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Abstract

This thesis consists of three parts, each of them devoted to different aspects of the theory
of finite p-groups and pro-p groups.

The first part is concerned with the study of the following problem: under which
conditions on a group G does the verbal subgroup for a given word w coincide with the
set of w-values? We will analyse this problem for different words lying in the derived
subgroup of the free group, namely, the commutator word, the lower central words and
general outer commutator words, under the hypothesis that G is a finite p-group.

The second part is aimed to the study of the Hausdorff dimension function. In recent
decades, this fractal dimension has provided interesting and fruitful applications in the
context of profinite groups, all of them based on the pioneering formula by Barnea and
Shalev, according to which the Hausdorff dimension of a closed subgroup H of a profinite
group G can be regarded as the “logarithmic density” of H in G. Thus, we will focus on
the notion of normal Hausdorff spectrum of G with respect to a given filtration series,
giving the first example of a finitely generated pro-p group with full normal Hausdorff
spectra.

Finally, in the third part of the thesis, we will introduce two new classes of power-
ful p-groups: the powerfully solvable groups and the powerfully simple groups. These
are powerful p-groups that somehow fulfil the “role” that finite solvable groups and fi-
nite simple groups have in the class of all finite groups, respectively. We will provide
some results and classification concerning these groups, including a Jordan-Holder type
theorem. For this purpose, a bijective correspondence between the category of certain
powerful groups and the category of alternating algebras over F, will be of particular
interest.
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Laburpena

Tesi hau hiru zatitan banatuta dago, horietako bakoitzak p-talde finituen eta pro-p
taldeen teoriaren hainbat alderdi lantzen dituelarik.

Lehenengo zatian, ondorengo problema aztertzen da: izan bitez G taldea eta w hitza;
zein baldintzatan dator bat G-ren w-rekiko hitzezko azpitaldea w-balioen multzoarekin?
Problema hori talde askearen azpitalde deribatuko zenbait hitzentzat aztertuko da, kom-
mutadore hitzarentzat, hitz zentral beherakorrentzat eta kanpo kommutadore orokor-
rentzat alegia, hipotesi gehigarri batekin: G p-talde finitu bat izatea.

Bigarren zatian, Hausdorffen dimentsio funtzioa aztertzen da. Azken hamarkadetan,
dimentsio fraktal horrek aplikazio interesgarriak eman ditu talde profinituen testuingu-
ruan, horiek guztiak Barnea eta Shalev-en formula aitzindarian oinarrituta. Formula
horren arabera, GG talde profinitu baten H azpitalde itxi baten Hausdorffen dimentsioa
H-k G-n duen “dentsitate logaritmikotzat” har daiteke. Horrela, G-ren filtrazio serie
batekiko Hausdorffen espektro normalaren nozioan jarriko dugu arreta, espektro osoko
pro-p talde finituki sortu baten lehen adibidea emanez.

Azkenik, tesiaren hirugarren zatian, bi talde mota berri aurkezten dira: p-talde
boteretsuki ebazgarriak eta p-talde boteretsuki bakunak. Talde horiek p-talde botere-
tsuak dira eta, nolabait, talde ebazgarri finituek eta talde bakun finituek talde finitu
guztien klasean duten “papera” betetzen dute, hurrenez hurren. Talde horiei buruzko
emaitza eta sailkapen batzuk emango ditugu, Jordan-Hé6lder motako teorema bat barne.
Horretarako, interes berezia izango du talde boteretsu jakin batzuen kategoriaren eta
Fp-ren gaineko aljebra alternatuen kategoriaren arteko korrespondentziak.






Sommario

Questa tesi consta di tre parti, ciascuna delle quali dedicata a diversi aspetti della teoria
dei p-gruppi finiti e dei pro-p gruppi.

La prima parte analizza le condizioni che un gruppo deve soddisfare affinché il sotto-
gruppo verbale di una parola data coincida con I'insieme dei valori che la parola assume
nel gruppo. Si studiera questo problema per parole contenute nel sottogruppo derivato
del gruppo libero. Ad esempio, si considereranno la parola commutatore, le parole
centrali inferiori e le parole esterne nei p-gruppi finiti.

La seconda parte € incentrata sullo studio della funzione della dimensione di Haus-
dorff. Negli ultimi decenni, si ¢ dimostrato che questa funzione fornisce interessanti e
utili applicazioni nel contesto dei gruppi profiniti, tutti basati sulla formula di Barnea
e Shalev che afferma che la dimensione di Hausdorff di un sottogruppo chiuso H su
un gruppo profinito G puo essere riguardata come la densita logaritmica di H in G. Si
analizzera la nozione di spettro normale di Hausdorff di G rispetto a specifiche filtrazioni
e si dara il primo esempio di un pro-p gruppo finitamente generato con spettro normale
di Hausdorff completo.

Nella terza parte, infine, si introdurranno due nuove classi di gruppi powerful: i
gruppi powerful risolubili e i gruppi powerful semplici. Questi gruppi, in un certo qual
modo, si comportano come i gruppi risolubili e semplici nella classe di tutti i gruppi
finiti. Verranno, poi, fornite classificazioni di questi gruppi, tra cui un teorema del tipo
Jordan-Hélder. A tale scopo, particolare rilevanza ¢ rappresentata dalla corrispondenza
biunivoca tra la categoria di specifici gruppi powerful e la categoria di algebre alternate
su Fp.
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Notation

S

ppnnz=zs
S N
A SN
A
¢
A
e}

The set of natural/integer/real numbers

The set of the real numbers that are greater than or equal to 0
The field of p elements

The ring of p-adic integers

The field of p-adic numbers

a € Z is congruent to b € Z modulo n € Z

The image of g under the map ¢

The ceiling function

The floor function

Subset /proper subset

Subgroup/proper subgroup

Open/closed subgroup/proper subgroup
Normal subgroup/proper subgroup
Open/closed normal subgroup/proper subgroup
The topological closure of X

The group generated by X

{sl-r}-sn | sie Sforalli=1,...,n}

Minimal number of generators of G

The exponent of G

The center of G

The group of automorphisms of G

The general linear group of degree n over K
The ring of square matrices of degree n over K
H =K (mod N), i.e., H, K < G are congruent modulo N < G
The conjugate of x by y, i.e., y tay

The conjugacy class of z in G

The normal closure of H in G

The centraliser of z in G

The centraliser of H in G

The commutator of z and v, i.e., z 7'y tzy
{z,s] | s€S), where ze Gand S € G

{r,s] | re R,seS), where R,S < G

The derived subgroup or the commutator subgroup of GG

xiii
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K(G)

[ ]
[H,n G]

The set of commutators of G, i.e., K(G) = {[z,y] | z,y € G}
{[x,s] | s€ S}, where z € G and S € G

[[x1,.- . zro1], 2]
[[Sla SERE) S’r—l]a Sr]
[l‘,y, n7y]
[H,G,.".,G]

The rth lower central word

The rth term of the lower central series of G, i.e., [v,-1(G), G,
where 71(G) = G

The rth derived word

The rth derived subgroup of G, i.e., [G"~D, Gr—1],

where G = @

The set of w-values of G

The verbal subgroup of w in G

The direct product of H and N

The semidirect product of H and NN, via the action of H in N
The direct sum of A and B

The direct orthogonal sum of A and B

The inverse limit of the inverse system {G, }neN

A bilinear form

The orthogonal complement of V'

The Frattini subgroup of G

(" |ge @)

geGlg" =1)

The Lower p-series

The dimension subgroup series

The p-power series

The iterated p-power series

The Frattini series

The Billingsely dimension of X € GG in G with respect to S and p
The lower box dimension of X € G in G with respect to S
The Hausdorff dimension of X € G in G with respect to S
The Hausdorff spectrum of G with respect to S

The normal Hausdorff spectrum of G with respect to S



Summary of the thesis

This thesis is split into three parts, where different aspects of finite p-groups and pro-p
groups will be studied.

In Part I of the thesis, the most extensive one, we will study an old question regarding
verbal subgroups of commutators words. This study started soon after the introduction
of the commutator word on the eve of the 20th century, when it was observed that the
product of two commutators of a group G need not be a commutator. It was then asked
the following: which are the groups in which the product of two commutators is again a
commutator? In other words, when does the derived subgroup G’ of a group G coincide
with the set of all the commutators of G?7 Actually, this question can be formulated for
any group word w, just replacing the set of commutators with the set G,, of w-values
and the derived subgroup G’ with the verbal subgroup w(G) = (G,,) of G. That is:

Problem. Let w be a word and G a group. Is w(G) = G,,?

We will motivate and introduce this problem in more detail in Chapter 1. The words
for which this problem will be studied in this thesis are the commutator word, lower
central words and general outer commutator words. The groups that we will consider
will be finite p-groups and pro-p groups.

Before we start analysing the problem for the aforementioned words and groups,
we spend some time establishing some preliminary results in Chapter 2. Apart from
developing some technical and fundamental commutator calculus, the class of powerful
p-groups will be defined. These groups are, without any doubt, one of the main protag-
onists of this dissertation. They are usually seen as a generalisation of abelian groups,
as they share many properties with them. Among other results, we will show that in
almost all the groups that we will work with in the next chapters, the verbal subgroups
of the words that we will consider are powerful. This gives us the opportunity to use all
the tools that the theory of powerful groups provides. This is, in fact, a completely new
approach to the problem, and will allow us to prove a number of results in the area.

In this setting, we will start in Chapter 3 analysing the problem for the commutator
word and for finite p-groups. In this context, a great deal of results has been given over
the years. One of the most celebrated one is the proof by Liebeck, O’Brien, Shalev and
Tiep of the so-called Ore conjecture, according to which every element of a non-abelian
finite simple group is a commutator. Sharp bounds on the order of the group and on the
order of the derived subgroups have also been found, showing that all the elements of
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the derived subgroup G’ of a group G are commutators whenever G or G’ satisfy these
bounds.

However, we will focus on restrictions involving the number of generators of the
derived subgroup (and in general, in the next chapters, of the verbal subgroup). In this
direction, we will generalise some results due to Guralnick. In these results, Guralnick
always works under the condition that the derived subgroup G’ of a group G is abelian.
We will show in the following two theorems that the condition that G’ is abelian is not
necessary (these results are published in the Israel Journal of Mathematics [18] and in
the Journal of Algebra [32] respectively, and they correspond to Theorems 3.9 and 3.18).

Theorem. Let G be a finite p-group. If G' can be generated by 2 elements, then G' =
{[x,9] | g € G} for a suitable x € G.

Theorem. Let G be a finite p-group with p > 5. If G’ can be generated by 3 elements,
then G’ consists only of commutators.

Moreover, it was shown by Guralnick himself that these results are no longer true
if G’ can be generated by 3 elements with p = 2 or 3; or if the minimal number of
generators of G’ exceeds 3, whatever prime we choose. Since the result for cyclic derived
subgroups was already shown to hold by Rodney in another paper, this means that the
study of this problem in terms of the number of generators of the derived subgroup
for finite p-groups is already complete. We get, furthermore, some partial results if G’
is generated by more than 3 elements, adding the condition that the action of G on
G’ is uniserial modulo (G’)P (this is published in the Journal of Algebra [32], and it
corresponds to Theorem 3.19).

Theorem. Let G be a finite p-group and write d = log, |G" : (G')P|. Ifd < p—1
and the action of G on G’ is uniserial modulo (G')P, then there exists x € G such that
G"=A{[z, 9] | g€ G}.

In Chapter 4, following with finite p-groups, we consider lower central words instead
of the common commutator word. It was proved, again by Guralnick, that a finite p-
group G with p > 5 and with 7, (G) abelian and generated by 2 elements for some r > 2
satisfies that

% (G) ={lg1,---,9r] | gi € G forall i =1,... r}.

Besides that, he also proved that the result is not true anymore if p = 2, while the case
p = 3 remained unsolved. We will again show that this result remains true if we drop
the assumption that v,(G) is abelian. Moreover, we show that the result is also satisfied
for p = 3, closing in that way the gap between the primes 2 and 5. More precisely, we
prove the following (this result will appear in the journal Publicacions Matematiques
[34], and it corresponds to Theorem 4.10).

Theorem. Let G be a finite p-group and let r = 3. If v,(G) is cyclic or if p is odd and
7 (G) can be generated with 2 elements, then there exist x1,...,2j—1,Zjq1,..., 2, € G
with 1 < j < r such that

7w(G) ={[z1,...,2j-1,9,Tj+1,..., 2| | g€ G}.

For every r > 3, we will also modify an existing example to produce a finite p-group,
for arbitrary p, with +,(G) central and generated by 3 elements such that

(@) £ g1, 0] | gi€ G forall i = 1,7},
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showing in this way that, again, we have completed the study of this property for lower
central words in finite p-groups in terms of the number of generators of the verbal
subgroup.

The next natural step is considering outer commutator words. We will devote the last
part of Chapter 4 to the study of these words. Unfortunately, the only result achieved
in this context is the following (this is Theorem 4.17).

Theorem. Let G be a finite p-group with G” cyclic. Then there exist x1,x2,23 € G
such that

G" = {[[x1, 22], [23,9]] | g € G}.

In other words, nothing is known neither for words other than the second derived
word or the lower central words, nor for finite p-groups with 2-generator verbal subgroup.
Nevertheless, the above theorem could provide a basis for an inductive hypothesis to
solve the following problem which, as we will see, could be a key step in order to go
further in the study of this property for general outer commutator words.

Problem. Let G be a finite p-group such that G(") is cyclic for some r > 3. Is then
G = Gs,., were 0, denotes the rth derived word?

To end with the first part of the thesis, we will dedicate Chapter 5 to generalising
all the results we have proved so far from finite p-groups to pro-p groups. Indeed,
after making a basic introduction to these groups, the following will be proved (this is
Theorem 5.8).

Theorem. Let w be a word in v variables and let G be a profinite group such that
w(G/N) = (G/N),, for every open normal subgroup N of G. Then w(G) = Gy,. More-
over, if for every open normal subgroup N of G there exist1 < jy <71 andx1,...,Tjy 1,
Tjy+41,---,2Tr € G/N such that

w(G/N) ={w(z1,...,Zjy-1,9,Tjy+1,---,%r) | g€ G/N},
then there exists 1 < j <r and x1,...,2j—1,%j+1,..., 2, € G such that
w(G) = {w(x1,...,2j-1,9,Zj+1,..., %) | g € G}.

This result can be directly applied to all of our results, obtaining in this way a
generalised version of them for pro-p groups.

After all this, and once profinite groups have been defined, Part II of the thesis is
devoted to the analysis of some aspects of the theory of Hausdorff dimension in profinite
groups.

In the last decades, the concept of Hausdorff dimension has provided interesting re-
sults in the theory of countably based profinite groups. This started with the pioneering
work of Barnea and Shalev where, based on Abercrombie’s work, they found a group
theoretic formula to compute explicitly the Hausdorff dimension hdim‘g(H ) of a closed
subgroup H of a countably based profinite group G with respect to a filtration series
S:G=Gy= Gy = of G. More precisely, they showed that

log | HG,, : G,
hdim () = lim inf 108 Cn : Gul

1].
n—w  log|G : Gyl €lo.1]
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Thus, for a profinite group G and a filtration series S, it is natural to consider what
is called the Hausdorff spectrum hspecS(G) of G with respect to the filtration series S.
This is a subset of the real unit interval [0, 1] that reflects the range of the values of
the Hausdorff dimensions that the closed subgroups of a profinite group take. We will
give in Chapter 6 a brief review of the most important results concerning the Hausdorff
spectra of G, introducing some related open problems. We will put special attention
on the Hausdorff dimension of p-adic analytic groups with respect to the five standard
filtration series, namely: the lower p-series £, the dimension subgroup series D, the
p-power series P, the iterated p-power series P* and the Frattini series F.

We will focus more, however, on the so-called normal Hausdorfl spectrum. For
a profinite group G and a filtration series S of G, the normal Hausdorff spectrum
hspec (G) of G with respect to the filtration series S is the subset of the (usual) Haus-
dorff spectrum hspecS(G) that arises when considering closed normal subgroups instead
of just closed subgroups. In a recent paper, Klopsch and Thillaisundaram asked whether
there exists a finitely generated pro-p group whose normal Hausdorff spectrum with re-
spect to any of the five standard filtration series covers the full unit interval [0, 1]. Thus,
in Chapter 7, we will produce the first example of a finitely generated pro-p group that
gives an affirmative answer to this question. More precisely, we show the following (this
result, for p odd, will appear in the journal Mathematische Nachrichten [33], and it
corresponds to Theorem 7.7. The case p = 2 is in preparation [35] and it corresponds
to Theorem 7.20).

Theorem. For every prime p, there exists a 2-generator pro-p group G with full normal
Hausdorff spectra with respect to the five standard filtration series, that is,

hspecS (G) = [0, 1]
for every S € {L,D, P, P*, F}.

Apart from the question by Klopsch and Thillaisundaram, this theorem also answers
a question by Shalev.

As said before, the theory of powerful groups has a great importance in the first part
of the thesis. Thus, in Part III we will deepen in this topic, introducing two new classes
of powerful groups, namely, the powerfully solvable groups and the powerfully simple
groups. This is motivated by the recent work of Traustason and Williams where they
defined what they called the class of powerfully nilpotent groups.

In Chapter 9 different questions about powerfully solvable groups will be studied.
On the one hand we will give an explicit classification of all powerful groups or rank
2 and all powerful groups of order up to p®. In particular, we will see that there are
22 + 2p powerfully solvable groups of order p°. On the other hand, we will show that
the growth of the number of powerfully solvable groups of order p™ and exponent p? is
per’ o) where o = 71%\/5.

While the powerful nilpotence and the powerful solvability have good behaviour
when considering homomorphic images, we will see that this is not the case when taking
subgroups. This problem disappears, though, if we consider a rich class of powerful
groups, namely, the class of powerful groups of type (2,.7.,2) for some r > 0. We will
show in Chapter 10 that there exists a bijective correspondence between the category of
these well-behaved groups and the category of alternating algebras of dimension r over
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F,. With this, the notion of powerfully simple groups will be defined and, in close analogy
to general finite groups, we also define powerful composition series. Thus, a Jordan-
Holder type theorem will be proved (this is pending acceptance and it is prepublished
on the arXiv [36]; it corresponds to Theorem 10.19):

Theorem. Let G be a powerful p-group of type (2,...,2) with two powerful composition
series, say
1 =H0<17)H1<7)'--<173Hn =G

and
1=K0<17)K1<17)---<17)Km=G.

Then m = n and the powerfully simple factors Hi/Hy, Ho/H1,...,Hy,/Hp—1 are iso-
morphic to K1/Ky, Ko/K1, ..., Ky/Kn—1 (in some order).

Finally, we end Chapter 10 with the classification of all powerful groups of type
(2,2,2). This will be done by classifying all the possible combinations of the symmet-
ric and anti-symmetric bilinear forms in the alternating algebras of dimension 3. In
particular, we show that there are 2p + 10 such groups, of which p + 3 are powerfully
simple.






Part 1

Commutator words in finite
p-groups







Chapter 1

Introduction

A group word w in k > 0 variables is an element of the free group Fj on k generators.
For any group G, this word defines a map (that abusing notation we still call w) from the
Cartesian product of k copies of G to the group G itself by substituting group elements
for the variables. More precisely, if Fy, = (x1,...,z) and

S
5
w = szj
j=1
with i1,...,is € {1,...,k} and each ¢; = +1, then

w:Gx‘l-ﬁ-xG—>G

S
(gla“'vgk) '—)ngjj
j=1

Thus, we can consider the set G, of all values taken by this function, that is,
Gy ={w(g1,.--,9x) | gie Gloralli=1,... k}.

This set is called the set of w-values of w in G, and the subgroup generated by it is
called the verbal subgroup of w in G, denoted by w(G).

Example 1.1. (i) The word in 0 variables is called the empty word. For any group
G, its verbal subgroup is just the trivial subgroup of G.

(ii) For any n > 0, the power word my, is the word in 1 variable defined as m,(x) = z™.
The verbal subgroup of m, in a group G is denoted by G™. These groups are
usually called the power subgroups of G.

(iii) The commutator word 7, is a word in 2 variables defined as ya(z,y) = [z,y] =
x~1y~lzy. Its verbal subgroup in a group G is just the derived subgroup 72(G) =
G’ of G (also called the commutator subgroup of G).

3
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(iv) More generally, for r > 1, the r-th lower central word -y, is a word in r variables
defined recursively by the rule v;1(x1) = 1 and

'77“('%17 cee 7x7“) = [’Yr—l(xl, ) xT—l)v xT]'

Its verbal subgroup in a group G is precisely the r-th term of the lower central
series of G. The words v, for r > 3 are also known as higher commutator words.

(v) Another way to generalise commutator words is by considering derived words. For
r = 1, the r-th derived word 9, is a word in 2" variables defined recursively by the
rule d1(z1, z2) = [x1,x2] and

5r($1, e ,xgr) = [(57,1($1, e ,I‘Qr—l), 5r,1($2r—1+1, e ,:Egr)].
Its verbal subgroup in a group G is the r-th derived subgroup 4,(G) = G,

(vi) The words in (iii), (iv) and (v) are particular instances of outer commutator words,
also known under the name of multilinear commutator words. These are words
obtained by nesting commutators, but using always different variables. More for-
mally:

e The word w(z) = x in one variable is an outer commutator word.

e If o and B are outer commutator words involving r and s different variables
respectively, then the word w = [«, ] is an outer commutator in r + s
variables.

In addition, all outer commutators are constructed in this way.

(vii) For n > 1, the n-th Engel word ey is a word in 2 variables defined as e, (x,y) =
[z,y,.".,y]. Although this word is obtained by nesting commutators, it is not an
outer commutator word if n > 2, as in that case the variable y appears more than
once.

It is well known that, in general, the set of w-values G, of a group G need not be
a subgroup. In other words, we may have G,, € w(G). This is because the product of
two word values or the inverse of a word value may not be a word value again. Thus,
the following longstanding problem arises naturally.

Problem 1.2. Let G be a group and let w be a word. Is w(G) = Gy?

If the group G is abelian, then it is immediate to see that Problem 1.2 is satis-
fied for any word w. Indeed, word maps are homomorphisms in abelian groups, so if
w(g1,-..,gk) and w(hy, ..., hi) are two word values of G, then we have

w(gi, ... ,gk)f1 = w(gfl, ... ,gkjl)
and
w(g1, - ge)w(hy, ..., hi) = w(gihi, ..., gxhg).
However, for some words w, one can easily find examples of groups G such that w(G) #
G (see, for instance, Example 3.1 below).

In this first part of the thesis we will study this problem for several words that lie
inside the commutator subgroup of the free group. Among all the results that we will see
or prove, with some exceptions like Theorem 3.2, the problem is almost always reduced,
in one way or another, to finite p-groups. A typical argument for that purpose is the
following.



Proposition 1.3. Let w be a word and let G be a (not necessarily finite) nilpotent
group such that w(QG) is finite. Then, there exists a finite nilpotent group H and an
isomorphism ¢ : w(G) — w(H) such that ¢(Gy) = Hy.

Proof. Suppose w is a word in k variables. Since w(G) is finite, it contains, in particu-
lar, finitely many w-values, say w(g1, - .-, gr), W(gk+1, - - > g2k) and W(Gnk+15 - -, Gns1)k)
with n > 0 and g1,...,9m+1)r € G- Define K = {g1,...,9(n+1)x), and note that
K, = Gy and w(K) = w(G). Now, K is nilpotent since so is G, and being finitely
generated, it follows that K is residually finite. Hence, since w(K) is finite, there exists
a normal subgroup N of K such that w(K) n N = 1. Consider now the factor group
H = K/N and let ¢ be the natural homomorphism from K to H. Clearly we have

w(K) =w(K)/(w(K)nN)~w(K)N/N =w(K/N) =w(H),
where the isomorphism is given by the restriction map ¢ |w( K)- Then we have

p(w(h, ... hi)) = w(g(hr), ..., ¢(hk))
for every hi, ..., hx € K, which shows that ¢(K,,) = Hy,. O

If G is a finite nilpotent group, then we have G = P; x --- x P,, where P;,..., P,
are the Sylow subgroups of G. Let w be a word in k variables and take hi,...,h; € G.
Then, for every 1 < ¢ < k there exist g;1 € P1,...,gin € P, such that h; = ¢;1 - gin,
and it is easy to see that

WGt Gins-- - Gkt Gkn) = W(G115 -1 Gk1) - W(G1ns - - - Gen)-

This shows that the study of Problem 1.2 for finite nilpotent groups is clearly reduced to
finite p-groups. Thus, in view of Proposition 1.3 and because of the fact that there are
a number of useful structural results regarding finite p-groups, almost all of our analysis
of Problem 1.2 will be focused on them.

Before we give our main results, we will present some preliminaries in Chapter 2,
some of which will be used more than once along the dissertation. Among other things,
we will develop some theory concerning powerful groups, which will allow us to introduce
a completely new approach in this topic. As a matter of fact, this new point of view will
be essential in our proofs, since as we will see, the behaviour of the commutator map is
much better when the verbal subgroup in consideration is powerful.

In Chapter 3 we will start our study of the commutator word. Our main results
in this chapter are proved in Sections 3.2 and 3.3, where we will study finite p-groups
with derived subgroup generated by 2 and 3 elements, respectively. Thus, we will solve
Problem 1.2 in both cases, showing that G’ = {[z,y] | =,y € G}. Moreover, since this
property is already known to hold for finite p-groups with cyclic derived subgroups, and
since it is already known to fail for finite p-groups with derived subgroup generated by
more than 3 elements, our results complete the study of this problem for finite p-groups
when imposing conditions on the number of generators of the derived subgroup.

We will then dedicate Chapter 4 to more general words, namely, to lower central
words and, in the end of the chapter, to general outer commutator words. Thus, being a
good platform to work, we will continue analysing the problem in finite p-groups. Here
we will give, on the one hand, a simple proof of the fact that ,.(G) = G, whenever G
is a finite p-group and the verbal subgroup ~,(G) is cyclic, which was already proved by
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Dark and Newell in [12], and, on the other hand, we will prove the same result for finite
p-groups such that 7, (G) is generated by 2 elements. In this way, and using Proposition
1.3 to deduce from an existing example that the problem is no longer true for finite
p-groups with verbal subgroups generated by more than 2 elements, we again complete
the study of this property in terms of the number of generators of the verbal subgroup
in the context of finite p-groups.

The next natural step is to consider general outer commutator words. For these
words the problem looks much harder and nothing can be found in the existing literature,
even if the verbal subgroup is cyclic. Yet, we break new ground and show that for a
finite p-group G we have G” = G5, whenever G” is cyclic.

Finally, we will extend in Chapter 5 all the results achieved in the previous chapters
from finite p-groups to pro-p groups. Actually the argument we will give to generalise
all these results is quite general and works for all words and for all profinite groups in
general.

Notation. Let G be a group, and let H < G and N < G. We write H maxG to
denote that H is maximal in G, and H maxg N to denote that H is maximal among
the proper subgroups of N that are normal in G. We set K(G) = {[z,y] | z,y € G} and
if x € G then we write K;(H) = {[z,h] | he H} and [z, H| = (K,(H)). If G is finitely
generated, d(G) stands for the minimum number of generators of G. Finally, we write
[G,n N] for [G,N,.".,N], where n > 0.



Chapter 2

Preliminaries

Before we prove the main results we have achieved regarding Problem 1.2, we spend
some time establishing some preliminary results. In fact, many of these results are of
independent interest and one may apply them in a more general context than that of
this topic.

First we recall in Section 2.1 some basic facts about commutator calculus and finite
p-groups that will be frequently used along the thesis.

Without any doubt, one of the main important concepts in this thesis is that of a
powerful group. We will define these groups in Section 2.2, where we will also introduce
the notion of potent groups. We will thus exhibit some well-known facts and prove some
easy results about such groups.

Then we study in Section 2.3 the connection between verbal subgroups and powerful
groups. Indeed, we show that if the verbal subgroup of an outer commutator word in a
finite p-group G is generated by “few” elements, then it must be powerful. As said in
the introduction, this gives a completely new approach to the problem. Actually, this is
key to prove our main results, as it allows us to use all the machinery of powerful groups
presented in Section 2.2.

We follow in Section 2.4 with some technical results about outer commutator words.
These results will be particularly helpful to show that certain quotients of a finite p-group
consist only of word values. For instance, we show that the property that a section of a
group consists only of commutators of certain type is closed under extensions (Lemma
2.23), and we will give special attention to finding conditions under which a pth power
can be introduced inside a lower central commutator (Section 2.4.1).

Finally, in Section 2.5, different subsets (most of them, actually, subgroups) of a
finite p-group are defined. These subsets will be of great importance, as the position of
them in the group will provide information not only about the presence of some specific
commutators in some specific subgroups, but also general information about the group
structure itself.

2.1 Basic properties

We start with a well-known fact about finite p-groups, which, in some cases, allows us
to assume that certain subgroups of a group are trivial.

7



8 Chapter 2. Preliminaries

Lemma 2.1. Let G be a finite p-group and N, K normal subgroups of G. If N <
KNP[N,G], then N < K.

Proof. Factor out K and just note that if N is non-trivial, then NP[N,G] is a proper
subgroup of N, which is a contradiction. ]

The following standard commutator identities will be freely used along the thesis
(for the proofs see, for instance, [67, 5.1.5]).

Lemma 2.2. Let x,y,z be elements of a group. Then:
() [z.y] = [y, 2]
(i) [zy, 2] = [2, 2]y, 2], and [z,yz] = [z, 2][, y]*.
i) [2,y7!] = [y.]’", and [27,y] = [y,2]"
v) [z,y7 5 2)Y [y, 274 2) [z, 27 Y, y]® = 1 (the Hall-Witt identity).

-1
111

(i

As a consequence of the identities above one deduces the next well-known properties.
For the reader’s convenience we collect them in a lemma.

Lemma 2.3. Let G be a group. Then:

(i) If N and L are two normal subgroups of G and n € Z, then

[N", L] < [N, L]"[N, L, NJ.

(i) Let X,Y,Z < G and N < G. If [X,Y,Z],[Y,Z,X] < N, then [Z,X,Y] < N.
This is known as the three subgroup lemma.

(iii) As a consequence, if N is a normal subgroup of G, then [N,v,(G)] < [N,, G] for
every n = 1.

The previous lemmas will be used tacitly, as well as the fact that for each n = 0,
if N < L are two normal subgroups of a finite p-group G such that |L : N| = p", then
[L,, G] < N. In particular, if L/N is cyclic then [L,, G] < LP"N.

The following lemma, probably the most used tool in the thesis, is known as the Hall-
Petresco identity. It was introduced by Hall and Petresco in [29] and [66] respectively,
and it can be proved using the so-called commutator collecting process (for a more
modern proof see, for example, [8, Appendix A.1]).

Lemma 2.4. Let Fy = {x,y) be the free group on 2 generators. Then, there exist words
d; € vi(G) for alli = 2 such that for every n = 0 we have

) gl g

n—1

"y = (xy

In particular, there exist words ¢; € vi({(y~ )%, 1)) = v ({[z,y],y)) for all i > 2 such
that for every n = 0 we have

(3),.() . G

[x’yn] = [x,y]n62 C3"" -+ Cph_1 Cn-

Since these formulas hold in the free group Fy, they apply to any two elements g, h in
any group G.
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On some occasions a more explicit version of the Hall-Petresco identity will be re-
quired. In order to state it, we first need the following notion.

Definition 2.5. Let G be a group and S € G. Let also c€ G and s € S. Then:

o If c € S, then we say that ¢ is a commutator in S and that the weight of ¢ in S
is 1. In addition, if ¢ = s, then the weight of ¢ in s is 1, while if ¢ # s then the
weight of ¢ in s is 0.

o If ¢ ¢ S but ¢ = [z,y], where z and y are commutators in S, then ¢ is also a
commutator in S and the weight of ¢ in S (in s) is the sum of the weights of =
and y in S (in s).

The proof of the next lemma can be found in [55, Proposition 1.1.32].

Lemma 2.6. Let G be a finite p-group, =,y € G and n € N. Let K(u,v) denote the
normal closure in G of (i) all commutators in {u,v} of weight at least p" that have
weight at least 2 in v, together with (ii) the pth powers of all commutators in {u,v} of
weight less than p™ and of weight at least 2 in v. Then:

@) =k 2 v Ty, 2] [y 2, 2](3) - [y, 2,202, )R [y, 2, P00 ],

[xp" ) y] =K (z,[z,y]) [xa y]p" [{I:v Y, JJ] (p2 ) T [.’E, Y, x, p?i27 .’IJ] (pgil) [$7 Y, z, pflil? .’IJ]
In most of the cases, it will be essential knowing when a power of p divides the
binomial coefficients (p:) that appear in both the Hall-Petresco Identity and in Lemma
2.6. The following classical theorem, which will be loosely used, gives an answer to this.

Theorem 2.7 ([53]). Let s and t be integers with 0 < s < t. If o is a positive integer
and p a prime, then p® divides (i) if and only if o carries are needed when adding s and
t — s in base p.

It is thus easy to see that if t = p™ and s = p*r with p t r, then p"~® is the biggest
power of p that divides ( }fw). In particular, if p is odd then p"~ (=2 divides (pl. ) for
2 <i < n+ 2, while if p = 2 then p"~ (1) divides (p:) for2<i<n+1.

2.2 Powerful and potent groups

Powerful groups are a special type of finite p-groups that were defined by Lubotzky and
Mann in [57], even if they were first considered in [38] by Hobby, and some of their
results had already been anticipated by other authors (see, for example, [4] and [61]).
A finite p-group G is said to be powerful if the commutator subgroup G’ is contained
in GP = (gP | g€ G) for p odd or in G* = (¢g* | g € G) if p = 2. Note that if p is odd,
then a finite p-group G is powerful if and only if ®(G) = GP, as happens with abelian
groups. Indeed, these groups are usually seen as a generalisation of abelian groups, as
they share many structural features with them.

While quotients of powerful groups are again powerful, it is not true in general that
the subgroups of powerful groups are powerful. There are some subgroups H, however,
that are not only powerful subgroups of G, but are powerfully embedded in G, meaning
that [H,G] < H? if p is odd or [H,G] < H* if p = 2. Most of the important subgroups
of a powerful group G are powerfully embedded in G. Indeed, G is obviously powerfully
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embedded in G, and if H and K are powerfully embedded subgroups of GG, then HP,
HK and [H, K] are also powerfully embedded in G (see [48, Theorem 11.4]).

The reason why these groups are called powerful is in (i) of the next proposition, as
it is shown that these groups are somehow “full of powers”. A proof of this proposition
can be found in [48, Theorems 11.10, 11.11, and 11.15].

Proposition 2.8. Let G be a powerful group. Then:
(i) GF' =(g?" | ge G) = {g"' | g€ G} for everyi = 0.
(ii) (Gpi)pj =ar for every i,j = 0.

(i) If G ={x1,...,2y), then G = <x’1’i, e ,:cfi> for every i = 0.

(iv) The power map g — g¢P induces an epimorphism from Gpi/Gf"i+1 to GpiJrl/Gpi+2

for every i = 0.

Remark 2.9. By (iv) of the previous proposition, the power map g — g”" induces an
epimorphism from G/GP to G?' /sz+1 for every ¢ = 0. This, in particular implies that
if GP < N < L <G, then _ '

|LP" : NP"| < |L: N|

(and hence |N : N?'| < |L Lpi]), and if L/N = {x1,...,z,)N, then
LY NP = (¥, P SN

In respect of the generating sets of powerful groups, the following abelian-like prop-
erties are really helpful. For the proofs see [13, Corollary 2.8, Theorem 2.9, and Exercise
9 of Chapter 2].

Proposition 2.10. Let G be a powerful group with d(G) = d. Then:
(i) d(H) < d for every H < G.
(ii) If G ={x1,...,xq) for some x1,...,2q4 € G, then G = {x1)---{Tg).

(iii) G has a basis, meaning that there exist x1,...,24 € G such that G = {(x1)---{xq)
and o(x1) - - - o(xq) = |G|. Hence, the elements of G are precisely xi' - - - i, where
0<ij<o(x;)—1 for every j =1,...,d, without repetitions.

Other important characteristic subgroups are the so-called omega subgroups of G,
defined by

Q(G) =<{ge G |o(g) <p’).

These are analogous to the power subgroups GP' (in fact, the power subgroups GP'
are sometimes called agemo subgroups and denoted by U;(G)). It is clear that if G is
abelian, then Q;(G) = {g € G | o(g) < p'}. Again, for powerful groups, at least if p is
odd, the same result can be deduced. Parts (i), (ii) and (iii) of the following proposition
are proved by Wilson in [82] and [83] and by Héthelyi and Lévai in [37] respectively (a
short proof of these facts is given by Fernandez-Alcober in [17]).

Proposition 2.11. Let G be a powerful group. Then:

(i) If p is odd, then exp(Q4(G)) < p for every i = 0.
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(i) If p = 2 then, unlike for abelian groups, we have exp(Q;(G)) < 271 for every
1> 0.

(i) |G : G¥'| = |%(G)| for every i = 0.

To end with powerful groups, we formulate what is known as Shalev’s interchanging
lemma.

Lemma 2.12 ([72, Lemma 3.1]). Let G be a powerful group and let H and K be pow-
erfully embedded subgroups of G. Then [HP", KP'| = [H, K]pzﬂ for every i,j = 0.

A more extensive background on powerful groups can be found in [13, Chapter 2] or
[48, Chapter 11].

We can generalise the concept of powerful groups even more with the notion of potent
p-group, which will also have an important role in Section 3.3. Indeed, as we will see
in the proof of Theorem 3.19, if a group satisfies the conditions of the theorem, then
its derived subgroup must be potent. These groups where considered for the first time
by Arganbright in [4], even if they were not called potent until Gonzélez-Sanchez and
Jaikin-Zapirain did it in [23]. A finite p-group G is said to be potent if v, 1(G) < G?
for odd p or if G’ < G* for p = 2 (note that if p = 2 or 3, then potent groups are defined
in the same way as powerful groups). Potent p-groups are thus a further generalisation
of abelian groups. Indeed, it is shown in [23] that if G is a potent p-group with p odd,
then the following holds.

(i) GP = {g*" | ge G} for all i > 0.
(ii) Q:(G) ={ge G |o(g) < p'} for all i > 0.
(i) |G : GP'| = |u(G)| for all i = 0.

A group satisfying these three properties is called power abelian. In this context, the fol-
lowing lemma, which is a reduced version of the main theorem in [23], will be particularly
helpful.

Lemma 2.13 ([23, Theorem 1.1]). Let G be a potent p-group with p = 3. Then:
(i) If N < G, then N is power abelian.
(ii)) If N < GP and N < G, then N is powerful.

If p is odd, then Remark 2.9 can be stated in a more general way. Indeed, if G is a
potent p-group with p odd, then the indices of the power subgroups of the subgroups of
G have a particularly good behaviour.

Lemma 2.14. Let G be a potent p-group with p = 3. If N < L are two normal subgroups
of G, then |N : N?'| < |L: LP"| for all i = 0. In particular |LP" : NP"| < |L: N|.

Proof. By Lemma 2.13, the subgroups N and L are power abelian, so in particular
IN : NP'| = |Q(N)| and |L : LP'| = |Q;(L)|. Since obviously |Q2;(N)| < [€4(L)], the

result follows. ]

For p = 2, though, we have a much weaker result.
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Lemma 2.15. Let G be a powerful group and H a powerful subgroup of G. Then
|GP' . HP'| < |G : H| for all i = 0.

Proof. Since G is powerful, we have d(H) < d(G) by Proposition 2.10. Since H is also
powerful, this amounts to |H : HP| < |G : GP|, which yields the result for i = 1. Now
GP and HP are again powerful, and we have GP' = (Gp)i"li1 and similarly for H, so the
general case follows immediately by induction on 3. O

In view of Theorem 2.18 below, we will deal several times with 2-generator powerful
groups (see Sections 3.2 and 4.2). In those cases, next lemma will be really useful.

Lemma 2.16. Let G be a powerful group. If d(G) = 2, then every subgroup of G is also
powerful.

Proof. By induction on the group order, it suffices to show that every maximal subgroup
M of G is powerful. Now since G is powerful and d(G) = 2, we have |M : GP| = p.
Since GP is powerfully embedded in G, it follows from [48, Lemma 11.7] that M is
powerful. ]

2.3 Powerful verbal subgroups

In our study of Problem 1.2, our main goal will be generalising some results that are
already known to hold when the verbal subgroup of the corresponding word w is abelian.
According to the last section, a reasonable way to generalise this condition is requiring
the verbal subgroup to be not abelian, but powerful. Actually, we will see that almost
all the groups we will consider turn out to have powerful verbal subgroups. The main
result we have obtained in this direction is a generalised version of the following theorem
by Blackburn, where a presentation of the derived subgroup G’ of a finite p-group G is
given, provided that d(G’) = 2.

Lemma 2.17 (]9, Theorem 1]). Let G be a finite p-group such that d(G') < 2. Then
either G' is abelian or it can be generated by two elements a and b with defining relations
a?" = " = 1 and [a,b] = V", with k > 0 and n = m > 2k. In particular,
G < (G’ and G is powerful.

We extend this to more general normal subgroups other than the derived subgroup
in the following theorem.

Theorem 2.18. Let G be a finite p-group and N a normal subgroup of G. If d(N) = n,
then:

(i) If N < v2,-1(G), then N' < NP, In particular N is powerful.
(ii) If p is odd and N < v,(G), then N is powerful.

Proof. (i) In order to show that N’ < N7 we may assume that NP = 1, and by Lemma
2.1, that [N',G] = (N')? = 1. Since d(N) = n we have |[N : ®(N)| = p”, and so
[N,, G] < ®(N). First, observe that

[®(N),N] = [NPN',N] < (N')’[N',N] =1,
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so in particular ®(N) is abelian and ®(N)? = (NP)?(N')? = NP* = 1. Moreover, we
have
[®(N),n G] = [NPN',n G] = [N?,, G]
[an G]P H[Nan—i Ga Nai G]
i=0
= [Nm G]p[Nm G, N]
< O(N)P[®(N),N] =1,

N

(2.1)

where the first inclusion follows since (N')P = 1 and the third equality follows repeatedly
using that [N/, G] = 1.
If [N,,—1 G] < ®(N), then by (2.1) we have
N’ = [N7N] < [Na'Yanl(G)]
< [N72n71 G] < [(I)(N)an G] = 1’

as desired.
Suppose then [N,,_1 G] € ®(N), and observe that in this case the quotient group

N/[N,G]2(N)
must be cyclic since d(N) = n. Hence, again by (2.1)

N' = [Na[N’G](I)(N)] = [N’[NvG]]
< [Noan G < [2(N)n G = 1,

and the proof of part (i) is complete.

(ii) The proof is very similar to the previous one. In this case, by Lemma 2.1, we
may assume that N? = [N',G] = 1. Thus, we have ®(N) = N’. Since d(N) = n we
have [N : N'| = p", and so [N,, G] < N'.

Now, if [N,,,—1 G] < N, then we have

N’ = [N,N] < [N, 7.(G)]
[N, G] <[N',G] =1,

A

as desired.
If [N,,—1 G] £ N’, then the quotient N/[N,G] must be cyclic. Thus, we have

N' = [Nv[NvG]] < [Nan-i-lG]
< [N/,G] =1.

The theorem follows.
O

Remark 2.19. Part (ii) of Theorem 2.18 can be deduced from [55, Theorem 6.1.14].
Though, we have provided a proof for it that follows the same ideas as the proof of part
(i).

The following example, taken from [41, Example 14.24, page 376] and extended to
all primes, shows that the condition N < 7,,(G) in (ii) of Theorem 2.18 is best possible,
in the sense that the result is no longer true if N = G’ and d(G’) = 3.
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Example 2.20. Let p > 5 and consider the groups A = {(a1) x{ag)x{az) = CpxCp,xC,
and B = (b1) x (by) = Cp x Cy,. Define Y = A x B via the automorphisms

by —1 by by _
by —1 by by
a” = a1a3 N ay” = ag, CL3 = as.

Now, consider X = (zx) = C,, and define G =Y x X via the automorphism

T —1 T T
al == a1a2 B a2 == a27 CL3 == a37

—1 -1
T=bibyl, b = byai .

The group G is a p-group of class 5, order p® and exponent p such that d(G’) = 3 and
G" = v5(G) # 1, so G’ is not powerful.

If p = 3, then the same construction works, but taking X = () =~ Cy. Thus we get
a group with similar properties but of order 37.

If p = 2, then we take A = (a1) x {as) = Cy x Cy and write a3 = a3. We also take
X ={x) =~ Cs, and we construct the group in the same way as before. In this case the
order of G is 28.

2.4 Commutator calculus

For a group G, the standard property in (ii) of Lemma 2.2 shows that the commutator
map 2 from G x G to G is not bilinear in general, and this fact immediately extends
to all outer commutator words. We give a generalised version of (ii) of Lemma 2.2
reaffirming this.

Lemma 2.21. Let G be a group and let w be an outer commutator word in r variables.
Let x1,...,xj—1,h,xjq1,...,2, € G. Then there exist hi,..., h, € ()G such that for
every g € G,

’Ll)(l'l,...,xj_l,gh,.%'j_;_l,...,l‘,«)
_ h1 hj—1 h; o hia h
= w(z] N A RY AT v w(@, . T, b T, ., Ty,

Proof. We proceed by induction on the number of variables appearing in the outer
commutator word w. If such number is 1, i.e. if w = x, then the result is obvious.
Hence, assume w = [a, 3], where a and 8 are outer commutator words involving &k and
r — k variables with k& < r, respectively. Assume also that j > k, so that

w($17 s 7xjflagh7$j+17 s 3$T)

= [05(331,. : 'axk)7ﬁ(zk+17 s ’xjflaghvl‘jJrla s ’:ET’)]'

By induction, we have

B(IL‘k+1,...,$j,1,gh,$j+1,...,ZL‘T)
h hj—1  h; _hj h
= B(xkiilv"'axjillag J7xjj++117"'>$rr)6(xk+l7'"7xj—1>h7xj+17"'7x7“)1

where hgi1,...,hy € (h)C.
For simplicity, write

hi+1 hj—1  h; i+ h
zlzﬂ(ka,...,a:j_l,gﬂ,xjﬂ,... ")
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and
zy = B($k+la sy Tj—1, haxj—i-l? RN wr)v
and notice that
[a(xy,...,2k), z122] = [a(z1, ..., 2), 22][a(x1, . .., 2k), 21]7
a(zy,..., zL)
= [a(z1,...,2), 21]* [a(xy, ..., zK), 22].

Since clearly zo € (h)“, the result follows.
The case j < k is similar. O

Repeatedly applying Lemma 2.21 we obtain Corollary 2.22 below, where it is shown
that the commutator map, even if it is not multilinear in general as we have seen before,
it does have a multilinear nature. This is also proved in [73, Proposition 1.2.1].

Corollary 2.22. Let G be a group. Then, for everyi =1,...,n and for every g,z1,.. .,
i1, Tit1,---Tn € G, h € vs(G) we have

[z1,...,2xi—1,9h, Tit1, ..., xp] =
[1"17 sy Li=159y Tit1y - - - ,.’En][xl, ceey Ti—1, h’7 Tit1y--- 7$n] (HlOd 771+8(G))
In particular, if h € G' then

[xla s 7xi—17gh7 Titly--- ,.Tn] =
[xl,...,a;i_l,g,wiﬂ,...,xn] (mod ’yn+1(G>)

We now introduce one of the principal tools of this part. It shows how to extend
the covering of a subgroup with w-values from a factor group to the whole group, where
w is an outer commutator word. This somehow reflects the strategy we will mainly
follow when proving that the verbal subgroup w(G) consists only of w-values. Indeed,
we will construct a series from w(G) to 1 with the property that every element of each
factor group of two consecutive subgroups in the series can be written as a w-value in a
suitable way. Lemma 2.23 below will then allow us to go up in this series, proving that
actually all the subgroups in the series consist of w-values, until we reach w(G).

Lemma 2.23. Let G be a group and w an outer commutator word on r variables. Let
N < L < G with N normal in G and suppose that for some x1,...,2j-1,%j41,...,2Tp €
G, the following two conditions hold:

(1) Lc UgEG Nw(yb e Yi-1,9 Y541, - - 'ayr) fOT every y; € :EZG

(i) N < {wyr,-¥j-1:9,Yj+1,- - Yr) | g € G} for every y; € 2.

Then} Lc {w(yla s Yi—-1,9,Yj+1, - - - ayT) | ge G} fO’f’ every y; € l'ZG
G

Proof. Take an arbitrary coset Nw(y1,...,Yj—1, " Yj+1,...,yr) of N in L, with y; € z;
and h € G. Take hq,...,h, as in Lemma 2.21 and let z be an arbitrary element of .
By assumption, there exists u € G such that z = w(y™, ... ,y?fll,u, y;lfll, .,y and
we may write u in the form u = ¢" with g € G.

So, by Lemma 2.21 our arbitrary element zw(yi,...,yj—1,h,Yj+1,...,yr) of the
above coset can be written as

h hi_ . h; .
w(ylla cee ayjillath7yji+117 v 7y7}} )’U)(yl, s Yi—1, hayj+17 DR yT)
= w(y17 o 7yj—179h7yj+17 S 7y’f’)7

as desired. O
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Remark 2.24. As a matter of fact, Lemma 2.23 can be stated in a slightly more general
way. Indeed, if we relax condition (i) and just put

Lc U Nw(:cl,. cy Tj—1,9, Tjtly .- ,ZL’T>,
geG

then, following the same proof, we obtain
Lc {w('rl’ s Lj—1,9, Lj+1y - - - 7$7“) | g€ G}

However, the way in which we have stated it allows us to apply the lemma in an ascending
series of subgroups of G, as if we apply it in two subgroups of the series, then the resulting
inclusion is precisely the condition we need to continue applying it in the subgroups
above.

For the commutator word this remark is not necessary, as Corollary 2.25 shows.

Corollary 2.25. Let G be a group and let N < L < G, with N normal in G. Suppose
that for some x € G the following two conditions hold:

() L/N € K.y (G/N).
(ii)) N € K.(G).
Then L < K,(G).
Proof. Just note that since NV is normal in G, then for every g € G we have
N = N9 = K;(G) = K39(GY) = K39 (G),

and thereby condition (ii) of Lemma 2.23 holds. The result follows now from Remark
2.24. O

The previous corollary will be often used in combination with the following result,
whose proof is straightforward.

Lemma 2.26. Let G be a group and let N < L < G, with N normal in G. If L/N
{z,s]N | s € S) for some x € G and some S < G with [L,S] < N, then L/N <

Proof. 1t follows immediately since for every s,t € .S we have
[z, st] = [z, s][z,t]g
for some g € [z, S,S] < [L,S] < N. O

2.4.1 Introducing powers in lower central words

As pointed out at the beginning of Section 2.4, outer commutator words are not multilin-
ear in general. In particular, for a finite p-group G and for z, g € G, it is not always true
that [z, g]"" = [z,¢”'], with i > 1. In the following three sections we will see that under
certain conditions we can ensure that the power p’ can be introduced in a commutator
modulo some subgroups. This will ensure that certain sections of a group consist only
of commutators of a certain type, so it will be essential in order to use Lemma 2.23.
We will deal with three different cases, namely, with finite p-groups with a 2-generator
powerful subgroup; finite p-groups with p > 3 such that d((G’ )pk) is “small” for some
k = 0; and finite p-groups such that d(v,(G)) < 2 for some r > 2.
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Finite p-groups with a 2-generator powerful subgroup

The next lemma is the key to our proof of Theorem 3.9. As said, it shows that under
a specific hypothesis we can introduce powers in commutators but, apart from that, it
also shows that, with some additional conditions, covering a factor group L/LP with
commutators of a given element x is enough to cover the whole subgroup L.

Lemma 2.27. Let G be a finite p-group and let N < L be normal subgroups of G, with
L powerful and d(L) < 2. Then the following hold:

(i) If there exist x,g € G such that L/N = {[x,g]N) and [z,g,g9] € NP, then
LP'/NP' = [z, g"" |NP") for everyi > 1.

(ii) Assume furthermore that LP < N and |L : N| = p. If there exist x,g,h € G such
that L/N = {[z,g]N) and N/LP = {[x, h|LP) with |z, g,g] € NP and [z,h,h] €
LP’, then L < K,(G).

Proof. (i) We argue by induction on i. Assume first ¢ = 1. Since L is powerful and
L ={[z,g],N), it follows that LP = ([, g]?, NP), and thus LP/NP = ([z, g]PNP). Now,
from the hypothesis [z, g, g] € NP we get

[z, 9] = [z,9]" (mod NP), (2.2)

and consequently LP/NP = [z, gP|NP).

Now let i > 1. By Lemma 2.16, N is also powerful. If we prove that [z, g?, g*] € NP*,
then we can apply the induction hypothesis with LP and NP playing the role of L and
N, and ¢P playing the role of g, and we are done. Observe that |NP : Np2| < p?,
since N? is powerful and d(N?) < d(L) < 2. Since N is normal in G, it follows that
[N?,G'] < [N?,G,G] < NP°. As a consequence,

[N?,G?] < [N?,G]’[N?,G,G] < N¥*
and then (2.2) yields that
[z, 97, ¢"] = [z, 9", g"] (mod N*").

On the other hand, since [z, g,g] € NP implies that [z, g, g"] € NP as well, it follows
that [[z, g], g7, [, g]] € [N?, G'] < N*”, and we obtain as desired that

[7.9%.9") = [[2.9F", "] = [2.9.¢'] =1 (mod N"").
(ii) Consider the following normal series of G-
L>N>L’>N’>L" >N">...>1 (2.3)

By hypothesis, we have |L : N| = p. Also, since L is powerful and d(L) < 2, we have
|L : LP| < p?, and therefore [N : LP| < p. As a consequence, if R and S are two
consecutive terms of (2.3) then |R : S| < p, by using Lemma 2.15. Hence the section
R/S is central in G. On the other hand, by (i), R/S = {[z,y]S) for some y € G.
Then R/S < K,5(G/S) by Lemma 2.26, and by going up in the series (2.3) and using
Corollary 2.25, we conclude that L < K (G). O
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Finite p-groups where d((G’)pk) is “small”

Similarly, we now give a result concerning finite p-groups with p > 3 such that (G’ )pk is
powerful and d((G')P") < pFt! —pk — 1.

Lemma 2.28. Let G be a finite p-group with p = 3 and (G’)pk powerful for some k = 0,
and let L, N be two normal subgroups of G such that (G')P"')? < N < L < (G')P".
Write d = d((G')*") and suppose d < p*™ —pF —1. If L/N = {z,g]N) where z € G
and g € GP" | then _ _ '

[z,9]"" = [2,4"] (mod N""),
and LP' /NP = {[x, g" NP for every i > 0.

Proof. We will argue by induction on ¢. If ¢ = 0 then the result follows trivially, so
assume ¢ > 1 and suppose

[z, g]”

<[x,vgpi71]Npi7‘1>. By Lemma 2.13, L and N are power abelian, so
(NP = NP'. Since ((G/)P")*""" is powerful, Remark 2.9 yields

i—1 i —1

] (mod N?')

i—1 - [l" gp

—1

and Lpiil/Np% =
(LP'')P = LP' and

i—1

L7 N = (fa, " PPNP).

Thus, we only have to prove that

i—1

[2,¢" 1P =[2,¢"] (mod N*").

By the Hall-Petresco identity,

TP =l 1)

[x,gp : cp7

where c; € fyj(<[x7gpi—1]7gpi—1>> < [Lpi—17j_1 GP"] for every 2 < j < p. N_(z‘ge tha’p_llL/N is
cyclic of exponent p, so |L : N| < p and again by Remark 2.9 we have [LP" : NP' | < p,
so that [LP 71, G| < NPT Hence, since N is power abelian, if 2 < j < p — 1 we have
p .
c](-j) e NP',
If j = p, then ¢, € [LP ka]. Recall that (G’)plc is powerful, so we have
(GNP (GNP )P'| < p?, and hence NPt NP'| < p?. If k = 0, since d < p — 2,
we get

i—1

cpe[LP 1G] <[P 401 G] <[NP 4G] < NP

If £ > 1, then it can be proved using again the Hall-Petresco identity that for every
normal subgroup H of G we have

[H, G < [H,GJP[H, G,

SO

i—1 i—1 i—1

pe P, G <[P

Npi [Npi—

,GIP[LP

1

W(p—1)p* Gl

<
< ,(p_l)pk_]_ G] < Np 5

where the last equality holds since d < p**! — p¥ — 1. The result follows. ]
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Thus, combining Corollary 2.25, Lemma 2.26 and Lemma 2.28 we get the following
useful result. Recall that if L, N < G, then L/N is a chief factor of G if it is a minimal
normal subgroup of G/N.

Lemma 2.29. Let G be a finite p-group with p > 3 and (G’)pk powerful for some
k> 0. Write d((G’)pk) = d and suppose d < p*t1 — pF — 1. If there exist x € G,
90s- - ga—1 € GP" and a series from (G')P" to ((G')P")P

(G = Ny< Nyq <+ <Ny = (G)

in which each factor kNj/NjH is a chief factor of G generated by the commutator
[xagj]NjJrl) then (Gl)p = Kw(G)

Proof. Since (_G’)pk is powerful we have |(G')*" : ((G')**)P| = p?. By Remark 2.9, we
have ]N]’?Z/ij_ﬁ < p for every ¢ = 0, and furthermore, by Lemma 2.28, this quotient is

generated by [z, g?l]N P for every i and j. Therefore, it follows from Lemma 2.26 that

J+1

NJP /ng+1 = KINJPil(G/Nf-‘rl)‘

In this way, we have a series from (G’ )pk to 1 in which all factors are chief factors
of G and all elements of each chief factor are images of commutators of the form [z, g]
with g € G. The result follows by applying Corollary 2.25 again and again. O

Remark 2.30. Lemma 2.29 (and hence also Lemma 2.28) will be used with k& # 0 only
when proving Theorem 3.18, where we use it with k = 1. The general result has been
proved for completeness.

Finite p-groups with d(,(G)) < 2

Unlike the previous cases, one must be much more thorough when introducing powers
in lower central words. In this case we deal with finite p-groups such that d(y,(G)) < 2
if p is odd and v,.(G) cyclic if p = 2. Because of the high level of technicality required
in the proof of Lemma 2.33, though, we prove it step by step, proving first Lemma 2.31
and Lemma 2.32.

Lemma 2.31. Let G be a finite p-group such that for some r = 2 we have d(v,(G)) < 2
if pis odd or d(v.(G)) = 1 if p = 2. Then, for every 2 < j < r and every normal
subgroup R of G contained in v;(G) we have

k k

it o2 = [ 200, 2,] (mod [Ry—; G

k+1
p+

)

forallye R, xji1,...,2, € G and k = 0. Moreover,

[Rj GI" = [R5 G,
Proof. We will proceed by induction on r — j. If r = j then there is nothing to prove,
so assume j < r and that the result holds for all r — ¢ with j < ¢ < r. Fix a normal
subgroup R < 7;(G) of G and y € R. Thus, since [R, G] normal in G, by induction we

have
k

k
[y,ﬂj‘j_t,-l, v 7xr]p = [[y7$j+1]p s L2y 7x7’] (mOd [Rﬂ“—j G])
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Now, by the Hall-Petresco identity, we obtain

o (%)

sy LUj+1 = y Lj+1]1C9 T Cpk
[y, zjra]” =¥ wjae c
with ¢, € v ({[y, zj41],v)) for 2 < n < p¥, and since j > 2and y € R < v;(G), it follows

that
n € [Rojin-1)11 G] < [Riain-1)+1 Gl

for every n. Note that p~("=2) divides (p;: ) if p is odd and that p*~ (=1 divides (pr) if
p = 2. So, if p is odd, we get

k—(n—Q)]

p
67(1") € [Rom—1)+1 G][p )

and if p = 2 we get
2k k—(n—1)
CSL” € [Rogm-1)+1 G ]

(note that here, the ceiling function is used since k — (n — 2) (or k — (n — 1)) could be
negative, in which case we want the power pk—(n=2) (or the power 2’“_("_1)) to be 1).
Since d(v,(G)) < 2, it follows by Theorem 2.18 that v,.(G) is powerful. From Lemma 2.16
we then deduce that for all m > 0, [R,,—; GJP" is also powerful and d([R,,—; G]?") < 2,

SO

m m+1

|[R77“—j G]p : [Rﬂ"—j G]p

for all m > 0. This implies, in particular, that

| <p

m—+1

[[Rﬂ"—j G]pvavG] < [Rﬂ“—j G]p

for all m > 0, and therefore

k—(n—Q)] k+1

(R jiom_1) GIP < [Ry—j G

Now, if p is odd, using the inductive hypothesis we have

k*(n72)'|

[[Ro2(n—1)+1 Gi» w—j—1 G]
= [Rar—j-‘rQ(n—l) G] [ (24)
<[Roe; G]pk+1

If p = 2 then we argue in the same way, taking into account the fact that, in this case,
v-(G) is cyclic and hence

m 2m+1

[[R.r—j GI*",G] < [Ry—; G]
Thus, the first assertion follows.
For the second assertion, just observe that [Rpk,,«,j G] is generated by elements of

the form [ypk,xjﬂ, ...,x;) with y € R and 2j41,...,2, € G, and

k

k k41
V7, i1, 2] = [y, 241, .52 )P (mod [R,—; GJP ’

).
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Lemma 2.32. Let G be a finite p-group such that for some r = 2 we have d(v,(G)) < 2
if p is odd and d(v-(G)) =1 if p = 2. Assume that H and K are normal subgroups of
G, with K generated by vj—1-values, where 1 < j < r. Then for every k = 0 we have

k

[K,H" ,_; Gl <[K,H,_; G]"".

Proof. We use induction on k. The case k = 0 is trivial, so assume k = 1 first, and
suppose p = 3 (if p = 2 the proof follows in the same way). As p divides (3;) for2<i<p
and v3({[K,H],H)) < [K, H, H, H], the Hall-Petresco identity yields

[K,H”] < [K,H"[K,H, H,HJ.

Note that [K, H] is generated by elements of the type [z1,...,xj_1,2;], where z1,...
zj—1 € G and x; € H, so by Lemma 2.31, we have

)

(K HIP v Gl = [K, Hyr o GTP.

On the other hand, v,(G) is powerful by Theorem 2.18. Thus, it follows from Lemma
2.16 that
‘[Kv Harfj G] : [Kv Ha?”fj G]p| <p2a

so we obtain

|K,H,H,H,._; G| < [[K, H,—; G|, G, G]
< [K, H,r_j G]p
Hence,
[K, Hpﬂ’*j G] < [[K,HJP[K,H, H, H]]ﬂ"*j G] < [K, H,; G,

as desired.
Assume now k > 2. Then, by induction,

k—1

[K7 Hpk r—j G] < [Kv (Hp)p =] G]
< [Kv Hpﬂ“—j G]Pk_l
< (K, Hoj GPP",

and since [K, H,,_; G] is powerful by Lemma 2.16, we conclude

k—1 k

([Ka HaT‘*j G]p)P [K7 H?T*j G]p :
Thus, the proof is complete. O

Lemma 2.33. Let G be a finite p-group and let N, L be normal subgroups of G such
that v-(G)? < N < L < v (G) with r = 2 and |L : N| = p. Assume that there exist
some j with 1 < j<r andzy,...,xj_1,h,2j41,...,2. € G such that

L= <[$1a . '7xj71>h7xj+17 s 7$T]>N'

Let H be the normal closure of {h)y in G and assume also that one of the following
conditions holds:
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(i) p is odd, d(v,(G)) < 2 and the subgroup
[f}/j—l(G)v H, Hﬂ‘—j G]
is central of exponent p modulo NP.

(ii) p = 2, the subgroup v,(G) is cyclic and

[.’L‘l, . .,xj_l,h, Tjtly--- ,.%‘T]Z
= [z1,...,2j-1,h*, Tji1,..., 2] (mod N?).
Then,
k
[1‘1,...,:Uj_1,h,.%'j+1,...,Q?r]p
k k
=[z1,...,zj-1,h" ,zj41,...,2,] (mod NP")
for every k = 0. In particular,
k k k
L = <[:L’1, ‘e .,:cj_l,hp y Lj41,y - - .,acr]>Np .

Proof. We use induction on k. If £ = 0 there is nothing to prove and, if p = 2 and
k = 1, then the result follows from the hypothesis. Thus, assume k£ > 1 if p is odd or
k = 2 if p = 2, and suppose, by induction, that

k—1 k—1
[$1,...,l’j71,h,l‘j+1,...,$T]p = [.%'1,...,$j,1,hp ,.%'jJrl,...,afr]y

for some y € NP .
Write u = [zq,... ,xj_l,hpkfl,xjﬂ, ..., xr] € %(G) and note that (uy)? = uPyPc
where c € [N 4. (G)] < [N*"',G,G] < (NP"7')P = NP*. Thus,
k—1
([xl,...,xj_l,hp ,1‘j+1,...,l‘r]y)p
k—1

k
=[z1,...,zj—1, A" ,zjq1,...,2.]P (mod N?).

Moreover, by Lemma 2.32, we have

k—1

[f)/j—l(G%Hp sr—7 G]p

2 k+1

= [vj-1(G), Hyr—j GJP

<GP <N

so using Lemma 2.31 with R = [v;_1(G), H?*™"] we obtain

k

[.’L’l,...,.’L’j_l,h,l‘j_;,_l,...,.fr,«]p
k—1
= [xla"'axj—l)hp 7:rj+17"‘7$1"]p
k—1 k
=[[z1,...,zj—1, A" P xje1,...,2] (mod NP).

Suppose now p is odd. We first prove that

1 k—1

[vj-1(G), art ,H?" . G] is central of exponent p modulo NP (2.5)
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Recall that L, N and [v;-1(G),H, H,,—; G| are powerful by Theorem 2.18 and
Lemma 2.16. From Lemma 2.32 and hypothesis (i) of the statement we then get

1 k—1

[i-1(G), HP HP i G
< [Vj—l(G%Hv Hv?“—j+1 G]pk71

k—1

< (NPT = NP*

and

1 k—1

[’Yj—l(G))Hpk_ )Hp sT—] G]p
< (1 (G), H H,y GPP 1y
< (Np)pkfl _ Npk'

This proves (2.5).
By the Hall-Petresco identity, since p > 3, we get

[:rl, sy Tj—1, hpkil]p = [acl, sy Tj—1, hpk]ngg:,,
where z; € i ({[v;_1(G), H?" '], H"" ")) for i = 2,3. Write

I,

R =[y-1(G), HY " HY
so that zo € R and z3 € [R, G].
On the one hand, by (2.5) we have

k
[23axj+17 s 71'1”] € [erfjJrl G] < NP

On the other hand it follows from Lemma 2.32 with H = R and K = G and from
(2.5) that

k
(2D, 2j41,...,2;] € [Ry—j GIP < NP

Therefore, by Lemma 2.21,

pk

k
[z1,.. . zj—1, hy i1, .. 2] ([z1,. .., @1, A b zg, 0,0 2]

k k
E[xla"'vxj*bhp 7$j+17"'ax7'] (IHOd NP )

as we wanted.
If p = 2, since v,-(G) is cyclic, we have L = v,(G), N = v.(G)? and the inductive
step easily follows from the Hall-Petresco identity. Namely,

k—1 k
[.’L’l,...,xj_l,hZ ]2 = [1‘1,...,.’L'j_1,h2 ]22,

where 23 € [v;-1(G), G2 G**"]. By Lemma 2.32 and since k > 2 we have

2k—2 2k+1

[ (@), G G Gl <G < (@) = N7

so the result follows as above. O
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2.5 Some significant subgroups

In this last section of Chapter 2 we define some subgroups (or subsets) that will play a
fundamental role in Chapters 3 and 4. As mentioned at the beginning of the chapter,
these subgroups (or subsets) are interesting on their own, as they provide information
about the group structure itself.

The following subgroups were essential in [24], and so are in our results.

Definition 2.34. Let G be a finite p-group. For r = 2, we define

Cr(G) = Ca(7(G)/w(G)P).

If p is odd and if ~,(G) is powerful, then, by definition, ~,(G) is powerfully embedded
in C,(@), and so all power subgroups 7,(G)P" are also powerfully embedded in C,(G).
In other words, we have [y.(G)?',C(G)] < 7(G)P"". As it turns out, if .(G) is
powerful, this is true for all primes, and similar inclusions hold for other commutator
subgroups involving C,.(G). We collect these and other properties in Proposition 2.36
below. Before, however, we need a lemma that, actually, generalises the “powerfully
embeded” condition.

Lemma 2.35. Let G be a finite p-group and let N be a powerful normal subgroup of G.
Write C; = Cq(N/NP"). Then,
[Npk ij] < NP
» ~= 9
with 1 =1 and 5,k = 0.

Proof. We argue by induction on j. Assume first j = 0, and consider the factor group
G/Nka. Thus, we have to check that the subgroups Npk/Nka and C’i/Nka commute,
or equivalently, that their generators commute. Take g € N and h € C;. The Hall-
Petresco identity yields

Pk Pk

7 1] = [, P e ) e,

where ‘
cn € ({9, [g,h])) < [N, Cy, N,"71 N] < [NP', N,n71, N].
Recall that N is powerful, so if p = 2, this subgroup lies in N2i+2n_2, while if p > 2 it

k
i+n— P i .
lies in N?"7"7'. In any case, cg") e NP +k, and since
[g,h]pk E [N, Ci]pk < (Npi)pk _ Npi+k7

we conclude that [gpk, h] e NP as we wanted.

Consider now a general j. Again, we consider the factor group G/NP
have to see that the generators of Npk/NpHHk and C’fj /NPHHIc
and h € C; and observe that

i+jt+k
, and we

commute. Take g € G

k

[QP’“’ hpj] = [¢" ,(hpjfl)p] - [gpk7 hpjfl]pdgg) o,

Where k i1 i1 L 1 — R

e (Lo WP L) < NPT 0P <
by induction. Since ¢,j > 1 we have k +2j 4+ 2i—2 > i+ j + k, and since [gpk, hpj—l]p .
(Npmﬂ_l)p, the theorem follows. -
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Proposition 2.36. Let G be a finite p-group with ~,(G) powerful for some r = 2. Then:
(i) We have [v.(G)P', Cr(G)] < 7 (G)P"" for all i > 0.
i r,lG,C’TGpi < TGpiforeverinO.
(i) [yr-1( g
Moreover, if d(~,(G)) = 2, then:

(iii) |G : Cr(@)] < p.

(iv) We have G = C,(G) if and only if vr+1(G) < 7 (G)P. In this case, all subgroups
U such that v.(G)P < U < v(G) are normal in G. Otherwise, C.(G) # G and
there is only one normal subgroup U of G such that v,.(G)? < U < v,.(G), namely

U =%+1(G)w(G)P.

Proof. (i) It follows immediately from Lemma 2.35 taking N = 7,(G) and ¢ = 1.
(ii) We argue by induction on 7, the case ¢ = 0 being obvious. If ¢ > 0 then

i—1 i—1

G (@GP

[Vrfl(G% CT(G)pZ] < ['Vrfl(G)v CT(G)pl
< (w (@)Yl (G
where the last inclusion follows from (i).

(iii) Since 7,(G) is powerful, the quotient ~,(G)/v.(G)? is an elementary abelian
p-group of rank 2. The result follows from the fact that the quotient group G/C,(G)
embeds in a Sylow p-subgroup of the automorphism group of +,(G)/v,(G)P, which has
order p(p* — 1)(p — 1).

(iv) The first assertion follows immediately from the definition of C,(G). Now, if
C,(G) = G, then for Umax~,(G) we clearly have [U,G] < [1(G),G] < v+1(G), so
U is normal in G. However, note that there are p + 1 subgroups that are maximal in
v (G), so if there exists a non-normal subgroup U of G with ~,(G)? < U < 7,(G) then,
the conjugacy class of U has size p, and it follows that ~,4+1(G)~,(G)? is the only normal
subgroup of G which is maximal in 7, (G). O

Phra(@),G (@)
0@ < W (G,

(3

We now draw our attention to another type of subgroups (or subsets). The impor-
tance of these will become clear soon.

Definition 2.37. Let G be a finite p-group and let U maxg 7, (G) for some r > 2. We
define
Dy(U) = Cm-q(G)(G/U)‘

In other words, for x € v,_1(G) we have x € D,(U) if and only if [z,G] < U.

Definition 2.38. Let G be a finite p-group and let U max,,_ () 7+(G) for some r > 2.
We define
E.(U) ={zeG|[z,%-1(G)] < U]

Remark 2.39. The subset E,(U) may not be a subgroup of G if U is not normal in G.
Nevertheless, if U is normal in G, then E,(U) is also normal in G as it coincides with
the subgroup Cq(v,—1(G)/U).

The significance of these subgroups (or subsets) lies on the fact that one can extract
useful information about the group if there exists an element avoiding them, as the next
lemma shows.
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Proposition 2.40. Let G be a finite p-group and let r = 2. Then, for x € v,—1(G), we
have v, (G) = [z, G] if and only if

z ¢ [ J{Dr(U) | Umaxg 7,(G)}.
Similarly, v (G) = [vr-1(G),y] if and only if
y ¢ | JE-(U) | Umax, _ )7 (G)}-
Proof. Let x € v,—1(G). First note that [x,G] is normal in G since

[xvg]h = [$, h]_l[l’,gh]

for every g,h € G. Consequently we have [z,G] < ~,.(G) if and only if x € D,(U)
for some U maxg 7,(G), and the first assertion follows. Similarly, since [v,—1(G),y] is
normalised by v,_1(G), we have [v,—1(G),y] < 7-(G) if and only if y € E,.(U) for some
Umax, ) 7(G). O

We now present some properties of the subgroups D, (U). These will be used when
r =2 and d(G’) = 2, but we prove them in more generality for completion.

Proposition 2.41. Let G be a finite p-group and U maxg v, (G) with r = 2. Then:
(1) v-1(G)Py(G) < D, (U). In particular ®(G) < Dy(U).
(ii) If r = 2, then log, |G : Da(U)| is even.

(iii) If d(v(G)) < r, then D, (U) < Cr(G).

(iv) If d(G') < 2, then | J{D2(V) | Vmaxg G’} is a proper subset of G.

Proof. (i) We have

[Vr-1(G)P 7 (G), G] = [7—1(G)?, G 41(G) < 7 (G)P1r41(G) < U,

and 50 -1 (G)' - (G) < Dr(U).

(ii) By (i), the quotient G/D(U) can be seen as a vector space over F,. Thus, since
G'/U = F,, the commutator map in G/U induces a non-degenerate alternating form on
G/Do(U). Then, dimg, G/D(U) must be even by [40, Proposition 1].

(iii) We have

[DT(U)/W(G)] < [DT(U)’T G] < [U,T,1 G] < 'YT(G)p

since |U : 4,(G)P| < p" !, and consequently D,.(U) < C.(G).

(iv) Write D = (| J{D2(V) | V maxg G’} and assume for a contradiction that D = G.
If |G': (G')?] = p then D = D((G')?) and consequently G’ = [D,G] < (G')?, a
contradiction. Thus |G’ : (G')P| = p?. Let z € G be arbitrary. Then 2 € D(W) for some
W maxg G’ and the image of [z, G] in G = G/(G’)P has order at most p. It follows that
all conjugacy class lengths in G are either 1 or p, so by [8, Lemma 2.12] this implies
that |G| < p, which is again a contradiction. O
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Remark 2.42. By the previous proposition, if d(G’) < 2 then there always exists x € G
such that G’ = [z, G]. Since |G : C2(G)| < p by Proposition 2.36 and

U{DQ(U) | Umaxg G'} < Co(G)
by Proposition 2.41, we can choose x ¢ U{D2(U) | U maxg G’} such that G = (z)Cs(G),

and then we get G’ = [z, C2(G)].

We end this chapter with some properties that the subgroups and subsets D, (U)
and E,(V') have in common.

Proposition 2.43. Let G be a finite p-group and let r = 2. Let U, V, W maxg v,(G)
with V- # W and R, S, Tmax, (g7 (G) with S # T. Then:

(i) Dp(U) # v-1(G) and E.(R) # G.
Moreover, if d(7,(G)) = 2, then:
(ii) D.(V)n D, (W) < D,(U) and E.(S) n E.(T) < E.(R).
(iii) If U # R, then [D,(U), E.(R)] < v-(G)P.

Proof. (i) It is obvious, since D,(U) = 7,_1(G) implies that v,.(G) < U, and similarly
E,(R) = G implies that 7,(G) < R. In both cases we have a contradiction.

(ii) As d(vr(G)) = 2, the subgroup ~,(G) is powerful by Theorem 2.18, so v,(G)? =
®(v,(G)). Hence, VAW < 4 (G)? < U and S n T < 7(G)? < R. Then, the result
follows from the fact that = € D,(V) n D, (W) if and only if [,G] < V n W and
ye E.(S)n E.(T) if and only if [y,%-1(G)] < SnT.

(i) We have [D,(U), E-(R)] < U n R < - (G)P. O






Chapter 3

Commutators

We are finally ready to study Problem 1.2 for several words inside the commutator
subgroup of the free group. Being the simplest one, we will start with the common
commutator word s.

The definition of this word is attributed to Dedekind; according to Frobenius [21],
and in modern notation, Dedekind proved in 1880 that the derived subgroup G’ of a
group G is normal in G and that G’ < N for every N < G such that G/N is abelian.
These results, though, were first published by Miller in [62]. Miller himself was the first
labelling these elements as “commutators” in [63] and [64], where he dealt with them
as objects that are of interest in their own right. Moreover, in [64], he found a criterion
to ensure that the product of two commutators is again a commutator (property (ii)
of Lemma 2.2), and with the help of this identity he showed that every element of the
alternating group A, with n > 5 is a commutator, a result rediscovered over 50 years
later by Ito [42] and Ore [65] (in fact, Ore stated his famous conjecture, which will be
addressed later, in this paper).

The first explicit statement of Problem 1.2 for commutators can be found in Weber’s
1899 textbook [78], which was the first textbook to introduce commutators and the
commutator subgroup. It was Fite, however, who provided in [20] the first example of a
group whose derived subgroup is strictly bigger that the set of commutators. As we show
now, [60, Lemma 1] provides a great deal of groups G for which the derived subgroup
G’ does not coincide with the set of commutator K (G) of G (much more information of
the origin of the commutator can be found in the introduction of [47]).

Example 3.1. Let G = Fy/v3(F;)F}, where Fy is the free group on d > 6 generators
and p > 2 is a prime. This group, even if it has exponent p and is nilpotent of class
2, does not satisfy the equality G’ = K(G). Indeed, note that |G'| = p(g), while
|G : Z(G)| < p?. Thus, since d > 6, we have 2d < (g), so from [60, Lemma 1], the
inequality holds.

Actually, it is shown in [47, Example 5.2] that G’ # K(G) holds even if d > 4.
Moreover, for d = 4, one can find a suitable subgroup N < G’ of order p? such that
the quotient group H = G/N satisfies H' # K(H) with H = C, x Cp, x C}, x C, [47,
Example 5.4].

29
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We need, then, to restrict our choice of the group G to some particular family of
groups if we want it to satisfy the desired property. A remarkable result is the proof by
Liebeck, O’Brien, Shalev, and Tiep in 2010 of the so-called Ore Conjecture.

Theorem 3.2 (Ore Conjecture, [56]). Let G be a non-abelian finite simple group. Then
G =K(G).

Another typical approach to the problem is considering small groups or groups with
small derived subgroup. The main two results in this context are Theorem 3.3 and
Theorem 3.4 below.

Theorem 3.3 ([24, Theorem 1]). Let G be a group and suppose one of the following
conditions hold.

(i) G’ is abelian and either |G| < 128 or |G'| < 16.
(ii) G’ is non-abelian and either |G| < 96 or |G'| < 24.
Then G' = K(G). Moreover, these bounds are best possible.

For p-groups of order p™ the situation is much better, as one only needs to consider
bounds on the exponent n, regardless of the prime p. In this way, as there is no bound
on the prime, there is no bound on the order of the group either.

Theorem 3.4 ([45, Theorems 3.4 and 4.2]). Let G be a p-group of order p™. Then
G' = K(Q) ifn <5 for odd p and n <6 forp=2.

We will focus, though, on restrictions regarding the number of generators of the
derived subgroup. Thus, we will deal separately with three cases: G’ cyclic, d(G') = 2
and d(G') = 3.

A wealth of additional information about the condition G’ = K(G) can be found in
[47].

3.1 Cyclic derived subgroups

In this case, Macdonald proved in [58] that even if G’ is cyclic then Problem 1.2 may
have a negative answer. Actually, much more is true.

Theorem 3.5 ([58, Theorem]). For every n € N there exists a group G such that G’ is
cyclic but cannot be generated by less than n commutators.

This theorem shows how delicate the equality G’ = K(G) can be. The situation,
fortunately, is much better for the cyclic case if G’ is infinite or if G is nilpotent. We

will see, actually, that in general, nilpotent groups behave specially well when it comes
to Problem 1.2.

Theorem 3.6 ([68, Corollary]). Let G be a group. If G' is cyclic and either G is
nilpotent or G’ is infinite, then G’ consists of commutators.

In this theorem, once it is shown that the result holds for groups with infinite derived
subgroup, one can reduce the problem, as seen in Proposition 1.3, to the case in which
G is finite and nilpotent. Furthermore, as said before, the study of this property for
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finite nilpotent groups is obviously reduced to finite p-groups. We will thus limit our
focus to them in the following chapters (and to pro-p groups in Chapter 5).

As an easy illustration of our methods, let us give an easy proof of Theorem 3.6 for
finite p-groups. Let C' = Cg(G'/(G')P*). Then |G : C| < p since |G' : (G')?°| < p?, and
so G’ = [G,C]. By the Burnside basis theorem, we have G’ = ([z,y]) for some z € G
and y € C. Then [z,y,y] € [G,C,C] < [¢/,C] < (G')*" and we can apply Lemma 2.27
with L = G’ and N = (G')P to get G' = K,(G).

3.2 Derived subgroup with 2 generators

If G is a finite p-group with 2-generator derived subgroup, then Guralnick showed the
following.

Theorem 3.7 ([25, Theorem Al). Let G be a finite group and let P € Syl,(G) with
P* = P n G abelian and d(P*) < 2. Then P* < K(G).

For the proof of Theorem 3.7 Guralnick uses a reduction argument that allows him
to assume that the group G is a finite p-group. In that case, the theorem translates to
the following.

Corollary 3.8. Let G be a finite p-group with 2-generator and abelian derived subgroup.
Then G' = K(G).

We have generalised Corollary 3.8, showing that the condition that G’ is abelian can
be dropped. Moreover, we show that all the commutators in G’ have a particular form.

Theorem 3.9 ([18, Theorem Al). Let G be a finite p-group. If G’ can be generated by
2 elements, then G' = {[z,g] | g € G} for a suitable z € G.

We split the proof of Theorem 3.9 into two parts, proving first the result for p odd
and then for p = 2.

3.2.1 Finite p-groups with p odd

The result for odd primes can be easily proved using Corollary 2.25.

Theorem 3.10. Let G be a finite p-group, where p is an odd prime, and assume that
d(G') £ 2. Then G’ = K,(QG) for a suitable x € G.

Proof. The theorem follows from Theorem 3.6 if G’ is cyclic, so assume d(G') = 2. We
write for simplicity C' = C3(G). Thus, by Remark 2.42 we have G’ = [z,C] for some
x € G and so, by Lemma 2.26,

G NG = {[z,ul(G") |ue C}.

By Corollary 2.25, we only need to prove that (G')? < K,(G). Hence we may assume
that (G")P # 1.

Since G’ is powerful by Lemma 2.17, the map g(G’)P — g][’(G’)p2 is an epimorphism
from G'/(G')* to (G')?/(G')?° by Proposition 2.8. Thus (G')?/(G')P* consists of the
cosets [z, ulP(G’ )p2 with ©w € C. Now if u € C then, by the Hall-Petresco identity,
[z,uP] = [z,u]Pw for some w € (H')Py,(H), where H = {(u™')®, u) = (u,[x,u]). Then
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H' <[G,C,C] < (G)P and (H')? < (G')?", and since p is odd, also w(H) < [(G)P,C] <
(G")P* by Proposition 2.36. Hence [z, u]? = [z,uP] (mod (G/)P°) for every u € C. It
follows that every element of (G')? is of the form [z, u?] modulo (G')P* for some u € C.

Now let us choose a subgroup T’ between (G')? and (G')?" with |(G')? : T| = p. Thus
both (G')?/T and T/(G')P* are cyclic, generated by the image of some commutator [z, u?]
with u € C. By Proposition 2.36, we have [z,uP,uP] € [G,CP,CP] < [(G')P,CP] <
()P’ Thus we can apply (i) of Lemma 2.27 with L = (G&')? and N = T to get
(G"P < K,(Q), as desired. O

3.2.2 Finite 2-groups

Now we are concerned with the proof of Theorem 3.9 for finite 2-groups, which is quite
more involved. The main difficulty arises when C3(G) = G, and in order to deal with
that case, we introduce the following subgroups.

Definition 3.11. Let G be a finite 2-group such that (G’)? # 1. For every U maxg (G’)?
we define the subgroup R(U) by the condition

R(U)/U = Cgu(G?/U).

In other words, R(U) is the largest subgroup of G satisfying [R(U),G?*] < U. We set
R = U{R(U) | Umaxg (G")?}.

Lemma 3.12. Let G be a finite 2-group with d(G') < 2. Assume furthermore that
C2(G) = G and that (G')* # 1. Then the following hold:

(i) [G, 6% = (G")*

(ii) [#,G?] = (G")? if and only if = ¢ R.
(iii)

(iv)

Proof. (i) The subgroups [G,G?] and (G’)? coincide modulo v3(G). Since groups of
exponent 2 are abelian, we have G’ < G?, which implies that v3(G) < [G,G?]. On the
other hand, C5(G) = G implies that 13(G) < (G')?. We conclude that

G? < R(U) < G for every Umaxg (G')%.

R(U) n R(V) < R(W) for every U,V,W maxg (G")? with U # V.

[G,G*] = [G,G?]3(G) = (G')*3(G) = (G).

(ii) If [z, G?] = (G’)? then obviously x ¢ R. On the other hand, if [z,G?] # (G')?
then [z,G?] < (G")? by (i). Let N = [2,G?](G")*. Then N is a proper subgroup of
(G")?, and normal in G, since [(G")?, G] < (G")* by (i) of Proposition 2.36. If we consider
U maxg (G')? containing N, then z € R(U) € R. This proves the result.

(iii) By (i), R(U) is a proper subgroup of G. On the other hand, we have

[G%,G*] < [G,G*P’[G,G?,G] = (G')'[(G')*, G] = (G')*.

Since (G')* < U, it follows that G? < R(U).
(iv) Notice that G is powerful by Theorem 2.18, so in particular d((G’)?) < 2. Hence
we have U n'V = (G')* < W, so the result follows from the definition of R(W). O
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The next result will allow us to complete easily the proof of Theorem 3.9 in the case
when p = 2 and C3(G) = G. Its proof is long and technical, and it requires a careful
analysis of the relative positions of the subgroups D(T') and R(U), where T maxg G’
and U maxg (G)2.

Proposition 3.13. Let G be a finite 2-group with d(G') = 2 and Co(G) = G. Then
there exists © € G such that G' = [x,G] and (G')? = [z, G?].

Proof. We know by Remark 2.42 that G’ = [a,G] = ([a,b], [a,c]) for some a,b,c € G.
If we set H = {a,b,c) then H' = G’ and the result immediately follows for G once it is
proved for H, taking into account that [G2,G] = (G’)? by Lemma 3.12. Thus we may
assume that d(G) < 3 and, by Remark 2.42, also that (G’)? # 1.

In the remainder of the proof, let Z/(G’)? be the centre of G/(G’)?. Observe that
|G : Z| > 4, since otherwise the derived subgroup of G/(G’)? is cyclic, and consequently
G’ is cyclic. Since, again by Lemma 3.12, we have ®(G) = G? < Z, it follows that
|G : G?| = 8 and that Z = G2.

Write D = u{D2(T) | T maxe G'}. By Proposition 2.40 and Lemma 3.12, it suffices
to show that DU R does not cover the whole of G, since then any x € G~ (D uU R) satisfies
both G’ = [z,G] and (G")? = [z,G?]. Since G? < Do(T), R(U) for all T maxg G’ and
U maxq (G')?, we can prove the non-covering property by working in the group G/G?
of order 8. Thus, if we use the bar notation in this factor group, then we need to prove
that |D U R| < 7. We do this by first determining the order of D and then analysing
the position of the subgroups R(U) with respect to D and among themselves. Before
proceeding, observe that G’ is powerful by Theorem 2.18, and so the sections G’/(G’)?
and (G")?/(G")* are central in G by Proposition 2.36, since C5(G) = G. Hence the
conditions 7 maxg G’ and U maxg(G’)? are equivalent in this case to T maxG’ and
U max(G")?, respectively.

We claim that |D| = 4 and that D is a (maximal) subgroup of G. Let us consider
an arbitrary T'maxg G’, and observe that there are three choices for T, since d(G’) = 2.
First of all, note that |Dy(T')| = 2, since logy |G : D2(T')| is even and Dy (T') is proper in
G by Proposition 2.41. Thus Dy(T)" = [D2(T),G?*] < (G')?. Now let Smaxg G’ with
S # T. Then [Dy(S), Do(T)] < SNT < (G)?, and as a consequence (D)’ < (G')2. Also,
if Do(S) = Do(T) then [Do(T),G] < (G')? and Do(T) < Z = G?. Hence |Do(T)| = 1,
which is a contradiction. Thus D is the union of three different subgroups of order 2,
and |D| = 4. Since D < (D) < G and (D) # G', it follows that D is a (maximal)
subgroup of G, as claimed.

Now we start the analysis of the position of the subgroups of the form R(U). Since
G’ is a 2-generator powerful group, we have [(G’)? : (G')*] < 4. Hence (G')? has at
most 3 maximal subgroups, and the intersection of two different maximal subgroups is
(G")Y. By Lemma 3.12, all the R(U) are proper in G, and if none of them is maximal
in G, we immediately get |D U R| < 7. The same conclusion holds if R(U) = D
whenever R(U)max G. Thus we may assume that there exists U maxg (G’)? such that
R(U)max @G, i.e. such that |R(U)| = 4, and furthermore R(U) # D.

Then [DUR(U)| = 6, and we may also assume that there exists another V maxq (G’)?
such that R(V) &€ D u R(U). This implies in particular that d((G’)?) = 2, and (G’)?
has exactly 3 maximal subgroups. Also, since G’ is powerful, the square map induces
an isomorphism between G’/(G’)? and (G’)?/(G’)*. As a consequence,

geG'~ (") = ¢2e (G~ (G), (3.1)
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and also all three maximal subgroups of (G’)? are of the form T2, where T maxg G'.

Let W be the third maximal subgroup of (G’)2, apart from U and V. If R(W) = 1
then, since R(U) n R(V) < R(W) by Lemma 3.12, it follows that |[R(V)| < 2 and
consequently |D U R| < 7. Hence we may assume that |[R(W)| = 2.

Now we consider two separate cases:

Case 1: R(W) < R(U).

Again by Lemma 3.12, we get R(W) = R(U) n R(W) < R(V'), with proper inclusion
since R(V) € R(U). In particular, |[R(W)| = 2 and |R(V')| = 4, which implies that
|R| = 6.

Assume first that D n R(U) # D n R(V). In this case we have |[D n R| > 3 and
hence |D U R| < 7, as desired.

G
/ T
D R(U) R(V)

| TS >
DARU) DARV) R(W)

G2
Figure 3.1: The case D n R(U) # D n R(V).

Suppose now that D n R(U) = D n R(V), so that this intersection coincides with
R(W). Now, by the fourth paragraph of the proof, D has three subgroups of order 2,
which are all of the form Dy(T'). Thus R(W) = D9(T') for some T maxg G'.

/
I~

R(W)

\
= D2( )

|
G2
Figure 3.2: The case D n R(U) = D n R(V).

Choose g € R(W) \ G?. Then [g,G] is contained in T, but since Z = G2, it is not
contained in (G’)2. Since G = (R(U), D) and [g, D] < D' < (G)?, there exists h € R(U)
such that [g,h] € T \ (G')%. Now, we have

[9: ] € [R(W),G*] < [R(U),G*] n [R(V),G*] <U NV < (G')*,
and, on the other hand,
l9,h*] = [g, h]*[g, R, R],

where [g, h]? € T?>~(G")* by (3.1), and [g, h, h] € [h, G'] < [h,G?] < U. Thus necessarily
U = T?. Since the same argument can be applied with V in the place of U, we deduce
that U = V, which is a contradiction.
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Case 2: R(W) € R(U).

We are going to prove that this case is impossible. Choose an element = € R(V') \
(Du R(U)). Then G = R(U) u zR(U). Since R(W) £ R(U), there exists y € R(U)
such that xy € R(W). Note that y ¢ G2, since otherwise xy € R(V) n R(W) < R(U).
Now [zy, %] = [y,2%] e W n U = (G")*, and then

[yvx]Z = [y,:cQ][y,:L",x]_l ev,

since [y, r,z] € [G?,z]. By using that [yz,vy*] = [z,y?] and that yx = (2y)® € R(W),
we obtain in the same way that [y, z]?> € U. Hence [y, z]? € (G')* and then, by (3.1), we
get [y, 7] € (G')2.

On the other hand, z ¢ D yields

G' = [z,G] = [z,{m)R(U)] = [z, R(U)].

Since y ¢ G% and |R(U)| = 4, we can write R(U) = (y, z,G?) for some 2. Now, since
[z,9] € (G')? and [z,G?] < (G")?, it follows that G’ = ([, 2], (G')?). This implies that
G’ is cyclic, which is a contradiction. O

Example 3.14. Let A = {(a) x (b) x (v) = C4y x C4 x C4 and (u) = C4. Define the
semidirect product U = {uy x A via the automorphism

av = a®b?, b* = b, v* = vba.
Let also (z) =~ Cy and define the group G = {(z) x U via the automorphism
a® = ab?, b= b3, u® = ua®, V" = b

Then G/ = {a,b) and G? = (2%,u?,v?), and the group G/G? has the same subgroup
structure as the group in Figure 3.1.

Similar examples can be constructed showing that all lattices that we have in the
other cases that we have considered in the proof of Proposition 3.13 are actually possible.

We can now proceed to prove Theorem 3.9 for the prime 2.

Theorem 3.15. Let G be a finite 2-group, and assume that d(G') < 2. Then G' =
K (G) for a suitable x € G.

Proof. We may assume that d(G’) = 2 and we write C' = Cy(G) for simplicity. Recall
that G’ is powerful by Theorem 2.18. We split the proof into two cases:

Case 1: C # (.

Let T = ~3(G)(G")%2. We know from (iv) of Proposition 2.36 that T'maxg G’ and
that it is the unique normal subgroup of G which is maximal in G’. Hence if N < G
and N < G’ then N < T. On the other hand,

[G,C"] < [G,C,C) < [G', 0] < (G2,

while [G,G'] € (G")%. Tt follows that C’' < G, and consequently C’ < T.
Since T is the unique subgroup such that 7' maxg G’, by Proposition 2.41, we have
G’ = [z,G] for every = ¢ Do(T). We are going to show that Lemma 2.27 can be applied
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either with L = G’ and N = T or with L = T'and N = (G’)?, depending on the values of
some commutator subgroups. In the latter case, Corollary 2.25 will complete the proof.

Suppose first that [G’,C] < T?. Then we take x ¢ C, which by Proposition 2.41
implies = ¢ Dy(T). Hence G = (x)C and G'/T = {[x,y]T) for some y € C. Also,
observe that T/(G")? = ([x,[z,y]](G")?). Now we have [z,y,y] € [G',C] < T? and
[z, [z, ], [z,y]] € [G', G"] < (G")*, since G’ is powerful. Thus we are done in this case.

Therefore we assume that [G’, C] € T? in the remainder. Observe that T is powerful
by Lemma 2.16 and hence |(G')? : T?| < |G’ : T| = 2 by Lemma 2.15. Since [G’,C] is
contained in (G)? but not in T2, we have |(G')? : T?| = 2. Also |T?: (G")?*] < 2.

If [T,G] € T? then since G = (G ~ C) we can choose = ¢ C and t € T such that
(G"?/T? = ([x,t]T?). Since [x,t,t] € [(G")?,G'] < (G')® < T* and we can argue with
the chief factor T/(G’)? as in the case [G’,C] < T?, the result follows also in this case.

Suppose finally that [T, G] < T2. Since [G’,C] « T? and

[G', Do(T)] < [Do(T),G,G] < [T,G] < T?,

there exist z € C' \. Do(T) and g € G’ such that (G')?/T? = {[z,g]T?). Then [x,g,9] €
[(G)2,G"] < T*. On the other hand, there exists y € G such that G'/T = {[z,y]|T).
Since C' < T, we have y ¢ C and then T/(G")? = ([z,y,y](G")?) = {[z,y*](G")?). Now

[,5%,9°] € [T,G*] < [T, GP[T. G, G] < [T.GP*[T?,G] < (G")*,
which completes the proof in this case.
Case 2: C =G.

By Proposition 3.13, there exists z € G such that G’ = [z,G] and (G)? = [z,G?].
Since C' = G implies by Proposition 2.36 that the sections G’/(G’)? and (G')?/(G")* are
central in G, it follows from Lemma 2.26 that

G'/(G')? = K2 (G/(G)?)

and

(G2 /(G = Ky (G2/(G)Y).
On the other hand, by Proposition 2.36, we have
[2,G*,G*] = [(G)*, G < (G)"

Hence we can apply Lemma 2.27 with L = (G’)? and any N maxg (G')?, getting (G')? <
K.(G). Now we are done by applying Corollary 2.25. O

Combining Theorem 3.10 and Theorem 3.15 we establish Theorem 3.9.

3.3 Derived subgroup with 3 or more generators

We now study groups with 3-generator derived subgroup. In this context, Rodney
started addressing the easiest cases.

Theorem 3.16 ([69, Theorems A and B]). Let G be a group with d(G') = 3. Suppose
one of the following conditions holds.
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(i) G is nilpotent of nilpotency class 2.

(ii) G is finite and G’ is elementary abelian of order p®.
Then G' = K(G).

Notice that Rodney’s results in Theorem 3.16 involve only groups for which G’ is
abelian. Thus, Guralnick generalised these results to groups whose derived subgroup is
an abelian and finite p-group with p > 5.

Theorem 3.17 ([25, Theorem B]). Let G be a group and suppose G’ is an abelian finite
p-group with p = 5. If d(G') < 3, then G' = K(G).

Moreover, he found counterexamples showing that the result is false for p = 2 or
p = 3, even if G’ is abelian ([25], Example 3.5 and Example 3.6). In Theorem 3.18,
as we have done in Theorem 3.9, we generalise Guralnick’s result to finite p-groups in
which G’ need not be abelian (we will prove this result later on).

Theorem 3.18 ([32, Theorem A]). Let G be a finite p-group with p = 5. If G' can be
generated by 3 elements, then G' consists only of commutators.

In this case, it is not true, in general, that there exists a fixed element z € G
such that G’ = K,(G), as we had in Theorem 3.9 or in Theorem 3.19 below. Indeed, let
G = F3/v3(F3)FY, where Fj is the free group on 3 generators and p > 3 is a prime. Note
that G’ is 3-generator and that |G : Z(G)| = p®. Now, if 2 € Z(G), then K,(G) = 1,
and if * ¢ Z(G), then |G : Cg(x)] < p? since (Z(G),x) < Cg(z). In particular,
K. (Q)] = |G : Calx)| < p?

On the other hand, as shown in Example 2.20, G’ need not be powerful if it is
generated by 3 elements. However, we will see that the finite p-groups with 3-generator
non-powerful derived subgroup are a very special type of p-group, and with this, the
proof of the result for such groups will follow easily. Thus, the theory of powerful groups
will be essential also in this case.

Regarding groups whose derived subgroup is generated by more than 3 elements,
Macdonald ([59, Exercise 5, page 78]) and Kappe and Morse ([47, Example 5.4]) showed
that for every prime p there exist finite p-groups with 4-generator abelian derived sub-
group such that G’ # K(G). These examples show that the property may fail if the
derived subgroup has more than 3 generators. Therefore, with Theorem 3.9 and Theo-
rem 3.18, we close the gap between the case when G’ is abelian and can be generated by
3 elements and the case when G’ is generated by more than 3 elements. With this, the
study of the condition G’ = K(G) in terms of the number of generators of the derived
subgroup is complete for finite p-groups.

A natural continuation to Theorems 3.9 and 3.18 would be considering finite p-
groups with 4-generator derived subgroup. This has been done recently in [46], where a
classification,, up to isoclinism (see [30]), of finite p-groups such that |G’| = p*, (G')P =1
and G’ # K(G) is given.

In Theorem 3.19 we show that with some additional restrictions, groups with d(G’) >
4 do satisfy the desired equality.

Recall that the action of a finite p-group G on a normal subgroup N of G is uniserial
if

[N, G,.1.,G]: [N,G, 1G] < p

for every i = 0.
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Theorem 3.19 ([32, Theorem BJ). Let G be a finite p-group and write d = log, |G’ :
(G"Y?|. If d < p—1 and the action of G on G’ is uniserial modulo (G')P, then there
exists x € G such that G' = {[x,¢g] | g € G}.

Before proving Theorem 3.18 we will first establish Theorem 3.19 in Section 3.3.1,
as it is required in the proof of Theorem 3.18. We will then split the proof of Theorem
3.18 into two parts, dealing separately in Sections 3.3.2 and 3.3.3 with the case in which
G’ is powerful and the general case, respectively.

3.3.1 Groups acting uniserially on their derived subgroup

For a uniserial action of a group G on G, the so-called two-step centralisers are defined
as the centralisers in G of the factors v;(G)/vi+2(G), where i = 2 and v;+1(G) # 1 (see
[10]). In view of the statement of Theorem 3.19, we will define the following subgroups,
which are just the two-step centralisers modulo (G')P.

Definition 3.20. Let G be a finite p-group such that the action of G on G’ is uniserial
modulo (G')P. Then, we define

Si(G) = Ca(i(G)G) /rir2(G)(G))
for every i = 2 such that v;11(G) € (G')P.

Remark 3.21. In the situation above, the subgroups S;(G) are all maximal in G since
[7i(G) (G + %i2(G)(G)P| = p? and [7i(G)(G')P, G] £ 7i42(G)(G")P.

With this in mind, we can now establish Theorem 3.19.

Proof of Theorem 3.19. 1f d = 1, then G’ is cyclic and the result follows from Theorem
3.6, so assume d > 2 (and in particular p > 3). For the sake of simplicity we will write
G; = vi(G)(G")P, so that

(G =Gup2<Gyp1 <...<G3<Gy =G

is a series from G’ to (G')P such that |G; : Gi4+1| = p for all 2 < i < d+ 1. Note that
if Nmaxg G’ then G3 < N. Therefore, N = G3 and (3 is the unique subgroup which
is maximal in G’ and normal in G. Moreover, note that the index of D9(G3) in G is
strictly greater than p by Proposition 2.41. Note also that there are only d — 1 < p —2
two-step centralisers, which are all maximal by Remark 3.21. Thus, we can take

x € G\(D2(G3) U S2(G) U ... U S4(Q)). (3.2)

By Proposition 2.40 we have G’ = [z,G] and since S2(G) is maximal in G we have
G = [z,G] = [2,{x)S2(G)] = [z,52(G)]. In particular G'/Gs = {[z,g1]G3) for some
g1 € S2(@G). Furthermore, since = ¢ S;(G) for 2 < i < d, we also have Gj;+1/Git2 =
([, 9i]Git+2) for a suitable g; € G;. It follows from Lemma 2.26 and Corollary 2.25 that
G'/(G")P € Kyane(G/(G)P).

Recall that v442(G) < (G')P, and since d < p — 1, it follows that ~,—1(G") <
Yop—1)(G) < 724(G). Thus, since 2d > d + 2 we have v,_1(G') < (G')?, so that G’
is potent. In this case the power map from G'/(G')P to (G')P/(G')P" induced from the
map x — zP need not be a homomorphism. However, we can restrict its domain and
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codomain in order for it to be so. We claim that the map from G;/Gi.1 to GY/GY 4

sending gG;4+1 to gPG? 41 1s an epimorphism for every 2 <i < d + 1.
Take z,y € G;. By the Hall-Petresco identity we have

(2) .(2)

(zy)? = aPyPes” es” - ¢,

p
with ¢; € v;(G;). Obviously if 2 < j < p— 1 then c](-j) € G?, ;. Besides, if j = p, since
G; < G, we have

€ [Gi, 2., G < [Gy,G,2P7D Gl < G4,

where the last inequality holds since by Lemma 2.14 we have
Gi: G} | =1Gi: GI|GY GV 4] < pitt

and d + 1 < 2(p — 1). This proves that the map is a homomorphism. Moreover, since
G’ is potent it follows that G; is power abelian, so the map must be an epimorphism.
The claim is proved.

Thus, from Lemma 2.14 it follows that we have a series

(@) = G§+2 < GZJA S S G§ <Gy = (G)

in which each factor G¥ 1/ G? 4o has order less than or equal to p and is generated by the
image of [z, g;]P for every 1 < i < d. Now, in order to apply Lemma 2.29 let us prove
that

[#, 6] = [,97] (mod GF,,)

for every i. Assume first ¢ = 1. We will use again the Hall-Petresco identity so that

(3) .(5)

[z, 91]" = [3379?]02 C3 " Cp

with ¢; € v;(([z, 1], 91)) < [G, S2(G),.7.,52(G)]. If 2 < j < p—1 then c](-j) e G If

j = p, we have
Cp € [G7 SQ(G)a p7 SQ(G)] < [G47 SQ<G)7I?T'27 52(G>]

Lemma 2.14 yields |Gy : G5 < p?~!, and since d — 1 < p — 2, we conclude ¢, € G§. For

i = 2 we have g; € G', so the claim follows more easily applying the same method.
Now, d < p—1 < p?> —p—1, so we apply Lemma 2.29 with j = 1 and we get

(G")P € K. (G). Since G'/(G")P < Kry»(G/(G')P), we conclude by Corollary 2.25. [

Remark 3.22. If the exponent of G’ is p, that is, if (G')? = 1, then, following the same
method, Theorem 3.19 can be stated for d < p + 1. Indeed, if G is the union of p + 1
proper subgroups, then all of them must be maximal. Hence, since |G : D2(G3)| > p,
we can take z as in (3.2) and conclude in the same way as in the first paragraph of the
proof.
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3.3.2 Groups with 3-generator and powerful derived subgroup

In order to prove Theorem 3.24 we first need the following technical lemma, which will
be very helpful when using induction on the order of the group.

Lemma 3.23. Let G be a finite p-group with p = 5, G' powerful and d(G') = 3.
Assume there exist x,u,v € G such that G' = {Ju,v],[z,u], [z,v]), G' # [z,G] and
[z,G,G] < (G"P. Then, there exists a family of proper subgroups of G such that
[z, G](G')P equals the union of their derived subgroups. Moreover, each of these derived
subgroups is powerful.

Proof. Consider the subgroups H; = {(z,uv’,vP) for 0 < i < p—1 and H, = (x,v,uP).
Let us prove that H] = {[z,uv'])(G')P for 0 < i < p—1 and that H), = {[z,v])(G")P.

Suppose first i # p. Since G' = {[u,v], [z, u], [z,v]) and G" # [x,G], we have
|G’ : [z, G](G')?| = p, and since [z, G, G] < (G')P, the map

G — [z,GUE)/(G)P
g —  [zg@)

is a homomorphism. Therefore, we can write
G = {u,v], [z, uv"], [z, v]).
Thus, since G’ is powerful, we have
(G = (u, o], [z, w0, [z, v]P).

The subgroups [z, G](G')P and {[z,v])(G')? are normal in G since [z, G, G] < (G')?, so
since p = 5, taking &k = 0 in Lemma 2.28 it follows that

[u, 0] = [uv’,0"]  (mod ([z, G](G")"))

and
2

[z,v]P = [z,vP] (mod (G')").

Hence, ‘ .
(G = {[w’, vP], [z, 0"], [z, w0'}) < HJ,

so that {[z,uv']|)(G')P = Hj, as asserted. Similar arguments imply H,, = {[x,v])(G")?.
It is easy to see now that [z, G|(G")P = | J/_, H! (just observe that the H] are precisely
the subgroups between [z, G](G')? and (G')P). Finally, notice that |[H/ : (G')P| = p for
every 1, so since (G')P is powerfully embedded in G’, it follows from [48, Lemma 11.7]
that H/ is powerful. Thus, the proof is complete. O

We are now in a position to prove Theorem 3.18 in the case that G’ is powerful.

Theorem 3.24. Let G be a finite p-group with G’ powerful, d(G') < 3 and p = 5. Then,
G = K(G).

Proof. We proceed by induction on the order of G. For d(G') < 2 the result follows
from Theorem 3.6 and Theorem 3.9. Now assume that d(G’) = 3 and note that we have
|G" : (G")P| = p®. We will consider three different cases depending on the position of the

subgroup I' = (G")Py3(G).
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Case 1. |G': T| = p.

If T : 44(G)(G")P| = p, then the action of G on G’ is uniserial modulo (G')P and the
result follows from Theorem 3.19.

Assume then v4(G) < (G')P. If G’ = K,(Q) for some z € G, then, of course, we are
done, so assume G’ # K, (G) for every x € G. We claim that there exist u,v € G such
that G’ = {Ju,v], [u,v,u], [u,v,v]). For that purpose we can suppose that (G’ = 1.
As seen in the proof of Theorem 3.19, the subgroup I' is the unique subgroup such that
I'maxg G'. Since both C2(G) and Dy(T") are proper subgroups of G by Propositions 2.36
and 2.43 respectively, we can take u ¢ Co(G) U Do(T"). Then, G’ = [u, G] by Proposition
2.40 and Cgp(ul') # G/T. Let us write C*/T' = Cgr(ul).

Since u ¢ C2(G) we have [u,G'] # 1. If [u,G'] = T, then, we can find a series
of normal subgroups of G from G’ to (G')? such that all factors have order p and are
generated by images of elements of the form [u, g] for some suitable g € G. Thus, Lemma
2.29 implies G’ = K, (G), which is a contradiction. Therefore, we have |[u, G']| = p and
hence Cq(G'/[u,G']) # G. Take thus v € G\(Ce(G'/[u,G']) v C*). Then, G')T" =
{Ju,v]T"y (because v ¢ C*), and again, as we have seen for u, we also have |[v, G']| = p.
It follows that [u,v,u],[u,v,v] # 1. Furthermore, since v ¢ Cq(G'/[u,G’]), we have
[u,G'] # [v,G'], and we conclude that G’ = {[u,v], [u,v,u], [u,v,v]). This proves the
claim.

Remove now the assumption of (G')? = 1 and observe that [[u,v], G, G] < (G')?, so
we are in the situation of Lemma 3.23. It follows then that I is the union of the derived
subgroups of some proper subgroups of G. These derived subgroups are all powerful, and
since d(G’') = 3, they all can be generated by 3 elements. So, by induction, I' € K(G).

Take now g € G'\I" arbitrary. We claim that g is a commutator modulo I'*" for every
i = 0 (and hence that g is a commutator). We proceed by induction on i. Clearly, we
have g = [x,y]z for some x,y € G, z € I, so the case i = 0 is satisfied. Assume then
that ¢ > 1 and g = [z, y]|z1 where z,y € G and z; € e

Note that G'/T" = {[z, y]I"), so since [I', G] < (G')P, we have

L/(G) = {[z,y,h)(G")" | h e G}.
Besides, since G’ is powerful, the power map from G'/(G’)? to (G (G s an

epimorphism, so that TP /(G')?" = {[z,y,h]? " (G")' | h € G}. By Lemma 2.28 we

have
1

PGV = {le . NGV [ he G,
Thus,
g = [ yllz,y,h*]ze = 2", 4" ]z
for some h* € G and z3 € (G’ )pi. We rewrite, in order to simplify the notation,  instead
of 2"* and y instead of y"*, so that g = [z, y]z2.
Note again that G'/T" = {[z,y|T'), so it follows that

(G0 = e,y TV,
Therefore, N N
g= [.’L',y][l’,y]]p z3 = [may]1+]p <3
with j > 0 and 23 € I, Now, the last theorem in [39] asserts that K (G)* < K(G) for all

integer s such that pts. Therefore, there exist 2/,y’ € G such that [z, y]'" ipt — [, ],
so g = [2/,y']23 with z3 € [P, as claimed.
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Case 2. |G’ : T| = p*.

Write D = U{D2(U) | Umaxg G'}. We first claim that C3(G) U D # G. On the
one hand, as seen before, I' < N for all N maxg G’, and since |G’ : T'| = p?, there are
exactly p + 1 subgroups between G’ and T', say Uy, ..., Ups1. Furthermore, since they
are central over I', they are all normal in G. Thus, D = Dy(Uy) U -+ U Da(Up41). In
addition, it follows from Proposition 2.41 that |G : Do(U;)| = p? for every i.

On the other hand, observe again that Cy(G) # G. As a consequence, if we write
|G| = p™, then we have

p+1
C2(G) U D| < |Co(G)| + D] < Y] [Da(Uh)] + |Ca(G)]
i=1
S+ " 2 +p" T =2p" 4 p" T <,

as we wanted. Take now z ¢ C2(G) u D. Since x ¢ D we have G'/T' = [z, G]T'/T by
Proposition 2.40, and since x ¢ Co(G) we have I'/(G")P = [z, G'](G")?/(G')P. Thus, since
all subgroups between G’ and I" are central and hence normal in G, we can construct
a series from G’ to (G')P where all factors have order p and are generated by images of
commutators of the form [z, g] with g € G. Again, the result follows from Lemma 2.29.

Case 3. v3(G) < (G")P.

If G = [z,G](G")P for some x, again, all the subgroups between G’ and (G')P are
normal in G, so we could construct a series from G’ to (G')? in such a way that we
would be done by Lemma 2.29. Therefore, assume [z, G|(G')P < G’ for every z € G.
By Theorem 3.16 the result is satisfied for G/(G’)P, so we have G' = |, [z, G](G')P.
Thus, it suffices to prove that [z, G](G")? < K(G) for every z € G.

Suppose first |[z, G](G')P : (G')P| = p. We claim that there always exists y € G
such that [z, G](G)? < [y,G](G")PmaxG’. For that purpose, we assume (G')P =
1. Note that |G’/[z,G]| = p? so by Theorem 3.9, there exists u € G such that
G'/[x,G] = [u,G][r,G]/[z,G]. Hence G' = [u,G][z,G] with |[u,G]| = p*>. Observe
that Cg(u),Ca(z) # G, so take y ¢ Cg(u) u Cg(x). Thus, [z,G] = {[z,y]), and
[u,y] # 1. If [u,y] € {Jz,y]), then [x,y] € [u,G], a contradiction. Observe that
[,9], [u,y] € [y, G] though, so |[y, G]| = p?. Since [z, G] < [y, G], the claim is proved.

Hence, we only have to consider the case |[z,G](G')P : (G')?| = p?>. We claim
now that there exist u,v € G such that G’ = {Ju,v], [z,v], [z, u]). Assume again that
(G"P = 1. Since |[z,G]| = |{[z,9] | g € G}| = p?, we have |G : Cg(x)| = p?, and
we can consider a maximal subgroup M such that Cg(x) < M < G. Observe that
G' =[G,G] =[G, M], G={(G\M) and M = (M\Cg(x)). Hence, there exist u € G\M
and v € M\Cg(z) such that [u,v] ¢ [z,G]. Furthermore, [z,G] = {[z,u], [z, v]), so
G’ = {[u,v],[z,u],[z,v]), as claimed.

Remove now the assumption of (G')P = 1 and note that we are in the situation of
Lemma 3.23 since [z, G, G] < v3(G) < (G")P. Hence we have [z, G](G')P < K(G), as we
wanted. O

Remark 3.25. Case 2 can be generalised for p > 3 using a slightly different version of
Lemma 2.29, but one must be more selective in the choice of x.
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3.3.3 Groups with 3-generator but non-powerful derived subgroup

As said before, G’ need not be powerful if it is generated by 3 elements. We will start,
hence, analyzing which kind of groups may arise when G’ is non-powerful. Actually, we
will see that in such a case, G/(G")P must be a very special kind of p-group, namely, a
CF(m, p)-group. These groups are a generalisation of groups of maximal class and were
introduced by Blackburn in [10]. They are defined as follows.

Definition 3.26. Let m > 3. A finite p-group G is said to be a CF(m, p)-group if the
nilpotency class of G is m — 1 and the action of G on G’ is uniserial.

In particular, if G is a CF(m, p)-group, then |G’| = p™~2. We next define the degree
of commutativity on CF(m, p)-groups exactly in the same way as for groups of maximal
class (compare [10, Page 57]).

Definition 3.27. Let G be a CF(m,p)-group. The degree of commutativity of G is
defined as
max{k <m —2|[G;,G}] < Giyjyx for all i, j > 1},

where G1 = S2(G) and G; = v;(G) for all i > 2.

Lemma 3.29 below shows that if G’ is non-powerful, then G is a very particular group,
namely a CF (6, p)-group modulo (G')P. The key part of the proof is the following lemma
due to Blackburn.

Lemma 3.28 ([10, Theorem 2.11]). Let G be a CF(m,p)-group with m odd and 5 <
m < 2p+ 1. Then G has degree of commutativity greater than 0.

Lemma 3.29. Let G be a finite p-group with p = 3, d(G') = 3 and G’ non-powerful.
Then G/(G")P is a CF(6,p)-group.

Proof. Clearly we can assume (G')P = 1 and G” # 1. Thus, the Frattini subgroup of
G' is G, and since d(G') = 3, then |G’ : G”| = p?. Note that G” < v4(G), so the only
possibilities for v3(G) are |G’ : v3(GQ)| = p? or |G’ : v3(GQ)| = p.

Suppose first, for a contradiction, that |G’ : v3(G)| = p?. Then, since G” < v4(G)
and |G’ : G”| = p3 we have G” = 74(G). In addition, G’ has 2 generators modulo v3(G),
which implies that |G” : 5(G)| = p (recall that (G')? = 1). Consider the subgroup S3(G)
and recall it is maximal by Remark 3.21. In the same way as in Case 2 of Theorem
3.24, it can be seen that there are only p + 1 maximal subgroups of G’ that are normal
in G. Hence, making the same computations, it follows that D u S3(G) # G, where
D = u{Dy(U) | Umaxg G'}.

Thus, we can pick x € G\(D u S3(G)), and we have

G = [2,G] = [2,{x)S3(G)] = [z, 55(G)].

We can then find y, z € S3(G) such that G’ = {[z,y], [z, z],73(G)). We write a = [z, y]
and b = [z, z] for simplicity. Thus, 74(G) = {[a,b],75(G)), and we write, again for
simplicity, d = [a, b].

On the one hand,

[bvy]x = [b[b7 3}], yail] = [bvy]d (mOd 75(G))7
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so that [b,y,z] =d (mod v5(G)). Similarly we get
[,a]" = [2,ald  (mod 7(G))

and so [z,a,x] = d (mod v5(G)). In particular [b,y],[z,a] ¢ 74(G), and since the
quotient v3(G)/v4(G) is of order p, we have [z,a] = [b,y]" (mod 74(G)) for some 1 <
1 < p — 1. Note, however, that

[z,a,2] = [[b,y]", z] = [b,y, 2]’ =d' (mod ~v5(G)),

so we get ¢+ = 1 and thus

1# byl =[za] (mod 74(G)). (3.3)

On the other hand, we have [G’, S3(G)'] < [G', S3(G), S3(G)] < 75(G). Let Z be the
subgroup of G defined by Z/v5(G) = Z(G'/v5(G)). We have |G’ : Z| = p?, and since
[G',v3(G)] < v5(G), we get Z = ~3(G). In particular, we obtain S3(G)" < v3(G), and
the nilpotency class of S3(G) is less than or equal to 2. Now,

[y, 2" = [ya™", 267 = [y, 2][b, ][z, ald  (mod 75(G)),

so that [y,z,z] = [b,y][z,a]d (mod v5(G)). This is a contradiction, since (3.3) and
p > 2 implies [b,y][z, a] € 73(G)\14(G), but [y, z, z],d € 74(G) as S3(G)" < v3(G).
Therefore we must have |G’ : v3(G)| = p. Thus

G" =[G, G = [(,3(@)] < 15(G),

and since |G’ : G”| = p3, we have |[3(G) : 74(G)| = [11(G) : v5(G)| = p and G" = v5(G).
Let us write G = G/v7(G). Note that

1(G) =[G",G'] = [%5(G), G'l < 11(G),

s0 13(G") = T and since d(G') = 3, then d(G") < 2. Indeed, we can write G’ = {a,b, )
with a € G'\3(G), b € 13(G)\4(G) and ¢ € 74(G)\5(G), and so the generators of G are
a,b] € 75(G) and [a, c] € %6(G) (note that [b, c] € 7(G) = 1). Hence |y5(G) : 76(G)| = p
and |y6(G)| < p- B

If |v6(G)| = 1 then v(G) = v7(G) = 1 and we are done, so assume |v5(G)| = p. In
this way, G is a CF(7, p)-group, and since p > 3, by Lemma 3.28 it follows that the degree
of commutativity of G is greater than 0. In particular we have G = [12(G),v3(G)] <

v6(G), which is a contradiction. The lemma follows. O

With all this, the second part of the proof of Theorem 3.18 follows easily.

Theorem 3.30. Let G be a finite p-group with G' non-powerful, d(G') = 3 and p = 5.
Then, G' = K(QG).

Proof. By Lemma 3.29 the action of G on G’ is uniserial modulo (G’)? and, in addition,
|G" : (G")P| = p* < pP~! since p = 5. The result follows directly from Theorem 3.19. [

Thus, combining Theorem 3.24 and Theorem 3.30 we establish Theorem 3.18.



Chapter 4

Lower central words and general
outer commutator words

Much less is known about Problem 1.2 for general outer commutator words than for the
commutator word. All the results that one can find in the literature for these words
consist of generalisations of some of the theorems that work for the commutator word
to lower central words. Following this line of thinking, we will generalise, to the extent
possible, the results we have proved in the previous chapter to lower central words.
Nevertheless, for outer commutator words in general, even if we will only consider groups
with cyclic verbal subgroup, the results that we obtain are less satisfactory, as we will
not go further than the second derived word.

As we have seen, the equality G’ = K(G) works particularly well for finite p-groups.
For this reason, and in view of Proposition 1.3 as well, we will continue working with
finite p-groups.

We will start, as in the previous chapter, by dealing separately with different cases,
depending on the number of generators of the verbal subgroup ~,(G): in Section 4.1
we study finite p-groups with ~,(G) cyclic for some r > 2, while in Section 4.2 finite
p-groups with d(7,(G)) = 2 for some r > 2 are studied. Finally, in Section 4.3, outer
commutator words in general are considered.

4.1 Lower central words with cyclic verbal subgroup

The first result for lower central words was due to Kappe in [44], where she, among
other results, generalised Macdonald’s counterexamples in Theorem 3.5.

Theorem 4.1 ([44, Theorem 1]). Let r = 2. For any n € N, there exists a group G in
which v, (G) is cyclic and generated by no set of less than n ~y,-values.

Based on Kappe’s work in [44], Dark and Newell generalised Rodney’s results in
Theorem 3.6 from commutator words to lower central words.

Theorem 4.2 ([12, Theorems 4 and 5]). Let G be a group and r = 2. If v,(Q) is cyclic
and either G is nilpotent or ~,(G) is infinite, then ~,(G) consists only of ~,-values.

45
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As with Theorem 3.6, once we show that Theorem 4.2 works for groups with ~,(G)
infinite, we can assume that G is a finite p-group by Proposition 1.3. For such groups,
we will give an alternative simpler proof than that of [12]. In particular we will prove
the case p = 2 in Theorem 4.5 below, which was omitted in [12] since it was pointed out
to be very technical. In fact, even if Theorem 4.5 can be modified so that it works for
all primes, we will prove the case in which p is odd separately in Theorem 4.4, as the
proof turns out to be much shorter in this case. First, however, we need the following
simple but very helpful lemma.

Lemma 4.3. Let N be a cyclic normal subgroup of a group G. Then, [N,G'] = 1.

Proof. Since N is cyclic, the automorphism group Aut(N) of N is abelian. Hence,
G/Ca(N) is abelian as well, which implies that G’ < Cg(N). O

Theorem 4.4. Let G be a finite p-group with p odd and ~,(G) cyclic. Then there exist
r1,...,Tr—1 € G such that

(@) = {lz1, w1, 9] [ g € G

Proof. Let v.(G) = {[z1,...,z,]) with z1,...,2, € G. Then,

GV = ([z1, ..., 2"

for every k = 1. The Hall-Petresco identity gives

i k()

[$1,...,xr]p :[xla'--y'iv']r) ]02 "'cpk
with ¢; € vi({[z1, ..., 2], 2r)). When i < p*, we have ¢; € Yrric1(G) < %(G)pi*’ and
% .
so c@(l) € %(G)pkﬂ since p = 3. If i = p¥, then ok € Vi 1(G) < e ' <

k+1

v (G)P" . Therefore,
k k
(G = .ot D)
for every k > 0. Moreover, since [z1,... ,:cf«’k,G] < 'y,,(G)pkH, the result follows from
Lemma 2.26 and Corollary 2.25. O

Theorem 4.5. Let G be a finite 2-group with ~,.(G) cyclic. Then there exist 1, ...,
Tj1, Tjt1, ---,Tr € G with 1 < j <7 such that

ryT(G) = {['Tla s Lj—159, Tj+1, - - - 7x1“] | g€ G}

Proof. Define C = Cg(7-(G)/y-(G)*). Since v,(G) is cyclic, then the quotient group
7-(G)/7-(G)* has order at most 4, so that |G : C| < 2. Let v.(G) = {[x1,...,2,]) with
Z1,...,%r € G and let j be the maximum number such that x; € C. Observe that we
may assume j = 2 since G’ = [G, C]. Suppose, in addition, that [z1,...,2,] is, among
all ,-values which are generators of 7, (G), the one with maximum ;.

For every i = 1,...,r consider an arbitrary element y; € mZ-G, so that y; = x;[zi, 9]

for some g € G. Since 7,41(G) < 7-(G)?, it follows from Corollary 2.22 that

i, e = [21,...,2,] (mod 7,.(G)?),
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and since v, (G)? = ®(,.(G)), we have
"YT(G) = <[y17 e 7y7“]>'

Therefore . .
’YT(G)2 = <[y1’ s 7yT]2 >
for every k = 1. We claim that
2k+1

]2k = [yl,...,yjzk,...,yr] (mod v, (G)* )

for every y; € xZG and k > 1. Take k = 1 first. By Lemma 2.31 we have

[y1, o

i,y =l w% Yt - ue] (mod 7, (G)Y),
and observe that
syl = [y Py U] Uit - el
If (Y1, Yjs Y5 Yitts - - - Yr) & 1 (G)?, then
Yr41(G) = 1 (G)? = Y1, i Ui Yjrts - - - U]

and so
ry""(G) = <[y17 e Y Y Yj+1, - - 7y7‘—1]>7
which contradicts the maximality of j in the choice of the generator [z1,...,x,].
Hence,

[yla e Y Y Yj, .- 7y7"] € P)/T(G)Zl?
and it is easy to see by Lemma 2.21 that
T R T A Tl FR A (e
for every gi,...,9r+1 € G. Therefore, again by Lemma 2.21 we obtain
[yla s 7y7"]2 = [yl, s 73/]2‘7 ce- 7y7“] (HlOd PYT(G)ZL)
The claim follows now from Lemma 2.33 with L = ,.(G), N = v,(G)2.
Now we can conclude our proof in the usual way. Let 2™ be the order of v, (G). We
will prove by induction on m — k that
k
’YT'(G)Q = {[yl’ e Yi—-1,9,Yj+15 - - - 7y7‘] | g€ G}

The result is true when k£ = m, so assume k < m and

k+1
’YT(G)Q + < {1, -, Yi-1,9,Yj+1,---, Y] | g € G}.
We apply Lemma 2.23 with L = %A(G)?k*1 and N = %(G)Q’C‘ As

k
L: [yla"'vyjz 7"'7y7’]NUNg UfYT’(yla"‘7yj—17gvyj+17"'7y7’)N
geG

for every y; € a:iG, by Lemma 2.23 we get
k
’YT(G)Q = {[yb e Yi—-1,9,Yj+1y - - - 7y7“] | ge G}
In particular, when k = 0 we obtain

’YT(G) < {[y17 e Yi—1,9,Y541, - - - 7y7‘] | g€ G}?

G as we wanted. ]

for every y; € x;

Thus, combining Theorem 4.4 and Theorem 4.5 we get the result for all primes when
v (G) is cyclic.
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4.2 Lower central words with non-cyclic verbal subgroup

The study of Problem 1.2 for 2-generator verbal subgroups was initiated by Dark and
Newell in [12] and followed by Guralnick in [26], where, as Rodney did for the commu-
tator word in Theorem 3.16, they proved the result for the easiest cases, namely, the
cases in which the verbal subgroup is central or elementary abelian.

Theorem 4.6 ([12, Theorem 2]). Let G be a group and r = 2. If v,11(G) = 1 and
7 (G) is a finite group with 2 generators. Then v.(G) = G,.

Theorem 4.7 ([26, Theorem 3.2]). Let G be a group and r = 2. If ~.(G) is elementary
abelian of order p®, then v,(G) = G.,.

These theorems were again generalised by Guralnick himself. Indeed, the most im-
portant result until this point was due to him.

Theorem 4.8 ([27, Theorem A]). Let G be a group, p = 5 a prime and r = 2. Suppose
Y- (G) is finite and P € Syl,(v-(GQ)) is generated by 2 elements. If P is abelian, then
PcdaG,,.

Thus, for finite p-groups this theorem reduces to the following.

Corollary 4.9. Let G be a finite p-group with p = 5 and let r = 2. Suppose v,.(G) is
abelian of rank 2. Then v,(G) < G,.

In addition, he found an example of a finite 2-group with d(v,(G)) = 2 such that
7 (G) # K.(G), but the case p = 3 remained unknown.

In this chapter we will generalise again Guralnick’s result for finite p-groups, showing
that the condition that v, (G) is abelian is not necessary. Moreover, we prove that the
result is also true if p = 3, closing in that way the gap between the primes 2 and 5.

Theorem 4.10. Let G be a finite p-group and let r = 2. If v,.(G) is cyclic or if p is odd
and v, (G) can be generated with 2 elements, then there exist x1,...,Tj—1,Tj41,...,%y €
G with 1 < j < r such that

’YT‘(G) = {[‘Tla o 7xj—1)guxj+1) cee 7‘T'r’] | g€ G}

Before proving Theorem 4.10 we point out that if 7, (G) is generated by more than
2 elements then the result is no longer true. Indeed, as shown in [12, Example 2], for
every prime p and every r > 3, there exists an infinite metabelian group G of nilpotency
class 7 such that 7,.(G) is elementary abelian or order p* and v3(G) # G.,. Even if
these groups are infinite, Proposition 1.3 ensures that such examples do also exist for
finite p-groups. This means that, as we have done with the commutator word, we have
completed the study of Problem 1.2 for lower central words in finite p-groups in terms
of the number of generators of the verbal subgroup.

We now prove Theorem 4.10 in two different sections dealing separately with two
different cases, namely, C,(G) = G and C,(G) # G.

4.2.1 Finite p-groups with C,.(G) = G

In order to apply Lemma 2.33 we will first need to find suitable generators for the verbal
subgroup 7,(G). We will do so now in Lemma 4.11 below. Then, as mentioned before,
we will be able to conclude by applying Lemma 2.23.
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Lemma 4.11. Let G be a finite p-group with d(~,(G)) = 2 for some r = 2. If C.(G) =
G, then there exist an integer j with 1 < j <r and x1,...,2j-1,%Zj41,...,%, € G such
that

7 (G) =Ly, Yj-1. 9 Y41, - el [ g € G)
for every y; € a:ZG
Proof. We may assume that ®(v,(G)) = 1, so using Proposition 2.36 we also have

Yr+1(G) < 7 (G)? = 1. Notice that it suffices to find an integer j and z1,..., zj_1,
Zj+1,- .-, Tr € G such that

Py'I“(G) = <[$17 ey Lj—1,9,Tj4+1y - - - 7xT] ‘ g€ G>7

since if y; € :L'Z-G, then y; = x;h; for some h; € G’, which by Corollary 2.22 implies that

Yo Ym0y Yjtds - - Yr] = [T, Tjm1, Gy g, - - -5 T (4.1)

We will proceed by induction on r. If » = 2, then the result is true by Theorem 3.9.

Now, if there exists « € G,,_, such that v,(G) = [z,G] then we are done. Hence,
suppose [z,G]| < 7,(G) for every x € G,,_,. Observe that all subgroups V' such that
Y (G)P <V < 7,.(G) are normal in G by Proposition 2.36, so we have

Vmaxg 7 (G) for every V max~y,(G).

If
D= [] DV)<%m(@),
V max v, (G)

then we could choose a 7,_1-value not belonging to D, which contradicts Proposition
2.40. Therefore, assume D = v,_1(G).

Now, observe that there exists U max~,(G) such that [D,(U),G] = U. Indeed,
otherwise, [D,(U),G] < 7 (G)P for all Umax~,(G), and so D,(U) = D,(V) for all
V max v,(G), which is a contradiction by (i) and (ii) of Proposition 2.43. Now, by (iii)
of Proposition 2.43, we have [D,(U), E.(V)] = 1 for all V # U, and so, since by Remark
2.39 all the subsets E, (V') are actually normal subgroups of G, we obtain

[ BV =#aG
V max v, (G)
U#V

Hence, as G cannot be the union of two proper subgroups, we can choose

o € G\(ET(U) g Vmg . ET(V)),
U#V

and thus Proposition 2.40 yields

1(G) = [7r-1(G), 2 ].
Define now Cy, = C, _ (¢)(z») and notice that C,, is normal in G since

[CCCT7 G?‘T'r‘] < [ﬁyr—l(G)a G,.Tr] < A)/T-Q—l(G) =1
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Thus, we consider the quotient group G/C,,.. Since v,4+1(G) = 1 the map

n:%-1(G) — 7 (G)
g i [gvxT]

is a group epimorphism whose kernel is Cy,., so
Yr-1(G/C, )| = p°.

Furthermore, since 7, (G) < Cy,, we have C,_1(G/C,,) = G/C,,. By inductive hypoth-

esis, there exist an integer j with 1 < j < r —1 and z1,...,2j-1,2j4+1,...,2—1 € G
such that
")/r—l(G) = <[.%'1, ey xj_l,g, xj+1, . ,.%'T_l] ‘ g€ G>C$T
Finally,
Y (G) = [r—1(G), zr]

= [<[$17 ey Lj—1,G9, Lj41, - - 7$T—1] | g€ G>er,l’r]

= <[CC1, cee 7$j—1ug7$j+1a ey Tp—1, $T] | g€ G>7
where the last equality holds by (4.1). This concludes the proof. O

Theorem 4.12. Let G be a finite p-group with p odd and d(v,(G)) = 2. If C,.(G) = G,
then there exist an integer j with 1 < j <r and x1,...,7j-1, Tj41,...,% € G such that

’YT(G) = {[$17 o 7$j—1)guxj+1) cee ,!Tr] | g€ G}

Proof. By Lemma 4.11, there exist an integer j with 1 < j < r and z1,..., 7;_1,
Zj41,.-., Tr € G such that

PYT(G) = <[y17 e Yi—159,Y5+15 - - 7y7"] | g€ G>

for every y; € le Choose arbitrarily y; € :cZG for all 7 so that

VT(G) :<[y17 s Yi—1,91,Y5+15 - - - 7y7‘]7 [y17 s Yi—15,92, Y415 - - - 7y7“]>

for some g1, g2 € G. Observe that v, (G) is powerful by Theorem 2.18, and let

U=y, ¥j-1,92, Y541, - - - ¥r D7 (G)P.

Notice also that U is normal in G since C,.(G) = G. Observe that v,11(G) < v,.(G)?,
and 7, (G)P is central of exponent p modulo 'yT(G)p2 by Proposition 2.36. Therefore, we
apply Lemma 2.33 to both quotients

w(G)/U and U/v.(G)P

and we get
k k

k
WT(G)p = <[y17"'7yj—17gzl) ayj+17-'-7yr]>Up

and
k k+1

k
U ={y1,-- - ¥j=1,G5 2 Yi+1,- - ur D0 (G)P
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for every k > 0. Furthermore, as v,4+1(G) < 7 (G)?, it follows from Corollary 2.22 that

[yl)' s Yi—1,91,Y5+15 - - '7?/1”]8 = [ylu o 7yj—17gig7yj+1)° . '7y1“] (mOd U)

and

Wi, ¥im1,92: Yt - Y] = Y1, - ¥j—1, 95, Y1, - - - Y] (mod v, (G)P)

for each integer s. Thus, using Lemma 2.33 and Proposition 2.8 it can be easily proved
that

k
[y17 e 7yj—17.g%[7 7yj+17 e 7y7’]8
k
= [yla .. ayj—lvglvyj-i-la ‘e ayr]SP
k

= ([yh s >yj717g§197yj+11 cee 7yr]u)p
k k
E[yla"'ayj—lvgfp )yj-i-l?"'ay?“] (mOd Up )a

where v € U, and similarly

k
p s
[yl: - Yi—-1,99 s Yj+1,- .- 7y7"]
k pk+1

=y, Y1, 95" Yj+1,---> Y] (mod 7,.(G)

).

Hence, for each k£ = 0 we have

k k
w(@P < w41, 9,941,y UP
geG

for every y; € :z:Z-G, and similarly

k k+1
ur < U/Yr(ylv"‘7yj—17gvyj+17"‘7y7’)f)/7“(G)p
geG

for every y; € le
The result now follows by repeatedly applying Lemma 2.23 to the subgroups of the
series

e—1 @ i—1

<’YT(G)1’ <. <7T(G)P < UP <. <%1(G)’

e e—1

1=7%(G)P <UP

where p° is the exponent of v,(G). O

4.2.2 Finite p-groups with C,.(G) # G
To end the proof of Theorem 4.10, we need a further technical definition.

Definition 4.13. Let G be a finite p-group and let r > 2. We define C}(G) = 7, (G)?
and

Ci(G) = Cyu)(G/Ci11(G))
for all 2 < i < r — 1. In other words, for x € v;(G) we have z € C/(G) if and only if
[2,G] < G714 (G).

As done in the previous section, we start by finding suitable generators for ~,(G).
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Lemma 4.14. Let G be a finite p-group with d(v,(G)) = 2 for somer = 2 and C,(G) #
G. LetU = v 11(G)v-(G)P. Then, there exist an integer j with2 < j <1, x1,...,T;-1 €
G and c € C.(G) such that

VT(G) = <[y17 s 7yj—17ca gj+17 s 797‘]>U

for every yi € ka with k = 1,...,7 — 1 and every gj11,...,9 € G\Cr(G). Moreover,
[Vi(G),Cr(G)] < CIHG) for everyie {j,j+1,...,7}.

Proof. Recall that v, (G) is powerful by Theorem 2.18. We will proceed by induction on
r. Suppose first 7 = 2 and take an arbitrary x € G\C2(G). Since C2(G) is maximal in
G by Proposition 2.36, we have G = (z)C5(G). Also, as D2(U) < C3(G) by Proposition
2.41, we have x ¢ Dy(U). Moreover, by Proposition 2.36 it follows that U is the unique
subgroup such that U maxg ~,-(G), so Proposition 2.40 gives G = [z, G’]. Thus we get

G = [z,G] = [z,{x)Ca(G)] = [, Co(G)] = ([z, U

for some ¢ € C3(G). In addition, [G’, C2(G)] < (G')P = C3(G), as desired.
Take then r > 3 and write C' = C,(G) for simplicity. We may assume ~,(G)P =
C7(G) = 1. Suppose first there exist z1, ..., ,_1 € G such that

w(G) = [x1,...,2,-1,C].

Since [v,(G),C] = 1 and since 27 = z;[z;, g| for every g € G, it follows from Corollary
2.22 that
’YT'(G) = [y17 sy Yr—1, C]

for all y; € le Hence, we may assume there are no such elements. In other words, if
x € G,,_,, then [z,C] # 7,.(G). Note, however, that [x,C] is normal in G since, as
above, [z,C19 = [z9,C] = [z, C]. Since U is the only non-trivial normal subgroup of G
properly contained in ~,(G), we get [z,C] < U for every 7,_i-value x. Since v,_1(G)
is generated by all v,_j-values, we have, then, [y,-1(G),C] < U. This, in particular,
implies that C' < E,(U). As U is normal in G, it follows that E,.(U) is a subgroup by
Remark 2.39, and since E,(U) # G by Proposition 2.43, we deduce that C = E,.(U).
Note that we have V max, _ () 7(G) for every V max~,(G) since

[(G), 7-1(G)] < [w(G), Gl < [(G),G,G] = 1.

On the other hand, U = v,41(G), so for every V max~,(G) with V # U we have
[v+(G), E.(V)] <U NV =1, and then, E.(V) < C. Therefore,

J{E(V) | Vmaxy, (@)} < C©
and thus, Proposition 2.40 yields
W (G) = [w-1(G), ]

for every g € G\C.
As [7(G),%r-1(G)] = 1, the map

Ng : Yr—1(G) — 1 (G)
r > [z,9]
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is a group epimorphism for every g € G\C whose kernel is C, _ (z)(g). Choose an
arbitrary g € G\C, write Cy = C, _ (@(g) for simplicity and note that

[Cy, G = [Cy,<9)C] = [Cy, O] < [1r-1(G), CT S U < Cy,

where the last equality holds since U < Z(G). Thus, the subgroups Cy are all normal in
G, and we can consider the groups G/C,. Now, v,._1(G/Cy) = v,—1(G)/Cy is isomorphic
to 7,(G), so it has order p* and exponent p. In addition v,(G) £ C, since otherwise
[7+(G), g] = 1, which contradicts the fact that g ¢ C. Thus,

G/Cy # Cr1(G/CYy).
Moreover, since [v,—1(G),C] < U < Cy, it follows that
Cra(G/Cy) = C/C,

for all g € G\C. By Proposition 2.36, there is only one normal subgroup R of G with
Cy < R <%-1(G), so R = Cyy,(G).

We apply now the inductive hypothesis to all groups G/Cj. It follows that for each
g € G\C, there exist j, > 1, 114,...,7,-14 € G and ¢, € C such that

Yr—1(G) = {W19:- - - Yjg—1,9:Cg> Gjg+15 - - - » Gr—11)Cgr (G)

for every y; 4 € xfg, i=1,...,5g — 1 and every g;, +1,...,9r—1 € G\C. Moreover, if we
define
Cig/Cy = Czril(G/Cg)a

then we have [v;(G),C] < Cj 4 for all j, <i<r—1.

Define now

U* =7(G) [] Ca
geG\C

which is, of course, normal in G.

We claim that U* = Cyv,(G) for all g € G\C. For that purpose, fix g € G\C and
take h € G\C arbitrary. Then CyC}, is normal in G, so either CyC), = v.—1(G) or
Ch, < Cyyr(G). In the first case we would have

W(G) = [1w-1(G), h] = [CrCy, h] = [Cy, h] < Cy,

which is a contradiction since [v,(G), g] # 1. Hence, Cj, < Cyv,-(G), and so Cy,(G) =
CyCyyr(G). Since this holds for all h € G\C, it follows that Cyvy,(G) = U*, and the
claim is proved.

Take now j = max{j, | g € G\C}. Then, there exist z1,...,2;-1 € G and c € C such
that

PYT—l(G) = <[y17 s Yi—1,6,954+15 - - - 7gT—1]>U*

for every y; € xiG, i=1,...,7—1and every gj41,...,9r—1 € G\C. Moreover, because of
the choice of j, we have

[%i(G),C1< () Cig
geG\C

for all j <i <r — 1. Let us prove that

[ Cig<Ci (@)
geG\C
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for every 7 such that j <i<r —1.
We proceed by 1nduct10n onr—i. Ifr—4=1,thatis, if i = r — 1, then C,_1 4 =

Cy =C,, _,()(9), and since G = (G\C), it follows that

(] Co=C, (@) (G) =Cr(G).
geG\C

Assume now 7 < r — 2. Then,

[ ﬂ Cz-,g,G] < ﬂ Cit1g < Ci11(G)

geG\C geG\C

by the inductive hypothesis, and so,

([ Cig <CHG)

geG\C

as claimed.

Since [7,(G),C] = 1 = CJ(G), we have [v;(G),C] < C](G) for every i such that
j<i<r.

Finally, take g, € G\C arbitrary. Observe that

[U* gr] = [Cgr%(G)agr] = [(G),9:] = U,

where the last equality holds since 1 # [7,(G), gr] < %+1(G). Hence,

Y (G) = [1-1(G), 9r]
[<[y1>"'7yj 1,6, 95+1, - "’gT*1]>U*7g'I‘]
[<[y17"'7yj 1,6, 95+1, - "agT71]>7gr]U
= <[y17 < Yi—1,6,95+41,5 - - - ,gr]>U7
and the proof is complete. ]

Theorem 4.15. Let G be a finite p-group with p odd and d(v,(G)) = 2 for some r = 2.
If C,.(G) # G, then there exist an integer j with 1 < j <r and x1,...,Tj—1, Tj41,---,
z, € G such that

Ww(G) ={lz1,....zj—1,¢,T541,..., 2] | ce Cp(G)}.

Proof. Let U = 4,11(G)Y(G)?P and write C = C,.(G) for simplicity. By Lemma 4.14,
there exist an integer j with 1 < j <r, x1,...,2;-1 € G and c € C such that

’YT(G) = <[y1> e Yi—1,6, 95415 - - - agr]>U

for every y; € 2, i = 1,...,j — 1 and every gji1,...,9- € G\C. Moreover, [y;(G),C] <
CI(G) for every j <i <.

Write = [y1,...,yj—1]. It follows from the Hall-Witt identity and standard com-
mutator calculus that

[xv c, gj+1] = [Cv gj+17 m]il[gj-‘rl? Z, C]ilz
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for some z € yj42(G). On the one hand, we have

(2, 9j+2: -2 9r] € Wr41(G) < U.

On the other hand,

[9j+1, %, c] € [7;(G), C] < C3(G) n v41(G),

and since [C](G),G] < C}{(G) for every i <r — 1, we have

[CF(G) 0 7j4+1(G), gjaas -5 9] < C7_1(G) n % (G) < U,

where the last inequality holds since C]_;(G) n 7(G) is normal in G but v.(G) <«
Cr_1(G). Thus,

[337 Cgi+1,--- 7g7”] = [1}7 [C, gj+1]7 gj+2,--- 791“] (Il'lOd U)7

so in particular
’VT(G) = <[$a [Cv gj+1]7gj+27 cee 7gr]>U'
Take now g¢,+1 € G\C arbitrary. Since, clearly, we have [U, g,+1] < 7(G)P, it follows
that
U =[x [c,g9j+1], gj+2. - - - gr1 D (G)P.

Now, observe that on the one hand we have

[’Yj—l (G)) Ca Cﬂ“—j G] ’Y](G)’ C7T—j G]

[
[CF(G)r—y G
Cr(@) =1 (@Y,

NN N

which is central of exponent p modulo UP, and on the other hand we have
[’Yj—l(G)aG/7G/7T—j G] < 7T+3(G) < Up7

which is central of exponent p modulo ~, (G’)p2. Therefore, we can apply Lemma 2.33 to
both quotients
7(G)/U and U/y(G)".

As the gjy1,...,g, are all arbitrary in G\C, wich is a normal subset of G, we can
conclude in the same way as in the proof of Theorem 4.12. O

4.3 Outer commutator words

There is nothing regarding this topic in the existing literature if we consider outer
commutator words w that are not lower central words. Hence, being the simplest case,
and as it has been done in the previous chapters, we start by assuming that the verbal
subgroup w(G) is cyclic. Nevertheless, even if solving the problem when the verbal
subgroup is cyclic was not too complicated for lower central words, this is not the
case when dealing with general outer commutator words. As a matter of fact, our
only achievement in this direction is that if G is a finite p-group with G” cyclic, then
G" = Gs,. A simple lemma is required before we proceed to the proof.
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Lemma 4.16. Let G be a group with G” cyclic and let x1, 22,23 € G and g € G'. Then,
[z, z2], [23, 911" = [[21, 2], [3, 9"]]

for every n = 0.

Proof. By Lemma 4.3, the nilpotency class of G’ is 2, so

[[1, 2], [23,g]]" = [[z1, 22], [23, 9]"].

Note also that [z3,g]" = [z3,¢"]c with ¢ € G”, whence

[[$17 x2]7 [{Eg, g]n] = [[$17 x2]7 [:E3a gn]c]
[[z1, z2], c][[z1, z2], [23, 9" ]]°
[[xlv xQ]’ [.%3, gn]]’

and the result follows. O

Theorem 4.17. Let G be a finite p-group with G” cyclic. Then there exist x1,x2,x3 € G
such that

G" = Gs, = {[[z1, 22], [z3,9]] | g € G}.

Proof. By Lemma 4.16 we can assume that for every x1,xs,x3, 14 € G such that G” =
{[x1, z2], [x3, x4]]) we have x1,x9, 23,24 ¢ G'. Thus, fix a generator [[z1,x2], [x3,z4]]
of G”, and it follows from Lemma 2.21 that [[y1, y2], [ys, y4]] is also a generator of G”
for every y; € & with i = 1,2, 3,4. Recall that Lemma 4.3 yields v3(G’) = 1, so

[[ml’xQ]v [$3’x4]]n = [[$1ax2]na [l’g,x4]] = [[mla x2]7 [3337x4]n]

for every n = 0. Now, let £ be the maximum number such that for every j < k, every

0<r<p—1and every y, € {(xs)" with s = 1,2,3,4 we have
w1, wel, [ys, yall”" = ([, o], [ys, wal]  (mod (G")P"),
[y, ). s, wall”” = [[on,85”"), [ys,wall- (mod (€)7), (4.2)
[y, 2l [ys, wal P’ = [lyr. vel, [v4 Jﬂym (mod (G")P'"),
(w1, w2l [ys. yallP" = [[y1,92), [ys. o5 1] (mod (G"y").

Thus, we may assume that

[[x1, 22], [23, 24]]"

From Lemma 2.6 we obtain

k+1
P + k+1

k+1
[z5 x4 = [3,24]° [:1:379:4,963]( 2 )-'~[x37x4,w3,pk

with ce G". If

k+1
(1, 2], [23, 24, 23,770, 23] (T )] < (G7)P

for every 2 < i < pF*t1, then

k+2

k+1 k+1

[[131, (E2]7 [51’3, ;1;4]]10 = [[3;17 x2]7 [337; ,1,‘4]] (mod (G,,,)plc4_2)7
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which is a contradiction. Hence, there exist 2 < i < p**! and j < k + 1 such that

(G" = ([, 2], [, w1, 2, L, )]0y
= ({21, 22], [23, [23, 74, 73,172, g:g]]](pkjl))

In particular it follows that

(G = {([[z1, z2], [23, [x3, 24, 73,772, 23] ])

for some 0 <[ < j. Now Lemma 4.16 yields
(G//)pl c {[[xl,xg], [1’3,0]] ‘ ce G/},

and in particular

(G"" < {[[a1, 22], [23,c]] | c € G

Observe that from Lemma 2.23 and from the congruences in (4.2) we have

G (G = {[[w1, 23], [23, 9]] | g € G,

and thus, for a general element h of G” there exist g € G and ¢ € G’ such that

h = [[x1, 22], [73, c]][[21, z2], [*3, g]]-

Now, since v3(G’) = 1, we have

[[xh xQ]v [333’ C]] [[1‘1, '732]’ [:C37 g]] = [[mla 1:2]7 [m3’ C]] [[3317 xQ]v [$3’g]c]
= [[z1, 2], [23, c][23, 9]°]
= [[1‘171'?]7 [$3agc]]7

so that h € {[[z1,x2], [73,9]] | g € G}, as desired. O

A key step for the sake of proving the result for all outer commutators words would
be solving the following.

Problem 4.18. Let G be a finite p-group such that G is cyclic for some r > 3. Is
then G(") = Gy, ?

Indeed, if one manages to give an affirmative answer to this problem, then it looks
reasonable to think that a similar procedure as the one introduced by Fernandez-Alcober
and Morigi in [19] could be applied. If w = [a, ] is an outer commutator word, they
define the height of w as the maximum of the heights of o and 8 plus 1, where the height
of the word x in one variable is assumed to be 0. Thus, for > 1, the words 7, and d,
have heights » — 1 and r, respectively. Intuitively, one can see for a fixed height r that
the derived word 4, is the “heaviest” outer commutator word of height r, as it is the one
with more variables, while the word ~y,.1 would be the “lightest” one. Following this
intuition, they introduce the notion of defect of an outer commutator word, which we
will not define here, according to which the word §, has defect 0, while the word 7,41
is the one with biggest defect among all outer commutator words of height r.

With this in mind, once the result holds for all the derived words, one could, following
the ideas in [19], fix a height and then try to apply induction of the defect of the word,
so that the result would hold for all outer commutator words.






Chapter 5

Profinite groups

A topological group G is a group endowed with a topology such that the function

GXG—»G
(g,h) —> gh™!

is a continuous function with respect to the topology. Thus, topological groups are
mathematical objects with both algebraic and topological structures. The following
basic properties of topological groups can be proved easily.

Proposition 5.1. Let G be a topological group. Then:

(i) If H is an open (resp. closed) subgroup of G, then gH is an open (resp. closed)
subset of G for every g € G.

(ii) If H is an open subgroup of G, then H is closed in G.
(iii) If G is compact and H is an open subgroup of G, then H has finite indez in G.

Part (iii) of the previous proposition shows how the topological properties of a topo-
logical group can give information about its algebraic structure.

A large part of this thesis, specially Part II, is devoted to the study of a special
kind of topological groups, namely, the profinite groups. These groups arise naturally in
many different fields of mathematics such as Galois theory and algebraic geometry.

Definition 5.2. A topological group is said to be profinite if it is compact, Hausdorff
and totally disconnected.

Therefore, by Proposition 5.1, every open subgroup of a profinite group G has finite
index in G. Actually, it can be proved that the collection of all open normal subgroups
of GG forms an open base of the neighborhoods of the identity. This, in particular, implies
that the collection of the cosets of all open normal subgroups of G forms an open base
of G.

In Part IT we will mainly work with countably based profinite groups. These groups
can be characterised in the following way.

99
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Theorem 5.3 ([81, Proposition 4.1.3]). Let G be a profinite group. Then the following
are equivalent:

(i) G is countably based.

(ii) G has countably many open normal subgroups.

(iii) G has a chain G = Gy = Gy = - -+ of open normal subgroups such that N;>0G; =
1. Moreover, the family {G;}i=0 forms an open base of the neighborhoods of the
identity.

The most studied countably based groups are the finitely generated profinite groups.
However, in the context of profinite groups, one needs to redefine what finitely gener-
ated means. Indeed, it is a well-known result that a profinite group is either finite or
uncountable. Therefore, if a profinite group G is finitely generated (in the usual sense)
by a finite subset S of G that is closed under taking inverses, then

G=1|]Js,
n=0

where S*" = {hy---hy, | hj € S for all i = 1,...,n}. In particular G is countable, and
so finite. This problem disappears with the following definition.

Definition 5.4. A profinite group G is said to be topologically finitely generated or,
abusing terminology, just finitely generated, if there exists a finite subset S of G such
that G = (S).

A well-understood type of finitely generated profinite groups are the so-called p-
adic analytic pro-p groups. These are pro-p groups with the structure of an analytic
manifold over Q,, the field of p-adic numbers. We will study these groups in more detail
in Section 6.3. A typical example of a p-adic analytic pro-p group is the group Z, of
p-adic integers, which is defined as the inverse limit of all the cyclic groups of order p"
for n = 0, endowed with the discrete topology.

As a matter of fact, a profinite group is also characterised as the inverse limit of an
inverse system of finite discrete groups. In this sense, these groups are usually seen as a
generalisation of finite groups, as they share many properties with their finite quotients.
More generally, we define the following.

Definition 5.5. Let C be a class of finite groups closed under taking subgroups and
direct products. A pro-C group is a group which is the inverse limit of an inverse system
of groups in C endowed with the discrete topology.

When C is the class of all finite groups, then a pro-C group is just a general profinite
group. Other typical examples of the class C are the class of finite p-groups, the class of
finite cyclic groups, the class of finite nilpotent groups, the class of finite solvable groups,
etc. In those cases the pro-C groups that we obtain are called pro-p groups, procyclic
groups, pronilpotent groups and prosolvable groups.

We end this introduction with a standard result of profinite groups that will be
frequently used.

Proposition 5.6. Let G be a profinite group and let K be a subset of G. Then
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Since profinite groups are Hausdorff, it can be seen that the subset {1} is closed. As
a consequence we get the following.

Corollary 5.7. Profinite groups are residually finite.

A good and much more extensive background on these groups can be found in [13]
or in [81].

5.1 Generalisation to pro-p groups

We will show in this section that all the results we have achieved in the previous chapters
can be extended from abstract finite p-groups to pro-p groups. In fact, the following
theorem works for any word and for profinite groups in general.

Theorem 5.8. Let w be a word in r variables and let G be a profinite group such that
w(G/N) = (G/N)y for every N <, G. Then w(G) = Gy. Moreover, if for every
N <, G there exist 1 < jy <71 and x1,...,Tjy—1, Tjy+1,---,2Tr € G/N such that

w(G/N) ={w(z1,...,Zjy-1,9,Tjy+1,---,Zr) | g€ G/N},
then there erists 1 < j <r and x1,...,2j—1,%j+1,..., T, € G such that
w(G) ={w(z1,...,2j-1,9,Tj41,...,2,) | g€ G}.

' . . .
Proof. The word map w from G x --- x G to GG is a continuous map, and so, since

Gx-"-xGis compact, it follows that Gy, is a closed subset of G.
Thus, for the first assertion, just note that

w(G) = nya,g W(G)N = nya,¢ GuN = Gy = Gy,

and so w(G) = Gy.

For the second assertion, we first claim that there exists 1 < j < r not depending on
any open subgroup such that for every N <, G there exist xn1,..., TN j_1, TN j+1s- - -
zn, € G such that

w(G)N/N = {w(IEN,l, < 3TN j-1,9, TN j+1y- -+ 7xN,r)N | g € G}.

Thus, for every N <, G, write jy for the smallest integer such that there exist zy 1, .. .,
TN,jy—1s TN jn+1,--- TN, € G such that

w(G)N/N ={w(zn1,. . TN jy-1,9,TNjy+1,---,TNyr)N | g € G}

Note that the existence of jy is guaranteed by the hypothesis.

Let M be an open normal subgroup of G for which j3; is maximal in the set {jy |
N <, G}. We will prove that j = jys has the required property. Indeed, take N <, G
arbitrary and consider the intersection N n M, which is also open and normal in G. Now,
as N n M < M, we have jyr < jn~um, and by maximality, it follows that jyr = jn~ar-
Again, since N n M < N, we have

w(G)N/N = {w(rN1, ..., TNjy 1,9, TN jp+1>- - TNr)N | g€ G},

and the claim is proved.
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Now, for every N <, GG, write
Xy = {(ml,...,xj_l,xj+1,...,xT) eGxmlx@ |
w(G)N/N = {w(z1,...,2j-1,9,Tj+1,...,2,)N | g€ G} }.

Observe that if M, N <, G such that M < N, then X, € Xy. Hence, if {N;};cs is a
finite family of open normal subgroups of G, it follows that

ﬂ XN; 2 X Vi

el
and since N;erN; is non-empty by assumption, we deduce that the family {Xn}n<,¢

o . . -1 .
has the finite intersection property. Therefore, since G' x U x Gis compact, we have

ﬂ Xy # 2.
N<,.G

Thus, if (z1,...,2j-1,2j+1,...,2,) belongs to this intersection, write
K(G) = {w(z1,...,2j-1,9,Tj+1,...,2r) | g € G},

so that we have
w(G)N/N = K(G)N/N

for all N =, G.
Now, in a similar way as G, note that IC(G) is also closed in G, being the image of
a continuous function from G to G. Thus,

w(@) = [] w@N= () KGN =K(G) =K(G),

N<,.G N<,.G
and it follows that w(G) = K(G). O
In particular, applying this to our results, we obtain the following.
Corollary 5.9. Let G be a pro-p group. Then:

(i) If G’ can be generated topologically by 2 elements, then there exists x € G such
that G' = K,(G).

(ii) If p = 5 and G’ is topologically generated by 3 elements, then G' = K(G).

(iii) Suppose G’ is topologically finitely generated and write d = log, |G’ : (G")P|. If
d < p—1 and the action of G on G’ is uniserial modulo (G')P, then there exists
x € G such that G' = K;(G).

(iv) Forr = 2, if v(G) can be generated topologically by 2 elements, then there exist
Tlyeeos Tjo1,Tj41,- .., T € G with 1 < j <1 such that

VT(G) = {[xla cee ,.’L‘j_l,g,xj+1, .. 71"7‘] | g€ G}
(v) If G" is procyclic, then there exist x1, 2,23 € G such that
G" = {[[$1,$2], [xg,g]] | g€ G}

Proof. Just apply Theorem 5.8 to Theorems 3.9, 3.18, 3.19, 4.10 and 4.17. O
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Chapter 6

Hausdorftf dimension and
Hausdorff spectra in profinite
groups

Even if there is not a formal definition for the concept of the dimension of a geometrical
object in general, we understand it as the space that the object covers around a point,
or in other words, the number of coordinates that we need to describe it. Indeed,
intuitively, we can say that the dimension of the unit disc D, for example, is 2 because
it can be described with 2 coordinates, while the dimension of its boundary S? is 1, as
locally it is the same as a line.

Thus, while we can talk about the area of D or the length of S?, it does not make
sense to talk about the length of D (which intuitively would be o), or about the area
of S? (which would be 0). Nevertheless, there are some pathological objects in which
the concept of dimension is not as clear as in the cases of D and S?. A good example
of such an object is the so-called Koch snowflake, defined by Von Koch in [52]. This is
a curve that encloses a finite area but has infinite length, somehow suggesting that its
dimension should be greater than 1, but also less than 2, as it does not cover the plane.

Because of this, the concept of topological dimension was generalised to what is
called fractal dimension, so that some objects may not have integer dimension. The
problem, however, is that the way in which one can define fractal dimensions is not
unique. The fractal dimension that we will mainly study in this second part of the
thesis is the so-called Hausdorff dimension. This is one of the oldest and more common
fractal dimensions in the literature and was introduced in 1918 by Felix Hausdorff (see
31).

Even if this fractal dimension was originally defined for euclidean spaces, one can
see in its definition that the only requirement for the base space is to be a metric space.
As we will see, certain profinite groups, namely, the countably based profinite groups,
can always be naturally equipped with a metric and, consequently, this notion can also
be defined in such groups. The constructions of the Hausdorff dimension function that
comes next in Section 6.1 will be directed to countably based profinite groups, but one
can easily extend their definitions to general metric spaces.

65
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6.1 Hausdorff dimension in profinite groups

For the constructions of the Hausdorff dimension function that we will give in this
section, the following definition is required.

Definition 6.1. Let G be a profinite group. A filtration series S of GG is a descending
chain of open normal subgroups G = Go = G1 = Gg > --- such that n;>1G; = 1.

Let G be a countably based profinite group. By Theorem 5.3 this is equivalent to G
having a filtration series. Thus, suppose S : G = Gy = G1 = - -- is a filtration series of
G. Then, the subgroups of & form an open base of neighborhoods of the identity, and
thus, the family B consisting of all cosets of the subgroups of S forms an open basis
of G. Moreover, the filtration series S induces a translation-invariant metric d® on G
defined as

dS(x,y) = inf{|G : Gu| 7' | 2y~ e G},

where z,y € GG. Then, the Hausdorff dimension function hdim‘cs; of G with respect to
the filtration series S can be defined in the following way.

Let X be a subset of G. We say that C is a p-covering of X, where p € R>q, if C is
a covering of X such that for every B € C we have diam(B) < p, where the diameter is
defined with respect to the distance d°. For each 6, p € R>q we define

HS(X) = inf { Z diam(B)°® | C is a p-covering of X such that C < B} ,
BeC

and we write
H°(X) = lim H)(X).
p—0
Now, according to [16, Page 31], there exists a real number A such that H°(X) = o if
§ < A and H%(X) = 0if § > A. This number A is called the Hausdorff dimension of
X with respect to the filtration series S and we denote it by hdim (X).

6.2 The Hausdorff dimension of closed subgroups

In the last decades, based on the pioneering work of Abercrombie in [1] and Barnea
and Shalev in [6], the concept of Hausdorff dimension has led to interesting and fruitful
applications in the context of countably based profinite groups. In this work, Barnea
and Shalev gave a group theoretic formula to compute the Hausdorff dimension of the
closed subgroups of G.

Theorem 6.2 ([6, Theorem 2.4]). Let G be a countably based profinite group and let
S:G=Gy=Gy = be a filtration series of G. If H is a closed subgroup of G, then

log | HG,, : G,
helim(H) = lim inf 12811 Gnt Gnl

1].
n—w  log|G : Gyl €10,

Thus, the Hausdorff dimension of a closed subgroup H of G can be regarded as a
“logarithmic density” of H in G. At this point, it is completely natural to ask which is
the range of Hausdorff dimensions of all closed subgroups of G. The following notion
reflects this.
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Definition 6.3. Let GG be a countably based profinite group and S : G = Gy = G >
a filtration series of G. Then, the Hausdorff spectrum of G with respect to S is

hspec® (G) = {hdimZ(H) | H <. G}.

Even for comparatively well-behaved groups, such as p-adic analytic pro-p groups,
the Hausdorff dimension function, and hence also the Hausdorff spectrum, is known
to be sensitive to the choice of the underlying filtration series. The following example
shows that even if the Hausdorff dimension of a closed subgroup H of a group G lies
in the open interval (0, 1) for a certain filtration series, there exist other filtration series
for which the Hausdorff dimension of H is 0 or 1.

Example 6.4. Let p be a prime and G = Z, ® Z,. Consider the closed subgroup
={0} @ Z,. If we define S; : G = Gy = G = --- where G, = Zgn @Zgn, then

log |[HG,, : G| n 1
.S T g n nl _ oo L
hdim¢! (H) = h,?l}%f Tlog|G: Gl llgloglf 5 = 3"

7 ’I’L2
However, if So : G = Gy = G1 = - -+ where G,, = Zg @Zg , then

2

hdimgQ(H) = lim inf =1,

n—w 1+ n?

TL2 7
while if S3: G = Gy = G1 = --- where anzg @Zg , then

hdim‘g?’ (H) = liminf

5 =0.
n—o N+ n

For a finitely generated pro-p group G, however, there are natural choices for § that
encapsulate group-theoretic properties of G. These are the lower p-series L of G, the
dimension subgroup series D of GG, the p-power series P of G, the iterated p-power series
P* of G and the Frattini series F of G, and are defined recursively by:

L: Pl(G) =G and P,(G) = P,_ 1(G)p[PZ'_1(G),G] for i = 2,
D: Di(G) =G and Dy(G) = Dy (G) pHKM (G), Di_;(GQ)] fori =2,

P:mi(G) = Gr = <gp | ge G) for i >0,
Py (G) =G and 77 (G) =7} I(G)p fori>1,
F:®9(G) =G and &;(G) =P,_1(G)P[Pi—1(G), P;—1(G)] for i > 1.

Being G finitely generated ensures that all the terms of these filtration series have
finite index in (G, while being G a pro-p group implies that their intersections are trivial.
We refer to these filtration series loosely as the five standard filtration series.

6.3 p-adic analytic groups and finite Hausdorff spectra

We will now focus on p-adic analytic pro-p groups. The structure of these groups is well
understood, as there exist a number of characterisations of such groups. We include
some of them in the following theorem. For the proofs and definitions see [13, Interlude

Al
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Theorem 6.5. Let G be a pro-p group. Then the following are equivalent:
(i) G is p-adic analytic.
(ii) G has finite rank.

(iv) G is finitely generated and has an open normal uniform subgroup.

)
)
(iii) G is finitely generated and has an open normal powerful subgroup.
)
(v) G has polynomial subgroup growth.

)

(vi

It is natural to ask, at this point, whether there is a characterisation of p-adic
analytic pro-p groups that involves Hausdorff dimension or the Hausdorff spectra with
respect to a certain filtration series. The following theorem will motivate a possible
characterisation involving the Hausdorff spectra. It was first proved by Barnea and
Shalev in [6] for the p-power filtration. The result for the other filtration series was
proved by Klopsch, Thillaisundaram and Zugadi-Reizabal in [51].

G s the product of finitely many procyclic subgroups.

Theorem 6.6 (|6, Theorem 1.1] and [51, Proposition 1.5]). Let G be an infinite p-adic
analytic group and H a closed subgroup of G. Then, for S € {D, P, P*, F}, we have

_ dim(H)

~ dim(G)’

hdimg,(H)

where dim(H) and dim(G) stand for the analytic dimension of H and G respectively.

Observe that closed subgroups of p-adic analytic pro-p groups are always p-adic
analytic (this is clear from some of the characterisations of such groups in Theorem 6.5),
so it makes sense to talk about the analytic dimension of closed subgroups. Theorem
6.6, in particular, shows that if GG is a p-adic analytic pro-p group, then

1 dim(G) — 1
"dim(G)" dim(G) ’}

hspec® (G) < {0 (6.1)
for any S € {D, P, P*, F}.

If § = £, then the behaviour of the Hausdorff dimension and the Hausdorff spectra
is not clear. It is shown in [51, Example 4.1] that there exists a family of p-adic analytic
pro-p groups G(m,d), where m,d > 0, such that

| hspec”(G(m, d))|
dim(G(m, d))

—d+1 as m — o,

which is unbounded as d tends to infinity.
Problem 6.7. Let G be a p-adic analytic pro-p group. Is then hspec” (GQ) finite?

Turning back to (6.1), one of the main questions in the theory of Hausdorff dimension
in profinite groups is whether this fact can actually be turned into a characterisation of
p-adic analytic pro-p groups. More formally:

Problem 6.8. Let G be a finitely generated pro-p group. Suppose that S € {L, D, P,
P*, F} and | hspec®(G)| < c0. Does it follow that G is p-adic analytic?
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This problem was resolved by Klopsch, Thillaisundaram and Zugadi-Reizabal for
finitely generated solvable pro-p groups in [51], but the general answer is not known
yet. We do have, however, some structural results regarding p-adic analytic groups
and Hausdorff dimension that, in fact, characterise these groups. Again, the following
theorem was first proved by Barnea and Shalev for the p-power filtration and extended
to other filtrations in [51].

Theorem 6.9 ([51, Theorem 1.9]). Let G be a finitely generated pro-p group, and let
S e{D,P,P*, F}. Then the following are equivalent:

(i) The group G is p-adic analytic.

(ii) There exists a constant ¢ € (0,1] such that every infinite closed subgroup H < G
satisfies hdim$ (H) > c.

(iil) Every infinite closed subgroup H < G satisfies hdim®,(H) > 0.

(iv) The group G is finite, or there exists a closed subgroup H < G such that H =~ Z,
and hdim,(H) > 0.

6.4 Infinite Hausdorff spectra

All the examples of non p-adic analytic pro-p groups that have been found so far have
infinite Hausdorff spectra with respect to the five standard filtration series (and also with
respect to other filtration series that arise naturally in some specific profinite groups).
A much-studied example of a group with infinite Hausdorff spectra is the so-called
Nottingham group (see [6, Theorem 1.6], [5], [14], [15]). Nevertheless, the Nottingham
group has not full Hausdorff spectrum, meaning that its Hausdorff spectrum does not
cover the full unit interval [0, 1]. Even if Barnea and Shalev did construct in [6, Lemma
4.1, Lemma 4.3] some profinite groups with full Hausdorff spectrum, these were all
infinitely generated. Therefore, they asked whether there exists a finitely generated pro-
p group with full Hausdorff spectrum with respect to the p-power filtration series. Of
course, this problem can be adjusted to any of the five standard filtration series:

Problem 6.10 ([6, Problem 5]). Does there exist a finitely generated pro-p group with
full Hausdorff spectrum with respect to any of the five standard filtration series?

The first example of a finitely generated pro-p group that solves this problem was
the group R
W =CptZ,=1lmCy1Cpn.
n

This group can be regarded as the “minimal” finitely generated non p-adic analytic pro-p
group.
Theorem 6.11 ([71, Proposition 4.5] and [49, VIII, §7]). Let S € {D, P, P*, F}. Then
hspec® (W) = [0,1].
Nevertheless, for the filtration series £, the Hausdorff spectrum does not cover the

full interval [0, 1]. Indeed, as shown in [50, Corollary 2.11], we have

1
hspecﬁz[O,l/Z]u{2+2mn\n?OandlSmgp”—l}u{l}.
p
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The group W will be studied in more detail in the next chapter.

It was also shown by Klopsch in [49] that all branch profinite groups have full Haus-
dorff spectrum with respect to the natural congruence filtration, so, in particular, finitely
generated branch groups have full Hausdorff spectrum. More complicated examples of
profinite groups with full Hausdorff spectra can be found, for example, in [2],[7] and
[22].



Chapter 7

Normal Hausdorff spectra of
profinite groups

As pointed out by Shalev in [71, §4.7], it is natural to consider the subset of the Hausdorff
spectrum of a profinite group G that stems from considering closed normal subgroups
of G instead of just closed subgroups. More formally, we define the following.

Definition 7.1. Let GG be a countably based profinite groupand S : G =Gy = G > - --
a filtration series of G. Then, the normal Hausdorff spectrum of G with respect to S is

hspecS (G) = {hdim&(H) | H <. G}.

In this way, the normal Hausdorff spectrum of G provides a snapshot of the normal
subgroup structure of G. While plenty of examples of groups with infinite Hausdorff
spectra are known, this is not the case for the normal Hausdorff spectra. Indeed, if
we consider the examples of the finitely generated profinite groups with full Hausdorff
spectra in the previous chapter, then all of them have finite normal Hausdorfl spectra
(actually in almost all of the cases the normal Hausdorff spectrum is just {0,1}).

Thus, already twenty years ago, Shalev [71, Problem 16] put up the challenge to
construct finitely generated pro-p groups with infinite normal Hausdorff spectra and he
asked whether the normal Hausdorff spectra could even contain infinite real intervals.
Recently, Klopsch and Thillaisundaram in [50] succeeded in constructing such examples
with respect to the five standard filtration series. However, even though the normal
Hausdorff spectra of their groups each contain infinite intervals, none of the spectra
covers the full interval [0, 1]. They thus presented the following problems.

Problem 7.2 ([50, Problem 1.2]). Does there exist a finitely generated pro-p group G
(i) with countably infinite normal Hausdorff spectrum hspeci(G),
(ii) with full normal Hausdorff spectrum hspec (G) = [0, 1],
(iif) such that 1 is not an isolated point in hspec(G),

for one or several of the standard filtration series S € {£, D, P, P*, F}?

71
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In this chapter we will modify the construction of Klopsch and Thillaisundaram to
produce the first example of a finitely generated pro-p group with full normal Hausdorff
spectrum [0, 1] with respect to any of the five standard filtration series, solving in this
way (ii) and (iii) of Problem 7.2 and also Problem 6.10 for all five standard series (as
we have seen in Theorem 6.11, the latter problem was already solved previously for the
series D, P, P* and F).

Section 7.2 will be devoted to producing such a pro-p group when p is odd and Section
7.3 when p = 2. First, we introduce in Section 7.1 some technical results that will be
really helpful. From now on, all subgroups of profinite groups are tacitly understood to
be closed subgroups to simplify the notation.

7.1 A criterion for a full normal Hausdorff spectra

The main ingredient of the proof of Theorems 7.7 and 7.20, where it is proved that
the groups that we will construct have full normal Hausdorff spectra, is Proposition 7.6
below. For the proof we first establish two lemmas. The first one is a variation of [51,
Proposition 5.2].

Lemma 7.3. Let G be a countably based pro-p group, and let Z <. G be infinite. Let
S:Zyg=Z1 = ... be a filtration series of Z consisting of G-invariant subgroups Z; <, Z.
Let n € [0, 1] be such that the normal closure in G of every finite collection of elements
21, 2m € Z satisfies hdim$((z1, ..., 2m)%) < 1. Then there exists H <. Z with
H < G such that hdim$(H) = 7.

Proof. The claim can be verified in close analogy to the proof of [51, Proposition 5.2].
One constructs the subgroup H <. Z as H = (HyuHyu--+), where 1 = Hy < H; < ---
is a suitable ascending sequence of subgroups H; <. Z each of which is the normal
closure in G of finitely many elements. To see that the argument in op. cit. can be used,
it suffices to observe that, for each i € N, the pro-p group G/Z; acts nilpotently on the
finite p-group Z/Z; (and its quotients by G-invariant subgroups). O

Lemma 7.4. Let G be a countably based profinite group with an infinite abelian normal
subgroup Z <. G and x € G such that G = {x)Cq(Z). Let S : Z = Zy = Z; = --- be
a filtration series of Z consisting of G-invariant subgroups Z; <, Z; for i = 0, let p%
be the exponent of Z/Z;. Suppose that, for every i = 0, there exist n; € N and N; <. Z
such that

.. €in;
. 7 < 7 < N lim inf — 7 _
i +1(G) 0 i<Niand - lmin log,|Z : ;|

0.
Then every finite collection of elements z1,...,zm € Z satisfies
hdim$ ((z1, . . ., zm)%) = 0.
Proof. Consider first a single element z € Z. Since G = (x)C¢(Z), we have
()% =2, [z, 2], [z, %, 2], .. ),

and since v, +1(G) n Z < Z; for i € N, we deduce that

(97 =z, [z, ), ..., [z, @) 2D Zs;
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in particular, since Z is abelian, this yields

logp|<z>GZi : Zi| < einy.

Now consider finitely many elements z1,..., 2y, € Z. Since Z is abelian, we have
(21, 2 = (2% - {zm)Y. From this we deduce
Yt log, [(2)9 Z; : Z4] me;n;
hdim3 ({21, - . ., 2m)®) < liminf =27 < liminf ———— =
7z (G, 2m)”) < limin log,|Z : Zi] i log,|Z : Ny| 0
and the result follows. O

For an infinite countably based pro-p group G, equipped with a filtration series
S:G =Gy = Gy = -+, and a closed subgroup H <. G we adopt the following
terminology from [50].

Definition 7.5. We say that H has strong Hausdorff dimension in G with respect to a
filtration series S if its Hausdorff dimension is given by a proper limit, i.e., if

log ’HGZ . G1|
hdim@,(H) = lim —2—~_—".
dime (H) Fres log,|G : G

Using the previous two lemmas, we follow the proof of [51, Theorem 5.4] to obtain
our main tool.

Proposition 7.6. Let G be a countably based pro-p group with an infinite abelian normal
subgroup Z <. G such that G/Cg(Z) is procyclic. Let S: G = Gy = G; = --- be
a filtration series of G and consider the induced filtration series S|z: Z = Gon Z =
GinZ=-- of Z; fori =0, let p° be the exponent of Z/(G; n Z). Suppose that, for
every 1 = 0, there exist n; € N and M; <. G such that

.. €y
’Ynl+1(G) N Gin i an 1}3}2 ]ng‘Z s M; N Z| 0

If Z has strong Hausdorff dimension ¢ = hdim%(Z) € [0,1] then we have
[0,€] < hspecS,(G).

7.2 Construction of a pro-p group with full normal Haus-
dorff spectra

Our construction proceeds as follows. Throughout the section, let p denote an odd
prime. For an integer k > 1, consider the finite wreath product

Wi = By, 3 () = (i) U{dp),

with cyclic top group (i) = Cpr and elementary abelian base group

7J
By=|[w s =cp.
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Basic structural properties of the finite wreath products Wj transfer naturally to
the inverse limit W = lim W}, with connection homomorphisms given by

bij : Wi — W
T; —> T
Yi — Y
for all ¢ = j, i.e., the pro-p wreath product
W = (&,9) = Bx{i)=CplZ
with procyclic top group () =~ Z, and elementary abelian base group

Let F = F» = (&, 7) be the free pro-p group on two generators, and let n: F' — W,
resp. Ng: F — Wy, for k > 1, denote the continuous epimorphisms induced by z — z
and g — g, resp. T — &} and § — y. Set R = ker(n) <. F and Ry = ker(n) <, F'; set
also Y =7~ 1(B) <. F and Y}, = n, '(By) <o F. We define

G = F/N, where N = [R,Y]Y? <. F,

e p (7.1)
Gk = F/Nk, where Nk = [Rk,Yk]Ykp<:fp > .

Furthermore, we write

H=Y/N<.G and Z =R/N <. G,
H; =Yk/Nk€Gk and Zy, =Rk/Nk<‘Gk.

We denote the images of Z,¢ in G, resp. in Gy, by x,y, resp. xp, yi, so that G = m
and Gy = {xk, Yk -

We observe that the finite groups Gy, k = 1, naturally form an inverse system and
that G = lim, Gy. Indeed, it can be checked from the definition that Ry = <:Epk>F R, and
from this that Ny = (i?" Y N. Hence, since (Z)' n N = 1, it follows that Ny Ny = N.
Furthermore, we have [H, Z]| = 1, and [Hy, Z;] = 1 for all £ > 1. Our aim in Sections
7.2.1 and 7.2.2 will be proving the following.

Theorem 7.7 ([33, Theorem 1.1]). For p > 2, the 2-generator pro-p group G con-
structed above has full normal Hausdorff spectra with respect to the five standard filtra-
tion series, that is,

hspeci(G) = [0,1]

for every S € {L,D, P, P*, F}.

As said, this resolves (ii) and (iii) of Problem 7.2 and also Problem 6.10 for all five
standard filtration series.

We introduce the following notation for Sections 7.2.1 and 7.2.2. We write ¢; = y
and ¢; = [y, z,%71, 2] for i > 2; furthermore, we set ¢; 1 = [¢;,y] and ¢; ; = [¢;,y, 7,971, 2]
for 7 = 2. To keep the notation manageable, we denote, for k£ € N, the corresponding
elements in the finite group Gy by the same symbols (suppressing the parameter k):
a1 =y and ¢ = [yk,xk, "l ag] for ¢ = 2, and similarly ¢;1 = [, yx] and ¢ ; =
[¢is Yk, Tk, 1L, 2] for § = 2. From the context it will be clear whether our considerations
apply to G or one of the groups Gj.
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7.2.1 The structure of the finite groups Gy

In this section we collect some structural results for the finite p-groups Gj defined in
Section 7.2. We begin with some results for the groups Wj.

Proposition 7.8 ([50, Proposition 2.6]). For k € N, the wreath product Wy, = C, 1 Cp
is nilpotent of class p*. Moreover:

(1) The lower central series of Wy, satisfies
Wi = 11(Wy) = (g, Ur)v2(Wi) with Wi /v2(Wg) = Cpr x G,

and
Yi(Wi) = k> B 5 26 )Dvie1 (W) with (W) /i1 (Wi) = Cp

for 2 < i < pF. In particular, the base group satisfies
Bk = <yk>/}/2(Wk) = <yk7 [yka Z'k], ) [yk7 xkap' . '17 $k]>

(ii) The lower p-series of Wy, has length p* and it satisfies

1—1

Pi(Wy) =@ 9,2, 2])Piyr (We) with Pi(Wy)/Pi1(We) = Cp x Gy
for1<i <k, and
Pi(Wy) =y, &, &) Piy1(Wy) with Pi(Wy)/Pia(Wi) = G,

for k < i < p".

(iii) The dimension subgroup series of Wy, has length p*. In particular, for pF=' +1 <
i < p¥, it satisfies Di(Wy) = vi(Wy).

(iv) The Frattini series of Wy, has length k + 1 and, for 0 < i < k it satisfies

Bs(Wr) = @ )v,s (i) with ©i(Wy)/@i41 (W) = Cp x F1 X G
p—1

and

R W

(I)k(Wk) = /YﬁJrl(Wk) with (I)k(Wk)/(I)kJrl(Wk) ~ Cp X prl X Cp.
p—1

Proposition 7.9. For k € N, we have Gy, = (xy) x Hy, where (xy) = Cpr and Hy, is
freely generated in the variety of class-2 nilpotent groups of exponent p by the conjugates

J
y,f’“, 0 <j < p*. In particular, the logarithmic order of Gy, is

k p*
log, |G| =k +p" + <2>
Proof. The proof is very similar to that of [50, Lemma 5.1]. From Gj/Z; =~ W) we

obtain
log,|Gi| = log,|Gk/Zx| +1og,| Zk| = k + p* + log,| Zk|.
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By construction, Zj, is elementary abelian, and from [50, Eq. (3.1)] we get
i J
Zy = <[y,f’“,y,f’“] 0<i<j<pl- 1>-

This yields log, |G| <k + p* + (p;).
Consider the finite p-group

M = <b0,...,bpk_1>: E/Vg(E)Ep, (72)
where F is the free group on p* generators. Then, the images of by, ..., byk_q generate
independently the elementary abelian quotient M /M’, and the commutators [b;, b;] with
0 < i< j < pF—1 generate independently the elementary abelian subgroup M’. The
latter can be checked, for instance, by considering homomorphisms from M onto the
group Heis(F,,) of upper unitriangular 3 x 3 matrices over the prime field F,. This is a
group of order p3, nilpotency class 2 and of exponent p generated by two elements, say
r and s (observe that being the exponent p comes from the fact that p is odd). For any
pair of generators b;, b; of M, consider the map from M to Heis(F,) sending b; to r, b; to
sand by, to 1 for every 1 < n < p¥—1, n # 4, j. This is clearly an epimorphism, and since
the derived subgroup of Heis(F,) is generated by [r, s], it follows that the commutator
[bi, b;] is independent from the other commutators that arise from the generating set
{bo,...,b,k_1}. Next consider the faithful action of the cyclic group A = (a) = Cp

pk,
on M induced by

bia -

bii1 ingz’gpk—z,
bo ifi=pF—1.

We define Gj, = A x M and note that log, |G| < k +pF + (p;) = logp|C:7k|. Furthermore,
it is easy to see that Gk/M’ ~ Wy. Now, let F{(Z,3y) be the free pro-p group on 2
generators and consider the epimorphism from F' to G sending & and ¢ to a and by
respectively. Then it follows that Ny, lies in the kernel of this map, and so |G| = |Gy|.
From |G| < |G| we conclude that G = Gy.. O

Remark 7.10. The proof of Proposition 7.9 shows that [Hy, H;] = Zj for k € N, and
thus [H,H] = Z.

Understanding the lower central series of the groups Gy will be the key in order to
use Proposition 7.6. Furthermore, it will allow us to easily compute the lower p-series
and the dimension subgroup series of Gy.

Proposition 7.11. For k € N, the nilpotency class of Gy, is 2pF — 1. The terms of the
lower central series of Gy are as follows:

11(Gr) = Gi, = (T, yr) 12(Gr)  with Gi/v2(Gr) = Cpr x Gy
and, with the notation

L= {i|2<i<p® withi=;0}, Iy ={i|2<i<p" withi=y1},

Is={i|p"P+1<i<2p® -1 withi=50}, Iy = {i | p" + 1 <i < 2p* — 1 with i =, 1},
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the series continues as

(Ci, 2,02, Caji—ty - -+ Ci—22)Yi+1(GE) forie I,
(G (Ciy €252, Caji—a, + -5 Ci-1,1)Yi+1(Gk) for i€ I,
1 - .
<Ci—pk+1,pk—l7 Cipk43,pk—37 <+ s Cpk_l,z‘—pk+1>%+1(Gk) for i€ I,
<Ci,pk7pk, Cipky2ph—2s -+ Cpk,17i,pk+1>’yi+1(Gk) foriely
with
Cpi/Z foriel,
R A
Yi(Gr)/vi+1(Gg) = kg ,
' a Cp@p /2 forie I,

C’ID(ZPILHD/2 forie ly.

Proof. The description of v1(G)) modulo v2(Gy) is clear. Now consider i € I, that is
2 <i < pFandi=,0. Our first aim is to show, by induction on i, that

Yi(Gr) = {ci, c25i-2, Caji—a, - - -, Ci—22)Yi+1(Gr), (73)
Yi+1(Gr) = {Cit1, €211, Ca,i-3; -+, Ci1)Vi+2(Gk)- '

The induction base, i.e., the case i = 2, is clear: y2(G) = {2k, y£|)V3(Gk) = {ca)73(Gk)
and 13(Gg) = {[c2, zk], [c2, Y] )14(Gk) = {c3,¢2,1)74(Gk). Next suppose that i > 4. The
induction hypothesis yields

Yi—2(Gk) = {ci-2, C2i—4, Cai—6; - - -, Ci—42)Yi-1(G),

Yi-1(Gk) = {ci-1, €2,i-3, C4i—5; - - -, Ci=21)7%i(G).

From ¢y, , € [Hy, Hi| = Zj, we deduce [¢p pn, k] = 1 for all m,n > 1. This gives

Yi(Gr) = {ci, ¢i—11, C2i—2, Cai—a, - .., Ci—22)Vi+1(Gk).

We put
M = {ci, c2i—2, Cai—a, - .., Ci—22)Vi+1(Gk)

and aim to show that ¢;—;; € M. This will establish the first equation in (7.3); the
second equation then follows immediately, again from [¢p m, yx| = 1 for m,n > 1.
As ¢i_11 = [ci—2, T, Y], the Hall-Witt identity yields

ci—11[Tk, Yk, ci2][Yrs cim2, wk] =1 (mod M).
Furthermore, [yk, ¢i—2, zk] = Cz‘_—l2,2 = 1 modulo M, and this gives
Ci—1,1 = [Ci_z, CQ]_l (mod M)
Thus it suffices to prove that

[em,cn] =1 (mod M) for all m,ne N with m >n >2and m+n = 1.

We argue by induction on m—n. If m—n = 0 then m = n and [¢,, ¢,] = 1. Now suppose
that m—n > 0, which, since i is even, implies that m—n = 2. As [¢y, ¢n] = [em—1, Tk, cn],
the Hall-Witt identity yields

[CmaCn][xkaCnycm—l][cnacm—laxk] =1 (IIlOd M),
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where [zk, cn, Cm—1] = [¢m—1,¢n+1] =1 (mod M) by induction. This yields
[y cn] = [eny em-1, 6] = [[eny emo1]7" 2x]  (mod M).
From [cn, ¢m-1]7! € vi—1(Gy) we deduce that
[ensemo1] ™ = €0 e _yelt s oeel'5y (mod 7i(Gr)

for suitable 7,72, ...,r;—0 € Z. It follows that

[ems en] = [[en, em—1]" k] = ¢;’Cy5 9C g CZZ_Z?Q =1 (mod M).

This finishes the proof of (7.3). Finally, we observe from (7.3) that

(G /Y41 (Gr) = CLOand 441 (Gr) ris2(Gr) = CLOHD,

where (i) <i/2 and I(i + 1) < i/2+ 1; below we will see that, in fact, all the generators
appearing in (7.3) are necessary.

Now consider i € I3, that is p¥ +1 < i < 2p* — 2 and i =5 0. Since the exponent of
H is p, Lemma 2.6 yields

k
Cpky1 = [ykaxlf ] = [yk, 1] =1 (mOd Vpk+2(Gk))7

thus ¢ ryq € Yprio(Gr) and cpr g, € Yphinio(Gr) for n = 1. For similar reasons, we
have c,, k1 € Vpkyn42(Gk) for all n > 1. This yields, by induction on 4,

7i(Gr) = <cifpk+l7pk717 Ci_pk43pk—3y « -y Cph_1 4— pk+1>’7i+1(Gk),

(7.4)
’Yi-&-l(Gk) = <ci—pk+17pk7 Ci—pk43pk—2;5 ) Cpk_15—pk +2>71+2(Gk)

Similarly as before, we observe that
(@i (Gr) =GP and 451 (Gi) Jyiv2(Gr) = Y,

where 1(i),1(i + 1) < (2p* —i)/2. Extending the argument one step further, we obtain
Yok (Gk) = 1: the group Gy has nilpotency class at most 2pF — 1.

Finally, it suffices to check that the upper bounds that we derived from (7.3) and
(7.4) for the logarithmic orders log,|yi(Gk) : 7i+1(Gr)|, 1 < i < 2p¥ — 1, sum to the
logarithmic order of GGi. Indeed, based on Proposition 7.9, we confirm that

p* 2pF -1
(B+1)+ > [i/21+ > [(2p" —1)/2]
1=2 i=pk+1
£ k kil k k
p P
pr+1 = p+1 D
=k+4 =k+4( 2 =k
+;l+ +<2>+2 +p+<2>
logp‘GkL
as desired. O
Corollary 7.12. Forie N we have
232 = (% — 4i+ 3)/4 ifi=1,

]
log, |Z : v:(G) n Z| = (i—
gl Z 7 (G) | {22] 1/2j i 2—(i2_4i+4)/4 if 1 =2 0.
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Proof. The claim follows from the standard identity
72(G) : %(G)| = [72(G) : %(G) 2|10 (G) Z : 7%i(G)| = |2(W) - v(W)I|Z = 7(G) n Z]
and Propositions 7.8 and 7.11. O

For a better understanding of the previous theorem see the concrete example in
Figure 7.1.

I

72(G2) 710(G2)  |cs2|coa|ca6]cas]
73(G2) 11(G2)  |esa|ces|car]cao
Y4(G2) Y12(G2)

¥5(G2) 713(G2)

Y6(G2) 714(Go)

v7(G2) 715(G2)

v5(G2) 716(G2)

Y9(G2) cs.1|co3|cas|car] 117(G2)  |csg

N
Figure 7.1: The generator structure of the lower central series of G for p = 3. The label
x (or y) in the arrows indicates commutation with z (or y).

As said, from the lower central series of G, it is easy to compute the lower p-series
and the dimension subgroup series of Gj.

Proposition 7.13. For k € N, the p-central series of Gy has length 2pF — 1 and its
terms satisfy, for 1 <i < 2p* —1,

Pi(Gy) = (af" (Gh).

Proof. The description of P1(Gg) = 71(Gy) is correct. Now suppose that i > 2. By
induction, we have

P, 1(Gy) = <$£i72>7i—1(G’<)'

Recall that P;(Gg) = [Pi—1(Gk), G| Pi—1(Gk)? and consider the two factors one after
the other. The first factor satisfies

[Pio1(Gr), Gi] = [l 39i-1(Gr), Gl = [l ), Gili(Gh),

and since the exponent of H is p, Lemma 2.6 yields

i—2

i—2
[<xk{) >’ Gk] < [G,If 7Gk] < 'Ypi—2+1(Gk).
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From p'~2 + 1 > i we deduce that [P;_1(Gy), Gi] = 7i(Gp).
The second factor satisfies

1—2 G—
Py (Gr)? = (ol Py a(Gr)? = (o) (mod 7i(Gi))-
We conclude that P;(Gy) = <x,fi_l>fyi(Gk). O

Proposition 7.14. For k € N, the dimension subgroup series of G, has length 2p¥ — 1
and its terms satisfy, for 1 <i < 2pF —1,
L(4) . .
D;(Gy) = (a8 »i(G), where l(i) = [log,, (7)]-

Proof. Let i € N. Since v2(Gy;) has exponent p, Lazard’s formula (see [13, Theorem 11.2])
shows that

m 1(3) . .
D;(Gy) = H W(Gr)?" = G 7i(Gy), where I(i) = [log,(4)].
npm =i

Lemma 2.6 yields o' '

we deduce that

= (ab)pl(i) modulo 7, (G) for all a,b € Gy, and, as p® >4,

Dy(Gy) = (G,

as asserted. O

7.2.2 The normal Hausdorff spectra of GG

In this section we establish Theorem 7.7; we split the proof into three parts and formulate
three separate results, in dependence on the filtration series. The first result is directed
to the filtration series £ and D (Theorem 7.15), the second one to the filtration series
P and P* (Theorem 7.16) and the third one to the filtration series F (Theorem 7.19).

Theorem 7.15. The pro-p group G has full normal Hausdorff spectra
hspecs (G) = [0, 1] and hspec2(G) = [0, 1]
with respect to the lower p-series L and the dimension subgroup series D.

Proof. Let § be L, resp. D. Write S: G = Sy = S1 = S2 > ..., where S; = P;(G), resp.
S; = D;(G), for i = 1, and observe that Z < ,(G); compare Remark 7.10. Thus, since
{xry N 72(Gr) = 1, Proposition 7.13, resp. Proposition 7.14, yields

SinZ=7~(G)nZ fori=1.
From Corollary 7.12 we see that
i

I — 0. 7.5
i log,|Z : 1(G) A Z] (7.5)

This allows us to pin down the Hausdorff dimension of Z <. G:

log, |G : Si| \ log,|G : SiZ| +log,|S;iZ : Si|\ !
hdimg(Z) = liminf ( —2——— ) =liminf [ —2 L
imc(2) gt (logp]SiZ : S,\) gty ( log,[S; Z = Sy )

log,|G : Si 7| o log, |G : SiZ] B
— liminf | —2 1) =liminf 2 ) =1
min <1ogp\Z:SmZ| ’ ) e <1ogp!Z:%<G>“Z| ’ ) |
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where the last equality follows from (7.5) and the fact that log,|G : S;Z| < 2i, by
Proposition 7.8 and Proposition 7.14. In particular, Z has strong Hausdorff dimension.
Thus Proposition 7.6, with e; = 1, n; = ¢ and M; = ~;(G), yields

[0,1] = [0,hdimZ(Z)] < hspecS(G),
as we wanted. O
Theorem 7.16. The pro-p group G has full normal Hausdorff spectra
hspect (G) = [0, 1] and hspecz* (@) =1[0,1]
with respect to the p-power series P and the iterated p-power series P*.

Proof. Recall our notation m;(G) = GP' and 7 (G) for the terms of the series P and P*.
Our first aim is to show that

i (G) <GP < wHG) < (@' )y, (@) for all i > 0. (7.6)

Let ¢ > 0. From the construction of G and Gy, since as said Ny, = <:Ezk YEN, it is easily
seen that G/GP" ~ Gk/sz for k € N. Hence Proposition 7.11 yields 'ygpi(G/ka) =1,
so that 75, (G) < GP'. Clearly, we have GP' < 7}(G). It remains to justify the last
inclusion in (7.6). We proceed by induction on i. For i = 0 even equality holds, trivially.
Now suppose that ¢ > 1. The induction hypothesis yields

T4 (G) < &P i (G).

Let g € 7 ,(G), and write g = 2" ' h with m € Z, and h € 7y,i-1(G) n H (here the
intersection with H is relevant only when ¢ =‘12. Since HP = 1, Lemma 2.6 yields
P = ™'z with 2™ € (zP') and z € v,((aP" ,h)). Thus it suffices to show that
(@ 1)) <7, (G). |

Suppose that ¢ is an arbitrary commutator of weight n > 2 in {xp%l,h}; we show
by induction on n that c € 7,,-1(G). For n = 2, it suffices to consider ¢ = [h,a:p%l],
and Lemma 2.6 shows that ¢ € y9,i-1(G). For n > 3, we see by induction that it suffices
to consider ¢ = [d,h] and [d,2?" '] with d € Yn-1)pi-1(G); if ¢ = [d,h], the result
follows immediately, and, if ¢ = [d, a:p%l], the result follows again by Lemma 2.6. This
concludes the proof of (7.6). _

Let S = P, resp. S = P*, and write S; = m;(G) = G, resp. S; = 7}(G), for i > 0.
Recall that Z < v2(G); compare Remark 7.10. Thus (7.6) yields

1oy (G) N Z < Si 7 < (P )i (G)) A Z = 7,(G) A Z. (7.7)

From Corollary 7.12 we see that

)

2p
li =0. 7.8
Fre log,|Z : v, (G) n Z| (78)
As in the proof of Theorem 7.15 we want to apply Proposition 7.6, here with e; = 1,
n; = 2p* and M; = Vi (G), to conclude that G has full normal Hausdorff spectrum.
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It remains to check that hdim$(Z) = 1. We observe that, for i > 0,
log,|G : S;Z| <log,|G; : GF' Z;| < log,|W;| = i + p' < 20,

and thus, by (7.7) and (7.8),

. log, |G : S;Z| . log, |G : S;Z|
lim < lim = 0.
im0 log,|Z : Sin Z| imwlogy|Z 1, (G) n Z|
As in the proof of Theorem 7.15 we conclude that hdim?,(Z) = 1. O

A little extra work is required to determine the normal Hausdorff spectrum of G
with respect to the Frattini series. We define

(7.9)

o [ci,cj] € iy (G) fori,j=>1,
s 1 otherwise.

Proposition 7.8 and Remark 7.10 show that
H={¢l|i=1) and Z={zj;|1<j<i.

Moreover, since for every k the number of pairs (7,j) with 1 <4 < j such that i +j < k
is precisely the number obtained in Corollary 7.12, it can be seen that, for k > 2 we

have
Ww(G)NZ=C{y,|1<j<iandi+j=k). (7.10)

Lemma 7.17. Fori,j € N and r = 0, we have
' S r s
[Zi7j7 T, .t ‘T] = H H Zig-s'r)“gtt%j—i-r—s+t‘
s=01t=0

Proof. We argue by induction on r. For r = 0 both sides are equal to z; j. Now suppose
that » = 1. We observe that, for m,n > 1,

[Zm,nuSU] = ng}n[cﬁm Crf] = Zr;}n[cmcm-‘rlv cncn-‘rl] = Zm+1,n Zmn+1 2fm+1n+1- (711)

Thus the induction hypothesis yields

r s
r—1\(s
[Zi,jaxwr-vx] = [[Zi’j,x,r.f.l,x]vm] = 1_[ H [ZiJrrflft,jJrrflfertax]( s )(t),

s=01t=0

and, in view of (7.11), the result follows from the identity
r—1 s—1 N r—1 s—1 n r—1 s
s—1 t s—1 t—1 s t
B r—1\ /s N r—1\ /s INIAYE
S \s—1 t s t)]  \s)\¢
for0<s<rand 0<t<s. O

Lemma 2.6 and Lemma 7.17 lead directly to a useful corollary.
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Corollary 7.18. Fori,7 € N and k = 0, we have

k
.. P .
[ZZ,] » L ] Ritph,jZi,5+pkZitpk j+pk-

Proof. By Lemma 2.6 we have [ziﬁj,acpk] = [z, x, P, x| since the exponent of Z is p,

and since p divides (p:) for all n # 0, p¥, the result follows. O

Theorem 7.19. The pro-p group G has full normal Hausdorff spectrum
hspec,(G) = [0,1]
with respect to the Frattini series F.

Proof. For i > 0, we write [i], = (p'—1)/(p—1) and note, for i > 1, that [i—1],+p"~ =
[i]p. We consider .
C; = (a") lizl+[ip) <G
and claim, for 7 > 1, that
U (GQ) < 9;(G) < U1 (@), (7.12)

where

\I]_(G) = CZ (’Yl+2[i71]p+pi_l(G> N Z) and \I/:_ (G) = CZ ("}/2+2[i,1]p (G) M Z)

)

For i = 1 the assertion is that ®(G) = C1(72(G) n Z) = (aP,ca,c3,.. )(72(G) n Z),
which follows since ®(G) = (aP)y2(G). Now suppose that ¢ > 2. Lemma 2.6 and the
observation that p'~! > 2p'~2 yield

[72+2[z'72]p(G) N Z,xP

since [Z, H] = 1, we have [y349[i—2),(G) N Z,cy] = 1 for all n > 1. Furthermore,
Lemma 2.6 gives

i—1

I < 72+2[’i72]p+pi_1(G) N Z < Yoyopi-11,(G) N Z;

i—1

[cn, 2" ] =cpypi-r (mod Yg,4pi-1(G) N Z) foralln > 1, (7.13)

and hence o
[Ci—h P ] < G (’}/2+2[i,1]p+pi—1(G) N Z).
By induction, ®;_1(G) < ¥ {(G) = C;_4 (72+2[2-,2]p(G) N Z), and this implies

0;(G) = ®(2;-1(Q)) < (P)[Cim1, Ci1] (Yarapi—1, (G) N Z)
< Cz ("}/2+2[Z-,1]p (G) M Z) = \I/:_ (G)

It remains to check the first inclusion in (7.12); by induction, it suffices to show that

U, (G) < K, where K = ®(¥;_,(G)).
First we show that vy 4 o[i—_1],4pi-1 (G)NZ < K implies C; < K. Clearly, 2P e cr, <K,
and (7.13) shows that, for j > 1 + [i],, there exists d; € Yo(j_pi-1)1pi- 1(G) NZ <
Y142[i—1]p+p—1 (G) N Z such that

i1, 2 ]d € [Ci_hci_ﬂ < K.

¢j = lejp
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Thus it suffices to prove that vy o[i_1],4pi-1(G) N Z < K.
From (7.10) we recall that

Visofic1ly+pi-1(G) N Z =z [ 1<k <jand j+k>1+2[i—1], +p ).
From [C;_1,C;—1] < K we deduce that
Zmn € K form>n=>1+[i—1],. (7.14)
Thus, it remains to see that z;; € K for j, k € N satisfying
1<k<j, j+k=1+2[—-1],+p " and k<[i—1],.
Given such j, k € N, we observe that
k<l+4[i—1],<j—p" ' and  (G—p D +k=1+2[i—1];

hence (7.10) implies

Zj_pi-1k € 71+2[i—1]p(G) NZ< 71+2[i—2]p+pi72(G) NZ <V, 4(G).

We apply Corollary 7.18 to deduce that

i—1

24k Zj_pi—17k.+pi—l Zj7k+pi—1 = [Zj_pi—17k7$p ] € [\I/l:l(G), Ci—l] < K. (7.15)

Asj>k+p™t >1+[i—1],, we see from (7.14), for m = j and n = k + p*~! that
Zj k4pi—1 € K. Similarly, we deduce that z;_pi-1 i1 € K, if j — p' !>k +p'~! and,
Zk_:pi—lj,pi—l e K,if j —p ! < k+p~! and thus j —p'~! >
1 + [i — 1],. Feeding this information into (7.15), we obtain z;; € K which concludes
the proof of (7.12).

From (7.12) we deduce that

ﬁnally, Rj—pi=1 k4pi—1 =

’Yl+2[ifl]p+pi71(G) NZ<P(G)nZ< V2+2[z‘71]p(G) N Z,
and from Corollary 7.12 we see that

29 — 1 i—1
hm [Z ]p + p

= 0.
imw log, |Z 1 Yayopi-1,(G) N Z|

As in the proof of Theorem 7.15 we want to apply Proposition 7.6, here with ¢; = 1,
ni = 2[i — 1], + p"! and M; = Yo+2[i-1],(G), to conclude that G has full normal
Hausdorff spectrum.

It remains to check that hdimZ (Z) = 1. From Proposition 7.8 we see that log, |G :
®;(G)Z| = i+ [i]p, and hence Corollary 7.12 implies

log,|G: ®;(G)Z|
i log,)| 2 ®,(G) n 2]

As in the proof of Theorem 7.15 we see that hdim(Z) = 1. O

Theorem 7.7 summarises the results in Theorems 7.15, 7.16 and 7.19.
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7.3 A pro-2 group with full normal Hausdorff spectra

To end with Chapter 7 we will modify the construction in Section 7.2 to produce a pro-2
group with full normal Hausdorff spectra with respect to the five standard filtration
series.

The unique difference in the construction of the pro-p group when p = 2 is that we
slightly change the definitions of N and Nj in (7.1), so that in this case we set

G = F/N, where N =[R,Y]|R? <. F,
Gy = F/N;, where Ny = [Ry, Y] R2GE2HF.
We denote again by H and Z the closed normal subgroups of G corresponding to Y /N
and R/N, and we denote by Hjy and Zj the normal subgroups of Gy corresponding to
Yi/Ni and Ry /Ni. We also set G = (z,y) and Gy = {xk, yx) and we adapt the notation

introduced before Section 7.2.1 to the pro-2 group G.
Our goal will be proving the following.

Theorem 7.20 ([35]). The 2-generator pro-2 group G constructed above has full normal
Hausdorff spectra with respect to all the standard filtration series, that is,

hspec (G) = [0, 1]
for every S € {L,D, P, F}.

Remark 7.21. Note that for pro-2 groups the iterated 2-power series P* and the Frattini
series F coincide. Indeed since groups of exponent 2 are always abelian, we have ®(H) =
H?H' = H? for every pro-2 group H.

7.3.1 Adapting structural results for p = 2

We proceed now in close analogy to Section 7.2. We start computing the orders of the
G.

Proposition 7.22. For k € N, the logarithmic order of Gy, is

2k
logy |Gk| = k + 2841 4 <2> =k +2%k71 4 ok+l _ok—1

Proof. The proof is almost the same as that of Proposition 7.9. Just note that in this
case, by construction, the subgroup Zj is elementary abelian and

7 7 J
Z =) 10<i<2" =1} u [y gt l0<i<j <2 -1,
so that
2k’
logy |G| = k + 28 + logy | Zp| < k + 281 + <2>

Thus, the result follows as in Proposition 7.9 just changing the definition of M in
(7.2) to
M = E/[2(E), E](E)?,
where E is the free group on 2* generators. In this case, the elementary abelian sub-
group ®(M) is generated independently by the elements b3, . . . ,bgk_l together with the
commutators [b;,b;] for 0 < i < j < 2% — 1, which can be verified by considering

homomorphisms from M onto groups of the form C’;kil x C4 and C;LQ x Heis(Fy). O
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Our next goal is computing the lower central series of the G. In order to do so, we
need the following lemmas.

Lemma 7.23. Let k € N and let Gy, be as above. Then:
(i) For 281 +1 <i < 2%, we have ¢ =1 and c? € vi+1(Gk).

(ii) Fori = 2% +1, we have ¢} = 1.

2 —
(iii) Fori = 2F 4+ 28=1 4+ 1, we have ¢; € v;11(G4).

Proof. (i) As Hy, has exponent 4 it is clear that ¢} = 1. In addition, since [Hy, Hy.] < Z
has exponent 2, it follows from Lemma 2.6 that

—1

k _ _
U= [ys,xf 1= [y or 2570 2y, o5, 27 2p] (mod yor-1,5(Gr)). (7.16)

Therefore c22,€_2+1 = cor—141 (mod Yor-1,5(Gy)), and hence

cgk,lﬂ =1 (mod vor-1,9(Gp)).
Now, for 2= + 2 < i < 2%, notice from Lemma 2.21 that

— i—ok—1_1 1.2 i_ok—1_1
¢ = [eopr g, xp, 20T ay] = [Cor—21s Th>" 20 ]

= [y, 2p, 72T L] (mod i (Gh)),

hence the result.

(ii) This follows immediately from the fact that by Proposition 7.8 we have ¢; € Z,
for i > 2% + 1.

(iii) It suffices to prove the result for i = 28 + 2¥=1 4 1. From (7.16), we obtain

k—1

k—1
C;, = [62k+1,$k,2. ..

cak] = ety Tks 2 2] (mod i1 (Gr)).

As
[622k—1+17 Lk, Z'k'i'la ka] = 022k+1 (mOd PYH—I(Gk))

we have ¢; = ¢2

k41 (mod 7i41(Gy)), and by (ii), it follows that ¢; € 7,4.1(G), as required.

O]

We adjust the notation introduced in (7.9) to the pro-2 group G. It follows immedi-
ately that the result in Lemma 7.17 works also for the p = 2 case, even if the groups in
consideration are not exactly the same. So, abusing notation, we will keep using Lemma
7.17 also for the pro-2 group G.

Lemma 7.24. Let k € N. In the group Gy, for m € N even, we have

Cm,2k € Yok m+1(Gr)-
Proof. Note that
_ 2k 1
c’m,Zk [zm,h Ly = - 7$k]7
and since z; j € ¥i4;(Gy) for every i,j € N, we have by Lemma 7.17 that
2k—1

,Tp) = Hz

n=0

)
! m-:2k—1—n,1+n (mOd 72k+m+1(Gk))'

k_
[Zm.1, Tk, 2
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In addition, the exponent of Zj is 2 by construction. Hence, since by Theorem 2.7 all
k
the binomial numbers (2 ;1) are odd, we get

2F—1
k_
(21, 2, 270 2] = H Zmtok_1—nitn (M0 Yok p i1 (GE))-
n=0
Recall that ¢; € Zj, for every i > 2% + 1 by Proposition 7.8, so Ztok—1—n14n = 1 for all
n < m — 2. Thus,
2k—1

k_
[zm,h Tk, 2" ‘1’ l?k] = 1_[ Bm+2k—1—n,14+n (mOd ’72k+m+1(Gk))
n=m—1

2k_—m
= H 22k —n.m+n (HlOd 72k+m+1(Gk))
n=0

2k —m/2 2k _pp,
- H “2k —nm+n H 22k —p,m+n (mod '72’€+m+1(Gk>)'
n=0 n=m/2+1

As 2z ; = zj_il for all ¢,j € N and since m is even, we finally obtain

1al'k] =1 (mOd /72k+m+1(G/€))7

k_
[Zm1s Tk, 2
as required. ]

We are now able to describe explicitly the terms of the lower central series of the
groups Gi. We will omit the proof of Proposition 7.25 since it is the same as the proof
of Proposition 7.11 in nature. One only needs to adapt it to the pro-2 group G taking
into account the results in Proposition 7.22 and Lemmas 7.23 and 7.24.

Proposition 7.25. For k € N, the nilpotency class of Gy, is 2871 — 1 and the lower
central series of Gy satisfies:

e 71(Gr) = Gk = {xi, yr)12(Gr) with
11 (Gr)/72(Gr) = Cor x Ca.

o If2<i<2F then

(€iy€2,i—2, Cai—ty - -, Cim22)Yi+1(Gr) if i =20,
7(Gr) =

(CiyC2i—2,Cai—4s .-, Ci—1,1)Yi+1(Gr) if i =21,
with
Cyx Cyx 722 % 0y if2<i<2! andi=y0,
C4><Cg><(i._.1)./2><02 Z'f2<i<2k_1 and i =9 1,
(G i11(Gg) = ,
(G i1 (Gi) Cy x 12 x Cy if 261 41 <i < 2% and i =5 0,
Cy x 12 5 o iF2Pl41<i<2" andi=y1
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o If2F +1 < i <2F 4281 then

%i(Gr) =
(Cir Cimoh 42,2525 Ciogbragh—gs -5 Cok_p ok 42, Cakj—ok Vi1 (Gh)  if 1 =20,
(Cir s Ciahy1 261 Cimab 30535 - - > Cob 2,2k 420 Cob kY1 (G) - W1 =2 1,
with
Cy x P25 Oy ifi=y 0
G ) = ’ 7.18
i(Gr)/i1(Gr) {02 x @2 0y ifi=y 1. )
o If2F 4251 41 <i<2M then
%i(Gr) =
(Cimgbioob 9, Cimghya i sy Cokg i okio; Cok ok )Yit1 (Gr)  if 1 =20,
(Cigk g1,k 15 Ciok 3.9k 35 -5 Cok i ok 42, Cok ok )Vi+1(Gr) if i =21,
with
Oy x @025 0y, ifi=y0
C G = ’ ’ 7.19
Vi(Gr)/7i41(Gr) {02 x GSHD2 00 = 1. (749

Remark 7.26. From Proposition 7.25 we deduce that the logarithmic order of Z/(v,(G)

Z) is
2(1+2+...+"T_1) _2(("+21)/2> _”24_1

if n is odd or

if n is even.

With Proposition 7.25 the lower 2-series and the dimension subgroup series of Gy,
can be deduced easily.

Proposition 7.27. For k € N, the length of the lower 2-series of Gy, is 2871 — 1 and it
satisfies

P1(Gy) = Gy,

and

Pi(Gg) =

@ e )vilGy) for2<i< 2kl 4,
@l i(Gr) for 2871 42 < < 201

Proof. If i = 1 or 2, the results are obvious, so consider i = 3. As
[<xi, yl%>7 Gk] < VQ(G]C)2’}/3(G]€)7
it suffices to show that (22, y2)* < (x})v3(Gk) and Y2(Gx)? < {c3)v3(Gy). Note that

[vi. 22] = [y 2]* =1 (mod 73(Gy)),
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and since z},yt € (x})y3(Gy), the first inclusion holds. The second inclusion follows
from Proposition 7.25, as [y, zx] is the only generator of v2(Gj) modulo v3(G).
Now let 4 < i < 2*~! and assume by induction that

P_1(Gr) = af e o)1 (Gh).
On the one hand,
[P—1(Gr), Gl = [a} " c2 o1 (Gr), Gil = [ad 200, Gil7i(Gh)

and Proposition 7.25 and Lemma 2.6 yield

(a2, P o), Grlmi(Gr) = [(e o), Gilmi(Gh).

Then by similar arguments as above, one deduces that

[01;2—2’ Grlvi(Gy) = <Cz‘2—1>’Yi(Gk)~
On the other hand,
Py (Gr)? = o )im1(Gr)* = (o ely) (mod %(G)),
so we conclude that
Pi(Gr) = (@} e )n(Cr),

as asserted. The case 2871 + 2 < i < 2#*+1 follows from (ii) of Lemma 7.23. O

Proposition 7.28. For k € N, the length of the dimension subgroup series of Gy, is

2k+1 and y
Di(Gy) = (@ o) (Gr)?i(Gr)  for 1< < 20+,
where [(i) = [logy 7].

Proof. By [13, Theorem 11.2], we have

Di(Gr) = ] m(Ge)*"

n-2m=q

for every i € N, and since exp(y2(Gj)) = 4, we obtain

@
Di(Gy) = G} Vii/2) (Gi) i (Gh).

The result is clear for i = 1,2, so we assume i > 3. By Lemma 2.6, since the exponent
of H is 4, for every a,b € Gy, it follows that

i ; ; . 1(i)
(@h)?? = 25 b, a, 2l(z.)f%—1,a](212(i),1)c
) ol(4)
with ¢ € 'yzz@)(Gk). Since [b’ a721(1‘)j%—1’a]](2l(i)—1) c V[i/Q](sz)z and ')/Ql(z‘)(Gk;) < %(Gk)’
we get

1(5)
Di(Gr) = @ 2 (Gr)*i(Gr),

as required. ]
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7.3.2 The normal Hausdorff spectra for p = 2

In this section we compute the normal Hausdorff spectra of G with respect to the
standard filtration series £, D, P, and F.

Again, we will split the proof of Theorem 7.20 into three parts. We start with the
filtration series £ and D.

Theorem 7.29. The pro-2 group G has full normal Hausdorff spectra
hspec5 (G) = [0,1] and  hspec2(G) = [0,1]
with respect to the lower p-series L and the dimension subgroup series D.
Proof. By Remark 7.26 we have
i i

lim inf =0 and liminf

i logy|Z : Pi(G) N Z] isw logy |Z:Di(G)n 2|

0,

and they are furthermore given by proper limits. The proof now follows as in Theorem
7.15. 0

For the filtration series P, we define for all n € N the subgroups
Ly = (2 )ypn1(G) P20 (G) 2 G.
Lemma 7.30. For each n e N, we have T2 < Tp1.
Proof. We only have to check that I}, < T'j,;1. Clearly
[y2n-1(G)?, 7201 (G) 720 (G)] = 1
and [y2n (G), v2n (G)] < Ygn+1(G) < Ty, so it suffices to prove that
(22", o1 (G) 2920 (G)] < T,
On the one hand, since the exponent of H is 4, Lemma 2.6 yields
[122 (@), 2] < Yan490-1(G)*yon 1 (G) < T
On the other hand, for 2! < < 2" — 1, again by Lemma 2.6 we have
[ci, 27" € 720 (G) *yan 4001 (G),

SO
[ 2 2”] 2™12 2n

ci x| = [ci, 2" *[ei, 2™, ¢i] € Ty,
as required. ]
Theorem 7.31. The pro-2 group G has full normal Hausdorff spectrum

hspecZ(G) = [0, 1]

with respect to the 2-power series P.



7.8. A pro-2 group with full normal Hausdorff spectra 91

Proof. An arbitrary element of G can be written as z"h with h € H and n € Zo,
and by Lemma 2.6, it follows that (x”h)zk € I'y. Then G2 < Iy, and, in particular,
G’ nZ< 'y n Z. Tt is easy to see that

Tk 0 Z = (Yor-1(G)? Y91 (G)) N Z = Y1 (G)* (301 (G) 1 Z),
and since [yor—1(G), Yor-1(G)] < 191 (G) N Z, it follows that
72k71(G)2 < <C§k71acgk71+17 cee C%k_1>(72k(G) n 7).

Thus, by Remark 7.26, we have

2k—1
logy | Z : Ty 0 Z| = logy | Z = yor—1(G)? (7 (G) 0 Z)| = 2< 5 )

On the other hand, as in the proof of Theorem 7.16 we deduce that y,x+1(G) < e

Thus,
2k+1

I -0
o logy |2 Thn 2]

and we conclude as in Theorem 7.16. O

We are now concerned with the Frattini series F. As in the p odd case, the result
for this filtration is more technical than for the other filtrations. Even though the proof
of Theorem 7.32 is very similar to the proof of Theorem 7.19, we will give all the main
computations, as there are slight differences in many of the steps.

Since clearly z; j € vi4;(G), we deduce from Proposition 7.22 and Remark 7.26 that

V(G N Z ={cF, zi; | 1<j<iyi+j=n,l=n)
for every n = 2.
Theorem 7.32. The pro-2 group G has full normal Hausdorff spectrum
hspecZ,(G) = [0,1]
with respect to the Frattini series JF.
Proof. We claim that
Tie(Yorpor-1-1(G) N Z) < 4 (G) < T,

where
k . — .
Tk=<l‘2 vci2acj|l>2k 1,]>2k>

for all k € N. We will proceed by induction on k. If k = 1 the result is clear, so assume
k = 2. On the one hand, it follows from Lemma 7.30 that

q)k(G) = Cbk_l(G)z < szl <TIy.
Hence, it suffices to check that

T (voryor-1-1(G) N Z) < A,
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where

A = @(Ti—1(var-14902-1(G) N Z)).

Of course we have x2k,c? € A for all i > 2F"1. We also have T}, < A, so (z;; | i >
j = 281 < A. Let us see that zij € A whenever 1 > j, i +j = 2k 4 2k=1 _ 1 and
j <21 — 1. Consider the element Z;j_ok—1 ; and observe that

Zi_2k717j S "}/Qk_l(G) N Z

as
i—2F 1y =9k 1.

Therefore [2;_or-1 j, $2k_1] € A. By Corollary 7.18, it follows then that
zivjz’i—Zk*17j+2kflzi7j+2k—1 e A.

On the one hand, we have i > j + 28~ and j + 2871 > 21 <o z; jyok—1 € A. On the
other hand, if i — 2¥=1 > j + 25=1 then Zi_ok—1 jrok—1 € A, and if ¢ — 2k=1 < j 4 2k—1,
then as i — 2871 > 2F~1 we have

_ -1
Zi_2k—1’j+2k71 = Zj+2k717i—2k*1 S A

Therefore, z; ; € A and Yok or-1_1(G) N Z < A.
Finally, for j > 2*=1 observe that

2k—1

[Cj, T ] = j2+2k_2cj+2k_l (mOd ’Y2j+2k—1(G) M Z),

and since 9 4or-1(G) N Z < A and c? e Afor all i > 2*1 it follows that ¢; € A for all
j = 2F. We conclude that

Ti(Yoriot-1-1(G) N Z) < A < B(G),
as claimed. In particular, we get
”)/2k+2k71_1(G) NZ< ‘I)k(G) NZ<TpnZ.

Now, from Remark 7.26 we deduce that

2k 4 2k=1 1 2k 4 2k=1 1
lim inf =1 = 0. 7.20
g logy |Z : Tk N Z| kggologﬂZ:kaZ\ ( )
We conclude as in the proof of Theorem 7.19. O

Again, Theorem 7 summarises the results in Theorems 7.29, 7.31 and 7.32.
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Chapter 8

A brief introduction to powerfully
nilpotent and powerfully solvable
groups

Powerful groups have been, without any doubt, one of the main protagonists of Part I
of the thesis. Indeed, they have been a good “platform” in which commutator calculus
behaves particularly well. In this last part of the thesis we will make a further study of
the theory of such groups, deepening in this way the knowledge on this topic.

For the purpose of bringing some order to the huge category of finite groups, one
uses to classify them into some (not necessarily disjoint) subfamilies of groups. For
instance, we can consider the families of finite simple groups, finite nilpotent groups,
finite p-groups, finite solvable groups (or equivalently finite polycyclic groups), finite
metabelian groups, finite supersolvable groups, etc.

When we focus, though, in the (still huge) family of finite p-groups, it does not make
sense to consider the subfamily of finite nilpotent p-groups (which would coincide with
the whole family of finite p-groups) or the subfamily of finite simple p-groups (which
would consist only of the group Cp). The subclasses that one considers for these groups
are thus more specific and must be tailored to the particular group structure of the finite
p-groups.

However, we will see that in the family of powerful groups, there is a way in which
one can consider subfamilies in an analogous way as for general finite groups. The way
to do this is somehow assigning the role that the subgroups and the normal subgroups
have in the context of general finite groups, to the powerful subgroups and the powerfully
embedded subgroups of powerful groups, respectively.

This idea started with the notion of powerfully nilpotent group, which can be seen
as the “powerful version” of the notion of finite nilpotent groups.

Definition 8.1. Let G be a finite p-group. If K < H < G, then a chain of subgroups
H=Hy>H,>--->H,=K

is powerfully central in G if [H;,G] < H},, foralli =0,...,n— 1.

95
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Definition 8.2. A finite p-group G is said to be powerfully nilpotent if it has a powerfully
central series
G=Gy=G > >Cy=1

The smallest possible length of such a series is called the powerful nilpotency class of G.

This concept was introduced by Traustason and Williams in [75], where some general
theory of powerfully nilpotent groups is developed. A remarkable result is that powerful
nilpotence leads naturally to a classification in terms of what the authors call powerful
coclass (the powerful coclass of a powerfully nilpotent group G of order p™ and powerful
nilpotency class ¢ is the number n — ¢). Thus, they show that for every prime p there
are finitely many powerfully nilpotent p-groups for each given powerful coclass. They
also determine the growth of powerfully nilpotent groups of exponent p? with respect
to the order p™: they show that the growth of such groups is f(n) = po‘"3+°("3) where
a = (9 + 4+4/2)/394.

The study of these groups continued in [76], where the powerfully nilpotent groups
of maximal powerful class are introduced. These groups can be seen as the analogous
of finite p-groups of maximal class. Thus, it is shown that for any given positive integer
r and prime p > r, there exists a powerfully nilpotent group of maximal powerful class,
and their structure is analysed.

More about these groups can be found in [79] and [80], where, among other things,
it is reflected that powerfully nilpotent groups arise naturally in the theory of finite p-
groups; and in [77], where a full classification of, on the one hand, all powerfully nilpotent
p-groups of rank 2, and on the other hand, all the powerfully nilpotent p-groups of order
up to pb, is given.

In the first half of Part III we will consider a natural larger class of powerful groups,
namely, the powerfully solvable groups.

Definition 8.3. Let GG be a finite p-group and K < H < G. We say that a chain
H=Hy>H > --->H,=K
is powerfully abelian if [H;, H;] < HY,; for alli =0,...,n — 1.

Definition 8.4. A finite p-group G is powerfully solvable if there exists a powerfully
abelian chain
G=Gy=2G =2--->2G, =1

The smallest possible length n is called the powerful derived length of G.

It is natural to think that we could define powerfully simple groups as the powerful
groups with no proper non-trivial powerfully embedded subgroups. Nevertheless, this
notion is not as satisfactory as one could expect, as the unique powerfully simple p-
group would be C,. Hence, we will be forced to define powerfully simple groups in a
more restrictive family than that of powerful groups. In order to define it, we recall from
Proposition 2.10 that all powerful groups have a basis. We will refer to it as a powerful
basis of G, where G is a powerful group.

Definition 8.5. Let G be a powerful group and let {ai,...,a,} be a powerful basis of
G, so that |G| = o(a1) - - - o(a,). We say that G is of type

(1,72.,1,2,72.,2,..)

if there are r; generators of order p* for every i > 1.
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Note by (iii) of Proposition 2.8 that the number of generators of a powerful basis of
order greater than or equal to p", where n > 1, is precisely log, ]Gpn_l : Gpn], so the
number of generators of any given order of a basis of GG is an invariant of the group. This
means that the type of G is well defined. The family of groups in which the notion of
powerfully simple groups will be defined is the rich family P of groups of type (2,.7.,2)
with r > 1. This will be discussed in Chapter 10.

All the results and ideas in Chapters 9 and 10 are collected in [36].






Chapter 9

Powerfully solvable groups

We focus now on some general aspects of the theory of powerfully solvable groups. In
the remainder let p denote an odd prime.

We start in Section 9.1 by studying powerful groups of rank 2. On the one hand, we
will show that all powerful p-groups of rank 2 are powerfully solvable, and on the other
hand, based on the work in [77], we provide a classification of all these groups as well
as a closed formula for the number of such groups of order p*.

The notion of powerfully nilpotent presentation introduced in [75] is one of the most
important characteristics of powerfully nilpotent groups, as it allows to describe them
in a very explicit way. In Section 9.2 we extend this to powerfully solvable groups,
introducing the notion of a powerfully solvable presentation. This will be useful later on
when going through some classification and calculating growth.

With this, we classify in Section 9.3 all powerful groups of order up to p°. As we
will see, it turns out that these are all powerfully solvable.

Finally, based on [75], we discuss in Section 9.4 the growth of powerfully solvable
groups of exponent p? and various other classes of powerful groups, like the powerful
groups of type (2,...,2), which will be the central issue of Chapter 10.

9.1 Powerful groups of rank 2

We start with a basic criterion for the powerful solvability.

Proposition 9.1. Let G be a powerful p-group. If [G,G] is cyclic then G is powerfully
solvable of powerful derived length at most 2.

Proof. As G is powerful we have that [G, G] = (¢P) for some g € G. Therefore

G={gp=1

\%

is a powerfully abelian chain. O

Let G be a powerful group generated by 2 elements, say z,y € G. Then, G’ =
{z,y])y3(G), but since 713(G) = [G’,G] < (G')P = ®(G’), it follows that G’ = ([a, b]),
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so that G’ is cyclic. Therefore, according to Proposition 9.1, powerful groups of rank 2
are all powerfully solvable.

Furthermore, suppose [z,y] = gpk for some g € G\GP and k > 1. Then there exists
h € G such that G = (g, h), and since G' < (g), it follows that (g) is normal in G.
In addition, G/{g) is clearly cyclic, so it follows that powerful groups of rank 2 all are
metacyclic.

In [41, Chapter 11] a classification of all finite metacyclic p-groups is given, and in
particular, if one singles out the powerful groups of rank 2, a full classification for them
can be obtained. Alternatively, in [77] the powerfully nilpotent groups of rank 2 are
classified and a closed formula is found for the number of powerfully nilpotent groups of
order p*. In fact, there is implicitly the following classification of all powerful p-groups
of rank 2.

Theorem 9.2. The powerful groups of rank 2 are divided in the following two families
of groups:
(i) Semidirect products:
G ={a,b|a”" =" =1, [a,b] = a”")
withn—r<mandl<r<n-1.
(ii) Non-semidirect products:
G={a,b|a" =1,0" = a [a,b] = aP")
withl <r<l<n—1landn—r<Il<m.
Moreover, all these groups are pairwise non-isomorphic.

From [77] we also know that a group above is powerfully nilpotent if and only if

r > 2. Thus, it is easy to determine that there are | %51 | semidirect products and | 54|
non-semidirect products of order p* that are not powerfully nilpotent. From this, the

discussion above and [77, Proposition 2.2] we also get the following enumeration.
Theorem 9.3. For k > 3, the number of powerful p-groups of rank 2 and order p* is
k3 + 12k* + 12k

= if k=0,
k3 + 12]{:27; 3k — 16 if k=el,
k3 4+ 12k27;- 12k -8 if k=2,
k3+13§2+3k if k=63,

k3 + 12k27—i2— 12k — 16 if k=g¢4,
& 12k722+ 3k —8 if k=g 5.

Proof. This can be verified by routine computations just noting that the semidirect
products in Theorem 9.2 have order p"*", while the non-semidirect products have order
pn+m—l‘ ]
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9.2 Powerful presentations

Our aim in this section is to find suitable generators that not only form a powerful
basis of G, but also satisfy special relations that will yield what we will call a powerfully
solvable presentation of G. The next lemma is essential for this purpose.

Lemma 9.4. Let G be a finite p-group and let K < H < G where [H,H] < KP. If
for some positive integer n we have KP" = HP", then there exists v € H\K such that
zP" = 1.

Proof. Observe that
[K,K] < [H,H] < K* < H,

so both H and K are powerful. By Lemma 2.13 they are power abelian, so in particular,
|H : H?"| = |Q,(H)| and |K : KP"| = |Q,(K)|. Now, since K < H and H?" = KP", we
must have Q,(K) < Q,(H), so take z € Q,(H)\Q,(K). Thus, the order of z is p" and
x € H\K, as desired.

O

Note that the property of being powerfully solvable is preserved under taking quo-
tients. In particular, if G is powerfully solvable, then so is G/G”Q. As next theorem
shows, the converse is also true. Furthermore, there exists a special generating set of G
that, arranged in a specific way, gives a suitable powerfully abelian chain.

Theorem 9.5. Let G be a finite p-group of rank r and exponent p® where G/Gp2 18
powerfully solvable. Then G is powerfully solvable. Furthermore, we can choose our

generators ai,as, ..., a, such that |G| = o(ay)---o(a,) and such that the chain
_ P
G ={ai,az,...,ary > {ay,az,...,ar) >-..= GP
2 2
P P P p* P P
GP = (ay,ay,...,ary = {ay ,ay,...,ar) == GP
e—1 e—1 e—1 e—1 e e—1 e—1 e
P p p pe D p
GPr ={ay ,ay, ,...,ar ) = {aj,ay, ,...,ap ) =---= GPF =1

s powerfully abelian.
Proof. Suppose, using the fact that G/ GP is powerfully solvable, that
G:K0>K1>~->Km:Gp2

is a chain that is powerfully abelian modulo GP°. Notice that [G,G] < K¥ GP* <GP
and the group is hence powerful. In particular, we have [GP, G] < GP* and (GP)P = Gr*.
Therefore, the chain

GIK@G”?Kle>--->KmGp:Gp

is also powerfully abelian. Removing redundant terms and refining if necessary, we get
a powerfully abelian chain

G=Hy>H; > --->H,=G"?

where the factors are of size p. Now notice that for 0 < ¢ <r—1and 0 < j < e we have
: : _ )
[Hzp7  HY J] = [H;, Hi]PQJ < Hfﬁ . This gives us the powerfully abelian chain we wanted.
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It remains to see that we can furthermore pick our generators such that aq,...,a, is a
powerful basis for G. Let us pick our generators of G such that for every 1 <i<r —1
we have H; ={a;11,...,a,)GP. If

H? - 1Y, (0.1
for some 1 < i < r — 1 then we know from Lemma 9.4 that we can pick a;4+1 such that
afH = 1. In addition, note that in general, if @ € G has order p, then
[Hi, HZ] < <Hj, a>p implies [HZ, HZ] < Hf (92)
forevery 0 <i<j<r—1.
On the other hand, observe from Lemma 2.14 that |[H} : HY ;| < p for all 1 <i <

7 — 1, so the number of times that equality (9.1) happens is exactly r — log,, |G” : GP° |.

We write 1 = log, |G? : Gp2|, and observe that r; coincides with the rank of GP.
Thus, we can reorder the generators and assume that the generators of order p are the
ai,...,ar—py, (we also relabel the other generators keeping the initial order), so that

GP=HP =...—=HP _>...>HP=G".

T—Tr1
Indeed, in such a case, it follows from (9.2) that
G=Hy>--->H, =GP
is still a powerfully abelian chain. Now consider the chain

2 2 2 3
GV =H!, > --=>H =G".

Again if HfQ = Hf’jl,
2

a? +1 = 1. Continuing in this manner we see that we can choose our generators such
that for 1 < i < r we have o(a;) = p’ where j is the smallest positive integer such that

Hfil = Hzpj. Also, we have that the rank of GP' is then the number of 1 < i < r such

that a?] # 1. Let r; be the rank of G?'. Then, since r, = 0, we obtain

‘G| _ pr0+r1+-~-+'re,1 _ pTo—Tl . (p2)r1—'r2 . (pe—l)refl—re _ 0(a1) . 'O(CLT).

then we know by Lemma 9.4 that we can pick a;y; such that

This finishes the proof. O
It follows, in particular, from Theorem 9.5 that a powerfully solvable group of order
p™ and rank r always have generators ay, ..., a, satisfying the relations
afi’n1 =1,...,a"" =1 (9.3)
and N
laj,a;] = agnl(w) . -a;”T(Z’]), I1<i<j<m, (9.4)

where all the power indices my (i, j) are divisible by p and where furthermore p?|my (i, §)
whenever k < i.

Moreover, G is the largest finite p-group satisfying these relations. To see this let H
be the largest finite p-group satisfying these relations. The group H /Hp2 is powerfully
solvable and thus H is powerfully solvable by Theorem 9.5. In particular H is powerful
and therefore |H| < o(a1)---o(a,). However, G is a homomorphic image of H and thus
|H| = o(ay) - --o(a,). Hence H is isomorphic to G.

A presentation with generators aq, ..., a, and relations of the form (9.3) and (9.4) is
called a powerfully solvable presentation. We say that such a presentation is consistent
if the presentation determines a group of order p"* ---p™r.



9.8. Classification of powerful groups of order up to p° 103

9.3 Classification of powerful groups of order up to p’

In this section we fully classify all powerful p-groups of order up to and including p°. It
turns out that these are all powerfully solvable. As we will see in Section 10.2, the same
cannot be said for powerful groups of order p®, as there many powerful groups of order
p% that are not powerfully solvable. Though, we will show that non powerfully solvable
groups of order pb are all of a special kind.

Let us start with our task in this section. There are 2 non-abelian groups of order p>.
The Heisenberg group cannot be powerful, as it is a non-abelian p-group of exponent p.
The other group is a semidirect product of a cyclic group of order p? by a cyclic group
of order p:

Gi={ab|a” =W =1, [a,b] = aP).

Notice that this group is powerfully solvable with a powerfully abelian chain G > {a) > 1.
It is, however, not powerfully nilpotent. This comes from the fact that if

G=Gy=2G1=2--2Gp9=2Gp_12G,=1

is a powerfully central chain of minimal length, then G,,_1 < Z(G) and so [Gy,—2,G] <
G? | < Z(G)P, which contradicts the assumption of minimality since Z(G)? = 1 and so
Gn_2 < Z(G). Adding to this the 3 abelian groups of order p?, we see that there are in
total 4 powerful (and also powerfully solvable) groups of order p?.

Before moving on we consider a general setting like in [77] that includes a number
of groups that will occur, namely the non-abelian groups of type (1,.%.,1,n) where n is
an integer greater than 1. Suppose

G ={ai,...,a;,b)

is a powerful group of this type where a; is of order p and b of order p™. Notice
that GP = (bP) is cyclic and it follows from [75, Corollary 3.3] that GP < Z(G). In
particular G is nilpotent of class at most 2 and [G,G]P = [GP,G] = 1. Observe also
that Q1(G) = (a1, ...,a, """ ), so [G,G] = "), Now, consider the vector space
V = Q1 (G)GP/GP over Fp,. The commutator operation naturally induces an alternating
form on V through
(xGP,yGP) = X if [z, y] = b

Without loss of generality we can suppose by [40, Proposition 1] that our generators
have been chosen such that we get the following orthogonal decomposition

V = (a1G?,a2GP) & - - & ans 1 G, az, Py OV

where V4 = {ags11GP, ..., a;GP) and (ag_1GP,a2;GP) = 0 for i = 1,...,s. There are
now two cases to consider, depending on whether or not Z(G) < Q,_1(G).

Suppose first that Z(G) € Q,-1(G). This means that Z(G) contains some element
blu with u € {a1,...,a;y and 0 < I < p. Thus without loss of generality we can assume
that b e Z(G). We thus get a powerful group G = A(n, t, s) with relations

p_ pp"
Pop" =1,
n—1 .
agi—1,a] =b"  fori=1,...,s,

[
[ai,a;] = 1 otherwise for 1 <i < j <t,
[a;,b] =1for 1 <i<t.

P_ ... =
ay =-=a
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The groups A(n,t,s) are pairwise non-isomorphic since ¢ and n are clearly invariants
of the group and since |Z(A(n,t,s))| = p"*~2%. Notice also that all of them satisfy
by < Z(G) and [G, G] < (bP) and thus these groups are all powerfully nilpotent, as was
observed in [77]. Notice that for a fixed n > 2 and ¢ > 2 we get |t/2] such groups.

We then consider the case when Z(G) < Q,_1(G). Notice first that replacing b by a

suitable ba" - - - a5?*, we can assume that b commutes with ay,...,a2s. Asb¢ Z(G) we
then must have ¢ > 2s and similarly, replacing a; by a suitable a, z_fil .-+ ay", we can pick
our generators ags; 1, . . . , a; such that [ags 1,b] = 07" ' and [agst2,b] = -+ = [ay, b] = 1.
We thus arrive at a group G = B(n,t, s) satisfying the relations

alf = = af =" =1,

[agi— 1,&21] =" fori = 1,...,s,

[ai,aj] = 1 otherwise for 1 < i < j <'t,

[ar,b] = - = [a24,b] = [azes2,b] = - = [ar,b] = L for 1 < i <1,

[a2s+1, b] = bpn_l

Again, the groups B(n, t, s) are pairwise non-isomorphic since | Z(B(n, t, s)| = p"+=2571,
Notice that for a fixed n > 2 and ¢ > 1 there are |(t—1)/2| such groups. Notice also that
when n > 3 then the group is powerfully nilpotent as (b*) < Z(G) and [G, G] < ().
For n = 2 this is not the case but the group is still powerfully solvable as we have a
powerfully abelian chain G > (b) > 1 with [G, G] < {VP).

We are now ready for groups of order p*. In the following we will omit writing
relations of the form [z,y] = 1. From our analysis of non-abelian groups of rank 2 we
get two such groups:

G2=<a,b\ap2:bp2=1, [a,b] = a”) and G3:<a,b]ap3=bp=1, [a,b]:ap2>.

Here G5 is furthermore powerfully nilpotent. The only non-abelian groups apart from
these are of type (1, 1,2) and from the analysis of such groups above we know there are
two groups:

Gy = A(2,2,1) =(a,bc|a’ =t = =1, [a,b] = ),
and ,
Gs = B(2,2,0) ={a,b,c|al = =" =1, [a,c] =P).
Apart from these there are 5 abelian groups and we thus get in total 9 groups.

Finally we are concern with powerful groups of order p®. Again our analysis of
groups of rank 2 and those of type (1,1,3) and (1,1, 1,2) gives us the following non-
abelian powerfully solvable groups:

Ge = {a,b|a?” =" =1, [a,b] = aP),
G7 :<a7b ’ ap3 :bp2 = 17 [avb] = ap>7
Gs ={a,b|a” =" =1, [a,b] = "),
G9:<a7b|ap4 :bpzlv [a7b] =aP >’

and
Gio = A(3,2,1) = (a,b,c | aP = P = * =1, [a,b] = @),
Gi1 = B(3,2,0) = {a,b,c|a? =P = @ =1, [a,c] = F*),
Gio = A(2,3,1) ={a,bc,d | a? =P = P = @ =1, [a,b] = dP),
Gi3 = B(2,3 0) ={a,b,c,d|a? =b" = cP = > = 1, [a,b] = dP,[c,d] = dP),
(2

) =
G14:B 7 ) ) <a7bacad|ap:bp:cp:dp2:17 [avb]:dpv[cvd]:dp>‘
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Here Gg, Gy, G19, G11, G12 are furthermore powerfully nilpotent. Apart from these 9
groups, there are 7 abelian groups. We are now only left with the non-abelian groups
of type (1,2,2) that will contain a number of different groups, so we need to deal with
a number of subcases.

Suppose that we have generators a, b, ¢ of orders p, p?, p°.

Case 1: Z(G)P # 1.

Notice that in this case we must have |Z(G)P| = p as otherwise G/Z(G) is cyclic
and thus G abelian. We can assume that ¢ € Z(G) and that Z(G)? = {(cP). Notice
also that [G,G] = {([a,b]) is cyclic. There are two possibilities. On the one hand, if
[G,G] < Z(G)P, then we can choose our generators so that we get a group with the
following presentation:

G15=<a,b,c\ap=bp2 =& =1, [a,b] = ).

On the other hand if [G,G] £ Z(G)P, then we can choose b such that [a,b] = b for
some 0 < i < p— 1, and if j is the inverse of i modulo p, then replacing a by a’ we get
a group with presentation

G16:<a,b,c]ap=bp2 = =1, [a,b] = bP).

Notice that both these groups are powerfully solvable and that G5 is furthermore pow-
erfully nilpotent.

Case 2: Z(G)P =1 and G/Z(G) has rank 2.

In this case we have Z(G) < Q1(G) = {a,bP,cP). If Z(G) < (WP, cP), then Z(G) < GP
so G/Z(G) has rank 3, which is a contradiction. Hence we must have a € Z(G). It is
not difficult to see that, as we have done before, we can choose b, ¢ such that [b,c] = P
and we get the powerfully solvable group

Gir ={a,bc|a? =W = =1, [b,c] = P.

Before considering further cases, we first show that if Z(G)? =1 and G/Z(G) has rank
3, then we must have [G,G] = GP. Note that |G?| = p?, so suppose by contradiction,
that |G’| = p. Observe that GP < Z(G), so G/Z(G) is a vector space over F,. Then,
the commutator map in G induces a non-degenerate alternating form on G/Z(G), and
so dimp,(G/Z(G)) is even. This is a contradiction since G/Z(G) has rank 3. We have
thus [G,G] = GP. In order to distinguish further between different cases, we next turn
our attention to [ (G), G]. Notice that Q1 (G) = (a)GP, and since a ¢ Z(G), it follows
that either |[Q(G), G]] is of size p or p°.

Case 3: Z(G)P =1, G/Z(G) of rank 3 and |[$1(G),G]| = p.

Without loss of generality we can assume that [Q1(G),G] = (). There are two
possibilities: either ¢ € Cg (21 (G)) = Cg(a) or not. Suppose first that c € Cg (Q1(G)).
Then we have [a,c] = 1, and we can pick b such that [a,b] = ¢?. Replacing b by bc! does
not change these relations and thus we can assume that [b, ¢c] = bP* for some 0 < a < p.
If we let 3 be the inverse of @ modulo p and we replace a, ¢ by a?, ¢®, then we arrive at
a group with presentation

Gig = {a,b,c|a? = b = & =1, [a,b] = &, [b,¢] = bP).
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Notice that this is a powerfully solvable group with a powerfully abelian chain G >
(b,cy > (by > 1. Suppose now ¢ ¢ Cg (2:1(G)). Since |[[Q1(G),G]| = |[a,G]| = p, it
follows that the conjugacy class of a has order p, and so |G : Cg(a)| = p. Thus, we can
pick b such that b € Cg(a) and [a,b] = 1. Replacing a by a suitable power of a we can
suppose that [a,c] = ¢P. As before, replacing b by bc! does not change these relations,
so we can also assume [b, ¢c] = b*? for some 0 < «a < p. Finally, if we let 5 be the inverse
of a modulo p and we replace ¢ by ¢?, we arrive at a group with presentation

Gio ={a,b,c|a? =W = =1, [a,c] = P, [b,c] = bP).

This group is powerfully solvable with powerfully abelian chain G > (b, c) > {(b) > 1.

Case 4: Z(G)P =1, G/Z(G) of rank 3 and |[Q1(G), G]| = p.

In this case, commutation with a induces a bijective linear map

F,:G/1(G) — GP
9 (G) — [a,x].

Identifying €1 (G) with P, we can think of F, as a linear operator on a 2-dimensional
vector space over F,. Also replacing b, ¢ by a suitable ba”, ca® we can assume throughout

that [b,c] = 1. All these groups are going to be powerfully solvable with powerfully
abelian chain G > (b, c) > 1.

Case 4.1. (Fy is a scalar multiplication). Notice that this property still holds if we
replace a by any power of a and thus it is independent of what a we pick in Q4 (G)\GP.
This is thus a characteristic property of G. Replacing a with a power of itself we can
assume that F, is the identity map. This gives us the group

G = (a,bc|a? =0 =& =1, [a,0] =, [a,c] = ).

Case 4.2. (F, is not a scalar multiplication). Again we see that this is a characteristic
property of G. We can now pick b and ¢ such that

[a,b] = ¢, [a,c] = bPOcPP,

0 «
L g
with determinant —«. It is easy to see that this is an invariant for the given a that does

not depend on our choice of b and ¢. Now, if we replace a by a” (and also ¢ by ¢”, which
does not change the value of the determinant), then we get

Notice that the matrix for Fj is

[a,b] = ¢, [a,c] = bP7" PP

and the new determinant becomes —ar2. Pick some fixed 7 such that —7 is a non-

square in F,. With appropriate choice of r we can then assume that the determinant
of F, is —«a where either « = —1 or a = 7. We thus have a group with one of the two
presentations

G21(B) ={a,b,c| al = W= P = 1, [a,b] =P, [a,c] = b*pc”ﬂ, [b,c] = 1),
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and

2

Ga2(B) =<{a,b,c|al =V = =1, [a,b] = P, [a,c] = P72, [b,c] = 1).
Suppose we pick a different b = b"c®. Then for a € {—1,7} we have
[a,b] = [a,b]"[a,c]® = " (BP¥cPB)s = ppooeprtsB) — b
where & = b**¢" 8, Then

[a,d = [a,b]"a,c™
cpsa(bpacpﬁ)r+sﬁ
(brcs)pa . (bsachrsB)pB
s,

This shows that for the given a € {—1,7}, the constant § € F, is an invariant, and so
we get p distinct groups Go1(8) and p distinct groups Gaa(f3).

Adding up we have 7 abelian groups and the groups G, . . ., Gag, G21(5), G22(3), giving
us in total 22 + 2p groups of order p°.

Notice that all powerful groups of order up to and including p® are powerfully solv-
able. Now take a powerful group G of order p®, and suppose it has a generator a of
order p. Hence there exists H < G such that G = {a, H), and consequently, since
H' < G' < GP = HP, it follows that H is powerful of order p°. In particular it is also
powerfully solvable, so let

H=Hy>H > --->H, =1
be a powerfully abelian chain of H. As G’ < HP? it then follows that the chain
G>Ho=zH>--->H,=1

is also powerfully abelian, so G is powerfully solvable. As a consequence, all powerful
groups of order p® are powerfully solvable with the possible exceptions of some groups
of type (2,2,2). However, we will see in Section 10.2 that there are a number of groups
of type (2,2,2) that are not powerfully solvable.

9.4 Growth

To end this chapter, following the method introduced in [75], we compute the growth of
the powerfully solvable groups of exponent p? with respect to the order p™. So, let G be
a powerfully solvable group of exponent p? and order p™. From Theorem 9.5 and the dis-
cussion in Section 9.2, we know that we may assume that G = (a1, ..., ay, Gy41,- .., Qyta)
where o(a;) = --+ = o(ay) = p and o(ay41) = --- = o(ay+,) = p?. Furthermore the
generators can be chosen such that |G| = pY™2* and

poi+1(4,5) oty 4+ (1,5)

laj, a;] = a;}q Oy )

for 1 <i<j<y+x where 0 < a(i,j) < p—1fork =i+ 1,...,y + . For each
such pair (¢,7) with 1 <4 < y there are p® possible relations for [a;, a;], and there are
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yx + (12/) such pairs. On the other hand, for a pair (i,j) where y + 1 < i < y + z, for
each given i there are y + x — i such pairs and p¥+*~% possible relations [aj, az]. Adding
up we see that the number of solvable presentations is p™®) where

h(z) = (yx+<Z>>x+12+22+---(1‘—1)2

(-2 ()] DD
1
37

2 (2n—1) , 3n(n—1)+1$

= 5 T+ 6
Thus
3 —1 1
W (z) =22 — (2n— )z + n(n6)+’
2”2_1 — 4/ %nQ -5+ % and 21 4 %nQ -5+ % For large values of

n we have that the first root is between 0 and n/2 whereas the latter is greater than n.
Thus, for large n, the largest value of h in the interval between 0 and n/2 is h(z(n))

where z(n) = 251 —  /In2 — 2 4+ L Now limy o z(n)/n =1 — % Therefore

i 2 — i 20/ = (el m)? + G o)) = “1+V2

n—00 n3 n—00 6

Now, let us fix n. For any integer x where 0 < z < n/2, let P(n,x) be the collection
of all powerfully solvable presentations as above. It is not difficult to see that those
presentations are consistent and thus the resulting group is of order p™ and rank n — x.

p p?

| — - = i S
Furthermore a] = =al 5, =landd _, ., = = a,_, = 1. We have just seen

that, for large values of n, if we pick xz(n) such that the number of presentations is
maximal then

[P(n, x(n))| = pom o)

where a = *1%\/5. Let P,, be the total number of the powerfully solvable presentations
where 0 < z < n/2. Then

P, =P(n,0) uP(n,1)u---uP(n,|n/2]),
and thus

P <[P (n, 2 (n))| < [Pl
= [P(n,0)| + - + [P(n, [n/2])] < n[P(n, x(n))| = p= o).
This shows that |P,| = p* o) Let us see that this is also the growth of powerfully

solvable groups of exponent p? with respect to the order p™. Clearly p‘m3+°(”3) gives us
an upper bound. We want to show that this is also a lower bound. Let & = x(n) be as

above and let a1, ..., a,—, be a set of generators for a powerfully solvable group G where
2 2
al == aﬁfh =landal_, = =a)_, =1. Notice that (ai,...,an—2,)GP =

Q1 (G), which is a characteristic subgroup of G. It will be useful to consider a larger
class of presentations for powerfully solvable groups of order p™ where we still require
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n—2x n—x
the collection of all presentations with additional commutator relations

al = =d , =1and afLQ_QxH — . =d” =1 Welet Q(n,z) = Q(n,z(n)) be

[ai,a;] = azlvm(m) . _ai‘i'r;fz(ivj) _ a'Iy);inZ;fol(i’j) . aﬁoi’;z(i’j).
The presentation is included in P(n,z) provided the resulting group is powerfully solv-
able of order p". Notice that G < Z(G) and as a result the commutator relations
above only depend on the cosets a; = a1GP,...,0,—» = an,—.GP and not on the
exact values of aj,...,a,—5. Consider the vector space V. = G/GP over F, and let
W =Fpar + -+ - + Fpa,—2;. Then let

H ={¢eGL(n—xz,p) [ ¢(W) = W}.

There is now a natural action of H on Q(n,x). Suppose we have some presentation with
generators aq,...,a,—, as above. Let ¢ € H and suppose

@% = Bi(d)ar + - + B (i)Tn—z.

We then get a new presentation in Q(n,x) for G with respect to the generators by, .. .,
ffl ('L) - aﬂnfz(i)'

by,—. where b; = a —

Suppose there are [ powerfully solvable groups of exponent p? and order p" where
furthermore |GP| = p*. Pick powerfully solvable presentations pi,...,p; € P(n,z) for
these. Let ¢ be a powerfully solvable presentation in P(n, x) of a group K with generators
bi,...,bp—z. Then q is also a presentation for an isomorphic group G with presentation
p; and generators aq,...,an—,. Let ¢ : K — G be an isomorphism and let ¢ : K/K? —
G/GP be the corresponding linear isomorphism. This gives us a linear automorphism

7 € H induced by 7(a;) = ¢(b;). Thus ¢ = p], and therefore
P(n,z) Spit upy v upl.
Observe that |H| < p(”_“f)2 < p"Q. From this we get
3 3 2
p ) =P (n,2)| < [pff [+ + I < B
and it follows that { > p*™*+°("*) We thus get the following result.

Theorem 9.6. The number of powerfully solvable groups of exponent p* and order p"

is pan3+o(n3) —1+\/§'

, where o = =

As mentioned in [75], the growth of all powerful p-groups of exponent p? and order
p" is pf3”3+0(”3) where 5 = %, so it actually coincides with the growth of all finite p-
groups (see [70]). In other words, the growth of the powerful p-groups is the same as
the growth of all finite p-groups. This claim was though not proved and we will fill in
the details here.

As before we consider a group G of order p" = pY with generators ai, ..., ay4qs
where o(a1) = -++ = o(ay) = p and o(ay+1) = -+ = o(ay+,) = p®. This time we can
though include all powerful relations

Y2

+2x

POyt (17])

apay+1(i,j) .
1 y+x

[aj,ai] = a
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forl1 <i<j<y+uaz where 0 < ag(i,j) < p—1fork=y+1,...,y +x. For each
such pair (i, j) there are p® possible relations for [a;,a;]. We thus see that the number
of presentations is p"(®)

h(x) = <y+x>x _ (n—x>$ _ z®  (2n— 1)1:2 N n(n — 1):&

where

2 2 2 2

Thus

W(z) = 5 (xz - 2(2n3 D, n(n3 1))

and using the same kind of analysis as before we see that for a large n, h takes its maximal

value for z(n) = 221 — q/%Q — 2 + 5. Notice that limy_q @ = 1/3. Therefore

lim h(z(n)) _ lim 1 (n—x(n)) (n— 1 —x(n)) z(n) 91,

n—0o0 n3 n—oo 2 n n

The same argument as above shows thegl ghat ;he growth of all powerful groups of
exponent p? with respect to order p” is par" To(n"),

In Chapter 10 we will be working with a special subclass P of powerful p-groups,
namely those that are of type (2,.7.,2) with 7 > 1. In this case the number of presen-

tations for groups of order p”, n even, is p™ where h(n) = %(”42) and

lim hin) _ lim n/2(n/2 —1)n/2

n—-w n3 n—0o0 In3

—1/16.

n3+o(n3)

Thus the growth here is pTlﬁ .



Chapter 10

Groups of type (2,...,2) and
powerfully simple groups

In this last chapter of the thesis we will consider the rich class P of all powerful p-groups
of type (2,...,2). As in the previous chapter, p stands for an odd prime.

In Section 10.1 we will see that powerful nilpotence and powerful solvability play a
similar role here as nilpotence and solvability do in the class of all groups. In this way, the
notion of a powerfully simple group arises naturally, which are the “powerful analogous”
to finite simple groups. Actually, we will be able to prove a Jordan-Hoélder-like result
that reaffirms this. The main tool to prove it will be a convenient correspondence
between the category of all groups in P with the category of the alternating algebras
over Fp.

Finally in Section 10.2 we will fully classify all the powerful groups of type (2,2, 2).
This will be done by identifying such groups with 3 x 3 matrices over F, and by consider-
ing a suitable equivalence relation on them. In this equivalent relation two matrices will
be equivalent if and only if one is congruent to a scalar multiple of the other. Therefore,
identifying these matrices with the bilinear form they define will be really helpful. The
number of powerful groups of type (2,2,2) turns out to depend on the prime p.

10.1 Groups of type (2,...,2)

We have seen that powerful nilpotence and powerful solvability is preserved under taking
quotients. These properties, however, work badly under taking subgroups. Our next
result underscores this.

Proposition 10.1. Let G be any finite p-group of nilpotency class 2. Then there ex-
ists a powerfully nilpotent group H of powerful class 2 that contains G as a subgroup.
Moreover, if G is powerful, then exp(H) = exp(G).

Proof. Suppose [G,G] has a basis a1, . .., a,, as an abelian group, where o(a;) = p/* with
ji=1lforalli=1,...,m. Let N = {x1)Xx---x{xp) be adirect product of cyclic groups
where o(z;) = p/iT!. Now define H = (Gx N)/M where M = {a12 ", ..., amzn’y. Then

111
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G clearly embeds as a subgroup of H. Notice also that
1<{z1,...,emy< H

is powerfully central and thus H is powerfully nilpotent of powerful class 2. Moreover,
if G is powerful, then we have

log, exp(N) = log, exp(G’) + 1 < log, exp(G),
and so the exponent of H equals the exponent of G. O

This shows that the subgroup structure of a powerfully nilpotent group of powerful
class 2 is quite arbitrary. As powerful groups of exponent p? are nilpotent of class 2, we
immediately deduce the following corollary.

Corollary 10.2. Let G be any powerful p-group of exponent p?>. Then there exists
a powerfully nilpotent group H of exponent p*> and powerful class 2 such that G is
powerfully embedded in H .

Remark 10.3. (i) There exist powerful p-groups of exponent p? that are not power-
fully solvable (see Section 10.2), and thus a powerfully embedded subgroup of a
powerfully nilpotent group of powerful class 2 does not even need to be powerfully
solvable.

(ii) There exist powerfully nilpotent groups of exponent p? that are of arbitrary large
powerful class, and so, the proposition above shows that a powerfully nilpotent
group of powerful class 2 could have a powerfully embedded powerfully nilpotent
subgroup of arbitrary large powerful class.

Thus powerful nilpotence and powerful solvability are in general not as satisfactory
as notions for powerful groups as nilpotence and solvability for the class of all groups.
For a rich subclass of powerful groups things, however, turn out much better. This is
the class P of all powerful groups of type (2,...,2) that we considered in Section 9.4.
The good behaviour or the groups in P relies essentially on the following lemma.

Lemma 10.4. Let G€ P and H, K < G where GP < K. Then HP n KP = (H n K)P.
In particular, H n GP = HP.

Proof. Since G is powerful of exponent p?, we have G? < Z(G), so it follows that the
map
f:G/GP - GP

aGP — d?
is a bijection. Therefore,

H? A K? = f(HG/GP) ~ f(K/GP)
— F(HGP ~ K/GP) = ((H ~ K)G?/GP)
=(HnK)?

where the equality in the second line follows since K > GP. As (H n K)P < HP n KP?
we conclude that H? n KP = (H n K)P. O
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Theorem 10.5. Let G be a powerfully nilpotent group in P and let H be a powerful
subgroup of G. Then H is powerfully nilpotent of powerful class less than or equal to
the powerful class of G.

Proof. Suppose G has powerful nilpotency class ¢ and that we have a powerfully central
chain G = Gy > G; > -+ > G, = 1. As GP < Z(G) and (GP)P = 1, multiplying
a term by GP makes no difference. Also as the powerful class is ¢ we get a strictly
decreasing powerfully central chain G = Gy > G1GP > --- > G._1GP > 1. Without loss
of generality we can thus assume that G1, ..., G.—1 contain GP as a subgroup. We claim
that

H=HnGyzHnGi=z---2HnG._1=21

is powerfully central. Using Lemma 10.4 we have
[H NGy, H] < [H,H]n[G;,G] < H? n G | = (H n Gi;1)?,
for 0 < i < c— 1. Hence H is powerfully nilpotent of powerful class at most c. O

Theorem 10.6. Let G be a powerfully solvable group in P and let H be a powerful
subgroup of G. Then H is powerfully solvable of powerful derived length less than or
equal to the powerful derived length of G.

Proof. Suppose the powerful derived length of G is d and that we have a powerfully
abelian chain G = Gg > G1 > -+ > G4 = 1. Arguing like in the proof of the previous
theorem, we can assume that Gy4_1 contains GP. We show that

H=HnGyz2HnG1=2--2HnGee12HnG. =1

is a powerfully abelian chain. Using Lemma 10.4, we have

[HNGi,HnGi] <[H H|n[Gi,Gi] <H nGY | = (H nGip1)P.
This shows that H is powerfully solvable of powerful derived length at most d. O

In view of Theorems 10.5 and 10.6, we introduce some useful notation. Let G € P.
We say that H is a P-subgroup of G and we write H <p G, if H is a subgroup of G
such that H € P. We use H <p G for H € P and H powerfully embedded in G. The
notations H <p G and H <p G are defined naturally in a similar way.

In this way we can work in the well-behaved category of powerful groups of type
(2,...,2), where the notions of nilpotence and solvability behave particularly well. In
this setting, is then natural to consider the notion of powerfully simple group, which we
define next.

Definition 10.7. We say that a group G € P is powerfully simple if G # 1 and if
H <p G implies that H = 1.

The notion of powerfully simple is thus the “powerful version” of finite simple groups,
and in the same way as finite simple groups, maximality of normal subgroups can be
characterised in terms of simplicity, as shown in Lemma 10.9 below.

Definition 10.8. Let H,G € P with H <p G. We say that H is a maximal powerfully
embedded P-subgroup of G if there is no H < K < G such that K <p G.
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Observe that if G € P and H <p G, then the quotient G/H has naturally the
structure of powerful group of type (2,...,2). Otherwise, there exists an element g ¢ H
such that gH € Q,(G/H) but gH ¢ (G/H)P. Therefore, since GP = Q;(G), we have
g” # 1 but g* € H. This is a contradiction since g ¢ H.

Lemma 10.9. Let G € P. Then H is a mazimal powerfully embedded P-subgroup of G
if and only if G/H is powerfully simple.

Proof. Let H < K < G. Now as H is powerful of type (2,...,2) we have H n GP = HP.
Therefore [K,G] < KPH if and only if

[K,G] < (KPH) nG? = KP(H nGP) = KPH? = KP.
The result follows from this. O

Our next aim is proving a Jordan-Hoélder type theorem for the category of groups
of P. For this purpose, we will show that this category is isomorphic to the category of
alternating algebras over F,,.

Definition 10.10. An alternating algebra V over F, is an Fj,-vector space equipped
with an alternating bilinear form, i.e., a map (,): V x V — V satisfying the following
conditions:

(i) It is linear in each argument separately.
(ii) (v,v)=0foralveV.

A subset U < V is an alternating subalgebra of V' and we write U < V if U is a subspace
of V such that (U,U) < U. Similarly, U is an ideal of V and we write U < V if U is a
subspace of V' such that (U,V) < U.

Remark 10.11. Since we are only considering odd primes, property (ii) is equivalent to
skew-symmetry, that is, (v,w) = —(w,v) for all v,w e V.

The notions of alternating algebra homomorphism, nilpotent alternating algebra,
solvable alternating algebra and simple alternating algebra can be deduced naturally.
Now, let G be a powerful p-group of rank r in P and let V' = G/GP be the associated
vector space of dimension r over Fj,. The structure of G is determined by the commutator
relations
[a,b] = P, (10.1)

where there exists such ¢ € G for each pair a,b in G. Notice that [a,b] and ¢ only
depend on the cosets aGP, bGP and ¢GP. Identifying the two vector spaces G/GP and GP
under the map zGP — xP, we get a natural alternating product on V with the relations
(10.1) translating to

(aGP,bGP) = cGP.

Conversely, let V' be an alternating algebra of dimension r over Fj,. Let {v1,...,v,}
be a basis of V' and for every 1 <1 < j < r write

(U’ivvj) = Oél(i,j)’Ul +-+ a?‘(i7j)vr‘>
where o (7,7),...,0.(i,j) € Fp. Then the group

2 . .
G:<gla“'7gr ’gi;) = 17[glagj] :g?l(l,])p”'ggr(%])p? k= 17"‘7T7 1 <7’<.7 <T>
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is a powerful group of type (2,.7.,2).

Moreover, it is easy to see that a homomorphism ¢ : G — H, where G,H € P,
corresponds naturally to an alternating algebra homomorphism from the alternating
algebra associated to G to the alternating algebra associated to H. The converse of this
is also easy to prove.

We have shown the following.

Theorem 10.12. The category of powerful groups of type (2,...,2) and the category of
alternating algebras are isomorphic.

Moreover, if V' is the alternating algebra corresponding to a group G € P, then its
subalgebra structure is essentially the same as the subgroup structure of G.

Theorem 10.13. Let G € P and let V' be its associated alternating algebra defined
above. Let G be the collection of all P-subgroups of G and let V be the collection of
all the alternating subalgebras of V.. Then there is an inclusion preserving one-to-one
correspondence between G and V, where powerfully embedded subgroups of G correspond
to ideals in V.

Proof. Let U € V. Then there exist uy,...,u; € G such that U = {uy,...,u;)GP/GP.
Define H = {uy,...,us) so that U = HGP/GP. For U to be in V it needs to be a
subspace of V' where (U,U) < U, which, by the definition of the alternating product,
translates to [HGP, HGP] = [H,H] < HP. Hence H is powerful of type (2,...,2), so
H € G. Moreover, if U <p V, then this translates to [H, G| < HP, so that H <p G.
Conversely, for a subgroup H in G, we have [HGP, HGP] = [H, H| < HP, which,
if U = HGP/GP, translates to (U,U) < U. In addition, if H <p G, then we have
(U,G) <U,sothat Us V. O

Remark 10.14. The same argument of the proof of the previous theorem also shows that
G is powerfully nilpotent, resp. powerfully solvable, if and only if V is nilpotent, resp.
solvable. Moreover, let H, K € G and let U and W be the associated alternating algebras
in V. Suppose that H is powerfully embedded in K. Then K/H is powerfully simple if
and only if W/U is a simple alternating algebra, and the latter happens if and only if
U is a maximal ideal of W.

With this correspondence, we can now prove a Jordan-Hélder type theorem. Suppose
A,B,a,beV where A< Banda<b. Let I¥ = {Z | A< Z < B}and I! = {z | a <
z < b}. We get natural projections P : Z8 — I¥ and Q : Z§ — I given by

P(z)=A+Bnz and Q(Z)=a+bn Z.

The following is a version of the Zassenhaus lemma for alternating algebras.

Lemma 10.15. We have P(a) < P(b) and Q(A) < Q(B). Furthermore P(b)/P(a) is
isomorphic to Q(B)/Q(A).

Proof. Notice that P(a) = A+ Bna, Pb) = A+ Bnb, QA) = a+bn A and
Q(B)=a+bn B. As A< B, we have

(P(a),P(b))=(A+Bna,A+Bnb) <A+ (Bna,Bnb).

Now as B is a subalgebra and a < b we have that this is contained in P(a) = A+ B na,
so that P(a) < P(b). The second claim follows from this by symmetry.
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Now for P(b)/P(a), notice first that we have
BnbnPla)=Bnbn(A+Bna)=BnbnA+Bna=Anb+Bna,
and consequently
P(b)/P(a) = (Bnb+ P(a))/P(a)
~(Bnb)/(Bnbn Pla))=(Bnb)/(Anb+ Bna),
where the isomorphism is a vector space isomorphism. By symmetry, it follows that
P(b)/P(a) ~ Q(B)/Q(A) as vector spaces.
Now, for u,v,w € B n b it follows that
(u,v) + P(a) =w+ P(a) © (u,v) + Anb+Bna=w+Anb+ Bna,
and by symmetry
(u,v) + QA) =w+ Q(A) < (u,v) +anB+bnA=w+Anb+Bna.
The algebra isomorphism of P(b)/P(a) and P(B)/B(A) follows from this. O
The Jordan-Holder theorem for alternating algebras is proved from this in the stan-
dard way.

Definition 10.16. Let V be an alternating algebra. A chain 0 = Uy<Uy<---<U, =V
is a composition series for V' if all the factors Uy /Uy, ..., U, /U,—_1 are simple alternating
algebras.

Theorem 10.17. Let V be an alternating algebra. Then all composition series have the
same length and same simple factors up to order.

With this and the correspondence in Theorem 10.13, the Jordan-Holder theorem for
powerful groups of type (2,...,2) follows easily.

Definition 10.18. Let G € P. A chain 1 = Hy<ap Hy <p ---<p H, = G is a powerful
composition series for G if all the factors Hy/Hy, ..., H,/H,_1 are powerfully simple.

Theorem 10.19. Let G be a group in P with two powerful composition series, say
1=H0<173H1<17)---<17)Hn=G

and
1 =K0<I7JK1<7>---<7>Km = G.

Then m = n and the powerfully simple factors Hy/Hy, Ha/H1, ..., Hy,/H,—1 are iso-
morphic to K1/Ko, Ko/K1, ..., K,/K,—1 (in some order).

Proof. Replace the terms H;, K; by their associated alternating algebras U;,V;. The
result now follows from the Jordan-Holder theorem for alternating algebras. O

Definition 10.20. We refer to the unique factors of a powerful composition series of a
group G € P as the powerful composition factors of G.

Finally, we see that as for finite groups, powerful solvability and powerful simplicity
are somehow opposite concepts.

Corollary 10.21. A group G € P is powerfully solvable if and only if the powerful
composition factors are cyclic of order p?.

Proof. Any powerful abelian chain of G consisting of subgroups in P can be refined to
a chain with factors that are cyclic of order p?. O
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10.2 The classification of powerful groups of type (2,2,2)

We devote this last section to the classification of all powerful groups of type (2,2,2).
From Theorem 10.13 we know that this task is equivalent to classifying all simple alter-
nating algebras of dimension 3.

Following [74], any given alternating algebra of dimension 3 over F, can be repre-
sented by a 3 x 3 matrix over F,. This is done by identifying the matrix

a1 Q12 Q13
A= | a1 a2 a3
Q3] Q32 Q33

with the 3-dimensional alternating algebra V' = F,x1 + Fpx2 + F,z3 with relations

(x2,23) = oamz1 + a1x2 + az13,
(x3,21) = o221 + a2x2 + azers,
(x1,22) = o3z + a3x2 + ag3es.

This algebra would correspond to a powerful p-group of order p® with generators a1, as, as
of order p? satisfying the relations

_ pai11  pa21  pasi
lag,a3] = ai""ab ™ ay

_ pai12 po22  Ppa32
lag,a1] = ay""?ay *ay

pa13 pa23 pPa33

la1,a2] = a]""Pab™* a5,

Note that different choices of the basis of V' give rise to different matrices that
represent it. Indeed, if we choose another basis for V', say

Y1 = 91171 + g2172 + g3173,
Y2 = g12T1 + G222 + g3273,
Y3 = g13T1 + g23T2 + g33T3,

then we get

g22  g23 g12 913 gi12 913
, = x9,T3) — r3,xr1) + X1, T
(2, 43) | 932 933 | (w2, 3) | 932 933 | (23,21 | 922 923 | (w1, 2),
g21 G923 gi1 913 gi1 913
, = — x2,x3) + xr3,T1) — x1,22),
(vs.91) | 931 933 | (72, 3) | 931 933 ] (73, 71) [ 921 923 | (z1,2)
g21 922 g1 gi2 gi1 912
, = xr2,x3) — xr3,T1) + 1,22).
(w1, 32) | 931 932 | (@2, 23) | 931 9g32 | (w3,21) | 921 922 | (21, 22)
Therefore, if
gi1 912 913

P=1 g1 g2 923 |,
931 932 933

then the matrix B representing V' with respect to the basis {y1,y2,y2} is

P71. A adj(P)! = det(P)P~1- A (P71)
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Thus, we define the action of the general linear group of degree 3 over F,, namely
GL(3,F), on the set of 3 x 3 matrices M3(F,) by

AP = det(P)"'P!- A P.

In this way, two matrices A and B represent the same alternating algebra if and only
if they lie in the same orbit with respect to this action, that is, if there exists P €
GL(3,F,) such that A” = B. In this case, we write A ~ B. Our goal will be finding a
representative for each of these orbits.

This equivalence turns out to be slightly more general than being congruent (that is
B = P'AP).

Lemma 10.22. Let A€ Fj. Then AA ~ A.
Proof. Let P = 1I. Then det(P)'P'AP = X3 ;A = MA. O
From this we easily get the following corollary.

Proposition 10.23. We have A ~ B if and only if there exists A\ € F,, such that A is
congruent to \B.

In particular two matrices that are congruent are equivalent in the sense above.

Now, each matrix A in M3(F,) can be written in a unique way as a sum of a
symmetric and an anti-symmetric matrix, namely A = A; + A, where
A+ At A— A

and A, = )

As
2

We will consider all the possible combinations of the bilinear forms induced by the
matrices As and A, and with that we will be able to determine all the equivalence
classes of M3(F,) and therefore all powerful p-groups of type (2,2, 2). We will start with
the easiest cases when A = A, and A = A,.

10.2.1 The orbits of the symmetric and anti-symmetric matrices

Note that
(AHP = det(P)~1P!- A'. P = (det(P)"'Pt. A. P)t = (AD),

so if A is symmetric, resp. anti-symmetric, then AP is also symmetric, resp. anti-
symmetric. In this section we determine the orbits of the symmetric and the anti-
symmetric matrices.

Let us start with the symmetric matrices. Denote by D(«, 3,7) the 3 x 3 matrix
with a, 8,7 € Fj, on the diagonal entries.

Theorem 10.24 ([11, Chapter 6, Theorem 2.7]). Two non-singular n x n symmetric
matrices are congruent if and only if they have the same determinant modulo (F;)Q.

This implies that every symmetric matrix is congruent to a diagonal matrix of
the following form: D(1,1,1), D(r,1,1), D(1,1,0), D(7,1,0), D(1,0,0), D(7,0,0) and
D(0,0,0), where 7 is a fixed non-square in Fj.

Now, by Proposition 10.23, D(1,1,1) is equivalent to 7D(1,1,1) where the latter
has determinant 7 modulo (F%)?. Hence D(1,1,1) and D(7,1,1) are equivalent. Also
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D(7,0,0) = 7D(1,0,0) is equivalent to D(1,0,0). When the rank is 2 then multiplying
the matrix by a constant A € F} doesn’t change the value of the determinant modulo
(F;)Q. Hence D(1,1,0) and D(1,1,0) are not equivalent. Up to equivalence we thus get
only 5 matrices:

D(1,1,1), D(1,1,0), D(r,1,0), D(1,0,0) and D(0,0,0).

The situation regarding the anti-symmetric matrices is simpler as there is only one
non-trivial equivalence class. To see this, note that the rank of a 3 x 3 non trivial anti-
symmetric matrix must be 0 or 2 (see [40, Proposition 1]). If V is a 3 dimensional vector
space equipped with the alternating bilinear form ( , ), induced from an anti-symmetric
matrix of rank 2, then dim(V ') = 1, and so there exists a basis {v1, v, v3} such that
v3 € V1o, Hence we can assume that the anti-symmetric matrix is of the form

0 a O
—a 0 0
0 0 O

with a € Fj, and according to Lemma 10.22, there is only one such matrix up to

equivalence (in fact, it is easy to see that this matrix is also unique up to congruence).

10.2.2 Classification of the alternating algebras

Let now A be a general 3 x 3 matrix over F, and let V' be a 3 dimensional vector space.
The symmetric part of A equips V' with a corresponding symmetric bilinear form ( , s
and the anti-symmetric part of A equips V' with a corresponding alternating form ¢ , ),.
Now there are two possibilities for { , ),. If it is zero then A is symmetric and we get
5 alternating algebras corresponding to the 5 diagonal matrices listed above. Hence we
assume from now on that { , ), is non-zero. Thus Ve is of dimension 1, say

Vte = Fpus,

so that
V = (Fpu1 + Fpue) &, Fpus

for some v1,v2 € V. For our classification we will divide first into 3 cases. For Case 1,
we have (vs, vs)s # 0. For Case 2, we have (vs,v3)s = 0 and (Vie)ls = (F,u3)ts = V.
Finally for Case 3, we have (v3,v3)s = 0 and (V1e)ls = (F u3)ts < V.

Case 1: {vs,v3)s # 0.

By [11, Theorem 2.2|, we can here find a basis vy, vy, v3 for V' where

V = Fyu1 ©s Fpue &5 Fpus.

Case 1.1. Suppose first that the rank of ( , )5 is 1. In this case it is easy to see that we
can pick our basis further so that

(u1,v2)a =1, {v1,v3)q =0, (v2,v3)q =0,
(v, v1)s =0, (va,v2)s =0, (w3, v3)s = 1.
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Indeed, notice that by Lemma 10.22 we can always multiply the relevant matrix A by
a constant to get (vs,vs)s = 1. Then, by [11, Lemma 2.1] we can pick v; and vy in
(vag)Ls, and since the rank of A; is 1 we must have (v1,v1)s = 0 and (ve,v2)s = 0.
Finally, we can replace, if necessary v; by a multiple of v; so that {vi,v9), = 1. In this
case we thus have only 1 algebra.

Case 1.2. Suppose next that the rank of ( , )s is 2. Here again by multiplying by a
constant we can assume that (v3, v3)s = 1, and also that vy, vy € (Fp’Ug)J‘S. Moreover, by
Theorem 10.24, and since the rank of {, )4 is 2, we can further assume that {(ve, v2)s = 0.
Now (v1,v1)s = A or {v1,v1)s = 7A? for some \ € F,. By replacing v; by %vl we have
that (v1,v1)s is either 1 or 7. Notice that we have also seen above that these cases are
genuinely distinct. Now that v; has been chosen we can replace vy by a suitable multiple
to ensure that (vi,ve), = 1. We thus get 2 algebras

—_

<U1, 'U2>a = Y <’U17'U3>a = 07 <'U27'U3>a = 07
(ui,v1)s =1, (v2,v2)s =0, (v3,v3)s = 1.

and
(u1,v2)q = 1, (v1,v3)q =0, (v2,v3)q =0,
(v1,v1)s =T, (v2,v2)s =0, (v3,v3)s = 1.

Case 1.3. We are only left with the case where the rank of { , )s is 3. By Theorem 10.24
and by taking a suitable multiple of v to ensure that (v1,v2), = 1, we can assume that

<'Ula'U2>a = 17 <'U17'U3>a = 07 <U27U3>a = 07
(U1,v1)s = a, (V2,020 = 1, {(v3,v3)s = 1,

where a € Fj;. We want to see when we get an equivalent algebra by changing « to 3.
If we multiply the presentation by a constant it must be by a square if we still want
(v3,v3)s = 1. Say we multiply by A? and then replace v3 by %113. Notice that we now
have

(1, 12)q = A2, (1, v1)s = aX?, (vg,v2)s = A2
We are now looking for all possible v7 = avj +bve and vy = cv; +dvy where (01,02, = 1,
(V1,025 = 0 and (U2, v2)s = 1. This gives us the following system of equations:
N (ad —bc) =
M(aac+bd) = 0
M(act +d*) =

We look first for all the solutions where ¢ = 0. Notice that in this case we must have

Mad =1, X2d* = 1 and b = 0. Thus (01,01)s = X*(aa® + %) = N2 71 = 5 = o
Next we look for solutions where ¢ # 0 but d = 0. Then we must have A\%bc = —1,
_ _ 2
Aac? =1 and a = 0. Here (01, 91)s = A?(aa® + b?) = 62’\7 = Sz =
Finally we are left with finding all solutions where c¢d # 0. Then a = —%, and the
first equation above gives us
bd? b b
1——V<+m>——-Vw%Hm%——.
ac ac ac

Thus b = —ac and a = —% = d. Therefore

ac



10.2. The classification of powerful groups of type (2,2,2) 121

<1_11, 171> = )\Q(aaz + bz)
= N(ad® + a*c?)
= aX(ac® + d?)

= Q.

We have thus seen that the value of o doesn’t change and we have p—1 different algebras
here.

Case 2: {v3,v3)s = 0 and (V+e)ts = (vag)ls =V.

Again we consider several subcases.

Case 2.1. Suppose that the rank of ( , )4 is zero. Then, as seen before, we have only 1
algebra.

(v1,v2)0 =1, (v1,v3)q =0, {v2,v3)q =0,

<U1, U1>s = 0, <’Uz, 'U2>s = 0, <’L)3,’U3>S = 0.

Case 2.2. Suppose next that the rank of {( , )s is 1. By multiplying by a suitable
constant we can assume that (vi,v;)s = 1 and (vg,v2)s = 0. Finally replacing vs by an
appropriate multiple we can also assume that {vi,v2), = 1. We thus also get here only
1 algebra

(v1,v2)0 =1, (v1,v3)a =0, (v2,v3)q =0,

<Ul,Ul>s = 1, <’U2,Ug>s = 0, <’U3,’U3>S =0.

Case 2.3. Finally we are left with the case when the rank of {, )5 is 2. Here, as done in
Case 1.3, it is easy to see that we can pick our basis further so that

<U1a UQ>a = 1, <Ula U3>a = Oa <U27U3>a = 07
(vi,v1)s = a, (w2,v2)s =1, (v3,v3)s = 0.

Similar calculations as for Case 1.3 show that we get distinct algebras for different values
of a. Thus here we have p — 1 algebras.

Case 3: (v3,v3)s = 0 and (V+e)Ls = (Fyug)ts < V.

Since v3 is not orthogonal to everything in V' with respect to ( , )s, it follows that
F,v3)®s has dimension 2. Suppose
P pp

(vag)is = Fpva + Fpus

and take v1 € V\(Fpv3)ts so that (v1,v3)s # 0. Replacing if necessary v; by av; + Bus
with 0 < a, 8 < p — 1, we can assume (v1,v1)s = 0. Similarly, taking if necessary a
linear combination of vy and vs instead of vy we have (v1,v2)s = 0. Hence we can pick
our basis such that

(1,v2)q = 1, (v1,v3)q =0, (v2,v3)q =0,
<U17U1>s = 07 <U17U2>s = 07 <U1; U3>s = 17 <U27 U3>S = 0.

Now there are two subcases.
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Case 3.1. If the rank of ( , )5 is 2 then we must have (v, v2)s = 0 and this gives us 1
algebra.

Case 3.2. If the rank of ( , )4 is 3 then (vy, v2)s # 0 and after multiplying by a suitable
constant we can assume that this value is 1 (and then afterwards adjust things so that
the other assumptions hold again). Thus we get again 1 algebra.

We have thus determined all the 3 x 3 presentation matrices up to equivalence, and
adding up we got in total 12 + 2(p — 1) such matrices. As we described at the beginning
of the section this gives us a classification of all the alternating algebras of dimension 3
over F,, that in turn gives us a classification of all the powerful p-groups of type (2,2, 2).

Before listing these we state and prove a proposition that shows how we can see
which of these are powerfully simple.

Proposition 10.25. An alternating algebra V' over F,, of dimension 3 is simple if and
only if V.-V =V.

Proof. This condition is clearly necessary as V -V is an ideal of V. To see that it is
sufficient, suppose V -V =V and let I be a proper ideal. We want to show that I = 0.
We argue by contradiction and suppose I is an ideal of dimension either 1 or 2. If T
is of dimension 2, then V/I is 1 dimensional and thus we get the contradiction that
V.-V <1 < V. Now suppose I is of dimension 1, say V' = I + Fyv; + Fpva. Then
V-V < I+ Fpuiva. But the dimension of I 4 Fvive is at most 2 and we get the
contradiction that V -V < V. 0

Then the following corollary follows immediately.

Corollary 10.26. Let V' be an alternating algebra and let A be an associated matriz of
V. Then V is simple if and only if det(A) # 1.

This corollary tells us how we read from the presentation whether a given alternat-
ing algebra is simple and thus whether the corresponding powerful group is powerfully
simple. Moreover, according to the following proposition, it turns out that all non-
powerfully simple groups of type (2,2,2) are powerfully solvable.

Proposition 10.27. Let G € P be of type (2,2,2). If G is not powerfully simple, then
it is powerfully solvable.

Proof. Note that GP =~ C), x C), x Cp, and if G’ = GP, then G is powerfully simple by
Corollary 10.26. Hence G’ < GP. If G’ is cyclic then we are done by Proposition 9.1, so
suppose that G’ = (a?,b") =~ C), x C, for some a,b € G. Now by Theorem 9.2 we may
assume that [a, b] € (aP), and it follows that

G > {a,by > {ay >1
is a powerfully abelian chain. O

The work above gives us the following list of powerful p-groups of type (2,2,2). As
2 2 2
the power relations for all of these are a}” = af = a} =1 we omit them below. Here

7 is a fixed non-square in F,.
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Ay ={a1,a9,a3 | [az,a3] = al, las, a1] = db, [a1,az] = db);

A9 = (a1, ag,a3 | [az,as] = , [a1, az] = ab);

Az = (a1, a2,a3 | [a2,a3] = a1a2 : [a?nal] = aﬁ”, [a1, az] = a3);

Ay ={ar,az,a3 | [az,a3] = a” a2 , [as,a1] = al, [a1,a2] = ab);

As ={ar,az,a3 | [az,a3] = aydh, [as,a1] = dldb, [a1,as] = ab);

Ag(a) = (a1, az,a3 | [az, a3] = ai%ay”, [as,a1] = aldb, [a1,a2] = a), 1 <a <p—2;
By ={ay,az,as | [az,a3] = a;Pay?, [as,a1] = dldb, [a1,as] = db);

32 = <a1,a2,a3 | [ag,ag] = aﬁ’, [(13,(11] = (1120, [al,ag] = 1>;

B3 = {ay,as,as | [az,a3] = a", [as,a1] = db, [a1,az] = 1);

By = {a1,a9,as | [az,a3] = ay”, [as,a1] = af, [a1,a2] = 1);

Bs = {a1,az,as | [az,a3] = alay”, [ag,a1] = af, [a1,a2] = 1);

Bg = {ai,az,as | [az,a3] = ay”db, [ag,a1] = d¥, [al,ag] =al)

Br(a) = {a1,az2,as3 | [az,a3] = ai%ay”, [as,a1] = aldb, [a1,a2] = 1), 1 <a<p-—2;
C1 ={ay,as,a3 | [az,as] = a;Pay”, [as,a1] = afdb, [a1,as] = 1);

Cg = <a1,a2,a3 ’ [ag,ag] = a}f’ [a3,a1] = 1, [al,ag] = 1>;

D= <a1,a2,a3 | [ag,ag] = 1, [ag,al] = 1, [al,ag] = 1>.

Of these 12 + 2(p — 1) groups, the Ay, ... A5, Ag(a) are the powerfully simple ones.
There are 5+ (p — 2) of these.
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