e-Distance in Menger PGM Spaces with an Application

Ehsan Lotfali Ghasab ${ }^{1}$, Hamid Majani ${ }^{1, *(\mathbb{D}}$, Manuel De la Sen ${ }^{2, * *}$ (D) and Ghasem Soleimani Rad ${ }^{3}$
1 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran; e-lotfali@stu.scu.ac.ir
2 Institute of Research and Development of Processes IIDP, University of the Basque Country, 48940 Leioa, Spain
3 Young Researchers and Elite Club, West Tehran Branch, Islamic Azad University, Tehran 1477893855, Iran; gha.soleimani.sci@iauctb.ac.ir
* Correspondence: h.majani@scu.ac.ir or majani.hamid@gmail.com (H.M.); manuel.delasen@ehu.eus (M.D.1.S.)

Citation: Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. Axioms 2021, 10, 3. https://doi.org/10.3390/ axioms10010003

Received: 24 September 2020
Accepted: 24 December 2020 Published: 30 December 2020

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The main purpose of the present paper is to define the concept of an e-distance (as a generalization of r-distance) on a Menger PGM space and to introduce some of its properties. Moreover, some coupled fixed point results, in terms of this distance on a complete PGM space, are proved. To support our definitions and main results, several examples and an application are considered.

Keywords: e-distance; Menger PGM space; coupled fixed point

MSC: JPrimary 47H10; Secondary 47S50

1. Introduction and Preliminaries

In 1942, Menger [1] introduced Menger probabilistic metric spaces as an extension of metric spaces. After that, Sehgal and Bharucha-Reid [2,3] studied some fixed point results for different classes of probabilistic contractions (also, see and references in the citation). Moreover, in 2009, Saadati et al. [4] introduced the concept of r-distance on this space.

Throughout this paper, the set of all Menger distance distribution functions are denoted by D^{+}.

Definition 1 ([5], page 1). A binary mapping $\mathcal{T}:[0,1] \times[0,1] \rightarrow[0,1]$ is called t-norm if the following propertied are held:
(a) \mathcal{T} is commutative and associative;
(b) \mathcal{T} is continuous;
(c) $\mathcal{T}(a, 1)=a$ if $a \in[0,1]$;
(d) $\mathcal{T}(a, b) \leq \mathcal{T}(c, d)$ if $a \leq c$ and $b \leq d$ for every $a, b, c, d \in[0,1]$.

Definition 2 ([4]). A t-norm \mathcal{T} is called an H-type I if for $\epsilon \in(0,1)$, there exist $\delta \in(0,1)$ so that $\mathcal{T}^{m}(1-\delta, \ldots, 1-\delta)>1-\epsilon$ for each $m \in \mathbb{N}$, where \mathcal{T}^{m} recursively defined by $\mathcal{T}^{1}=\mathcal{T}$ and $\mathcal{T}^{m}\left(t_{1}, t_{2}, \ldots, t_{m+1}\right)=\mathcal{T}\left(\mathcal{T}^{m-1}\left(t_{1}, t_{2}, \ldots, t_{m}\right), t_{m+1}\right)$ for $m=2,3, \cdots$ and $t_{i} \in[0,1]$.

All t-norms in the sequel are from class of H-type I.
From another point of view, Mustafa and Sims [6] defined G-metric spaces as another extension of metric spaces, analyzed the structure of this space, and continued the theory of fixed point in such spaces. In 2014, Zhou et al. [7], by combining Menger PM-spaces and Gmetric spaces, defined Menger probabilistic generalized metric space (shortly, Menger PGM space). Other researchers extended several fixed point theorems in [8-10] and references contained therein.

Definition 3 ([7]). Assume that \mathcal{X} is a nonempty set, \mathcal{T} is a continuous t-norm and $G: \mathcal{X}^{3} \rightarrow D^{+}$ is a mapping satisfying the following properties for all $x, y, z, a \in \mathcal{X}$ and $s, t>0$:
(PG1) $G_{x, y, z}(t)=1$ if and only if $x=y=z$;
(PG2) $G_{x, x, y}(t) \geq G_{x, y, z}(t)$, where $z \neq y$;
(PG3) $G_{x, y, z}(t)=G_{x, z, y}(t)=G_{y, x, z}(t)=\cdots$;
(PG4) $G_{x, y, z}(t+s) \geq \mathcal{T}\left(G_{x, a, a}(s), G_{a, y, z}(t)\right)$.
Then $(\mathcal{X}, G, \mathcal{T})$ is named a Menger PGM space.
For the definitions of convergent, completeness, closedness and some theorems by regarding these concepts in such spaces, one can see [7]. In 2004, Ran and Reurings [11] discussed on fixed point results for comparable elements of a metric space (\mathcal{X}, d) provided with a partial order. Then, Bhaskar and Lakshmikantham [12] presented several fixed point results for a mapping having mixed monotone property in such spaces (see [13,14]).

Definition 4 ([12]). Consider a ordered set (\mathcal{X}, \preceq) and a mapping $F: \mathcal{X}^{2} \rightarrow \mathcal{X}$. The mapping F is told to be have mixed monotone property if

$$
\begin{array}{ll}
x_{1} \preceq x_{2} \text { implies that } F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right) & \forall x_{1}, x_{2} \in \mathcal{X}, \\
y_{1} \preceq y_{2} \text { implies that } F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right) & \forall y_{1}, y_{2} \in \mathcal{X} .
\end{array}
$$

for every $x, y \in \mathcal{X}$.
Here we introduce an e-distance on Menger PGM spaces and some of its properties. Then we obtain some coupled fixed point results in the quasi-ordered version of such spaces. The subject of the paper offers novelties compared to the related background literature since a new distance in Menger spaces is defined while some of its properties are revisited and extended.

2. Main Results

Here, we consider an e-distance on a Menger PGM space, which is an extension of r-distance introduced by Saadati et al. [4].

Definition 5. Consider a Menger PGM space $(\mathcal{X}, G, \mathcal{T})$. Then the function $g: \mathcal{X}^{3} \times[0, \infty] \rightarrow$ $[0,1]$ is called an e-distance, if for all $x, y, z, a \in \mathcal{X}$ and $s, t \geq 0$ the following are held:
(r1) $g_{x, y, z}(t+s) \geq \mathcal{T}\left(g_{x, a, a}(s), g_{a, y, z}(t)\right)$;
(r2) $g_{x, y, .}(t)$ and $g_{x,, y}(t)$ are continuous;
(r3) for each $\epsilon>0$, there exists $\delta>0$ provided that $g_{a, y, z}(t) \geq 1-\delta$ and $g_{x, a, a}(s) \geq 1-\delta$ conclude that $G_{x, y, z}(t+s) \geq 1-\epsilon$.

Lemma 1. Each Menger PGM is an e-distance on \mathcal{X}.
Proof. Clearly, (r1) and (r2) are true. Only, we prove that (r3) is true. Assume $\epsilon>0$ and select $\delta>0$ so that $\mathcal{T}(1-\delta, 1-\delta) \geq 1-\epsilon$. Then, for $G_{a, y, z}(t) \geq 1-\delta$ and $G_{x, a, a}(s) \geq 1-\delta$, we get

$$
G_{x, y, z}(t+s) \geq \mathcal{T}\left(G_{a, y, z}(t), G_{x, a, a}(s)\right) \geq \mathcal{T}(1-\delta, 1-\delta) \geq 1-\epsilon
$$

Example 1. Assume $(\mathcal{X}, G, \mathcal{T})$ is a Menger PGM space. Define a function $g: \mathcal{X}^{3} \times[0, \infty] \rightarrow$ $[0,1]$ by $g_{x, y, z}(t)=1-c$ for each $x, y, z \in \mathcal{X}$ and $t>0$ with $c \in(0,1)$. Then g is an e-distance.

Lemma 2. Consider a Menger PGM space with a continuous mapping A on \mathcal{X} and a function $g: \mathcal{X}^{3} \times[0, \infty] \rightarrow[0,1]$ by $g_{x, y, z}(t)=\min \left\{G_{x, y, z}(t), G_{A x, A y, A z}(t)\right\}$ for each $x, y, z \in \mathcal{X}$ and $t>0$. Then g is an e-distance on \mathcal{X}.

Proof. The condition (r2) is clearly established. To prove (r1), consider $x, y, z, a \in \mathcal{X}$ and $t, s>0$. Then, we have two following cases:

Case 1: if $G_{x, y, z}(t)=\min \left\{G_{x, y, z}(t), G_{A x, A y, A z}(t)\right\}$, then

$$
\begin{aligned}
g_{x, y, z}(t+s) & =G_{x, y, z}(t+s) \\
& \geq \mathcal{T}\left(G_{x, a, a}(t), G_{a, y, z}(s)\right) \\
& \geq \mathcal{T}\left(\min \left\{G_{x, a, a}(t), G_{A x, A a, A a}(t)\right\}, \min \left\{G_{a, y, z}(s), G_{A a, A y, A z}(s)\right\}\right) \\
& \geq \mathcal{T}\left(g_{x, a, a}(t), g_{a, y, z}(s)\right) .
\end{aligned}
$$

Case 2: if $G_{A x, A y, A z}(t)=\min \left\{G_{x, y, z}(t), G_{A x, A y, A z}(t)\right\}$, then

$$
\begin{aligned}
g_{x, y, z}(t+s) & =G_{A x, A y, A z}(t+s) \\
& \geq \mathcal{T}\left(G_{A x, A a, A a}(t), G_{A a, A y, A z}(s)\right) \\
& \geq \mathcal{T}\left(\min \left\{G_{x, a, a}(t), G_{A x, A a, A a}(t)\right\}, \min \left\{G_{a, y, z}(s), G_{A a, A y, A z}(s)\right\}\right) \\
& \geq \mathcal{T}\left(g_{x, a, a}(t), g_{a, y, z}(s)\right) .
\end{aligned}
$$

Therefore, (r1) is established. Now, assume $\epsilon>0$ and select $\delta>0$ so that $\mathcal{T}(1-\delta, 1-\delta) \geq$ $1-\epsilon$. Using $g_{x, a, a}(t) \geq 1-\delta$ and $g_{a, y, z}(s) \geq 1-\delta$, we get

$$
\begin{aligned}
& \min \left\{G_{x, a, a}(t), G_{A x, A a, A a}(t)\right\}=g_{x, a, a}(t) \geq 1-\delta \\
& \min \left\{G_{a, y, z}(s), G_{A a, A y, A z}(s)\right\}=g_{a, y, z}(s) \geq 1-\delta
\end{aligned}
$$

which induces that

$$
\begin{aligned}
G_{x, y, z}(t+s) & \geq \mathcal{T}\left(G_{x, a, a}(t), G_{a, y, z}(s)\right) \\
& \geq \mathcal{T}\left(\min \left\{G_{x, a, a}(t), G_{A x, A a, A a}(t)\right\}, \min \left\{G_{a, y, z}(s), G_{A a, A y, A z}(s)\right\}\right) \\
& =\mathcal{T}\left(g_{x, a, a}(t), g_{a, y, z}(s)\right) \geq \mathcal{T}(1-\delta, 1-\delta) \geq 1-\epsilon
\end{aligned}
$$

Thus, (r3) is established. This completes the proof.
Lemma 3. Consider an e-distance g on $(\mathcal{X}, G, \mathcal{T})$ with two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in \mathcal{X}. Suppose that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two non-negative sequences converging to 0 . Then for $x, y, z \in \mathcal{X}$ and $t, s>0$ the following assertions are established:
(i) $g_{z, y, x_{n}}(t) \geq 1-\alpha_{n}$ and $g_{x, x_{n}, x_{n}}(t) \geq 1-\beta_{n}$ for any $n \in \mathbb{N}$ imply $x=y=z$. Specially, $g_{x, a, a}(t)=1$ and $g_{a, y, z}(s)=1$ imply $x=y=z$;
(ii) $g_{y_{n}, x_{n}, x_{n}}(t) \geq 1-\alpha_{n}$ and $g_{x_{n}, y_{m}, z}(t) \geq 1-\beta_{n}$ for all $m>n$ with $m, n \in \mathbb{N}$ imply $G_{y_{n}, y_{m}, z}(t+s) \rightarrow 1$ as $n \rightarrow \infty ;$
(iii) let $g_{x_{n}, x_{m}, x_{l}}(t) \geq 1-\alpha_{n}$ for all $n, m, l \in \mathbb{N}$, where $l>m>n$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence;
(iv) let $g_{y, y, x_{l}}(t) \geq 1-\alpha_{n}$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. To prove (ii), assume $\epsilon>0$. By applying the definition of e-distance, there exists $\delta>0$ so that $g_{a, y, z}(t) \geq 1-\delta$ and $g_{x, a, a}(s) \geq 1-\delta$ induce $G_{x, y, z}(t+s) \geq 1-\epsilon$. Select $n_{0} \in \mathbb{N}$ provided that $\alpha_{n} \leq \delta$ and $\beta_{n} \leq \delta$ for each $n \geq n_{0}$. Then $g_{y_{n}, x_{n}, x_{n}}(t) \geq 1-\alpha_{n} \geq 1-\delta$ and $g_{x_{n}, y_{m}, z}(t) \geq 1-\beta_{n} \geq 1-\delta$ for any $n \geq n_{0}$ and hence $G_{y_{n}, y_{m}, z}(t+s) \geq 1-\epsilon$. Therefore, $\left\{y_{n}\right\}$ converges to z. Now, using (ii), (i) is established. To prove (iii), assume $\epsilon>0$. Similar to the proof of (ii), select $\delta>0$ and $n_{0} \in \mathbb{N}$. Then, for all $n, m, l \geq n_{0}+1$, we get $g_{x_{n}, x_{n_{0}}, x_{n_{0}}}(t) \geq 1-\alpha_{n_{0}} \geq 1-\delta$ and $g_{x_{n_{0}}, x_{l}, x_{m}}(t) \geq 1-\alpha_{n_{0}} \geq 1-\delta$. Therefore, $G_{x_{n}, x_{m}, x_{l}}(t) \geq 1-\epsilon$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. Now, it follows from (iii) that (iv) is true.

Lemma 4. Consider an e-distance g on $(\mathcal{X}, G, \mathcal{T})$. Suppose that $E_{\lambda, g}: \mathcal{X}^{3} \rightarrow \mathbb{R}^{+} \cup\{0\}$ is introduced by $E_{\lambda, g}(x, y, z)=\inf \left\{t>0: g_{x, y, z}(t)>1-\lambda\right\}$ for any $x, y, z \in \mathcal{X}$ and $\lambda \in(0,1)$. Then
(1) for all $\mu \in(0,1)$, there exists $\lambda \in(0,1)$ so that

$$
E_{\mu, g}\left(x_{1}, x_{1}, x_{n}\right) \leq E_{\lambda, g}\left(x_{1}, x_{1}, x_{2}\right)+E_{\lambda, g}\left(x_{2}, x_{2}, x_{3}\right)+\cdots+E_{\lambda, g}\left(x_{n-1}, x_{n-1}, x_{n}\right)
$$

for each $x_{1}, \cdots, x_{n} \in \mathcal{X}$;
(2) for every sequence $\left\{x_{n}\right\}$ in $\mathcal{X}, g_{x_{n}, x, x}(t) \rightarrow 1$ iff $E_{\lambda, g}\left(x_{n}, x, x\right) \rightarrow 0$. Further, the sequence $\left\{x_{n}\right\}$ is Cauchy w.r.t. g iff it is Cauchy with $E_{\lambda, g}$.

Proof.

(1) For every $\mu \in(0,1)$, we can gain $\lambda \in(0,1)$ provided that $\mathcal{T}^{n-1}(1-\lambda, \ldots, 1-\lambda) \geq$ $1-\mu$. Now, for every $\delta>0$, we have

$$
\begin{aligned}
& g_{x_{1}, x_{1}, x_{n}}\left(E_{\lambda, g}\left(x_{1}, x_{1}, x_{2}\right)+E_{\lambda, g}\left(x_{2}, x_{2}, x_{3}\right)+\cdots+E_{\lambda, g}\left(x_{n-1}, x_{n-1}, x_{n}\right)+n \delta\right) \\
& \geq \mathcal{T}^{n-1}\left(g_{x_{1}, x_{1}, x_{2}}\left(E_{\lambda, g}\left(x_{1}, x_{1}, x_{2}\right)+\delta\right), g_{x_{2}, x_{2}, x_{3}}\left(E_{\lambda, g}\left(x_{2}, x_{2}, x_{3}\right)+\delta\right)\right. \\
& \left.\quad, \cdots, g_{x_{n-1}, x_{n-1}, x_{n}}\left(E_{\lambda, g}\left(x_{n-1}, x_{n-1}, x_{n}\right)+\delta\right)\right) \\
& \geq \mathcal{T}^{n-1}(1-\lambda, \ldots, 1-\lambda) \geq 1-\mu
\end{aligned}
$$

which induces that

$$
E_{\mu, g}\left(x_{1}, x_{1}, x_{n}\right) \leq E_{\lambda, g}\left(x_{1}, x_{1}, x_{2}\right)+E_{\lambda, g}\left(x_{2}, x_{2}, x_{3}\right)+\cdots+E_{\lambda, g}\left(x_{n-1}, x_{n-1}, x_{n}\right)+n \delta .
$$

Since $\delta>0$ is optional, we obtain

$$
E_{\mu, g}\left(x_{1}, x_{1}, x_{n}\right) \leq E_{\lambda, g}\left(x_{1}, x_{1}, x_{2}\right)+E_{\lambda, g}\left(x_{2}, x_{2}, x_{3}\right)+\cdots+E_{\lambda, g}\left(x_{n-1}, x_{n-1}, x_{n}\right) .
$$

(2) Note that $g_{x_{n}, x, x}(\eta) \rightarrow 1-\lambda$ as $n \rightarrow \infty$ iff $E_{\lambda, g}\left(x_{n}, x, x\right)<\eta$ for each $n \in \mathbb{N}$ and $\eta>0$.

In the sequel, we establish some coupled fixed point theorems by regarding an e distance on a quasi-ordered complete PGM space.

Theorem 1. Let $(\mathcal{X}, G, \mathcal{T}, \preceq)$ be a quasi-ordered complete Menger PGM space with \mathcal{T} of Hadzićtype I, g be an e-distance and $f: \mathcal{X}^{2} \rightarrow \mathcal{X}$ be a mapping having the mixed monotone property on \mathcal{X}. Assume that there exists a $k \in[0,1)$ such that

$$
\begin{equation*}
g_{f(x, y), f(u, v), f(w, z)}(t) \geq \frac{1}{2}\left(g_{x, u, w}\left(\frac{t}{k}\right)+g_{y, v, z}\left(\frac{t}{k}\right)\right) \tag{1}
\end{equation*}
$$

for all $x, y, z, u, v, w \in \mathcal{X}$ with $x \succeq u \succeq w$ and $y \preceq v \preceq z$, where either $u \neq w$ or $v \neq z$ and

$$
\begin{equation*}
\sup \left\{\mathcal{T}\left(g_{x, y, z}(t), g_{x, y, f(x, y)}(t)\right): x, y \in \mathcal{X}\right\}<1 \tag{2}
\end{equation*}
$$

for all $z \in \mathcal{X}$, where $z \neq f(z, q)$ for all $q \in \mathcal{X}$. If there exist $x_{0}, y_{0} \in \mathcal{X}$ so that $x_{0} \preceq f\left(x_{0}, y_{0}\right)$ and $y_{0} \succeq f\left(y_{0}, x_{0}\right)$, then f have a coupled fixed point in \mathcal{X}^{2}.

Proof. Since there exist $x_{0}, y_{0} \in \mathcal{X}$ with $x_{0} \preceq f\left(x_{0}, y_{0}\right)$ and $y_{0} \succeq f\left(y_{0}, x_{0}\right)$, and f has the mixed monotone property, we can construct Bhaskar-Lakshmikantham type iterative as follow:

$$
x_{0} \preceq x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n+1} \preceq \cdots \quad, \quad y_{0} \succeq y_{1} \succeq y_{2} \succeq \cdots \succeq y_{n+1} \succeq \cdots
$$

for all $n \geq 0$, where

$$
\begin{aligned}
& x_{n+1}=f^{n+1}\left(x_{0}, y_{0}\right)=f\left(f^{n}\left(x_{0}, y_{0}\right), f^{n}\left(y_{0}, x_{0}\right)\right) \\
& y_{n+1}=f^{n+1}\left(y_{0}, x_{0}\right)=f\left(f^{n}\left(y_{0}, x_{0}\right), f^{n}\left(x_{0}, y_{0}\right)\right)
\end{aligned}
$$

If $\left(x_{n+1}, y_{n+1}\right)=\left(x_{n}, y_{n}\right)$, then f has a coupled fixed point. Otherwise, assume $\left(x_{n+1}, y_{n+1}\right) \neq$ $\left(x_{n}, y_{n}\right)$ for each $n \geq 0$; that is, either $x_{n+1}=f\left(x_{n}, y_{n}\right) \neq x_{n}$ or $y_{n+1}=f\left(y_{n}, x_{n}\right) \neq y_{n}$. Now, by induction and (1), we obtain

$$
\begin{aligned}
& g_{x_{n}, x_{n}, x_{n+1}}(t) \geq \frac{1}{2}\left(g_{x_{0}, x_{0}, x_{1}}\left(\frac{t}{k^{n}}\right)+g_{y_{0}, y_{0}, y_{1}}\left(\frac{t}{k^{n}}\right)\right), \\
& g_{y_{n}, y_{n}, y_{n+1}}(t) \geq \frac{1}{2}\left(g_{y_{0}, y_{0}, y_{1}}\left(\frac{t}{k^{n}}\right)+g_{x_{0}, x_{0}, x_{1}}\left(\frac{t}{k^{n}}\right)\right),
\end{aligned}
$$

for each $n \geq 0$ which induces that $g_{x_{n}, x_{n}, x_{n+1}}(t) \geq \frac{1}{2} g_{x_{0}, x_{0}, x_{1}}\left(\frac{t}{k^{n}}\right)$ and $g_{y_{n}, y_{n}, y_{n+1}}(t) \geq$ $\frac{1}{2} g_{y_{0}, y_{0}, y_{1}}\left(\frac{t}{k^{n}}\right)$. Therefore,

$$
\begin{aligned}
E_{\lambda, g}\left(x_{n}, x_{n}, x_{n+1}\right) & =\inf \left\{t>0: g_{x_{n}, x_{n}, x_{n+1}}(t)>1-\lambda\right\} \\
& \leq \inf \left\{t>0: \frac{1}{2} g_{x_{0}, x_{0}, x_{1}}\left(\frac{t}{k^{n}}\right)>1-\lambda\right\} \\
& =2 k^{n} E_{\lambda, g}\left(x_{0}, x_{0}, x_{1}\right) .
\end{aligned}
$$

Thus, for $m>n$ and $\lambda \in(0,1)$, there exists $\gamma \in(0,1)$ so that

$$
E_{\lambda, g}\left(x_{n}, x_{n}, x_{m}\right) \leq E_{\gamma, g}\left(x_{n}, x_{n}, x_{n+1}\right)+\cdots+E_{\gamma, g}\left(x_{m-1}, x_{m-1}, x_{m}\right) \leq \frac{2 k^{n}}{1-k} E_{\gamma, g}\left(x_{0}, x_{0}, x_{1}\right)
$$

Now, there exists $n_{0} \in \mathbb{N}$ so that for each $n>n_{0}, E_{\lambda, g}\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$. By Lemmas 3 and $4,\left\{x_{n}\right\}$ is a Cauchy sequence. Thus, using Lemma 4 (ii), there exit $n_{1} \in \mathbb{N}$ and a sequence $\delta_{n} \rightarrow 0$ so that $g_{x_{n}, x_{n}, x_{m}}(t) \geq 1-\delta_{n}$ for $n \geq \max \left\{n_{0}, n_{1}\right\}$. Since \mathcal{X} is complete, $\left\{x_{n}\right\}$ converges to a point $p \in \mathcal{X}$. Similarly, $\left\{y_{n}\right\}$ is convergent to a point $q \in \mathcal{X}$. By (r2), we obtain $g_{x_{n}, x_{n}, p}(t)=\lim _{m \rightarrow \infty} g_{x_{n}, x_{n}, x_{m}}(t) \geq 1-\delta_{n}$ for $n \geq \max \left\{n_{0}, n_{1}\right\}$. Moreover, we get $g_{x_{n}, x_{n+1}, x_{n+1}}(t) \geq 1-\delta_{n}$. Now, we show that f has a coupled fixed point. Let $p \neq f(p, q)$. Then, by (2), we obtain

$$
\begin{aligned}
1 & >\sup \left\{\mathcal{T}\left(g_{x, y, p}(t), g_{x, y, f(x, y)}(t)\right): x, y \in \mathcal{X}\right\} \\
& \geq \sup \left\{\mathcal{T}\left(g_{x_{n}, x_{n}, p}(t), g_{x_{n}, x_{n+1}, x_{n+1}}(t)\right): n \in \mathbb{N}\right\} \\
& \geq \sup \left\{\mathcal{T}\left(1-\delta_{n}, 1-\delta_{n}\right): n \in \mathbb{N}\right\}=1
\end{aligned}
$$

which is a contradiction. Consequently, we get $p=f(p, q)$. Similarly, we obtain $f(q, p)=q$. Here, the proof ends.

Theorem 2. Assume the assumptions of Theorem 1 are held and consider the continuity of f instead of relation (2). Then f has a coupled fixed point.

Proof. As in the proof of Theorem 1, construct $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, where $x_{n} \rightarrow p, y_{n} \rightarrow q$, $x_{n+1}=f\left(x_{n}, y_{n}\right)$. Now, by the continuity of f and by taking the limit as $n \rightarrow \infty$, we get $f(p, q)=p$. Analogously, we can obtain $f(q, p)=q$. Therefore, (p, q) is a coupled fixed point of f.

Example 2. Assume that $\mathcal{X}=[0, \infty)$, " $\preceq "$ is a quasi-ordered on \mathcal{X} and $\mathcal{T}(a, b)=\min \{a, b\}$. Define a constant function $f: \mathcal{X}^{2} \rightarrow \mathcal{X}$ by $f(a, b)=p$ and $G: \mathcal{X}^{3} \rightarrow D^{+}$by $G_{x, y, z}(t)=$ $\frac{t}{t+G^{*}(x, y, z)}$ with $G^{*}(x, y, z)=|x-y|+|x-z|+|y-z|$ for each $x, y, z \in \mathcal{X}$. Clearly, G satisfies (PG1)-(PG4). Consider $g_{x, y, z}(t)=1-c$, where $c \in(0,1)$. Then g is an e-distance on \mathcal{X}. Clearly, for all $x, y, z, u, v, w \in \mathcal{X}$ and for any $t>0$, we have $g_{f(x, y), f(u, v), f(w, z)}(t) \geq$ $\frac{1}{2}\left(g_{x, u, w}\left(\frac{t}{k}\right)+g_{y, v, z}\left(\frac{t}{k}\right)\right)$. Moreover, there exist $x_{0}=0$ and $y_{0}=1$ so that $0=x_{0} \preceq f\left(x_{0}, y_{0}\right)$ and $1=y_{0} \succeq f\left(y_{0}, x_{0}\right)=1$. Therefore, all of the hypothesis of Theorem 2 are held. Clearly, (p, p) is a coupled fixed point the function f.

3. Application

Consider the following system of integral equations:

$$
\left\{\begin{array}{l}
x(t)=\int_{a}^{b} M(t, s) K(s, x(s), y(s)) d s \tag{3}\\
y(t)=\int_{a}^{b} M(t, s) K(s, y(s), x(s)) d s
\end{array}\right.
$$

for all $t \in I=[a, b]$, where $b>a, M \in C(I \times I,[0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$.
Let $C(I, \mathbb{R})$ be the Banach space of every real continuous functions on I with $\|x\|_{\infty}=$ $\max _{t \in I}|x(t)|$ for all $x \in C(I, \mathbb{R})$ and $C(I \times I \times C(I, \mathbb{R}), \mathbb{R})$ be the space of every continuous functions on $I \times I \times C(I, \mathbb{R})$. Define a mapping $G: C(I, \mathbb{R}) \times C(I, \mathbb{R}) \rightarrow D^{+}$by $G_{x, y, z}(t)=$ $\chi\left(\frac{t}{2}-\left(\|x-y\|_{\infty}+\|x-z\|_{\infty}+\|y-z\|_{\infty}\right)\right)$ for all $x, y, z \in C(I, \mathbb{R})$ and $t>0$, where

$$
\chi(t)= \begin{cases}0 & \text { if } \quad t \leq 0 \\ 1 & \text { if } \quad t>0\end{cases}
$$

Then, $(C(I, \mathbb{R}), G, \mathcal{T})$ with $\mathcal{T}(a, b)=\min \{a, b\}$ is a complete Menger PGM space ([7]). Consider an e-distance on \mathcal{X} by $g_{x, y, z}(t)=\min \left\{G_{x, y, z}(t), G_{A x, A y, A z}(t)\right\}$, where $A: C(I, \mathbb{R}) \rightarrow$ $C(I, \mathbb{R})$ and $A x=\frac{x}{2}$. Moreover, we define the relation " \preceq " on $C(I, \mathbb{R})$ by $x \preceq y \Leftrightarrow$ $\|x\|_{\infty} \leq\|y\|_{\infty}$ for all $x, y \in C(I, \mathbb{R})$. Clearly the relation " \preceq " is a quasi-order relation on $C(I, \mathbb{R})$ and $(C(I, \mathbb{R}), G, \mathcal{T}, \preceq)$ is a quasi-ordered complete PGM space.

Theorem 3. Let $(C(I, \mathbb{R}), G, \mathcal{T}, \preceq)$ be a quasi-ordered complete Menger PGM space and f : $C(I, \mathbb{R}) \times C(I, \mathbb{R}) \rightarrow C(I, \mathbb{R})$ be a operator defined by $f(x, y)(t)=\int_{a}^{b} M(t, s) K(s, x(s), y(s)) d s$, where $M \in C(I \times I,[0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ are two operators. Assume the following properties are held:
(i) $\|K\|_{\infty}=\sup _{s \in I, x, y \in C(I, \mathbb{R})}|K(s, x(s), y(s))|<\infty$;
(ii) for every $x, y \in C(I, \mathbb{R})$ and every $t, s \in I$, we have

$$
\|K(s, x(s), y(s))-K(s, u(s), v(s))\|_{\infty} \leq \frac{1}{4}(\max |x(s)-u(s)|+\max |y(s)-v(s)|)
$$

(iii) $\max _{t \in I} \int_{a}^{b} M(t, s) d s<1$.

Then, the system (3) have a solution in $C(I, \mathbb{R}) \times C(I, \mathbb{R})$.
Proof. For all $x, y \in C(I, \mathbb{R})$, let $\|x-y\|_{\infty}=\max _{t \in I}(|x(t)-y(t)|)$. Then, for all $x, y, z, u, v, w \in$ $C(I, \mathbb{R})$, we have

$$
\begin{aligned}
\|f(x, y)-f(u, v)\|_{\infty} & \leq \max _{t \in I} \int_{a}^{b} M(t, s)|K(s, x(s) y(s))-K(s, u(s), v(s))| d s \\
& \leq \max \left(\frac{1}{4}(|x(s)-u(s)|+|y(s)-v(s)|)\right) \max _{t \in I} \int_{a}^{b} M(t, s) d s \\
& \leq \max \left(\frac{1}{4}(|x(s)-u(s)|+|y(s)-v(s)|)\right)
\end{aligned}
$$

We consider two following cases:
Case 1. Let

$$
\begin{aligned}
g_{f(x, y), f(u, v), f(w, z)}(t) & =\min \left\{G_{f(x, y), f(u, v), f(w, z)}(t), G_{A f(x, y), A f(u, v), A f(w, z)}(t)\right\} \\
& =G_{f(x, y), f(u, v), f(w, z)}(t) .
\end{aligned}
$$

Then, we obtain

$$
\begin{aligned}
g_{f(x, y), f(u, v), f(w, z)}(t)= & G_{f(x, y), f(u, v), f(w, z)}(t) \\
= & \chi\left(\frac{t}{2}-\left(\|f(x, y)-f(u, v)\|_{\infty}+\|f(x, y)-f(w, z)\|_{\infty}+\|f(u, v)-f(w, z)\|_{\infty}\right)\right) \\
\geq & \chi\left(\frac{t}{2}-\left(\max \left(\frac{1}{4}(|x(s)-u(s)|+|y(s)-v(s)|)\right)\right.\right. \\
& +\max \left(\frac{1}{4}(|x(s)-w(s)|+|y(s)-z(s)|)\right) \\
& \left.\left.+\max \left(\frac{1}{4}(|u(s)-w(s)|+|v(s)-z(s)|)\right)\right)\right) \\
= & \chi\left(t-\frac{1}{2}(\max ((|x(s)-u(s)|+|y(s)-v(s)|))\right. \\
& +\max ((|x(s)-w(s)|+|y(s)-z(s)|))+\max ((|u(s)-w(s)|+|v(s)-z(s)|)))) \\
\geq & \frac{1}{2}(\chi(t-(\max (|x(s)-u(s)|+|x(s)-w(s)|+|u(s)-w(s)|))) \\
& +\chi(t-(\max (|y(s)-v(s)|+|y(s)-z(s)|+|v(s)-z(s)|)))) \\
= & \frac{1}{2}\left(G_{x, u, w}(2 t)+G_{y, v, z}(2 t)\right) \geq \frac{1}{2}\left(g_{x, u, w}(2 t)+g_{y, v, z}(2 t)\right)
\end{aligned}
$$

Case 2. Let

$$
\begin{aligned}
g_{f(x, y), f(u, v), f(w, z)}(t) & =\min \left\{G_{f(x, y), f(u, v), f(w, z)}(t), G_{A f(x, y), A f(u, v), A f(w, z)}(t)\right\} \\
& =G_{A f(x, y), A f(u, v), A f(w, z)}(t) .
\end{aligned}
$$

By $A x=\frac{x}{2}$, we have

$$
\begin{aligned}
g_{f(x, y), f(u, v), f(w, z)}(t)= & G_{A f(x, y), A f(u, v), A f(w, z)}(t) \\
= & \chi\left(\frac{t}{2}-\frac{1}{2}\left(\|f(x, y)-f(u, v)\|_{\infty}+\|f(x, y)-f(w, z)\|_{\infty}+\|f(u, v)-f(w, z)\|_{\infty}\right)\right) \\
\geq & \chi\left(\frac{t}{2}-\left(\|f(x, y)-f(u, v)\|_{\infty}+\|f(x, y)-f(w, z)\|_{\infty}+\|f(u, v)-f(w, z)\|_{\infty}\right)\right) \\
\geq & \chi\left(\frac{t}{2}-\left(\max \left(\frac{1}{4}(|x(s)-u(s)|+|y(s)-v(s)|)\right)\right.\right. \\
& +\max \left(\frac{1}{4}(|x(s)-w(s)|+|y(s)-z(s)|)\right) \\
& \left.\left.+\max \left(\frac{1}{4}(|u(s)-w(s)|+|v(s)-z(s)|)\right)\right)\right) \\
= & \chi\left(t-\frac{1}{2}(\max ((|x(s)-u(s)|+|y(s)-v(s)|))\right. \\
& +\max ((|x(s)-w(s)|+|y(s)-z(s)|))+\max ((|u(s)-w(s)|+|v(s)-z(s)|)))) \\
\geq & \frac{1}{2}(\chi(t-(\max (|x(s)-u(s)|+|x(s)-w(s)|+|u(s)-w(s)|))) \\
& +\chi(t-(\max (|y(s)-v(s)|+|y(s)-z(s)|+|v(s)-z(s)|)))) \\
= & \frac{1}{2}\left(G_{x, u, w}(2 t)+G_{y, v, z}(2 t)\right) \geq \frac{1}{2}\left(g_{x, u, w}(2 t)+g_{y, v, z}(2 t)\right)
\end{aligned}
$$

for all $x, y, z, u, v, w \in C(I, \mathbb{R})$. Therefore, by Theorem 2 with $k=\frac{1}{2}$ for all $x, y, z, u, v, w \in$ $C(I, \mathbb{R})$ and $t>0$, we deduce that the operator f has a coupled fixed point which is the solution of the system of the integral equations.

4. Conclusions

The new concept of e-distance, which is a generalization of r-distance in PGM space has been introduced. Moreover, some of properties of e-distance have been discussed. In addition, we obtained several new coupled fixed point results. Ultimately, to illustrate the
usability of the main theorem, the existence of a solution for a system of integral equations is proved.

Author Contributions: All authors contributed equally and significantly in writing this paper. All authors have read and agree to the published version of the manuscript.

Funding: The authors are very grateful to the Basque Government by its support through Grant IT1207-19.

Acknowledgments: The first and the second authors are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant Number: SCU.MM99.25894). Moreover, the authors are very grateful to the Basque Government by its support through Grant IT1207-19.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Menger, K. Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28, 535-537. [CrossRef] [PubMed]
2. Sehgal, V.M. Some Fixed Point Theorems in Functional Analysis and Probability. Ph.D. Dissertation, Wayne State University, Detroit, MI, USA, 1966.
3. Sehgal, V.M.; Bharucha-Reid, A.T. Fixed points of contraction mappings on probabilistic metric spaces. Math. Syst. Theory 1972, 6, 97-102. [CrossRef]
4. Saadati, R.; O'Regan, D.; Vaezpour, S.M.; Kim, J.K. Generalized distance and common fixed point theorems in Menger probabilistic metric spaces. Bull. Iran. Math. Soc. 2009, 35, 97-117.
5. Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer Academic: Dordrecht, The Netherlands, 2001.
6. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 6, 289-297.
7. Zhou, C.; Wang, S.; Ćirić, L.; Alsulami, S. Generalized probabilistic metric spaces and fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 91. [CrossRef]
8. Tiwari, V.; Som, T. Fixed points for φ-contraction in Menger probabilistic generalized metric spaces. Annals. Fuzzy Math. Inform. 2017, 14, 393-405.
9. Wang, G.; Zhu, C.; Wu, Z. Some new coupled fixed point theorems in partially ordered complete Menger probabilistic G-metric spaces. J. Comput. Anal. Appl. 2019, 27, 326-344.
10. Karapinar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Func. Space 2018, 2018, 3264620. [CrossRef]
11. Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435-1443. [CrossRef]
12. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379-1393. [CrossRef]
13. Petrusel, A.; Rus, I.A. Fixed point theory in terms of a metric and of an order relation. Fixed Point Theory 2019, 20, 601-622. [CrossRef]
14. Soleimani Rad, G.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2015, 109, 471-481. [CrossRef]
