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Preface

Recherché: sought out with care.

This research, as any other, is exploration, discovery in essence.

And I find that this discovery process, despite being framed as a specific project, is mostly
about ourselves. About expanding our intuition, our senses, overcoming our biases, discovering
new perspectives and new tools. Improvements that eventually lead to better ways to approach
and interpret whatever it is in front of us, in our never-ending endeavour of navigating through the
unknown.

Using a language more fitted to the present thesis, it is about improving our abilities to filter,
transform, represent and interpret the information about our context and make better decisions that
would help fulfil or reach our goals. The main perspective of this thesis being the generalist point
of view of system engineering.

A maxim of this area is that getting proper awareness of the foundations of an interesting and
relevant problem is at least as important as having techniques and tools to solve a problem. E.g.
with the objective of climbing the highest mountain, someone may try to climb the mountain that
looks higher from his/her vantage point. And discover ex-post that the climbed mountain is not he
highest but a close one. This analogy is not alien to anyone participating in some kind of research.

So expending the right energy in the problem-space identification is a must if we want to max-
imize the chances of reaching to the desired goal. The more complex and uncertain the problem,
the truer this statement. And research is arguably one of the most uncertain areas, as we said
before, ’sought out with care”.

Using this generalist point of view, this thesis attempts to provide novel solutions to: First,
solve a specific problem that will help practitioners (coaches and athletes in this case) make better
decisions for training endurance sports. Second, formalize the process behind this solution so that
we provide a framework to help guide the steps when new similar problems appear in the future.

This dissertation is the exercise of accumulating, gathering, organizing, conceptualizing, syn-

thesizing and making explicit the work done these last years.

Here it is my humble attempt to help science advance.

X1
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Abstract

In this thesis, a first fully operational virtual lactate threshold sensor was created for recreational
runners based on a simple heuristic. From the additional knowledge gained, % of maximum heart
rate at a given speed also showed the potential to be used in synergy with lactate threshold. This
way, a so demanded operational solution to help the training of recreational runners was designed.
Moreover, the Lactatus software was created to guide, ease the athletes’ lactate threshold estima-
tion process and implement the additional information in their training decision-making process.
This way, the work of this thesis is made tangible, widely available and usable to recreational
runners.

This solution grew from the creation and formalization of a strategy to apply machine learn-
ing to complex phenomena, an important contribution of this thesis. This strategy combined an
iterative meta-process and a satisficing approach to deal with the problem boundary discovery and
reduce the problem complexity. A methodology was created to define the collection and validation
of the experiments. Then, the design of the virtual lactate threshold sensor was divided into three
steps: context characterization, content representation and next step decision. The formalization
of this methodology and a modification of next step decision are novel contributions. Additionally,
several novel techniques are also used, including a standardization of the temporal axis, a mod-
ified stratified sampling and a computational algorithm to discover the inherent noise that input
and output features may contain. This way, a robust strategy and methodology is created to design
virtual sensors for problems with similar characteristics.

The application of this methodology led to an important conclusion. Concretely, Dmax in-
dividual lactate threshold’s intrinsic error analysis showed that a higher accuracy of the virtual
lactate threshold sensor was unnecessary and even non-characterizable. This fact manifested the
importance of understanding the variability of the output features with respect to the input errors.

The computational algorithm could also be used to evaluate other lactate threshold protocols
in order to quantitatively address their reliability. This may allow to make an objective cross-
comparison of the accuracy of different lactate threshold protocols, something that, to the best of
our knowledge, is not well addressed in the literature.

One of the possible limitations of this solution is that our population is drawn from local run-
ning clubs. This means that it is possible that the recreational runner population here characterized
may not be representative of recreational runners of other culture, ethnicity or different contexts.
However, one of the main advantages of providing a simple solution is that, unlike other black-box
models, it is easily reproducible and adjustable, meaning that we have set a common ground for
other researchers to evaluate the impact of our proposal. In the best case scenario, future experi-
ments done in other contexts will validate it. In the worst case scenario, we have provided an easy
to follow methodology and a strong prior that will allow to adjust the virtual lactate threshold
sensor and knowledge to individual characteristics of different populations.
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Chapter 1

Introduction

A problem well put is half solved - John Dewey

Figure 1.1: The highest Mount Aoraki looks smaller than Mount Tasman



2 Chapter 1. Introduction

1.1 Motivation of the work: the problem space

The motivation of the present project, as usually happens, was born from a social demand. Nowa-
days, there is a huge recreational runner population that wants to train for performance. These
athletes have particular interest of assessing the evolution of their performance to help optimize
their training. In this regard, features related to the intensity of exercise at aerobic/anaerobic tran-
sition are good indicators of performance in endurance sports. Lactate threshold (LT) is probably
the most used one with this purpose. In fact, current recreational runners, despite their limited
resources, pay a reasonable amount of money to estimate their LT in specialised centres (see Fig-
ure[T.2)). Thus there is a huge interest in obtaining more operational ways to do it. Despite there
are other indirect more or less operational ways to estimate it, non seemed to have achieved the

sufficient accuracy to displace the traditional non-operational ones.

Figure 1.2: Current lactate threshold determination method: invasive non-autonomous

Traditionally, training for performance has been based mainly on heuristics and good prac-
tices. Sport science, armed with the idea of applying the scientific method in the context of sport,
has tried to provide additional tools, such as the LT, to further enrich the toolbox of coaches and
athletes. Physiologists on their part, have tried to get a deep understanding about the LT phe-
nomenon, not only for sport related implications, but also because of the relevance that physical

performance measurements have in human health.

However, as in many other scientific areas, crossing the line between theoretical research and
practice is always difficult. In this regard, this thesis is born with the objective of, using the system
engineering mindset, closing this gap on the long-standing problem of operational LT estimation,
focused on the recreational runner population. Moreover, another important motivation is about
making an incursion on solving sport related problems using data based approaches and forming

methodologies that will help future researchers.

Going deeper into the social demand, in recent years, endurance sports have dramatically in-
creased in popularity, specially long distance running events and triathlon. These events usually
count with thousands of participants, up to 42000 inscriptions in the Brooklyn marathon, 35000 in
New York and 60000 in Paris in the 2019 editions (Figure[I.3). Even more popular are other en-
durance events such as half marathons, 10 to 20 km races and middle and long distance triathlons.

Looking at the 17 million of people who finished a running event and the 4 million people who
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participated in triathlons in USA [2] gives an idea of the volume of athletes who are participating

in this kind of events.

Figure 1.3: Runners participating in Paris marathon

By Marriot Bonvoy Traveller

This big recreational runner population does not appear to be diminishing in the short term.
Physical activity is becoming a priority and an important part of the modern western society. En-
joyment, mental and physical health and the personal fulfilment that comes from establishing and
achievement of objectives... are among the multiple benefits that physical activity has on individ-
uals [3]]. This has pushed people to seek in sport a tool to face the modern ailments, i.e. a modern
society that poses high levels of chronic stress on individuals and our increasingly sedentary life

distanced from the physical activity to cite a few.

Among these sport practitioners, nowadays many tend to go one step further and start training
for performance [4]. Training for performance is driven by multiple intrinsic and extrinsic mo-
tivations such as personal growth and fulfilment, social recognition, material rewards etc. This
motivation usually allows the practitioner to engage and adhere into an activity such as sport, that

often asks for short term sacrifices for long term benefits.

To do so, this population trains methodologically and uses every kind of available tool that
may help them improve their performance. This means that the current endurance recreational
runner demands and consumes any type of training method, equipment and/or tool that allows
them to reach their performance goals. In this regard, LT is a well known physiological indicator
with a demonstrated power to aid training decision-making [5}; [6]. However, since currently the
estimation of LT requires attending to specialized centres and laboratories, there is a huge demand
for estimating it in a more operational way. This is the problem that is to be solved in this work

and we hereafter refer to is as the operational LT problem.

In order to provide an operational LT for training decision-making that is applicable in the
real world, the general needs of sport performance must be aligned with the specific qualities of

our solution. For instance, if we blindly try to solve one of the specific demands such us creating
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a non-invasive LT method, without considering why a non-invasive tool is demanded, we risk
solving only part of the problem and creating a solution that is not going to be applicable. Thus,
prior to getting into the details of the LT, in the following section we put the LT in the context of

training for sport performance.

1.1.1 Contextualization of the lactate threshold problem in sport performance:
Why rich and operational information about the athlete is key for training

Sport performance is the manner in which sport competition is measured. The main tool that a
coach or an athlete can use to improve sport performance is purposely training to develop the

qualities required for a desired discipline.

Super-compensation (see Figure is a characteristic of the human body by which in the
face of an external stimulus, it adapts or adjusts itself to a higher level of fitness and performance
capacity with respect to its prior status. Taking advantage of this principle, coaches’ work is to
select and introduce appropriate stimulus and recovery time that facilitate the improvement in the

desired qualities for the sport of interest.

Improvement
2
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- Base | Training Superconjpensation. |1ime
g Level - | <
[
[
=
'8
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Figure 1.4: Super compensation

By Haus-Own work, CC BY-SA 3.0, https://commons.wikimedia.org/

These qualities are a complex mixture of tactical, technical, psychological, bio-mechanical,
neuro-muscular, metabolic... abilities that the coach tries to maximize while minimizing injury

and over-training.

The appropriateness of this stimulus, stands on several fundamental principles of sport perfor-

mance:

e Overload: In order to elicit the human body’s adaptive responses there must be a stimulus

that goes over what the athlete is used to (in volume, intensity or density).

e Progression: The load applied must be progressively increasing to avoid both an insufficient
stimulus that would not elicit adaptations or an excessive one that would in the worst case

lead to an injury.

e Specificity: The adaptation of the human body is specific to the training stimulus applied.

A simplistic example that illustrates this concept can be: if you train running fast you will
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improve in running fast.

¢ Individualization: Every person responds differently to a stimulus, so this stimulus must be

individualized to the characteristics of each athlete and its context.

e Reversibility: If certain stimulus is not applied during a extended period of time, the quali-

ties start to revert to previous states.

Thus, training to improve sport performance is about selecting the appropriate combination of
stimulus and recovery according to these principles. The coach then introduces this stimulus in

form of a training program.

However, as it is known, human body is a complex system and there is an inherent uncertainty
with respect to the response that the body-mind will have to the training stimulus. Moreover,
the training is held in an highly uncertainty environment on which the athlete inevitably misses
training days or is forced to change the objectives that were planned for the day. There are also
specific dates for which the performance must be maximized, so the time factor is also considered.
Training periodization and planning are related to how the coach selects the appropriate program

with all these considerations in mind and for a specific athlete.

The current research on periodization and planing is based on a viewpoint that the aforemen-
tioned uncertainty of the training is an unavoidable part of the problem that must be considered
and properly managed. From the scientific method perspective, the initial program is just an initial
hypothesis that is adjusted on the go according to what it is observed using a priori established,
heuristics, criteria and expertise to continually create a next best training guess. Due to the com-
plex and ever changing nature of the context, the faster the feedback, the more appropriate the
training stimulus will be for the current situation. Figure represents this process from the

systems perspective.

Training decision-making process

Contextual Coach’s expertise Prior ' Athlete

information : Adjust Training Athlete’s
training

(J
Constraints !
— ‘ hypothesis

stimulus & state

Sensors:
Observed

state Coach's eye

Communication

Tools (LT estimator)

Figure 1.5: A systems view of appropriate training stimulus selection

The importance of having relevant information about the athlete and the surrounding context

becomes manifest, meaning that every mean (coaches’ eye, good communication, external tools
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etc) that allows to get valuable information about the athlete (LT in our case) has a major impact
for improving their training.

However, sport performance is a highly optimized area which tries to make the most of the
available resources with the objective of maximizing positive training adaptations. This means

that the use of the resources is highly prioritized towards the most valuable.

In the case of the recreational runners, their economical, temporal and effort resources are even
more limited compared to elite level athletes. For instance, recreational athletes expend their own
money and usually their time is narrowed down to their free-time. Last but not least, the physical
and mental effort needed are also limited. For instance, the effort done in a testing may have been

better used in regular training.

Therefore, it is clear that the value of the method used to collect certain information (the LT in
our case) is determined by both the relevance of the information collected and how operational is

to collect and integrate it into the training decision-making process.

So, these two perspectives (the relevance and the operationality) will be used hereafter to

analyse the importance of LT.

1.1.2 Lactate threshold, an indicator demanded by coaches and athletes

In the case of the LT, its relevance comes from its relation with the energy supply systems of the

human body.

These energy supply systems are the mechanisms responsible for producing the energy that is
used for physical activity. The effectiveness and efficiency of the energy production and how it
is expressed in the executed task (a specific sport discipline in this case) is directly related to the

performance that an athlete achieves.

Among other variables, the use of different energy supply mechanisms depends on the intensity
and duration of the activity under execution (Figure[I.6). In long-duration exercises, as endurance
sports, the oxidative or aerobic energy system is the main energy contributor as more powerful

anaerobic systems are not sustainable in the long term without creating excessive fatigue.

Therefore, exercise intensity at the transition between the use of aerobic to anaerobic energy
supply systems is determinant about the long term and sustainable energy production and plays
a key role in the performance of the athlete [7; 5]. Thus, being able to obtain information about
this transition of a particular athlete is of great interest for coaches as it can be used to enrich the

training decision-making process.

The most relevant use modes of the aerobic to anaerobic transition zone are related to train-
ing monitoring (to evaluate the physiological or performance changes that training has caused)
[S], training prescription (to aid in the prescription of training intensities) [6] and performance

estimation (qualitative estimation of athlete level, pacing recommendation) [5]].

However, despite the usefulness of the information about aforementioned transition zone is
more than demonstrated, its characterization is not straightforward. The ample variety of ter-
minology that has been used to name this transition zone exemplifies this difficulty. Moreover,

sometimes the terminology is even contradictory and its meaning has even changed since it was
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Figure 1.6: Energy supply systems

first coined [[8; 195105 [11]]. This clearly illustrates the fuzziness of the concept.

Consequently, multiple models, methodologies and techniques have been used so far to deter-
mine it. Moreover, there are multiple approaches that are still in use in practice, making it clear
that there is no closed nor universal characterization of it. Among these approaches, the respiratory

gases based methods and the blood lactate based approaches stand out.

Regarding the respiratory gases approach, multiple protocols are available. However, all these
protocols have common limitations. First, the equipment needed to make the tests is very expen-
sive, much more than the equipment needed for the lactate based approaches, which is already a
big operational limitation. Moreover, the respiratory equipment may also interfere into the normal

exercise of the athlete altering the results.

Lactate based methods on their part rely on much more accessible portable lactate measure-
ment devices which have also a lower interference compared to respiratory approaches.This made
the lactate based determination methods to the most extended ones in sport performance for anaer-

obic to aerobic transition zone characterization.

However, analyzing the lactate based approaches from the operationality perspective, they
still require external equipment and the extraction of blood samples, which are inconvenient for
frequent monitoring. Furthermore, most recreational runners do not have access to routine assess-
ment of their physical fitness by the aforementioned equipment so they are not able to calculate
LT without resorting to an expensive and specialized centre. Consequently, there is high demand

for a more operational LT estimation.

Moreover, this interest exceeds the recreational runner population. Nowadays, the Spanish
Athletic Federation uses lactate tests for the selection process of marathon runners to compete in
international championships such us the Olympic Games, World Championships and European

Championships.
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However, as already mentioned, the lactate threshold problem is a limited resources problem
where material, facilities, money, time, effort etc are finite. In the case of endurance runners, their

limited resources problem materialises in a demand of tools and methods which are or provide:

¢ A non-invasive solution which avoids taking blood samples

Easy-to-use tool

Cost efficient tool, affordable solution for recreational runners/coaches

Autonomy to the recreational runners/coaches

A solution without the need of a new/additional wearable

Actually, the relevance and potential impact of an operational LT estimator is further strength-
ened by the interest that this research has risen among several important actors in the sport perfor-
mance industry. These interest groups include: the huge recreational runner volunteers (more than
800) who inscribed for the experimental test performed under this research with little publicity ef-
forts, the FIPSE (Consejo Superior de Deportes), the Campus Deportivo company that supported
this research, the Department of Economic Development and Competitiveness of the Basque Gov-
ernment (Gaitek 2015), managers of Spanish Kayaking and Rowing Federation, Basque Rowing

Federation, managers of the Basque Public School of Sports (Kirolene), athletic coaches etc

1.2 General objectives

The objectives of the present work are then defined with this operationality demand in mind.
Creating a model that would estimate LT from easily obtainable input features, fits very well with
the characteristics of this demand. As illustrated in Figure virtual or soft sensing techniques
are essentially this, approaches used to provide feasible and economical alternatives to costly or
impractical physical measurement instrumentation. This approach uses information available from

other measurements and process features to calculate and estimate the outcome of interest (LT in

our case).
A
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Figure 1.7: Virtual sensor concept

To do so, a variety of virtual sensing techniques have been proposed, while the vast majority

of them fall into two major categories: analytical or empirical.
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Since the relationship between LT and the other easily obtainable physiological features is
complex and with multiple inter-dependencies, creating an analytical model that could characterize

this relationship is not a viable approach.

In complex problems such this one, where the number of features involved in the process
are bast and, even more importantly, the relationship between them are opaque, empirical virtual

sensing approaches are, a priori, a more appropriate way to go.

Thus, creating a virtual sensor based on empirical data arises as an interesting approach with
the potential to fulfil both requirements. Since the objective is to learn the relationship between
certain inputs and output (LT), and the output is continuous, this problem can further be classified

into the supervised-learning category done for regression purposes.
Therefore, we can formulate the main objective of the present work as:

Create a empirical virtual sensor to estimate the lactate threshold that can be easily integrated

into the endurance recreational coach/athlete toolbox. The objective can be further divided in:

1. Providing an easy to integrate LT virtual sensor to help recreational running coaches and

athletes in training decision making.

2. Gain knowledge about other physiological features that may be key performance indicators
of endurance athletes, specially the easily measurable ones, and give guidance to integrate

it into the training decision making process.

3. Create a methodology for applying virtual sensing techniques to solve problems related to

sports so it could be extended to other future demands of this area.

4. Acquire know-how about the specific demands of the problem to be able in the future to

extend the solution proposed to other type of users and/or disciplines.

5. Design a final prototype that demonstrates the validity of this proposal.

1.3 Structure

The present document is divided in five additional chapters:

Chapter[2lmakes the state-of-the-art analysis of the LT determination methods used so far from
an operational perspective. To do so, first we set and describe the operational qualities that are to
be looked. Then, both the traditional LT determination methods and the operational attempts are

analysed with these qualities in mind.
Chapter [3|determines the strategy and formalizes into a methodology with specific steps.

Chapter[d]is about designing the virtual LT sensor according to the strategy and methodologies
established in Chapter 3]

Chapter [5] deals with the implementation of the designed virtual LT sensor and acquired ad-
ditional knowledge for aiding the training decision-making of coaches and athletes. To do so, the
Lactatus software (SW) is created to work as guide to the athlete interested in using and applying

the knowledge of this thesis.
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Chapter 6] gather the main conclusions and contributions of this work. Additionally it provides

suggestions and possible directions for future research.
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This chapter deals with the analysis of the state of the art with regards to the consolidated LT
methods and the operational solutions that have been proposed so far as alternative. In order to
evaluate the state-of-the-art from the operational perspective and in a systematic way, we create
a tool based in the concept of added value. This tool is then used to place all the proposed ap-
proaches (consolidated and alternatives) according to the operational qualities that are relevant for

the objectives of this thesis.

As stated in chapter [I] this state of the art analysis highlights that the relevance of the LT
comes from its relation with the aerobic to anaerobic energy supply transition and that, due to
the fuzzy nature of this threshold, there are multiple LT determination methods available in the
literature. Additionally, we also present the idea that the relevance of the information and its
operationality (in the recreational runners context) are the two mayor characteristics that make a
LT determination method more or less valuable for the user (recreational runners in this case).

This observation evidences that, there are as many values as LT determinations are.

The first purpose of this chapter is to elucidate and select, among the multiple LT determination
methods, the reference that will be used as the output labels of the (supervised learning based)
virtual sensor. The second purpose of this chapter is to analyse the most relevant solutions that
have been proposed so far trying to to provide some more operational LT determination method

compared to the consolidated ones.

To do so, as illustrated in Figure [2.2] and prior to digging deep into the literature, we set the
qualities that will be used as standard by which the value of every LT determination method will
be judged.

Then, we present the multiple different ways that historically have been used to characterize
the LT concept. Using the previously defined criteria, we map the value of both the consolidated
approaches and the operational attempts that have been made so far to surpass some of the former’s
limitations. This allows to have an overview of the current arts space from the recreational runners

perspective.

Finally, from this analysis, we conclude which is the reference LT determination method that
will be used hereafter and we adjust and detail the objectives stated in the previous chapter accord-

ing to the findings of this one.

2.1 Value determinants of lactate threshold methods for recreational

runners training: Desired qualities and value mapping

As we saw in chapter|[I] the value of integrating certain information in training decision-making is
related to first, the relevance of the information collected and second, the operational burden that

collecting and integrating it carries.

However, the value is related to how the inherent qualities of the method (quality of the in-
formation and operational qualities in this case) unfold in the context of application, i.e. the
recreational runners context. That is to say, certain LT determination method may pose a high

value for an elite runner because of their higher economical resources and be of zero value for a
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Figure 2.2: Overview of Chapter 2: state-of-the-art

Abbreviations: SOA, State of the art; VS, virtual sensor; LT, Lactate threshold
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recreational runner. Figure represents this idea and shows how both these general attributes

combine in our context to determine its value.
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Figure 2.3: Value determination from information relevance and operational perspectives

So, clearly defining the qualities by which the value of LT determination methods are judged
contextualizes them to the characteristics of the problem in hand. Based on the generalities and
specificity’s of the LT problem already analysed in chapter |1} in this section we formalize these
qualities that will allow to sort the state-of-the-art approaches (both consolidated and operational
tries) according to the perspective of creating a valuable LT estimator for recreational runners and

systematically place them in a value map.

This gives an overview of the current arts with the glasses of operational estimation of LT for
recreational runners. Consequently, the value map will facilitate to identify the added value space
of our problem, delimit the operational space and pave the way for selecting the consolidated LT

estimation method that will work as our reference value.

2.1.1 Qualities that determine the value of a lactate threshold method: Breaking
down ’information relevance’ & ’operationality’

In chapter [T} we stated that the relevance of the information that a LT determination method
characterizes and its operationality are the two major qualities related to the value provided to
recreational runners. Here, we go deeper into this reasoning so that we can pose the detailed
qualities that are important for our context of application and by which the state of the art is going

to be analyzed in the next section.

The value of a method comes from its ability to be used by the recreational runners in the three
use modes previously seen. As already mentioned, there are many degrees of fulfilment of these
use modes, as many as ways of determining the LT. If we look in more detail to the use modes, we

can observe that each determination method has a different degree of fulfilment of each use mode:

LT has been successfully used for training monitoring purposes by assessing the physical
condition from an endurance performance perspective [12; [5]. However, the monitoring may

be done by different means. Sometimes a LT method is able to characterize information about an
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underlying relevant physiological phenomena such the maximum aerobic capacity. Other methods
characterize a phenomena that is indirectly related to performance. Hence, the former is richer and

more informative when using it for monitoring purposes compared to the latter.

Something equivalent happens when using it for training prescription. It is well known that
lactate threshold is useful for training prescription [13; (12} [6]. Similarly to the monitoring use
case, some methods are able to target an underlying relevant physiological phenomena (such as
one that helps to identify training zones) that may be used to prescribe exercise intensity from
this perspective [13} [14;16]. However, other methods are not able to do so, limiting their training

prescription capacities to those conclusions derived from the monitoring capacities [[15]].

The third use mode is for performance estimation. It has been observed that LT is a good
predictor of performance, both in elite and recreational runners [16; S]. Furthermore, nowadays
it is fully demonstrated that the LT is more decisive for endurance sports performance than other
variables such as the maximal oxygen uptake (VOmax) or the running economy [7;[17;18]. How-
ever, the relationship with performance is also dependent on the methodology used. Some method
have a strong direct relation with performance and others are just indirectly related. The former
are strong enough so that can be used to prepare pacing strategies, rough athlete level evalua-
tion... on the contrary, the latter methods only can be used to determine qualitative performance

improvements [[15]].

Thus, in this section, it is reinforced that the value of a LT method is strongly related to the
relevance of the information that characterizes from the target population perspective and that the

operationality of the method.

The relevance of the information characterized can be further divided into lower level quali-
ties such us: the targeted information (more or less relevant for the different use modes) and the

accuracy with which it is characterized.

Additionally, in Chapter[I]we saw that multiple operational characteristics (non-invasive, easy-
to-use, affordable, autonomous, without the need of a new/additional wearable...) are demanded.
All these characteristics serve to higher operational purposes that are important to explicitly state
here. To minimize the risk of solving only part of the problem by forgetting to comply with the
general needs of sport performance. Thus, the operationality of the solution can be described by
its qualities of: availability (location, requirement of specialized equipment, excessive associated
costs etc.), interference with training (training time loss, testing associated fatigue) and usability

(facilitating adherence etc).

Finally, as illustrated in Figure the value of our solution is subjected to these qualities in

the context of training decision-making of recreational runners.
In the following sections we will make a detailed analysis of the aforementioned qualities.
Qualities related with information relevance

The relevance of the information characterized by the LT determination method comes from the

degree of fulfilment of two lower level qualities:

o Targeted phenomena: We have observed that the phenomena being characterized by a spe-
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cific LT method impacts on the maximum potential value that can be obtained in the different
use modes. Therefore, the relevance of the phenomena the LT method is characterizing is

an important matter to evaluate the value that can provide.

e Accuracy: Even if the relevance of targeted phenomena is high, the accuracy with which it is
being determined has a major importance. Not only that the margin of error of the estimation
is important for the coach to be more or less certain about the conclusions, but also that not
achieving a minimum accuracy may invalidate the estimation for training decision-making.
The accuracy needed for the estimation is very dependant on the application and thus, it is an
important quality on which to keep a close eye to evaluate the value of the LT determination
method.

Therefore, these two qualities are to be used to determine the value of the state-of-the-art LT

methods from the information relevance perspective.

Qualities related to operationality

The operationality of the LT determination method comes from the degree of fulfilment of three

lower level qualities:

o Availability: The collection of certain beneficial information is usually subjected to some
sort of specialized equipment, facilities, associated costs, location, need of expert person-
nel... The value provided by increasing the availability of a solution comes not only from
the obvious reduction in the resources used, but also because increasing the availability in-
directly facilitates the adherence to it and reduces the interference with the training as less
time is invested in it. Increasing the availability of the tools and methods is therefore highly
and directly related with the value of the solution and may be achieved by creating methods
that do not depend on additional equipment (or equipment already available) nor require

help from an expert.

e Usability: The usability of a solution is one of the main qualities that facilitates the adher-
ence and consistency. Usability of a tool is described by the following five characteristics:
effectiveness or how well the tool meets the specific task (including a clearly understandable
use) ; efficiency or ability to meet the task with minimum effort (including the easiness of
interpretation and communication of results); engaging or pleasant and satisfying to use; er-
ror tolerance or being robust to the errors that inevitably are introduced by the misuse of the
tool (beyond the estimation error) and easiness to learn [19]. This quality is fundamental for
adherence and consistent use of a LT method, specially, for repetitive tasks as continuous
monitoring, where the easier collection and integration of information, the more consistently
is going to be used and established as a habit. Therefore, increasing the qualities related to
usability of a product that increase the adherence is also directly related with the value that

the solution provides.

e Low interference with training: Whenever a test or measurement is done, there is a cost

opportunity loss for training or recovering. The ability to provide reduced interference with
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training is therefore a operational quality that a valuable LT method must have. This in-
terference may come for the mere fact of performing the test, measurement etc or because
the testing process creates residual fatigue that interferes with subsequent training sessions.
Therefore, the ideal scenario is this in which a test or measurement is fully integrated with
the training (a.k.a. invisible monitoring) becoming part of the training activity, without mod-
ifying nor hindering it. Thus, any improvement in this direction increases the operationality

of the solution.

Therefore, these three qualities are to be used to determine the value the state-of-the-art LT

methods from the operationality perspective.

2.1.2 Value map: emphasizing the value differences between lactate threshold meth-
ods

The value that a certain LT determination method has for recreational runners is thus directly
proportional to the aforementioned qualities. The value map shown in Figure illustrates this
relationship and determines three regions according to the degree of value that is provided (low,
medium high). This map will be henceforth used to place the different LT determination methods

according to their value.

Information /
relevance

Medium value

P

o Low value

Cost = Operationallity?

Figure 2.4: Value map: information relevance and operational qualities in the context of applica-
tion

Since neither of the general qualities are quantifiable, this map allows to place the different

state-of-the-art LT estimation methods according to the relative value they have.

In this regard, as we already mentioned in Chapter[I] there is currently no operational LT deter-
mination method available in the literature that suits the needs of recreational runners. Therefore,
as illustrated in Figure we can delimit the value space of the currently available arts for our
objective population to a medium-low value region. This indirectly defines the region on which an

added value solution should reside, i.e. the high value region.
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The added value space is further narrowed by introducing the constraint of the cost limit that

the recreational runners have, delimiting a both operational and added value space as illustrated in
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Figure 2.5: Value map: Added value space

Consequently, the value map will facilitate to identify the added value space of the research
field, delimit the operational space and place the LT methods and operational solutions available

in the literature and practice in the same space to better decide the consolidated method that will

be used as reference for the design of our virtual LT sensor.

2.2 Value analysis of current art lactate threshold determination ap-

proaches: Consolidated approaches & operational attempts

In the previous section, we introduced the qualities that will be used to determine the value of a
LT determination method for recreational runners and created a value map on which the different
methods will be drawn.

In this section, we delve into a detailed analysis of the different ways that historically have
been used to characterize the LT. We first determine the value of the consolidated approaches that
are used in practice according to the qualities established in the previous section.

This analysis allows to have an overview of the state-of-the-art space, present the most impor-
tant LT estimation methods and solutions that have been proposed so far and clarify the operational
limitation that the consolidated LT methods have. Then, the most novel approaches that have tried
to improve all or some of the operational qualities are analyzed and knowledge about the different

solution paths that have been already walked so far acquired.
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As already mentioned, our approach uses empirical data to infer a relationship between input
and output features by supervised learning. In this regard, this analysis also enlightens the selection
among the consolidated LT determination approach that will later be used as reference labels for
our input features. At the same time, this indirectly sets the reference value to be beaten by the

solution proposed in the present work.

To finish this analysis, we gather them an make a summary about the options and the possible

directions that exist towards a operational LT estimation.

2.2.1 A review of the reference state-of-the-art lactate threshold determination meth-
ods

Among the multiple lactate determination methods proposed so far, there are certain methods that

can be considered consolidated due to the support they have both in theory and practice.

From a detailed analysis of their strength and weaknesses we will determine the value and its
place in the value map. Later on, we will select the referent method for the empirical inference

needed for the design of the virtual sensor among these methods.

e Maximal Lactate Steady State (MLSS): MLSS is defined as the highest blood lactate con-
centration (MLSSc) and work load (MLSSw) that can be maintained over time without a

continuous blood lactate accumulation [14].

From the physiological point of view, MLSS represents the maximum workload which the
oxidative metabolism can sustain [20j 21} 22} [23]]. In lactate steady state, the process of
lactate appearance is balanced by the process of lactate disappearance, i.e. there is an equi-
librium. The MLSS represents the maximum point in this equilibrium [21}; 225 24]]. This

concept is illustrated in Figure[2.6|where a typical MLSS estimation protocol is represented.

To look for the potential benefits that MLSS can provide in the previously defined use modes
(monitoring, training prescription and performance estimation), we now analyse the quali-
ties of the MLSS. It has been demonstrated that the workload (speed, power...) at MLSS can
be used to characterize information about athletes endurance capacity [14] and the accuracy
of the original determination method illustrated in Figure [2.6]is high. Furthermore, it rep-
resents a useful quantitative measure of the exercise-related behaviour of the blood lactate

concentration [255 23]].

This means that MLSS can be used to monitor the evolution of this physiological phenomena
in absolute terms and thus, it is more powerful than other monitoring types that only provide

relative and general information about training induced adaptation.

From the training prescription perspective, MLSS has shown to be beneficial [[14]. This is so
not only by the relative conclusions about performance changes that can be derived from its
monitoring qualities, but because it is considered that MLSS can discriminate qualitatively
between sustainable exercise intensities on which continuous work is limited by stored en-
ergy and exercise intensities that have to be terminated because of a disturbance of cellular

homeostasis.
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Additionally, a close relationship between endurance sport performance and the workload
at MLSS has been reported, as the average velocity over a marathon is just below this work-
load. Thus, the prediction power of MLSS is above a purely relative evaluation provided by

other methods and can serve as a rough estimation of athlete level [[14 23]

Actually, this method is highly beneficial in the three use modes, since it helps to monitor
relevant physiological phenomena which at the same time is related to performance. Ad-
ditionally, it may influence in the training prescription not only by indirect means of the
monitored performance but also by determining training zones. Thus, the MLSS is consid-
ered the gold standard in terms of the information that characterizes about the LT concept
(L]

However, the determination of MLSS is difficult, invasive, cumbersome and requires from
3 to 5 tests in a specialized centre to obtain an accurate result. More precisely, the testing
protocol works as follows: a long duration test (usually up to 30 minutes) is performed at a
fixed work load where blood lactate measurements are taken. These tests are repeated (with
long proper rest between them and may be done in different days) until blood and lactate
concentration increases continuously during the constant load. As represented in Figure
the MLSS is identified as the maximum sustainable blood lactate concentration and
workloads [[14; [23]].

Analyzing the availability qualities of this method we observe that, access to specialized
center, personnel and equipment is necessary. Moreover, sometimes several days are needed.

Therefore, the availability of this method is low and limited to few people with high re-
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sources. Similarly, the usability of the method is very low, the athlete is dependant on
multiple external tools and expert agents that understand the way of performing the tests
and the testing process in unpleasant and unfriendly. Finally, it creates a big interference
with training because several intense tests must be performed usually separated in different
days followed. This creates both a high opportunity cost due to the repeated days required

plus some residual fatigue that comes from it.

These results show that the cost of calculation the MLSS through the traditional method is

high even for elite athletes, inconceivable for recreational runners.

Therefore, some authors propose to use a single test to indirectly determine the MLSS value
[215 24]]. However, the former did not achieve a minimum necessary accuracy to stick as
a referent. The latter and most important one is presented hereafter, showing strengths and

weaknesses compared to the MLSS.

e Onset of Blood Lactate Accumulation (OBLA): It was observed that workload at MLSS
elicits a blood lactate concentration average of 4.0 mmol/L [17; [14]. For that reason, this
workload has long been estimated by the OBLA which is the work load corresponding to

blood lactate levels of 4.0 mmol/L determined in an incremental test.

However, as represented in Figure the blood lactate concentration at MLSS has been
reported to have great variability between athletes (from 2 to 8 mmol/L in capillary blood)
and the conclusions obtained from this static point do not take into account individual char-
acteristics [25]. In this regard, some researchers disagree with using the speed at OBLA
as indirect marker of MLSS [14; [22]], as multiple factors such as the aerobic training may
affect in the lactate concentration that corresponds to the MLSS [26]. Ultimately, these
facts suggest that the value of 4 mmolL-1 does not consider the inter-individual variability
of the MLSS [27]] and consequently it is considered that the speed at OBLA has too many

limitations and does not characterize the aerobic capacity.

This means that, as the phenomena characterized by OBLA targets less relevant information,
the value for monitoring purposes is reduced in comparison with the MLSS. However, the
workload at 4.0 mmol/L, is still a good indicator of the training adaptation produced in
relative terms [21]. Actually, to its capacity to monitor the relative adaptations it has been

long used for indirectly aiding training prescription.

Finally, the speed at OBLA has been proposed as an effective variable to qualitatively deter-
mine the performance in several different sports such us track & field [15]], swimming [28]],
soccer [29], hockey [30]], cross-country skiing [31] or road cycling [32]. Nevertheless, and
as already explained, it has significant limitations. Its main use is to estimate performance
improvements and also has been suggested as a discriminator between well trained and elite
athletes [33]].

Indeed, the value of this method in the three use modes is lower than the MLSS since it

characterized only relative information.

Similar to MLSS protocol, it is an invasive test that requires from blood lactate measure-

ments and specialized equipment, but despite the MLSS, OBLA measuring protocol requires
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only one test.

Thus, since the determination still needs from specialized equipment, it is only available
to those with access to this resources. Similarly, the usability of the method is still low
as the athlete is dependant on external tools and the test is still cumbersome and invasive
which makes it unpleasant and unfriendly. However, in comparison with the MLSS, both the
availability and usability are much higher. Finally, the interference that this method creates
in the training is far-lower than the MLSS counterpart. This is mainly because a single test

1s needed to determinate it.

This results in that the operationality of the OBLA method is much higher in comparison
with the MLSS. This made that a lot of elite coach and athletes have use it so far, but it is

still costly for recreational runners.

Individual lactate threshold: The Individual LT is defined as the maximum workload at
which a sharp increase of the lactate occurs [34]] calculated from the lactate curve obtained

from a graded exercise (illustrated in Figure [2.8)).

The calculation of individual lactate threshold involves the measurement of blood lactate
during an incremental step-wise exercise followed by a recovery. In this test, multiple lac-
tate measurements are taken and use to form a convex curve from which the LT is deter-
mined. Multiple methods have been proposed to determine the LT from this curve such us
the popular method that determines the LT as the first rise of blood lactate greater than 1
mmol [35]. Among these methods, maximum distance or Dmax method stands out [34].
In this method, the maximum distance between the lactate curve and the line between the

first and the last lactate values is calculated and considered as the LT. This methodology is
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fully automatizable and allows to calculate the LT in all the convex curves using a single
experiment (something that is not possible with other methods) and was initially proposed
by Cheng et. al. [36].

Some authors suggested that the individual lactate threshold workload calculated by Dmax
method is closely related with the workload at MLSS [37]]. However, the duration and size
of the intensity increments have been found to influence the value of the lactate threshold
[38]], something that should be taken into account. In any case, this method is the most

recommended methodology nowadays [39; [34]].

Moreover, it has been observed that this method predicts the performance accurately, espe-
cially in recreational athletes [12} 405 41} [39]]. Thus the benefit that provides for this use
mode are high. It can be concluded that, despite being lower than MLSS, the value of this

method in the three use modes is high.

From the availability perspective, this method shows the limitations of the previous methods,
in the sense that the test must be done in an specialized centre and needs from specialized
equipment. The usability of the method is still low as the athlete is dependent on external
tools and the test is still cuambersome and invasive which makes it unpleasant and unfriendly.
Regarding the interference with training, it is much lower to the MLSS and similar to the
OBLA. Therefore, the operationality of this method is much higher than the MLSS.

As we have seen, the consolidated methods have operational qualities that are not sufficient
for most of the recreational runners. It is interesting to note that, all the consolidated approaches
rely on invasive blood lactate measurements, and/or on specialized equipment and/or personnel to
obtain it (Figure [2.9), meaning that there are accessible to few people.

Even that the process of taking blood samples has improved due to the simplification of the
measurement devices, is still cuambersome and uncomfortable, which makes it inconvenient for its
consistent use. Therefore, they do not fulfil the operational qualities necessary for our objective
population, i.e. recreational runners, specially due to the poor availability and usability qualities

they provide.
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Figure 2.9: Equipment needed for the consolidated lactate threshold determination methods

So, the detailed analysis done in this section allows to place the consolidated LT methods in the

value map according to their relative cost-benefit and consequently value characteristics. Figure

shows the landscape including these consolidated methods already placed.
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Figure 2.10: Value of consolidated state-of-the-art approaches

2.2.2 Attempts to improve the operationality of the consolidated lactate threshold

determination

methods

Given that the consolidated LT determination methods are not able to answer to the operational
needs, multiple attempts have been made so far to overcome some or all of these limitations. As

shown in Figure 2.T1] very diverse approaches have been proposed in the literature.
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Figure 2.11: Classification of operational lactate threshold estimation determination attempts

Non-invasive hardware

Among these approaches, some focused on providing alternative non-invasive ways to determine
LT by means of additional hardware (HW).

Historically, sweat lactate measurement has been seen as a potentially interesting manner to
estimate the LT. It promised the opportunity of a non-invasive continuous monitoring with non
extremely expensive devices [42] (Figure [2.12)). However, there is a lot of controversy about the
relation between the blood and sweat lactate levels. The review made by Derbyshire et. al. [43]
pointed out that most of the studies showed no evidence of a direct relation between sweat and
blood lactate levels. This means that, before even entering into a deeper analysis of the operational
qualities of these methods, it is already discarded, since the value that this measurement could
provide is low due to its incapability of getting relevant and accurate information about blood

lactate.

Figure 2.12: Sweat lactate meter

By Seshadri et. al.

Optical non-invasive methods to estimate the lactate levels by examining the connection be-

tween the physiological tremor occurring during muscle contracts and the lactate blood levels have
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also been proposed [44]. However, as represented in Figure [2.13|the solution requires from a very

expensive HW, what puts it out of the scope of this work.

Speckle pattern
imaged in the
camera

Figure 2.13: Photonic non-contact lactate measurement

By Abraham et. al.

Other approaches proposed non-invasive individual Dmax LT determination through muscle
electrical impedance [45)]. This LT estimation was addressed to professional rowers since, by
eliminating the invasive nature of serial blood sampling, it would increase its usability to increase
the number of LT assessment done in a fixed period of time. However, the accuracy of the bio-
impedance measurements is a well known limitation [46]. In addition, caution is needed about its

accuracy beyond the professional rowers population.

Among the non-invasive HW approaches, the most relevant one is probably a wearable stock
presented in the work done by Borges et.al. [47]. This device is directed to runners and has already

been validated against 7 male and 7 female athletes from recreational to highly trained levels.

Unlike the rest of the non-invasive HW approaches, which provide low quality information
about the LT, this approach seems that may be in comparable terms with the Dmax individual
lactate threshold. However, the validation sample is small (14 athletes) and thus the conclusions

must be taken with a grain of salt.

From the operational perspective, they do not address the needs identified in the present work.
It requires an additional equipment that need to be placed aligned with the thickest section of the
gastrocnemius. In this regard, the need of and additional and expensive equipment goes against
the availability that we seek in the present work. Moreover, the usability lowers due to the extra
discomfort that this solution may entail, specially in sports such as triathlon were the transitions
between disciplines are determinant and even creating a big interference. Therefore, despite it
may have some interesting operational qualities such as continuous monitoring, this solution does
not address the needs identified in section [2.1] probably because targeted at recreational runners

with high economical resources.

In any case, all of the non-invasive HW based approaches, by definition, need additional equip-
ment to estimate the LT, and in most cases this equipment is even more expensive than the portable

lactate measurement devices used nowadays. This goes in opposite direction of the availability



2.2. Value analysis of current art lactate threshold determination approaches: Consolidated
approaches & operational attempts 27

Figure 2.14: Near-infrared lactate threshold detector

By Borges et. al.

qualities sought in the present work and therefore are not valid for the recreational runner popula-

tion.

Field tests

Field tests are another extended approach to indirectly assess LT using means available to every-
one. Among the field tests, probably the most known and used one is known as the Conconi Test
[48]]. This test is based on the relation between LT and the heart rate deflection point (HRDP).
HRDP is a deflection from linearity of the heart rate (HR) with respect to the workload and it is
related with the MLSS [[11]].

This test consists of running laps of 400 meters until exhaustion. After setting the initial speed
and the running speed is increased slightly (0.5 km/h) every 200 meter while a heart rate monitor
records the HR. As illustrated in Figure 2.15] the running speed - heart rate relationship was in

part linear and in part concave. The point where both superimpose is defined as the HRDP.

This method only requires from a HR monitor and a stopwatch, a equipment already available
to the majority of recreational runners and their coaches. Moreover, it can be done in any widely
available athletic track. Despite a coach must manually measure the times, the availability of this
method is high since the external resources are already widely available to recreational runners.
Compared to the consolidated methods, the usability of this method is also much higher because of
the non-invasive an simplicity of the test. In terms of interference, a separated test is still necessary

which creates interference with training comparable to the consolidated methods.

However, one of the mayor drawbacks of this method is its accuracy. In this regard, several
studies pointed out its deficiencies [46; 49] and evidenced that, in spite of being a commonly

used method, the accuracy of this method is questionable. Factors such as lack of control of the
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Figure 2.15: Indirect estimation of lactate threshold by ”Conconi test”

By Conconi et. al.

conditions during and previous to the test and the impossibility of finding the HRDP in all the

cases are probably among the reasons which make this method inaccurate.

Therefore, despite providing greater operational qualities compared to the consolidated meth-
ods, the value of a method with such a questionable accuracy are greatly reduced. In this regard, a
computational solution has also been proposed to improve the accuracy of the Conconi test [50].
More precisely, as illustrated in Figure they proposed to use two models (a linear and non-
linear auto-regressive exogenous, ARX and NARX) in combination with fuzzy interpolation to

model the heart rate (HR) dynamics and to better discern the HRDP.

However, although the work of Ringwood et.al. presented an interesting proof-of-concept,
the obtained accuracy was low. Moreover, the population studied was very small (9 athletes) and
thus, considering that the parameter identification was made from this sample, it is not reasonable
to draw conclusions about its applicability, specially about the generalization capabilities of the
model. More importantly, it does not compare the results to the ones that would have been obtained
through the original Conconi test, which would have provided a much more meaningful conclusion

about the improvement that this methodology provides against the original test.

Virtual sensors

As with the HRDP, it is known that the blood lactate concentration is related with multiple other
features such as the HR at a given speed (or the speed at a given HR), the rate of reduction of

the HR after an exercise or heart rate recovery (HRR), the rate of perceived exertion (RPE) as



2.2. Value analysis of current art lactate threshold determination approaches: Consolidated
approaches & operational attempts 29

Transition
region

Nonlinear
model

Linear
model

Heart-rate (steady-state)

v

Exercise intensity (steady-state)

4 4

M1 Model 1 x Model 2 H2
P1 P2

Figure 2.16: Improved Conconi test by using machine learning techniques
By Ringwood et. al.

Abreviations: pl, p2, fuzzy interpolation optimal values

described by Borg [51]], gender, age, diet or athlete level [52]. Therefore, and similarly to what
we hypothesize in this thesis, the indirect measurement of the LT by means of other accessible
and easily measurable features has been proposed as an alternative, i.e. using a virtual sensing

approach.

From the operational perspective, given that the virtual sensors are based in easily available
input features (see Figure [I.7), the creation of a model that can estimate LT can provide multiple

desired operational qualities.

In this approach, all the three availability, usability and interference would be subjected to the
work and resources needed to obtain the input features. Therefore, virtual sensing has intrinsically

embedded the potential to provide a high quality operational solution.

One of the approaches possible for creating a virtual sensor is creating an analytical model
from indirect features related with lactate. This is precisely the approach followed in the work of
Proshin et. al. [53]]. They proposed a mathematical model of human lactate metabolism gathering
several physiological models and merging them into a single one by extending a previously created
cardiac system model and including it in a system of equations that describe the dynamics of

lactate metabolism processes in the organism (Figure [2.17).

However, the purpose of the work presented by Proshin et. al. was to create a model that
would be parametrized to be used in individual athletes. This means that multiple measurements
including hemoglobin, blood pressure and saturation measurements, blood lactate measurements
and a respiratory metabolism analysis etc were needed to fit the parameters. Thus, the cost of

parametrizing this individual model is already huge, leaving it out of the scope of this thesis.

What the work of Proshin et.al. clearly shows is that creating an analytical model that could

explain the complexity of the lactate metabolism, not only that of individual athletes, but for the
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Figure 2.17: Analytical modeling of lactate metabolism
Modified from Proshin et. al.
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entire recreational runner populations, is far from being feasible. It is even more difficult to do it

without additional measurements.

As already mentioned in Chapter[I]in complex problems such this one, empirical virtual sens-
ing approaches are, a priory, a more appropriate way to go. In this regard, Machine Learning
(ML) techniques such as Artificial Neural Networks (ANN) are widely used to create models of
complex non-linear dynamic problems. These computing systems that are inspired by biologi-
cal neural networks, helped by their complex network style interconnected architecture shown in

Figure 2.18] are able to model complex relationships between inputs and outputs.

Actually, ANNs have also been scarcely used to model lactate production in athletes. In this
kind of empirical modelling approaches of complex phenomena, the main inherent difficulty is to
obtain a generalizable solution. In other words, a solution that is accurate both in the sample from

which the function is inferred and in unseen data.

Erdogan et al. [54] proposed a model based on a multi-layer perceptron (MLP) to estimate
the HR at onset of blood lactate accumulation (OBLA) point, with its strengths and limitations.
This means that, the maximum possible value of the model of the work by Erdogan et. al., by
definition is set by OBLA’s relevance which, as we have already seen, it is limited compared to

other methods such as the Dmax individual LT.

From the generalization point of view, the studied population was coming from an homoge-
neous football player sample and, as the authors themselves acknowledged, more training and

testing cases from heterogeneous groups are needed in the future for better generalization.

A more recent paper [S5] also proposed a machine learning model to estimate LT. Thirty-one
healthy male and female participants made a cycle ergo-meter tests to gather data and create the

model. A limitation of the work by Huang et. al. is that the population from which the participants
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Figure 2.18: Artificial neural network architecture
By Liana et. al.

Abbreviations: I, input; w, weight

were gathered is not clear. From the generalization perspective, the data-set is considered insuf-
ficient to achieve a generalizable accuracy, because it has a reduced sample size. Furthermore, it

comes from a different population to the recreational runners.

More importantly, from the operational perspective, multiple non-invasive but still costly
cardio-respiratory and anthropometric factors were used for the model. So, as already mentioned,
the availability and usability of this model becomes dependent on the cost of obtaining these mea-

sures, high in this case.

Therefore, the validity of both models presented above [54;155] is limited by their methodology
which, due to the homogeneity of the population in the former and the inadequate sample in the
latter, are prone to create over-fitted and thus non-generalizable models. Moreover, neither of the

models have the desired operational qualities.

From the analysis of the operational attempts done we identify and represent in the value map
the most relevant approaches among the already explored paths (Figure 2.19).

This map, apart from gathering the value of the most relevant methods, also highlights the
importance qualities identified in section 2.1]to determine what value is in the context of our prob-
lem. Actually, non of the approaches provide a valuable solution to the needs of the recreational

runners to aid their training decision making (Figure [2.19).

This analysis further strengthens that virfual sensing has the potential to give an answer to the
still unsolved operational LT estimation problem. More precisely, after discarding the analytical
path, supervised learning based virfual LT sensor arises as the way to go, as it has been already

hypothesized in the present work.
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Figure 2.19: Value map with operational state-of-the-art lactate threshold determination methods

2.3 State of the art conclusions

This chapter served to make an analysis of the most valuable LT determination methods available.
The multiple efforts that have been made to determine the LT and obtain a more operational LT
determination method confirms that there is a huge interest in this matter.

To be able to determine the value of different methodologies, we first established the qualities
used to determine the value in the context of training decision making of recreational runners.
Additionally, we created a value map that served not only to organize all the important LT deter-
mination methods in the same place, but also to, in future steps, be able to place our solution and
compare with the rest of the proposed approaches. This framework arises as a tool that allows
to map the state-of-the-art of different proposals according to the value that they provide for the
context of application.

Using these criteria, we made a deep analysis of first, the consolidated LT determination meth-
ods available nowadays and second, the attempts that have been made to improve the operationality
of these approaches.

None of the proposed alternatives are able to solve the operational problem of the current LT
determination methods. However, supervised learning based virtual LT sensor has shown to have
potential to answer this problem. This is precisely the first hypothesis of this thesis.

Moreover, to create a supervised learning based virtual LT sensor, a reference LT method must
be selected for labelling purposes. In this chapter we also set the criteria for the reference selection

and the Dmax individual lactate threshold aroused as the chosen.

The criterion used to select the reference method starts from the obvious need of characterizing
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highly relevant information for the three use modes. This criterion already discards the OBLA.

The second criterion, relates with establishing a reasonable sample size, including economical
and time constraints to perform the experiments. The more observations the more robust the
solution. This criterion discards the in comparison much more expensive MLSS method since 3
to 5 tests are needed for a single observation, something that would reduce from 3 to 5 the amount
of observations that we would be able to collect.

The third and last criterion relates with the once and again stated need of addressing the de-
mand coming from practice. Nowadays, the Dmax individual LT method is the most recommended
method [[15] specially for recreational runners. Moreover, it straight addresses a real demand of

the community of recreational runners and coaches that use this LT method

Therefore, the Dmax individual lactate threshold is the reference selected in the present work
and is one of the major conclusions of this chapter. Consequently, as illustrated in Figure[2.20] by
the selection of the reference method we set the maximum relevance and value that our solution

will have and we indirectly define the problem space in which our solution must fall.
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Chapter 3

Strategy and methodology to design a
data based virtual lactate threshold

sensor

Strategy without tactics is the slowest route to

victory. Tactics without strategy is the noise before
defeat - Sun Tzu

Figure 3.1: Visualizing the route to the top
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This chapter defines the methodology that is followed in the design of the virtual LT sensor

according to the needs identified in the previous chapter.

A proper methodology entails creating a robust and systematic way to face and create solutions
for certain types of problems. Thus, the main purpose of this chapter is to create a framework that,
by taking into account the characteristics of the operational LT problem, provides a robust and

systematic way to design a virtual LT sensor.

To do so, we first make a high level analysis to detect the main characteristics and inherent
difficulties of the operational LT problem and provide precise strategical means to deal with them.
More precisely, we define the meta-process and the performance perspectives that are going to be

used in the present work.

With the aforementioned strategical principles in mind, and combining with the identification
of the inherent difficulties that creating a supervised learning based virtual LT sensor has, we

create a framework that will afterward guide the design phase.

As illustrated in Figure [3.2] the framework grows from two strategical principles for solving
complex ML problems: (1) Using an iterative approach for boundary discovery and (2) setting a
satisficing accuracy to minimize the problem complexity (see section [3.1)). Then, as the virtual
LT sensor is a data based ML model, the experimental methodology defines how the experiments
are to be performed and validated for their use in the virfual LT sensor design. Section [3.2] goes
into detail of the preparations, requisites for realization and the definition of the validity of an
experiment. Finally, with the principles and the experimental methodology in mind, the design of
the virtual LT sensor is divided into, context characterization, content representation and deciding

next step, three steps that are common in supervised learning approaches.

3.1 Strategy for the design and development of a virtual lactate thresh-

old sensor

In Chapter [2] we concluded that a supervised learning based virtual sensor has potential to be an
operational LT estimator for recreational runners and that the use of the Dmax individual LT as

reference for labelling the outputs is appropriate for the virtual LT sensor.

Supervised learning can be described as the ML task of learning a function that maps an input
to an output based on sample input-output pairs. ML approaches enable to model more complex
systems in comparison to analytical approaches (i.e. approaches that try to find a closed form
solution expressed as a mathematical analytic function) that tend to fail when the explicit input-
output feature relations are unknown. For instance, ML techniques have been used for estimating
features such as grinding energy [56]], which would be much more difficult or even impossible to
do analytically. In our case, as already stated, the output of interest, i.e. the output that the virtual

sensor must estimate from a set of easily measurable input features, is the Dmax individual LT.

This kind of learning that infers a general function from specific observations, as represented

in Figure follows an inductive reasoning.

The main characteristic of this kind of reasoning is that, unlike deductive reasoning where the
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General principles

Inductive Reasoning Deductive

Specific observations

Figure 3.3: Inductive vs deductive reasoning

conclusion of an argument is certain, the truth of the conclusion of an inductive argument may be
probable (i.e. weak or strong), based upon certain influencing aspects. Those aspects are ingrained
into the next question: which input features and how many observations sampled from the target
population do we need to make a strong (hereafter robust) learning about the underlying general

function?

Given that the observations are collected from the right population (i.e. recreational runner
population), the selection of the input features and the number of observations needed for a robust
estimation is directly related to the complexity of the problem to be solved. In other words, given
that the features are relevant, the more complex the problem the richer the set of features and
observations needed. In the present work, the term complexity is understood as the inherent char-
acteristic of a system or problem due to the number of relevant features, and the inter-dependencies
between these features and their context. The higher these numbers the more complex. More pre-
cisely, the complexity relates to characteristics such as: the system being bounded in the feature
space (i.e. when all or most of the relevant features can be clearly identified and measured), the
knowledge about the underlying rules of the system, and if these rules change over time. So, not
only that the higher the complexity the higher the features and observation needed, but it also must
be considered that, for certain systems with fast changing rules, the needed resources may change

over time.

Regarding the system targeted in this work (i.e. the recreational runners LT derived from
their lactate metabolism), as stated in Chapter [2, only fuzzy rules are known about the lactate
production and there is a fair amount of uncertainty due to the multiple features related to LT in
an inter-dependent way. However, the rules are known to be stable in a healthy person. Therefore,
we are targeting a moderately complex phenomena which, despite having unknown boundaries,

the uncertainty related to it is finite and stable.

Being the fargeted system’s complexity stable, the overall complexity of the problem (the de-
sign of an operational virtual LT sensor in our case), can be formulated as being proportional to

the combination between the desired performance (how the virfual LT sensor should behave) and
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the targeted system’s complexity (1). This can be illustrated as:

Problem complexity o« Desired performance of the virtual LT sensor x Targeted system’s

complexity (1)

Hence, the higher the problem complexity, the more resources are needed to appropriately
characterize it. This means that more relevant features and their corresponding observations are

needed to allow a robust inference about the input-output relationship [57]].

However, due to the already mentioned uncertain boundaries, the exact number of appropriate
features and observations that are necessary for a robust inference is unknown ex-ante. Usually,
expert knowledge about the phenomena being characterized (LT in this case) can give some hint
about the most important features. Then, the number of observations required can be estimated
accordingly. However, due to the inherent characteristic of this kind of problems, the boundaries
may only be discovered ex post, once a model is created. Therefore, it is fundamental that the
strategy and methodology used embraces the discovery of the problem boundaries as part of the

problem solving process [38]].

Approaches inspired by the conceptual framework of evolution are well suited in this task
[58]. Iterative strategies are among their more simple types and fit very well to this problem, since
it allows to learn from the experience of previous iterations. This allows to adjust the features,

observations and even the learning approach used to make the most from the available data.

In our particular case, as formulated in formula (2), the goal of the iterative strategy is to
discover a successful solution by adjusting our steps towards matching the available resources

(features, observations, computational power...) with the problem complexity.
Available resources = Problem complexity — successful solution (2)

As shown in Figure [3.4] this adjustment can come from any of the following two means: a)
from increasing the resources used and/or b) from reducing the complexity of the problem (while

its still useful for application purposes).

What is known as brute forcing is the most extreme case of solving a problem making use
of resources. This approach may only serve when, apart from targeting to a system with static
uncertainty, high amounts of relevant data (features and observations), powerful algorithms and
HW that minimizes the computational cost are easily available. Problems such as games [59]] and
image processing [60] tend to fall into this category. One of the most recognized materialization

of the brute forcing concept is the well-known deep learning [61]].

Regarding the applicability of brute forcing to design the virtual LT sensor, the cost of deter-
mination of the Dmax LT is around 100 euros per experiment if done in a specialized center, which
impossibilities the chance of collecting high amounts of data. This fact makes the brute forcing
path not viable for us. In any case, it highlights the importance of maximizing the proper use of
the available resources (good and enough amount of data in our case) and further strengthens our
selection of the Dmax individual LT as reference instead of other more costly alternatives such as
MLSS.
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3

Problem complexity Problem complexity

Resources Resources
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Figure 3.4: Successful solution: Trade-off between resources and problem complexity

Apart from using resources, as represented in Figure [3.5] another strategy for solving the
LT kind of problem is by reducing the problem complexity. As illustrated in equation (1), this
can be made from two means. Minimizing the targeted system’s complexity (not viable in our
case as already mentioned) or minimizing the desired performance, i.e. reducing the accuracy or

performance objective of the virtual sensor.

Therefore, this is a fundamental principle that will be used in this work by aiming first for
a minimum necessary satisficing (i.e. the combination of satisfy and suffice [62]]) performance
and grow to more ambitious objectives afterwards. Moreover, this approach suits very well with

working iteratively.

L
Problem complexity Problem complexity
» -
Baseline problem complexity Reduced problem complexity
Baseline desired VS performance ‘ Satisficing VS performance
X X
Targeted system’s complexity = Targeted system’s complexity

Figure 3.5: Reduce complexity: Aim for satisficing performance

Abbreviations: VS: virtual sensor

In the following sections, we will delve deeper into these strategies: the development of an
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iterative strategy and the general considerations for performance evaluation of the ML system

towards achieving a satisficing solution.

3.1.1 Meta-process and process for a machine learning based virtual sensor design:
Combination of iterative and traditional approaches

As already mentioned (see formula 2 in section [3.1)), a successful resolution of complex problems
comes from having enough and appropriate resources to characterize the complexity of the system
for the desired performance. However, apart from having tools (ML techniques in this case) that
enable to create models that represent the complexity of the problem in hand, the main practical
difficulty that this kind of problem poses is that, which and how many resources (features and

observations) are needed is a priory unknown.

First, as previously mentioned, a meta-process that takes into account and provides ways to
manage the uncertain boundaries of the problem is necessary. In this regard, traditional engi-
neering approaches, i.e. those that make several planning estimation for different project phases
(functional specification, design, validation, manufacturing and implementation), tend to fail un-
der problems with uncertain boundaries as the design of the virtual LT sensor. For this purpose,
iterative approaches tend to work better since they enable to explore the problem in small batches
and to continually adjust the direction according to what is learnt from the previous iteration. In the
case of designing a virtual LT sensor, the aforementioned agility to adjust direction facilitates to
work with incremental objectives towards matching the available resources (features-observations

pairs) to the problem complexity (see formula (2) in section [3.).

The application of this kind of iterative design is not uncommon in ML [57]. However, instead
of being a conscious methodological decision, its use tends to naturally arise from the ease of
applying it when practically unlimited and cheap resources are available. In other words, when it
is a path of low resistance. Image processing problems are an example of this [60]. Therefore,
and to the best of our knowledge, iterative strategies have not been explicitly formalized for ML

application. This formalization is an important contribution of the present work.

Second, at process or iteration level, a traditional problem-solving perspective is used. By
applying reductionism, each iteration is further divided into sub-parts and planned according to
estimations of needed resources. More precisely, each iteration follows a methodology that is
separated into context characterization (gathering and appropriately preparing data), content rep-
resentation (making the best learning from it), and deciding next steps (adjusting the knowledge

of the problem boundaries and the future direction).

Finally, the iterative meta-process and the traditional process are combined to create a frame-
work to design the virtual LT sensor. As represented in Figure the framework starts with a
description of the experimental methodology that is to be used in each design iteration. Then, the

design starts according to the described meta-process and traditional process perspectives.

Following this framework, the objectives will be progressing from less to more ambitious
goals through the iterations using the experience of the previous ones to adjust the direction.

This strategy permits to minimize the chances of making big backward steps that too ambitious
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Figure 3.6: An iterative strategy and classical methodology for an operational lactate threshold
estimation

objectives use to lead to.

3.1.2 Desired performance for the virtual lactate threshold sensor: satisficing ac-
curacy

Based on what has been previously stated, the performance objectives selected for the ML based
virtual LT sensor (desired performance of the virtual LT sensor in formula (1) section [3.1)) indi-
rectly defines the problem complexity and consequently its viability and approach with respect to
the available resources for a successful solution (formula (2) section [3.1I)). Moreover, we men-
tioned that setting a satisficing performance reduces the problem complexity and consequently

increases the chances of solving the problem with the available resources.

In this regard, setting proper performance metrics is key and usually one of the most deter-
minant steps for a successful application of a solution in the real world. But prior to setting any
metric, the following question must be answered: ”what makes our system good?”. It seems ob-
vious to say that, what we are looking for is an accurate estimation of LT of recreational runners,
so we can reformulate the question to: “what makes our system accurate?” According to the satis-
ficing principle, our system is accurate if it achieves a satisficing error. In other words, if the ML

system error (hereafter system’s error) is below a satisficing error.
system’s error < satisficing error (3)

The system’s error refers to the error that our ML system has with respect to the underlying
joint probability distribution (i.e. the real probability distribution of the recreational runner popu-
lation). However, as already mentioned, under induction the determination of the system’s error
is not straightforward. Under inductive reasoning, the conclusions, instead of right or wrong, are
more or less robust. In other words, the ML system infers a function that has weaker or stronger
generalization capabilities to unseen athletes. This means that the observed error may differ from

the system’s error.

In this regard, the ML system’s error can be broken down into a combination of observed
error (i.e. the error made in the available data) and generalization error which is related to the
robustness of the ML under unseen data (see Figure [3.7)question la):
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system’s error = observed error + generalization error (4)

This means that, for a solution valid for the usual recreational runner, the combination of

observed error and generalization error must be below a satisficing error (5).
observed error + generalization error < satisficing error (5)

On the one hand, the observed error is quantified with the available data. On the other hand,
the generalization error is not strictly quantifiable nor fully observable, as there is no way to test
it in the entire underlying probability distribution (which would mean that we are able to gather
all the data). Traditionally different ways of estimating the generalization error have been used
(e.g. comparing the difference between the error in the sampled data and an out-of-sample data).
However, the correctness of this estimation is subjected to the robustness of the learning and

evaluation methodologies (see Figure [3.7|question 1b).

Therefore, it is fundamental to minimize the generalization error to be able to confidently
conclude that the calculated observed error can be considered the system’s error, the cornerstone
of ML [64] (see Figure question 1c¢). To solve this, apart from raw estimated performance
meta-attributes as the robustness of the methodology and the final model must also be considered.
So that, beyond achieving a low observed error, we maximize the chances of the inference to be

generalizable to the remaining unseen recreational runner population.

Wrapping up, as represented in Figure the desired performance of our system is to be
achieved by following two approaches: first, from the ML methodology perspective, the mini-
mization of the generalization error is sought so that the observed error approximates as much
as possible to the system’s error. As represented in Figure the maximization of the method-
ology’s robustness is a necessary condition for proper evaluation of the created virtual LT sensor
system’s error. Second, the evaluation of this performance with a satisficing perspective according

to certain thresholds is sought in order to make our system applicable in the real world.

Then, using these evaluation principles, we can confidently assess where in the trade-off be-
tween problem complexity and available resources are we (see formula (2) in section [3.1)), so that

we can make next step decisions towards a successful solution if necessary.

Machine learning methodology performance: Robust learning and evaluation

The main purpose of the ML methodology is to both accurately capture the regularities in our
database and generalize well to unseen data. In other words, there is a trade-off to properly match
the degrees of freedom of the learning approach with the degrees of freedom of the relevant infor-
mation collected in our database. This trade-off is known as the bias-variance dilemma [57]] and
is directly related to the observed error of our system. An incorrect trade-off may lead to a model
that either under-fits or over-fits the data. In this regard, Figure [3.8|represents three different func-
tions that could be fitted to the same set of data points, with completely different consequences in
terms of the bias and variance of the system. There, it is shown that the error is high both if the

learning approach has less degrees of freedom compared to the phenomena being targeted (Figure
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Satisficing accuracy:

ML system’s error < Satisficing error

1a ) How is the error in ML systems? 2a) What is satisficing?

system’s error =
observed error + generalization error
1b) Can we know the generalization error?

Correctness of estimation

feperds on mEkerl Define acceptable error

from application perspective
1c) How can we measure system’s error?

system’s error = 0
observed error + generatizaliefi error

Maximize methodology’s robustness

1d) How can we create a robust methodology? 2b) Perspectives for applicability?
Bias-variance dilemma: Athlete perspective:
Variance hides true Bias Individual acceptable error
(Table 3.1)

Minimization of variance: robust learning &
evaluation, and parsimony

(preference for under-fitted model) System’s acceptable error
(90-95%)

Population perspective:

Model evaluation:

Individual acceptable error = # of acceptable individual estimations = system’s error

system’s error < system’s acceptable error

Figure 3.7: Achieving satisficing accuracy: Proper Machine Learning system’s error calculation
and satisficing error definition
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[3.8image 1) and if the degrees of freedom of the learning approach are higher than the phenomena
being targeted (Figure [3.8image 3).

X X X
y =0,+ 0;x y = 0p + O;x + O,x2 y = Og + O;x + O,x% + O3x3 + O x°
high bias “Just right” high variance
(under-fit) (over-fit)

Figure 3.8: Representation of bias-Variance trade-off

Hence, with respect to the purpose of maximizing learning the relevant information, neither
the under-fitted nor the over-fitted models are optimal. However, regarding the performance ob-
servability attributes, while an under-fitted model behaves equally biased under seen or unseen
data, an over-fitted model hides its error in the variance term (see Figure question 1d). In
terms of the ML system’s error, the over-fitted model has a high generalization error, which goes

against our aim of creating a robust system with observable error (see Figure[3.7).

Therefore, in order to properly observe the system’s error, the aim is to minimize the chances
of creating an over-fitted model by maximizing the robustness of the methodology. This implies
that, in the absence of a perfect model, an under-fitted model is prioritized over creating and over-
fitted one. In this work, this is what we define as creating a robust ML system. More precisely,
robust learning and performance evaluation techniques are to be used to minimize the degrees of
freedom of the learning approach. To do so, a combination of techniques and principles such as
re-sampling, regularization, parsimony and ensembling are to be used so that, applied to multiple

layers, help create a robust ML system. This approach is described in detail in section[3.3]

This way, the system’s error can be evaluated against the satisficing error and decide what to
do next (section[3.3.3).

Application level performance: satisficing accuracy at individual and system levels

The previously mentioned satisficing error that is to be achieved comes from two considerations,
the error that is acceptable at individual level and the error that is acceptable at population level
(see Figure [3.7). In this regard, the system’s acceptable error serves as a satisficing error to be
achieved at system level. At the same time, the system’s error (see Figure is calculated from
the computation of every individual estimation and comparing it to a individual acceptable error.

In both cases, expert knowledge serves as the criterion to set robust acceptable errors.

From the individual perspective, a valid solution for training decision-making resides in pro-
viding estimations for individual athletes under a maximum acceptable error that ensures that the

estimation is useful. As represented in Figure there is an error in the LT estimation above
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Table 3.1: Lactate threshold individual ac-
ceptable error

Pace at the LT Maximum error in the LT

(min/km)  =(s/km) +(%)
<3 3 1.7
3, 3.5) 5 2.4
[3.5, 4) 10 4.2
[4, 4.5) 15 55
[4.5,5) 20 6.6

*QOut of scope: Fitness level above target popula-
tion
Abbreviations: LT, lactate threshold

which the information collected is not useful and is considered noise. In this regard, we define
the individual acceptable error as the satisficing threshold that sets the maximum error in the LT

estimation for a particular athlete.

Individual acceptable error

USEFUL
INFORMATION

NOISE

LT estimation error

Figure 3.9: Individual acceptable error: the threshold between useful information and noise

Abbreviations: LT, lactate threshold

To calculate it, a maximum acceptable error for individual athletes is defined according to
the experience of experts in physiology and exercise performance. In particular, we propose an
individual acceptable error for recreational athletes (see table [3.1). The physiology perspective
is applied in the following way: since higher level athletes require higher individualization in
their daily training, a higher accuracy than the baseline is deemed necessary. On the other hand,
this is the opposite for the less trained athletes since the individualization is less critical [[65; 66].
Therefore, as shown in table 3.1} errors of 3, 5, 10, 15 and 20 seconds / kilometer are found to be

acceptable for athletes with running paces above 3.5, 4 and 4.5 minutes / kilometer, respectively.

Looking from the population perspective (see Figure [3.7), the recreational runner population,
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as any other heterogeneous population, has individuals with features that are far from what it can be
considered usual from the physiological perspective. Moreover, the efforts and resources required
to improve the estimation power for athletes with less common features grow non-linearly. In this
regard, as already stated, this work is directed to the majority of the recreational runner population.
This means that there is also an acceptable error in terms of the percentage of the recreational
runners for which the virtual LT sensor is valid. We define this satisficing threshold as the system’s

acceptable error.

Regarding defining this threshold, as it is usual in many other engineering problems, creating a
system valid for 90 — 95% (two standard deviations) of the target population, recreational runners
in this case, is considered satisficing for two reasons. First, it covers almost every athlete and
second, because going beyond these numbers usually is extremely costly in terms of the resources

needed. Therefore, this criterion is used in the present work as a base System’s acceptable error.

Then, the individual acceptable error is used to calculate the validity of every estimation and
the computation of valid / invalid estimations are compared to the system’s acceptable error to
evaluate if the overall performance of the ML system is satisficing. Additionally, section [3.2]

explains how these satisficing errors are validated.

3.2 Experimental methodology for database creation

This section sets the steps for a proper experimental methodology according to target population
and the required information. As represented in Figure [3.10, we first make the necessary prepa-
rations for the experiment, so that it facilitates and ensures the proper collection of the relevant
features of the target recreational runner population. Second, we define the athletic, health, legal
and ethical requisites necessary to make the test. Finally, we state the criteria that are to be used
to decide whether the experiments are valid for satisficing errors calculation and/or for modelling

purposes.

EXPERIMENTAL METHODOLOGY

1. Preparation for experiment collection 2. Requisites for realization 3. Validity of experiment

Potential relevant information:

Select candidate features Classification of observations:

Athletic & health requisites Normal, outlier & incorrect
Measure the candidate features:

. Safety & legal requisites
Experimental protocol Validity of experiments:

Ensure that we select the right population: Ethical requisites For satisficing error calculation

Target population pre-requisites For virtual sensor design

Y.

Figure 3.10: Steps for obtaining valid experiments
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3.2.1 Preparation of experiments

The aim of making experiments is to measure the easily available features that hold relevant infor-
mation about the LT and ensure that we do it for the target population. To attain so, the preparation
of experiments is further divided into three steps.

First, as represented in Figure[3.11] the candidate easily measurable features are selected from
the features with potential relevant information known in the literature.

Candidate Features:
Easily measurable
Collected in experimental tests

Relevant features:
Features related to lactate & LT
From reviewed literature

Figure 3.11: Relevant, candidate and selected features

Despite all the candidate features are probably not to be used for modelling, the final selected
features will arise from this list in subsequent steps. Therefore, the second step deals with creating
a protocol that allows to collect all these candidate features. Especially, it deals with the definition
of the incremental treadmill speed test protocol to be performed for collecting the time-series data.
Third, we define a set of pre-requisites that will ensure that the population that we are sampling
corresponds to the target recreational runner population.

Candidate features

The selection of the candidate features is done according to expert knowledge so that those features

with potential to have relevant information about LT are collected.

It is important to note that, not all these features are to be used for modelling purposes. The
number of observations needed to correctly balance this amount of features is huge and not attain-
able for an efficient trade-off between the resources used and the potential value of the results of
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Table 3.2: Candidate features: raw collected features during the in-
cremental treadmill speed test

Feature Time format
Discipline static
Physical condition static
High intensity interval training static
Years train static
Sex static
Birth-date static
Height static
Weight static
Body fat index static
Abdominal diameter static
Hip diameter static
Fat percentage static
Water percentage static
Fat percentage static
Personal best (IAAF points) static
Vpeak static
Resting HR static
Maximum HR static
HR values at different running stages static
Maximum muscular Borg static
Maximum respiratory Borg static
Muscular Borg values at different running stages static
Respiratory Borg values at different running stages static
Resting Lactate static
Lactate values at different running stages static

Abbreviations: LT, lactate threshold; HR, heart rate; IAAF, International Association of Ath-

letics Federations; Vpeak, Maximum velocity obtained in the experimental test.

this work provide.

However, there are three main reasons to collect most of these features. First and foremost,
it allows us to make a descriptive analysis of the features that help us get a deeper understanding
about the lactate and their related features from the physiological perspective. Second, during
the feature engineering phase, dimensionality reduction and feature aggregation techniques may
be considered. Finally, it also leaves an open door for the present work to be extended in future
works by adding further observations. The complete list of features an their format is organized in
table

Additionally, based on expert knowledge, some additional well known features are created
from the raw collected ones and gathered in table [3.3]
Experimental protocol

Among the multiple features that are defined as candidate to be used in the virtual LT sensor design

we can make a separation between two kind of features according to their time characteristics:
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Table 3.3: Candidate features: transformations from
collected raw features

Feature Time format

HRDP static

HRRT static

%HRmax at different running stages static
HR evolution time-series
HRR evolution time-series
Muscular Borg evolution time-series
Respiratory Borg evolution time-series
Lactate evolution time-series

Lactate threshold static

Abbreviations: LT, lactate threshold

static and time-series.

On the one hand, the collection of the static features is quite simple since it can be done by
means of questionnaires and direct measurement. On the other hand, as already explained, the
determination of LT and the collection of the rest of time-series features is done by a incremental

treadmill speed test protocol that must be defined prior to starting the data acquisition.

As any other protocol, the precise incremental treadmill speed test protocol used for individual
Dmax LT determination arises from certain criteria that afterwards materialize in precise rules. In
the present work we explicitly define these criteria from which the incremental treadmill speed test
protocol rules are defined according to the expert knowledge of the experimenters. The criteria are

described below:

o Criteria for heart plateau: 4 minutes of effort are considered necessary to be able to reach at

the end of each stage to HR plateau, i.e. the stationary state in each of the running stages.

o Criteria for heart rate recovery measurement: HRR is among the features to be calculated

and it has been observed that 1 minute of recovery is appropriate for measuring HRR [67]].

e Criteria for LT finding: Avoiding sharp increments in lactate concentration is important for

proper LT finding. To do so, the increments in speed are regulated.

o Criteria for warm-up without extra fatigue: The starting speed is important to let the athlete
face the test in progression so that it enables a proper warm-up while avoiding excessive

fatigue. To do so, the starting speed was determined in 9 kilometer/hour.

From the aforementioned criteria and considering the population under study, as illustrated in
Figure[3.12] the protocol to be used in the experimental tests is defined as: A maximal incremental
running test at 1% slope on a treadmill, started at 9 kilometer/hour without previous warm up. The
speed is increased by 1.5 kilometer/hour until 13.5 kilometer/hour and then by 1 kilometer/hour
until the participant reaches exhaustion. The duration of each running stage has been set in 4

minutes with 1 minute of recovery between them.
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Figure 3.12: Representation of the incremental speed test protocol and heart and lactate related

feature collection

Target population definition and pre-requisite formalization

As already defined, the virtual LT sensor is directed to recreational runner population. However,

due to its heterogeneity, simplifying and clearly defining the boundaries of the recreational runner

population is not straightforward. Therefore, prior to defining the pre-requisites for the target

population, we shall first define the target population or *what a recreational runner is’ in terms of

this work.

In this regard, the recreational population term has been commonly used to describe a wide

variety of athletes which include different sets of: beginner, well-trained and sub-elite athletes.

The recreational runner community interested in an operational lactate threshold estimation has

certain characteristics.

The first characteristic of the recreational runners (from the perspective of the present work)
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can be derived directly from the population in demand of an operational LT estimator. These are
athletes currently participating in long distance endurance races from 5 kilometers upwards. It
includes several disciplines such as track, road running, cross country running, trail running and

triathlon.

Second, there is both a lower and an upper athletic level that limits what can be considered

recreational runner.

On the one hand, the usefulness of the virtual LT sensor for an athlete below certain athletic
level is very limited and the athlete would better benefit from following a introductory training
plan. In this work we set this lower limit in being able to finish the 14.5 kilometer/hour running
stage in the treadmill speed test. On the other hand, there is a level above which the athlete can
not be considered recreational. To determine the upper level, two sub-elite athletes were recruited
and experiments made to be used as reference. Elite and sub-elite athletes are scarce and thus two
well-known athletes in good physical condition where selected according to their recent athletic
performances. The tests performed by the sub-elite athletes reached 20.5 kilometers/hour and thus

this speed is used as upper limit.

Summing up all the previous considerations and as represented in Figure [3.13] the following

athletic characteristics are requisites for an athlete to be considered part of the target population:

o Endurance athletes training for and participating in running races from 5 km upwards.
o Currently running at least 3 days a week.
e A running experience of at least 1 year.

o Athletic level according to the maximum running stage reached in the test herein assessed
between 14.5-20.5 kilometers/hour.

4 ™\
Target population pre-requisites

Purpose:
Objective criteria to discern between

recreational & non-recreational runners

Criteria:
* Participating > 5K running races
* Running > 3 days/week

* >1vyear running exp.

Level 14.5-20.5 km/h running stages

- J

Figure 3.13: Pre-requisites to consider recreational runner population
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3.2.2 Requisites for realization

The previously defined experiment preparations tries to ensure that the experiments are aimed to

the proper population and that the appropriate features are selected.

In this section, we describe the requisites that every athlete participating in the experiments
must fulfil prior to being allowed to perform it. These requisites include athletic, health, legal
and ethical considerations that either protects the athlete and/or ensure that the experiments are

performed under the appropriate conditions.

The athletic-health requisites that each athlete must fulfil includes:

e Be well rested and to abstain from hard training sessions and competition for 24 hours before

testing.
e Abstain from eating for 3 hours before testing.
e Abstain from taking stimulant substances before testing, including coffee or tea.
o Be familiarized with running on a treadmill.

e Being healthy and lacking on infections.
Additionally, there are certain safety and legal requisites that must also be fulfilled:

o To be federated in their respective disciplines

e Provide a medical certificate that ensures that they are able to perform the test.

Finally, according to the Ethics Committee for Research on Human Subjects of the University
of Basque Country UPV/EHU (CEISH/GIEB) that approved this study with M10/2015/203 refer-

ence number. The application of this protocol is subjected to fulfilling the following requisites:

e The participant has read the information sheet (see annex [A)).

e The participant has provided a written informed consent acknowledging that has been in-

formed about the possible risks of the tests and giving their consent (see annex [A)).

3.2.3 Experiment validity definition

Despite great efforts are put into maximizing the quality of the experiments, there is always a
chance to collect experiments that are invalid. The validity of an observation depends on char-
acteristics like correctness and/or application type. Therefore, we first make a classification of
different type of observations that we can encounter and that could potentially invalidate an exper-

iment.

In any population, there are always some rare observations that fall out of what it can be
considered as normality of a targeted feature. While these rare observations may still be correct,

distinguishing them from incorrect observations is sometimes not straightforward.
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Nonetheless making this distinction is fundamental, the validity of the observation may de-
pend on its characteristics. Figure [3.14]is representative of the classification according to type
of observations (gathered in columns) into normal and rare. Then, the rare is further divided
into outlier and incorrect. Moreover, this distinction is done both at sample level (considering if
the athlete is inside the target recreational runner population) and data level (if the data has been

erroneously measured or estimated).

A difference between incorrect and outlier data may be illustrated using the HR measurement
as example. On the one hand, an observation giving a negative value of HR or a HR of 300 beats
per minute is clearly considered incorrect data, since they are not within the range of what is pos-
sible for the phenomena under scrutiny, and therefore would be categorized as invalid data. On the
other hand, an unusual high HR value of 210 beats per minute may be due to the inherent char-
acteristics of the athlete and therefore considered as outlier. In this work, we hold a conservative
approach when labeling data as incorrect so that we only do so for the flagrantly incorrect as the

former example.

Additionally, as represented in Figure the incorrect and outliers may appear after any of
the data handling steps and we divide the sources of error in three types: sampling errors (major
contingencies and non-recreational runners), measurement errors (pulsometer, lactate measume-

ment device error...) and transformation errors (%HR max, LT due to Dmax LT method error).
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Figure 3.14: Categorization of correct and incorrect experiments and data
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Therefore, Figure sets a framework to evaluate which kind of data is valid for one of the

two main purposes: calculating the satisficing error and designing the virtual LT sensor.

Validity for satisficing error calculation: individual and system’s acceptable error

As already mentioned in section [3.1] there are two acceptable thresholds, system’s acceptable
error and individual acceptable error. These two acceptable errors were defined using expert
knowledge. However, to add further robustness, these criteria is to be validated with the analysis
of the LT threshold data. As represented in Figure normal, outlier and incorrectly lactate
data (measured lactate values and transformed LT values) are valid for this purpose.
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Figure 3.15: Valid data for individual and system’s acceptable error determination

A technique such as the individual Dmax LT method that is used in practice serves as the
proper reference to asses how much is ”good enough” for nowadays standards. The Dmax LT
estimation method, as any other methodology that tries to estimate or measure a variable, suffers
from approximation errors. In the present work we refer to this error as the unavoidable error.

This unavoidable error is part of the output of each observation that is used to create the ML
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system, so, it also sets the upper bound or the ideal performance that the virtual LT sensor could
achieve. As represented in Figure [3.16] the unavoidable error has two components which can be

directly mapped with the previously defined individual and system’s acceptable errors:

o Dmax LT method precision error: The individual Dmax LT determination method produces
precision errors in each observation that comes from the propagation of the blood lactate
measurement error (a combination of lactate measurement device error, inherent errors of
the physical measurement such as sweat in blood sample...) to the determined LT. The
quantification of this error can be used as reference to validate the individual acceptable
error based on expert knowledge. To do so, the normal and outlier Dmax LT estimations

are used.

e Incorrect Dmax LT rate: The incorrect Dmax LT observations (see Figure [3.20) are valid
since they give information about when the individual Dmax LT fails (those with non-convex
curves...) for the sampled population and thus defines the limit that the individual Dmax LT
has for its application to the entire recreational runner population. This limit is also to be
used in combination with expert knowledge to set a robust system’s acceptable error as it

sets the upper limit that any ML system created on these labels has.

In the present work and as represented in Figure the Dmax error analysis is used to
validate the acceptable errors previously defined using expert criteria.

' N\
Satisfying errors determination:
Propose Validate
Dmax LT error
Expert analysis

knowledge LT Incorrect
method Dmax
precision LT rate

Individual System’s acceptable

acceptable error error rate

(S )

Figure 3.16: Satisficing errors: Validation of expert knowledge from Dmax lactate threshold error
analysis

Individual acceptable error determination

The Dmax LT method precision error is well known in the literature from a measurement
perspective [68} 34] and is here used as the validation reference for the individual acceptable
error. The Dmax LT method precision error is related to the initial and final point selection,
regression type, number of blood measurements... but it has not been quantitatively addressed

so far. However, this error arises from a propagation of the blood lactate measurement error,
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which is dependent on unavoidable small errors such as the measurement device error, blood
sampling errors related to sweat, timing... and has been well characterized and quantified in the
work done by Tanner et. al. [69]. As represented in Figure the precision error of the
Dmax LT estimation is caused by how blood lactate measurement error propagates through the
individual Dmax LT method to the determined LT.

Dmax LT

determination
Dmax LT method

precision error

lood lactate
measuarement
error

Figure 3.17: Dmax lactate threshold method precision error caused by blood lactate measurement
error

Abbreviations: LT, lactate threshold

Since the process between the blood lactate measurements and the final individual LT estima-
tion follows a defined protocol, we can formalize an algorithm that creates as many simulated LT's
as required using hypothetical (hereafter plausible) measured blood lactates. Hence, in the present
work we propose a computational algorithm to estimate the Dmax LT method precision error by
unfolding how the blood lactate measurement error propagates and eventually materializes in the
determined LT.

As represented in Figure the accuracy of the blood lactate measurement can be divided
in its trueness and precision components. As already mentioned, the blood lactate measurement
device used in this work has been validated as an effective analyzer for lactate measurements [[69]].
Thus, it can be confidently stated that it has negligible trueness error. The rest of the possible
sources of error (blood sampling errors related to residual sweat, inevitable small timing differ-
ences etc) are of random nature and thus they contribute to the precision component [70]. As
illustrated in Figure the precision error and its random nature can be represented as a proba-
bility distribution. The precision’s standard deviation error has already been estimated by Tanner

et. al. by making a test-retest reliability analysis [69].

Figure [3.19| exemplifies the computing process for the Dmax LT method precision error es-
timation of a single athlete. With the previously explained precision error as reference (Figure
.19 step 1), the computational method starts from taking multiple (Z’ in algorithm [I) random
samples from the blood lactate precision distribution to estimate new blood lactate measurements

(hereafter plausible blood lactate measurements) (Figure |3.19]step 2). These plausible measure-
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ments for a particular athlete are represented under *blood lactate measurements’ name. In other
words, these plausible blood lactate measurements correspond to the blood lactate measurements
that could have been measured in the treadmill speed test due to the precision error of the blood
lactate measurement device. Using these plausible blood lactate concentrations, their correspond-
ing lactate curves are calculated (Figure [3.19]step 3), resulting in multiple different combinations
of lactate curves that could have been derived for a particular athlete. These lactate curves are
represented in Figure [3.19) under the ’lactate curves’ name. Finally, the Dmax LT of each curve
is calculated and represented in Figure under the LT’ name, which brings to light the inher-
ent variability of the Dmax LT estimation protocol and the calculation of the Dmax LT method
precision error for a particular athlete (Figure 3.19step 4). To calculate the Dmax LT method
precision error for the whole recreational runner population, this computational algorithm takes
random samples with replacement from the sampled population to better represent the underlying
population (Figure [3.19]step 5). Finally it calculates the mean of all the calculated precisions to
obtain the final Dmax LT method precision error (Figure[3.19]step 6). Algorithm I|formalizes this

process.

This calculation process is repeated in each design iteration (as explained in section [3.3)) so
that the calculation grows in robustness together with the increase in sample size. Thus, the de-
termination of this errors is done in Chapter [] in each iteration. Then, this calculation is used
to validate the individual acceptable errors defined according to expert knowledge stated in table
B.1] Therefore, the validation is done in Chapter d] The W and Z re-samples are experimentally
selected in Chapter ] by increasing the size until reaching the ”diminishing returns” phase. X is

increased together with the sample size of different iterations.

System’s acceptable error determination
As in any other method there are certain recreational runners from which the application of the
individual Dmax LT method derives into incorrect LTs from data perspective (see Figure [3.14).
Analysing these incorrect LTs is a good way to estimate which proportion of the recreational
runners can use the individual Dmax LT determination, serving as a good reference to validate the

base system’s acceptable error created with expert knowledge.

As we have seen before (Chapter [2)), the lactate determination method selected in the present
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Algorithm 1 Algorithm to compute the error caused by measurement: Dmax LT method precision
error
Require: # lactate points per athlete
SDMeasurement = Blood lactate measurement precision standard deviation ([69])
Precision distribution = Normal distribution(SDMeasurement)
for W bootstrap re-samples do
for X athletes do
for Y lactate points do
for Z random samples do
Plausible measurement error = Random sample from Precision distribution
Plausible blood lactate concentration = Measured lactate + Plausible measurement
error
end for
end for
Plausible LTs = fDmax(Plausible blood lactate concentrations)
Dmax error per athlete per re-sample = Plausible LTs - mean of Plausible LTs
end for
end for
Dmax error distribution aggregating Dmax error per athlete per re-sample
Dmax LT method precision = Standard Error Measurement of Dmax error distribution

work is among the most reliable methods and there is no ground truth with which it can be com-
pared. Therefore, discerning between an outlier from an incorrect LT (see Figure [3.14) is not
straightforward. In this work, a conservative “least favorable” approach has been followed and
only what experts considered flagrantly incorrect data is considered so. As represented in Figure
in our case this includes the lactate thresholds estimated on non-convex curves or highly

undulated curves among others.

Thus, it can be used as a reference Dmax LT determination error and use it as a reference to
set the system’s acceptable error of our estimator, as well as to evaluate the maximum room for
improvement of our system. Similar to the individual acceptable error, this calculation process
is repeated in each design iteration (as explained in section so that the calculation grows in
robustness together with the increase in sample size. Then, this calculation is used to validate the
system’s acceptable error defined according to expert knowledge (90-95% error). This validation

is done in Chapter {4

Validity for virtual LT sensor design

As represented in Figure [3.21] the validity of the observations for designing the virtual LT sensor
consists of detecting the incorrect observations at every level. More precisely, incorrectly sam-
pled athletes (non recreational runners), incorrect measurements or incorrect transformations that

compromises a relevant feature may invalidate the entire experiment.
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Figure 3.20: Incorrect data from Dmax lactate threshold method perspective

3.3 Methodology for virtual lactate threshold sensor design and devel-
opment: characterize, represent and decide

The methodology here proposed describes the intra-iteration process. The objective of each itera-
tion is to create a virtual lactate threshold sensor and to do so, as already mentioned and illustrated
in Figure [3.6] section [3.1.1] this process is divided into context characterization, content represen-

tation and next step decision making.

As illustrated in Figure [3.22] the steps are divided according to two main inherent difficulties
that creating a ML system has, plus a step that systematizes the decision making process for the

next step to take. The purpose of these steps can be summarized as:

1. Context characterization: How and which data we collect (features and observations) to best

represent the LT phenomena by minimizing the selection biases that may be introduced.

2. Content representation: This step deals with making the best use of the data so that the
function that ML system infers best approximates the underlying function. This entails

maximizing the robustness of the ML system as explained in section[3.1]

3. Deciding next steps: The final step deals with formalizing a method for deciding which is
the most appropriate direction that the next iteration should follow (if any). More precisely,
the decision-making process that leads to accepting, improving or definitively stopping the

design of the virtual LT sensor.
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Figure 3.21: Valid data for virtual lactate threshold sensor design

3.3.1 Context characterization: Collecting high quality data

The quality of the gathered data is one of the key characteristics for a successful ML solution
and where most of the effort must be focused on. Thus, the purpose of this step is to maximize
the quality of the data collected in terms of its relevance with respect to the LT. In other words, to
characterize appropriate context so that we have enough relevant information to make the inference

about the outcome of interest.

Collecting quality data implies to select and collect the features and corresponding observa-
tions that have a close relation with the outcome of interest as well as to do it minimizing the
selection bias. Selection bias is the error introduced in the selection process of individuals in
such a way that the data sample obtained does not properly represent the population intended to
be analysed. In our case, this can come from improper selection of the athletes and/or improper

collection of feature-observation pairs.

A proper experimental design is therefore fundamental to minimize this source of error and to
create a robust virtual LT sensor. To do so, given that the population of interest, i.e. recreational

runners, is correctly defined and the protocols created (see section(3.2)), it is fundamental to ensure
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that proper randomization is attained during data collection so that the chance to get features with

spurious relations minimized.

As represented in Figure [3.23] we first decide how many and which features and observations
are collected according to the needs and specific objectives of each iteration. The data is then
collected according to the experimental protocol. Finally, a pre-processing is made for detection
and cleaning of invalid data (see Figure [3.14)), for getting overall knowledge of the information

collected and adjusting the satisficing errors.

[ 1. Feature & Observations }

1

[ 2. Make experiments }

{ 3. Pre-processing & filtering }

Figure 3.23: Context characterization: Steps for collecting quality data

Criteria for database creation: Features and observations

An inherent difficulty when creating a database is that the collected data always contain a combi-
nation of relevant information and noise. The purpose of the database is to gather and organize
the input-output features with their corresponding observations with a minimized noise. Given the
target population is clearly defined, the noise minimization is dependent on 1) collecting features
that are relevant for the LT and 2) ensuring a proper randomization of the collected observations
using appropriate sampling and re-sampling techniques.

Indiscriminate collection of multiple available features may seem reasonable a priory, since
the more features we collect the more variability of the outcome could be potentially explained.
However, it is known that this kind of approaches that do not use any criteria may lead to dimen-
sionality problems [[71] and end up finding spurious relations between the input and output features

that do not generalize outside the sample. One of the solutions to minimize the risk of falling on
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dimensionality problems is using expert knowledge as a filter of features. In our case, it is known
that multiple features such as HR related ones, perceived effort, diet, physical condition, age, ath-
lete level etc are related with lactate production or LT [52]. A first filtering was already done when
creating the experimental methodology in section[3.2] However, further filtering may be necessary

at iteration level and this knowledge is thus used also as the additional filter of features.

As already explained, the features must be accompanied with the appropriate amount of obser-
vations to avoid to violate the fundamental sampling laws such as law of large numbers and central
limit theorem [[72;[73]]. If these laws are not respected, the observed variability of the input features
can end up being due to randomness and may interfere and make the inference engine misrepresent

the information [71]] and be unable to generalize to the recreational runners population.

But, how many observations are enough for this noise to be minimized? So far, several heuris-
tics such as the one in ten rule” (10 observations per feature), the commonly used 30 observations
for independent variables etc have been proposed in these endeavour. However, these heuristics
are based on multiple assumptions of ideal conditions such as independence, normality of distri-
bution... and shall be treated as a rule of thumb [74]. Moreover, it is well known that, in order
to obtain a statistically sound and reliable result, the amount of data needed to support the result
often grows exponentially with the dimensionality [[71]. Therefore, despite these heuristics are not
able to ensure how many observations are sufficient, they serve as a valid reference to determine a

lower threshold of observations.

In any case, the number of observations needed is highly dependent on the problem being
solved and thus the iterative approach here proposed goes hand-in-hand with this inherent un-
certainty, since the iterative strategy allows to incrementally test the sample size by a posterior
evaluation of the ML system performance for increasingly robust conclusions. Therefore, the

number of observations will be determined in each iteration taking into account these criteria.

Moreover, as explained in section [3.2] and represented in Figures [3.15] and [3.21] the observa-
tions gathered in the database are susceptible to be invalid for both acceptable error calculation and

designing purposes. To maximize the quality of the data, these invalid data is to be minimized.

To do so, first a detailed protocol is created to systematically capture, digitalize and organize
data. This data acquisition protocol can be divided into: preparation, calibration & start-up of
the necessary tools, confirmation of pre-requisite compliance, formatting, static feature collection,
time-series feature collection, failure case protocol and digitalization. The detail of the data ac-
quisition protocol can be found in annex Bl The pre-processing step helps to detect the remaining
incorrect data at sampling and data perspectives (see Figures [3.15] and [3.21)) and filter out the

corresponding invalid data.

Pre-processing

Given the endeavour of maximizing the quality of our data, pre-processing relates with all the
initial analysis that allow us to get an overview of the sample, make early detection of invalid data
and filter it out. Moreover, pre-processing also serves the purpose of getting additional knowledge

of our problem by making a preliminary descriptive analysis of our sample.
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This process starts with the format merging, on which each experimental tests and each results
are scrutinized in detail. To do so, every experimental test is independently and one-by-one anal-
ysed to look for flagrant errors and inconsistencies between the redundant formats (pictures, excel

files and handwritten documents) that were used to gather the data.

With regards of detecting and filtering out the corresponding invalid data, this pre-processing
follows the same sequence than the data collection. Looking it from the samplimg perspective (see

igu , AW u :
Figures the two sources of error are

1. Major contingencies during the experimental test: The most evident source of error and one
that completely invalidates the collected data comes from any major contingency that may

happen during the test. Some examples are unfinished tests, flagrantly sub-maximal tests...

2. Non-recreational runner population: The remaining data, despite being collected by follow-
ing the pre-requisites defined in section [3.2] as represented in Figure [3.24] may still contain
non-recreational runners. More precisely, there is always certain subjectivity in the selection
of recreational runners participating in the experiments, in this case concerning the athlete
level. As already defined in section [3.2] the athlete level can only be estimated a priory and
thus, it may show a different performance than expected in the experiments (Vpeak below
14.5 kilometers/hour or above 20.5 kilometers/hour).

Source Population

Target population:
Recreational runners

Figure 3.24: From target population to sampled recreational runners

The incorrect experiments detected in these two steps are invalid for both error calculation (see
Figure [3.13)) and designing purposes (see Figure [3.21)), therefore are to be filtered.
Once that the invalid data coming from sampling errors has been filtered, the focus is placed in

the sources of error from the data perspective. Despite the big efforts made to maximize the data

collection quality, there are unavoidable errors that we divide this source error into (see Figure

B.-14):
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1. Primary measurement error: These errors are related to any measurement error done to
acquire the raw features that are gathered in table [3.2] As already mentioned, the output
incorrect data coming from measurement errors (i.e. incorrect lactate values) are still valid
for acceptable error calculation (see Figure [3.15) and are reserved for this purpose. The rest

of the incorrect data is invalid for both acceptable error calculation and designing purposes
(see Figures and [3.21)) and are thus discarded.

2. Secondary transformation error: These errors are related to any transformation error done
in the process to convert the raw features gathered in table into the features gathered in
table[3.3] The incorrect lactate curves and posterior incorrect LT are among these features.
As already mentioned in section this output data remains valid for satisficing error ad-
justments and thus it is reserved for this purpose. Notice that at this level, ’incorrect” is
understood in terms of the Dmax LT determination method: those experiments are consid-
ered incorrect because the Dmax LT determination method does not suit them as long as the

lactate points do no exhibit a convex behaviour.

To detect and identify the incorrect data, apart from a one-by-one analysis of the data, in each
iteration, an uni-variate descriptive analysis of the data is performed to illustrate the distribution
of each feature. This allows to have an overview of each feature, facilitating the detection of
the incorrect data that stands out. Then, using the criteria above mentioned, the invalid data is
discarded. The descriptive analysis is enriched with graphical tools that allow to look at the data

from other perspectives and elucidate further characteristics.

Additionally, the aforementioned uni-variate statistical descriptive analysis serves to get ad-
ditional knowledge about our problem by looking to the distributions of the collected features.
For instance, looking to the mean and standard deviation of the features may give additional in-
formation about the characteristics of the recreational runner population. With the same purpose
of acquiring additional knowledge, an exploratory bi-variate analysis is also done. This analysis
seeks to throw some light on how the collected features are interrelated by analysing the cross-
correlations between them. Furthermore, these correlations are to be placed in the same map to
facilitate its interpretation. This information may be valuable in future steps to make a preliminary
idea of the context that we are working on in aspects such as the redundancy of the information

gathered in the features.

These analysis are done according to the specific needs of each iteration, and therefore is
specified in the design phase (see Chapter [d)).

3.3.2 Content representation: Learning relevant information

Once the context characterization phase is finished, we have a finite amount of content collected
in our database. In spite of doing great efforts in the data collection step, the database always
contains variability that cannot be explained with the collected independent features. In other
words, our database contains at the same time relevant information (signal) and random or spurious
information (noise). Therefore, the purpose of this content representation phase is to make the

most from the data we already collected by representing only the relevant part while filtering out
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the spurious.

To do so, ML tries to match the relevant degrees of freedom contained in the database (in form
of relevant features) with the degrees of freedom of the algorithm to be used to infer the underlying
relationship. In our case, aiming for robust learning, we put great efforts into every step that
reduces the chances of overshooting the degrees of freedom of the algorithm and consequently
creating an over-fitted model. To do so, introducing diversity in every step of the learning is
fundamental [75]]. As represented in Figure[3.25] this content representation can be divided into

five highly intertwined parts.
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Figure 3.25: Content representation’s sub-parts

Splitting the database into different non-overlapping chunks is the foundation on which ma-
chine learning stands. A model directly trained in the whole data sample would be unable to
estimate the model performance on unseen data, and the chances of creating over-fitted models
would significantly increase due to the lack of data diversity. Therefore, the data base splitting
serves two purposes: robust learning and performance evaluation. Moreover, as represented in
Figure [3.23] it is done to serve learning and evaluation in different layers, at hyper-parameter and
parameter levels more precisely.

Making use of the split database, training, feature engineering and final model creation/selection
are the three inferences that a ML methodology makes.

Feature engineering and training are two sides of the same coin (matching the relevant degrees
of freedom of the data with the degrees of freedom of the algorithm). On the one hand, feature

engineering tries to do it by selecting the relevant degrees of freedom of the feature space. To do
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so, features are created, transformed and combined to maximize its relevance with respect to the
outcome of interest (LT in this case). On the other hand, training plays with the degrees of freedom
of the algorithm (hereafter model hyper-parameters) and fit the virtual LT sensor’s parameters to
the input-output data. Finally, the last inference relates to how a model is created or selected from

the entire set of models created in the previous step.

Performance evaluation goes in parallel to the different inferences providing feedback of the
performance of the system at different levels (model hyper-parameter and parameter). First, the
performance is assessed through the bias-variance of the different model hyper-parameters com-
bination. Second, the appropriate hyper-parameters are selected for the final model creation or
selection. Third, the final model is evaluated by comparing the performance in the data split used

so far (training set) with a test set that remained outside the learning.

Finally, as mentioned in section [3.1] maximizing the robustness of this learning methodol-
ogy is a necessary condition for observing the real system’s error and consequently evaluating
the applicability of the virtual LT sensor. In this regard, the principle of parsimony says that, in
equal conditions, the most parsimonious approach reduces variance of the ML system, making the
solution more robust to unseen data compared to other more complex ones [[76]. Moreover, a parsi-
monious system is much easier to understand and adapt due to its simplicity and consequently low

computational cost. Thus, parsimony is to be applied in every step of the content representation.

Since every step of the content representation is intimately intertwined to each other, the selec-
tion of the techniques to be used correspond to the design phase, when the appropriate techniques
are to be decided in parallel. Therefore, the following sections make a high level analysis to define

the perspectives that are going to be followed in the design phase in Chapter 4]

Database splitting criteria: Foundation for robust learning and evaluation

To make the two layer learning and performance evaluation possible (at hyper-parameter and pa-

rameter levels), the database splitting is done in two steps.

As illustrated in Figure the first database splitting is done to separate the data set used
for model training and leave the remaining data unseen for its use to test the performance of the

final model.

In order to make this separation robustly, a common approach in ML is to start by randomly
splitting 80% for training purposes and 20% for testing purposes which is to be used as our first
design approach.

The second split relates to the hyper-parameter level learning. As represented in Figure
using only the data previously reserved for training purposes, ’n” models (virtual LT sensors in
our case) are created with “n” combinations for one specific set of hyper-parameters. The n”
parameter combinations can come from different initializations of the learning algorithm and/or

from different re-samples of the training data.

Similar to the context characterization step, one of the main ideas behind making multiple
models from different re-samples is increasing the randomization, so that the effect of the noise

contained in the data is minimized and the robustness of the learning and evaluation increased.
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Sampled data

Figure 3.26: Separation of sample data into training and testing sets

Furthermore, the models are also created using “'m’ number of hyper-parameters so that the
appropriate trade-off between bias-variance can be found according to them. Figure [3.27) shows
how these two kind of parameters are fitted during the training, illustrated by the example of a
polynomial model. More precisely, in the example ”n” sets of parameters are fitted for each hyper-

parameter combination using the corresponding training set splits for a resulting m x n number of

models.
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Figure 3.27: Data base splitting for hyper-parameter learning and evaluation

In order to maximize the robustness, following the principle of parsimony, the lower the num-
ber of hyper-parameters the better. Therefore, the training set split must focus on providing enough
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significant splits to enable the appropriate evaluation of the bias-variance corresponding to each

hyper-parameter combination.

As the selection of the database splitting is highly dependent on the learning approach the

selection of the exact approach is to be done in the design phase in Chapter {4

Feature engineering: Finding the relevant features for LT

The purpose of feature engineering, i.e. the creation, transformation, reduction, selection and
combination of the available features, is to make a proper representation of the feature vector. It is
well known that most ML performance is heavily dependent on this representation [77]] and that,

if properly done, can greatly simplify the efforts needed in the training step.

Proper feature engineering is closely related with finding the features that are relevant for the
output of interest (LT in this case) and extract the complementary information that these features
provide. In other words, it tries to find the relevant and use only the necessary degrees of freedom,

while discarding the rest. So far, multiple methods have been used in this endeavour.

Filtering feature engineering methods on their part can be used to make an explicit analysis
of the feature relevance and subsequently to train the model. This approach includes techniques
such as information gain, correlation coefficient, mutual information... and are independent on the
training [[78]]. Wrapper or embedded methods such as recursive feature elimination or addition,

lasso regularization... make the feature relevance implicit to the model training step.

As already said, when selecting the features from available data we are also making an infer-
ence from our limited sample, with its associated over-fitting risk. Thus, in line with the criteria
for the selection of features in section [3.3.1] in the present work we use again expert knowledge
to make a sub-selection of features and add robustness to the conclusions derived from the rest
feature engineering methods. Additionally, the parsimony criteria is also to be applied here for

maximized robustness which means that the lesser features needed the better.

Training a model: Learning the relation between input and output features

The training step deals with the selection of the approach used to learn the relationship between

the input features and the output.

In this regard, there are multiple types of learning approaches such as the connectionists (neu-
ral networks, reservoir based... Figure|3.28)), instance based (k nearest neighbours in Figure ,

statistical (Bayesian approaches, generalized linear models...Figure [3.30) etc.

Each learning approach provides with a particular set of complexity and characteristics which
can be more or less appropriate for the problem in hand according to the structural characteristics
of the relevant information collected in data. For instance, artificial neural networks (ANN) are
universal approximators, which means that a simple neural network can represent a wide variety of
functions when given appropriate parameters. Instance based learning approaches, instead of per-
forming explicit generalization, compares new problem instances with instances seen in training,
and stored in memory. Therefore, the suitability of the learning approach depends on the problem

characteristics and is highly experimental.
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Figure 3.28: Connectionist learning approach example: Artificial Neural Networks and NeuCube
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Figure 3.29: Instance based learning approach example: k Nearest Neighbors

The principle of parsimony also applies here to minimize the number of parameters that need
to be fitted with the data and thus to create a more robust system. For most ML systems, the quan-
tification of the parsimony of our system is done by counting the number of internal parameters
of the ML system, the fewer the number of parameters the more parsimonious the ML system. In
Figure [3.31] we show an example of how the parsimony of a linear model would be calculated

according to its 'n’ number of parameters. The higher the 'n’ the less parsimonious model.

Therefore, a parsimonious learning could be achieved by selecting a sufficient low number
of hyper-parameters of the learning algorithm. Additionally, regularization methods are also
useful for this purpose, which introduce a penalty for exploring certain regions of the function
space. Early stopping, regularizing for sparsity and other implicit regularization like Lasso are

well known.

Performance evaluation at hyper-parameter level: Bias-variance of the methodology

Similar to the previous inferences, the performance evaluation is done at every level, i.e. at hyper-

parameter and parameter level.

Usually the error analysis is done in raw error terms such as mean square error or any other
metric detached from the application. However, to quantify the performance from the applicability
perspective, the satisficing error perspective must be introduced into this analysis (see Figure
in section [3.1)). Therefore, prior to making any evaluation, we introduce the method by which the

raw error of the models are to be transformed.

To do so, the estimation error on each athlete (hereafter individual error) is calculated com-

paring its real lactate threshold and the estimated lactate threshold (5).

individual error = real individual lactate threshold - estimated individual lactate threshold (5)
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Figure 3.30: Statistical learning approach example: Bayesian inference
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Figure 3.31: Parsimony quantification: An illustrative example using the number of parameters of
a linear model

As illustrated in Figure (3.9} if the individual error is above the individual acceptable error this
estimation is considered non-acceptable. Having all the athlete’s estimations been classified as
acceptable or non-acceptable, the system’s error is determined calculating the number of athletes
which accomplish the individual acceptable error and represented as a % of the total athletes in the
database. This percentage is considered the system’s error of our system. Algorithm [2|formalizes

this computation and Figure [3.32)illustrates it with an example.

Algorithm 2 Compute system’s error

for N number of athletes do
if individual error > individual acceptable error then
non-acceptable estimation = non-acceptable estimation + 1
end if
end for
System’s error = (N - non-acceptable estimation) / N * 100

With this transformation the application perspective is intrinsic to the metric to evaluate the
performance and we are able to jump into the bias-variance estimation of the methodology. Despite
there are multiple methods (learning curves, cross-validation, Akaike information criterion...) to
evaluate the bias and variance of the learning methodology, most of them rely on analyzing the
combined errors of the 'n’ created models (see Figure [3.27). More precisely, the variance is
obtained by observing how the error varies across the 'n’ models (for instance, measuring its
standard deviation) and the bias by computing the mean error of the 'n’ models. Let Figure
[3.33] serve as an illustration of how the bias-variance evolves according to the number of hyper-

parameters.
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System’s error rate calculation example:
System’s error rate = (10-1)/10 * 100 = 90%
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Figure 3.32: System’s error calculation

Abbreviations: LT, lactate threshold; Ex, estimation error on athlete x
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Figure 3.33: Example of bias-variance estimation for each hyper-parameter set

Hence, the diversity we introduced in the database splitting step by creating multiple mod-
els allows to make the evaluation of each hyper-parameter combination from the bias-variance
perspective. The robustness of this estimation depends mainly on how well the diversification
was done, the higher the re-sampling and initializations the better. Therefore, it places a greater

emphasize in its importance.

Model creation or selection: Hyper-parameter selection and final model creation

Once the hyper-parameter level learning is finished (i.e. the feature engineering and the training)
and the performance of the methodology estimated, the next inference is to select the model hyper-

parameters and create or select the final model from it.

A parsimony based hyper-parameter selection is a common practice for increasing the robust-
ness of this inference. This selection is usually done according to the point of diminishing error
reduction with respect to the number of hyper-parameters of the model. To do so, expert knowl-

edge or approaches such us the elbow method are commonly used. Figure |3.34| represents the
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application of the elbow method to find this point.
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Figure 3.34: Hyper-parameter selection according using the elbow method

However, in our case, consistent with the preference of an under-fitted model as explained in
section [3.1] (see Figure [3.7), we introduce an additional criteria for the hyper-parameters selection
to maximize the robustness of the system. To do so, the system’s acceptable error is used as

reference and the most parsimonious hyper-parameter combination that fulfils it is selected (see

Figure 3.33).

Estimated bias

——  Estimated variance

Acceptable error

Error

N2 of hyper-parameters

Figure 3.35: Evaluation of the bias-variance of a polynomial regression according to different
number of hyper-parameters

This concept extends also to other methods such as ensembling that may be used to create the
final model fusing multiple ones. The hyper-parameters of the ensembling approach are also to be

taken into account during the design phase to maximize the robustness of the final model.

Performance evaluation at parameter level: final model testing

The final model performance is evaluated from the comparison of the system’s error in the training

set with respect to the system’s error in the test set.

Then, for comparison purposes, two considerations are to be made. If the system’s error
estimated in the training set differs greatly from the system’s error estimated in the test set it can
be concluded that the variance of the system is too high, and thus the generalization of the virtual
LT sensor is not good. On the contrary, if both errors are similar, the variance term is considered

small and thus the observed error and real error may be considered similar.
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Therefore, given that the robustness of the methodology has been maximized, this training-
test set performance comparison places our final model in the bias-variance continuum. These
conclusions are fed to the next section where the interpretation of the final performance is made

to decide what direction to follow next.

3.3.3 Next step: Criteria for direction adjustment

After a design iteration is finished, the next question that arises is: what do we do next? There
are three possible answers to this question: (1) Accept the solution, (2) stop because continuing
is non-viable or (3) make a direction adjustment and another design iteration. As illustrated in
Figure this section deals with the process that leads to one of these decisions.

The traditional next-step decision making process for a ML model starts from the evaluated
performance. If the variance of the final model is non-negligible or doubtful, the observed error
of the virtual LT sensor is not close to the real system’s error and thus the solution cannot be prop-
erly evaluated and is insufficient. Therefore, the next step to be made comes from increasing the
robustness which, depending on the characteristics of the learning approach, may be obtained by
decreasing the complexity of the learning and/or increasing the sample size for testing purposes.
The former may include multiple approaches such as: decrease the number of features, decrease
the training algorithm complexity, increase the regularization term... On the contrary, if the vari-
ance is negligible, the magnitude of the bias error is compared with the system’s acceptable error

defined in section [3.T] (see Figure[3.7).

Then, if the bias error is below the satisficing error, the ML system is usually accepted in the
traditional next step decision making processes (see Figure[3.36). In this work we go beyond that
and introduce an additional methodological perspective (see Figure [3.37). As already stated in
section [3.1} in problems such as the the LT where the heterogeneity of the population is consider-
able, the maximization of robustness is fundamental. Therefore, in line with what is represented
in Figure[3.7| we pose and additional question: can be the robustness of the methodology and ML
system further improved? If the answer is positive the next iteration is headed towards further

increasing the robustness of the system. If the answer is negative, the solution is accepted.

On the contrary, if the bias is not below the satisficing error, further increased optimization
may be sought. This is usually achieved both through an increased learning complexity and/or
increasing the resources for modelling. To do so, the number of features may be increased, the
training algorithm complexity increased or the regularization term decreased. However, it is im-
portant to note that any of these approaches also tend to require to increase the resources for

modelling (e.g. increasing sample size and/or computational power).

To summarize, if the ML system is not accepted as final solution, one of two improvement
directions are possible, increasing robustness or increasing optimization. Making the correspond-
ing improvements are subjected to a cost-benefit trade-off which may give way to the next step
or decide that is unfeasible. More precisely, the cost of taking another iteration is evaluated from
the economical, temporal, technical, material... perspectives and compared to the closeness to

achieving a sufficient solution and the comparative value that provides.
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Figure 3.36: Traditional machine learning next step decision making process
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3.4 Strategical and methodological conclusions

This chapter has served to, starting from the higher level of abstraction, define a set of strategical
principles that, after combining with the common traits in supervised learning problems, grew
into a detailed iterative methodology that is to be used in the design of the virfual lactate threshold

sensor.

From a general analysis of the problem, the inherent difficulties of ML complex problems were
identified as: (1) the problem boundary discovery and (2) defining the appropriate performance
perspective. We proposed an iterative strategy to deal with the former and, for the latter, we set an

approach to achieve a satisficing accuracy.

Then, with these strategical considerations in mind, a design methodology was developed.
This methodology formalizes the common traits that are found in supervised learning and applies
it to the virtual LT sensor, detailing the steps to be followed intra-iteration. More precisely, it is
divided in three steps: context characterization, which deals with ensuring that the quality of the
collected data is maximized; content representation, dealing with the approach for learning only
the relevant information; and next step selection, which guides the decision making process for the
next iteration. Here it is important to note that, despite this traditional next step decision making
process is well known in practice [S7]], to the best of our knowledge, the formalization done in this
work is a contribution. Moreover, in this work, we go beyond evaluating the final ML system and

introduce an additional methodological perspective to the traditional next step decision making
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Figure 3.37: Novel machine learning next step decision making process
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process.

As a general conclusion, this chapter served to show the importance of evaluating the strength
and weaknesses of the tools to be used (ML in this case), evaluate the characteristics of the sys-
tems we are working with (lactate metabolism) and include the application perspective towards
a successful solution. Despite this perspective is not novel and is common practice in systems
engineering, we brought this concepts to the field of ML where it was not done so far. Moreover,
this lack of methodological rigour made its appearance even in prior works that tried to use ML

for lactate estimation [54;155]].

Therefore, in this chapter we formalized a methodology and made as much as possible as-
sumptions explicit so that we created a rigorous methodology that is easily reproducible, falsifi-

able, adjustable and transferable to other similar problems.
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