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The application of organic amendments to agricultural soil can enhance crop yield,

while improving the physicochemical and biological properties of the recipient soils.

However, the use of manure-derived amendments as fertilizers entails environmental

risks, such as the contamination of soil and crops with antibiotic residues, antibiotic

resistance genes (ARGs) and mobile genetic elements (MGEs). In order to delve into

these risks, we applied dairy cow manure-derived amendments (slurry, fresh manure,

aged manure), obtained from a conventional and an organic farm, to soil. Subsequently,

lettuce and wheat plants were grown in the amended soils. After harvest, the abundance

of 95 ARGs and MGE-genes from the amended soils and plants were determined by

high-throughput qPCR. The structure of soil prokaryotic communities was determined

by 16S rRNA amplicon sequencing and qPCR. The absolute abundance of ARGs

and MGE-genes differed between treatments (amended vs. unamended), origins of

amendment (conventional vs. organic), and types of amendment (slurry vs. fresh

manure vs. aged manure). Regarding ARG-absolute abundances in the amendments

themselves, higher values were usually found in slurry vs. fresh or aged manure. These

abundances were generally higher in soil than in plant samples, and higher in wheat

grain than in lettuce plants. Lettuce plants fertilized with conventional amendments

showed higher absolute abundances of tetracycline resistance genes, compared to

those amended with organic amendments. No single treatment could be identified

as the best or worst treatment regarding the risk of antibiotic resistance in soil and

plant samples. Within the same treatment, the resistome risk differed between the

amendment, the amended soil and, finally, the crop. In other words, according to our

data, the resistome risk in manure-amended crops cannot be directly inferred from the

analysis of the amendments themselves. We concluded that, depending on the specific

question under study, the analysis of the resistome risk should specifically focus on the

amendment, the amended soil or the crop.
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INTRODUCTION

Antibiotics are indispensable tools for the treatment of
bacterial infections in human medicine and veterinary medicine.
Antibiotics are mainly used for the curative and, to a lesser
extent, preventive treatment of bacterial infectious diseases.
Besides, they are also used in many countries as growth
promoters in animal production farms (1). However, the use
of antibiotics for disease prevention is not recommended by
the Word Health Organization (2) and the European Union
banned the use of antibiotics for animal growth promotion
in 2006 [Regulation (EC) No. 1831/2003]. The use, abuse
and inappropriate use of antibiotics (i) in livestock farms for
animal production purposes, (ii) in human medicine for the
treatment of bacterial infections, and (iii) in agriculture for crop
production purposes is gradually causing the emergence and
dissemination of antibiotic resistant bacteria (some of them show
simultaneous resistance to many—multiresistant—or even all—
panresistant—known antibiotics), due to the selective pressure
exerted by antibiotics on exposed bacterial populations. Many
antibiotics used in veterinary practice are the same used to
treat bacterial infections in humans or have the same mode of
action or belong to the same antibiotic family (3), leading to

the alarming intensification and augmentation of the well-known
huge problem of multiresistant bacterial strains currently putting
at risk, at a global scale, our capacity to fight and control bacterial

human pathogens (4).
Most antibiotics administered to livestock are not fully

metabolized and, hence, are released, together with their
transformation products, into the environment along with the
feces and urine (5). In fact, a considerable percentage (30–90%)
of the antibiotic administered to a given animal for veterinary
purposes can be directly excreted in the urine and feces (5).
Animal manure is therefore a source of antibiotic contamination
(antibiotics are nowadays considered emerging contaminants)
and a reservoir of antibiotic resistant bacteria (ARB) harboring
and potentially spreading antibiotic resistance genes (ARGs)
(6). Animal manure is commonly applied to agricultural soil as
organic fertilizer. Apart from providing valuable plant nutrients
that can enhance crop yield, the application of manure can
simultaneously improve soil physicochemical and biological
properties, i.e., soil quality (7–9). Regrettably, the agronomic
application of manure can also lead to the emergence and
dissemination of ARB and ARGs in the amended agricultural
soil and, subsequently, in the food crops grown for human
consumption (10, 11). To make matters worse, ARB can
disseminate ARGs to other bacteria through horizontal gene
transfer (HGT) mediated by mobile genetic elements (MGEs),
such as integrons, phages, plasmids, integrative conjugative
elements, transposons, etc. (12, 13).

Understandably, most of the attention given to the problem of
antibiotic resistance (AR) has been directed to hospital settings.
Nonetheless, in the last years, more and more awareness is
being developed concerning the vastly complex environmental
dimension of AR and its central role in the emergence,
maintenance and spread of AR at a global scale (14). Undeniably,
the emergence and dissemination of AR in agroecosystems,

resulting from the application of animal manure as organic
fertilizer, begets a potential risk for human health and the
environment, being currently an issue of much global concern
that, urgently, requires the development and implementation of
practices and management measures that mitigate (or, better,
eliminate), such a risk (15). Among other measures aimed at
enhancing the sustainability of animal production practices,
organic livestock farming promotes a considerable reduction
of the use of antibiotics for veterinary purposes, compared to
conventional livestock systems. In principle, this reduction in
antibiotic use implies concomitantly a lower level of selective
pressure for bacterial populations to acquire and maintain AR
by evolutionary adaptation mechanisms (16). In addition, the
composting of animal manure has recurrently been reported as
an effective option for the reduction of antibiotic concentrations
in animal manure and, to a lesser extent, for the decrease
in the abundance of ARGs in these animal-derived organic
amendments (17, 18).

On the other hand, the presence of antibiotics and their
transformation products (some of these are also bioactive
compounds) in animal manure may significantly alter the
composition of soil microbial communities when applied
to agricultural soil. These antibiotic-induced changes in soil
microbial composition frequently have important consequences
for the soil resistome and mobilome (19, 20). Relevantly, soil
microbial diversity (in terms of richness, evenness, composition,
etc.) is regularly used as a biological indicator of the impact of
disturbances (e.g., contamination) on soil health (21–23).

Our objective was to study, under controlled microcosm
conditions, the emergence and dissemination of AR in
agricultural soil and food crops (lettuce and wheat) derived
from the application of dairy cow wastes as organic fertilizer. In
order to delve into possible management practices that could
minimize the resistome risk, we compared the effects of the
application of: (i) three types of commonly used amendments:
slurry vs. fresh manure vs. aged manure; and (ii) amendments
from a conventional livestock farm vs. an organic livestock
farm. To quantify the magnitude of the resistome risk in
agricultural soil and food crops, we used the following end-
points: (i) antibiotic concentrations; (ii) abundance of ARGs
and MGE-genes in soils and plants (lettuce and wheat grain);
and (iii) observed relationships between the structural diversity
of soil prokaryotic communities (from 16S rRNA amplicon
sequencing data) and the abundance of ARGs and MGE-genes.
We hypothesized that the resistome risk will be higher in soils
and plants: (i) amended with dairy cow wastes, compared to
non-amended controls; (ii) amended with dairy cow wastes from
the conventional livestock farm vs. the organic livestock farm;
and (iii) amended with slurry wastes vs. fresh and aged wastes.
We also hypothesized that lettuce samples will show a higher
resistome risk than wheat grain samples.

MATERIALS AND METHODS

Experimental Design
The amendments used in this study were kindly provided by
two dairy cow farms located in the province of Biscay (Spain):
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a conventional livestock farm and an organic livestock farm.
Three types of amendments (i.e., slurry, fresh manure, aged
manure) from these two different origins (i.e., conventional
livestock farm and organic livestock farm) were studied. In both
farms, representative samples of cow slurry were taken from a
pool where the feces and urine from the cows in production
were deposited. In contrast, fresh manure samples were taken
from the cow bedding (made from feces, urine, and wheat
straw) of the non-producing cows: heifers, dry cows and cows
undergoing treatment (the latter only in the conventional farm).
As for the aged manure, a composite sample was taken from a
manure pile that had been stored for ∼6 months. All samplings
were carried out on the same day. Fresh and aged manure
samples were collected in polyethylene bags, while slurry samples
were contained in plastic barrels. All samples were immediately
transferred to the laboratory and stored at 4◦C until use. The
experimental soil was collected from the upper 30 cm layer of a
semi-natural grassland field which, to our knowledge, has never
been amended with any kind of inorganic or organic fertilizer.
Immediately after collection, the soil was sieved to <4mm. For
our microcosm study, experimental pots containing 2 and 4 kg
of dry weight (DW) soil were used for lettuce and wheat plants,
respectively. The dose of amendment was carefully adjusted in
order to provide an equivalent of 100 and 180 kg N ha−1 for
lettuce and wheat plants, respectively. The amendments were
manually incorporated into the soil and thoroughly mixed for
homogenization purposes. A 2 week stabilization period was
allowed before crop planting (lettuce seedlings) or sowing (wheat
seeds). Lettuce (Lactuca sativa L. var. Batavia) and hard winter
wheat (Triticum aestivum L. var. Qualidu) plants were used in
this study, since they are most commonly grown in our region
for agricultural purposes. Our experiment was carried out in
a growth chamber under the following controlled conditions:
14/10 h light/dark cycle, 20/16◦C day/night temperature, 70%
relative humidity, and a photosynthetic photon flux density of
150µmol photonm−2 s−1. Throughout the experimental period,
plants were bottom watered every 2–3 days. Each treatment was
replicated four times. Lettuce plants were harvested after 44 days
of growth, while wheat plants were harvested after 171 days. For
the determination of crop production, lettuce plants (aerial part
= shoot biomass) were cut from the base with a scalpel and then
freshly weighed. Similarly, in wheat plants, spikes were husked,
and wheat grains freshly weighed. Dry weight of lettuce plants
and wheat grains was determined by drying in an oven at 70◦C
until reaching a constant mass. On the other hand, soil samples
were collected from the pots at crop harvest time (see below
section Effect of Treatments on Biological Parameters Related to
the Resistome Risk).

Amendment and Soil Physicochemical
Characterization
Before the beginning of the experiment, the dairy cow manure-
derived amendments and the experimental semi-natural
grassland soil were physicochemically characterized (24)
according to the following parameters: pH, organic matter
(OM) content, total nitrogen (N), potassium (K+), and

Olsen phosphorus (P). Dry weight of soils was determined
by drying in an oven at 30◦C until reaching a constant
mass. Mineral and pseudo-total metal concentrations were
determined by Inductively Coupled Plasma Atomic Emission
Spectrometry (ICP-AES) following aqua regia digestion
(25). Antibiotic concentrations were determined by Liquid
Chromatography Tandem Mass Spectrometry (LC-MS/MS)
in SAILab Instrumental Analytical Solutions (Barcelona,
Spain). In particular, the concentration of 57 antibiotics
belonging to nine families (aminoglycosides, cephalosporins,
macrolides, nitrofurans, penicillins, polypeptides, quinolones,
sulphonamides, and tetracyclines) was quantified. For
confirmation purposes and in order to assess the rate of
degradation of the antibiotics present in the manure and soil
samples, a second analysis of antibiotic concentrations was
carried out 2 months later. In this second analysis, the antibiotic
families that, in the first analysis, exceeded the detection limit
of the technique in at least one of the studied antibiotics (i.e.,
polypeptides and quinolones) were again analyzed.

Effect of Treatments on Biological
Parameters Related to the Resistome Risk
For the assessment of the effect of treatments on biological
parameters that provide information on resistome risk, at crop
harvest time, soil samples were collected from the experimental
pots and then sieved to <2mm. Prior to DNA extraction, soil
samples were washed twice in 120mM K2PO4 (pH 8.0) to wash
away extracellular DNA (26). DNA was extracted from soil
samples (0.25 g DW soil) using the Power SoilTM DNA Isolation
Kit (MoBio Laboratories Inc., Carlsbad, CA). Similarly, DNAwas
extracted from plant samples using the innuPREP Plant DNA Kit
(Analytik Jena, Jena, Germany). The concentration of soil and
plant DNA was quantified with a NanoDrop spectrophotometer
(ND-1000, Thermo Scientific, Wilmington, DE). Soil and plant
DNA was stored at−20◦C until use.

For the quantification of ARG and MGE-gene abundances,
high-throughput real-time PCR (HT-qPCR) reactions were
performed using the nanofluidic qPCR BioMarkTM HD system,
with 48.48 and 96.96 Dynamic Array Integrated Fluidic Circuits
(ICFs) (Fluidigm Corporation) following Urra et al. (27). A total
of 96 validated primer sets (28) were used, including 85 primer
sets targeting ARGs conferring resistance against all major classes
of antibiotics [10 aminoglycosides, 14 β-lactamases, 5 FCA
(fluoroquinolone, quinolone, florfenicol, chloramphenicol, and
amphenicol), 13 MLSB (macrolide, lincosamide, streptogramin
B), 5 multidrugs (i.e., those conferring resistance to more
than one antibiotic), 4 sulfonamides, 24 tetracyclines, and 10
vancomycines], 10 primers sets targeting MGE-genes (8 genes
encoding transposases and 2 genes encoding integrases), and
the 16S rRNA as reference gene. DNA samples were pre-
amplified with a pool of primers (final concentration for each
primer pair = 50 nM; 16 PCR cycles) and then treated with
exonuclease I. Subsequently, 1:10 dilutions of specific target
amplification reactions were loaded onto the Dynamic Array
IFCs, following the Fluidigm’s Fast Gene Expression Analysis—
EvaGreen R© Protocol. The SsoFastTM EvaGreen R© Supermix with
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Low ROX (Bio-Rad Laboratories, Redmond, WA) was used for
amplification (with a final primer concentration, both forward
and reverse, of 500 nM). The cycling program consisted of
1min at 95◦C, followed by 30 cycles at 95◦C for 5 s and 60◦C
for 20 s, followed by a melting curve. Four replicates were
included for each sample. Measurements were conducted in the
Gene Expression Unit of The Genomics Facility of SGIker—
University of the Basque Country, Spain. Raw data obtained from
the analysis were processed with the Fluidigm Real-Time PCR
Analysis Software (v.3.1.3) with linear baseline correction and
manual threshold settings. A threshold cycle, CT value, of 31
was chosen since the highest CT value obtained in our study
was 30.53. A detection of an ARG or MGE-gene was considered
positive when 3 out of the 4 technical replicates for each sample
were above the detection limit. The value of the detection limit
was used for non-amplified genes. Furthermore, a comparative
CT method was used to calculate ARG and MGE-gene relative
abundances, normalized to the abundance of the 16S rRNA
control gene, expressed as fold-change (FC) (29):

1CT = CT(target gene) − CT(16S rRNA gene)

11CT = 1CT(amended sample) − 1CT(unamended sample)

FC = 2−11CT

Real-time PCR measurements of the abundance of the 16S
rRNA gene were performed to estimate total bacterial biomass,
following the reaction mixtures and PCR conditions described in
Epelde et al. (30). The relative copy number (GR) was calculated
as the proportion of the abundance of the ARG or MGE-gene
to the abundance of the 16S rRNA gene (31). Absolute ARG
and MGE-gene abundances (GAARG,MGE) were calculated as
follows (32):

GR = 10
(31−CT )

(10/3)

GAARG,MGE =
GA16S × GRARG,MGE

GR16S

In order to assess the impact of amendments on soil prokaryotic
community composition, the preparation of amplicon libraries
was carried out using a dual indexing approach with sequence-
specific primers (33) targeting the V4 region of the 16S rRNA
gene: primers 519F (CAGCMGCCGCGGTAA) adapted from
Øvreås et al. (34) and 806R (GGACTACHVGGGTWTCTAAT)
from Caporaso et al. (35). Sequencing was performed with an
Illumina MiSeq V2 platform and paired-end sequencing strategy
(2 × 250 nt) at Tecnalia, Spain. Read paired ends were merged,
quality filtered and clustered into operational taxonomic units
(OTUs) as described in Lanzén et al. (33). The taxonomic
classification was performed using CREST (36).

Statistical Analysis
One-way ANOVA with Duncan’s multiple-range tests was
performed to compare absolute abundance values of ARGs and
MGE-genes among treatments: type of amendment = slurry
vs. fresh manure vs. aged manure, and origin of amendment
= conventional livestock farm vs. organic livestock farm.

Identical analyses were performed for crop production data. The
effect of the experimental factors (type × origin) was tested
by two-way ANOVA using package agricolae of R software
(v.3.6.3). R package vegan (37) was used to calculate α-diversity
indices (i.e., richness, Shannon’s, Simpson’s, Pielou’s) for soil
prokaryotic diversity data and 16S rRNA amplicon sequencing
data visualization. Principal component analysis (PCA) of ARG
and MGE-gene absolute abundances was performed using
Canoco 5 (38). Venn diagram was performed to examine the
overlapping, in terms of the presence of ARGs and MGE-genes,
between soil and plant samples with venn package in R. Kendall’s
rank correlation coefficients, followed by Bonferroni’s multiple
comparisons test, between soil prokaryotic taxa (at order level)
and absolute abundances of ARGs and MGE-genes (grouped
by antibiotic family and MGE category) were obtained using
R software.

RESULTS

Amendment and Soil Physicochemical
Characterization
The soil was characterized as a clay loam, with a pH of 6.2, an
OM of 6.3%, a total N content of 0.32%, an Olsen P content
of 3.4mg kg−1 DW soil, and a K+ content of 395mg kg−1

DW soil. Regarding the physicochemical properties of the dairy
cow manure-derived amendments (Table 1), we observed that:
(i) amendments from the conventional farm showed higher OM
content than those from the organic farm; (ii) all pH values
ranged between 8.2 and 9.4; (iii) slurry samples from both
the conventional and organic farm showed higher N content,
compared to fresh and aged manure; (iv) Pb, Cr, and Ni
concentrations were higher in fresh and aged manure from the
organic vs. the conventional farm; and (v) the following metal
concentration gradient for Pb, Cr, and Ni was observed in the
amendments from both the conventional and organic farm: aged
manure > fresh manure > slurry.

Concerning antibiotic concentrations in the amendments and
the semi-natural grassland soil (Table 2), in the first analysis,
colistin was detected in fresh and aged manure from both the
conventional and organic farm. Furthermore, marbofloxacin was
detected in all the amendments from the conventional farm, as
well as in the slurry from the organic farm. In the second analysis
carried out 2 months later, only colistin was detected in the
fresh manure from the conventional farm (Table 2), indicating
a possible degradation of marbofloxacin.

Effect of Treatments on Crop Production
Pertaining to lettuce shoot biomass, higher values were found
when the soil was amended with aged manure from both the
conventional and organic farm, as well as with slurry from the
conventional farm, compared to slurry from the organic farm,
fresh manure from the conventional farm and the unamended
control (Table 3).

As far as wheat production is concerned, no statistically
significant (p < 0.05) differences among treatments were
observed. In any case, the highest value of wheat grain weight was
found in pots amended with aged manure from the organic farm.

Frontiers in Veterinary Science | www.frontiersin.org 4 February 2021 | Volume 8 | Article 633858

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Jauregi et al. Resistome Risk From Cow Manure Amendments

TABLE 1 | Physicochemical properties of the amendments.

Organic farm Conventional farm

Aged manure Fresh manure Slurry Aged manure Fresh manure Slurry

Dry matter (%) 29.87 21.74 7.30 17.51 18.51 12.12

OM (%) 41.33 67.48 74.62 78.30 80.20 83.41

pH (1:25) 9.41 9.29 8.40 8.48 9.16 8.25

N (%) 2.78 3.45 3.97 1.94 2.32 3.38

Olsen phosphorus (g kg−1) 5.61 8.12 6.36 3.65 4.83 6.66

Potassium (g kg−1) 37.21 33.56 43.43 16.67 22.06 25.03

Cd (mg kg−1 DW) 0.62 0.71 0.40 0.50 0.36 0.15

Pb (mg kg−1 DW) 150.88 36.95 17.59 4.14 3.31 1.55

Cr (mg kg−1 DW) 51.80 22.32 11.58 17.58 15.23 13.54

Ni (mg kg−1 DW) 27.16 11.05 6.07 8.93 8.25 7.69

TABLE 2 | Antibiotic concentrations in the amendments and the semi-natural grassland soil.

Antibiotic

(µg kg−1)

Organic farm Conventional farm

Aged manure Fresh manure Slurry Aged manure Fresh manure Slurry Soil

First analysis Colistin 470 230 <50 223 147 <50 <50

Marbofloxacin <5 <5 139 81 245 41.6 <5

Second analysis Colistin <50 <50 <50 <50 117 <50 <50

Antibiotics whose concentration did not exceed the detection limit are not included.

Effect of Treatments on Biological
Parameters Related to the Resistome Risk
Regarding the absolute abundances of ARGs and MGE-
genes in the amendments collected from the livestock farms
(Supplementary Table 1), higher values were detected for
aminoglycoside resistance genes, compared to all the other
genes. In turn, lower values were observed for β-lactamase,
vancomycin and multidrug resistance genes. No single
amendment could be identified as the best or worst amendment
according to the absolute abundances of ARGs and MGE-genes
(Supplementary Table 1).

Out of the 95 ARGs andMGE-genes quantified here, 44 and 64
genes were detected in lettuce plants and lettuce soils, respectively
(Figure 1). In addition, 5 and 25 genes were exclusively detected
in lettuce plants and lettuce soils, respectively (i.e., lettuce plants
and lettuce soils shared 39 genes) (Figure 1). Those five genes
that were only detected in lettuce plants (and not in lettuce
soils) encoded resistance to β-lactamase (one gene), MLSB (one
gene), vancomycin (one gene) and tetracycline (2 genes). In turn,
the 25 genes that were found only in lettuce soils (and not in
lettuce plants) encoded resistance to FCA (one gene), tetracycline
(3 genes), multidrug (3 genes), β-lactamase (4 genes), MLSB (4
genes), aminoglycosides (5 genes), and vancomycin (5 genes).

Values of ARG absolute abundances in lettuce soils ranged
from 3.25 × 108 (for soil amended with slurry from the
conventional farm) to 1.81 × 109 (for the unamended control
soil) copies g−1 DW soil (Supplementary Table 1). In these
lettuce soils, the absolute abundance of MGE-genes was higher

than that of ARGs: from 1.27 × 1010 (for soil amended
with fresh manure from the organic farm) to 8.76 × 1010

(for the unamended control soil) copies g−1 DW soil. In

lettuce soils, integrase-related genes showed the highest absolute
abundance values. By contrast, multidrug resistance genes

presented the lowest absolute abundance values in lettuce

soils (however, differences were not statistically significant).

Furthermore, the lettuce unamended (control) soil showed
higher absolute abundance values for vancomycin resistance
genes, compared to all the other lettuce soils. In relation to
the effect of the experimental variables (type and origin of
amendment) on absolute abundance values in lettuce soils, the
application of aged manure led to significantly higher absolute
abundances of aminoglycoside resistance genes, compared to
the application of slurry (Supplementary Table 1). Moreover,
lettuce soils amended with aged manure showed higher absolute
abundance values for tetracycline resistance genes, compared to
lettuce soils amended with fresh manure or slurry.

In lettuce plants, the absolute abundance of ARGs ranged
from 1.08 × 108 (for plants fertilized with slurry from the
conventional farm) to 2.56 × 109 (for plants fertilized with
fresh manure from the conventional farm) copies g−1 DW
plant tissue (Supplementary Table 1). The absolute abundance
of MGE-genes in lettuce plants ranged from 3.53 × 108 (for
plants fertilized with slurry from the conventional farm) to
5.59 × 109 (for plants fertilized with fresh manure from the
conventional farm) copies g−1 DW plant tissue. In lettuce plants,
the absolute abundance of ARGs was higher in plants fertilized
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TABLE 3 | Effect of treatments on lettuce (shoot biomass) and wheat production (grain weight).

Organic farm Conventional farm

Aged manure Fresh manure Slurry Aged manure Fresh manure Slurry Unamended

control

LETTUCE

Shoot biomass (g) 138.1 ± 12.7ab 122.0 ± 3.9bc 107.4 ± 15.7c 142.2 ± 6.9a 118.3 ± 14.5c 142.7 ± 11.6a 103.8 ± 14.4c

WHEAT

Grain weight (g) 6.4 ± 2.9ns 5.6 ± 1.8ns 6.2 ± 3.0ns 5.9 ± 1.6ns 4.3 ± 2.6ns 6.0 ± 1.7ns 4.3 ± 1.2ns

Means (n = 4) and standard errors. Errors with different letters are significantly different (p < 0.05) according to Duncan‘s multiple range test. ns, non-significant.

FIGURE 1 | Venn diagram showing the number of ARGs and MGE-genes for lettuce and wheat samples. LS, lettuce soil; LP, lettuce plant; WS, wheat soil; WG,

wheat grain.

with fresh manure from the conventional farm, compared
to all the other lettuce plants, except for the unamended
control (Supplementary Table 1). Genes encoding resistance
to β-lactamase, FCA, multidrug, tetracycline, and vancomycin
showed lower absolute abundance values than genes encoding
sulfonamide and transposase in lettuce plants. Lettuce plants
fertilized with fresh manure from the conventional farm showed
higher absolute abundance values for aminoglycoside resistance,
tetracycline resistance and transposase-related genes than lettuce
plants from the other treatments (except for aged manure from
the conventional farm and the unamended control). Similarly,
lettuce plants fertilized with amendments from the conventional

farm exhibited higher absolute abundance values of tetracycline
resistance and transposase related genes than those fertilized with
amendments from the organic farm.

Regarding wheat, out of the 95 ARGs and MGE-genes
quantified here, 43 and 71 genes were detected in wheat grains
and wheat soils, respectively (Figure 1). In addition, 3 and
31 genes were exclusively detected in wheat grains and wheat
soils, respectively (i.e., wheat grains and wheat soils shared 40
genes) (Figure 1). Specifically, three tetracycline-resistance genes
were only detected in wheat grain (and not in wheat soil). In
turn, the 31 genes that were found only in wheat soil (and
not in wheat grain) encoded resistance to multidrug (2 genes),
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aminoglycosides (3 genes), MLSB (3 genes), vancomycin (7
genes), β-lactamase (8 genes), and tetracycline (8 genes). The
absolute abundance of ARGs in wheat soils ranged from
1.50 × 1010 (for wheat soil amended with slurry from the
conventional farm) to 7.64 × 1010 (for wheat soil amended
with fresh manure from the organic farm) copies g−1 DW
soil (Supplementary Table 1). In these wheat soils, the absolute
abundance of MGE-genes ranged between 3.03 × 1011 (for
wheat soils amended with slurry from the conventional farm)
to 1.17 × 1012 (for wheat soils amended with fresh manure
from the organic farm) copies g−1 DW soil. On the other
hand, the absolute abundance of ARGs in wheat grains ranged
from 4.04 × 109 (for wheat fertilized with fresh manure from
the conventional farm) to 1.47 × 1010 (for wheat fertilized
with slurry from the organic farm) copies g−1 DW grain.
The absolute abundance of MGE-genes in wheat grains ranged
from 8.74 × 1010 (for wheat fertilized with aged manure from
the organic farm) to 2.33 × 1011 (for control unamended
pots) copies g−1 DW grain. Wheat soils amended with fresh
manure from both livestock farms showed higher absolute
abundance values of aminoglycoside resistance genes, compared
to wheat soils amended with slurry (Supplementary Table 1).
Likewise, higher absolute abundance values of aminoglycoside,
MLSB and vancomycin resistance genes were detected in wheat
soils supplemented with amendments from the organic vs.
conventional farm. Wheat grains grown with amendments from
the organic farm exhibited higher absolute abundance values of
FCA resistance genes, compared to those from pots treated with
amendments from the conventional farm.

Figure 2 represents ARG andMGE-gene absolute abundances
grouped by antibiotic family and MGE category for all soil and
plant samples. The PCA clearly separated three clusters: (i)
wheat soils; (ii) wheat grains; and (iii) lettuce soils and plants.
The first axis (PC1) accounted for 75.2% of the total variance
and showed negative loadings for the following absolute
abundances: aminoglycoside, β-lactamase, FCA, integrase,
MLSB, sulfonamide, tetracycline, and transposase genes. In
addition, PC2 accounted for 16.1% of the total variance and
showed positive loading for multidrug and negative loading for
vancomycin genes.

No statistically significant differences were found among
treatments for both lettuce and wheat data (soil and plant
data) in relation to the relative abundances of ARGs and
MGE-genes grouped by antibiotic family and MGE category
(Supplementary Figures 1, 2).

Regarding the impact of treatments on soil prokaryotic
diversity in lettuce soils, as reflected by Illumina MiSeq
sequencing data, 73.1, 53.4, and 22.0% of the reads were
taxonomically classified to order, family and genus rank,
respectively. Concerning wheat soils, 67.6, 51.1, and 20.4%
of the reads were classified to order, family and genus
rank, respectively. Statistically significant differences were
found in 15 and 3 orders in lettuce and wheat soils,
respectively (Supplementary Table 2). For lettuce soils, out
of these 15 orders, the following belong to the 30 most
abundant orders detected in those soils: Cytophagales, SC-I-
84, Pseudonocardiales, Solirubrobacterales, C0119, KD4-96, and

Nitrososphaerales (Supplementary Figure 3). Similarly, out of
the abovementioned three orders in wheat soils, the following
two belong to the 30 most abundant orders: Rhodospirillales and
Desulfurellales (Supplementary Figure 4).

Data on the impact of treatments on soil prokaryotic
α-diversity are shown in Table 4. Lettuce soils amended with
slurry from the conventional farm showed higher richness
than those amended with slurry from the organic farm (and
also higher richness, compared to the untreated control soil).
Moreover, Shannon’s diversity was lower in soils amended with
aged manure for the organic farm and the unamended control
soil, compared to all the other soils. In wheat soils, higher richness
values were observed in soil amended with agedmanure from the
conventional farm, compared to soil amended with fresh manure
and slurry from the organic farm (Table 4).

In lettuce soils, Kendall’s rank correlation coefficients
showed significant correlations (positive and negative)
among 43 orders and 7 ARG and 2 MGE-gene absolute
abundances grouped by antibiotic family and MGE
category (Supplementary Table 2). Among these 43
orders, the following five presented multiresistance:
Micrococcales, Pseudonocardiales, Rhizobiales, Rubrobacterales,
and Solirubrobacterales (Supplementary Table 2). The
orders Micrococcales, Pseudonocardiales, Rhizobiales, and
Solirubrobacterales appeared in the list of the 30 most abundant
orders in lettuce soils (Supplementary Figure 3). The order
Pseudonocardiales was positively correlated with genes
encoding resistance to MLSB, tetracycline and vancomycin
(Supplementary Table 2). The lettuce unamended soil showed
higher abundance of Pseudonocardiales than the other soils
(Supplementary Table 3). Fifteen orders showed, at least,
two negative correlations with ARG and MGE-gene absolute
abundances (Supplementary Table 2).

In wheat soils, Kendall’s rank correlation coefficients
showed significant correlations (positive and negative)
among 14 orders and 6 ARG and 2 MGE-gene absolute
abundances grouped by antibiotic family and MGE category
(Supplementary Table 2). Among these 14 orders, the
following three presented multiresistance: Limnochordales,
Tepidisphaerales, andWN-HWB-116 (Supplementary Table 2).

As far as differences between lettuce and wheat pots, wheat
soil and grain samples showed higher absolute abundances
of ARGs and MGE-genes than lettuce soil and plant samples
(Supplementary Table 4). In terms of absolute abundances, the
highest number of statistically significant differences between
lettuce and wheat soils was observed in soils amended with fresh
manure from the organic farm.

DISCUSSION

The incorporation of organic amendments into agricultural
soil as fertilizers often increases soil OM content (39) and
fertility, and results in an overall improvement of soil quality
(8). In particular, organic farming practices promote the
maintenance and enhancement of soil OM and fertility by
means of the application of farmyard manure and similar
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FIGURE 2 | Principal component analysis of absolute abundances of ARGs and MGE-genes grouped by antibiotic family or MGE category. W, wheat samples; L,

lettuce samples; AG, aged manure; F, fresh manure; S, slurry; UN, unamended. Circle: organic farm. Square: conventional farm. Empty symbol: plant. Full symbol: soil.

organic amendments. In Europe, the area under organic
farming increased from 10.0 million hectares in 2012 to
13.4 million hectares in 2018 (Eurostat Statistics for Organic
Farming). Despite the abovementioned well-recognized benefits,
there is increasing concern about the use of manure-derived
amendments as organic fertilizers since their application entails
a variety of environmental risks such as, for instance, the
emergence, maintenance and dissemination of AR in agricultural
soils and crops (6, 17, 40). The application of manure-derived
amendments to agricultural soil can also lead to pronounced
changes in the diversity and composition of soil microbial
communities (41), with potential concomitant alterations of soil
functioning. We hypothesized that the resistome risk would be
higher in soils and plants amended with animal wastes from
conventional livestock farming vs. organic livestock farming
(after all, the administration of antibiotics to animals raised

under organic farming is limited by regulations). Nonetheless,
such hypothesis is not supported by the results of our study.
Actually, even regarding the concentration of antibiotics in the
amendments collected from the organic vs. conventional farm,
no clear differences were observed, which could be due to the fact
that organic farms do apply antibiotics in some specific cases, e.g.,
during a long-term mastitis.

As described above, a large proportion (30–90%) of the
antibiotics administered to livestock are not fully metabolized
and are then excreted, together with their transformation
products, into the environment along with the feces and
urine (5). The amount and rate of antibiotic excretion varies
greatly among animal species and age (42, 43), type and
dosage of antibiotic, form of administration, etc. (44). As an
example, the following concentrations (mg kg−1) have been
reported for dairy cow manure: 0.43–2.69 for tetracycline,
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TABLE 4 | Effect of treatments on soil prokaryotic diversity.

Lettuce soil Richness Shannon’s Simpson’s Pielou’s

ORG_AG 3626 ± 200cd 6.78 ± 0.04b 0.997 ± 5.2E-04ns 0.811 ± 0.015ns

ORG_FRES 3894 ± 48ab 7.03 ± 0.04a 0.998 ± 2.9E-04ns 0.815 ± 0.005ns

ORG_SLU 3722 ± 65bc 6.99 ± 0.03a 0.998 ± 5.2E-05ns 0.814 ± 0.003ns

CONV_AG 3774 ± 73abc 6.98 ± 0.02a 0.998 ± 9.2E-05ns 0.825 ± 0.015ns

CONV_FRES 3784 ± 33abc 7.00 ± 0.03a 0.998 ± 1.4E-04ns 0.813 ± 0.009ns

CONV_SLU 3941 ± 149a 7.05 ± 0.06a 0.998 ± 2.9E-04ns 0.815 ± 0.007ns

UNAMEN 3550 ± 95d 6.89 ± 0.04bc 0.997 ± 1.1E-04ns 0.808 ± 0.002ns

Wheat soil Richness Shannon’s Simpson’s Pielou’s

ORG_AG 4517 ± 85ab 7.04 ± 0.04ns 0.998 ± 2.0E-04ns 0.817 ± 0.010ns

ORG_FRES 4285 ± 176b 6.95 ± 0.07ns 0.997 ± 3.1E-04ns 0.810 ± 0.005ns

ORG_SLU 4268 ± 259b 6.91 ± 0.12ns 0.997 ± 3.6E-04ns 0.811 ± 0.014ns

CONV_AG 4710 ± 53a 7.08 ± 0.03ns 0.998 ± 1.8E-04ns 0.817 ± 0.005ns

CONV_FRES 4530 ± 98ab 7.00 ± 0.04ns 0.997 ± 2.1E-04ns 0.818 ± 0.010ns

CONV_SLU 4510 ± 289ab 7.01 ± 0.14ns 0.998 ± 4.3E-04ns 0.814 ± 0.010ns

UNAMEN 4441 ± 47ab 6.95 ± 0.04ns 0.997 ± 3.0E-04ns 0.805 ± 0.008ns

Means (n = 4) and standard errors. Errors with different letters are significantly different (p < 0.05) according to Duncan‘s multiple range test. ORG_AG, aged manure form organic farm;
ORG_FRES, fresh manure from organic farm; ORG_SLU, slurry from organic farm; CONV_AG, aged manure from conventional farm; CONV_FRES, fresh manure from conventional
farm; CONV_SLU, slurry from conventional farm; UNAMEN, unamended control. ns, non-significant.

0.21–10.37 for oxytetracycline, 0.61–1.94 for chlortetracycline,
0.22–1.02 for sulfamethoxazole, 0.43–1.76 for norfloxacin and
0.46–4.17 for enrofloxacin (45, 46). On the other hand, once
introduced into the soil matrix, antibiotics are susceptible
to a variety of processes, such as adsorption, microbial
transformation, photodegradation, plant uptake, sequestration,
transport (leaching, runoff), etc. (13, 42, 47, 48). In contrast
with other studies (49–51), macrolides, sulphonamides, and
tetracyclines were not detected in any of the amendments
studied here. Actually, in the first analysis, out of the 57
antibiotics analyzed here, only colistin and marbofloxacin were
detected. In the second analysis, only colistin (117 µg kg−1)
was detected in one of the amendments, i.e., fresh manure
from the conventional farm. Nonetheless, we did find genes
encoding resistance to those antibiotics in the amendments,
which could be due to the fact that: (i) the antibiotics were
already completely degraded but the ARGs persisted in the
amendments despite the absence of the antibiotics; (ii) antibiotic
transformation products, still capable of bioactive effect, are
responsible for the induction of the emergence of ARGs in the
amendments (42); and/or (iii) although antibiotic concentrations
in the amendments were below the detection limit of the
technique, sub-inhibitory concentrations result in an enough
level of selective pressure to induce AR (52). Furthermore,
antibiotic sub-inhibitory concentrations are known to induce
horizontal gene transfer (53), which could spread ARGs among
different bacterial populations. Interestingly, some studies (40,
54) have reported an increase in AR in soils amended with
manure from animals that had not been subjected to any
antibiotic treatment.

In our study, the amendment that showed the highest
absolute abundances of ARGs and MGE-genes was the slurry

from the conventional farm, but this highest resistome risk
was then not reflected, as one would expect, in those soils
and crops amended with such slurry. Actually, despite the fact
that the slurry from both livestock farms presented greater
values of absolute abundance for transposase, aminoglycoside,
MLSB, tetracycline and multidrug resistance genes (compared
to the other amendments), lettuce soils amended with such
slurry showed a lower resistome risk than when fertilized
with the other amendments. Also, the absolute abundances
for aminoglycoside resistance genes were lower in wheat soils
amended with slurry vs. fresh and aged manure. Remarkably,
within the same treatment, the resistome risk differed between
the amendment, the amended soil and, finally, the crop. In other
words, according to our data, the resistome risk in manure-
amended crops cannot be directly inferred from the analysis of
the amendments themselves. Although aging and composting are
both effective processes (composting is certainly more effective
than aging in this respect) for reducing the concentration of
antibiotics and the total abundance of ARGs, the trend in some
ARGs is highly gene-specific (55). In our case, the manure was
not composted following a controlled procedure, but simply aged
for approximately 6months. In any case, dairy freshmanure from
both the conventional and the organic farm presented higher
absolute abundances of intI1, sul2, and 7 tetracycline-resistance
than those reported in previous studies (56–58).

On the other hand, slurry samples from both livestock farms
showed the lowest metal concentrations, compared to aged and
fresh manure. The co-selection of antibiotic and metal resistance
in bacteria, due to co-resistance (when two or more different
resistance genes are located on the same genetic element,
e.g., a plasmid or a transposon) or cross-resistance (when a
single mechanism confers resistance to both antibiotics and
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metals, e.g., an efflux pump) mechanisms, is widely known
(59–62). Moreover, co-regulatory mechanisms (when genes that
confer resistance to different compounds are controlled by a
single regulatory gene) can promote antibiotic-metal co-selection
processes. In this respect, Perron et al. (46) reported that the
regulatory protein CzcR regulates (i) the expression of the
CzcCBA efflux pump, which confers resistance to Zn, Cd and Co;
and (ii) the expression of the OprD porin, the route of entry of
carbapenems in bacteria. This co-selection phenomenon is of the
utmost importance as it can be responsible for the maintenance
and dissemination of AR in the absence of antibiotics. In our
study, as abovementioned, the values of ARG and MGE-gene
absolute abundances were lower in aged and fresh manure than
in slurry, but it is possible that the higher metal concentrations
detected in aged and fresh manure (vs. slurry) could induce the
spread of ARGs once applied to the agricultural soil.

Overall, the values of absolute abundance of ARGs and
MGE-genes were higher in soil vs. plant samples, in agreement
with previous studies (63, 64). Soils are important reservoir
of ARGs (16, 65). In any event, the typology of ARGs
found in lettuce and wheat grains was robustly dependent
on the typology of ARGs observed in the corresponding
soil. Relevantly, much higher absolute abundances of MGE-
genes vs. ARGs were detected in both soil and plant samples,
pointing out to a high potential risk of dissemination of AR
in the studied soils and crops. In addition to the physical
contact and interactions among the plants, the soil and the
amendments, in some cases, the water used for irrigation is
another factor to be considered, as it might be contaminated
with ARGs (66). However, in our study, this is not a relevant
factor since the same tap water was used to irrigate all
the treatments.

Furthermore, we found higher ARG and MGE-gene absolute
abundances in wheat vs. lettuce soils. Plants are known
to regulate rhizosphere microbial communities through the
excretion of root exudates (67). The composition and quantity
of root exudates greatly vary depending on the specific plant
species and its physiological status (68, 69). The type of
crop (lettuce vs. wheat), dose of amendment (here adjusted
to 100 vs. 180 kg N ha−1 for lettuce and wheat plants,
respectively), duration of plant growth until harvest (44
vs. 171 days for lettuce and wheat plants, respectively),
type of root system (pivotant vs. fasciculate for lettuce and
wheat plants, respectively), and the amount and composition
of the rhizodeposition are all factors that can affect the
composition of soil microbial communities and the fate and
distribution of ARGs and MGE-genes in agricultural soils. No
significant differences were observed, in terms of the absolute
abundances of ARGs and MGE-genes, between unamended
lettuce soils and unamended wheat soils (neither between
lettuce and wheat grain samples), which indicates that the
amendment application was responsible for the observed
differences among treatments.

Although Zhang et al. (64) observed higher ARG abundances
inmanure-amended lettuce soils (the abundance of ARGs ranged
from 4.37 × 109 to 2.02 × 1010 in soils), compared to ours, the
transfer of those ARGs from the lettuce soil to the lettuce was

approximately between one and two orders of magnitude higher
in our study (the abundance of ARGs ranged from 7.45 × 106

to 8.24 × 107 in plant samples). In lettuce soils, the unamended
control showed the highest abundance of vancomycin resistance
genes. Antibiotic resistance genes have not only been found
in antibiotic-free soil (70) but also in environments (e.g.,
permafrost, isolated caves) that have remained isolated from the
impact of anthropic activity much before the beginning of the
use of antibiotics for the preventive and curative treatment of
bacterial infectious diseases in medicine and veterinary (71, 72).

Regarding the possible links between the presence of certain
prokaryotic taxa and AR profiles, the order Pseudonocardiales
presented a positive correlation with vancomycin resistance
genes. Several strains belonging to Pseudonocardiales are known
to produce biologically active products, such as erythromycin,
rifamycin, and vancomycin (73). The unamended control soil
showed significantly higher abundance of Pseudonocardiales
than the other treated soils (and, as already mentioned,
the unamended lettuce soil showed the highest abundance
of vancomycin resistance genes). In general, the unamended
lettuce soil showed lower abundances of those orders negatively
correlated with vancomycin resistance genes (Cytophagales,
Obscuribacterales, and SAR324), compared to the other treated
soils. Many authors (74, 75) have reported that changes in the
composition of prokaryotic communities appear to be the key
drivers for the magnitude and profile of the antibiotic resistome.
The values of bacterial richness and Shannon’s diversity detected
in the unamended control soil were significantly lower than
those observed in the other soils (except for soils amended
with aged manure from the organic farm). These data suggest
that vancomycin resistance genes most likely did not enter
the soil matrix through the application of the amendments,
but that they existed previously in such soil. Chaudhry et al.
(76) found that the application of amendments to soil could
lead to an increase of (i) overall bacterial diversity; and (ii)
the dominance of certain bacterial taxa which could then play
important roles in a variety of soil processes. Highly diverse
soil microbial communities can, for instance, act as a biological
barrier against biological invasion (77). The decline in microbial
diversity has often been related to a loss of ecosystem multi-
functionality (78).

CONCLUSIONS

Despite our initial hypotheses, no single treatment could be
identified as the best or worst treatment regarding the risk of
antibiotic resistance in soil and plant samples. Interestingly,
within the same treatment, the resistome risk differed between
the amendment, the amended soil and, finally, the crop. In
other words, according to our data, the resistome risk in
manure-amended crops cannot be directly inferred from the
analysis of the amendments themselves. Then, we concluded
that, depending on the specific question under study, the
analysis of the resistome risk should specifically focus on
the amendment, the amended soil or the crop. In any
case, our results confirm the risk of AR dissemination
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in agricultural settings where dairy cow manure-derived
amendments are used as fertilizers. In this respect, much
higher absolute abundances of MGE-genes vs. ARGs were
detected in both soil and plant samples, pointing out to a
high potential risk of dissemination of AR in the studied soils
and crops.
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