, as 
well as other reproductive tissues, are called androgens in males and oestrogens in 
females. At this time two duct precursor systems, the mesonephric (Wolffian) and the 
paramesonephric (Müllerian) co-exist, as well as two mesodermal swellings that 
develop to the urethral folds and labioscrotal swellings (8). These precursor structures 
differentiate into the internal and external genitalia under the influence of hormones 
secreted by the developing gonad. 

 
Sertoli cells begin the secretion of anti-Müllerian hormone which promotes the 

regression of the Müllerian structures and initiate further testicular development with 
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the stimulation of Leydig cells, via a hedgehog signalling pathway. AMH expression has 
been detected by the 9th week of gestation (104). Leydig cells produce androgens and 
insulin-like peptide 3 (INSL3) at 8-9 weeks of development. Androgens released by the 
testes, lead to the formation of male internal (epididymis, vas deferens, seminal 
vesicle) and external genitalia (penis, scrotum). Testosterone is responsible of 
developing Wolffian duct into male internal structures while INSL3 stimulates 
testicular descent. Furthermore, 5a-reductase enzyme transforms testosterone to 
dihydrotestosterone (DHT), promoting the development of the penis, scrotum and 
prostate (105). Defects in testosterone and dihydrotestosterone biosynthesis and the 
androgen receptor are associated with XY DSDs.   

 
1.4.1. Steroidogenesis 
 
Steroid hormone biosynthesis comprises mineralocorticoid, glucocorticoid and 

sex steroid production from cholesterol in the adrenal glands and sex steroid 
production in the ovaries and testes (Figure 4). All steroidogenic processes take place 
in the adrenal cortex, where each zone is responsible for the synthesis of a specific set 
of steroid hormones, the mineralocorticoids in the outer zona glomerulosa, 
glucocorticoids in zona fasciculata, and androgen precursors, androstenedione and 
dehydroepiandrosterone (DHEA) in zona reticularis (106). Steroid production is 
regulated by external stimuli, such as adrenocorticotropic hormone (ACTH) released in 
the anterior pituitary. ACTH regulates cortisol synthesis and increases slightly 
mineralocorticoid and adrenal androgen synthesis  via the cAMP (cyclic Adenosine 
monophosphate) mediated protein kinase A (PKA) pathway which activates StAR 
protein and SF1 (107), as well as angiotensin II and potassium, which selectively 
increase mineralocorticoid synthesis via protein kinase C (PKC) pathway. In parallel, 
the transcription of steroidogenic genes (CYP11A1, HSD3B2, CYP17A1, CYP21A2, and 
CYP11B1) and co-factors relevant to glucocorticoid synthesis increases.  

 
Enzymes involved in steroidogenesis can be divided into two major groups: 

cytochrome P450 (CYP) and hydroxysteroid dehydrogenases/ketosteroid reductase 
(HSDs/KSR). Cytochrome P450 enzymes are a group of oxidative enzymes that contain 
a heme group. They are termed depending on their intracellular localization and the 
mechanism by which they obtain electrons from NADPH (Nicotinamide adenine 
dinucleotide phosphate hydrogen). Type 1 are targeted in the mitochondria and 
receive electrons from ferredoxin and ferredoxin reductase, whereas type 2 are 
targeted to the endoplasmic reticulum and get electrons from P450 oxidoreductase 
(POR) Each P450 enzyme can metabolize more than one substrate and is involved in 
broad steps of oxidations in steroidogenesis. Six enzymes take part in steroidogenesis. 
Mitochondrial P450 cholesterol side-chain cleavage (scc) enzymes (encoded by 
CYP11A1) catalyse 20,22-desmolase activities, isozymes P450c11 (CYP11B1) and 
P450c11b, 11b-hydroxylase activity and P450c11AS (aldosterone synthase) (CYP11B2) 
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18-hydroxylase and 18-methyl oxidase activities. In the endoplasmic reticulum 
P450c17 (CYP17A1) catalyses both 17a-hydroxylase and 17,20-lyase activities, P450c21 
(CYP21A2) catalyses 21-hydroxylation in the synthesis of glucocorticoids and 
mineralocorticoids, and P450 aromatase (CYP19A1) the aromatization of androgens to 
oestrogens. The regulation of the steroidogenesis is quantitatively determined by the 
production of these enzymes, especially P450scc. On the other side, HSD/KSR enzymes 
catalyse in vitro reversible reactions whereas, in vivo they continue in an oxidative or 
reductive mode. They are classified into dehydrogenases, which oxidize 
hydroxysteroids to ketosteroids using NAD+ (Nicotinamide adenine dinucleotide+) and 
reductases, which reduce ketosteroids to hydroxysteroids consuming NADPH cofactor. 
Relevant in steroid synthesis are the 3-HSD type 2 (HSD3B2), the 11-HSD type 1 and 
type 2 (HSD11B1 and HSD11B2), and some of 17-HSDs (108). 
 

 
Figure 4. Classic pathway of the adrenal and gonadal steroidogenesis. Arrows indicate chemical 
reactions and boxes are the enzymes involved in catalysing the respective reaction. Genes encoding the 
enzymes are adjacent to the boxes. Genes included in the panel are shown in dark grey. Modified from 
Häggström M., 2014 (109).  
 
 

Testosterone is required, as well as FSH, for optimal sperm production and 
sexual function in male gonad. LH (Luteinizing hormone) stimulates the enzymes 
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involved in testosterone synthesis in Leydig cells, including 17,20-lyase which directs 
the biosynthesis of steroids toward the sex hormones. Meanwhile androstenedione is 
converted to testosterone by 17β-hydroxysteroid dehydrogenase (17β-HSD) type 3 or 
5 in Leydig cells (110), whereas type 2, found in prostate and placenta, performs the 
opposite reaction. Aromatase, which is expressed at low levels in Leydig, Sertoli, and 
germ cells converts testosterone to oestradiol. This step seems to be necessary for the 
correct initiation of spermatogenesis and mitosis of spermatogonia (111). 
Dihydrotestosterone (DHT) is the most potent androgen and is formed from 
testosterone by steroid 5α-reductase in the epididymis and prostate mainly. It has 
important physiological roles in maintaining sexual function.  
 

In the ovary, steroid hormones are produced for sexual and reproductive 
functions. Steroidogenesis takes place mainly in theca cells which produce 
progesterone and androgens that act as precursors for oestrogen synthesis in the 
Granulosa cells. Once androstenedione and testosterone diffuse into the cells, they are 
transformed to oestradiol, mainly via the action of aromatase and 17β-HSD types 1 
and 7 (110). During follicle maturation, LH and FSH upregulate aromatase and 
oestrogen synthesis increases. At this point ovulation is triggered due to the positive 
feedback created by oestrogens and responsible for the LH and FSH secretion. Then, 
follicle enters the luteal phase and develops to corpus luteum which predominantly 
synthesizes progesterone. The reduction of LH, aromatase expression and oestrogen 
production, as well as an increase in CYP11A1 and 3β-HSD activities, stimulate the 
synthesis of progesterone and the process of follicle rupture begins (112). 

 
Genetic variants in the genes involved in the initial steps of steroidogenesis 

(Figure 4) shared by the adrenal cortex and the gonads, affect synthesis of steroids in 
both organs and may lead to DSD and congenital adrenal hyperplasia (Table 1).  
 

Congenital adrenal hyperplasia (CAH) encompass a group of inherited 
autosomal recessive diseases characterized by impaired adrenal steroid synthesis and 
in some cases impaired gonadal steroid production with associated genital ambiguity. 
These inborn errors of steroidogenesis in which cortisol synthesis is impaired and the 
consequent overproduction of ACTH results in adrenal hyperplasia have been classified 
as CAH, being 21-hydroxilase (CYP21A2) deficiency the most common. But might also 
be caused by deficiencies of the following enzymes or cofactors: 17-hydroxylase 
(CYP17A1), 11-hydroxylase (CYP11B1), 3-HSD type 2 (3βHSD2), P450 oxidoreductase 
(POR), StAR (lipoid CAH) and P450 side-chain cleavage enzyme (CYP11A1). In the 
different types of CAH the adrenal steroidogenesis is interrupted at distinct points 
then, clinical manifestations are closely related to the type and severity of impairment. 
Genotype-phenotype correlation is good (113). 
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Table 1. DSD Phenotype due to inborn errors of the synthesis of steroids.  
 

Disorder (OMIM)/Gene 
DSD phenotype 

CAH Others 
46,XY 46,XX 

LCAH (201710)/STAR 
CF: Feminization, GI and infertility; 

NCF: HH. 

CF: absence of pubertal development and 

POF; NCF: none. 
Yes  

P450scc syndrome 

(118485)/CYP11A1 
CF: Feminization and GI; NCF: none. 

CF: absence of pubertal development and 

POF. NCF: none. 
Yes  

3βHSD2 def (201810)/HSD3B2 CF: Undervirilization; NCF: None CF: Virilization; NCF: adrenarche, PCOS-like Yes  

17⍺OH and 17,20 lyase def 

(202110)/CYP17A1 
Feminization and GI Absence of pubertal development, GI. Rare 

Hypertension and hypokalemic 

alkalosis 

21OH def (201910)/CYP21A2 CF: precocious puberty; NCF: none. CF: Virilization; NCF: none. Yes Rapid skeletal growth 

11βOH def (202010)/CYP11B1 Precoious puberty Virilization Yes Hypertension 

P450 oxidoreductase deficiency 

(124015)/POR 
Feminization and GI Virilization, PCOS-like Variable 

Antley-Bixler syndrome in infants; 

Maternal virilization during 

pregnancy; changes in drug 

metabolism 

17βHSD3 def (264300)/HSD17B3 Virilization and gynecomastia at puberty None No  

Aromatase def (613546)/CYP19A1 None 

Virilization in newborns, delayed puberty, 

HH, multicystyc ovaries, primary amenorrhea 

at puberty. 

No 
Maternal virilization during 

pregnancy 

Steroid 5-⍺ reductase def 

(607306)/SRD5A2 
Virilization and gynecomastia at puberty None No  

CAH, congenital adrenal hyperplasia; CF, classic form; Def, deficiency; DSD, disorder of sex development; GI, gonadal insufficiency; HH, hypergonadotropic hypogonadism; 

HSD, hydroxisteroid dehydrogenase; LCAH, lipoid congenital adrenal hyperplasia; NCF, non-classic form; OH, hydroxylase; PCOS, Polycystic Ovary Syndrome; POF, primary 

ovarian failure; SW, salt wasting. 
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An alternative pathway, called the “backdoor pathway” exists to activate androgen 

biosynthesis and might play a role in the physiology of CAH (106, 114). This pathway 

exemplifies a series of enzymatic reactions to transform 17-hydroxyprogesterone (17OHP) to 

dihydrotestosterone without testosterone as an intermediate. It seems to be active during 

fetal life in healthy individuals and might take part in male sex development (115). 

 

1.4.1.1. Steroidogenic Acute Regulatory Protein (STAR) 

 

Located on 8p11.23, codifies for the steroidogenic acute regulatory protein (StAR), 

which transports cholesterol from the cytosol to the inner membrane of the mitochondria 

where it becomes the substrate for the P450 side-chain cleavage/adrenodoxin/adrenodoxin 

reductase system (CYP11A1-FDX-FDXR) to be converted to pregnenolone (106). 

 

Variants in the STAR gene cause lipoic congenital adrenal hyperplasia (LCAH, OMIM 

201710), a severe disorder characterized by the impaired synthesis of all adrenal and 

gonadal steroid hormones due to loss of StAR action. It is believed to result from a two-hit 

event, a first genetic loss of steroidogenesis and the consequent cellular damage from the 

accumulation of cholesterol and cholesterol esters. Affected infants usually have adrenal 

insufficiency and the lack of gonadal steroid hormones leads to 46,XY DSD and infertility. 

46,XX females develop secondary sexual characteristics, anovulatory cycles and progressive 

hypergonadotropic hypogonadism later. A milder form of LCAH, called non-classic LCAH (NC-

LCAH) cause a partial loss of StAR activity in patients with primary adrenal insufficiency after 

infancy, including minimal mineralocorticoid deficiency. 46,XY cases have male external 

genitalia and mild hypergonadotropic hypogonadism (106). Most disease-causing gene 

variants are located between exons 5 and 7, encoding for C-terminal and the cholesterol 

binding site and are present in a homozygote or compound heterozygote state. In vitro 
studies have probed that mutations in the carboxil-terminal drive to diminished or absent 

function, while proteins lacking the N-terminal domain, including a mitochondrial target 

sequence, are able to stimulate steroidogenesis (116). 

 

1.4.1.2. Cytochrome P450 Family 11 Subfamily A Member 1 (CYP11A1) 

  

P450 cholesterol side-chain cleavage (P450scc) is the only enzyme that catalyzes the 

conversion of cholesterol to pregnenolone. It is expressed in the steroidogenic cell types of 

the adrenal, gonad and placenta, as well as in other tissues (106) and its transcription is 

regulated in a tissue-specific manner and hormonally, such as the action of SF1 in gonads 

and adrenal (117). 

 

The cytochrome P450scc is encoded by the CYP11A1 gene, which lies on 

chromosome 15q23-q24. It was thought that loss-of-function mutations in CYP11A1, 

required for the synthesis of progesterone would be incompatible with human gestation, 

however, it caused impaired production of gonadal and adrenal steroids in utero and after 
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birth, driving to a phenotype similar to LCAH with adrenal insufficiency and 46,XY sex 

reversal (118). In vitro analyses have shown that most mutants have enzymatic residual 

activity, although frameshift gene sequences have no activity (119). Clinical and biochemical 

findings in patients with LCAH due to STAR mutations or CYP11A1 are similar.  

 

1.4.1.3. Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- and Steroid Delta-

Isomerase 2 (HSD3B2) 

 

The HSD3B2 gene in 1p12 is highly expressed in the adrenals and gonads. Deficiency 

in 3b-hydroxysteroid dehydrogenase type 2 (3βHSD2) causes reduced synthesis of 

progesterone and 17-hydroxypreogesterone, precursors of aldosterone and cortisol, 

respectively, as well as androstenedione, testosterone and oestrogens. In contrast, renin, 

ACTH and dehydroepiandrosterone (DHEA) are increased. The later DHEA is converted to 

testosterone by 3βHSD1 (3b-hydroxysteroid dehydrogenase type 1), which is expressed in 

placenta and peripheral tissues (120).  

 

Patients with HSD3B2 gene variants are characterized by impaired steroid synthesis 

in the gonads and adrenal glands, and variable clinical presentation depending on the 

alteration. Generally, severe forms result in salt-wasting phenotype caused by frameshift 

mutations, in-frame deletions, and nonsense mutations. On the contrary, missense variants 

retain a residual enzymatic activity and lead to a non-salt-wasting phenotype (121).  

 

Most patients present salt-wasting adrenal crisis in both sexes during childhood. High 

levels of androstenedione guide to relatively increased testosterone in females, but not in 

males. In 46,XY neonates, testosterone deficiency causes genital ambiguity, whereas in 

46,XX the relative high testosterone levels cause virilization with clitoromegaly and partial 

labioscrotal fusion. After childhood, females present with precocious puberty, acne, 

hirsutism and menstrual irregularities. Non-classic 3βHSD2 deficiency is extremely rare (121). 

 

1.4.1.4. Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) 

 

The CYP17A1 gene codifies for an enzyme with both 17α-hydroxylase and 17,20-lyase 

activities, principally in the adrenal and gonads. Hence, sequence mutation in the gene, 

located on 10q24.32, impair adrenal and gonadal sex steroid production (Figure 4), 

originating sexual infantilism and puberty failure (122).  

 

Deficient 17b-hydroxylase activity results in decreased cortisol synthesis, and 

elevated concentrations of 11-deoxycorticosterone (DOC) and corticosterone mediated by 

ACTH. The overproduction of DOC in the zona fasciculata causes sodium retention, 

hypertension and hypokalemia which suppress plasma-renin activity and aldosterone 

secretion in a variable mode and the presence of corticosterone prevents the adrenal crisis 

due to the glucocorticoid activity. As a result of the gonadal sex steroid synthesis deficiency, 



 

27 
 

due to the obstruction of the dehydroepiandrosterone (DHEA), female patients are 

phenotypically normal with lack of pubertal development and adrenarche whereas 46,XY 

have absent or incomplete development of external genitalia. Both 46,XX and 46,XY patients 

present with hypergonadotropic hypogonadism, and low-renin hypertension. Among the 

identified alterations, 4 are recurrent (106) and include all type of changes in which all the 

enzymatic activity is impaired or reduced to 80%.  

 

Selective 17,20-lyase-deficiency has been reported and is caused by mutations in 

cytochrome b5, the cofactor needed to exert 17,20-lyase activity (120). 

 

1.4.1.5. Cytochrome P450 Family 21 Subfamily A Member 2 (CYP21A2) 

 

The CYP21A2 gene encoding for steroid 21-hydroxylase (21OH) lies in the middle of 

the HLA (Human leukocyte antigen) locus in 6p21, next to the nonfunctional pseudogene 

CYP21A1P. There is high degree of sequence similarity between these two genes, thus 

meiotic recombination is frequent and about 95% of cases with 21OH deficiency develop 

when CYP21A1P replaces the corresponding locus of CYP21A2 gene reducing the expression 

of the protein and its function (123).  

 

21-hydroxylase deficiency results in reduced glucocorticoid and mineralocorticoid 

formation and elevated 17-hydroxyprogesterone (17OHP), as well as other precursors. The 

lack of negative feedback of cortisol on ACTH (adrenocorticotropic hormone) production 

amplifies the adrenal androgen production. The severity of the CAH depends on the residual 

CYP21A2 function. Classic form of 21OH deficiency is divided in salt wasting and simple 

virilising depending on the severity of aldosterone insufficiency. Mutations that result in the 

salt wasting phenotype are completely inactivating and lead to an adrenal crisis if neonatal 

screening is not performed. Patients with simple virializing form retain 1-2% of the 

enzymatic activity and the neonatal crisis is prevented because minimal aldosterone is 

produced. In both forms, androgen excess results in virilization of external genitalia and 

rapid skeletal growth in 46,XX cases, and in males, simple virilizing form drives to precocious 

puberty as well as rapid skeletal growth. In the non-classic form, about 50% of the enzyme 

activity is maintained and do not show adrenal insufficiency. Patients might have partial 

glucocorticoid deficiency and present with milder androgen excess or asymptomatic. 

Females have normal genitalia (124). 

 

In patients with CYP21A2 sequence variants, the “backdoor pathway” contributes to 

the virilization of female external genitalia through a 17OHP excess. The pathway is reduced 

after the first year of life, which explains the normal growth of the patients during the first 

year (125). 

 

 

 



 

28 
 

1.4.1.6. Cytochrome P450 Family 11 Subfamily B Member 1 (CYP11B1)  

 

CYP11B1, located on 8q24.3, encodes the steroid 11b-hydroxylase, which converts 

the 11-deoxycortisol to cortisol and deoxycorticosterone to corticosterone in the adrenal 

zona fasciculata under the regulation of ACTH. Mutations in CYP11B1 results in reduced 

corticosterone and cortisol synthesis, with successive ACTH and androgens increase. 

Elevated levels of deoxycorticosterone after neonatal period inhibit the renin-angiotensin 

system and drive to extracellular fluid volume expansion, hypertension, diminish plasma-

renin activity and low aldosterone concentrations. The hypertension, rather than salt loss is 

the clinical difference between patients with 11b-hydroxylase and 21-hydroxylase 

deficiency. Affected females are virilized due to fetal ACTH excess. Although mutations in 

CYP11B1 usually result in classic CAH phenotype because an absent or minimal enzyme 

activity, sequence variants causing the non-classic form have also been described (106).  

 

1.4.1.7. Cofactor defects: Cytochrome P450 Oxidoreductase (POR) and 

cytochrome b5 (CYB5) 

 

Cytochrome P450 Oxidoreductase (POR) plays a key role in electron transport in the 

endoplasmic reticulum, and several enzymes including 17α-hydroxylase, 21-hydroxylase, and 

aromatase depend on POR as a cofactor. Although POR-null mice die in utero (106), some 

enzymatic function is retained in humans and patients present CAH with DSD in both sexes. 

Deficiency is characterized by partial fail of P450c17 activity, with or without associated 

deficient activity of P450c21 and P450 aromatase. The phenotypes vary from women with 

amenorrhea and polycystic ovaries, virilized 46,XX newborn or androgen deficiency in 46,XY 

newborn to important hormone disturbances that lead to abnormal genitalia in both sexes. 

Additionally, the “backdoor pathway” of androgen synthesis contributes to the prenatal 

virilization of affected females (126). Mineralocorticoid deficiency is not observed in these 

patients because 17α-hydroxylase increases production of mineralocorticoid intermediates, 

thus affected adults might develop hypertension (24, 127). POR acts as an electron donor of 

other not steroidogenic enzymes and skeletal dysplasia and changes in drug metabolism is 

often observed in patients (128). Moreover, newborns with POR deficiency sometimes have 

a skeletal defect called Antley–Bixler syndrome (ABS, OMIM 201750), which is characterized 

by craniosynostosis, brachycephaly, radio-ulnar or radio-humeral synostosis, bowed femora, 

arachnodactyl, midface hypoplasia, proptosis and choanal stenosis (129).  

 

Regarding cytochrome b5 (CYB5), it facilitates the allosteric interaction between POR 

and CYP17A1. A missense and a premature stop coding CYB5A (Cytochrome B5 Type A) gene 

variants have been found in 46,XY DSD cases, all with low androgens and gonadal defect but 

normal mineralocorticoid and glucocorticoid production (120).  
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1.4.1.8. Hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3) 

 

HSD17B3 gene, localized in 9q22.32, encodes the 17b-HSD3 (17β-Hydroxysteroid 

dehydrogenase) enzyme. It is mainly expressed in male gonad and reduces DHEA and 

androstenedione to serve as precursors of testosterone (130, 131). In contrast, estrogens 

are poor substrates for the human 17bHSD3 enzyme. The enzymatic deficiency is caused by 

homozygous or compound heterozygous variants in HSD17B3 and is characterized by 

reduced sex hormones production and normal adrenal secretion of glucocorticoids and 

mineralocorticoids.  

 

Only 46,XY infants with a 17bHSD3 deficiency manifest a DSD. The scarce amount of 

produced testosterone during fetal development is suggested to be sufficient to trigger male 

internal genitalia, or alternatively other 17bHSD isoenzymes are able to synthesize 

testosterone from androstenediones, but not enough to compensate the deficiency. 46,XY 

children with 17bHSD3 deficiency present completely undervirilized with a blind vaginal 

pouch and undescended testes or varying degrees of hypospadias and micropenis with intra-

abdominal or inguinal testes. Wolffian derivatives including the epididymides, vas deferens, 

seminal vesicles, and ejaculatory ducts are present (131).They are mostly assigned as 

females when born. As in patients with SRD5A2 gene variants, these children begin to virilize 

at puberty (131). 46,XX with mutations in HSD17B3 show a female phenotype and produce 

normal levels of androgens and estrogens, which suggests that testosterone is produced in 

the ovary even in the absence of 17bHSD3 enzyme expression (106).  

 

The clinical presentation is not different from that of partial androgen insensitivity 

syndrome (PAIS) and 5a-reductase type 2 deficiency, thus molecular testing supports the 

diagnosis. Biochemical diagnosis is based on a low testosterone/androstenedione ratio 

(T/A<0.8). 

 

1.4.1.9. Cytochrome P450 Family 19 Subfamily A Member 1 (CYP19A1) 

 

The P450aro or aromatase is encoded by CYP19A1 gene on chromosome 15q21.1. 

This enzyme catalyzes a complex series of reactions in three precursors androstenedione, 

testosterone and 16α-hydroxyandrostenedione into estrone, estradiol and estriol, 

respectively and is expressed in steroidogenic tissues, like ovaries, testes, placenta, brain 

and non-steroidogenic tissues, such as bone and fat. The transcription of the gene is tissue-

specific and is regulated through different promoters and transcriptional start sites (132). 

 

Identified mutations in the CYP19A1 include missense, nonsense, deletions and 

insertions, splice site and also large intragenic deletions and are mainly found in exons 9 and 

10. Clinical features of patients vary depending on gender, age and enzymatic activity. 

Aromatase deficiency drives to androgen excess in the mother and the fetus, causing 

maternal virilization  and masculinization in the external genitalia of the 46,XX fetus, 
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whereas no changes are observed in males at birth In adolescent girls, P450 aromatase 

deficiency may lead to delayed puberty, hypergonadotropic hypogonadism, multicystic 

ovaries and primary amenorrhea due to lack of estrogens. Signs of virilization may also be 

present. In both sexes, the subsequent estrogen deficiency causes delayed epiphyseal 

closure, eunuchoid habitus and osteoporosis (132). 

 

1.4.1.10. Steroid 5 Alpha-Reductase 2 (SRD5A2) 

 

Two isoenzymes convert testosterone to dihydrotestosterone (DHT), which has more 

affinity for the androgen receptor. During embryogenesis, DHT acts to form the male urethra 

and prostate at the urogenital sinus and induces swelling and folding at the genital tubercle 

to create the penis and scrotum (133). The 5a-reductase type I, encoded by SRD5A1 gene on 

chromosome 5p15 is expressed in peripheral tissues, such as the skin and hair follicles, 

whereas 5a-reductase type II enzyme is encoded by SRD5A2 on chromosome 2p23 and is 

predominantly found in stromal cells of internal and external reproductive organs and 

prostate. 

 

Up to date, human mutations in SRD5A1 have not been associated to DSD. But 

affected 46,XY with inactivating sequence variants in SRD5A2 lead to steroid 5α-reductase 2 

deficiency, an autosomal recessive form of 46,XY DSD, which results in a wide spectrum of 

phenotypes. Newborns present with ambiguous external genitalia, micropenis, scrotal 

hypospadias, cryptorchidism or inguinal testis and prostatic hypoplasia. They are generally 

raised as females. At puberty, these patients are virilized and present gynecomastia due to 

5a-reductase type I activity. Most patients with SRD5A2 deficiency are homozygous or 

compound-heterozygous (35%) for inactivating mutations. Heterozygous mutations have 

been also reported, proposing the dominant effect of certain gene variants (133).  

 

Both genes have a complex developmental regulation of expression.. 5a-reductase 

type I is expressed again in nongenital skin and liver after puberty, suggesting that it may be 

responsible of the pubertal virilization observed in the patients with 5a-reductase 

deficiency. Biochemical diagnosis is suggested when high testosterone/DHT ratio is observed 

although both isoenzymes reduce a variety of steroids in their degradative pathways and can 

be seen in a whole steroid profile (120), (106). 

 

1.4.2. Insulin Like 3 (INSL3) and Relaxin-family peptide receptor 2 (RXFP2)  

 

In humans and other mammals, testis descent follows two distinct steps: the intra-

abdominal and the inguino-scrotal stage. INSL3 (Insulin like factor 3), expressed in Leydig 

cells of the foetal and adult testis, was proposed to regulate the intra-abdominal step. Insl3-

null mice developed bilateral cryptorchidism with testes located in the abdominal cavity. 

Normal testicular descent was achieved when INSL3 was overexpressed in pancreatic b-cells 

in these KO mice (134). Subsequently, it was shown that Insl3 acts via its G-protein-coupled 
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receptor RXFP2 (Relaxin-family peptide receptor 2). RXFP2 gene, located on chromosome 13, 

encodes a protein with an extracellular ligand-binding domain, seven transmembrane 

domains and one intracellular domain. In mice, gene changes cause cryptorchidism, with 

bilateral intra-abdominal testes (135). 

 

In humans, several point alterations have been identified within the coding region 

and the promoter of INSL3 in DSD patients presenting with cryptorchidism (136). In contrast, 

studies investigating RXFP2 were scarce and have focused on the single found variant 

Thr222Pro in exon 8, which reduces RXFP2 expression on the cell surface membrane on 

patients with undescended testes (137). Recently, another missense variant was detected in 

4 members of the same family presenting with cryptorchidism. Functional analysis showed 

that the mutant protein failed to bind INSL3 or respond to the ligand with cAMP signalling 

(135). 

 

On the other side, the regulation of INSL3 is poorly known. Oestradiol and 

diethylstilboestrol may downregulate the expression of INSL3 in foetal Leydig cells which 

explains the lack of testicular descent in male embryos after exposure to oestrogen excess 

(138). It has been hypothesized that SF1 binds to one of the three binding sites in the gene 

and acts as a transcriptional activator of INSL3 promoter. However, in vivo studies 

demonstrated that the regulation of INSL3 expression and downregulation by oestrogens 

requires additional transcription factors (139). 

 

1.4.3. Androgen receptor (AR) 

 

Androgens action, testosterone and dihydrotestosterone (DHT), via AR is essential for 

male sexual development before birth and for secondary male sexual development at 

puberty, while in females androgens take part in sexual development at puberty and in 

adulthood (140). The AR gene, located on Xq11-12 encodes a transcription factor with three 

major domains: amino-terminal domain (NTD), a DNA-binding domain (DBD) containing two 

zinc fingers and a hinge region that connects to the ligand-binding domain (LBD) on the 

carboxil-terminal. More than 500 variants have been described varying from coding 

sequence (CDS) changes, splicing, 5’UTR (untranslated region) and partial or complete gene 

deletions (141). 

 

Androgen insensitivity syndrome (AIS, OMIM 300068) is a congenital disorder that 

manifests as a result of cellular resistance to testosterone and dihydrotestosterone. 

Mutations in the AR gene are associated with a wide spectrum that result in the formation of 

a feminine phenotype in a 46,XY individual and ranges from complete androgen insensitivity 

syndrome (CAIS) to partial (PAIS) or mild (MAIS). Sequence variants have been identified also 

in isolated hypospadias (140). 
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AR is also expressed in the developing Granulosa cells and as shown in Ar-/- transgenic 

female mice presenting a phenotype similar to that of primary ovarian insufficiency (POI), it’s 

required for folliculogenesis. In humans, the CAG repetition in exon 1 of the gene has been 

proposed to cause POI (142). 

 

1.4.4. Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR) in males 

 

The production of androgens is under the control of human chorionic gonadotropin 

(hCG) and luteinizing hormone (LH) during fetal and postnatal life, respectivelly, that act by 

stimulating the transmembrane receptor LHCGR. In differentiating Leydig cells the secretion 

of androgens seems to be autonomous, later hCG produced by the placenta highly 

stimulates their differentiation and the androgen production, until second and third 

trimester of pregnancy when the levels decrease. At pubertal stage, LH through LHCGR 

drives to the secretion of androgens that give rise to pubertal changes (143).  

 

Defects in the LH receptor functionality cause impaired regulation of Leydig cell 

function and androgen production. LHCGR receptor is a member of the superfamily of G 

protein-coupled receptors, characterized by the presence of an extracellular hormone-

binding domain which consists of a leucine-rich repeat domain flanked by two cysteine 

clusters, and a last exon of the gene codifying for a seven transmembrane helix domain 

(Figure 5) involved in the G protein activation. After ligand binding to the receptor, G 

proteins are activated in the intracellular membrane and an increase in cAMP levels activate 

of cAMP-dependent protein kinase. The variants on the different domains in the LHCGR lead 

to distinct effects on LH receptor function. Then, missense alterations may alter the function 

of the protein inhibiting the signal transduction, while large deletions and nonsense changes 

cause a complete defective protein and lack of hormone binding. Both forms of inactivating 

mutants diminish the efficiency of the LH receptor transduction signal and are supposed to 

cause the undervirilization of the 46,XY male, known as Leydig cell hypoplasia (LCH, OMIM 

238320) (143). 
 

 
Figure 5. Scheme of the structure of the LHCGR protein. LHCGR comprises 4 main structures: A Cysteine-rich 
region (CRR) in the N-terminal, nine Leucine-rich repeats, a second CRR or hinge region and the 7 
transmembrane domains next to the carboxi terminal. Modified from Xu Y., et al (144). 
 

 

The complete form of Leydig cell hypoplasia or type 1 LCH, is described as 46,XY 

female external genitalia, lack of pubertal development, small undescended testes with 

seminiferous tubes, absence of mature-type Leydig cells and presence of rudimentary 

epidydimis and vas deferens. Biochemical analyses indicate elevated gonadotropins, mainly 
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LH, with low testosterone and no response to hCG stimulation test. In contrast, the partial 

form or Leydig cell hypoplasia type 2, encompasses a wide spectrum with predominantly 

male external genitalia, micropenis with or without hypospadias and cryptorchidic or scrotal 

testes. At puberty, these patients are partially virilized and testes acquire a normal size while 

penis length is impaired. At this time, LH levels increase and testosterone ranges from infant 

to adult male levels (143). Homozygous or compound heterozygous inactivating variants are 

located along the gene and all type of changes have been identified, such as missense, 

nonsense and complete gene deletion. The mechanisms of inactivation may cause a 

misfolding of the receptor and a consequent reduced transport to the cell surface or 

decrease the ability to activate the signal transduction. The severity of the phenotype is well 

correlated with the residual activity of the receptor. For example a compound heterozygous 

patient presenting a small deletion in the intracellular region together with a missense 

variant in the transmembrane domain led to a more severe perineoscrotal hypospadias than 

two missense changes in the last exon causing micropenis (145). On the other side, female 

siblings of LCH cases present with primary amenorrhea, oligoamenorrhea, anovulation or 

infertility (146). 

 

In contrast, activating heterozygous variants have been described in male-limited 

precocious puberty or testotoxicosis (OMIM 176410) which is characterized by early puberty 

in boys, usually before 4 years of age, penis growth, pubic hair and other puberty signs. 

Gonadotropins are decreased indicating a peripheral cause of precocious puberty, while 

testosterone levels are high, in contrast to Leydig cell hypoplasia. In vitro expression analysis 

of the first identified activating gene variant, showed an increase of 10 to 20-fold in the basal 

activity of the LH receptor, amplifying the cAMP signal. Although the sixth helix and the third 

intracellular loop of the transmembrane domain seemed to be the hot spot of the activating 

mutations, further genetic analysis identified them in other regions (147). Indeed, molecular 

modelling studies revealed that changes in the interaction of conserved polar amino acids 

drive to an alternative conformation of the protein that allows the binding of the G protein 

to other amino acids side chains (148). 

 

Defects in AMH gene, also involved in male differentiation, have been described 

before (See 1.2.9, page 15). Other genes that take park in male differentiation, such as 

oestrogen recpetors and FSHR are explained later (See 1.4.5.4, page 36 and 1.4.5.1, page 

35). 

 

1.4.5. Formation of the ovarian follicle and differentiation of the female genitalia  

 

As mentioned before (See 1.3, page 18) other genes are required for the 

development of the ovarian follicle and differentiation of the female genitalia. The formation 

of the ovary is slower than testicular process, and is identifiable at the 11th week of 

gestation. In mice, the first sign of ovarian differentiation is at embryo day 13.5. At this time, 

germ cells enter meiosis and then arrest at prophase I to begin the development of 
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primordial follicles at time of birth (149). Primordial follicles comprise a single oocyte 

enclosed with a layer of somatic Granulosa cells, separated from the ovarian interstitium by 

a basal lamina. As follicles grow to secondary and antral follicle, the Granulosa cells change 

to a cuboidal shape and proliferate into multilayers. Steroidogenic theca cells differentiate at 

the secondary follicle phase and surround the Granulosa cell layers outside the basal lamina 

(Figure 6).  
 

 
Figure 6. Schematic representation of oogenesis and ovarian folliculogenesis. Only genes sequenced in the 
targeted gene panel have been included in the image. Modified from Jiao 2018 (150). 
 

 

Once formed, the Granulosa cells begin the expression of the Hedgehog signalling 

pathway which starts the differentiation of theca cells. For that, DHH (Desert Hedgehog) 

binds HHIP (hedgehog interacting protein 1) and membrane receptors PTCH1 and PTCH2 

(Patched 1 and Patched 2) on the theca cells. GLI (glioma-associated oncogene) zinc finger 

transcription factor mediates the activation of the hedgehog signalling cascade (151). 

Progenitors of the theca cells derive from two cell populations. The transcriptional profiles of 

the cells coming from the mesonephros show high expression levels of genes involved in 

steroidogenesis, such as Star, Cyp11a1 and Cyp17a1, Hsd3b2 and Lhcgr. In contrast, genital 

ridge derived cells revealed higher expression of Esr1 (oestrogen receptor 1) and Wt1, 

amongst others (152). Theca cells produce androgens that are converted to oestrogens by 

Granulosa cells and support vascularization of the follicle. Secreted oestrogens allow the 

development of the Müllerian duct into uterus, Fallopian tubes and the upper part of the 

vagina. In the presence of androgens, the XX fetus lead to normal progress of fused urethral 

folds and labioscrotal swelling that develop to labia minora and majora respectively, the 

genital tubercle forms the clitoris and the vaginal plate creates the lower part of the vagina. 

Signs of this growth are present at 20 weeks of gestation. 

 

Sequence variations in the genes involved in hormonal signalling and folliculogenesis 

end in ovarian disorders, such as ovarian dysgenesis, premature ovarian failure (POF), 

polycystic ovary syndrome (PCOS) or cancer. Hereafter, I describe several genes (LHCGR, 
FSHR, BMP15, GDF9, INHA, ESR1, ESR2, HSD17B4 and PSMC3IP) in which genetic changes 

have been associated to ovarian disorders. 
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1.4.5.1. Gonadotropin receptors in females 

 

As I have described before (See 1.4.4, page 32), FSHR (Follicle Stimulating Hormone 

Receptor) and LHCGR are glycoprotein hormone receptors that belong to the membrane-

bound G-protein coupled receptors (GPCRs) family. These receptors, as well as their binding 

hormones FSH and LH, are involved in regulating hormonal signalling in males and females. 

In females, both receptors are expressed in the Granulosa cells when follicles progress from 

the primary to the secondary stage, together with oestrogen and androgen receptors. FSHR 

and LHCGR produce cAMP as the main second messenger, which in turn, stimulates ovarian 

follicular steroidogenesis, favouring puberty and menstrual cycles (153). Patients with 

pathogenic variants in these receptor genes form ovarian follicles up to the preantral stage, 

but further maturation is blocked.  

 

The FSHR gene is located on 2p16.3 and encodes a 695 amino acid protein 

characterized by an extracellular domain, seven transmembrane segments and an 

intracellular tail. In female mice, the disruption of Fshr leads to infertility while males show 

small testes but remain fertile, supporting that Fshr plays a major role in the development of 

the female gonad. Inactivating mutations in the extracellular domain lead to a complete FSH 

resistance with hypergonadotrophic hypogonadism and 46,XX ovarian dysgenesis, such as 

the p.Ala189Val missense change reported in Finnish population (153). This substitution 

inhibits the FSHR cell-surface trafficking and therefore mutant FSH is retained inside the cell. 

Other mutations throughout the receptor have been noted in women with primary ovarian 

insufficiency (POI), secondary amenorrhea and high FSH levels.  

 

LHCGR inactivating variants also cause primary ovarian insufficiency in 46,XX. Patients 

present with primary amenorrhea or oligoamenorrhea and infertility. The 

hypergonadotropic hypogonadism is characterized by high LH biochemical levels (143). 

 

1.4.5.2. Bone morphogenetic protein 15 (BMP15) and Growth differentiation 

factor 9 (GDF9) 

 

Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) 

are members of the transforming growth factor-beta (TGFb) superfamily that act 

synergistically to regulate folliculogenesis and ovulation. BMP15 and GDF9 have similar 

protein structure, expression patterns and interact with each other to regulate Granulosa 

cells. GDF9 and BMP15 bind to their corresponding transmembrane serine-threonine kinase 

receptors and finally drive to the regulation of target genes related to ovulation and 

luteinisation (154), such as KITL (Ligand for the receptor-type protein-tyrosine kinase) 

important in the growth of oocytes. Moreover, BMP15 reduces progesterone production by 

downregulating the expression of STAR, while GDF9 interacts with pituitary gonadotropins to 

diminish progesterone and thus, inhibit follicular luteinisation (154). 
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BMP15 is an X-linked gene that encodes a growth/differentiation factor secreted 

from oocytes. It is involved in either follicular development, regulation of several processes 

in Granulosa cells, prevention of apoptosis and regulation of FSH sensitivity. Studies in 

different animal models confirmed the role in folliculogenesis and ovulation although Bmp15 

seems to be more critical in mono-ovulating species, like human or sheep rather than in 

poly-ovulating ones, as mice (155).. In women, variants in BMP15 have been associated to 

primary and secondary amenorrhea due to primary ovarian insufficiency (POI) and polycystic 

ovary syndrome (PCOS) (155). Recently a BMP15 gene duplication was reported in a patient 

with 46,XX/45,X0 karyotype and spontaneous menarche, which suggested a gene dosage 

contribution that enable an amount of follicles to reach puberty (156).  

 

GDF9 gene is located on 5q31.1 and is linked to the follicular development between 

the primary to secondary follicle stage. Several studies in different cohorts have related 

missense variants with POI and PCOS (157).. 

 

1.4.5.3. Inhibin Subunit Alpha (INHA) 

 

Inhibin is a heterodimeric glycoprotein structurally related to the transforming 

growth factor-beta (TGFb) superfamily. It is formed of inhibin A homodimers, codified by 

INHA, and inhibin B or activin codified by INHBA (Inhibin Subunit Beta A) and INHBB (Inhibin 

Subunit Beta B) genes. The principal function of inhibin in women is the regulation of 

pituitary FSH secretion and is an ovarian reserve marker. In vivo, inhibin functions as a 

tumour suppressor, as Inha-null transgenic mice developed stromal/Granulosa cell tumours 

with increased FSH levels and infertility(158). 

 

INHA gene maps to 2q35 and the first supporting evidence of the relation between 

INHA and primary ovarian insufficiency in humans was revealed when a translocation in the 

gene locus was found (158). However, the recurrent p.Ala257Thr substitution in different 

populations has been also reported in controls (159).  

 

1.4.5.4. Oestrogen receptor a and b  

 

Oestrogens control development, cell differentiation and maintenance of 

homeostasis in adults. All the estrogenic functions are done by binding and activating their 

nuclear receptors, Oestrogen receptor a (ESR1) and b (ESR2). Mouse modelling studies 

suggested that ESR2 is a dominant negative regulator of ESR1-dependent transcription as a 

way to maintain the balance between the two receptors. Esr1-null male mice showed 

infertility, hyperplasia, adipocyte hypertrophy, insulin resistance and glucose intolerance 

while female animals had hypoplasic uterus and multicystic ovaries. Esr2 deletions in animal 

models demonstrated different phenotypes, such as infertility without sex reversal in 

females (160) or normal phenotype but smaller litters, whereas male KO rodents were fertile 

and lacked reproductive tract abnormalities. This last model suggested that Esr2 is only 
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essential for ovulation but not for sexual differentiation. In humans, ESR2 is more expressed 

in the Granulosa cell of the ovary in the developing follicle than ESR1, and also in the fetal 

ovary during gonadal development (161). However the identification of an ESR2 mutation in 

a 46,XY DSD patient presenting with gonadal dysgenesis demonstrated a role in early 

testicular development (160). However, the potential ESR2 functions in testes and prostate 

need to be probed. 

 

In humans ESR1 gene alterations cause oestrogen resistance, high oestrogen levels in 

male and females and delayed puberty, infantile uterus, primary amenorrhea and ovarian 

cyst in women (162). Two heterozygous variants in ESR2 have been reported in two 46,XX 

young woman. First was diagnosed with primary amenorrhea and second had streak gonads, 

infantile uterus, lack of puberty and breast development (161). Molecular modelling in the 

last case demonstrated that the mutant disrupted estradiol-dependent signalling and failed 

to interact with its coactivator. 

 

Other previously mentioned genes that take part in the follicle formation and 

maturation are: AR, NR5A1, WT1, NR0B1, MAMLD1, AMH and AMHR2.  
 

1.4.5.5. Other genes related to ovarian dysgenesis as part of a phenotypic 

spectrum 

 

Perrault syndrome is an autosomal recessive condition characterized by ovarian 

failure in females and deafness in both males and females. Some women also present 

neurological features (Perrault syndrome type II), including developmental delay or 

intellectual disability, cerebellar ataxia, motor and sensory peripheral neuropathy (163).  

 

Mutations in HSD17B4 (Hydroxysteroid 17-Beta Dehydrogenase 4), which encodes a 

17-beta-estradiol dehydrogenase involved in peroxisomal fatty acid beta-oxidation and in 

HARS2 (Histidyl-TRNA Synthetase 2, Mitochondrial), encoding the mitochondrial histidyl-

tRNA synthetase, have been detected in patients with Perrault syndrome (OMIM 233400) 

(163). Regarding the HSD17B4 gene, two compound heterozygous variants were found in 

two sisters with clinical features of DBP (D-bifunctional protein, OMIM 261515) deficiency, 

together with ovarian dysgenesis. In contrast, linkage-analysis and gene sequencing in five 

affected family members identified two heterozygous variants in HARS2. HARS2 is required 

for protein translation within the mitochondria and reduced activity was found in both 

mutants. However, the lack of HSD17B4 and HARS2 sequence changes in other cohorts 

evidenced the heterogenic cause of this disease (164). Further whole exome sequencing and 

linkage-analysis discovered other underlying genes causing the disease: C10orf2 

(chromosome 10 open reading frame 2), LARS2 (leucyl-tRNA synthetase 2, mitochondrial) 

and CLPP (caseinolytic mitochondrial matrix peptidase proteolytic subunit), essential for 

normal mitochondrial function (163). 
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1.4.6. Genes affecting DNA replication, meiosis and DNA repair in the female 

gonad formation 

 

Gene sequence variants implicated in creation and repair of DNA double-strand 

breaks for recombination, damage control, cell cycle progression or development of the 

synaptonemal complex have been also associated with defects of the female gonad 

formation. 

 

PSMC3IP (Proteasome 26S Subunit, ATPase, 3-Interacting Protein) codifies a highly 

expressed nuclear protein in foetal and adult gonads, spleen and thymus in both human and 

murine models. It has a leucine zipper domain critical for nuclear receptor binding, a coiled-

coil domain in the middle of the protein and a C-terminal acidic region that acts as a ligand-

dependent transcriptional coactivation domain (165). As indicated by its yeast ortholog 

Hop2, it coactivates DMC1 (DNA Meiotic Recombinase 1) and RAD51 (DNA repair protein 

RAD51 homolog 1) proteins, fundamentals for homologous pairing and recombination in 

meiosis (166) and either mutations or deletions in Hop2 stop entry into meiosis I. In male 

mouse meiosis was blocked but since Sertoli, Leydig cells and spermatogonia were present, 

pubertal development was normal (165). However, in the female Psmc3ip KO mouse model, 

ovarian size was reduced and germ cells were lacking. The importance of the PSMC3IP gene 

in the germ cell development of both sexes was then revealed. 

  

PSMC3IP binds DNA-binding domain of glucocorticoid receptor, oestrogen receptor 1 

and 2, androgen receptor, progesterone receptor and thyroid hormone receptor beta, acting 

as a coactivator of hormone-dependent transcription (165).  

 

In humans the first mutation was identified in 5 members of a consanguineous family 

affected by 46,XX gonadal dysgenesis. It was a 3-bp C-terminal deletion that disturbed the 

coactivation of ESR1, which affected the follicular environment during formation in the fetal 

ovary (167). More recently, a homozygous stop mutation has been reported in a 

consanguineous Yemeni family in 4 sisters presenting with POI and a brother with 

azoospermia. The carboxyl-terminal variation inhibited the association with single strand 

DNA and the proteins required for homologous recombination (166). 

 

 

1.5. OPPOSING INTERACTIONS TO CORRECTLY DEVELOP AND MAINTAIN THE GONADS  

 

A complex interaction is needed between the female and male pathways to correctly 

trigger the initiation, development and maintenance of gonadal differentiation. Data suggest 

that pathways act antagonistically, suppressing the alternate fate through a sequence of 

repressive feedback loops during sex differentiation, but also in adulthood.  
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During embryonic development, the most important antagonism occurs between the 

SRY/SOX9/FGF9 and WNT4/RSPO1/β-catenin signalling pathways (Figure 7) (48). Fgf9-null or 

Fgfr2-null transgenic mice resulted in the increased expression of Wnt4 and male-to-female 

sex reversal, whereas the deletion of WNt4, Rspo1 or B-catenin showed female-to-male sex 

reversal (168). In the male, SRY suppresses the activation of WNT transcription factor β-

catenin. Additionally, FGF9 supports the transcriptional activity of SOX9 and together, 

downregulate female-specific gene WNT4 leading towards testicular development (50). 

CBX2 might also participate in this feedback loop upregulating SOX9 and SOX3 in the 

testicular Sertoli-like cells and inhibiting FZD1 (Frizzled Class Receptor 1) and FOXL2 involved 

in ovarian development (169). By contrast, during sex determination in the ovary, β-catenin 

previously activated by WNT4 and RSPO1, limits the expression of Sox9 and therefore, 

suppresses the SOX9/FGF9 feedback loop (95). WNT4 signalling increases the transcription 

of FST (Follistatin) too, which antagonises Activin to inhibit the formation of the testes-

specific vasculature (170). MAP3K1 seems to play an important role in the maintenance of 

the male pathway, as missense mutations in the gene tilt the balance to ovarian-determining 

fate (82). 
 

 
Figure 7. Simplification of the molecular signalling during sex differentiation of the gonads into testes and 
ovaries and maintenance of the cell fate. Black arrows indicate activation of a downstream target. Red lines 
ending in bars show repression of a downstream target. Modified from Ohnesorg T., 2014 (2). 
 

 

Sex identity of the gonadal cells must be maintained postnatally to avoid 

transdifferentiation. At least in mice, this is achieved by DMRT1 and FOXL2 transcription 

factors. In Dmrt1 KO XY adult, transdifferentiation of Sertoli cells into Granulosa-like cells 

occurred at 4 weeks postnatally because ablation of Dmrt1 resulted in the activation of 

ovary-promoting genes, Foxl2 and in the downregulation of Sox9 (73). In normal ovary, 

expression of FOXL2 in cooperation with ESR1 and ESR2 is shown to bind to the TESCO 
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enhancer of Sox9 and inhibit its transcription. In Foxl2 deleted XX adult mice ovaries, Sox9 is 

upregulated and somatic cells (Granulosa and theca) convert into Sertoli and Leydig-like 

cells. Furthermore, complete deletion of Esr1/Esr2 or Cyp19a1 also resulted in 

transdifferentiation in the adult ovary, as well as germ cell loss (171). These results suggest 

that maintenance of testis or ovary fate is an active process in adult life, however 

transdifferentiation in the human gonad has not been clearly probed yet. 

 

 
2. DISORDERS OF SEX DEVELOPMENT 

2.1. DEFINITION AND PREVALENCE 

 

Disorders of sex development (DSD) are a heterogeneous group of congenital 

conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. 

Many causes are genetically determined and progression in this understanding led to the re-

examination of the nomenclature in 2006 and a new classification of DSD was proposed 

(Table 2) (172).  
 

 

Table 2. Classification of Disorders of Sex Development according to the Chicago consensus (172).  
 

46,XY DSD 

Disorders of testicular 
development 

Complete gonadal dysgenesis 

Partial gonadal dysgenesis 

Gonadal regression 

Ovotesticular DSD 

Disorders of androgen 
synthesis or action 

Androgen biosynthesis defects (i.e. 5⍺-reductase deficiency) 

Defects in androgen action (AIS) 

LH receptor defects (i.e. Leydig cell hypoplasia) 

Persistent Müllerian duct syndrome (Variants in AMH or AMHR2 genes) 

Others Severe hypospadias, cryptorchidism, complex syndromic disorders 

46,XX DSD 

Disorders of ovarian 
development 

Ovotesticular DSD 

Testicular DSD 

Gonadal dysgenesis 

Disorders of androgen 
excess 

Fetal (i.e. 21-hydroxylase deficiency) 

Fetoplacental (Aromatase deficiency, POR deficiency) 

Maternal (i.e. Luteoma) 

Others 
Mayer-Rokitanski-Kuster-Hauser syndrome, complex syndromic 
disorders 

Sex 

chromosome 

DSD 

45,X0 Turner syndrome and variants 

47,XXY Klinefelter syndrome and variants 

45,X0/46,XY Mixed gonadal dysgenesis, ovotesticular DSD 

46,XX/46,XY Chimerism, ovotesticular DSD 
DSD, disorders of sex development 
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The wide extent of different phenotypes ranges from minor genital abnormalities, 

such as hypospadias, to ambiguous genitalia and complete gonadal dysgenesis. In general, 

ambiguous genitalia are a relatively rare situation reported to occur in 1:4,500 life newborns 

(172), but considering all types of atypical genitalia together with chromosomal, gonadal and 

genital conditions, the prevalence of DSDs increases to 5 in 1000 births, being boys with 

hypospadias the 73% of these cases (173). About 75% of the children with atypical genitalia 

have a 46,XY karyotype, 10-15% a 46,XX and the remainder will have structural anomalies of 

the sex chromosomes (174). Among the 46,XX DSD, the most frequent genetic condition is 

congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, which occurs in its 

classic form in about 1:14,000-1:18,000 infants while nonclassic form is stimated to have a 

prevalence of 1:500 to 1:1000 in the general white population. CAH accounts for 90-95% of 

the individuals with a 46,XX DSD (113). In addition, DSDs are sometimes associated with 

syndromes or multiple congenital malformations (175). Expected clinical and biochemical 

features of each DSD is summarized in Supplementary data 1. 

 

 

2.2. CLASSIFICATION OF DSD BASED ON THE CHICAGO CONSENSUS 

 

2.2.1. 46,XY DSD: Disorders of testicular development 

 

2.2.1.1. Complete and partial gonadal dysgenesis 

 

Gonadal dysgenesis encompass several clinical conditions caused by the irregular 

development of the fetal gonad in 46,XY. Complete gonadal dysgenesis is characterized by 

female external and internal genitalia, absence of secondary sexual characteristics, normal 

or tall stature, eunuchoid habitus without other Turner syndrome features and bilateral 

dysgenetic gonads. Streak gonads don’t produce adequate testosterone for the 

development of male internal structures, or AMH with the subsequent persistence of 

Müllerian ducts that develop to hypoplastic or normal uterus and Fallopian tubes. In some 

cases clitoromegaly has been observed. These patients are raised as girls and are usually 

diagnosed at puberty due to infantilism and primary amenorrhea. On the other side, partial 

gonadal dysgenesis is described with distinct degrees of testicular development and 

function, as well as a wide spectrum of atypical genitalia and the presence or absence of 

Müllerian ducts. In both forms gonadotropins are increased, mainly FSH, and testosterone is 

at a prepuberal range in the complete form while in partial gonadal dysgenesis it varies from 

prepuberal levels to normal adult levels (175). Estradiol levels are decreased in both forms.  

 

46,XY gonadal dysgenesis has been estimated to occur in 1 out of 10,000 births (172, 

176). Regarding the genetic etiology, it is highly heterogeneous and might result from a 

defect in any gene contributing to gonadal development. However, alterationss in SRY are 

the most frequent cause of gonadal dysgenesis (20%) (177), followed by gene variants in 
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MAP3K1 (18%) and NR5A1 (13%). Few are caused by other rare changes in SOX9 or NR0B1 

(7, 105). Other genes causing 46,XY DSD gonadal dysgenesis are listed in Table 4 (Page 79).  

 

2.2.1.2. Gonadal regression 

 

Testicular regression syndrome (OMIM 273250), also termed vanishing testes, is a 

condition defined as the absence of testicular tissue in 46,XY individuals with a male 

phenotype. These individuals are born with male external genitalia, indicating a correct 

functioning testicular tissue during the first weeks of pregnancy. Micropenis is also present 

in 50% of the patients and all have hypergonadotropic hypogonadism and infertility (178). 

 

It has been proposed that testicular regression syndrome happens due to vascular 

accidents, such as testicular torsion. If this occurs in the second half of gestation, penile 

growth will be impaired due to testosterone deficiency, leading to micropenis. Otherwise the 

penile length is normal when the accident is close to term or after birth. Thus, the 

manifestations of testicular regression are associated with the intrauterine accident. Its 

prevalence is about 1 in 20,000 males In contrast, the coexistence of anorchia with genital 

ambiguity in a number of familial cases led to the hypothesis that some forms of the 

condition might have a genetic cause and be part of the clinical spectrum of 46,XY gonadal 

dysgenesis. However, molecular analyses have failed to identify any gene in association to 

anorchia but NR5A1 (178). 

 

2.2.1.3. Gonadal dysgenesis and related syndromes 

 

Several syndromes are associated with 46,XY gonadal dysgenesis in humans, caused 

by variants in genes involved in gonadal determination. 

 

2.2.1.3.1. WAGR syndrome 

 

WAGR syndrome or Wilms’ tumor, aniridia, genitourinary malformation and mental 

retardation (OMIM 612469) is a contiguous gene syndrome caused by deletions in 11p13 

encompassing both WT1 and PAX6 genes. Wilms’ tumor is developed in approximately 50% 

of the patients. The diagnosis is based on the presentation of sporadic aniridia in the 

newborn along with genital anomalies, although these are not always present. In older 

children, clinical diagnosis is made when aniridia and one of the other features are present 

(179). 

 

2.2.1.3.2. Denys-Drash and Frasier syndromes 

 

Denys-Drash syndrome (DDS) is characterized by Wilms’ tumor in the first decade of 

life, rapid progressive glomerular disease, and genitourinary abnormalities, mainly 46,XY 

DSD. Gonadal development is impaired variably, resulting in a heterogeneous spectrum. DDS 



 

43 
 

is associated with WT1 gene mutations in the DNA-binding domain, affecting the 

transcription factor activity in a dominant negative manner (180). 

 

Frasier syndrome (FS) describes the combination of female to ambiguous genitalia in 

46,XY males, renal failure in the second decade of life, streak gonads and predisposition to 

gonadoblastoma. Heterozygous variants in the intron 9 of the WT1 gene are the most 

common cause (See 1.1.2, page 5). Splice site variants drive to an imbalance in the 

expression of the WT1 (-KTS) isoform and underexpression of WT1 (+KTS), indicating that a 

precise balance between the WT1 isoforms is necessary for the normal function of the 

protein (10). Since patients with Frasier syndrome do not produce nonfunctional proteins 

the clinical course of the nephropathy is slowly progressive compared to Denys-Drash 

syndrome, and require more years to reach complete renal failure. On the other side, Wilms’ 

tumour is not normally observed in cases with Frasier syndrome. It is thought that the -KTS 

isoform which is predicted to interact with DNA, is responsible for the tumour suppressor 

activity and therefore protects these patients against the development of the tumour (15).  

 

Specific localization of the genetic changes has been helpful in the differentiation of 

these two entities in many cases. 

 

2.2.1.4. Ovotesticular DSD 

 

OT DSD in 46,XY DSD patients is explained later (See 2.2.4.1, page 47). 

 

2.2.2. 46,XY DSD: Disorders in androgen synthesis or action 

 

2.2.2.1. Androgen biosynthesis defect 

 

Defects in the enzymes involved in the adrenal and androgen steroidogenesis result 

in 46,XY DSD. The clinical and molecular characteristics leading to a defect in the synthesis of 

testosterone and dihydrotestosterone have been explained before (See 1.4.1, page 21).  

 

2.2.2.2. Defects in androgen action 

 

Androgen insensitivity syndrome (AIS) is a disorder of androgen action due to a 

reduced or absent functionality of the androgen receptor (AR). It is the most frequent known 

monogenic cause of 46,XY DSD, estimated to be present in 1:20,000 to 1:64,000 male births 

(140) and is a X-linked recessive condition. The variable phenotypic expression due to the 

transcriptional activity of the AR has permitted the classification of AIS into complete (CAIS), 

partial (PAIS) or mild (MAIS) androgen insensitivity syndrome. CAIS phenotype is 

characterized by female external genitalia, inguinal or abdominal testes, complete breast 

development and scarce or absent axillary and pubic hair. The absolute resistance to 

androgens limits differentiation to male external genitalia and virilization, but testis continue 
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producing AMH and thus, inhibits female internal genitalia and leads to primary 

amenorrhea. On the other side, PAIS presents either with male phenotype and minor 

undervirilization, such as hypospadias, or female phenotype with ambiguous genitalia and 

gynecomastia at puberty, while MAIS is characterized by normal male external genitalia and 

infertility.  

 

The clinical diagnosis of CAIS is easily confirmed, as about 85% of the cases harbor an 

alteration in the AR coding sequence (CDS), whereas the definitive diagnosis in PAIS is 

further complicated because less than 30% of the cases present an AR gene variant. (7). To 

elucidate the possibility of a clinical diagnosis of AIS without a variation in the AR coding 

sequence, Hornig et al analyzed the genital fibroblast of 46 individuals with a clinical 

suspicion of AIS and no molecular proof on the CDS using an APOD-assay tool. They found a 

subset of individuals with an androgen response, but 17 out of 46 presented a functionally 

proven androgen resistance compared to control groups. They proposed the term AIS type II 

for this new class of androgen resistance. In addition, some of these AIS type II patients had 

AR gene variants outside the coding sequence (181). 

 

2.2.2.3. LH receptor defects 

 

Defects caused due to LHCGR gene varitants have been described before (See 1.4.4, 

page 32). 

 

2.2.2.4. Disorders of AMH and AMH receptor 

 

Persistent müllerian duct syndrome (PMDS, OMIM 261550) is an autosomal recessive 

disorder defined as the presence of müllerian derivatives, uterus, and Fallopian tubes in 

otherwise normally masculinized 46,XY subjects. Bilateral intra-abdominal testes are found 

in the majority of the cases (40-60%). However, other cases have been reported with a 

scrotal testis and a contralateral inguinal hernia containing a testis, uterus and tubes (20-

30%) and a hernial sac containing both testes and the müllerian ducts (25%). Most of the 

cases are diagnosed because of bilateral or unilateral cryptorchidism with or without 

inguinal hernia. In adulthood the diagnosis of PMDS is made due to the degeneration of the 

testes or the müllerian derivatives. About 33% of the patients above 18 years have 

undergone either unilateral or bilateral malignant testicular degeneration, then early 

orchidopexy is recommended, although it’s not completely effective (182).  

 

Homozygous or compound heterozygous variants in AMH and AMHR2 result in an 

AMH deficiency or resistance, which is the cause of PMDS. There are not anatomical 

differences between the patients with AMH (PMDS type 1) or AMHR2 mutations (PMDS type 

2). However AMH serum levels are different, in those harbouring AMH sequence changes 

anti-Müllerian hormone levels are low or undetectable while in those with AMHR2 
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alterations hormone levels are normal or increased.. Molecular diagnosis is confirmed in 

approximately 88% of the cases with a persistent müllerian duct syndrome (182). 

 

2.2.3. 46,XY DSD: Others 

 

2.2.3.1. Hypospadias and cryptorchidism 

 

Hypospadias is a congenital anomaly in which the urethral opening is not correctly 

placed at the tip of the penis. After cryptorchidism, is the most common congenital disorder 

in boys, with an incidence of 1 in 200-300. Hypospadias occurs when the urethral closure is 

abnormal or incomplete during the first weeks of embryonic development. Defects in the 

genes or pathways involved in the phallus development and urethral closure give rise to the 

atypical location of the urethral opening on the ventral part of the penis and are classified 

regarding this location into distal or anterior, midshaft or middle and proximal or posterior. 

This anomaly may be associated with a ventral curvature of the penis, known as chordae and 

abnormal foreskin (183). 

 

A number of genes have been widely linked to hypospadias, although only the 30% of 

hypospadias cases have a clear genetic cause. Then, it was suggested that the basis of this 

anomaly is a combination of genetic susceptibility and environmental influences. In most of 

the cases, hypospadias appears as an isolated condition, but it can be associated with other 

anomalies of the urogenital tract mainly, such as undescended testes and micropenis, WAGR 

syndrome or Denys-Drash syndrome. Despite most of the cases of isolated hypospadias are 

idiopathic, familial aggregation has been found in about 10% of the cases (183).. Heritability 

of the condition is above 57% and depends on the severity of the hypospadias. Anterior or 

middle hypospadias are more frequent in families than proximal hypospadias. In humans 

several hypospadias association studies have been performed in large cohorts and 

expression analyses in the affected tissue. Sequence variants have been identified in patients 

with hypospadias in genes and pathways included in the early development of the genital 

tubercle, such as the hedgehog signalling pathway or WT1 gene; the testes signalling 

pathway, like MAP3K1, MAMLD1 and NR5A1; in enzymes necessary androgen synthesis, as 

HSD3B2 or in AR gene. Regarding the connection between environmental factors and the 

occurrence of hypospadias, it is well known that an elevated exposure to oestrogenic and 

anti-androgenic compounds that interfere with the creation or metabolism of endogenous 

hormones contribute to the incidence of the anomaly. For example, the exposure to EDCs 

(Endocrine-disrupting chemical) during foetal life is correlated with the risk of hypospadias. 

Chemical compounds such as dichlorodiphenyltrichloroethane (DDT) block AR affecting the 

testosterone production, while bisphenol A downregulates the expression of WT1, LHCGR, 
HSD17B3 and SRD5A2 (183). 

 

Cryptorchidism (OMIM 219050) or failure of testicular descent is the most common 

genitourinary defect and is found in 1.6%-9.0% of newborn boys (135). It can be classified as 
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unilateral or bilateral depending on the affected testes and can be associated to additional 

anomalies. In the intra-abdominal phase, occurring between gestation weeks 8-15, INSL3 

stimulates the gubernaculum, or genito inguinal ligament, to enlarge and drives the testis to 

the abdomen, specifically to the caudal part of the abdomen. During the inguinoscrotal 

phase, between 25-35 gestation weeks, the gubernaculum, derived from the primitive 

mesenchyme, guides the descent of the testes to the scrotum. Lack of testosterone 

production by foetal Leydig cells or absence of a functional androgen receptor, stops the 

testicular descent. Anomalies in the first step of testicular descent are uncommon, whereas 

those in the inguinoscrotal phase and dependent on androgen action, account for most of 

the cases (184).INSL3 and RXFP2 genes have been implicated in testicular descent and 

cryptorchidism due to work in mouse models (135). 

 

2.2.3.2. Hypogonadotropic hypogonadism and related gene variants  

 

The increase of the hypothalamo-pituitary-gonadal (HPG) axis release at the 

beginning of puberty brings secondary sexual features and a mature reproductive system. 

Absence of puberty due to anatomical or functional defects that end in decreased 

gonadotropin releasing hormone (GnRH) and/or gonadotropin secretion is termed 

hypogonadotropic hypogonadism (HH). When the HH has no evident cause is called 

idiopathic HH (IHH) and can be divided into two major categories: Kallmann syndrome (KS) 

and normosmic IHH (nIHH). The first is characterized by HH and anosmia due to the 

interrupted migration of GnRH specific neurons and the olfactory receptor neurons into the 

hypothalamus. It is often associated with additional congenital anomalies such as cleft 

palate, unilateral renal agenesis, split hands and feet, short metacarpals, deafness, and 

synkinesis. nIHH refers to the IHH cases without anosmia and gives rise from the dysfunction 

of the GnRH neurons in the hypothalamus. However, these two entities seem to be 

overlapped in some cases. Male infants need the HPG axis active during gestation (between 

the 16th-22nd weeks) for normal virilization of the 46,XY fetus, then boys with IHH are born 

with micropenis and/or cryptorchidism. In contrast, there is no clinical manifestation before 

the first teen years in girls. Overall, pubertal delay is the most typical feature of IHH and is 

characterized by the lack of breast development in a girl at age 13 or a testicular volume less 

than 4mL in a boy age 14 (185). . In early infancy, between four to sixteen weeks, a 

temporary reactivation of the HPG axis happens (minipuberty) which is used as a diagnosis 

tool (186).  

 

Up to 50% of the IHH are known to be caused by gene sequence defects and around 

50 genes have been reported. Oligogenic inheritance in a patient is thought to account for 

nearly 20% of the cases (185). GNRHR (Gonadotropin Releasing Hormone Receptor) and 

TACR3 (Tachykinin Receptor 3) gene variants are the two most common causative genes 

observed in nIHH, but also KISS1R and KISS1. KISS1 (Kisspeptin) and KISS1R (KISS1 Receptor) 

gene alterations affect the pulse release of GnRH rather than the migration of GnRH 

neurons, thus resulting in nIHH exclusively (187). The KISS1R encodes the kisspeptin receptor 
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for the ligand kisspeptin, a secreted neuropeptide that acts as an upstream regulator of the 

GnRH neurons.  

 

2.2.4. 46,XX DSD: Disorders of ovarian development 

 

2.2.4.1. Ovotesticular DSD 

 

Ovotesticular (OT) DSD is considered as the presence of both testicular and ovarian 

tissue in a single patient, either in the same gonad, in different gonads or as an ovary and a 

contralateral testis. In the gonadal biopsy, ovarian tissue is often normal and follicular 

growth, ovulation (50% of the cases) and oestradiol secretion that inhibits spermatogenesis 

and leads to Leydig’s cell hyperplasia in the testicular tissues is observed (151). Infants are 

born with ambiguous genitalia and are usually assigned as males but at puberty breast 

development and menarche is possible due to oestrogen secretion in the ovarian tissue 

(188). The incidence of OT DSD is about 1 in 100,000 births and only the 65% have a 46,XX 

karyotype, whereas a 10% correspond to 46,XY and the remaining have sex chromosome 

mosaicisms (151). Among the sex chromosome abnormalities 46,XX/46,XY chimerism 

(12.8%) is the most frequent, followed by 46,XX/47,XXY (5.6%) and 45,X0/46,XY (3.5%) 

mosaicism (189). 

 

From a molecular point of view, SRY gene is localized in 10% of 46,XX OT DSD due to a 

translocation  but in the majority of the cases the genetic diagnosis remains unknown (190). 

Heterozygous and homozygous variants have been detected in WNT4 in patients with 46,XX 

OT DSD and testicular DSD as part of a complex syndrome and also loss-of-function 

sequence changes in RSPO1 (99, 191, 192). Moreover, copy number gains were described 

upstream the regulatory region of SOX9 in three patients with 46,XX OT DSD (44) and an 

inversion of the long arm of chromosome 22 in another SRY-negative 46,XX OT patient (193), 

increasing the genes involved in the development of female-to-male sex reversal. A de novo 

gain in Xq27.1, including SOX3 gene was recently discovered in a 46,XX patient with 

ambiguous genitalia and bilateral ovotestes (55). Additionally, some well-known genes 

promoting the ovarian and testicular pathways are also able to cause OT DSD, for example 

NR0B1 and NR5A1 (194, 195).  

 

In contrast, few causes of 46,XY OT DSD have been noticed, such as variants in the 

SRY gene or SOX9. A partial deletion in the DMRT1 gene was also detected in a 46,XY OT DSD 

(196). In patients with chimerism or mosaicism, the coexistence of both gonads explains the 

phenotype.  

 

2.2.4.2. Testicular DSD 

 

Testicular (T) DSD is described in individuals with a 46,XX karyotype, male external 

genitalia that varies from normal to ambiguous, the absence of Müllerians remnants and 
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two testicles. These patients are often infertile and the presence of hypospadias is reported 

in 10-15% of the cases. At birth are referred as ambiguous genitalia while after puberty, they 

present small testes, gynecomastia and azoospermia. The total incidence is 1:20,000-25,000 

in newborn (151). 

 

The 90% of the cases are caused by the translocation of the SRY gene to the X 

chromosome, which is sufficient to drive to male differentiation, short stature and produce 

gynecomastia. Other gain-of-function alterations have been found in the upstream region of 

SOX9 (45). Loss-of-function in genes involved in ovarian development such as the 

aforementioned RSPO1 and WNT4 also contribute to T DSD (190). 

 

2.2.4.3. Ovarian dysgenesis 

 

Females with a 46,XX karyotype and ovarian dysgenesis are born without ambiguity, 

but present later with absent or delayed puberty referred as primary or secondary 

amenorrhea. External genitalia are formed normally. Since streak gonads are found, 

oestrogens are not produced and the gonadotropins secretion is not inhibited by the 

hypothalamic-pituitary-gonadal axis, causing elevated gonadotropins levels which result in 

failure to begin puberty and menarche (43). 

 

Indeed, phenotype of ovarian dysgenesis is not uniform and variable expression has 

been observed. In several families, one affected sister presented with secondary 

amenorrhea due to ovarian hypoplasia while another had streak gonads and primary 

amenorrhea (197). 46,XX gonadal dysgenesis is very rare in childhood and might happen due 

to a sequence variant in genes involved in ovarian development in an autosomal recessive 

manner. Many of the 46,XX ovarian dysgenesis cases happen due to disturbances in 

hormonal signaling and folliculogenesis. As previously mentioned, inactivating mutations in 

FSHR and LHCGR genes disrupt the correct development of the ovarian follicle while BMP15 

and PSMC3IP act as modulators of FSH and other nuclear receptors. 

 

Primary ovarian insufficiency (POI) is a term used to include a spectrum of ovarian 

dysfunctions such as ovarian dysgenesis. Indeed, the distinction between the two entities is 

difficult, so the inconveniency to identify the 46,XX ovarian dysgenesis-specific genes. 

Among the newly identified genes in association with ovarian dysgenesis and POI, NOBOX 

and FIGLA seem to be the more representative. The Newborn Ovary Homeobox-Encoding 

Gene (NOBOX) is expressed in germ cell cysts, primordial and developing oocytes in mouse 

models and humans. Loss-of-function variants in NOBOX accounted for 6.2, 6.5 and 5.6% of 

the cases in three POI cohorts (198). Folliculogenesis specific bHLH transcription factor or 

FIGLA has a specific role in the development of primordial follicle and in the synchronization 

of the genes in the zona pellucida. In 2008, an study revealed the presence of FIGLA gene 

variants in the 4% of chinese women with sporadic primary ovarian insufficiency (199). 
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2.2.5. 46,XX DSD: Disorders of androgen excess 

 

2.2.5.1. Fetal androgen excess due to inborn errors of steroidogenesis 

 

In the virilizing form of CAH, androgen excess results in 46,XX DSD. As mentioned 

before, deficiencies caused by mutations in CYP21A2, CYP11B1 and HSD3B2 lead to specific 

manifestations in each patient, depending on the severity of the enzymatic defect (See 1.4.1, 

page 21). 

 

2.2.5.2. Fetoplacental androgen excess 

 

The steroids that are produced during fetal development are transferred to the 

placenta and transformed intro androgens and subsequently to oestrogens. Deficiencies in 

the aromatase enzyme or in the POR cofactor due to genetic variants result in accumulation 

of the precursors and masculinization of the female fetuses.  

 

2.2.5.3. Excess maternal androgen production 

 

The origin of the androgen excess or hyperandrogenism in the mother during 

pregnancy may be due to an ovarian tumor (luteoma), polycystic ovary syndrome (PCOS) or 

adrenal tumors. Luteomas are benign tumors of the ovary during pregnancy that produce 

masculinization of the fetus in about 65% of the mothers that are virilized (200). In most 

cases the tumors are small, don’t produce virilization and regress after pregnancy. PCOS is 

mainly characterized by androgen excess and reproductive defects associated to metabolic 

abnormalities, like insulin resistance. Carcinomas and adenomas of the maternal adrenal 

gland are very rare and may lead to virilization of the mother, among other clinical features 

such as hypertension or diabetes mellitus, but also ambiguous genitalia due to virilization of 

46,XX infants (201). 

 

2.2.6. 46,XX DSD: Others 

 

2.2.6.1. Non-CAH monogenic primary adrenal insufficiency 

 

Primary adrenal insufficiency is characterized by the impaired production of 

glucocorticoids, mineralocorticoids and hypersecretion of ACTH and could be classified as 

CAH and non-CAH monogenic primary adrenal insufficiency (PAI), in which adrenals are 

hypoplastic or normoplastic. Non-CAH monogenic PAI is a group of heterogeneous disorders 

caused by adrenal hypoplasia, ACTH resistance or impaired adrenal redox homeostasis (202). 

 

The best known transcription factors implicated in the defective organogenesis of the 

adrenal gland are DAX1 and SF1, although adrenal insufficiency is a rare condition in patients 

harboring a NR5A1 gene variant. DAX1 is expressed in the subcapsular region of the adrenal 
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glands and is involved in the maintenance of adrenocortical progenitor cells, while the 

expression of SF1 begins in the adrenocortical primordium and continues to steroidogenic 

tissues. The age of onset of patients with NR0B1 gene mutations is younger than the rest. On 

the other hand, ACTH resistance occurs due to genetic defects in the ACTH signal 

transduction and depending on the residual signal transduction activity the size of the 

adrenal glands is normal or small. Up to date two genes have been identified in the ACTH 

signal transduction, MC2R (Melanocortin 2 Receptor) encoding the ACTH receptor and 

MRAP (Melanocortin 2 Receptor Accessory Protein), an accessory protein of melanocortin 2-

receptor (202). Finally, adrenal redox homeostasis presents, usually, with normal 

aldosterone production, as ACTH resistance. Array-based analyses in consanguineous 

patients with familial glucocorticoid deficiency (OMIM 202200) allowed the identification of 

responsible gene NNT (Nicotinamide nucleotide transhydrogenase), which codifies for a 

protein in the transfer system of the respiratory chain in the mitochondria (203). 

 

In general, patients with non-CAH monogenic PAI present symptoms related to 

adrenal insufficiency, such as vomiting and skin pigmentation, but also salt-wasting 

manifestation including dehydration and low blood pressure because aldosterone 

production is affected even in some patients with ACTH resistance and impaired adrenal 

redox homeostasis. Genital anomalies are frequently observed in reported PAI patients.  

 

2.2.6.2. Mayer-Rokitansky-Küster-Hauser syndrome 

 

Mayer-Rokitansky-Küster-Hauser (MRKH, OMIM 277000) syndrome is characterized 

by the congenital absence of the upper two-thirds of the vagina due to interrupted 

embryonic development of the Müllerian ducts. Otherwise, patients have a 46,XX karyotype 

and develop secondary sex characteristics normally. At puberty, they present amenorrhea, 

infertility and normal female phenotype and external genitalia. Anomalies of the genital 

track may range from upper vagina atresia to Müllerian agenesis and is classified as MRKH 

type I when is isolated or as type II when is associated to malformations, such as renal defect 

or skeletal malformations. The incidence of this syndrome is 1 in 4,500 newborn females.  

 

Candidate gene sequencing identified WNT4 as the monogenic cause for MRKH but 

aCGH (array-based Comparative Genomic Hybridization) analyses allowed the recognition of 

duplications and deletions in other genes. The most frequently affected chromosomal 

regions are 17q12, encompassing LHX1 (LIM Homeobox 1) and HNF1 (Hepatocyte Nuclear 

Factor 1) genes (6%), and 22q11 (4%), followed by 16p11.2 (1%) and 1q21.1 (1%) where 

rearrangements in TBX6 (T-Box Transcription Factor 6), RBM8A (RNA Binding Motif Protein 

8A) and in the Xpter pseudoautosomal region 1, including SHOX (Short stature Homeobox) 

genes have been reported. Nevertheless the etiology of the syndrome remains unknown 

because most of the cases are sporadic, although segregation analyses in few families have 

shown an autosomal dominant inheritance with incomplete penetrance. Oligogenic or 

polygenic inheritance has also been suggested (204). More recently, 4 new point variants 
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have been described in MYCBP2 (MYC Binding Protein 2), NAV3 (Neuron Navigator 3)and 

PTPN3 (Protein Tyrosine Phosphatase Non-Receptor Type 3) in a Japanese cohort (205).  

 

2.2.7. Sex chromosome DSD  

 

2.2.7.1. 45,X0: Turner syndrome and variants 

 

Turner syndrome is associated with a complete or partial missing of the X 

chromosome and is a rare condition in females characterized by hypergonadotropic 

hypogonadism, infertility, short stature, endocrine and metabolic illnesses and augmented 

risk of autoimmune disease among others. The syndrome occurs with a prevalence of 

1:2,000 women in different ethnic populations (206). 

 

Different karyotypes have been observed in women with Turner syndrome. Nearly 

50% of them present 45,X0 (complete loss of one X chromosome), 15-25% 45,X0/46,XX 

mosaicism, an isochromosome of p or q arm (20%) and less, an X ring chromosome. 

Hypergonadotropic hypogonadism is present in almost all patients and drives either to 

primary or secondary amenorrhea and then, to infertility, possibly due to an accelerate loss 

of oocytes from the ovaries since fetal development. The onset of puberty depends on the 

karyotype as only 2-3% of women with 45,X0 karyotype present menstrual cycles. Breast 

development at puberty occurs in 21-50% of the patients and menarche in 15-30%. 

Moreover, spontaneous puberty has been correlated with viable follicles, younger age, 

mosaic karyotypes and normal levels of FSH and AMH  Spontaneous pregnancy happens in 

about 6% of these individuals, mainly in mosaic Turner syndrome, although the rate of 

natural miscarriage is high (206). 

 

SHOX is the only gene related to Turner syndrome. This gene belongs to the paired 

homeobox family and is located in the pseudoautosomal region 1 (PAR1) of X and Y 

chromosomes. SHOX (Short stature homeobox) controls proliferation and maturation of 

chondrocytes in the growth plate, regulates the expression of NPPB (Natriuretic Peptide B) 

and FGFR3 (Fibroblast Growth Factor Receptor 3), and interacts with transcription factors 

SOX5, SOX6 and SOX9.. Then, the reduced expression of SHOX elucidates the growth deficit, 

as women with the syndrome are about 20 cm shorter than their target height. Although 

other genes like TIMP1 (Tissue inhibitor of matrix metalloproteinase 1), may be implicated in 

the frequent bicuspid aortic valves and aortic dilation observed in Turner syndrome 

individuals, further studies are required. It is now emerging the possible impact of epigenetic 

changes and variants in RNA expression, as well as protein-protein interactions in the 

development of the pathogenesis of Turner syndrome, however the genomic mechanisms 

need to be further studied. (206). 
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2.2.7.2. 47,XXY: Klinefelter syndrome and variants 

 

Klinefelter syndrome is the most common male chromosomal disorder. It is reported 

to occur in 1 out of 500 or 1000 male births and is mostly diagnosed later in life. Moreover, 

about 64% remain undiagnosed . The 90% of the cases present a 47,XXY karyotype while the 

remaining include 46, XY/47, XXY mosaicism, 48, XXXY or 49, XXXXY aneuploidies and 

structural irregularities in the X chromosomes, such as 47,iXq,Y. This genetic background is 

based on the failure of chromosomal separation or non-disjunction during meiosis I and II or 

mitosis, which leads to the presence of an extra X-chromosome. 

 

The clinical features in patients with Klinefelter syndrome are highly heterogeneous 

and depend on the supernumerary X chromosome and the consequences of hypogonadism. 

Common presentation is testicular failure with small gonads, hypergonadotropic 

hypogonadism, gynecomastia, sparse body hair, signs of androgen deficiency, azoospermia, 

difficulties in language processing, social and learning disabilities and tall stature with 

eunuchoid body. Infants are generally born with a normal male phenotype, although 

cryptorchidism and inguinal hernias have been reported too (207). It has been suggested 

that the phenotypic variability of the syndrome depends on the expression of altered genes, 

androgen deficiencies, variants in AR such as the number of CAG repetitions or random 

inactivation of the additional X-chromosome material. Certainly, few studies have reported 

the presence of complete or partial androgen insensitivity syndrome due to AR gene variants 

in 47,XXY patients (207). 

 

2.2.7.3. 45,X0/46,XY: Mixed gonadal dysgenesis and ovotesticular DSD 

 

The 45,X0/46,XY karyotype has an estimated incidence of 1 to 15,000 births  and the 

chromosome constitution arises from the mitotic errors that take place during early 

divisions. Among the different phenotypes that present with the 45,X0/46,XY karyotype, 

mixed gonadal dysgenesis (MGD) is characterized by ambiguous genitalia due to a streak 

gonad and one or two dysgenetic testes. Undifferentiated gonadal tissue (UGT) has been 

also noted. This, has the same characteristics as streak tissue but contains germ cells that are 

at increased risk of neoplastic transformation.The risk of developing a malignant germ cell 

tumor, is increased in patients with a DSD and a specific part of the Y chromosome in their 

karyotypes, more specifically the aberrant expression of the TSPY (Testis Specific Protein Y) 

gene (208). On the other side, the development of the male reproductive tract is going to be 

determined by the ratio of germ line cells expressing the XY genotype, and then completely 

male and female phenotypes might be observed (209). Phenotypes similar to partial gonadal 

dysgenesis can also result from 45,X0/46,XY karyotype. Recently, a positive correlation 

between AR activity and external virilization in 45,X0/46,XY patients has been described 

(210). 
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Structural rearrangements of the Y chromosome, including deletions, ring 

chromosomes and isochromosomes lead to 45,X0/46,XY mosaicism and have been described 

in mixed gonadal dysgenesis, but also in Turner syndrome and infertility (211). Yp (short 

arm) deletions including SRY gene directly affect testis differentiation leading to streak 

gonads and a female phenotype, whereas deletions of the long arm (Yq11), especially 

involving the Azoospermia Factor regions (AZF) AZFa, AZFb and AZFc on Yq11 lead to male 

infertility (212). 

 

The incidence of OT DSD in individuals with 45,X0/46,XY mosaicism is low and 

additionally, the distinction between OT DSD and MGD may be complicated. Clinical and 

molecular characteristics of the OT DSD have been already explained (See 2.2.4.1, page 47).  

 

2.2.7.4. 46,XX/46,XY: chimeric and ovotesticular DSD 

 

Clinical and molecular characteristics of the chimeric and ovotesticular DSD have 

been already explained (See 2.2.4.1, page 47).  

 

 

2.3. MANAGEMENT OF DSD AND THE RISK TO DEVELOP A GERM CELL TUMOR 

 

Caring for patients with DSDs require a multidisciplinary team (172), that integrates 

medical and other professional and social science disciplines (i.e. Psychologist). Patients with 

DSD should be followed-up to guarantee the correct transition of care from childhood and 

adolescence to adult life. When referred to clinician, the clinical evaluation of individuals 

should include family and prenatal history, the appearance of the genitals and external 

phenotype, molecular diagnosis and the use of techniques like ultrasonography or 

laparoscopy to assess gonadal location and description of the tissue. Molecular diagnosis 

includes karyotyping and gene analysis. Biochemical investigations are still used as a tool for 

the identification of the mechanism. In newborns, the measuring of 17-hydroxyprogesterone 

levels is used to discard CAH and facilitates diagnosis of overvirilized 46,XX. Hormone 

therapy is going to be necessary in most patients with DSD. During childhood, the treatment 

is critical because hormone therapy leads to irreversible effects and induction of puberty is 

performed according to practices used for adolescents with pituitary or gonadal failure 

(213). Surgical treatments are performed to allow the correct development of external 

genitalia and remove the internal structures. Regarding the sex of rearing, it should be 

considered the development of the patient at puberty and future fertility. Even though no 

recommendations exist for sex assignment in newborns with DSD, the social sex is favoured 

(172).  

 

Overall, reaching a molecular diagnosis is useful in relation to possible gender 

assignment, evaluation of gonadal and adrenal function, risk of gonadal cancer, infertility 

and other consequences (174). Some groups of DSD patients are more disposed to the 
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development of a germ cell tumor. Phenotypes with gonadal dysgenesis in 46,XY and sex 

chromosomal DSD are highly heterogeneous and the resulting gonad depends on the genetic 

variant. Normally, the earlier the gonadal development is disturbed the less the gonad is 

differentiated into a testis or an ovary. The different configurations that are recognized are: 

normal testes with occasionally immature germ cells, dysgenetic testes, primitive sex cords 

including germ cells, streak gonads with some testicular or ovarian differentiation and 

undifferentiated gonadal tissue containing isolated germ cells (214). A combination of these 

configurations may be found in the same patient within the same gonad or the opposite 

one. 

 

In undervirilized 46,XY DSD, the male gonad is a testis with immature germ cells that 

are derived to apoptosis and therefore postpubertal gonads lack germ cells unless a tumor 

has surfaced. Germ cell tumors, mainly carcinoma in situ (CIS) and gonadoblastoma (GB), 

emerge with increased frequency in patients with a specific region on Y chromosome, 

namely the testis specific protein Y (TSPY). Then, overvirilized 46,XX DSD patients are not at 

risk. Immature germ cells express OCT3/4 (Octamer-Binding Protein 4), a transcription factor 

expressed in fetal undifferentiated germ cells but not later. Immunohistochemical studies 

revealed high positivity for OCT3/4 and TSPY expression in the germ cells of CIS and 

gonadoblastoma and has been proposed to be of pathogenetic relevance in the formation of 

germinal cell tumors in these patients (214). 

 

Moreover, gonadal differentiation also determines the tumor risk. Mostly, 

undifferentiated gonadal tissue gives rise to germ cell tumors. Immunohistochemistry is 

used to evaluate the number and maturation of germ cells according to their location in the 

seminiferous tubule. Thus, early CIS or GB is discarded or an estimation of the risk for the 

development of an invasive germ cell tumour is made. The incidence of a germ cell tumor in 

DSD varied between 5 to 7% but more recent reviews reported that the risk is extremely low 

in CAIS compared to PAIS or patients with HSD17B3 gene variants. Overall, the incidence is 

about 2.3% in underviriled patients and as gonads are well differentiated CIS is only 

described in these populations. However, in cases with gonadal dysgenesis the risk increases 

up to 12% and GB is developed, although CIS has also been reported. Usually, 

gonadoblastoma appears in these patients before puberty, which indicates the poor role of 

pubertal hormones in its development. However, the risk of malignancy in patients with 

46,XY gonadal dysgenesis is dependent on the underlying genetic cause (214). 

 

In the past, early gonadectomy was performed in 46,XY patients before puberty to 

prevent degeneration of dysgenetic tissue. Now, tumor risk is predicted based on medical 

analysis, such as the presence of OCT3/4 positive cells and gonadal biopsies and in some 

cases, such as in CAIS, gonads are retained until late adolescence to take advantage of the 

secretion of hormones that allow the development of secondary sex characteristics (215). 

Table 3 summarizes the recommendations for a stratified treatment model of DSD patients 

based on defined parameters. 
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Table 3. Schematic representation of the stratified model for gonadal management in the DSD. 
Modified from Cools et al, 2014 (215). 
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CAIS, complete androgen insensitivity syndrome; CGD, complete gonadal dysgenesis; CIS, non-invasive 
precursors carcinoma in situ; GB, gonadoblastoma; PAIS, partial androgen insensitivity syndrome; PGD, partial 
gonadal dysgenesis; US, ultrasound. 
 
 

3. NEXT GENERATION SEQUENCING AND ITS USE IN DSD 

 

Advances in DNA-based techniques have improved diagnosis and management of 

human genetic diseases, including disorders of sex development.  

 

Since the highly variable aetiology of DSD, a large number of genes have been 

considered causative and thus, the arrival of next generation sequencing (NGS) completely 

changed the diagnostic strategies from the gene-by-gene sequencing to the massively 

parallel sequencing. Gene panel sequencing, in which the genes of interest are sequenced, 

has become the first approach to be used for DSD diagnosis. It combines a fast analysis of a 

large number of genes with adequate gene coverage. As targeted panels are restricted to 

known or candidate genes and lack consistent methods for copy number variant (CNV) 

analysis, molecular diagnosis is limited. Reduced sequencing costs and increasing 

bioinformatics expertise, have improved the practice of whole exome sequencing (WES) and 

whole genome sequencing (WGS) approaches. WES and WGS are more flexible than DSD-

related gene panel and allow the identification of new genes. While whole exome 

sequencing is mainly limited to the detection of single-nucleotide variants (SNV) and small 
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indels in the total exons present in the human genome, WGS will eventually become first-

line clinical test as it detects all variant types in both coding and non-coding regions (216).  

 

Few studies have screened a large targeted gene panel or have guided the 

sequencing of the whole exome to analyse known and candidate DSD genes. Baxter et al as a 

continuation of a previous work, screened forty-seven 46,XY DSD patients and evaluated 64 

known genes (81), while another study reported the findings in the NR5A1 gene in thirteen 

46,XX testicular and ovotesticular DSD (194). Bigger targeted gene panels have been used for 

the analysis of either small (217, 218) or larger cohorts, as the study by Eggers et al in which 

gene panel including 64 well-known DSD and 967 candidate genes was designed to test 326 

international DSD individuals (12) More recently, the efficiency of the method has been 

reinforced with the use of targeted panels of 30, 56 and 67 genes (93, 219, 220). The 

diagnostic rate varied from 20.7% to 38.6% in these analyses, supporting the use of targeted 

NGS as a first-tier diagnostic tool for DSD. (218) (12)  

 

WES and WGS facilitate the discovery of new disease genes or genomic loci involved 

in the pathogenesis of DSD. Moreover, new roles for well-known DSD genes are increasingly 

described. This further advance also increases the amount of data and complicates the 

interpretation of the results, mainly when detecting variants of unknown significance (VUS). 

(195). In some occasions the interpretation of a variant is direct, such as novel variants in a 

well-known gene. However, when the relationship between the variant and the phenotype is 

not clear, functional assays are used to determine the effects of an alteration on a gene 

(195). In order to avoid incidental findings or findings that cannot be interpreted, the 

European Society of Human Genetics (ESHG) as well as the current guidelines for genetic 

testing in DSD, have recommended the use of a targeted approach first, when the clinical 

and biochemical results are suggestive for specific genes, and whole exome or genome 

sequencing if this is not the case. A complete list of genes that contribute in human DSD was 

recently reported by the international registry DSDnet and included 62 genes in 46,XY DSD 

and 61 in 46,XX (174). (174). 

 

As well as in many other developmental disorders, gene dosage effects contribute to 

the pathogenesis of a big percentage of DSD patients. As previously stated, CNV detection in 

the whole genome is limited to WGS, although several algorithms for assessment on WES 

and gene panel data are available (216). Studies of gene copy number were initially done 

with karyotype banding, which only detected large chromosome rearrangements, and FISH 

(Fluorescence in situ hybridization), which was employed to identify smaller CNV. Nowadays, 

detection of intragenic and whole gene CNV may be done by MLPA (Multiplex Ligation-

dependent Probe Amplification), but aCGH (array-based Comparative Genomic 

Hybridization) are extensively used to detect small to large-scale duplications and deletions 

(<5 Mb) along the genome. The intragenic deletions are not always detected by Sanger 

sequencing (221) and therefore these techniques have become part of the routine 

investigations. Besides the diagnostic potential shown by the aCGH (26, 28, 222), novel 
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gonad genes can also be detected (223). Additionally, arrays have been crucial in the analysis 

of regulatory regions in genes such as SOX9 and GATA4 (26) (44).  

 

Previous to new molecular diagnosis techniques, the investigation of DSD involved 

the Sanger sequencing of a small number of known genes, depending on the disease 

phenotype, and in combination with a MLPA for the analysis of bigger rearrangements. 

Many variants in gonad determining and differentiating genes, such as SRY or SOX9, were 

discovered by sequencing candidate genes and screening the appropriate DSD patients. 

However, the difficulty to define many DSD phenotypes complicated the choice (195) and 

large number of patients did not achieve a molecular diagnosis. Currently, candidate gene 

sequencing is mainly used when the massively parallel sequencing fails to interpret a result 

as in complex rearrangements, to sequence a region of interest in segregation analysis and 

to validate the variants found by NGS (174). The heterogeneous nature of DSD, as well as the 

increasing evidence of an oligogenic mode of inheritance has led to the replacement of 

individual gene sequencing also when clinical and biochemical profiles point to a specific 

gene (25, 224). Nevertheless, the sequencing of larger cohorts with novel genetic and 

genomic technologies is expanding our knowledge on the genetic changes leading to DSD, 

and may improve the understanding of the observed phenotypes (195). The use of these fast 

diagnostic tools enables better diagnoses and has changed the clinical diagnostic pathway in 

DSD. The traditional approach consisted on clinical examination including biochemical 

investigations, karyotype determination and testing for CNV in known DSD genes, mainly 

when DSD were associated with other malformations (222). Gene sequencing, both by 

Sanger or NGS, was often the last step and was based on the gathered phenotypic 

information (225). However, genome wide sequencing has supported a parallel approach in 

which biochemical and molecular evaluations are complementary (Figure 8). Nevertheless, 

the best strategy should be determined based on karyotyping, clinical and hormonal 

phenotype and family history (174, 226).  

 

Technology is constantly changing and rapid advances in machines and platforms 

occur, coverage is improved and new bioinformatic tools are created for the interpretation 

of variants identified. Current molecular techniques, in the form of aCGH or NGS allow a 

faster analysis of patients when targeted to known genes, while broaden approaches 

(WES/WGS) increase diagnostic rates and provide the opportunity to discover novel genes, 

developmental pathways and regulatory mechanisms in undiagnosed DSD patients, 

improving the understanding of molecular aetiology. Although the diagnostic process of rare 

diseases has been enhanced with the current molecular analyses, these results need to be 

placed in the correct clinical context. In the past, genetics were performed to confirm the 

biochemical findings, nowadays, NGS allows sequencing while essential clinical tests are 

done and thus, saving healthcare system’s resources. In any case, a complete examination 

including physical and biochemical testing should be placed to functionally assess the 

relevance of the gene mutation (7). Genome-wide sequencing has improved diagnostics, 

however about 50% of individuals with 46,XY DSD do not reach a genetic finding, which 
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highlights the importance of underlying molecular mechanisms (12, 226). Beside the 

psychological circumstances that patients need to face, DSD may be associated to other 

conditions such as cardiovascular disease, obesity or cancer (226), that hinder the 

management of DSD and a well-founded diagnosis in individuals with such complex 

conditions. The advances in the understanding of molecular mechanisms, technology and 

expertise enable a better clinical practice in people with DSD, allowing the clinician to 

predict the prognosis and long-term outcome. 
 

 
Figure 8. Diagnostic approach in which the patient’s clinical and biochemical features are studied in parallel 
with the genetic results. Modified from the recommendations given by the DSDnet (174). 
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HYPOTHESIS  

 

 Disorders of Sex Development encompass a heterogeneous group of conditions in 

which multidisciplinary care is essential. Clinical examination, biochemical tests and 

karyotype determination, along with genetic investigations have a significant impact to 

assess the aetiology of the disease.  

 

Genetic testing prior to novel technologies was dependent on the clinical information 

and the suspicion of the involvement of a specific gene. With the arrival of next generation 

sequencing, new genes and pathways are being implicated in the pathogenesis and the 

genetic basis is gradually being elucidated. Previous studies have analysed cohorts of 

individuals with DSD, though reaching a specific molecular diagnosis remains challenging in 

nearly 50% of the 46,XY DSDs.  

 

Therefore, the hypothesis of this present work is that molecular analysis either by a 

gene-by-gene approach or using massively parallel sequencing technologies will identify the 

genetic cause in these patients and together with the clinical diagnosis determine a 

phenotype-genotype correlation.  
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MAIN OBJECTIVE  

 

Clinical and molecular characterization of patients with a disorder of sex 

development using a candidate gene approach or a targeted gene sequencing panel in those 

without a previously causative genetic variant identified in a traditionally associated gene. 

 

Specific objectives 

 

1. Implement a single-gene and a targeted gene sequencing panel analysis to 

genetically characterize a cohort of DSD patients /Improve the genetic 

characterization of patients with disorders of sex development using a single-gene 

and a targeted gene panel as a diagnostic tool. 

 

2. Identify genetic variants that explain the development of the disease in patients with 

DSD using a single-gene approach and a targeted gene panel. 

 

3. Functional characterization of identified variants either by the single-gene testing or 

next generation sequencing to stablish the impact of the genetic change in the 

pathogenesis of the disease. 

 

4. Establish a phenotype-genotype correlation between the clinical features of the 

patient and the genetic defect. 

 

 

  



 

62 
 

 

 

 

 

 

 

 

 

PATIENTS AND METHODS 
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4. STUDY DESIGN 

 

Clinical and molecular analyses were performed in all the included patients.  

 

 

4.1. DESCRIPTION OF THE PATIENTS 

 

Clinical characterization of each proband, and relatives when applicable, was done 

after examination of the clinical data sheet collected in our Institute. For biochemical and 

hormonal parameters, values were compared based on age and sex-appropriate range of the 

hospital of origin according to the reference values recommended by the Spanish Society for 

Paediatric Endocrinology (SEEP, Sociedad Española de Endocrinología Pediátrica) working 

group on DSD in 2017 (227). 

 

Clinical and biochemical data of the 125 patients with DSD diagnosis that have been 

included in this study are summarized in Supplementary data 2 and 3.  

 

 

4.2. MOLECULAR STUDY 

 

The molecular analysis was carried out in three different phases (Figure 9).  

 

4.2.1. Candidate gene sequencing approach for DSD-related genes  

 

Candidate genes are chosen on the basis of either their functional relevance to the 

disease pathogenesis or their locations within implicated chromosomal regions. This 

approach has been applied for gene-disease research, among others. The first gene selected 

for testing is the more related to the disease. If no alteration is found, a second gene is 

chosen and successively, until a mutation explaining the phenotype of the patient is found. 

The success of this approach depends upon the correct choice of the genes to be studied 

and is limited by its support on existing knowledge about the theoretical biology of disease. 

 

Among included patients, 36 were genetically diagnosed for classical DSD-associated 

genes by a candidate gene approach using traditional Sanger sequencing technique, 

Multiplex Ligation-dependent Probe Amplification (MLPA), Quantitative Multiplex 

Polymerase chain reaction of Short Fluorescent Fragments (QMPSF) or a Comparative 

Genome Hybridization array (aCGH), depending on the suspected gene variants causing the 

phenotype of the individual. 
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Figure 9. Schematic representation of the molecular study developed in this work. 
 
 

4.2.2. Next generation Sequencing: targeted gene panel for DSD  

 

After the implementation of next generation sequencing (NGS) technology in our 

Institute, patients collected since 2015 were analysed with a customized gene panel for DSD. 

The testing panel was designed to contain a total of 48 genes, associated with sex 

determination, sex differentiation and hypogonadism. The list of the genes in the 

customized panel can be found in Table 4 (Page 79).  

 

Individuals with a previous negative result in the gene-by-gene study were also 

included in this procedure. Altogether, 89 subjects were studied in the panel.  

 

Among included clinical cases 11 positive controls with variants confirmed by Sanger 

sequencing were incorporated to the NGS study to validate the assay. These controls 

comprised 8 index cases diagnosed with DSD and 2 relatives of an affected patient, included 

due to the absence of DNA of the proband. These cases presented with changes in the SRY, 

HSD17B3, AR, NR5A1 and NR0B1 genes. Additionally, 1 subject diagnosed with Wilms’ 

tumour harbouring a known mutation in the WT1 gene was included. WT1 is a well-known 

gene that is also involved in the gonadal development in 46,XY DSD and is comprised in the 

customized panel. Four negative controls were also tested to ensure the efficacy of the 

methodology.  

 

Variants of interest identified by panel analysis were verified by Sanger sequencing.  
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An aCGH, MLPA or Fluorescence In Situ Hybridization (FISH) was performed for 

complete genetic diagnosis of some patients in which deletions, amplifications or complex 

rearrangements were suspected, as well as to validate the findings of the NGS technique.  

 

For both approaches, candidate gene and NGS approach, parents and family 

members were tested to establish the mode of inheritance, when available. 

 

4.2.3. Functional characterization of likely pathogenic variants or variants of 

unknown significance 

 

The main objective of these functional studies was to analyse the potentially 

pathogenic alterations mapped in three different genes in cells and determine the effect in 

the pathogenesis of the disease.  

 
 
5. CLINICAL DATA OF THE PATIENTS 

 

In this study, we have performed the clinical and genetic analysis of patients affected 

by a Disorder of Sex Development (DSD). A total of 125 index individuals with a clinical 

diagnosis of DSD were evaluated between 2002 and 2018. 

 

This multicentre study included patients attending an Endocrinology or Paediatric 

Endocrinology service from several Spanish and one Swiss hospital (Supplementary data 4). 

 

The inclusion criteria were as follow:  

• Clinical diagnosis of a DSD, according to the consensus statement on management of 

intersex disorders (172) 

• Complete clinical data sheet of the patient 

• Informed consent from patients and family 

 

Clinical data were provided by the different clinicians. Clinical data sheet included age 

at consultation, assigned gender, karyotype of the patient and family background comprising 

consanguinity of the parents, virilisation during pregnancy or infertility. At examination, data 

about external genitalia, Tanner stage in puberty, biochemical and hormonal values as well 

as treatment and progression were gathered. If performed, comments on Magnetic 

Resonance Imaging (MRI) and ultrasound (US) images were achieved, and reports from the 

gonadal biopsy were included. Lastly, previous molecular studies were also annotated. The 

clinical data sheet is included as Supplementary data 5. 

 

Written informed consent was obtained at the respective hospitals involved from all 

subjects and their family members after full explanation of the purpose and nature of all the 

procedures used. The study was approved by the corresponding ethical committees. 
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6. SAMPLE COLLECTION AND STORAGE 

 

Blood samples or DNA (Deoxyribonucleic Acid) from the patients and family members 

were obtained during routine examination at the different hospitals, and together with the 

clinical data and informed consent, were collected at the Biocruces Bizkaia Health Research 

Institute (Barakaldo, Spain).  

 

Two different blood samples containers were used depending of the molecular study 

to be performed: 

• Blood sample on EDTA-containing (Ethylenediaminetetraacetic acid) tubes were used 

for the extraction of genomic DNA and its application on candidate gene sequencing 

approach and NGS, as well as validation of the variants by Sanger sequencing and 

CNV (copy number variant) by MLPA and aCGH. 

• Blood samples on Sodium Heparin were used for the FISH technique in which 

lymphocytes life long enough to yield a proper cell culture.  

 

Each sample was registered in the laboratory and identified with a family name. 

Then, blood samples on EDTA-containing tubes were stored at -40°C until use. On the 

contrary, samples on Sodium Heparine were kept at room temperature and procedure for 

fixing cells was done within the same day the sample was obtained. Slides with the fixed 

lymphocytes reared at metaphase were stored at -20°C until use.  

 

 

7. MOLECULAR STUDY 

 

7.1. GENOMIC DNA EXTRACTION 

 

Genomic DNA was extracted from peripheral blood leukocytes using either the 

manual QIAamp DNA Blood Mini kit (Qiagen NV, Venlo, Netherlands) or the automated 

MagPurix 12S system from Zinexts (Zinexts Life Science Corp., New Taipei City, Taiwan). 

 

7.1.1. Manual DNA extraction 

 

The purification procedure comprises 4 steps and is carried out using spin columns. 

After cellular lysis, DNA is adsorbed onto the membrane of the column and the washing 

steps remove contaminants. Finally, purified DNA is eluted.  

 

This method is designed for a purification of an average of 6μg of total DNA from 

200µL of whole human blood. 

 

Reagents and materials 

• Absolute ethanol (C2H5OH) (Thermo Fisher Scientific, Cat. No. BP2818100). 
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• QIAamp DNA Blood Mini kit (50u) (Qiagen NV, Cat. No 51104), containing QIAamp 

Mini Spin Columns (50), Collection Tubes (2mL) (150), Buffer AL (12mL), Buffer AW1 

(19mL), Buffer AW2 (13mL), Buffer AE (15mL), QIAGEN® Protease (1 vial) and 

Protease Solvent (1.2mL). 

• Centrifuge Heraeus Pico 17 (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. 

75002491). 

• Heating block (JP Selecta S.A, Abrera, Barcelona, Cat. No. 7462200).  

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Schwabach, Germany, Cat. No. 

541-10000-00). 

 

Procedure 

1. Pipet 20μl QIAGEN® Protease into a 1.5mL tube. 

2. Add 200μl blood sample to the tube.  

3. Add 200μl Buffer AL to the sample. Mix by vortexing for 15 seconds. 

4. Incubate at 56°C for 10 minutes. Spin the samples to remove drops from the inside of 

the lid. 

5. Add 200μl ethanol.  

6. Vortex for 15 seconds. Spin the samples to remove drops from the inside of the lid. 

7. Transfer the mixture to a QIAamp Mini spin column. 

8. Centrifuge at 8000 rpm for 1 min. Place the column in a new tube and discard the 

tube containing the filtrate. 

9. Add 500μl Buffer AW1 and centrifuge at 8000 rpm for 1 min. Discard the filtrate. 

10. Add 500μl Buffer AW2 and centrifuge at 13000 rpm for 3 minutes. Place the column 

in a new tube and discard the tube containing the filtrate. 

11. Centrifuge at 13000 rpm for 1 min.  

12. Place the QIAamp Mini spin column in a clean 1.5mL microcentrifuge tube. 

13. Add Buffer AE. For candidate gene sequencing, add 75μL of Buffer AE; however, for 

NGS analysis add 200μL of Buffer AE. 

14. Incubate at room temperature for 5 minutes. 

15. Centrifuge at 8000 rpm for 1 min. 

16. Transfer the eluted DNA to a 1.5mL screw tube, assign a new DNA number for the 

laboratory register and store at 4°C or -20°C for posterior use. 

 

7.1.2. Automated DNA extraction 

 

The Magpurix 12S system consists of a robotic workstation for automated nucleic 

acid purification that uses pre-filled reagent cartridges and disposable consumables, with the 

flexibility of processing 1-12 samples per run. The MagPurix technology uses magnetic beads 

to purify nucleic acids from samples and follows steps of lysis, binding, washing and elution. 

The MagPurix Blood DNA Extraction Kit 200 (36 preps) (Zinexts Life Science Corp., Taiwan) 

for gDNA (genomic DNA) extraction from 100-400μL mammalian blood cells was used. This 

method allows for a DNA yield of 4-7μg.  
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Depending on the genetic approach to be performed, the required DNA 

concentration varies.  

While 25-50ng/µL human genomic DNA is recommended for Polymerase Chain Reaction 

(PCR), the optimal concentration for NGS is about 100ng/µL. Therefore, for candidate gene 

sequencing, we isolated and purified 300μL from each blood sample to get 300µL eluted 

DNA; however, for NGS analysis the elution volume was 100µL. 

 

Reagents and materials 

• Magpurix 12S system (Zinexts Life Science Corp., Cat. No. ZP01001). 

• MagPurix Blood DNA Extraction Kit 200 (36 preps) (Zinexts Life Science Corp., Cat. No. 

ZP02001), containing Reaction chamber (36 pieces, 6x6), Tip holder (36 pieces), 

Filtered tip (38 pieces), Piercing pin (38 pieces), Sample tube of 2mL (38 pieces), Elute 

tube of 1.5mL (38 pieces), Barcode paper and Reagent cartridge (36 pieces, 6x6). The 

Reagent cartridge includes:  

o Well 1: Proteinase K solution (40μl). 

o Well 2: Lysis Buffer 2 (1000μl). 

o Well 3: Binding Buffer 1 (600μl). 

o Well 4: Magnetic Bead Solution (800μl). 

o Well 5: Washing Buffer 1 (1000μl).  

o Well 6: Washing Buffer 2 (1000μl). 

o Well 7: Washing Buffer 3 (1000μl). 

o Well 8: Elution Buffer 1 (1000μl). 

o Well 9: Elution Buffer 2 (1000μl). 

o Well 10: Empty. 

 

Procedure 

1. Turn the power switch on. Open the sliding door and remove the sample rack from 

the instrument. 

2. Load reagent cartridges and all plastic disposables, such as, reaction chamber, tip 

holder, piercing pin and filtered tip.  

3. Load one reaction cartridge and one set of plastic disposable per sample. 

4. Load sample tube and elute tube to sample rack on the bench. 

5. Load 300µL of the blood sample to sample tube. 

6. Place sample rack on the instrument platform. Close the door. 

7. Scan the protocol barcodes to select purification protocol MagPurix Blood DNA 

Extraction Kit 200, sample volume 300µL and elute volume 300μL or 100μL. 

8. Follow the instructions displayed on the screen to check the operating steps. 

9. Push “Enter” to confirm and press “Start” button. The automated purification 

protocol begins and steps of the protocol. 

10. At the end of the run, open the instrument door and remove the elute tubes 

containing the purified DNA. 
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11. Discard the used cartridges and all plastic consumables into biohazard waste. Close 

the instrument door and turn the power switch off. 

12. Transfer the eluted DNA to a 1.5mL screw tube, assign a new DNA number for the 

laboratory register and store at 4°C or -20°C for posterior use.  

 

 

7.2. EXTRACTED DNA QUANTIFICATION AND PURITY CHECKING  

 

To check for concentration the NanoDrop® ND-1000 spectrophotometer (Thermo 

Fisher Scientific) and the Qubit® 2.0 Fluorometer (Thermo Fisher Scientific) were used. For 

measuring the quality of the extracted DNA samples the NanoDrop® ND-1000 

spectrophotometer was used.  

 

7.2.1. DNA quantification  

 

DNA concentrations can be assessed using different methods, such as absorbance or 

optical density (Spectrophotometric method) and fluorescent DNA-binding dyes 

(Fluorometric method).  

 

7.2.1.1. Spectrophotometric method 

 

Nucleic acids absorb ultraviolet (UV) light due to the heterocyclic rings of the 

nucleotides among the DNA. The wavelength of maximum absorption for DNA is 260nm 

(λmax = 260nm) with a characteristic value for each base, that will allow the determination 

of the concentration. 

 

At very high concentrations, especially if the material is scattering, the absorbance 

value and therefore the concentration can be inaccurate. UV absorbance measurements are 

not selective and cannot distinguish between single or double strand nucleic acids. Values 

are easily affected by other contaminants, such as free nucleotides, salts, and organic 

compounds, and variations in base composition. 

 

Reagents and materials 

• Buffer AE (15mL) from the QIAamp DNA Blood Mini kit (Qiagen NV). 

• Milli-Q ultrapure water (Merck KGaA, Darmstadt, Germany). 

• NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific). 

• NanoDrop 1000 Spectrophotometer Software v3.8 (Thermo Fisher Scientific). 

 

Procedure 

1. Clean the pedestal by pipetting 2µL bidistilled water onto the measurement pedestal. 

Wipe both the upper and lower pedestals. 
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2. Pipet 1µL Milli-Q ultrapure water or AE buffer onto the pedestal to make the blank 

measurement.  

3. Lower the sampling arm and initiate the measurement by clicking on the software. 

4. When the measurement is complete, raise the sampling arm and clean. 

5. Pipet 1μL sample directly onto the measurement pedestal and measure. 

6. The software displays the results of the concentration measurement, as well as the 

purity checking values.  

7. Repeat step 1 once all the samples have been measured. 

 

7.2.1.2. Fluorometric method 

 

The Qubit® 2.0 Fluorometer in combination with the Qubit® dsDNA BR Assay Kit 

yields specific double-stranded DNA (dsDNA) quantitation and is accurate for initial sample 

concentrations from 100pg/μL to 1000ng/μL. The basis of the Qubit™ assay is a molecular 

probe dye that emits fluorescent signals only when bound to dsDNA. 

 

Reagents and materials 

• Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, Cat. No. Q32866). 

• Qubit® dsDNA BR Assay Kit (500 preps) (Thermo Fisher Scientific, Cat. No. Q32853), 

containing Qubit® dsDNA BR Reagent (Component A) (1,25mL), Qubit® dsDNA BR 

Buffer (Component B) (250mL), Qubit® dsDNA BR Standard #1 (Component C) (5mL) 

and Qubit® dsDNA BR Standard #2 (Component D) (5mL). 

• Qubit Assay tubes (500 tubes) (Thermo Fisher Scientific, Cat. No. Q32856). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

 

Procedure 

1. Set up the required number of 0.5mL Qubit® assay tubes for the two standards and 

samples. Label the tube lids.  

2. Prepare the Qubit® working solution by diluting the Qubit® dsDNA BR Reagent 1:200 

in Qubit® dsDNA BR Buffer.  

3. Add 190μL of Qubit® working solution to each standard tube. 

4. Add 10μL of each Qubit® standard to the appropriate tube, then mix by vortexing. 

5. Add 198μL of Qubit® working solution to each assay tube. 

6. Add 2μL sample to each assay tube, then mix by vortexing. 

7. Incubate all tubes at room temperature for 2 minutes. 

8. On the Home screen of the Qubit® 2.0 Fluorometer, press DNA and select dsDNA 

Broad Range. 

9. Read the standards. Insert the tube containing Standard #1 into the sample chamber, 

close the lid, and then press Read. When the reading is complete remove Standard 

#1 and repeat with Standard #2.  

10. When the calibration is complete, the instrument displays the Sample screen.  
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11. Insert a sample tube into the sample chamber, close the lid, and then press Read. 

When the reading is complete, remove the sample tube. 

12. The instrument displays the results on the Sample screen. 

13. Repeat step 12 until all samples have been read. 

 

7.2.2. DNA purity checking 

 

Absorbance measurements will measure any molecules absorbing at a specific 

wavelength. Nucleotides, Ribonucleic Acid (RNA), single-stranded DNA (ssDNA) and dsDNA 

will absorb at 260nm and contribute to the total absorbance. 

The ratio of absorbance at 260nm and 280nm is used to assess the purity of DNA. A ratio of 

1.8 is accepted as pure DNA. If the ratio is lower, it may indicate the presence of protein, 

phenol or other contaminants that absorb at nearly 280nm. 

 

The 260/230 ratio is commonly in the range of 2.0 for pure DNA. If it is appreciably 

lower, it may indicate the presence of contaminants which absorb at 230nm, such as EDTA, 

carbohydrates and phenol.  

 

 

7.3. POLYMERASE CHAIN REACTION  

 

This widely used technique exponentially amplifies a specific segment of DNA to 

generate multiple copies of a DNA sequence.  

 

The PCR comprises five steps developed at different temperatures in a thermocycler. 

The initialization step consists in the heat activation of the Taq polymerase at 94-95°C for 5-

10 minutes. In the denaturing stage, the hydrogen bonds between complementary bases are 

broken at 90-94°C and this breaks the dsDNA into two ssDNA molecules. In the annealing 

stage, the temperature is lowered to 50-65°C and the primers bind to their complementary 

sequence of DNA. This forms the double strand site which the polymerase can bind to and 

allows the elongation of DNA. In the elongation stage, at 72 to 75°C, the DNA polymerase 

synthesizes a new DNA strand, complementary to the DNA template strand, by adding free 

dNTPs (Deoxynucleoside triphosphates) in the 5’ to 3’ direction. At each elongation stage, 

the number of DNA target sequences is doubled. The processes of denaturation, annealing 

and elongation constitute a single cycle and are repeated among 35 to 40 times, leading to 

exponential amplification of the specific DNA target region. A final elongation step is 

performed at 72 to 75°C for 5 to 10 minutes to ensure that any remaining ssDNA is 

elongated.  

 

Besides DNA template containing the target region to amplify, several components 

and reagents are required for the development of the technique: 
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• Buffer solution: It provides the suitable environment for the activity and stability of 

the DNA polymerase. It contains Tris-HCl to maintain the proper pH at 8-8.3, KCl to 

increase the activity of the enzyme and MgCl2 which provides the Mg2+ ions that 

work as cofactors of the polymerase.  

• dNTPs: The main subject from which the new strand is synthesized by the 

polymerase. Adenine, guanine, cytosine and thymine deoxynucleosides are added in 

the same concentration. 

• Two DNA primers: Specific short ssDNA fragments complementary to the 3’ ends of 

each of the sense and antisense strands of the target DNA. We custom-made the 

oligonucleotides for each region of interest and add a M13 tail (Forward: 5’-

TGTAAAACGACGGCCAGT-3’ and reverse: 5’-CAGGAAACAGCTATGACC-3’). With this 

M13 tailed primers we can use the same primers for sequencing, ignoring the original 

sequence.  

• Dimethyl sulfoxide (DMSO): An organosulfur compound that binds the cytoside 

residue, changing its conformations ant therefore, makes DNA more labile for heat 

denaturation. 

• Heat-stable DNA polymerase (Taq polymerase): Originally isolated from Thermus 
aquaticus bacteria. This enzyme polymerizes new DNA strands and it remains intact 

during the high temperature DNA denaturation process. We used the KAPA Taq DNA 

Polymerase (Kapa Biosystems, Boston, MA, USA), of the thermophilic bacterium 

Thermus aquaticus, purified from recombinant Escherichia coli (E. coli). It has 5’-3’ 

polymerase and 5’-3’ exonuclease activity.  

• Milli-Q ultrapure water (Merck KGaA, Darmstadt, Germany). 

 

We used PCR for the amplification of the genes of interest by the candidate gene 

approach, validation of variants found by NGS and amplification of regions not covered by 

the targeted gene panel. 

 

Reagents and materials 

• KAPA Taq PCR Kit (Kapa Biosystems, Cat. No. KK1014), containing KAPA Taq DNA 

Polymerase (5U/µL), KAPA Taq Buffer A (10X) KAPA Taq Buffer B (10X) and MgCl2 

(25mM). 

• dNTP Mix (10mM) (5mL) (Merck KGaA, Cat. No. D7295-5ML). 

• DMSO (C2H6OS) (50mL) (Merck KGaA, Cat. No. D8418-50ML).  

• Primers pool (250 μM) (Integrated DNA Technologies Inc, Skokie, Il, USA). 

• Milli-Q ultrapure water (Merck KGaA). 

• PCR-strip tubes (Sarstedt AG&Co KG, Nümbrecht, Germany, Cat. No 72.982.002).  

• PCR lid strips (Sarstedt AG&Co KG, Cat. No. 65.989.002).  

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 
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Procedure 

For each amplification, a mix containing Milli-Q water, Buffer A, dNTPs (10mM), 

primers at 25pM, Taq DNA polymerase and DNA (25-100ng) is prepared. DMSO is added 

when required. Conditions in the thermocycler are also different for each DNA amplification 

sequence. Annealing temperature of the different primers was optimized by doing a 

temperature gradient PCR. 

 

The conditions for each amplification and primers can be found in Supplementary 

data 6. 

 

 

7.4. AGAROSE GEL ELECTROPHORESIS 

 

Agarose gel electrophoresis is the most common way of separating DNA fragments of 

varying sizes for visualization and purification. Nucleic acid molecules are separated by 

applying an electric field to move through a matrix of agarose, in which the pore size is 

determined by the percentage of agarose in the buffer. When applying an electric field, 

negatively charged DNA, due to the phosphate backbone, will migrate to the positively 

charged anode in neutral pH conditions given by 1X TAE (Tris base, acetic acid and EDTA) 

buffer.  

 

Shorter DNA fragments migrate through the gel more quickly than longer ones. 

Consequently, the approximate length of a DNA fragment can be determined by running it 

on an agarose gel alongside a DNA ladder. After separation, the DNA molecules can be 

visualized under UV light after staining with the fluorophore GelRed™ (Biogen, Cambridge, 

MA, USA), an intercalating nucleic acid dye that when exposed to UV light will fluoresce with 

an orange colour after binding to DNA. Comparison of the band location with the molecular 

ruler confirms the specific amplification of the region of interest 

 

Reagents and materials  

• Agarose D-1 (Pronadisa, Madrid, Spain, Cat. No. 8016). 

• 50X TAE Buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA, pH 8,3) (Bio-Rad, 

Hercules, CA, USA, Cat. No. 1610773). 

• EZ Load™ 100bp Molecular Ruler (Bio-Rad, Cat. No. 1708352). 

• 5X Nucleic Acid Sample Loading Buffer (Bio-Rad, Cat. No. 161-0767).  

• GelRed™ (Biogen, Cambridge, MA, USA, Cat. No. BT41003). 

• Milli-Q ultrapure water (Merck KGaA). 

• Electrophoresis chamber Sub® Cell GT MINI (Bio-Rad, Hercules, CA, USA, Cat. No. 

1704467). 

• PowerPac™ 3000 Power Supply  (Bio-Rad, Cat. No. 1655057). 

• G: BOX Chemi 16 Bio Imaging system (Syngene, Cambridge, UK, Cat. No. SGBOX). 

• GeneSnap Software v7.12 (Syngene). 



 

74 
 

• Sub-Cell GT UV-Transparent Gel Tray (Bio-Rad, Cat. No. 1704435). 

• Fixed-Height Comb (Bio-Rad, Cat. No. 1704465). 

 

Procedure 

1. Melt the 1.5% agarose containing bottle (Supplementary data 7) and pour 50mL to a 

falcon. Add 2μL of GelRed™.   

2. Pour the mixture into a gel tray. 

3. Put the Fixed-Height Comb and cool. 

4. Remove the Fixed-Height Comb and put the gel into the electrophoresis chamber. 

Add 1X TAE buffer (Supplementary data 7) until the gel is covered. 

5. Mix 2μL of DNA products with 1μL of 5X Nucleic Acid Sample Loading Buffer. 

6. Load 1μL of the EZ Load™ 100bp Molecular Ruler on the first well. 

7. Continue loading 2μL of the DNA products mixed with loading buffer. 

8. Run the electrophoresis at 110V for 30 minutes. 

9. Visualize the PCR product in the imaging system and capture the image by using the 

GeneSnap Software v7.12.  

 

 

7.5. EXOSAP-IT PURIFICATION 

 

When the PCR amplification is complete, unconsumed dNTPs and primers remain in 

the PCR product mixture. ExoSAP-IT™ (Thermo Fisher Scientific) prepares PCR products for 

sequencing. It employs two hydrolytic enzymes, Exonuclease I and Shrimp Alkaline 

Phosphatase (SAP), to remove the remaining dNTPs and primers that would interfere with 

the sequencing reaction. Exonuclease I degrades residual primers and single stranded DNA 

while SAP hydrolyses the remaining dNTPs from the mixture.  

 

Reagents and materials 

• ExoSAP-IT™ (Thermo Fisher Scientific, Cat. No. 78202).  

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

 

Procedure 

1. Add 5μL of the PCR product to a 0.2mL tube. 

2. Add 2μL ExoSAP-IT and mix by vortexing.  

3. Incubate at the thermocycler at 37°C for 15 minutes and at 80°C for another 15 

minutes. 

Store the samples at 4°C until use. 
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7.6. CAPILLARY SANGER SEQUENCING 

 

The principles of DNA replication were used by Sanger et al (228) in the development 

of the process known as Sanger dideoxy sequencing. This process takes advantage of the 

ability of DNA polymerase to incorporate 2¢, 3¢-dideoxynucleotides, base analogues that lack 

the 3¢-hydroxyl group essential in phosphodiester bond formation. 

 

Sequencing requires a DNA template, a sequencing primer, a thermal stable DNA 

polymerase, dNTPs, dideoxynucleotides triphosphates (ddNTPs), and reaction buffer 

containing manganese (Mn2+). Unlike Sanger’s method, which used radioactive material, 

fluorescence-based cycle sequencing uses fluorescent dyes to label the extension products 

and the components are combined in a reaction that is subjected to cycles of annealing, 

extension, and denaturation in a thermal cycler. Thermal cycling of the sequencing reactions 

creates and amplifies extension products that are terminated (dye terminators) by one of 

the four ddNTPs. Because each dye label emits a unique wavelength when excited by light, 

the fluorescent dye on the extension product identifies the 3ʹ terminal ddNTP as A 

(Adenine), C (Cytosine), G (Guanine) or T (Thymine). The ratio of dNTPs to ddNTPs is 

optimized to produce a balanced population of long and short extension products. 

 

During capillary electrophoresis, the extension products of the cycle sequencing 

reaction enter the capillary as a result of electrokinetic injection. A high voltage charge 

applied to the buffered sequencing reaction forces the negatively charged fragments into 

the capillaries. The extension products are separated by size based on their total charge. 

Before reaching the positive electrode, the fluorescently labelled DNA fragments move 

across the path of a laser beam, causing the dyes on the fragments to fluoresce. An optical 

detection device on the genetic analyser detects the fluorescence and the software converts 

the fluorescence signal to digital data. 

 

7.6.1. Cycle sequencing DNA templates 

 

Reagents and materials 

• BigDye® Terminator v3.1 Cycle Sequencing kit (Thermo Fisher Scientific, Cat. No. 

4337455), which includes 5X Sequencing Buffer (2 × 1mL) and BigDye® Terminator 

v3.1 Ready Reaction Mix (1 × 800µl).  

5X Sequencing Buffer, includes: Tris-HCl and MgCI2. 

BigDye® Terminator v3.1 Ready Reaction Mix, contains: dideoxynucleotide 

triphosphates (ddATP, ddTTP, ddCTP, ddGTP), deoxynucleotide triphosphates (dATP, 

dTTP, dCTP, dGTP) and Taq polymerase enzyme. 

• DMSO (50mL) (Merck KGaA, Cat. No. D8418-50ML).  

• Specific primers for each fragment (2.5μM) or M13-tailed primers (2.5μM) 

(Integrated DNA Technologies Inc). 

• Milli-Q ultrapure water (Merck KGaA). 
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• MicroAmp® Optical 96-Well Reaction Plate (Thermo Fisher Scientific, Cat. No. 

4316813).  

• MicroAmpTM Clear Adhesive Film (Thermo Fisher Scientific, Cat. No. 4306311).  

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

 

Procedure 

1. For each reaction add the following reagents to the MicroAmp® Optical 96-Well 

Reaction Plate: 

• BigDye® Terminator v3.1 Ready Reaction Mix: 1μL 

• 5X Sequencing Buffer: 1.5μL 

• Milli-Q ultrapure water: 3.5μL 

• DMSO: 0.5µl 

2. Mix using a Vortex 

3. Add 2.9µl purified PCR product and 1.3μL corresponding primers. 

4. Mix using a Vortex. 

5. Cover the plate with MicroAmpTM Clear Adhesive Film. 

6. Place the plate in the GeneAmp® PCR System 9700 thermocycler and perform cycle 

sequencing as follows:  

• Initial denaturation: 94°C for 3 minutes 

• Repeat the following for 25 cycles:  

o Denaturation: 96°C for 10 seconds. 

o Annealing: 50°C for 5 seconds. 

o Elongation: 60°C for 4 minutes 

• Hold at 4°C until purification 

 

7.6.2. Purification of extension products 

 

The presence of both unlabelled and dye-labelled reaction components can interfere 

with electrokinetic injection, electrophoretic separation, and data analysis. Purification of 

extension products reduces this interference.  

 

Alcohol-based nucleic acid precipitation techniques include a wide variety of 

methods, such as the choice of alcohol, concentration of salt, temperature and additives. 

Purification by Ethanol/EDTA/NaOAc was performed following the protocol by Applied 

Biosystems. 

 

Reagents and materials 

• EDTA (C10H16N2O8) (Merck KGaA, Cat. No. 431788). 

• Sodium acetate (CH3COONa) (NaOAc) (Merck KGaA, (Cat. No. S2889). 

• Absolute ethanol (Thermo Fisher Scientific, Cat. No. BP2818100). 
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• Formamide (CH3NO) (Thermo Fisher Scientific, Cat. No. 4311320). 

• Milli-Q ultrapure water (Merck KGaA). 

• Towel paper Scottfold (Kimberly-Clark, Cat. No. MRT116, Barcelona, Spain). 

• Beckman Spinchron R centrifuge (Beckman Coulter, Cat. No. 358723, Brea, California, 

USA). 

 

Procedure 

1. Remove the 96-well reaction plate from the thermal cycler and centrifuge the plate 

at 100 x g for 1 minute. Then remove the seal. 

2. Prepare 125mM EDTA and 3M NaOAc (Supplementary data 7) 

3. Mix enough volume of 125mM EDTA and 3M NaOAc in 1:1 proportion. Add 2μL of 

the mix to each sample. 

4. Add 25μL absolute ethanol to each well and mix by pipetting up and down. 

5. Incubate the plate in darkness at room temperature for 15 minutes 

6. Centrifuge the plate at 3000 x g at 4°C for 30 minutes. 

7. Invert the plate onto a paper towel and spin the plate in the centrifuge. 

8. Add 35μL 70% ethanol to each well. 

9. Centrifuge the plate at 1650 x g at 4°C for 15 minutes.  

10. Invert the plate onto a paper towel and centrifuge the plate at 190 x g for 4 minutes.  

11. Add 12μL Milli-Q water. 

12. Add 12μL formamide 

13. Seal the plate with self-adhesive film, mix by vortexing.  

14. Remove the self-adhesive film. Cover the plate with the specific lid and place the 

reaction plate in the genetic analyser. 

 

7.6.3. Capillary electrophoresis and data analysis 

 

Capillary electrophoresis was performed on an ABI PRISM 3130xl (Thermo Fisher 

Scientific) Genetic Analyser, following manufacturer’s protocol. 

 

Obtained chromatograms were analysed using Sequencing Analysis Software v5.2 

(Thermo Fisher Scientific) and SeqScape® Software v3.1 (Thermo Fisher Scientific). 

 

Reagents and materials  

• 10X Genetic Analyser Running Buffer (Thermo Fisher Scientific, Cat. No. 402824). 

• POP-7™ Polymer (Thermo Fisher Scientific, Cat. No. 4352759). 

• ABI PRISM 3130xl Genetic Analyser (Thermo Fisher Scientific, Cat. No. 4359571). 

• Sequencing Analysis Software v5.2 (Thermo Fisher Scientific). 

• SeqScape® Software v3.1 (Thermo Fisher Scientific). 
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7.7. TARGETED GENE SEQUENCING PANEL 

 

Next generation sequencing provides a high-throughput screening of multiple genes 

in a highly efficient manner. Although different platforms have been developed for the panel 

sequencing, they all include the following steps (Figure 10): 

1. Design of the panel 

2. Library preparation  

3. Preparation of the template and enrichment  

4. Sequencing 

5. Data analysis 
 

 
Figure 10. Diagram of the main steps involved in the targeted gene panel sequencing. Modified from Thermo 
Fisher Scientific (https://www.thermofisher.com/blog/). 
 

 

We performed the targeted gene sequencing panel with Ion Torrent technology 

(Thermo Fisher Scientific).  

 

7.7.1. Design of the panel 

 

After the implementation of NGS technology in our Institute, patients collected since 

2015 were analysed with the customized gene panel for DSD, unless the suspicion of the 

causative gene was clear and the methodology to be used was aCGH or MLPA. 

 

 We designed a targeted panel to sequence 48 genes associated with sex 

determination, sex differentiation and hypogonadism. Included genes were chosen after 

search in online databases and in the available literature, including HGMD (Human Gene 

Mutation database) (https://portal.biobase-international.com/hgmd/pro/start.php?), OMIM 

(Online Mendelian Inheritance in Man) (https://www.omim.org/) and Pubmed 

(https://www.ncbi.nlm.nih.gov/pubmed/). The list of the included genes in the customized 

panel as well as their associated role and phenotype can be found in Table 4.  
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Table 4. Included genes in the customized panel and their associated role and phenotype in DSD. 
 

Gene (locus) Alias Transcript Inheritance (OMIM) Role in DSD Associated phenotype 

AMH (19p13.3) Anti-Mullerian Hormone NM_000479.3 AR (600957) Sex Diff PMDS, POI 
AMHR2 (12q13.13) Anti-Mullerian Hormone Receptor Type 2 NM_020547.2 AR (600956) Sex Diff PMDS, POI 

AR (Xq12) Androgen Receptor NM_000044.3 X-linked (313700) Sex Diff 46,XY DSD AIS, hypospadias, POI 

ATRX (Xq21.1) ATP-Dependent Helicase ATRX NM_000489.4 X-inked (300032) G Diff 
46,XY DSD assoc with Alpha thalassemia X-linked 

intellectual disability syndr 

BMP15 (Xp11.22) Bone Morphogenetic Protein 15 NM_005448.2 X-linked (300247) G Dev POI w/wot primary amenorrhea 
CBX2 (17q25.3) Chromobox homolog 2 NM_005189.2 AR, AD (602770) G Dev 46,XY DSD GD 

CYP11A1 (15q24.1) Cytochrome P450 Family 11 Subfamily A Member 1 NM_000781.2 AR, AD (118485) Sex Diff 
46,XY DSD CGD and adrenal insuf; Hypospadias 

and adrenal insuf 

CYP11B1 (8q24.3) Cytochrome P450 Family 11 Subfamily B Member 1 NM_000497.3 AR (610613) Sex Diff 
46,XX DSD, Steroid-11 beta-hydroxylase def, Non-

classic Steroid-11 beta-hydroxylase def, CAH 

CYP17A1 (10q24.32) Cytochrome P450 Family 17 Subfamily A Member 1 NM_000102.3 AR (609300) Sex Diff 
46,XY DSD, 17-alpha-hydroxylase/17,20-lyase def, 

CAH 

CYP19A1 (15q21.2) Cytochrome P450 Family 19 Subfamily A Member 1 NM_000103.3 AR (107910) Sex Diff 46,XY DSD aromatase def 

CYP21A2 (6p21.33) Cytochrome P450 Family 21 Subfamily A Member 2 NM_000500.7 AR (613815) Sex Diff 
21-hydroxylase def w/wo salt wasting; simple 

virilizing form 
DHH (12q13.12) Desert Hedgehog NM_021044.2 AD, AR (605423) G Dev 46,XY DSD GD 

DMRT1 (9p24.3) Doublesex And Mab-3 Related Transcription Factor 1 NM_021951.2 AD (602424) G Dev 46,XY DSD GD, OT DSD 

DMRT2 (9p24.3) Doublesex And Mab-3 Related Transcription Factor 2 NM_181872.4 AD (604935) G Dev 46,XY DSD GD 

ESR1 (6q25.1-q25.2) Oestrogen Receptor 1, Nuclear Receptor Subfamily 3 
Group A Member 1 

NM_001122740.1 AD, AR (133430) G Dev 46,XY DSD, male infertility, PP, MRKS 

ESR2 (14q23.2-q23.3) Oestrogen Receptor 2, Nuclear Receptor Subfamily 3 
Group A Member 2 

NM_001437.2 AD, AR (601663) G Dev 
46,XY DSD GD, Hypospadias, primary amenorrea, 

46,XX DSD GD 

FGF9 (13q12.11) Fibroblast Growth Factor 9 NM_002010.2 AD (600921) G Dev 46,XX T DSD 

FOXL2 (3q22.3) Forkhead Box L2 NM_023067.3 AD (605597) G Dev POI with and without BPES 

FOXO3 (6q21) Forkhead Box O3 NM_001455.3 AD (602681) G Dev POI 

FSHR (2p16.3) Follicle Stimulating Hormone Receptor NM_000145.3 AR (136435) CHH POI, hypergonadotropic hypogonadism 

GATA4 (8p23.1) GATA Binding Protein 4 NM_002052.3 AD (600576) G Dev 46,XY DSD GD w/wo CHD 
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Table 4. Included genes in the customized panel and their associated role and phenotype in DSD (Continuation). 
 

Gene (locus) Alias Transcript Inheritance (OMIM) Role in DSD Associated phenotype 

HARS2 (5q31.3) Histidyl-TRNA Synthetase 2, Mitochondrial NM_012208.3 AR (600783) Sex Diff 
Perrault syndr, including 46,XX DSD with ovarian 

dysgenesis 

HSD17B3 (9q22.32) Hydroxysteroid 17-Beta Dehydrogenase 3 NM_000197.1 AR (605573) Sex Diff 
46,XY DSD 17b-hydroxysteroid dehydrogenase 3 

deficiency, hypospadias 

HSD17B4 (5q23.1) Hydroxysteroid 17-Beta Dehydrogenase 4 NM_000414.3 AR (601860) Sex Diff 
Perrault syndr, including 46,XX DSD with ovarian 

dysgenesis, and POI 

HSD3B2 (1p12) Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta and 
Steroid Delta-Isomerase 2 

NM_000198.3 AR, AD (613890) Sex Diff 
46,XY DSD GD, CAH with 3b-hydroxysteroid 

dehydrogenase type 2def, Hypospadias 

INHA (2q35) Inhibin Subunit Alpha NM_002191.3 AD (147380) G Dev POI, male infertility 

INSL3 (19p13.11) Insulin Like 3 NM_001265587.1 AD (146738) Others Cryptorchidism 

KISS1 (1q32.1) Kisspeptin-1 NM_002256.3 AR, AD (603286) CHH Puberty delay, HH 

KISS1R (19p13.3) KISS1 Receptor NM_032551.4 AD (604161) CHH Puberty delay, HH 

LHCGR (2p16.3) Luteinizing Hormone/Choriogonadotropin Receptor NM_000233.3 AR, AD (152790) Sex Diff PP, 46,XY DSD Leydig cell hypoplasia, amenorrhea 

MAMLD1 (Xq28) Mastermind Like Domain Containing 1, CXorf6 NM_001177465.2 X-linked (300120) G Dev 46,XY DSD, 46,XX DSD, Hypospadias 
MAP3K1 (5q11.2) Mitogen-Activated Protein Kinase Kinase Kinase 1 NM_005921.1 AD (600982) G Dev 46,XY DSD GD, hypospadias 

NR0B1 (Xp21.2) Nuclear Receptor Subfamily 0 Group B Member 1 NM_000475.4 X-linked (300473) G Dev 
Adrenal hypoplasia & HH, 46,XY DSD GD, 

hypospadias, 46,XX OT DSD 

NR5A1 (9q33.3) Nuclear Receptor Subfamily 5 Group A Member 1 NM_004959.4 AD, AR (184757) G Dev 
46,XY DSD GD, POI, 46,XX T and OT DSD, 

hypospadias 

POR (7q11.23) Cytochrome P450 Oxidoreductase NM_000941.2 AR (124015) Sex Diff 
Hypospadias, Disordered steroidogenesis, Antley-
Bixler syndr with genital anomalies & disordered 

steroidogenesis 

PSMC3IP (17q21.2) Proteasome 26S ATPase Subunit 3-Interacting 
Protein 

NM_016556.3 AR (608665) G Dev POI 

RSPO1 (1p34.3) R-Spondin 1 NM_001242908.1 AR (609595) G Dev 
46,XX OT DSD with palmoplantar hyperkeratosis 

with squamous cell carcinoma of skin 

RXFP2 (13q13.1) Relaxin Family Peptide Receptor 2, GREAT, LGR8 NM_130806.3 AD (606655) Others Cryptorchidism 
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Table 4. Included genes in the customized panel and their associated role and phenotype in DSD (Continuation). 

Gene (locus) Alias Transcript Inheritance (OMIM) Role in DSD Associated phenotype 

SOX3 (Xq27.1) SRY (Sex Determining Region Y)-Box 3 NM_005634.2 X-linked (313430) G Dev 
46,XX OT and T DSD w/wo growth retardation and 

microcephaly 

SOX9 (17q24.3) SRY (Sex Determining Region Y)-Box 9 NM_000346.3 AD (608160) G Dev 
46,XY DSD GD, 46,XX TDSD, 46, XX OT DSD, 46,XY 

DSD with campomelic dysplasia 

SRD5A2 (2p23.1) Steroid 5 Alpha-Reductase 2 NM_000348.3 AR (607306) Sex Diff 
46,XY DSD Steroid 5-alpha-reductase def, 

Hypospadias 

SRY (Yp11.2) Sex Determining Region Y NM_003140.2 
Translocation,AD 

(480000) 
G Dev 46,XX OT and Testicular DSD, 46,XY DSD GD 

STAR (8p11.23) Steroidogenic Acute Regulator NM_000349.2 AR (600617) Sex Diff 46,XY DSD, 46,XY DSD and LCAH, 46,XX DSD 

TSPYL1 (6q22.1) Testis-Specific Y-Encoded-Like Protein 1 NM_003309.3 AR (604714) G Dev 46,XY DSD GD, 46,XY DSD and Sudden infant death 

WNT4 (1p36.12) Wingless-Type MMTV Integration Site Family, 
Member 4 

NM_030761.4 AD (603490) G Dev 46,XY DSD CGD, 46,XX OT and T DSD, 46,XX MRKS 

WT1 (11p13) Wilms Tumour 1 NM_024426.4 AD (607102) G Dev 
46,XY DSD GD, Frasier syndr, Denys-Drash syndr, 

hypospadias 

WWOX (16q23.1-
q23.2) WW Domain Containing Oxidoreductase NM_016373.2 AD (605131) G Dev 46,XY DSD GD, 46,XX DSD GD 

ZFPM2 (8q23.1) Zinc Finger Protein, FOG Family Member 2, Friend Of 
GATA 2 

NM_012082.3 AD (603693) G Dev 46,XY DSD GD, hypospadias 

AIS, Androgen insensitivity Syndrome; AD, Autosomal dominant; AR, Autosomal recessive; Assoc, associated; BPES, Blepharophimosis, ptosis epicanthus inversus syndrome; 
CAH, Congenital Adrenal Hyperplasia; CGD, Complete Gonadal dysgenesis; CHD, congenital heart defects; CHH, central causes of hypogonadism; Def, deficiency; Diff, 
differentiation; GD, gonadal dysgenesis; G Dev, gonadal development; HH, Hypogonadotropic hypogonadism; Insuf, insufficiency; LCAH, lipoid CAH; MRKS, Mayer-Rokitansky-
Küster-Hauser syndrome; OMIM, Online Mendelian Inheritance on Man; OT, Ovotesticular; PGD, Partial Gonadal dysgenesis; PMDS, Persistent Müllerian Duct Syndrome; POI, 
Primary Ovarian Insufficiency; PP, precocious puberty; Syndr, syndrome; T, testicular; w/wo, with and without. 
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The customized gene panel was designed with the Ion AmpliSeq Designer tool v4.4.8 

(https://www.ampliseq.com/browse.action) (Thermo Fisher Scientific). Oligonucleotides 

against the entire coding region, exon-intron boundaries (± 50 base pair, bp) and the UTR 

(Untranslated Region) regions were included. Performance of the customized panel at any 

given locus is highly dependent on the sequencing of the amplicons that span the location. 

The panel designer tool automatically selected the amplicons to be amplified in each gene. 

In order to increase the coverage of certain genes, we chose the location of the amplicons by 

writing the locus of interest. We selected the region of interest of the following genes: AMH, 
CYP11B1, CYP21A2, FOXO3, GATA4, MAP3K1 and POR. The number of amplicons used to 

sequence each gene, missed base-pair and coverage is shown in Supplementary data 8.  

 

The final panel spanned a 233.46kb (kilobase) region with an expected coverage of 

98.55% for the targeted region (Table 5). The targeted regions that are not covered 

according to the Ion Ampliseq Designer tool are shown in Supplementary data 9. The final 

panel comprised 874 amplicons, from 125 to 375bp in size, divided in two pools of primers 

(441 and 433 amplicons per pool). 

 

To demonstrate the analytical performance of the test, the targeted gene panel was 

validated by measuring sensitivity, specificity plus false positive rate, and repeatability. 

 

7.7.2. Library preparation 
 

The preparation of the library consists in the selection and multiplex amplification of 

a targeted region. We used the Ion AmpliSeq™ Library Kit 2.0 (Thermo Fisher Scientific) to 

prepare template genomic DNA for sequencing.  

 

We used the protocol written in the “Ion AmpliSeq™ Library Kit 2.0 User Guide 

Targeted DNA and RNA Library Preparation for use with: Ion AmpliSeq™ Library Kit 2.0 

Catalogue Numbers 4475345, 4480441, 4480442, A31133, A31136, A29751, 4482298, 

4479790 Publication Number MAN0006735 Revision E.0”. 

 

 

 

 

 

 



 

83 
 

Table 5. Coverage (%) of the DSD-associated gene panel according to the Ion Ampliseq Designer tool. Target and missed regions are indicated in base pairs (bp) for each gene. 
 

Genes Target (bp) Missed (bp) Coverage (%)  Genes Target (bp) Missed (bp) Coverage (%) 

AMH 1830 466 74.5  HSD3B2 2099 0 100 

AMHR2 2413 0 100  INHA 1531 0 100 

AR 11288 0 100  INSL3 1050 0 100 

ATRX 12970 45 99.6  KISS1 864 0 100 
BMP15 1362 0 100  KISS1R 1875 33 98.2 

CBX2 5246 11 99.8  LHCGR 3643 27 99.3 

CYP11A1 2928 0 100  MAMLD1 5260 22 99.3 
CYP11B1 2716 171 93.7  MAP3K1 7001 46 99.3 

CYP17A1 2270 0 100  NR0B1 1685 0 100 

CYP19A1 5064 0 100  NR5A1 3445 28 99.2 
CYP21A2 2385 148 93.3  POR 3311 100 97 

DHH 2084 0 100  PSMC3IP 2380 0 100 

DMRT1 2472 3 99.9  RSPO1 3539 4 99.9 
DMRT2 3135 19 99.4  RXFP2 3703 0 100 

ESR1 7568 0 100  SOX3 2124 0 100 

ESR2 4519 18 99.6  SOX9 4084 0 100 
FGF9 4680 155 96.7  SRD5A2 2695 0 100 

FOXL2 2967 104 96.5  SRY 3864 0 100 

FOXO3 7338 435 94.1  STAR 3045 32 98.9 
FSHR 3274 0 100  TSPYL1 5309 86 98.4 

GATA4 3436 422 87.7  WNT4 4155 182 95.6 

HARS2 3260 0 100  WT1 3864 0 100 
HSD17B3 1684 0 100  WWOX 3373 0 100 

HSD17B4 4188 0 100  ZFPM2 4880 0 100 
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Library preparation is divided into the following steps (Figure 11):  

1. Amplification of gDNA targets by multiplex PCR: The Ion AmpliseqTM HiFi Mix in 

conjunction with the pools of primers was used to prepare the amplification of 

the selected regions by PCR. For each pool of primers we used 15ng of gDNA of 

the patient.   

2. Partial digestion of primer sequences: The resulting DNA amplicons were 

treated with FuPa reagent, which partially removes PCR primers and repairs the 

endings of the fragments. 

3. Ligate barcode adapters and purify: We ligated adapters and assigned a unique 

barcode to each library to identify the sample. Ligation products were purified 

using Agencourt AMPure XP beads. 

4. Quantification by quantitative PCR (qPCR): The qPCR is a relative quantitation 

assay, in which the concentration of each library is calculated in relation to the 

values given in the DH10 dilutions in the standard curve. FAMTM dye is used as 

the probe reporter and ROXTM as the passive reference dye. To determine the 

concentration of each library we used the Ion Library TaqManTM Quantitation 

kit. Each sample, standards and negative control were analysed in duplicates.  

 

 

Figure 11. Diagram of the steps followed for library preparation. Modified from Thermo Fisher Scientific 

(https://www.thermofisher.com/blog/). 
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Reagents and materials 
• Ion AmpliseqTM Library kit 2.0 – 96LV (Thermo Fisher Scientific, Cat. No. 

4480441), which contains 5X Ion AmpliSeqTM HiFi Mix (1 x 384µL), FuPa Reagent 

(1 x 192µL), Switch solution (1 x 384µL), DNA Ligase (1 x 192µL), Ion Ampliseq 

Adapters (1 x 192µL), Platinum® PCR SuperMix HiFi (1 x 1.6mL), Library 

Amplification Primer Mix (1 x 192µL) and Low TE (1 x 12mL). 

• 2X Ion AmpliseqTM Primer Pool (100nM) (Thermo Fisher Scientific). 

• Ion XpressTM Barcode Adapters 1-16 kits ((Thermo Fisher Scientific, Cat. No. 

4471250), containing Ion XpressTM Barcodes (16 tubes x 20µL) and Ion XpressTM 

P1 Adapter (1 x 320µL). 

• Agencourt AMPure® XP reagent (60mL) (Beckman Coulter, Cat. No. A63881). 

• Ion Library TaqManTM Quantitation kit (Thermo Fisher Scientific, Cat no. 

4468802), containing 2X Ion Library TaqMan® qPCR Mix, 20X Ion Library 

TaqMan® Quantitation Assay and E. coli DH10B Control Library (68pM) (2 x 

25µL). 

• Absolute Ethanol (Thermo Fisher Scientific, Cat. No. BP2818100). 

• DynaMagTM -2 magnet (Thermo Fisher Scientific, Cat. no. 12321D).  

• DNA LoBind tubes (1.5mL) (Eppendorf AG, Hamburg, Germany, Cat. No. 

022431021). 

• Milli-Q ultrapure water (Merck KGaA). 

• Veriti 96-well Thermal Cycler (Thermo Fisher Scientific, Cat. No. 4375786). 

• Applied Biosystems 7300 Real-Time PCR System (Thermo Fisher Scientific). 

• Corning™ PCR Microplates (Thermo Fisher Scientific, Cat. No. 12799438). 

• Microseal® 'B' PCR Plate Sealing Film (Bio-Rad, Cat. No. MSA5001). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

 

Procedure  
1. Amplification of gDNA by multiplex PCR 

• Prepare dilution of input gDNA (5ng/µL) for each primer pool. 

• Prepare Mix. For each pool of primers and gDNA sample, add in a tube: 

o 5X Ion AmpliSeqTM HiFi Mix: 2µL 

o 2X Ion AmpliseqTM Primer Pool: 5µL 

o gDNA: 3µL 

• Mix using a vortex. 

• Place the plate in the Veriti 96-well Thermal Cycler and run the 

following program to amplify target genomic regions:  

o Activate enzyme: 99°C for 2 minutes. 

o Cycle 16 times: 99°C for 15 seconds and 60°C for 5 minutes. 

o Hold at 10°C. 

At this point PCR products could be stored at 10°C overnight or at -20°C for 

longer periods. 
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2. Digestion of primer sequences 

• Combine amplified libraries of each sample in one tube. 

• Add to each tube 2µL FuPa reagent and mix by pipetting. 

• Place the plate in the Veriti 96-well Thermal Cycler and run the 

following program to digest primer sequences:  

o 50°C for 10 minutes. 

o 55°C for 10 minutes. 

o 60°C for 20 minutes. 

o Hold at 10°C for up to 1 hour. 

3. Ligate adapters and purify 

• Prepare diluted barcode adapter mix. Dilute Ion XpressTM Barcodes and 

Ion XpressTM P1 Adapter with nuclease-free water (1:4). Vortex 

• Vortex Switch solution and add 4µL to each tube. 

• Add to ach tube: 

o Diluted barcode adapter mix: 2µL. 

o DNA Ligase: 2µL. 

• Mix using a Vortex. 

• Place the plate in the Veriti 96-well Thermal Cycler and run the 

following program to make ligation reaction:  

o 22°C for 30 minutes. 

o 72°C for 10 minutes. 

o Hold at 10°C for up to 1 hour. 

At this point PCR products could be stored at -20°C until purification. 

• Bring Agencourt AMPure® XP reagent to room temperature. Vortex 

thoroughly to disperse the beads before use. 

• Prepare 70% ethanol dilution. 

• Transfer each sample to a Low Retention tube. 

• Add 45µL Agencourt AMPure® XP reagent to each tube. Incubate the 

mixture for 5 minutes at room temperature. 

• Place the tubes in the DynaMagTM -2 magnet and incubate until solution 

clears. Without disturbing the pellet, remove and discard the 

supernatant. 

• Add 150µL 70% ethanol and move the tube side-to-side to wash the 

beads. Remove and discard the supernatant.  

• Repeat previous step.  
• Keeping the tubes in the magnet, air-dry the beads at room 

temperature for 2 minutes. If necessary, remove all the ethanol droplets 

with the pipette.  

• Remove the tubes from the magnet and elute the library by adding 50µL 

Low TE to the pellet and vortex. 

• Incubate for 5 minutes at room temperature. 



 

87 

 

• Place the tubes in the magnetic rack until solution clears. Remove and 

transfer the supernatant to new Low Binding tubes. Discard the tubes 

with the pellet. 

At this point unamplified libraries could be stored at -20°C until 

quantification. 

4. Quantification by qPCR 

• Prepare 1/100 dilutions of each unamplified library. In a new 0.5mL 

tube add 2µL of each library to 198µL of nuclease-free water. 

• Prepare three 10-fold serial dilutions of E. coli DH10B Control Library 

(68pM) for the standard curve (6.8pM, 0.68pM and 0.068pM).  

• Prepare the reaction mix. For each library add in a tube: 

o 2X Ion Library TaqMan® qPCR Mix: 20µL 

o 20X Ion Library TaqMan® Quantitation Assay: 2µL 

• Dispense 11µL of the mix into the well of the PCR plate for each sample 

in duplicate.  

• Add 9µL of the diluted libraries, standards or Milli-Q water as a negative 

control to the corresponding well for a total volume of 20µL. 

• Program the real-time instrument as manufacturer’s instructions. The 

cycling program is as follows: 

o Hold: 50°C for 2 minutes. 

o Hold: 95°C for 20 seconds. 

o Cycle 40 times: 95°C for 3 seconds and 60°C for 30 seconds. 

• Calculate the average concentration of the undiluted library. Amplified 

libraries typically have a yield of 100-500pM. 

• Dilute each library to 100pM with Low TE. Proceed to the template 

preparation or store library at -20°C until use. 

 

7.7.3. Preparation of the template and enrichment 
 
Library fragments are clonally amplified onto Ion Sphere Particles (ISPs) through 

emulsion PCR (EmPCR) and then enriched for template-positive ISPs. This step was 

performed using the Ion OneTouch 2 System (Thermo Fisher Scientific, Cat. No.  

4474779), which consists of two modules: The Ion OneTouch 2 (OT2) Instrument and 

the Ion OneTouch ES (Enrichment System) (Figure 12).  

 

We used the protocol written in the “Ion PGM™ Hi-Q™ View OT2 Kit user guide 

for use with: Ion OneTouch™ 2 System Catalogue Number A29900. Publication 

Number MAN0014579 Revision C.0”. 

We followed the next steps: 

1. Prepare template: EmPCR is the method for template amplification that is used 

in this NGS-based sequencing platform. The EmPCR is based on the dilution and 
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compartmentalization of template molecules in water droplets in a water-in-oil 

emulsion. Ideally, each droplet contains a single template molecule.  

2. Enrichment of the template: This allows the selection of the ISPs that contain 

the amplified library fragments to streptavidin coated magnetic beads, washing 

and denaturing the library strands to collect the template-positive ISPs. This 

step is made to improve the sequencing yield by using the Ion OneTouch ES.  

3. Quality control: To determine the percentage of templated ISPs that have been 

enriched we used the Qubit®2.0 Fluorometer (Thermo Fisher Scientific, Cat. No. 

Q32866) and the Ion Sphere Quality Control kit (Thermo Fisher Scientific, Cat. 

No. 4468656), following manufacturers’ instructions. We obtained >90% 

enrichment efficiency for all reactions  

 

 

Figure 12. A, Image of the Ion OneTouch 2 system including the Ion OneTouch 2 instrument (right) and 

the Ion OneTouch ES instrument (left). B, Schematic representation of the Ion OneTouch reaction filter 

and C, its correct rotation with the amplification solution. Modified from Ion PGM™ Hi�Q™ OT2 Kit user 

guide. 

 

 

Reagents and materials 
• Ion PGM™ Hi-Q™ View OT2 Kit (Thermo Fisher Scientific, Cat. No. A29900) 

(8rxn), which contains: 

A B 

C 
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• Ion PGM™ OT2 Supplies (Cat. No. A27744), containing: Ion OneTouch™ 

Reagent Tubes (2 tubes), Ion OneTouch™ Recovery Routers (8 routers), 

Ion OneTouch™ Recovery Tubes (16 tubes), Ion OneTouch™ Sipper 

Tubes (2 sipper tubes), Ion OneTouch™ Amplification Plate (8 plates), 

Ion OneTouch™ Cleaning Adapter (8 adapters), Ion OneTouch™ 

Reaction Filter (8 reaction filters) and tubes Ion OneTouch™ ES Supplies 

(12 pipette tips and 1 box of ES 8-well strips). 

• Ion PGM™ Hi-Q™ View OT2 Reagents (Cat. No. A29811), containing: Ion 

PGM™ Hi-Q™ View Reagent Mix (8 × 800µL), Ion PGM™ Hi-Q™ View 

Enzyme Mix (1 x 400µL) and Ion PGM™ Hi-Q ™ View ISPs (1 x 800µL). 

• Ion PGM™ Hi-Q™ OT2 Solutions (Cat. No. A27742), containing: Ion 

OneTouch™ Breaking Solution (2 × 1.2mL), Ion OneTouch™ Oil (1 x 

450mL), Ion OneTouch™ Reaction Oil (1 x 25mL) Nuclease-free Water (1 

x 30mL), Ion OneTouch™ Recovery Solution (1 x 350mL), Neutralization 

Solution (1 x 100µL), Ion OneTouch™ Wash Solution (1 x 16mL), 

MyOne™ Beads Wash Solution (2 tubes x 1.4ml) and Tween™ Solution 

(1 x 6mL). 

• Ion Sphere Quality Control kit (Thermo Fisher Scientific, Cat. No. 4468656), 

containing: Ion Probes (20µL), Alexa Fluor™ 488 Calibration Standard (400µL), 

Alexa Fluor™ 647 Calibration Standard (400µL), Annealing Buffer (400µL) and 

Quality Control Wash Buffer (20mL). 

• DNA LoBind tubes (1.5mL) (Eppendorf AG, Cat. No. 022431021). 

• Sodium hydroxide (NaOH) (Merck KgaA, Cat. No. S8045). 

• DynaMagTM-2 magnet (Thermo Fisher Scientific, Cat. No. 12321D). 

• Ion OneTouch 2 System (Thermo Fisher Scientific, Cat. No.  4474779). 

• Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, Cat. No. Q32866). 

• Centrifuge Sorvall™ Legend™ Micro 17R (Thermo Fisher Scientific, Cat. No. 

75002440). 

• Minicentrifuge (Nippon Genetics Europe, Dueren, Germany, Cat. No. NG002R).  

 

Procedure 
1. Prepare template 

• Set up the Ion OneTouch TM Instrument 

o Open lid and dispense 150µL Ion OneTouch™ Breaking Solution 

into each of the two Recovery Tubes. Insert the Recovery Tubes 

into each slot of the centrifuge and close the lid of the 

centrifuge. 

o Install the Amplification Plate, disposable tubes and injector 

following manufacturers’ instructions. 

o Install the Ion OneTouch TM Oil and Ion OneTouch Recovery 

Solution following manufacturers’ instructions. 
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• Prepare the amplification solution 

o Prepare the Ion PGM™ Hi-Q™ View Reagent Mix at room 

temperature by vortexing for 30 seconds and centrifuging for 2 

seconds. Keep it at room temperature. 

o Prepare the Ion PGM™ Hi-Q™ View Enzyme Mix. Centrifuge for 2 

seconds and palace it on ice. 

o Place the Ion PGM™ Hi-Q™ View ISPs at room temperature for 

30 minutes. 

• Dilute the 100pM library to 8pM by adding 2µL of the library to 23µL of 

Nuclease free-water. Vortex the diluted library for 5 seconds, centrifuge 

for 2 seconds and place it on ice. 

• Prepare the Ion PGM™ Hi-Q™ View ISPs by vortexing for 1 minute. Then 

centrifuge for 2 seconds and mix the ISPs by pipetting up and down. 

• Add to the tube containing 800µL Ion PGM™ Hi-Q™ View Reagent the 

following components in order and pipet up and down to mix: 

o Nuclease-free Water: 25µL 

o Ion PGM™ Hi-Q™ View Enzyme: 50µL. 

o Diluted library (8pM): 25µL 

o Ion PGM™ Hi-Q™ View ISPs: 100µL 

• Vortex the amplification solution at maximum speed for 5 seconds. 

• Fill the Ion OneTouchTM Reaction Filter with the amplification solution 

and the Ion OneTouchTM Reaction Oil. Install the filled filter as indicated 

by manufacturers’ (Figure 12).  

• Run the Ion OneTouchTM Instrument, following manufacturers’ 

instructions. 

• Recover the template-positive ISPs. 

o Open lid and remove both Ion OneTouch™ Recovery Tubes from 

the instrument. 

o Remove all but 100µL of the Recovery Solution from each tube 

without disturbing the ISP pellet. 

At this point the Recovery Solution could be stored at 2 to 5°C for 3 days 

by adding 500µL of Ion OneTouchTM Wash Solution. 

• Process the ISPs. 

o Add 500µL of Ion OneTouch™ Wash Solution to the Recovery 

Tubes and pipet up and down to disperse the ISPs. 

o Combine the two tubes into the suspension from one 1.5mL 

Eppendorf LoBind™ Tube. 

o Centrifuge for 2.5 minutes at 15.500 × g. 

o Remove all but 100µL of the Wash Solution from the tube by 

using a pipette without disturbing the pellet. 



 

91 

 

• Asses the quality of the unenriched template-positive ISPs by 

transferring 2µL to a tube and using the Qubit®2.0 Fluorometer. Follow 

manufacturers’ instructions. 

 

2. Enrichment of the template 

• Prepare fresh Melt-Off Solution (Supplementary data 7). 

• Resuspend Dynabeads™ MyOne™ Streptavidin C1 Beads: 

o Vortex the tube for 30 seconds, then centrifuge for 2 seconds. 

o Pipet the pellet of beads up and down. 

o Transfer 13µl of Dynabeads™ MyOne™ Streptavidin C1 Beads to 

a new 1.5mL Eppendorf LoBind™ Tube and place it on a 

DynaMAgTM -2 magnet for 2 minutes. 

o Remove and discard the supernantant without disturbing the 

pellet. 

o Add 130µl of MyOne™ Beads Wash Solution to the Dynabeads™ 

MyOne™ Streptavidin C1 Beads. 

o Remove the tube from the magnet, vortex for 30 seconds, and 

centrifuge for 2 seconds. 

• Fill the 8-well strip by adding to the different wells (Figure 13): 

o Well 1, Template-positive ISP sample: 100µL. 

o Well 2, Dynabeads™ MyOne™ Streptavidin C1 Beads 

resuspended in MyOne™ Beads Wash Solution: 130µL. 

o Well 3, 4 and 5, Ion OneTouch™ Wash Solution: 300µL. 

o Well 6, empty. 

o Well 7, Melt-Off Solution: 300µL  

 

 

Figure 13. Schematic disposition of the 8-well strip on the Ion OneTouch ES. Modified from Ion PGM™ 

Hi-Q™ OT2 Kit user guide.  
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• Install the 8-well strip on the slot of the tray as indicated by 

manufacturers. 

• Prepare the Ion OneTouchTM ES and perform the run following 

manufacturers’ instructions. 

3. Determination of the enrichment efficiency using the Qubit®2.0 Fluorometer. 

Follow manufacturers’ instructions. 

At this point the enriched ISPs can be stored at 2 to 8°C for up to 3 days. 

 

7.7.4. Sequencing 
 

Ion Personal Genome Machine™ (PGM™) System (Thermo Fisher Scientific) is 

based on semiconductor sequencing technology. This method detects hydrogen ions 

that are released during the polymerization of DNA, in which a complementary strand 

is built based on the sequence of a template strand. Each microwell in the chip 

containing a template DNA strand is displayed with one of the four types of dNTPs, and 

if the introduced dNTP is complementary to the template nucleotide, it will be 

incorporated to the complementary strand and therefore, the sensor detects the 

liberation of a hydrogen ion and leads to an electronic signal. 

 

We used the protocol written in “Ion PGM™ Hi-Q™ View Sequencing Kit user 

guide for use with: Ion PGM™ Hi-Q™ View Sequencing Kit Ion PGM™ System Ion 318™ 

Chip v2 BC Ion 316™ Chip v2 BC Ion 314™ Chip v2 BC Catalogue Number A30044 

Publication Number MAN0014583 Revision C.0”. 

 

We followed the next steps: 

1. Create a planned run: Perform the planning of all the settings used in a 

sequencing run in the Ion PGMTM Torrent Browser. 

2. Clean and initialize the sequencer: The sequencer requires cleaning every time 

the instrument is initialized. Cleaning with Milli-Q water is done daily, when 

instrument is in use, and if more than 27 hours since the last initialization. 

Cleaning with chlorite solution is done once a week or if the sequencer has 

been left with reagents more than 48 hours. 

3. Load the chip and sequence. 

 

Reagents and materials 
• Ion PGM™Hi-Q™ View Sequencing Kit (Thermo Fisher Scientific, Cat. No. 

A30044), includes the following components:  

• Ion PGM™ Sequencing Supplies (Part No. A25587), containing: Wash 1 

Bottle (1 bottle x 250mL), Wash 3 Bottle (1 bottle x 250mL), Ion PGM™ 

Reagent Bottle Sipper Tubes (16 sipper tubes), Ion PGM™ Wash Bottle 
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Sipper Tubes (8 tubes for 250mL bottles), Ion PGM™ Wash Bottle Sipper 

Tubes (4 tubes for 2L) and Reagent Bottles (25 bottles x 50mL). 

• Ion PGM™ Hi-Q™ View Sequencing Reagents (Part No. A30043), 

containing: Ion PGM™ Hi-Q™ View Sequencing Polymerase (1 tube x 

36μL), Ion PGM™ Hi-Q™ View Sequencing Primer (1 tube x 144μL) and 

Ion PGM™ Hi-Q™ View Control Ion Sphere™ Particles (1 tube x 60μL). 

• Ion PGM™ Hi-Q™ View Sequencing Solutions (Part No. A30275), 

containing: Ion PGM™ Hi-Q™ View Sequencing W2 Solution (4 bottles x 

125mL), Ion Cleaning Tablet (4 tablets), Annealing Buffer (1 tube x 

12mL) and Ion PGM™ Hi-Q™ View Sequencing W3 Solution (2 bottles x 

100mL). 

• Ion PGM™ Hi-Q™ Sequencing dNTPs (Part No. A25590), containing: Ion 

PGM™ Hi-Q™ Sequencing dGTP (1 x 80μL), Ion PGM™ Hi-Q™ Sequencing 

dCTP (1 x 80μL), Ion PGM™ Hi-Q™ Sequencing dATP (1 x 80μL) and Ion 

PGM™ Hi-Q™ Sequencing dTTP (1 x 80μL). 

• Ion PGM™ Wash 2 Bottle Kit (Cat. No. A25591) includes the following 

components: Wash 2 Bottle (2L) and Wash 2 Bottle Conditioning 

Solution (1 bottle x 125mL). 

• Sodium hydroxide (NaOH) (Merck KGaA, Cat. No. S8045). 

• Ion 316™ Chip Kit v2 BC (8 pack) (Thermo Fisher Scientific, Cat. No. 4488149). 

• Ion 318™ Chip v2 BC (8 pack) (Thermo Fisher Scientific, Cat. No. 4488150). 

• Ion PGM™ System and accessories (Thermo Fisher Scientific, Cat. No. 4462921) 

• Veriti 96-well Thermal Cycler (Thermo Fisher Scientific, Cat. No. 4375786). 

• Minicentrifuge (Nippon Genetics Europe, Cat. No. NG002R).  

• Ion PGM™ Torrent Server (Thermo Fisher Scientific, Cat. No. 4483643). 

 

Procedure 
1. Create a planned run  

To create the run plan, diverse setting need to be selected, such as the 

sequencing instrument, chip, library and template kit type and the plugins. 

2. Clean and initialize the sequencer 

• Cleaning with Milli-Q water and chlorite solution is performed following 

manufacturers’ instructions. 

• Before initialization 

o Remove the dNTP stock solutions to ice. 

o Rinse the Wash 2 Bottle 3 times with 200mL Milli-Q water. Rinse 

the Wash 1 and Wash 3 Bottles 3 times with 50mL of Milli-Q 

water. 

o Fill the Wash 2 bottle to the mold line with Milli-Q water. 18 MΩ 

water. 
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o Add the entire bottle of Ion PGM™ Hi�Q™ View Sequencing W2 

Solution to the Wash 2 Bottle. 

o Prepare 500μL of 100mM NaOH by diluting 50μL of NaOH 1M in 

450μL nuclease-free water.  

o Add 70μL of 100mM NaOH to the Wash 2 Bottle. Mix the bottle 

by inversion 5 times. 

o Add 350μL of freshly prepared 100 mM NaOH to the Wash 1 

Bottle. 

o Add Ion PGM™ Hi-Q™ View Sequencing W3 Solution to the 50mL 

line marked on the Wash 3 Bottle. 

• Begin the initialization as indicated in the screen of the Ion PGM™ 

System. 

• Prepare the Reagent bottles with dNTPs 

o Vortex each dNTP stock solution and centrifuge to collect the 

contents. Keep the dNTP stock solutions on ice throughout this 

procedure. 

o Transfer 20μL of each dNTP stock solution into its respective 

Reagent Bottle. 

o Store on ice until you are ready to attach it to the instrument.  

• Attach the sipper tubes and Reagent bottles 

o After the initialization, remove the used sipper tubes and 

collection trays from the dNTP ports. 

o Insert a new sipper tube into each dNTP port and attach each 

prepared Reagent Bottle to the correct dNTP port. 

3. Load the chip and sequence 

• Add controls to the enriched, template-positive Ion Sphere™ Particles 

(ISP) 

o Vortex the Control Ion Sphere™ Particles, then pulse-centrifuge 

in a picofuge for 2 seconds before taking aliquots. 

o Add 5μL Control ISPs directly to the entire volume of enriched, 

template positive ISPs (prepared using your template 

preparation method) in a 0.2mL non-polystyrene PCR tube. 

• Anneal the Sequencing Primer 

o Mix the tube containing the ISPs by pipetting up and down and 

centrifuge for 2 minutes at 15.500 x g. 

o Remove the supernatant from the top down and discard. Leave 

15μL in the tube 

o Vortex the Sequencing Primer for 5 seconds, centrifuge in a 

picofuge for 5 seconds to collect the contents. Leave on ice until 

use. 
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o Add 12μL of Sequencing Primer to the ISPs. Mix by pipetting to 

disrupt the pellet. 

o Place the tube in the thermal cycler and run the following 

program: 95°C for 2 minutes and then 37°C for 2 minutes. 

Remain the tube in the cycler at RT while the sequencing run is 

set up.  

• Perform chip check to ensure the functionality of the chip, as indicated 

in the screen of the Ion PGM™ System. 

• Bind the Sequencing Polymerase 

o Remove the Ion PGM™ Hi-Q™ View Sequencing Polymerase from 

storage and mix with the fingertip 4 times. Centrifuge for 3–5 

seconds and place on ice. 

o Remove the ISPs from the thermal cycler, add 3μL of Ion PGM™ 

Hi-Q™ View Sequencing Polymerase to the ISPs and mix by 

pipetting. Incubate at room temperature for 5 minutes. 

• Prepare and load the chip (Figure 14) 

o Remove the new chip from the Ion PGM™ Sequencer and insert 

a used chip in the clamp while loading the new chip. 

o Tilt the new chip at a 45° angle so that the loading port is the 

lower port. Insert the pipette tip firmly into the loading port, 

then remove as much liquid as possible from the loading port. 

Discard the liquid. 

o Place the chip upside-down in the minifuge bucket, then transfer 

the bucket with the chip tab pointing in. Centrifuge for 5 seconds 

to empty the chip completely. Remove the chip from the bucket.  

o Place the chip on a firm surface and insert the tip into the 

loading port of the chip.  

o Collect 30µL of prepared ISPs with a pipette and load the chip 

slowly by applying gentle pressure between the tip and chip and 

slowly dial down the pipette to deposit the ISPs. Avoid 

introducing bubbles into the chip and discard any displaced 

liquid from the other port of the chip. 

o Centrifuge the chip for 30 seconds with the chip tab pointing 

towards the centre of the minifuge. 

o Centrifuge the chip for 30 seconds with the chip tab pointing 

away from the centre of the minifuge. Remove the chip. 

o Tilt the chip 45 degrees. Slowly pipet the sample out and then 

back into the chip.  

o Slowly remove as much liquid as possible from the chip. Discard 

the liquid. 
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o Spin the chip upside-down for 5 seconds in the minifuge. 

Remove and discard any liquid. Proceed immediately to perform 

the run. 

4. Perform the run 

• Select the planned run in the screen of the Ion PGMTM Sequencer. 

• Confirm the settings. Load and clamp the chip. 

• Perform the run. 

 

 

Figure 14. Images showing the preparation and loading of the chip. A, removal of the liquid. B, Chip 

upside-down in the minifuge bucket. C, load the chip on a flat surface. D, dial down the pipette to 

deposit the ISPs. E, Chip tab pointing towards the centre of the minifuge. F, Chip tab pointing away from 

the centre of the minifuge. 

 

 

7.8. DETECTION OF COPY NUMBER VARIATIONS 
 

Copy Number Variations (CNV) are a prominent source of genetic variation in 

human DNA and play a role in a wide range of disorders. We used four different 

techniques for the detection of deletions, amplifications and complex rearrangements. 

These are Multiplex Ligation-dependent Probe Amplification (MLPA), Quantitative 

Multiplex Polymerase chain reaction of Short Fluorescent Fragments (QMPSF), genetic 

markers or a Comparative Genome Hybridization array (aCGH). Furthermore, we 

analysed the relocation of the SRY gene by Fluorescence in situ hybridization (FISH). A 

summary of the several techniques used to detect CNV is shown below (Table 6). 

 

 

 

 

 

 

A 

D E F 

C B 
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Table 6. Summary of the different methods used to detect copy number variations. 

 
Method Commercial name Genes 

MLPA 
SALSA MLPA probemix P185-C2 Intersex NR0B1, CXorf21, SOX9, SRY, ZFY, WNT4, NR5A1 

SALSA MLPA P118 WT1 probemix WNT1 

QMPSF 
 SRD5A2 
 AR 

Genetic markers  NR0B1 

aCGH 
SurePrint G3 Human CGH Microarray 

8x60K 
Genome wide probes 

FISH  SRY 
aCGH, Comparative Genome Hybridization array; MLPA, Multiplex Ligation-dependent Probe 

Amplification; QMPSF, Quantitative Multiplex Polymerase chain reaction of Short Fluorescent 

Fragments. 

 

 

7.8.1. Multiplex Ligation-dependent Probe Amplification 
 

MLPA is a semi-quantitative technique, used to determine the copy number of 

DNA sequences in a single multiple PCR-based reaction. It is based on the amplification 

of several probes that detect a specific DNA sequence of approximately 60 nucleotides 

and its separation by capillary electrophoresis. 

 

The first step comprises the denaturation of the sample DNA and adding of a 

mixture of probes. These probes are two oligonucleotides that hybridize to adjacent 

target sequences so that are ligated to create a single probe. Then, all ligated probes 

are amplified simultaneously using the same PCR primer pair. One of the primers is 

fluorescently labelled, which allows the visualization of the amplification products 

during fragment separation on a capillary electrophoresis instrument. PCR amplicons 

result in products between 64-500 nucleotides in length. 

 

Compared to relative probe peak height in various control DNA samples, the 

relative height of each individual probe peak reflects the relative copy number of the 

corresponding target sequence in the sample. Thus, the deletion of one or more target 

sequence converts as a relative decrease in a peak height, while an increase in a 

relative peak height reflects amplification. 

 

We used the following SALSA MLPA probemix products to detect CNVs in our 

population of interest. 

 

1. SALSA MLPA probemix P185-C2 Intersex (MRC-Holland BV, Cat. No. P185-

050R). It contains 44 probes with amplification products between 130 and 

494nt for the following genes: NR0B1, CXorf21, SOX9, SRY, ZFY, WNT4 and 

NR5A1. Furthermore, it contains 10 control fragments.  
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2. SALSA MLPA P118 WT1 probemix (MRC-Holland BV, Cat. No. P118-050R), 

containing 34 MLPA probes with amplification products between 130 and 

409nt and 12 control fragments. It spans the WT1 and AMER1 genes.  

 

The included probes in the SALSA MLPA probemix P185-C2 Intersex and SALSA 

MLPA P118 WT1 probemix, as well as its gene location and partial sequence are shown 

on http://www.mlpa.com/. 

 

The amount of used DNA for this methodology ranges between 50 and 250ng. 

 
Reagents and materials 

• SALSA MLPA probemix (MRC-Holland BV, Amsterdam, The Netherlands), 

containing SALSA MLPA Buffer (1x 180µl), SALSA Ligase-65 (1x 115µl), Ligase 

Buffer A (1x 360µl), Ligase Buffer B (1x 360µl), SALSA PCR Primer Mix (1x 

240µl), SALSA Polymerase (1x 65µl) and Probemix (1x 80µl). 

• Formamide (Thermo Fisher Scientific, Cat. No. 4311320). 

• 10X Genetic Analyser Running Buffer (Thermo Fisher Scientific, Cat. No. 

402824). 

• POP-7™ Polymer (Thermo Fisher Scientific, Cat. No. 4352759). 

• Milli-Q ultrapure water (Merck KgaA). 

• ABI PRISM 3130xl Genetic Analyser (Thermo Fisher Scientific, Cat. No. 

4359571). 

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

• Beckman Spinchron R centrifuge (Beckman Coulter, Cat. No. 358723).   

• MicroAmp® Optical 96-Well Reaction Plate (Thermo Fisher Scientific, Cat. No. 

4316813).  

• MicroAmpTM Clear Adhesive Film (Thermo Fisher Scientific, Cat. No. 4306311).  

• GeneScanTM 500 ROXTM dye size Standard (Thermo Fisher Scientific, Cat.No. 

401734). 

• GeneMapper® Software v4.0 (Thermo Fisher Scientific). 

 

Procedure 
The protocol can be divided into the following steps: 

1. DNA denaturation: 

• Add 5µL DNA sample to each tube. 

• Place the tubes in the thermocycler and run the following program:  

o DNA denaturation: 98°C for 5 minutes. 

o Hold at 25°C. 

2. Hybridization reaction 

• Vortex SALSA MLPA Buffer and Probemix tubes before use.  
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• Prepare master mix on ice. For each sample add: 

o SALSA MLPA Buffer: 1.5µL 

o Probemix: 1.5µL 

• Mix by vortexing. 

• Add 3µL to each sample tube.  

• Place the tubes in the thermocycler and run the following program:  

o Incubation: 95°C for 1 minute. 

o Hybridization: 60°C for 16-20 hours. 

3. Ligation reaction 

• Vortex Ligase Buffer A and Ligase Buffer B.  

• Prepare the Ligase-65 master mix at RT. For each sample add: 

o Milli-Q water: 25µl  

o Ligase Buffer A: 3µl  

o Ligase Buffer B: 3µl  

o SALSA Ligase-65: 1µL 

• Mix by pipetting up and down. 

• Add 32 µl to each sample tube placed on the thermocycler and mix by 

pipetting up and down. Run the following program:  

o Ligation: Hold at 54°C  

o Activation of Ligase-65 enzyme: 98°C for 5minutes. 

o Hold at 20°C  

4. PCR reaction 

• Vortex SALSA PCR Primer Mix.  

• Prepare the Polymerase master mix at room temperature. For each 

sample add: 

o Milli-Q water: 7.5µL 

o SALSA PCR Primer: 2µL 

o SALSA Polymerase: 0.5µL  

• Add 10µL Polymerase master mix to each reaction. Mix by pipetting up 

and down. 

• Place the tubes in the thermocycler and run the following program:  

o Cycle 35 times: 95°C for 30 seconds, 60°C for 30 seconds and 

72°C for 60 seconds 

o Incubate: 72°C for 20 minutes. 

o Hold at 15°C 

At this point PCR products could be stored at 4°C for one week or at -25°C 

for longer periods. 

5. Fragment separation on a capillary electrophoresis instrument 

• For each sample prepare the following mix:  

o Formamide: 10µL 

o GeneScanTM 500 ROXTM dye size Standard: 0,5µL 
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• Add 10µL of the previous mix to 2µL of the PCR product. 

• Mix by vortexing and spin in a centrifuge.  

• Place the samples in the thermocycler at 95°C for 5 minutes. 

• Place the samples on ice for 5 minutes. 

• Place the plate on the genetic analyser. 

6. Data analysis 

Data analysis was performed with the GeneMapper® Software v4.0 (Thermo 

Fisher Scientific). To normalise MLPA, first each peak height is divided by the sum of 

the peak values of control probes. These control probes are not supposed to contain 

CNV and are outside the screened region. Given values are then compared to the 

height of control DNA samples. This ratio balance between 0.8 and 1.15 indicate 2 

gene copies or normal sample. According to the criteria established in our laboratory 

ratio balances under 0.8 indicate a decrease gene copy number and above 1.15 are 

indicative of a gene copy number increase in the sample. 

 

7.8.2. Quantitative Multiplex Polymerase Chain Reaction of Short 
Fluorescent 
 

QMPSF, as well as MLPA, relies on the simultaneous amplification of small 

genomic sequences under quantitative conditions, using fluorescent primers, and on 

the comparison of profiles generated from tested and control DNA. 

 

Comparing to the MLPA technique, QMPSF is faster and cheaper, but it is less 

specific due to the absence of a ligation step. We designed a QMPSF assay for those 

genes that were not included in the MLPA probemix available in the laboratory (P185-

C2 Intersex or P118 WT1). 

 

We made QMPSF to check variations in copy number in the AR and SRD5A2 

genes. We designed 5’ 6-FAM dye-labelled primers corresponding to five target 

regions that were simultaneously amplified. The PCR comprises the processes of 

denaturation, annealing and elongation, but it is stopped at exponential amplification 

allowing the quantification. In these cases, QMPSF was stopped at cycles 25 and 30, 

respectively. For the SRD5A2 two multiplex PCRs were done because of the similar size 

of some amplicons (Primers sequences and amplicons size are given in Supplementary 

data 6).  

 

QMPSF included control amplicons. For the detection of CNV on SRD5A2 and 
AR, control fragments from other not DSD-related genes, such as RET and HNF1B 

located on chromosomes 10q11.21 and 17q12, respectively, were used. We also added 

3 normal samples and a negative control containing water. All the samples were tested 

in duplicates and we used 100ng of DNA. 
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Reagents and materials 
• KAPA Taq PCR Kit (Kapa Biosystems, Cat. No. KK1014), containing KAPA Taq 

DNA Polymerase (5U/µL), KAPA Taq Buffer A (10X) KAPA Taq Buffer B (10X) and 

MgCl2 (25Mm). 

• GeneScanTM 500 ROXTM dye size Standar (Thermo Fisher Scientific, Cat.No. 

401734). 

• 10X Genetic Analyser Running Buffer (Thermo Fisher Scientific, Cat. No. 

402824). 

• Formamide (Thermo Fisher Scientific, Cat. No. 4311320). 

• dNTP Mix (5mL) (Merck KgaA, Cat. No. D7295-5ML). 

• DMSO (50mL) (Merck KgaA, Cat. No. D8418-50Ml).  

• POP-7™ Polymer (Thermo Fisher Scientific, Cat. No. 4352759). 

• 5’ 6-FAM Dye-labelled primers pool (250μM) (Integrated DNA Technologies Inc, 

Skokie, Il, USA). 

• Milli-Q ultrapure water (Merck KgaA). 

• ABI PRISM 3130xl Genetic Analyser (Thermo Fisher Scientific, Cat. No. 

4359571). 

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Beckman Spinchron R centrifuge (Beckman Coulter, Cat. No. 358723).   

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

• MicroAmp® Optical 96-Well Reaction Plate (Thermo Fisher Scientific, Cat. No. 

4316813).  

• MicroAmpTM Clear Adhesive Film (Thermo Fisher Scientific, Cat. No. 4306311). 

• PCR-strip tubes (Sarstedt AG&Co KG, Nümbrecht, Germany, Cat. No 

72.982.002).  

• PCR lid strips (Sarstedt AG&Co KG, Cat. No. 65.989.002).  

• GeneMapper® Software v4.0 (Thermo Fisher Scientific). 

 

Procedure 
The protocol can be divided into the following steps: 

1. PCR multiplex reaction  

For each amplification a mix containing Milli-Q water, Buffer A, dNTPs, FAM dye 

labelled primers at 25μM, Taq DNA polymerase and DNA (100ng) is prepared. DMSO is 

added when required. Conditions in the thermocycler are also different for each DNA 

amplification sequence. Conditions for amplification and primers can be found in 

Supplementary data 6. 

2. Fragment separation on a capillary electrophoresis instrument 

• For each sample prepare the following mix:  

o Formamide: 10µL 
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o GeneScanTM 500 ROXTM dye size Standard: 0.5µL 

• Add 10µL of the previous mix to 2µL of the PCR product. 

• Mix by vortexing and spin in a centrifuge.  

• Place the samples in the thermocycler at 95°C for 5 minutes. 

• Place the samples on ice for 5 minutes. 

• Place the plate on the genetic analyser. 

3. Data analysis 

Data analysis was performed with the GeneMapper® Software v4.0 (Thermo 

Fisher Scientific). To normalise data, first each peak height is divided by the sum of the 

peak values of control probes. These control probes are not supposed to contain CNV 

and are outside the screened region. Given values are then compared to the height of 

control DNA samples. This ratio balance between 0.8 and 1.15 indicate 2 gene copies 

or normal sample. According to the criteria established in our laboratory ratio balances 

under 0.8 indicate a decrease gene copy number and above 1.15 are indicative of a 

gene copy number increase in the sample. 

 

7.8.3. Localization of genetic markers 
 

A genetic marker is a fragment of DNA with a known location on a 

chromosome. They may be a short DNA sequence surrounding a single base pair 

change or a long one, like microsatellites. Microsatellites can be used for mapping 

locations within the genome to locate a gene or a mutation.  

 

In this case, we used microsatellites to determine the extension of the 

deletions previously showed by PCR and MLPA. For this study labelled primers were 

designed and analysed by fluorescent PCR and subsequent electrophoresis on the 

ABI3130xl genetic analyser using GeneMapper® v4.0 software (Applied Biosystems) 

was done. 

 

We analysed the microsatellites in two samples in which a NR0B1 complete 

gene deletion was observed by PCR and MLPA (GN0101 and POL0285). The 4 

microsatellites we studied were located in Xp21, specifically DX1218 and DXS8039 

were placed downstream NR0B1 while DXS1083 and DXS992 were located upstream 

the gene (Supplementary data 6). 

 

Reagents and materials 
• KAPA Taq PCR Kit (Kapa Biosystems, Cat. No. KK1014), containing KAPA Taq 

DNA Polymerase (5U/µL), KAPA Taq Buffer A (10X) KAPA Taq Buffer B (10X) and 

MgCl2 (25Mm). 

• GeneScanTM 500 ROXTM dye size Standar (Thermo Fisher Scientific, Cat.No. 

401734). 
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• 10X Genetic Analyser Running Buffer (Thermo Fisher Scientific, Cat. No. 

402824). 

• Formamide (Thermo Fisher Scientific, Cat. No. 4311320). 

• dNTP Mix (5mL) (Merck KgaA, Cat. No. D7295-5ML). 

• Agarose D-1 (Pronadisa, Madrid, Spain, Cat. No. 8016). 

• 50X TAE Buffer (Bio-Rad, Hercules, CA, USA, Cat. No. 1610773). 

• EZ Load™ 100bp Molecular Ruler (Bio-Rad, Cat. No. 1708352). 

• Nucleic Acid Sample Loading Buffer 5X (Bio-Rad, Cat. No. 161-0767).  

• GelRed™ (Biogen, Cambridge, MA, USA, Cat. No. BT41003). 

• DMSO (50mL) (Merck KgaA, Cat. No. D8418-50ML).  

• POP-7™ Polymer (Thermo Fisher Scientific, Cat. No. 4352759). 

• 5’ 6-FAM Dye-labelled primers pool (250μM) (Integrated DNA Technologies Inc, 

Skokie, Il, USA). 

• Milli-Q ultrapure water (Merck KgaA). 

• ABI PRISM 3130xl Genetic Analyser (Thermo Fisher Scientific, Cat. No. 

4359571). 

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Beckman Spinchron R centrifuge (Beckman Coulter, Cat. No. 358723).   

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

• Electrophoresis chamber Sub® Cell GT MINI (Bio-Rad, Hercules, CA, USA, Cat. 

No. 1704467). 

• PowerPac™ 3000 Power Supply  (Bio-Rad, Cat. No. 1655057). 

• G: BOX Chemi 16 Bio Imaging system (Syngene, Cambridge, UK, Cat. No. 

SGBOX) 

• GeneSnap Software v7.12 (Syngene). 

• Sub-Cell GT UV-Transparent Gel Tray (Bio-Rad, Cat. No. 1704435). 

• Fixed-Height Comb (Bio-Rad, Cat. No. 1704465). 

• MicroAmp® Optical 96-Well Reaction Plate (Thermo Fisher Scientific, Cat. No. 

4316813).  

• MicroAmpTM Clear Adhesive Film (Thermo Fisher Scientific, Cat. No. 4306311). 

• PCR-strip tubes (Sarstedt AG&Co KG, Nümbrecht, Germany, Cat. No 

72.982.002).  

• PCR lid strips (Sarstedt AG&Co KG, Cat. No. 65.989.002).  

• GeneMapper® Software v4.0 (Thermo Fisher Scientific). 

 

Procedure 
The protocol can be divided into the following steps: 

1. PCR multiplex reaction  

For each amplification, mix Milli-Q water, Buffer A, dNTPs, FAM dye labelled 

primers at 25μM, Taq DNA polymerase and DNA (20-100ng). DMSO is added when 
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required. Conditions for amplification and primers can be found in Supplementary data 

6. 

2. Perform an agarose gel electrophoresis  

PCR fragments are separated on the agarose gel and visualized when exposed 

to UV light. If amplification of the genetic marker happens, a specific band appears at 

the expected location compared to the molecular ruler.  

See above for agarose gel electrophoresis preparation.  

3. Fragment separation on a capillary electrophoresis instrument 

• For each sample prepare the following mix:  

o Formamide: 10µL 

o GeneScanTM 500 ROXTM dye size Standard: 0.5µL 

• Add 10µL of the previous mix to 2µL of the PCR product. 

• Mix by vortexing and spin in a centrifuge.  

• Place the samples in the thermocycler at 95°C for 5 minutes. 

• Place the samples on ice for 5 minutes. 

• Place the plate on the genetic analyser. 

4. Data analysis 

Data analysis was performed with the GeneMapper® Software v4.0 (Applied 

Biosystems). For each genetic marker, the results were determined by comparing the 

presence or absence of the region of interest with that observed on the DNA control 

samples. 

 

7.8.4. Array-based comparative genomic hybridization 
 
The main advantage of using aCGH is the facility to simultaneously detect 

aneuploidies, deletions, duplications and amplifications of any locus represented on 

the array, offering higher resolution than traditional cytogenetic methods.  

 

This method uses slides arrayed with small fragments of DNA, known as probes, 

as the targets for analysis. Probes vary in size and resolution is determined by the 

genomic distance between DNA probes and the length of these probes. The 

methodology uses the sample DNA and a control DNA, differentially labelled with 

fluorescent dyes, which are mixed and applied to the slide to hybridize with the 

arrayed single-strand probes. Digital imaging systems are used to capture and quantify 

the relative fluorescence intensities of the labelled DNA probes hybridized to each 

target. The fluorescent signal intensity of the sample DNA, relative to that of the 

control DNA, can then be linearly plotted across each chromosome, allowing the 

identification of copy number changes. 
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We used the SurePrint G3 Human CGH Microarray 8x60K (Agilent Technologies, 

Santa Clara, CA, USA), containing 55.077 biological probes and 41kb overall median 

probe spacing. The optimal amount of sample DNA for the aCGH is 500ng. 

 

Reagents and materials 
• SureTag Complete DNA Labeling Kit (Agilent Technologies, Cat. No. 5190-4240), 

containing 10X restriction Enzyme Buffer, BSA (Bovine Serum Albumin), AluI, 

RsaI, random primer, 5X Reaction Buffer, 10X dNTPs, Cyanine 3’-dUTP and 

Cyanine 5’-dUTP. 

• TE Buffer Solution (pH 8.0) (100mL) (Merck KGaA, Cat. No. 8890-100ML).  

• Oligo aCGH/ChIP-on-chip Hybridization Kit (Agilent Technologies, Cat. No. 5188-

5220), containing 10x aCGH Blocking Agent and 2xHI-RPM Hybridization Buffer. 

• Human Cot-1 DNA (1mg/mL) (Agilent Technologies, Cat. No. 5190-3393). 

• Agilent Oligo aCGH Wash Buffer 1 and 2 Set (Agilent Technologies, Cat. No. 

5188-5226). 

• Milli-Q ultrapure water (Merck KGaA). 

• SurePrint G3 Human CGH Microarray 8x60K (Agilent Technologies, Cat. No. 

G4450A). 

• Purification columns (50 u) (Agilent Technologies, Cat. No. 5190-3391). 

• GeneAmp®PCR System 9700 (Thermo Fisher Scientific, Cat. No. 4339386). 

• Minicentrifuge (Nippon Genetics Europe, Cat. No. NG002R).  

• Hybridization oven rotator (Sheldon Manufacturing, Inc., Cornelius, OR, USA, 

Cat. No. SHO1). 

• Hybridization Chamber (Agilent Technologies, Cat. No. G2534A). 

• Hybridization Chamber Gasket Slides (Agilent Technologies, Cat No. G2534A). 

• SureScan Microarray Scanner G4900DA (Agilent Technologies, Cat No. 

G4900DA).  

• Gasket slide, 8 microarrays/slide format (Agilent Technologies Cat. No. G2534-

60014). 

• Slide-staining dishes (VWR, Radnor, PA, USA, Cat. No. 470175-194). 

• Magnetic stir plate (Velp Scientifica, Usmate, Italy, Cat. No. F20700431). 

• SureScan Microarray Scanner (Agilent Technologies). 

• NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific). 

• NanoDrop 1000 Spectrophotometer Software v3.8 (Thermo Fisher Scientific). 

• Agilent CytoGenomics software v2.7 (https://www.agilent.com/en/download-

agilent-cytogenomics-software). 

• Feature Extraction software (https://www.agilent.com/en/product/mirna-

microarray-platform/mirna-microarray-software/feature-extraction-software-

228496). 
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Procedure  
The protocol can be divided into the following steps: 

1. Label the samples 

• For each reaction add the amount of DNA to the appropriate nuclease-

free water to bring to a final volume of 13µL. 

• Add 2.5µL of Random primer to each reaction tube. Mix by pipetting up 

and down. 

• Place the tubes in the thermocycler and run the following program:  

o 98°C for 10 minutes. 

o Hold at 4°C. 

• Spin the samples in the minicentrifuge 

• Prepare the Labelling master mix on ice. For each sample add: 

o 5X Reaction Buffer: 5µL 

o 10X dNTPs: 2.5µL 

o Cyanine3’-dUTP (For control DNA): 1.5µL 

o Cyanine 5’-dUTP (For samples DNA): 1.5µL 

o Exo (-) Klenow: 0.5µL 

• Add 9.5µL of the Labelling master mix to each sample. Mix by pipetting 

up and down. 

• Place the tubes in the thermocycler and run the following program:  

o 37°C for 2 hours 

o 65°C for 10 minutes 

o Hold at 4°C 

At this point reactions can be stored at -20°C in dark for 1 month. 

2. Purification of labelled gDNA 

• Centrifuge the samples for 1 minute at 6,000 x g. 

• Add 430µL TE to each reaction tube. 

• Place a column in a 2mL collection tube. Load each labelled gDNA onto a 

column and cover the column with a cap. 

• Spin for 10 minutes at 14,000 x g in a microfuge at room temperature. 

Discard the flow-through. 

• Transfer the column to a new 2mL collection tube. Spin for 1 minute at 

1,000 x g in a microfuge. Spin. 

• Dry the labelled gDNA to bring the sample volume to 9.5µL. 

• Take 1.5µL of each sample and measure the DNA concentration on the 

NanoDrop® ND-1000 spectrophotometer.  

• Combine 8µL test sample with 8µL control sample for a total volume of 

16µL. 

At this point reactions can be stored at -20°C in dark for 1 month. 

3. Hybridization 
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• Prepare the 10X Blocking Agent (Supplementary data 7): Vortex the 

solution before use. 

• Prepare the Hybridization master mix at room temperature. For each 

sample add: 

o Cot-1 DNA (1.0mg/mL): 2µL 

o 10X aCGH Blocking Agent: 4.5µL 

o 2x HI-RPM Hybridization Buffer: 22.5µL  

• Add 29µL of the Hybridization master mix to each sample. Mix by 

pipetting up and down. 

• Spin the samples in the minicentrifuge 

• Place the tubes in the thermocycler and run the following program: 

98°C for 2 minutes and 37°C for 30 minutes. 

• Prepare de hybridization assembly as manufacturers’ instructions.  

• Load 40µL of hybridization sample mixture into the gasket. 

• Hybridize at 65°C for 24 hours in the oven rotator. 

4. Microarray wash 

• Pre-warm Agilent Oligo aCGH/ChIP-on-Chip Wash Buffer 2 at 37°C 

overnight. 

• Prepare and fill slide-staining dishes as follows: 

o Slide-staining No. 1: Agilent Oligo aCGH/ChIP-on-Chip Wash 

Buffer 1 at room temperature. 

o Slide-staining No. 2: Agilent Oligo aCGH/ChIP-on-Chip Wash 

Buffer 1 at room temperature on a magnetic stir plate. 

o Slide-staining No. 3: Agilent Oligo aCGH/ChIP-on-Chip Wash 

Buffer 2 at 37°C on a magnetic stir plate. Add a magnetic stir bar 

and turn on the heating element to maintain temperature. 

• Remove the hybridization chamber from the incubator. 

• Disassemble hybridization chamber in Slide staining No. 1, following 

manufacturers’ instructions.  

• Remove the microarray slide to Slide staining No. 2 and stir at 350 rpm 

for 5 minutes. 

• Transfer to Slide staining No. 3 for 1 minute. 

• Slowly remove the slide rack trying to minimize droplets on the slides. 

 

5. Microarray scanning and analysis 

Put assembled slide holders in the scanner cassette and scan the slide. Extract 

features to process microarray image files with the Feature Extraction Software. This, 

locates microarray grids, rejects outliers and determines intensities and ratios. Finally, 

analyze the microarray image using the Agilent CytoGenomics software v2.7. The 

algorithm used by the software allows the data analysis by the conversion of the 

fluorescence emission ratio between the sample and control DNA into an image of 
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coloured plots along the chromosomes or loci where the log2 expression form is 

represented. When the sample DNA is normal, the fluorescence between both sample 

and control is similar, therefore the ratio between both fluorescence emissions is 1 

and log2 is 0, representing the same number of copies for both DNA sample and 

control. However, an variants in the Cy3:Cy5 ratio indicates a loss or gain of sample 

DNA in that specific region. We considered the log2 values above 0.5 or below -0.5 of 3 

consecutive probes as a gain or loss of a copy of a gene or region. 

 

To achieve a high accuracy quality control metrics should be within the normal 

ranges, according to manufacturers.  

 

7.8.5. Fluorescence in situ hybridization  
 

Sex determination in humans is dependent upon the SRY gene, located on 

chromosome Yp11.3. Translocation to the X chromosome or to an autosome results in 

a mismatch between the sexual phenotype and the cytogenetic genotype.  

 

Fluorescence in situ hybridization (FISH) represents a widely-used molecular 

technique that allows detecting relocation of the SRY gene away from its normal 

location on the Y chromosome. This procedure is based on the construction of one or 

several probes, designed to hybridize to those parts of the chromosome with a high 

degree of complementarity, and tagged with fluorophores. In our case, the results 

were visualized on a fluorescence microscope by using DAPI nuclear counterstain, 

which stains nuclei and contrast to fluorescent probes of other structures.  

 

For the analysis, we used peripheral blood cells reared in metaphase and fixed 

on microscope slides. Blood samples (3.5mL) were collected on Sodium Heparin tubes.  

 

Reagents and materials 
• Vysis SRY Probe LSI SRY Spectrum Orange/Vysis CEP X Spectrum Green Probe 

Kit (Abbott Mol Inc., Chicago, IL, USA, Cat. No. 06N29-020), containing Vysis LSI 

SRY SpectrumOrange/CEP X SpectrumGreen Probes (1 x 20µL) (Cat. No. 30-

191007) and Vysis LSI/WCP Hybridization Buffer (1 x 150µL) (Cat. No. 30-

804824). 

• DAPI II counterstain (2 x 500µL) (Abbott Mol. Inc., Cat. No. 06J50-001). 

• RPMI 1640 Medium (1L) (Thermo Fisher Scientific, Cat. No. 11875085). 

• Fetal bovine serum (FBS) (1L) (Thermo Fisher Scientific, Cat. No. 10106185). 

• Phytohemagglutinin (10mL) (Thermo Fisher Scientific, Cat. No. 10576015). 

• KaryoMAX™ Colcemid™ Solution (10mL) (Thermo Fisher Scientific, Cat. No. 

15212012). 

• 20X SSC (500g) (Abbott Mol. Inc., Cat. No. 02J10-032). 
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• NP-40 (50mL) Thermo Fisher Scientific, Cat. No. 85124). 

• Formamide (Thermo Fisher Scientific, Cat. No. 4311320). 

• Potassium chloride (KCl) BioXtra ≥99.0% (500g) (Merck KGaA, Cat. No. P9333). 

• PBS tablets (Phosphate buffered saline) (50 tablets) (Merck KGaA, Cat. No. 

P4417-50TAB). 

• Ficoll 1077 (100mL) (Merck KGaA, Cat. No. 10771-100ML). 

• Methanol (1L) (Merck KGaA, Cat. No. 34860-1L-R). 

• Acetic acid (1L) (Merck KGaA, Cat. No. A6283-1L). 

• Absolute Ethanol (Thermo Fisher Scientific, Cat. No. BP2818100). 

• 100% Acetone (10x 0.5mL) (Merck KGaA, Cat. No. 175862-10X0.5ML). 

• 36-38% Hydrochloric acid (HCl) (100mL) (Merck KGaA, Cat. No. H1758-100ML). 

• Milli-Q ultrapure water (Merck KGaA). 

• Slide and coverslip (Thermo Fisher Scientific, Cat. No. 12373118 and Cat. No. 

12343138). 

• Coplin jars (VWR, Radnor, PA, USA, Cat. No. 470175-194). 

• pH-meter BASIC 20 (Crison instruments S.A, Alella, Spain, Cat. No. Hach 

LPV2000.98.0002). 

• Water baths (Thermo Fisher Scientific, Cat. No. TSGP02). 

• Bunsen lighter (Merck KGaA, Cat. No. Z270318-1EA). 

• Magnetic stirrer hotplate (Velp Scientifica, Usmate, Italy, Cat. No. F20700431). 

• TP2555 Thermal Plate (inTEST Corporation, Mt. Laurel, NJ, USA). 

• Minicentrifuge (Nippon Genetics Europe, Cat. No. NG002R). 

• Centrifuge Sorvall™ Legend™ Micro 17R (Thermo Fisher Scientific, Cat. No. 

75002440). 

• Oven (Sheldon Manufacturing, Inc., Cornelius, OR USA, Cat. No. SHO1). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

• Membrane MF-Millipore, 0.45µm (Merck KGaA, Cat. No. HAWP04700). 

• Fluorescence microscope Nikon Eclipse 50i (Nikon Inc, Tokio, Japan). 

 

Procedure for preparing blood cells  
1. Prepare the 1X PBS, KCl 57mM, Carnoy solution and1% HCl solutions (See 

Supplementary data 7) 

2. Place 3.5mL of blood in a falcon tube and add 500µL of 1X PBS. 

3. Slowly add 4mL Ficoll 1077, avoiding the mix. Centrifuge at 700 x g for 30 

minutes. 

4. Harvest the ring with the lymphocytes without touching the Ficoll using a 

sterile pipette tips. Collect in a falcon tube and add 15mL of 1X PBS. 

5. Centrifuge at 900 rpm for 20 minutes. 

6. Discard the supernatant. Resuspend the pellet in 5mL supplemented RPMI 

medium (See preparation on Supplementary data 7). Place it in a culture flask. 
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7. Incubate the lymphocytes at 37°C for 3 days. 

8. Add 50µL colcemid solution (10µg/mL) and place the flask at 37°C for 20 

minutes in the culture oven. 

9. Transfer the lymphocytes to a falcon tube and add 50mL 1X PBS. 

10. Centrifuge at 900 rpm for 15 minutes. 

11. Discard the supernatant, except 500µL for resuspending the pellet. Add 15mL 

KCl 75mM. 

12. Incubate at 37°C for 20 minutes in the water bath. 

13. Centrifuge at 900 rpm for 15 minutes. 

14. Discard the supernatant, except 500µL for resuspending the pellet. Slowly, drop 

by drop, add 2mL Carnoy solution. Faster, add another 8mL. Tap the tube 

continuously for mixing.  

15. Incubate for 10 minutes at room temperature. 

16. Centrifuge at 900 rpm for 15 minutes. 

17. Repeat steps 15 to 17 three more times. In the last step resuspend pellet in 

2mL Carnoy solution. 

At this point metaphases can be stored for 2-3 days at 4°C, or for longer periods 

at -20°C. 

18. Clean the slides as shown in Supplementary data 7. 

19. Collect 500µL metaphases. With the slide over the steam of the water bath at 

100°C, pour three drops of the metaphases. Drops should be poured at a 

distance of 60-70cm.  

20. Dry the slide upon and below the sample with the Bunsen lighter. Place the 

slide in the thermal plate at 45°C until it completely dries. 

21. Leave the preparations at 4°C before use. 

  

Procedure for FISH 
1. Prepare 20X SSC, 2X SSC/0.1% NP-40 wash solution, denaturation solutions, 

0.4X SCC/0.3% NP-40 Wash solution and ethanol solutions at 70%, 85% and 

100%. 

2. Prepare the target and probe mixture 

• Place Coplin jar containing denaturation solution to a water bath at 

73°C.  

• Immerse the slides in the denaturation solution for 5 minutes. 

• Immerse the slides in 70% ethanol for 1 minute, followed by 1 minute in 

ethanol 85% and 1 minute in ethanol 100% to dehydrate. Keep slides in 

100% ethanol until probe mixture is ready. 

• For each target, prepare the following:  

o 7µL LSI/WCP hybridization buffer 

o 1µL probe 

o 2µL Milli-Q water 
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•  Centrifuge tube for 3 seconds, vortex and centrifuge the tube again. 

• Place the tube in the water bath at 73°C for 5 minutes. 

• Add denaturation solution and 70mL of each ethanol dilutions to 

different Coplin jars and bring to room temperature.  

3. Hybridize the probe 

• Prepare a humidified box: Place a humidified paper towel on an airtight 

container at 37°C. 

• Remove the slides from 100% ethanol and place them on a 45 to 50°C 

slide warmer for up to 2 minutes. 

• Apply 10µL of probe mixture and put the coverslip.  

• Place slides in the pre-warmed humidified box and place in the 

incubator at 37°C overnight. 

4. Washing and detection 

• Pour 70mL of 0.4X SCC/0.3% NP-40 solution into a Coplin jar and place 

in a 73°C water bath at least for 30 minutes before use. 

• Pour 70mL of 2X SCC/0.1% NP-40 into a Coplin jar and bring to room 

temperature. 

• Remove the coverslip from the slide and immerse the slide in the 0.4X 

SCC/0.3% NP-40 solution. Agitate slide for 3 seconds and immerse for 2 

minutes. 

• Immerse the slide in the 2X SCC/0.1% NP-40 solution. Agitate slide for 3 

seconds and immerse for 1 minute. 

• Dry slide in darkness. 

• Apply 10µL of DAPI II counterstain and put coverslip. 

5. Visualize results on the fluorescence microscope. 

The optimal visualization of the probe allows viewing the orange and green 

fluorophores. For male specimens with a 46, XY karyotype is one orange signal on the Y 

chromosome and one green signal on the X chromosome. The signal pattern of one 

green signal on each X chromosomes with lack of orange signal is seen in 46, XX 

karyotype specimens.  

 

 

7.9. BIOINFORMATIC ANALYSIS 
 

The sequencing data were analysed using the Ion Reporter software (Thermo 

Fisher Scientific), which comprises a group of bioinformatics tools that simplifies the 

study. Base calling, read filtering, alignment to the human genome and variant filtering 

were done with Ion Reporter Suites. The trimmed reads were aligned using BWA-MEM 

(Burrows-Wheeler Aligner Memory) algorithm followed by Genome Analysis ToolKit 

(GATK) for further base quality score analysis and variant filtering. Data generated on 
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the Ion PGM system were automatically uploaded from the Torrent Browser to our Ion 

Reporter software for read mapping, annotation and reporting of variants. 

 

Data analysis was automated with a predefined workflow in which annotation 

sources about the biological meaning of variants for priorization were selected, as well 

as the alignment to the human genome (hg19), the analysis of a single sample and 

germline variant detection was set.  

 

Two workflows were applied to each sample. First workflow was done for 

variant calling of single-nucleotide variants (SNV) and small insertions or deletions 

(indels) and a second one was used for copy number variations (CNV). Then, filter 

chains were created based on Ion Reporter Software variant data types.  

 

7.9.1. Variant filtering for point mutations and small indels 
 

To identify the DSD causative variant in each patient we filtered as follows: 

• Variants with insufficient sequence coverage, depth and a Phred-like quality 

score below 20 were excluded. For evaluating the coverage and depth the 

variants were visualized using the Integrative Genomics Viewer (IGV) 

(http://www.broadinstitute.org/igv/). In those cases in which the amplicon was 

not covered or the depth was low (<20x fold) validation by Sanger sequencing 

was done. Phred-like score measures the quality of the identification of the 

bases generated by DNA sequencing or the confidence in the assignment of 

each base call by the sequencer.  Phred-like score >20 means a 99% accurate 

assignment of each base, with a 1% chance of error. Quality metrics of each run 

and library was generated and evaluated. 

• Variants were filtered to include those with a p-value <0.001 and a Minor Allele 

Frequency (MAF) <0.05 in the annotation settings of the Ion Reporter software, 

namely dbSNP, ClinVar and 5000 exomes databases. Moreover, the allele 

frequency was further checked for each ethnic group in 1000 genomes browser 

(http://browser.1000genomes.org/), Exome Aggregation Consortium (ExAC) 

Consortium (http://exac.broadinstitute.org/), Genome Aggregation Database 

(GnomAD) (https://gnomad.broadinstitute.org/) and Exome Sequencing Project 

(ESP) Variant Server (http://evs.gs.washington.edu/EVS/) and variants were 

discounted if they were common. Thus, we filtered to include only rare variants 

with MAF≤0.001. Moreover, we identified repeated variants within our cohort 

that may result from amplification or sequencing errors. These, were also 

discarded if found in more than 4 samples in the same run or in the total 

cohort, as well as if they are found in different phenotypes. Then, gene changes 

in the untranslated or intronic regions were discarded, with the exception of 

previously recorded changes or splice site variants. Finally, a 
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genotype/phenotype correlation was done, where the DSD variant is consider 

for further curation if it fits with the clinical presentation of the patient.  

 
7.9.2. Variant filtering for CNV 
 
The detection of CNV is dependent on several parameters. Control samples 

need to be included in the study as CNV will be reported based on their copy number 

relative to these samples. Previously studied samples will be used to make a baseline 

and thus, it is desirable to select those samples with not known CNV in any region 

covered by the panel. The karyotype of the patient is also important because copy 

number on X and Y chromosomes will be determined relative to its presence. 

  

We included 4 samples (GN0038, GN0109, GN0141 and RE0045) to make the 

baseline and used the Confident Germline CNV filter added to filter chains in Ion 

Reporter Software. This filter returns CNV with high confidence levels, between 10 and 

10,000,000. Moreover, we chose a MAPD (Median of the absolute value of all pairwise 

differences) score >0.4 as the cut-off. 

 

7.9.3. Categorization of the variants 
 

Variants were categorized based on the recommendations of the American 

College of Medical Genetics (ACMG) for variant classification and reporting (229) into 5 

categories: Pathogenic, likely pathogenic, VUS (Variant of Unknown Significance), likely 

benign and benign. We used the following rules: 

• Variants previously reported to cause disease in HGMD, OMIM, ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) or PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed/) were noted as reported, and were 

considered pathogenic if described in one or more unrelated individuals. They 

were reported as likely pathogenic if the same variant had been associated to a 

different DSD-phenotypes or if no functional studies had been done. 

• Variants with MAF ≤0.1% that disrupt gene function, such as nonsense, 

frameshift, splice sites, initiation codons and exon deletion, were classified as 

pathogenic when the mechanism of pathogenicity is consistent with the 

inheritance pattern, previous DSD-associated variants have been described in 

the gene and the variant in a splice site leads to exon skipping or shortening.  

• Novel missense variants with MAF ≤0.1%, with evidence for pathogenicity 

according to in silico programs and that demonstrated to be de novo in patient 

with the disease and no family history were classified as pathogenic.  

• A novel missense variant with MAF≤ 0.1% involving an amino acid or nucleotide 

change known to be pathogenic, but changes to a different amino acid or 

nucleotide were classified as likely pathogenic. If the mechanism of 



 

114 

 

pathogenicity is well known to be caused by altered protein function it was 

classified as pathogenic.   

• Novel missense variants with MAF ≤0.1% in known DSD genes and evidence for 

pathogenicity according to in silico programs were considered as likely 

pathogenic. 

• Novel single variants with MAF ≤0.1% were considered VUS when contradictory 

evidence of pathogenicity according to prediction software. 

• Variants previously reported, but with contradictory evidence in bibliography 

were considered VUS. 

• Variants with an allele frequency >0.1% and synonymous variants that had not 

been previously reported to have a deleterious effect were classified as benign.  

 

In this work, we only present those variants classified as pathogenic, likely 

pathogenic and VUS, as well as likely benign polymorphism previously related to DSD. 

 

7.9.4. Variant effect prediction software tools 
 
The most direct method to identify causal variations in an individual is by 

comparison with known mutations and disease-associated genes, like those referred in 

databases such as the HGMD (230), OMIM (231), ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/), UCSC (University of California Santa Cruz 

Genomics Institute) (https://genome.ucsc.edu/), DGV (Database of Genomic Variants) 

(http://dgv.tcag.ca/dgv/app/home) and dbVar (Database of human genomic structural 

Variation) (https://omictools.com/dbvar-tool). This is of utility in well studied diseases 

and can be used to find novel and known mutations in previously identified genes.  

 

The remaining variants that have not been previously described can be 

prioritized. Multiple algorithms have been developed for predicting deleteriousness 

based on different information of the variant including its sequence homology, protein 

structure and evolutionary conservation. Although there are many, we have used the 

following prediction software tools. 

 

7.9.4.1. Interpretation of single-nucleotide variants and small indels.  
 

• PROVEAN (http://provean.jcvi.org/index.php) 

PROVEAN (Protein Variation Effect Analyzer) is an informatics tool developed to 

predict whether a protein sequence variation affects protein function. It introduces a 

delta score based on the reference and variant versions of a protein query sequence 

with respect to sequence homologs collected from the NCBI NR (National Centre for 

Biotechnology Information Non-Redundant) protein database through BLAST (Basic 

Local Alignment Search Tool).  
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The delta score is computed for each supporting sequence and then averaged 

within and across clusters to generate the final score. The protein variant is predicted 

to have a deleterious effect if this score is equal or below the default threshold, set at -

2.5.   

 

• SIFT (http://sift.jcvi.org/) 

SIFT (Sorting Intolerant From Tolerant) predicts whether an amino acid 

substitution affects protein function. It is based on the degree of conservation of 

amino acid residues in sequence alignments derived from closely related sequences, 

collected through PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search 

Tool) and calculates the probability of the amino acid being tolerated based on 

observed alignment. 

 

• Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/) 

PolyPhen-2 (Polymorphism Phenotyping v2) is a tool for the prediction of the 

possible impact of an amino acid substitution on the structure and function of a human 

protein using features that comprise the sequence, phylogenetic and structural 

information. 

 

The user can choose between HumDiv and HumVar models. HumDiv dataset 

was compiled from the damaging alleles with known effects on the molecular function 

causing human Mendelian diseases, present in the UniProtKB (UniProt 

Knowledgebase) database. HumVar consists of human disease-causing mutations 

together with common nsSNPs (Non-synonymous SNPs) without involvement in 

disease and therefore treated as non-damaging. Both models were considered in this 

work. 

 

For a variation, PolyPhen-2 calculates the probability that this mutation is 

damaging and is evaluated qualitatively, as benign, possibly damaging, or probably 

damaging. 

 

• MutationTaster (http://www.mutationtaster.org/) 

MutationTaster integrates information from different biomedical databases 

and uses established analysis tools. Analyses comprise evolutionary conservation, 

splice-site changes, loss of protein features and changes that might affect the amount 

of mRNA (Messenger RNA). It employs Bayes classifier to predict the disease-potential 

of an alteration and calculates a probability value to be either a disease mutation or a 

harmless polymorphism. For this prediction, the tool studies the frequencies of known 

disease mutations or polymorphisms from HGMD and the 1000 genome project.  
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We have used the Mutation Taster for the comparison of the proteins for non-

synonymous changes among different species. 

 

• SNPs and GO (http://snps.biofold.org/snps-and-go/snps-and-go.html) 

It is a GO (Gene Ontology) integrated predictor that uses a SVM (Support 

Vector Machine) classifier that takes in input protein sequence, profile and functional 

information to predict if a given variation can be classified as disease-related or 

neutral.   

 

• MutPred (http://mutpred1.mutdb.org/) 

MutPred (Mutation Prediction) is a web application tool developed to classify 

an amino acid substitution as disease-associated or neutral in human. Moreover, it 

predicts the molecular cause of disease of the substitution based upon the gain or loss 

of 14 different structural or functional properties, for example, gain of helical 

propensity.  

 

• PANTHER (http://www.pantherdb.org/) 

The PANTHER (Protein Analysis Through Evolutionary Relationships) system 

classifies protein according to molecular function, biochemical process, pathway and 

family or groups of evolutionarily related proteins. 

 

• VarSome (https://varsome.com/) 

This engine is used as an annotation tool, search instrument for genomic 

variants and also as a platform that enables the sharing of information (232). The 

variant of interest is mapped to a specific genomic location, identifying equal variants, 

the variant type and the coding effect. Variant pathogenicity is given using an 

automatic classifier that evaluates the submitted variants according to the American 

College of Medical Genetics (ACMG) guidelines (229). 

 

7.9.4.2. Interpretation of variants located on the splicing sites 
 
Alternative splicing is a process during gene expression in which particular 

exons of a gene are included or not in the final mRNA from that gene. This process 

results in a single gene coding for multiple proteins, that contain differences in their 

amino acid sequence and therefore, in their biological functions.  

 

We used the Neural Network Splice Site Prediction 

(http://www.fruitfly.org/seq_tools/splice.html) and NetGene2 Server 

(http://www.cbs.dtu.dk/services/NetGene2/) to deduce the effect of the variants 

located in the boundaries of the exons. These programs compare the structure of the 
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donor and acceptor sites in the wild type (wt) to the newly altered gene and stablish if 

these structures have suffered any modification. 

 

7.9.4.3. Interpretation of genomic structural variations 
 
The analysis of structural variations was firstly performed with the 

CytoGenomics software v2.7, which applies automated filters based on several 

databases, such as the Database of Genomic Variants (DGV) and polymorphisms of 

Agilent Reference DNA. 

 

The DGV (http://dgv.tcag.ca/dgv/app/home?ref=) provides structural variations 

identified in healthy control samples. It is continuously updated and aiming to 

correlate with phenotypic data. 

 

Structural variations were also compared in dbVar, the NCBI's database of 

human genomic structural variation, ClinVar, which aggregates information about 

genomic variation and its relation to health and UCSC, a collection of organism 

assemblies and annotations. 

 
 

7.10. IN VITRO FUNCTIONAL AND EXPRESSION STUDIES  
 
Likely pathogenic or variants of unknown significance were selected and 

functionally characterized in different cell systems. In order to test the transcriptional 

activity of identified variants, several experiments were carried out including the site-

directed mutagenesis, cloning and purification and the functional characterization of 

the variant. 

 

The in vitro functional studies were developed in the Paediatric Endocrinology, 

Diabetology and Metabolism Department of BioMedical Research in the University 

Hospital Inselspital in Bern (Switzerland) under the guidance of Prof. Dr. med. Christa 

Flück.  

 

7.10.1. Used vectors for the in Vitro functional studies  
 

7.10.1.1. Expression vectors 
 

To assess the impact of the identified variants, we used previously constructed 

mammalian expression vectors by cloning the gene cDNA into the corresponding 

vectors. 3 different expression vectors were used (Figure 15): 
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• pCMV: Derived from a high-copy-number pUC-based plasmid. Mammalian 

expression is driven by the human cytomegalovirus (CMV) promoter to 

promote constitutive expression of cloned inserts in a wide variety of cell lines. 

Selection is made possible in bacteria by the ampicillin-resistance gene under 

control of the β-lactamase promoter.  

• pSG5: This ampicillin resistant vector was constructed by combining pKCR2 and 

pBS vectors. The SV40 early promoter and polyadenylation signal promotes 

expression in vivo.  

• pcDNA3: It has a CMV enhancer-promoter for high-level expression and 

ampicillin resistance gene, as well as a pUC origin for selection and 

maintenance in E. coli.  
 

 

Figure 15. Image of the three expression vectors pCMV, pSG5 and pcDNA3 where cDNA from GATA4, 

LHCGR and NR5A1 was inserted.  

 

 

Human wild type (wt) GATA4 cDNA was inserted into the mammalian pCMV 

expression vector. For the LHCGR expression vector we used the HA-tagged (Human 

influenza Hemagglutinin) wt LHCGR_pSG5 kindly gifted by Dr. Adolfo Rivero-Müller 

(Institute for Biomedicine, University of Turku, Turku, Finland) and has been previously 
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described (233). Whereas, wt cDNA of NR5A1 in a pcDNA3 vector with an HA-tag 

added at 5‘ by PCR strategy was available from previous work (14). 

 

GATA4, LHCGR and NR5A1 mutants were generated by site-directed 

mutagenesis using specific primers and the QuickChange protocol by Stratagene 

(Agilent technologies Inc., Santa Clara, CA, USA).  

 

7.10.1.2. Promoter reporter vectors 
 
Mammalian expression vectors were tested on different responsive promoters. 

These reporter vectors included a gene described as being regulated by the genes of 

interest (GATA4 or NR5A1) linked to a firefly-luciferase (luc) and inserted in a plasmid. 

The following reporter vectors were used in this work: 

• -227CYP17A1_ Δluc 

• -152CYP11A1_pGL3 

• -301HSD3B2_pGL3 

• CRE-luc 

 

The pGL3 promoter vector is an ampicillin resistant vector which contains an 

SV40 promoter upstream of the luciferase gene for monitoring transcriptional activity 

in transfected eukaryotic cells. CYP11A1 and HSD3B2 genes were inserted in this pGL3 

vector. CYP17A1 was inserted into the reporter plasmid pMG3 luciferase. The 

CYP17A1, CYP11A1 and HSD3B2 luciferase reporter vectors were used in either the co-

transfection of GATA4 or NR5A1 expression vectors. 

 

On the other side, CRE-luc reporter was used in the co-transfection of either 

the wild type LHCGR expression vector, the empty vector (pSG5) or the mutant LHCGR 

vectors. CRE-luc reporter contains the firefly luciferase gene under the control of cAMP 

(Cyclic adenosine monophosphate) response element (CRE), located upstream of a 

promoter. Elevation of the intracellular cAMP level activates cAMP response element 

binding protein (CREB) to bind CRE and induces the expression of luciferase.  

 

The construction and cloning of the promoter luciferase reporter vectors has 

been previously described and were available from earlier work (14, 24, 117). 

 

7.10.1.3. Renilla luciferase vectors 
 
To normalize the transfection efficiency, we added a pRL vector that contains 

wt Renilla luciferase (Rluc). This provides constitutive expression of Renilla luciferase 

and then, if used in combination with a firefly luciferase vector to cotransfect 
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mammalian cells, provides an internal control value to which expression of the 

experimental firefly luciferase reporter gene can be normalized.  

 

pRL vectors contain the cDNA encoding Renilla luciferase cloned from the 

Renilla reniformis. We used the pRL vectors with the HSV-thymidine kinase promoter 

(pRL-TK) and the CMV promoter region (pRL-CMV) (Figure 16). Both were isolated from 

an E. coli K host strain and are ampicillin resistant. pRL-TK was used to normalize the 

transfection efficiency of the LHCGR and NR5A1 promoter transactivation assays while 

pRL-CMV was used for the GATA4 functional studies. These vectors were available 

from previous works (14). 

 

 
Figure 16. pRL-TK and pRL-CMV vectors used as Rluc control reporter vectors. Modified from Promega 

(https://www.promega.es/products/reporter-assays-and-transfection). 

 

 

7.10.2. From Site-directed mutagenesis to plasmid purification 
 

The procedure requires the synthesis of a DNA primer containing the desired 

mutation, complementary to the template DNA, so it can hybridize with the DNA in the 

gene of interest. Then, the single-strand primer is extended using a DNA polymerase, 

which copies the rest of the gene. During PCR, the mutation is incorporated into the 

amplicon, replacing the original sequence. The template DNA is removed using a 

methylation-dependent endonuclease, such as DpnI, and the mutated gene is 

introduced to a host cell (E. coli) as a vector and cloned. Plasmids are isolated 

(Miniprep) from the resulting colonies and both mutants and wild type (wt) were 

checked by DNA sequencing to ensure that they contain the desired mutation or the 

wt DNA. These clones were used for all downstream procedures. They were again 

amplified in E. coli and purified using a maxiprep kit. The purified plasmids were then 

used for cell transfection. 
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7.10.2.1. Primers design and site-directed mutagenesis 
 

Site-directed mutagenesis is an in vitro method used to make specific and 

intentional changes to the DNA sequence of a gene. Primers containing the change of 

interest were designed using the Agilent tool 

(www.genomics.agilent.com/primerdesignprogram) and ordered to Microsynth AG 

Company (https://www.microsynth.ch/home-ch.html) (Balgach, Switzerland). We 

designed primers (Supplementary data 6) for the following sequence changes: 

• LHCGR: c.757C and c.1660T variants 

• GATA4: c.677T variant 

• NR5A1: c.88A, c.902A and c.71T variants. 

 

Mutant expression vectors (GATA4: c.677T; LHCGR: c.757C and c.1660T; 

NR5A1: c.88A, c.902A and c.71T) were generated by PCR-based site-directed 

mutagenesis (Figure 17) using specific primers and the QuickChange protocol by 

Stratagene (Agilent Technologies Inc.) using the wild type expression vector as 

template. 

 

 

Figure 17 Diagram of the site-directed mutagenesis method. Modified from Addgene 

(https://blog.addgene.org/). 

 

 

Reagents and material 
• QuikChange II Site-Directed Mutagenesis Kit (30 Rxn) (Agilent Technologies, Inc, 

Cat. No 200524) containing Pfu Ultra High-Fidelity DNA polymerase (2.5 U/µll) 

(80 U), 10× reaction buffer (500µl), DpnI restriction enzyme (10 U/µl) (300 U) 

and dNTP mix (30µl). 

• Primers for each mutant (20µM) (Microsynth AG). 

• Plasmid (GATA4-CMV5 plasmid 128,5ng/µL; LHCGR-pSG5 plasmid 415,4ng/µL; 

NR5A1-pcDNA3 plasmid 206,8ng/µL), obtained from previous works. 

• Bidistilled water.  

• T100™ Thermal Cycler (Bio Rad, Cat. No. 1861096). 
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Procedure for site-directed mutagenesis 
1. Mutant Strand Synthesis Reaction  

• Prepare the sample reaction by mixing 5µL 10X Buffer, 250ng plasmid, 

1µL forward primer (20µM), 1µL forward primer (20µM), 1µL dNTPs 

(10mM), 1µL Pfu DNA polymerase (2,5U/µL) and bidistilled water up to 

50µL. 

• Place in the T100™ Thermal Cycler and perform as follows:  

o  95°C for 30 seconds. 

o Cycle 12 times: 95°C for 30 seconds, 55°C for 60 seconds and 

68°C for 8 minutes.  

o Hold at 4°C. 

2. DpnI digestion of the amplification product 

• Add 1µL DpnI restriction enzyme to the sample tube. 

Include also a positive and a negative control. Prepare negative control 

with 10X Buffer, plasmid, DpnI and bidistilled water up to 50µL and 

positive control with 2µL plasmid and bidistilled water up to 50µL. 

• Mix by pipetting up and down. 

• Incubate the reaction at 37°C for 1 hour. 

• Proceed to transformation of E. coli cells or store the product at -20°C. 

 

7.10.2.2. Plasmid transformation and purification 
 

Transformation is the process by which foreign DNA is introduced into a host 

cell. Transformation of bacteria with plasmids is widely used due to the bacterial 

capacity of storage and replication but also because plasmids carry both the bacterial 

origin of replication and an antibiotic resistance gene, which is a selective marker in 

bacteria. 

 

Some bacterial strains have been created to be more easily transformed, as 

DH5α which is the most frequently used E. coli strain for routine cloning applications. 

In order to make bacteria capable of internalizing the exogenous DNA, they must be 

made competent. Cells are made competent by treating them with divalent cations, 

such as calcium chloride (CaCl2) or magnesium chloride (MgCl2), which make the 

bacterial wall permeable to DNA, facilitating genetic transformation. 

 

The method for transformation of a DNA construct into a cell is chemical and 

calcium chloride transformation is the most efficient technique. The addition of 

calcium chloride to the cell suspension permits the binding of plasmid DNA to bacterial 

cell membrane, although both are negatively charged, and when heat is provided, 

plasmid DNA passes into the cell. Once plasmid DNA is inside the cell, it will be 

replicated as bacteria are grown. Finally, purification of the plasmid DNA is required to 
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isolate and purify plasmid DNA from genomic DNA. The purified plasmids will be used 

for cell transfection. 

 

We followed the next steps to get the purified plasmid DNA: 

• Transformation of DH5α cells  

• Growth of bacterial culture (small-scale growing) 

• Plasmid DNA purification (Miniprep) 

• Quantification of the recombinant DNA 

• Sequencing to ensure that the plasmid DNA has inserted the change 

• Growth of bacterial culture (large-scale growing) 

• Plasmid DNA purification (Maxiprep) 

• Quantification of the recombinant DNA 

 

7.10.2.2.1. Transformation of E. coli competent cells 
 
We used the transformation storage solution (TSS) buffer method to make 

DH5α cells competent. Competence of cells is induced by the addition of low 

concentrations of Mg2+, which alters the permeability of the membrane, and DMSO, 

acting as a preserving agent. Polyethylene Glycol (PEG) shields the negative charges on 

the DNA and host cell membrane, reducing the repulsion between them. For the 

transformation, we prepared a KCM buffer with both CaCl2 and MgCl2 divalent cations 

for altering the permeability of the bacterial membrane  

 

Reagents and materials 
• DH5α cells (From previous works). 

• LB (Luria-Bertani) broth (Luria/Miller) (1kg), (Carl Roth Gmbh + Co., Karlsruhe, 

Germany, Cat. No. X968.1), containing Tryptone 10g/L, Yeast extract 5g/L, 

Sodium chloride (NaCl) 10g/L. 

• LB Agar (Luria/Miller) (1kg) (Carl Roth Gmbh + Co., Cat. No. X969.1), containing 

Tryptone 10g/L, Yeast extract 5g/L, NaCl 10g/L, Agar 15g/L. 

• Ampicillin, disodium salt (10g) (Carl Roth Gmbh + Co., Cat. No HP62.1). 

• TSS Buffer (See preparation on Supplementary data 7). 

• 5X KCM Buffer (See preparation on Supplementary data 7). 

• Bidistilled water. 

• Orbital shaker (Thermo Fisher Scientific, Cat. No. SHKE420HP). 

• Incubator (Eppendorf AG, Cat. No CO17321001). 

 

Procedure for preparing E. coli competent cells 
1. Prepare LB medium and LB agar plates (Supplementary data 7) 

2. Inoculate the cells in 10mL LB medium and grow overnight at 37°C. 
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3. Dilute 0.5mL of the culture into 50mL of fresh LB medium in a 200mL conical 

flask. Grow at 37°C the diluted culture to an OD600 of 0.2–0.5.  

4. Cold the TSS buffer and the microcentrifuge tubes on ice. 

5. Split the culture into two 50mL falcon tubes and incubate on ice for 10 minutes.  

6. Centrifuge cells for 10 minutes at 3000 rpm at 4°C. 

7. Discard the supernatant and resuspend the pellet in chilled TSS buffer. The 

volume of the TSS to use is 10% of the culture volume that was discarded. 

8. Resuspend the culture by vortexing.  

9. Aliquot 200μl into the chilled microcentrifuge tubes. Store at -80°C until use. 

 

Procedure for transformation of E. coli competent cells 
1. Prepare LB medium and LB agar plates (Supplementary data 7). 

2. Pre-warm LB medium and LB plates at 37°C. 

3. Defrost DH5α competent cells on ice. 

4. Prepare DNA mixture by mixing 58µL bidistilled water, 20µL 5X KCM Buffer 

(Supplementary data 7) and 2µL plasmid DNA. 

5. Chill DNA mixture on ice for 10 minutes. 

6. Add 100µL DH5α competent cells to DNA mixture and place on ice for 20 

minutes. 

7. Add 1mL pre-warmed LB medium and incubate at 37°C with shacking for 1 

hour. 

8. Centrifuge for 4 minutes at 200-300 rpm at room temperature. Discard the 

supernatant, except 300µL. 

9. Spread cells with 300µL LB into an LB plate. 

10. Incubate the plate at 37°C for 24 hours. Then store at 4°C until use. 

 

7.10.2.2.2. Growth of bacterial cultures 
 

LB (Luria-Bertani) broth has been widely used for the growth of bacteria in 

molecular applications. These bacterial media are nutrient-rich formulations which 

provide peptides, peptones, vitamins, and trace elements, that permit the fast and 

easy growth of many species, including E. coli. Different formulations have been 

created to vary in the amount of sodium chloride and, therefore, in the osmotic 

conditions for the particular bacterial strain and culture conditions. 

 

We used the Luria-Miller formulation with a high salt content, ideal for 

propagation of E. coli and culturing cells for plasmid preparation. Only those bacterial 

colonies that have incorporated the plasmid and thus the resistance to the antibiotic 

will grow on the LB agar plate. Various colonies of recombinant and wt plasmids were 

selected from the LB plates and were grown to get numerous copies of plasmid DNA. 
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Reagents and materials 
• LB broth (Luria/Miller) (1kg), (Carl Roth Gmbh + Co., Cat. No. X968.1), 

containing Tryptone 10g/L, Yeast extract 5g/L, Sodium chloride (NaCl) 10g/L. 

• Ampicillin, disodium salt (10g) (Carl Roth Gmbh + Co., Cat. No HP62.1). 

• Magnesium sulfate (MgSO4) (100g) (Carl Roth Gmbh + Co., Cat. No. 0682.1). 

• Autoclave (JP Selecta group, Abrera, Spain, Cat. No. 4002136). 

• Bidistilled water. 

• Orbital shaker (Thermo Fisher Scientific, Cat. No. SHKE420HP). 

• Magnetic stirrer hotplate (Thermo Fisher Scientific, Cat. No. 13889336). 

 

Procedure for small-scale growing 
1. Prepare LB medium (Supplementary data 7). 

2. Add 12mL LB medium to a 15mL tube. 

3. Add 12µL ampicillin (100mg/mL) to the tube and mix. 

4. Distribute 3mL of the LB medium into 4 tubes of 15mL. 

5. Add 6µL MgSO4 (1M) to each tube. 

6. Collect one single colony and mix it with the culture. Repeat it for the four 

tubes. 

7. Incubate the cell culture at 37°C with constant shaking (250 rpm) for 12-16 

hours. 

Store the bacterial cultures at 4°C until use. 

 

Procedure for large-scale growing 
1. Prepare 500mL LB medium. Mix in a magnetic mixer for 1 hour. 

2. Distribute 100mL to 4 flask and autoclave on liquid cycle at 121°C. 

3. Cool to 60°C for 15 minutes. 

4. Dilute ampicillin (100mg/mL) to 1/1000. Add 100µL to each flask. 

5. Inoculate 200µL of the bacterial growth (obtained at the small-scale growing 

step). Cover with foil. 

6. Incubate at 37°C for 12-16 hours with constant shaking at 230-240 rpm. 

 

7.10.2.2.3. Plasmid DNA purification 
 

We used the NucleoSpin® Plasmid QuickPure kit (Macherey-Nagel GmbH & 

Co.KG, Düren, Germany) which permits to achieve up to 15µg of plasmid DNA and the 

GenElute™ HP Plasmid Maxiprep Kit (Merck KGaA) to isolate large-scale pure plasmid 

DNA.  

 

Plasmid DNA miniprep purification was performed to verify that the mutation 

had been inserted in the plasmid. This confirmation was done by sequencing.  
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Reagents and materials 
• NucleoSpin® Plasmid QuickPure kit (50 preps) (Macherey-Nagel GmbH & Co.KG 

Cat. No. 740615.50), containing Resuspension Buffer A1 (15mL), Lysis Buffer A2 

(15mL), Neutralization Buffer A3 (20mL), Wash Buffer AQ (6mL), Elution Buffer 

AE (13mL), RNase A (lyophilized) (6mg), NucleoSpin® Plasmid QuickPure 

Columns (50), Collection Tubes (2mL) (50).  

• GenElute™ HP Plasmid Maxiprep Kit (Merck KGaA, Cat. No. NA0310) containing, 

Column Preparation Solution (225mL), RNase A Solution (2.5mL), Resuspension 

Solution (375mL), Lysis Solution (375mL), Neutralization Solution (375mL), 

Binding Solution (280mL), Wash Solution 1 (375mL), Wash Solution 2 (75mL), 

Elution Buffer (115mL), GenElute HP Maxiprep Filter Syringe (25 units), 

GenElute HP Maxiprep Binding Column (25 units), Collection Tubes 50mL (50 

tubes). 

• Absolute ethanol (Merck KGaA, Cat. No. 1009831000). 

• Centrifuge Sorvall ST 8 (Thermo Fisher Scientific, Cat. No. 75007202). 

• Vortex mixer (Heidolph Instruments GmbH & Co.KG, Cat. No. 541-10000-00). 

• Heating-block (Thermo Fisher Scientific, Cat. No. 88880028). 

 
Procedure for miniprep 

1. Cultivate and harvest bacterial cells 

• Add 2mL of the saturated E. coli LB culture to a tube and centrifuge at 

13000 rpm for 30 seconds at room temperature. Discard the 

supernatant and remove as much liquid as possible. 

2. Cell lysis and clarification of lysate 

• Add 250μL Buffer A1. Resuspend the cell pellet completely by vortexing.  

• Add 250μL Buffer A2. Mix by inverting the tube 6–8 times.  

• Incubate at room temperature for 5 minutes.  

• Add 300μL Buffer A3. Mix by inverting the tube 6–8 times.  

• Centrifuge for 5 minutes at 13000 rpm at room temperature. 

3. Bind DNA 

• Place a NucleoSpin® Plasmid QuickPure Column in a 2mL Collection 

Tube and pipet a maximum of 750μL of the supernatant onto the 

column.  

• Centrifuge for 1 minute at 13000 rpm. Discard flow-through and place 

the NucleoSpin® Plasmid QuickPure Column back into the collection 

tube.  

• Repeat this step to load the remaining lysate. 

4. Wash silica membrane 

• Add 450μL Buffer AQ and centrifuge for 3 minutes at 13000 rpm at 

room temperature. Discard the collection tube and the flow-through. 

5. Elute DNA 
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• Place the NucleoSpin® Plasmid QuickPure Column in a 1.5mL 

microcentrifuge tube  

• Add 50μL Buffer AE and incubate for 1 minute at room temperature.  

• Centrifuge for 1 minute at 13000 rpm. 

• Pipet the 50µL of plasmid DNA into a new 2mL tube. 

• Store at 4°C until use.NA03 

 

Procedure for maxiprep 
1. Harvest Cells 

• Transfer the bacterial culture to proper centrifuge tubes and centrifuge 

at 4600 rpm for 20 minutes at 4°C. 

• Discard the supernatant. 

2. Resuspend and lyse cells 

• Add 12mL Resuspension/RNase A Solution to the bacterial pellet. 

Resuspend by pipetting up and down. Place to 50mL tubes. 

• Add 12mL Lysis Solution and mix by inverting 6 to 8 times. Let the 

mixture sit for 5 minutes until it becomes clear 

3. Prepare Filter Syringe  

• Prepare a filter syringe by removing the plunger and placing the barrel 

in a rack so that the syringe barrel is upright. 

4. Neutralize and add binding solution 

• Add 12mL Neutralization Solution to the mixture and invert 4 to 6 times.  

• Add 9mL Binding Solution and invert 1 to 2 times. 

• Immediately pour into the barrel of the filter syringe.  

• Allow the lysate to sit for 5minutes.  

5. Prepare Binding Column 

• Place a GenElute HP Maxiprep Binding Column onto the vacuum 

manifold and apply vacuum.  

• Add 12mL of Column Preparation Solution to the column and allow it to 

pass through. 

• Centrifuge for 2 minutes at 3000 x g at 4°C. 

6. Washing 

• Add 12mL of Wash Solution 1 to the column. 

• Centrifuge for 2 minutes at 3000 x g at 4°C. Discard the eluate. 

• Add 12mL of Wash Solution 2 to the column. 

• Centrifuge for 5 minutes at 3000 x g at 4°C.  

7. Elute Plasmid DNA  

• Transfer the binding column to a clean 50mL collection tube. 

• Add 3mL of Elution Solution or molecular biology reagent water to the 

column.  
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• Centrifuge for 5 minutes at 3000 x g at 4°C. Discard the column.  

Store the plasmid DNA at 4°C until use. 

 

7.10.2.2.4. Plasmid DNA quantification 
 

Plasmid DNA quantification was performed after miniprep and maxiprep. We 

used a NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific).  

 

7.10.2.2.5. Plasmid DNA sequencing 
 

Microsynth AG Company (https://www.microsynth.ch/home-ch.html) 

performed the Sanger sequencing of the plasmid DNA to ensure that the site-directed 

mutagenesis worked properly and the variant of interest was introduced in the 

plasmid.  

 

7.10.3. Functional characterization of the variants of interest 
 

7.10.3.1. Cell lines and culture 
 
Human placental JEG3 cells (CLS, 300222) and non-steroidogenic human 

embryonic kidney HEK293 cells (ATCC CRL-1573) (http://www.lgcstandards-atcc.org/) 

(Figure 18) were cultured and used for functional assays.  

 

JEG 3 cells are clonally derived lines isolated from human choriocarcionoma 

(Woods strain of the Erwin-Turner tumor) by Kohler et al (234). These cells release 

human chorionic gonadotrophin (hCG) and somatomammotrophin and progesterone 

to media and are able to transform steroid precursors to estrone and estradiol. On the 

contrary, HEK293 cells are derived from human embryonic kidney (235). 

 

JEG3 cells were cultured in MEM (Minimum Essential Medium), supplemented 

with 10% Fetal Bovine serum (Thermo Fisher Scientific), 1% L-glutamin serum (Thermo 

Fisher Scientific) and 1% Penicillin/streptomycin serum (Thermo Fisher Scientific). 

HEK293 cells were cultured in DMEM (Dulbecco’s Modified Eagle Medium), 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin and 1% 

sodium pyruvate (Thermo Fisher Scientific) supplemented media. 

 

Reagents and materials 
• JEG3 cells (CLS Cell Lines Service GmbH, Eppelheim, Switzerland, Cat. No. 

300222). 

• HEK293 Cells (American Type Culture Collection, Manassas, VA, USA, Cat. No. 

1573). 
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Figure 18. JEG3 cell lines cultured at low (A) and high density (B). Human embryonic kidney HEK293 cells 

cultured at low (C) and high density (D). 

 

 

• MEM medium (500mL) (Thermo Fisher Scientific, Cat. No. 21090-022). 

• DMEM medium (500mL) (Thermo Fisher Scientific, Cat. No. 41965039). 

• Fetal bovine serum (1L) (Thermo Fisher Scientific, Cat. No. 10106185). 

• Penicillin-Streptomycin (10,000 U/mL) (100mL) (Thermo Fisher Scientific, Cat. 

No. 15140-122). 

• L-Glutamin (100mL) (Thermo Fisher Scientific, Cat. No. 25030081). 

• Sodium pyruvate (C3H3NaO3) (100mM) (100mL) (Thermo Fisher Scientific, Cat. 

No. 11360070). 

• Trypsin-EDTA (0.05%) (100mL) (Thermo Fisher Scientific, Cat. No. 25300-054).  

A 

C 

B 

D 
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• Cell culture hood (Class II cabinet, Bio II Advance, Azbil Telstar, Terrassa, Spain). 

• Incubator (Eppendorf AG, Cat. No CO17321001, Hamburg, Germany). 

• Water bath (JP Selecta group, Abrera, Spain, Cat. No. 032012). 

• Centrifuge Sorvall ST 8 (Thermo Fisher Scientific, Cat. No. 75007202). 

• Vacuum aspiration system (Integra Biosciences™, Hudson, NH, USA, Cat. No. 

158320). 

• Microscope (Carl Zeiss AG, Oberkochen, Germany). 

 

Procedure for thawing frozen cells  
1. Prepare supplemented media (Supplementary data 7). 

2. Remove the cryovial containing the frozen cells from storage and place into a 

37°C water bath. 

3. Pre-warm media at 37°C. 

4. Use a small crystal pipet to transfer the vial content to a flask and dilute with 

14mL of media. 

5. Incubate the culture at 37°C in the incubator at 5% CO2 for 4 days. 

 

Procedure for passaging cells 
1. Pre-warm supplemented media and trypsin-EDTA at 37°C. 

2. Remove and discard the cell culture media from the culture vessel with a 

crystal pipet and vacuum. 

3. Add 2.5mL trypsin-EDTA to the vessel and incubate at 37°C for 5 minutes. 

4. Prepare 2 new culture vessels by adding 14mL media. 

5. Observe the cells under the microscope for detachment.  

6. Add 7.5mL media to the vessel and pipet up and down. 

7. Pipet the appropriate volume into new cell culture vessels so that cell 

suspension is diluted. 

8. Incubate at 37°C in the incubator at 5% CO2 until cells are ready to be 

subcultured. 

 

7.10.3.2. Promoter transactivation experiments 
 
Transfection is the delivery of genetic material into eukaryotic cells to study the 

regulation of the genes, protein expression and function. It can be accomplished using 

various methods and reagents. These methods include physical (i.e. electroporation), 

chemical (i.e. liposome-mediated) or viral-based (i.e. adeno-associated virus) delivery 

systems. Chemical transfection methods are the most widely used methods.  

 

For functional studies, cells were cultured on 12 or 24-well plates and 

transfected with wild type (wt) or mutant vectors and a promoter reporter using either 

a calcium phosphate transfection protocol (Thermo Fisher Scientific) or Lipofectamine® 
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2000 Transfection Reagent (Thermo Fisher Scientific). 48h after transfection, cells were 

washed and lysed, before luciferase activity was measured with the Dual-Luciferase® 

Reporter (DLR™) Assay system (Promega AG, Wallisellen, Switzerland) on a Veritas 

microplate Luminometer reader (Turner Bio systems Luminometer and Software by 

Promega). Specific Firefly luciferase readings were standardized against Renilla control 

readings and results were expressed as relative luciferase units.  

 

We used calcium phosphate for the cotransfection of the vectors containing wt 

or mutant GATA4 and LHCGR and promoter reporters. When mixing DNA with calcium 

chloride to a buffered saline solution, a fine precipitate is formed and added to the 

surface of the cells. The cell will take up the precipitate by endocytosis. On the other 

hand, lipofection uses a cationic lipid to form a vesicle with the DNA and easily merge 

with the cell membrane. This liposome transfection was used for the transactivation 

studies of the wt and alterations found in the NR5A1 gene. 

 

Reagents and materials 
• Calcium phosphate transfection Kit (Cat. No. K2780-01, Thermo Fisher 

Scientific), containing Tissue Culture Sterile Water (2 × 12mL), 2X Hepes 

Buffered Saline (HBS) (2 × 12mL) and 2 M Calcium phosphate (CaCl2) (3 × 1mL). 

• Lipofectamine® 2000 Transfection Reagent (1.5mL) (Cat. No. 11668019, 

Thermo Fisher Scientific). 

• MEM medium (500mL) (Thermo Fisher Scientific, Cat. No. 21090-022). 

• DMEM medium (500mL) (Thermo Fisher Scientific, Cat. No. 41965039). 

• Opti-MEM™ I Reduced Serum Medium (500mL) (Thermo Fisher Scientific, Cat. 

No. 31985047).  

• Fetal bovine serum (1L) (Thermo Fisher Scientific, Cat. No. 10106185). 

• Penicillin-Streptomycin (10,000U/mL) (100mL) (Thermo Fisher Scientific, Cat. 

No. 15140-122). 

• L-Glutamin (100mL) (Thermo Fisher Scientific, Cat. No. 25030081). 

• Sodium pyruvate (100mM) (100mL) (Thermo Fisher Scientific, Cat. No. 

11360070). 

• Trypsin-EDTA (0.05%) (100mL) (Thermo Fisher Scientific, Cat. No. 25300-054). 

• Trypan Blue (50mL) (Merck, Cat. No. 93595). 

• Chorionic Gonadotropin, human (1mg) (BioVision, Inc., Milpitas, CA, USA, Cat. 

No. 4778-1000). 

• Cell culture hood (Class II cabinet, Bio II Advance, Azbil Telstar, Terrassa, Spain). 

• Incubator (Eppendorf AG, Cat. No CO17321001, Hamburg, Germany). 

• Water bath (JP Selecta group, Abrera, Spain, Cat. No. 032012).  

• Automated cell counter (Cat. No. 145-0011, Biorad). 

• Vacuum aspiration system (Integra Biosciences™, Hudson, NH, USA, Cat. No. 

158320). 
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Procedure for calcium phosphate transfection 

• 24 hours before transfection, trypsinize cells and culture to be 50% confluent. 

• Prepare transfection mixture for each variant. To a tube labeled A, add the 

corresponding volume of plasmid DNA (500ng/well), empty vector (750ng/μL), 

promoter luciferase reporter vector (750 ng/well), pRL Renilla Luciferase 

Control Reporter Vector (25ng/well), 15μL 2 M CaCl2 and sterile water up to 

150μL. 

• To a tube labelled B add 150μL 2X HBS. 

• Drop by drop add tube A to tube B.  

• Incubate at RT for 30 minutes. 

• Add 100μL to each well as it corresponds.  

• Incubate for 5 hours at 37°C. 

• Pre-warm medium at 37°C. 

• Remove medium and discard it. Add 1mL new medium to each well. 

• Incubate for 48 hours at 37°C. 

 

Procedure for lipofection 
• 24 hours before transfection, trypsinize cells and culture to be 80% confluent. 

• Prepare DNA/ Opti-MEM™ solution for each variant. To a labeled tube, add the 

corresponding volume of plasmid DNA (125ng/well), empty vector (125ng/μL), 

promoter luciferase reporter vector (500ng/well), pRL Renilla Luciferase 

Control Reporter Vector (25ng/well), and 50μL Opti-MEM™.  

• Prepare lipofectamin/ Opti-MEM™ solution for each well by mixing 5μL 

lipofectamin to 45μL Opti-MEM™. 

• Add 110μL lipofectamin/ Opti-MEM™ solution to each DNA/ Opti-MEM™ 

solution. 

• Incubate the DNA-lipid complex for 5 minutes at room temperature.  

• Trypsinize and culture cells in 1mL medium in 24-well plates.  

• Add 100μL DNA-lipid complex per well as it corresponds.  

• Incubate for 48 hours at 37°C. 

 

7.10.3.2.1. hCG stimulation on LHCGR promoter transactivation 
experiments 

 
Subsequent experiments were performed to assess the cAMP produced by the 

HEK293 cells under both basal and human Chorionic Gonadotropin-stimulated 

conditions after the transfection with the different LHCGR variants.  

 

To determine the cAMP reporter response (CREB) on HEK293 cells transfected 

with LHCGR wt and mutant, we added increasing concentrations of human Chorionic 
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Gonadotropin 48 hours after transfection had started. We prepared the following 

concentrations: 0ng/mL, 3ng/mL, 30ng/mL, 300ng/mL, 1000ng/mL and 3000ng/mL 

and added 5μL to each corresponding well. We incubated overnight and measured 

luciferase. 

 

7.10.3.2.2. Luciferase assay  
 

The luciferase reporter assay (Figure 19) is commonly used as a tool to study 

gene expression at the transcriptional level. Firefly luciferase enzyme is able to emit 

light via a chemical reaction in which luciferin is converted to oxyluciferin by the 

luciferase enzyme. Some of the energy released by this reaction is in the form of light. 

To perform the reporter assay, the regulatory region of the gene of interest has been 

cloned upstream of the luciferase gene in one expression vector. After transfection 

and cell lysate has been collected, luciferase activity is measured by adding luciferin 

and other necessary cofactors using a luminometer. Since the gene of interest is fused 

to the luciferase reporter gene, the luciferase activity is directly correlated with its 

activity. 

 

 

Figure 19. Picture of the principles of a dual luciferase reporter assay. Modified from Ohmiya Y, 

Applications of bioluminescence (http://photobiology.info/Ohmiya.html). 

 

 

Reagents and materials 
• Dual-Luciferase® Reporter (DLR™) Assay system (Promega AG, Wallisellen, 

Switzerland, Cat. No (E1910), containing Luciferase Assay Substrate (1 vial), 
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Passive Lysis Buffer (PLB), 5X (30mL), Luciferase Assay Buffer II (10mL), Stop & 

Glo® Substrate (200μl) and Stop & Glo® Buffer (10mL). 

• Rocking Platform Shaker (VWR, Radnor, PA, USA, Cat. No. 10860-662). 

• 96-well plate (Thermo Fisher Scientific, Cat. No. 136101). 

• Veritas microplate Luminometer reader (Promega AG, Cat. No. E4861). 

• Veritas™ Software (Promega AG). 

 

Procedure for Dual luciferase reporter assay  
1. Prepare Passive Lysis Buffer 1X from PLB 5X. Place on ice until use. 

2. Remove media from all the wells. 

3. Add 150µL PLB 1X to the wells. 

4. Place the culture plate on a rocking platform for 15 minutes at room 

temperature. 

At this point plate could be stored at -20°C. 

5. Prepare Stop & Glo solution for each well by mixing 1μL Stop & Glo substrate 

50X with 49μL Stop & Glo Buffer. Place on ice until use. 

6. Prepare LAR II solution for each well by transferring 50μL of the Luciferase 

Assay Buffer II to a 15mL tube. 

7. Pipette up and down the lysate to obtain a homogeneous suspension and add 

50μL to a 96-well plate for luminometer. 

Store the rest of the lysate at -20°C. 

8. Read the plate on the Veritas microplate luminometer reader following 

manufacturer’s instructions. 

 

7.10.3.2.3. Protein expression study  
 
For protein detection and quantification western blot technology was used. 

From a complex mixture of proteins extracted from transfected cells the specific 

protein will be identified through a separation by size, transference to a solid support 

and marking a target protein using primary and secondary antibodies to visualize.  

 

HEK293 cells were transfected with either wt or mutant NR5A1 expression 

vector, which carried a HA-Tag. Cells were lysed and western blot was performed using 

an antibody against HA (Human influenza hemagglutinin)-Tag (Merck KGaA, Cat. No. 

H3663-100UL). Expression of β-actin protein was used as a control. Steroidogenic 

Factor-1 (SF1) expression bands should be visualized at 53KDa and the positive control 

at 42KDa.  
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Reagents and materials 
• Protease Inhibitor Cocktail (Merck, Cat. No. 11836153001) (See preparation on 

Supplementary data 7). 

• EDTA (Fluka Analytical, St. Gallen, Switzerland, Cat. No. 3610). 

• Tris (C4H11NO3) (Merck, Cat. No. 8382). 

• Triton X-100 (C14H22O(C2H4O)9) (Merck, Cat. No. T8787-100ML). 

• DC™ protein assay Kit II (Bio-Rad Cat. No. 5000112), containing DC™ Protein 

Assay Reagent A, DC™ Protein Assay Reagent B and DC™ Protein Assay Reagent 

S. 

• Bovine Serum Albumin (1g) (Roth AG, Zürich, Switzerland, Cat. No.80763). 

• Tween 20 (C58H114O26) (50mL) (Merck, Cat. NoP9416). 

• Milk (350g) (Rapilait). 

• β-Mercaptoethanol (C2H6OS) (100mL) (Merck, M6250-100ML).  

• Sodium chloride (NaCl) (1Kg) (Merck, Cat. No. S9888) (mw: 58.4g/mol). 

• Potassium chloride (KCl) (Merck, Cat. No. P9333). 

• Disodium hydrogen phosphate (Na2HPO4) (Merck, Cat. No.  NIST2186II). 

• Potassium dihydrogen phosphate (KH2PO4) (Merck, Cat. No. NIST200B). 

• Tris-MOPS-SDS Running Buffer Powder (5u) (GenScript, Cat. No. Cat. No. 

M00138). 

• Transfer Buffer Powder (10u) (GenScript, Cat. No. Cat. No. M00139). 

• Electrophoresis marker (Bio-Rad, Cat. No. 161-0374). 

• Methanol (CH3OH) (1L) (Merck, Cat. No. 34860-1L-R). 

• Monoclonal Anti-HA antibody produced in mouse (1.0mg/mL) (Merck, Cat. No. 

H3663-100UL). 

• IRDye® 800CW Goat anti-Mouse IgG (Immunoglobulin G) (H + L) (1.0mg/mL), 

(LI-COR Biotechnology GmbH, Bad Homburg, Germany, Cat. No. P/N 926-

32210). 

• IRDye® 680RD Donkey anti-Mouse IgG (H + L) (1.0mg/mL), (LI-COR 

Biotechnology GmbH, Cat. No. P/N 925-68072). 

• Anti-β-Actin antibody, mouse monoclonal (1.0mg/mL) (Merck, Cat. No. A1978-

100UL). 

• 1X Odyssey Blocking Buffer (500mL) (LI-COR Biotechnology GmbH, Cat. No. P/N 

927-40000). 

• Tris-buffered saline with Tween® 20 (TBS-T) (10 tablets) (Merck, Cat. No. 

91414-10TAB). 

• GenScript ExpressPlus™ PAGE Gels (20u) (GenScript, Piscataway, NJ, USA, Cat. 

No. M41212). 

• Centrifuge Sorvall ST 8 (Thermo Fisher Scientific, Cat. No. 75007202). 

• ELISA Microplate Reader (Molecular Devices LLC, San Jose, CA, USA, Cat. No. 

0200-2013). 
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• 96-well plate (Thermo Fisher Scientific, Cat. No. 136101). 

• Gel tank (Bio-Rad). 

• Heating-block (Thermo Fisher Scientific, Cat. No. 88880028). 

• Cassette Opener (GenScript, Cat. No. L00674). 

• Blot Absorbent Filter Paper (Bio-Rad). 

• Blotting system fiber pad (Merck, EP1504-8EA). 

• PVDF Western Blotting Membranes (Merck, Cat. No. 3010040001). 

• Rocking Platform Shaker (VWR, Radnor, PA, USA, Cat. No. 10860-662). 

• LI-COR Odyssey Imaging system (LI-COR Biotechnology GmbH). 

• SoftMax® Software (Molecular Devices LLC). 

 

Procedure for Western Blot 
1. Measurement of protein concentration 

• Prepare 1X Lysis Buffer for each well by mixing 15μL 10X Protein 

Inhibiting Cocktail with 135μL Protein Lysis Buffer.  

• Remove media from all the wells. 

• Add 150μL 1X Protein Lysis Buffer to the wells. 

• Homogenize the lysate with a syringe and transfer to 1.5mL tubes. 

• Centrifuge at 13200 rpm for 10 minutes at 4°C. 

• Prepare standards by diluting Lysis Buffer in BSA to obtain 

concentrations that range from 5.6mg/mL to 0.0875mg/mL. 

• Prepare master mix for each well by mixing 0.5μL DC™ Protein Assay 

Reagent S with 24.5μL DC™ Protein Assay Reagent A. 

• Transfer 5μL of the samples, blank and standards to the 96-well plate. 

• Add 25μL master mix to the wells. 

• Add 200μL DC™ Protein Assay Reagent B to the wells. 

• Incubate plate for 20 minutes at room temperature. 

• Read by Softmax at an absorbance of 650nm and calculate protein 

concentration. 

2. Protein denaturation 

• Prepare the protein denaturation mix to have 50μg of total protein by 

mixing protein with 5X β-mercaptoethanol and bidistilled water up to 

50μL. 

• Incubate at 95°C for 10 minutes and spin down 

3. Gel electrophoresis 

• Prepare 1X MOPS and Transfer buffer (Supplementary data 7). 

• Remove the comb of the already prepared gel and place in the gel tank. 

• Fill the gel tank with 1X MOPS buffer 

• Load 24μL of the sample and 5μL of electrophoresis marker. 

• Run gel at 140V for 45 minutes. 
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• Open the cassette and remove the gel. 

4. Wet transfer 

• In a tray, pre-wet for 10 minutes 4 filter papers and 2 fiber pads. 

• Pre-wet PVDF membrane in methanol for 2 minutes. 

• Prepare the sandwich on the black panel as follows: one fiber pad, two 

filter papers, SDS gel, PVDF membrane, two filter papers and one fiber 

pad. 

• Fill the gel tank with Transfer buffer. 

• Run at 100V for 90 minutes. 

5. Blocking and incubating with antibodies 

• Prepare Blocking buffer, Washing buffer and primary antibody dilution 

buffer (Supplementary data 7).  

• Incubate membrane with 10mL Blocking buffer on a shaker for 2 hours. 

• Add 2μL primary antibody, Anti HA produced in mouse, to 4mL primary 

antibody dilution buffer  

• Immerse the membrane in the primary antibody dilution buffer and 

incubate overnight at 4°C on a shaker. 

• Remove the buffer and wash with washing buffer in the shaker for 5 

minutes. 

• Repeat previous step 3 more times. 

• Dilute 1μL secondary antibody, Goat anti-mouse, in 10mL Blocking 

buffer.  

• Immerse the membrane in the buffer and incubate for 1 hour at RT on 

the shaker. 

• Remove the buffer and wash with washing buffer in the shaker for 5 

minutes. 

• Repeat previous step 3 more times. 

• Incubate membrane with B-actin antibody diluted in 5%BSA for 2 hours 

in a shaker. 

• Remove the buffer and wash with 1X TBS-T in the shaker for 5 minutes. 

• Repeat previous step three more times. 

• Dilute 1μL secondary antibody, Donkey anti-mouse, in 10mL 0.5X 

Odyssey Blocking Buffer. 

• Immerse the membrane in the buffer and incubate for 2 hour at room 

temperature on the shaker. 

• Wash as previously described. 

6. Visualize membrane in the LI-COR Odyssey Imaging system at an absorbance of 

680 and 800nm. 
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7.10.4. Statistical analysis 
 

Obtained data from the repeated luciferase assays were summarized giving the 

mean±SEM (Standard error of the mean). Data were statistically analysed using 

Student’s t test (Microsoft Excel, Microsoft Corporation, Redmond, WA, USA). Results 

were considered statistically significant when P<0.05.  
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 Hereafter, I will present the results from the clinical and molecular 

characterization of our DSD cohort. Firstly, a general description of the population is 

made. Subsequent to the validation of the targeted gene panel, I present the genetic 

results obtained either by a gene candidate approach or next generation sequencing 

(NGS). Finally, results from the in vitro studies are shown. 

 

8. GENERAL CHARACTERISTICS OF THE DSD COHORT  
 

A total of 125 independent patients with a DSD diagnosis were analysed in this 

study. We have classified the cohort of patients according to the consensus statement 

on management of intersex disorders published in 2006 (172). The various aetiologies 

of DSD are shown in Supplementary data 2.  

 

Out of the 125 patients that were included, 99 had 46,XY DSD and 24 had 46,XX 

DSD. We also identified a sex chromosome DSD in 2 patients (Supplementary data 2). 

The age of presentation in our series varied from newborn to 41 years and represented 

individuals from 14 populations, which have been grouped into European Caucasian 

(Spain, Switzerland and Rumania) (110 cases, 88.0%), Northern African (Morocco, 

Algeria, Tunisia) (3 cases, 2.4%), Sub-Saharan African (Mauritania, Sierra Leone, 

Madagascar, Equatorial Guinea) (8, 6.4%), Asian (Syria, China, India) (3, 2.4%) and 

American (Mexico) (1, 0.8%). 

 

It is important to note that persons diagnosed with congenital adrenal 

hyperplasia (CAH) due to steroidogenesis defects, such as 21-hydroxylase or 11-

hydroxylase deficiency were not included in this study. We only examined patients 

with non-CAH primary adrenal insufficiency (PAI).  

 

Family members from these 125 individuals were analysed once a genetic 

variant explaining the phenotype of the index case was identified. This comprised 97 

family members that were studied. However, samples of first degree family members 

of 35 probands were not available and segregation studies could not be made.  

 

 

8.1.   46,XY DSD PATIENTS 
 

Based on chromosomal karyotyping and clinical presentation, 99 individuals 

were classified as having 46,XY DSD in which external genitalia were not clearly male or 

female (See Figure 20, page 142). The most common cause at clinical presentation was 

the disorders of testicular development, diagnosed in 47 patients. Testicular 

dysgenesis was suspected in 43 individuals and among the 17 patients with complete 

gonadal dysgenesis, female external and internal genitalia, primary amenorrhea and 
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lack of secondary sex characteristics was mainly reported. Out of them, three 

presented a clitoral hypertrophy, although imaging revealed uterus or vagina. Twenty-

two patients with partial gonadal dysgenesis presented with a wide range of genital 

ambiguity. Four patients were referred without a classified gonadal dysgenesis. On the 

other side, three patients had gonadal regression with male genitalia and non-localized 

gonads after laparoscopy, and one case was reported as an ovotesticular DSD.  

 

On the other side, disorders of androgen synthesis or action were referred in 32 

patients. Six individuals had a suspected androgen biosynthesis defect. Of these, five 

were assigned as males and were born with severe hypospadias, normal testes and in 

two cases curved penis. Four patients out of these were diagnosed based on hCG-

stimulated testosterone to dihydrotestosterone (DHT) ratio. On the other side, one 

patient was reared as female and was virilised at puberty. 

 

Androgen insensitivity syndrome (AIS) was suspected in 21 individuals. Among 

the ten patients with complete AIS (CAIS), four had female genitalia and primary 

amenorrhea during adolescence. Inguinal hernias or palpable gonads were reported in 

3 newborns. Another three cases were suspected to be CAIS after amniocentesis had 

revealed a disagreeing 46,XY karyotype in females. All the infants were born with 

female external genitalia and inguinal gonads. Four PAIS patients presented with 

gynecomastia or different degrees of genital undervirilization, such as micropenis with 

hypospadias in some cases, and hypertrophic erectile organ. Other seven cases were 

not classified as complete or partial due to the absence of clinical information. 

 

Furthermore, we had 5 male patients presenting with precocious puberty, 

adrenarche or bilateral gynecomastia during childhood that led to a suspected LH 

receptor defect. 

 

Among the cases that were classified as other 46,XY DSD, two males were 

reported to have isolated hypospadias and descended scrotal testis while seven 

patients were diagnosed with a non-CAH primary adrenal insufficiency and were 

initially referred to clinician with varying degrees of symptoms such as respiratory 

distress, vomiting and asthenia, hypoaldosteronism, salt wasting and hyponatremia. 

The age of presentation of these ranged between newborn and 3 years. The 

phenotype was not determined in one case. 

 

Additionally, 7 individuals were stated as 46,XY DSD but couldn’t be classified. 

They presented mainly with undervirilized phenotypes, such as cryptorchidism, 

micropenis or non-isolated hypospadias. 
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Figure 20. Classification of the 46,XY DSD patients based on the clinical diagnosis. Circles indicate the number of cases. 
AIS, androgen insensitivity syndrome; CAH, congenital adrenal hyperplasia; DDS, Denys-Drash syndrome; FS, Frasier syndrome; PAI, primary adrenal insufficiency 



 

143 
 

8.2   46,XX DSD PATIENTS 
 

We also studied 24 patients with 46,XX DSD (Figure 21). Among the patients 

with disorders of ovarian development, we tested 8 cases with suspected gonadal 

dysgenesis. These, largely presented female genitalia, primary amenorrhea, lack of 

secondary sexual characteristics or hypergonadotropic hypogonadism. One patient 

had bilateral inguinal hernias and neonatal ovaries were shown on probing. Three 

cases with ovotesticular (OT) DSD were included in the cohort. They were reared as 

males and presented with different degrees of genital ambiguity. Laparoscopy 

confirmed the presence of ovotestes in the infants. Moreover, six patients had 

testicular (T) DSD and denoted mainly cryptorchidism, as well as gynecomastia and 

azoospermia in some cases when diagnosed in adulthood. Finally, two out of three 

cases with a suspected Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome had 

primary amenorrhea at puberty, while one subject was diagnosed at childhood. 

Imaging revealed the absence of uterus, vagina and unilateral kidney agenesia in all 

the cases.  

 

The disorder could not be defined in 4 cases. These, were referred with 

different phenotypes such as complete pubertal development and secondary 

amenorrhea, male external and internal genitalia or primary amenorrhea and delayed 

puberty in which maternal virilisation during pregnancy had occurred.  
 

 
Figure 21. Classification of the 46,XX DSD patients based on the clinical diagnosis. Circles indicate the 
number of cases. 
 
 

 None of the 46,XX DSD patients was referred due to a disorder of androgen 

excess. 
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8.3 SEX CHROMOSOME DSD 
 

Two patients had mixed gonadal dysgenesis. In the newborn case, labioscrotal 

fusion and inguinal hernia were recorded and genitoplasty was required. The second 

patient referred primary amenorrhea as a young adult. On Magnetic Resonance 

Imaging (MRI), a hypoplastic uterus was shown, but gonads were not visualized in any 

case. Karyotype was 45,X0/46,XY in the two subjects. 

 

 

9. ANALYSIS OF THE TARGETED GENE PANEL 
 

At the beginning direct Sanger sequencing was used for the molecular diagnosis 

of DSD patients. In 2015 we developed a customized gene panel and therefore, panel 

validation was required as a first step.   

 
 
9.1. PANEL VALIDATION 

 
9.1.1. Evaluation of quality metrics in each run and library 

 
To validate the performance of the targeted panel sequencing we assessed the 

quality metrics given in each run (Table 7). Considering the 11 runs, the mean number 

of reads was 1123.2 Mbp and the read length was 242.1 bp. We examined the AQ20 

score, which corresponds to the quality level at which the error rate is 1% or less, and 

found that the total number of bases and the mean segment length were 1023.9 Mbp 

and 232.6 bp, respectively, which means that 90.7% and 96% were high quality base 

reads and segments. The mean longest alignment was 487.5pb at AQ20. 

 

Total number of reads varied between 532 Mega and 1.9 Giga base pairs. The 

difference in the number of reads among the runs is given due to the use of Ion 318™ 

Chips instead of Ion 316™ Chips since run 7. The greater capacity of the Ion 318™ Chip 

increased the total number of reads and the mean depth of all the libraries. The 

percentage of aligned bases to the reference sequence was 99% in all the runs, except 

in run 7, and accuracy was between 99.3% and 99.6%. 
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Table 7. Quality metrics given in the 11 runs performed for the sequencing of the DSD cohort. 
 

Run Number of 
bases 

Mean read 
length (bp) 

Aligned 
bases 

(%) 

Accuracy 
(%) Metrics at the quality level (AQ20)  Metrics of the libraries in each run 

     

Number of 
bases (% bp) 

Mean read 
length (% 

bp) 

Longest 
alignment 

(% bp) 

 
Mean depth Uniformity 

(%) On target (%) Mapped reads 
     

1 532 M 229 99 99.3 485 M (91.1)1 217 (94.7)1 470  101.4-524.6 86.1-91.1 94.5-96 112109-561952 
2 691 M 223 99 99.3 606 M (87.7)1 211 (94.6)1 460  118.5-431.4 77.3-90.7 92.4-96.2 133276-491692 
3 711 M 217 99 99.4 628 M (88.3)1 208 (95.8)1 460  148.8-354.8 87.4-90.4 94.7-95.9 166327-407373 
4 871 M 241 99 99.5 786 M (90.2)1 232 (96.3)1 488  147.0-345.6 75.1-90.9 91.9-94.6 170072-355568 
5 978 M 243 99 99.5 889 M (90.9)1 234 (96.3)1 510  124.0-413.4 63.97-89.6 93.1-95.2 148919-420999 
6 812 M 238 99 99.4 729 M (89.8)1 231 (97.0)1 506  160.1-302.1 87.6-89.9 81.8-94.4 176079-345955 
7 1.9 G 265 100 99.6 1.75 G (92.11) 258 (97.3)1 552  1200 89.49 92.4 1164105 
8 1.26 G 231 99 99.4 1.14 G (90.5)1 220 (95.2)1 429  196.2-349.2 87.2-90.2 93.8-95.9 211364-380333 
9 1.48 G 259 99 99.5 1.37 G (92.6)1 250 (96.5)1 491  162.8-575.7 86.2-89.6 93.9-96.3 153650-548956 

10 1.64 G 264 99 99.5 1.52 G (92.7)1 256 (96.9)1 525  325.4-485.7 88.4-90.0 95.0-95.7 306575-456078 
11 1.48 G 253 99 99.4 1.36 G (91.9)1 242 (95.6)1 472  370.3 89.8 96 359366 

Mean 1123.2 M 242.1 99.1 99.4 1.02 M (90.7)1 232.6 (96.0)1 487.5  288.3 89.5 94.2 761735.5 
bp, base pair; G, giga base pair; M, mega base pair; 1Percentage of number of bases or mean read length at AQ20 quality level. 
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The mean depth analysis of the libraries showed that the occasions a given 

nucleotide in the genome was read varied between 101.4 and 1200. In addition, on 

average 94.2% of the targeted regions were covered and the distribution of the reads 

along targeted regions, or uniformity, was 89.5%. A single DSD library was included in a 

chip along with other disease related libraries in run 7. As the other samples created 

smaller libraries compared to DSD panel, this sample was overexpressed in the chip 

and the total number of bases and mean depth was higher in this run. In run 11, a 

single DSD library was also included but without overexpression of the sample, then 

quality metrics were in the normal range. 

 

In supplementary data 10, run results from the genetically diagnosed patients 

and positive controls are shown as an example of the values. 

 

9.1.2. Analytical validation of the targeted gene panel 
 

We validated the gene sequencing panel by comparing test results against a 

gold standard that establishes the true status of the subject. This validation evaluated 

the ability of our panel to detect a variant in our DSD-cohort. For panel validation 

purposes, we made measures of sensitivity, specificity plus false positive rate, and 

finally, repeatability. Because the performance varies by the type of variant, sensitivity 

and false positives were calculated separately for single variants and small indels or 

CNV (236). 

 

A selection of positive samples with mutation-specific assays for SRY, HSD17B3, 
AR, NR5A1, WT1 and NR0B1 during routine work, were included in the validation 

process. As shown in Table 8, positive controls involved different types of variants and 

were included in all the runs, except in runs 7 and 11 were only one DSD sample was 

included in the sequencing chip together with samples studied for other diseases. 

Moreover, we included 4 samples of healthy individuals, named true negatives. The 

next table (Table 8) summarizes the analytical values obtained in the panel validation. 
 
 

Table 8. Summary of the analytical validation values obtained for the targeted gene panel.  
 

 Single-nucleotide Variants (%) Copy number variations (%) 
Sensitivity 81.8 33.3 

Specificity 100 

False positives 13.3 81.2 

Repeatability 89.9 
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9.1.2.1. Sensitivity 
 

Sensitivity is defined as the ability to detect a positive result compared to a 

reference method. Sensitivity was calculated and compared with results obtained by 

Sanger sequencing for point mutations or Multiplex Ligation-dependent Probe 

Amplification (MLPA) for copy number variations (CNV). 

 

For point mutation testing we determined 10 single-nucleotide variants (SNVs) 

and a 4-nucleotide deletion. Among the SNV, 7 were missense changes and 3 were 

deletions or insertions of 1 nucleotide. All the changes detected in positive controls 

were confirmed by gene sequencing panel, except c.182delC in WT1 gene (Table 9), 

showing test sensitivity up to 81.8% (Table 8). The sensitivity yield was also tested for 

chromosome rearrangements. We compared deletions found by MLPA in samples 

POL0285 and GN0041, which was duplicated, with the results determined by NGS. 

Regarding POL0285, the workflow for CNV reported one variant which was the NR0B1 

gene deletion, while for GN0041 individual a single deletion was shown in one of the 

samples but did not correspond to the deletion of the AR exon 2. Then, sensitivity was 

33.3% for the determination of CNV (Table 8). 
 
 

Table 9. Sensitivity test done in positive controls. 
 

Case Run Gene and variant Zygosity Detected variant 

GN0012 Run 8 NR5A1, c.437G>C; p.Gly146Ala Het Yes 

GN0038 Run 2 
HSD17B3, c.845C>T; p.Pro282Leu Het 

Yes 

GN0038 Run 5 Yes 

GN0041 Run 3 AR, c.(1616+1_1617-1)_(1768+1_1767-1)del; 
p.(Arg539_Asp305del) Hemi 

Yes 

GN0041 Run 6 No 

GN0042 Run 4 NR5A1, c.614_615insC; p.Gln206ThrfsTer20 Het Yes 

GN0109 Run 3 
NR5A1, c.910_913delGAGC; 

p.Glu304CysfsTer26 Het Yes 

GN0111 Run 9 NR5A1, c.902G>A; p.Cys301Tyr Het Yes 

GN0119 Run 10 NR5A1, c.437G>C; p.Gly146Ala Hom Yes 

GN0123 Run 10 NR5A1, c.71A>T; p.His24Leu Het Yes 

GN0141 Run 1 SRY, c.391C>T; p.Pro131Ser Hemi Yes 

OT0327 Run 4 
WT1, c.182delC; p.Pro61ArgfsTer28 Het 

No 

OT0327 Run 5 No 

POL0285 Run 6 NR0B1, g.(?_29978097)_(30361290_?)del Hemi Yes 

Sane controls Run 1 - - - 
Hemi, hemizygous; Het, heterozygous; Hom, homozygous.  
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9.1.2.2. Specificity and false positives 
 

Specificity is defined as the capacity of the method to correctly recognize the 

cases without the disease under study. It is the proportion of true negatives that are 

correctly identified by the test. In our 4-sample validation, we did not identify any DSD-

related variant. Then, specificity was 100% (Table 8, page 146).  

 

However, due to the limited number of healthy subjects that were included, we 

further analysed the false positive rate for the DSD-cohort. A false positive is the error 

in which a test result indicates the presence of a condition, when in reality it is not 

present. Among the 98 point mutations found by NGS that were then tested by Sanger 

sequencing, 13 were not confirmed, so the false positive rate was 13.3% (Table 8).  

 

Validation of false positive rate for CNV was done considering samples 

(GN0034, GN0046 and OT0567) and positive controls (GN0041 and POL0285) in which 

a big deletion or insertion had been detected by NGS and had been confirmed by 

another method. Number of detected variants with the CNV workflow is shown in 

Table 10. The false positive rate for the detection of CNVs was 81.2% (Table 8).  

 

Due to the low sensitivity and high false positive rate found in the CNV 

validation (Table 8), the results obtained in the analysis of these types of mutations 

were poorly reliable. In those cases in which a CNV was suspected a Multiplex Ligation-

dependent Probe Amplification (MLPA), Quantitative Multiplex Polymerase chain 

reaction of Short Fluorescent Fragments (QMPSF) or array-based Comparative 

Genomic Hybridization (aCGH) was performed. 
 
 

Table 10. Rate of false positives determined for copy number variations by NGS. 
 

Case Copy Number Variations False positive rate 

 Detected by NGS False 
positive 

 

GN0034 1 0  

GN0041 0 0  

GN0041 1 1  

GN0046 1 1  

OT0567 12 11  

POL0285 1 0  

TOTAL 16 13 81.2% 
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9.1.2.3. Repeatability 
 

This term refers to the ability to replicate the findings, calculated as the 

percentage of detected variants in a sample included in two separate runs. We did not 

separate the measure of repeatability by type of variant because the ion reporter does 

not distinguish between copy number variations (CNV) and single-nucleotide variants 

(SNV) or small indels when using the workflow for CNV detection without applying the 

confident germline filter. 

 

We considered variants with a coverage depth ≥20x in three different samples 

and determined a mean repeatability of 89.9% (84.7% in GN0038 sample; 90.1% in 

OT0327 and 94.4% in GN0041) (Table 11).  
 

 
Table 11. Detected variants (≥20x) in the three different samples used for the calculation of 

repeatability. 
 

Case Variants  Variants among the 
different runs 

 Repeatability 
(%) 

Mean repeatability 
(%) 

 1st run 2nd run  Repeated Not repeated    

GN0038 230 228  210 38  84.7 

89.9 GN0041 250 243  241 13  94.9 

OT0327 245 253  236 26  90.1 

 
 

9.1.3. Evaluation of the amplicons 
 

After analysing the coverage data files, we observed a highly variable 

performance of the 874 amplicons in the panel. Besides the not covered regions in 
silico (Supplementary data 9), we evaluated the coverage of the amplicons in each 

sample using IGV (Integrative Genomics Viewer) and found a small number of them to 

which no reads were mapped in most of the studied samples (Supplementary data 11). 

We analysed the location of these amplicons and only those located in exons and 

exons boundaries were further studied via PCR-based Sanger sequencing 

(Supplementary data 12). In total, the surface that could not be read was 9.3%, then 

the design covered 90.7% of the amplicons. Those amplicons with a base coverage 

<20x were also sequenced. 
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9.2. VARIANT CALLING AND CHARACTERISTICS OF OBSERVED VARIANTS BY NGS 
 

Before filtering, 27,444 point variants or small indels were observed in the 

entire population in the genes included in the panel (Supplementary data 13). Once 

the filtering was done (p-value <0.001 and MAF <0.05), 4,688 variants were still 

annotated. Of these, 36% were observed recurrently in the cohort and were 

understood as common population variants or as sequencing artefacts. In total, we 

found 34.5 observations on average for each patient. Remaining variants were curated 

based on the ACMG (American College of Medical Genetics) guidelines (229). 

 

Regarding the type of variant, almost 58% (57.9%) were characterized as SNV 

(Single-Nucleotide Variants) or MNV (Multiple Nucleotide Variant) after filtering 

process. Only 10% of the protein changing variants were missense. Small indels were 

also found, mainly frameshift deletions (23.5%). Among the curated variants 29 were 

missense (82.8%), 3 were frameshift deletions (8.5%) and 3 variants were determined 

as nonsense, frameshift insertion and inframe deletion.  

 

In the analysis of the CNVs, 29,885 variants were called and then reduced to 

457 CNV after the application of the confident germline CNV filter. Although the 

number of chromosome rearrangements detected by the customized panel was 

significant, the panel validation showed low sensitivity and high false positive rate for 

the CNV. Big deletions and insertions were only trustworthy when they were not 

repeated among the samples and could be visually confirmed using IGV (Integrative 

Genomics Viewer) and the coverage data files. The 4 samples with CNV that were 

confirmed by aCGH, MLPA or FISH techniques, included the whole and partial deletions 

of LHCGR, SRD5A2 and WT1 genes, as well as the translocation of SRY. Only 3 of the 

CNV had been called by the Confident Germline CNV filter. As done previously, variants 

were annotated and classified following the ACMG criteria.  

 

 

10. MOLECULAR CHARACTERIZATION OF THE DSD COHORT 
 
Firstly, genetic analysis was done in patients presenting a sex development 

anomaly by studying the genes or regions that are most often associated with the 

disease by a candidate gene approach. In a second phase and after the 

implementation of next generation sequencing (NGS) in our laboratory, new patients 

and those with negative results in classic DSD-related genes were studied by a targeted 

panel.  
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10.1. SINGLE-GENE TESTING  
 

As previously mentioned, gene by gene sequencing was done regularly for the 

genetic diagnosis of DSD patients. In 2015, NGS was implemented in our laboratory 

and single-gene tests, such as Sanger sequencing, MLPA or aCGH, were done 

depending on the judgement on the most likely genetic cause. As shown in Table 12, a 

total of 127 DSD-gene tests were requested for 81 patients, mostly the PCR-based 

sequencing of SRY and AR gene (34 tests, each), followed by the sequencing of the 

coding exons of NR5A1 gene (21 tests).  

 

From the aforementioned requests, only five Sanger sequencing tests were 

done after the targeted gene panel had been validated. Two of these genetic orders 

corresponded to the sequencing of the NR0B1 gene in POL0285 and POL0301 cases, 

presenting with adrenal insufficiency. In the remaining cases LHCGR and AR genes 

were studied due to the suspicion of LH receptor defect (GN0164) or AIS (GN0202, 

GN0177). Due to syndromic features associated with DSD an aCGH was performed in 

case GN0159.  

 

Finally, a plausible molecular finding was done in 36 patients by applying a 

candidate gene approach (36 out of 81, 44.4%) (Table 12). Among these, 13 patients 

had clinical features for an androgen insensitivity syndrome (Table 13, page 154) and 

sequencing of the AR gene was the prior genetic test in most cases. SRY gene missense 

variants or its translocation was found in 7 cases with 46,XX testicular DSD or 46,XY 

gonadal dysgenesis. The two coding exons of the NR0B1 gene were studied in the 7 

cases with an adrenal insufficiency diagnosis and the WT1 gene in the two individuals 

with a suspicion of Frasier syndrome. Two activating alterations were found in the 

luteinizing hormone receptor gene (LHCGR) that lead to precocious puberty in patients 

GN0068 and GN0088 and a deficiency in androgen biosynthesis defect due to a change 

in HSD17B3 in case GN0038. Moreover, variants in NR5A1 were determined in 4 cases 

with different phenotypes.  
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Table 12. Used approach to analyse each subject and previously studied genes. 
 

Case Previous studies Approach  Case Previous studies Approach  Case Previous studies Approach 

GN0001 FSHR and WNT4 NGS  GN00382 __ CGA  GN0096 __ NGS 

GN0003 SRY NGS  GN0039 
AR, SRD5A2 and 

SRY 
NGS  GN0100 AR, NR5A1 and MLPA4 NGS 

GN0004 - CGA  GN00411 - CGA  GN0101 - CGA 

GN0007 - CGA  GN00421 AR and HSD17B3 CGA/NGS  GN0103 FSHR and LHCGR NGS 

GN0009 - CGA  GN0043 SRY NGS  GN0104 SRY NGS 
GN0011 NR5A1 and SRY NGS  GN0046 AR NGS  GN0108 AR, NR5A1 and SRD5A2 NGS 

GN00121 - NGS  GN0050 NR5A1 and SRY NGS  GN01092 AR and SRY CGA 

GN0013 NR5A1 and SRY NGS  GN0051 SRY and MLPA4 NGS  GN01111 HSD17B3 and SRY CGA 
GN0014 SRY NGS  GN0054 - CGA  GN0112 - CGA 

GN0017 - NGS  GN0055 - CGA  GN0114 AR, NR5A1, SRY and MLPA4 NGS 

GN0018 SRY CGA  GN0056 SRD5A2 and WT1 NGS  GN0118 SRY NGS 
GN0020 SRY NGS  GN0059 SRY NGS  GN01191 - NGS 

GN0023 - CGA  GN0064 SRY NGS  GN0122 - NGS 

GN0024 SRY CGA  GN0066 - NGS  GN01231 AR CGA 
GN0025 - NGS  GN0068 - CGA  GN0124 AR, NR5A1 and SRD5A2 NGS 

GN0026 SRY NGS  GN0070 - NGS  GN0125 - CGA 

GN0027 SRY NGS  GN0075 - NGS  GN0132 - CGA 
GN0028 AR, FMR1 and SRD5A2 NGS  GN0076 - CGA  GN0133 - CGA 

GN0029 - NGS  GN0078 - CGA  GN0138 NR5A1 NGS 

GN0031 AR NGS  GN0080 - CGA  GN0139 - CGA 
GN0033 SRD5A2 NGS  GN0084 SRY and WNT4 NGS  GN01411 - CGA 

GN0034 
AR, HSD17B3, NR5A1 and 

SRD5A2 
NGS  GN0088 - CGA  GN0142 

AR, HSD17B3, NR5A1, SRD5A2 and 
MLPA4 

NGS 



 

153 
 

Table 12. Used approach to analyse each subject and previously studied genes (Continuation). 
Case Previous studies Approach  Case Previous studies Approach  Case Previous studies Approach 

GN0035 - CGA  GN0090 MLPA4 NGS  GN0144 - NGS 

GN0037 - CGA  GN0091 - CGA  GN0145 AR NGS 

GN0146 - CGA  GN0169 - NGS  GN0194 - NGS 
GN0147 AR NGS  GN0171 - NGS  GN0195 - NGS 

GN0148 AR, NR5A1 and SRY NGS  GN0173 - NGS  GN0196 - NGS 

GN0150 AR NGS  GN0174 - NGS  GN0198 - NGS 
GN0151 SRY NGS  GN0175 - NGS  GN0199 - NGS 

GN0152 AR NGS  GN0176 - NGS  GN0200 - NGS 

GN0153 - CGA  GN0177 - CGA  GN0201 - NGS 
GN0154 SRY and MLPA4 NGS  GN0178 - NGS  GN0202 AR NGS 

GN0155 AR, NR5A1 and MLPA4 NGS  GN0179 - NGS  GN0203 - NGS 

GN0156 LHCGR NGS  GN0182 - NGS  GN0204 - NGS 
GN0157 - NGS  GN0183 - NGS  GN0205 - NGS 

GN0158 SRY and MLPA4 NGS  GN0185 - NGS  GN0207 - NGS 

GN0159 - CGA  GN0186 - NGS  OT0567 - NGS 
GN0160 SRY NGS  GN0187 - NGS  POL0274 - CGA 

GN0162 - NGS  GN0189 - NGS  POL0285 - CGA 

GN0163 - NGS  GN0190 - NGS  POL0301 - CGA 
GN0164 LHCGR NGS  GN0191 - NGS  RE0045 AR, NR5A1, RET, SRY, WT1 and MLPA5 NGS 

GN0167 - NGS  GN0192 - NGS     

CGA, candidate gene approach; NGS, next generation sequencing. 1 Sample used as a positive control; 2Relative of the sample used as positive control; 3Sample used as 
positive control, but is not a DSD patient; 4 SALSA MLPA probemix P185-C2 Intersex; 5 SALSA MLPA P118 WT1 probemix; -, not don
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Table 13. Genes analysed according to the suspected clinical diagnosis in the single-gene 

approach.  
 

Suspected diagnosis Altered gene Number of cases 

Androgen insensitivity syndrome 

AR 13 46,XY DSD gonadal dysgenesis 

46,XY Ovotesticular DSD 

46,XX Testicular DSD or 46,XX DSD 
SRY 7 

46,XY DSD complete gonadal dysgenesis 

Primary adrenal insufficiency NR0B1 7 

Frasier syndrome WT1 2 

46,XY DSD LH Receptor defect LHCGR 2 

46,XY DSD Androgen biosynthesis defect HSD17B3 1 

46,XY DSD gonadal dysgenesis 
NR5A1 4 

Androgen insensitivity syndrome 

 
 

10.2. GENERAL CHARACTERISTICS OF THE GENETIC FINDINGS 

 

In our cohort 81 rare variants were identified in DSD-associated genes either by 

the candidate gene approach or NGS (Table 14). Of these, 20 were repeated more than 

once, thus we determined 61 single variants in 20 clinically relevant DSD genes.  
 

Variants in the AR gene were the most common. Among the 15 different 

changes (24.6%) found in 16 46,XY DSD individuals, all but one were classified as 

pathogenic, as they had been described in a DSD phenotype or were null variants.  

 

Secondly, we determined 7 pathogenic variants in the NR0B1 gene (11.3%). All 

but 2 had been previously associated to adrenal insufficiency, including missense, 

frameshift causing alterations and big deletions. 

 

NR5A1 gene had the third highest number of variants called. Twenty-one 

patients had a NR5A1 gene change, although only seven were unique (11.3%). Among 

these, 3 were missense and one was a frameshift that had not been described before. 

 

We found five variants in WT1 (8.2%), a gene described in several syndromes in 

which gonadal dysgenesis is associated. We found two known mutations in intron 9 in 

two cases with Frasier syndrome and a partial deletion (from exon 7 to 10) in a male 

infant with cryptorchidism and Wilms’ tumour. Another two missense changes were 

discovered in WT1 gene.  
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Table 14. Number of patients, variants and type of variants in each gene. 

 

Gene 
Number of 

patients 

Number of different 

variants 
Type of variant 

AR 16 15 
11 missense,2 frameshift, 1 deletion and 1 

nonsense 

NR0B1 7 7 
2 deletions, 2 frameshifts, 2 nonsense and 1 

missense 

NR5A1 21 7 5 missense and 2 frameshift 

WT1 5 5 2 missense, 2 intronic and 1 deletion 

SRY 8 3 
6 gene translocations, 1 nonsense and 1 

missense 

MAP3K1 1 1 1 missense 

HSD17B3 1 1 1 missense 

CYP17A1 1 1 1 missense 

SRD5A2 3 3 2 missense and 1 deletion 

STAR 2 2 2 missense 

LHCGR 6 6 4 missense, 1 deletion and 1 nonsense 

WWOX 2 2 2 missense 

ESR1 1 1 1 missense 

ESR2 1 1 1 missense 

AMH 1 1 1 missense 

DMRT2 1 1 1 missense 

GATA4 1 1 1 missense 

HSD17B4 1 1 1 frameshift 

MAMLD1 1 1 1 missense 

ZFPM2 1 1 1 missense 
 
 

On the other side, SRY translocations were observed in 6 patients. Otherwise 

nonsense and an unreported missense variant were detected in two more cases 

harbouring a SRY defect. Of interest, a single mutation in the MAP3K1 gene, causing 

gonadal dysgenesis, was detected by NGS. 

 

Mutations in genes causing an androgen biosynthesis defect, such as HSD17B3, 
CYP17A1 and SRD5A2, were observed in 4 patients. All the subjects harboured 

homozygous pathogenic variants, except one patient with two variants in compound 

heterozygosis in the SRD5A2 gene. We also identified two unique not described 

variants in STAR gene. 

 

A total of 6 changes were observed in the LHCGR gene (9.8%). These, were 

mainly disease-causing known mutation (4 out of 6), divided into 3 single-nucleotide 
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variants and a complete gene deletion. We also identified 2 LH receptor novel variants 

in equal number of patients.  

 

We identified another 10 novel candidate variants in 10 patients. Two WWOX 

missense changes detected in our study were either classified as likely pathogenic and 

VUS, due to the results given by the prediction software. Interestingly, we identified 2 

single variants in ESR1 and ESR2 genes, all unreported. As ESR2 variants have been 

described in 46,XX DSD cases, we considered the missense change as probably 

deleterious. The remaining missense changes in AMH, DMRT2, GATA4, HSD17B4, 
MAMLD1 and ZFPM2 genes were classified as VUS and were only found in one patient 

each. 

 

 

10.3. CLASSIFICATION OF GENETIC VARIANTS  

 

Variants were evaluated and classified as previously reported in methodology.  

 

As shown in Table 15, a total of 81 variants, including 61 unique changes, found 

in 72 individuals are reported. Repeated changes are SRY gene translocations in 46,XX 

DSD individuals, or alterations located in AR (c.2323C>T;p.Arg775Cys) and NR5A1 

(c.437G>C;p.Gly146Ala) genes. Results given by the prediction software are shown in 

Table 16 (Page 161). 

 

We classified 54 variants out of 81 as pathogenic or likely pathogenic (66.7%) 

(See Figure 34, page 195). These, were mainly previously reported in association with a 

DSD phenotype (40 out of 54, 74.1%) and were mostly located in the AR and NR0B1 

genes, or were a Y-chromosome translocation confirmed by the detection of SRY 

material. The remaining 14 novel variants classified as pathogenic or likely pathogenic 

were identified in AR, NR5A1, NR0B1 and LHCGR most commonly, but also in ESR2, SRY 
and WWOX genes (1 variant called each). 

 

Moreover, 12 variants of unknown significance were identified in 11 individuals 

(12 out of 81, 14.8%). Of these 11 individuals, one harboured two variants of unknown 

significance and in 3 patients a deleterious variant in an additional gene was found. 

 

Regarding the p.Gly146Ala polymorphism in the NR5A1 gene, it was classified 

as likely benign and was determined in 15 cases. In 4 individuals (GN0147, GN0156, 

GN0157 and GN0194), further sequence variations were detected in more than one 

gene. 
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Table 15. Classification of the genetic variants identified in this work.  

 

Case Gene Variants Classification Location Zygosity Previously reported* Diagnostic 
approach 

GN0004 SRY 46,XX (SRY+) Pa - - Fechner PY (1993) CGA 

GN0007 SRY c.289C>T; p.Gln97Ter Pa Exon 1 Hemi Bilbao (1996) CGA 

GN0023 SRY 46,XX (SRY+) Pa - - Fechner PY (1993) CGA 

GN0054 SRY 46,XX (SRY+) Pa - - Fechner PY (1993) CGA 

GN0133 SRY 46,XX (SRY+) Pa - - Fechner PY (1993) CGA 

GN0141 SRY c.391C>T; p.Pro131Ser LP Exon 1 Hemi No CGA 

GN0159 SRY 46,XX.ish der(X)t(X;Y)(p22.3;p11.3)(SRY) Pa - - Yen (1991) CGA 

GN0187 SRY 46,XX.ish der(X)t(X;Y)(p22.3;p11.3)(SRY) Pa - - Yen (1991) NGS 

GN0012 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0028 
NR5A1 c.88T>A; p.Cys30Ser Pa Exon 2 Het No 

NGS 
STAR c.361C>T; p.Arg121Trp VUS Exon 4 Het No 

GN0042 
NR5A1 c.614_615insC; p.Gln206ThrfsTer20 Pa Exon 4 Het Camats (2012) 

CGA/NGS 
AMH c.428C>T; p.Thr143Ile VUS Exon 2 Het No 

GN0051 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0070 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0075 NR5A1 c.250C>T; p.Arg84Cys Pa Exon 4 Het Reuter (2007) NGS 

GN0090 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Hom Wada (2006) NGS 

GN0096 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Hom Wada (2006) NGS 

GN0109 NR5A1 c.910_913delGAGC; p.Glu304CysfsTer26 Pa Exon 5 Het No CGA 

GN0111 NR5A1 c.902G>A; p.Cys301Tyr LP Exon 5 Het No CGA 

GN0118 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0119 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Hom Wada (2006) NGS 

GN0123 NR5A1 c.71A>T; p.His24Leu Pa Exon 2 Het No CGA 

GN0158 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Hom Wada (2006) NGS 
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Table 15. Classification of the genetic variants identified in this work (Continuation). 

Case Gene Variants Classification Location Zygosity Previously reported* Diagnostic 
approach 

GN0163 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0182 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0199 NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) NGS 

GN0078 NR0B1 c.913C>T; p.Gln305Ter Pa Exon 1 Hemi Rodriguez-Estévez (2015) CGA 

GN0091 NR0B1 c.291delC; p.Glu98ArgfsTer166 Pa Exon 1 Hemi Guoying (2012) CGA 

GN0101 NR0B1 g.(?_30327014)_(30361290_?)del Pa - Hemi Guo (1995) CGA 

GN0153 NR0B1 c.528C>G; p.Tyr176Ter Pa Exon 1 Hemi No CGA 

POL0274 NR0B1 c.871T>A; p.Trp291Arg Pa Exon 1 Hemi Yeste (2009) CGA 

POL0285 NR0B1 g.(?_29978097)_(30361290_?)del Pa - Hemi Guo (1995) CGA 

POL0301 NR0B1 c.712_713delAC; p.Thr238LeufsTer60 Pa Exon 1 Hemi No CGA 

GN0009 WT1 c.1447+5G>A Pa Intron 9 Het Bruening (1992) CGA 

GN0132 WT1 c.1447+4C>T Pa Intron 9 Het Barbaux (1997) CGA 

GN0150 WT1 c.223G>A;p.Glu75Lys VUS Exon 1 Het No NGS 

GN0156 
WT1 c.545T>A; p.Met182Lys VUS Exon 2 Het No 

NGS 
NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Hom Wada (2006) 

OT0567 WT1 c.(1099-?_1551+?)del; p.(Asp367?_Leu517?)del Pa - Het Finken (2015) NGS 

GN0011 MAP3K1 c.2291T>G; p.Leu764Arg LP Exon 13 Het Granados (2017) NGS 

GN0020 WWOX c.1096C>G; p.Pro366Ala VUS Exon 9 Het No NGS 

GN0203 WWOX c.184G>A; p.Gly62Arg LP Exon 3 Het No NGS 

GN0198 
ESR1 c.1781C>T;p.Thr594Met VUS Exon 9 Het No 

NGS 
HSD17B4 c.524delC; p.Ala175GlufsTer26 VUS Exon 8 Het No 

GN0207 ESR2 c.661A>G; p.Arg221Gly LP Exon 5 Het No NGS 

GN0142 DMRT2 c.1607C>T; p.Ser536Leu VUS Exon 4 Het No NGS 

GN0155 ZFPM2 c.3077C>T, p.Ala1026Val VUS Exon 8 Het No NGS 

GN0154 MAMLD1 c.2009C>T; p.Thr670Ile VUS Exon 5 Het No NGS 
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Table 15. Classification of the genetic variants identified in this work (Continuation). 

Case Gene Variants Classification Location Zygosity Previously reported* Diagnostic 
approach 

GN0018 AR c.2323C>T; p.Arg775Cys Pa Exon 6 Hemi Brown (1990) CGA 

GN0024 AR c.2086G>A; p.Asp696Asn Pa Exon 4 Hemi Ris-Stalpers (1991) CGA 

GN0035 AR c.2522G>A; Arg841His Pa Exon 7 Hemi McPhaul (1992) CGA 

GN0037 AR c.2178C>G; p.Phe726Leu Pa Exon 5 Hemi Quigley (1995) CGA 

GN0041 AR c.(1616+1_1617-1)_(1768+1_1767-1)del; p.(Arg539_Asp305del) Pa Exon 2 Hemi Quigley (1992) CGA 

GN0055 AR c.2710G>A; p.Val904Met Pa Exon 8 Hemi McPhaul (1992) CGA 

GN0076 AR c.2566C>T; p.Arg856Cys Pa Exon 7 Hemi McPhaul (1992) CGA 

GN0080 AR c.298insC; p.His100ProfsTer3 Pa Exon 1 Hemi No CGA 

GN0112 AR c.827delC;p.Pro276HisfsTer20 Pa Exon 1 Hemi No CGA 

GN0125 AR c.865G>T; p.Glu289Ter Pa Exon 1 Hemi Holterhus (2003) CGA 

GN0139 AR c.2642T>G; p.Leu881Arg LP Exon 8 Hemi No CGA 

GN0146 AR c.2473C>A; p.Gln825Lys Pa Exon 7 Hemi Hellmann (2012) CGA 

GN0164 AR c.2270A>G; p.Asn757Ser Pa Exon 5 Hemi Hiort (1996) NGS 

GN0177 AR c.1301C>T; p.Ser434Phe Pa Exon 1 Hemi Holterhus (2005) CGA 

GN0189 AR c.2567G>A; p.Arg856His Pa Exon 7 Hemi Batch (1992) NGS 

GN0194 
AR c.2323C>T; p.Arg775Cys Pa Exon 6 Hemi Brown (1990) 

NGS 
NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) 

GN0046 
SRD5A2 c.377A>G; p.Gln126Arg Pa Exon 2 Het Thigpen (1992) 

NGS 
SRD5A2 c. (-1+1_1-1)_(281+1_280-1)del; p.(Met1_Arg94del). Pa Exon 1 Het Fenichel (2013) 

GN0186 SRD5A2 c.271T>G; Tyr91Asp Pa Exon 1 Hom Wilson (1993) NGS 

GN0034 LHCGR arr [hg19] 2p16.3(48,905,663-48,983,208)x0 Pa - Hom Richard (2011) NGS 

GN0068 LHCGR c.1713G>T; p.Met571Ile Pa Exon 11 Het Kremer (1993) CGA 

GN0088 LHCGR c.1193T>C; p.Met398Thr Pa Exon 11 Het Kraaij (1995) CGA 

GN0147 
LHCGR c.757T>C; p.Ser253Pro Pa Exon 9 Hom No 

NGS 
NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) 
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Table 15. Classification of the genetic variants identified in this work (Continuation). 

Case Gene Variants Classification Location Zygosity Previously reported* Diagnostic 
approach 

GN0157 
LHCGR c.568C>A; p.Gln190Lys LP Exon 7 Het No 

NGS 
NR5A1 c.437G>C; p.Gly146Ala LB Exon 4 Het Wada (2006) 

GN0171 
LHCGR c.1660C>T; p.Arg554Ter Pa Exon 11 Het Latronico (1996) 

NGS 
GATA4 c.677C>T; p.Pro226Leu VUS Exon 3 Het Martinez de LaPiscina (2018) 

RE0045 CYP17A1 c.1246C>T; p.Arg416Cys Pa Exon 8 Hom Takeda (2001) NGS 

GN0038 HSD17B3 c.845C>T; p.Pro282Leu Pa Exon 11 Hom Andersson (1996) CGA 

GN0185 STAR c.50T>G; p.Met17Arg VUS Exon 1 Het No NGS 

CGA, candidate gene approach; Hemi, hemizygosis; Het, heterozygosis; Homo, homozygosis; LP, likely pathogenic; NGS, next generation sequencing; Pa, pathogenic; VUS, 

variant of unknown significance.*Previously reported in a DSD phenotype; -, none.
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Table 16. Results obtained by the different prediction software. 

 

Case Gene and variants Provean SIFT 
Polyphen 

HumDiv/HumVar 
Mutation 

Taster 
SNPs&go MutPred Panther VarSome 

GN0020 WWOX; p.Pro366Ala N(-2.36) T(0.328) B (0.009)/B(0.004) DC N(8;0.102) <0.50 PsD(324) VUS 

GN0028 
NR5A1; p.Cys30Ser Del(-8.22) Dam(0.000) PrD(0.988)/PrD(0.988) DC D(9;0.965) 1(0.03),2at S32 (0.04) PrD(911) LP 

STAR; p.Arg121Trp Del(-3.98) Dam(0.009) PrD (1.0)/PrD(0.995) DC N(4;0.309) 3(0.04) PsD(324) VUS 

GN0042 AMH; p.Thr143Ile Del(-2.88) Dam(0.035) B (0.411)/B(0.187) P N(5;0.231) <0.50 PrB(103) VUS 

GN0080 AR; p.His100ProfsTer3 N/A N/A N/A DC N/A N/A N/A VUS 

GN0111 NR5A1; p.Cys301Tyr Del(-6.67) Dam(0.0) PrD(1.0)/PrD(1.0) DC Dam(6;0.795) 4(3.7e-03),5(0.02) PrD(797) LP 

GN0123 NR5A1; p.His24Leu Del(-10.13) Dam(0.0) PrD(0.997)/PrD(0.993) DC D(6;0.787) 

6(0.02),7at 

Y25(0.03),4(0.02),8(0.0

4),9(0.03) 

N/A LP 

GN0139 AR; p.Leu881Arg Del(-4.48) Dam(0.001) PrD 1.0)/PrD(0.897) DC N(1;0.457) 10(0.27),9(0.11) PrD(455) LP 

GN0141 SRY; p.Pro131Ser Del(-7.12) Dam(0.001) PrD(1.0)/PrD(1.0) DC D(8;0.902) <0.50 PrD(912) LP 

GN0142 DMRT2; p.Ser536Leu N(-1.69) Dam(0.002) PsD(0.614)/B(0.038) DC N(8;0.124) <0.50 PsD(324) VUS 

GN0147 LHCGR; p.Ser253Pro N(-2.10) Dam(0.004) PrD(0.999)/PrD(0.986) DC D (9; 0.969) 9(8.9e-04) PsD(361) VUS 

GN0150 WT1; p.Glu75Lys N(-1.58) Dam(0.0) PrD(0.980)/PsD(0.856) DC N(1 0.427) <0.50 Dam(750) VUS 

GN0154 MAMLD1; p.Thr670Ile N(-1.54) Dam(0.042) N/A P N/A <0.50 N/A LB 

GN0155 ZFPM2; p.Ala1026Val N(0.03) T(0.603) B(0.0)/B(0.0) DC N(10;0.253) 11(0.00),5(0.01),12(0.03) N/A VUS 

GN0156 WT1; p.Met182Lys Del(-2.78) Dam(0.0) B(0.140)/B(0.143) DC D(3;0.632) <0.50 PrD(455) VUS 

GN0157 LHCGR; p.Gln190Lys N(-1.22) T(0.162) B(0.282)/B(0.170) DC D(8;0.898) <0.50 PsD(220) VUS 

GN0171 GATA4; p.Pro226Leu Del(-9.67) Dam(0.0) PrD(1.0)/PrD(1.0) DC D(10;0.992) 9(8.2e-03) PrD(1368) VUS 

GN0185 STAR; p.Met17Arg N(-1.74) Dam(0.003) B(0.091)/B(0.037) DC D(6;0.778) 

4(3.3e-03),13(8.3e-04) 
8(0.02),7at Y14 

(0.02),14at K21 (0.02) 

N/A VUS 
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Table 16. Results obtained by the different prediction software (Continuation) 

Case Gene and variants Provean SIFT 
Polyphen 

HumDiv/HumVar 
Mutation 

Taster 
SNPs&go MutPred Panther VarSome 

GN0198 
HSD17B4; p.Ala175GlufsTer26 N/A N/A N/A DC N/A N/A  Pa 

ESR1; p.Thr594Met N(-1.23) Dam(0.001) PrD(1.0)/PrD(0.976) P N(7;0.168) <0.50 N/A VUS 

GN0203 WWOX; p.Gly62Arg Del(-5.67) Dam(0.001) PrD(1.0)/PrD(0.995) DC D(1;0.544) 

6(0.04),15at Q65 

(0.02),16at Y61 

(0.02),4(0.04),9(0.01). 

PsD(1037) VUS 

GN0207 ESR2; p.Arg221Gly Del(-5.73) Dam(0.001) B(0.085)/B(0.086) DC D(3;0.627) <0.50 PrD(750) VUS 

POL0301 NR0B1; p.Thr238LeufsTer60 N/A N/A N/A DC N/A N/A N/A Pa 

Score given by each prediction program is given in brackets. Provean, the variant is predicted to be deleterious when the score is equal or below the default score threshold 

(-2.5). SIFT, ranges from 0 to1 and the substitution is predicted to be tolerated if >0.05. Polyphen, divided into HumDiv and HumVar, the score values nearer one are more 

confidently predicted to be deleterious. SNPs and GO, if disease probability is >0.5 the variant is predicted as disease. Mutpred, a g score of 0.50 suggest pathogenicity and 

then, a loss/gain of structural or functional property. Only predictions with a g score >0.50 are shown. (1) Gain of disorder; (2) Loss of catalytic residue; (3) Altered stability; 

(4) Altered disordered interface; (5) Loss of helix; (6) Loss of strand; (7) Loss of allosteric site; (8) Altered metal binding; (9) Altered transmembrane protein; (10) Gain of 

strand; (11) Gain of sheet; (12) Gain of loop; (13) Altered DNA binding; (14) Loss of acetylation; (15) Loss of Pyrrolidone carboxylic acid; (16) Loss of sulfation. Panther, A 

longer preservation time indicates a greater functional impact. B, benign; Class, classification; D, disease; Dam, damaging; DC, disease causing; Del; deleterious; LB, likely 

benign; LP, likely pathogenic; N, neutral; N/A, not available; ND, not determined; P, polymorphism; Pa, pathogenic; PrB, probably benign; PrD, probably damaging; PsD, 

possibly damaging; Pt, preservation time; RI, reliability index; T, tolerated; VUS, variant of unknown significance. Previously reported gene variations classified as pathogenic 

or likely benign were not analysed in silico. 
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10.4. CLINICAL AND MOLECULAR DESCRIPTION OF THE GENETICALLY 

POSITIVE PATIENTS 

 

I have grouped the patients presenting a genetic finding according to the main 
action of the gene during development. Firstly, I present those cases having a genetic 
variant in a gene related to gonadal determination and development, such as SRY, 
NR5A1, etc. Then, I describe patients with a disorder of sex development due to a 
genetic change in a gene associated to genital or sex differentiation (See 10.4.2, page 
182).  
 

10.4.1. Findings in genes related to gonadal development 

 

10.4.1.1. SRY variants 

 

A total of 8 patients had an alteration in the SRY gene. We detected the 
presence of the SRY gene in six 46,XX testicular DSD individuals, five were detected by 
either PCR or NGS and one by aCGH. PCR-based sequencing revealed another two 
single-nucleotide variants (SNV) in two patients with 46,XY DSD.  
 

10.4.1.1.1. Patients with a SRY gene translocation studied by PCR or 

NGS 

 
The majority of these patients presented with unilateral cryptorchidism or 

small testes at diagnosis, gynecomastia and azoospermia (GN0004, GN0133 and 
GN0187). All the patients had otherwise a normal male phenotype (Supplementary 
data 3). Individual GN0023 was referred at age 2 with ambiguous genitalia due to the 
presence of gonads in inguinal canal that descended after hCG stimulation. On the 
contrary, patient GN0054 presented at 41 years old with elevated FSH levels (FSH: 
31.7U/L; LH: 5.37U/L) and absence of body hair. Echography was normal. Karyotype of 
the patients was 46,XX.  

 
The presence of the SRY gene was studied by PCR in all these samples, except in 

GN0187, which was analysed by NGS. To validate the genetic findings a FISH analysis 
was also performed to determine the situation of the SRY gene. As usual, it was 
translocated to the distal tip of the short arm of the X chromosome [46,XX.ish 
der(X)t(X;Y)(p22.3;p11.3)(SRY)].  
 

10.4.1.1.2. Patients with a SRY gene translocation studied by aCGH 

 

GN0159 male patient was born with hypospadias and unilateral cryptorchidism. 
At amniocentesis karyotype was 46,XX and at birth, FISH testing revealed the 
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translocation of the SRY gene (46,XX.ish der (X)t(x,y)(p22.3;p11.3)(SRY+)). 3 months 
later, penis was normal and 2mL testes were present in scrotum. The boy had 
developmental delay, microcephaly and partial agenesis of the corpus callosum. Then, 
Smith Lemli Opitz syndrome was suspected. At 9 years of age, he presented at Tanner 
stage I, augmented penis, right testis in scrotum and left in inguinal canal. Hormonal 
analysis indicated low testosterone with normal gonadotropins values. He was 
referred to dermatology service due to café au lait spots when he was 11 years old. 
Surgery for hypospadias was also performed. One year later, testicular scanner 
showed a right testis of 22.7x7.3mm in size and left testis located in inguinal canal 
(24x7.5mm). At 13 years of age, left orchidopexy was performed and no pubertal signs 
were observed.  

 
We made an aCGH to discard a possible deletion in the short arm of 

chromosome 6 (6p) related to the phenotype of the patient. However, we observed an 
8.12Mb deletion at Xp22.2-22.33, from position 2,709,027 to 10,830,236 (Figure 22). 
This deletion involved 19 genes, including MID1 (OMIM 300552) which has been 
related to Opitz G/BBB syndrome (OMIM 300000), a congenital malformation 
syndrome characterized by hypertelorism, hypospadias, cleft lip, 
laryngotracheoesophageal abnormalities, imperforate anus, developmental delay, and 
cardiac defects (237). Moreover, the imbalance has been described in some of the 
most common CNV databases, such as ISCA (International Standards for Cytogenomic 
Arrays) consortium and DECIPHER (Database of genomic variation and phenotype in 
humans using ensembl resources), as structural variation with pathogenic clinical 
significance. Some of the deleted genes encode proteins that could be responsible for 
the phenotype, even the hypospadias. On the other hand, we showed a 430.7Kb 
Yp11.2-p11.3 region translocation, from 2,654,967 to 3,085,681, comprising SRY, 
RPS4Y1, ZFY and TGIF2LY genes (Figure 22). The presence of the SRY sequence might 
explain the DSD in the GN0159 patient. This SRY translocation was confirmed by FISH 
technique (Figure 23, page 166).  
 

Both alterations suggested a Xp22; Yq11 chromosome translocations. These 
chromosomal abnormalities may be due to a balanced translocation in one of the 
parents’ genomes, therefore we performed a FISH analysis to clarify the origin of the 
CNV. Both parents presented normal hybridization patterns (Figure 23, page 166). 

 
10.4.1.1.3. Patients with single-nucleotide variants in SRY 

 
A missense and a nonsense variant were also identified in 3 individuals of two 

different families by sequencing the SRY gene. Index patient GN0007 was a 16-year-old 
female with a 46,XY karyotype who had not reached puberty. A small uterus was 
present, and two streak gonads were removed by laparotomy. Histology identified 
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bilateral gonadoblastomas. The sister of this index case was an apparently normal 
female with a 46,XY karyotype. Echocardiography revealed a small uterus. 
Supplementary data 3 shows the levels of gonadotropins and gonadal steroids in the 
index case. We found a hemizygous change of cytosine to thymine at location 291 of 
the SRY gene in both sisters. This mutation changes codon 97 from glutamine to a stop 
codon (c.289C>T; p.Gln97Ter) and results in a truncated protein. The father presented 
the variants as a mosaicism, while other male relatives had the wt genotype. This 
mutation has been previously reported by our group (238). 
 

 
Figure 22. aCGH detection of the Xp22; Yq11 translocation in the GN0159 patient. A, Ideogram of 
chromosome X. The area outlined by the dotted box is enlarged on the right. Log2 ratio plot of the 
patient relative to the control. Red dots represent probes with a log2 ratio below -0.5 and the blue dots 
greater than 0.5. The red area is the loss region, the 8.12Mb deletion at Xp22.2-22.33. B, Ideogram of 
chromosome Y. The blue area revealed a gain (430.7kb) at Yp11.2-11.31.  
 
 

Patient GN0141 had her gonads removed at puberty. Surgery showed streak 
gonads with tumoral aspect and gonadoblastoma, as well as remaining of Müllerian 
ducts. Treatment with oestrogens was prescribed and 10 years later, hormonal test 
revealed elevated gonadotrophins with high oestrogens levels. We found a C to T 
change in hemizygosis at position 391 (c.391C>T; p.Pro131Ser). The variant was 
predicted as potentially pathogenic since the wt amino acid and surrounding region is 
highly conserved (Supplementary data 14). Furthermore, another mutation has been 
described in the same codon associated to gonadal dysgenesis (239). 
 

A 

B 
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Figure 23. FISH confirms the Xp22:Yq11 translocation. A and B, representative metaphase spreads of the 
patient. The SRY specific probe (labelled in red) hybridizes to the Xp region of one of the X chromosomes 
(labelled in green, CEP X). Metaphase spreads of normal hybridization patterns of the patient’s father 
(C) and mother (D).  
 
 

10.4.1.2. NR5A1 variants 

 

We found 6 variants in the NR5A1 gene in six cases with a 46,XY karyotype. The 
subjects presented mainly, with ambiguous genitalia but also primary amenorrhea, 
bilateral inguinal masses and virilisation at puberty. Four of the six gene variants were 
point mutations that led to a missense change and 2 were frameshift (1 insertion and 1 
deletion).All were located throughout exons 2 to 5 and four of them were novel. All 
the identified variants were in heterozygosis. Three variants were found in other 
family members (cases GN0075, GN0109 and GN0111), whereas the c.88T>A in 
individual GN0028 appeared to be de novo. Complete family studies could not be done 
in the other patients (GN0042 and GN0123).  
 

 

 

A B 

C D 
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10.4.1.2.1. Patients with missense variants in the NR5A1 gene 

 
Case GN0028 was a newborn noted to have curved micropenis with scrotal 

hypospadias and bilateral cryptorchidism, corrected by surgery later. At 10 years of 
age, stimulation test with hCG resulted in a normal rise of testosterone (187.4ng/dL). 
At 12 years, his penis was 7.6cm in size, testes of 5mL were observed and presented a 
pubarche and axilarche stage V. Magnetic Resonance Imaging (MRI) showed testes of 
20x15x15mm and 14x15x35mm corresponding to right and left testis respectively. A 
small cyst was also observed in the right epididymis. At 14 years, biochemical analysis 
revealed elevated serum levels of gonadotropins (LH 11.4U/L, FSH 35.9U/L) and 
testosterone (412.5ng/dL) with low levels of AMH (<0.1ng/mL). At recent follow-up at 
15 years of age, penis was in the normal limit. He still presents high levels of LH and 
FSH with a testosterone of 518ng/dL. MRI demonstrated small cysts in both epididymis 
of 6.4mm and 2.7mm. Asperger syndrome was suspected at the age of 13 years old. 
Family history is remarkable for the following: patient’s mother has unilateral renal 
agenesis, as well as brother, with also vas deferens and left epididymis agenesis. We 
found the novel C to A change in the exon 2 (c.88T>A), which is predicted to result in 
the p.Cys30Ser variants. Both parents were studied and did not carry the variant, thus 
this NR5A1 variant is a de novo change in the patient. Brother was also negative for the 
variant.  
 

Index case of GN0075 family presented micropenis, scrotal hypospadias, 
undescended testis and bifid scrotum at birth (Supplementary data 2). Abdominal 
ultrasound (US) revealed no anomalies. Biochemically, LH and FSH were elevated (2.5 
and 3.7U/L, respectively) with a testosterone of 6750ng/dl during the first month. At 3 
months, four doses of testosterone were prescribed (50mg/dose) with a good 
response of the penis. At 5 years of age, physical examination showed a penis of 2.5cm 
in size, right testis of 2ml and testicular left hydrocele. At age 6, replacement 
testosterone treatment was started. Penis was normal (3cm) and pubic hair increase 
was noted. Interestingly, mother presented with premature menopause, maternal 
uncle with scrotal hypospadias at birth and aunt with menstrual disorders. A 
heterozygous C to T transition located at c.250 of the coding NR5A1 sequence 
predicted to replace an arginine with cysteine at position p.84 (c.250C>T; p.Arg84Cys) 
was found. The same heterozygous variant was also found in the mother, brother, 
maternal uncle, aunt and grandfather (Figure 24). The variant, located in exon 4, was 
described firstly by Reuter et al in a Japanese individual with dysgenetic testes and 
normal adrenal function (240). Since then, it has been reported in several cases with 
different phenotypes (241). 
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Figure 24. Pedigree and genotype information of the GN0075 family. Index case is indicated with an 
arrow.  
 
 

Patient GN0123 was noted at birth to have curved penis buried in pubis, 
perineal hypospadias, bifid scrotum and palpable gonads. At 2 years of age, biopsy 
showed testicular tissue without variants and laparoscopy didn’t show Müllerian rests. 
During the following years, hypospadias was corrected and at 10 years of age penis 
was 2.6cm, and both testicles were correctly located. Stimulation test with hCG 
resulted in a normal rise of testosterone. He started treatment for micropenis with 
testosterone (250 mg), which increased phallic size to 3.5 cm and began pubarche. At 
14 years of age, the boy had a fallus of 5.5 cm and testes of 2-3cc. Biochemically, 
gonadotropins were elevated (LH: 15U/L; FSH 55U/L) at a testosterone of 1.8ng/dL 
after HCG stimulation test. ACTH, cortisol and 17-hydroxypreogesterone were in the 
normal range. Intramuscular testosterone treatment was prescribed again for 6 
months. At the age of 15 years, penis was 7cm and testis 2cc. After two months of the 
suspension of the treatment LHRH stimulation test was done and gonadotropins and 
testosterone resulted in a normal rise (Supplementary data 3). The subsequent years, 
a second biopsy revealed the absence of germinal cells and Leydig cells hypoplasia, 
orchidopexy was performed and testosterone treatment was restored. Currently, he 
presents with a penis of 3-4 cm and testis of 2cc. LH and FSH were elevated in the 
presence of a low testosterone (500ng/dL). Apart from the development of his 
external genitalia, he is obese. Direct analysis by Sanger sequencing revealed the novel 
c.71A>T; p.His24Leu change in exon 2. Samples from the parents were not available. 
 

Patient GN0111 presented with primary amenorrhea and obesity at 14 years of 
age. She had a stenotic and enlarged vagina, which was possibly a vaginal pouch. 
Ultrasound didn’t identify female internal genitalia. MRI showed a rudimentary uterus 
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and vagina, but ovaries were not ascertained, although streak gonads couldn’t be 
discarded. Biochemical analysis at this time showed increased levels of gonadotropins 
with a slight high testosterone (36.60ng/dL). Stimulation test with hCG resulted in a 
minor rise of testosterone (47.70 and 46.0ng/dL for the 3rd and 5th dose of hCG, 
respectively). Laparoscopy at the age of 15 years revealed a rudimentary uterus and 
streak gonads. Gonadectomy and biopsy showed compatible gonads with non-
functioning testicular parenchyma and normal Fallopian tube. No interesting family 
history was reported. Analysis with the customized panel showed that the patient 
harboured the novel c.902G>A; p.Cys301Tyr change in heterozygosis. Curiously, the 
healthy mother of the patient carried the change in NR5A1 as a mosaicism, while the 
father and brother were negative.  

 
In addition to in silico tests and comparison of the residues against diverse 

species (Supplementary data 14), in vitro functional studies were performed to study 
the transactivation activity of the mutants (See 10.5, page 200). Then, we classified the 
p.Cys30Ser and p.His24Leu as pathogenic, while p.Cys301Tyr was categorized as likely 
pathogenic.  
 

10.4.1.2.2. Patients with frameshift variants 

 
Case GN0042 was a female referred at age 11 because of clitoromegaly, 

bilateral inguinal masses and growth increase. She presented with beginning of 
pubarche and facial hair growth. Pelvic ultrasound (US) showed a vaginal pouch and 
absence of uterus, as well as palpable gonads in inguinal canal (2 and 3ml). 
Biochemical analysis was remarkable with elevated gonadotropins at a testosterone of 
250ng/dL. Gonadectomy and subsequent histology revealed 2 testes of 2.4 and 2.5cm 
with germinal hypoplasia. Oestrogen oral therapy was initiated for the next 9 years 
and then was replaced with patches. This resulted in good breast development and 
sexual hair although mammary regression was observed when the dose was 
decreased. During the following years reconstructive surgery was performed. 
Abdominal US showed a normal bladder and a small structure (26mm) above the 
urethra, indicating a possible prepuberal hypoplasic uterus. No ovaries were 
perceived. At 27 years of age the patient was well developed. Hormonal values were in 
the normal, age-and sex-appropriate range. The c.614_615insC variant in exon 4 leads 
to an amino acid change and to a stop codon 20 residues afterwards 
(p.Gln206ThrfsTer20). This had been previously reported in a 46,XY female with 
ambiguous genitalia (14). Only the mother of the proband was studied and brought no 
variants. 
 

The second frameshift variant was identified in GN0109. This female was seen 
at the age of 14 because of virilization during puberty. Patient referred no ambiguous 
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genitalia at birth and pubarche and axilarche at the age of 8 years. At examination, 
female external phenotype, erectile hypertrophic organ with perineal urethra and 
absence of inguinal masses was denoted. Pelvic Magnetic resonance imaging showed a 
rudimentary uterus, and computed tomography (CT) scan revealed uterus and atrophic 
gonads in left inguinal canal. Analysis resulted in elevated LH and FSH levels (37.8 and 
113U/L, respectively) with high levels of testosterone (193ng/dL). At 15 years, 
orchidopexy was performed and biopsy showed muscle tissue with a Sertoli-cell 
phenotypic testicle and epididymis. After surgery patient began treatment with 
oestrogens. The novel c.910_913delGAGC; p.Glu304CysfsTer26 variant was found in 
NR5A1 and was classified as pathogenic due to its null effect. The mother of the 
proband presented the change in heterozygosis and curiously, her sister had hirsutism.  
 

10.4.1.2.3. Identification of the p.Gly146Ala polymorphism in our 

cohort  

 

Since the first description of the rs1110061 SNP by WuQiang et al in 2003 in 
which no dominant negative effect was proven (242), the c.437G>C; p.Gly146Ala 
variant in NR5A1 gene has been reported in several DSD-related phenotypes, such as 
hypogonadotropic hypogonadism, micropenis, cryptorchidism, POI and even in 
diabetes, highlighting its poor role in the development of sex disorders (14) (243). 
Moreover, the allele frequency differs among the populations. Regarding the 1000 
Genomes Project Phase 3 in combined population, the frequency of the minor allele G 
is 0.33, while for ExAC, ESP and gnomAD databases this frequency is lower (0.11, 0.24 
and 0.23, respectively). Studies in East Asia indicated a MAF of the G allele similar to 
the general population (0.323), however, this frequency decreases in Spanish (MAF G 
allele: 0.05). On the contrary, studies in Africa have revealed that the most common 
allele is the guanine (0.831), specifically the frequency of the G in people from Sierra 
Leone is 0.894. The results given in this work emphasize the categorization of this 
change in the NR5A1 gene as a benign polymorphism, due to the high frequency, wide 
range of phenotypes and origin of the patients in which it has been identified.  

 
We have identified the c.437G>C; p.Gly146Ala polymorphism, located in the 

exon 4 of the NR5A1 gene in 15 individuals out of 125 (12%). Out of these patients, 9 
were examined due to ambiguous genitalia and were recorded as phenotypic males 
with micropenis and scrotal hypospadias in some cases. In GN0051, GN0070 and 
GN0163 probands, ultrasound detected testes located either in inguinal canal or in the 
scrotum. On the contrary, a laparoscopy was performed to patient GN0090 and 
bilateral ovotestes were reported. Karyotype was 46,XY in all the probands, except in 
GN0090 and GN0051. Patients GN0096 and GN0158 were both referred at age 3 and a 
46,XX DSD was suspected. Female normal karyotype was set and histology revealed 
testicular and ovarian tissue. The two African infants (GN0118 and GN0119) had 
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curved penis with scrotal hypospadias and cryptorchidism at examination. GN0182 had 
unilateral cryptorchidism, as well as bifid scrotum at birth.  

 
On the other hand, patient GN0012 presented as a newborn with micropenis 

(10mm) and bilateral anorchia. Stimulation test with hCG resulted in no response of 
testosterone, indicating an absence of testicular tissue, which was confirmed later. 
Testicular prostheses were placed at age 7 and increasing doses of testosterone were 
prescribed. Biochemically, he had markedly elevated gonadotropins (LH: 42.3U/L; FSH: 
85U/L) in the presence of low testosterone (55ng/dL). At 15 years of age, he presented 
a mature penis and scrotum, pubarche IV and facial and body hair. During the 
following years, he was well virilised and hormones were in the normal, age-and sex-
appropriate range. Finally, case GN0199 was referred because of micropenis and fused 
labia minora. At examination, non-palpable gonads and a tight vagina were noticed. 
Ultrasound (US) revealed a normal uterus and the absence of gonads. Karyotype was 
46,XY. This male was diagnosed with a complete gonadal dysgenesis.  

 
Patients GN0147, GN0156, GN0157 and GN0194 are clinically characterized 

elsewhere because other causative gene variants have been found along with this 
NR5A1 gene change.  All of them were identified by DSD targeted gene panel 
sequencing, except cases GN0012 and GN0119 in which the variant was found in 
heterozygosis and homozygosis by a candidate gene approach. These two samples 
were included in the panel to search for any other additional disease-causing gene 
variant, however none was found. 
 

10.4.1.3. NR0B1 variants 

 

A total of 7 male patients (GN0078, GN0153, GN0091, POL0301, POL0274, 
POL0285, and GN0101) were evaluated with suspicion of non-congenital adrenal 
hyperplasia (non-CAH) primary adrenal insufficiency (PAI). The molecular analysis of 
the NR0B1 gene was performed by PCR amplification of the 2 coding exons and 
subsequent sequencing. Among them, 2 new gene sequence changes were found in 
exon 1 (c.528C>G and c.712_713delAC). Patients GN0101 and POL0285 showed no 
amplification of the gene and therefore a MLPA was performed. 
 

10.4.1.3.1. Sanger sequencing of the gene 

 
Case GN0078 was diagnosed at 45 days of life due to his brother’s neonatal 

death and the familial background of unexplained deaths of eight male infants in the 
first months of life. Despite the absence of glucocorticoid insufficiency (cortisol: 
17.8μg/dL) or hyperpigmentation the clinical diagnosis led to PAI. A scan of the adrenal 
glands showed they were hypoplastic (0.3mL) and patient began with hydrocortisone 
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and fludrocortisone treatment. At 3 years, he presented with high testosterone levels 
(170ng/dL), and later hypogonadotropic hypogonadism. GN0153 was admitted at 
hospital at 11 days of life due to a hyponatremic dehydration and hyperkalaemia with 
compatible PAI. Treatment was given until cortisol, 17-hydroxyprogesterone and 
androgens values were normalized, when hydrocortisone administration was stopped. 
8 months later he was controlled at hospital due to hypoaldosteronism. No interesting 
family background was reported. We identified 2 different point mutations (c.913C>T; 
p.Glu305Ter and c.528C>G; p.Tyr176Ter) in GN0078 and GN0153 cases, which predict 
a truncated protein product and thus the generation of a non-functional protein. 
Moreover, the c.528C>G; p.Tyr176Ter change in exon 1 of the NR0B1 gene has been 
listed before (244), but not in a NR0B1-related disease. As the variant is not present in 
population databases (ExAC) and causes a null effect, we classified it pathogenic, as 
well as the c.914CT;p.Glu305Ter variants (245). Regarding family studies, a cousin of 
the GN0078 patient presenting with adrenal insufficiency harboured the same 
variants. First relatives of GN0153 family were studied and only the mother and 
grandmother of the patient were carriers of the variants.  
 

Patient GN0091 manifested a salt-wasting crisis and hypoglycaemia at 24 hours 
of life. Treatment with hydrocortisone and fludrocortisone was prescribed. At 8 
months, testes and penis measured 1mL and 3.6 cm, respectively. Analytical levels are 
shown on Supplementary data 3. At imaging probes no adrenal glands were observed. 
Remarkably, mother of the patient referred abdominal pain, weakness, 
hyperpigmentation and dysfunctional uterine haemorrhages. Her biochemical levels 
were normal (Na: 131mEq/L; K: 5.8mEq/L; glucose: 68mg/dL and cortisol: 6.1μg/dL). In 
both proband and mother, the c.291delC deletion was found, in hemizygosis and 
heterozygosis, respectively, which is predicted to induce a frameshift variants 
(p.Glu98ArgfsTer166), as described (246).  

 
Another small deletion was detected in the index case of family POL0301. This 

2-year-old boy was examined because of an acute hyponatremia after presenting 
polyuria, polydipsia, asthenia and constipation for two weeks. At examination, testes 
of 0.5mL and normal penis were noticed. Treatment with fludrocortisone was 
prescribed. During hospitalization, cortisol deficiency was reported (Supplementary 
data 3). The patient started with the substitutive therapy. Genetic studies revealed the 
novel c.712_713delAC; p.Thr238LeufsTer60 variants in exon 1 of the NR0B1 gene, 
which has been classified as pathogenic. The mother of the patient is a carrier of the 
mutation. 
 

Patient POL0274 was diagnosed in Mexico of adrenal insufficiency at the age of 
one month and was under treatment with hydrocortisone and fluorohydrocortisone. 
Later, this Latin-American boy was referred in Spain for the study of macrogenitosomia 
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and pubic hair development (9 months). He presented with hyperpigmented genitals, 
hypertrophic penis (5cm), testes of 2mL and pubic hair. Basal hormone analysis 
showed low ACTH levels (<10pg/mL) with elevated testosterone (235.3ng/dL) under 
treatment. Ultrasound and computed tomography (CT) proved the absence of the left 
gland. Biochemical analyses were repeated after treatment stopped and showed 
cortisol levels under 0.1µg/dl at baseline and after ACTH stimulation test, while an 
increase in 17-hydroxiprogesterone (17OHP) was noticed (0.62ng/mL to 1.22ng/mL). 
At the age of 15 months, penis was 6cm and hydrocortisone doses were progressively 
increased with subsequent normalization of ACTH and testosterone values, while 
cessation of genital development. At follow-up (3 years), testosterone levels have been 
maintained at prepubertal levels, with no progression in penile length. The c.871T>A; 
p.Trp291Arg mutation was found. Functional studies performed by Lehmann et al 
demonstrated the pathogenicity of the protein change (247). Mother of the patient 
carried the variant in heterozygosis. 
 

Clinical and genetic characteristics of patients GN0078, GN0091, GN0101, 
POL0285 and POL0274 have been published by our group (245, 248). 

 

10.4.1.3.2. MLPA analysis 

 
We found a complete deletion of NR0B1 gene in two different cases. Case 

POL0285 was diagnosed with adrenal insufficiency at birth and treatment with 
hydrocortisone and fludrocortisone was established. There is no clinical data at this 
time due to loss of follow-up care. At 45 years, he had an acute adrenal insufficiency 
and hypogonadotropic hypogonadism. He presented testes of 2mL, prepubertal penis 
(3cm) and scarce body hair. There was a family background, as his uncle died at age 2 
years. Patient GN0101 was studied due to the severe hypoglycaemia (20mg/dL) he 
presented at 3 years of age. He also had salt wasting. He received gonadotropin 
treatment at pubertal age to induce puberty and at 17 years, testes were 2-3mL and 
penis measured 8cm. 
 

As no product was obtained after PCR-based amplification, a MLPA using the 
SALSA MLPA P185-C1 Intersex Kit was performed and showed a complete deletion of 
the 2 exons that are part of the NR0B1 gene. As shown in Figure 25 both patients lack 
the presence of probes in exon 1 (148 and 234 nucleotide), exon 2 (310 nucleotide) 
and at 17.8kb upstream NR0B1 (454 nucleotide). Moreover, patient GN0101 had a 
bigger deletion as probe at 126.3kb upstream NR0B1 (481 nucleotide) was not 
present. The complete deletion of the gene was first described by Guo et al in 1995 
(249).  
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Figure 25. MLPA analysis data in patient POL0285 (middle panel) and GN0101 (lower panel) against a 
control (upper panel). Arrows indicate the probes for NR0B1 gene.  
 
 

Then, we used fluorescent markers to determine the extension of both 
deletions. As shown in the Figure 26 both patients lack the DXS1083 microsatellite, 
located at chromosome X: 30,361,221-30,361,359 position. Case POL0285 does not 
present the DSX8039 marker too, which is placed at chromosome X: 29,977,924-
29,978,270. Combined with the MLPA assay, we could verify that POL0285 presented a 
contiguous gene deletion affecting NR0B1 and MAGEB1genes (Chromosome X: 
30,261,847-30,270,155). Moreover, in this case the deletion upstream NR0B1 was up 
to 17.8kb, whereas deletion in GN0101 did not affect any other gene. Samples of the 
parents were not available for studying. 
 

 
Figure 26. Analysis of genetic markers nearby NR0B1 gene at Xp21.2. The presence or absence of the 
loci is represented by a plus or minus, respectively. Modified from Muroya K et al, 1999 (250). 
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10.4.1.4. WT1 variants 

 

We identified five different variants in WT1 gene. Of these, 2 occurred in 
isolated DSD with Androgen Insensitivity Sundrome (AIS) and precocious puberty. The 
remaining three happened in WT1-associated syndromes.  
 

10.4.1.4.1. WT1 gene variants in isolated DSD 

 
The GN0150 child presented normal female external genitalia and bilateral 

inguinal hernia when she was 3 years old. Surgery and subsequent histology revealed 
testicular tissue. Karyotype was 46,XY. At that moment uterus was not observed by 
ultrasound. At recent follow-up when she was 10 years old, imaging probe was 
repeated and a small uterus with normal kidneys was shown. Biochemical and 
hormonal studies revealed more or less normal values, compared to male age-
controls, only elevated FSH was remarkable. AR was first studied and was negative, 
then we included the patient in the targeted gene panel analysis. We found the novel 
c. 223G>A; p.Glu75Lys sequence change in heterozygosis, as well as in her healthy 
mother.  
 

Case GN0156 was studied because an increase in genital development and 
pubic hair was noted. At examination (age 7 years) this Indian patient presented 
pubertal genitalia with 10mL testes and a penis of 8cm. At MRI, a pituitary adenoma of 
5x3mm was observed. Clinical analysis at this time indicated elevated basal 
testosterone (406ng/dL) and LH after LHRH stimulating test (25.03U/L). Although a 
precocious puberty was suspected, the genetic study of the LHCGR gene was negative. 
The novel c.545T>A; p.Met182Lys variant in the WT1 gene in heterozygous state was 
detected. As the child was adopted no family history could be recorded. 

 
Both novel variants were classified as of unknown significance due to the 

evaluation of disease-causing potential (Table 16, page 161) and multiple genome 
alignment (Supplementary data 14). Quality values of the NGS run are shown on 
Supplementary data 10.  
 

10.4.1.4.2. WT1-associated syndromes 

 

Two patients were diagnosed with a Frasier syndrome. Case GN0009 was 
admitted when she was 12 years old because of severe headaches, vomiting and 
fatigue for 15 days. Blood pressure was 180/120mmHg and a bilateral papilledema was 
detected by fundoscopy. Imaging probes and subsequent biopsy evidenced a 
nephronophthisis. She began treatment and later, haemodialysis due to renal 
insufficiency (13y). A renal transplant was performed but kidney rejection took place 
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after a few days. Since then, she has been treated with several drugs and receiving 
haemodialysis. At 17 years of age, her pubertal development was delayed with a bone 
age of 10 years. Ultrasound revealed a normal uterus (72mm) but no gonads were 
seen. Karyotype was 46,XY and biochemically, gonadotropins were elevated while 
oestradiol level was undetectable. At this time growth hormone (GH) treatment was 
prescribed because she was 137.4cm tall. One year later it was stopped since growth 
response was poor (1.5cm). At the age of 24 bilateral streak gonads were removed and 
a microscopic gonadoblastoma was reported. The second patient (GN0132) is an 18-
years-old female with gonadal dysgenesis, renal insufficiency and gonadoblastoma. 
One year later, laparotomy was done and gonadal remnants were removed. Caryotype 
was 46,XY and Müllerian remnants including uterus were present. She started 
oestrogenic treatment until she was 33 years old. She had a second renal transplant.  
 

Case GN0009 was a heterozygous carrier of the c.1447+5G>A change, while 
GN0132 carried, also in heterozygosis the c.1447+4C>T change. Both mutations are 
located in intron 9 and produce an alternative splicing of the protein. Only mother of 
GN0009 was studied and did not harbour the mutation. Both alterations have been 
previously associated with Frasier syndrome (251) (17). 
 

Patient OT0567, from Tunisia, presented bilateral cryptorchidism at birth. 
When this male was 2 years old he was diagnosed with a bilateral Wilms’ tumour due 
to a hypertensive crisis. He had no metastasis and began chemotherapy. After 
treatment, progression of masses was observed and was treated with chemotherapy. 
Then, surgery was suggested. Few months later he was referred to a Spanish hospital 
with hypertension and Denys-Drash syndrome was suspected due to proteinuria in 
nephrotic range. In order to discard a WT1 gene mutation a DNA sample was sent to 
our laboratory before surgery. We found a partial WT1 gene deletion in one allele, 
from exon 7 to 10 by NGS. We validated this CNV using the commercial MLPA 
containing probes for WT1 and AMER1 genes. As shown in Figure 27, the peak size of 
the probes in exon 7 (probe at 239 nucleotide), 8 (153 nucleotide), 9 (166 nucleotide) 
and exon 10 (185 nucleotide) are reduced, which indicates the deletion of exons 7 to 
10 in one allele of patient OT0567. The parents of the patient were normal. Partial and 
entire deletion of the WT1 gene has been reported before and related to isolated 
Wilms’ tumour (252), as well as to 46,XY gonadal dysgenesis, Wilms’ tumour and 
gonadoblastoma (253). During surgery to remove bilateral tumours, testes were found 
in abdominal cavity and one was visually noted to be hypoplastic. Gonads were not 
removed at the moment but will be in the near future.  
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Figure 27. MLPA profile illustrating the presence/absence of LOH in OT0567 family. Upper panel, black 
arrows indicate the probes for exon 7, 8, 9 and 10 of the WT1 gene in a negative control. Middle panel, 
MLPA profile of the index case. The peak size of probes for exon 7 to 10 is reduced. Lower panel, normal 
MLPA profile of the patient’s mother. 
 
 

10.4.1.5. MAP3K1 variants 

 

We identified a MAP3K1 gene variant in a 46,XY patient with complete gonadal 
dysgenesis. Female external genitalia, absence of thelarche and pubarche III were 
noted. This 16-year-old patient (GN0011) was examined due to primary amenorrhea. 
No uterus was visualized at ultrasound. She referred that she had grown during the 
last year when pubarche started. Gonadotropins were elevated (FSH:145U/L; 
LH:45U/L) in the presence of low testosterone (1.0ng/dL) levels (Supplementary data 
3). Bilateral gonadectomy was planned and substitutive oestrogenic treatment would 
be then prescribed. Patient’s father and brother reported delayed pubertal 
development.  
 

Firstly, SRY and NR5A1 genes were amplified and studied by traditional 
sequencing but no change was detected. Then, NGS identified a heterozygous MAP3K1 
c.2291T>G change in exon 13, which is predicted to result in a p.Leu764Arg variants. 
Parents and brother were studied and did not carry the variant, thus is a de novo 
change in the patient. This variant has been previously listed in a publication (82). 
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However, no functional studies have been done yet probing that the variants causes 
the clinical features in this type of patients.  

 
10.4.1.6. GATA4 variants 

 

This male patient (GN0171) was noted at birth to have micropenis and bilateral 
cryptorchidism. At 11 years of age he still presented micropenis (3.5cm), testes were 
non-palpable and severe obesity (Body Mass Index (BMI) 36.6, +6.4SD) was observed. 
His gonadotropins were elevated with low testosterone. Karyotype was 46,XY. 
Magnetic resonance imaging showed both testes in inguinal canal. At 14 years, 
replacement testosterone treatment was started with gradual increasing doses. After 
treatment, LH suppression and normalization of FSH was observed. At 18 years, 
azoospermia was found. At recent follow-up at 21 years of age, he presented with 
severe obesity (BMI 44.9, +6.8SD) and short stature (156.1cm). Penis (8cm) was buried 
in subcutaneous fat and left testis was in scrotum (0.5ml). Biochemically, he presented 
normal gonadotropins with a testosterone of 11.8ng/ml under treatment. Ultrasound 
showed an ovoid structure (17mm × 16mm) in right inguinal canal corresponding to 
atrophic testis. Currently, laparoscopy is planned to investigate the right testis and 
biopsy both to assess the malignancy risk. Echocardiography revealed no congenital 
heart disease (CHD). 
 

We found the novel GATA4 c.677C>T nucleotide change, which is predicted to 
replace a proline with leucine at position p.226 (p.Pro226Leu). The same heterozygous 
variant was also found in the healthy mother. The pathogenesis of the GATA4 gene 
variant was studied in vitro (See 10.5, page 200) and although prediction software and 
protein alignment (Supplementary data 14) suggested a deleterious effect, 
transactivation studies showed activation of the CYP17 promoter similar to wild type, 
thus we classified the p.Pro226Leu protein change as a VUS. The clinical and molecular 
characterization of the variant found in the index case of the GN0171 family has been 
described in a publication by our group in 2018 (25). 
 

10.4.1.7. WWOX variants 

 

Sequence variants in the WWOX gene were found in two patients with 46,XY 
DSD, presumably with complete and partial gonadal dysgenesis diagnosis.  
 

GN0020 female went to medical consultation for short stature and absence of 
pubertal development. Physical examination of the patient at the age of 13 years 
revealed little pubic hair, without any other obvious findings. Analytical results found 
normal 17-hydroxiprogesterone and DHEA-S (Dehydroepiandrosterone-sulfate) levels 
after ACTH test, while oestradiol was below age and sex-range (<5pg/mL). Ultrasound 
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(US) showed no gonads. After being diagnosed, she received replacement treatment 
with oestrogens and gonadal remaining was removed. At follow up (17 years), she 
reported normal menses but breast development was unsatisfactory. The second 
patient (GN0203) harbouring a WWOX variant was born in Syria and was referred for 
gonadal dysgenesis evaluation. When this male child was 5 years old he presented 
micropenis with fused scrotum and bilateral cryptorchidism. US confirmed he had 
atrophic testes located in inguinal canal and no female internal genitalia were seen.  

 
Targeted gene panel sequencing found two missense variants in the WWOX 

gene. Subject GN0020 carried the heterozygous c.1096C>G; p.Pro366Ala variants while 
GN0203 harboured, also in heterozygosis, the c.184G>A; p.Gly62Arg change in exon 3 
of the WWOX gene. We were not able to achieve DNA samples of the family.  
 

As none of the variants had been reported, prediction software analysis and 
comparison between different species was done. Allele variant c.1096C>G had not 
been listed before in population frequency studies, however comparison of the protein 
variability across species showed that the proline was slightly conserved 
(Supplementary data 14). Moreover, prediction software results were not certain. On 
the other side, c.184A allele was noted with a frequency below 0.01 (MAF <0.01) in 
1000 Genomes Phase 3, ESP and ExAC, although the protein seemed to be highly 
conserved and the in silico analyses predicted as potentially pathogenic. Then, we 
classified c.1096C>G variants as a VUS and c.184G>A as a likely pathogenic change. 
 

10.4.1.8. Variants in Oestrogen receptor 1 and 2  

 

In total, 2 different variants were identified in two independent individuals by 
NGS in ESR1 and ESR2 genes.  
 

10.4.1.8.1. ESR1 gene 

 
Female GN0198 was referred to clinician due to primary amenorrhea and 

failure of pubertal development at age 17 years. Her female external genitalia were 
normal with thelarche stage II and pubarche III at examination. No ovaries were found 
by magnetic resonance imaging and ultrasound, but a likely uterus remnant was 
observed. Karyotype was 46,XX. Biochemical and hormonal studies at presentation 
revealed elevated gonadotropins and a low oestradiol (<5pg/ml) (compared to female 
age-controls) (Supplementary data 3). Hormone replacement therapy was prescribed. 
She is healthy otherwise. We found a novel heterozygous variants in ESR1 (c.1781C>T; 
p.Thr594Met), which is also carried by her mother. Due to the results given by the 
prediction software, the protein conservation analysis (Supplementary data 14) and 
the inheritance pattern, we classified the variants as a VUS.  
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10.4.1.8.2. ESR2 gene 

 
Case GN0207 was referred to clinician due to primary amenorrhea and pubertal 

development delay at age 14 years. At physical examination, this female presented 
normal external genitalia with Prader scale I and no puberty signs. The karyotype was 
46,XX. Ultrasound was done and prepubertal ovaries and uterus were seen. Hormone 
replacement therapy was planned. Hormonal test revealed a hypergonadotropic 
hypogonadism (Supplementary data 3). Family history is remarkable for the following: 
mother was virilised and drugs were taken during pregnancy. We identified a novel 
variant in exon 5 of ESR2 gene (c.661A>G; p.Arg221Gly) in heterozygosis with a 
population frequency <0.01 and as seen in Supplementary data 14, the arginine 
protein is highly conserved. Additionally, most of the prediction programs catalogue 
the variants as pathogenic. Samples of the parents were not available.  
 

10.4.1.9. DMRT2 variants 

 

One single change was found in the DMRT2 gene. Proband of GN0142 family 
was examined at birth because the obtained result of the karyotype during the 
amniocentesis (46,XY) and the female phenotype was discordant. This “female” 
newborn presented with female external genitalia with a 1-2cm clitoris, urinary 
meatus on base, non-palpable gonads and a bifid scrotum that seems to be poorly 
developed. Uterus and gonads were absent at US. Hormonal analysis when the patient 
was 22 days of life indicated the absence of Sertoli cells due to high levels of FSH 
(35.4U/L) and undetectable AMH levels.  

 
Interestingly, her cousin presented at 15 years with primary amenorrhea, 

undeveloped breast and lack of uterus and ovaries. She underwent laparotomy for 
resection of her male remnant. Vaginoplasty was done and is under hormonal 
oestrogen treatment. She was diagnosed with 46,XY DSD gonadal dysgenesis. 
 

Index case GN0142 was examined on the target gene panel for DSD and found 
a missense variant in exon 4 of the DMRT2 gene (c.1607C>T; p.Ser536Leu). As shown 
below the amino acid in position 532 is not highly conserved (Supplementary data 14) 
and only 4 of the in silico programs we used categorize the genetic change as 
deleterious. Family studies were done in parents, maternal uncle and grandmother, 
and found that only the mother (II.2) is a heterozygous carrier of the c.1607C>T 
change, as well as the index case (Figure 28). The genetic study of the cousin with 
complete gonadal dysgenesis would clarify the possible pathogeny of this variant, 
meanwhile we classified it as a VUS. 
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Figure 28. Pedigree and genotype information of the GN0142 family. Index case is indicated with an 
arrow.  

 

 

10.4.1.10. ZFPM2 gene  

 

We found a variant in the ZFPM2 gene in one patient. The GN0155 individual 
was born with ambiguous genitalia and was reared as a female. When the patient was 
3 years old, surgery was done to adequate genitalia to assigned gender and a 
disgenetic testicle was removed. At age 7, the patient had a left inguinal hernia. At 
puberty, the patient was spontaneously masculinized and began expressing male 
identity. At age 20 years, a karyotype study was done and found 46,XY. Due to low 
levels of androgens, treatment with testosterone was prescribed (37 years old). At 
examination, he presented male normal phenotype, obesity and lipomastia. The scan 
showed remains of uterus and structures looking like copus cavernosum in the 
perineum. Testosterone levels were very low when removing treatment (1.9ng/dL). 
 

Targeted gene panel sequencing showed the c. 3077C>T; p.Ala1026Val change 
in heterozygosis in the exon 8 of the ZFPM2 gene. This variant has not been described 
and no data is available in population databases. We classified this novel variant as a 
VUS regarding the incongruent results given by the in silico programs and comparison 
of the protein across species (Supplementary data 14). Moreover, familial studies were 
not performed. 
 

10.4.1.11. MAMLD1 gene 

 

We identified a novel MAMLD1 gene variant in a patient with a gonadal 
dysgenesis and a 46,XX karyotype. Subject GN0154 was examined because of primary 
amenorrhea at age 15. She had normal female external genitalia and thelarche at 
stage II-III. Biochemical studies indicated a hypergonadotropic hypogonadism 
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(Supplementary data 3). A small uterus was identified by ultrasound and then 
confirmed by laparoscopy. Fallopian tubes and small ovaries were also observed. 
Histology revealed many immature primordial follicles and follicular atresia. The 
patient began with the oestrogenic treatment at that time and continued together 
with progesterone.  
 

SRY was first studied but no gene amplification was observed. Large 
rearrangements in the NR5A1, CXorf21, NR0B1, WNT4, SOX9, SRY and ZFY genes were 
also discarded by MLPA. Then GN0154 was examined on the target gene panel and 
found in heterozygosis the missense c. 2009C>T; p.Thr670Ile change in exon 5 in the 
MAMLD1 gene. We classified this variant as a VUS. The frequency of the T allele is 
<0.01 and has not been cited in ClinVar. However, the in silico programs disagree and 
comparison of the protein across species didn’t find any similarity between species 
although no protein homologue is found in many of them (Supplementary data 14). 
Unfortunately, family studies were not done and therefore, prediction of disease-
causing effect is more difficult.  

 
This patient was included in an exome sequencing study to analyse additional 

genetic variations in cases with MAMLD1 sequence changes. Flück et al, together with 
our group, identified 14 candidate gene variants that could theoretically contribute to 
the patient’s phenotype (91). 
 

10.4.2. Findings in genes related to genital differentiation 

 

10.4.2.1. AR gene 

 
In our DSD cohort a total of 15 different changes in 16 independent patients 

were identified in the AR gene. Twelve individuals were genetically diagnosed after 
Sanger sequencing, 3 by NGS and one case needed further confirmation due to an 
exon deletion. Mainly, they had been previously reported, except for three, which 
were classified either as pathogenic or likely pathogenic (Table 15, page 157). 
 

10.4.2.1.1. Sanger sequencing of the AR gene 

 
Among the cases with an AR defect, 12 patients were studied by sequencing 

the 8 exons that constitute the AR gene 

 
Three patients (GN0035, GN0125 and GN0139) were examined by the clinician 

during puberty due to the presence of primary amenorrhea. They all had bilateral 
inguinal hernias at birth or during the first months of life. The absence of female 
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internal genitalia was confirmed by ultrasound in cases GN0125 and GN0139. 
Karyotype was 46,XY in all the three patients.  

 
The suspicion of androgen insensitivity syndrome was set with the finding of an 

AR variant. Patient GN0035 presented the c.2522G>A; p.Arg841His mutation, 
described for the first time by McPhaul et al in 1992 (254), while GN0125 harboured 
the nonsense mutation c.865G>T (p.Glu289Ter) (255). Finally, in GN0139 we identified 
the novel T to G change in position 2642 (c.2642T>G) in exon 8, this p.Leu881Arg 
variants has not been described before but has been classified as likely pathogenic 
because of the results given by the prediction programs and the residue seems to be 
highly conserved across different species (Supplementary data 14). The mother carries 
the variant in heterozygosis.  
 

The other patients were born with female external genitalia and presented 
inguinal hernias or masses located in inguinal canal. Foetal karyotyping was done in 
some individuals for another medical reason, such as phenylketonuria family history in 
case GN0177. Ultrasound (US) was performed and testicular tissue was defined after 
gonadectomy or biopsy. Probands of families GN0055 and GN0076 carried in 
hemizygosis the c.2710G>A; p.Val904Met and c.2566C>T; p.Arg856Cys mutations, 
respectively (254). The mothers of the patients were carriers of the mutations, but 
surprisingly mother of proband GN0055 presented the mutation as a mosaicism. More 
missense mutations were determined in GN0018 (p.Arg775Cys) (256), GN0024 
(p.Asp696Asn) (257) and GN0177 (p.Ser434Phe). Unfortunately, family studies were 
not done in these cases. We also found a novel frameshift variant in proband GN0112, 
a deletion of a cytosine at position c.827 changed the reading frame 
(p.Pro276HisfsTer20) and thus we considered it as pathogenic. This change was also 
found in her healthy mother in heterozygosis. 
 
  Furthermore, patient GN0080 harboured another frameshift variant. This 
female child was examined because of the suspicion of AIS. Karyotyping at 
amniocentesis was 46,XY. At 5 years of age, testicular tissue was reported after 
gonadectomy and US imaging showed absence of uterus and Müllerian ducts. We 
found the novel c.298insC; p.His100ProfsTer3 variants, which was also present in her 
mother but not in her sister or father. As a disruption of the protein is happening, we 
considered the variants as deleterious. 
 

Patient GN0146 had ambiguous genitalia and was intervened when she was 10 
years to remove male gonads and began treatment. At recent follow-up, she is 19 
years old and presents hypertrophic erectile organ and partial labial fusion. No 
Müllerian ducts were observed after imaging examination by ultrasound and Magnetic 
Resonance Imaging (MRI). She recently had a genito-plastic surgery. The study of the 
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AR gene revealed a c.2473C>A; p.Gln825Lys mutation. This variant had been observed 
before (258, 259). DNA samples of the parents were not available.  
 

Male proband (GN0037) had perineal hypospadias, micropenis and bilateral 
testes located in scrotal folds at age 4. Testosterone was normal, as well as the rest of 
hormones. Karyotype was 46,XY. Enlargement of the pseudoclitoris was performed. At 
last examination (11years), the patient presented the same penis size (3cm). 
Testosterone and dihydrotestosterone values after stimulation slightly augmented 
(Supplementary data 3). The suspected diagnosis of PAIS was definite after the finding 
of the p.Phe726Leu change (260). Mother was a carrier of the same variants. 
 

10.4.2.1.2. Targeted gene panel sequencing 

 
Three more patients were genetically diagnosed with the targeted gene panel. 

All variants were missense and none was novel. 
 

Patient GN0189 was noted to have palpable gonads in labioscrotal folds at 
birth. Otherwise, she presented with female external genitalia. Ultrasound ascertained 
the presence of bilateral testes of approximately 0.3mm. Hormonal values were in the 
age-and sex-range. Karyotype was 46,XY. Ultrasound was repeated at 3 months and a 
vaginal pouch was observed. However, no uterus or ovaries were identified. MRI 
confirmed the absence of uterus and ovaries. Testes (20x9mm and 18x8mm) were 
located in labia majora. The c.2567G>A; p.Arg856His mutation was found in 
hemizygosis. The mother of the patient was also a carrier of the AR change in one 
allele. Batch et al (1992) found and described this variant in a patient with AIS (261). 
Case GN0194 presented at 15 years old with primary amenorrhea. At examination, 
lack of pubarche, axilarche and breast development was observed. She was obese. 
Karyotype was 46,XY. Remarkably, her sister has a similar phenotype, although sample 
was not available. NGS revealed the c.2323C>T; p.Arg775Cys change in hemizygosis 
(256). On the contrary, patient GN0164 was referred to clinician because of 
hypergonadotropic hypogonadism, bilateral gynecomastia, micropenis and testis of 
3mL at 36 years old. Karyotype was 46,XY. In the beginning a Leydig‘s cell hypoplasia 
was suspected and LH receptor gene was studied. However, nothing was found and 
the sample was included in the panel. We found the previously reported mutation 
c.2270A>G; p.Asn757Ser in hemizygosis (262). DNA samples of the parents were not 
available. 
 

10.4.2.1.3. QMPSF methodology for the analysis of AIS 

 
PCR amplification of AR gene exons was done due to the suspicion of androgen 

insensitivity syndrome in the index case of family GN0041. However, the amplification 
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of exon 2 was not possible and therefore confirmation was needed. This proband had 
bilateral gonadectomy performed at age 3 and was referred to clinician due to a 
suspected androgen insensitivity syndrome when she was 9 years old. She presented a 
46,XY karyotype with normal female phenotype and prepuberal external genitalia. 
Elevated gonadotrophins levels were found, but testosterone and DHEAs were within 
normal range. Abdominal ultrasound (US) was done when the patient was 12 years old 
and revealed the absence of female internal genitalia. Treatment with ethinyl-
oestradiol was prescribed and completely developed secondary sexual characteristics. 
Her older sister presented the same phenotype (Figure 29). 

 

 
Figure 29. Pedigree and genotype information of the GN0041 family. Index case is indicated with an 
arrow. 
 
 

Quantitative Multiplex Polymerase Chain Reaction of Short Fluorescent 
(QMPSF) was used to confirm the variation in the gene dose. As shown in Figure 29, we 
identified the deletion of exon 2 in the AR gene (c.(1616+1_1617-1)_(1768+1_1767-
1)del; p.(Arg539_Asp305del)). Electropherogram of the patient showed the different 
peaks of the exons 3 to 8 in the HNF1β, and the complete absence of exon 2 in the AR 
gene. Co-segregation studies in the family revealed that the older sister (II.1) with a 
46,XY karyotype, harboured the same hemizygous deletion while the mother (I.2) was 
heterozygous for the gene dosage variation and the father (I.1) was normal (Figure 30). 
Deletions of the exon 2 in AR gene, as well as partial gene deletions containing exon 2 
or complete deletions of the gene, have been previously described in patients with a 
defect in androgen action (263). 
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Figure 30. Results of the QMPSF assay in GN0041 family showing the deletion of exon 2 in AR gene. A, 
complete deletion of exon 2 in AR gene happening in the index patient and in her sister, both diagnosed 
with CAIS. B, the peak at 144pb revealls a heterozygous deletion of exon 2 and a 46,XX karyotype in the 
mother of the index patient. 
 
 

10.4.2.2. SRD5A2 gene  

 
We identified recessive mutations in the SRD5A2 gene in two patients.  

 
Proband individual in family GN0046 was a female in which a bilateral 

gonadectomy was performed during the first years of life after echography had 
revealed the presence of inguinal testes. Immature testes and deferent ducts were 
found. Karyotype was 46,XY. We found a heterozygous A to G transition located at 
c.377 in exon 2 of the coding SRD5A2 sequence, replacing a glutamine with arginine at 
position p.126 (c.377A>G; p.Gln126Arg). The same heterozygous variant was found in 
the healthy father. This change has been reported before (264). Because of the 
autosomal recessive inheritance of the gene we performed a QMPSF test to find a 
gene dosage variants and ensure the phenotype presented by the patient. We 
designed labelled primers for the 5 exons of the gene (Supplementary data 6) and 
found a deletion in the exon 1 in one allele (c. (-1+1_1-1)_(281+1_280-1)del; 

A 

B 
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p.(Met1_Arg94del)). Both parents were studied and did not carry the deletion, thus 
this variant is a de novo change in the patient (Figure 31). This deletion has been 
previously reported (265). Genetic findings demonstrated that the patient could fit in 
an androgen biosynthesis defect diagnosis due to a 5α reductase deficiency, instead of 
an AIS syndrome as firstly supposed.  
 

 
Figure 31. Pedigree and genotype information of the GN0046 family. Index case is indicated with an 
arrow. 
 
 
 Patient GN0186 was referred to clinician because of high stature at age 14 and 
elevated testosterone levels (Supplementary data 3). Two years later, this female 
presented with primary amenorrhea. Karyotype was 46,XY. At medical examination, an 
underdeveloped breast, pubarche at Tanner stage 4, hypertrophic erectile organ and 
two palpable masses in inguinal canal were noticed. Pelvic MRI showed two structures 
suggestive of testes in inguinal canal and a rudimentary vagina of 1cm. Biochemically, 
she presented normal gonadotropins with a testosterone of 4ng/dL and high AMH 
(471ng/mL) levels. NGS revealed the c. 271T>G> p.Tyr91Asp change in homozygosis in 
the exon 1 of the SRD5A2 gene. Both healthy parents were studied and carried the 
variant in heterozygosis. This variant has been associated to steroid 5 alpha-reductase 
type 2 deficiency (266).  
 

10.4.2.3. LHCGR gene 

 

We found 6 cases harbouring different variants in LHCGR gene, 5 were 
missense variants and one patient presented a whole gene deletion. Among them, 3 
patients were referred to clinician due to a suspicion of precocious puberty and 
activating mutations were therefore found. In contrast, inactivating variants were 
observed in patients presenting ambiguous genitalia.   
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10.4.2.3.1. Gene sequencing in patients with precocious puberty  

 
The first case (GN0068) presented precocious puberty at 3.5 years and family 

history of the disease. Patient GN0088 was also noticed at age 3 to have pubarche, 
penis and testes growth and high stature. 6 months later, he was 112cm tall, had 6mL 
testes and pubertal penis. Magnetic Resonance Imaging (MRI) showed a doubtful 
image of a pituitary adenoma. Gonadotropins and testosterone were elevated after 
leuprolide. Few months later, testes were 6 to 8mL and he had grown 3cm in 2 
months. He began treatment with triptorelin for 28 days. MRI was repeated and 
adenoma was discarded. At 4.5 years of age began treatment with ketoconazole. 
When he was 5 years old, pubarche started to diminish and no axilarche was noticed. 
Penis was 2.5cm and testes 8mL. Treatment with triptorelin was stopped and the dose 
of ketoconazole was elevated. Candidate gene sequencing revealed the heterozygous 
c.1713G>T; p.Met571Ile and c.1193T>C; p.Met398Thr in the LHCGR gene in cases 
GN0068 and GN0088, respectively. The father of patient GN0068 was also a carrier of 
the mutation, however no clinical information was provided. On the contrary, genetic 
study of the parents of patient GN0088 showed that the change was de novo. These 
two mutations have been previously described in the same phenotype (267, 268).  

 
Index case GN0157 was born in Equatorial Guinea and was referred to clinician 

due to the presence of adrenarche when he was 6 years old. Genital development was 
Tanner 2 and testicular volume 2-3mL. One year later, growth speed was realized as 
well as acne and body odour. Testes were 1-2mL. At this stage pathology of the 
adrenal gland was discarded and abdominal scanner was normal. At 9 years of age, he 
was at Tanner 3 and testes were 3mL. Genetic study showed the heterozygous 
cytosine to adenine change in position c.568 (c.568C>A; p.Gln190Lys). This variant has 
not been described before and the protein region is highly conserved (Supplementary 
data 14). We classified the variants as likely pathogenic. Family studies showed that 
the father is a carrier of the variant.  
 

10.4.2.3.2. NGS and aCGH to study other phenotypes caused by a 

LHCGR gene variant 

 
We detected variants in LHCGR gene in another 3 individuals presenting with 

different phenotypes. Patient GN0147 was born as a female in Algeria and at 7 years of 
age had surgery because of a right inguinal hernia. Histology revealed it was a normal 
teste. She was referred to clinician in her birth country due to primary amenorrhea 
and provided reports with ovarian and uterine agenesis. Thelarche was spontaneous 
when she was 13-14 years old. The patient always had male identity. At 24 years of 
age, the patient presented left inguinal hernia which was a normal teste. When he 
escaped to Spain clinical examination was done. Karyotype was 46,XY, 
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hypergonadotropic hypogonadism was observed (T: 0ng/mL after gonadectomies) and 
US revealed vaginal outline, without uterus and annexes. At 35 years of age, patient 
presented ambiguous external phenotype, thelarche II-III, female external genitalia, 
buried erectile organ and an opening for urethra and vagina. Hormonal analysis still 
indicated a hypergonadotropic hypogonadism (Supplementary data 3). Due to the 
suspicion of AIS, AR gene was studied first but no variants were found. We found by 
NGS the c.757T>C; p.Ser253Pro variant in LHCGR in a homozygous state. Prediction 
software programs and comparison of the proteins revealed that the region is highly 
conserved (Supplementary data 14). Therefore, the identified LHCGR gene variant was 
predicted as pathogenic. This prediction was confirmed by testing the transcriptional 
activity of the variants in vitro. 
 

Patient GN0171 has been described before due to the presence of a novel 
GATA4 gene VUS variant. We also found in LHCGR the reported 
c.1660C>T;p.Arg554Ter substitution in heterozygosis (269). The mother of the patient 
did not present this change. The deleterious effect of the alteration was confirmed in 
the expression studies we performed (See 10.5, page 200). 
 

A last patient was diagnosed with a LH receptor defect by the customized gene 
panel and validated then by aCGH. Patient GN0034 was noted to have bilateral 
inguinal hernia at 8 months of age. Her phenotype was female with normal external 
genitalia. After herniorrhaphy, testicular tissue was found. Absence of upper vagina 
and uterus was noticed. Her testosterone levels were undetectable with normal levels 
of gonadotropins (LH: 2mU/mL and FSH: 1mU/mL) (Supplementary data 3). AIS was 
suspected and karyotype was confirmed to be 46,XY. At 4 years of age, an 
echocardiography demonstrated the lack of uterus and ovaries. At 9 years old, 
biochemical and hormonal studies revealed high levels of testosterone with 
undetectable LH. After puberty gonadotropins, testosterone (60ng/dL) and 
dihydrotestosterone (0.4ng/mL) increased. After gonadectomy, the patient began 
treatment with oestradiol, and two years later at medical consultation (15 years old) 
normal pubarche and thelarche was noticed. AR gene was first studied by Sanger 
sequencing and then, NR5A1, HSD17B3 and SRD5A2 were discarded. Finally, it was 
analysed by the customized gene panel where we found that the LHCGR gene had not 
been covered. PCR of all the exons was done with no amplification of the regions. We 
made an aCGH and found a 77.45kb deletion in the short arm of chromosome 2 
(2p16.3) from base pairs 48,905,663 to 48,983,208 (Figure 32). Genes located in this 
region included LHCGR, among others as GTF2A1L (General Transcription Factor IIA 
Subunit 1 Like) or STON-GTF1A1L. The absence of the entire LHCGR gene has been 
previously reported by Richard et al in 2011 (270). Unfortunately, DNA samples from 
the parents were not available. 
 



 

190 
 

 
Figure 32. aCGH profile from GN0034 patient. The figure shows a 77.54Kb deletion at 2p16.3 position in 
chromosome 2. 
 
 

10.4.2.4. CYP17A1 gene 

 
We found a unique variant in the CYP17A1 gene in the RE0045 family. This 

index female patient presented at puberty with primary amenorrhea and lack of 
pubertal development. Karyotype was 46,XY. She had presented high blood pressure 
since childhood. At 17 years old, she was diagnosed with a bilateral 
pheochromocytoma and a left adrenalectomy was performed later that year. Histology 
revealed a left adrenal gland of 25g and 5.5x 5cm in size and indicated an adrenal 
cortical and medullar hyperplasia. After surgery blood pressure was normalized and 
urinary catecholamines values descended and have been maintained normal. In order 
to discard a medullary thyroid carcinoma, and then a Multiple Endocrine Neoplasia 
type II (MEN2), basal calcitonin levels and the response to pentagastrin stimulation 
studies were performed every year. In 1999, at the age of 19 pentagastrin test is 
considered pathologic and a total thyroidectomy is done. The consequent pathological 
anatomy is compatible with the hyperplasia of parafollicular C cells of the thyroid 
gland. Since then, patient has been receiving thyroid hormone replacement therapy 
and during the following years has presented normal urine values of noradrenaline and 
normetanephrine. An abdominal CT scan was performed when the patient was 25 
years old, which revealed a normal right adrenal gland and left adrenal nodule of 
8mm, suggesting an atrophic kidney. At 32 years old, she was gonadectomised and 
biopsy showed immature testes with Leydig’s cell hyperplasia. No uterus was 
observed. The genetic study of RET (REarranged during Transfection) protooncogene 
(OMIM 164761) was negative. Alterations in NR5A1, AR and WT1 had been previously 
ruled out.  
 

Remarkably, the older sister (II.1) of the index case was referred to clinician at 
age 17 with primary amenorrhea and absence of pubertal development due to a 
hypergonadotrophic hypogonadism. Karyotype was 46,XX. She had uterine corpus 
agenesis and cervix hypoplasia and was therefore treated with oestrogens. At 28 years 
of age, she was noted to have elevated blood pressure. Left and right side 
adrenalectomy was done when the patient was 33 and 34 years, respectively, due to 
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the presence of bilateral adrenal hyperplasia. MEN2 was discarded. Genetic analysis of 
WT1 and RET genes were negative.  
 

DSD targeted gene panel sequencing identified a homozygous CYP17A1 
c.1246C>T (p.Arg416Cys) nucleotide change in the index case (II.2). This variant has 
been previously listed by Takeda et al in 2001 in a patient presenting a defect in 
17alpha-hydroxylase (271). The patient’s affected sister (11.1) had the same variant in 
homozygous state. Mother (I.1), younger sister (II.3) and her 15 years old-twin 
daughters (III.1 and III.2) were carriers of the same heterozygous CYP17A1 variant 
(Figure 33). Sample of the father was not available. 

 

 
Figure 33. Pedigree and genotype information of the RE0045 family. Index case is indicated with an 
arrow. 
 

 

10.4.2.5. HSD17B3 gene 

 
 We only found one mutation in the HSD17B3 gene, encoding for 17-beta 
hydroxysteroid dehydrogenase 3. The proband (GN0038) was born with female 
external genitalia and was assigned female at birth, although foetal karyotyping was 
performed because of parent’s consanguinity and indicated a 46,XY karyotype. When 
the individual was 10 years old, voice and changes in external genitalia were noticed. 
At examination, she presented hypertrophic clitoris and palpable gonads at inguinal 
canal which Magnetic Resonance Imaging (MRI) confirmed as possible testes. Vagina 
was small (2cm). Laparoscopy showed the absence of female genitalia. Later, 
clitoroplasty was performed and gonadectomy of both testes. She began treatment.  
  

Sanger sequencing study was done and revealed a C to T change in position 
c.845 (c.845C>T) with produced a proline to leucine modification at the protein level 
(p.Pro282Leu). The mutation was found in homozygosis and had been previously 
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reported by Andersson et al in 1996 (130). The mother of the patient was a carrier of 
the same variants while father could not be analysed.  
 

10.4.2.6. STAR gene 

  
Two missense variants were found in the STAR gene in patients GN0185 and 

GN0028.  
 
The GN0185 newborn was referred after birth because of ambiguous genitalia 

(Supplementary data 2). This “female” presented with a small penis (1.5cm) and a 
midshaft hypospadias. Labia majora were well feminized but vagina was blind. Right 
gonad was palpable in inguinal canal. Karyotype was 46,XY. A small vagina and 
hypoplastic uterus displaced to the left (2x0.8x0.8) were identified by MRI. 
Laparoscopy showed a normal vagina in size and a small uterus which continuous to 
the right with a fallopian tube ending in a testis in inguinal canal, and to the left the 
fallopian tube encloses a small streak gonad. Hormonal studies at presentation 
revealed more or less normal values (compared to male age-controls), only elevated 
17-hydroxiprogesterone and progesterone was remarkable (Supplementary data 3). 
One year later, both gonads were removed and showed a left streak ovary and a right 
dysgenetic teste. Clitoroplasty and vaginoplasty was also done. At recent follow up, 
she presented a slight pubertal development (11 years old) and the induction of 
puberty is planned. We identified a heterozygous guanine to timine nucleotide change 
at position 50 (c.50T>G; p.Met17Arg) in exon 1 of the STAR gene by NGS. Moreover, 
the father of the patient presented the same change in heterozygosis.  

 
Regarding the STAR gene variant observed in patient GN0028, see 10.4.3. 

 
10.4.3. Identification of additional gene variants 

 

A total of 4 patients had more than one variant in a DSD-related gene (Table 
17). Three of these patients had a 46,XY karyotype while the other (GN0198) had 
46,XX. Interestingly, two individuals (GN0028, GN0042) had a pathogenic variant in 
NR5A1 in combination with changes in genes acting in gonadal differentiation. On the 
other side, subject GN0171 harboured a pathogenic LHCGR gene mutation and a novel 
missense variant in GATA4. 

 
Regarding GN0028 male, targeted gene panel sequencing revealed a second 

variant in addition to the NR5A1 gene change. The novel, heterozygous C to T change 
at position 361 (c.361C>T; p.Arg121Trp) of the STAR gene was found in the patient and 
his father. As no STAR gene variants related to an isolated DSD phenotype have been 
described, we categorize these changes as of unknown significance, even if the 
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prediction tools and amino acid conservation studies estimated as deleterious 
(Supplementary data 14). Patient (GN0042) had a known variant in NR5A1, but we also 
found the heterozygous c.428C>T; p.Thr143Ile VUS variant in the testis development 
gene AMH. The mother of the patient did not harbour the sequence changes. Although 
prediction software and conservation studies lead to a non-pathogenic effect 
(Supplementary data 14), it is well known that SF1 regulates in Sertoli cells the 
expression of AMH gene and would fit with the phenotype found in this subject.  
 
 

Table 17. Individuals with additional variants identified by NGS.  
 

Family Gene Variant Classification 

GN0028 
NR5A1 C.88T>A; p.Cys30Ser Pathogenic 
STAR c.361C>T; p.Arg121Trp VUS 

GN0042 
NR5A1 

c.614_615insC; 
p.Gln206ThrfsTer20 

Pathogenic 

AMH c.428C>T; p.Thr143Ile VUS 

GN0171 
LHCGR c.1660C>T; p.Arg554Ter Pathogenic 
GATA4 c.677C>T; p.Pro226Leu VUS 

GN0198 
ESR1 c.1781C>T; p.Thr594Met VUS 

HSD17B4 c.524delC; p.Ala175GlufsTer26 VUS 
VUS, variant of unknown significance. 

 
 

Patients GN0171 has been previously described (See 10.4.1.6, page 178). 
 

Among the patients with a 46,XX DSD, only GN0198 was found to have two 
variants of unknown significance in ESR1 and HSD17B4 gene. NGS showed in patient 
GN0198 the deletion of a cytosine in position c.524 (c.524delC) which leads to the 
substitution of an alanine and a change in the reading frame of the protein 
(p.Ala175GlufsTer26) in heterozygosis in HSD17B4 gene. The mother of the patient is a 
carrier of this variant, located in exon 8 of the gene. GN0198 case also harboured a 
novel VUS variant in ESR1. We classified the variant as a VUS. Despite the effect that 
this change could cause in the length of the protein, no mutations have been related 
to 46,XX gonadal dysgenesis up to date. HSD17B4 gene variants have been described 
in D-bifunctional protein deficiency and Perrault syndrome, a condition that alters 
hearing loss and causes abnormalities in ovaries. Two alterations have been associated 
to premature ovarian failure too (225). 
 

10.4.4. Family studies and familial cases of DSD 

 

We were able to achieve at least one first degree family member of 37 patients 
presenting with a rare genetic variants (45.6%).  
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Nine families among the familial cases described in our cohort presented an 

alteration in a DSD-related gene, however we could only study 5 families (Table 18). 
The two siblings in family GN0007 had gonadal dysgenesis and a hemizygous nonsense 
variant in the SRY gene. Moreover, the same pathogenic mutation in the AR was 
identified in the sister of index case GN0041, who presented identical phenotype. 
Regarding GN0075 family, 3 affected members harboured a reported variant in NR5A1. 
An activating mutation in the LHCGR gene was found in the GN0068 proband and his 
father, with family history of precocious puberty. Finally, the two affected siblings with 
gonadal dysgenesis in family RE0045 presented a homozygous missense mutation in 
CYP17A1 gene. Although other familial cases of DSD were referred to the clinician, we 
were not able to study the affected family members (GN0078, GN0142, GN0177 and 
GN0186). A summary of the genetic findings in the affected and non-affected family 
members is shown in Supplementary data 15.  

 
In other familial cases, no DSD-related variant was found.  

 
 

Table 18. Analysed familial cases with a genetically positive variant 
 

Case Gene variant Affected family members 

GN0007 SRY, c.289C>T; p.Gln97Ter Index case and sister 

GN0041 
AR, c.(1616+1_1617-1)_1768+1_1767-1)del; 

p.(Arg539_Asp305del) 
Index case and sister 

GN0068 LHCGR, c.1713G>T; p.Met571Ile Index case and father 

GN0075 NR5A1, c.250C>T; p.Arg84Cys 
Index case, mother, aunt 

and uncle 
RE0045 CYP17A1, c.1246C>T; p.Arg416Cys Index case and sister 
 

 

10.4.5. Yield of identified variants  

 
Sequencing was carried out in the total DSD cohort (125 independent patients). 

At the beginning genetic analysis was done by a candidate gene approach. After the 
implementation of NGS in 2015, patients referred with a DSD were analized using a 
targeted gene panel as well as previous patients with negative results. In total, 89 
patients were analysed by targeted panel (Figure 34). 

 
Totally, we made a DSD-associated genetic finding in 53 patients (41.6%). 

Among these positive cases, 36 (69.2%) were identified by a candidate gene approach 
by PCR-based sequencing, aCGH, QMPSF or MLPA technique. The DSD panel provided 
a molecular diagnosis in 17 out of 89 patients (19.1%) tested by NGS with an unknown 
previous genetic diagnosis after candidate gene approach (Table 15, page 157). From 
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the total observations, clinically relevant rare variants were reported if the filtering 
process classified them as pathogenic or likely pathogenic (229), the variant was 
consistent with the inheritance pattern for that gene and with the patient’s 
phenotype.  
 

 
Figure 34. Schematic representation of the molecular study in the DSD cohort. Number of patients is 
given in cicles.  
 
 

The diagnostic yield for this panel is therefore 17/89 for all samples. This yield is 
increased up to 22.0% for 46,XY DSD (15/68) while it only provided a molecular 
diagnosis in 10.5% of 46,XX DSD individuals (2/19). Variants of unknown significance 
were found in 11 patients (12.3%) and then, diagnosis could not be confirmed because 
of the ambiguity around the variant.  
 

Several variants were identified in the remaining 61 patients, but none showed 
consistency with the phenotype or inheritance mode of the individuals. In these cases, 
DSD might be caused by other factors that need to be discovered, including those 
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patients in whom the Gly146Ala protein change in the NR5A1 gene was observed. 
Although these cases are not discussed in this work they are being further studied.  
 

10.4.6. Clinical diagnosis after molecular studies 

 
 After molecular analysis, initial diagnosis changed in some patients in which a 
pathogenic or likely pathogenic variant was identified.  
 

Disorders of testicular development were suspected in 47 probands. In 4 out of 
17 of those with a complete gonadal dysgenesis this was supported by the identified 
gene variant. On the other side, 22 patients presented with a suspected partial 
gonadal dysgenesis and only two cases were found to be genetically consistent. An AR 
gene variant was found in another index case. Two patients referred as gonadal 
dysgenesis were then reassigned to the androgen biosynthesis defect group due to the 
detection of SRD5A2 and CYP21A2 gene variants (Table 19), while in another case 
diagnosis was reinforced. The only case with an ovotesticular suspicion presented an 
AR variant and was therefore classified as AIS, however, none of the patients with 
gonadal regression harboured a gene variant. Twenty-one patients were categorised 
as AIS (Complete, partial or AIS), however an AR defect was only found in 12 of these 
cases and 4 had another variant. Disorders of androgen synthesis were confirmed in 
one patient with a HSD17B3 deficiency suspicion and in three patients with luteinizing 
hormone defects and activating mutations in LHCGR gene. Regarding the group 
classified as others, adrenal insufficiencies were confirmed with the detection of 
NR0B1 gene changes, as well as 3 out of 4 pathologies related to the WT1 gene (Denys-
Drash and Frasier syndrome). Among those individuals with a clinical suspicion of 
anorchia, cryptorchidism or 46,XY DSD, the genetic aetiology was set in 4 out of seven 
patients leading diagnosis to AIS in the case of anorchia suspicion, and three cases of 
46,XY DSD to gonadal dysgenesis and LH-receptor defect. Overall, a genetic alteration 
was determined in 21.7% of those with a suspected disorder of testicular development 
(Table 20, page 198), 70.3% of those with a disorder of androgen synthesis or action 
and 62.5% of those classified as others. 
 

All the individuals with a suspected 46,XX testicular DSD were genetically 
confirmed. Furthermore, two patients with a primary cause of 46,XX DSD had a SRY 
translocation and a likely deleterious change in ESR2 gene and were reassigned to 
46,XX testicular DSD and ovarian dysgenesis, respectively. The remaining cases with a 
46,XX karyotype and gonadal dysgenesis, Mayer-Rokitansky-Küster-Hauser (MRKH) 
syndrome or OT DSD were not confirmed. Overall, 36.8% of patients referred with a 
related ovarian disorder were molecularly diagnosed.  
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Table 19. Classification of our DSD cohort at clinical diagnosis and after molecular study in 
accordance to the Consensus statement on intersex disorder (172). Number of patients with a 
genetic finding in each group is indicated. 
 

DSD classification 
At initial 

diagnosis 

After 

molecular 

study 

Patients with variants (%) 

4
6

,X
Y

 D
SD

 

Disorders of testicular development 
Complete gonadal dysgenesis 17 19  

Partial gonadal dysgenesis 22 23  
Gonadal dysgenesis 4 1  
Gonadal regression 3 3  
Ovotesticular DSD 1 0  

Total 47 46 10 (21.7) 
Disorders in androgen synthesis and action 

Androgen biosynthesis defect 6 9  
Defects in androgen action 21 21  

LH receptor defects 5 7  
Total 32 37 26 (70.3) 

Others 
Frasier and Denys-Drash syndromes 4 4  

Severe hypospadias 2 2  
Primary adrenal insufficiency 7 7  

Unknown 7 3  
Total 20 16 10 (62.5) 

Total 46,XY DSD 99 99 46 (46.5) 

4
6

,X
X

 D
SD

 

Disorders of ovarian development 
Ovotesticular DSD 3 3  

Testicular DSD 6 6  
Gonadal dysgenesis 8 8  

Total 17 17 6 (35.3) 
Androgen excess 

Total 0 0 0 (0) 
Others 

MRKH syndrome 3 3  
Unknown 4 4  

Total 7 7 0 (0) 
Total 46,XX DSD 24 24 7 (29.2) 

Se
x 

ch
r 

D
SD

 45X/46,XY, mixed gonadal 
dysgenesis 

2 2 0 (0%) 

Total Sex chromosome DSD 2 2 0 (0%) 
 Total DSD 125 125 53 (42.4%) 

Chr, chromosome; DSD, disorders of sex development.
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Table 20. Detail of the patients with a confirmed molecular diagnosis. 
 

Case 
Suspected clinical 

diagnosis 
Affected gene Results reported 

Diagnosis after molecular 
study 

GN0004 46,XX T DSD SRY Consistent with clinical features 46,XX T DSD 
GN0007 46,XY DSD CGD SRY Confirmed diagnosis 46,XY DSD CGD 
GN0009 Frasier syndr WT1 Consistent with diagnosis Frasier syndr 

GN0011 46,XY DSD CGD MAP3K1 Confirmed diagnosis 46,XY DSD CGD 
GN0018 46,XY DSD PGD AR Consistent with clinical features 46,XY DSD CAIS 
GN0023 46,XX T DSD SRY Consistent with clinical features 46,XX T DSD 
GN0024 46,XY DSD AR Consistent with clinical features 46,XY DSD PAIS 
GN0028 46,XY DSD NR5A1 Consistent with diagnosis 46,XY DSD PGD 
GN0034 46,XY DSD AIS LHCGR Consistent with clinical features 46,XY DSD LH RD 
GN0035 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0037 46,XY DSD PAIS AR Consistent with clinical features 46,XY DSD PAIS 
GN0038 46,XY DSD ABD HSD17B3 Confirmed diagnosis 46,XY DSD ABD 
GN0041 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0042 46,XY DSD AIS NR5A1 Consistent with clinical features 46,XY DSD CGD 

GN0046 46,XY DSD AIS SRD5A2 Consistent with clinical features 46,XY DSD ABD 
SRD5A2 

GN0054 46,XX T DSD SRY Consistent with clinical features 46,XX T DSD 
GN0055 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0068 46,XY DSD LH RD LHCGR Supports diagnosis 46,XY DSD LH RD 
GN0075 46,XY DSD NR5A1 Consistent with clinical features 46,XY DSD PGD 
GN0076 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0078 PAI NR0B1 Confirmed diagnosis PAI 
GN0080 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0088 46,XY DSD LH RD LHCGR Supports diagnosis 46,XY DSD LH RD 
GN0091 PAI NR0B1 Consistent with diagnosis PAI 
GN0101 PAI NR0B1 Supports diagnosis PAI 
GN0109 46,XY DSD GD NR5A1 Confirmed diagnosis 46,XY DSD CGD 
GN0111 46,XY DSD CGD NR5A1 Confirmed diagnosis 46,XY DSD CGD 
GN0112 46,XY OT DSD AR Consistent with clinical features 46,XY DSD CAIS 
GN0123 46,XY DSD PGD NR5A1 Consistent with diagnosis 46,XY DSD PGD 
GN0125 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0132 Frasier syndr WT1 Consistent with diagnosis Frasier syndr 
GN0133 46,XX T DSD SRY Consistent with clinical features 46,XX T DSD 
GN0139 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0141 46,XY DSD CGD SRY Confirmed diagnosis 46,XY DSD CGD 
GN0146 46,XY DSD PAIS AR Confirmed diagnosis 46,XY DSD PAIS 
GN0147 46,XY DSD AIS LHCGR Consistent with clinical features 46,XY DSD LH RD 
GN0153 PAI NR0B1 Confirmed diagnosis PAI 
GN0157 46,XY DSD LH RD LHCGR Supports diagnosis 46,XY DSD LH RD 
GN0159 46,XX T DSD SRY Confirmed diagnosis 46,XX T DSD 

GN0164 46,XY DSD LH RD AR Consistent with clinical 
features 46,XY DSD AIS 

GN0171 46,XY DSD LHCGR Consistent with clinical 
features 46,XY DSD LH RD 
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Table 20. Detail of the patients with a confirmed molecular diagnosis (Continuation). 
 

Case 
Suspected clinical 

diagnosis 
Affected gene Results reported 

Diagnosis after molecular 
study 

GN0177 46,XY DSD CAIS AR Consistent with clinical 
features 46,XY DSD CAIS 

GN0186 46,XY DSD GD SRD5A2 Supports diagnosis 46,XY DSD ABD 
GN0187 46,XX T DSD SRY Confirmed diagnosis 46,XX T DSD 
GN0189 46,XY DSD CAIS AR Confirmed diagnosis 46,XY DSD CAIS 
GN0194 46,XY DSD AIS AR Confirmed diagnosis 46,XY DSD AIS 

GN0203 46,XY DSD PGD WWOX Consistent with clinical 
features 46,XY DSD PGD 

GN0207 46,XX DSD ESR2 Consistent with clinical 
features 46,XX DSD 

OT0567 Denys-Drash syndr WT1 Consistent with diagnosis Denys-Drash syndr 

POL0274 PAI NR0B1 Consistent with clinical 
features PAI 

POL0285 PAI NR0B1 Confirmed diagnosis PAI 
POL0301 PAI NR0B1 Confirmed diagnosis PAI 

RE0045 46,XY DSD GD CYP17A1 Consistent with clinical 
features 46,XY DSD ABD 

ABD, androgen biosynthesis defect; AIS, androgen insensitivity syndrome; CAIS, complete androgen 
insensitivity syndrome; CGD, complete gonadal dysgenesis; DSD, disorder of sexual development; GD, 
gonadal dysgenesis; OT, ovotesticular; PAI, Primary adrenal insufficiency; PAIS, partial androgen 
insensitivity syndrome; PGD, partial gonadal dysgenesis; RD, receptor defect; syndr, syndrome; T, 
testicular. 
 
 

Due to the uncertainty around the pathogenicity of VUS variants initial clinical 
diagnosis could not be confirmed in such patients (Table 21).  
 
 

Table 21. Detail of the patients with a variant of unknown significance (VUS). 
 

Case Suspected clinical diagnosis Affected gene Results reported 

GN0020 46,XY DSD GD WWOX Consistent with clinical features 
GN0028 46,XY DSD STAR Variant found in addition to NR5A1 
GN0042 46,XY DSD AIS AMH Variant found in addition to NR5A1 
GN0142 46,XY DSD GD DMTR2 Consistent with clinical features 
GN0150 46,XY DSD AIS WT1 Consistent with clinical features, not with diagnosis 

GN0154 46,XX DSD GD MAMLD1 Conflicting evidence 

GN0155 46,XY DSD AIS ZFPM2 Consistent with clinical features, not with diagnosis 

GN0156 46,XY DSD LH RD WT1 Conflicting evidence 

GN0171 46,XY DSD GATA4 Variant found in addition to LHCGR 

GN0185 46,XY DSD GD STAR Consistent with clinical features 

GN0198 46,XX DSD 
HSD17B4 Consistent with clinical features 

ESR1 Consistent with clinical features 
AIS, androgen insensitivity syndrome; DSD, disorder of sexual development; GD, gonadal dysgenesis; RD, 
receptor defect. 
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10.5. IN VITRO FUNCTIONAL STUDIES 

 

Transcriptional activity of different variants located in GATA4, NR5A1 and 
LHCGR genes was tested to elucidate its potential pathogenic role in the development 
of the disease. 

 
10.5.1. Functional characterization of the GATA4 transcription factor 

 

In the literature, a single GATA4 variant found in a patient with DSD and CHD 
(congenital heart defect) has been characterized before (27). The p.Gly221Arg variant, 
located in the N-terminal zinc finger domain of GATA4, had impaired transactivation 
activity on the AMH promoter.  
 

Priorization of variants detected by NGS in our cohort revealed a novel GATA4 
gene variant in heterozygosis in patient GN0171. In silico programs predicted the gene 
variant c.677C>T; p.Pro226Leu as likely pathogenic and comparison of the amino acid 
among different species indicated that the region is highly conserved. This suggested 
the importance of the residue in the protein. Then, we decided to study the impact of 
the Pro226Leu variant in the transactivation capacity of GATA4 in vitro, and compared 
to the Gly221Arg mutant.  
 

10.5.1.1. Transactivation capacity of GATA4 in JEG3 cells 

 

Previously, co-transfection of the GATA4 expression construct and the AMH 
and SRY-reporter genes promoters had been carried out in different cell models (25) 
but only JEG3 cells transfected with CYP17 promoter revealed consistent results. 
Functional activity was tested by studying transactivation of wt and mutant GATA4 on 
the CYP17A1 promoter in JEG3 cell systems (Figure 35). 

 
Transfection of human placental JEG3 cells with wt and GATA4 mutant together 

with the CYP17A1 promoter reporter construct indicated that the Pro226Leu variant 
activated the CYP17 promoter similar to wt, while Gly221Arg mutant lost 
transcriptional activity.  

 
 An original research article was derived from these results (Supplementary data 
16). 
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Figure 35. Transcriptional activity of GATA4 variants on the CYP17A1 promoter. JEG3 cells were 
transfected with a CYP17 promoter luciferase reporter construct, and the activity of wild type (wt) and 
mutant GATA4 to transactivate the promoter was tested using the Promega Dual Luciferase readout 
system. Results are shown as the mean ± SEM of four independent experiments, all performed in 
duplicate. **p-Value ≤ 0.01. RLU, relative light units; wt, wild type. 

 

 

10.5.2. Functional characterization of the novel NR5A1 variants 

 

Many patients with NR5A1 variants have been studied widely, although no 
clear genotype-phenotype correlation has been found already. We describe 3 novel 
NR5A1 variants (c.71A>T; p.His24Leu, c.88T>A; p.Cys30Ser and c.902G>A; p.Cys301Tyr) 
found in three 46,XY DSD patients. Comparison of the residues against multiple species 
indicated its high conservation and in silico programs predicted them as likely 
pathogenic.  

 
10.5.2.1. Promoter transactivation studies 

 

To study the impact of the three changes to the transactivation faculty of SF1 in 
vitro, HEK293 cells were cotransfected with wt or mutant NR5A1 expression construct 
and a responsive CYP17A1, HSD17B3 and CYP11A1 reporter genes. 

 
As shown in Figure 36, all NR5A1 mutants led to a significant reduced 

transactivation of the CYP17A1 promoter. These results were confirmed for the 
His24Leu and Cys30Ser mutants when transactivating the constructs with the CYP11A1 
and HSD17B3 promoter stimulation similar to the CYP17A1 promoter. However, for 
Cys301Tyr mutant no change was observed with HSD17B3 and CYP11A1 reporter 
genes. 
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Figure 36. Functional studies of the 3 novel NR5A1 variants. The ability of wt and mutant NR5A1 to 
activate promoter luciferase reporter constructs was tested in HEK293 cells (A-C). Cells were transiently 
transfected with NR5A1 expression vectors and promoter reporter contructs CYP17A1 (A), HSD17B3 (B) 
and CYP11A1 (C). Results are shown as the mean±SEM of five independent experiments, all performed 
in duplicate. D, Western blot showing expression of wt and mutant SF1 proteins. HA antibody 
recognized Hemagglutinin-tagged SF1 in the western blot (band at 53 KDa). B-actin was used as a 
control (band at 42 KDa). **p-Value ≤ 0.01. Ha, hemagglutinin; RLU, relative light units; Ve, empty 
vector; wt, wild type. 
 
 

10.5.2.2. Protein expression of NR5A1 variants 

 

Expression of NR5A1 variants in HEK293 cells was assessed by a western blot. 
Cells were cotransfected with the NR5A1 expression vectors containing a HA-tag, then 
the western blot was performed using an antibody against HA. As shown in Figure 32, 
we found no difference for SF1 protein expression for the tested variants compared to 
wt. 
 

10.5.3. Signal transduction of the LHCGR gene variants 

 

We analysed in vitro two possible LHCGR variants found in patients GN0147 
and GN0171. The novel missense c.757T>C variant, replacing a serine with proline at 
position p.253 was found in homozygous state in patient GN0147, while the 
c.1160C>T;p.Arg554Ter gene variant appeared in heterozygosis in GN0171 case. 
Although this last variant had been reported previously (269), functional impact was 
not assessed.  
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HEK293 cells were transfected with either wt or mutant pSG5 plasmids and a 
luciferase reporter gene to evaluate the functional impact. As the LHCGR couples to Gs 

alpha subunit to mediate its functions, we assayed the measure of the second 
messenger cAMP. We used a reporter gene system of the cAMP response element 
fused to firefly luciferase (CRE-luc) and cells were then analysed for their 
responsiveness to different hCG doses (0ng/ml to 100,000ng/ml). The generation of 
cAMP directly correlates with the activation of the CRE-luc reporter system. 
  

We found that cells transfected with HA-tag and expression vector showed no 
cAMP generation in response to the increasing tested concentrations of hCG, unlike 
the cells expressing the wt LHCGR receptor (Figure 37). 
 

 
Figure 37. cAMP generation by the wt and the two distinct LHCGR mutants. HEK293 cells were 
transfected with a pSG5 plasmid carrying either a HA-tagged wt or a HA-tagged mutant (Arg554Ter and 
Ser253Pro). Cells were stimulated with hCG at different doses and the generation of cAMP was tested 
using the Promega Dual Luciferase readout system. Each data point represents the mean±SEM of three 
independent experiments, carried out in duplicates. cAMP, cyclic adenosine monophosphate; hCG, 
human chorionic gonadotrophin; RLU, relative light units; wt, wild type. 
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DISCUSSION 
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In 2006, at the Chicago consensus conference a new term to include the 
confusing intersex, sex reversal, hermaphroditism and pseudohermafroditism words 
was created. Such term, DSD, encompasses a range of conditions and avoids mistakes 
with terms like gender dysphoria or transgender. When genetically caused, reaching a 
molecular diagnosis supports the management of the patient concerning to gender 
development, gonadal and adrenal function or other long-term consequences. Since 
the development of High-throughput screening (HTS) technologies, the understanding 
of the genetic basis of rare human disorders, including DSD, has increased. 

 
The main objective of this work was the clinical characterization and the 

molecular diagnosis of an extent cohort of patients with a disorder of sex development 
either by a candidate gene approach or using next generation sequencing 
technologies. A targeted gene panel was designed to include genes associated with 
gonadal development and differentiation, as well as hypogonadism. Hereafter I discuss 
about the capacity of the customized gene panel as a disgnostic tool. Then, I analyse 
the phenotype-genotype correlations and the results of the in silico and in vitro 
functional studies of the sequence variants found in NR5A1, LHCGR and GATA4.  
 

DSDs represent a major paediatric concern and a difficult clinical management 
that might be associated with infertility or cancer. The correct diagnosis of DSD is 
challenging and may be requested due to a family history of DSD or a phenonotypic 
presentation suggesting the disorder. Clinical care requires a multidisciplinary team 
that includes endocrinology, either paediatric or adult since diagnosis ranges from 
prenatal to adolescent or adults, urology or gynaecology, radiology, pathology in some 
cases and genetics (174). An important part of the evaluation of the DSD patients is the 
bioquemical analysis.  
 

Although steroid hormone testing has been used in the past as the first 
approach to guide the diagnosis, currently is combined with molecular genetic 
analyses. Hormonal analyses in blood or urine provide differences in the phenotypic 
expression and offer a fast differential diagnostic orientation. For example, in 
congenital adrenal hyperplasia it has shown to have a good phenotype-genotype 
correlation as the quantification of numerous steroid detects rare forms of steroid 
synthesis disorders. The bioquemical analysis is important for the initial diagnosis of 
DSD but is also critical to ensure the greatest development at puberty and at hormone 
replacement treatments (272). It is important to note that in DSDs the homone data 
interpretation needs to considerate the clinical presentation of the patients and has to 
be age- and sex- related. In healthy infants, a transient postnatal activation of the 
hypothalamic-pituitary gonadal axis occurs. This mini-puberty period represents an 
important diagnostic tool in clinical diagnosis of infants with a suspected disorder of 
sex development when concentrations of gonadotropins and hormones are measured. 
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Between the first week and the three months of life, gonadotropins rise and show an 
obvious sexual dimorphism. In males, predominant levels of LH elevate serum 
concentrations of testosterone, AMH and inhibin B, while in females FSH gives rise to 
oestradiol. The following months, concentrations decrease to prepubertal levels. Up to 
date, little evidence existed on the referenced ranges at this mini-puberty period 
which difficulted the evaluation of a child with DSD. Now, these ranges have been 
established (273).  

 
The molecular diagnosis provides guidance for clinical management and further 

risk, however achieving a genetic diagnosis is difficult due to the wide range of 
phenotypes that are encompassed in this group of anomalies, the poor genotype-
phenotype correlation and the limited knowledge of the pathogenesis that lead to 
DSD. Currently, 50% of 46,XY DSD patients do not receive a genetic diagnosis (12, 226), 
although other factors such as environment or epigenetic changes need to be consider 
also (140). For the elucidation of the genetic causes in DSD, the multiciscilinary team 
and current technologies should determine firstly the chromosomal sex of the 
individual. Depending on this, the case will be assigned to one of the three major DSD 
subclasses established in the Chicago Consensus (174) and together with clinical 
description, molecular diagnosis will be requested by using the most adequeate 
molecular testing.  

 
However it is ofter challenging to appropriately classify a DSD patient due to 

the difficulty to make a correct diagnosis. In this study, this was emphasized by the fact 
that as a multicentre study, clinical and hormonal data that we obtained from the 
included patients was highly variable or insufficient. In these cases, the molecular 
analysis prior to the implementation of NGS led to a poor specific gene study. On the 
other side, the analysis of these patients, classified as of unknown origin with the 
targeted gene panel pointed to a more clear DSD classification. In the group of 
unknown 46,XY DSD, 4 patients were reassigned to disorders of androgen synthesis or 
action after the identification of an AR and LHCGR gene variant and to disorders of 
testicular development due to alterations in NR5A1. Nevertheless, a scarce clinical 
description of the DSD patient drives to a more complicated management of the 
variants of unknown significance. An individual in the unknown 46,XX DSD cohort 
presented a sequence variant in ESR2 but was not further classified because 
prepubertal ovaries and not dysgenetic had not been reported in the patient. Others 
have illustrated the requirement of a more detailed biochemical and clinical data for a 
better understanding of the DSDs (274). To avoid these differences in the clinical 
descriptions of the patients presenting a DSD, standardized guidelines could be used, 
such as the External Genitalia Score (275) or recommendations already published as 
Consensus Statements by COST Action BM1303 working groups. Other papers have 
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illustrated the requirement of a more detailed biochemical and clinical data for a 
better understanding of the DSDs (274).  

 
 

11. EVALUATION OF THE TARGETED GENE SEQUENCING PANEL 

 
We evaluated the performance of the customized panel as a diagnostic gene 

sequencing tool. We observed that 94.2% of the reads were aligned to the reference 
genome with a mean depth of 288.3 reads on targeted regions. Although the expected 
coverage for the targeted regions was 98.55% according to the Ion Ampliseq Designer 
tool, we observed that the coverage depth was variable among the different genomic 
regions. For the 48 DSD-related genes we found that 9.3% of the amplicons included in 
the panel were not covered in most of the samples or were covered by less than 20 
reads, an acceptable level for diagnostic use. An example of the latter is the complex 
sequencing of the CYP21A2 gene due to the high sequence homology with the 
CYP21A1P pseudogene.  
 

Coverage and targeting efficiency is positively comparable with other studies, 
using the same and other competing platform (12, 218) Current sequencing platforms, 
such as Ion Torrent or Illumina use short reads (<400pb) for mapping to the reference 
genome, which reduces costs and fastens the sequencing but fails to uniquely target 
the interesting region, Further analysis was done to study those regions without 
mapped or low amplified regions that were located within exons or exon boundaries. 
 

We also included previously sequenced samples to validate the assay quality. 
Panel sequencing did not detect a single one-nucleotide deletion in the first exon of 
the WT1 gene, located within an amplicon that failed to be read in all the samples. 
Therefore, sensitivity was set at 81.8%. Although others have included known point 
variants to ascertain the performance of the panel, the type of variant is not reported 
and comparison couldn’t be made.   
 

CNV were not completely analysed in this study. The customized gene panel 
failed to detect those rearrangements in patients included as positive controls, 
therefore few copy number gains or losses were broaden validated. Up to date, the 
detection of CNV is challenging when using gene panels and although a workflow can 
be standardized for its use with the Ion Torrent technology, a major expertise is 
required. For example, it is essential to include control samples without known CNV, as 
rearrangements will be reported based on their copy number gain or loss relative to 
the control samples. Four samples from patients with known point mutations in which 
commercial MLPA had ruled out a CNV were used as controls. However, the presence 
of other duplications or deletions couldn’t be discarded in these samples. A more 
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exhaustive genetic panel including CNV may improve from 9.1% to 29.8% the disease 
aetiology, as based on previous reports (28, 222, 276, 277). A specific defect of the Ion 
Torrent sequencing platform is given by the errors in the number of bases called when 
a nucleotide or a group of nucleotides are repeated more than once in a sequence 
(homopolymer errors) (278). Subsequently, alignment is misguided and false small 
deletions and insertions are called, increasing the false positives and hiding real indels. 
 

Even though the limitations related to the current next generation sequencing 
technologies or to the Ion Torrent platforms exclusively, we have shown that targeted 
gene panel sequencing has a great potential as a diagnostic tool to detect point 
mutations.  
 

 

12. CLINICAL AND MOLECULAR CHARACTERISTICS OF THE DSD COHORT 

 
For this study we have analysed DNA from 125 patients and 37 family members 

from DSD patients. Targeted gene panel sequencing together with single gene testing 
provided a genetic diagnosis in 42.4% of these individuals. 
 

Among the studied patients, 36 were genetically identified by a candidate gene 
approach and 89 underwent diagnostic testing for DSD using a 48-gene NGS panel. 
This panel was used for all the samples since 2015, unless a specific gene sequencing 
or aCGH analysis was requested based on the clinical features of the patient. The 
diagnostic yield of this targeted gene panel was shown to be 17/89 (19.1%) for all 
DSDs. Our detection rate is lower to those in previous studies (12, 81, 93, 217, 219, 
220, 279) but similar to that obtained by Fan Y et al (20.7%) (218). The molecular 
analysis in our cohort showed a total of 47 pathogenic and 7 likely pathogenic variants 
in known DSD genes. Among them, 14 were previously unreported, in addition to the 
12 VUS variants that were also identified. 
 

As in other publications, a separate analysis of the 46,XY DSD from the whole 
cohort results in an improved yield to 15/68 (22.05%). It is important to note that prior 
to the design and implementation of the customized gene panel, a big proportion of 
our DSD cohort had undergone genetic pre-screening (64.8%) in our laboratory, which 
definitely affects our overall diagnostic rate. We suppose that if we had applied the 
gene panel as the first diagnostic approach, we could expect our panel to provide a 
greater diagnostic percentage. On the other side, reaching a diagnosis essentially 
depends on the genes included in the panel. Our panel was designed in 2015 and the 
48 genes were selected due to published evidence of their role in DSD. Evidence has 
shown that a higher number of genes do not correlate with a better diagnostic rate. 
For example, Hughes et al demonstrated a molecular diagnosis of 32.1% for their DSD 
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population by analysing 30 genes (219) and Kim et al reached a 29.5% including 67 
genes (93). Comparison of the genes in our panel against published genes in other 
customized panels showed a percentage of common genes from 17.8% (217), 60.9% 
(12) to 86.6% (219). This may highlight the importance of the selected patients to be 
analysed through the panel, rather than the genes included in the panel, as the major 
influence in the diagnostic rate.  
 

Sanger sequencing or testing with a MLPA or aCGH was done depending on the 
clinician’s judgement and following clinical examination. Disease-causative variants 
were detected in 36 out of the 81 DSD (44.4%) patients studied for a single test. The 
detection yield of single gene test is dependent on the first selected gene, limited to 
the phenotype of the patient and therefore to the clinical information given by the 
clinician. Those patients presenting a DSD with a clear phenotype-genotype correlation 
were successful after a single gene was sequenced, such as SRY in 46,XX testicular DSD 
or AR in AIS suspicion. Patients in which 3 or more genes (or MLPA) were studied had 
been mainly classified as 46,XY DSD with complete or partial gonadal dysgenesis, 
which highlights the heterogeneous molecular mechanisms underlying 46,XY DSD. 
 

We conclude that our gene panel is not useful for the molecular diagnosis of 
46,XX DSD, at least until the detection of CNVs is upgraded. Among previous studies 
including 46,XX DSD in their cohorts, massive parallel sequencing led to a diagnostic 
rate in these patients up to 25% (12, 93, 217-219).  
 

This is one of the largest cohorts of DSD patients analysed for a molecular 
diagnosis worldwide. To the best of our knowledge this is the first study in which 
patients with 45X0/46,XY karyotypes and mixed gonadal dysgenesis are included in a 
targeted gene panel to search for additional variations that explain the phenotype. 
Altogether this study demonstrated that 42.4% of DSD patients harboured pathogenic 
or likely pathogenic variants and positively increased the diagnostic yield reached by 
Fan Y et al who analysed 32 patients using a gene sequencing approach and a 
customized Ion Ampliseq panel (218). Currently, we are working to improve the 
detection of CNV with the gene panel. An increase in the number of control samples 
will optimize the workflow and expand the number of patients with a molecular 
diagnosis. The analysis of both point and big rearrangement in a single run by NGS 
would improve the use of the technique in a cost-effective mode. Otherwise, a range 
of methods have been developed to detect these type of genetic variants, such as 
MLPA or aCGH, and will be performed in those patients with negative genetic results in 
the near future.  
 

In our series, patients with 46,XY DSD (99, 79.2%) were more common than 
46,XX DSD (24, 19.2%), which is consistent with previous studies. The highest 
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diagnostic rate was observed in patients with 46,XY DSD (46.5%), specifically in 
disorders of androgen synthesis and action (70.3%), in which described AR changes 
were found in several individuals with identical phenotypes (254-257, 260-262, 280).  

 
As in other populations (140), defects in AR were the most common cause of 

46,XY DSD in our cohort. We observed three novel AR variants (His100ProfsTer3, 
Pro276HisfsTer20, Leu881Arg). The two frameshift variants are likely to have no 
variable expressivity, and then result in a CAIS phenotype. In contrast, Leu881Arg, 
located in the ligand-binding domain of the receptor is expected to impair androgen 
binding capacity. In the same codon, another changes support this hypothesis (281, 
282) and together with the results shown by in silico analyses, it is believed to be the 
cause of the phenotype in our patient. Moreover, Gln825Lys variant, reported in males 
with gynecomastia and infertility (259) was identified in a case with different clinical 
features. However, previously done ligand-binding experiments showed a slight 
impairment of the mutated AR protein function (258), which could also explain the 
phenotype in our patient.  

 
Sequence changes in enzymes involved in steroidogenesis were also detected. 

We identified two novel VUS in STAR gene in two cases with discarded adrenal 
hyperplasia. Up to date, inactivating STAR variants led to lipoic congenital adrenal 
hyperplasia, resulting in adrenal insufficiency and 46,XY DSD, an autosomal recessive 
disease. Although a non-severe phenotype is expected from missense changes located 
outside exon 5 to 7 (283), we could hypothesize that heterozygous gene variants, in 
addition to a second hit, might exclusively affect foetal testicular synthesis without 
driving to an adrenal steroid deficiency. Indeed, patient GN0028 harboured a 
heterozygous variant in NR5A1 together with an unknown significance change in STAR 
gene.  

 
Further reported mutations were detected in SRD5A2, HSD17B3 and CYP17A1 

genes. A number of studies have associated the Gln126Arg change in SRD5A2 to 
severe phenotype of the enzyme deficiency in different individuals (264, 284-287), 
even in compound heterozygosity in four Brazilian patients (288). The deletion of exon 
1 in GN0046 was also found in an 46,XY athlete with blind vagina and lack of Müllerian 
ducts (265). Last variants in SRD5A2 gene (Tyr91Asp) and in HSD17B3 (Pro282Leu) 
were detected in homozygous state and patients were referred with identical 
phenotypes to those described before (130, 289). Finally, Arg416Cys in CYP17A1 was 
identified in a patient with 46,XY karyotype, primary amenorrhea, infantilism and 
hypertension. Her older sister, with similar clinical features and 46,XX karyotype also 
presented the mutation. Functional comparison of the wild type and transfected cells 
of the mutant had shown weak activity of the enzyme (271) in a female with pubertal 
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delay and hypertension. Additionally, both sisters were diagnosed of 
pheochromocytoma in their early adulthood. 
 

Nearly 20% of the 46,XY DSD with gonadal dysgenesis are thought to have an 
inactivating variants in the SRY gene (177). However, we only found two patients with 
hemizygous variants in SRY, which represents the 5.7% of the initially suspected cases 
with 46,XY gonadal dysgenesis. Together with the previously described Gln97Ter 
variants in the HMG domain of SRY in two siblings (238), we also observed the novel 
and deleterious Pro131Ser variant in a female with complete gonadal dysgenesis. 
Interestingly, a Proline to Arginine residue change had been described in the same 
position (239). On the other side, cases of sporadic and familial 46,XY DSD have been 
related to deleterious variants in MAP3K1, a key component of the testis-specific 
development (81, 82, 290). Eggers et al identified 11 patients with 6 different MAP3K1 
variants and extended the phenotype to include hypospadias and undervirilization, to 
the previous individuals presenting partial and complete gonadal dysgenesis (12). 
Here, we report one 46,XY gonadal dysgenesis case with a previously reported variant 
in an individual with similar clinical features, such as female external genitalia, both 
Müllerian and Wolffian remnants and elevated gonadotropins (82).  

 
WT1 is another early developmental gene identified in 46,XY DSD patients with 

and without additional syndromes. Historically thought to cause Denys-Drash or 
Frasier Syndromes, gene alterations in WT1 encompass a range of clinical phenotypes 
that may correlate or not with the type of variants and its location (291). Indeed, 
recent publications have reported WT1 variants in infants with undervirilized 
phenotypes, such as hypospadias (38, 291, 292), ambiguous genitalia (219) with and 
without associated nephropathy, and ovarian failure (19).  

 
In this study we found WT1 sequence variants in 5 patients with different 

phenotypes, including two novel missense changes in isolated forms of 46,XY DSDs. 
The novel Glu75Lys was found in a 3 year old female with immature testes at image 
and no signs of kidney abnormality. However, both gonadoblastoma and/or kidney 
disease may be developed later in life (291), therefore patient should be closely 
followed-up. Although the mother of the patient was a carrier of the same 
heterozygous variants, incomplete penetrance associated to Denys-Drash syndrome 
has been previously described (293). The second novel change (Met182Lys) was found 
in patient GN0156, an infant with precocious puberty. This suggests a greater 
phenotypic variability than previously thought, however further in vitro studies are 
needed.  

 
Regarding the two syndromes associated with genital malformations and 

kidney disease, we detected two splice-site variants in intron 9 in two patients with 
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Frasier syndrome which had been previously described (17, 251). Denys-Drash and 
Frasier syndromes are characterized by complete or partial gonadal dysgenesis in XY 
individuals and nephropathy. The difference among these pathologies is the presence 
of Wilms’ tumour in Denys-Drash and gonadoblastoma or streak gonads in Frasier 
Syndrome. However, since a complete WT1 gene deletion was found in a newborn 
with gonadal dysgenesis, gonadoblastoma and bilateral Wilms’ tumour (253), the 
variable phenotype associated to the gene was amplified and enhanced the earlier 
suggestion that both syndromes are part of the same clinical phenotype (294). In our 
cohort we found a partial gene deletion, from exon 7 to 10, in a male with bilateral 
Wilms’ tumour and cryptorchidism as the only genital malformation, although 
hypoplastic testes were visually noted. Nephropathy was not described, but 
proteinuria was present before surgery. Hence, we support the idea of Frasier and 
Denys-Drash syndromes as part of a wider phenotypic picture, instead of isolated 
syndromes, in which milder phenotypes are included, such as less severe kidney 
anomalies or its absence. 
 

Seven individuals in our cohort with X-linked Adrenal hypoplasia congenita 
(AHC) were found to have hemizygous missense, nonsense and frameshift changes or 
complete gene deletions in NR0B1. Clinical features of the disease include salt-losing 
adrenal insufficiency, hypogonadotropic hypogonadism and infertility in both sexes, 
while boys may also refer early puberty and glucocorticoid or mineralocorticoid 
deficiency. In our study patients principally manifested typical symptoms of salt-
wasting crisis involving dehydration, low sodium levels and hypoglycaemia either with 
or without skin pigmentation. Abnormal sexual development was only described in 
POL0274, while two other cases (GN0101 and POL0285) referred hypogonadotropic 
hypogonadism, when aged 17 and 45 years, respectively. DAX1 and SF1 are the major 
factors involved in adrenal and reproductive development and function. Most of the 
different mutations in NR0B1 are associated with the loss-of-function in the ligand-
binding domain or a stop variant that translates to a shorter protein (295).  

 
In the present study we identified two novel variants located in the DNA-

binding domain that are susceptible to form shorter protein structures and explain the 
primary adrenal insufficiency (PAI) observed in these patients. In the newborn males, 
the condition presents with clinical features that are vaguely different from the salt-
wasting form of 21-hydroxylase deficiency. An accurate hormonal and molecular 
diagnosis has significant consequences for precise prescription of the treatment and 
genetic screening affects other family members, indeed the risk of symptoms related 
to adrenal insufficiency in brothers and males in the maternal family need to be 
consider (295). In our study, patient GN0078 presented a positive family history of 
unexpected early death in males, and thus had an effect on the early diagnosis of the 
individual and genetic counselling in an affected cousin. Case POL0285 also reported 



 

213 
 

family background but was genetically diagnosed in his adulthood when he presented 
with hypogonadotropic hypogonadism. Similar to GN0101, a complete NR0B1 gene 
deletion was found in this patient. Guo et al firstly described in 1995 a complete gene 
deletion in two isolated cases presenting with PAI and mental retardation (249), since 
then many others have been reported encompassing similar phenotypes to that of our 
patients (296).  
 

In human, WWOX gene germline mutations have been shown to be associated 
with sex differentiation, but also with spinocerebellar ataxia and WOREE syndrome, 
characterized by epileptic encephalopathy (WWOX-related epileptic encephalopathy) 
(297). We identified two missense variants in two patients referred to clinician for 
46,XY gonadal dysgenesis suspicion. Gly62 residue, in exon 3, situated in the second 
WW domain of the protein, is involved in protein interactions and therefore the 
observed change in patient GN0203 may impair this function. In contrast, Pro366 
amino acid is located in the carboxi-terminal of the encoded protein. Although a milder 
effect would be suspected, the phenotype observed in patient GN0020 is more severe 
than in subject GN0203. Further molecular analyses are needed to assess the 
implications of WWOX in 46,XY gonadal dysgenesis.  

 
More recently, heterozygous and homozygous missense changes in ZFPM2 

have been noticed in patients with partial and complete gonadal dysgenesis (67). We 
identified one variant (Ala1026Val) in heterozygosis in GN0155 patient, who had 
ambiguous genitalia at birth and surgery for a dysgenetic gonad at age 2 years. More 
analyses are required to test this unreported variants. Other studies have identified 9p 
deletions, including DMRT1 and DMRT2 genes in phenotypic females with Y-
chromosome showing gonadal dysgenesis or ambiguous genitalia (75). To the best of 
our knowledge this is the first DMRT2 missense variants found in a 46,XY DSD, 
however its deleterious effect would be probed when the cousin of this patient, also 
presenting complete gonadal dysgenesis, is analysed.  
 

Regarding the 46,XX DSD cohort, we were able to reach a genetic diagnosis in 7 
out of 24 cases (29.2%). The majority of the cases were reported to have a testicular 
DSD and translocation of the SRY gene had been studied prior to gene panel 
sequencing. We only detected one more patient carrying SRY by NGS.  

 
Testicular DSD is caused by the translocation of the SRY gene in the 90% of the 

cases. This type of rearrangements are rare, but about 50 cases have been described 
and happen throughout the aberrant exchange between homologous sequences 
(PAR1) on Xp and Yq during meiosis in the spermatocyte. The phenotype of males with 
Xp:Yq translocations depends on the extend of the Xp deletion. They can present short 
stature, Leri Weill dyschondrosteosis, chondrodysplasia punctate, mental retardation, 
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ichthyosis and hypogonadotropic hypogonadism in combination with anosmia 
(Kallman syndrome) when the deletion is large.  

 
Otherwise, copy number gains and deletions, such as activating variants in 

SOX3 driving to testis development  or loss-of-function variants in RSPO1, an ovary-
specific signalling gene (98) (192), contribute to the pathogenesis of the disorders of 
ovarian development. However, the use of CGHa does not increase the molecular 
diagnosis of these patients. Kim GJ et al identified SOX9 upstream duplications in three 
out of nineteen 46,XX DSD individuals (15.8%) (298). Indeed, two ovotesticular 
patients (GN0090 and GN0158) had undergone for Copy Number Variations (CNV) 
detection with a commercial MLPA but rearrangements were not found. The analysis 
of CNV in four patients with SRY-negative 46,XX testicular DSD revealed loss of 
heterozygosity in 13 regions not known to be associated with testicular development 
(299). Similar analysis in 46,XX DSD will emphasize the role of CNV in the pathogenesis 
of the disease. However, disorders other than congenital adrenal hyperplasia (CAH), 
constitute small groups among 46,XX DSD and obtaining a significant number of 
patients is challenging.  

 
46,XX DSDs account for approximately the 25% of all DSDs, with CAH due to 21-

hydroxylase deficiency being the most usual cause (95%) (300). It is diagnosed during 
routine newborn screening by detecting baseline and stimulated 17-hydroxy 
progesterone values at birth. Such screening programs prevent the incorrect gender 
assignment in females with severe virilization and identify male infants with the salt-
wasting type of classic CAH and normal external genitalia to prevent adrenal crisis. 
However, individuals with CAH were not included in this study due to the difficulty to 
correctly sequence the gene, as other studies did (12, 218). Patients would have been 
examined separately for CYP21A1 defects if CAH was suspected. Recent 
recommendations from the DSDnet state that all neonates should have a complete 
steroid analysis to prevent emergencies due to severe adrenal insufficiency (174).  
 

Still, relatively few genes have been implicated in the development of ovaries 
compared to testicular formation, and this unknowledge may be the reason for the 
46,XX DSD cases that remain unsolved. Downstream targets of WNT4 and RSPO1, as 
well as their coactivators seem to be good candidate genes. LGR4 (Leucine-rich repeat-
containing G protein-coupled receptor) for example, codifies for a receptor of R-
spondin and mediates WNT4/β-catenin signalling while Lgr4-null mice models have 
shown female-to-male sex reversal (301).  

 
On the other side, traditional and whole exome sequencing have recently 

identified rare missense heterozygous changes in ESR2 in two young 46,XX girls with 
amenorrhea, hypoplastic uterus and non-visible gonads or multicystic ovaries (161). 
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Although Esr2 deficient murine models resulted in different phenotypes that 
suggested its role in fertility in both sexes but not in sexual differentiation (160, 302), 
loss-of-function mutations have been described in 46,XY DSD (160, 303). Our targeted-
gene panel identified a missense change in a highly conserved residue located in the 
fifth coding exon of ESR2 in a teenage 46,XX girl. The 14-year old patient presented 
with puberty delay and primary amenorrhea, infantile uterus and prepubertal ovaries. 
Estradiol levels were low at <5pg/ml. No other relevant changes were shown in genes 
linked to ESR signalling or gonadal development. ESR2 is expressed in the foetal ovary 
and in the Granulosa cells of the small and preovulatory follicles and as reported, 
negative effect on the receptor led to complete ovarian insufficiency (160). Due to the 
location of the 221 residue on the DNA-binding domain (DBD) (160), we could 
hypothesize that those previously reported variants located in the ligand-binding 
domain (LBD) of the ESR-β cause a more severe phenotype such as absence of ovaries 
and bilateral cystic lesions. In our case, patient had prepubertal ovaries and although 
hormone replacement therapy had been planned, proper gonadal development needs 
to be followed-up. This is the third ESR2 change implicated in the pathogenesis of 
46,XX DSD, which further agrees with its involvement on the female gonadal progress.  

 
Regarding ESR1, loss-of-function gene variants cause oestrogen resistance, a 

syndrome characterized by primary amenorrhea with no breast development, 
polycystic ovaries and infantile uterus in women and delayed bone age, osteoporosis, 
continuous growth and elevated oestrogens levels in both sexes (161). To date, few 
patients with ESR1 mutations have been reported in DSD patients, 1 in males and 4 in 
females (38, 304). Our 46,XX patient presented with a different phenotype compared 
to the Mayer-Rokitansky-Küster-Hauser type 1 cases described by Brucker et al in 2017 
(304). Female KO mice have no pubertal mammary gland development and hypoplastic 
uterus, then the clinical phenotype of patient GN0198 recapitulates the murine model 
(162). This young female presented with non-visible ovaries at the referral time but 
later cystic development is not discarded after treatment has started. On the other 
side, this patient harboured another variant in HSD17B4 gene, which function is 
unknown in isolated DSD, but could modulate the role of ESR1. 
 

Finally, a rare variant in MAMLD1 was found in a 46,XX DSD. The importance of 
MAMLD1 in sexual development is unknown. Although it is expressed in testes and 
ovaries during foetal life and in testicular and adrenal tissue in adults (87, 91), the poor 
genotype-phenotype correlation led to the search of further variants that explained 
the clinical broad range. A recent WES analysis in our patient revealed 5 genes related 
to female gonadal development and 46,XX DSD, such as MAML3 (91). The 
identification of multiple variants in a patient suggests the partial contribution of each 
one and complicates the functional testing of their effect on the pathogenesis. 
Interactions between genes and proteins involved in sex development were studied 
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using bioinformatic tools and recent literature in the field, emphasizing the network 
analysis as a tool to understand complex genetic data. This study underlined that the 
different clinical features observed in DSD cases might happen due to a group of 
genetic variants that contribute to sexual development. 

 
In the present study no sequence variants were detected in 72 out of 125 

patients. Besides the limitation of targeted gene panel sequencing to detect CNVs, the 
analysis of deep intronic sequences is also missing with this technology. Genetic 
studies in DSD have been focused towards the coding regions of the genome, however 
it is thought that defects in the transcriptional regulation of either well-known genes 
or yet to be discovered genes resulting from non-coding regions explain a part of the 
DSD unsolved cases.  

 
In fact, several non-coding defects affecting regulatory elements and the 

expression of its target genes have been implicated in DSD (194). For example, 
interesting regulatory mechanisms have been added to the pathogenesis of AIS and 
have highlighted the significance of non-coding regions in the development of AIS. An 
identified variant in the 5’UTR of the AR gene created an open reading frame (ORF) 
that modified the transcript and reduced the translation levels of the downstream 
gene. The expression of the short protein reduced the AR levels, while the mRNA levels 
remained unchanged (141). Although an intronic variant had been previously identified 
(140), later in 2016 a deep intronic variant (c.2450-118A>G) creating a de novo 5’ splice 
site and two aberrant transcripts was identified by WGS. It was shown that despite 
total mRNA levels were normal, the stability of the protein was compromised and the 
AR was undetectable (305). In our cohort, 3 patients with a clinical suspicion of AIS did 
not reveal a coding AR mutation. Our customized panel was designed to span only 
25pb of the exon-intron boundaries. Although enough to detect disease-causing 
intronic variants in patient with a Frasier syndrome suspicion, most diagnostic 
approaches using gene panels, as well as whole exome sequencing leave a majority of 
cases unsolved. As we don’t use an alternative method to study introns we might miss 
diagnostic variants that fall within these regions. The analyses of patients with such 
disorders using genome sequencing will further increase the importance of intronic 
regions in the pathogenesis of DSD.  
 

As stated before, the number of genes in the panel does not necessarily 
correlate with a better diagnostic rate. However, the limited number of genes (48 
genes) strongly contrast with the 62 and 61 genes known to be involved in 46,XY DSD 
and 46,XX DSD, respectively (174). Although new primers can be added to the 
customized panel, the rapid advance in knowledge about the molecular pathogenesis 
of DSD leads to the discovery of candidate genes from time to time, increasing the cost 



 

217 
 

of the updating. Sequencing the complete exome appears to be the best cost-eficiency 
method then.  

 
Investigation by WES or WGS sequencing allows a targeted approach first and 

the later extension to candidate genes. Indeed, the use of WES has allowed the 
discovery of genes previously not associated to DSD in humans, such as ZFPM2 and 
SOX8 (53, 67). Nevertheless, the further candidate gene detection needs critical 
evaluation. The addition of genes without a clear phenotype correlation may only 
result in an increase of VUS and accidental findings, without a significant improve of 
the diagnostic rate. Certainly, a challenge associated with the implementation of High-
throughput screening (HTS) is the detection of VUS. These may be in genes known to 
be related to the phenotype but without sufficient evidence to confirm the 
pathogenicity, affecting sequence changes in candidate genes or in well-known genes 
not associated to the field of study (306). In our cohort, segregation studies were not 
performed in some patients with VUS, complicating further categorization of the 
variant and molecular diagnosis. Although previous analysis of singletons and trios in a 
large cohort of DSD cases through NGS suggested that the sequencing of the family 
members is not essential, more single patients had gene variants classified as VUS 
compared to trios (12). 
 

No sequence variants were found in the two patients with a mixed gonadal 
dysgenesis and a 45,X0/46,XY karyotype. MGD has been associated with Yp 
chromosome microdeletions, detected with either sequence tagged site based PCRs or 
cytogenetic techniques, depending on the size of the missing segment. Besides the 
inconveniency of detecting microdeletions in the SRY gene with the gene panel, one 
out of 3 individuals with a 45,X0/46,XY karyotype and an apparently normal Y 
chromosome may have microdeletions (307). Moreover, in 6 out of 15 patients with a 
45,X0/46,XY karyotype or its variants and a MGD phenotype microdeletions were 
found inside the AZF region in Yq11.  
 

The importance of a good clinical description or diagnosis prior to the 
molecular testing is being questioned. DSD present with variable clinical appearance 
and hormonal criteria, interfering with the direct causative gene prediction for a 
concrete phenotype. NGS replaced traditional sequencing allowing the analysis of 
more than one gene at the time and nowadays the technical cost of targeted panel 
sequencing is equal to the multiple-exon sequencing of a gene. Traditionally, certain 
phenotypes were assumed to reliably predict a disruptive change in a DSD-related 
gene, such as sequence variants in AR. However, as mentioned before variants in non-
coding or 5’UTR of the AR or other genes regulating the AR pathway are now highly 
suspected to cause AIS (141). In our experience, we have found DSD patients are either 
misdiagnosed or lack complete clinical information. These findings underline the use of 
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our customized panel as a fast and less costly method to reach a molecular diagnosis, 
together with a CNV detection method, when patients are affected with a DSD of 
unknown basis. Additionally, highlights the importance of the molecular analysis for 
clinical management. Recently COST Action authors remembered that genetic 
diagnosis cannot always predict the functional consequences for a particular DSD 
patient, which are important aspects for individualized management (174). For 
instance, the range of phenotypes encompassing LHCGR or NR5A1 gene variants in our 
cohort drives to different managing of the patient.  
 

Finally, not all DSD cases are explained by a genetic variant. The role of 
environment is evident in the development of genitalia as well as the epigenetic 
changes that disrupt gene expression in DSDs arising in foetal stage (140). On one 
hand, oestrogenic and anti-androgenic complexes are responsible of the defects of the 
urethral closure in humans and the elevated exposure to these compounds explains 
the increasing incidence of hypospadias in developed countries. Indeed, only 30% of 
hypospadias cases have a clear genetic cause (183). Exposure to infectious diseases, 
such as rubella has also sustained the development of ovarian dysgenesis in some 
individuals (197). Finally, the impact of histone modifications observed in gonad 
development and the possibility to produce DSD is still challenging. Up to date, the 
understanding of epigenetic modifications activating or inhibiting gene expression 
came from in vitro analyses (308), although its role in specific processes such as 
gonadal development keeps being challenging. Recent tools, such as the ChIP-seq 
(Chromatin Immunoprecipitation Sequencing) allow the investigation of the binding 
pattern of chromatin-associated proteins in the genome and have led to the 
hypothesis that a mixture of posttranscriptional modifications, including methylation, 
acetylation, phosphorylation and ubiquitination are required to obtain an effect on 
gene expression (216). These advances may provide insight into the development of 
DSD.  
 

New screening technologies have demonstrated that the phenotype of some 
individuals with DSD results from the oligogenic inheritance of gene variations. Recent 
publications suggested that the range of DSD phenotypes associated with NR5A1 may 
occur due to the inheritance of heterozygous NR5A1 gene variants and further hits in 
other genes involved in the sex development pathway or other cofactors (224). Since 
Mazen et al reported a heterozygous NR5A1 change in combination with a MAP3K1 
gene variants in a patient with 46,XY gonadal dysgenesis (309), other studies have 
reinforced the complicated phenotype–genotype correlation observed in this patients 
(310). Indeed, we found oligogenic inheritance of a heterozygous variant in NR5A1 in 
combination with a VUS in testis differentiation genes AMH and STAR in two of our 
patients. Both genes are upregulated by the transcription factor in the early human 
gonad and are involved in the virilization of external genitalia (311).  
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Oligogenic inheritance has been discovered in other DSDs. Eggers et al found 

segregating variants in a testis development gene and a VUS in a CHH (congenital 
hypogonadotrophic hypogonadism) gene in 3 patients with severe hypospadias (12). 
More recently, the contribution of multiple genetic variants to MAMLD1-associated 
46,XY and 46,XX DSD phenotypes has been published (91). Similarly we found in a 
46,XY DSD patient with a mild phenotype, a heterozygote variant in LHCGR together 
with a GATA4 gene change. Although the GATA4 variants did not affect the CYP17 
promoter activity, it has been suggested that the combination of individually non-
deleterious variants contributes to the DSD phenotype (224). Moreover, several 
GATA4 sites are present in the 5’UTR of LHCGR, which indicates that GATA4 could 
regulate this gene. We propose that GATA4 may also show oligogenic involvement in 
DSD. Finally, we found in a 46,XX DSD patient a heterozygous ESR1 variants in 
combination with an additional variant in gonadal differentiation gene HSD17B4. 
Although few variants have been identified in ESR1, an autosomal recessive 
inheritance mode is suspected, and then we propose that defects in both genes cause 
the phenotype of this patient.  
 
 
13. ANALYSIS OF RARE VARIANTS IN GATA4, NR5A1 AND LHCGR AND FUNCTIONAL 

STUDIES 

 

The molecular testing of our DSD cohort showed also a VUS in GATA4, as well 
as 6 changes in the NR5A1 gene and 6 in LHCGR. In those novel variants, further 
studies were performed to test the transcriptional activity of the variants. 

 
 

13.1. VARIANTS IN GATA4 AND IN VITRO STUDIES 

 
In 2018, we published the characterization of p.Pro226Leu GATA4 sequence 

variant together with another two variants (p.Cys238Arg and pTrp228Cys) found by 
other research groups (25). The three missense changes were found in heterozygosis 
in three individuals with a 46,XY DSD phenotype with and without congenital heart 
disease (CHD). GATA4 mutations associated with cardiac defects are distributed 
throughout the gene and its contribution to the pathogenesis of the disease was 
assessed when mutants decrease the ability to transactivate target genes or fail to 
interact with proteins involved in heart development (312). Moreover, it is known that 
common variants in a region of GATA4 3’UTR change posttranscriptional gene 
regulation at miRNA level (313) contributing to the risk of CHD.  
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In contrast, functional characterization of GATA4 variants with respect to the 
46,XY DSD phenotype has only been performed for the p.Gly221Arg mutation so far 
(27). In vitro studies revealed that p.Gly221Arg lacked DNA binding, had impaired 
transactivation activity on the AMH promoter, and failed to bind cofactor FOG2. 
Functional testing of three GATA4 variants identified in 46,XY DSD individuals of our 
study showed no effect on transactivation activity on the CYP17 promoter for GATA4 
variants p.Pro226Leu and p.Trp228Cys but similar disruptive effect for the missense 
mutation p.Cys238Arg.  
 

The few GATA4 missense mutations found in 46,XY DSD individuals with or 
without CHD are all located in the N-terminal zinc finger domain, responsible for DNA 
binding and interaction with cofactors (314). Although the three variants are located in 
the N-terminal zinc finger domain of GATA4, only Cys238 is close to Zn binding sites. 
The Gly221 also close to such sites, is not directly involved in Zn binding but is situated 
next to Cys220 which binds the Zn atom, and thus, the mutation Gly221Arg disrupts 
the Zn binding, leading to a non-functional GATA4. The Cys238 binds Zn and its change 
to arginine leads to loss of Zn binding. 
 

GATA4 regulates the expression of multiple genes coding for hormones or 
components of the steroidogenic pathway during testis development and function, 
such as NR5A1. GATA4 interacts with NR5A1 in Sertoli cell cultures to regulate the 
expression of AMH, and therefore, it has been reported that mutations in NR5A1 cause 
46,XY DSD due to lack of interaction with GATA (23). In families with GATA4 mutations 
and isolated CHD no gonadal involvement is mostly detected, possibly because some 
of the variants retain some DNA-binding activity and exhibit different degrees of 
transcriptional activation on gonadal promoters and thus, remain able to synergize 
with NR5A1. The p.Cys238Arg mutation was found in a patient with a complex CHD, 
genital ambiguity, and persistent Müllerian ducts, which led to female gender 
assignment. We proposed that p.Cys238Arg mutation in GATA4 lacks activity to bind 
DNA reducing the transactivation of AMH critically. 
  

On the contrary, variants p.Pro226Leu and p.Trp228Cys were found in 
individuals with less severe 46,XY DSD phenotype. They were raised as males, and had 
no evidence of heart anomalies. Indeed, Harrison et al (26) screened patients with 
46,XY DSD using an aCGH and found an infant presenting a deletion of 0.22 Mb 
upstream GATA4. Same deletion was found in his healthy mother and his maternal 
grandmother, who had CHD. The authors proposed that the identified deletion do not 
affect the coding sequence of GATA4, and may, therefore, not manifest with CHD, but 
rather disrupt regulatory elements controlling gene expression essential in the 
developing gonad (28). Thus, the phenotypic variability could be explained by genetic 
modifiers (315) (67). In addition, GATA4 regulates multiple promoters to variable 
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degrees. Structural changes caused by both the p.Pro226Leu and pTrp228Cys 
variations were not predicted to be disruptive and GATA4 structure was not altered. 
However, the changes were in the DNA interaction sites and it is expected that both 
p.Pro226Leu and p.Trp228Cys variants could have altered binding and activation of 
some of GATA4 interaction partners and could also bind to other promoters and 
potentially change the transcription of several other genes. In fact, NGS revealed 
segregating genetic variants in two other genes in these two patients with a 46,XY DSD 
phenotype without CHD. In the GN0171 patient a heterozygote mutation in LHCGR 
gene was found together with the GATA4 variant. Looking at the 5ʹUTR of LHCGR, 
several GATA sites are present suggesting that GATA4 may regulate this gene. 
Therefore, combined heterozygosity for GATA4 and LHCGR variants in our patient may 
explain the 46,XY DSD phenotype. The other case harboured an additional 
heterozygote variant in LRP4 gene, related to the Cenani–Lenz syndactyly syndrome 
(OMIM 212780) and disruption of canonical WNT/beta-catenin signalling, important in 
sexual development (25). 
 

As in other DSD-related genes, phenotypical variability with same heterozygous 
GATA4 mutation (p.Gly221Arg and p.Trp228Cys) observed within same family 
manifesting with either 46,XY DSD or CHD only, indicates that there might be 
incomplete penetrance or variable sensitivity (27) (25). Interestingly, the same 
observation was made in mice heterozygote for a Gata4 deletion (316). Oligogenic 
mechanisms may also be considered.  

 
 

13.2. SEQUENCE VARIANTS IN NR5A1 GENE AND FURTHER ANALYSES 

 
We found six variants in the NR5A1 gene, all were detected in heterozygosis 

and were mainly single-nucleotide variants. A broad range of phenotypes, from 
hypospadias to severe forms of 46,XY DSD and primary ovarian insufficiency (POI) in 
46,XX DSD have been widely described in individuals harbouring heterozygous NR5A1 
variants (14). Clinical picture of these 46,XY patients varied from ambiguous genitalia 
with micropenis and cryptorchidism to female external genitalia with Müllerian 
remnants. Hormonal levels were also variable and although adrenal insufficiency has 
been associated with NR5A1 mutations, it was not suspected in our patients.  
 

The first three mutations (His24Leu, Cys30Ser and Arg84Cys) are located in the 
DNA- binding domain (DBD) region of the protein. While His24 and Cys30 amino acids 
are involved in the binding of the major groove of DNA to promoters, Arg84 is placed 
in the A box which stabilizes the binding of the protein to DNA (14). The latter, was 
found in a patient presenting with ambiguous genitalia at birth and has been observed 
in two 46,XY girls with clitoral hypertrophy so far (240). Functional characterization of 
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the mutation showed decreased DNA binding and reduced transactivation activity 
(240). Variants His24Leu and Cys30Ser in NR5A1 gene are described here for the first 
time. However, other mutations in the same codons (His24Tyr and Cys30Trp) were 
reported in Spanish and Turkish girls who presented with bilateral inguinal hernia and 
female or ambiguous genitalia, respectively (14). We found that these SF1 mutations in 
the DNA binding domain (DBD) showed impaired transactivation activity when studied 
in the three different promoters. Gln206ThrfsTer20, located in the hinge region will 
result in a truncated protein without ligand binding domain (LBD). The same variant in 
a Spanish girl with similar phenotype had been reported (14). We found two more 
novel gene variants (Glu304CysfsTer26 and Cys301Tyr) located in the LBD region, 
which modulates the activity of the protein through the binding of cofactors to the AF2 
domain in the C-terminal. Several studies have shown that variants in the DBD may 
correlate with higher protein impact compared to changes in the LBD region, where 
effects vary depending on their location and the recognition of the ligand (14, 310). 
Similar results were observed in our cohort, since the in vitro promoter transactivation 
assay showed a more variable result when analysing Cys301Tyr. However, in this 
study, we found that patients GN0109 and GN0111 presented with a more severe 
phenotype compared to those with a sequence variant in the DBD region, which 
highlights the poor correlation between functional testing and clinical features. In the 
case of Glu304CysfsTer26 mutation, a premature stop was created and the truncated 
protein lacked the AF2 region, leading to a loss of protein function. 
 

A clear genotype-phenotype correlation was not seen in patients bearing 
NR5A1 mutations and certainly, family members harbouring the same gene variant 
may present with variable phenotypes (14). In one case (GN0075), family history 
showed premature menopause or menstrual anomalies and severe hypospadias in 
some relatives having heterozygous NR5A1 variants. By contrast, clinically normal 
carriers of the Cys301Tyr and Glu304CysfsTer26 variants were also observed, as 
similarly reported before (14). Additional mutations in NR5A1 or in other genes 
implied in the sexual development have been proposed as a hypothesis to explain this 
phenotypic variability. In 2016, Mazen and colleagues found a known Arg313Cys 
NR5A1 mutation in compound heterozygous state with a MAP3K1 variant, suggesting 
that a digenic inheritance model could explain the phenotypic heterogeneity observed 
in 46,XY cases with gonadal dysgenesis (309). Since then, other NGS analyses of DSD 
patients have reported a second rare variant in 46,XY patients (224) (310). Similarly, 
we analysed the data for additional variants and found the Arg121Trp STAR change in 
patient GN0028 and Thr143Ile variant in AMH gene in GN0042. SF1 transcription factor 
regulates the synthesis of StAR in Leydig cells, causing virilisation of external genitalia 
as well as testicular descent, while in Sertoli cells it upregulates AMH, leading to the 
regression of Müllerian structures (317). Both patients presented with clinical features 
explained by these second variants, however the STAR variants was also found in the 
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patient’s healthy father. An extensive study of the contribution of these second 
variants found in this study would provide further insight into the variable genotype-
phenotype correlation found in DSD patients harboring a heterozygous NR5A1 gene 
variant.  
 

The contribution of the Gly196Ala polymorphism has also been suggested to 
explain the phenotypic variability, as some of the described mutations in NR5A1 are in 
compound heterozygous state with this SNP (318). We did not detect the Gly196Ala 
change in none of the NR5A1 positive patients, however we found it in four patients 
presenting another deleterious variants in AR and LHCGR, which may suggests its 
benign role in the pathogenesis of DSD. Although functional analyses of the 
polymorphism demonstrated its null ability to activate transcription (240) we cannot 
discard an adding effect to the pathogenesis of the disease. 

 
 

13.3. VARIANTS IN LHCGR GENE AND IN VITRO STUDIES 

 
Clinical characteristics of patients harbouring sequence variants in LHCGR 

depend on the activating or inactivating effect driven by the change. Based on the 
inactivation degree of the receptor, consequences of the inactivating variants range 
from a 46,XY DSD with female phenotype (Leydig Cell Hypoplasia, LCH type 1) to an 
undervirilized male with hypospadias and micropenis (LCH type 2) (319) or primary 
amenorrhea in females. Although LCH is thought to be a recessive inheritance disease, 
we identified the Arg554Ter change in LHCGR gene in a patient with incomplete 
masculinization of external genitalia. This nonsense variant is located in the third 
intracellular loop of the LH receptor and Latronico et al also found it in three affected 
siblings with female external genitalia (269). Subsequently, we tested the ability of Wt 
LHCGR and Arg554Ter mutant to mediate cAMP production in respond to increasing 
concentrations of hCG and found no second messenger generation when cells 
expressed the mutant LHCGR. The premature interruption of the translation process 
removes a large part of the receptor and thus, the hormonal signal is not transduced 
properly. Because heterozygous parents of other described patients were 
phenotypically normal (269) we could conclude that a non-functioning allele causes no 
DSD in either sex, but its combined heterozygosity with the GATA4 change might 
explain the phenotype of this concrete case (75). Moreover, other inactivating 
missense variants and deletions have been identified throughout the whole gene, 
which cause the mutant LHCGR unresponsive to hormones and result in female 
external phenotype, as in two of our cases. Patients GN0034 and GN0147, with typical 
clinical and hormonal phenotype of LCH, presented a complete gene deletion and a 
novel missense variant in the extracellular domain of the protein, respectively. This 
large extracellular N-terminal domain is responsible of the high-affinity binding of the 
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hormone on the surface formed by leucine-rich repeats and the beginning of signal 
transduction (320). Functional analyses of the mutations located in this region have 
resulted in receptor intracellular retention with little surface expression and slight or 
no hormone stimulation measure (321). Accordingly, transfected cells with the 
Ser253Pro mutant significantly reduced cAMP accumulation after hCG stimulation and 
elucidates the severe Leydig cell hypoplasia observed in this patient. Patient GN0034 
presented a large deletion in chromosome 2 affecting exons 1 to 10 of the gene and 
therefore inducing the total loss-of-function of the gene. Indeed, the deletion removed 
GTF2A1L and STON-GTF2A1L genes, encoding a germ cell specific subunit of the TFIIA 
transcription factor involved in the interaction between TATA-binding protein and DNA 
and essential in testis biology and spermatogenesis (322). The lack of the entire LHCGR 
gene had been previously reported by Richard et al (270) in a newborn with sexual 
ambiguity described as labial fusion, a genital tubercle with hypospadias and inguinal 
gonads. We therefore expand the phenotype of patients presenting with a whole gene 
deletion. 
 

On the other side, male-limited precocious puberty is an autosomal dominant 
disease characterized by the LH-independent activation that increases testosterone 
synthesis. Heterozygous activating mutations in the LHCGR change the normal 
configuration of the receptor and activate G protein-coupled receptor (267). Patients 
commonly present early signs of puberty by the age of 4 years and elevated serum 
testosterone levels despite low LH (323). In early reported patients, either in familial or 
sporadic cases, mutations were located in exon 11, encoding for the signal 
transduction region, but now they are sited in other exons. For instance, we identified 
the novel and probably deleterious Gln190Lys variants in exon 7 in GN0157 case, 
affected with pubic hair development, accelerated growth and a slight testicular 
enlargement without penile growth. Adrenal tumors and aromatase deficiency were 
excluded. Testosterone level was within normal range at referral and LH was 
undetectable. We can speculate that the different clinical aspects are related to the 
location of the c.568C>A (p.Gln190Lys) variant in the LHCGR gene.  

 
Previous studies had compared clinical and hormonal data of unrelated 

patients with gonadotropin-independent precocious puberty harboring the same 
variant in one and two alleles and no differences were observed (324). However 
functional studies would clarify if the variant is likely to cause the precocious puberty 
in this boy. Genetic analysis in the parents confirmed that the father is a carrier, 
however no clinical data was available to verify the pathogenicity of the alteration. As 
known, females with activating LHCGR mutations have no manifestations (325). In 
patients with precocious puberty, sporadic or with family background, genetic analyses 
as well as clinical and hormonal investigations are valuable for diagnosis. In GN0068 
the Met571Ile mutation confirmed the disease in the patient aged 3 years and his 
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father. In contrast, GN0088 was a sporadic case and the Met398Thr mutation 
appeared de novo. Both mutations had been reported in similar phenotypes by Kremer 
et al in 1993 (267) and Kraaij in 1995 (268) in exon 11 of LHCGR gene. This two 
activating mutations, placed in the third intracellular loop and involved in G-protein 
interaction, change the sixth and second transmembrane segments of the protein. In 
vitro experiments showed LH- or hCG-independent increased production of cAMP 
levels in HEK293 cells and elevated production of basal steroids in tumor Leydig cells of 
a murine model (268).  

 
In conclusion, we have reported the clinical and molecular characteristics of 

125 patients with a DSD diagnose. We have extended the number of gene variants 
identified to date in sex development and contributed to the idea of either incomplete 
penetrance or oligogenic mechanisms that explain the phenotypical variability 
observed in these individuals. However, further research is needed and the application 
of other molecular approaches, such as exome and/or genome sequencing would 
reveal additional alterations in these DSD patients.   
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CONCLUSIONS 
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1. The molecular analysis of DSD-related genes identifies a causative genetic 
variant in the 40.2% of the patients analysed in this cohort. 

 
2. The molecular analysis using a targeted gene panel is useful for the detection of 

single-nucleotide variants, mostly in 46,XY DSD patients. Indeed we made a 
molecular diagnosis in 22% of 46,XY DSD compared to the 10.5% of the 46,XX 
DSD individuals. However, further improvements are necessary to detect copy 
number variations with this technology. 
 

3. We observed that disorders of sex development are highly heterogeneous. 
This, difficults the clinical diagnosis and highlights the need of a genetic study 
to validate the initial suspicion. Still, little correlation has been found between 
the phenotype of an individual and the genetic variant that is identified. 

 
4. Clinical and biochemical data guide the genetic analysis when using a single-

gene sequencing approach. Next generation sequencing provides a molecular 
diagnosis when there is incomplete analitical information on the patients. 
 

5. Incomplete penetrance or oligogenic mechanisms might explain the 
phenotypical variability observed in patients with identical gene variants or 
within same family. 
 

6. Next generation sequencing techniques have expanded the number of genes 
and pathways that are involved in sex determination and gonadal 
development. We propose the use of a targeted gene panel as the first layer of 
the molecular diagnosis and the sequencing of the whole exome (WES) or 
whole genome (WGS) for additional analysis. The study of chromosomal 
rearrangements and intronic regions is also necessary.  
 

7. Functional analysis are necessary to validate the pathogenicity of the novel 
genetic changes that are identified either through the gene-by- gene approach 
or next generation sequencing. Accordingly, we found that only variants 
located in the DNA binding domain of the SF1 protein significantly reduced 
transactivation activity of the promoters, as well as the two gene alterations in 
LHCGR. However, in patients harbouring heterozygote NR5A1 and LHCGR 
variants, we cannot confirm its causative effect in the pathogenesis of the 
disease.  



 

228 
 

 

 

 

 

 

 

 

 

REFERENCES 

  



 

229 
 

1. Karl J, Capel B. Sertoli cells of the mouse testis originate from the coelomic epithelium. 
Dev Biol. 1998;203(2):323-33. 

2. Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in 
humans. Sex Dev. 2014;8(5):262-72. 

3. Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal 
development. J Mol Endocrinol. 2018. 

4. Munger SC, Natarajan A, Looger LL, Ohler U, Capel B. Fine time course expression 
analysis identifies cascades of activation and repression and maps a putative regulator 
of mammalian sex determination. PLoS Genet. 2013;9(7):e1003630. 

5. Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, et al. Temporal expression 
pattern of genes during the period of sex differentiation in human embryonic gonads. 
Sci Rep. 2017;7(1):15961. 

6. Bösze P, Szabó D, László J, Gaál M. Ultrastructure of the fibrous tissue of the streak 
gonads. Acta Med Acad Sci Hung. 1982;39(3-4):133-5. 

7. Ahmed SF, Bashamboo A, Lucas-Herald A, McElreavey K. Understanding the genetic 
aetiology in patients with XY DSD. Br Med Bull. 2013;106:67-89. 

8. Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex 
development (DSD). Best Pract Res Clin Endocrinol Metab. 2019. 

9. Tantawy S, Mazen I, Soliman H, Anwar G, Atef A, El-Gammal M, et al. Analysis of the 
gene coding for steroidogenic factor 1 (SF1, NR5A1) in a cohort of 50 Egyptian patients 
with 46,XY disorders of sex development. Eur J Endocrinol. 2014;170(5):759-67. 

10. Biason-Lauber A. Control of sex development. Best Pract Res Clin Endocrinol Metab. 
2010;24(2):163-86. 

11. Achermann JC, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding 
steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat 
Genet. 1999;22(2):125-6. 

12. Eggers S, Sadedin S, van den Bergen JA, Robevska G, Ohnesorg T, Hewitt J, et al. 
Disorders of sex development: insights from targeted gene sequencing of a large 
international patient cohort. Genome Biol. 2016;17(1):243. 

13. Knarston IM, Robevska G, van den Bergen JA, Eggers S, Croft B, Yates J, et al. NR5A1 
gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of 
sex development patients. Hum Mutat. 2019;40(2):207-16. 

14. Camats N, Pandey AV, Fernández-Cancio M, Andaluz P, Janner M, Torán N, et al. Ten 
novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and 
ovarian insufficiency in 46,XX individuals. J Clin Endocrinol Metab. 2012;97(7):E1294-
306. 

15. Pérez de Nanclares G, Castaño L, Bilbao JR, Vallo A, Rica I, Vela A, et al. Molecular 
analysis of Frasier syndrome: mutation in the WT1 gene in a girl with gonadal 
dysgenesis and nephronophthisis. J Pediatr Endocrinol Metab. 2002;15(7):1047-50. 

16. Hatano O, Takakusu A, Nomura M, Morohashi K. Identical origin of adrenal cortex and 
gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells. 1996;1(7):663-71. 

17. Barbaux S, Niaudet P, Gubler MC, Grünfeld JP, Jaubert F, Kuttenn F, et al. Donor splice-
site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 
1997;17(4):467-70. 

18. Gomes NL, de Paula LCP, Silva JM, Silva TE, Lerário AM, Nishi MY, et al. A 46,XX 
testicular disorder of sex development caused by a Wilms' tumour Factor-1 (WT1) 
pathogenic variant. Clin Genet. 2019;95(1):172-6. 

19. Wang H, Li G, Zhang J, Gao F, Li W, Qin Y, et al. Novel WT1 Missense Mutations in Han 
Chinese Women with Premature Ovarian Failure. Sci Rep. 2015;5:13983. 

20. Viger RS, Mertineit C, Trasler JM, Nemer M. Transcription factor GATA-4 is expressed in a 
sexually dimorphic pattern during mouse gonadal development and is a potent activator of 
the Müllerian inhibiting substance promoter. Development. 1998;125(14):2665-75. 



 

230 
 

21. Morrisey EE, Ip HS, Tang Z, Parmacek MS. GATA-4 activates transcription via two novel 
domains that are conserved within the GATA-4/5/6 subfamily. J Biol Chem. 
1997;272(13):8515-24. 

22. Eggers S, Sinclair A. Mammalian sex determination—insights from humans and mice. 
Chromosome Res. 2012;20(1):215-38. 

23. Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of 
transcription factors in endocrine development, function, and disease. Mol Endocrinol. 
2008;22(4):781-98. 

24. Flück CE, Miller WL. GATA-4 and GATA-6 modulate tissue-specific transcription of the 
human gene for P450c17 by direct interaction with Sp1. Mol Endocrinol. 2004;18(5):1144-
57. 

25. Martinez de LaPiscina I, de Mingo C, Riedl S, Rodriguez A, Pandey AV, Fernández-Cancio M, 
et al. GATA4 Variants in Individuals With a 46,XY Disorder of Sex Development (DSD) May or 
May Not Be Associated With Cardiac Defects Depending on Second Hits in Other DSD 
Genes. Front Endocrinol (Lausanne). 2018;9:142. 

26. Harrison SM, Granberg CF, Keays M, Hill M, Grimsby GM, Baker LA. DNA copy number 
variations in patients with 46,XY disorders of sex development. J Urol. 2014;192(6):1801-6. 

27. Lourenço D, Brauner R, Rybczynska M, Nihoul-Fékété C, McElreavey K, Bashamboo A. Loss-
of-function mutation in GATA4 causes anomalies of human testicular development. Proc 
Natl Acad Sci U S A. 2011;108(4):1597-602. 

28. White S, Ohnesorg T, Notini A, Roeszler K, Hewitt J, Daggag H, et al. Copy number variation 
in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS One. 
2011;6(3):e17793. 

29. Igarashi M, Mizuno K, Kon M, Narumi S, Kojima Y, Hayashi Y, et al. mutations are 
uncommon in patients with 46,XY disorders of sex development without heart anomaly. 
Asian J Androl. 2018;20(6):629-31. 

30. Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, et al. Cbx2, a polycomb 
group gene, is required for Sry gene expression in mice. Endocrinology. 2012;153(2):913-
24. 

31. Norling A, Hirschberg AL, Iwarsson E, Wedell A, Barbaro M. CBX2 gene analysis in patients 
with 46,XY and 46,XX gonadal disorders of sex development. Fertil Steril. 2013;99(3):819-
26.e3. 

32. Biason-Lauber A, Konrad D, Meyer M, DeBeaufort C, Schoenle EJ. Ovaries and female 
phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am J Hum Genet. 
2009;84(5):658-63. 

33. Ma W, Li Y, Wang M, Li H, Su T, Wang S. Associations of Polymorphisms in WNT9B and PBX1 
with Mayer-Rokitansky-Küster-Hauser Syndrome in Chinese Han. PLoS One. 
2015;10(6):e0130202. 

34. Eozenou C, Bashamboo A, Bignon-Topalovic J, Merel T, Zwermann O, Lourenco D, et al. The 
TALE homeodomain of PBX1 is involved in human primary testis-determination. Hum 
Mutat. 2019. 

35. Piard J, Mignot B, Arbez-Gindre F, Aubert D, Morel Y, Roze V, et al. Severe sex 
differentiation disorder in a boy with a 3.8 Mb 10q25.3-q26.12 microdeletion 
encompassing EMX2. Am J Med Genet A. 2014;164A(10):2618-22. 

36. Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, et al. The LIM homeobox gene 
Lhx9 is essential for mouse gonad formation. Nature. 2000;403(6772):909-13. 

37. Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development 
by activation of Sf1. Genes Dev. 2002;16(14):1839-51. 

38. Wang H, Zhang L, Wang N, Zhu H, Han B, Sun F, et al. Next-generation sequencing reveals 
genetic landscape in 46, XY disorders of sexual development patients with variable 
phenotypes. Hum Genet. 2018;137(3):265-77. 

39. Lucas-Herald AK, Bashamboo A. Gonadal development. Endocr Dev. 2014;27:1-16. 



 

231 
 

40. Croft B, Ayers K, Sinclair A, Ohnesorg T. Review disorders of sex development: The evolving 
role of genomics in diagnosis and gene discovery. Birth Defects Res C Embryo Today. 
2016;108(4):337-50. 

41. Biason-Lauber A. WNT4, RSPO1, and FOXL2 in sex development. Semin Reprod Med. 
2012;30(5):387-95. 

42. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat 
Rev Endocrinol. 2014;10(11):673-83. 

43. Bashamboo A, McElreavey K. Gene mutations associated with anomalies of human gonad 
formation. Sex Dev. 2013;7(1-3):126-46. 

44. Benko S, Gordon CT, Mallet D, Sreenivasan R, Thauvin-Robinet C, Brendehaug A, et al. 
Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of 
sex development. J Med Genet. 2011;48(12):825-30. 

45. Huang B, Wang S, Ning Y, Lamb AN, Bartley J. Autosomal XX sex reversal caused by 
duplication of SOX9. Am J Med Genet. 1999;87(4):349-53. 

46. Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, et al. A transgenic 
insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat 
Genet. 2000;26(4):490-4. 

47. Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a 
specific Sox9 enhancer. Nature. 2008;453(7197):930-4. 

48. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, et al. Fgf9 and Wnt4 
act as antagonistic signals to regulate mammalian sex determination. PLoS Biol. 
2006;4(6):e187. 

49. Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, et al. SOX9 regulates 
prostaglandin D synthase gene transcription in vivo to ensure testis development. J Biol 
Chem. 2007;282(14):10553-60. 

50. Jameson SA, Lin YT, Capel B. Testis development requires the repression of Wnt4 by Fgf 
signaling. Dev Biol. 2012;370(1):24-32. 

51. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, et al. Homozygous 
inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 2006;74(1):195-
201. 

52. O'Bryan MK, Takada S, Kennedy CL, Scott G, Harada S, Ray MK, et al. Sox8 is a critical 
regulator of adult Sertoli cell function and male fertility. Dev Biol. 2008;316(2):359-70. 

53. Portnoi MF, Dumargne MC, Rojo S, Witchel SF, Duncan AJ, Eozenou C, et al. Mutations 
involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive 
anomalies. Hum Mol Genet. 2018;27(7):1228-40. 

54. Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL. Sox3 is required for gonadal 
function, but not sex determination, in males and females. Mol Cell Biol. 2003;23(22):8084-
91. 

55. Grinspon RP, Nevado J, Mori Alvarez MeL, Del Rey G, Castera R, Venara M, et al. 46,XX 
ovotesticular DSD associated with a SOX3 gene duplication in a SRY-negative boy. Clin 
Endocrinol (Oxf). 2016;85(4):673-5. 

56. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear 
localization of FGFR2 in Sertoli precursors during male sex determination. Development. 
2004;131(15):3627-36. 

57. Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, et al. FGFR2 mutation in 46,XY sex reversal 
with craniosynostosis. Hum Mol Genet. 2015;24(23):6699-710. 

58. Chiang HS, Wu YN, Wu CC, Hwang JL. Cytogenic and molecular analyses of 46,XX male 
syndrome with clinical comparison to other groups with testicular azoospermia of genetic 
origin. J Formos Med Assoc. 2013;112(2):72-8. 

59. García-Acero M, Molina M, Moreno O, Ramirez A, Forero C, Céspedes C, et al. Gene dosage 
of DAX-1, determining in sexual differentiation: duplication of DAX-1 in two sisters with 
gonadal dysgenesis. Mol Biol Rep. 2019;46(3):2971-8. 



 

232 
 

60. Rojek A, Obara-Moszynska M, Malecka E, Slomko-Jozwiak M, Niedziela M. NR0B1 (DAX1) 
mutations in patients affected by congenital adrenal hypoplasia with growth hormone 
deficiency as a new finding. J Appl Genet. 2013;54(2):225-30. 

61. Seminara SB, Achermann JC, Genel M, Jameson JL, Crowley WF. X-linked adrenal hypoplasia 
congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females. J 
Clin Endocrinol Metab. 1999;84(12):4501-9. 

62. Merke DP, Tajima T, Baron J, Cutler GB. Hypogonadotropic hypogonadism in a female 
caused by an X-linked recessive mutation in the DAX1 gene. N Engl J Med. 
1999;340(16):1248-52. 

63. Meeks JJ, Weiss J, Jameson JL. Dax1 is required for testis determination. Nat Genet. 
2003;34(1):32-3. 

64. Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM. Gonadal sex 
reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. 
Development. 2005;132(13):3045-54. 

65. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action 
in mammalian sex determination. Nature. 1998;391(6669):761-7. 

66. Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, et al. Dax-1 (dosage-
sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, 
gene 1) gene transcription is regulated by wnt4 in the female developing gonad. Mol 
Endocrinol. 2003;17(4):507-19. 

67. Bashamboo A, Brauner R, Bignon-Topalovic J, Lortat-Jacob S, Karageorgou V, Lourenco D, et 
al. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis 
determination. Hum Mol Genet. 2014;23(14):3657-65. 

68. Clark AM, Garland KK, Russell LD. Desert hedgehog (Dhh) gene is required in the mouse 
testis for formation of adult-type Leydig cells and normal development of peritubular cells 
and seminiferous tubules. Biol Reprod. 2000;63(6):1825-38. 

69. Ayers K, van den Bergen J, Robevska G, Listyasari N, Raza J, Atta I, et al. Functional analysis 
of novel desert hedgehog gene variants improves the clinical interpretation of genomic 
data and provides a more accurate diagnosis for patients with 46,XY differences of sex 
development. J Med Genet. 2019;56(7):434-43. 

70. Lindeman RE, Gearhart MD, Minkina A, Krentz AD, Bardwell VJ, Zarkower D. Sexual cell-fate 
reprogramming in the ovary by DMRT1. Curr Biol. 2015;25(6):764-71. 

71. Ottolenghi C, McElreavey K. Deletions of 9p and the quest for a conserved mechanism of 
sex determination. Mol Genet Metab. 2000;71(1-2):397-404. 

72. Zhao L, Svingen T, Ng ET, Koopman P. Female-to-male sex reversal in mice caused by 
transgenic overexpression of Dmrt1. Development. 2015;142(6):1083-8. 

73. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 
prevents female reprogramming in the postnatal mammalian testis. Nature. 
2011;476(7358):101-4. 

74. Privitera O, Vessecchia G, Bernasconi B, Bettio D, Stioui S, Giordano G. Prenatal diagnosis of 
del(9)(p24): a sex reverse case. Prenat Diagn. 2005;25(10):945-8. 

75. Ounap K, Uibo O, Zordania R, Kiho L, Ilus T, Oiglane-Shlik E, et al. Three patients with 9p 
deletions including DMRT1 and DMRT2: a girl with XY complement, bilateral ovotestes, and 
extreme growth retardation, and two XX females with normal pubertal development. Am J 
Med Genet A. 2004;130A(4):415-23. 

76. Takagi M, Yagi H, Fukuzawa R, Narumi S, Hasegawa T. Syndromic disorder of sex 
development due to a novel hemizygous mutation in the carboxyl-terminal domain of. Hum 
Genome Var. 2017;4:17012. 

77. Tang P, Argentaro A, Pask AJ, O'Donnell L, Marshall-Graves J, Familari M, et al. Localization 
of the chromatin remodelling protein, ATRX in the adult testis. J Reprod Dev. 
2011;57(3):317-21. 



 

233 
 

78. Cohen-Haguenauer O, Picard JY, Mattéi MG, Serero S, Nguyen VC, de Tand MF, et al. 
Mapping of the gene for anti-müllerian hormone to the short arm of human chromosome 
19. Cytogenet Cell Genet. 1987;44(1):2-6. 

79. Jamil Z, Perveen K, Malik R, Avesi L. Serum anti-mullerian hormone: Correlation with the 
ovarian follicular dynamics in healthy mice. J Pak Med Assoc. 2016;66(9):1084-8. 

80. Bogani D, Siggers P, Brixey R, Warr N, Beddow S, Edwards J, et al. Loss of mitogen-activated 
protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in 
mouse sex determination. PLoS Biol. 2009;7(9):e1000196. 

81. Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, et al. Exome 
sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol 
Metab. 2015;100(2):E333-44. 

82. Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, et al. MAP3K1-related 
gonadal dysgenesis: Six new cases and review of the literature. Am J Med Genet C Semin 
Med Genet. 2017;175(2):253-9. 

83. Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, et al. Testis 
determination requires insulin receptor family function in mice. Nature. 
2003;426(6964):291-5. 

84. Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, et al. Insulin and IGF1 
receptors are essential for XX and XY gonadal differentiation and adrenal development in 
mice. PLoS Genet. 2013;9(1):e1003160. 

85. Vinci G, Brauner R, Tar A, Rouba H, Sheth J, Sheth F, et al. Mutations in the TSPYL1 gene 
associated with 46,XY disorder of sex development and male infertility. Fertil Steril. 
2009;92(4):1347-50. 

86. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, et al. Mapping of 
sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan 
and identification of TSPYL loss of function. Proc Natl Acad Sci U S A. 2004;101(32):11689-
94. 

87. Camats N, Fernández-Cancio M, Audí L, Mullis PE, Moreno F, González Casado I, et al. 
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype. 
PLoS One. 2015;10(11):e0142831. 

88. Abstracts of the LWPES/ESPE 8th Joint Meeting Global Care in Paediatric Endocrinology, in 
collaboration with APEG, APPES, JSPE and SLEP. New York City, New York, USA. September 
9-12, 2009. Horm Res. 2009;72 Suppl 3:1-547. 

89. Kalfa N, Cassorla F, Audran F, Oulad Abdennabi I, Philibert P, Béroud C, et al. 
Polymorphisms of MAMLD1 gene in hypospadias. J Pediatr Urol. 2011;7(6):585-91. 

90. Fukami M, Wada Y, Okada M, Kato F, Katsumata N, Baba T, et al. Mastermind-like domain-
containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 promoter, augments 
testosterone production, and contains the SF1 target sequence. J Biol Chem. 
2008;283(9):5525-32. 

91. Flück CE, Audí L, Fernández-Cancio M, Sauter K-S, Martinez de LaPiscina I, Castaño L, et al. 
Broad Phenotypes of Disorders/Differences of Sex Development in MAMLD1 Patients 
Through Oligogenic Disease. Frontiers in Genetics. 2019;10(746). 

92. White S, Hewitt J, Turbitt E, van der Zwan Y, Hersmus R, Drop S, et al. A multi-exon deletion 
within WWOX is associated with a 46,XY disorder of sex development. Eur J Hum Genet. 
2012;20(3):348-51. 

93. Kim JH, Kang E, Heo SH, Kim GH, Jang JH, Cho EH, et al. Diagnostic yield of targeted gene 
panel sequencing to identify the genetic etiology of disorders of sex development. Mol Cell 
Endocrinol. 2017;444:19-25. 

94. Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, et al. Foxl2 is 
required for commitment to ovary differentiation. Hum Mol Genet. 2005;14(14):2053-62. 

95. Liu CF, Parker K, Yao HH. WNT4/beta-catenin pathway maintains female germ cell survival 
by inhibiting activin betaB in the mouse fetal ovary. PLoS One. 2010;5(4):e10382. 



 

234 
 

96. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, et al. R-spondin1 plays an 
essential role in ovarian development through positively regulating Wnt-4 signaling. Hum 
Mol Genet. 2008;17(9):1278-91. 

97. Chassot AA, Gillot I, Chaboissier MC. R-spondin1, WNT4, and the CTNNB1 signaling 
pathway: strict control over ovarian differentiation. Reproduction. 2014;148(6):R97-110. 

98. Tallapaka K, Venugopal V, Dalal A, Aggarwal S. Novel RSPO1 mutation causing 46,XX 
testicular disorder of sex development with palmoplantar keratoderma: A review of 
literature and expansion of clinical phenotype. Am J Med Genet A. 2018;176(4):1006-10. 

99. Mandel H, Shemer R, Borochowitz ZU, Okopnik M, Knopf C, Indelman M, et al. SERKAL 
syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. 
Am J Hum Genet. 2008;82(1):39-47. 

100. Naillat F, Yan W, Karjalainen R, Liakhovitskaia A, Samoylenko A, Xu Q, et al. Identification of 
the genes regulated by Wnt-4, a critical signal for commitment of the ovary. Exp Cell Res. 
2015;332(2):163-78. 

101. Uhlenhaut NH, Treier M. Forkhead transcription factors in ovarian function. Reproduction. 
2011;142(4):489-95. 

102. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, et al. FOXL2 is a 
female sex-determining gene in the goat. Curr Biol. 2014;24(4):404-8. 

103. Liu L, Rajareddy S, Reddy P, Du C, Jagarlamudi K, Shen Y, et al. Infertility caused by 
retardation of follicular development in mice with oocyte-specific expression of Foxo3a. 
Development. 2007;134(1):199-209. 

104. Rajpert-De Meyts E, Jørgensen N, Graem N, Müller J, Cate RL, Skakkebaek NE. Expression of 
anti-Müllerian hormone during normal and pathological gonadal development: association 
with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab. 
1999;84(10):3836-44. 

105. Barseghyan H, Délot EC, Vilain E. New technologies to uncover the molecular basis of 
disorders of sex development. Mol Cell Endocrinol. 2018;468:60-9. 

106. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human 
steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81-151. 

107. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev 
Physiol. 2001;63:193-213. 

108. Miller WL, Huang N, Pandey AV, Flück CE, Agrawal V. P450 oxidoreductase deficiency: a 
new disorder of steroidogenesis. Ann N Y Acad Sci. 2005;1061:100-8. 

109. Häggström M, Richfield D. Diagram of the pathways of human steroidogenesis. Wikiversity 
Journal of Medicine; 2014. 

110. Mindnich R, Möller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol 
Cell Endocrinol. 2004;218(1-2):7-20. 

111. Carreau S, Lambard S, Delalande C, Denis-Galeraud I, Bilinska B, Bourguiba S. Aromatase 
expression and role of estrogens in male gonad : a review. Reprod Biol Endocrinol. 
2003;1:35. 

112. Fitzpatrick SL, Carlone DL, Robker RL, Richards JS. Expression of aromatase in the ovary: 
down-regulation of mRNA by the ovulatory luteinizing hormone surge. Steroids. 
1997;62(1):197-206. 

113. Speiser PW, Arlt W, Auchus RJ, Baskin LS, Conway GS, Merke DP, et al. Congenital Adrenal 
Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical 
Practice Guideline. J Clin Endocrinol Metab. 2018;103(11):4043-88. 

114. Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, et al. Why boys will 
be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual 
differentiation. Am J Hum Genet. 2011;89(2):201-18. 

115. Fukami M, Homma K, Hasegawa T, Ogata T. Backdoor pathway for dihydrotestosterone 
biosynthesis: implications for normal and abnormal human sex development. Dev Dyn. 
2013;242(4):320-9. 



 

235 
 

116. Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol. 
2002;198(1-2):7-14. 

117. Huang N, Miller WL. Cloning of factors related to HIV-inducible LBP proteins that regulate 
steroidogenic factor-1-independent human placental transcription of the cholesterol side-
chain cleavage enzyme, P450scc. J Biol Chem. 2000;275(4):2852-8. 

118. Hiort O, Holterhus PM, Werner R, Marschke C, Hoppe U, Partsch CJ, et al. Homozygous 
disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 
46,XY sex reversal, and severe adrenal failure. J Clin Endocrinol Metab. 2005;90(1):538-41. 

119. Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol 
Biol. 2017;165(Pt A):18-37. 

120. Flück CE, Pandey AV. Steroidogenesis of the testis -- new genes and pathways. Ann 
Endocrinol (Paris). 2014;75(2):40-7. 

121. Al Alawi AM, Nordenström A, Falhammar H. Clinical perspectives in congenital adrenal 
hyperplasia due to 3β-hydroxysteroid dehydrogenase type 2 deficiency. Endocrine. 
2019;63(3):407-21. 

122. Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. 
J Steroid Biochem Mol Biol. 2017;165(Pt A):71-8. 

123. Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, et al. 
Comprehensive genetic analysis of 182 unrelated families with congenital adrenal 
hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2011;96(1):E161-72. 

124. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, et al. Congenital adrenal 
hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice 
guideline. J Clin Endocrinol Metab. 2010;95(9):4133-60. 

125. Kamrath C, Hochberg Z, Hartmann MF, Remer T, Wudy SA. Increased activation of the 
alternative "backdoor" pathway in patients with 21-hydroxylase deficiency: evidence from 
urinary steroid hormone analysis. J Clin Endocrinol Metab. 2012;97(3):E367-75. 

126. Flück CE, Pandey AV, Huang N, Agrawal V, Miller WL. P450 oxidoreductase deficiency - a 
new form of congenital adrenal hyperplasia. Endocr Dev. 2008;13:67-81. 

127. Krone N, Reisch N, Idkowiak J, Dhir V, Ivison HE, Hughes BA, et al. Genotype-phenotype 
analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin 
Endocrinol Metab. 2012;97(2):E257-67. 

128. Tomalik-Scharte D, Maiter D, Kirchheiner J, Ivison HE, Fuhr U, Arlt W. Impaired hepatic drug 
and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase 
deficiency. Eur J Endocrinol. 2010;163(6):919-24. 

129. Mushtaq T, Ahmed SF. The impact of corticosteroids on growth and bone health. Arch Dis 
Child. 2002;87(2):93-6. 

130. Andersson S, Geissler WM, Wu L, Davis DL, Grumbach MM, New MI, et al. Molecular 
genetics and pathophysiology of 17 beta-hydroxysteroid dehydrogenase 3 deficiency. J Clin 
Endocrinol Metab. 1996;81(1):130-6. 

131. Mendonca BB, Gomes NL, Costa EM, Inacio M, Martin RM, Nishi MY, et al. 46,XY disorder of 
sex development (DSD) due to 17β-hydroxysteroid dehydrogenase type 3 deficiency. J 
Steroid Biochem Mol Biol. 2017;165(Pt A):79-85. 

132. Unal E, Yıldırım R, Taş FF, Demir V, Onay H, Haspolat YK. Aromatase Deficiency due to a 
Novel Mutation in. J Clin Res Pediatr Endocrinol. 2018;10(4):377-81. 

133. Chávez B, Ramos L, Gómez R, Vilchis F. 46,XY disorder of sexual development resulting from 
a novel monoallelic mutation (p.Ser31Phe) in the steroid 5α-reductase type-2 (SRD5A2) 
gene. Mol Genet Genomic Med. 2014;2(4):292-6. 

134. Adham IM, Steding G, Thamm T, Büllesbach EE, Schwabe C, Paprotta I, et al. The 
overexpression of the insl3 in female mice causes descent of the ovaries. Mol Endocrinol. 
2002;16(2):244-52. 

135. Ayers K, Kumar R, Robevska G, Bruell S, Bell K, Malik MA, et al. Familial bilateral 
cryptorchidism is caused by recessive variants in. J Med Genet. 2019. 



 

236 
 

136. El Houate B, Rouba H, Sibai H, Barakat A, Chafik A, Chadli eB, et al. Novel mutations 
involving the INSL3 gene associated with cryptorchidism. J Urol. 2007;177(5):1947-51. 

137. Ferlin A, Zuccarello D, Zuccarello B, Chirico MR, Zanon GF, Foresta C. Genetic alterations 
associated with cryptorchidism. JAMA. 2008;300(19):2271-6. 

138. Nef S, Shipman T, Parada LF. A molecular basis for estrogen-induced cryptorchidism. Dev 
Biol. 2000;224(2):354-61. 

139. Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, De Rooij DG, Themmen AP, et al. Cell-specific 
knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol 
Endocrinol. 2004;18(7):1610-9. 

140. Audi L, Fernández-Cancio M, Carrascosa A, Andaluz P, Torán N, Piró C, et al. Novel (60%) 
and recurrent (40%) androgen receptor gene mutations in a series of 59 patients with a 
46,XY disorder of sex development. J Clin Endocrinol Metab. 2010;95(4):1876-88. 

141. Hornig NC, de Beaufort C, Denzer F, Cools M, Wabitsch M, Ukat M, et al. A Recurrent 
Germline Mutation in the 5'UTR of the Androgen Receptor Causes Complete Androgen 
Insensitivity by Activating Aberrant uORF Translation. PLoS One. 2016;11(4):e0154158. 

142. Panda B, Rao L, Tosh D, Dixit H, Padmalatha V, Kanakavalli M, et al. Germline study of AR 
gene of Indian women with ovarian failure. Gynecol Endocrinol. 2011;27(8):572-8. 

143. Qiao J, Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin 
receptor. Prog Mol Biol Transl Sci. 2019;161:69-89. 

144. Xu Y, Chen Y, Li N, Hu X, Li G, Ding Y, et al. Novel compound heterozygous variants in the 
LHCGR gene identified in a subject with Leydig cell hypoplasia type 1. J Pediatr Endocrinol 
Metab. 2018;31(2):239-45. 

145. Martens JW, Verhoef-Post M, Abelin N, Ezabella M, Toledo SP, Brunner HG, et al. A 
homozygous mutation in the luteinizing hormone receptor causes partial Leydig cell 
hypoplasia: correlation between receptor activity and phenotype. Mol Endocrinol. 
1998;12(6):775-84. 

146. Chen C, Xu X, Kong L, Li P, Zhou F, Zhao S, et al. Novel homozygous nonsense mutations in 
LHCGR lead to empty follicle syndrome and 46, XY disorder of sex development. Hum 
Reprod. 2018;33(7):1364-9. 

147. Boot AM, Lumbroso S, Verhoef-Post M, Richter-Unruh A, Looijenga LH, Funaro A, et al. 
Mutation analysis of the LH receptor gene in Leydig cell adenoma and hyperplasia and 
functional and biochemical studies of activating mutations of the LH receptor gene. J Clin 
Endocrinol Metab. 2011;96(7):E1197-205. 

148. Fanelli F. Theoretical study on mutation-induced activation of the luteinizing hormone 
receptor. J Mol Biol. 2000;296(5):1333-51. 

149. McLaren A. Mammalian germ cells: birth, sex, and immortality. Cell Struct Funct. 
2001;26(3):119-22. 

150. Jiao X, Ke H, Qin Y, Chen ZJ. Molecular Genetics of Premature Ovarian Insufficiency. Trends 
Endocrinol Metab. 2018;29(11):795-807. 

151. Knarston I, Ayers K, Sinclair A. Molecular mechanisms associated with 46,XX disorders of 
sex development. Clin Sci (Lond). 2016;130(6):421-32. 

152. Liu C, Peng J, Matzuk MM, Yao HH. Lineage specification of ovarian theca cells requires 
multicellular interactions via oocyte and granulosa cells. Nat Commun. 2015;6:6934. 

153. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: 
elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev. 
2000;21(5):551-83. 

154. Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel 
role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod 
Update. 2016;23(1):1-18. 

155. Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony. J Assist 
Reprod Genet. 2018;35(10):1741-50. 



 

237 
 

156. Castronovo C, Rossetti R, Rusconi D, Recalcati MP, Cacciatore C, Beccaria E, et al. Gene 
dosage as a relevant mechanism contributing to the determination of ovarian function in 
Turner syndrome. Hum Reprod. 2014;29(2):368-79. 

157. Norling A, Hirschberg AL, Rodriguez-Wallberg KA, Iwarsson E, Wedell A, Barbaro M. 
Identification of a duplication within the GDF9 gene and novel candidate genes for primary 
ovarian insufficiency (POI) by a customized high-resolution array comparative genomic 
hybridization platform. Hum Reprod. 2014;29(8):1818-27. 

158. Chand AL, Harrison CA, Shelling AN. Inhibin and premature ovarian failure. Hum Reprod 
Update. 2010;16(1):39-50. 

159. Corre T, Schuettler J, Bione S, Marozzi A, Persani L, Rossetti R, et al. A large-scale 
association study to assess the impact of known variants of the human INHA gene on 
premature ovarian failure. Hum Reprod. 2009;24(8):2023-8. 

160. Baetens D, Güran T, Mendonca BB, Gomes NL, De Cauwer L, Peelman F, et al. Biallelic and 
monoallelic ESR2 variants associated with 46,XY disorders of sex development. Genet Med. 
2018;20(7):717-27. 

161. Lang-Muritano M, Sproll P, Wyss S, Kolly A, Hürlimann R, Konrad D, et al. Early-Onset 
Complete Ovarian Failure and Lack of Puberty in a Woman With Mutated Estrogen 
Receptor β (ESR2). J Clin Endocrinol Metab. 2018;103(10):3748-56. 

162. Bernard V, Kherra S, Francou B, Fagart J, Viengchareun S, Guéchot J, et al. Familial 
Multiplicity of Estrogen Insensitivity Associated With a Loss-of-Function ESR1 Mutation. J 
Clin Endocrinol Metab. 2017;102(1):93-9. 

163. Lerat J, Jonard L, Loundon N, Christin-Maitre S, Lacombe D, Goizet C, et al. An Application of 
NGS for Molecular Investigations in Perrault Syndrome: Study of 14 Families and Review of 
the Literature. Hum Mutat. 2016;37(12):1354-62. 

164. Jenkinson EM, Clayton-Smith J, Mehta S, Bennett C, Reardon W, Green A, et al. Perrault 
syndrome: further evidence for genetic heterogeneity. J Neurol. 2012;259(5):974-6. 

165. Zangen D, Kaufman Y, Zeligson S, Perlberg S, Fridman H, Kanaan M, et al. XX ovarian 
dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-
driven transcription. Am J Hum Genet. 2011;89(4):572-9. 

166. Al-Agha AE, Ahmed IA, Nuebel E, Moriwaki M, Moore B, Peacock KA, et al. Primary Ovarian 
Insufficiency and Azoospermia in Carriers of a Homozygous PSMC3IP Stop Gain Mutation. J 
Clin Endocrinol Metab. 2018;103(2):555-63. 

167. Fowler PA, Anderson RA, Saunders PT, Kinnell H, Mason JI, Evans DB, et al. Development of 
steroid signaling pathways during primordial follicle formation in the human fetal ovary. J 
Clin Endocrinol Metab. 2011;96(6):1754-62. 

168. Windley SP, Wilhelm D. Signaling Pathways Involved in Mammalian Sex Determination and 
Gonad Development. Sex Dev. 2015;9(6):297-315. 

169. Eid W, Opitz L, Biason-Lauber A. Genome-wide identification of CBX2 targets: insights in the 
human sex development network. Mol Endocrinol. 2015;29(2):247-57. 

170. Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, et al. Follistatin operates 
downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn. 2004;230(2):210-5. 

171. Britt KL, Kerr J, O'Donnell L, Jones ME, Drummond AE, Davis SR, et al. Estrogen regulates 
development of the somatic cell phenotype in the eutherian ovary. FASEB J. 
2002;16(11):1389-97. 

172. Hughes IA, Houk C, Ahmed SF, Lee PA, Group LWPESESfPEC. Consensus statement on 
management of intersex disorders. J Pediatr Urol. 2006;2(3):148-62. 

173. Ahmed SF, Dobbie R, Finlayson AR, Gilbert J, Youngson G, Chalmers J, et al. Prevalence of 
hypospadias and other genital anomalies among singleton births, 1988-1997, in Scotland. 
Arch Dis Child Fetal Neonatal Ed. 2004;89(2):F149-51. 

174. Audi L, Ahmed SF, Krone N, Cools M, McElreavey K, Holterhus PM, et al. GENETICS IN 
ENDOCRINOLOGY: Approaches to molecular genetic diagnosis in the management of 



 

238 
 

differences/disorders of sex development (DSD): position paper of EU COST Action BM 
1303 ‘DSDnet’. Eur J Endocrinol. 2018;179(4):R197-R206. 

175. Mendonca BB, Domenice S, Arnhold IJ, Costa EM. 46,XY disorders of sex development 
(DSD). Clin Endocrinol (Oxf). 2009;70(2):173-87. 

176. Arboleda VA, Sandberg DE, Vilain E. DSDs: genetics, underlying pathologies and 
psychosexual differentiation. Nat Rev Endocrinol. 2014;10(10):603-15. 

177. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the 
human sex-determining region encodes a protein with homology to a conserved DNA-
binding motif. Nature. 1990;346(6281):240-4. 

178. Heksch RA, Matheson MA, Tishelman AC, Swartz JM, Jayanthi VR, Diamond DA, et al. 
TESTICULAR REGRESSION SYNDROME: PRACTICE VARIATION IN DIAGNOSIS AND 
MANAGEMENT. Endocr Pract. 2019. 

179. Fischbach BV, Trout KL, Lewis J, Luis CA, Sika M. WAGR syndrome: a clinical review of 54 
cases. Pediatrics. 2005;116(4):984-8. 

180. Miller-Hodges E. Clinical Aspects of WT1 and the Kidney. Methods Mol Biol. 2016;1467:15-
21. 

181. Hornig NC, Ukat M, Schweikert HU, Hiort O, Werner R, Drop SL, et al. Identification of an AR 
Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity. 
J Clin Endocrinol Metab. 2016;101(11):4468-77. 

182. Picard JY, Cate RL, Racine C, Josso N. The Persistent Müllerian Duct Syndrome: An Update 
Based Upon a Personal Experience of 157 Cases. Sex Dev. 2017;11(3):109-25. 

183. Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors 
Underlying Hypospadias. Sex Dev. 2015;9(5):239-59. 

184. Vikraman J, Hutson JM, Li R, Thorup J. The undescended testis: Clinical management and 
scientific advances. Semin Pediatr Surg. 2016;25(4):241-8. 

185. Topaloğlu AK. Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. J 
Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):113-22. 

186. Grinspon RP, Freire AV, Rey RA. Hypogonadism in Pediatric Health: Adult Medicine 
Concepts Fail. Trends Endocrinol Metab. 2019;30(12):879-90. 

187. Salonia A, Rastrelli G, Hackett G, Seminara SB, Huhtaniemi IT, Rey RA, et al. Paediatric and 
adult-onset male hypogonadism. Nat Rev Dis Primers. 2019;5(1):38. 

188. Dutta D, Shivaprasad KS, Das RN, Ghosh S, Chatterjee U, Chowdhury S, et al. Ovotesticular 
disorder of sexual development due to 47,XYY/46,XY/45,X mixed gonadal dysgenesis in a 
phenotypic male presenting as cyclical haematuria: clinical presentation and assessment of 
long-term outcomes. Andrologia. 2014;46(2):191-3. 

189. van Niekerk WA, Retief AE. The gonads of human true hermaphrodites. Hum Genet. 
1981;58(1):117-22. 

190. Grinspon RP, Rey RA. Molecular Characterization of XX Maleness. Int J Mol Sci. 2019;20(23). 
191. Jordan BK, Mohammed M, Ching ST, Délot E, Chen XN, Dewing P, et al. Up-regulation of 

WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet. 
2001;68(5):1102-9. 

192. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. R-spondin1 is 
essential in sex determination, skin differentiation and malignancy. Nat Genet. 
2006;38(11):1304-9. 

193. Aleck KA, Argueso L, Stone J, Hackel JG, Erickson RP. True hermaphroditism with partial 
duplication of chromosome 22 and without SRY. Am J Med Genet. 1999;85(1):2-4. 

194. Baetens D, Stoop H, Peelman F, Todeschini AL, Rosseel T, Coppieters F, et al. NR5A1 is a 
novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. 
Genet Med. 2017;19(4):367-76. 

195. Bashamboo A, Eozenou C, Rojo S, McElreavey K. Anomalies in human sex determination 
provide unique insights into the complex genetic interactions of early gonad development. 
Clin Genet. 2017;91(2):143-56. 



 

239 
 

196. Ledig S, Hiort O, Wünsch L, Wieacker P. Partial deletion of DMRT1 causes 46,XY 
ovotesticular disorder of sexual development. Eur J Endocrinol. 2012;167(1):119-24. 

197. Meyers CM, Boughman JA, Rivas M, Wilroy RS, Simpson JL. Gonadal (ovarian) dysgenesis in 
46,XX individuals: frequency of the autosomal recessive form. Am J Med Genet. 
1996;63(4):518-24. 

198. Ferrari I, Bouilly J, Beau I, Guizzardi F, Ferlin A, Pollazzon M, et al. Impaired protein stability 
and nuclear localization of NOBOX variants associated with premature ovarian insufficiency. 
Hum Mol Genet. 2016;25(23):5223-33. 

199. Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription factor FIGLA is mutated in 
patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342-8. 

200. Kaňová N, Bičíková M. Hyperandrogenic states in pregnancy. Physiol Res. 2011;60(2):243-
52. 

201. Morris LF, Park S, Daskivich T, Churchill BM, Rao CV, Lei Z, et al. Virilization of a female 
infant by a maternal adrenocortical carcinoma. Endocr Pract. 2011;17(2):e26-31. 

202. Narumi S. Rare monogenic causes of primary adrenal insufficiency. Curr Opin Endocrinol 
Diabetes Obes. 2018;25(3):172-7. 

203. Meimaridou E, Kowalczyk J, Guasti L, Hughes CR, Wagner F, Frommolt P, et al. Mutations in 
NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid 
deficiency. Nat Genet. 2012;44(7):740-2. 

204. Ledig S, Schippert C, Strick R, Beckmann MW, Oppelt PG, Wieacker P. Recurrent aberrations 
identified by array-CGH in patients with Mayer-Rokitansky-Küster-Hauser syndrome. Fertil 
Steril. 2011;95(5):1589-94. 

205. Takahashi K, Hayano T, Sugimoto R, Kashiwagi H, Shinoda M, Nishijima Y, et al. Exome and 
copy number variation analyses of Mayer-Rokitansky-Küster- Hauser syndrome. Hum 
Genome Var. 2018;5:27. 

206. Gravholt CH, Viuff MH, Brun S, Stochholm K, Andersen NH. Turner syndrome: mechanisms 
and management. Nat Rev Endocrinol. 2019. 

207. Akcan N, Poyrazoğlu Ş, Baş F, Bundak R, Darendeliler F. Klinefelter Syndrome in Childhood: 
Variability in Clinical and Molecular Findings. J Clin Res Pediatr Endocrinol. 2018;10(2):100-
7. 

208. Cools M, Pleskacova J, Stoop H, Hoebeke P, Van Laecke E, Drop SL, et al. Gonadal pathology 
and tumor risk in relation to clinical characteristics in patients with 45,X/46,XY mosaicism. J 
Clin Endocrinol Metab. 2011;96(7):E1171-80. 

209. Ocal G, Berberoğlu M, Sıklar Z, Ruhi HI, Tükün A, Camtosun E, et al. The clinical and genetic 
heterogeneity of mixed gonadal dysgenesis: does "disorders of sexual development (DSD)" 
classification based on new Chicago consensus cover all sex chromosome DSD? Eur J 
Pediatr. 2012;171(10):1497-502. 

210. Hornig NC, Demiri J, Rodens P, Murga Penas EM, Caliebe A, Eckstein AK, et al. Reduced 
androgen receptor expression in genital skin fibroblasts from patients with 45,X/46,XY 
mosaicism. J Clin Endocrinol Metab. 2019. 

211. Patsalis PC, Skordis N, Sismani C, Kousoulidou L, Koumbaris G, Eftychi C, et al. Identification 
of high frequency of Y chromosome deletions in patients with sex chromosome mosaicism 
and correlation with the clinical phenotype and Y-chromosome instability. Am J Med Genet 
A. 2005;135(2):145-9. 

212. Silber SJ. The Y chromosome in the era of intracytoplasmic sperm injection: a personal 
review. Fertil Steril. 2011;95(8):2439-48.e1-5. 

213. Hiort O, Birnbaum W, Marshall L, Wünsch L, Werner R, Schröder T, et al. Management of 
disorders of sex development. Nat Rev Endocrinol. 2014;10(9):520-9. 

214. Cools M, Looijenga LH, Wolffenbuttel KP, Drop SL. Disorders of sex development: update on 
the genetic background, terminology and risk for the development of germ cell tumors. 
World J Pediatr. 2009;5(2):93-102. 



 

240 
 

215. Cools M, Looijenga LH, Wolffenbuttel KP, T'Sjoen G. Managing the risk of germ cell 
tumourigenesis in disorders of sex development patients. Endocr Dev. 2014;27:185-96. 

216. Tobias ES, McElreavey K. Next generation sequencing for disorders of sex development. 
Endocr Dev. 2014;27:53-62. 

217. Dong Y, Yi Y, Yao H, Yang Z, Hu H, Liu J, et al. Targeted next-generation sequencing 
identification of mutations in patients with disorders of sex development. BMC Med Genet. 
2016;17:23. 

218. Fan Y, Zhang X, Wang L, Wang R, Huang Z, Sun Y, et al. Diagnostic Application of Targeted 
Next-Generation Sequencing of 80 Genes Associated with Disorders of Sexual 
Development. Sci Rep. 2017;7:44536. 

219. Hughes LA, McKay Bounford K, Webb E, Dasani P, Clokie S, Chandran H, et al. Next 
generation sequencing (NGS) to improve the diagnosis and management of patients with 
disorders of sex development (DSD). Endocr Connect. 2019. 

220. Özen S, Onay H, Atik T, Solmaz AE, Özkınay F, Gökşen D, et al. Rapid Molecular Genetic 
Diagnosis with Next-Generation Sequencing in 46,XY Disorders of Sex Development Cases: 
Efficiency and Cost Assessment. Horm Res Paediatr. 2017;87(2):81-7. 

221. Kon M, Fukami M. Submicroscopic copy-number variations associated with 46,XY disorders 
of sex development. Mol Cell Pediatr. 2015;2(1):7. 

222. Ledig S, Hiort O, Scherer G, Hoffmann M, Wolff G, Morlot S, et al. Array-CGH analysis in 
patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array 
CGH as diagnostic tool and search for new candidate loci. Hum Reprod. 2010;25(10):2637-
46. 

223. Croft B, Ohnesorg T, Sinclair AH. The Role of Copy Number Variants in Disorders of Sex 
Development. Sex Dev. 2018;12(1-3):19-29. 

224. Camats N, Fernández-Cancio M, Audí L, Schaller A, Flück CE. Broad phenotypes in 
heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic 
origin? Eur J Hum Genet. 2018;26(9):1329-38. 

225. Lee Y, Kim C, Park Y, Pyun JA, Kwack K. Next generation sequencing identifies abnormal Y 
chromosome and candidate causal variants in premature ovarian failure patients. 
Genomics. 2016;108(5-6):209-15. 

226. Cools M, Nordenström A, Robeva R, Hall J, Westerveld P, Flück C, et al. Caring for 
individuals with a difference of sex development (DSD): a Consensus Statement. Nat Rev 
Endocrinol. 2018;14(7):415-29. 

227. Guerrero-Fernández J, Azcona San Julián C, Barreiro Conde J, Bermúdez de la Vega JA, 
Carcavilla Urquí A, Castaño González LA, et al. [Management guidelines for disorders / 
different sex development (DSD)]. An Pediatr (Barc). 2018;89(5):315.e1-.e19. 

228. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc 
Natl Acad Sci U S A. 1977;74(12):5463-7. 

229. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for 
the interpretation of sequence variants: a joint consensus recommendation of the 
American College of Medical Genetics and Genomics and the Association for Molecular 
Pathology. Genet Med. 2015;17(5):405-24. 

230. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. The Human Gene 
Mutation Database: 2008 update. Genome Med. 2009;1(1):13. 

231. McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. Am J Hum 
Genet. 2007;80(4):588-604. 

232. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: 
the human genomic variant search engine. Bioinformatics. 2019;35(11):1978-80. 

233. Rivero-Müller A, Potorac I, Pintiaux A, Daly AF, Thiry A, Rydlewski C, et al. A novel 
inactivating mutation of the LH/chorionic gonadotrophin receptor with impaired 
membrane trafficking leading to Leydig cell hypoplasia type 1. Eur J Endocrinol. 
2015;172(6):K27-36. 



 

241 
 

234. Kohler PO, Bridson WE. Isolation of hormone-producing clonal lines of human 
choriocarcinoma. J Clin Endocrinol Metab. 1971;32(5):683-7. 

235. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed 
by DNA from human adenovirus type 5. J Gen Virol. 1977;36(1):59-74. 

236. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for 
Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus 
Recommendation of the Association for Molecular Pathology and College of American 
Pathologists. J Mol Diagn. 2017;19(3):341-65. 

237. So J, Suckow V, Kijas Z, Kalscheuer V, Moser B, Winter J, et al. Mild phenotypes in a series of 
patients with Opitz GBBB syndrome with MID1 mutations. Am J Med Genet A. 
2005;132A(1):1-7. 

238. Bilbao JR, Loridan L, Castaño L. A novel postzygotic nonsense mutation in SRY in familial XY 
gonadal dysgenesis. Hum Genet. 1996;97(4):537-9. 

239. Y L, M R, J H, A W. Novel Missense mutation (P131R) in the HMG box of  SRY  in XY sex 
reversal. Hum Mutat; Suppl. 1:S328.1998. 

240. Reuter AL, Goji K, Bingham NC, Matsuo M, Parker KL. A novel mutation in the accessory 
DNA-binding domain of human steroidogenic factor 1 causes XY gonadal dysgenesis 
without adrenal insufficiency. Eur J Endocrinol. 2007;157(2):233-8. 

241. Yu B, Liu Z, Gao Y, Mao J, Wang X, Hao M, et al. Novel NR5A1 mutations found in Chinese 
patients with 46, XY disorders of sex development. Clin Endocrinol (Oxf). 2018;89(5):613-
20. 

242. WuQiang F, Yanase T, Wei L, Oba K, Nomura M, Okabe T, et al. Functional characterization 
of a new human Ad4BP/SF-1 variation, G146A. Biochem Biophys Res Commun. 
2003;311(4):987-94. 

243. Liu W, Liu M, Fan W, Nawata H, Yanase T. The Gly146Ala variation in human SF-1 gene: its 
association with insulin resistance and type 2 diabetes in Chinese. Diabetes Res Clin Pract. 
2006;73(3):322-8. 

244. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al. Sherloc: a 
comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 
2017;19(10):1105-17. 

245. Rodríguez Estévez A, Pérez-Nanclares G, Fernández-Toral J, Rivas-Crespo F, López-Siguero 
JP, Díez I, et al. Clinical and molecular characterization of five Spanish kindreds with X-
linked adrenal hypoplasia congenita: atypical findings and a novel mutation in NR0B1. J 
Pediatr Endocrinol Metab. 2015;28(9-10):1129-37. 

246. Guoying C, Zhiya D, Wei W, Na L, Xiaoying L, Yuan X, et al. The analysis of clinical 
manifestations and genetic mutations in Chinese boys with primary adrenal insufficiency. J 
Pediatr Endocrinol Metab. 2012;25(3-4):295-300. 

247. Lehmann SG, Wurtz JM, Renaud JP, Sassone-Corsi P, Lalli E. Structure-function analysis 
reveals the molecular determinants of the impaired biological function of DAX-1 mutants in 
AHC patients. Hum Mol Genet. 2003;12(9):1063-72. 

248. Yeste D, González-Niño C, Pérez de Nanclares G, Pérez-Nanclares G, Audi L, Castaño L, et al. 
ACTH-dependent precocious pseudopuberty in an infant with DAX1 gene mutation. Eur J 
Pediatr. 2009;168(1):65-9. 

249. Guo W, Mason JS, Stone CG, Morgan SA, Madu SI, Baldini A, et al. Diagnosis of X-linked 
adrenal hypoplasia congenita by mutation analysis of the DAX1 gene. JAMA. 
1995;274(4):324-30. 

250. Muroya K, Kinoshita E, Kamimaki T, Matsuo N, Yorifugi T, Ogata T. Deletion mapping and X 
inactivation analysis of a non-specific mental retardation gene at Xp21.3-Xp22.11. J Med 
Genet. 1999;36(3):187-91. 

251. Bruening W, Bardeesy N, Silverman BL, Cohn RA, Machin GA, Aronson AJ, et al. Germline 
intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital 
development. Nat Genet. 1992;1(2):144-8. 



 

242 
 

252. Nakadate H, Yokomori K, Watanabe N, Tsuchiya T, Namiki T, Kobayshi H, et al. 
Mutations/deletions of the WT1 gene, loss of heterozygosity on chromosome arms 11p and 
11q, chromosome ploidy and histology in Wilms' tumors in Japan. Int J Cancer. 
2001;94(3):396-400. 

253. Finken MJ, Hendriks YM, van der Voorn JP, Veening MA, Lombardi MP, Rotteveel J. WT1 
deletion leading to severe 46,XY gonadal dysgenesis, Wilms tumor and gonadoblastoma: 
case report. Horm Res Paediatr. 2015;83(3):211-6. 

254. McPhaul MJ, Marcelli M, Zoppi S, Wilson CM, Griffin JE, Wilson JD. Mutations in the ligand-
binding domain of the androgen receptor gene cluster in two regions of the gene. J Clin 
Invest. 1992;90(5):2097-101. 

255. Holterhus PM, Hiort O, Demeter J, Brown PO, Brooks JD. Differential gene-expression 
patterns in genital fibroblasts of normal males and 46,XY females with androgen 
insensitivity syndrome: evidence for early programming involving the androgen receptor. 
Genome Biol. 2003;4(6):R37. 

256. Brown TR, Lubahn DB, Wilson EM, French FS, Migeon CJ, Corden JL. Functional 
characterization of naturally occurring mutant androgen receptors from subjects with 
complete androgen insensitivity. Mol Endocrinol. 1990;4(12):1759-72. 

257. Ris-Stalpers C, Trifiro MA, Kuiper GG, Jenster G, Romalo G, Sai T, et al. Substitution of 
aspartic acid-686 by histidine or asparagine in the human androgen receptor leads to a 
functionally inactive protein with altered hormone-binding characteristics. Mol Endocrinol. 
1991;5(10):1562-9. 

258. Giwercman A, Kledal T, Schwartz M, Giwercman YL, Leffers H, Zazzi H, et al. Preserved male 
fertility despite decreased androgen sensitivity caused by a mutation in the ligand-binding 
domain of the androgen receptor gene. J Clin Endocrinol Metab. 2000;85(6):2253-9. 

259. Hellmann P, Christiansen P, Johannsen TH, Main KM, Duno M, Juul A. Male patients with 
partial androgen insensitivity syndrome: a longitudinal follow-up of growth, reproductive 
hormones and the development of gynaecomastia. Arch Dis Child. 2012;97(5):403-9. 

260. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen 
receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 
1995;16(3):271-321. 

261. Batch JA, Williams DM, Davies HR, Brown BD, Evans BA, Hughes IA, et al. Androgen receptor 
gene mutations identified by SSCP in fourteen subjects with androgen insensitivity 
syndrome. Hum Mol Genet. 1992;1(7):497-503. 

262. Hiort O, Sinnecker GH, Holterhus PM, Nitsche EM, Kruse K. The clinical and molecular 
spectrum of androgen insensitivity syndromes. Am J Med Genet. 1996;63(1):218-22. 

263. Shao J, Hou J, Li B, Li D, Zhang N, Wang X. Different types of androgen receptor mutations in 
patients with complete androgen insensitivity syndrome. Intractable Rare Dis Res. 
2015;4(1):54-9. 

264. Wijeratne N, McNeil AR, Doery JCG, McLeod E, Bergman PB, Montalto J. A Teenage Girl 
with Unexpected Pubertal Changes. Clin Chem. 2018;64(6):892-6. 

265. Fénichel P, Paris F, Philibert P, Hiéronimus S, Gaspari L, Kurzenne JY, et al. Molecular 
diagnosis of 5α-reductase deficiency in 4 elite young female athletes through hormonal 
screening for hyperandrogenism. J Clin Endocrinol Metab. 2013;98(6):E1055-9. 

266. Wilson JD, Griffin JE, Russell DW. Steroid 5 alpha-reductase 2 deficiency. Endocr Rev. 
1993;14(5):577-93. 

267. Kremer H, Mariman E, Otten BJ, Moll GW, Stoelinga GB, Wit JM, et al. Cosegregation of 
missense mutations of the luteinizing hormone receptor gene with familial male-limited 
precocious puberty. Hum Mol Genet. 1993;2(11):1779-83. 

268. Kraaij R, Post M, Kremer H, Milgrom E, Epping W, Brunner HG, et al. A missense mutation in 
the second transmembrane segment of the luteinizing hormone receptor causes familial 
male-limited precocious puberty. J Clin Endocrinol Metab. 1995;80(11):3168-72. 



 

243 
 

269. Latronico AC, Anasti J, Arnhold IJ, Rapaport R, Mendonca BB, Bloise W, et al. Brief report: 
testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of 
the luteinizing hormone-receptor gene. N Engl J Med. 1996;334(8):507-12. 

270. Richard N, Leprince C, Gruchy N, Pigny P, Andrieux J, Mittre H, et al. Identification by array-
Comparative Genomic Hybridization (array-CGH) of a large deletion of luteinizing hormone 
receptor gene combined with a missense mutation in a patient diagnosed with a 46,XY 
disorder of sex development and application to prenatal diagnosis. Endocr J. 
2011;58(9):769-76. 

271. Takeda Y, Yoneda T, Demura M, Furukawa K, Koshida H, Miyamori I, et al. Genetic analysis 
of the cytochrome P-450c17alpha (CYP17) and aldosterone synthase (CYP11B2) in Japanese 
patients with 17alpha-hydroxylase deficiency. Clin Endocrinol (Oxf). 2001;54(6):751-8. 

272. Kulle A, Krone N, Holterhus PM, Schuler G, Greaves RF, Juul A, et al. Steroid hormone 
analysis in diagnosis and treatment of DSD: position paper of EU COST Action BM 1303 
'DSDnet'. Eur J Endocrinol. 2017;176(5):P1-P9. 

273. Johannsen TH, Main KM, Ljubicic ML, Jensen TK, Andersen HR, Andersen MS, et al. Sex 
Differences in Reproductive Hormones During Mini-Puberty in Infants With Normal and 
Disordered Sex Development. J Clin Endocrinol Metab. 2018;103(8):3028-37. 

274. Ahmed SF, Achermann JC, Arlt W, Balen A, Conway G, Edwards Z, et al. Society for 
Endocrinology UK guidance on the initial evaluation of an infant or an adolescent with a 
suspected disorder of sex development (Revised 2015). Clin Endocrinol (Oxf). 
2016;84(5):771-88. 

275. van der Straaten S, Springer A, Zecic A, Hebenstreit D, Tonnhofer U, Gawlik A, et al. 
The External Genitalia Score (EGS): A European multicenter validation study. J Clin 
Endocrinol Metab. 2019. 

276. Tannour-Louet M, Han S, Corbett ST, Louet JF, Yatsenko S, Meyers L, et al. Identification of 
de novo copy number variants associated with human disorders of sexual development. 
PLoS One. 2010;5(10):e15392. 

277. Barbaro M, Cicognani A, Balsamo A, Löfgren A, Baldazzi L, Wedell A, et al. Gene dosage 
imbalances in patients with 46,XY gonadal DSD detected by an in-house-designed synthetic 
probe set for multiplex ligation-dependent probe amplification analysis. Clin Genet. 
2008;73(5):453-64. 

278. Golan D, Medvedev P. Using state machines to model the Ion Torrent sequencing process 
and to improve read error rates. Bioinformatics. 2013;29(13):i344-51. 

279. Arboleda VA, Lee H, Sánchez FJ, Délot EC, Sandberg DE, Grody WW, et al. Targeted 
massively parallel sequencing provides comprehensive genetic diagnosis for patients with 
disorders of sex development. Clin Genet. 2013;83(1):35-43. 

280. Holterhus PM, Werner R, Struve D, Hauffa BP, Schroeder C, Hiort O. Mutations in the 
amino-terminal domain of the human androgen receptor may be associated with partial 
androgen insensitivity and impaired transactivation in vitro. Exp Clin Endocrinol Diabetes. 
2005;113(8):457-63. 

281. Galani A, Sofocleous C, Karahaliou F, Papathanasiou A, Kitsiou-Tzeli S, Kalpini-Mavrou A. 
Sex-reversed phenotype in association with two novel mutations c.2494delA and c.T3004C 
in the ligand-binding domain of the androgen receptor gene. Fertil Steril. 
2008;90(5):2008.e1-4. 

282. Davies HR, Hughes IA, Savage MO, Quigley CA, Trifiro M, Pinsky L, et al. Androgen 
insensitivity with mental retardation: a contiguous gene syndrome? J Med Genet. 
1997;34(2):158-60. 

283. Bose HS, Sugawara T, Strauss JF, Miller WL, Consortium ICLAH. The pathophysiology and 
genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335(25):1870-8. 

284. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev 
Biochem. 1994;63:25-61. 



 

244 
 

285. Wigley WC, Prihoda JS, Mowszowicz I, Mendonca BB, New MI, Wilson JD, et al. Natural 
mutagenesis study of the human steroid 5 alpha-reductase 2 isozyme. Biochemistry. 
1994;33(5):1265-70. 

286. Forti G, Falchetti A, Santoro S, Davis DL, Wilson JD, Russell DW. Steroid 5 alpha-reductase 2 
deficiency: virilization in early infancy may be due to partial function of mutant enzyme. 
Clin Endocrinol (Oxf). 1996;44(4):477-82. 

287. Fernández-Cancio M, Audí L, Andaluz P, Torán N, Piró C, Albisu M, et al. SRD5A2 gene 
mutations and polymorphisms in Spanish 46,XY patients with a disorder of sex 
differentiation. Int J Androl. 2011;34(6 Pt 2):e526-35. 

288. Hackel C, Oliveira LE, Toralles MB, Nunes-Silva D, Tonini MM, Ferraz LF, et al. [5alpha-
reductase type 2 deficiency: experiences from Campinas (SP) and Salvador (BA)]. Arq Bras 
Endocrinol Metabol. 2005;49(1):103-11. 

289. Phelan N, Williams EL, Cardamone S, Lee M, Creighton SM, Rumsby G, et al. Screening for 
mutations in 17β-hydroxysteroid dehydrogenase and androgen receptor in women 
presenting with partially virilised 46,XY disorders of sex development. Eur J Endocrinol. 
2015;172(6):745-51. 

290. Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, et al. Mutations in MAP3K1 
cause 46,XY disorders of sex development and implicate a common signal transduction 
pathway in human testis determination. Am J Hum Genet. 2010;87(6):898-904. 

291. Köhler B, Biebermann H, Friedsam V, Gellermann J, Maier RF, Pohl M, et al. Analysis of the 
Wilms' tumor suppressor gene (WT1) in patients 46,XY disorders of sex development. J Clin 
Endocrinol Metab. 2011;96(7):E1131-6. 

292. Dabrowski E, Armstrong AE, Leeth E, Johnson E, Cheng E, Gosiengfiao Y, et al. Proximal 
Hypospadias and a Novel. Pediatrics. 2018;141(Suppl 5):S491-S5. 

293. Coopes MJ. The management and biological behavior of Wilms tumor. Int Rev Exp Pathol. 
1994;35:149-76. 

294. Koziell A, Charmandari E, Hindmarsh PC, Rees L, Scambler P, Brook CG. Frasier syndrome, 
part of the Denys Drash continuum or simply a WT1 gene associated disorder of intersex 
and nephropathy? Clin Endocrinol (Oxf). 2000;52(4):519-24. 

295. Buonocore F, Achermann JC. Primary adrenal insufficiency: New genetic causes and their 
long-term consequences. Clin Endocrinol (Oxf). 2019. 

296. Kinoshita E, Yoshimoto M, Motomura K, Kawaguchi T, Mori R, Baba T, et al. DAX-1 gene 
mutations and deletions in Japanese patients with adrenal hypoplasia congenita and 
hypogonadotropic hypogonadism. Horm Res. 1997;48(1):29-34. 

297. Piard J, Hawkes L, Milh M, Villard L, Borgatti R, Romaniello R, et al. The phenotypic 
spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review 
of the literature. Genet Med. 2019;21(6):1308-18. 

298. Kim GJ, Sock E, Buchberger A, Just W, Denzer F, Hoepffner W, et al. Copy number variation 
of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX 
disorder of sex development. J Med Genet. 2015;52(4):240-7. 

299. Mizuno K, Kojima Y, Kamisawa H, Moritoki Y, Nishio H, Nakane A, et al. Elucidation of 
distinctive genomic DNA structures in patients with 46,XX testicular disorders of sex 
development using genome wide analyses. J Urol. 2014;192(2):535-41. 

300. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776-88. 
301. Szenker-Ravi E, Altunoglu U, Leushacke M, Bosso-Lefèvre C, Khatoo M, Thi Tran H, et al. 

RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of 
LGR4/5/6. Nature. 2018;557(7706):564-9. 

302. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and 
reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A. 
1998;95(26):15677-82. 

303. Beleza-Meireles A, Kockum I, Lundberg F, Söderhäll C, Nordenskjöld A. Risk factors for 
hypospadias in the estrogen receptor 2 gene. J Clin Endocrinol Metab. 2007;92(9):3712-8. 



 

245 
 

304. Brucker SY, Frank L, Eisenbeis S, Henes M, Wallwiener D, Riess O, et al. Sequence variants in 
ESR1 and OXTR are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Acta 
Obstet Gynecol Scand. 2017;96(11):1338-46. 

305. Känsäkoski J, Jääskeläinen J, Jääskeläinen T, Tommiska J, Saarinen L, Lehtonen R, et al. 
Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-
activating mutation in the androgen receptor gene. Sci Rep. 2016;6:32819. 

306. Bertier G, Sénécal K, Borry P, Vears DF. Unsolved challenges in pediatric whole-exome 
sequencing: A literature analysis. Crit Rev Clin Lab Sci. 2017;54(2):134-42. 

307. dos Santos AP, Andrade JG, Piveta CS, de Paulo J, Guerra G, de Mello MP, et al. Screening of 
Y chromosome microdeletions in 46,XY partial gonadal dysgenesis and in patients with a 
45,X/46,XY karyotype or its variants. BMC Med Genet. 2013;14:115. 

308. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, et al. Epigenetic 
regulation of mouse sex determination by the histone demethylase Jmjd1a. Science. 
2013;341(6150):1106-9. 

309. Mazen I, Abdel-Hamid M, Mekkawy M, Bignon-Topalovic J, Boudjenah R, El Gammal M, et 
al. Identification of NR5A1 Mutations and Possible Digenic Inheritance in 46,XY Gonadal 
Dysgenesis. Sex Dev. 2016;10(3):147-51. 

310. Werner R, Mönig I, Lünstedt R, Wünsch L, Thorns C, Reiz B, et al. New NR5A1 mutations and 
phenotypic variations of gonadal dysgenesis. PLoS One. 2017;12(5):e0176720. 

311. Lin L, Achermann JC. Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis 
development. Sex Dev. 2008;2(4-5):200-9. 

312. Zhang X, Wang J, Wang B, Chen S, Fu Q, Sun K. A Novel Missense Mutation of GATA4 in a 
Chinese Family with Congenital Heart Disease. PLoS One. 2016;11(7):e0158904. 

313. Pulignani S, Vecoli C, Sabina S, Foffa I, Ait-Ali L, Andreassi MG. 3'UTR SNPs and Haplotypes 
in the GATA4 Gene Contribute to the Genetic Risk of Congenital Heart Disease. Rev Esp 
Cardiol (Engl Ed). 2016;69(8):760-5. 

314. Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. 
Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 
2000;275(50):38949-52. 

315. Bashamboo A, Ledig S, Wieacker P, Achermann JC, Achermann J, McElreavey K. New 
technologies for the identification of novel genetic markers of disorders of sex 
development (DSD). Sex Dev. 2010;4(4-5):213-24. 

316. Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, et al. Impaired 
mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and 
primary lung defects. Dev Biol. 2007;301(2):602-14. 

317. Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS. A GATA4/WT1 cooperation 
regulates transcription of genes required for mammalian sex determination and 
differentiation. BMC Mol Biol. 2008;9:44. 

318. Domenice S, Machado AZ, Ferreira FM, Ferraz-de-Souza B, Lerario AM, Lin L, et al. Wide 
spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals. Birth Defects Res C 
Embryo Today. 2016;108(4):309-20. 

319. Potorac I, Trehan A, Szymanska K, Fudvoye J, Thiry A, Huhtaniemi IT, et al. Compound 
heterozygous mutations in the luteinizing hormone receptor signal peptide causing 46,XY 
disorder of sex development. Eur J Endocrinol. 2019. 

320. Bhowmick N, Huang J, Puett D, Isaacs NW, Lapthorn AJ. Determination of residues 
important in hormone binding to the extracellular domain of the luteinizing 
hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modeling. Mol 
Endocrinol. 1996;10(9):1147-59. 

321. Newton CL, Anderson RC, Katz AA, Millar RP. Loss-of-Function Mutations in the Human 
Luteinizing Hormone Receptor Predominantly Cause Intracellular Retention. Endocrinology. 
2016;157(11):4364-77. 



 

246 
 

322. Upadhyaya AB, Lee SH, DeJong J. Identification of a general transcription factor 
TFIIAalpha/beta homolog selectively expressed in testis. J Biol Chem. 1999;274(25):18040-
8. 

323. Özcabı B, Tahmiscioğlu Bucak F, Ceylaner S, Özcan R, Büyükünal C, Ercan O, et al. 
Testotoxicosis: Report of Two Cases, One with a Novel Mutation in LHCGR Gene. J Clin Res 
Pediatr Endocrinol. 2015;7(3):242-8. 

324. Latronico AC, Shinozaki H, Guerra G, Pereira MA, Lemos Marini SH, Baptista MT, et al. 
Gonadotropin-independent precocious puberty due to luteinizing hormone receptor 
mutations in Brazilian boys: a novel constitutively activating mutation in the first 
transmembrane helix. J Clin Endocrinol Metab. 2000;85(12):4799-805. 

325. Shenker A, Laue L, Kosugi S, Merendino JJ, Minegishi T, Cutler GB. A constitutively activating 
mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature. 
1993;365(6447):652-4. 

 
  



 

247 
 

 

 

 

 

 

 

 

 

SUPPLEMENTARY DATA 
 



 

248 
 

Supplementary data 1. Expected clinical and biochemical features of the different DSD. Modified from Guerrero- Fernandez et al (227). 
 

  Gonads 
Internal genitalia 

External genitalia Bioquemical defect 
Wolffian duct derivatives Müllerian structures 
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Gonadal dysgenesis Dysgenetic Complete: absent; Partial: 
hypoplastic 

Complete: present; 
Partial: absent 

Complete: female; Partial: 
variable virilization 

Low T1,2, low AMH 46,XY OT DSD Dysgenetic (Same gonad) 
Hypoplastic (+/-) 

Absent 

Partial variable virilization 
Testicular regression Anorchia 

Di
so

rd
er

s o
f a

nd
ro

ge
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sy
nt

he
si

s o
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n  

HSD17B3 def 

Testes 

Present 

Female, ambiguous, rarely 
male. In puberty, virilization 

signs 

Low T, N/high AMH, N ACTH2. 
T/Andros <1  

HSD3B2 def Male with undervirilization 

Low T, N/high AMH, high 
ACTH2  

CYP17A1 def 

Present (Normal or 
hypoplastic) Female or ambiguous 

LCAH or  CYP11A1 def 

POR def 

Cyb5 def 

5a-reductase def 
Present (Hypoplasic 

vagina) Variable virilization N T and AMH. T/DHT>302 

AIS Complete: absent; Partial: 
hypoplastic 

Complete: female; Partial: 
variable N/High T, AMH and LH 

LH receptor defects 

Present 

Ambiguous genitalia to normal 
female High LH, low T1,2  

PMDS Testes  Present Male   N T, N/low AMH  
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DS
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ria
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lo
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en

t  46,XX OT DSD Dysgenetic (Same gonad) Variable, normally absent Variable. Mostly present  Ambiguous, male or female HyperH, AMH in male range4. 
Higher T levels2. 

46,XX Testicular DSD Atropic testes Present Absent Male, sometimes with 
ambiguous genitalia HyperH, low T, high FSH and 

LH. 
Ovarian dysgenesis Dysgenetic Absent 

Present 

Female  
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 CYP21A2 def 

Ovaries Absent or scarce 

Ambiguous genitalia 

High 17OHP. SW in the classic 
form. 

CYP11B1 def High 17OHP, DOC, 11-
desoxicortisol  

 POR def Ambiguous genitalia to normal 
female 

High 17OHP, T, prog, 
corticosterone 

HSD3B2 def Female, sometimes scarce 
virilization 

High 17OHP and 17OH-preg. 
SW syndrome 

Maternal/Fetoplacental  Variable virilization  High T 

Se
x 

ch
ro

m
os

om
e 

45,XO/46,XY MGD Dysgenetic, streak or normal Hypoplastic (Unilateral) Hypoplastic (Unilateral) 
Partial virilization (Variable) 

HyperH, T and AMH4 

46,XX/46,XY mosaicism Testis and ovary (same 
gonad/two gonads Variable Variable HyperH, T and AMH4  

Turner syndr3  Dysgenetic  Absent Present Female  HyperH, depending on the 
gonadal dysgenesis 

Klinefelter syndr3 Small testes 
Present  Absent Male  

HyperH, higher FSH than LH. 

47,XYY karyotype Testes   Normal testicular function 
ACTH, adrenocorticotropic hormone; AIS, Androgen insensitivity síndrome; AMH, anti-Müllerian hormone; Andros, androstenedione; Cyb5, cytochrome b5; CYP11A1, 20-22 desmolasa; CYP11B1, 
11-Beta hydroxilase; CYP17A1, 17α-hydroxylase and 17,20-lyase; CYP21A2, 21-hydroxilase; DHT, dihydrotestosterone; Def, deficiency; DOC, 11-desoxicorticoesterona; E, oestradiol; HSD3B2, 3-
Beta Hydroxysteroid dehydrogenase; HSD17B3, 17-Beta Hydroxysteroid dehydrogenase; HyperH, hypergonadotropic hypogonadism; FSH, Follicle Stimulating Hormone;  LH, Luteinizing hormone; 
MGD, mixed gonadal dysgenesis; N, normal; OT, ovotesticular; PMDS, Persisten Müllerian Duct defect; POR, Cytochrome P450 Oxidoreductase; Prog, progesterone; Syndr, síndrome; SW, salt 
wasting; T, testosterone;  17OH-preg, 17-hydroxipregnenolone; 17OHP, 17-hydroxiprogesterone; 1Basal; 2After stimulation test; 3And variants; 4Depends on the presence of testicular tissue. 
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Supplementary data 2. Clinical data of the patients included in the genetic analysis. 
 

Clinical data 

Case 
Karyotype
/assigned 

gender 

Suspected 
clinical 

diagnosis 

First 
consultation 

Clinical phenotype of the patients and relatives 

Clinical phenotype Müllerian 
ducts 

Gonadectomy 
(age) Histology 

GN0001 46,XX/F 46,XX DSD 
GD 

Primary 
amenorrhea 
and delayed 

puberty 

17y, primary amenorrhea, pubertal delay, lack of breast development. US: 
absence of ovaries and uterus. Begins treatment with estrogens. 24y, normal 

feminization, lack of menarche. US: absence of ovaries and uterus. 
Other features: Sister presenting same phenotype, after treatment lack of 

breast development 

No No  

GN0003 46,XX/F MRKH II 
syndrome 

Vaginal 
agenesis 

8y, vaginal and uterine agenesis, confirmed by laparoscopy. 15y, MRI: left 
renal agenesis. External normal genitalia. No No  

GN0004 46,XX/M 
46,XX 

Testicular 
DSD 

Bilateral 
gynecomastia 13y, bilateral gynecomastia, unilateral cryptorchidism. 26y, azoospermia. No No  

GN0007 46,XY/F 46,XY DSD 
CGD 

Suspected 
gonadal 

dysgenesis 

16y, female external genitalia with normal vagina and small cervix. Non-
palpable gonads. 17y, gonadectomy: hypoplastic uterus, streak gonads 

(4cm). 
Other features: Sister with possible 46,XY DSD GD. 

Yes Yes (17y) 

Ovarian stroma with 
Sertoli and Granulosa 
cells surrounded by 
Leydig’s. Unilateral 

gonadoblastoma and 
paraovarian cyst 

GN0009 46,XY/F Frasier 
syndrome 

Delayed 
puberty 

12y, headaches, vomiting and fatigue, high blood pressure. Fundoscopy: 
bilateral papilledema. US: glomerulopathy. Biopsy: confirmed the 

nephronophtisis. Began treatment. 13y, hemodialysis. Renal transplant but 
kidney rejection. 17y, infantile external genitalia without breast development 

and pubarche. US: normal uterus, non-visible gonads. GH treatment was 
prescribed. 24y, gonadectomy. 

Yes Yes (24y) Streak gonads. 
Gonadoblastoma 

GN0011 46,XY/F 46,XY DSD 
CGD 

Absence of 
menarche and 

thelarche 

16y, absence of menarche and thelarche. Normal female external genitalia 
and hypergonadotropic hypogonadism. US: non-visible uterus, normal vagina 

and bilateral gonads. Laparoscopy: hypoplastic uterus and streak gonads. 
Gonadectomy. 

Other features: Father and brother with delayed puberty. 

Yes Yes (16y) 
Gonadoblastoma 

(left), Wolff remnants 
(right) 
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GN0012 46,XY/M 
46,XY DSD 
Gonadal 

regression 
Anorchia 

1y, no response to hCG stimulation test. Laparoscopy: absence of female 
gonads and testicular tissue.7-8y, testicular prostheses (5cc).11y, begins 

treatment with testosterone. 15y, mature penis and scrotum, pubarche IV, 
facial and body hair. Adrenal insufficiency discarded. 17y, changed treatment 

to testogel. 19y, well virilized. 26y, increased treatment with testosterone. 

No No 
Gonadal tissue 

without 
differentiation. 

GN0013 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 
and delayed 

puberty 

18y, primary amenorrhea and delayed puberty. Female external genitalia. 
US: vagina (7cm), streak left gonad. Laparoscopy: rudimentary uterus, large 

fallopian tubes and streak gonads. 
Other features: marfanoid habitus. 

Yes Yes (18y) 

Normal fallopian 
tubes, cortical 

stroma without 
oocites and 

primordial follicules, 
mesonefric 
structures. 

GN0014 46,XY/F 46,XY DSD 
PGD  

Lack of 
secondary sex 
characteristics 

13y, delayed development of secondary sexual characteristics. US: vagina 
and small uterus in the right side (3.8x1.4x1.8cm), small gonad (1.7cm) next 
to bladder. CT scan: rudimentary uterus after bladder, two rounded images 
suggesting vas deferens previous to inguinal canals, no image corresponded 

to inguinal testes. Gonadectomy of streak gonads.  
Other features: sister presenting with primary amenorrhea and female 

external genitalia (16y). US: small hypoplastic uterus, well defined ovaries. 
46,XY. Laparoscopy: right streak gonad and left gonad (3.5cm), hypoplastic 
uterus and no wolff remnants. Histology: Right streak gonad with ovarian 

stroma, Sertoli and Leydig cells; left gonad: disgerminoma 

Yes Yes (13y) 

Streak gonads. 
Ovarian stroma and 

seminiferous tubules 
with Sertoli cells. 
Absence of germ 
cells. Presence of 

Leydig cells. 

GN0017 46,XY/M 
46,XY DSD 
Gonadal 

regression 
Anorchia 

At birth micropenis, bilateral cryptorchidism and hypoplastic scrotum. 12mo, 
micropenis, non-palpable testes, atrophic scrotum and hypergonadotropic 

hypogonadism. No response of testosterone to hCG stimulation test. 
Laparoscopy. 

Other features: psychomotor retardation, parental consanguinity. 

No No Atrophic 
seminiferous tubes 

GN0018 46,XY/F 46,XY DSD 
PGD 

Bilateral 
inguinal 
hernia 

5y, surgery for bilateral inguinal hernia. US: non-visualized uterus and 
ovaries. 6y, gonadectomy No Yes (6y) Immature testicular 

tissue 

GN0020 46,XY/F 46,XY DSD 
PGD 

Short stature 
and delayed 

puberty 

13y, pubertal development delay and little pubic hair. US: absence of gonads. 
17y, undeveloped breast, normal menses on treatment. 

Other features: short stature. 
ND Yes (ND) ND 

GN0023 46,XX/M 46,XX Bilateral 2y, bilateral cryptorchidism. Inguinal gonads that descend after hCG No No  
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Testicular 
DSD 

cryptorchidis
m 

stimulation. 

GN0024 46,XY/F 46,XY DSD Anorchia At birth, female external genitalia and bilateral inguinal hernia. US: inguinal 
testes, no uterus or ovaries. No No  

GN0025 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 

17y, primary amenorrhea, undeveloped external genitalia and 
hypergonadotropic hypogonadism. US: hypoplastic uterus (35x7mm) and no 
gonadal remnants. Gonadectomy: atrophic uterus, streak gonads. 26y, US: 

uterus 36x22x17mm.  
Other features: Sister with CGD. Family history positive for short stature 

(mother 149 cm, father 162.6 cm). 

Yes Yes (18y) 
Streak gonads, 

bilateral 
gonadoblastoma 

GN0026 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, US: short vagina, images suggesting inguinal gonads (10x6mm), no 
uterus. 

Other features: disorder of intermediary metabolism. 
No No  

GN0027 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 

15y, primary amenorrhea, female normal external genitalia and delayed 
puberty. US: Small gonads, uterus and cervix. 
Other features: sister presenting with MGD. 

Yes No  

GN0028 46,XY/M 46,XY DSD  Ambiguous 
genitalia 

At birth curved micropenis with scrotal hypospadias and bilateral 
cryptorchidism. Surgery. 12y, penis (7.6cm and 10cm diameter), testes (5ml), 

pubarche and axilarche V and acne. US: Right testis of 15x15x28mm, vol 
3.2cc, and left testis 14x15x35mm, vol 3.9cc, small cysts in right epididymis 
6.4mm. From 12y 10 15y, phenotype remained without significant changes.  
15y, US: Right testis of 12x17x28mm, vol 3.2cc, and left testis 9x21x31mm, 

vol 3.3cc, small cysts in both epididymis 6.4mm and 2.7mm. 
Other features: 13y, Fragile X syndrome study, FMR1 gene was normal.15y, 

Asperger syndrome. Mother and brother with unilateral renal agenesis, 
brother also presenting with vas deferens and epididymis agenesis. 

No No  

GN0029 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, bilateral cryptorchidism, hypospadias and horseshoe kidney. 
Orchidopexy was done without good results. 15y, atrophic right testis, 

undescended left testis and curved penis.  
Other features: Horseshoe kidney 

No No  

GN0031 46,XX/F 46,XX DSD 
GD 

Ambiguous 
genitalia 

16d, hyperpigmented genitalia, hypertrophic labia minora and bilateral 
inguinal hernia with palpable masses. US: bilateral inguinal hernia with 

neonatal ovaries. Surgery was planned. 
Yes No  
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GN0033 46,XY/M 46,XY DSD 
PGD Micropenis 3mo, micropenis and cryptorchidism. 12y, small penis (4cm) and testes (2ml). No No  

GN0034 46,XY/F 46,XY AIS 
Bilateral 
inguinal 
hernia 

8mo, normal female external genitalia, bilateral inguinal hernia, absence of 
upper vagina and uterus. Surgery. 4y, US: absence of uterus and gonads. 13y, 

gonadectomy. Begins treatment with estradiol. 15y, thelarche IV and 
pubarche V. 

No Yes (13y) Testicular tissue 

GN0035 46,XY/F 46,XY DSD 
CAIS 

Primary 
amenorrhea 

13y, primary amenorrhea, hypertrophic clitoris, bilateral inguinal gonads, 
breast development begins. 16y, gonadectomy. 22y, vaginoplasty. 42y, 

hypertrophic clitoris (1.5-2cm). 
Other features: Obesity (BMI 39) 

No Yes (16y) ND 

GN0037 46,XY/M 46,XY DSD 
PAIS 

Ambiguous 
genitalia 

At birth, micropenis with perineal hypospadias, cryptorchidism and palpable 
gonads at labia majora.  Yes No Normal testicular 

tissue 

GN0038 46,XY/F 

46,XY DSD 
Androgen 

biosynthesis 
defect  

Voice change 
and variations 

at external 
genitalia 

At birth, female external genitalia. 10y, change in voice. 11y, hypertrophy of 
the clitoris, vagina (2cm) palpable gonads in inguinal canal and hirsutism. 

MRI: absence of female genitalia, possible gonads in inguinal canal. 
Laparoscopy: absence of female genitalia. Clitoroplasty and gonadectomy. 

No Yes (12y) 

Testicular 
parenchyma with 

Sertoli and preSertoli 
cels. Basal 

spermatogoonias. 
Leydig mature cells 

(both). 

GN0039 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, scrotal gonads, scrotal hypospadias and bilateral inguinal hernia. US: 
Gonads with epididymis suggesting testes (right: 1.2x0.6x0.6; left testis: 

1.2x0.7x0.8). 
Other features: Heart murmur 

No No  

GN0041 46,XY/F 46,XY DSD 
CAIS 

Suspicion of 
AIS 

9y, female external genitalia, thelarche and pubarche Tanner I. 12y, US: 
absence of internal genitalia. 

Other features: Older sister presenting the same phenotype 
No Yes (3y) ND 

GN0042 46,XY/F 46,XY DSD 
AIS 

Bilateral 
inguinal 
masses, 

clitoromegaly 

11y, bilateral inguinal hernia, palpable gonads (2cc, 3cc), clitoromegaly and 
pubarche. Growth rate increase. US: vaginal pouch and non-visible uterus. 

Clitoroplasty. 20y, good breast development after estrogen treatment. 25y, 
US: prepubertal hypoplastic uterus, no ovaries. 

Yes Yes (10y) Hypoplastic testes 

GN0043 46,XY/M 46,XY DSD 
PAIS 

Ambiguous 
genitalia 

At birth (33w +3), micropenis with hypospadias, bilateral cryptorchidism and 
non-palpable testes in inguinal canal. Bilateral inguinal hernia. US: testes in 

inguinal canal (8mm), no uterus. 
No No  
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Other features: Respiratory distress, anemia, hyperlactiacidemia 

GN0046 46,XY/F 46,XY DSD 
AIS 

Vaginal 
agenesis 

At birth, bilateral inguinal hernia and vaginal agenesis. US: images 
corresponding to testes. 16mo, bilateral gonadectomy. 10y, begins estrogen 

treatment. 15y, normal female external genitalia, vagina of 3cm. 16y, 
vaginoplasty. 17y, thelarche V. 

Other features: Obesity. 

No Yes (16m) 
Infantile testes, vas 

deferens, no 
intersticial cells. 

GN0050 46,XY/F 46,XY DSD 
CGD 

Turner 
phenotype 

3y, presenting with some slight Turner features and normal female external 
genitalia. Laparoscopy: streak right gonad suspecting dysgenetic testes, 

normal fallopian tube and small uterus. 
Other features: Low hairline, auditory pavilions with low implantation 

Yes Yes (3y) ND 

GN0051 46,XX/M 46,XX DSD Ambiguous 
genitalia 

6y, micropenis with scrotal hypospadias, bilateral cryptorchidism, palpable 
right testis in inguinal canal and bifid scrotum. US: abdominal left testis 
(9.5x3.8mm) and right in inguinal canal, no Müllerian structures were 

visualized. Orchidopexy and biopsy. Congenital adrenal hyperplasia was 
discarded. 

Other features: Patient from Mauritania. 

Yes No 

Infantile ovary with 
follicular cysts, 
fallopian tube, 

atrophic uterus and 
mesonefric remnant. 

GN0054 46,XX/M 
46,XX 

Testicular 
DSD 

Weakness and 
lack of body 

hair 

41y, weakness, absence of body hair, hypergonadotropic hypogonadism. 
Begins treatment with testosterone.  No No  

GN0055 46,XY/F 46,XY DSD 
CAIS 

Right inguinal 
hernia 

At birth, right inguinal hernia. Gonadectomy. 13y, US: non-visible uterus, 
vaginal pouch (2cm), 2 possible testes (17.8 and 13.8 mm).14y, 

gonadectomy. 
No Yes (1m; 14y) 

Testicular dysgenetic 
tissue, seminiferous 
tubules with plenty 
Sertoli cels. Leydig 

cell hyperplasia. 

GN0056 46,XY/M Denys-Drash 
syndrome 

Ambiguous 
genitalia, 

Wilms' 
tumour 

1mo, micropenis with perineal hypospadias, cryptorchidism and Prader III. 
Laparoscopy: intra-abdominal small gonads, vas deferens and prostatic 

utricle are visualized. Wilms' tumor. 
No No  

GN0059 46,XY/F 46,XY DSD 
CGD 

Ambiguous 
genitalia 

At birth, micropenis, non-palpable testes and atrophic scrotum. US: normal 
vagina, non-visible gonads and uterus. 7d, US: non-visible gonads and uterus. 

1mo, hCG test with no increase of testosterone. 6mo, laparoscopy. 18mo, 
feminizing genitoplasty. 

Yes Yes (6m) 
Epididimus and 
fallopian tube is 

identified, germ cells. 

GN0064 47,XY/F 46,XY DSD Discordant 3mo, US: normal vagina, uterus and gonads. Yes No  
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CGD karyotype Other features: Down syndrome 

GN0066 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, unilateral cryptorchidism, bifid scrotum and scrotal hypospadias. US: 
inguinal left testis (9.2x5.5x5.1mm). 7y, after surgery and treatment, 
presents a 3cm penis. Biochemical analysis is normal. 8y, precocious 

adrenarche. 
Other features: 8y, hearing loss 

No No  

GN0068 46,XY/M 46,XY DSD 
LH RD 

Precocious 
puberty 3y, precocious puberty and family background. ND No  

GN0070 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

9y, penis (2 cm) with scrotal hypospadias and bilateral inguinal testes.  US: 
Images corresponding to testes in inguinal canal (right: 15.6x8.7x6.7mm, 

0.5cc; left 17x8.5x8, 0.6cc). 
Other features: Patient from Madagascar. 

No No  

GN0075 46,XY/M 46,XY DSD  Ambiguous 
genitalia 

At birth, micropenis with scrotal hypospadias, undescended testes and bifid 
scrotum. 5y, normal penis (2.5cm) after testosterone treatment, scrotal right 
testis (2ml), and hydrocele in left testis. 6y, smaller penis and both testes in 

scrotum. 7y, small penis (2.5cm). 
Other features: Mother and aunt with precocious menopause and uncle with 

scrotal hypospadias. 

No No  

GN0076 46,XY/F 46,XY DSD 
CAIS 

Unilateral 
mass in labia 

majora 

8d, palpable gonad in labia majora. US: 2 visible gonads similar to testes, no 
uterus. No No  

GN0078 46,XY/M Adrenal 
Insufficiency 

Adrenal 
Insufficiency 

Familial background. 45d, scan: Hypoplastic adrenal glands. 
Other features: Glycemia NA; Na 107mEq/L; K 6mEq/L; Aldosterone 14ng/dL; 

PRA 66ng/mL/H. Cousin presenting with adrenal insufficicency. 
- - - 

GN0080 46,XY/F 46,XY DSD 
CAIS Suspected AIS 5y, gonadectomy. 6y, US: Absence of uterus and fallopian tubes No Yes (5y) Male gonads 

GN0084 46,XX/F MRKH II 
syndrome 

Primary 
amenorrhea 

16y, primary amenorrhea, MRKH type II phenotype, uterine, vaginal and 
kidney agenesis, ectopic ovaries, hyperandrogenism. 18y, US: left normal 

gonad, absence of right gonad, uterus and fallopian tubes. MRI: unique pelvic 
kidney (11x74mm), visible ovaries in pelvic region (60x25mm and 43x22mm). 

No hearing loss. 
Other features: kidney agenesis. 

No No  

GN0088 46,XY/M 46,XY DSD Precocious 3y, pubertal penis and testes growth, pubarche. 3y, testes 6mL. 4y, testes 8cc No No  
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LH RD puberty and begins treatment. 5y, pubarche is diminishing, testes 8mL and penis 
25x60mm. 

GN0090 46,XX/M 46,XX OT 
DSD 

Ambiguous 
genitalia 

6y, curved penis (2cm) with scrotal hypospadias, bifid scrotum, right inguinal 
hernia, right gonad (<1ml)  in inguinal canal. US: absence of female internal 
genitalia, right gonad (10.7mm) in inguinal canal and intra-abdominal left 
gonad (9.7mm). Laparoscopy: bilateral ovotestes located in inguinal canal 
and in iliac fosse, attached by tubes and atrophic uterus. Absence of lower 

portion of uterus or vagina. 
Other features: Patient from Mauritania. 

No No Bilateral ovotestes 

GN0091 46,XY/M Adrenal 
Insufficiency 

Respiratory 
distress 

At birth, respiratory distress, hyperpigmentation, hypoglycemia. Testes 1ml 
and penis 3.6cm. MRI: non-visualized adrenals. 

Other features: Glycemia 39mg/dL; Na 126mEq/L; K 6.2mEq/L; Aldosterone 
49ng/dL; PRA >21.3ng/mL/H. 

- - - 

GN0096 46,XX/M 46,XX OT 
DSD 

Ambiguous 
genitalia 

3y, rudimentary penis (<0.5cm), palpable right gonad (0.5-1ml) in scrotum, 
non-palpable left gonad and pubarche I. US: inguinal bilateral gonads (1ml), 

absence of female internal genitalia. 4y, bilateral orchidopexy and 
laparoscopy. 

Other features: Patient from Mauritania 

No No 
Ovarian tissue (left), 

testicular and ovarian 
tissue (right) 

GN0100 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 

16y, primary amenorrhea and lack of secondary sex characteristics. US: 
structure at the vaginal location, non-visible uterus and ovaries. MRI: visible 
right gonad (1cm), no uterus. 17y, normal external genitalia.  Laparoscopy: 

streak gonads and absence of uterus. Begins treatment with estradiol. 

Yes Yes (17y) 
Fallopian tubes and 
ovarian tissue. No 
testicular tissue. 

GN0101 46,XY/M Adrenal 
Insufficiency 

Suspected 
primary renal 
insuficiency 

3y, primary renal insuficiency. Hypoglycemia, vomiting, asthenia. 17y, testes 
4mL and penis 8cm. 

Other features: Glycemia 28mg/dL; Na 119mEq/L; K 6.8mEq/L; Aldosterone 
11ng/dL; PRA NA. 

- - - 

GN0103 46,XY/M 46,XY DSD Ambiguous 
genitalia 

At birth, hypoplastic penis and bilateral cryptorchidism. US: inguinal testes. 
6mo, after testosterone treatment penis increased to 5cm and 1.2cm in 

diameter. US: inguinal both testes. Presents pericentric inversion of chr. 9 
(inv[9][p11q13]). 

No No  

GN0104 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, micropenis buried in fat with scrotal hypospadias, bilateral 
cryptorchidism and well developed scrotal sacks. Palpable testes in inguinal 

canal, confirmed by US. 22mo, surgery for hypospadias. 
No No  
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GN0108 46,XY/F 46,XY DSD 
CAIS 

Discordant 
karyotype 

At birth, female external genitalia. 3y, US: absence of uterus, no gonads in 
inguinal canal.12y, US: absence of uterus. 13y, MRI: blind short vagina 

(14.2mm), absence of uterus or annexes, near to left iliac vasses presence of 
soft structure that could correspond to undescended teste, no structures in 

inguinal region. 

No No  

GN0109 46,XY/F 46,XY DSD 
GD 

Virilization at 
puberty 

14y, primary amenorrhea, previously virilized (8-9y) and increased body and 
face hair. Erectile hypertrophic organ with perineal urethra and scrotal rests. 

US: rudimentary uterus and two images in left inguinal canal suggesting 
atrophic testes. MRI: endocervical cavity, next to another cystic cavity 

corresponding to cervix without ovaries. 15y, orchidopexy. Begins treatment. 

Yes Yes (15y) Testes with Sertoli 
cells and epididymis. 

GN0111 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea, 

obesity 

14y, primary amenorrhea, stenotic and enlarged vagina. US: non-visible 
uterus and gonads. MRI: rudimentary uterus and vagina, ovaries not 

identified. 15y, Laparoscopy: rudimentary uterus, streak gonads. 
Other features: Obesity. 

Yes Yes (15y) 
Testicular 

parenchyma, normal 
fallopian tubes 

GN0112 46,XY/F 46,XY OT 
DSD 

Discordant 
karyotype 

Male karyotype in amniocentesis. At birth, female external genitalia and 
bilateral inguinal gonads. 1d, US: hypoplastic uterus (2cm), normal vagina 

and inguinal gonads (right: 1x0.8x0.4c, left: 1.1x0.5x0.6cm). 
Yes No  

GN0114 46,XY/F 46,XY DSD 
CGD Suspected GD Absence of uterus and streak gonads. 

Other features: Niece presenting with same phenotype No Yes  (17y) Absence of germ cells 

GN0118 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

2y, curved penis with scrotal hypospadias, normal testes, rectal 
malformation. MRI: absence of uterus and ovaries. 

Other features: Anal agenesis, iron deficiency. Patient from Mauritania 
No No  

GN0119 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

6y, curved penis (4.4-4.5cm) with scrotal hypospadias, cryptorchidism and 
bifid scrotum. US: Right testis (15x9mm) in scrotum, left testis (13x6mm) in 

inguinal canal. 
Other features: Patient from Equatorial Guinea. 

No No  

GN0122 46,XY/M 

46,XY DSD 
Androgen 

biosynthesis 
defect 

Scrotal 
hypospadias 

2y, curved penis (3.1cm) with scrotal hypospadias and testes (0,5-1ml). Peno-
scrotal transposition. 5y, penis 5cm, and testes volume 0.5ml. No No  

GN0123 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, micropenis with perineal hypospadias, palpable gonads and atrophic 
bifid scrotum. 2y, laparoscopy: absence of Müllerian ducts. 10y, small penis 
(2.6cm), right testis in scrotum and left in inguinal canal. 14y, penis (5.5cm) 

No No 
2y, normal testicular 
tissue. 10y, absence 

of germ cells and 
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with both testes in scrotum (2-3cc). 17y, biopsy. 38y, penis 3-4cm, testes 2cc. 
Other features: Obesity. 

Leydig cell 
hypoplasia. 

GN0124 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, curved penis (2.8cm) with scrotal hypospadias, palpable inguinal 
gonads and bifid scrotum. US: Left inguinal hernia, inguinal testes (left: 

1.6x1cm; right: 1.5x0.7). Absence of Müllerian ducts. 
Other features: Horseshoe Kidney. 

No No  

GN0125 46,XY/F 46,XY DSD 
CAIS 

Primary 
amenorrhea 

17y, primary amenorrhea, vaginal pouch, absence of uterus and annexes, 
confirmed by US. Patient refers that she presented bilateral inguinal hernia 
at birth, corrected by surgery (5y). 20y, laparoscopy: testicular gonads, no 

uterus and fallopian tubes 

No Yes (20y) Testicular tissue 

GN0132 46,XY/F Frasier 
syndrome 

Suspected GD, 
gonadoblasto
ma and renal 
insuficiency 

18y, gonadal dysgenesis and renal insufficiency. 19y, laparoscopy: Müllerian 
ducts. 

Other features: Renal insufficiency, obesity 
Yes Yes (19y) Gonadoblastoma 

GN0133 46,XX/M 46,XX T DSD Incongruent 
karyotype 

39y, male external phenotype with gynecomastia, unilateral cryptorchidism, 
azoospermia and hypergonadotropic hypogonadism. US: Right testis (30mm) 

with cyst (5.5mm), inguinal left testis.  
No No  

GN0138 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

At birth, micropenis (30mm and 40mm of diameter) with scrotal hypospadias 
and undescended testes. US: visible uterus (3.5cm), non-visible gonads. Yes No  

GN0139 46,XY/F 46,XY DSD 
CAIS 

Primary 
amenorrhea 

16y, primary amenorrhea, female external genitalia and vaginal pouch (2cm). 
Bilateral inguinal hernia at 2 months of age. US: non-visible right gonad, left 

gonad (1cm). 
No Yes (15y) Testicular tissue 

GN0141 46,XY/F 46,XY DSD 
CGD 

Suspected 
gonadal 

dysgenesis 

15y, gonadal exeresis: streak gonad with tumoral aspect and 
gonadoblastoma. Müllerian remnants. Yes Yes (15y) Gonadoblastoma 

GN0142 46,XY/F 46,XY DSD 
CGD 

Incongruent 
karyotype 

At birth, female external genitalia, clitoris 1-2cm with urinary meatus on 
base, non-palpable gonads in inguinal canal and undeveloped bifid scrotum. 

US: Absence of uterus and gonads. Gonadectomy is planned. 
Other features: Cousin diagnosed with 46,XY DSD gonadal dysgenesis (15y) 

No No  

GN0144 46,XY/M 46,XY DSD 
PGD Hypospadias 

At birth, male external genitalia, hypospadias and scrotal testes. 2y, surgery 
for hypospadias. 5y, small testes and unilateral cryptorchidism. US: left testis 

in scrotum and right testis in inguinal canal. 
Other features: Hypothyroidism. 

No No  
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GN0145 46,XY/M 46,XY DSD 
PAIS 

Sexual 
reassignment 

20y, small penis (3.5cm) and testes (20cc). Request for sexual reassignment. 
Other features: 20y, identified as female since childhood. No No  

GN0146 46,XY/F 46,XY DSD 
PAIS Suspected AIS 10y, gonadectomy. 14y, US: no uterus and gonads. 19y, hypertrophic erectile 

organ, partial labial fusión and non-palpable masses. No Yes (10y) Testicular tissue 

GN0147 46,XY/F 46,XY DSD 
AIS 

Primary 
amenorrhea 

7y, right inguinal hernia. At puberty, primary amenorrhea, clinical history 
from Algeria reporting ovarian and uterine agenesis, genitalia not described. 

13-14y, thelarche. 24y, left inguinal hernia. 30y, in Melilla, 
hypergonadotropic hypogonadism with testosterone 0ng/ml after 

gonadectomies, never had treatment. US: vaginal outline, non-visible uterus 
and annexes. 35y, female external genitalia, no facial hair, thelarche II-III, 

erectile organ is buried, one opening for urethra and vagina. 
Other features: Patient from Algeria. 

No Yes (7 and 24y) 7y, normal testes. 
24y, normal testes 

GN0148 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 

3y and 5y, surgery for bilateral inguinal hernia. 14y, primary amenorrhea. 
17y, pubarche. 20y, female external genitalia, rudimentary cervix. US: 

hypoplastic uterus (2.5cm), non-visible gonads, streak annexes. Confirmed by 
laparoscopy. 25y, refers menses under treatment. 

Other features: Father with inguinal hernia (not intervened), sister with 
intervened bilateral inguinal hernias 

Yes No Normal uterine tubes 

GN0150 46,XY/F 46,XY DSD 
AIS 

Bilateral 
inguinal 
hernia 

3y, female external genitalia with bilateral inguinal hernia. Gonadectomy. US: 
non-visible gonads and uterus. 9y, US: small uterus (7x10x24mm) and normal 

kidneys. 
Yes Yes (3y) 

Immature testes 
presenting with 
Sertoli cells and 
spermatogonias 

GN0151 46,XX/F 46,XX DSD 
GD Suspected GD 

16y, hypergonadotropic hypogonadism. US: hypoplastic uterus and annexes 
(17 and 18mm). 21y, US: uterus (57x32x22) and non-visible annexes. Bilateral 

mammoplastia. 
Yes No  

GN0152 46,XY/F 46,XY DSD 
PGD 

Ambiguous 
genitalia 

5mo, scrotal hypospadias, unilateral cryptorchidism and a vaginal pouch. 
Laparoscopy: Right testis in inguinal canal, no Müllerian ducts.19mo, 

micropenis with scrotal hypospadias, normal labia majora without minor 
labia and bilateral inguinal gonads. US: right gonad (0.4cc), left gonad (0.3cc). 

Other features: Ventricular hypertrophy, at 16m normal. Growth delay, 
hypothyroidism, delayed psychomotor development with macrocephaly. 2y, 

Fulminant sepsis of digestive origin. Born in Rumania. 

No No 

Prepubertal gonad 
with seminiferous 
tubes, Sertoli cells 

and few 
spermatogonias. 

GN0153 46,XY/M Adrenal 
Insufficiency 

Hypoaldostero
nism 

8mo, hypoaldosteronism, hyponatremic dehydration and hyperkalemia. 
Begins treatment with hydrocortisone until analytical results remain normal. - - - 
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Actually under fludrocortisone treatment. 

GN0154 46,XX/F 46,XX DSD 
GD  

Primary 
amenorrhea 

15y, primary amenorrhea, female external genitalia, thelarche II-III and 
hypergonadotropic hypogonadism. US: small uterus, non-visible gonads. 

Laparoscopy: small uterus, fallopian tubes and 2 small ovaries. 
Other features: Childish habitus, short neck, lots of nevus 

Yes No 

Ovarian structure 
with  immature 

primordial follicles 
and follicular atresia 

GN0155 46,XY/F 46,XY DSD 
AIS 

Ambiguous 
genitalia 

At birth, clitoral hypertrophy. 2y, clitoroplasty and gonadectomy. 7y, left 
inguinal hernia. At puberty, virilization and male role. 20y, gender 

reassignment. 37y, male phenotype, low androgens levels and begins 
treatment. Scan: uterus remnants, other structure like corpus cavernosum in 

the perineum. 
Other features: 37y, obesity. 

No Yes (2y) Testicular disgenetic 
gonad 

GN0156 46,XY/M 46,XY DSD 
LH RD 

Progressive 
increase in 

genital 
development 

7y, development of genitalia. Penis 8cm length and adult diameter, testes 
10mL, pubarche II. 

Other features: Pituitary adenoma, hearing loss. Indian origin. 
No No  

GN0157 46,XY/M 46,XY DSD 
LH RD Adrenarche 

6y, precocious puberty, genital development P2, testicular volume 2-3ml. 7y, 
absence of other pubertal signs, pubarche with normal testes, changes in 

body odor, acne. US: normal. 9y, genital development T3, testicular volume 
3ml. US: normal testes located in scrotum.  

Other features: Patient from Equatorial Guinea. 

No No  

GN0158 46,XX/M 46,XX  OT 
DSD 

Ambiguous 
genitalia 

3y, curved penis with scrotal hypospadias, bilateral cryptorchidism and 
atrophic scrotum. Non-palpable testes. US: prepubertal uterus, images 

suggesting ovaries. Biopsy. 
Other features: Patient from Sierra Leone. 

No No 
Ovarian tissue (left), 

testicular and ovarian 
tissue (right) 

GN0159 46,XX/M 
46,XX 

Testicular 
DSD 

Ambiguous 
genitalia 

At birth, curved penis with scrotal hypospadias and unilateral cryptorchidism. 
FISH: Confirmed SRY translocation. 3mo, normal penis and testes (2ml). 9y, 
augmented penis (6.3cm circumference x3.8cm length), normal right testis 
and left in inguinal canal. 11y, surgery for hypospadias. 12y, US: right testis 

(22.7x7.3mm), left in inguinal canal (24x7.5mm). 13y, left orchidopexy. Right 
testis 3ml and left 5ml in size, lack of pubarche and axilarche. 

Other features: 3mo, Smith Lemli Opitz syndrome suspected. Psychomotor 
delay. 11y, cafe au lait spots, microcephaly, corpus callosum agenesia. 

No No  

GN0160 46,XX/M 46,XX DSD Discordant 1y, male external genitalia, testes in scrotum. No No  
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karyotype Other features: 5mo, occipital plagiocephaly, delayed motor development, 
bilateral congenital cataracts. 

GN0162 46,XY/M Scrotal 
hypospadias 

Scrotal 
hypospadias 

16mo, curved penis (3.8cm) with scrotal hypospadias and normal testes. 
Other features: Renal litiasis. No No  

GN0163 46,XY/M 

46,XY DSD 
Androgen 

biosynthesis 
defect 

Ambiguous 
genitalia 

11mo, distal hypospadias, surgery. 10y, micropenis (3.6cm) buried in fat, 
testes (3mL) in scrotum. After testosterone (for 19 days), right testis (2-3ml), 
left testis (4ml), penis (5.2cm length and 6cm diameter), no pubarche. After 

treatment (for 1 month), testes 5ml, penis 5cm and 6.4 cm diameter, 
pubarche III. 12y, penis (5.2cm and normal diameter) buried in fat, testes 

10ml and 12ml, pubarche III. 13y, penis (9cm and 8.9cm diameter), 
testes>25ml, pubarcheIII-IV. 14y, US: intraescrotal testes with normal size 

and morphology. Surgery for hypospadias 5 times. 

No No  

GN0164 46,XY/M 46,XY DSD 
LH RD 

Bilateral 
gynecomastia 

36y, bilateral gynecomastia, micropenis, small testes (3mm) and 
hypergonadotropic hypogonadism. No No  

GN0167 46,XY/M 

46,XY DSD 
Androgen 

biosynthesis 
defect 

Hypospadias At birth, normal penis with distal hypospadias and testes in scrotum (1-2mL). No No  

GN0169 46,XY/M 46,XY DSD 
PGD Hypospadias 

At birth, curved penis with scrotal hypospadias, undescended testes, bilateral 
inguinal hernia and bifid scrotum. Orchidopexy. 8y, US: testes (0.7ml and 

0.3ml) in scrotum. 
No No  

GN0171 46,XY/M 46,XY DSD Ambiguous 
genitalia 

At birth, micropenis. 11y, micropenis (3.5 cm), non-palpable testes. MRI: 
testes in inguinal canal. 14y, begins increasing doses of testosterone therapy. 
18y, azoospermia. 21y, penis (8cm) buried in subcutaneous fat, left testis in 

scrotum (0.5ml). US: ovoid structure (17x16mm) in right inguinal canal, 
corresponding to atrophic testes. Laparoscopy and biopsy are planned. 
Other features: 11y, Obesity (BMI 36.6, +6.4SD) and short stature. 21y, 

obesity (BMI 44.9,+6.8SD), short stature (156.1 cm), 

No No  

GN0173 46,XY/M 
46,XY DSD 

gonadal 
regression  

Ambiguous 
genitalia 

At birth, micropenis, hypoplastic scrotum with non-palpable gonads. 3mo, 
micropenis (1cm), developed scrotum. US: non-visible gonads. Begins 

treatment with testosterone. 5mo, penis (2.3cm).  Continues treatment with 
testosterone. 9mo, penis (3cm). 1y, MRI: absence of gonads. 16mo, penis 

(4cm) and developed scrotum. 

No No  
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GN0174 46,XY/M 

46,XY DSD 
Androgen 

biosynthesis 
defect 

Scrotal 
hypospadias 

2mo, curved micropenis (1,8-2cm) with scrotal hypospadias and palpable 
small testes (0,5ml) in scrotum. 

Other features: Hypothyroidism. 
No No  

GN0175 46,XX/F 46,XX DSD Secondary 
amenorrhea 

16y, complete pubertal development with secondary amenorrhea. Patient 
refers menarche at age 13. Normal internal genitalia. US: normal uterus 

(5,3cm), gonads (9-10cm). 
Other features: Ventricular septal defect. 

Yes No  

GN0176 46,XY/M 

46,XY DSD 
Androgen 

biosynthesis 
defect 

Ambiguous 
genitalia 

At birth, hypospadias, palpable scrotal testes and bifid scrotum. US: non-
visible Müllerian ducts. No No  

GN0177 46,XY/F 46,XY DSD 
CAIS 

Discordant 
karyotype 

Male karyotype in amniocentesis. At birth, female external genitalia. 6d, US: 
bilateral inguinal gonads corresponding to testes. 13d, biopsy. 

Other features: Brother affected with phenylketonuria, she is a carrier of the 
mutation. Maternal aunt with 46, XY karyotype. Patient from Morocco. 

Yes No 

Germinal and 
immature Sertoli 

cells, no Leydig cells 
(both) 

GN0178 46,XY/M 46,XY DSD 
PGD Micropenis 

3mo, micropenis, good response to treatment. 6y, penis 2,5cm and normal 
diameter. 9y, normal penis, testes (2ml) and hypoplastic scrotum.10y, 

smaller penis (2cm), testes (2ml) and hypoplastic scrotum.  
Other features: 8y, Autoimmune thyroiditis. 

No No  

GN0179 46,XX/F 46,XX DSD 
GD Suspected GD 18y, hypergonadotropic hypogonadism, atrophic uterus and anexial atresia. Yes No  

GN0182 46,XY/M 
Unilateral 

cryptorchidi
sm 

Ambiguous 
genitalia 

At birth, left scrotal hypoplasia, bifid scrotum and left renal agenesis. 4y, 
orchidopexy. 11y, male phenotype, penis 3.5-4cm, testes (right 4ml, left 

2ml), bifid scrotum, bilateral gynecomastia and pubarche I. 
Other features: Lipomeningocele. Chinese origin. 

No No  

GN0183 46,XY/M Cryptorchidi
sm 

Absence of 
developed 
genitalia 

Undescended right testis. 12y, surgery. 14y, hormonal treatment to induce 
puberty. 20y, testes of 10 and 12ml in scrotum.21y, testes of 12ml in size, 

normal penis. 
Other features: Delay of psychomotor development, mental retardation, lack 

of GH. Father with schizophrenia. 

No No  

GN0185 46,XY/F 46,XY DSD 
GD 

Ambiguous 
genitalia 

At birth, penis (1.5cm) with hypospadias, two individualized labia majora 
with blind vagina and palpable right gonad in inguinal canal. US: Presence of Yes Yes (1y) Streak left gonad 

(left), dysgenetic 
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uterus and vagina, non-visible ovaries. MRI: hypertrophic clitoris, normal 
vagina, hypoplastic uterus (2x0.8x0.8), non-visible gonads. 1y, laparoscopy: 

hypoplastic uterus which continues to fallopian tubes, right one reaches 
testis in inguinal canal and left tube encloses streak abdominal gonad. 

Vaginoplasty and clitoroplasty. 11y, thelarche MI, pubarche P1. 

testis (right). 

GN0186 46,XY/F 46,XY DSD 
GD 

Primary 
amenorrhea, 
high stature 

14y, high stature. 16y, primary amenorrhea, pubarche P4, undeveloped 
mammals, hypertrophic erectile organ, palpable gonads (2cm) in inguinal 

canal. MRI: inguinal bilateral testes. 
Other features: High stature. Brother with gynecomastia. 

No No  

GN0187 46,XX/M 
46,XX 

Testicular 
DSD 

Azoospermia 34y, male phenotype, azoospermia. US: small testes (right 17x8mm, left 
21x10mm).  No No  

GN0189 46,XY/F 46,XY DSD 
CAIS 

Presence of 
masses in 

labia majora 

At birth, female external genitalia, normal clitoris and palpable male gonads 
in labioscrotal folds. 3mo, US: vaginal pouch, bilateral testes (0.3cc), without 

uterus and ovaries. MRI, testes in labioscrotal folds (20x9 and 18x8mm). 
No No  

GN0190 46,XX/F 46,XX DSD 
GD 

Primary 
amenorrhea 

14y, primary amenorrhea, infantile female phenotype, thelarche M2, 
pubarche P1 and hypergonadotropic hypogonadism. Normal vagina. 15y, US: 
infantile uterus and left streak gonad. MRI: small uterus, normal vagina, no 

ovaries. 
Other features: Small stature. Aunt of the mother presented precocious 

menopause (15y). 

Yes No  

GN0191 45,X/46,XY
/F 

46,XY/X0 
MGD 

Ambiguous 
genitalia 

At birth, inguinal hernia, labioscrotal fusion, labioescrotal and inguinal 
gonads. Prader IV. MRI: visualized hypoplastic uterus and upper vagina, 

absence of ovaries. 1y, gonadectomy, vaginoplasty and clitoroplasty. 11y, 
pubertal signs. 

Yes Yes (1y) ND 

GN0192 45,X/46,XY
/F 

46,XY/X0 
MGD 

Primary 
amenorrhea, 
small stature 

19y, amenorrhea. MRI: hypoplastic uterus, absence of gonads and lower 
vagina. 

Other features: 19y, short stature, multiple nevus, Turner phenotype. 
Yes No  

GN0194 46,XY/F 46,XY DSD 
AIS 

Primary 
amenorrhea 

15y, primary amenorrhea. 44y, absence of developed breast, pubic and 
axillary hair. Patient refers that at the age of 30y, doctor said she had 

infantile uterus and ovaries. 
Other features: Abdominal obesity. Sister (30y) with primary amenorrhea, 

absence of development breast and absence of pubic and axillary hair. 

Yes No  
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GN0195 46,XY/M Hypospadias Hyspospadias 2y, Hypospadias No No  

GN0196 46,XY/F 46,XY DSD 
CGD 

Ambiguous 
genitalia 

At birth, micropenis (2x1.5) with vaginal opening and bifid scrotum looking 
like labia majora without hyperpigmentation. Non-palpable gonads. 12d, US: 

normal uterus (3.5cm), in intra-abdominal location an ovoid structure 
(11.8mm) suggesting right testis. 

Yes No  

GN0198 46,XX/F 46,XX DSD 
GD 

Primary 
amenorrhea 

17, primary amenorrhea, delayed puberty and hypergonadotropic 
hypogonadism. US and MRI: non-visible ovaries and uterus No No  

GN0199 46,XY/M 46,XY DSD 
CGD Micropenis 7d, micropenis with fused labia minora, non-palpable gonads, tight vagina. 

US: normal uterus, absence of gonads. Yes No  

GN0200 46,XY/M 46,XY DSD 
PGD 

Obesity, 
micropenis 

At birth, hypospadias. 8mo, micropenis. 2y, surgery for hypospadias. 10y, 
normal male phenotype, penis buried in fat, testes in scrotrum (2-3ml). 

Other features: Obesity. 
No No  

GN0201 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

15d, micropenis (2.5cm), non-palpable testes and hypoplastic scrotum. 2mo, 
micropenis and bilateral crytorchidism. US: absence of gonads. 8mo, good 
response to the treatment with testosterone. 10mo, right orchidopexy. 3y, 

left orchidopexy. 6y, surgery for hypospadias. 7y, normal penis and testes (1-
1.5ml) 

No No  

GN0202 46,XY/F 46,XY DSD 
CGD 

Primary 
amenorrhea 

15y, primary amenorrhea, female external genitalia, pubertal delay and 
hypergonadotropic hypogonadism. 17y, MRI: normal vagina, rudimentary 

uterus, left ovary (<1cm) and absence of right gonad. 
Other features: 15y, Obesity (IMC 37,52). 18y gender dysphoria 

Yes No  

GN0203 46,XY/M 46,XY DSD 
PGD 

Ambiguous 
genitalia 

5y, micropenis with fused scrotum and bilateral cryptorchidism. US: atrophic 
testes in inguinal canal. 

Other features: Born in Syria 
No No  

GN0204 46,XX/F 46,XX DSD 
GD 

Primary 
amenorrhea 

17y, primary amenorrhea, normal female external genitalia and 
hypergonadotropic hypogonadism, US: small uterus, inconsistent findings for 

gonads. 
Yes No  

GN0205 46,XX/F MRKH II 
syndrome  

Vaginal 
agenesis 

16y, primary amenorrhea, agenesia of vagina, uterus and left kidney. MRI: 
absence of cervix, uterus and upper vagina. No No  

GN0207 46,XX/F 46,XX DSD 
Primary 

amenorrhea, 
puberty delay 

14y, primary amenorrhea and delayed puberty. US: prepubertal ovaries and 
uterus.  

Other features: Mother was virilized during pregnancy 
Yes No  

OT0567 46,XY/M Denys-Drash Bilateral At birth, bilateral cryptorchidism. 2y, bilateral Wilms' tumour. Received No No  
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syndrome cryptorchidis
m, Wilms' 

tumour 

chemotherapy. Proteinuria. At surgery, found hypoplastic testes. 
Other features: Patient from Tunisia. 

POL0274 46,XY/M Adrenal 
Insufficiency 

Macrogenitos
omia, pubic 

hair 
development 

1mo, adrenal insufficiency. 9mo, hyperpigmented genitals, hypertrophic 
penis (5cm) and testes 2mL, pubic hair. CT: lack of left gland. 15mo, penis 

6cm. 
Other features: Patient from Mexiko 

- - - 

POL0285 46,XY/M Adrenal 
Insufficiency Salt wasting At birth, salt wasting, hyperpigmentation. 45y, pubertal failure, 

hypogonadotropic hypogonadism. Family background.. - - - 

POL0301 46,XY/M Adrenal 
Insufficiency 

Acute 
hyponatremia 

2y, acute hyponatremia. Normal penis, testes (0.5mL) and no 
hyperpigmentation. 

Other features: Glycemia 70mg/dL; Na 119mEq/L; K 4.6mEq/L; Aldosterone 
0.15ng/dL; PRA NA. 

- - - 

RE0045 46,XY/F 46,XY DSD 
GD 

Primary 
amenorrhea 

14y, primary amenorrhea, delayed puberty and hypergonadotrophic 
hypogonadism. 32y, gonadal biopsy revealed immature testes. 

Other features: 17y, diagnosed with bilateral pheochromocytoma. Atrophic 
kidney. Sister presenting with 46,XX DSD gonadal dysgenesis. 

Yes Yes (32y) Immature testes with 
Leydig cells hyperplasia 

AIS, androgen insensitivity syndrome; CAIS, complete androgen insensitivity syndrome; CGD, complete gonadal dysgenesis; CT, computed tomography; D, days; DSD, disorder of sex 
development; F, female; GD, gonadal dysgenesis; M, male; MGD, mixed gonadal dysgenesis; Mo, months; MRI, magnetic resonance imaging; MRKH, Mayer-Rokitansky-Küster-Hauser; 
N, normal; ND, not determined; OT, ovotesticular; PAIS, partial androgen insensitivity syndrome; PGD, partial gonadal dysgenesis; PRA, plasma renin activity; RD, receptor defect; US, 
ultrasound; Y, years. 
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Supplementary data 3. Biochemical data of the patients included in the genetic analysis. Out of range values are given in bold. 
 

Biochemical data 

Case Karyotype Age at 
evaluation 

Adrenal function Gonadal function 

ACTH 
(pg/mL) 

Cortisol 
(µg/dL) 

11-
Deoxycortisol 

(ng/mL) 

P4 
(ng/ml) 

17OHP4 
(ng/mL) 

DHEA-S 
(ng/mL) 

Δ4-A 
(ng/mL) 

PRL 
(ng/mL) 

Testosterone 
(ng/dL) FSH (U/L) LH (U/L) E2 

(pg/mL) 
DHT 

(ng/ml) 
AMH 

(ng/mL) 

GN0001 46,XX 
17y          65.9/108* 37/150*    
24y          92 41 71   

GN0003 46,XX ND               
GN0004 46,XX 13y     1.8 867   320 23.9 21.5 21   
GN0007 46,XY 16y     1.5    29 41.4 10.7 26.5   
GN0009 46,XY 17y          10.4 144 <10   
GN0011 46,XY 16y    0.5 2.5 183 2.6 5.1 1 145 45 12   

GN0012 46,XY 

At birth <25        34.7      
8y      1295   <10 24.8 <0.5    

11y         12 86 20    
13y         55 85 42.3    
15y        7 87.8/281* 97.9 14.8    
17y         856.2 22.3 12.2    
19y         381 64.6 34.6    
21y         532 69.3 33.5    
24y         783 0.3 <0.1    
26y        16.6 348 27.5 10.2    
27y         899 0.3 0.2    

GN0013 46,XY 18y         2540 109 50.3 12.2   
GN0014 46,XY 13y      2600   16 50 35 <10   
GN0017 46,XY 12m 29 10.7       40/30* 41.7/4* 19.1/8.7*    
GN0018 46,XY ND               
GN0020 46,XY 13y     N* N*      <5   
GN0023 46,XX ND               

GN0024 46,XY 
1m       1.4  73    0.5 11 
2m       1.5  54     11.8 

GN0025 46,XY 17y        8.7  127 54 <10   
GN0026 46,XY 16d     14.7          
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GN0027 46,XY 15y     665    <20 58.8 16.3 >20   

GN0028 46,XY 

10y       1.7/1.9*  86.3/187.4* 11.9 0.9  0.2/0.1*  
11y     1.3  2.5  290.5 30.4 7.1  0.5  
14y      1900   412.5 35.9 11.4   <0.1 
15y      2010 4.1  518 38.9 14.6  0.5 0.4 

GN0029 46,XY ND               
GN0031 46,XX 16d    3.49     19 0.8 <0.1 <10   
GN0033 46,XY 12y  11.2       16.1 0.4 <0.1   10.2 

GN0034 46,XY 

8m         << 1 2    
9y         17 2.8 <<    

11y         60 15 22  0.4*  
13y      2166   23.4 125 30.6 <<   
15y          110 31.4    

GN0035 46,XY 42y  9.2  <0.2 0.3 1866 0.7 1.8 16.8 69.1 19.3 11   

GN0037 46,XY 4y N/N* N   N    0.1/3.6      
11y         5.7/6.8*    0.4/0.5*  

GN0038 46,XY 11y      1400 3.9  200 18.1 11.8 53   
GN0039 46,XY ND               

GN0041 46,XY 

10y      368   <10 31 2.5 <10   
12y         <10 76 9 <10   
13y         <10 112 108 <10   
17y      627   15 23 10 <10   

GN0042 46,XY 
10y    4400 1.9  1.0  250 24 95 16   
27y     0.6  2.5   21.4 8.44 26.4   

GN0043 46,XY 5d  16 9  2.4  2.1  160    2.1  
GN0046 46,XY ND               
GN0050 46,XY 3y         29/22 111 6    
GN0051 46,XX 6y     <0.1 <180   <10/44.1*    0.3/0.1*  

GN0054 46,XX 
41y  23.8      7.5 63.5 31.7 5.3    

52y (After 
treatment)     0.8    616.3      

GN0055 46,XY ND               

GN0056 46,XY 
14d          1.8 1.8    
24d      0.2/0.2* 0.5/0.5*  110/325*    0.5/0.4*  

GN0059 46,XY At birth   4.7  1.55  1.7  218 0.6 <0.5 199 1.8  
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7d       0.7  56 9.1 3.9 15 0.5  
13d       0.8  40 9.8 1 20   
1m       0.5  14 18.5 2.4 15 0.3  

2y 37.4 18.5/30.7
* 2.1/4.2*  1.1/4.1*  0.5/0.6*  28 217.0 58.2    

GN0064 47,XY At birth         << 41 <<    

GN0066 46,XY 
4d      689   65.9 <1.5 <1.5    
7d         21.5 <1.5 3.7    
8y     0.1 1690   16.7      

GN0068 46,XY ND               
GN0070 46,XY 9y         80*    N*  

GN0075 46,XY 2d  6.9    202   2360 <0.5 <0.5  1.5  
1m  10.4    400   6750 3.7 2.5    

GN0076 46,XY 
8d         105 0.4 0.2 17   

15d         121/900*      
GN0078 46,XY ND  17.8       170      
GN0080 46,XY ND               

GN0084 46,XX 
16y N/N*    1.5          
21y    1.3 1 3480   25 7 7.2 78   
22y    0.8 1.5 3490   25.3 6.5 5 37   

GN0088 46,XY 
3y         92.2 3.9* 2.7*    
4y         170.1 0.3 0.1/0.7*    

GN0090 46,XX 6y     0.2 <180 <0.3  <10/125* <1.5 <1.5  <0.1/0.1
*  

GN0091 46,XY 8m 1550 1.63   1.8 8.32   <0.2 4.5 4.2    

GN0096 46,XX 
3y      24.9   <0.12/143.7* 2,3 <0.1  0.1  

4y       0.5/<0.3
*  14/59 1,3 <0.1  0.1/0.1* 8.8 

GN0100 46,XY 16y 19.8 8.5   0.90 3032  6.7 34 145 41    
GN0101 46,XY 17y 1747 4   0.2    170 4.6 2.5    

GN0103 46,XY 

At birth      <17 0.1  <8 99.5 26.9    
6m  1.32       <9/9* 98.43 14.04   0.2 
6m 

(During/afte
r treatment) 

         0.2/13.2 <0.1/0.7    
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GN0104 46,XY 
16m     0.8  0.1 30.6 20 0.7 0.2  <0.1  
21m     0.1  <0.1        

GN0108 46,XY 
12y         95 11.4 6.3    
14y      2180 7.8  833 16.2 22 42 0.7 16.7 

GN0109 46,XY 14y 52 16.3   0.9 1690 1.7 12.8 193 112.5 37.8 16.7 0.5 0.4 
GN0111 46,XY 14y  18/27*    1960 2.1  36.6/46* 44.3 12.2 31.0  <0.1 

GN0112 46,XY 
4d  2.3   5 492   122 0.2 <0.1 22.2   

17d        94.4 43 0.2 <0.1 <11.8 0.2 105.2 
GN0114 46,XY ND          >> >>    

GN0118 46,XY 2y  17.7  0.2  <150 <0.3/<0.
3*  <10/110.4*    <0.1/<0.

1*  

GN0119 46,XY 6y  11   0.4 270 <0.3/<0.
3*  <10/263.4 0.8 <0.1  0.1/0.3* 22.8 

GN0122 46,XY 2y  4.9  0.1 0.1 <150 <0.3/1.2
*  <10/534.2* 0.9 <0.1 15 <0.1/0.4

*  

GN0123 46,XY 

10y         2/13      
14y N N   N    18/35 55 15    
15y         140/500* 39/72* 11/137*    
18y        9 200 33 21    
38y 36 14.3   0.4 1293 1.5 7 500 25 15.6 20  <0.1 

GN0124 46,XY 
4m      374 0.5  205 0.6 4.8 <12 0.2 99.4 
6m       0.3/0.8*  77.3/680*    0.1/0.3* 112.9 

GN0125 46,XY 17y 69 12.3        10 70    
GN0132 46,XY ND               

GN0133 46,XX 
42y        7.8 335  2.09 41.7   
44y        12.6 238  3.96 30.8   

GN0138 46,XY 
At birth     5.3    365 2.2 3.1   19.2 

4d         97    0.6*  
8d         69 6.2 14.5    

GN0139 46,XY 
16y    0.8 1.1 3060 2.1 17.4 463.3 14 52.5 22   
17y          89.3 53.7 19   

GN0141 46,XY 25y          71 33 49   

GN0142 46,XY 
4d  N     1.3  39 3.5 0.3  0.3 << 

12d       1.8  33    0.2 << 
22d       0.5  1 35.4 3.2  0.1 << 
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GN0144 46,XY 
5y      150   5 0.6 <0.1    
6y       0.4  <5/650* 0.5 <0.1  1.5*  

GN0145 46,XY 20y         607 N N    

GN0146 46,XY 

14y 79.3 11.6   0.3 575 0.5 3.8 6 1.87 0.3 30.6   
19y (During 
treatment)         8 2.2 0.6 30.5   

19y 80.8 10.3   <0.01 806 0.5 4.4  3.5 1.3 5   
GN0147 46,XY 35y 27.9 21.3   0.2 1390 1.3 7.6 19 67.0 48.5 5   

GN0148 46,XY 
20y  N    N N N 31 51 28 15.8   

25y (During 
treatment) 113 17.8 3.4 0.9  344  23.9 20 24.8 16.7 26 0.3  

GN0150 46,XY 9y  6.5   0.4 683 <0.3  18 33.1 1.6 <12 0.1 <0.1 
GN0151 46,XX ND               

GN0152 46,XY 
5m  7.2   0.9 <150   9 3 1 <12 0.2  

19m 22.7 22.8   0.3/0.3* 1260 <0.3/<0.
3*  3/17* 3.5 1.1 5 0.2/0.2*  

GN0153 46,XY 8m 2297 2.9   0.3          
GN0154 46,XX 15y  N     N   70 18 22   
GN0155 46,XY 37y         19      

GN0156 46,XY 
6y     1.4 0.6  14.1 434.7 4.6 4.6 22   
7y N N   0.9 N N  406 3.5/7.1* 2.5/25.0* N   

GN0157 46,XY 
6y    0.3 0.1 1100 <0.3  <20      
7y   1.4  0.3 1100   <20 0.5 <10    

GN0158 46,XX 3y  13.9   0.1 <150 <0.3/<0.
3*  <10/72.8* 3 <0.1  <0.1 7 

GN0159 46,XX 

9y  13.1  0.1  480 <0.3 17 <10 1 0.1  <12/0.1
*  

11y         <10 1 0.3    
12y         <10 0.7 1.2    
13y         35 0.8 2 <12   

GN0160 46,XX ND               
GN0162 46,XY 16m    0.2 0.4 168 <0.3  <10 0.7 <0.1  <0.1  

GN0163 46,XY 
10y       <0.3  <10 1.3 <0,1  0,1 193 
14y    0.4 0.9 1370 1.3  510 1.7 2.3 22 0.3 9 

GN0164 46,XY ND               
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GN0167 46,XY 
5d     1.7 740 1.6  72 0.5 1.6 <5 0.3 66.3 
2m         108 1 5 <5 0.1 115.1 

GN0169 46,XY 
At birth       1.3  178      

8y       0.3  20 1.5 1.5  0.1 52.3 

GN0171 46,XY 

11 y         130 63.3 14    
14 y         130 36.7 18.5    
15 y         590 1.5 <0.5    
21 y         1180 9.5 4    

GN0173 46,XY 
At birth         211     0.5 

3m  34.9* 15.2* 2.1* 0.6* 37* 202.7*   3* 21.2* 0.8*  <0.1* 0.5* 

6m  13* 6.3* 1.6* 0.1* 8* 77.6*   3* 40.4* 6.0*   <0.1* 

GN0174 46,XY 5m    0.8 1.7 197 <0.3 43 134 0.8 1.8 <12.0 0.1 240 
GN0175 46,XX 14y          9/22* 9/99* 34   
GN0176 46,XY 3m     N  0.4/0.6*  146.8/624.3*    0.1/0.2* N 

GN0177 46,XY 10d 30.5 12.8  4.4 1.2 13.1 6.4  122 4.6 2.3 8.7 0.5 75.6 
16d    2.5* 1.4* 2852* 4.5*  141/65* 20.6* 5*  0.4/0.2*  

GN0178 46,XY 
3m         387* <</<<* <</<<*  0.1*  
10y  17.8      29       

GN0179 46,XX ND               
GN0182 46,XY ND               

GN0183 46,XY 
20y        14.1 72.9 8.2 6.5 14   
21y     1.2 2270 1.2 8.8 71.3 9.9 6.3 14.3 0.5  

GN0185 46,XY 5d  14 4.3  1.9 92 0.9  0.1 11 1.5 <5 0.4  

GN0186 46,XY 
14y         450      
15y  10.4       5 3.1 6.7 51  471 

GN0187 46,XX 34y         416 46.4 20.8 36   

GN0189 46,XY 
4d              >21 

20d     3.0 710   1.6 0.5 3.4 <10 <0.1  
GN0190 46,XX 14y  35 4.5 0.4      169.4 61.3 5   
GN0191 46,XY/X0 19y  11.6       46 46 15 5   
GN0192 46,XY/X0 ND               
GN0194 46,XY ND               
GN0195 46,XY ND               

GN0196 46,XY 
4d   9.2  3.1    45 4.6 1.2    

12d              6.5 
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GN0198 46, XX 17y          103 33.4 <5   
GN0199 46,XY 15d  21.4  0.6 8.2 247 3.2  1.5 17.3 17.1 16.2   
GN0200 46,XY 10y     0.6/1.6*  <</0.3*  2/40* 0.3 0.29    

GN0201 46,XY 
2mo  12   12 863 1.1  9/50* 4.3 7.8   942 
5y  6.5   0.4 168 <0.3  3 0.7 <0.1 <10 <0.1 >23 

GN0202 46,XY 
15y        10 38 77.3 35.3 <12   
17y  9.9   0.6 1580 1.5 8 0.3 63.7 30.5 25  <0.1 

GN0203 46,XY ND               
GN0204 46,XX 17d    <0.1     <10 103 31.5 <10  <0.2 
GN0205 46,XX 16y    0.4    16.4 27 6.0 6.8 35.1   
GN0207 46, XX 14y  12.2   0.4 240 <0.3  0.1 50.6 22.1 <5.4  <0.2 
OT0567 46,XY ND               

POL0274 46,XY 9mo <10 20.2   334 50 0.3  235.3 1.1/2.2* 1.1/5.6*    
POL0285 46,XY ND               
POL0301 46,XY 2y 777 2.3             
RE0045 46,XY ND               

ACTH, adrenocorticotropic hormone; AMH, anti-Müllerian hormone; D, days; DHEA-S, dehydroepiandrosterone sulfate; DHT, dihydrotestosterone; E2, estradiol; FSH, follicle-
stimulating hormone; hCG, human chorionic gonadotropin; LH, luteinizing hormone; Mo, month; N, normal; ND, not determined; PRL, prolactin; P4, progesterone; Y, years; 
Δ4-A, delta 4-androstenedione. (*) Values after stimulation with hCG or ACTH 
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Supplementary data 4. Hospitals in which the patients involved in the study were clinically diagnosed. 
 

• Hospital Universitario Cruces (Barakaldo, Spain) 
• Hospital Universitario Basurto (Bilbao, Spain) 
• Hospital Universitario Araba (Vitoria-Gasteiz, Spain) 
• Hospital Universitario Donostia (San Sebastián, Spain) 
• Hospital Bidasoa (Hondarribia, Spain) 
• Complejo Hospitalario de Navarra (Pamplona, Spain) 
• Complejo Hospitalario La Mancha Centro (Ciudad Real, Spain) 
• Hospital Universitario de Getafe (Getafe, Spain) 
• Hospital Manises (Manises, Spain) 
• Hospital Clínico Universitario Valladolid (Valladolid, Spain) 
• Hospital Comarcal de la Axarquia (Vélez-Málaga), Spain) 
• Hospital de Mérida (Mérida, Spain) 
• Hospital General Universitario de Alicante (Alicante, Spain) 
• Hospital General Universitario Gregorio Marañón (Madrid, Spain) 
• Hospital Público General de Tomelloso (Tomelloso, Spain) 
• Hospital Regional Universitario de Málaga (Málaga, Spain) 
• Hospital Sierrallana (Torrelavega, Spain) 
• Hospital Universitario Central de Asturias (Oviedo, Spain) 
• Hospital Universitario de La Princesa (Madrid, Spain) 
• Hospital Universitario Germans Trias i Pujol (Badalona, Spain) 
• Hospital Universitario Infanta Cristina (Parla, Spain) 
• Hospital Universitario Marqués de Valdecilla (Santander, Spain) 
• Hospital Universitario Nuestra Señora de la Candelaria (Santa Cruz de Tenerife, Spain) 
• Hospital Universitario Príncipe de Asturias (Alcalá de Henares, Spain) 
• Hospital Universitario Puerta del Mar (Cádiz, Spain) 
• Hospital Universitario Ramón y Cajal (Madrid, Spain) 
• Hospital Universitario Vall d'Hebron (Barcelona, Spain) 
• Hospital Universitario Virgen de las nieves (Granada, Spain) 
• Hospital Universitario Virgen del Rocío (Sevilla, Spain) 
• Hospital Virgen del Puerto (Plasencia, Spain) 
• Inselspital, Universitätsspital Bern (Bern, Switzerland) 

 

  



 

274 
 

Supplementary data 5. Clinical data sheet for the inclusion of a patient in the study. 
 

CLINICAL QUESTIONAIRE FOR THE GENETIC ANALYSIS OF DISORDERS OF SEX DEVELOPMENT 

FAMILY CODE:      Referring doctor:    

DATA AT BIRTH  

Date of birth:  

Gestational age (Weeks):  

Weight (gr):            Length (cm):             

Twins/Multiple birth:          Yes:                          No: 

ADDITIONAL DATA  

Karyotype:                                             SRY (FISH): 

Age at diagnosis (years/months/days):             

Assigned sex: Male  Female 

Gender reassignment:   Yes              No                 Unknown 

 If Yes, age at gender reassignment: (Years/months) 

REASONS FOR THE FIRST REFERRING 

Ambiguous genitalia: Yes                    No                       Unknown 

Inguinal hernia:   Yes                    No                       Unknown 

Gynecomastia:   Yes                    No                       Unknown 

Prenatal diagnosis:  Yes                    No                       Unknown  

Adrenal insufficiency/Salt loss:  Yes                    No                       Unknown 

Insufficient virilization:   Yes                    No                       Unknown 

Primary amenorrhea:   Yes                    No                       Unknown 

Others:  Yes                    No                       Unknown 

COMMENTS: 

 

FAMILY BACKGROUND  

PARENTS: Consanguinity:  Yes  No  Unknown 

Adopted:  Yes  No  Unknown 

MOTHER: Normal:  Yes  No  Unknown 

Virilization during pregnancy:   Yes  No  Unknown 

Drugs during pregnancy:    Yes  No  Unknown 

 If yes, which drug: 

FERTILISATION: 

-Coital:      -IVF (in vitro fertilization):    -

ICSI (intracytoplasmatic sperm injection):    -Others:  

BROTHERS/SISTERS:  

 If affected, gender: M F Unknown   
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 Brief description:  

OTHER AFFECTED FAMILY MEMBERS: 

 Sex:  M F Unknown 

 Brief description:  

FAMILY BACKGROUND OF INFERTILITY: Yes No  Unknown 

 If yes, which family member? 

M (male); F (female) 
 
EXAMINATION  

EXTERNAL VIRILIZATION: 

Penis/Clitoris  Hypospadias         Labioscrotal fusion        Gonads                 Right/Left 

Normal for M     Normal for M                  Yes                           Labioscrotal                    / 

Small for M        Distal Hyposp          No                             Inguinal                             

Big for M            Midpenile Hyposp Unknown                Abdominal                        

Normal for F      Proximal Hyposp                                                                                

Big for F              N for F                                                               

VIRILIZATION IN 46, XX: 

Prader scale:    I        II        III         IV        V 

FEMALE INTERNAL GENITALIA  

Are present:  Yes No Unknown  

Vagina:  Yes No Unknown Type:  

Uterus:  Yes No Unknown Type:    

Fallopian tubes:  Yes No Unknown  

Ultrasound: Age:  Report: 

   

Laparoscopy: Age:  Report: 

 
PUBERTAL SIGNS  Spontaneous  Induced   Age (Years/months): 

FEMALE  

Thelarche (Tanner):     M1            M2          M3           M4             M5 Unknown 

Pubarche (Tanner):    P1            P2           P3             P4              P5  Unknown 

Menarche:        Yes              No          Unknown 

MALE  

Volume right testis (ml):   Volume left testis (ml):  

Penis length (cm):    Gynecomastia (diameter cm): 

Pubarche (Tanner):    P1            P2           P3             P4              P5  Unknown   
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BIOCHEMICAL ANALYSIS 

Date:   

Karyotype: 

 -Blood:                                                                 -Gonad: 

AMH (ng/ml): 

INHIBINA B (pg/ml): 

Beta-HCG (mUI/ml): 

Alpha-Fetoprotein (ng/ml): 

Basal  

Age:  

LH (UI/l):                             FSH (UI/l): 

Testosterone (ng/dl):          Androstendione (ng/ml):          Dihidrotestosterone (ng/ml): 

Estradiol (pg/ml):                                       Estrone (pg/ml): 

17-OH Progesterone (ng/ml):                                         Progesterone (ng/ml): 

17-OH Pregnenolone (ng/ml):                                         11-Desoxicortisol (ng/ml):                

DHEA-S (ng/ml):                                       DHEA (mcg/dl):                          Cortisol (mcg/dl):     

Extraction date:  

After-stimulating 

Age   

-GnRH/LHRH test:   

 FSH peak (min      ) (UI/l):                            LH peak (min      ) (UI/l) 

Basal testosterone (ng/dl):                         Basal estradiol (pg/ml): 

-HCG test: dose (UI) y number of doses:  

Testosterone (ng/dl):                                                  Androstendione (ng/ml):             

Dihidrotestosterone (ng/ml):          

-ACTH test: peak at 60 mins 

17-OH Progesterone (ng/ml):                                        Cortisol (mcg/ml): 

17-OH Pregnenolone (ng/ml) :                                      11-Desoxicortisol (ng/ml):       

 

IMAGING 

Ultrasound: 

MRI Scan 

LAPAROSCOPY:  Yes  No 

REPORT: 

GONADAL BIOPSY:  Yes  No  

REPORT: 
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MOLECULAR STUDY  

Previously studied genes:  

Affected gene and variant:  

 

PROGRESS 

-Treatment for micropenis: Yes/No 

 Testosterone for topical use: Dosage:                 Number of days: 

 IM testosterone: Type:                  Dosage (mg):       Number of doses/frecuency:  

-Treatment for hypospadias: Yes/No  

 Report: 

-Vaginoplasty: Yes/No 

 Report: 

-Clitoroplasty: Yes/No 

 Report: 

-Gonadectomy: Yes/No 

 Report: 

-Other surgeries: Yes/No 

 Report: 

-Hormone replacement therapy during puberty: Yes/No 

Testosterone IM/topical use: Type:              Dosage (mg):          Number of doses/frecuency:  

GNRH: Dosage 

FSH: Drug name:    Dosage:   Frecuency:  

LH: Drugname:    Dosage:   Frecuency: 

Estrogens: Drugname:   Dosage:   Frecuency: 

Gestagens: Drugname:   Dosage:   Frecuency: 

 

DIAGNOSIS:  

 

 

RELATED PATHOLOGIES:  
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Supplementary data 6. Primers, probes and conditions used for the amplification by PCR, QMPSF, genetic markers and site-directed mutagenesis. 
 
Primers and conditions used for the PCR-based amplification. 

Gene Amplicon name Primers Name Primers sequence (5' to 3') Conditions 
Amplicon 

size (pb) 

Others 

(DMSO…) 

SRY 
Amplicon 1 F1-SRY gcttgagaatgaatacattgt 94ºC3'35X(94ºC1'15''58,7ºC1'15''72ºC2')72ºC7'4º 574   

R1-Int-SRY ggtatttctctctgtgcatg   

Amplicon 2 F1-Int-SRY gcgaaactcagagatcagca 94ºC3'35X(94ºC1'15''58,7ºC1'15''72ºC2')72ºC7'4º 559   
R1-SRY gcatgttaatcgtgttgacag   

HSD17B3 

Exon 1 
M13F1-HSD17B3 ggaacacgtccagtgact 

95ºC5'35X(95ºC30''64ºC30''72ºC30'')72ºC7'4º 382 
  

M13R1-HSD17B3 gccattgcactccagcct   

Exon 2 
F2-HSD17B3 tgaattctgtcttttaaaagca 

95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 127 
  

R2-HSD17B3 aatacaagggaggagaaagtcccca   

Exon 3 
F3-HSD17B3 gctcatcatccttgtctcttggttt 

95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 160 
  

R3-HSD17B3 gagggctccacacacatctccctta   

Exon 4 
F4-HSD17B3 tggatccctgttcattaaaaaaact 

95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 189 
  

R4-HSD17B3 gatgtatgacaacaagctttgcatc   

Exon 5 F5-HSD17B3 ctgatcttctgacacatttttgttt 95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 168   
R5-HSD17B3 ccaggttctgggtcccctggct   

Exon 6 F6-HSD17B3 gagaatttctctaatcatccggctg 95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 126   
R6-HSD17B3 acatgttaatgcatttcgcaca   

Exon 7 F7-HSD17B3 agttccttgtcgggcttacctttgg 95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 121   
R7-HSD17B3 agggcagggaggccatgttgctcca   

Exon 8 F8-HSD17B3 caacaaagccatgggaac 95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 154   
R8-HSD17B3 aaggaagagacttggaagtcatgac   

Exon 9 F9-HSD17B3 agctcactctggggcctcaggtgtc 95ºC5'35X(95ºC30''65ºC30''72ºC30'')72ºC7'4º 140   
R9-HSD17B3 gatgacaaggactccacagctg   

Exon 10 
F10-HSD17B3 gattgcttctgtgccatggtctttg 

95ºC5'35X(95ºC30''51,1ºC30''72ºC30'')72ºC7'4º 216 
  

R10-HSD17B3 ttcaagaaaaggagaagtt   

Exon 11 
F11-HSD17B3 tgaactgaggtacttgttattcc 

95ºC5'35X(95ºC30''55,7ºC30''72ºC30'')72ºC7'4º 206 
  

R11-HSD17B3 gaggaaaaggttgtgctggactcct   
AR Exon 1, Amplicon 1A F1A-AR gcctgttgaactcttctgagc 94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 535 DMSO (10%) 
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R1A-AR ggaggtgctggcagctgct 

Exon 1, Amplicon 1B 
F1B-AR cacaggctacctggtcctgga 

94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 416 DMSO (10%) R1B-AR ctgccttacacaactccttggc 

Exon 1, Amplicon 1C 
F1C-AR gctcccacttcctccaaggac 

94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 528 DMSO (10%) R1C-AR cgggttctccagcttgatgcg 

Exon 1, Amplicon 1D 
F1D-AR ccagagtcgcgactactacaactt 

94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 474 DMSO (10%) R1D-AR ggactgggatagggcactctgct 

Exon 1, Amplicon 1E F1E-AR gacttcaccgcacctgatgtg 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 193 DMSO (10%) 
R1E-AR ccagaacacagagtgactctgcc 

Exon 2 F2-AR gcctatttctgccattca 94ºC5'35X(94ºC30''52,9ºC30''72ºC30'')72ºC7'4º 288   
R2-AR cctgggccctgaaaggt   

Exon 3 F3-AR ttatcaggtctatcaactcttgt 94ºC5'35X(94ºC30''50ºC30''72ºC30'')72ºC7'4º 313   
M13R3-AR ctgatggccacgttgcctatgaa   

Exon 4 F4-AR gataaattcaagtctctcttcct 94ºC5'35X(94ºC30''54ºC30''72ºC30'')72ºC7'4º 360 DMSO (10%) 
R4-AR gatcccccttatctcatgctccc 

Exon 5 M13F5-AR caacccgtcagtacccaga 94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 290 DMSO (10%) M13R5-AR agcttcactgtcaccccatcacca 

Exon 6 
M13F6-AR ctctgggcttattgtaaacttcc 

94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 296 DMSO (10%) R6-AR gtccaggagctggcttttcccta 

Exon 7 
M13F7-AR ctttcagatcggatccagctat 

94ºC5'40X(94ºC45''58ºC45''72ºC45'')72ºC10'4º 416 
  

M13R7-AR ctctatcaggctgttctccctgat   

Exon 8 
M13F8-AR gaggccacctccttgtcaaccctg 

94ºC5'35X(94ºC30''52,9ºC30''72ºC30'')72ºC7'4º 347 DMSO (10%) M13R8-AR ggaacatgttcatgacagactgtacatca 

WT1 

Exon 1 
F1-WT1 gggcgtccgggtctgagcc 

94ºC5'35X(94ºC60''62,3ºC60''72ºC60'')72ºC7'4º 526 DMSO (10%) R1-WT1 gcggagagtccctggcgc 

Exon 2 F2-WT1 cgagagcaccgctgacact 94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 199   
R2-WT1 gagaaggactccacttggttccg   

Exon 3 F3-WT1 ccaggctcaggatctcgtgt 94ºC5'35X(94ºC60''59,5ºC60''72ºC60'')72ºC7'4º 238   
R3-WT1 caaggacccagacgcagag   

Exon 4 F4-WT1 tgcttttgaagaaacagttgtg 94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 178   
R4-WT1 ggaaaggcaatggaatagaga   

Exon 5 F5-WT1 gggcttttcactggattctg 94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 174   
R5-WT1 ccatttgctttgccatctcc   



 

280 
 

Exon 6 
F6-WT1 gtgagccacactgagccttt 

94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 200 
  

R6-WT1 ggccggtaagtaggaagagg   

Exon 7 
F7-WT1 gacctacgtgaatgttcacatg 

94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 286 
  

R7-WT1 cttagcagtgtgagagcctg   

Exon 8 F8-WT1 gagatccccttttccagtat 94ºC5'35X(94ºC60''55,7ºC60''72ºC60'')72ºC7'4º 220   
R8-WT1 caacaacaaagagaatca   

Exon 9 F9-WT1 aagtcagccttgtgggcctc 94ºC5'35X(94ºC60''55,7ºC60''72ºC60'')72ºC7'4º 246   
R9-WT1 tttccaatccctctcatcac   

Exon 10 F10-WT1 tgtgcctgtctctttgttgc 94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 224   
R10-WT1 gttcacacactgtgctgcct   

NR5A1 

Exon 1 M13F-UTR-NR5A1 gcgagaggcctgcagagt 95ºC5'35X(95ºC45''64ºC45''72ºC45'')72ºC7'4º 304   
M13R-UTR-NR5A1 gcactgcagaaggaggct   

Exon 2+3 M13F1-NR5A1 ggaccccaggctgccggtct 95ºC5'35X(95ºC45''64ºC45''72ºC45'')72ºC7'4º 488 DMSO (10%) 
M13R2-NR5A1 gcgaaggccaatggtact 

Exon 4 
M13F3-NR5A1 ggtcagtgggagccatga 

94ºC5'35X(94ºC30''58,7ºC30''72ºC30'')72ºC7'4º 832 DMSO (10%) M13R3-NR5A1 ggacagtcgggctaaggct 

Exon 5 
M13F4-NR5A1 ggtgagaggaaggtccctgga 

95ºC5'35X(95ºC45''64ºC45''72ºC45'')72ºC7'4º 250 DMSO (10%) M13R4-NR5A1 cctgaatcctggaagtgca 

Exon 6 
M13F5-NR5A1 cctccaatccatgccctca 

95ºC5'35X(95ºC45''64ºC45''72ºC45'')72ºC7'4º 291 DMSO (10%) M13R5-NR5A1 cctctggctgtctccacct 

Exon 7 
M13F6-NR5A1 ggaaggtggtattggtgatgct 

95ºC5'35X(95ºC45''64ºC45''72ºC45'')72ºC7'4º 454 DMSO (10%) M13R6-NR5A1 cctcggtgggcatcaga 

FSHR 

Exon 1 
M13F1-FSHR ggtcacatgaccctacca 

94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 332 
  

M13R1-FSHR cgcaatgcacaaatgcca   

Exon 2 M13F2-FSHR ggtaactgtttgctga 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 223   
M13R2-FSHR ggtctgaggttgctccct   

Exon 3 M13F3-FSHR ccagacacaaggctct 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 234   
M13R3-FSHR ccaggaatgtagaaga   

Exon 4 M13F4-FSHR gcattccttaccatcaaga 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 174   
M13R4-FSHR ggcttgcactatttaatca   

Exon 5 M13F5-FSHR gccagtttcattttcactca 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 166   
M13R5-FSHR gcaagacagatactga   

Exon 6 M13F6-FSHR ggaaggttacatgagtaga 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 215   
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M13R6-FSHR ggagcatccaattatgaga   

Exon 7+ 8 
M13F7-FSHR cccgtgtattgtttgca 

94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 381 
  

M13R8-FSHR gctgcagagagttgacttct   

Exon 9 
M13F9-FSHR gcctgctaaccaagagcaga 

94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 311 
  

M13R9-FSHR ggacaaagttctacattgggga   

Exon 10 M13F10-FSHR cctgcacaaagacagtga 94ºC5'35X(94ºC60''51,1ºC60''72ºC60'')72ºC7'4º 1367   
M13R10-FSHR ccttcaaaggcaagactga   

WNT4 

Exon 1 M13F1-WNT4 cagcagcgggcaggctgccggcagg 94ºC5'35X(94ºC45''65ºC45''72ºC45'')72ºC7'4º 365 DMSO (10%) 
M13R1-WNT4 agcgagcgagcctccggtcc 

Exon 2 M13F2-WNT4 tggatccagagagaagtcgg 94ºC5'35X(94ºC45''65ºC45''72ºC45'')72ºC7'4º 460   
M13R2-WNT4 ttgctcacgagcgtctcatt   

Exon 3+4 M13F3-WNT4 ccagctctgccctccctctgc 94ºC5'35X(94ºC45''65ºC45''72ºC45'')72ºC7'4º 482   
M13R4-WNT4 tctgagtggccgtgtgggt   

Exon 5 M13F5-WNT4 ggcacaacggcaaatctgactg 94ºC5'35X(94ºC45''65ºC45''72ºC45'')72ºC7'4º 652   
M13R5-WNT4 ttatcggccttccctg   

SRD5A2 

Exon 1 
M13F1-SRD5A2 gcagcggccaccggcgagg 

94ºC5'35X(94ºC45''68ºC45''72ºC45'')72ºC7'4º 358 
  

M13R1-SRD5A2 agcagggcagtgcgctgcact   

Exon 2 
M13F2-SRD5A2 tgaatcctaacctttcctccc 

94ºC5'35X(94ºC45''58ºC45''72ºC45'')72ºC7'4º 235 
  

M13R2-SRD5A2 agctgggaagtaggtgagaa   

Exon 3 
M13F3-SRD5A2 tgtgaaaaaagcaccacaatct 

94ºC5'35X(94ºC45''58ºC45''72ºC45'')72ºC7'4º 208 
  

M13R3-SRD5A2 cagggaagagtgagagtctgg   

Exon 4 
M13F4-SRD5A2 tgattgaccttccgattctt 

94ºC5'35X(94ºC45''58ºC45''72ºC45'')72ºC7'4º 232 
  

M13R4-SRD5A2 tggagaagaagaaagctacgt   

Exon 5 M13F5-SRD5A2 tcagccactgctccattatat 94ºC5'35X(94ºC45''58ºC45''72ºC45'')72ºC7'4º 166   
M13R5-SRD5A2 cagttttcatcagcattgtgg   

LHCGR 

Exon 1 F1-LHCGR ccgcactcagaggccgtccaaga 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 279 DMSO (10%) 
R1-LHCGR ggcatagagcgatggagggtcctgca 

Exon 2 F2-LHCGR cctcagcctgaatccagttct 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 290   
R2-LHCGR cccctttcaaatgtgttttctct   

Exon 3 F3-LHCGR ccagttgttgggtcacacacatagct 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 236   
R3-LHCGR ccaagtgggctccagccagtga   

Exon 4 F4-LHCGR gccagcaacttctggtgacca 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 301   
R4-LHCGR cagaaggctgaagaggaaca   
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Exon 5+ 6 
F5-LHCGR cctgataacaccaaactca 

94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 449 
  

R6-LHCGR cctagtagtgagactagcagga   

Exon 7 
F7-LHCGR ggagaactagatattatgaatgcct 

94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 286 
  

R7-LHCGR cctgagttagttgctgaaga   

Exon 8 F8-LHCGR ggagctacgaatgcttacacatgaggt 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 203   
R8-LHCGR ggacaccctaagcagtcctgt   

Exon 9 F9-LHCGR ggcgacggagcaagactccgt 94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 366   
R9-LHCGR ggagtgaaggggagtggagct   

Exon 10 F10-LHCGR cgcacagtcaggtttagcctgaagt 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 200   
110-LHCGR ggtgcacacagaacaagatacga   

Exon 11 F11-LHCGR gctattatggctttgtttcct 94ºC5'35X(94ºC30''55,5ºC30''72ºC30'')72ºC7'4º 1196   
R11-LHCGR ggtctcttgcctaatgtacct   

CYP17A1 Exon 8 M13F8-CYP17A1 ggtgctattttcataggt 94ºC10'35X(94ºC30''56,4ºC30''72ºC30'')72ºC7'4º 758   
M13R8-CYP17A1 ggtgttgaaagaatgagt   

ESR1 
Exon 5 

M13F5-ESR1 ggagagccacttgttgaacact 
94ºC5'35X(94ºC30''55ºC30''72ºC30'')72ºC7'4º 548 

  
M13R5-ESR1 gacatcacaacaagttc   

Exon 9 
M13F9-ESR1 gaaagccctcagctttccca 

94ºC10'35X(94ºC30''58,9ºC30''72ºC30'')72ºC7'4º 886 
  

M13R9-ESR1 gctataataaacccttga   

HSD17B4 Exon 8 
M13F8-HSD17B4 gcttttgataggtgcagt 

94ºC10'35X(94ºC30''58,9ºC30''72ºC30'')72ºC7'4º 432 
  

M13R8-HSD17B4 ccacaatgaacacaatttaca   

WWOX 
Exon 3 

M13F3-WWOX gttgatgtgacaactgct          
94ºC5'35X(94ºC30''61ºC30''72ºC30'')72ºC7'4º 425 

  
M13R3-WWOX ccatgcctggcctccctac   

Exon 9 
M13F9-WWOX ggcctgctaatgcccaggca 

94ºC10'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 618 
  

M13R9-WWOX cctcaggctattctataacag   

STAR 
Exon 1 M13F1-STAR gcagaacaccaggtccaggct 94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 316   

M13R1-STAR ccagtaagaggcacaact   

Exon 4 M13F4-STAR ggcgtgaaccaccatg 94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 285   
M13R4-STAR gcattcacactgggctct   

AMH Exon 2+3+4 M13F2-AMH ggtgtggccttcaatggct 94ºC10'35X(94ºC30''64,7ºC30''72ºC30'')72ºC7'4º 794 DMSO (10%) 
M13R4-AMH ggaggagttgagagcggcca 

AMHR2 Exon 3+4 M13F3-AMHR2 ggaagggacgcctctga 94ºC5'35X(94ºC30''63,8ºC30''72ºC30'')72ºC7'4º 757   
M13R4-AMHR2 ggaatcaggctatagagat   

MAP3K1 Exon 1  M13F1 ggcgcaggaggccttacgct 94ºC10'35X(94ºC30''58ºC30''72ºC30'')72ºC7'4º 696 DMSO (10%) 
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M13R1 cgtagcctcgctgcgctga 

Exon 8+9 
M13F8 ggttccttctatataaattct 

94ºC10'35X(94ºC30''58ºC30''72ºC30'')72ºC7'4º 577 DMSO (10%) M13R9 ggaggcaagtaaaagtgt 

Exon 13 
M13F13-MAP3K1 ggccttacaccatttaatca 

94ºC5'35X(94ºC30''60ºC30''72ºC30'')72ºC7'4º 380 
  

M13R13-MAP3K1 cctattcatgctctgagt   

DMRT2 
Exon 4, Amplicon A 

M13F4A-DMRT2 ggatatctttcaccctccca 
94ºC10'35X(94ºC30''56,4ºC30''72ºC30'')72ºC7'4º 857 

  
M13R4A-DMRT2 cctgatgaccctgaaggtca   

Exon 4, Amplicon B M13F4B-DMRT2 cctctaccagcaatgcct 94ºC10'35X(94ºC30''56,4ºC30''72ºC30'')72ºC7'4º 742   
M13R4B-DMRT2 tcatcatctttacattaga   

RXFP2 Exon 16 M13F16-RXFP2 ggaaactgatgacataca 94ºC5'35X(94ºC30''60ºC30''72ºC30'')72ºC7'4º 567   
M13R16-RXFP2 ggacacagtcttgactatgt   

GATA4 Exon 3 M13F3-GATA4 gctcaggggaactctcagt 94ºC10'35X(94ºC30''58,7ºC30''72ºC30'')72ºC7'4º 551   
M13R3-GATA4 cctggatcattctggtggct   

NR0B1 

Exon 1, Amplicon 1A M13F1A-NR0B1 ggtataaataggtcccagga 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 375 DMSO (10%) 
R1A-NR0B1 agcatgctgtagaggatgc 

Exon 1, Amplicon 1B F1B-NR0B1 gcatcctctacagcatgct 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 441 DMSO (10%) R1B-NR0B1 cctgcgcttgatttgt 

Exon 1, Amplicon 1C 
F1C-NR0B1 ctacttcgcgcagaggcc 

94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 445 DMSO (10%) R1C-NR0B1 ggtggtgaggatcttct 

Exon 1, Amplicon 1D 
F1D-NR0B1 gcagctggtgctggtgcgca 

94ºC5'35X(94ºC60''56ºC60''72ºC60'')72ºC7'4º 376 DMSO (10%) M13R1D-NR0B1 cccgatgcttttgtgagct 

MAMLD1 
Exon 5, Amplicon 5A 

M13F1A-MAMLD1 ccaagggcgggaggtgaga 
94ºC5'35X(94ºC30''61ºC30''72ºC30'')72ºC7'4º 734 

  
M13R1A-MAMLD1 ggctgcccagcaggctga   

Exon 5, Amplicon 5B 
M13F1B-MAMLD1 gcgttcagcagcactca 

94ºC5'35X(94ºC30''61ºC30''72ºC30'')72ºC7'4º 693 
  

M13R1B-MAMLD1 ccactcaaattgtaacggga   

ATRX 

Exon 9, Amplicon 9A M13F9A-ATRX gagttttgttgggaata 94ºC10'35X(94ºC30''56,9ºC30''72ºC30'')72ºC7'4º 735   
M13R9A-ATRX ctttatgctctttggt   

Exon 9, Amplicon 9B M13F9B-ATRX caaattgtaatggaga 94ºC10'35X(94ºC30''56,9ºC30''72ºC30'')72ºC7'4º 813   
M13R9B-ATRX caggagtgagtttaaca   

Exon 9, Amplicon 9C M13F9C-ATRX gaagatttagacatgga 94ºC10'35X(94ºC30''56,9ºC30''72ºC30'')72ºC7'4º 914   
M13R9C-ATRX gaagactcagactgggt   

Exon 9, Amplicon 9D M13F9D-ATRX tcaaaattcagattctga 94ºC10'35X(94ºC30''56,9ºC30''72ºC30'')72ºC7'4º 960   
M13R9D-ATRX cagttgttccattctta   
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Exon 9, Amplicon 9E 
M13F9E-ATRX ccttcagactttaaga 

94ºC10'35X(94ºC30''56,9ºC30''72ºC30'')72ºC7'4º 854 
  

M13R9E-ATRX gtagtaactcaagag   

Exon 27 
M13F27 cctctgaggtggcattct 

94ºC10'35X(94ºC30''55ºC30''72ºC30'')72ºC7'4º 489 
  

M13R27 ccatgttgtaaacctc   

Exon 35 M13F35 gatcttactaactggt 94ºC10'35X(94ºC30''55ºC30''72ºC30'')72ºC7'4º 543   
M13R35 gttctgttaagtcattga   

CBX2 Exon 1+2 M13F1 cgcacgggatttgggca 94ºC10'35X(94ºC30''61,1ºC30''72ºC30'')72ºC7'4º 493   
M13R2 ccgctctgcccgcgggc   

DHH Exon 3  M13F3 ggaaaattgtgttgtccatga 94ºC10'35X(94ºC30''51ºC30''72ºC30'')72ºC7'4º 873 DMSO (10%) 
M13R3 cctaagccaggcatagccccat 

ZFPM2 

Exon 8, Amplicon 8A  M13F8A ctctaggagtgaaaatgga 94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 963   
M13R8A ccttcccatttggccca   

Exon 8, Amplicon 8B M13F8B gctgctcattctgctgatcct 94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 995   
M13R8B ccttgcagggttgctaggt   

Exon 8, Amplicon 8C  
M13F8C ggcccacaagcagaatttct 

94ºC5'35X(94ºC30''65ºC30''72ºC30'')72ºC7'4º 877 
  

M13R8C gataccaaaggtgactga   

KISS1 Exon 3 
M13F3 ggatgggatgacaggaggt 

95ºC5'35X(95ºC30''58,9ºC30''72ºC30'')72ºC7'4º 549 
  

M13R3 gcagaccacacgtcagtga   

KISS1R Exon 2 
M13F2 cactcggaccaaggtg 

94ºC5'35X(94ºC30''55,9ºC30''72ºC30'')72ºC7'4º 443 
  

M13R2 ccagcttctgagtgcatct   

CYP11B1 Exon 3+4 
M13F3 ccagggcccccagtcagc 

94ºC10'35X(94ºC30''61,1ºC30''72ºC30'')72ºC7'4º 750 
  

M13R4 cctccattccccactggg   

ESR2 
Exon 2 

M13F2 gcaatgaagagatgaatga 
94ºC10'35X(94ºC30''58ºC30''72ºC30'')72ºC7'4º 770 DMSO (10%) M13R2 ctatgtaattaatacaat 

Exon 5 M13F5-ESR2 gctagtacggtcacgacca         94ºC5'35X(94ºC30''63.8ºC30''72ºC30'')72ºC7'4º 604   
M13R5-ESR2 ggtatgccaagacagaagga   

SOX3 
Exon 1, Amplicon 1A M13F1A-SOX3 cctccgggttgcgaggggc 94ºC10'35X(94ºC30''53,2ºC30''72ºC30'')72ºC7'4º 895   

M13R1A-SOX3 ggcccagccgttcacgt   

Exon 1, Amplicon 1B M13F1B-SOX3 cgccgactggaaactgct 94ºC10'35X(94ºC30''53,2ºC30''72ºC30'')72ºC7'4º 916   
M13R1B-SOX3 ggcaagcaaagctaaaca   

SOX9 Exon 3 M13F3-SOX9 gggagggtccccggagggt 94ºC5'35X(94ºC30''60ºC30''72ºC30'')72ºC7'4º 802 DMSO (10%) 
M13R3-SOX9 ggtgaaggtggagtaga 

RET Exon 10 F10-RET ggaggctgagtgggctacgt 94ºC10'35X(94ºC30''60ºC30''72ºC60'')72ºC7'4º 240   
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R10-RET caatttcctcccttgttggga   

Exon 11 
M13F11-RET ccatgaggcagagcata 

94ºC10'35X(94ºC30''60ºC30''72ºC60'')72ºC7'4º 474 
  

M13R11-RET ggcagaacacaggcctcgt   

Exon 13 
M13F13-RET ctctctgtctgaacttgggc 

94ºC10'35X(94ºC45''64ºC45''72ºC45'')72ºC7'4º 239 
  

M13R13-RET tcaccctgcagctggcctta   

Exon 14 
M13F14-RET cacccccttactcattgggt 

94ºC10'35X(94ºC30''60ºC30''72ºC60'')72ºC7'4º 487 
  

M13R14-RET ggtgagccatagcatggca     

Exon 15 F15-RET gtctcaccaggccgctac 94ºC10'35X(94ºC45''64ºC45''72ºC45'')72ºC7'4º 289   
R15-RET gtgcacctgggatccc   

Exon 16 M13F16-RET ccagcactgatgagggatgt 94ºC10'35X(94ºC45''64ºC45''72ºC45'')72ºC7'4º 673   
M13R16-RET ccactacatgtataagggtgt   

M13F tail: tgtaaaacgacggccagt; M13R tail: caggaaacagctatgacc 
 
PCR conditions and used primers in the CNV detection by QMPSF 

Gene  Amplicon 

name Primers Name Primers sequence (5' to 3') Conditions Amplicon size 

(pb) 
Others 

(DMSO…) 

SRD5A2 

Exon 1 
M13F1-SRD5A2 gcagcggccaccggcgagg 

94°C5'30X(94°45''63.5°45''72°45'')72°7'4° 376  
M13R1FAM-SRD5A2 /56-FAM/agcagggcagtgcgctgcact 

Exon 2 
M13F2-SRD5A2 tgaatcctaacctttcctccc 

94°5'25X(94°45''57°45''72°45'')72°7'4° 253  
M13R2FAM-SRD5A2 /56-FAM/agctgggaagtaggtgagaa 

Exon 3 
M13F3-SRD5A2 tgtgaaaaaagcaccacaatct 

94°5'25X(94°45''57°45''72°45'')72°7'4° 226  
M13R3FAM-SRD5A2 /56-FAM/agcggaagagtgagagtctgg 

Exon 4 
M13F4-SRD5A2 tgattgaccttccgattctt 

94°5'25X(94°45''57°45''72°45'')72°7'4° 250  
M13R4FAM-SRD5A2 /56-FAM/agcagaagaagaaagctacgt 

Exon 5 
M13F5-SRD5A2 tcagccactgctccattatat 

94°5'25X(94°45''57°45''72°45'')72°7'4° 184  
M13R5FAM-SRD5A2 /56-FAM/agcagggcagtgcgctgcact 

AR Exon 2 
F2-AR gcctatttctgccattca 

94°5'24X(94°20''54°20''72°20'')72°10'4° 288 DMSO (10%) 
M13R2FAM-AR /56-FAM/agccctgggccctgaaaggt 
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Genetic markers and primer pairs used to amplify by PCR the surroundings of the NR0B1 gene. 

Name Location Primers sequence (5' to 3') Product 
size PCR conditions 

DXS1218 X:29155323-

29155589 

/5’ 6-

FAM/AAGACTAAGATTGTTTCAGTTTGTT 255 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 

GTGCTTTTGTAATTTTTACCCA 

DXS8039 X:30218272-

30218424 
/5’ 6-FAM/AAACTAACAAACCTCTAGCCAG 147 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 

TTCATGTCCATGTGAACAG 

DXS1083 X:29977924-

29,978,270 

/5’ 6-

FAM/ATCACACTAGCTACATTTTAAGTTC 131 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 

TCTGGAAGTCTAAGTCAATATCATC 

DXS992 X:30750317-

30750519 
/5’ 6-FAM/AAGAATGGGACTCCATTTCA 201 94ºC5'35X(94ºC30''55,7ºC30''72ºC30'')72ºC7'4º 

GCTTATCCACTGGGACAGAA 

PCR, Polymerase Chain Reaction 

 
Primers used in the site-directed mutagenesis. 

Gene  Primers Name Primers sequence (5' to 3') 

GATA4 
c.677T Forward tcgcctccagagcagggtggacatagc 

c.677T Reverse gctatgtccaccctgctctggaggcga 

LHCGR 

c.757C Forward cattcagaggctaattgccacgtcaccctattctctaaaaaaattg 

c.757C Reverse caatttttttagagaatagggtgacgtggcaattagcctctgaatg 

c.1660T Forward gctacattaaaatttattttgcagtttgaaacccagaattaatggctacc 

c.1660T Reverse tggtagccattaattctgggtttcaaactgcaaaataaattttaatgtag 

NR5A1 

c.88T>A Forward cttgcagctctcactcgtgagcagtccgt 

c.88T>A Reverse acggactgctcacgagtgagagctgcaag 

c.902G>A Forward gcagctcgctccagtagttctgcagcagc 

c.902G>A Reverse gctgctgcagaactactggagcgagctgc 

c.71A>T Forward gtgtccggctacctctacggactgctc 

c.71A>T Reverse gagcagtccgtagaggtagccggacac 
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Supplementary data 7. Preparation of the solutions used in the different methods.  

 

1 Agarose gel electrophoresis procedure 
1.1 TAE 1X buffer: Dilute 80mL of TAE 50X buffer in 4L of bidistilled water. 

1.2 5% agarose gel in TAE1X: In a 500mL bottle, mix 6g of agarose in 400mL of TAE1X. Melt in the 

microwave. 

 

2 Targeted gene sequencing panel procedure 
2.1 Fresh Melt-Off Solution: Mix 280μL Tween Solution and 40μL NaOH 1M. 

 
3 aCGH procedure 
3.1 10X Blocking Agent: Add 1350µL Milli-Q water to the vial containing the 10x aCGH.  

3.2 Blocking Agent. Leave at RT for 60 minutes.  
 

4 Capillary Sanger sequencing 
4.1 3M Sodium Acetate: Weigh 24.6g CH3COONa and mix with 80ml Milli-Q water.Adjust the volume 

to 100ml Milli-Q water and mix.  

4.2 125mM EDTA solution: Weight 4.65g EDTA and mix with 80ml Milli-Q water. Add NaOH solution to 

adjust the solution pH to 8.0. Adjust the volume to 100ml Milli-Q water and mix.  

 

5 FISH procedure  
5.1 1X PBS: Add 5 tablets of PBS to 1L of MilliQ water and mix. 
5.2 57mM KCL: Add 559g KCL to 100mL MilliQ water and mix. Preheat at 37° before use. 
5.3 Carnoy solution: Mix 10mL acetic acid and 30mL methanol. 
5.4 Supplemented RPMI medium: Mix 4.5mL RPMI culture medium, 500μL FBS and 50 μL 

phytohemagglutinin. 
5.5 20X SSC solution: Mix 132g 20X SCC in 400ml Milli-Q water. Adjust pH to 5.3. Add Milli-Q water to 

a final volume of 500mL and filter through a 0.45µm filtration unit. 
5.6 2X SSC/0.1% NP-40 wash solution: Mix 10mL 20X SCC solution 85mL Milli-Q water. Add 100µL NP-

40 and mix. Adjust pH to 7.0. Add Milli-Q water to a final volume of 100mL. 
5.7 Denaturation solution: Mix 49mL formamide, 7mL 20X SCC and 14mL Milli-Q water. Adjust pH to 7-

8.0. 
5.8 Preparation of 0.4X SCC/0.3% NP-40 Wash solution: Mix 2mL 20X SCC, 90mL Milli-Q water and 

300µL NP-40. Adjust pH to 7-8.0. Add milli-Q water to a final volume of 100mL. 
 

6 Cleaning of the slides for FISH procedure 
• Pour 50mL acetone 100%, hydrochloric acid 1%, ethanol 70% and Milli-Q water in four different 

Coplin jars. 

• Insert a slide in 50mL acetone 100%. 

• Transfer the slide to hydrochloric acid 1% for 10 minutes. 

• Transfer the slide to ethanol 70% for 10 minutes. 

• Transfer the slide to Milli-Q water for 5 minutes.  

• Dry the slide at RT and then refresh at 4°C for 15 minutes. Slides could be stored at 4°C. 

 

7 Transformation of E. coli competent cells 
7.1 LB liquid medium: In a 1L autoclave bottle, add 25g LB broth powder to 1L ultrapure water. 

Autoclave on liquid cycle (121°C) for 15 minutes. Cool to 60°C for 10 minutes before use. Store at 

RT until use. 

7.2 LB agar plates: In a 1L autoclave bottle, add 40g LB agar powder to 1L ultrapure water. Autoclave 

on liquid cycle (121°C) for 15 minutes. Cool to 60°C for 10 minutes before use. Add 300µL 

ampicillin (100mg/ml) and mix. Pour out the media into petri dishes. Cool to RT and store them 

upside room at 4ºC. 

7.3 Transformation Storage Solution (TSS) Buffer: In a 200mL bottle mix 5mL PEG 50%, 25mL DMSO, 

0,5mL MgCl2 1M, 0,5mL MgSO4 and 41,5mL bidistilled water for a total volume of 50mL.. 

7.4 KCM 5x Buffer: In a 200mL bottle mix 25mL KCl 1M, 7,5mL CaCl2 1M, 12,5mL MgCl2 1M and 5mL 

bidistilled water for a total volume of 50mL. 
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8 Cell lines and culture  
8.1 Supplemented MEM media (10% FBS, 1% L-glutamin, 1% Pen/strep): Remove 50mL of the MEM 

media bottle. Add 50mL FBS, 5mL L-glutamin and 5mL Penicillin-Streptomycin to the MEM bottle. 

Mix by inverting several times. 
8.2 Supplemented DMEM media (10% FBS, 1% Pen/strep, 1% Sodium pyruvate): Remove 50mL of the 

DMEM media bottle. Add 50mL FBS, 5mL Penicillin-Streptomycin and 5mL sodium pyruvate. Mix by 

inverting several times. 
 

9 Western-blot  
9.1 Protease Inhibitor cocktail: In a 1.5mL Eppendorf dissolve 1 tablet in 1mL bidistilled water. 

9.2 Protein Lysis Buffer 1X: In a 1L bottle mix 146mg EDTA, 1230mg Tris, 4350mg NaCl and 5g Triton X-

100. Add bidistilled water for a total volume of 50mL. 

9.3 MOPS 1X Buffer: Reconstitute the bag of powder in 1000 ml bidistilled water to make 1X running 

buffer. 

9.4 Transfer Buffer: Reconstitute the bag of powder in 900 ml bidistilled water and 100mL ethanol.  

9.5 PBS buffer: In a 1L bottle, prepare 800mL bidistilled water and add 8 g of NaCl, 200mg KCl, 1.44g 

Na2HPO4, 240 mg KH2PO4 and bidistilled water up to 1L 

9.6 Blocking buffer: In a 100mL bottle mix 2,5g milk with 50mL PBS buffer. 

9.7 Washing buffer: In a 200mL bottle mix 0.05mL Tween20 with 100mL PBS buffer. 

9.8 Primary antibody dilution: In a 15mL falcon mix 5mL washing buffer with 0.05g BSA. 

9.9 Monoclonal Anti-HA antibody produced in mouse: Add 1mL bidistilled water to a final 

concentration of 100μg/mL. 

9.10  IRDye® 800CW Goat anti-Mouse IgG (H + L): Add 1mL bidistilled water to a final concentration of 

100μg/mL. 

9.11  IRDye® 680RD Donkey anti-Mouse IgG (H + L): Add 1mL bidistilled water to a final concentration of 

100μg/mL. 

9.12  0.5X Odyssey Blocking Buffer: In a 50mL falcon mix 10mL Odyssey Blocking Buffer 1X with 10mL 

bidistilled water. 

9.13  Tris buffered saline with Tween® 20 (TBS-T) 1X Buffer: Dissolve 1 tablet in 500 mL bidistilled water. 
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Supplementary data 8. Coverage and localization of the regions amplified in the targeted gene panel. 

 

 Chromosome Bases  

Gene Number Start End Total Covered Missed Coverage 
(%) 

Number of 
amplicons 

AMH.1 chr19 2249310 2249746 436 418 18 95.9 2 

AMH.2 chr19 2250336 2250478 142 142 0 100 1 

AMH.3 chr19 2250649 2250760 111 111 0 100 1 

AMH.4 chr19 2250840 2251007 167 151 16 90.4 2 

AMH.5 chr19 2251098 2252072 974 542 432 55.6 3 

AMHR2 chr12 53817613 53825343 2413 2413 0 100 14 

AR chrX 66763848 66950486 11288 11288 0 100 43 

ATRX chrX 76760330 77041780 12970 12925 45 99.7 66 

BMP15 chrX 50653709 50659666 1362 1362 0 100 6 

CBX2 chr17 77751951 77761474 5246 5235 11 99.8 24 

CYP11A1 chr15 74630077 74660106 2928 2928 0 100 17 

CYP11B1.1 chr8 143960991 143961262 271 271 0 100 2 

CYP11B1.2 chr8 143960441 143960603 162 162 0 100 2 

CYP11B1.3 chr8 143958423 143958639 216 168 48 77.8 2 

CYP11B1.4 chr8 143958093 143958301 208 208 0 100 2 

CYP11B1.5 chr8 143957655 143957818 163 163 0 100 2 

CYP11B1.6 chr8 143957122 143957294 172 172 0 100 2 

CYP11B1.7 chr8 143956646 143956728 82 82 0 100 2 

CYP11B1.8 chr8 143956365 143956570 205 205 0 100 3 

CYP11B1.9 chr8 143954670 143955907 1237 1114 123 90.1 6 

CYP17A1 chr10 104590262 104597315 2270 2270 0 100 12 

CYP19A1 chr15 51500228 51630820 5064 5064 0 100 24 

CYP21A2.1 chr6 32006042 32006401 359 359 0 100 3 

CYP21A2.2 chr6 32006497 32006593 96 96 0 100 2 

CYP21A2.3 chr6 32006858 32007025 167 167 0 100 2 

CYP21A2.4 chr6 32007133 32007234 101 101 0 100 1 

CYP21A2.5 chr6 32007315 32007424 109 109 0 100 2 

CYP21A2.6 chr6 32007522 32007616 94 94 0 100 1 

CYP21A2.7 chr6 32007782 32007988 206 206 0 100 1 

CYP21A2.8 chr6 32008183 32008362 179 179 0 100 1 

CYP21A2.9 chr6 32008445 32008549 104 104 0 100 2 

CYP21A2.10 chr6 32008637 32009447 810 662 148 81.7 5 

DHH chr12 49483180 49488627 2084 2084 0 100 11 

DMRT1 chr9 841664 969115 2472 2469 3 99.9 12 

DMRT2 chr9 1050328 1057579 3135 3116 19 99.4 15 

ESR1 chr6 152011605 152424433 7568 7568 0 100 32 

ESR2 chr14 64693725 64805293 4519 4501 18 99.6 22 

FGF9 chr13 22245189 22278665 4680 4525 155 96.7 19 

FOXL2 chr3 138663040 138666007 2967 2863 104 96.5 13 

FOXO3.1 chr6 108882069 108883032 963 528 435 54.8 3 

FOXO3.2 chr6 108984658 108986092 1434 1434 0 100 6 

FOXO3.3 chr6 109001030 109005971 4941 4941 0 100 18 

FSHR chr2 49189270 49381691 3274 3274 0 100 17 

GATA4.1 chr8 11561713 11561813 100 100 0 100 1 

GATA4.2 chr8 11565365 11566437 1072 673 399 62.8 3 

GATA4.3 chr8 11606428 11606602 174 174 0 100 1 

GATA4.4 chr8 11607620 11607750 130 130 0 100 1 

GATA4.5 chr8 11612555 11612650 95 95 0 100 1 
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GATA4.6 chr8 11614440 11614596 156 156 0 100 1 

GATA4.7 chr8 11615802 11617511 1709 1686 23 98.7 7 

HARS2 chr5 140070985 140078928 3260 3260 0 100 17 

HSD17B3 chr9 98997563 99064459 1684 1684 0 100 12 

HSD17B4 chr5 118788112 118878055 4188 4188 0 100 30 

HSD3B2 chr1 119957528 119965687 2099 2099 0 100 9 

INHA chr2 220436928 220440460 1531 1531 0 100 6 

INSL3 chr19 17927296 17932408 1050 1050 0 100 8 

KISS1 chr1 204159443 204165644 864 864 0 100 4 

KISS1R chr19 917316 921040 1875 1842 33 98.2 12 

LHCGR chr2 48913887 48982905 3643 3616 27 99.3 20 

MAMLD1 chrX 149531519 149682473 5260 5238 22 99.6 24 

MAP3K1.1 chr5 56111401 56111882 481 453 28 94.2 3 

MAP3K1.2 chr5 56152427 56152577 150 150 0 100 1 

MAP3K1.3 chr5 56155534 56155742 208 208 0 100 2 

MAP3K1.4 chr5 56160561 56160761 200 197 3 98.5 1 

MAP3K1.5 chr5 56161167 56161283 116 116 0 100 1 

MAP3K1.6 chr5 56161656 56161804 148 148 0 100 2 

MAP3K1.7 chr5 56167737 56167858 121 121 0 100 1 

MAP3K1.8 chr5 56168468 56168549 81 81 0 100 2 

MAP3K1.9 chr5 56168652 56168832 180 180 0 100 3 

MAP3K1.10 chr5 56170859 56171137 278 278 0 100 2 

MAP3K1.11 chr5 56174807 56174928 121 121 0 100 1 

MAP3K1.12 chr5 56176538 56176629 91 91 0 100 1 

MAP3K1.13 chr5 56176908 56177099 191 191 0 100 1 

MAP3K1.14 chr5 56177397 56178693 1296 1296 0 100 5 

MAP3K1.15 chr5 56179354 56179506 152 152 0 100 1 

MAP3K1.16 chr5 56180491 56180653 162 162 0 100 1 

MAP3K1.17 chr5 56181759 56181890 131 116 15 88.5 1 

MAP3K1.18 chr5 56183205 56183347 142 142 0 100 1 

MAP3K1.19 chr5 56184053 56184184 131 131 0 100 1 

MAP3K1.20 chr5 56189358 56191979 2621 2621 0 100 10 

NR0B1 chrX 30322513 30327520 1685 1685 0 100 7 

NR5A1 chr9 127243489 127269724 3445 3417 28 99.2 20 

POR.1 chr7 75544397 75544497 100 100 0 100 1 

POR.2 chr7 75583307 75583498 191 191 0 100 1 

POR.3 chr7 75601731 75601779 48 48 0 100 1 

POR.4 chr7 75608767 75608899 132 132 0 100 2 

POR.5 chr7 75609645 75609806 161 161 0 100 1 

POR.6 chr7 75609807 75610365 558 558 0 100 3 

POR.7 chr7 75610366 75610490 124 105 19 84.7 1 

POR.8 chr7 75610829 75610926 97 97 0 100 1 

POR.9 chr7 75611540 75611642 102 102 0 100 2 

POR.10 chr7 75612838 75612961 123 123 0 100 2 

POR.11 chr7 75613056 75613174 118 96 22 81.4 1 

POR.12 chr7 75614095 75614375 280 280 0 100 3 

POR.13 chr7 75614376 75614527 151 121 30 80.1 1 

POR.14 chr7 75614897 75615168 271 271 0 100 2 

POR.15 chr7 75615237 75615394 157 157 0 100 2 

POR.16 chr7 75615473 75615559 86 86 0 100 2 

POR.17 chr7 75615560 75615654 94 94 0 100 1 

POR.18 chr7 75615655 75616173 518 489 29 94.4 3 

PSMC3IP chr17 40724302 40729874 2380 2380 0 100 14 
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RSPO1 chr1 38076925 38100620 3539 3535 4 99.9 17 

RXFP2 chr13 32313653 32377034 3703 3703 0 100 21 

SOX3 chrX 139585126 139587250 2124 2124 0 100 10 

SOX9 chr17 70117135 70122585 4084 4084 0 100 18 

SRD5A2 chr2 31749630 31806065 2695 2695 0 100 12 

SRY chrY 2654870 2655807 937 937 0 100 4 

STAR chr8 38000192 38008625 3045 3013 32 98.9 15 

TSPYL1 chr6 116595996 116601305 5309 5223 86 98.4 20 

WNT4 chr1 22443772 22469544 4155 3973 182 95.6 20 

WT1 chr11 32409296 32457106 3864 3864 0 100 22 

WWOX chr16 78133301 79246589 3373 3373 0 100 19 

ZFPM2 chr8 106331121 106816792 4880 4880 0 100 21 

Mean       98.5 874 

Chr, chromosome 
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Supplementary data 9. Targeted regions not covered according to the Ion Ampliseq Designer tool. 

 

Gene Locus Missed bases 
(bp) 

Targeted region in 
the gene 

AMH Chr19:2249310-2249746 18 Exon 1-Intron 1 

AMH Chr19:2250840-2251007 16 Exon 4  

AMH Chr19:2251098-2252072 432 Exon 5 

ATRX ChrX:76761410-76761454 45 Exon 35 NC 

CBX2 Chr17:77751952-77751962 11 Exon 1 NC 

CYP11B1 Chr8:143958423-143958639 48 Exon 3  

CYP11B1 Chr8:143954670-143955907 123 Exon 9 NC 

CYP21A2 Chr8:32008637-32009447 148 Exon 10  

DMRT1 Chr9:842215-842217 3 Intron 1 

DMRT2 Chr9:1052002-1052020 19 Exon 2 

ESR2 Chr14:64805031-64805048 18 5'UTR  

FGF9 Chr13:22245393-22245547 155 5'UTR 

FOXL2 Chr3:138664143-138664246 104 Exon 1 NC 

FOXO3 Chr6:108882069-108883032 435 Exon 1 

GATA4 Chr8:11565365-11566437 399 Exon 2 

GATA4 Chr8:11615802-11617511 23 Exon 7 NC 

KISS1R Chr19:917503-917518 16 Exon 1 

KISS1R Chr19:919984-919990 7 Exon 4 

KISS1R Chr19:920265-920274 10 Exon 5 

LHCGR Chr2:48925927-48925953 27 Intron 8-Exon 9 

MAMLD1 ChrX:149680802-149680823 22 Exon 5 

MAP3K1 Chr5:56111401-56111882 28 Exon 1 

MAP3K1 Chr5:56160561-56160761 3 Exon 4-intron 4 

MAP3K1 Chr5:56181759-56181890 15 Exon 17-intron 17 

NR5A1 Chr9:127243914-127243941 28 Exon 9 NC 

POR Chr7:75610366-75610490 19 Exon 6 

POR Chr7:75613056-75613174 22 Exon 10-intron 10 

POR Chr7:75614376-75614527 30 Exon 12 

POR Chr7:75615655-75616173 29 Exon 16 

RSPO1 Chr1:38100365-38100368 4 Exon 1 NC 

STAR Chr8:38000779-38000789+ Chr8:38001112-38001132 32 3'UTR 

TSPYL1 Chr6:116596977-116597001+ Chr6:116599093-116599153 86 Exon 1 NC, 3'UTR 

WNT4 Chr1:22469363-22469544 182 5'UTR-exon 1 

Chr, chromosome; NC, non-coding; UTR, untranslated region
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Supplementary data 10. Example of the quality values achieved after the NGS. 
 
Key quality metrics achieved in the patients harbouring a genetic variant. 

Case Mapped reads On target 
(%) 

 Coverage 
depth 

(Average) 

Uniformity 
(%) 

Base coverage 
at 20x (%) 

 
Case Mapped reads On target 

(%) 

 Coverage 
depth 

(Average) 

Uniformity 
(%) 

Base coverage at 
20x (%) 

GN0011 423106 93.1 374.4 84.4 94.2  GN0158 226113 95.3 204.1 90.0 93.5 
GN0020 348581 95.0 306.0 89.4 94.6  GN0163 260668 95.1 243.1 89.2 93.7 
GN0028 201246 93.6 195.0 89.6 93.1  GN0164 282266 94.9 260.5 89.8 94.1 
GN0034 176079 94.1 172.3 87.6 89.8  GN0171 243138 92.6 232.5 89.7 93.3 
GN0046 258515 94.5 253.7 88.8 93.6  GN0182 255763 95.0 238.4 89.6 93.7 
GN0051 183729 95.8 169.7 90.5 93.8  GN0185 321454 95.9 302.1 89.8 94.4 
GN0070 227562 94.8 198.7 89.6 93.4  GN0186 292495 95.0 274.0 89.9 94.1 
GN0075 345109 95.4 304.4 90.4 94.9  GN0187 243457 95.1 227.6 89.9 93.5 
GN0090 235797 95.1 216.5 90.7 94.6  GN0189 239962 95.2 222.1 89.7 93.4 
GN0096 197700 94.4 178.5 90.2 93.6  GN0194 265677 95.2 249.2 89.8 93.8 
GN0118 160389 95.1 149.0 90.6 92.9  GN0198 220407 95.8 202.7 87.2 91.3 
GN0142 385663 94.7 338.6 90.1 94.9  GN0199 453904 95.3 476.4 88.5 94.7 
GN0147 297298 94.9 264.2 89.1 93.8  GN0203 548956 95.2 575.7 89.6 94.7 
GN0150 223689 94.7 205.4 87.9 94.1  GN0207 416516 95.6 434.7 88.4 94.2 
GN0154 316588 92.7 304.8 59.6 94.5  OT0567 359366 96.0 370.3 89.8 95.3 
GN0155 133276 93.7 118.5 87.9 89.8  RE0045 113944 95.0 104.5 89.1 89.6 
GN0156 214614 94.9 197.9 89.3 92.9  Mean 273756.7 94.7 258.3 88.4 93.5 
GN0157 234703 93.9 216.5 90.2 93.1        
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Quality metrics of the positive controls included in the panel. 

Case Run Mapped reads On target 
(%) 

 Coverage depth 
(Average) 

Uniformity 
(%) 

Base coverage at 20x 
(%) 

GN0012 Run 8 339833 94.9 316.7 89.2 94.3 
GN0038 Run 2 160825 94.3 145.6 90.5 92.6 
GN0038 Run 5 411785 95.2 404.4 89.6 94.9 
GN0041 Run 3 231384 95.0 201.9 87.4 92.6 
GN0041 Run 6 284439 91.7 270.2 89.9 94.1 
GN0042 Run 4 291990 92.7 280.3 90.0 94.6 
GN0109 Run 3 166327 95.9 148.8 89.6 91.9 
GN0111 Run 9 315034 95.6 328.6 88.4 93.9 
GN0119 Run 10 376231 95.7 406.6 90.0 94.8 
GN0123 Run 10 452078 95.1 485.7 89.7 95.3 
GN0141 Run 1 417085 94.9 384.9 88.6 95.2 
OT0327 Run 4 256903 94.1 250.2 89.8 93.5 
OT0327 Run 5 364178 95.0 363.1 89.0 94.3 
POL0285 Run 6 345955 84.8 302.1 89.1 93.5 

Sane controls Run 1 218436 94.8 201.9 91.2 94.9 
Mean  308832 93.9 299.4 89.5 94.0 
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Supplementary data 11. Amplicons not covered in most of the samples. 
 

Amplicon  Gene Locus Targeted region in the 
gene 

 Amplicon  Gene Locus Targeted region inn 
the gene 

AMPL7155526017 AR chrX: 66764106-66764373 5'UTR   AMPL7155127628 LHCGR chr2:48914044-48914364 Exon 1 NC 

AMPL7154768614 AR chrX: 66766558-66766723 Exon 1, intron 1  AMPL7153405652 MAMLD1 chrX:149671675-149671905 Intron 3  

AMPL7155525439 AR chrX: 66948258-66948258 Exon 8 NC  AMPL7158500630 MAMLD1 chrX:149681097-149681375 Exon 5  

AMPL7155525424 AR chrX:66944026-66944026 Exon 8 NC  AMPL7154592236 MAP3K1 chr5:56111784-56112084 Exon 1, intron 1 

AMPL7154768613 AR chrX:66766308-66766568 Exon 1  AMPL7154592239 MAP3K1 chr5:56111315-56111589 5'UTR, exon 1 

AMPL7155435957 ATRX chrX:76763526-76763843 Exon 35, exon 35 NC  AMPL7153033277 MAP3K1 chr5:56168711-56168877 Exon 9, intron 9 

AMPL7156609654 ATRX chrX: 76937989-76938290 Exon 9  AMPL7154591595 NR5A1 chr9:127265626-127265961 Intron 1, exon 2 

AMPL7154463818 ATRX chrX:76845183-76845498 Intron 26 to intron 27  AMPL7157234687 RSPO1 chr1:38077119-38077412 Exon 7 NC, 3'UTR 

AMPL7154592293 CBX2 chr17:77752094-77752403 Exon 1 to intron 2  AMPL7157234693 RSPO1 chr1:38097814-38098128 Intron 1 to intron 2 

AMPL7158539628 CYP11A1 chr15:74657976-74658296 Intron 1   AMPL7154809599 SOX3 chrX:139585781-139586094 Exon 1, exon 1 NC 

AMPL7154501291 CYP11B1 chr8:143958112-143958434 Intron 3, exon 4  AMPL7154809601 SOX3 chrX:139586276-139586598 Exon 1 

AMPL7156017306 CYP21A2 chr6:32005824-32006152 5'UTR, exon 1 NC  AMPL7158500104 SOX9 chr17: 70116917-70117240 5'UTR, exon 1 NC 

AMPL7158500645 DHH chr12:49483672-49483813 Exon 3  AMPL7154592302 SOX9 chr17:70120012-70120345 Exon 3 

AMPL7155128017 ESR2 chr14:64749208-64749531 Exon 2, intron 2  AMPL7157408783 SOX9 chr17:70119859-70120179 Exon 3 

AMPL7156599351 ESR2 chr14:64805252-64805452 5'UTR  AMPL7158539633 TSPYL1 chr6:116596344-116596668 3'UTR 

AMPL7154373786 FOXO3 chr6:108881843-108882156 5'UTR, exon 1 NC  AMPL7158539637 TSPYL1 chr6:116597283-116597577 3'UTR 

AMPL7158612785 FOXO3 chr6:109005657-109005971 Exon 3 NC  AMPL7153146546 WNT4 chr1:22469178-22469362 Exon 1, intron 1 

AMPL7154859626 FSHR chr2:49190282-49190576 Exon 10  AMPL7153218849 WT1 chr11:32456878-32457093 Exon 1 NC, exon 1 

AMPL7157052817 KISS1 chr1:204159383-204159693 Exon 3, 3'UTR  AMPL7154427779 WT1 chr11:32456429-32456759 Exon 1 

AMPL7157261487 KISS1R chr19:918338-918653 Intron 1, exon 2  AMPL7156733712 ZFPM2 chr8:106813199-106813518 Intron 7, exon 8 

AMPL7157052823 KISS1R chr19:920817-920968 Exon 5 NC  
     

Chr, chromosome; NC, non-coding; UTR, untranslated region       
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Supplementary data 12. Regions amplified by PCR after NGS. 
 

Gene Locus Targeted region in the gene  Gene Locus Targeted region in the gene 
AMH Chr19:2249310-2249746 Exon 1  LHCGR Chr2:48925927-48925953 Exon 9 
AMH Chr19:2250840-2251007 Exon 4  MAMLD1 ChrX:149680802-149680823 Exon 5 
AMH Chr19:2251098-2252072 Exon 5  MAMLD1 chrX:149681097-149681375 Exon 5 

AR chrX: 66766558-66766723 Exon 1  MAP3K1 Chr5:56111401-56111882 Exon 1 
AR chrX:66766308-66766568 Exon 1  MAP3K1 Chr5:56160561-56160761 Exon 4 

ATRX chrX:76763526-76763843 Exon 35  MAP3K1 Chr5:56181759-56181890 Exon 17 
ATRX chrX: 76937989-76938290 Exon 9  MAP3K1 chr5:56111784-56112084 Exon 1 
ATRX chrX:76845183-76845498 Exon 27  MAP3K1 chr5:56111315-56111589 Exon 1 
CBX2 chr17:77752094-77752403 Exon 1, exon 2  MAP3K1 chr5:56168711-56168877 Exon 9 

CYP11B1 Chr8:143958423-143958639 Exon 3  NR5A1 chr9:127265626-127265961 Exon 2 
CYP11B1 chr8:143958112-143958434 Exon 4  POR Chr7:75610366-75610490 Exon 6 
CYP21A2 Chr8:32008637-32009447 Exon 10  POR Chr7:75613056-75613174 Exon 10 

DHH chr12:49483672-49483813 Exon 3  POR Chr7:75614376-75614527 Exon 12 
DMRT2 Chr9:1052002-1052020 Exon 2  POR Chr7:75615655-75616173 Exon 16 

ESR2 chr14:64749208-64749531 Exon 2  SOX3 chrX:139585781-139586094 Exon 1 
FOXO3 Chr6:108882069-108883032 Exon 1  SOX3 chrX:139586276-139586598 Exon 1 
FSHR chr2:49190282-49190576 Exon 10  SOX9 chr17:70120012-70120345 Exon 3 

GATA4 Chr8:11565365-11566437 Exon 2  SOX9 chr17:70119859-70120179 Exon 3 
KISS1 chr1:204159383-204159693 Exon 3  WNT4 Chr1:22469363-22469544 Exon 1 

KISS1R Chr19:917503-917518 Exon 1  WNT4 chr1:22469178-22469362 Exon 1 
KISS1R Chr19:919984-919990 Exon 4  WT1 chr11:32456878-32457093 Exon 1 
KISS1R Chr19:920265-920274 Exon 5  WT1 chr11:32456429-32456759 Exon 1 

KISS1R chr19:918338-918653 Exon 2  ZFPM2 chr8:106813199-106813518 Exon 8 
Chr, chromosome; NC, non-coding; UTR, untranslated region 
 



 

297 
 

Supplementary data 13. Detected number of variants detected by the Ion Reporter software. 
 

  SNVs and indels CNVs and others 

Case Variant 
calling  

p-value < 
0.001, MAF 

<0.05 

Variants 
present in 

NC 
Total Clinical 

feature  
Variant 
calling  MAPD 

Confident 
germline 

CNV 

Clinical 
feature 

GN0001 287 54 15 39 0 301 0.131 1 0 

GN0003 270 40 15 25 0 276 0.114 0 0 

GN0011 298 52 10 42 1 341 0.251 5 0 

GN0012 255 46 8 38 0 284 0.256 6 0 

GN0013 264 47 13 34 0 272 0.226 0 0 

GN0014 290 40 15 25 0 312 0.421 0 0 

GN0017 270 50 18 32 0 429 0.355 36 0 

GN0020 245 34 10 24 1 261 0.085 0 0 

GN0025 265 54 15 39 1 446 0.427 55 0 

GN0026 266 42 10 32 0 285 0.236 1 0 

GN0027 240 37 9 28 0 256 0.148 1 0 

GN0028 232 40 13 27 2 250 0.132 0 0 

GN0029 235 38 11 27 0 240 0.107 0 0 

GN0031 289 40 11 29 0 299 0.149 0 0 

GN0033 284 41 10 31 0 313 0.257 4 0 

GN0034 217 35 10 25 0 237 0.216 1 1 

GN0038 
259 44 14 30 1 261 0.244 1 0 

252 44 11 33 1 261 0.119 0 0 

GN0039 246 48 13 35 0 260 0.13 0 0 

GN0041 
248 39 9 30 0 258 0.132 1 0 

249 40 12 28 0 263 0.194 0 0 

GN0042 282 54 13 41 2 291 0.134 0 0 

GN0043 253 37 13 24 0 484 0.647 14 0 

GN0046 255 42 13 29 1 276 0.157 1 0 

GN0050 287 49 17 32 0 301 0.207 1 0 

GN0051 271 69 12 57 0 283 0.228 0 0 

GN0056 237 42 12 30 0 338 0.402 32 0 

GN0059 263 49 10 39 0 278 0.149 1 0 

GN0064 246 52 15 37 0 304 0.307 10 0 

GN0066 546 35 10 25 0 262 0.088 0 0 

GN0070 315 63 10 53 0 326 0.113 0 0 

GN0075 266 33 13 20 1 280 0.114 0 0 

GN0084 266 45 10 35 0 277 0.147 0 0 

GN0090 335 100 11 89 0 346 0.236 1 0 

GN0096 325 86 11 75 0 333 0.202 0 0 

GN0100 262 38 12 26 0 266 0.27 1 0 

GN0103 257 44 10 34 0 264 0.207 0 0 

GN0104 253 45 11 34 0 265 0.135 0 0 

GN0108 266 53 15 38 0 269 0.242 0 0 

GN0109 274 39 8 31 1 258 0.104 0 0 

GN0111 268 44 13 31 1 295 0.232 3 0 

GN0114 235 46 12 34 0 238 0.217 1 0 
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GN0118 294 74 18 56 0 295 0.157 0 0 

GN0119 269 68 8 60 0 319 0.199 7 0 

GN0122 238 41 13 28 0 257 0.207 0 0 

GN0123 250 45 13 32 1 284 0.189 3 0 

GN0124 245 39 8 31 0 255 0.179 0 0 

GN0138 280 47 17 30 0 291 0.19 0 0 

GN0141 269 43 17 26 1 310 0.323 8 0 

GN0142 262 52 11 41 1 277 0.087 0 0 

GN0144 272 52 11 41 0 300 0.255 7 0 

GN0145 271 45 9 36 0 290 0.123 2 0 

GN0147 262 46 10 36 1 282 0.15 1 0 

GN0148 284 54 15 39 0 494 0.433 80 0 

GN0150 258 49 16 33 1 310 0.409 9 0 

GN0151 239 43 11 32 0 251 0.143 1 0 

GN0152 283 41 11 30 0 294 0.141 2 0 

GN0154 253 40 13 27 1 264 0.124 0 0 

GN0155 268 52 12 40 1 266 0.224 0 0 

GN0156 284 50 10 40 1 309 0.241 4 0 

GN0157 296 74 10 64 1 320 0.248 3 0 

GN0158 338 86 14 72 0 334 0.266 2 0 

GN0160 257 46 12 34 0 267 0.131 0 0 

GN0162 281 37 11 26 0 304 0.223 4 0 

GN0163 234 33 7 26 0 264 0.259 6 0 

GN0164 234 42 8 34 1 268 0.265 3 0 

GN0167 248 39 7 32 0 270 0.251 5 0 

GN0169 272 45 11 34 0 283 0.21 1 0 

GN0171 260 47 13 34 2 270 0.213 0 0 

GN0173 268 35 7 28 0 286 0.244 5 0 

GN0174 255 44 13 31 0 269 0.206 0 0 

GN0175 275 47 9 38 0 323 0.212 4 0 

GN0176 255 43 12 31 0 266 0.223 0 0 

GN0178 256 42 17 25 0 261 0.222 0 0 

GN0179 280 51 10 41 0 297 0.205 1 0 

GN0182 298 42 10 32 0 328 0.249 5 0 

GN0183 252 39 9 30 0 286 0.173 6 0 

GN0185 242 40 10 30 1 265 0.24 3 0 

GN0186 247 50 11 39 1 270 0.258 4 0 

GN0187 249 43 10 33 0 261 0.243 2 1 

GN0189 265 48 10 38 1 285 0.257 3 0 

GN0190 288 38 10 28 0 313 0.25 4 0 

GN0191 240 32 10 22 0 273 0.244 4 0 

GN0192 268 43 11 32 0 308 0.196 7 0 

GN0194 258 46 13 33 1 281 0.259 5 0 

GN0195 279 34 10 24 0 316 0.257 6 0 

GN0196 290 45 10 35 0 214 0.172 9 0 

GN0198 265 61 13 48 2 286 0.336 0 0 

GN0199 284 44 10 34 0 323 0.205 7 0 

GN0200 259 37 10 27 0 293 0.19 8 0 
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GN0201 261 38 9 29 0 296 0.185 4 0 

GN0202 226 31 9 22 0 253 0.203 3 0 

GN0203 326 61 12 49 1 355 0.18 4 0 

GN0204 243 37 11 26 0 283 0.234 9 0 

GN0205 273 43 11 32 0 322 0.198 7 0 

GN0207 283 51 13 38 1 339 0.23 7 0 

OT0327 
264 38 11 27 0 270 0.106 1 0 

272 47 10 37 0 290 0.149 1 0 

OT0567 275 54 8 46 0 356 0.278 12 1 

POL0285 242 34 12 22 0 264 0.189 1 1 

RE0045 274 50 15 35 1 276 0.16 0 0 

NC 308     0   310 0.158   0 

Mean 269.0 46.4 11.5 34.5 0.3 292.9 0.21 4.5 0.04 

Total 27444 4688 1165 3523 34 29885   457 4 
NC, negative control. 
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Supplementary data 14. Alignment of multiple protein sequences (A, SRY; B, SF1; C, WT1; D, GATA4; E, 
WWOX; F, ESR1 and ESR2; G, DMRT2; H, ZFPM2; I, MAMLD1; .J, AR; K, LHCGR; L, STAR; M, AMH) across 
species. The altered amino acids in the different proteins are given in bold. 
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Supplementary data 15. Genetic tests in the relatives of the index case. 
 

Case Gene and variants Zygosity Family studies 
GN0004 SRY; 46,XX (SRY+) - N/A 
GN0007 SRY; c.289C>T; p.Gln97Ter Hemi Affected sister: hemi, father: mosaicism. Other relatives: wt. 
GN0009 WT1; c.1447+5G>A Het Mother: wt. 
GN0011 MAP3K1; c.2291T>G; p.Leu764Arg Het Parents and brother: wt. 
GN0012 NR5A1; c.437G>C; p.Gly146Ala Het Mother: wt. 
GN0018 AR; c.2323C>T; p.Arg775Cys Hemi N/A 
GN0020 WWOX; c.1096C>G; p.Pro366Ala Het N/A 
GN0023 SRY; 46,XX (SRY+) - N/A 
GN0024 AR; c.2086G>A; p.Asp69Asn Hemi N/A 

GN0028 
NR5A1; c.88T>A; p.Cys30Ser Het Parents and brother: wt. 
STAR; c.361C>T; p.Arg121Trp Het Father: het. Mother and brother: wt. 

GN0034 LHCGR; arr [hg19] 2p16.3(48,905,663-48,983,208)x0 Hom N/A 
GN0035 AR; c.2522G>A; Arg841His Hemi N/A 
GN0037 AR; c.2178C>G; p.Phe726Leu Hemi Mother: het. Father and sister: wt. 
GN0038 HSD17B3; c.845C>T; p.Pro282Leu Hom Mother: het.  
GN0041 AR; c.(1616+1_1617-1)_(1768+1_1767-1)del; p.(Arg539_Asp305del) Hemi Mother: het, affected sister: hemi. Father: wt. 

GN0042 
NR5A1; c.614_615insC; p.Gln206ThrfsTer20 Het Mother: wt. 

AMH; c.428C>T; p.Thr143Ile Het Mother: wt. 

GN0046 
SRD5A2; c.377A>G; p.Gln126Arg Het Father: het. Mother: wt. 

SRD5A2; c.(-1+1_1-1)_(281+1_280-1)del; p.(Met1_Arg94del). Het Parents: wt. 
GN0051 NR5A1; c.437G>C; p.Gly146Ala Het N/A 
GN0054 SRY; 46,XX (SRY+) - N/A 
GN0055 AR; c.2710G>A; p.Val904Met Hemi Mother: mosaicism. 
GN0068 LHCGR; c.1713G>T; p.Met571Ile Het Affected father: het. Mother and paternal aunts: wt. 
GN0070 NR5A1; c.437G>C; p.Gly146Ala Het N/A 

GN0075 NR5A1; c.250C>T; p.Arg84Cys Het 
Mother, brother, grandfather, maternal aunt and uncle: het. Father, 

grandmother and sister: wt. 
GN0076 AR; c.2566C>T; p.Arg856Cys Hemi Mother: het. 
GN0078 NR0B1; c.913C>T; p.Gln305Ter Hemi Cousin: hemi, aunt: het. Uncle: wt. 
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GN0080 AR; c.298insC; p.His100ProfsTer3 Hemi Mother: het. Father and sister: wt. 
GN0088 LHCGR; c.1193T>C; p.Met398Thr Het Parents: wt. 
GN0090 NR5A1; c.437G>C; p.Gly146Ala Hom N/A 
GN0091 NR0B1; c.291delC; p.Glu98ArgfsTer166 Hemi Mother: het. Father, maternal aunt and grandmother: wt. 
GN0096 NR5A1; c.437G>C; p.Gly146Ala Hom N/A 
GN0101 NR0B1; g.(?_30327014)_(30361290_?)del Hemi N/A 
GN0109 NR5A1; c.910_913delGAGC; p.Glu304CysfsTer26 Het Mother: het. Sister: wt. 
GN0111 NR5A1; c.902G>A; p.Cys301Tyr Het Mother: mosaicism. Father and Brother: wt. 
GN0112 AR; c.827delC;p.Pro276HisfsTer20 Hemi Mother: het. Father: wt. 
GN0118 NR5A1; c.437G>C; p.Gly146Ala Het N/A 
GN0119 NR5A1; c.437G>C; p.Gly146Ala Hom N/A 
GN0123 NR5A1; c.71A>T; p.His24Leu Het N/A 
GN0125 AR; c.865G>T; p.Glu289Ter Hemi N/A 
GN0132 WT1; c.1447+4C>T Het N/A 
GN0133 SRY; 46,XX (SRY+) - N/A 
GN0139 AR; c.2642T>G; p.Leu881Arg Hemi Mother: het. 
GN0141 SRY; c.391C>T; p.Pro131Ser Hemi N/A 
GN0142 DMRT2; c.1607C>T; p.Ser536Leu Het Mother: het. Other relatives: wt 
GN0146 AR; c.2473C>A; p.Gln825Lys Hemi N/A 

GN0147 
LHCGR; c.757T>C; p.Ser253Pro Hom 

N/A 
NR5A1; c.437G>C; p.Gly146Ala Het 

GN0150 WT1; c.223G>A;p.Glu75Lys Het Mother: het. 
GN0153 NR0B1; c.528C>G; p.Tyr176Ter Hemi Mother and grandmother: het. Father and aunt: wt. 
GN0154 MAMLD1; c.2009C>T; p.Thr670Ile Het N/A 
GN0155 ZFPM2; c.3077C>T, p.Ala1026Val Het N/A 

GN0156 
WT1; c.545T>A; p.Met182Lys Het 

N/A NR5A1; c.437G>C; p.Gly146Ala Hom 

GN0157 
LHCGR; c.568C>A; p.Gln190Lys Het Father: het. Mother: wt 
NR5A1; c.437G>C; p.Gly146Ala Het Father: homo. Mother: wt. 

GN0158 NR5A1; c.437G>C; p.Gly146Ala Hom N/A 
GN0159 SRY; 46,XX.ish der(X)t(X;Y)(p22.3;p11.3)(SRY) - Parents: wt. 
GN0163 NR5A1; c.437G>C; p.Gly146Ala Het N/A 
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GN0164 AR; c.2270A>G; p.Asn757Ser Hemi N/A 

GN0171 
GATA4; c.677C>T; p.Pro226Leu Het Mother: het. 
LHCGR; c.1660C>T; p.Arg554Ter Het Mother: wt. 

GN0177 AR; c.1301C>T; p.Ser434Phe Hemi N/A 
GN0182 NR5A1; c.437G>C; p.Gly146Ala Het N/A 
GN0185 STAR; c.50T>G; p.Met17Arg Het Father: het. Mother: wt. 
GN0186 SRD5A2; c.271T>G; Tyr91Asp Hom Parents: het. 
GN0187 SRY; 46,XX.ish der(X)t(X;Y)(p22.3;p11.3)(SRY) - N/A 
GN0189 AR; c.2567G>A; p.Arg856His Hemi Mother: het. Father: wt. 

GN0194 
AR; c.2323C>T; p.Arg775Cys Hemi 

N/A 
NR5A1; c.437G>C; p.Gly146Ala Het 

GN0198 
HSD17B4; c.524delC; p.Ala175GlufsTer26 Het Mother: het. Father: wt. 

ESR1; c.1781C>T;p.Thr594Met Het Mother: het. Father: wt. 
GN0199 NR5A1; c.437G>C; p.Gly146Ala Het Mother: het. Father: wt. 
GN0203 WWOX; c.184G>A; p.Gly62Arg Het N/A 
GN0207 ESR2; c.661A>G; p.Arg221Gly Het N/A 
OT0567 WT1; c.(1099-?_1551+?)del; p.(Asp367?_Leu517?)del Het Parents: wt. 

POL0274 NR0B1; c.871T>A; p.Trp291Arg Hemi Mother: het. Father: wt. 
POL0285 NR0B1; g.(?_29978097)_(30361290_?)del Hemi N/A 
POL0301 NR0B1; c.712_713delAC; p.Thr238LeufsTer60 Hemi Mother: het. Father: wt. 
RE0045 CYP17A1; c.1246C>T; p.Arg416Cys Hom Affected sister: homo. Mother, sister and niece: het. 

Hemi: hemizygosis; Het: heterozygosis; Homo: homozygosis; N/A: not available; wt: wild type. 
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Supplementary data 16. Article originated from this work 
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