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1. Introduction and Preliminaries

In 1942, Menger [1] introduced Menger probabilistic metric spaces as an extension of
metric spaces. After that, Sehgal and Bharucha-Reid [2,3] studied some fixed point results
for different classes of probabilistic contractions (also, see and references in the citation).
Moreover, in 2009, Saadati et al. [4] introduced the concept of r-distance on this space.

Throughout this paper, the set of all Menger distance distribution functions are de-
noted by D+.

Definition 1 ([5], page 1). A binary mapping T : [0, 1]× [0, 1]→ [0, 1] is called t-norm if the
following propertied are held:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a if a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d for every a, b, c, d ∈ [0, 1].

Definition 2 ([4]). A t-norm T is called an H-type I if for ε ∈ (0, 1), there exist δ ∈ (0, 1) so
that T m(1− δ, ..., 1− δ) > 1− ε for each m ∈ N, where T m recursively defined by T 1 = T and
T m(t1, t2, ..., tm+1) = T (T m−1(t1, t2, ..., tm), tm+1) for m = 2, 3, · · · and ti ∈ [0, 1].

All t-norms in the sequel are from class of H-type I.
From another point of view, Mustafa and Sims [6] defined G-metric spaces as another

extension of metric spaces, analyzed the structure of this space, and continued the theory of
fixed point in such spaces. In 2014, Zhou et al. [7], by combining Menger PM-spaces and G-
metric spaces, defined Menger probabilistic generalized metric space (shortly, Menger PGM
space). Other researchers extended several fixed point theorems in [8–10] and references
contained therein.

Definition 3 ([7]). Assume thatX is a nonempty set, T is a continuous t-norm and G : X 3 → D+

is a mapping satisfying the following properties for all x, y, z, a ∈ X and s, t > 0:
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(PG1) Gx,y,z(t) = 1 if and only if x = y = z;
(PG2) Gx,x,y(t) ≥ Gx,y,z(t), where z 6= y;
(PG3) Gx,y,z(t) = Gx,z,y(t) = Gy,x,z(t) = · · · ;
(PG4) Gx,y,z(t + s) ≥ T (Gx,a,a(s), Ga,y,z(t)).

Then (X , G, T ) is named a Menger PGM space.

For the definitions of convergent, completeness, closedness and some theorems by
regarding these concepts in such spaces, one can see [7]. In 2004, Ran and Reurings [11]
discussed on fixed point results for comparable elements of a metric space (X , d) provided
with a partial order. Then, Bhaskar and Lakshmikantham [12] presented several fixed point
results for a mapping having mixed monotone property in such spaces (see [13,14]).

Definition 4 ([12]). Consider a ordered set (X ,�) and a mapping F : X 2 → X . The mapping F
is told to be have mixed monotone property if

x1 � x2 implies that F(x1, y) � F(x2, y) ∀x1, x2 ∈ X ,

y1 � y2 implies that F(x, y1) � F(x, y2) ∀y1, y2 ∈ X .

for every x, y ∈ X .

Here we introduce an e-distance on Menger PGM spaces and some of its properties.
Then we obtain some coupled fixed point results in the quasi-ordered version of such
spaces. The subject of the paper offers novelties compared to the related background
literature since a new distance in Menger spaces is defined while some of its properties are
revisited and extended.

2. Main Results

Here, we consider an e-distance on a Menger PGM space, which is an extension of
r-distance introduced by Saadati et al. [4].

Definition 5. Consider a Menger PGM space (X , G, T ). Then the function g : X 3 × [0, ∞]→
[0, 1] is called an e-distance, if for all x, y, z, a ∈ X and s, t ≥ 0 the following are held:

(r1) gx,y,z(t + s) ≥ T (gx,a,a(s), ga,y,z(t));
(r2) gx,y,.(t) and gx,.,y(t) are continuous;
(r3) for each ε > 0, there exists δ > 0 provided that ga,y,z(t) ≥ 1− δ and gx,a,a(s) ≥ 1− δ

conclude that Gx,y,z(t + s) ≥ 1− ε.

Lemma 1. Each Menger PGM is an e-distance on X .

Proof. Clearly, (r1) and (r2) are true. Only, we prove that (r3) is true. Assume ε > 0 and
select δ > 0 so that T (1− δ, 1− δ) ≥ 1− ε. Then, for Ga,y,z(t) ≥ 1− δ and Gx,a,a(s) ≥ 1− δ,
we get

Gx,y,z(t + s) ≥ T (Ga,y,z(t), Gx,a,a(s)) ≥ T (1− δ, 1− δ) ≥ 1− ε.

Example 1. Assume (X , G, T ) is a Menger PGM space. Define a function g : X 3 × [0, ∞] →
[0, 1] by gx,y,z(t) = 1− c for each x, y, z ∈ X and t > 0 with c ∈ (0, 1). Then g is an e-distance.

Lemma 2. Consider a Menger PGM space with a continuous mapping A on X and a function
g : X 3 × [0, ∞] → [0, 1] by gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)} for each x, y, z ∈ X and
t > 0. Then g is an e-distance on X .

Proof. The condition (r2) is clearly established. To prove (r1), consider x, y, z, a ∈ X and
t, s > 0. Then, we have two following cases:
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Case 1: if Gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, then

gx,y,z(t + s) = Gx,y,z(t + s)

≥ T (Gx,a,a(t), Ga,y,z(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
≥ T (gx,a,a(t), ga,y,z(s)).

Case 2: if GAx,Ay,Az(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, then

gx,y,z(t + s) = GAx,Ay,Az(t + s)

≥ T (GAx,Aa,Aa(t), GAa,Ay,Az(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
≥ T (gx,a,a(t), ga,y,z(s)).

Therefore, (r1) is established. Now, assume ε > 0 and select δ > 0 so that T (1− δ, 1− δ) ≥
1− ε. Using gx,a,a(t) ≥ 1− δ and ga,y,z(s) ≥ 1− δ, we get

min{Gx,a,a(t), GAx,Aa,Aa(t)} = gx,a,a(t) ≥ 1− δ,

min{Ga,y,z(s), GAa,Ay,Az(s)} = ga,y,z(s) ≥ 1− δ,

which induces that

Gx,y,z(t + s) ≥ T (Gx,a,a(t), Ga,y,z(s))

≥ T (min{Gx,a,a(t), GAx,Aa,Aa(t)}, min{Ga,y,z(s), GAa,Ay,Az(s)})
= T (gx,a,a(t), ga,y,z(s)) ≥ T (1− δ, 1− δ) ≥ 1− ε.

Thus, (r3) is established. This completes the proof.

Lemma 3. Consider an e-distance g on (X , G, T ) with two sequences {xn} and {yn} in X .
Suppose that {αn} and {βn} are two non-negative sequences converging to 0. Then for x, y, z ∈ X
and t, s > 0 the following assertions are established:

(i) gz,y,xn(t) ≥ 1− αn and gx,xn ,xn(t) ≥ 1− βn for any n ∈ N imply x = y = z. Specially,
gx,a,a(t) = 1 and ga,y,z(s) = 1 imply x = y = z;

(ii) gyn ,xn ,xn(t) ≥ 1 − αn and gxn ,ym ,z(t) ≥ 1 − βn for all m > n with m, n ∈ N imply
Gyn ,ym ,z(t + s)→ 1 as n→ ∞;

(iii) let gxn ,xm ,xl (t) ≥ 1− αn for all n, m, l ∈ N, where l > m > n. Then {xn} is a Cauchy
sequence;

(iv) let gy,y,xl (t) ≥ 1− αn for all n ∈ N. Then {xn} is a Cauchy sequence.

Proof. To prove (ii), assume ε > 0. By applying the definition of e-distance, there exists
δ > 0 so that ga,y,z(t) ≥ 1− δ and gx,a,a(s) ≥ 1− δ induce Gx,y,z(t + s) ≥ 1− ε. Select
n0 ∈ N provided that αn ≤ δ and βn ≤ δ for each n ≥ n0. Then gyn ,xn ,xn(t) ≥ 1− αn ≥ 1− δ
and gxn ,ym ,z(t) ≥ 1 − βn ≥ 1 − δ for any n ≥ n0 and hence Gyn ,ym ,z(t + s) ≥ 1 − ε.
Therefore, {yn} converges to z. Now, using (ii), (i) is established. To prove (iii), assume
ε > 0. Similar to the proof of (ii), select δ > 0 and n0 ∈ N. Then, for all n, m, l ≥ n0 + 1,
we get gxn ,xn0 ,xn0

(t) ≥ 1− αn0 ≥ 1− δ and gxn0 ,xl ,xm(t) ≥ 1− αn0 ≥ 1− δ. Therefore,
Gxn ,xm ,xl (t) ≥ 1− ε. Hence, {xn} is a Cauchy sequence. Now, it follows from (iii) that (iv)
is true.

Lemma 4. Consider an e-distance g on (X , G, T ). Suppose that Eλ,g : X 3 → R+ ∪{0} is introduced
by Eλ,g(x, y, z) = inf{t > 0 : gx,y,z(t) > 1− λ} for any x, y, z ∈ X and λ ∈ (0, 1). Then
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(1) for all µ ∈ (0, 1), there exists λ ∈ (0, 1) so that

Eµ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn)

for each x1, · · · , xn ∈ X ;
(2) for every sequence {xn} in X , gxn ,x,x(t) → 1 iff Eλ,g(xn, x, x) → 0. Further, the sequence

{xn} is Cauchy w.r.t. g iff it is Cauchy with Eλ,g.

Proof.

(1) For every µ ∈ (0, 1), we can gain λ ∈ (0, 1) provided that T n−1(1− λ, ..., 1− λ) ≥
1− µ. Now, for every δ > 0, we have

gx1,x1,xn(Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn) + nδ)

≥ T n−1(gx1,x1,x2(Eλ,g(x1, x1, x2) + δ), gx2,x2,x3(Eλ,g(x2, x2, x3) + δ)

, · · · , gxn−1,xn−1,xn(Eλ,g(xn−1, xn−1, xn) + δ))

≥ T n−1(1− λ, ..., 1− λ) ≥ 1− µ

which induces that

Eµ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn) + nδ.

Since δ > 0 is optional, we obtain

Eµ,g(x1, x1, xn) ≤ Eλ,g(x1, x1, x2) + Eλ,g(x2, x2, x3) + · · ·+ Eλ,g(xn−1, xn−1, xn).

(2) Note that gxn ,x,x(η)→ 1− λ as n→ ∞ iff Eλ,g(xn, x, x) < η for each n ∈ N and η > 0.

In the sequel, we establish some coupled fixed point theorems by regarding an e-
distance on a quasi-ordered complete PGM space.

Theorem 1. Let (X , G, T ,�) be a quasi-ordered complete Menger PGM space with T of Hadzić-
type I, g be an e-distance and f : X 2 → X be a mapping having the mixed monotone property on
X . Assume that there exists a k ∈ [0, 1) such that

g f (x,y), f (u,v), f (w,z)(t) ≥
1
2
(gx,u,w(

t
k
) + gy,v,z(

t
k
)) (1)

for all x, y, z, u, v, w ∈ X with x � u � w and y � v � z, where either u 6= w or v 6= z and

sup{T (gx,y,z(t), gx,y, f (x,y)(t)) : x, y ∈ X} < 1. (2)

for all z ∈ X , where z 6= f (z, q) for all q ∈ X . If there exist x0, y0 ∈ X so that x0 � f (x0, y0)
and y0 � f (y0, x0), then f have a coupled fixed point in X 2.

Proof. Since there exist x0, y0 ∈ X with x0 � f (x0, y0) and y0 � f (y0, x0), and f has
the mixed monotone property, we can construct Bhaskar-Lakshmikantham type iterative
as follow:

x0 � x1 � x2 � · · · � xn+1 � · · · , y0 � y1 � y2 � · · · � yn+1 � · · ·

for all n ≥ 0, where

xn+1 = f n+1(x0, y0) = f ( f n(x0, y0), f n(y0, x0)),

yn+1 = f n+1(y0, x0) = f ( f n(y0, x0), f n(x0, y0)).
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If (xn+1, yn+1) = (xn, yn), then f has a coupled fixed point. Otherwise, assume (xn+1, yn+1) 6=
(xn, yn) for each n ≥ 0; that is, either xn+1 = f (xn, yn) 6= xn or yn+1 = f (yn, xn) 6= yn.
Now, by induction and (1), we obtain

gxn ,xn ,xn+1(t) ≥
1
2
(gx0,x0,x1(

t
kn ) + gy0,y0,y1(

t
kn )),

gyn ,yn ,yn+1(t) ≥
1
2
(gy0,y0,y1(

t
kn ) + gx0,x0,x1(

t
kn )),

for each n ≥ 0 which induces that gxn ,xn ,xn+1(t) ≥ 1
2 gx0,x0,x1(

t
kn ) and gyn ,yn ,yn+1(t) ≥

1
2 gy0,y0,y1(

t
kn ). Therefore,

Eλ,g(xn, xn, xn+1) = inf{t > 0 : gxn ,xn ,xn+1(t) > 1− λ}

≤ inf{t > 0 :
1
2

gx0,x0,x1(
t

kn ) > 1− λ}

= 2knEλ,g(x0, x0, x1).

Thus, for m > n and λ ∈ (0, 1), there exists γ ∈ (0, 1) so that

Eλ,g(xn, xn, xm) ≤ Eγ,g(xn, xn, xn+1) + · · ·+ Eγ,g(xm−1, xm−1, xm) ≤
2kn

1− k
Eγ,g(x0, x0, x1).

Now, there exists n0 ∈ N so that for each n > n0, Eλ,g(xn, xn, xm)→ 0. By Lemmas 3
and 4, {xn} is a Cauchy sequence. Thus, using Lemma 4 (ii), there exit n1 ∈ N and a
sequence δn → 0 so that gxn ,xn ,xm(t) ≥ 1− δn for n ≥ max{n0, n1}. Since X is complete,
{xn} converges to a point p ∈ X . Similarly, {yn} is convergent to a point q ∈ X . By (r2), we
obtain gxn ,xn ,p(t) = limm→∞ gxn ,xn ,xm(t) ≥ 1− δn for n ≥ max{n0, n1}. Moreover, we get
gxn ,xn+1,xn+1(t) ≥ 1− δn. Now, we show that f has a coupled fixed point. Let p 6= f (p, q).
Then, by (2), we obtain

1 > sup{T (gx,y,p(t), gx,y, f (x,y)(t)) : x, y ∈ X}
≥ sup{T (gxn ,xn ,p(t), gxn ,xn+1,xn+1(t)) : n ∈ N}
≥ sup{T (1− δn, 1− δn) : n ∈ N} = 1,

which is a contradiction. Consequently, we get p = f (p, q). Similarly, we obtain f (q, p) = q.
Here, the proof ends.

Theorem 2. Assume the assumptions of Theorem 1 are held and consider the continuity of f
instead of relation (2). Then f has a coupled fixed point.

Proof. As in the proof of Theorem 1, construct {xn} and {yn}, where xn → p, yn → q,
xn+1 = f (xn, yn). Now, by the continuity of f and by taking the limit as n → ∞, we get
f (p, q) = p. Analogously, we can obtain f (q, p) = q. Therefore, (p, q) is a coupled fixed
point of f .

Example 2. Assume that X = [0, ∞), “ � ” is a quasi-ordered on X and T (a, b) = min{a, b}.
Define a constant function f : X 2 → X by f (a, b) = p and G : X 3 → D+ by Gx,y,z(t) =

t
t+G∗(x,y,z) with G∗(x, y, z) = |x − y| + |x − z| + |y − z| for each x, y, z ∈ X . Clearly, G
satisfies (PG1)-(PG4). Consider gx,y,z(t) = 1− c, where c ∈ (0, 1). Then g is an e-distance
on X . Clearly, for all x, y, z, u, v, w ∈ X and for any t > 0, we have g f (x,y), f (u,v), f (w,z)(t) ≥
1
2 (gx,u,w(

t
k ) + gy,v,z(

t
k )). Moreover, there exist x0 = 0 and y0 = 1 so that 0 = x0 � f (x0, y0)

and 1 = y0 � f (y0, x0) = 1. Therefore, all of the hypothesis of Theorem 2 are held. Clearly, (p, p)
is a coupled fixed point the function f .
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3. Application

Consider the following system of integral equations:{
x(t) =

∫ b
a M(t, s)K(s, x(s), y(s))ds,

y(t) =
∫ b

a M(t, s)K(s, y(s), x(s))ds,
(3)

for all t ∈ I = [a, b], where b > a, M ∈ C(I × I, [0, ∞)) and K ∈ C(I ×R×R,R).
Let C(I,R) be the Banach space of every real continuous functions on I with ||x||∞ =

maxt∈I |x(t)| for all x ∈ C(I,R) and C(I × I × C(I,R),R) be the space of every continuous
functions on I × I × C(I,R). Define a mapping G : C(I,R)× C(I,R)→ D+ by Gx,y,z(t) =
χ( t

2 − (‖x− y‖∞ + ‖x− z‖∞ + ‖y− z‖∞)) for all x, y, z ∈ C(I,R) and t > 0, where

χ(t) =

{
0 i f t ≤ 0
1 i f t > 0

Then, (C(I,R), G, T ) with T (a, b) = min{a, b} is a complete Menger PGM space ([7]).
Consider an e-distance onX by gx,y,z(t) = min{Gx,y,z(t), GAx,Ay,Az(t)}, where A : C(I,R)→
C(I,R) and Ax = x

2 . Moreover, we define the relation “ � ” on C(I,R) by x � y ⇔
||x||∞ ≤ ||y||∞ for all x, y ∈ C(I,R). Clearly the relation “ � ” is a quasi-order relation on
C(I,R) and (C(I,R), G, T ,�) is a quasi-ordered complete PGM space.

Theorem 3. Let (C(I,R), G, T ,�) be a quasi-ordered complete Menger PGM space and f :
C(I,R)×C(I,R)→ C(I,R) be a operator defined by f (x, y)(t) =

∫ b
a M(t, s)K(s, x(s), y(s))ds,

where M ∈ C(I × I, [0, ∞)) and K ∈ C(I ×R×R,R) are two operators. Assume the following
properties are held:

(i) ||K||∞ = sups∈I, x,y∈C(I,R) |K(s, x(s), y(s))| < ∞;
(ii) for every x, y ∈ C(I,R) and every t, s ∈ I, we have

||K(s, x(s), y(s))− K(s, u(s), v(s))||∞ ≤
1
4
(max |x(s)− u(s)|+ max |y(s)− v(s)|);

(iii) maxt∈I
∫ b

a M(t, s)ds < 1.

Then, the system (3) have a solution in C(I,R)× C(I,R).

Proof. For all x, y ∈ C(I,R), let ‖x− y‖∞ = maxt∈I(|x(t)− y(t)|). Then, for all x, y, z, u, v, w ∈
C(I,R), we have

‖ f (x, y)− f (u, v)‖∞ ≤ max
t∈I

∫ b

a
M(t, s)|K(s, x(s)y(s))− K(s, u(s), v(s))|ds

≤ max(
1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))max

t∈I

∫ b

a
M(t, s)ds

≤ max(
1
4
(|x(s)− u(s)|+ |y(s)− v(s)|)).

We consider two following cases:
Case 1. Let

g f (x,y), f (u,v), f (w,z)(t) = min{G f (x,y), f (u,v), f (w,z)(t), GA f (x,y),A f (u,v),A f (w,z)(t)}
= G f (x,y), f (u,v), f (w,z)(t).
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Then, we obtain

g f (x,y), f (u,v), f (w,z)(t) = G f (x,y), f (u,v), f (w,z)(t)

= χ(
t
2
− (‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (max(

1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1
4
(|x(s)− w(s)|+ |y(s)− z(s)|))

+ max(
1
4
(|u(s)− w(s)|+ |v(s)− z(s)|))))

= χ(t− 1
2
(max((|x(s)− u(s)|+ |y(s)− v(s)|))

+ max((|x(s)− w(s)|+ |y(s)− z(s)|)) + max((|u(s)− w(s)|+ |v(s)− z(s)|))))

≥ 1
2
(χ(t− (max(|x(s)− u(s)|+ |x(s)− w(s)|+ |u(s)− w(s)|)))

+ χ(t− (max(|y(s)− v(s)|+ |y(s)− z(s)|+ |v(s)− z(s)|))))

=
1
2
(Gx,u,w(2t) + Gy,v,z(2t)) ≥ 1

2
(gx,u,w(2t) + gy,v,z(2t)).

Case 2. Let

g f (x,y), f (u,v), f (w,z)(t) = min{G f (x,y), f (u,v), f (w,z)(t), GA f (x,y),A f (u,v),A f (w,z)(t)}
= GA f (x,y),A f (u,v),A f (w,z)(t).

By Ax = x
2 , we have

g f (x,y), f (u,v), f (w,z)(t) = GA f (x,y),A f (u,v),A f (w,z)(t)

= χ(
t
2
− 1

2
(‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (‖ f (x, y)− f (u, v)‖∞ + ‖ f (x, y)− f (w, z)‖∞ + ‖ f (u, v)− f (w, z)‖∞))

≥ χ(
t
2
− (max(

1
4
(|x(s)− u(s)|+ |y(s)− v(s)|))

+ max(
1
4
(|x(s)− w(s)|+ |y(s)− z(s)|))

+ max(
1
4
(|u(s)− w(s)|+ |v(s)− z(s)|))))

= χ(t− 1
2
(max((|x(s)− u(s)|+ |y(s)− v(s)|))

+ max((|x(s)− w(s)|+ |y(s)− z(s)|)) + max((|u(s)− w(s)|+ |v(s)− z(s)|))))

≥ 1
2
(χ(t− (max(|x(s)− u(s)|+ |x(s)− w(s)|+ |u(s)− w(s)|)))

+ χ(t− (max(|y(s)− v(s)|+ |y(s)− z(s)|+ |v(s)− z(s)|))))

=
1
2
(Gx,u,w(2t) + Gy,v,z(2t)) ≥ 1

2
(gx,u,w(2t) + gy,v,z(2t))

for all x, y, z, u, v, w ∈ C(I,R). Therefore, by Theorem 2 with k = 1
2 for all x, y, z, u, v, w ∈

C(I,R) and t > 0, we deduce that the operator f has a coupled fixed point which is the
solution of the system of the integral equations.

4. Conclusions

The new concept of e-distance, which is a generalization of r-distance in PGM space
has been introduced. Moreover, some of properties of e-distance have been discussed. In
addition, we obtained several new coupled fixed point results. Ultimately, to illustrate the
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usability of the main theorem, the existence of a solution for a system of integral equations
is proved.
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