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Preface

Recherché: sought out with care.

This research, as any other, is exploration, discovery in essence.

And I find that this discovery process, despite being framed as a specific project, is mostly
about ourselves. About expanding our intuition, our senses, overcoming our biases, discovering
new perspectives and new tools. Improvements that eventually lead to better ways to approach
and interpret whatever it is in front of us, in our never-ending endeavour of navigating through the
unknown.

Using a language more fitted to the present thesis, it is about improving our abilities to filter,
transform, represent and interpret the information about our context and make better decisions that
would help fulfil or reach our goals. The main perspective of this thesis being the generalist point
of view of system engineering.

A maxim of this area is that getting proper awareness of the foundations of an interesting and
relevant problem is at least as important as having techniques and tools to solve a problem. E.g.
with the objective of climbing the highest mountain, someone may try to climb the mountain that
looks higher from his/her vantage point. And discover ex-post that the climbed mountain is not he
highest but a close one. This analogy is not alien to anyone participating in some kind of research.

So expending the right energy in the problem-space identification is a must if we want to max-
imize the chances of reaching to the desired goal. The more complex and uncertain the problem,
the truer this statement. And research is arguably one of the most uncertain areas, as we said
before, ”sought out with care”.

Using this generalist point of view, this thesis attempts to provide novel solutions to: First,
solve a specific problem that will help practitioners (coaches and athletes in this case) make better
decisions for training endurance sports. Second, formalize the process behind this solution so that
we provide a framework to help guide the steps when new similar problems appear in the future.

This dissertation is the exercise of accumulating, gathering, organizing, conceptualizing, syn-
thesizing and making explicit the work done these last years.

Here it is my humble attempt to help science advance.
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Abstract

In this thesis, a first fully operational virtual lactate threshold sensor was created for recreational
runners based on a simple heuristic. From the additional knowledge gained, % of maximum heart
rate at a given speed also showed the potential to be used in synergy with lactate threshold. This
way, a so demanded operational solution to help the training of recreational runners was designed.
Moreover, the Lactatus software was created to guide, ease the athletes’ lactate threshold estima-
tion process and implement the additional information in their training decision-making process.
This way, the work of this thesis is made tangible, widely available and usable to recreational
runners.

This solution grew from the creation and formalization of a strategy to apply machine learn-
ing to complex phenomena, an important contribution of this thesis. This strategy combined an
iterative meta-process and a satisficing approach to deal with the problem boundary discovery and
reduce the problem complexity. A methodology was created to define the collection and validation
of the experiments. Then, the design of the virtual lactate threshold sensor was divided into three
steps: context characterization, content representation and next step decision. The formalization
of this methodology and a modification of next step decision are novel contributions. Additionally,
several novel techniques are also used, including a standardization of the temporal axis, a mod-
ified stratified sampling and a computational algorithm to discover the inherent noise that input
and output features may contain. This way, a robust strategy and methodology is created to design
virtual sensors for problems with similar characteristics.

The application of this methodology led to an important conclusion. Concretely, Dmax in-
dividual lactate threshold’s intrinsic error analysis showed that a higher accuracy of the virtual
lactate threshold sensor was unnecessary and even non-characterizable. This fact manifested the
importance of understanding the variability of the output features with respect to the input errors.

The computational algorithm could also be used to evaluate other lactate threshold protocols
in order to quantitatively address their reliability. This may allow to make an objective cross-
comparison of the accuracy of different lactate threshold protocols, something that, to the best of
our knowledge, is not well addressed in the literature.

One of the possible limitations of this solution is that our population is drawn from local run-
ning clubs. This means that it is possible that the recreational runner population here characterized
may not be representative of recreational runners of other culture, ethnicity or different contexts.
However, one of the main advantages of providing a simple solution is that, unlike other black-box
models, it is easily reproducible and adjustable, meaning that we have set a common ground for
other researchers to evaluate the impact of our proposal. In the best case scenario, future experi-
ments done in other contexts will validate it. In the worst case scenario, we have provided an easy
to follow methodology and a strong prior that will allow to adjust the virtual lactate threshold
sensor and knowledge to individual characteristics of different populations.
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Chapter 1

Introduction

A problem well put is half solved - John Dewey

Figure 1.1: The highest Mount Aoraki looks smaller than Mount Tasman
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1.1 Motivation of the work: the problem space

The motivation of the present project, as usually happens, was born from a social demand. Nowa-

days, there is a huge recreational runner population that wants to train for performance. These

athletes have particular interest of assessing the evolution of their performance to help optimize

their training. In this regard, features related to the intensity of exercise at aerobic/anaerobic tran-

sition are good indicators of performance in endurance sports. Lactate threshold (LT) is probably

the most used one with this purpose. In fact, current recreational runners, despite their limited

resources, pay a reasonable amount of money to estimate their LT in specialised centres (see Fig-

ure 1.2). Thus there is a huge interest in obtaining more operational ways to do it. Despite there

are other indirect more or less operational ways to estimate it, non seemed to have achieved the

sufficient accuracy to displace the traditional non-operational ones.

Figure 1.2: Current lactate threshold determination method: invasive non-autonomous

Traditionally, training for performance has been based mainly on heuristics and good prac-

tices. Sport science, armed with the idea of applying the scientific method in the context of sport,

has tried to provide additional tools, such as the LT, to further enrich the toolbox of coaches and

athletes. Physiologists on their part, have tried to get a deep understanding about the LT phe-

nomenon, not only for sport related implications, but also because of the relevance that physical

performance measurements have in human health.

However, as in many other scientific areas, crossing the line between theoretical research and

practice is always difficult. In this regard, this thesis is born with the objective of, using the system

engineering mindset, closing this gap on the long-standing problem of operational LT estimation,

focused on the recreational runner population. Moreover, another important motivation is about

making an incursion on solving sport related problems using data based approaches and forming

methodologies that will help future researchers.

Going deeper into the social demand, in recent years, endurance sports have dramatically in-

creased in popularity, specially long distance running events and triathlon. These events usually

count with thousands of participants, up to 42000 inscriptions in the Brooklyn marathon, 35000 in

New York and 60000 in Paris in the 2019 editions (Figure 1.3). Even more popular are other en-

durance events such as half marathons, 10 to 20 km races and middle and long distance triathlons.

Looking at the 17 million of people who finished a running event and the 4 million people who
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participated in triathlons in USA [2] gives an idea of the volume of athletes who are participating

in this kind of events.

Figure 1.3: Runners participating in Paris marathon

By Marriot Bonvoy Traveller

This big recreational runner population does not appear to be diminishing in the short term.

Physical activity is becoming a priority and an important part of the modern western society. En-

joyment, mental and physical health and the personal fulfilment that comes from establishing and

achievement of objectives... are among the multiple benefits that physical activity has on individ-

uals [3]. This has pushed people to seek in sport a tool to face the modern ailments, i.e. a modern

society that poses high levels of chronic stress on individuals and our increasingly sedentary life

distanced from the physical activity to cite a few.

Among these sport practitioners, nowadays many tend to go one step further and start training

for performance [4]. Training for performance is driven by multiple intrinsic and extrinsic mo-

tivations such as personal growth and fulfilment, social recognition, material rewards etc. This

motivation usually allows the practitioner to engage and adhere into an activity such as sport, that

often asks for short term sacrifices for long term benefits.

To do so, this population trains methodologically and uses every kind of available tool that

may help them improve their performance. This means that the current endurance recreational

runner demands and consumes any type of training method, equipment and/or tool that allows

them to reach their performance goals. In this regard, LT is a well known physiological indicator

with a demonstrated power to aid training decision-making [5; 6]. However, since currently the

estimation of LT requires attending to specialized centres and laboratories, there is a huge demand

for estimating it in a more operational way. This is the problem that is to be solved in this work

and we hereafter refer to is as the operational LT problem.

In order to provide an operational LT for training decision-making that is applicable in the

real world, the general needs of sport performance must be aligned with the specific qualities of

our solution. For instance, if we blindly try to solve one of the specific demands such us creating
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a non-invasive LT method, without considering why a non-invasive tool is demanded, we risk

solving only part of the problem and creating a solution that is not going to be applicable. Thus,

prior to getting into the details of the LT, in the following section we put the LT in the context of

training for sport performance.

1.1.1 Contextualization of the lactate threshold problem in sport performance:
Why rich and operational information about the athlete is key for training

Sport performance is the manner in which sport competition is measured. The main tool that a

coach or an athlete can use to improve sport performance is purposely training to develop the

qualities required for a desired discipline.

Super-compensation (see Figure 1.4) is a characteristic of the human body by which in the

face of an external stimulus, it adapts or adjusts itself to a higher level of fitness and performance

capacity with respect to its prior status. Taking advantage of this principle, coaches’ work is to

select and introduce appropriate stimulus and recovery time that facilitate the improvement in the

desired qualities for the sport of interest.

Figure 1.4: Super compensation

By Haus-Own work, CC BY-SA 3.0, https://commons.wikimedia.org/

These qualities are a complex mixture of tactical, technical, psychological, bio-mechanical,

neuro-muscular, metabolic... abilities that the coach tries to maximize while minimizing injury

and over-training.

The appropriateness of this stimulus, stands on several fundamental principles of sport perfor-

mance:

• Overload: In order to elicit the human body’s adaptive responses there must be a stimulus

that goes over what the athlete is used to (in volume, intensity or density).

• Progression: The load applied must be progressively increasing to avoid both an insufficient

stimulus that would not elicit adaptations or an excessive one that would in the worst case

lead to an injury.

• Specificity: The adaptation of the human body is specific to the training stimulus applied.

A simplistic example that illustrates this concept can be: if you train running fast you will
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improve in running fast.

• Individualization: Every person responds differently to a stimulus, so this stimulus must be

individualized to the characteristics of each athlete and its context.

• Reversibility: If certain stimulus is not applied during a extended period of time, the quali-

ties start to revert to previous states.

Thus, training to improve sport performance is about selecting the appropriate combination of

stimulus and recovery according to these principles. The coach then introduces this stimulus in

form of a training program.

However, as it is known, human body is a complex system and there is an inherent uncertainty

with respect to the response that the body-mind will have to the training stimulus. Moreover,

the training is held in an highly uncertainty environment on which the athlete inevitably misses

training days or is forced to change the objectives that were planned for the day. There are also

specific dates for which the performance must be maximized, so the time factor is also considered.

Training periodization and planning are related to how the coach selects the appropriate program

with all these considerations in mind and for a specific athlete.

The current research on periodization and planing is based on a viewpoint that the aforemen-

tioned uncertainty of the training is an unavoidable part of the problem that must be considered

and properly managed. From the scientific method perspective, the initial program is just an initial

hypothesis that is adjusted on the go according to what it is observed using a priori established,

heuristics, criteria and expertise to continually create a next best training guess. Due to the com-

plex and ever changing nature of the context, the faster the feedback, the more appropriate the

training stimulus will be for the current situation. Figure 1.5 represents this process from the

systems perspective.

Figure 1.5: A systems view of appropriate training stimulus selection

The importance of having relevant information about the athlete and the surrounding context

becomes manifest, meaning that every mean (coaches’ eye, good communication, external tools
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etc) that allows to get valuable information about the athlete (LT in our case) has a major impact

for improving their training.

However, sport performance is a highly optimized area which tries to make the most of the

available resources with the objective of maximizing positive training adaptations. This means

that the use of the resources is highly prioritized towards the most valuable.

In the case of the recreational runners, their economical, temporal and effort resources are even

more limited compared to elite level athletes. For instance, recreational athletes expend their own

money and usually their time is narrowed down to their free-time. Last but not least, the physical

and mental effort needed are also limited. For instance, the effort done in a testing may have been

better used in regular training.

Therefore, it is clear that the value of the method used to collect certain information (the LT in

our case) is determined by both the relevance of the information collected and how operational is

to collect and integrate it into the training decision-making process.

So, these two perspectives (the relevance and the operationality) will be used hereafter to

analyse the importance of LT.

1.1.2 Lactate threshold, an indicator demanded by coaches and athletes

In the case of the LT, its relevance comes from its relation with the energy supply systems of the

human body.

These energy supply systems are the mechanisms responsible for producing the energy that is

used for physical activity. The effectiveness and efficiency of the energy production and how it

is expressed in the executed task (a specific sport discipline in this case) is directly related to the

performance that an athlete achieves.

Among other variables, the use of different energy supply mechanisms depends on the intensity

and duration of the activity under execution (Figure 1.6). In long-duration exercises, as endurance

sports, the oxidative or aerobic energy system is the main energy contributor as more powerful

anaerobic systems are not sustainable in the long term without creating excessive fatigue.

Therefore, exercise intensity at the transition between the use of aerobic to anaerobic energy

supply systems is determinant about the long term and sustainable energy production and plays

a key role in the performance of the athlete [7; 5]. Thus, being able to obtain information about

this transition of a particular athlete is of great interest for coaches as it can be used to enrich the

training decision-making process.

The most relevant use modes of the aerobic to anaerobic transition zone are related to train-

ing monitoring (to evaluate the physiological or performance changes that training has caused)

[5], training prescription (to aid in the prescription of training intensities) [6] and performance

estimation (qualitative estimation of athlete level, pacing recommendation) [5].

However, despite the usefulness of the information about aforementioned transition zone is

more than demonstrated, its characterization is not straightforward. The ample variety of ter-

minology that has been used to name this transition zone exemplifies this difficulty. Moreover,

sometimes the terminology is even contradictory and its meaning has even changed since it was
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Figure 1.6: Energy supply systems

first coined [8; 9; 10; 11]. This clearly illustrates the fuzziness of the concept.

Consequently, multiple models, methodologies and techniques have been used so far to deter-

mine it. Moreover, there are multiple approaches that are still in use in practice, making it clear

that there is no closed nor universal characterization of it. Among these approaches, the respiratory

gases based methods and the blood lactate based approaches stand out.

Regarding the respiratory gases approach, multiple protocols are available. However, all these

protocols have common limitations. First, the equipment needed to make the tests is very expen-

sive, much more than the equipment needed for the lactate based approaches, which is already a

big operational limitation. Moreover, the respiratory equipment may also interfere into the normal

exercise of the athlete altering the results.

Lactate based methods on their part rely on much more accessible portable lactate measure-

ment devices which have also a lower interference compared to respiratory approaches.This made

the lactate based determination methods to the most extended ones in sport performance for anaer-

obic to aerobic transition zone characterization.

However, analyzing the lactate based approaches from the operationality perspective, they

still require external equipment and the extraction of blood samples, which are inconvenient for

frequent monitoring. Furthermore, most recreational runners do not have access to routine assess-

ment of their physical fitness by the aforementioned equipment so they are not able to calculate

LT without resorting to an expensive and specialized centre. Consequently, there is high demand

for a more operational LT estimation.

Moreover, this interest exceeds the recreational runner population. Nowadays, the Spanish

Athletic Federation uses lactate tests for the selection process of marathon runners to compete in

international championships such us the Olympic Games, World Championships and European

Championships.



8 Chapter 1. Introduction

However, as already mentioned, the lactate threshold problem is a limited resources problem

where material, facilities, money, time, effort etc are finite. In the case of endurance runners, their

limited resources problem materialises in a demand of tools and methods which are or provide:

• A non-invasive solution which avoids taking blood samples

• Easy-to-use tool

• Cost efficient tool, affordable solution for recreational runners/coaches

• Autonomy to the recreational runners/coaches

• A solution without the need of a new/additional wearable

Actually, the relevance and potential impact of an operational LT estimator is further strength-

ened by the interest that this research has risen among several important actors in the sport perfor-

mance industry. These interest groups include: the huge recreational runner volunteers (more than

800) who inscribed for the experimental test performed under this research with little publicity ef-

forts, the FIPSE (Consejo Superior de Deportes), the Campus Deportivo company that supported

this research, the Department of Economic Development and Competitiveness of the Basque Gov-

ernment (Gaitek 2015), managers of Spanish Kayaking and Rowing Federation, Basque Rowing

Federation, managers of the Basque Public School of Sports (Kirolene), athletic coaches etc

1.2 General objectives

The objectives of the present work are then defined with this operationality demand in mind.

Creating a model that would estimate LT from easily obtainable input features, fits very well with

the characteristics of this demand. As illustrated in Figure 1.7, virtual or soft sensing techniques

are essentially this, approaches used to provide feasible and economical alternatives to costly or

impractical physical measurement instrumentation. This approach uses information available from

other measurements and process features to calculate and estimate the outcome of interest (LT in

our case).

Figure 1.7: Virtual sensor concept

To do so, a variety of virtual sensing techniques have been proposed, while the vast majority

of them fall into two major categories: analytical or empirical.
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Since the relationship between LT and the other easily obtainable physiological features is

complex and with multiple inter-dependencies, creating an analytical model that could characterize

this relationship is not a viable approach.

In complex problems such this one, where the number of features involved in the process

are bast and, even more importantly, the relationship between them are opaque, empirical virtual

sensing approaches are, a priori, a more appropriate way to go.

Thus, creating a virtual sensor based on empirical data arises as an interesting approach with

the potential to fulfil both requirements. Since the objective is to learn the relationship between

certain inputs and output (LT), and the output is continuous, this problem can further be classified

into the supervised-learning category done for regression purposes.

Therefore, we can formulate the main objective of the present work as:

Create a empirical virtual sensor to estimate the lactate threshold that can be easily integrated

into the endurance recreational coach/athlete toolbox. The objective can be further divided in:

1. Providing an easy to integrate LT virtual sensor to help recreational running coaches and

athletes in training decision making.

2. Gain knowledge about other physiological features that may be key performance indicators

of endurance athletes, specially the easily measurable ones, and give guidance to integrate

it into the training decision making process.

3. Create a methodology for applying virtual sensing techniques to solve problems related to

sports so it could be extended to other future demands of this area.

4. Acquire know-how about the specific demands of the problem to be able in the future to

extend the solution proposed to other type of users and/or disciplines.

5. Design a final prototype that demonstrates the validity of this proposal.

1.3 Structure

The present document is divided in five additional chapters:

Chapter 2 makes the state-of-the-art analysis of the LT determination methods used so far from

an operational perspective. To do so, first we set and describe the operational qualities that are to

be looked. Then, both the traditional LT determination methods and the operational attempts are

analysed with these qualities in mind.

Chapter 3 determines the strategy and formalizes into a methodology with specific steps.

Chapter 4 is about designing the virtual LT sensor according to the strategy and methodologies

established in Chapter 3.

Chapter 5 deals with the implementation of the designed virtual LT sensor and acquired ad-

ditional knowledge for aiding the training decision-making of coaches and athletes. To do so, the

Lactatus software (SW) is created to work as guide to the athlete interested in using and applying

the knowledge of this thesis.
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Chapter 6 gather the main conclusions and contributions of this work. Additionally it provides

suggestions and possible directions for future research.



Chapter 2

Lactate threshold in training
decision-making: value of current arts
& direction towards and operational
solution

To add value to others, one must first value others -
John C. Maxwell

Figure 2.1: Giving a closer look to the landscape
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towards and operational solution

This chapter deals with the analysis of the state of the art with regards to the consolidated LT

methods and the operational solutions that have been proposed so far as alternative. In order to

evaluate the state-of-the-art from the operational perspective and in a systematic way, we create

a tool based in the concept of added value. This tool is then used to place all the proposed ap-

proaches (consolidated and alternatives) according to the operational qualities that are relevant for

the objectives of this thesis.

As stated in chapter 1, this state of the art analysis highlights that the relevance of the LT

comes from its relation with the aerobic to anaerobic energy supply transition and that, due to

the fuzzy nature of this threshold, there are multiple LT determination methods available in the

literature. Additionally, we also present the idea that the relevance of the information and its

operationality (in the recreational runners context) are the two mayor characteristics that make a

LT determination method more or less valuable for the user (recreational runners in this case).

This observation evidences that, there are as many values as LT determinations are.

The first purpose of this chapter is to elucidate and select, among the multiple LT determination

methods, the reference that will be used as the output labels of the (supervised learning based)

virtual sensor. The second purpose of this chapter is to analyse the most relevant solutions that

have been proposed so far trying to to provide some more operational LT determination method

compared to the consolidated ones.

To do so, as illustrated in Figure 2.2, and prior to digging deep into the literature, we set the

qualities that will be used as standard by which the value of every LT determination method will

be judged.

Then, we present the multiple different ways that historically have been used to characterize

the LT concept. Using the previously defined criteria, we map the value of both the consolidated

approaches and the operational attempts that have been made so far to surpass some of the former’s

limitations. This allows to have an overview of the current arts space from the recreational runners

perspective.

Finally, from this analysis, we conclude which is the reference LT determination method that

will be used hereafter and we adjust and detail the objectives stated in the previous chapter accord-

ing to the findings of this one.

2.1 Value determinants of lactate threshold methods for recreational
runners training: Desired qualities and value mapping

As we saw in chapter 1, the value of integrating certain information in training decision-making is

related to first, the relevance of the information collected and second, the operational burden that

collecting and integrating it carries.

However, the value is related to how the inherent qualities of the method (quality of the in-

formation and operational qualities in this case) unfold in the context of application, i.e. the

recreational runners context. That is to say, certain LT determination method may pose a high

value for an elite runner because of their higher economical resources and be of zero value for a
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Figure 2.2: Overview of Chapter 2: state-of-the-art

Abbreviations: SOA, State of the art; VS, virtual sensor; LT, Lactate threshold
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recreational runner. Figure 2.3 represents this idea and shows how both these general attributes

combine in our context to determine its value.

Figure 2.3: Value determination from information relevance and operational perspectives

So, clearly defining the qualities by which the value of LT determination methods are judged

contextualizes them to the characteristics of the problem in hand. Based on the generalities and

specificity’s of the LT problem already analysed in chapter 1, in this section we formalize these

qualities that will allow to sort the state-of-the-art approaches (both consolidated and operational

tries) according to the perspective of creating a valuable LT estimator for recreational runners and

systematically place them in a value map.

This gives an overview of the current arts with the glasses of operational estimation of LT for

recreational runners. Consequently, the value map will facilitate to identify the added value space

of our problem, delimit the operational space and pave the way for selecting the consolidated LT

estimation method that will work as our reference value.

2.1.1 Qualities that determine the value of a lactate threshold method: Breaking
down ’information relevance’ & ’operationality’

In chapter 1, we stated that the relevance of the information that a LT determination method

characterizes and its operationality are the two major qualities related to the value provided to

recreational runners. Here, we go deeper into this reasoning so that we can pose the detailed

qualities that are important for our context of application and by which the state of the art is going

to be analyzed in the next section.

The value of a method comes from its ability to be used by the recreational runners in the three

use modes previously seen. As already mentioned, there are many degrees of fulfilment of these

use modes, as many as ways of determining the LT. If we look in more detail to the use modes, we

can observe that each determination method has a different degree of fulfilment of each use mode:

LT has been successfully used for training monitoring purposes by assessing the physical

condition from an endurance performance perspective [12; 5]. However, the monitoring may

be done by different means. Sometimes a LT method is able to characterize information about an
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underlying relevant physiological phenomena such the maximum aerobic capacity. Other methods

characterize a phenomena that is indirectly related to performance. Hence, the former is richer and

more informative when using it for monitoring purposes compared to the latter.

Something equivalent happens when using it for training prescription. It is well known that

lactate threshold is useful for training prescription [13; 12; 6]. Similarly to the monitoring use

case, some methods are able to target an underlying relevant physiological phenomena (such as

one that helps to identify training zones) that may be used to prescribe exercise intensity from

this perspective [13; 14; 6]. However, other methods are not able to do so, limiting their training

prescription capacities to those conclusions derived from the monitoring capacities [15].

The third use mode is for performance estimation. It has been observed that LT is a good

predictor of performance, both in elite and recreational runners [16; 5]. Furthermore, nowadays

it is fully demonstrated that the LT is more decisive for endurance sports performance than other

variables such as the maximal oxygen uptake (VOmax) or the running economy [7; 17; 18]. How-

ever, the relationship with performance is also dependent on the methodology used. Some method

have a strong direct relation with performance and others are just indirectly related. The former

are strong enough so that can be used to prepare pacing strategies, rough athlete level evalua-

tion... on the contrary, the latter methods only can be used to determine qualitative performance

improvements [15].

Thus, in this section, it is reinforced that the value of a LT method is strongly related to the

relevance of the information that characterizes from the target population perspective and that the

operationality of the method.

The relevance of the information characterized can be further divided into lower level quali-

ties such us: the targeted information (more or less relevant for the different use modes) and the

accuracy with which it is characterized.

Additionally, in Chapter 1 we saw that multiple operational characteristics (non-invasive, easy-

to-use, affordable, autonomous, without the need of a new/additional wearable...) are demanded.

All these characteristics serve to higher operational purposes that are important to explicitly state

here. To minimize the risk of solving only part of the problem by forgetting to comply with the

general needs of sport performance. Thus, the operationality of the solution can be described by

its qualities of: availability (location, requirement of specialized equipment, excessive associated

costs etc.), interference with training (training time loss, testing associated fatigue) and usability

(facilitating adherence etc).

Finally, as illustrated in Figure 2.3, the value of our solution is subjected to these qualities in

the context of training decision-making of recreational runners.

In the following sections we will make a detailed analysis of the aforementioned qualities.

Qualities related with information relevance

The relevance of the information characterized by the LT determination method comes from the

degree of fulfilment of two lower level qualities:

• Targeted phenomena: We have observed that the phenomena being characterized by a spe-
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cific LT method impacts on the maximum potential value that can be obtained in the different

use modes. Therefore, the relevance of the phenomena the LT method is characterizing is

an important matter to evaluate the value that can provide.

• Accuracy: Even if the relevance of targeted phenomena is high, the accuracy with which it is

being determined has a major importance. Not only that the margin of error of the estimation

is important for the coach to be more or less certain about the conclusions, but also that not

achieving a minimum accuracy may invalidate the estimation for training decision-making.

The accuracy needed for the estimation is very dependant on the application and thus, it is an

important quality on which to keep a close eye to evaluate the value of the LT determination

method.

Therefore, these two qualities are to be used to determine the value of the state-of-the-art LT

methods from the information relevance perspective.

Qualities related to operationality

The operationality of the LT determination method comes from the degree of fulfilment of three

lower level qualities:

• Availability: The collection of certain beneficial information is usually subjected to some

sort of specialized equipment, facilities, associated costs, location, need of expert person-

nel... The value provided by increasing the availability of a solution comes not only from

the obvious reduction in the resources used, but also because increasing the availability in-

directly facilitates the adherence to it and reduces the interference with the training as less

time is invested in it. Increasing the availability of the tools and methods is therefore highly

and directly related with the value of the solution and may be achieved by creating methods

that do not depend on additional equipment (or equipment already available) nor require

help from an expert.

• Usability: The usability of a solution is one of the main qualities that facilitates the adher-

ence and consistency. Usability of a tool is described by the following five characteristics:

effectiveness or how well the tool meets the specific task (including a clearly understandable

use) ; efficiency or ability to meet the task with minimum effort (including the easiness of

interpretation and communication of results); engaging or pleasant and satisfying to use; er-

ror tolerance or being robust to the errors that inevitably are introduced by the misuse of the

tool (beyond the estimation error) and easiness to learn [19]. This quality is fundamental for

adherence and consistent use of a LT method, specially, for repetitive tasks as continuous

monitoring, where the easier collection and integration of information, the more consistently

is going to be used and established as a habit. Therefore, increasing the qualities related to

usability of a product that increase the adherence is also directly related with the value that

the solution provides.

• Low interference with training: Whenever a test or measurement is done, there is a cost

opportunity loss for training or recovering. The ability to provide reduced interference with
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training is therefore a operational quality that a valuable LT method must have. This in-

terference may come for the mere fact of performing the test, measurement etc or because

the testing process creates residual fatigue that interferes with subsequent training sessions.

Therefore, the ideal scenario is this in which a test or measurement is fully integrated with

the training (a.k.a. invisible monitoring) becoming part of the training activity, without mod-

ifying nor hindering it. Thus, any improvement in this direction increases the operationality

of the solution.

Therefore, these three qualities are to be used to determine the value the state-of-the-art LT

methods from the operationality perspective.

2.1.2 Value map: emphasizing the value differences between lactate threshold meth-
ods

The value that a certain LT determination method has for recreational runners is thus directly

proportional to the aforementioned qualities. The value map shown in Figure 2.4 illustrates this

relationship and determines three regions according to the degree of value that is provided (low,

medium high). This map will be henceforth used to place the different LT determination methods

according to their value.

Figure 2.4: Value map: information relevance and operational qualities in the context of applica-
tion

Since neither of the general qualities are quantifiable, this map allows to place the different

state-of-the-art LT estimation methods according to the relative value they have.

In this regard, as we already mentioned in Chapter 1, there is currently no operational LT deter-

mination method available in the literature that suits the needs of recreational runners. Therefore,

as illustrated in Figure 2.5, we can delimit the value space of the currently available arts for our

objective population to a medium-low value region. This indirectly defines the region on which an

added value solution should reside, i.e. the high value region.
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The added value space is further narrowed by introducing the constraint of the cost limit that

the recreational runners have, delimiting a both operational and added value space as illustrated in

2.5.

Figure 2.5: Value map: Added value space

Consequently, the value map will facilitate to identify the added value space of the research

field, delimit the operational space and place the LT methods and operational solutions available

in the literature and practice in the same space to better decide the consolidated method that will

be used as reference for the design of our virtual LT sensor.

2.2 Value analysis of current art lactate threshold determination ap-
proaches: Consolidated approaches & operational attempts

In the previous section, we introduced the qualities that will be used to determine the value of a

LT determination method for recreational runners and created a value map on which the different

methods will be drawn.

In this section, we delve into a detailed analysis of the different ways that historically have

been used to characterize the LT. We first determine the value of the consolidated approaches that

are used in practice according to the qualities established in the previous section.

This analysis allows to have an overview of the state-of-the-art space, present the most impor-

tant LT estimation methods and solutions that have been proposed so far and clarify the operational

limitation that the consolidated LT methods have. Then, the most novel approaches that have tried

to improve all or some of the operational qualities are analyzed and knowledge about the different

solution paths that have been already walked so far acquired.
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As already mentioned, our approach uses empirical data to infer a relationship between input

and output features by supervised learning. In this regard, this analysis also enlightens the selection

among the consolidated LT determination approach that will later be used as reference labels for

our input features. At the same time, this indirectly sets the reference value to be beaten by the

solution proposed in the present work.

To finish this analysis, we gather them an make a summary about the options and the possible

directions that exist towards a operational LT estimation.

2.2.1 A review of the reference state-of-the-art lactate threshold determination meth-
ods

Among the multiple lactate determination methods proposed so far, there are certain methods that

can be considered consolidated due to the support they have both in theory and practice.

From a detailed analysis of their strength and weaknesses we will determine the value and its

place in the value map. Later on, we will select the referent method for the empirical inference

needed for the design of the virtual sensor among these methods.

• Maximal Lactate Steady State (MLSS): MLSS is defined as the highest blood lactate con-

centration (MLSSc) and work load (MLSSw) that can be maintained over time without a

continuous blood lactate accumulation [14].

From the physiological point of view, MLSS represents the maximum workload which the

oxidative metabolism can sustain [20; 21; 22; 23]. In lactate steady state, the process of

lactate appearance is balanced by the process of lactate disappearance, i.e. there is an equi-

librium. The MLSS represents the maximum point in this equilibrium [21; 22; 24]. This

concept is illustrated in Figure 2.6 where a typical MLSS estimation protocol is represented.

To look for the potential benefits that MLSS can provide in the previously defined use modes

(monitoring, training prescription and performance estimation), we now analyse the quali-

ties of the MLSS. It has been demonstrated that the workload (speed, power...) at MLSS can

be used to characterize information about athletes endurance capacity [14] and the accuracy

of the original determination method illustrated in Figure 2.6 is high. Furthermore, it rep-

resents a useful quantitative measure of the exercise-related behaviour of the blood lactate

concentration [25; 23].

This means that MLSS can be used to monitor the evolution of this physiological phenomena

in absolute terms and thus, it is more powerful than other monitoring types that only provide

relative and general information about training induced adaptation.

From the training prescription perspective, MLSS has shown to be beneficial [14]. This is so

not only by the relative conclusions about performance changes that can be derived from its

monitoring qualities, but because it is considered that MLSS can discriminate qualitatively

between sustainable exercise intensities on which continuous work is limited by stored en-

ergy and exercise intensities that have to be terminated because of a disturbance of cellular

homeostasis.
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Figure 2.6: Representation of the Maximum Lactate Steady State testing and determination pro-
cess

Additionally, a close relationship between endurance sport performance and the workload

at MLSS has been reported, as the average velocity over a marathon is just below this work-

load. Thus, the prediction power of MLSS is above a purely relative evaluation provided by

other methods and can serve as a rough estimation of athlete level [14; 23].

Actually, this method is highly beneficial in the three use modes, since it helps to monitor

relevant physiological phenomena which at the same time is related to performance. Ad-

ditionally, it may influence in the training prescription not only by indirect means of the

monitored performance but also by determining training zones. Thus, the MLSS is consid-

ered the gold standard in terms of the information that characterizes about the LT concept

[11].

However, the determination of MLSS is difficult, invasive, cumbersome and requires from

3 to 5 tests in a specialized centre to obtain an accurate result. More precisely, the testing

protocol works as follows: a long duration test (usually up to 30 minutes) is performed at a

fixed work load where blood lactate measurements are taken. These tests are repeated (with

long proper rest between them and may be done in different days) until blood and lactate

concentration increases continuously during the constant load. As represented in Figure

2.6, the MLSS is identified as the maximum sustainable blood lactate concentration and

workloads [14; 23].

Analyzing the availability qualities of this method we observe that, access to specialized

center, personnel and equipment is necessary. Moreover, sometimes several days are needed.

Therefore, the availability of this method is low and limited to few people with high re-
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sources. Similarly, the usability of the method is very low, the athlete is dependant on

multiple external tools and expert agents that understand the way of performing the tests

and the testing process in unpleasant and unfriendly. Finally, it creates a big interference

with training because several intense tests must be performed usually separated in different

days followed. This creates both a high opportunity cost due to the repeated days required

plus some residual fatigue that comes from it.

These results show that the cost of calculation the MLSS through the traditional method is

high even for elite athletes, inconceivable for recreational runners.

Therefore, some authors propose to use a single test to indirectly determine the MLSS value

[21; 24]. However, the former did not achieve a minimum necessary accuracy to stick as

a referent. The latter and most important one is presented hereafter, showing strengths and

weaknesses compared to the MLSS.

• Onset of Blood Lactate Accumulation (OBLA): It was observed that workload at MLSS

elicits a blood lactate concentration average of 4.0 mmol/L [17; 14]. For that reason, this

workload has long been estimated by the OBLA which is the work load corresponding to

blood lactate levels of 4.0 mmol/L determined in an incremental test.

However, as represented in Figure 2.7, the blood lactate concentration at MLSS has been

reported to have great variability between athletes (from 2 to 8 mmol/L in capillary blood)

and the conclusions obtained from this static point do not take into account individual char-

acteristics [25]. In this regard, some researchers disagree with using the speed at OBLA

as indirect marker of MLSS [14; 22], as multiple factors such as the aerobic training may

affect in the lactate concentration that corresponds to the MLSS [26]. Ultimately, these

facts suggest that the value of 4 mmolL-1 does not consider the inter-individual variability

of the MLSS [27] and consequently it is considered that the speed at OBLA has too many

limitations and does not characterize the aerobic capacity.

This means that, as the phenomena characterized by OBLA targets less relevant information,

the value for monitoring purposes is reduced in comparison with the MLSS. However, the

workload at 4.0 mmol/L, is still a good indicator of the training adaptation produced in

relative terms [21]. Actually, to its capacity to monitor the relative adaptations it has been

long used for indirectly aiding training prescription.

Finally, the speed at OBLA has been proposed as an effective variable to qualitatively deter-

mine the performance in several different sports such us track & field [15], swimming [28],

soccer [29], hockey [30], cross-country skiing [31] or road cycling [32]. Nevertheless, and

as already explained, it has significant limitations. Its main use is to estimate performance

improvements and also has been suggested as a discriminator between well trained and elite

athletes [33].

Indeed, the value of this method in the three use modes is lower than the MLSS since it

characterized only relative information.

Similar to MLSS protocol, it is an invasive test that requires from blood lactate measure-

ments and specialized equipment, but despite the MLSS, OBLA measuring protocol requires
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Figure 2.7: concentration at Maximum Lactate Steady State vs Onset of Blood Lactate Accumu-
lation: inter-individual variability

only one test.

Thus, since the determination still needs from specialized equipment, it is only available

to those with access to this resources. Similarly, the usability of the method is still low

as the athlete is dependant on external tools and the test is still cumbersome and invasive

which makes it unpleasant and unfriendly. However, in comparison with the MLSS, both the

availability and usability are much higher. Finally, the interference that this method creates

in the training is far-lower than the MLSS counterpart. This is mainly because a single test

is needed to determinate it.

This results in that the operationality of the OBLA method is much higher in comparison

with the MLSS. This made that a lot of elite coach and athletes have use it so far, but it is

still costly for recreational runners.

• Individual lactate threshold: The Individual LT is defined as the maximum workload at

which a sharp increase of the lactate occurs [34] calculated from the lactate curve obtained

from a graded exercise (illustrated in Figure 2.8).

The calculation of individual lactate threshold involves the measurement of blood lactate

during an incremental step-wise exercise followed by a recovery. In this test, multiple lac-

tate measurements are taken and use to form a convex curve from which the LT is deter-

mined. Multiple methods have been proposed to determine the LT from this curve such us

the popular method that determines the LT as the first rise of blood lactate greater than 1

mmol [35]. Among these methods, maximum distance or Dmax method stands out [34].

In this method, the maximum distance between the lactate curve and the line between the

first and the last lactate values is calculated and considered as the LT. This methodology is
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Figure 2.8: Individual lactate threshold calculated by Dmax method

fully automatizable and allows to calculate the LT in all the convex curves using a single

experiment (something that is not possible with other methods) and was initially proposed

by Cheng et. al. [36].

Some authors suggested that the individual lactate threshold workload calculated by Dmax

method is closely related with the workload at MLSS [37]. However, the duration and size

of the intensity increments have been found to influence the value of the lactate threshold

[38], something that should be taken into account. In any case, this method is the most

recommended methodology nowadays [39; 34].

Moreover, it has been observed that this method predicts the performance accurately, espe-

cially in recreational athletes [12; 40; 41; 39]. Thus the benefit that provides for this use

mode are high. It can be concluded that, despite being lower than MLSS, the value of this

method in the three use modes is high.

From the availability perspective, this method shows the limitations of the previous methods,

in the sense that the test must be done in an specialized centre and needs from specialized

equipment. The usability of the method is still low as the athlete is dependent on external

tools and the test is still cumbersome and invasive which makes it unpleasant and unfriendly.

Regarding the interference with training, it is much lower to the MLSS and similar to the

OBLA. Therefore, the operationality of this method is much higher than the MLSS.

As we have seen, the consolidated methods have operational qualities that are not sufficient

for most of the recreational runners. It is interesting to note that, all the consolidated approaches

rely on invasive blood lactate measurements, and/or on specialized equipment and/or personnel to

obtain it (Figure 2.9), meaning that there are accessible to few people.

Even that the process of taking blood samples has improved due to the simplification of the

measurement devices, is still cumbersome and uncomfortable, which makes it inconvenient for its

consistent use. Therefore, they do not fulfil the operational qualities necessary for our objective

population, i.e. recreational runners, specially due to the poor availability and usability qualities

they provide.
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Figure 2.9: Equipment needed for the consolidated lactate threshold determination methods

So, the detailed analysis done in this section allows to place the consolidated LT methods in the

value map according to their relative cost-benefit and consequently value characteristics. Figure

2.10 shows the landscape including these consolidated methods already placed.

Figure 2.10: Value of consolidated state-of-the-art approaches

2.2.2 Attempts to improve the operationality of the consolidated lactate threshold
determination methods

Given that the consolidated LT determination methods are not able to answer to the operational

needs, multiple attempts have been made so far to overcome some or all of these limitations. As

shown in Figure 2.11, very diverse approaches have been proposed in the literature.
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Figure 2.11: Classification of operational lactate threshold estimation determination attempts

Non-invasive hardware

Among these approaches, some focused on providing alternative non-invasive ways to determine

LT by means of additional hardware (HW).

Historically, sweat lactate measurement has been seen as a potentially interesting manner to

estimate the LT. It promised the opportunity of a non-invasive continuous monitoring with non

extremely expensive devices [42] (Figure 2.12). However, there is a lot of controversy about the

relation between the blood and sweat lactate levels. The review made by Derbyshire et. al. [43]

pointed out that most of the studies showed no evidence of a direct relation between sweat and

blood lactate levels. This means that, before even entering into a deeper analysis of the operational

qualities of these methods, it is already discarded, since the value that this measurement could

provide is low due to its incapability of getting relevant and accurate information about blood

lactate.

Figure 2.12: Sweat lactate meter

By Seshadri et. al.

Optical non-invasive methods to estimate the lactate levels by examining the connection be-

tween the physiological tremor occurring during muscle contracts and the lactate blood levels have
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also been proposed [44]. However, as represented in Figure 2.13 the solution requires from a very

expensive HW, what puts it out of the scope of this work.

Figure 2.13: Photonic non-contact lactate measurement

By Abraham et. al.

Other approaches proposed non-invasive individual Dmax LT determination through muscle

electrical impedance [45]. This LT estimation was addressed to professional rowers since, by

eliminating the invasive nature of serial blood sampling, it would increase its usability to increase

the number of LT assessment done in a fixed period of time. However, the accuracy of the bio-

impedance measurements is a well known limitation [46]. In addition, caution is needed about its

accuracy beyond the professional rowers population.

Among the non-invasive HW approaches, the most relevant one is probably a wearable stock

presented in the work done by Borges et.al. [47]. This device is directed to runners and has already

been validated against 7 male and 7 female athletes from recreational to highly trained levels.

Unlike the rest of the non-invasive HW approaches, which provide low quality information

about the LT, this approach seems that may be in comparable terms with the Dmax individual

lactate threshold. However, the validation sample is small (14 athletes) and thus the conclusions

must be taken with a grain of salt.

From the operational perspective, they do not address the needs identified in the present work.

It requires an additional equipment that need to be placed aligned with the thickest section of the

gastrocnemius. In this regard, the need of and additional and expensive equipment goes against

the availability that we seek in the present work. Moreover, the usability lowers due to the extra

discomfort that this solution may entail, specially in sports such as triathlon were the transitions

between disciplines are determinant and even creating a big interference. Therefore, despite it

may have some interesting operational qualities such as continuous monitoring, this solution does

not address the needs identified in section 2.1, probably because targeted at recreational runners

with high economical resources.

In any case, all of the non-invasive HW based approaches, by definition, need additional equip-

ment to estimate the LT, and in most cases this equipment is even more expensive than the portable

lactate measurement devices used nowadays. This goes in opposite direction of the availability
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Figure 2.14: Near-infrared lactate threshold detector

By Borges et. al.

qualities sought in the present work and therefore are not valid for the recreational runner popula-

tion.

Field tests

Field tests are another extended approach to indirectly assess LT using means available to every-

one. Among the field tests, probably the most known and used one is known as the Conconi Test

[48]. This test is based on the relation between LT and the heart rate deflection point (HRDP).

HRDP is a deflection from linearity of the heart rate (HR) with respect to the workload and it is

related with the MLSS [11].

This test consists of running laps of 400 meters until exhaustion. After setting the initial speed

and the running speed is increased slightly (0.5 km/h) every 200 meter while a heart rate monitor

records the HR. As illustrated in Figure 2.15, the running speed - heart rate relationship was in

part linear and in part concave. The point where both superimpose is defined as the HRDP.

This method only requires from a HR monitor and a stopwatch, a equipment already available

to the majority of recreational runners and their coaches. Moreover, it can be done in any widely

available athletic track. Despite a coach must manually measure the times, the availability of this

method is high since the external resources are already widely available to recreational runners.

Compared to the consolidated methods, the usability of this method is also much higher because of

the non-invasive an simplicity of the test. In terms of interference, a separated test is still necessary

which creates interference with training comparable to the consolidated methods.

However, one of the mayor drawbacks of this method is its accuracy. In this regard, several

studies pointed out its deficiencies [46; 49] and evidenced that, in spite of being a commonly

used method, the accuracy of this method is questionable. Factors such as lack of control of the
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Figure 2.15: Indirect estimation of lactate threshold by ”Conconi test”

By Conconi et. al.

conditions during and previous to the test and the impossibility of finding the HRDP in all the

cases are probably among the reasons which make this method inaccurate.

Therefore, despite providing greater operational qualities compared to the consolidated meth-

ods, the value of a method with such a questionable accuracy are greatly reduced. In this regard, a

computational solution has also been proposed to improve the accuracy of the Conconi test [50].

More precisely, as illustrated in Figure 2.16, they proposed to use two models (a linear and non-

linear auto-regressive exogenous, ARX and NARX) in combination with fuzzy interpolation to

model the heart rate (HR) dynamics and to better discern the HRDP.

However, although the work of Ringwood et.al. presented an interesting proof-of-concept,

the obtained accuracy was low. Moreover, the population studied was very small (9 athletes) and

thus, considering that the parameter identification was made from this sample, it is not reasonable

to draw conclusions about its applicability, specially about the generalization capabilities of the

model. More importantly, it does not compare the results to the ones that would have been obtained

through the original Conconi test, which would have provided a much more meaningful conclusion

about the improvement that this methodology provides against the original test.

Virtual sensors

As with the HRDP, it is known that the blood lactate concentration is related with multiple other

features such as the HR at a given speed (or the speed at a given HR), the rate of reduction of

the HR after an exercise or heart rate recovery (HRR), the rate of perceived exertion (RPE) as
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Figure 2.16: Improved Conconi test by using machine learning techniques

By Ringwood et. al.

Abreviations: p1, p2, fuzzy interpolation optimal values

described by Borg [51], gender, age, diet or athlete level [52]. Therefore, and similarly to what

we hypothesize in this thesis, the indirect measurement of the LT by means of other accessible

and easily measurable features has been proposed as an alternative, i.e. using a virtual sensing

approach.

From the operational perspective, given that the virtual sensors are based in easily available

input features (see Figure 1.7), the creation of a model that can estimate LT can provide multiple

desired operational qualities.

In this approach, all the three availability, usability and interference would be subjected to the

work and resources needed to obtain the input features. Therefore, virtual sensing has intrinsically

embedded the potential to provide a high quality operational solution.

One of the approaches possible for creating a virtual sensor is creating an analytical model

from indirect features related with lactate. This is precisely the approach followed in the work of

Proshin et. al. [53]. They proposed a mathematical model of human lactate metabolism gathering

several physiological models and merging them into a single one by extending a previously created

cardiac system model and including it in a system of equations that describe the dynamics of

lactate metabolism processes in the organism (Figure 2.17).

However, the purpose of the work presented by Proshin et. al. was to create a model that

would be parametrized to be used in individual athletes. This means that multiple measurements

including hemoglobin, blood pressure and saturation measurements, blood lactate measurements

and a respiratory metabolism analysis etc were needed to fit the parameters. Thus, the cost of

parametrizing this individual model is already huge, leaving it out of the scope of this thesis.

What the work of Proshin et.al. clearly shows is that creating an analytical model that could

explain the complexity of the lactate metabolism, not only that of individual athletes, but for the
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Figure 2.17: Analytical modeling of lactate metabolism

Modified from Proshin et. al.

Abbreviations: G, glucose; Gg, Glycogen; P, pyruvate; L, lactate; M, mitochondrion; O2, oxygen; CO2, carbon dioxide; CS, cardio-

vascular system;

entire recreational runner populations, is far from being feasible. It is even more difficult to do it

without additional measurements.

As already mentioned in Chapter 1 in complex problems such this one, empirical virtual sens-

ing approaches are, a priory, a more appropriate way to go. In this regard, Machine Learning

(ML) techniques such as Artificial Neural Networks (ANN) are widely used to create models of

complex non-linear dynamic problems. These computing systems that are inspired by biologi-

cal neural networks, helped by their complex network style interconnected architecture shown in

Figure 2.18, are able to model complex relationships between inputs and outputs.

Actually, ANNs have also been scarcely used to model lactate production in athletes. In this

kind of empirical modelling approaches of complex phenomena, the main inherent difficulty is to

obtain a generalizable solution. In other words, a solution that is accurate both in the sample from

which the function is inferred and in unseen data.

Erdogan et al. [54] proposed a model based on a multi-layer perceptron (MLP) to estimate

the HR at onset of blood lactate accumulation (OBLA) point, with its strengths and limitations.

This means that, the maximum possible value of the model of the work by Erdogan et. al., by

definition is set by OBLA’s relevance which, as we have already seen, it is limited compared to

other methods such as the Dmax individual LT.

From the generalization point of view, the studied population was coming from an homoge-

neous football player sample and, as the authors themselves acknowledged, more training and

testing cases from heterogeneous groups are needed in the future for better generalization.

A more recent paper [55] also proposed a machine learning model to estimate LT. Thirty-one

healthy male and female participants made a cycle ergo-meter tests to gather data and create the

model. A limitation of the work by Huang et. al. is that the population from which the participants
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Figure 2.18: Artificial neural network architecture

By Liana et. al.

Abbreviations: I, input; w, weight

were gathered is not clear. From the generalization perspective, the data-set is considered insuf-

ficient to achieve a generalizable accuracy, because it has a reduced sample size. Furthermore, it

comes from a different population to the recreational runners.

More importantly, from the operational perspective, multiple non-invasive but still costly

cardio-respiratory and anthropometric factors were used for the model. So, as already mentioned,

the availability and usability of this model becomes dependent on the cost of obtaining these mea-

sures, high in this case.

Therefore, the validity of both models presented above [54; 55] is limited by their methodology

which, due to the homogeneity of the population in the former and the inadequate sample in the

latter, are prone to create over-fitted and thus non-generalizable models. Moreover, neither of the

models have the desired operational qualities.

From the analysis of the operational attempts done we identify and represent in the value map

the most relevant approaches among the already explored paths (Figure 2.19).

This map, apart from gathering the value of the most relevant methods, also highlights the

importance qualities identified in section 2.1 to determine what value is in the context of our prob-

lem. Actually, non of the approaches provide a valuable solution to the needs of the recreational

runners to aid their training decision making (Figure 2.19).

This analysis further strengthens that virtual sensing has the potential to give an answer to the

still unsolved operational LT estimation problem. More precisely, after discarding the analytical

path, supervised learning based virtual LT sensor arises as the way to go, as it has been already

hypothesized in the present work.
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Figure 2.19: Value map with operational state-of-the-art lactate threshold determination methods

2.3 State of the art conclusions

This chapter served to make an analysis of the most valuable LT determination methods available.

The multiple efforts that have been made to determine the LT and obtain a more operational LT

determination method confirms that there is a huge interest in this matter.

To be able to determine the value of different methodologies, we first established the qualities

used to determine the value in the context of training decision making of recreational runners.

Additionally, we created a value map that served not only to organize all the important LT deter-

mination methods in the same place, but also to, in future steps, be able to place our solution and

compare with the rest of the proposed approaches. This framework arises as a tool that allows

to map the state-of-the-art of different proposals according to the value that they provide for the

context of application.

Using these criteria, we made a deep analysis of first, the consolidated LT determination meth-

ods available nowadays and second, the attempts that have been made to improve the operationality

of these approaches.

None of the proposed alternatives are able to solve the operational problem of the current LT

determination methods. However, supervised learning based virtual LT sensor has shown to have

potential to answer this problem. This is precisely the first hypothesis of this thesis.

Moreover, to create a supervised learning based virtual LT sensor, a reference LT method must

be selected for labelling purposes. In this chapter we also set the criteria for the reference selection

and the Dmax individual lactate threshold aroused as the chosen.

The criterion used to select the reference method starts from the obvious need of characterizing
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highly relevant information for the three use modes. This criterion already discards the OBLA.

The second criterion, relates with establishing a reasonable sample size, including economical

and time constraints to perform the experiments. The more observations the more robust the

solution. This criterion discards the in comparison much more expensive MLSS method since 3

to 5 tests are needed for a single observation, something that would reduce from 3 to 5 the amount

of observations that we would be able to collect.

The third and last criterion relates with the once and again stated need of addressing the de-

mand coming from practice. Nowadays, the Dmax individual LT method is the most recommended

method [15] specially for recreational runners. Moreover, it straight addresses a real demand of

the community of recreational runners and coaches that use this LT method

Therefore, the Dmax individual lactate threshold is the reference selected in the present work

and is one of the major conclusions of this chapter. Consequently, as illustrated in Figure 2.20, by

the selection of the reference method we set the maximum relevance and value that our solution

will have and we indirectly define the problem space in which our solution must fall.

Figure 2.20: Value map with the solution space





Chapter 3

Strategy and methodology to design a
data based virtual lactate threshold
sensor

Strategy without tactics is the slowest route to
victory. Tactics without strategy is the noise before

defeat - Sun Tzu

Figure 3.1: Visualizing the route to the top
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This chapter defines the methodology that is followed in the design of the virtual LT sensor

according to the needs identified in the previous chapter.

A proper methodology entails creating a robust and systematic way to face and create solutions

for certain types of problems. Thus, the main purpose of this chapter is to create a framework that,

by taking into account the characteristics of the operational LT problem, provides a robust and

systematic way to design a virtual LT sensor.

To do so, we first make a high level analysis to detect the main characteristics and inherent

difficulties of the operational LT problem and provide precise strategical means to deal with them.

More precisely, we define the meta-process and the performance perspectives that are going to be

used in the present work.

With the aforementioned strategical principles in mind, and combining with the identification

of the inherent difficulties that creating a supervised learning based virtual LT sensor has, we

create a framework that will afterward guide the design phase.

As illustrated in Figure 3.2, the framework grows from two strategical principles for solving

complex ML problems: (1) Using an iterative approach for boundary discovery and (2) setting a

satisficing accuracy to minimize the problem complexity (see section 3.1). Then, as the virtual

LT sensor is a data based ML model, the experimental methodology defines how the experiments

are to be performed and validated for their use in the virtual LT sensor design. Section 3.2 goes

into detail of the preparations, requisites for realization and the definition of the validity of an

experiment. Finally, with the principles and the experimental methodology in mind, the design of

the virtual LT sensor is divided into, context characterization, content representation and deciding

next step, three steps that are common in supervised learning approaches.

3.1 Strategy for the design and development of a virtual lactate thresh-
old sensor

In Chapter 2, we concluded that a supervised learning based virtual sensor has potential to be an

operational LT estimator for recreational runners and that the use of the Dmax individual LT as

reference for labelling the outputs is appropriate for the virtual LT sensor.

Supervised learning can be described as the ML task of learning a function that maps an input

to an output based on sample input-output pairs. ML approaches enable to model more complex

systems in comparison to analytical approaches (i.e. approaches that try to find a closed form

solution expressed as a mathematical analytic function) that tend to fail when the explicit input-

output feature relations are unknown. For instance, ML techniques have been used for estimating

features such as grinding energy [56], which would be much more difficult or even impossible to

do analytically. In our case, as already stated, the output of interest, i.e. the output that the virtual

sensor must estimate from a set of easily measurable input features, is the Dmax individual LT.

This kind of learning that infers a general function from specific observations, as represented

in Figure 3.3, follows an inductive reasoning.

The main characteristic of this kind of reasoning is that, unlike deductive reasoning where the
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Figure 3.2: Overview of Chapter 3: strategy, experimental methodology & design methodology
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Figure 3.3: Inductive vs deductive reasoning

conclusion of an argument is certain, the truth of the conclusion of an inductive argument may be

probable (i.e. weak or strong), based upon certain influencing aspects. Those aspects are ingrained

into the next question: which input features and how many observations sampled from the target

population do we need to make a strong (hereafter robust) learning about the underlying general

function?

Given that the observations are collected from the right population (i.e. recreational runner

population), the selection of the input features and the number of observations needed for a robust

estimation is directly related to the complexity of the problem to be solved. In other words, given

that the features are relevant, the more complex the problem the richer the set of features and

observations needed. In the present work, the term complexity is understood as the inherent char-

acteristic of a system or problem due to the number of relevant features, and the inter-dependencies

between these features and their context. The higher these numbers the more complex. More pre-

cisely, the complexity relates to characteristics such as: the system being bounded in the feature

space (i.e. when all or most of the relevant features can be clearly identified and measured), the

knowledge about the underlying rules of the system, and if these rules change over time. So, not

only that the higher the complexity the higher the features and observation needed, but it also must

be considered that, for certain systems with fast changing rules, the needed resources may change

over time.

Regarding the system targeted in this work (i.e. the recreational runners LT derived from

their lactate metabolism), as stated in Chapter 2, only fuzzy rules are known about the lactate

production and there is a fair amount of uncertainty due to the multiple features related to LT in

an inter-dependent way. However, the rules are known to be stable in a healthy person. Therefore,

we are targeting a moderately complex phenomena which, despite having unknown boundaries,

the uncertainty related to it is finite and stable.

Being the targeted system’s complexity stable, the overall complexity of the problem (the de-

sign of an operational virtual LT sensor in our case), can be formulated as being proportional to

the combination between the desired performance (how the virtual LT sensor should behave) and



3.1. Strategy for the design and development of a virtual lactate threshold sensor 39

the targeted system’s complexity (1). This can be illustrated as:

Problem complexity ∝ Desired performance of the virtual LT sensor x Targeted system’s

complexity (1)

Hence, the higher the problem complexity, the more resources are needed to appropriately

characterize it. This means that more relevant features and their corresponding observations are

needed to allow a robust inference about the input-output relationship [57].

However, due to the already mentioned uncertain boundaries, the exact number of appropriate

features and observations that are necessary for a robust inference is unknown ex-ante. Usually,

expert knowledge about the phenomena being characterized (LT in this case) can give some hint

about the most important features. Then, the number of observations required can be estimated

accordingly. However, due to the inherent characteristic of this kind of problems, the boundaries

may only be discovered ex post, once a model is created. Therefore, it is fundamental that the

strategy and methodology used embraces the discovery of the problem boundaries as part of the

problem solving process [58].

Approaches inspired by the conceptual framework of evolution are well suited in this task

[58]. Iterative strategies are among their more simple types and fit very well to this problem, since

it allows to learn from the experience of previous iterations. This allows to adjust the features,

observations and even the learning approach used to make the most from the available data.

In our particular case, as formulated in formula (2), the goal of the iterative strategy is to

discover a successful solution by adjusting our steps towards matching the available resources

(features, observations, computational power...) with the problem complexity.

Available resources ≡ Problem complexity→ successful solution (2)

As shown in Figure 3.4, this adjustment can come from any of the following two means: a)

from increasing the resources used and/or b) from reducing the complexity of the problem (while

its still useful for application purposes).

What is known as brute forcing is the most extreme case of solving a problem making use

of resources. This approach may only serve when, apart from targeting to a system with static

uncertainty, high amounts of relevant data (features and observations), powerful algorithms and

HW that minimizes the computational cost are easily available. Problems such as games [59] and

image processing [60] tend to fall into this category. One of the most recognized materialization

of the brute forcing concept is the well-known deep learning [61].

Regarding the applicability of brute forcing to design the virtual LT sensor, the cost of deter-

mination of the Dmax LT is around 100 euros per experiment if done in a specialized center, which

impossibilities the chance of collecting high amounts of data. This fact makes the brute forcing

path not viable for us. In any case, it highlights the importance of maximizing the proper use of

the available resources (good and enough amount of data in our case) and further strengthens our

selection of the Dmax individual LT as reference instead of other more costly alternatives such as

MLSS.
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Figure 3.4: Successful solution: Trade-off between resources and problem complexity

Apart from using resources, as represented in Figure 3.5, another strategy for solving the

LT kind of problem is by reducing the problem complexity. As illustrated in equation (1), this

can be made from two means. Minimizing the targeted system’s complexity (not viable in our

case as already mentioned) or minimizing the desired performance, i.e. reducing the accuracy or

performance objective of the virtual sensor.

Therefore, this is a fundamental principle that will be used in this work by aiming first for

a minimum necessary satisficing (i.e. the combination of satisfy and suffice [62]) performance

and grow to more ambitious objectives afterwards. Moreover, this approach suits very well with

working iteratively.

Figure 3.5: Reduce complexity: Aim for satisficing performance

Abbreviations: VS: virtual sensor

In the following sections, we will delve deeper into these strategies: the development of an
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iterative strategy and the general considerations for performance evaluation of the ML system

towards achieving a satisficing solution.

3.1.1 Meta-process and process for a machine learning based virtual sensor design:
Combination of iterative and traditional approaches

As already mentioned (see formula 2 in section 3.1), a successful resolution of complex problems

comes from having enough and appropriate resources to characterize the complexity of the system

for the desired performance. However, apart from having tools (ML techniques in this case) that

enable to create models that represent the complexity of the problem in hand, the main practical

difficulty that this kind of problem poses is that, which and how many resources (features and

observations) are needed is a priory unknown.

First, as previously mentioned, a meta-process that takes into account and provides ways to

manage the uncertain boundaries of the problem is necessary. In this regard, traditional engi-

neering approaches, i.e. those that make several planning estimation for different project phases

(functional specification, design, validation, manufacturing and implementation), tend to fail un-

der problems with uncertain boundaries as the design of the virtual LT sensor. For this purpose,

iterative approaches tend to work better since they enable to explore the problem in small batches

and to continually adjust the direction according to what is learnt from the previous iteration. In the

case of designing a virtual LT sensor, the aforementioned agility to adjust direction facilitates to

work with incremental objectives towards matching the available resources (features-observations

pairs) to the problem complexity (see formula (2) in section 3.1).

The application of this kind of iterative design is not uncommon in ML [57]. However, instead

of being a conscious methodological decision, its use tends to naturally arise from the ease of

applying it when practically unlimited and cheap resources are available. In other words, when it

is a path of low resistance. Image processing problems are an example of this [60]. Therefore,

and to the best of our knowledge, iterative strategies have not been explicitly formalized for ML

application. This formalization is an important contribution of the present work.

Second, at process or iteration level, a traditional problem-solving perspective is used. By

applying reductionism, each iteration is further divided into sub-parts and planned according to

estimations of needed resources. More precisely, each iteration follows a methodology that is

separated into context characterization (gathering and appropriately preparing data), content rep-

resentation (making the best learning from it), and deciding next steps (adjusting the knowledge

of the problem boundaries and the future direction).

Finally, the iterative meta-process and the traditional process are combined to create a frame-

work to design the virtual LT sensor. As represented in Figure 3.6, the framework starts with a

description of the experimental methodology that is to be used in each design iteration. Then, the

design starts according to the described meta-process and traditional process perspectives.

Following this framework, the objectives will be progressing from less to more ambitious

goals through the iterations using the experience of the previous ones to adjust the direction.

This strategy permits to minimize the chances of making big backward steps that too ambitious
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Figure 3.6: An iterative strategy and classical methodology for an operational lactate threshold
estimation

objectives use to lead to.

3.1.2 Desired performance for the virtual lactate threshold sensor: satisficing ac-
curacy

Based on what has been previously stated, the performance objectives selected for the ML based

virtual LT sensor (desired performance of the virtual LT sensor in formula (1) section 3.1) indi-

rectly defines the problem complexity and consequently its viability and approach with respect to

the available resources for a successful solution (formula (2) section 3.1). Moreover, we men-

tioned that setting a satisficing performance reduces the problem complexity and consequently

increases the chances of solving the problem with the available resources.

In this regard, setting proper performance metrics is key and usually one of the most deter-

minant steps for a successful application of a solution in the real world. But prior to setting any

metric, the following question must be answered: ”what makes our system good?”. It seems ob-

vious to say that, what we are looking for is an accurate estimation of LT of recreational runners,

so we can reformulate the question to: ”what makes our system accurate?” According to the satis-

ficing principle, our system is accurate if it achieves a satisficing error. In other words, if the ML

system error (hereafter system’s error) is below a satisficing error.

system’s error ≤ satisficing error (3)

The system’s error refers to the error that our ML system has with respect to the underlying

joint probability distribution (i.e. the real probability distribution of the recreational runner popu-

lation). However, as already mentioned, under induction the determination of the system’s error

is not straightforward. Under inductive reasoning, the conclusions, instead of right or wrong, are

more or less robust. In other words, the ML system infers a function that has weaker or stronger

generalization capabilities to unseen athletes. This means that the observed error may differ from

the system’s error.

In this regard, the ML system’s error can be broken down into a combination of observed

error (i.e. the error made in the available data) and generalization error which is related to the

robustness of the ML under unseen data [63] (see Figure 3.7 question 1a):
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system’s error = observed error + generalization error (4)

This means that, for a solution valid for the usual recreational runner, the combination of

observed error and generalization error must be below a satisficing error (5).

observed error + generalization error ≤ satisficing error (5)

On the one hand, the observed error is quantified with the available data. On the other hand,

the generalization error is not strictly quantifiable nor fully observable, as there is no way to test

it in the entire underlying probability distribution (which would mean that we are able to gather

all the data). Traditionally different ways of estimating the generalization error have been used

(e.g. comparing the difference between the error in the sampled data and an out-of-sample data).

However, the correctness of this estimation is subjected to the robustness of the learning and

evaluation methodologies (see Figure 3.7 question 1b).

Therefore, it is fundamental to minimize the generalization error to be able to confidently

conclude that the calculated observed error can be considered the system’s error, the cornerstone

of ML [64] (see Figure 3.7 question 1c). To solve this, apart from raw estimated performance

meta-attributes as the robustness of the methodology and the final model must also be considered.

So that, beyond achieving a low observed error, we maximize the chances of the inference to be

generalizable to the remaining unseen recreational runner population.

Wrapping up, as represented in Figure 3.7, the desired performance of our system is to be

achieved by following two approaches: first, from the ML methodology perspective, the mini-

mization of the generalization error is sought so that the observed error approximates as much

as possible to the system’s error. As represented in Figure 3.7, the maximization of the method-

ology’s robustness is a necessary condition for proper evaluation of the created virtual LT sensor

system’s error. Second, the evaluation of this performance with a satisficing perspective according

to certain thresholds is sought in order to make our system applicable in the real world.

Then, using these evaluation principles, we can confidently assess where in the trade-off be-

tween problem complexity and available resources are we (see formula (2) in section 3.1), so that

we can make next step decisions towards a successful solution if necessary.

Machine learning methodology performance: Robust learning and evaluation

The main purpose of the ML methodology is to both accurately capture the regularities in our

database and generalize well to unseen data. In other words, there is a trade-off to properly match

the degrees of freedom of the learning approach with the degrees of freedom of the relevant infor-

mation collected in our database. This trade-off is known as the bias-variance dilemma [57] and

is directly related to the observed error of our system. An incorrect trade-off may lead to a model

that either under-fits or over-fits the data. In this regard, Figure 3.8 represents three different func-

tions that could be fitted to the same set of data points, with completely different consequences in

terms of the bias and variance of the system. There, it is shown that the error is high both if the

learning approach has less degrees of freedom compared to the phenomena being targeted (Figure
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Figure 3.7: Achieving satisficing accuracy: Proper Machine Learning system’s error calculation
and satisficing error definition
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3.8 image 1) and if the degrees of freedom of the learning approach are higher than the phenomena

being targeted (Figure 3.8 image 3).

Figure 3.8: Representation of bias-Variance trade-off

Hence, with respect to the purpose of maximizing learning the relevant information, neither

the under-fitted nor the over-fitted models are optimal. However, regarding the performance ob-

servability attributes, while an under-fitted model behaves equally biased under seen or unseen

data, an over-fitted model hides its error in the variance term (see Figure 3.8 question 1d). In

terms of the ML system’s error, the over-fitted model has a high generalization error, which goes

against our aim of creating a robust system with observable error (see Figure 3.7).

Therefore, in order to properly observe the system’s error, the aim is to minimize the chances

of creating an over-fitted model by maximizing the robustness of the methodology. This implies

that, in the absence of a perfect model, an under-fitted model is prioritized over creating and over-

fitted one. In this work, this is what we define as creating a robust ML system. More precisely,

robust learning and performance evaluation techniques are to be used to minimize the degrees of

freedom of the learning approach. To do so, a combination of techniques and principles such as

re-sampling, regularization, parsimony and ensembling are to be used so that, applied to multiple

layers, help create a robust ML system. This approach is described in detail in section 3.3.

This way, the system’s error can be evaluated against the satisficing error and decide what to

do next (section 3.3.3).

Application level performance: satisficing accuracy at individual and system levels

The previously mentioned satisficing error that is to be achieved comes from two considerations,

the error that is acceptable at individual level and the error that is acceptable at population level

(see Figure 3.7). In this regard, the system’s acceptable error serves as a satisficing error to be

achieved at system level. At the same time, the system’s error (see Figure 3.7) is calculated from

the computation of every individual estimation and comparing it to a individual acceptable error.

In both cases, expert knowledge serves as the criterion to set robust acceptable errors.

From the individual perspective, a valid solution for training decision-making resides in pro-

viding estimations for individual athletes under a maximum acceptable error that ensures that the

estimation is useful. As represented in Figure 3.9, there is an error in the LT estimation above
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Table 3.1: Lactate threshold individual ac-
ceptable error

Pace at the LT Maximum error in the LT
(min/km) ±(s/km) ±(%)

≤3∗ 3 1.7
[3, 3.5) 5 2.4
[3.5, 4) 10 4.2
[4, 4.5) 15 5.5
[4.5, 5) 20 6.6

*Out of scope: Fitness level above target popula-
tion
Abbreviations: LT, lactate threshold

which the information collected is not useful and is considered noise. In this regard, we define

the individual acceptable error as the satisficing threshold that sets the maximum error in the LT

estimation for a particular athlete.

Figure 3.9: Individual acceptable error: the threshold between useful information and noise

Abbreviations: LT, lactate threshold

To calculate it, a maximum acceptable error for individual athletes is defined according to

the experience of experts in physiology and exercise performance. In particular, we propose an

individual acceptable error for recreational athletes (see table 3.1). The physiology perspective

is applied in the following way: since higher level athletes require higher individualization in

their daily training, a higher accuracy than the baseline is deemed necessary. On the other hand,

this is the opposite for the less trained athletes since the individualization is less critical [65; 66].

Therefore, as shown in table 3.1, errors of 3, 5, 10, 15 and 20 seconds / kilometer are found to be

acceptable for athletes with running paces above 3.5, 4 and 4.5 minutes / kilometer, respectively.

Looking from the population perspective (see Figure 3.7), the recreational runner population,
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as any other heterogeneous population, has individuals with features that are far from what it can be

considered usual from the physiological perspective. Moreover, the efforts and resources required

to improve the estimation power for athletes with less common features grow non-linearly. In this

regard, as already stated, this work is directed to the majority of the recreational runner population.

This means that there is also an acceptable error in terms of the percentage of the recreational

runners for which the virtual LT sensor is valid. We define this satisficing threshold as the system’s

acceptable error.

Regarding defining this threshold, as it is usual in many other engineering problems, creating a

system valid for 90 − 95% (two standard deviations) of the target population, recreational runners

in this case, is considered satisficing for two reasons. First, it covers almost every athlete and

second, because going beyond these numbers usually is extremely costly in terms of the resources

needed. Therefore, this criterion is used in the present work as a base System’s acceptable error.

Then, the individual acceptable error is used to calculate the validity of every estimation and

the computation of valid / invalid estimations are compared to the system’s acceptable error to

evaluate if the overall performance of the ML system is satisficing. Additionally, section 3.2

explains how these satisficing errors are validated.

3.2 Experimental methodology for database creation

This section sets the steps for a proper experimental methodology according to target population

and the required information. As represented in Figure 3.10, we first make the necessary prepa-

rations for the experiment, so that it facilitates and ensures the proper collection of the relevant

features of the target recreational runner population. Second, we define the athletic, health, legal

and ethical requisites necessary to make the test. Finally, we state the criteria that are to be used

to decide whether the experiments are valid for satisficing errors calculation and/or for modelling

purposes.

Figure 3.10: Steps for obtaining valid experiments
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3.2.1 Preparation of experiments

The aim of making experiments is to measure the easily available features that hold relevant infor-

mation about the LT and ensure that we do it for the target population. To attain so, the preparation

of experiments is further divided into three steps.

First, as represented in Figure 3.11, the candidate easily measurable features are selected from

the features with potential relevant information known in the literature.

Figure 3.11: Relevant, candidate and selected features

Despite all the candidate features are probably not to be used for modelling, the final selected

features will arise from this list in subsequent steps. Therefore, the second step deals with creating

a protocol that allows to collect all these candidate features. Especially, it deals with the definition

of the incremental treadmill speed test protocol to be performed for collecting the time-series data.

Third, we define a set of pre-requisites that will ensure that the population that we are sampling

corresponds to the target recreational runner population.

Candidate features

The selection of the candidate features is done according to expert knowledge so that those features

with potential to have relevant information about LT are collected.

It is important to note that, not all these features are to be used for modelling purposes. The

number of observations needed to correctly balance this amount of features is huge and not attain-

able for an efficient trade-off between the resources used and the potential value of the results of
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Table 3.2: Candidate features: raw collected features during the in-
cremental treadmill speed test

Feature Time format

Discipline static
Physical condition static

High intensity interval training static
Years train static

Sex static
Birth-date static

Height static
Weight static

Body fat index static
Abdominal diameter static

Hip diameter static
Fat percentage static

Water percentage static
Fat percentage static

Personal best (IAAF points) static
Vpeak static

Resting HR static
Maximum HR static

HR values at different running stages static
Maximum muscular Borg static

Maximum respiratory Borg static
Muscular Borg values at different running stages static

Respiratory Borg values at different running stages static
Resting Lactate static

Lactate values at different running stages static

Abbreviations: LT, lactate threshold; HR, heart rate; IAAF, International Association of Ath-
letics Federations; Vpeak, Maximum velocity obtained in the experimental test.

this work provide.

However, there are three main reasons to collect most of these features. First and foremost,

it allows us to make a descriptive analysis of the features that help us get a deeper understanding

about the lactate and their related features from the physiological perspective. Second, during

the feature engineering phase, dimensionality reduction and feature aggregation techniques may

be considered. Finally, it also leaves an open door for the present work to be extended in future

works by adding further observations. The complete list of features an their format is organized in

table 3.2.

Additionally, based on expert knowledge, some additional well known features are created

from the raw collected ones and gathered in table 3.3.

Experimental protocol

Among the multiple features that are defined as candidate to be used in the virtual LT sensor design

we can make a separation between two kind of features according to their time characteristics:
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Table 3.3: Candidate features: transformations from
collected raw features

Feature Time format

HRDP static
HRRT static

%HRmax at different running stages static
HR evolution time-series

HRR evolution time-series
Muscular Borg evolution time-series

Respiratory Borg evolution time-series
Lactate evolution time-series
Lactate threshold static

Abbreviations: LT, lactate threshold

static and time-series.

On the one hand, the collection of the static features is quite simple since it can be done by

means of questionnaires and direct measurement. On the other hand, as already explained, the

determination of LT and the collection of the rest of time-series features is done by a incremental

treadmill speed test protocol that must be defined prior to starting the data acquisition.

As any other protocol, the precise incremental treadmill speed test protocol used for individual

Dmax LT determination arises from certain criteria that afterwards materialize in precise rules. In

the present work we explicitly define these criteria from which the incremental treadmill speed test

protocol rules are defined according to the expert knowledge of the experimenters. The criteria are

described below:

• Criteria for heart plateau: 4 minutes of effort are considered necessary to be able to reach at

the end of each stage to HR plateau, i.e. the stationary state in each of the running stages.

• Criteria for heart rate recovery measurement: HRR is among the features to be calculated

and it has been observed that 1 minute of recovery is appropriate for measuring HRR [67].

• Criteria for LT finding: Avoiding sharp increments in lactate concentration is important for

proper LT finding. To do so, the increments in speed are regulated.

• Criteria for warm-up without extra fatigue: The starting speed is important to let the athlete

face the test in progression so that it enables a proper warm-up while avoiding excessive

fatigue. To do so, the starting speed was determined in 9 kilometer/hour.

From the aforementioned criteria and considering the population under study, as illustrated in

Figure 3.12, the protocol to be used in the experimental tests is defined as: A maximal incremental

running test at 1% slope on a treadmill, started at 9 kilometer/hour without previous warm up. The

speed is increased by 1.5 kilometer/hour until 13.5 kilometer/hour and then by 1 kilometer/hour

until the participant reaches exhaustion. The duration of each running stage has been set in 4

minutes with 1 minute of recovery between them.
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Figure 3.12: Representation of the incremental speed test protocol and heart and lactate related
feature collection

Target population definition and pre-requisite formalization

As already defined, the virtual LT sensor is directed to recreational runner population. However,

due to its heterogeneity, simplifying and clearly defining the boundaries of the recreational runner

population is not straightforward. Therefore, prior to defining the pre-requisites for the target

population, we shall first define the target population or ’what a recreational runner is’ in terms of

this work.

In this regard, the recreational population term has been commonly used to describe a wide

variety of athletes which include different sets of: beginner, well-trained and sub-elite athletes.

The recreational runner community interested in an operational lactate threshold estimation has

certain characteristics.

The first characteristic of the recreational runners (from the perspective of the present work)
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can be derived directly from the population in demand of an operational LT estimator. These are

athletes currently participating in long distance endurance races from 5 kilometers upwards. It

includes several disciplines such as track, road running, cross country running, trail running and

triathlon.

Second, there is both a lower and an upper athletic level that limits what can be considered

recreational runner.

On the one hand, the usefulness of the virtual LT sensor for an athlete below certain athletic

level is very limited and the athlete would better benefit from following a introductory training

plan. In this work we set this lower limit in being able to finish the 14.5 kilometer/hour running

stage in the treadmill speed test. On the other hand, there is a level above which the athlete can

not be considered recreational.To determine the upper level, two sub-elite athletes were recruited

and experiments made to be used as reference. Elite and sub-elite athletes are scarce and thus two

well-known athletes in good physical condition where selected according to their recent athletic

performances. The tests performed by the sub-elite athletes reached 20.5 kilometers/hour and thus

this speed is used as upper limit.

Summing up all the previous considerations and as represented in Figure 3.13, the following

athletic characteristics are requisites for an athlete to be considered part of the target population:

• Endurance athletes training for and participating in running races from 5 km upwards.

• Currently running at least 3 days a week.

• A running experience of at least 1 year.

• Athletic level according to the maximum running stage reached in the test herein assessed

between 14.5-20.5 kilometers/hour.

Figure 3.13: Pre-requisites to consider recreational runner population
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3.2.2 Requisites for realization

The previously defined experiment preparations tries to ensure that the experiments are aimed to

the proper population and that the appropriate features are selected.

In this section, we describe the requisites that every athlete participating in the experiments

must fulfil prior to being allowed to perform it. These requisites include athletic, health, legal

and ethical considerations that either protects the athlete and/or ensure that the experiments are

performed under the appropriate conditions.

The athletic-health requisites that each athlete must fulfil includes:

• Be well rested and to abstain from hard training sessions and competition for 24 hours before

testing.

• Abstain from eating for 3 hours before testing.

• Abstain from taking stimulant substances before testing, including coffee or tea.

• Be familiarized with running on a treadmill.

• Being healthy and lacking on infections.

Additionally, there are certain safety and legal requisites that must also be fulfilled:

• To be federated in their respective disciplines

• Provide a medical certificate that ensures that they are able to perform the test.

Finally, according to the Ethics Committee for Research on Human Subjects of the University

of Basque Country UPV/EHU (CEISH/GIEB) that approved this study with M10/2015/203 refer-

ence number. The application of this protocol is subjected to fulfilling the following requisites:

• The participant has read the information sheet (see annex A).

• The participant has provided a written informed consent acknowledging that has been in-

formed about the possible risks of the tests and giving their consent (see annex A).

3.2.3 Experiment validity definition

Despite great efforts are put into maximizing the quality of the experiments, there is always a

chance to collect experiments that are invalid. The validity of an observation depends on char-

acteristics like correctness and/or application type. Therefore, we first make a classification of

different type of observations that we can encounter and that could potentially invalidate an exper-

iment.

In any population, there are always some rare observations that fall out of what it can be

considered as normality of a targeted feature. While these rare observations may still be correct,

distinguishing them from incorrect observations is sometimes not straightforward.
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Nonetheless making this distinction is fundamental, the validity of the observation may de-

pend on its characteristics. Figure 3.14 is representative of the classification according to type

of observations (gathered in columns) into normal and rare. Then, the rare is further divided

into outlier and incorrect. Moreover, this distinction is done both at sample level (considering if

the athlete is inside the target recreational runner population) and data level (if the data has been

erroneously measured or estimated).

A difference between incorrect and outlier data may be illustrated using the HR measurement

as example. On the one hand, an observation giving a negative value of HR or a HR of 300 beats

per minute is clearly considered incorrect data, since they are not within the range of what is pos-

sible for the phenomena under scrutiny, and therefore would be categorized as invalid data. On the

other hand, an unusual high HR value of 210 beats per minute may be due to the inherent char-

acteristics of the athlete and therefore considered as outlier. In this work, we hold a conservative

approach when labeling data as incorrect so that we only do so for the flagrantly incorrect as the

former example.

Additionally, as represented in Figure 3.14, the incorrect and outliers may appear after any of

the data handling steps and we divide the sources of error in three types: sampling errors (major

contingencies and non-recreational runners), measurement errors (pulsometer, lactate measume-

ment device error...) and transformation errors (%HR max, LT due to Dmax LT method error).

Figure 3.14: Categorization of correct and incorrect experiments and data
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Therefore, Figure 3.14 sets a framework to evaluate which kind of data is valid for one of the

two main purposes: calculating the satisficing error and designing the virtual LT sensor.

Validity for satisficing error calculation: individual and system’s acceptable error

As already mentioned in section 3.1, there are two acceptable thresholds, system’s acceptable

error and individual acceptable error. These two acceptable errors were defined using expert

knowledge. However, to add further robustness, these criteria is to be validated with the analysis

of the LT threshold data. As represented in Figure 3.15, normal, outlier and incorrectly lactate

data (measured lactate values and transformed LT values) are valid for this purpose.

Figure 3.15: Valid data for individual and system’s acceptable error determination

A technique such as the individual Dmax LT method that is used in practice serves as the

proper reference to asses how much is ”good enough” for nowadays standards. The Dmax LT

estimation method, as any other methodology that tries to estimate or measure a variable, suffers

from approximation errors. In the present work we refer to this error as the unavoidable error.

This unavoidable error is part of the output of each observation that is used to create the ML
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system, so, it also sets the upper bound or the ideal performance that the virtual LT sensor could

achieve. As represented in Figure 3.16, the unavoidable error has two components which can be

directly mapped with the previously defined individual and system’s acceptable errors:

• Dmax LT method precision error: The individual Dmax LT determination method produces

precision errors in each observation that comes from the propagation of the blood lactate

measurement error (a combination of lactate measurement device error, inherent errors of

the physical measurement such as sweat in blood sample...) to the determined LT. The

quantification of this error can be used as reference to validate the individual acceptable

error based on expert knowledge. To do so, the normal and outlier Dmax LT estimations

are used.

• Incorrect Dmax LT rate: The incorrect Dmax LT observations (see Figure 3.20) are valid

since they give information about when the individual Dmax LT fails (those with non-convex

curves...) for the sampled population and thus defines the limit that the individual Dmax LT

has for its application to the entire recreational runner population. This limit is also to be

used in combination with expert knowledge to set a robust system’s acceptable error as it

sets the upper limit that any ML system created on these labels has.

In the present work and as represented in Figure 3.16, the Dmax error analysis is used to

validate the acceptable errors previously defined using expert criteria.

Figure 3.16: Satisficing errors: Validation of expert knowledge from Dmax lactate threshold error
analysis

Individual acceptable error determination

The Dmax LT method precision error is well known in the literature from a measurement

perspective [68; 34] and is here used as the validation reference for the individual acceptable

error. The Dmax LT method precision error is related to the initial and final point selection,

regression type, number of blood measurements... but it has not been quantitatively addressed

so far. However, this error arises from a propagation of the blood lactate measurement error,
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which is dependent on unavoidable small errors such as the measurement device error, blood

sampling errors related to sweat, timing... and has been well characterized and quantified in the

work done by Tanner et. al. [69]. As represented in Figure 3.17, the precision error of the

Dmax LT estimation is caused by how blood lactate measurement error propagates through the

individual Dmax LT method to the determined LT.

Figure 3.17: Dmax lactate threshold method precision error caused by blood lactate measurement
error

Abbreviations: LT, lactate threshold

Since the process between the blood lactate measurements and the final individual LT estima-

tion follows a defined protocol, we can formalize an algorithm that creates as many simulated LTs

as required using hypothetical (hereafter plausible) measured blood lactates. Hence, in the present

work we propose a computational algorithm to estimate the Dmax LT method precision error by

unfolding how the blood lactate measurement error propagates and eventually materializes in the

determined LT.

As represented in Figure 3.18, the accuracy of the blood lactate measurement can be divided

in its trueness and precision components. As already mentioned, the blood lactate measurement

device used in this work has been validated as an effective analyzer for lactate measurements [69].

Thus, it can be confidently stated that it has negligible trueness error. The rest of the possible

sources of error (blood sampling errors related to residual sweat, inevitable small timing differ-

ences etc) are of random nature and thus they contribute to the precision component [70]. As

illustrated in Figure 3.18, the precision error and its random nature can be represented as a proba-

bility distribution. The precision’s standard deviation error has already been estimated by Tanner

et. al. by making a test-retest reliability analysis [69].

Figure 3.19 exemplifies the computing process for the Dmax LT method precision error es-

timation of a single athlete. With the previously explained precision error as reference (Figure

3.19 step 1), the computational method starts from taking multiple (’Z’ in algorithm 1) random

samples from the blood lactate precision distribution to estimate new blood lactate measurements

(hereafter plausible blood lactate measurements) (Figure 3.19 step 2). These plausible measure-
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Figure 3.18: Precision error

ments for a particular athlete are represented under ’blood lactate measurements’ name. In other

words, these plausible blood lactate measurements correspond to the blood lactate measurements

that could have been measured in the treadmill speed test due to the precision error of the blood

lactate measurement device. Using these plausible blood lactate concentrations, their correspond-

ing lactate curves are calculated (Figure 3.19 step 3), resulting in multiple different combinations

of lactate curves that could have been derived for a particular athlete. These lactate curves are

represented in Figure 3.19 under the ’lactate curves’ name. Finally, the Dmax LT of each curve

is calculated and represented in Figure 3.19 under the ’LT’ name, which brings to light the inher-

ent variability of the Dmax LT estimation protocol and the calculation of the Dmax LT method

precision error for a particular athlete (Figure 3.19 step 4). To calculate the Dmax LT method

precision error for the whole recreational runner population, this computational algorithm takes

random samples with replacement from the sampled population to better represent the underlying

population (Figure 3.19 step 5). Finally it calculates the mean of all the calculated precisions to

obtain the final Dmax LT method precision error (Figure 3.19 step 6). Algorithm 1 formalizes this

process.

This calculation process is repeated in each design iteration (as explained in section 3.3) so

that the calculation grows in robustness together with the increase in sample size. Thus, the de-

termination of this errors is done in Chapter 4 in each iteration. Then, this calculation is used

to validate the individual acceptable errors defined according to expert knowledge stated in table

3.1. Therefore, the validation is done in Chapter 4. The W and Z re-samples are experimentally

selected in Chapter 4 by increasing the size until reaching the ”diminishing returns” phase. X is

increased together with the sample size of different iterations.

System’s acceptable error determination
As in any other method there are certain recreational runners from which the application of the

individual Dmax LT method derives into incorrect LTs from data perspective (see Figure 3.14).

Analysing these incorrect LTs is a good way to estimate which proportion of the recreational

runners can use the individual Dmax LT determination, serving as a good reference to validate the

base system’s acceptable error created with expert knowledge.

As we have seen before (Chapter 2), the lactate determination method selected in the present



3.2. Experimental methodology for database creation 59

Figure 3.19: Computational Dmax lactate threshold method precision error calculation
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Algorithm 1 Algorithm to compute the error caused by measurement: Dmax LT method precision
error
Require: # lactate points per athlete

SDMeasurement = Blood lactate measurement precision standard deviation ([69])
Precision distribution = Normal distribution(SDMeasurement)
for W bootstrap re-samples do

for X athletes do
for Y lactate points do

for Z random samples do
Plausible measurement error = Random sample from Precision distribution
Plausible blood lactate concentration = Measured lactate + Plausible measurement
error

end for
end for
Plausible LTs = fDmax(Plausible blood lactate concentrations)
Dmax error per athlete per re-sample = Plausible LTs - mean of Plausible LTs

end for
end for
Dmax error distribution aggregating Dmax error per athlete per re-sample
Dmax LT method precision = Standard Error Measurement of Dmax error distribution

work is among the most reliable methods and there is no ground truth with which it can be com-

pared. Therefore, discerning between an outlier from an incorrect LT (see Figure 3.14) is not

straightforward. In this work, a conservative ”least favorable” approach has been followed and

only what experts considered flagrantly incorrect data is considered so. As represented in Figure

3.20, in our case this includes the lactate thresholds estimated on non-convex curves or highly

undulated curves among others.

Thus, it can be used as a reference Dmax LT determination error and use it as a reference to

set the system’s acceptable error of our estimator, as well as to evaluate the maximum room for

improvement of our system. Similar to the individual acceptable error, this calculation process

is repeated in each design iteration (as explained in section 3.3) so that the calculation grows in

robustness together with the increase in sample size. Then, this calculation is used to validate the

system’s acceptable error defined according to expert knowledge (90-95% error). This validation

is done in Chapter 4.

Validity for virtual LT sensor design

As represented in Figure 3.21, the validity of the observations for designing the virtual LT sensor

consists of detecting the incorrect observations at every level. More precisely, incorrectly sam-

pled athletes (non recreational runners), incorrect measurements or incorrect transformations that

compromises a relevant feature may invalidate the entire experiment.
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Figure 3.20: Incorrect data from Dmax lactate threshold method perspective

3.3 Methodology for virtual lactate threshold sensor design and devel-
opment: characterize, represent and decide

The methodology here proposed describes the intra-iteration process. The objective of each itera-

tion is to create a virtual lactate threshold sensor and to do so, as already mentioned and illustrated

in Figure 3.6 section 3.1.1, this process is divided into context characterization, content represen-

tation and next step decision making.

As illustrated in Figure 3.22, the steps are divided according to two main inherent difficulties

that creating a ML system has, plus a step that systematizes the decision making process for the

next step to take. The purpose of these steps can be summarized as:

1. Context characterization: How and which data we collect (features and observations) to best

represent the LT phenomena by minimizing the selection biases that may be introduced.

2. Content representation: This step deals with making the best use of the data so that the

function that ML system infers best approximates the underlying function. This entails

maximizing the robustness of the ML system as explained in section 3.1.

3. Deciding next steps: The final step deals with formalizing a method for deciding which is

the most appropriate direction that the next iteration should follow (if any). More precisely,

the decision-making process that leads to accepting, improving or definitively stopping the

design of the virtual LT sensor.
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Figure 3.21: Valid data for virtual lactate threshold sensor design

3.3.1 Context characterization: Collecting high quality data

The quality of the gathered data is one of the key characteristics for a successful ML solution

and where most of the effort must be focused on. Thus, the purpose of this step is to maximize

the quality of the data collected in terms of its relevance with respect to the LT. In other words, to

characterize appropriate context so that we have enough relevant information to make the inference

about the outcome of interest.

Collecting quality data implies to select and collect the features and corresponding observa-

tions that have a close relation with the outcome of interest as well as to do it minimizing the

selection bias. Selection bias is the error introduced in the selection process of individuals in

such a way that the data sample obtained does not properly represent the population intended to

be analysed. In our case, this can come from improper selection of the athletes and/or improper

collection of feature-observation pairs.

A proper experimental design is therefore fundamental to minimize this source of error and to

create a robust virtual LT sensor. To do so, given that the population of interest, i.e. recreational

runners, is correctly defined and the protocols created (see section 3.2), it is fundamental to ensure
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Figure 3.22: Methodology: Context characterization, content representation and decide next steps
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that proper randomization is attained during data collection so that the chance to get features with

spurious relations minimized.

As represented in Figure 3.23, we first decide how many and which features and observations

are collected according to the needs and specific objectives of each iteration. The data is then

collected according to the experimental protocol. Finally, a pre-processing is made for detection

and cleaning of invalid data (see Figure 3.14), for getting overall knowledge of the information

collected and adjusting the satisficing errors.

Figure 3.23: Context characterization: Steps for collecting quality data

Criteria for database creation: Features and observations

An inherent difficulty when creating a database is that the collected data always contain a combi-

nation of relevant information and noise. The purpose of the database is to gather and organize

the input-output features with their corresponding observations with a minimized noise. Given the

target population is clearly defined, the noise minimization is dependent on 1) collecting features

that are relevant for the LT and 2) ensuring a proper randomization of the collected observations

using appropriate sampling and re-sampling techniques.

Indiscriminate collection of multiple available features may seem reasonable a priory, since

the more features we collect the more variability of the outcome could be potentially explained.

However, it is known that this kind of approaches that do not use any criteria may lead to dimen-

sionality problems [71] and end up finding spurious relations between the input and output features

that do not generalize outside the sample. One of the solutions to minimize the risk of falling on
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dimensionality problems is using expert knowledge as a filter of features. In our case, it is known

that multiple features such as HR related ones, perceived effort, diet, physical condition, age, ath-

lete level etc are related with lactate production or LT [52]. A first filtering was already done when

creating the experimental methodology in section 3.2. However, further filtering may be necessary

at iteration level and this knowledge is thus used also as the additional filter of features.

As already explained, the features must be accompanied with the appropriate amount of obser-

vations to avoid to violate the fundamental sampling laws such as law of large numbers and central

limit theorem [72; 73]. If these laws are not respected, the observed variability of the input features

can end up being due to randomness and may interfere and make the inference engine misrepresent

the information [71] and be unable to generalize to the recreational runners population.

But, how many observations are enough for this noise to be minimized? So far, several heuris-

tics such as the ”one in ten rule” (10 observations per feature), the commonly used 30 observations

for independent variables etc have been proposed in these endeavour. However, these heuristics

are based on multiple assumptions of ideal conditions such as independence, normality of distri-

bution... and shall be treated as a rule of thumb [74]. Moreover, it is well known that, in order

to obtain a statistically sound and reliable result, the amount of data needed to support the result

often grows exponentially with the dimensionality [71]. Therefore, despite these heuristics are not

able to ensure how many observations are sufficient, they serve as a valid reference to determine a

lower threshold of observations.

In any case, the number of observations needed is highly dependent on the problem being

solved and thus the iterative approach here proposed goes hand-in-hand with this inherent un-

certainty, since the iterative strategy allows to incrementally test the sample size by a posterior

evaluation of the ML system performance for increasingly robust conclusions. Therefore, the

number of observations will be determined in each iteration taking into account these criteria.

Moreover, as explained in section 3.2 and represented in Figures 3.15 and 3.21, the observa-

tions gathered in the database are susceptible to be invalid for both acceptable error calculation and

designing purposes. To maximize the quality of the data, these invalid data is to be minimized.

To do so, first a detailed protocol is created to systematically capture, digitalize and organize

data. This data acquisition protocol can be divided into: preparation, calibration & start-up of

the necessary tools, confirmation of pre-requisite compliance, formatting, static feature collection,

time-series feature collection, failure case protocol and digitalization. The detail of the data ac-

quisition protocol can be found in annex B. The pre-processing step helps to detect the remaining

incorrect data at sampling and data perspectives (see Figures 3.15 and 3.21) and filter out the

corresponding invalid data.

Pre-processing

Given the endeavour of maximizing the quality of our data, pre-processing relates with all the

initial analysis that allow us to get an overview of the sample, make early detection of invalid data

and filter it out. Moreover, pre-processing also serves the purpose of getting additional knowledge

of our problem by making a preliminary descriptive analysis of our sample.
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This process starts with the format merging, on which each experimental tests and each results

are scrutinized in detail. To do so, every experimental test is independently and one-by-one anal-

ysed to look for flagrant errors and inconsistencies between the redundant formats (pictures, excel

files and handwritten documents) that were used to gather the data.

With regards of detecting and filtering out the corresponding invalid data, this pre-processing

follows the same sequence than the data collection. Looking it from the samplimg perspective (see

Figures 3.14), the two sources of error are:

1. Major contingencies during the experimental test: The most evident source of error and one

that completely invalidates the collected data comes from any major contingency that may

happen during the test. Some examples are unfinished tests, flagrantly sub-maximal tests...

2. Non-recreational runner population: The remaining data, despite being collected by follow-

ing the pre-requisites defined in section 3.2, as represented in Figure 3.24, may still contain

non-recreational runners. More precisely, there is always certain subjectivity in the selection

of recreational runners participating in the experiments, in this case concerning the athlete

level. As already defined in section 3.2, the athlete level can only be estimated a priory and

thus, it may show a different performance than expected in the experiments (Vpeak below

14.5 kilometers/hour or above 20.5 kilometers/hour).

Figure 3.24: From target population to sampled recreational runners

The incorrect experiments detected in these two steps are invalid for both error calculation (see

Figure 3.15) and designing purposes (see Figure 3.21), therefore are to be filtered.

Once that the invalid data coming from sampling errors has been filtered, the focus is placed in

the sources of error from the data perspective. Despite the big efforts made to maximize the data

collection quality, there are unavoidable errors that we divide this source error into (see Figure

3.14):
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1. Primary measurement error: These errors are related to any measurement error done to

acquire the raw features that are gathered in table 3.2. As already mentioned, the output

incorrect data coming from measurement errors (i.e. incorrect lactate values) are still valid

for acceptable error calculation (see Figure 3.15) and are reserved for this purpose. The rest

of the incorrect data is invalid for both acceptable error calculation and designing purposes

(see Figures 3.15 and 3.21) and are thus discarded.

2. Secondary transformation error: These errors are related to any transformation error done

in the process to convert the raw features gathered in table 3.2 into the features gathered in

table 3.3. The incorrect lactate curves and posterior incorrect LT are among these features.

As already mentioned in section 3.2, this output data remains valid for satisficing error ad-

justments and thus it is reserved for this purpose. Notice that at this level, ”incorrect” is

understood in terms of the Dmax LT determination method: those experiments are consid-

ered incorrect because the Dmax LT determination method does not suit them as long as the

lactate points do no exhibit a convex behaviour.

To detect and identify the incorrect data, apart from a one-by-one analysis of the data, in each

iteration, an uni-variate descriptive analysis of the data is performed to illustrate the distribution

of each feature. This allows to have an overview of each feature, facilitating the detection of

the incorrect data that stands out. Then, using the criteria above mentioned, the invalid data is

discarded. The descriptive analysis is enriched with graphical tools that allow to look at the data

from other perspectives and elucidate further characteristics.

Additionally, the aforementioned uni-variate statistical descriptive analysis serves to get ad-

ditional knowledge about our problem by looking to the distributions of the collected features.

For instance, looking to the mean and standard deviation of the features may give additional in-

formation about the characteristics of the recreational runner population. With the same purpose

of acquiring additional knowledge, an exploratory bi-variate analysis is also done. This analysis

seeks to throw some light on how the collected features are interrelated by analysing the cross-

correlations between them. Furthermore, these correlations are to be placed in the same map to

facilitate its interpretation. This information may be valuable in future steps to make a preliminary

idea of the context that we are working on in aspects such as the redundancy of the information

gathered in the features.

These analysis are done according to the specific needs of each iteration, and therefore is

specified in the design phase (see Chapter 4).

3.3.2 Content representation: Learning relevant information

Once the context characterization phase is finished, we have a finite amount of content collected

in our database. In spite of doing great efforts in the data collection step, the database always

contains variability that cannot be explained with the collected independent features. In other

words, our database contains at the same time relevant information (signal) and random or spurious

information (noise). Therefore, the purpose of this content representation phase is to make the

most from the data we already collected by representing only the relevant part while filtering out
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the spurious.

To do so, ML tries to match the relevant degrees of freedom contained in the database (in form

of relevant features) with the degrees of freedom of the algorithm to be used to infer the underlying

relationship. In our case, aiming for robust learning, we put great efforts into every step that

reduces the chances of overshooting the degrees of freedom of the algorithm and consequently

creating an over-fitted model. To do so, introducing diversity in every step of the learning is

fundamental [75]. As represented in Figure 3.25, this content representation can be divided into

five highly intertwined parts.

Figure 3.25: Content representation’s sub-parts

Splitting the database into different non-overlapping chunks is the foundation on which ma-

chine learning stands. A model directly trained in the whole data sample would be unable to

estimate the model performance on unseen data, and the chances of creating over-fitted models

would significantly increase due to the lack of data diversity. Therefore, the data base splitting

serves two purposes: robust learning and performance evaluation. Moreover, as represented in

Figure 3.25, it is done to serve learning and evaluation in different layers, at hyper-parameter and

parameter levels more precisely.

Making use of the split database, training, feature engineering and final model creation/selection

are the three inferences that a ML methodology makes.

Feature engineering and training are two sides of the same coin (matching the relevant degrees

of freedom of the data with the degrees of freedom of the algorithm). On the one hand, feature

engineering tries to do it by selecting the relevant degrees of freedom of the feature space. To do
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so, features are created, transformed and combined to maximize its relevance with respect to the

outcome of interest (LT in this case). On the other hand, training plays with the degrees of freedom

of the algorithm (hereafter model hyper-parameters) and fit the virtual LT sensor’s parameters to

the input-output data. Finally, the last inference relates to how a model is created or selected from

the entire set of models created in the previous step.

Performance evaluation goes in parallel to the different inferences providing feedback of the

performance of the system at different levels (model hyper-parameter and parameter). First, the

performance is assessed through the bias-variance of the different model hyper-parameters com-

bination. Second, the appropriate hyper-parameters are selected for the final model creation or

selection. Third, the final model is evaluated by comparing the performance in the data split used

so far (training set) with a test set that remained outside the learning.

Finally, as mentioned in section 3.1, maximizing the robustness of this learning methodol-

ogy is a necessary condition for observing the real system’s error and consequently evaluating

the applicability of the virtual LT sensor. In this regard, the principle of parsimony says that, in

equal conditions, the most parsimonious approach reduces variance of the ML system, making the

solution more robust to unseen data compared to other more complex ones [76]. Moreover, a parsi-

monious system is much easier to understand and adapt due to its simplicity and consequently low

computational cost. Thus, parsimony is to be applied in every step of the content representation.

Since every step of the content representation is intimately intertwined to each other, the selec-

tion of the techniques to be used correspond to the design phase, when the appropriate techniques

are to be decided in parallel. Therefore, the following sections make a high level analysis to define

the perspectives that are going to be followed in the design phase in Chapter 4.

Database splitting criteria: Foundation for robust learning and evaluation

To make the two layer learning and performance evaluation possible (at hyper-parameter and pa-

rameter levels), the database splitting is done in two steps.

As illustrated in Figure 3.26, the first database splitting is done to separate the data set used

for model training and leave the remaining data unseen for its use to test the performance of the

final model.

In order to make this separation robustly, a common approach in ML is to start by randomly

splitting 80% for training purposes and 20% for testing purposes which is to be used as our first

design approach.

The second split relates to the hyper-parameter level learning. As represented in Figure 3.27,

using only the data previously reserved for training purposes, ”n” models (virtual LT sensors in

our case) are created with ”n” combinations for one specific set of hyper-parameters. The ”n”

parameter combinations can come from different initializations of the learning algorithm and/or

from different re-samples of the training data.

Similar to the context characterization step, one of the main ideas behind making multiple

models from different re-samples is increasing the randomization, so that the effect of the noise

contained in the data is minimized and the robustness of the learning and evaluation increased.
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Figure 3.26: Separation of sample data into training and testing sets

Furthermore, the models are also created using ’m’ number of hyper-parameters so that the

appropriate trade-off between bias-variance can be found according to them. Figure 3.27 shows

how these two kind of parameters are fitted during the training, illustrated by the example of a

polynomial model. More precisely, in the example ”n” sets of parameters are fitted for each hyper-

parameter combination using the corresponding training set splits for a resulting m x n number of

models.

Figure 3.27: Data base splitting for hyper-parameter learning and evaluation

In order to maximize the robustness, following the principle of parsimony, the lower the num-

ber of hyper-parameters the better. Therefore, the training set split must focus on providing enough
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significant splits to enable the appropriate evaluation of the bias-variance corresponding to each

hyper-parameter combination.

As the selection of the database splitting is highly dependent on the learning approach the

selection of the exact approach is to be done in the design phase in Chapter 4.

Feature engineering: Finding the relevant features for LT

The purpose of feature engineering, i.e. the creation, transformation, reduction, selection and

combination of the available features, is to make a proper representation of the feature vector. It is

well known that most ML performance is heavily dependent on this representation [77] and that,

if properly done, can greatly simplify the efforts needed in the training step.

Proper feature engineering is closely related with finding the features that are relevant for the

output of interest (LT in this case) and extract the complementary information that these features

provide. In other words, it tries to find the relevant and use only the necessary degrees of freedom,

while discarding the rest. So far, multiple methods have been used in this endeavour.

Filtering feature engineering methods on their part can be used to make an explicit analysis

of the feature relevance and subsequently to train the model. This approach includes techniques

such as information gain, correlation coefficient, mutual information... and are independent on the

training [78]. Wrapper or embedded methods such as recursive feature elimination or addition,

lasso regularization... make the feature relevance implicit to the model training step.

As already said, when selecting the features from available data we are also making an infer-

ence from our limited sample, with its associated over-fitting risk. Thus, in line with the criteria

for the selection of features in section 3.3.1, in the present work we use again expert knowledge

to make a sub-selection of features and add robustness to the conclusions derived from the rest

feature engineering methods. Additionally, the parsimony criteria is also to be applied here for

maximized robustness which means that the lesser features needed the better.

Training a model: Learning the relation between input and output features

The training step deals with the selection of the approach used to learn the relationship between

the input features and the output.

In this regard, there are multiple types of learning approaches such as the connectionists (neu-

ral networks, reservoir based... Figure 3.28), instance based (k nearest neighbours in Figure 3.29),

statistical (Bayesian approaches, generalized linear models...Figure 3.30) etc.

Each learning approach provides with a particular set of complexity and characteristics which

can be more or less appropriate for the problem in hand according to the structural characteristics

of the relevant information collected in data. For instance, artificial neural networks (ANN) are

universal approximators, which means that a simple neural network can represent a wide variety of

functions when given appropriate parameters. Instance based learning approaches, instead of per-

forming explicit generalization, compares new problem instances with instances seen in training,

and stored in memory. Therefore, the suitability of the learning approach depends on the problem

characteristics and is highly experimental.
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Figure 3.28: Connectionist learning approach example: Artificial Neural Networks and NeuCube

Figure 3.29: Instance based learning approach example: k Nearest Neighbors

The principle of parsimony also applies here to minimize the number of parameters that need

to be fitted with the data and thus to create a more robust system. For most ML systems, the quan-

tification of the parsimony of our system is done by counting the number of internal parameters

of the ML system, the fewer the number of parameters the more parsimonious the ML system. In

Figure 3.31, we show an example of how the parsimony of a linear model would be calculated

according to its ’n’ number of parameters. The higher the ’n’ the less parsimonious model.

Therefore, a parsimonious learning could be achieved by selecting a sufficient low number

of hyper-parameters of the learning algorithm. Additionally, regularization methods are also

useful for this purpose, which introduce a penalty for exploring certain regions of the function

space. Early stopping, regularizing for sparsity and other implicit regularization like Lasso are

well known.

Performance evaluation at hyper-parameter level: Bias-variance of the methodology

Similar to the previous inferences, the performance evaluation is done at every level, i.e. at hyper-

parameter and parameter level.

Usually the error analysis is done in raw error terms such as mean square error or any other

metric detached from the application. However, to quantify the performance from the applicability

perspective, the satisficing error perspective must be introduced into this analysis (see Figure 3.7

in section 3.1). Therefore, prior to making any evaluation, we introduce the method by which the

raw error of the models are to be transformed.

To do so, the estimation error on each athlete (hereafter individual error) is calculated com-

paring its real lactate threshold and the estimated lactate threshold (5).

individual error = real individual lactate threshold - estimated individual lactate threshold (5)
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Figure 3.30: Statistical learning approach example: Bayesian inference

Figure 3.31: Parsimony quantification: An illustrative example using the number of parameters of
a linear model

As illustrated in Figure 3.9, if the individual error is above the individual acceptable error this

estimation is considered non-acceptable. Having all the athlete’s estimations been classified as

acceptable or non-acceptable, the system’s error is determined calculating the number of athletes

which accomplish the individual acceptable error and represented as a % of the total athletes in the

database. This percentage is considered the system’s error of our system. Algorithm 2 formalizes

this computation and Figure 3.32 illustrates it with an example.

Algorithm 2 Compute system’s error
for N number of athletes do

if individual error > individual acceptable error then
non-acceptable estimation = non-acceptable estimation + 1

end if
end for
System’s error = (N - non-acceptable estimation) / N * 100

With this transformation the application perspective is intrinsic to the metric to evaluate the

performance and we are able to jump into the bias-variance estimation of the methodology. Despite

there are multiple methods (learning curves, cross-validation, Akaike information criterion...) to

evaluate the bias and variance of the learning methodology, most of them rely on analyzing the

combined errors of the ’n’ created models (see Figure 3.27). More precisely, the variance is

obtained by observing how the error varies across the ’n’ models (for instance, measuring its

standard deviation) and the bias by computing the mean error of the ’n’ models. Let Figure

3.33 serve as an illustration of how the bias-variance evolves according to the number of hyper-

parameters.
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Figure 3.32: System’s error calculation

Abbreviations: LT, lactate threshold; Ex, estimation error on athlete x

Figure 3.33: Example of bias-variance estimation for each hyper-parameter set

Hence, the diversity we introduced in the database splitting step by creating multiple mod-

els allows to make the evaluation of each hyper-parameter combination from the bias-variance

perspective. The robustness of this estimation depends mainly on how well the diversification

was done, the higher the re-sampling and initializations the better. Therefore, it places a greater

emphasize in its importance.

Model creation or selection: Hyper-parameter selection and final model creation

Once the hyper-parameter level learning is finished (i.e. the feature engineering and the training)

and the performance of the methodology estimated, the next inference is to select the model hyper-

parameters and create or select the final model from it.

A parsimony based hyper-parameter selection is a common practice for increasing the robust-

ness of this inference. This selection is usually done according to the point of diminishing error

reduction with respect to the number of hyper-parameters of the model. To do so, expert knowl-

edge or approaches such us the elbow method are commonly used. Figure 3.34 represents the
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application of the elbow method to find this point.

Figure 3.34: Hyper-parameter selection according using the elbow method

However, in our case, consistent with the preference of an under-fitted model as explained in

section 3.1 (see Figure 3.7), we introduce an additional criteria for the hyper-parameters selection

to maximize the robustness of the system. To do so, the system’s acceptable error is used as

reference and the most parsimonious hyper-parameter combination that fulfils it is selected (see

Figure 3.35).

Figure 3.35: Evaluation of the bias-variance of a polynomial regression according to different
number of hyper-parameters

This concept extends also to other methods such as ensembling that may be used to create the

final model fusing multiple ones. The hyper-parameters of the ensembling approach are also to be

taken into account during the design phase to maximize the robustness of the final model.

Performance evaluation at parameter level: final model testing

The final model performance is evaluated from the comparison of the system’s error in the training

set with respect to the system’s error in the test set.

Then, for comparison purposes, two considerations are to be made. If the system’s error

estimated in the training set differs greatly from the system’s error estimated in the test set it can

be concluded that the variance of the system is too high, and thus the generalization of the virtual

LT sensor is not good. On the contrary, if both errors are similar, the variance term is considered

small and thus the observed error and real error may be considered similar.
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Therefore, given that the robustness of the methodology has been maximized, this training-

test set performance comparison places our final model in the bias-variance continuum. These

conclusions are fed to the next section where the interpretation of the final performance is made

to decide what direction to follow next.

3.3.3 Next step: Criteria for direction adjustment

After a design iteration is finished, the next question that arises is: what do we do next? There

are three possible answers to this question: (1) Accept the solution, (2) stop because continuing

is non-viable or (3) make a direction adjustment and another design iteration. As illustrated in

Figure 3.37, this section deals with the process that leads to one of these decisions.

The traditional next-step decision making process for a ML model starts from the evaluated

performance. If the variance of the final model is non-negligible or doubtful, the observed error

of the virtual LT sensor is not close to the real system’s error and thus the solution cannot be prop-

erly evaluated and is insufficient. Therefore, the next step to be made comes from increasing the

robustness which, depending on the characteristics of the learning approach, may be obtained by

decreasing the complexity of the learning and/or increasing the sample size for testing purposes.

The former may include multiple approaches such as: decrease the number of features, decrease

the training algorithm complexity, increase the regularization term... On the contrary, if the vari-

ance is negligible, the magnitude of the bias error is compared with the system’s acceptable error

defined in section 3.1 (see Figure 3.7).

Then, if the bias error is below the satisficing error, the ML system is usually accepted in the

traditional next step decision making processes (see Figure 3.36). In this work we go beyond that

and introduce an additional methodological perspective (see Figure 3.37). As already stated in

section 3.1, in problems such as the the LT where the heterogeneity of the population is consider-

able, the maximization of robustness is fundamental. Therefore, in line with what is represented

in Figure 3.7 we pose and additional question: can be the robustness of the methodology and ML

system further improved? If the answer is positive the next iteration is headed towards further

increasing the robustness of the system. If the answer is negative, the solution is accepted.

On the contrary, if the bias is not below the satisficing error, further increased optimization

may be sought. This is usually achieved both through an increased learning complexity and/or

increasing the resources for modelling. To do so, the number of features may be increased, the

training algorithm complexity increased or the regularization term decreased. However, it is im-

portant to note that any of these approaches also tend to require to increase the resources for

modelling (e.g. increasing sample size and/or computational power).

To summarize, if the ML system is not accepted as final solution, one of two improvement

directions are possible, increasing robustness or increasing optimization. Making the correspond-

ing improvements are subjected to a cost-benefit trade-off which may give way to the next step

or decide that is unfeasible. More precisely, the cost of taking another iteration is evaluated from

the economical, temporal, technical, material... perspectives and compared to the closeness to

achieving a sufficient solution and the comparative value that provides.
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Figure 3.36: Traditional machine learning next step decision making process

Abbreviations: train, training; algo, algorithm; cmplx, complexity

3.4 Strategical and methodological conclusions

This chapter has served to, starting from the higher level of abstraction, define a set of strategical

principles that, after combining with the common traits in supervised learning problems, grew

into a detailed iterative methodology that is to be used in the design of the virtual lactate threshold

sensor.

From a general analysis of the problem, the inherent difficulties of ML complex problems were

identified as: (1) the problem boundary discovery and (2) defining the appropriate performance

perspective. We proposed an iterative strategy to deal with the former and, for the latter, we set an

approach to achieve a satisficing accuracy.

Then, with these strategical considerations in mind, a design methodology was developed.

This methodology formalizes the common traits that are found in supervised learning and applies

it to the virtual LT sensor, detailing the steps to be followed intra-iteration. More precisely, it is

divided in three steps: context characterization, which deals with ensuring that the quality of the

collected data is maximized; content representation, dealing with the approach for learning only

the relevant information; and next step selection, which guides the decision making process for the

next iteration. Here it is important to note that, despite this traditional next step decision making

process is well known in practice [57], to the best of our knowledge, the formalization done in this

work is a contribution. Moreover, in this work, we go beyond evaluating the final ML system and

introduce an additional methodological perspective to the traditional next step decision making
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Figure 3.37: Novel machine learning next step decision making process

Abbreviations: train, training; algo, algorithm; cmplx, complexity
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process.

As a general conclusion, this chapter served to show the importance of evaluating the strength

and weaknesses of the tools to be used (ML in this case), evaluate the characteristics of the sys-

tems we are working with (lactate metabolism) and include the application perspective towards

a successful solution. Despite this perspective is not novel and is common practice in systems

engineering, we brought this concepts to the field of ML where it was not done so far. Moreover,

this lack of methodological rigour made its appearance even in prior works that tried to use ML

for lactate estimation [54; 55].

Therefore, in this chapter we formalized a methodology and made as much as possible as-

sumptions explicit so that we created a rigorous methodology that is easily reproducible, falsifi-

able, adjustable and transferable to other similar problems.

Next chapter will focus on designing the virtual lactate threshold sensor according to the

methodology here defined.





Chapter 4

Design and development of the virtual
lactate sensor

A designer knows he has achieved perfection not
when there is nothing left to add, but when there is

nothing left to take away - Antoine de
Saint-Exupery

Figure 4.1: Walking the path towards the goal

81



82 Chapter 4. Design and development of the virtual lactate sensor

This chapter presents the design and development of the virtual lactate threshold sensor based

on the methodology defined in Chapter 3.

As illustrated in Figure 4.2, the methodology that was proposed in Chapter 3 unfolds into

several specific steps that are to be followed in this section.

Figure 4.2: Design iteration: Unfolding of methodology at iteration level

More precisely, the context characterization, content representation and the decision of the

next step contain the following steps:

• Context characterization starts with data collection, which is done according to the experi-

mental methodology defined in Chapter 3 and afterwards formatted into a digital database.

Then, the raw data is pre-processed in order to filter out the invalid data, get some knowl-

edge about it and adjust the satisficing errors that are to be used as our virtual LT sensor

performance metrics.

• Content representation starts by defining the ways in which the data is going to be split.
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First, to set aside the testing set, and second, to define the re-sampling criteria that is to be

used in the training set if any. It continues creating robust feature engineering and training

approaches. The intrinsic bias-variance characteristics grow from these approaches which

are now to be evaluated. Using this evaluation, a final model is created or selected using a

robust approach. The last step concerns with the bias-variance evaluation of the final model.

• Decide next step: From the conclusions derived in the content representation, if further

improvement is considered necessary, a cost-benefit analysis is done to decide which step

to take next.

Altogether, and as shown in Figure 4.3, the design of the virtual LT sensor consists of two

iterations.

The first iteration starts by identifying the LT estimation problem as a non-linear dynamic

problem. Then, from the analysis of the state-of-the-art and expert knowledge of previous works,

a Recurrent Neural Network (RNN) is proposed as approach to model the lactate curve. Despite

the created first iteration virtual LT sensor (hereafter initial virtual LT sensor) shows a bias below

the acceptable error, it is considered that further evaluation and robustification would be desirable.

Consequently, a second iteration based on a heuristic as robust estimator is carried out which

finally provides a robust second iteration virtual LT sensor (hereafter calibrated virtual LT sensor)

for recreational runners.
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Figure 4.3: Overview of Chapter 4: Design iterations
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4.1 Iteration 1: Recurrent neural networks to model lactate dynamic

This iteration entails the design of the first virtual lactate threshold sensor. To do so, first the

relationships of the lactate and LT are analysed with respect to the available input features.

The complexity of this problem lies on the non-linear dynamic behaviour of the blood lactate

appearance [79] and the multiple features involved. The individual Dmax LT is precisely an effort

to characterize (part of) the dynamic behavior by focusing on its break-point. Hence, the two main

characteristics of our problem can be summarized as: (1) the blood lactate concentration has a

dynamic behaviour which is dependent not only on actual inputs but also on previous ones; and

(2) the relation of the blood lactate concentration with the input features is non-linear.

Therefore, our first iteration starts from the hypothesis that the dynamic of the blood lactate

concentration and the rest of the input features posses relevant information to be learned from.

Usually the dynamic of the output feature itself (evolution of blood lactate concentration) intrin-

sically contains information that may not be found through other input features. This is very

common in real time dynamic problems [80], specially when the output variable is dependent on

multiple not easily measurable or unknown features as in our case.

Based on the literature review of Chapter 2 and of previous experiences [56], in this first iter-

ation an ANN based approach is used to create the first virtual LT sensor. Figure 4.4 illustrates

the structure of this iteration. The design of the virtual LT sensor is further divided into a con-

text representation phase that collects and pre-processes a set of features followed by the content

characterization that is created around the ANN learning based approach, plus the third next step

decision making process.

More precisely, a RNN is used to learn the non-linear and dynamic behavior of blood lactate

concentration and ties it with several easily measurable physiological features assessed during the

tests.

4.1.1 Context characterization: Lactate curve related features characterization

This context characterization phase deals with the collection and pre-processing of the relevant

data for its subsequent use in the content representation phase. In this first iteration, a total of 142

recreational runners participated in the data collection.

To participate in the experimental test first athletes must comply with the target population pre-

requisites. In these experimental tests, the features defined in Chapter 3 were collected according

to the collection protocol detailed in annex B.

Once that the experiments were performed, first the experiments with sampling errors, i.e.

those with major contingencies or non-target population (see Figure 3.14 in Chapter 3 section

3.2.3) were detected and discarded.

Then the remaining experiments were analysed in terms of their validity for acceptable error

calculation (see Figure 3.15 in Chapter 3 section 3.2.3). In this regard, as incorrect lactate mea-

surements and LT estimations were still valid for satisficing error calculations, all of them were

used for this purpose. The acceptable error calculation shows that approximately the 4% of lactate
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Figure 4.4: Structure of first iteration design steps
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Table 4.1: Iteration 1, from collected experiments to
valid ones

Iteration 1

Selected for experiments 142
of which:
No pre-requisite compliance 2

Performed experiments 140
of which:
Sampling error: Major contingencies 3
Sampling error: Non-target-population 22

Valid for acceptable error calculation 115
of which:
Data error: Incorrect lactate curves 4
Data error: Incorrect HR measurements 9

Valid for designing 102

Abbreviations: LT, lactate threshold

curves obtained with the Dmax protocol are flagrantly incorrect due to their lack of convexity and

consequently, so are their LTs.

Regarding the validity for designing (see Figure 3.21 in Chapter 3 section 3.2.3), the rest of

the potentially relevant features were analyzed in pursuit of flagrantly incorrect measurements or

transformations that could invalid the entire experiment. After discarding them (most due to HR

measurement errors), 102 test remain valid and are gathered in the final database to be used in this

first iteration.

Table 4.1 makes a summary of the data collection and pre-processing and the following sec-

tions get into the details of it.

Additionally, the pre-processing is also used to get additional knowledge about the problem in

hand. The following sections go into the details of these context characterization steps.

Data Collection

A dedicated web page was created to support part of the work to be done in this thesis [81]. One

of the purposes of the web page, as represented in Figure 4.5, is to serve as platform to gather

volunteers for the study.

To do so, the web page informs to the potential volunteers about these requisites defined in

Chapter 3 section 3.2.2. These pre-requisites are here again stated for convenience:

• Endurance athletes training for and participating in races from 5 km upwards

• Currently running at least 3 days a week and competing in recreational endurance races

• A running experience of at least 1 year.
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Figure 4.5: Lactatus web’s registration page: Gathering volunteers

• Estimated athletic level according to the maximum running stage reached in the test herein

assessed between 14.5-20.5 kilometers/hour.

Additionally, the volunteers were also informed about the additional requisites that are nec-

essary to be able to perform the test. These requisites are here repeated for convenience. The

athletic-health requisites that each athlete must fulfil are:

• Be well rested and to abstain from hard training sessions and competition for 24 hours before

testing.

• Abstain from eating for 3 hours before testing.

• Abstain from taking stimulant substances before testing, including coffee or tea.

• Be familiarized with running on a treadmill.

• Being healthy and lacking of infections.

The safety and legal requisites that must also be fulfilled are:

• To be federated in their respective disciplines.

• Provide a medical certificate that ensures that they are able to perform the test.

The ethical requisites that must also be fulfilled are:

• The participant has read the information sheet (see annex A).

• Provide written informed consent acknowledging that they have been informed about the

possible risks of the tests and giving their consent (see annex A).

Using the web platform, and under short notice, 803 local athletes volunteered for the study.

This response again confirms the high demand that estimation of LT arises among this popula-

tion. In this first iteration, the amount of observations to be collected was decided by maximizing

the number of experiments that could be performed with the economical and technical resources



4.1. Iteration 1: Recurrent neural networks to model lactate dynamic 89

available at the moment. In particular, as represented in table 4.1, from the list of 803 athlete’s that

volunteered, 142 athletes were randomly sampled and selected to participate in the experiments.

From the 142 sampled athletes, two were rejected due to not fulfilling the health requisites,

while the rest 140 athletes were considered able to perform the tests.

As explained in Chapter 3, the features, together with any issue observed during the tests,

were collected in both paper and digital format. HR evolution is an exception since it is collected

by the HR monitor in its dedicated software (Garmin Connect, George Town, Cayman Islands).

After-cross checking the three formats (paper, digital and HR monitor software), the final results

were gathered in a digital database in excel format (Microsoft, Redmond, Washington, USA).

Pre-processing

As already mentioned in Chapter 3, the pre-processing serves three main purposes, filtering out

invalid data, knowledge discovery and adjusting the satisficing errors. In this section, the pre-

processing results are described.

Filtering out invalid data
As defined in Chapter 3 section 3.3 and represented in table 4.1, the filtering is done in three steps.

First of all, the sampling errors were analysed and the incorrect experiments discarded. Major

contingencies detected during the tests are among these errors. These major issues may include

unfinished tests, flagrantly sub-maximal test... From the 140 athletes that performed the tests,

three athletes had a major problem during the test. Additionally, although the characteristics for

being considered target recreational runner population are requisites for volunteering to the study,

a cross-check was done after performing the tests. This allows to detect and remove any non-

target-population athlete that participated. For instance, the requisite of being able to reach to a

maximum step between 14.5-20.5 kilometers/hour is one of the most problematic characteristics

since, without making the test, only a rough prior estimation about their performance is available.

After the analysis, among the remaining 137 athletes 22 are found not to fulfil the target recre-

ational runner population characteristics. Therefore, after cleaning the invalid data coming from

sampling errors, prior to looking for incorrect data, 115 remain valid for both acceptable error

and virtual LT sensor designing purposes.

Once that the invalid data coming from sampling errors has been filtered, the focus is placed

in the sources of error from the data perspective. In this regard, despite the great efforts put into

the data collection protocol, the possibility of gathering incorrect data is always present.

More precisely, the analysis from the data perspective (see Figure 3.14) leads to the second

step of filtering. This step deals with detecting, classifying and reserving the data that is valid for

acceptable error adjustment. As previously mentioned, both the incorrect lactate measurements

and curves are valid for this purpose and thus are reserved. Figure 4.6 represents all the 115

lactate curves and show that 4 of them are flagrantly incorrect. All these lactate curves and LT are

reserved for the system’s acceptable error adjustment.

The third and last pre-processing step deals with detecting and separating the experiments that

are valid for virtual LT sensor designing purposes. In this regard, apart from the 4 experiments
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Figure 4.6: Iteration 1 incorrect lactate curves

with incorrect LT curves, the input features are also scrutinized for incorrect data. HR is among the

most important input features to be used for designing purposes and also among the most probable

to create incorrect measurements due to its acquisition procedure. More precisely, the HR values

are measured through a HR monitoring band that is attached to the athlete chest with, due to the

movements created while running, it may lose contact creating missing and/or incorrect data. In

this regard, the one by one analysis among the remaining 111 athletes 9 are detected with flagrantly

incorrect HR data. Therefore, 102 remained valid for designing purposes. Table 4.2 summarizes

the performed uni-variate analysis presenting the mean and standard deviations of the remaining

numerical features. The high Coefficients of Variation of ”IAAF scores” and ”training years” are

an example of how heterogeneous this sampled population is it was expected to be according to

the population we targeted.

Therefore, the initial virtual LT sensor is to be created from a database of 102 athletes.

Problem’s knowledge discovery
Apart from the already explained uni-variate analysis which gives descriptive information about

our sample, a bi-variate statistical analysis is also done [82]. This analysis tries to look to the

interrelations between features, expecting to be of value for feature engineering purposes or to

discover new knowledge that could be useful. Figure 4.7 illustrates the interrelations between all

the features. For the sake of clarity, only strong correlations above R = 0.75 are illustrated. On a

brown to yellow range, the closer to yellow the higher the correlation value.

In this graph several clusters of features are observed. As expected, % of maximum HR values,

HR related features, anthropometric features, Lactate related features and HRR related features
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Table 4.2: Iteration 1 numerical features mean,standard deviations and coefficient
of variation

Feature Mean ± SD CoV sample size

Lactate threshold [km/h] 13.4 ± 0.9 7.0 102
Personal best [IAAF points] 334.4 ± 224.2 67.1 50

Vpeak [km/h] 16.6 ± 1.3 7.8 102
Years train [years] 5.5 ± 5.8 105.2 95

Age [years] 36.2 ± 7 19.4 102
Height [cm] 175.2 ± 7.0 3.6 102
Weight [cm] 72.3 ± 8.8 12.2 102

Body mass index [kg/m2] 23.5 ± 2.1 8.9 102
Abdominal diameter [cm] 80.8 ± 6.4 7.9 102

Hip diameter [cm] 92.2 ± 5.1 5.5 102
Body fat percentage [%] 15.2 ± 4.2 27.9 102

Water percentage [%] 62.0 ± 4.1 6.6 102
Resting HR [bpm] 79.0 ± 15.7 19.9 102

Maximum HR [bpm] 183.6 ± 11.5 6.3 102
%HRmax at 13.5 km/h [%] 89.0 ± 5.2 5.8 102
%HRmax at 14.5 km/h [%] 92.7 ± 5.0 5.4 102
%HRmax at 15.5 km/h [%] 95.1 ± 4.0 4.2 79
%HRmax at 16.5 km/h [%] 97.0 ± 3.2 3.3 58

Heart rate deflection point [km/h] 13.0 ± 2.1 16.2 79
HRR threshold [km/h] 13.8 ± 1.5 10.9 93

Resting Lactate [mmol/l] 1.3 ± 0.2 17.5 102
Maximum Lactate [mmol/l] 9.4 ± 2.7 28.9 102

Lactate value at 13.5 km/h [mmol/l] 3.2 ± 1.8 55.7 102
Lactate value at 14.5 km/h [mmol/l] 4.8 ± 3.2 65.8 102
Lactate value at 15.5 km/h [mmol/l] 5.3 ± 2.7 50.5 79
Lactate value at 16.5 km/h [mmol/l] 6.2 ± 2.4 38.6 58

Maximum muscular Borg [Borg scale] 7.8 ± 2.1 26.5 101
Maximum respiratory Borg [Borg scale] 9.1 ± 1.5 17.1 102

Abbreviations: LT, lactate threshold; CoV, Coefficient of Variation
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Figure 4.7: Iteration 1 network correlation analysis

form five clear clusters of features. Among them, HR related features, anthropometric features

and HRR related features are seen as independent in terms of any strong relevance (R > 0.75).

Lactate related features on their part appear somehow related to the performance related features

(IAAF score and Vpeak) which is consistent with what is known in the literature [83; 84]. Finally,

the strongest inter-cluster relations appear between the %HR max related, lactate threshold and

performance related features, showing that it may be an interesting connection between them.

Acceptable errors’ adjustment

As already mentioned in Chapter 3, there are two acceptable errors to be adjusted, individual

acceptable error and system’s acceptable error rate. For the individual acceptable error, 111

LT points are available (115 valid for acceptable error calculation - 4 Incorrect lactate curves).

Using them, algorithm 1 is computed. In our particular case, different ”W” numbers of bootstrap

re-samples (10, 20 and 100) have been used on the 111 athletes. Different ”Z” number of random

samples (10, 20 and 100) have also been used for each of the blood lactate measurements. In

both cases the results from 100 random do not significantly differ from those obtained with 20, so

a higher number of random samples is not considered necessary. The results are represented in

Figure 4.8 for a given athlete.
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Figure 4.8: Dmax lactate threshold variation for a given athlete caused by blood lactate measure-
ment precision error

From the computation of algorithm 1, we have estimated the standard deviations of the Dmax

LT method precision error and illustrated in table 4.3, classified by the ”Y” number of blood

lactate points taken during the treadmill speed test (Lactate Points column, table 4.3). These

results show how the Dmax LT method precision error improves with the number of blood lactate

measurements taken from the athletes, which is consistent with what is known in the literature and

practice [34].

To further analyze how the Dmax LT method precision error can affect our estimator, we

compare it to the individual acceptable error defined in table 3.1 in Chapter 3 in section 3.2.3 and

represent the residual errors in Figure 4.9. In this Figure, we observe that the Dmax LT method

precision error can significantly affect the final error, showing that the 98.8% of the plausible

Dmax LTs are within the range of the individual acceptable error. In other words, from this

analysis the virtual LT sensor could at best achieve a ceiling accuracy of 98.8%.

Therefore, as represented in Figure 4.9, the LT method precision errors derived from the phys-

iology equipment and methodology is sometimes even higher than the individual acceptable error

determined by expert knowledge. This fact reinforces that this satisficing threshold is a safe and

robust metric to determine the validity of our initial virtual LT sensor.

Regarding the system’s acceptable error, using the LT method precision we derived that there



94 Chapter 4. Design and development of the virtual lactate sensor

Table 4.3: Dmax lactate threshold method
precision error according to number of lactate
points

Y Lactate Dmax LT method precision error
points real LT (SD)

5 8.1
6 5.6
7 6.2
8 5.3
9 3.4
10 2.5

Abbreviations: LT, Lactate threshold ; SD, standard deviation;
It, iteration

is at least a ceiling accuracy of 98.8%. Moreover, as previously shown, there are 4 incorrect lactate

curves among the total measured 115. This means that we can consider that the Dmax protocol

fails for 5 % of the athletes (4% due to the incorrect LT plus 1% due to the Dmax LT method

precision error) which gives an additional perspective of how strict we can be for our virtual

LT sensor. Therefore, it seem clear that a system’s acceptable error rate 90−95% satifices the

objectives of our initial virtual LT sensor.

4.1.2 Content representation: Learning the dynamic non-linear relation between
lactate and the available features

The evolution of blood lactate concentration is a dynamic problem where the output variable is

dependent on itself and on multiple not easily measurable or unknown features. As already ex-

plained, this first iteration starts from the hypothesis that the dynamic of the blood lactate concen-

tration and the related input features possess the relevant information needed to create a virtual LT

sensor.

In this regard, dynamic modelling is a very active area that deals with this kind of problems.

Particularly, future event prediction based on past information or time-series forecasting is a dy-

namic modelling field that has been highly researched [85]. However, as shown in Figure 4.10,

dynamic modelling involves many other approaches different than time-series forecasting.

Among these other dynamic approaches, time-series forecasting with exogenous features is an

extension of the well-known time-series forecasting area. However, there is another less known

research area that focus on modelling the dynamic behavior of a system in certain specific con-

ditions in which there are no real current and/or past values for forecasting the future ones. As

represented in the third row of Figure 4.10, this means that the time-series of interest has to be

completely estimated from the input features. Following the classification of Figure 4.10, the lac-

tate dynamic modelling is of the third kind, as it tries to estimate a complete time series from

exogenous features.

With regards to the solutions available to dynamic problems, the review done by Makridakis

et. al. [86] showed that, for time-series forecasting, simple statistical models obtain better out-
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Figure 4.9: Individual acceptable errors created by initial Dmax LT method precision error

of-sample accuracy than more complex ML methods. However, Makridakis et. al. also stated in

their work [86] that the findings may be different if nonlinear components are present, or if the

data is being dominated by other factors. In such cases, they suggested that the highly flexible ML

methods could offer significant advantage over statistical ones. Among the multiple techniques

available, ANN presents as a good candidate compared to other statistical approaches to solve the

lactate problem, since they have the ability to reproduce complex non-linear processes.

Moreover, ML has already been used to address this kind of problems. For instance, in [80]

a RNN was used to model dynamic non-linear systems of a gas turbine for simulation of its start-

up operation. A NARX model without current time step data was used in this case and the final

models were validated against other three experimental data sets. The lack of required initial

output values make Elman based RNN also suitable to the characteristics of estimating complete

lactate curves. In this regard, Arriandiaga et. al. [56], used a Elman based RNN to estimate

complete time series in a specific time interval from multiple and distinct input time-series.

Therefore, based on the literature and the knowledge of previous experiences, selecting RNNs

to create a initial virtual LT sensor shows the characteristics of a robust first approach. Thus, the
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Figure 4.10: Different dynamic modelling approaches

methodology here proposed models the dynamic of the blood lactate appearance in the aforemen-

tioned incremental treadmill speed test conditions using a RNN.

As already mentioned in Chapter 3, there are multiple decisions that are to be taken in parallel

in the context representation phase about training set split, feature engineering, training... There-

fore, the selection of RNN as the training algorithm sets the first stone that influences the rest of

the decisions that are to be made to build a robust context representation step according to the

methodology explained in Chapter 3. Figure 4.11 gives an overview of these decisions by placing

them in their corresponding context representation step.

Robust output feature engineering: standardization of lactate curves x-axis

An important decision that affects the consequent context representation steps is the format in

which the output feature, i.e. the LT is to be modeled. In our case, the interest of the LT resides in

its x-axis component, i.e. in the dimension related to the LT exercise intensity (speed in this case).

Related to it, as represented in Figure 4.12, the raw lactate curves have different lengths de-

pending on the peak running speed that the athlete obtained during the incremental treadmill test

(hereafter Vpeak). As more fitted athletes can maintain higher running speeds, the duration of

each test depends on the individual fitness level of each athlete. As shown in Figure 4.12, as

recreational athletes have very diverse levels, the tests are also very diverse in length and the LT

intensities vary highly.

If these raw time-series were used to train the RNN it is presumable that the longer ones

would have more relevance in the learning process due to their greater number of data points and
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Figure 4.11: Iteration 1 content representation for dynamic modelling
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Figure 4.12: Raw & standardized lactate curves

Abbreviations: LSF, last step finished

impacting on the validity of the model for athletes with lower Vpeak. Moreover, the individual

lactate threshold is not related with an absolute exercise intensity but with the tipping point of the

curve.

Therefore, a standardization of the x-axis of the lactate curves is proposed to mitigate this

problem. More precisely, the two main purposes of standardizing the lactate curves are to (1)

unify the lengths of all time-series so they have equal relevance in the learning process and (2) to

concentrate the lactate threshold of all athletes in the same region so that the learning process is

simplified. This way, as the running speed is directly related with the exercise intensity, each test

features are standardized with respect to the maximum intensity of each athlete. In this work we

define the difference between the Vpeak and the initial running speed of the maximum incremental

running test as endurance running speed reserve (6).

endurance running speed reserve [km/h] = Vpeak [km/h] - initial running speed [km/h] (6)

Then, as shown in Figure 4.12, the lactate curves are represented in percentage of each indi-

vidual endurance speed reserve, in order to group athletes with different fitness levels and treat

them as a single group. This approach is useful when, as in our case, the dynamic of the system is

much more relevant for the final result than the absolute values related to it. What is more, once

the LT is dis-attached from the effect of the Vpeak, all the lactate curves have equal relevance; the

variability of the LT is highly reduced and the problem is simplified.
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Database split: Train-test split and inducing diversity

As already mentioned, a proper database splitting is fundamental to induce diversity into the mod-

elling process and be able to create a robust ML system with a minimized generalization error.

Moreover, there are different levels and parameters for which different splits or criteria can be

followed.

Training and test data set separation enables to leave part of the data unseen for final model

performance evaluation. In this regard, two considerations are to be made: (1) how much is left

for testing purposes and (2) how to ensure that it is properly split.

Regarding the proportion of the data splitting, as represented in Figure 4.13, in this iteration a

70-30% split has been selected for the training and testing sets respectively, a common criteria in

ML [76].

Figure 4.13: Iteration 1 training and testing set split proportions

Regarding the way of splitting, usually, the training and test examples selection is done by

pure random sampling. However, this approach is suitable only if the available database is big

enough so that random selection maximizes the diversity in both data sets. In other words, the

aim is to make the database split so the target population’s (i.e. recreational runners) diversity is

characterized in both sets. Since in the present work the sample is not huge, two different training

and test set selection methods have been followed and compared in this pursue.

First, expert knowledge is used to make the separation so that the diversity of lactate curves

is maintained in both sets. In this approach, the selection of the train and test examples has been

made based on the knowledge of the physiology experts. The training and test examples have

been selected taking into account the diversity of lactate curve shapes so that all type of shapes

were present both in the training and test sets. In this regard, several characteristics of the curves

such as the maximum/minimum lactate values, last step reached, decreasing/increasing patterns,

non-exponential shapes and other characteristics have been considered. Figure 4.14, shows the

expert knowledge based training test set split.

The other splitting approach proposed in the present work is a variation of a stratified random

sampling. In this method, the whole population is classified into mutually exclusive and more

homogeneous groups called strata. Then, a simple random sampling is made from each stratum
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Figure 4.14: Knowledge based sampled data

so that a heterogeneous sample is created containing examples of all the sub-populations. In our

case, this method is used to create training and test set splits representative of the heterogeneity of

the complete database.

Usually, the classification of the whole population in several stratum is made according to

one or more static parameters. However, in our case the parameter which is considered most

determinant to create the strata is not a static parameter but the lactate curve shape. Therefore,

a time-series clustering technique is proposed to make the stratification according to the lactate

curve shapes. Figure 4.15 illustrates this methodology.

Stratum 1 Stratum 2 

Stratum 3 Stratum 4 

2. Stratified Random Sampling1. Time Series Clustering:
Strata definition 

Figure 4.15: Esquema of modified stratified random sampling process

In this case, a hierarchical time-series clustering algorithm is used to create the strata as it

allows not to pre-select the number of clusters and is independent on the form of the clusters.

More precisely, using the hierarchical clustering technique, 10 different sub-populations are found

as the strata. Then, the 30% (from the 70-30% split) of the examples of each stratum are randomly

selected and included in the test set. The remaining examples correspond to the training set. Figure

4.16, shows the training and test set selection using the modified stratified sampling method.

In Chapter 3 we state the possibility of that further randomization can be made with the training

set for hyper-parameter level learning. However, instead of following an approach that requires
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Figure 4.16: Modified stratified sampled data

from further training set splitting such as early stopping, strong randomization and regularization

methods are to be used in the training step for generalization error reduction [87].

Robust input feature engineering: sub-selection from candidate input features

Regarding the input feature engineering, as already mentioned, after using expert knowledge to

select a set of candidate input features for training, an additional sub-selection is done.

The purpose of this sub-selection is to minimize the amount of features to be used so that the

robustness of the learning methodology is maximized. This sub-selection can be further divided

into two steps: a coarse sub-selection of features using the knowledge of experts in physiology

and a fine tuning of the features using an embedded additive selection.

For coarse feature selection, inputs which contain inter-individual and highly relevant informa-

tion of the athletes are considered among the collected candidate features. Among them, features

such as HR-derived ones, RPE, and age appear to be interesting. More precisely, it is known that

HR-derived parameters and its evolution is related with lactate values and threshold [52; 48]. In

addition, it is also known that the evolution of the RPE expressed as Borg scale [51] is related with

the evolution of the lactate production.

The following list ranks in decreasing order the input features according to the potential rele-

vance according to expert knowledge.

1. HR evolution

2. HRR evolution

3. RPE evolution

4. %HR max 14.5

5. Age

6. Gender

The final features are then to be selected from this list using the an additive strategy. The addi-

tive strategy works as follows: the simplest option (i.e. zero input features) is used to create RNN
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models. Then, the process is repeated adding the next most relevant input feature and creating

another set of RNN models. Then the performance of both approaches is measured and compared

and the best one selected. This procedure is then repeated until the addition of a new input feature

no longer improves the quality of the previous approach. The reasoning of using an additive se-

lection lies on that, intrinsically, this approach allows to go from most parsimonious (less features

- lower model complexity) to more complex (more features - higher model complexity) approach,

so that the final solution is always the most parsimonious that satisfices. This strategy falls into

the category embedded methods, which means that the final selection of the features is done after

the performance of the models is evaluated.

Robust training based on Bayesian regularization and weight initialization

As already mentioned, an Elman based RNN is selected as the learning architecture of this first

iteration. The main characteristic of this type of network is the feedback from the hidden layer to

the input layer, which is essential for problems where previous real values are not available as in

our case. More precisely, as represented in Figure 4.17, a layer-recurrent neural network (LRNN)

architecture has been selected. The LRNN is an Elman-inspired recurrent neural network which

has flexibility to configure the number of hidden layers and the transfer function of each layer [88].

FIGURE 8 

Figure 4.17: Layer-recurrent neural network

Reprinted from [89]

This kind of architecture requires from several configuration decisions that would define how

the learning is done. The minimization function to be used is one of them, and in this case, the

Levenberg-Marquardt minimization function is used to fit the model parameters as it has a faster

convergence and lower error rate than other widely used minimization algorithms [90; 56].

Additionally, there are a couple of training configurations to be done to ensure that the training

is robust. As explained in Chapter 3, early stopping and regularization are two of the ways in which

generalization can be obtained. In this iteration a regularization approach is used which, contrary

to a early stopping method, does not require from dividing the database in training, validation

and test sets. More precisely, Bayesian regularization is used which may help achieve higher

generalization capabilities than early stopping [87; 91].

As already mentioned, regardless the technique used, increasing the diversity of the multiple

created models is another way of improving the robustness of the learning methodology. As
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represented in Figure 4.18, this diversity is to be achieved at two levels, hyper-parameter and

parameter levels. The diversity introduced in the models that are created for each hyper-parameter

configuration allows to evaluate the methodology bias-variance at hyper-parameter level.

Figure 4.18: Iteration 1 training for hyper-parameter and model parameter diversity

The diversity created for each set of hyper-parameter set is usually done supported by a prior

training data set split. In this case, the function minimum found by the training algorithm depends

on the initial weight values of the model. Therefore, in the present work, each neural network

hyper-parameter set is trained ten times with different weight initialization so that we can ensure

that the performance evaluated from the set of models appropriately reproduces the bias-variance

corresponding to the hyper-parameter set. In this case, the algorithm proposed by Nguyen and

Widrow [92; 56] has been applied because it reduces training time over other weight initialization

methods such as the layer-by-layer or purely random initialization.

Regarding the range of hyper-parameters to be used, in our LRNN case, the model complexity

and structure is configured with two types of them: hidden units (HU) and delays. In order to

minimize the training process time, it is desirable to limit the range of hyper-parameters while

ensuring that the final hyper-parameter set (i.e. the final HUs and Delay combination) is inside

that range. To do so, a preliminary training analysis is performed using a small portion of the

database, so that a preliminary range of hyper-parameters can be selected at no high computational

cost. This range is then to be used in the actual training. This preliminary training analysis has
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three steps:

1. Coarse tuning: Several trainings are performed with a wide range of hyper-parameter con-

figurations trying to cover a big range of the bias-variance spectrum. The performance of

these first models is calculated.

2. Increased resolution on operation point: The configuration parameter ranges are reduced

and the resolution increased in order to focus in the zone where the best results have been

obtained in the first step. Several models are trained according to this approach and their

performances calculated. If possible, this step is repeated and the range is further reduced

according to the results obtained in the second step.

Table 4.4 shows the results of each of the steps of the preliminary training. These preliminary

training included data of 14 athletes that completed the 17,5 km/h stage. These athletes were

selected as they are medium level recreational athletes which presumably have characteristics of

the high and low level athletes.

Table 4.4: Training algorithm configuration pa-
rameters range definition using preliminary train-
ings

Step Hidden Units Delay

1 [1, 5, 10] [1, 3, 5, 8, 10]
2 [1, 2, 3, 4] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 [1, 2, 3, 4] [5, 6, 7, 8, 9, 10, 11]

Therefore, the ranges of hyper-parameters to be used are, 1 to 4 HUs and 5-11 Delays, with

10 models for each combination of hyper-parameters for a total of 280 models.

In addition, as illustrated in Figure 4.19, the training process is repeated for each input feature

combinations (i.e. 280 models for each combination) using previously mentioned constructive

criteria. More precisely, the set of features trained are 1) none; 2) HR evolution; HR evolution &

HRR evolution; and 3) HR evolution, HRR evolution & RPE.

Finally, as illustrated in Figure 4.20, the training process is performed for both previously

established splitting criteria: knowledge based and clustering based.

The training is done using Matlab R2013b software Neural Network and Statistics and Ma-

chine Learning Toolboxes (MathWorks, Natick, Massachusetts, USA).

Methodology bias-variance evaluation

As stated in Chapter 3 and represented in Figure 3.7, the variance of the methodology is to be

estimated to select the most robust hyper-parameter set. However, prior to selecting the final

hyper-parameters, we first evaluate the most robust input features and data split combinations

according to their overall estimated variance (see Figure 4.21). As explained in Chapter 3 section

3.3, the variance is estimated analysing the difference of the training and test errors of all the
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Figure 4.19: Repeating the training process for feature selection

hyper-parameter combinations across the 10 different initializations that were made. In this case,

the standard deviation of the errors corresponding to each hyper-parameter set is used to estimate

the variance while the bias is estimated with the mean of the models’ error.

Additionally, with the purpose of evaluating the closeness to the system’s acceptable error, the

bias term is also calculated and represented in Figure 4.22. In this step, the bias evaluation only

serves to discard approaches that could be far from achieving the system’s acceptable error. As

explained in Chapter 3 section 3.3, the bias term is calculated according to the performance in the

test data set.

Regarding the input feature selection, as seen in Figure 4.21, the variance of the zero-feature

approach has the smallest overall variance, independent of the data split method. Additionally,

its bias term (see Figure 4.22) shows that the zero-feature approach (i.e. the most parsimonious

one) is able to reach to the system’s acceptable error of 10% and that it is close to more complex

combinations. Therefore, according to the robustness criteria, among the four combinations of

input features the zero input features is considered the best.

Regarding the train-test set splitting method, both approaches yield almost identical results

which gives higher validity to the performance conclusions derived. Among them, the clustering

based splitting is selected as it automatizes the laborious process of splitting and may be prone to

less human errors in future steps that this approach could be repeated.

Once that the feature selection and data splitting method selection is done, the methodology

performance evaluation focuses on the relation between the hyper-parameters (HU and Delays)

and the performance in terms of bias and variance. To do so, as explained in section 3.1 and rep-

resented in Figure 3.7, two considerations are made: (1) the estimated low variance zones and (2)

the parsimony (i.e. the smallest amount of hyper-parameters). Regarding the variance estimation,

Figure 4.23 represent a contour map with the estimated bias-variance of the methodology accord-

ing to the different sets of hyper-parameters. Additionally, the same Figure 4.23 also represents
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Figure 4.20: Repeating the training process for data split method selection
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Figure 4.21: Variance of feature and data split method combinations
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Figure 4.22: Bias of feature and data split method combinations
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gradient map pointing towards the most parsimonious approach.

Figure 4.23: Variance estimation of zero features and clustering based split methodology

The zones that consistently find low variance and satisficing bias are the most interesting

regions on which to find our final model.

Robust final model creation/selection

In this iteration, the final model is to be selected in the hyper-parameter zone that shows lowest

variance while achieving a satisficing bias. Figure 4.24 represents the lowest variance zone as the

best to look for the final model.

Figure 4.24: Selected hyper-parameter zone
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Therefore, once that the best low variance zone is identified, all the models trained with the

clustering data-splitting method are ranked in decreasing performance order. Table 4.5 represents

the 10 best models among the zone selected in Figure 4.24.

Table 4.5: Iteration 1 best 10 models ranked
by increasing system’s error

Rnk Hyper-parameters System’s error
HU Del Test set error %

1. 2 11 6.4
2. 2 10 6.4
3. 2 11 6.4
4. 2 10 9.7
5. 2 11 9.7
6. 2 5 9.7
7. 2 10 9.7
8. 2 5 9.7
9. 2 11 9.7
10. 2 5 9.7

Abbreviations: Rnk, Rank; HU, hidden units; Del, delays;
Inv, Invalid LT estimations due to error above satisficing.

The final model selected is the one ranked in 6th position.

Final model performance evaluation

As explained in Chapter 3, the final model performance is estimated from the comparison of the

performance in the training set with respect to the performance in the test set. In this regard, table

4.6 gathers the system’s error on both training and test sets.

Table 4.6: Iteration 1 final model’s performance

Perf. Ind. Training set performance Test set performance

System’s error (%) 10.8 9.7

System’s accuracy (%) 89.2 90.3

Abbreviations: Perf, Performance; Ind. , indicators; Train, Training set; Test, Test set.

In order to better observe the performance of the final model on the unseen data, Figure 4.25

shows the residuals analysis done for the tests set with the selected final model. Additionally,

Figure 4.26 illustrates some estimated lactate curves and threshold comparing them with the real

ones.

Comparing the train and test set system’s error it is observed that they are almost equal, which

suggests that the variance of the final RNN of this initial virtual LT sensor is very small, something

fundamental for robustness.

Regarding the bias term, these results show that the estimated bias of the final model is ap-

proximately % 10, which is within the range of the system’s acceptable error. Therefore, both
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Figure 4.25: Residuals of iteration 1 final model

Abbreviations: Lac, Lactate; Test, tested; Est, estimated; LT, lactate threshold

performance criteria are fulfilled.

4.1.3 Decide next step: Towards maximizing robustness

The next-step decision making process starts from the performance evaluated in the previous sec-

tion. The performance of this initial virtual LT sensor showed both low variance and satisficing

bias. Moreover, the ML system bases on an output feature transformation (x-axis standardization

with respect to Vpeak) and does not require from input features making it more robust. Therefore,

in this iteration we have tested the hypothesis that supervised learning is possible to be used to

create an operational virtual LT sensor.

So, after fulfilling the first two requisites for acceptance, the next question is: can the robust-

ness of the methodology be improved? The lack of requirement of input features suggests that a

simpler learning architecture may be more valid and robust to design a robust virtual LT sensor.

Therefore, following the principles described in Chapter 3, there is room for creating a more robust

calibrated virtual LT sensor.

Therefore, as shown in Figure 4.27, we decide that another iteration is to be made to increase
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Figure 4.26: Examples of correct lactate curve and threshold estimations

: Lac, Lactate; Test, tested; Est, estimated; LT, lactate threshold

the robustness of the methodology and consequently of the calibrated virtual LT sensor. In partic-

ular both increasing the sample size solely for testing purposes and minimization of the learning

approach complexity are seen as interesting.

As already mentioned, making these improvements are subjected to a cost-benefit trade-off.

The cost of taking another iteration is evaluated from the economical, temporal, technical, ma-

terial... perspectives and compared to the closeness to achieving a sufficient solution and the

comparative value that provides. Increasing sample size for testing purposes may greatly benefit

to further test the virtual LT sensors robustness, specially because the whole data sample would

be entirely used for testing purposes. This involves taking more experiments which is not always

economically viable. Additionally, the possible benefit of creating an even simpler model is high

since it would be more robust against the unseen, more operational and also much easier to re-

produce and falsify, both key to ease future attempts to extend this work to wider populations and

methods.

Thus, since making the costs of acquiring new experiments and creating a more robust cali-

brated virtual LT sensor is acceptable, we decide to make another iteration to work towards further

robustifying the virtual LT sensor.

4.1.4 Conclusions of iteration 1

In the present work, a first operational virtual LT sensor has been designed.

Following the methodology presented in Chapter 3, a system based on a previously consol-

idated ML architecture (LRNN) was created. The methodology was developed in detail using

several ad hoc applied methods. A web page was created to improve the sampling diversity and
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Figure 4.27: Iteration 1 next step decision making process
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quality. Additionally, in order to homogenize the output feature, a standardization of the temporal

axis was used. Furthermore, a combination of two database splitting methods (knowledge based

and a novel modification of the stratified sampling method) were used to explore and achieve the

right diversity in both data sets. Regardless whether this first iteration achieved the desired virtual

LT sensor, a robust methodological conclusion of this iteration is that there is room for creating a

supervised ML system to estimate LT if proper methodologies are followed.

Additionally, this design iteration helped to get additional knowledge about the problem com-

plexity of creating an operational virtual LT sensor and also threw some light to its relation to

other features. Regarding the LT estimation, it has been observed that the transformation of LT

by means of the Vpeak diminishes most of the variability of LT. On a side note, it has also been

observed that there is a strong relation between %HRmax, LT and performance related features,

which may be interesting for future work.

From the application perspective, a ML system capable of successfully estimating the lactate

threshold for 90.3% of the study population has been created. This is within the range of the

acceptable error that we defined as satisficing.

Anyway, as stated in Chapter 3, despite making big efforts from the methodological point of

view to maximize the robustness of the virtual LT sensor, we consider that there is further room

for improvement. Therefore, in the next iteration the variance of the ML system is to be further

evaluated and a simpler learning approach proposed to create a more robust calibrated virtual LT

sensor.
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4.2 Iteration 2: A heuristic as robust estimator of LT

This second iteration works from the initial virtual LT sensor towards creating a more robust

calibrated virtual LT sensor. To do so, two approaches are followed: (1) increasing the sample

size solely for testing purposes and minimization of the complexity of the learning approach to

create a more robust calibrated virtual LT sensor by following a simpler one.

In the first iteration, we hypothesized that the lactate curves in combination with additional

input features contained the necessary information to properly estimate the LT. However, we saw

that a ML system with no input features was enough to achieve a satisficing accuracy. This means

that somehow averaged the lactate curves for recreational runners. The success of this method

was largely influenced by the correlation between Vpeak and LT that enabled to unify the lactate

curves by the standardization of the speed axis.

Therefore, our second iteration hypothesises that the information that Vpeak contains about

LT is high enough so that it can be used to estimate a LT within the satisficing accuracy, providing

a more robust ML system. Based on what it was observed in the first iteration, the mean value

of the standardized LTs arises as the simplest and most robust approach that could be used to

calibrate the initial virtual LT sensor. Moreover, in order to better test and compare the robustness

of both the initial virtual LT sensor and calibrated virtual LT sensor, additional experiments are

collected. Figure 4.28 illustrates the structure of this iteration. The iteration includes a first part

where calibrated virtual LT sensor is designed, plus the next step decision making process. The

design of the calibrated virtual LT sensor is further divided into a context representation phase that

collects and pre-processes more experiments for testing purposes. Then content characterization

follows, which deals with using the mean as the most robust estimator that could be used to design

the calibrated virtual LT sensor.

This way, a heuristic is obtained as a simplified, easier to implement and more robust solution

that only requires from athletes Vpeak value obtained during the tests to estimate its LT.

4.2.1 Context characterization: Collecting further experiments for variance testing
purposes

As already mentioned, to further test both the initial virtual LT sensor and the calibrated virtual

LT sensor new experimental tests were made with 91 recreational athletes.

As in the first iteration, to be able to participate in the experimental test, the athletes must

comply with the target population pre-requisites. Despite the multiple features defined in Chapter 3

were not to be used in this iteration for modelling purposes, they were still collected for knowledge

extraction and for possible future uses. As expected, to ensure the compatibility between first and

second iteration, the data collection and pre-processing followed the exact same steps of the first

iteration, i.e. the methodology defined in Chapter 3.

Additionally, iteration 1 showed some interesting relations between Vpeak, LT and %HRmax

with the proposed performance proxy (i.e. IAAF score), which may inform about an athlete’s

performance qualities. Therefore, we took advantage of this experimental design to measure a

more realistic performance indicator and further explore these relationships. Concretely, 40 ath-
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Figure 4.28: Structure of second iteration design steps
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Table 4.7: Iteration 2, from collected experiments to
valid ones

Iteration 2

Selected for experiments 91
of which:
No pre-requisite compliance 1

Performed experiments 90
of which:
Sampling error: Major contingencies 1
Sampling error: Non-target population 10

Valid for acceptable error calculation 79
of which:
Data error: Incorrect lactate curves 1

Retrievable from iteration 1 9

Valid for designing 87

Abbreviations: LT, lactate threshold

letes participated in an official 10K race so that the race time can be used as an accurate indicator

of performance.

After performing the experiments, those with sampling errors, i.e. those with major contingen-

cies or non-target population runners (see Figure 3.14 in Chapter 3 section 3.2.3) were detected

and discarded.

Then the remaining experiments were analysed in terms of their validity for acceptable error

calculation (see Figure 3.15 in Chapter 3 section 3.2.3). Using both iteration data valid for accept-

able error calculation, it is estimated that approximately the 3% of the lactate curves obtained with

the Dmax protocol were flagrantly incorrect and consequently, so are its LTs.

Regarding the validity for designing (see Figure 3.21 in Chapter 3 section 3.2.3), since no input

feature is to be used, all the experiments with correct lactate curves are valid for this purpose.

Moreover, this fact allowed us to recover 9 experiments of iteration 1 that were discarded for

incorrect input feature measurements. Therefore, 87 remained valid for designing. Table 4.7

makes a summary of the data collection and pre-processing. The following sections get into the

details of it.

Data Collection

The data collection followed the same approach that iteration one. From the list of 803 athlete’s

that already volunteered for the study, 91 athletes were randomly selected without replacement.

From the sampled athletes one was rejected due to not fulfilling the pre-requisites, while the rest

90 athletes were considered able to perform the experiments.

From the 90 athletes that performed the tests, 40 athletes participated in a official 10K running

race to measure their real performance level (see Figure 4.29). This race took place at most 45 days

after the experimental tests in Donostia-San Sebastian under the name ”XV Carrera de Primavera
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Donostiarrak” [1]. The race was recorded by the officials of the Local Athletic Federation using a

chip at the start and end the of the race.

Figure 4.29: Recreational runners participants in ”XV Carrera de Primavera Donostiarrak” [1].

In the treadmill speed test, as in the previous iteration, HR evolution was collected in its

dedicated software. The rest of the features, together with any issue observed during the tests,

were collected in both paper an digital format. After-cross checking the three formats (paper,

digital and HR monitor software), the final results were gathered in a digital database in excel

format (Microsoft, Redmond, Washington, USA).

Pre-processing

As already mentioned, the pre-processing serves three main purposes, filtering out invalid data,

knowledge discovery and adjusting the satisficing errors. These are done according to the method-

ology stated in Chapter 3 and consequently in the same manner than in the first iteration.

Filtering invalid data
As in the previous iteration, first of all, the sampling errors are analysed and the incorrect experi-

ments discarded. From the 90 athletes that performed the tests one of them had a major problem

during the test. Additionally, among the remaining 89 athletes, 10 are found not to fulfil the target

recreational runner population characteristics due to not arriving to the minimum 14.5 km/h run-

ning stage. Therefore, after cleaning the invalid data coming from sampling errors, prior to looking

for incorrect data, 79 remained valid for both acceptable error and virtual LT sensor designing.

Next the the analysis was done from the data perspective (see Figure 3.14). As in the first

iteration, this analysis first deals with detecting, classifying and reserving the data that is valid for

acceptable error adjustment. As previously mentioned, both the incorrect lactate measurements

and curves are valid for this purpose. Figure 4.30 represents all the 79 lactate curves and show that

one of them is flagrantly incorrect. All these lactate curves and LT were reserved for the system’s

acceptable error adjustment.

The third and last pre-processing step deals with detecting and separating the experiments

that are valid for virtual LT sensor designing purposes. In this regard, apart from the experiment
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Figure 4.30: Iteration 2 incorrect lactate curves

with incorrect LT curve, the input features were also scrutinized for incorrect data. Although no

input feature is used nor for satisficing error calculation nor for modelling and an analysis of the

input features seems unnecessary, they are still performed as they may uncover incorrect data that

indicates flagrant experimental error, specially about the maximality of the test. Once the incorrect

LT experiment discarded, 78 experiments remain valid for designing purposes. Table 4.8 gathers

the mean,standard deviations and coefficient of variation of the numerical features. Here again

we can see the heterogeneity of the population highlighted in the high coefficients of variation of

features such as: ”IAAF scores” and ”training years”. Additionally and despite this heterogeneity

it is also observed that the Coefficient of Variation of LT is relatively low.

Finally, since no input features are needed for designing purposes, we were able to recover 9

experiments of iteration 1 which had good lactate curves and but were previously discarded for

some flagrant incorrect input feature. Therefore, 87 were finally valid for designing purposes in

this second iteration.

Problem’s knowledge discovery
As in the first iteration, a bi-variate statistical analysis is also done to look to the interrelations

between features, expecting to be of value for feature engineering purposes or to discover new

knowledge that could be useful. Additionally, unlike the first iteration, using the 10K race times

collected allow us to make a deeper analysis of the several features related to running performance.

Figure 4.31 illustrates the interrelations between all these features. For the sake of clarity and

comparability with the first iteration, only strong correlations above R=0.75 are illustrated. On a

brown to yellow range, the closer to yellow the higher the correlation value.

In the first iteration, we discovered a potentially interesting connection between Vpeak, LT
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Table 4.8: Iteration 2 numerical features mean, standard deviations and coefficient of
variation

Feature Mean ± SD CoV sample size

Lactate threshold [km/h] 13.4 ± 1.0 7.7 78
10K time [min:sec] 38:38 ± 2 min 58 seg 7.7 40

Personal best [IAAF points] 399.4 ± 193.2 48.4 58
Vpeak [km/h] 16.7 ± 1.4 8.5 78

Years train [years] 9.4 ± 7.7 81.6 78
Age [years] 38.5 ± 11.7 30.4 78
Height [cm] 171.7 ± 15.0 8.8 78
Weight [cm] 67.4 ± 13.0 19.3 78

Body mass index [kg/m2] 22.5 ± 2.1 9.5 78
Abdominal diameter [cm] 79.9 ± 13.6 17.0 78

Hip diameter [cm] 93.1 ± 4.8 5.1 78
Body fat percentage [%] 16.0 ± 5.8 36.0 73

Water percentage [%] 61.7 ± 4.5 7.3 73
Resting HR [bpm] 58.0 ± 10.1 17.4 78

Maximum HR [bpm] 182.6 ± 10.2 5.6 78
%HRmax at 13.5 km/h [%] 87.3 ± 5.9 6.8 49
%HRmax at 14.5 km/h [%] 91.4 ± 5.5 6.0 49
%HRmax at 15.5 km/h [%] 94.3 ± 4.4 4.6 45
%HRmax at 16.5 km/h [%] 96.2 ± 3.7 3.8 33

Heart rate deflection point [km/h] 13.4 ± 2.1 16.0 37
HRR threshold [km/h] 13.9 ± 1.2 8.6 44

Resting Lactate [mmol/l] 1.3 ± 0.3 21.2 78
Maximum Lactate [mmol/l] 10.1 ± 2.9 28.3 78

Lactate value at 13.5 km/h [mmol/l] 3.2 ± 2.1 66.4 78
Lactate value at 14.5 km/h [mmol/l] 4.9 ± 3.4 69.5 78
Lactate value at 15.5 km/h [mmol/l] 5.3 ± 2.9 55.0 62
Lactate value at 16.5 km/h [mmol/l] 6.3 ± 3.1 49.0 44

Maximum muscular Borg [Borg scale] 8.4 ± 1.8 21.4 78
Maximum respiratory Borg [Borg scale] 8.8 ± 1.9 21.2 78

Abbreviations: LT, lactate threshold; CoV, coefficient of variation
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Figure 4.31: Iteration 2 network correlation analysis

and %HRmax and IAAF score used as performance proxy. In this second iteration we decided to

put special attention on it and included a 10 km race time as a more robust performance proxy. As

represented in Figure 4.31, the associations between these features are still strong as in iteration 1

and 10K race time also falls into the same cluster. This strengthens the previous hypothesis that the

Vpeak, LT and %HRmax are interesting performance indicators of endurance running, especially

in 10K distance.

Acceptable errors’ adjustment

The robustness of the estimation of the acceptable errors’ grow together with the sample size.

Thus, both iteration observations are combined to calculate it.

For the individual acceptable error, including the first iteration points, 189 LT points are

available (194 valid for acceptable error calculation - 5 incorrect lactate curves). Using them,

algorithm 1 is computed. As in the first iteration, different ”W” numbers of bootstrap re-samples

(10, 20 and 100) are used on the 189 athletes. Different ”Z” number of random samples (10, 20

and 100) have also been used for each of the blood lactate measurements. In both cases the results

from 100 random do not significantly differ from those obtained with 20, so a higher number of

random samples is not considered necessary.

From the computation of algorithm 1, we have estimated the standard deviations of the Dmax

LT method precision error and illustrated in table 4.9, classified by the ”Y” number of blood lactate

points taken during the treadmill speed test (Lactate Points column, table 4.9). As in iteration 1,

these adjusted results show how the Dmax LT method precision error improves with the number

of blood lactate measurements taken from the athletes, which is consistent with what is known in

the literature and practice ([34]). Moreover, the increased sample potentiated with the re-sampling
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Table 4.9: Adjusted Dmax lactate threshold
method precision error according to number
of lactate points

Y Lactate Dmax LT method precision error
points real LT (SD)

5 4.7
6 3.2
7 2.6
8 2.4
9 1.7
10 1.7

Abbreviations: LT, Lactate threshold ; SD, standard deviation;
It, iteration

throws non-linearly improved results. Table 4.9 shows how the Dmax LT method precision error

consistently improves for each number of lactate points measured.

To further analyze how the Dmax LT method precision error can affect our estimator, we

compare it to the individual acceptable error defined in table 3.1 in Chapter 3 in section 3.2.3 and

represent the residual errors in Figure 4.9. In this Figure, we observe that, as in iteration 1, the

98.8% of the plausible Dmax LTs are within the range of the individual acceptable error. In other

words, from this analysis the virtual LT sensor could at best achieve a ceiling accuracy of 98.8%.

Therefore, as represented in Figure 4.32 and also concluded in iteration 1, the LT method pre-

cision errors derived from the physiology equipment and methodology is sometimes even higher

than the individual acceptable error determined by expert knowledge. This fact reinforces that

this satisficing threshold is a safe and robust metric to determine the validity of our initial virtual

LT sensor.

Regarding the system’s acceptable error rate, using the LT method precision we derived that

the adjusted ceiling accuracy is at least of 98.8%. Moreover, as previously shown, there are 5

incorrect lactate curves among the total measured. This means that we can consider that the Dmax

protocol fails for 4% of the athletes (3% due to the incorrect LT plus 1% due to the Dmax LT

method precision error) which gives an additional perspective of how strict we can be for our

virtual LT sensor. Therefore, it seem clear that a system’s acceptable error rate 90−95% satisfices

the objectives of our initial virtual LT sensor.

4.2.2 Content representation: the mean as the most robust estimator

This second iteration focuses on creating a more robust calibrated virtual LT sensor. This design

starts from the hypothesis that the mean value of the LT defined in standardized terms (i.e. with

respect to Vpeak) may be able to create very robust virtual LT sensor with satisficing accuracy.

Then, both iteration virtual LT sensors are compared to determine which one is most desirable in

terms of satisficing accuracy and robustness.

Based on the robustness criteria, the methodology here proposed estimates the LT determined

in the aforementioned incremental treadmill speed test conditions using the mean of the standard-
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Figure 4.32: Adjusted Dmax lactate threshold method precision error VS Individual acceptable
error

ized LT with Vpeak as the only feature.

The different database split, feature engineering, training... steps ensure that this general ap-

proach is robustly materialized. Figure 4.33 gives an overview of these steps.

Robust output feature engineering: Standardization of lactate curves x-axis

The standardization of the speed axis is the only feature transformation on which this context

representation approach relies on.

Figure 4.34 shows the raw and standardized curves of both iteration 1 and 2 experiments. As

in the first iteration, it is observed that once we dis-attach the LT from the effect of the Vpeak, the

variability of the LT is highly reduced with respect to the x-axis and thus the problem is simplified.

Therefore, this feature transformation represents each LT in relative terms whit respect to the

individual endurance running speed reserve (6):

LT [%] = (LT [km/h] - initial running speed [km/h]) / endurance running speed reserve [km/h] ×
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Figure 4.33: Content representation for calibrated virtual lactate threshold sensor
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Figure 4.34: Iteration 1 and 2 raw and standardized lactate curves

Abbreviations: LSF, last step finished
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100 (6)

This transformation allows to put LT in relative terms using the initial running speed (fixed for

the proposed protocol) and Vpeak. This means that a single feature is needed for this transforma-

tion and thus it is the most parsimonious approach that could be used.

Database split to induce randomization

As represented in Figure 4.35, in the first iteration we used the available data to create the first

virtual LT sensor. Now, in this second iteration, we combine the data collected in both iterations

for a higher available data.

Figure 4.35: Training and testing set split comparison between iterations

The purpose of this iteration is to create a more robust calibrated virtual LT sensor. To be able

to ensure that this calibrated virtual LT sensor is more robust, it is fundamental to evaluate it in

the same terms of the initial virtual LT sensor. Therefore, as shown in Figure 4.35, the same data

splitting is used, i.e. the data-set used in the first iteration is employed to create this calibrated

model, and the rest of the data is used to evaluate it.

Regarding the creation of a more robust calibrated virtual LT sensor, a re-sampled mean is

calculated using the 71 samples of the training data (n=102 x 70% ). 100 re-samples are taken

since more re-sampled did not provide significant improvements to the results.

Robust training: final estimator creation with re-sampled mean

As already mentioned, the transformed population’s LT mean (with respect to Vpeak) is to be used

as estimator of the LT. The mean is arguably the most used estimator as a simple measure of the

central tendency of a probability distribution. Therefore, the training done in this step is so simple

that it lacks from hyper-parameters and intermediate evaluation steps.
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Then, using the % of endurance running speed reserve corresponding to the LT as estimand,

we use the mean as an extremely parsimonious estimator. It is important to note that, the mean,

by definition, would produce a LT estimation with no variance (i.e. the estimation is always a

fixed value which corresponds to the mean value of LT) and therefore it is the most parsimonious

estimator that we could use.

However, the mean of a probability distribution is the long-run arithmetic average value of

a random variable having that distribution. Since the data that is averaged is finite (training set

data in Figure 4.35), the LT mean may slightly differ depending on the data sample. In order

to estimate a mean closer to the expected mean, multiple re-sampled mean values are combined.

Additionally, we address the confidence intervals (CI) of the estimated mean value using the bias

corrected and accelerated percentile bootstrap method which is a non-parametric and more robust

way to estimate the CI [93]. This calculation shows that the CI are narrow around the mean value

(60.0% (58.8 - 61.2)) and thus that the estimation is robust.

Therefore, the 60% of the endurance running speed reserve is to be used as the heuristic to

estimate the LT.

Virtual LT sensor’s performance evaluation

Using the database created in the context characterization step, the performance of the initial

virtual LT sensor and the calibrated virtual LT sensor are evaluated against the new experimental

data. Table 4.10 compares each estimated performance. As expected due to their simplicity, both

the initial virtual LT sensor and the calibrated virtual LT sensor show very similar bias between

iteration 1 and 2 data sets, due to the robustness of the approaches. Apart from the raw estimated

performance, table 4.10 also considers the 4% intrinsic error of the Dmax LT calculated in the

pre-processing step. Since this error is an irreducible part of the output feature (LT) it is subtracted

from the raw performance to obtain the total accuracy. Thus, Total error is the one to be used to

compare it with the system acceptable error.

Table 4.10: Initial and calibrated virtual lactate threshold sensors sys-
tem error

virtual LT sensor 1st Iter DB 2nd Iter DB
Train set error Test set error test set error

Initial (raw) 10.8% 9.7% 8.1%
Initial (total) 6.8% 5.7% 4.1%

Calibrated (raw) 9.9% 9.7% 11.5%
Calibrated (total) 5.9% 5.7% 7.5%

Abbreviations: Iter, Iteration; DB, Data base; perf, performance

The variance term represents how an estimator’s performance, the virtual LT sensor in this

case, varies withing sub-samples of the same population. Thus, to calculate the variance term, we

look to the worst case scenario and compare the most extreme errors obtained in different data

sets. This means that, for the initial virtual LT sensor the Train set error and 2nd iteration test

set error are compared which shows a 2.7% variance. For the calibrated virtual LT sensor the 1st



128 Chapter 4. Design and development of the virtual lactate sensor

iteration test set error and the 2nd iteration test set error are compared, which shows a variance of

1.8% when doing the same.

Looking to the bias, the initial virtual LT sensor shows an smaller bias in both test sets (5.7%

and 4.1%) compared to the calibrated virtual LT sensor (5.7% and 7.5%). In any case, both are

within the range of the system acceptable error of 5-10% defined in Chapter 3.

In any case, these quantitative results must be taken with a grain of salt. If we look into the

detail of these small performance variations, we observe that the differences may easily be due

to very few incorrectly estimated LTs. More precisely, a single incorrect LT estimation in the

2nd iteration test may cost around 1.1% of error. This means that, the performance differences

between both virtual LT sensors are spurious. In other words, the only robust conclusion that may

be derived from this performance analysis is that both virtual LT sensors are in the same order of

magnitude in terms of their bias-variance, both are robust and both fulfil the system acceptable

error.

Therefore, to select the final virtual LT sensor, apart from the previous quantitative perfor-

mance perspective, the initial and calibrated virtual LT sensors are compared in terms of parsi-

mony. In equal conditions, as defined in Chapter 3, the most parsimonious approach is preferred

and since the number of parameters of the heuristics are zero, this is the most parsimonious ap-

proach.

Finally, both virtual LT sensors are also compared in operational terms. While the initial

virtual LT sensor is based on a RNN that need to make external computations to estimate the LT

(implemented in a web page or device), the heuristic (calibrated virtual LT sensor) provides a

method for coaches and athletes that does not require from any tool, device nor computation, as it

is the computation of the 60% of Vpeak. Therefore, the calibrated virtual LT sensor is selected

and accepted as the best approach.

In order to better observe the performance of the selected calibrated virtual LT sensor on the

unseen data, Figure 4.36 shows the residuals analysis of the heuristic with respect to the individual

acceptable error and with the 1st iteration data.

In Figure 4.37 we represent the performance of the calibrated estimator with respect to the

second iteration database and the Dmax LT intrinsic error.

Additionally, we can further analyse the system’s error that would correspond to the extreme

values of their confidence interval. As represented in table 4.11, results show that, system’s error

corresponding for the lower and higher CI values (i.e. 58.8% and 61.2%) are the same than for the

the mean 60.0% system’s error. In every case the system’s error is of 7.5% which means that the

calibrated virtual LT sensor very robust.

Table 4.11: System’s error corresponding
to confidence interval’s extremes

mean (boots CI) system’s error range

60.0% (58.8 - 61.2) 7.5% (7.5% - 7.5%)

Abbreviations: LT, lactate threshold; boots CI, bootstrap
confidence interval
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Figure 4.36: Calibrated heuristic lactate threshold sensor’s residuals: Iteration 1 Data

4.2.3 Decide next step: accepting the calibrated virtual LT sensor as valid solution

In the previous content representation step, we concluded that the variance of the calibrated virtual

LT sensor is extremely low. Thus, following the next step decision making process represented in

Figure 4.38, it fulfills the first requisite towards an acceptable solution. Moreover, the bias error

is also below the satisficing acceptable error. Finally, the robustness of the entire design has been

maximized.

Therefore, and considering that the most robust possible approach has been followed, the

calibrated virtual LT sensor is accepted as final solution.

4.2.4 Conclusions of iteration 2

In this second iteration, we created a calibrated virtual LT sensor based on a simple heuristic that

estimated the LT using the 60% of the endurance speed reserve as estimand.

Following from the initial virtual LT sensor created in the first iteration, a more robust system

was created by focusing on a simpler approach. In the first iteration, it was discovered that the

standardization of the temporal axis was able to homogenize the LT of different level athletes,

and that it is so mostly because of the relation that Vpeak had with the LT. This second approach

brought this relationship to the center and exploited it to create a extremely robust calibrated
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Figure 4.37: Calibrated heuristic lactate threshold sensor’s residuals: Iteration 2 New Data

virtual LT sensor. To do so, the mean of the standardized LT was proposed as the simplest possible

estimator. A methodological conclusion of this iteration is that, as it has been done in this work,

when evaluating the accuracy of a supervised learning system, it is of major importance to make a

deep analysis of intrinsic errors of the input features and use them as reference to compare it with

the final estimation errors.

From the sport science perspective, this design iteration further expanded the knowledge about

the problem complexity to create an operational virtual LT sensor and continued digging into the

relation between the different features. In particular, an interesting association network was found

around %HRmax at various stages, LT, Vpeak, IAAF score and 10K race times. This opens the

opportunity to further evaluate other features as proxies of performance as it is done with LT.

From the application perspective, the main objective of the present work was to create an

accessible method to estimate the LT and to facilitate its integration into the training process of

recreational runners. We showed that a heuristic (%60 of endurance running speed reserve) fulfills

this objective as it is as reliable as the Dmax LT protocol and covers the operational needs for a tool

useful in training decision-making. More precisely, this heuristic is both robust and, considering
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Figure 4.38: Iteration 2 next step decision making process
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the Dmax LT intrinsic error 4%, is capable of successfully estimating the lactate threshold for

92.5% of the study population, which is within the range of the acceptable error that we defined

as satisficing.
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4.3 Virtual lactate threshold sensor design conclusions

In this chapter, we designed a virtual LT sensor that, according to the strategical and methodologi-

cal criteria described in chapter 3, is able to robustly estimate the LT using Vpeak as an operational

feature.

From the methodological perspective, the design consisted of two iterations. In the first itera-

tion, a RNN was used as the ML architecture which, combined with the a rigorous data collection,

a standardization of the temporal axis, a combination of two database splitting methods a robust

initial virtual LT sensor was created. Then, further room for robustness improvement was de-

tected and a second iteration was made in this pursue. Inspired by the relation between Vpeak

and LT, the mean of the standardized LT was used to create a extremely robust calibrated virtual

LT sensor. In both cases, the previously proposed Dmax LT intrinsic error analysis showed its

importance to understand the variability of the LT with respect to the inputs. This is considered an

important methodological conclusion of this chapter that demonstrates how important is to know

the measurement errors.

From the sport science perspective, we have set the boundaries of the Dmax LT method pre-

cision error and shown that other LT protocols could also be evaluated from this perspective in

order to quantitatively address their reliability. This may be very helpful to make an objective

assessment of how accurate the different LT protocols are and make a comparison between them.

Additionally, we got additional knowledge about the problem complexity of creating an opera-

tional virtual LT sensor and also threw some light to its relation to other features. Among them,

the association network between %HRmax, LT, Vpeak, IAAF score and 10K race times is seen as

interesting to explore in future works.

From the application perspective, we have shown that a simple heuristic (60% of endurance

speed reserve) is capable of providing an estimation as good as the commonly used Dmax LT

protocol for the target recreational runner population. Unlike the Dmax LT protocol, this heuristic

is an operational solution that facilitates its consistent use as it relies solely on the athlete’s Vpeak:

an easily measurable, non-invasive and robust feature that is well established for performance

evaluation [94; 95; 82].

One of the possible limitations of this heuristic is that our population is drawn from local

running clubs. This means that it is possible that the target recreational runner population here

characterized may not be representative of recreational runners of other culture, ethnicity or differ-

ent contexts. However, one of the main advantages of providing a simple solution is that, unlike

other black-box models, it is easily reproducible and adjustable, meaning that we have set a com-

mon ground for other researchers to evaluate the impact of our proposal. In the best case scenario,

future experiments done in other contexts will validate that we have been capable of discovering

a common characteristic of recreational runner population. In the worst case scenario, we have

provided an easy to follow methodology (see Chapter 3) and an strong prior that will allow to

adjust the estimator according to individual characteristics of different populations.
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6.1 Research conclusions

Nowadays, there is a huge recreational runner population that wants to train for performance.

These athletes have particular interest in assessing the evolution of their performance to help im-

prove their training. In this regard, features related to the intensity of exercise at aerobic/anaerobic

transition are good indicators of performance in endurance sports. Particularly, lactate threshold

is probably the most used one with this purpose. In fact, current recreational runners, despite their

limited resources, pay a reasonable amount of money to estimate their LT in specialised centres.

Many efforts have been made so far in order to address the interest in having operational ways

to get information for training decision-making. This thesis is one of them, with the main focus

on providing an operational LT estimation. From the work done the following mayor conclusions

are derived:

1. The analysis of the state-of-the-art made clear that multiple efforts have been made to de-

termine the LT. Among them, some methods mainly pay attention to accuracy while the

operationality was relegated to a secondary place. From these efforts several well known

consolidated LT estimation methods arose.

The state-of-the-art also showed that, with the consolidated methods as reference, many at-

tempts have been made focusing on improving their operationality. However, none of the

proposed alternatives are able to solve the operational problem of the current LT determina-

tion methods with regards to the needs of the recreational runner population.

In any case, all these efforts show that characterizing the LT phenomena is complex and that

there is a huge interest in this matter.

2. A supervised learning based virtual LT sensor has the potential to provide an operational LT

estimation providing information in comparable terms to the consolidated methods. This

was precisely the first hypothesis of this thesis that was later confirmed.

3. The individual Dmax LT is a consolidated method that maximizes the chances of creating a

robust virtual LT sensor and is selected as the reference to label the data.

Additionally, this thesis makes the following methodological, sport science and application

contributions.

6.1.1 Strategical & methodological contributions

• A framework to determine the value of the multiple state-of-the-art LT estimation methods

was created. To do so, we first established the qualities used to determine the value in the

context of training decision making of recreational runners. Additionally, we created a value

map that served not only to organize all the important LT determination methods in the same

place (and have a visual big picture), but also to, in future steps, be able to place our solution

and compare with the rest of the proposed approaches. This framework allowed to make a

deep analysis of first, the consolidated LT determination methods available nowadays and

second, the attempts that have been made to improve the operationality of these approaches.
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In a more general matter, the criteria for value estimation and the value map sets a framework

that can be easily generalized to any other problem of information integration into training

decision making and is an interesting contribution of this thesis. Moreover, this concept can

be easily extended to other research areas where a trade-off between some sort of accuracy

and operationality is required and a visual tool may provide a bird’s-eye view that can help

throw some clarity to the problem-space.

• A strategy was created to help properly pose and apply ML to complex phenomena. This

strategy combines the identification of the inherent difficulties that creating a supervised

learning based virtual sensor has, with the particularities of complex phenomena.

More precisely, the inherent difficulties of ML complex problems were identified as: (1) the

problem boundary discovery and (2) defining the appropriate performance perspective. We

proposed an iterative strategy to deal with the former and, for the latter, we set an approach

to achieve a satisficing accuracy. Despite in ML these iterative approaches are commonly

used [57], to the best of our knowledge, they haven’t been formalized as done in the present

work. This is an important contribution of this thesis which may help better understand the

strengths and limitation of ML according to the area or problem in which is to be applied.

• An exhaustive experimental methodology was created and formalized to help maximize the

quality of the data collected. To attain so, the experimental methodology was divided in five

steps.

First, select the candidate features according to expert knowledge. Despite all the candidate

features were certainly not to be used in this work, possessing multiple relevant features

allows to have enough alternatives if new or complementary research paths were discovered

both as part of this thesis or for future work. Second, the protocols to collect both the static

and time-series data were defined. Third, due to the heterogeneity of the target recreational

runner population, we defined the term of ’what a recreational runner is’ in this work. From

this definition several pre-requisites for the target population were born. Fourth, additional

athletic, health, legal and ethical requisites were defined to either protect the athlete and/or

ensure that the experiments are performed under the appropriate conditions. Finally, to

minimize the inevitable collection of invalid experiments, the validity of the observation

was defined according to correctness and/or application type. More precisely, the validity

of the experiments was defined according to two purposes: validity for satisficing error

calculation and validity for virtual LT sensor design.

• A precise methodology was defined to design the virtual LT sensor. This methodology

formalized the common traits that are found in supervised learning and applies it to the

virtual LT sensor, detailing the steps to be followed in each design iteration. Three steps

are considered: context characterization, which deals with ensuring that the quality of the

collected data is maximized; content representation, dealing with the approach for learning

only the relevant information; and next step selection, which guides the decision making

process for the next iteration. Here it is important to note that, despite this traditional next

step decision making process is well known in practice [57], to the best of our knowledge,
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the formalization done in this work is a contribution. Moreover, in this work, we go beyond

evaluating the final ML system and introduce an additional methodological perspective to

the traditional next step decision making process from the robustness perspective. This

methodology may allow to apply virtual sensing concept to solve problems related to sports

so it could be extended to other future demands of this area.

• A computational algorithm was proposed to make a Dmax LT intrinsic error analysis. Apart

from the sport science implications described afterwards, the application of this algorithm

showed the importance of understanding the variability of the output features with respect

to the inputs. This algorithm helped to discover the inherent and irreducible noise that the

input and output features may contain. Moreover, it also showed that this error may have a

major impact in the conclusions that are derived about the relevant information that a certain

feature may contain. So, an important methodological conclusion is that a proper feature

error analysis has mayor importance for supervised learning systems.

• An initial virtual LT sensor was created based on a previously consolidated ML architec-

ture (LRNN) in the first design iteration. To do so, the previously established methodology

was developed in detail using several ad hoc applied methods. A web page was created to

improve the sampling diversity and quality. Additionally, in order to homogenize the out-

put feature, a standardization of the temporal axis was used. Furthermore, a combination

of two database splitting methods (knowledge based and a novel modification of the strat-

ified sampling method) were used to explore and achieve the right diversity in both data

sets. Regardless whether this first iteration achieved the desired virtual LT sensor, a robust

methodological conclusion of this iteration is that there was room for creating a supervised

ML system to estimate LT if proper methodologies are followed.

• A calibrated virtual LT sensor was created based on a simple heuristic that estimated the LT

using the 60% of the endurance speed reserve as estimand in the second design iteration.

Following from the initial virtual LT sensor created in the first iteration, a more robust sys-

tem was created by focusing on a simpler approach. In the first iteration, it was discovered

that the standardization of the temporal axis was able to homogenize the LT of different level

athletes, and that it is so mostly because of the relation that Vpeak had with the LT. This

second approach brought this relationship to the center and exploited it to create a extremely

robust calibrated virtual LT sensor. To do so, the mean of the standardized LT was proposed

as the simplest possible estimator. A methodological conclusion of this iteration was that,

as it has been done in this work, using the intrinsic errors of the features as reference to

compare with the final estimation errors may be of major importance for proper evaluation

of the accuracy of a supervised learning system.

• An implementation of the knowledge of this work was made according to a broad under-

standing of the concept of operationality. This means that the whole process of gathering

information and integration into the training decision-making process is considered. This

understanding of operationallity sets a holistic way of creating tools that may help to further

close the gap between theoretical contributions and their application in the real world and
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may be interesting for future works.

6.1.2 Contributions to sport science & physiology

• The design iterations showed that the transformation of LT by means of the Vpeak dimin-

ishes most of the variability of individual Dmax LT.

• The analysis of the association between the input and output features showed that there is

a strong relation between %HRmax, LT and performance related features. In particular, an

interesting association network was found around %HRmax at various stages, LT, Vpeak,

IAAF score and 10K race times. This opened the opportunity to further evaluate other

features as proxies of performance as it is done with LT.

• The application of the computational algorithm for precision error analysis of the LT is an

important contribution to sport science. This analysis is the first quantitative analysis of the

precision error of the Dmax LT protocol in the literature, and was performed for different

number of blood lactate measurements (5,6,7,8,9 and 10). More importantly, we have pro-

vided a computational method (Chapter 3 algorithm 1) that would be easily applicable to

calculate the precision error of Dmax protocol with other parameters (regression function,

number of points, initial speed etc.). It must be also noted that this computational method,

with the appropriate adjustments, may be also useful to estimate the precision error of other

LT estimation protocols. This would enable to make quantitative comparisons between pro-

tocols, something that, to the best of our knowledge, is not well addressed in the literature.

• We presented the idea that a higher accuracy of the virtual LT sensor is unnecessary and

even to some extent, non-characterizable and irreducible. First, and according to the calcu-

lated LT precision error, a higher accuracy may not be achievable. Additionally, from the

perspective of integration of LT in training decision making, we also presented the idea that

there is an additional unknown error that arises from the application of different LT inten-

sity indicators (speed or HR) to the real activity. Moreover, this error depends on individual

characteristics that vary in a daily basis and that translates differently depending on the sport

in which is to be applied. Therefore, the combination of errors may make the pursue of a

higher accuracy LT irrelevant once it is applied.

6.1.3 Application contributions

• An operational virtual LT sensor is presented in this work for recreational runners. We

showed that a heuristic (%60 of endurance running speed reserve) fulfills this objective as

it is as reliable as the Dmax LT protocol and covers the operational needs for a tool useful

in training decision-making. More precisely, this heuristic is both robust and, considering

the Dmax LT intrinsic error 4%, is capable of successfully estimating the lactate threshold

for 92.5% of the study population, which is within the range of the acceptable error that we

defined as satisficing. Unlike the Dmax LT protocol, this heuristic is an operational solution



156 Chapter 6. Conclusions and future work

that facilitates its consistent use as it relies solely on the athlete’s Vpeak: an easily measur-

able, non-invasive and robust feature that is well established for performance evaluation.

• From the additional knowledge gained about other physiological features, %HRmax is pre-

sented as an operational and sub-maximum indicator to be used in synergy with the LT, so

that more robust conclusions about athlete’s performance can be obtained.

• The Lactatus SW has been created to ease the athletes’ LT estimation process and implement

the additional information in the training decision-making process of recreational runners.

This way, the work of this thesis has been made tangible and widely available and usable

to recreational runners and give guidance to integrate it into the training decision making

process.

6.2 Results

From the work done in this thesis, the following journal articles have been published:

• U. Etxegarai, E. Portillo, J. Irazusta, A. Arriandiaga, and I. Cabanes. ”Estimation of lactate
threshold with machine learning techniques in recreational runners, Q1 - Applied Soft

Computing , vol. 63, pp. 181196, 2018.

https://doi.org/10.1016/j.asoc.2017.11.036 [95]

• U. Etxegarai, A. Insunza, J. Larruskain, J. Santos-Concejero, S. M. Gil, E. Portillo, and J.

Irazusta. Prediction of performance by heart rate-derived parameters in recreational
run-ners, Q1 - Journal of Sports Sciences, vol. 00, no. 00, pp. 19, 2018.

https://doi.org/10.1080/02640414.2018.1442185 [82]

• U. Etxegarai, E. Portillo, J. Irazusta, L. Koefoed, and N. Kasabov. A heuristic approach
for lactate threshold estimation for training decision-making: An accessible and easy
to use solution for recreational runners, Q1 - European Journal of Operational Research,

2019.

https://doi.org/10.1016/j.ejor.2019.08.023 [103]

Additionally, the following conference papers and presentations have been made:

• Estimation of lactate threshold using machine learning techniques - 22nd annual Congress

of the European College of Sport Science (paper presentation)

• An accessible lactate threshold assessment tool to support endurance athletes trainings
- 29th European Conference on Operational Research (EURO2018) (paper presentation)

• Un método inteligente para estimar el umbral de lactato de atletas recreacionales de
manera accesible y no invasiva - XXXIX Jornadas de Automática (conference paper and

poster presentation)
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• Towards an adaptive lactate threshold estimation methodology: A personalized mod-
elling approach - XII World Congress of Performance Analysis of Sport (poster presenta-

tion)

• Aplicación de técnicas de agrupamiento a corredores de resistencia para la estimación
del umbral de lactato - XL Jornadas de Automática (conference paper) - Werium award
to the best bio-engineering work

The knowledge obtained in this thesis also derived in a collaboration in other application areas:

• A Question of Trust: Statistical Characterization of Long-Term Traffic Estimations for
their Improved Actionability - 2019 IEEE Intelligent Transportation Systems Conference

(ITSC) [104]

Finally, this work also resulted in a research stay of 6 months in the Knowledge Engineer-

ing and Discovery Research Institute, Auckland University of Technology (AUT), New Zealand,

with a scholarship of the European Commissions Erasmus Mundus Action 2 PANTHER (Pacific

Atlantic Net- work for Technical Higher Education and Research).

6.3 Future work

This work has enabled to detect several potentially interesting future work. The most relevant are:

• The main limitation of virtual LT sensor may be in its generalization beyond the local recre-

ational runners given the diverse characteristics of the worldwide recreational runners of

other culture, ethnicity or different contexts. However, one of the main advantages of pro-

viding a simple solution is that, unlike other black-box models, it is easily reproducible and

adjustable, meaning that we have set a common ground for other researchers to evaluate the

impact of our proposal and transfer it to other populations.

This is precisely considered as a future interesting research line, where future experiments

done in other contexts will further test our proposal in a broader sense. In the best case

scenario, these experiments will validate that we have been capable of discovering a com-

mon characteristic of recreational runner population. In the worst case scenario, we have

provided an easy to follow methodology (see Chapter 3) and an strong prior that will allow

to adjust the estimator according to individual characteristics of different populations.

Additionally, clustering techniques have the potential to group different populations or sub-

population of endurance runners. The application of these techniques to this problem arise

as an interesting research path that may help automatize the adjusting process of the virtual

LT sensor.

• Additionally, the methodology presented in Chapter 3 allows to extend the virtual sensing to

other LT’s that may be more interesting for other uses. This also includes the transfer of the

algorithm 1 for the calculation of other LT method’s precision error and make a quantitative

comparison between them.
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• Finally, the %HRmax has shown to be a potential sub-maximal interesting indicator for

recreational runners. In this regard, the implementation of the %HRmax into the Lactatus

SW is foreseeing as an interesting future work. Additionally, a deeper analysis of the re-

lation between the %HRmax and LT may be interesting to find new possible combinations

between. For example, the %HRmax (as it is sub-maximal) could be used in a more daily

basis to get the underlying interesting information and complement it with more periodical

LT estimations using the virtual LT sensor.
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of middle-distance running.,” European journal of applied physiology and occupational

physiology, vol. 60, pp. 38–43, 1990.
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HOJA DE INFORMACIÓN 
TÍTULO DEL ESTUDIO: LACTATUS “Sistema avanzado de apoyo al entrenamiento de 

resistencia basado en un Sensor Virtual de Lactato, obtenida a base de técnicas de 
Inteligencia Artificial.” 
INVESTIGADORA PRINCIPAL: 
Susana Gil, Departamento de Fisiología Facultad de Medicina y Enfermería, UPV/EHU 

Investigadora Principal: Susana Gil 
Departamento: Fisioterapia. Departamento de Fisiología 
Centro: Facultad De Medicina y Enfermería. UPV/EHU 

Nos dirigimos a usted para informarle sobre un estudio de investigación en el que se le 
invita a participar. El estudio se realizará de acuerdo con la LEY 14/2007, de 3 de julio, 
de Investigación biomédica, cumpliendo con todos los criterios éticos, habiendo sido 
evaluado de modo positivo por el Comité de Ética para la investigación en Seres 
Humanos de la UPV/EHU.    
Nuestra intención es tan solo que usted reciba la información correcta y suficiente para 
que pueda evaluar y juzgar si quiere o no participar en este estudio. Para ello lea esta 
hoja informativa con atención y nosotros le aclararemos las dudas que le puedan surgir 
después de la explicación. Además, puede consultar con las personas que considere 
oportuno.  

PARTICIPACIÓN VOLUNTARIA  

Debe saber que su participación en este estudio es voluntaria y que puede decidir no 
participar o cambiar su decisión y retirar el consentimiento en cualquier momento del 
estudio, sin que por ello se deriven consecuencias negativas para usted, ni se produzcan 
represalias directas o indirectas por su decisión.  

DESCRIPCIÓN GENERAL DEL ESTUDIO  

El lactato sanguíneo es un parámetro muy utilizado para estimar la forma física y el nivel 
de entrenamiento en los deportistas. Actualmente la determinación del lactato 
sanguíneo debe realizarse por medio de una punción y posterior medición del mismo.  
El objetivo del presente proyecto es desarrollar, mediante técnicas de Inteligencia 
Artificial, un sistema que permita estimar la curva de lactato de un individuo a partir de 
la medida de sus pulsaciones y otras variables y parámetros del individuo sin necesidad 
de tomar muestras de sangre ni de utilizar dispositivos adicionales sobre el cuerpo. Para 
ello se realizarán numerosas pruebas de esfuerzo a triatletas y corredores en nuestro 
laboratorio con el objeto de obtener parámetros que puedan ser utilizados en el citado 
sistema de Inteligencia Artificial. 

 
 
 
 



   
¿En qué consiste su participación?  

• En contestar a un cuestionario sobre los datos personales: fecha de nacimiento, 
género, contestar un cuestionario sobre el ejercicio físico y los entrenamientos 
que realiza habitualmente, así como información acerca de las mejores marcas. 

• En permitir que le realicen diversas mediciones: Talla y peso.  

• Realizar una prueba incremental máxima en un tapiz rodante comenzando a 
9km/h e incrementando 1.5km/h cada 4 minutos, hasta 13,5 km/h; posteriormente 

la velocidad incrementará en 1km/h. Habrá una recuperación entre los  escalones de 1 
minuto. La prueba continuará hasta que usted lo desee o cuando no sea capaz 
de mantener la velocidad necesaria. La prueba será realizada por una persona 
licenciada en medicina con experiencia en este tipo de pruebas. Los 
participantes estarán asegurados por medio de un arnés durante la prueba en el 
tapiz rodante. En dicha prueba se medirán:   

o mediante una pequeña punción en la oreja durante el minuto de 
recuperación se extraerá una gota de sangre para medir el lactato  

o Medición de la frecuencia cardiaca por medio de un pulsómetro durante 
la prueba 

o El peso corporal previo y posterior a la prueba de esfuerzo 

o En cada descanso se le preguntará por el esfuerzo percibido que lo 
deberá indicar en una escala de 0 a 10. 

• Participar en la carrera de 10km que el Club Deportivo Donostiarrak organiza en 
Donostia el 19/03/2017 a las 10:00 AM. 

 Las participantes deberán vestir pantalón corto y camiseta, así como las zapatillas 
habituales del entrenamiento. Las mediciones tendrán una duración aproximada de una 
hora, y se realizarán en la Facultad de Medicina y Odontología, Campus de Leioa, 
UPV/EHU. 

BENEFICIOS Y RIESGOS DERIVADOS DE SU PARTICIPACIÓN EN EL ESTUDIO  

 
 Beneficios: 
- A  cada sujeto se le proporcionará un informe con los resultados individuales obtenidos 
en su prueba.  

 

Riesgos: 
- Las pruebas físicas pueden tener el riesgo que tiene cualquier entrenamiento intenso o 
competición. En casos muy raros, pueden presentarse desmayos e incluso problemas 
cardiacos. Por ello, se solicitará la aptitud para su deporte previo a la realización de la 
prueba. Además se hará un control continuo durante las pruebas por parte de un 
médico especializado en pruebas de esfuerzo. En el caso de presentarse cualquier signo 
adverso la prueba de esfuerzo será detenida inmediatamente. 



   
- Las tomas de lactado serán realizadas por el médico deportivo, intentando hacer la 
menor invasión posible, es decir, un solo pinchazo en uno de los dos lóbulos de la oreja. 
En algunas ocasiones, se deberá proceder a hacer un segundo pinchazo debido a la 
vasoconstricción de los capilares de la oreja, si se diese el caso, se intentará realizar este 
segundo sobre el primero ya realizado.  Puede aparecer un pequeño hematoma en los 
días posteriores que desaparece espontáneamente. 

CONTRAINDICACIONES 

Los participantes deberán haber superado un reconocimiento médico-deportivo 
durante el último año. Será necesario aportar el justificante del mismo. 

  

CONFIDENCIALIDAD  

El tratamiento, la comunicación y la cesión de los datos de carácter personal de todos 
los participantes se ajustará a lo dispuesto en la Ley Orgánica 15/1999, de 13 de 
diciembre de protección de datos de carácter personal. De acuerdo a lo que establece la 
legislación mencionada, usted puede ejercer los derechos de acceso, modificación, 
oposición y cancelación de datos, para lo cual deberá dirigirse a su investigador de 
referencia.  

Los datos recogidos para el estudio estarán identificados mediante un código y solo la 
investigadora principal del estudio podrá relacionar dichos datos con usted y con sus 
datos personales. Por lo tanto, su identidad no será revelada a persona alguna salvo 
excepciones, en caso de urgencia médica o requerimiento legal. El fichero de datos de 
los participantes ha sido dado de alta en un  fichero del tipo de “Investigación de nivel 
alto” de la UPV/EHU con el nombre INA-LACTATUS, código: 2080310015-INA0118.  

Podrá consultar en cualquier momento los datos que ha facilitado o solicitar que 
rectifique o cancele mis datos o simplemente que no los utilicen para algún fin concreto 
de esta investigación. La manera de hacerlo es dirigiéndose al Responsable de Seguridad 
LOPD de la UPV/EHU, Rectorado, Barrio Sarriena, s/n, 48940-Leioa-Bizkaia. 

Los datos obtenidos serán tratados en ordenadores de la UPV/EHU previa disociación de 
los datos personales, y el acceso a su información personal quedará restringido 
únicamente a la investigadora principal del proyecto cuando lo precise para comprobar 
los datos y procedimientos del estudio, pero siempre manteniendo la confidencialidad 
de los mismos de acuerdo a la legislación vigente. Una vez finalizado el estudio, cuya 
duración se prevé de un año, los datos personales serán guardados durante 5 años.  

COMPENSACIÓN ECONÓMICA  

Su participación en el estudio no le supondrá ningún gasto, ni compensación económica 
alguna.  Los costes de la inscripción a la carrera de 10km que el Club Deportivo 
Donostiarrak organiza en Donostia el 19/03/2017 a las 10:00 AM serán financiados por 
este estudio. A su vez, se facilitará el transporte a dicha prueba poniendo a disposición 
de los atletas un autobús que les llevará y traerá de vuelta. 

OTRA INFORMACIÓN RELEVANTE  



   
Cualquier nueva información referente al estudio que se descubra durante su 
participación y que pueda afectar a su disposición a participar en el mismo, le será 
comunicada por su investigadora de referencia (Dra. Susana Gil Orozko) lo antes posible 
y personalmente.  

Si usted decide retirar el consentimiento para participar en este estudio, ningún dato 
nuevo será añadido a la base de datos y puede exigir la destrucción de todas las 
muestras identificables previamente retenidas para evitar la realización de nuevos 
análisis.   

También debe saber que puede ser excluido del estudio si los investigadores del estudio 
lo consideran oportuno, ya sea por motivos de seguridad, por cualquier acontecimiento 
adverso que se produzca o porque consideren que no está cumpliendo con los 
procedimientos establecidos. En cualquiera de los casos, usted recibirá una explicación 
adecuada del motivo que ha ocasionado su retirada del estudio. 

Al firmar la hoja de consentimiento adjunta, se compromete a cumplir con los 
procedimientos del estudio que se le han expuesto. 

**En caso de necesitar más información o tener alguna duda póngase en contacto con 
la investigadora responsable Susana Gil, tel. 94 601 2958, e-mail: Susana.gil@ehu.eus  



 

 

 

TÍTULO DEL ESTUDIO: LACTATUS “Sistema avanzado de apoyo al entrenamiento de 

resistencia basado en un Sensor Virtual de Lactato, obtenida a base de técnicas de 
Inteligencia Artificial.” 
INVESTIGADORA PRINCIPAL: SUSANA MARIA GIL OROZKO 

Nombre: SUSANA MARIA GIL OROZKO 
Departamento: FISIOTERAPIA. DEPARTAMENTO DE FISIOLOGIA 
Centro: FACULTAD DE MEDICINA Y ODONTOLOGIA. UPV/EHU 

Tf: +34 94 601 2859  E-mail: susana.gil@ehu.eus 
 

Yo, D/Dña………………….......................................................................................................... 
...................................................., mayor de edad, y con D.N.I. ...........................................,  
DECLARO QUE:  

 He leído la hoja de información que se me ha entregado.   

 He podido hacer preguntas sobre el estudio.  

 He hablado con:  Susana Gil Orozko /Ainhoa Insunza 

 He recibido suficiente información sobre el estudio.   
 

Resumen del estudio: El lactato sanguíneo es un parámetro muy utilizado para estimar la 
forma física y el nivel de entrenamiento en los deportistas. Actualmente la determinación 
del lactato sanguíneo debe realizarse por medio de una punción y posterior medición del 
mismo. Además, requiere de personal cualificado y de equipamiento específico. 
El objetivo del presente proyecto es desarrollar mediante técnicas de inteligencia Artificial 
un sistema que permita estimar la curva de lactato de un individuo a partir de la medida de 
sus pulsaciones y otras variables y parámetros del individuo sin necesidad de tomar 
muestras de sangre ni de utilizar dispositivos adicionales sobre el cuerpo. 
 
Las intervenciones que se me van a realizar son: 
o Un cuestionario con preguntas sobre mis datos personales (genero, fecha de nacimiento) y el 
historial deportivo 
o Una encuesta sobre la actividad física y entrenamientos realizados. 
o Una antropometría: talla y peso 
o Una prueba incremental máxima en un tapiz rodante comenzando a 9km/h e incrementando 
1.5km/h cada 4 minutos, hasta 13,5 km/h; posteriormente la velocidad incrementará en 1km/h. 
Habrá una recuperación entre los escalones de 1 minuto, en el cual se tomará una gota de sangre 
para medir el lactato por punción en la oreja. Durante la prueba llevaré un arnés de sujeción y estaré 
conectado a un electrocardiograma.  
o Además, se medirán continuamente las pulsaciones por medio de un pulsómetro 
o Peso corporal previo y posterior a la prueba 
o Indicaré mi percepción del esfuerzo realizado en una escala de 1 a 10 



o Participaré en la carrera de 10km que el Club Deportivo Donostiarrak organiza en Donostia el 
19/03/2017 a las 10:00 AM. 

 
El equipo investigador cumplirá estrictamente la legislación en materia de protección de 
datos, en concreto los preceptos de la Ley Orgánica 15/1999, de 13 de diciembre de 
protección de datos de carácter personal y el Real Decreto 1029/2007 sobre medidas de 
seguridad.  

Los datos personales que nos ha facilitado para este proyecto de investigación serán 
tratados con absoluta confidencialidad de acuerdo con la Ley de Protección de Datos. Se 
incluirán en un fichero de la UPV/EHU, código: 2080310015-INA0118, y sólo se utilizarán 
para los fines del proyecto.  

Podré consultar en cualquier momento los datos que he facilitado o solicitar que rectifique o 
cancele mis datos o simplemente que no los utilicen para algún fin concreto de esta 
investigación. La manera de hacerlo es dirigiéndome al Responsable de Seguridad LOPD de la 
UPV/EHU, Rectorado, Barrio Sarriena, s/n, 48940-Leioa-Bizkaia. 

Los datos obtenidos serán tratados en ordenadores de la UPV/EHU previa disociación de los 
datos personales, y el acceso a su información personal quedará restringido únicamente a la 
investigadora principal del proyecto cuando lo precise para comprobar los datos y 
procedimientos del estudio, pero siempre manteniendo la confidencialidad de los mismos de 
acuerdo a la legislación vigente. Una vez finalizado el estudio, cuya duración se prevé de un 
año, los datos personales serán guardados durante 5 años.  
 

La participación en el estudio no me supondrá ningún gasto.   

 

 Comprendo que la participación en el estudio es voluntaria.   

 Comprendo que es posible retirarse del estudio:   
1. En cualquier momento  
2. Sin tener que dar explicaciones.  
3. Sin que esto suponga represalias de ningún tipo.  

Para ello, me podré poner en contacto con la investigadora principal del 
estudio. 

 Participo libremente en el estudio y doy mi consentimiento para el acceso y 
utilización de sus datos en las condiciones detalladas en la hoja de información.  

 

Y para que así conste firmo el presente documento en .............................................., a 

.......................................... de 2017 

Nombre: Nombre: 

Firma de la participante:   

 

Firma del investigador/a: 

DNI: DNI: 

 





Appendix B

Data Collection Protocol

Several devices are used for data collection: a HR monitor, a lactate measurement device for

blood lactate measurement, a precision stadiometer for height, a balance (Seca, Bonn, Germany)

for weight and a bio-impedance meter for body composition measures.

HR is monitored by a HR monitor (Garmin 910XT, George Town, Caiman Islands) and lac-

tate concentration by a portable lactate analyzer (Lactate Pro, Arkray, KDK Corporation, Kyoto,

Japan.) which has been validated as an effective analyzer for lactate measurements [69]. Addi-

tionally, a 0-10 Borg scale [51; 105] (see figure B.1) is used to determine the Borg feature of the

athlete at the end of each stage.

Figure B.1: 0-10 Borg scale: Collection of rate of perceived exertion data

The data acquisition protocol is supervised and executed by a physician and a two-member

supporting staff.

Preparation, calibration and start-up:

The following list describes the detailed steps prior to starting the data acquisition required at the

beginning of every testing day.

• Start-up temperature and humidity sensors

• Start-up the HR monitor
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– Power on the device

– Make a mock test to ensure that the monitor is correcly working

• Calibrate the Lactate measurement device

• Prepare the ITSP (see chapter 3.2) in the treadmill

• Check if all the material is prepared

– Lactate measurement device

– HR monitor + HR band

– Reactive strips

– Lancets

– Measuring tape

– Bio-impedance meter patches + meter

– Fungibles: paper roll, latex globes, alcohol, cotton...

• Check temperature and humidity sensors

• Start-up of treadmill mock test

Confirmation of pre-requisite compliance:

Once the initial preparations are made, the next step is to ensure that the athletes fulfill all the

test, health and legal requisites described in section 3.2. Failing to fulfil these requisites means

that the ITSP is not performed.

Formatting results:

Regarding the format of the database, every experiment is collected by the experimenters in par-

allel in two different formats, on paper and electronically in an (a priori formatted) excel file. This

redundancy allows to minimize notation errors and the posterior check and correction of inconsis-

tencies or incoherence. Images B.2 and B.3 show the paper and electronic formats respectively.

Static feature collection:

Then, the feature collection starts from the static ones following the steps described bellow:

• Questionnaire to collect historical data (training years, type of training...) -

• Anthropomorphic measurements: height, weight, waist and hip.

• Bio-impedance: Connect the device and make the measurement

• Place the HR band (with the athlete on the litter)

• Rest 5 minutes

• Measure resting HR

• Measure resting lactate
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Figure B.2: Results collected in paper format
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Figure B.3: Results collected in digital format

• Sit down and dress up

• Ask if they want to hydrate (last chance prior to the test)

Time-series feature collection:

As previously mentioned, during the ITSP the time-series features are collected. Respiratory

RPE [106], muscular RPE [107] and total RPE were assessed using the 10-point Borg scale [51].

HR was measured just at the end of each stage and at the end of the 1 minute recovery. Lactate

concentration was measured at the end of each stage. More precisely, after starting the ITSP, at

the end of each stage the following steps are performed:

• Check and annotate the HR in the result documents

• The physician measure blood lactate and say it out loud the support staff to annotate it in the

results documents

• Ask RPE values and annotate in the result documents

• Check that the protocol is being correctly followed

• Annotate any incidence (double measurement required, dizziness...)

• After reaching exhaustion, push the button that initiates start the final recovery period

• 5 minute resting period walking on the treadmill at 5 kilometers/hour

• Check and annotate the HR value in the result documents
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• The physician measure blood lactate and say it out loud the support staff to annotate it in the

results documents

• 5 minute resting period seated

• Check and annotate the HR value in the result documents

• The physician measure blood lactate and say it out loud the support staff to annotate it in the

results documents

Protocol for equipment failures:

During the tests, several equipment failures may occur. Here we define a protocol to properly

handle and respond to different failure scenarios:

• Failure in the first or second step (9 kilometer/hour or 10.5 kilometer/hour) - Re-start the

test

• Failure in higher steps - Discard the test, and date the athlete for another day

• HR monitor failure - Use the spare HR band

Digitalization of results:

Once the data collection is finished, as shown in figure B.4, results of the ITSP are gathered in a

single excel file combined with the data of the HR monitor.

Figure B.4: Digitalized results with heart rate monitor data
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