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SUMMARY 

Obesity is defined as a pathological condition characterized by an abnormal or 

excessive accumulation of fat, to the extent that it is considered a risk factor or marker 

for several chronic diseases.  

The criterion established to define the obese population has been a BMI ≥30 kg/m2 

for adults, and a BMI at or above the 95th percentile for children, although recent 

research points to a greater need to establish other types of markers that describe 

more specifically the metabolism of obesity, and its relationship with the 

development of other diseases such as hypertension, type II diabetes, cardiovascular 

diseases, or the increased probability of suffering from some types of cancer.  

In this sense, molecular analysis tools such as metabolomics, genomics or the 

study of the intestinal microbiome allow us to advance in our knowledge of human 

metabolic behavior, and favor the development of new diagnostic methods, both for 

obesity and for certain associated diseases.  

Lipids play a decisive role in obesity due to both their structural and molecular 

signaling functions. Although the fatty acid (FA) composition of each tissue is 

specific, the mature red blood cell (RBC) is considered a good reporter of the 

metabolic state of different organs, tissues and cells, as it is a circulating cell and its 

membrane reflects an overall picture of the metabolism of each individual. 

For this reason, defining the mature RBC membrane FA profile will allow us to 

know the metabolic and nutritional status of the individuals studied, which is very 

useful in the molecular characterization of obesity.  

Taking these considerations into account, the aim of this thesis is to define the 

RBC membrane FA profile that characterizes obese children, and to establish its 

relationship with metabolism and dietary habits, in order to be able to design precise 
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nutritional strategies. To this end, a study was carried out in a population of normal-

weight, overweight and obese children.   

In turn, a study was carried out to establish the respective differences in RBC 

membrane FA profile between adults and children with obesity, in order to be able to 

establish specific and personalized nutritional recommendations according to the 

differences observed by age, and derived from the metabolism of obesity itself. 

Statistical clustering techniques were also used to isolate a subgroup of obese 

children with a similar lipid profile to normal-weight children. Analyzing the RBC 

membrane FA profile as a biomarker of inflammation allows us to generate 

knowledge that contributes to the molecular characterization of the so-called 

metabolically healthy obese. At the same time, the absence of an inflammatory profile 

in this group requires different nutritional recommendations tailored to their 

metabolic needs for effective interventions. 

To re-establish the optimal composition of the RBC membrane FA profile, an 

adequate nutritional strategy must be established, comprised not only of an optimal 

diet adapted to specific metabolic needs, but in many cases, it must also be 

accompanied by the use of ω-3 supplements, as these FAs have anti-inflammatory 

properties and counteract the effects of excess ω-6 FAs observed in obese children. 

From a precision nutrition point of view, knowing the RBC membrane FA profile 

of obese children, together with the integration of other molecular parameters, dietary 

habits, preferences and eating behavior, is of great interest to understand their 

relationship with the obesity metabolism, and to propose future nutritional 

intervention strategies, which may be effective in the long term, and reverse the 

increase in prevalence of obesity. 
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RESUMEN 

 

La obesidad se define como una condición patológica caracterizada por una 

acumulación anormal o excesiva de grasa, hasta el punto en el que es considerado un 

factor de riesgo o marcador de varias enfermedades crónicas.  

El criterio establecido para la definición de la población obesa ha sido el IMC≥30 

kg/m2 para adultos y el IMC igual o mayor del percentil 95 para población infantil, 

aunque existe cierta controversia con respecto al uso de tablas específicas por edad y 

sexo para definir la obesidad en los niños. Para homogeneizar la definición de 

obesidad infantil, se utilizan algunas tablas internacionales, como el International 

Obesity Task Force o la Organización Mundial de la Salud (OMS). Estas tablas 

permiten comparar los diferentes estudios científicos realizados en diferentes países 

y permiten monitorear el desarrollo de la enfermedad en todo el mundo. 

Por otro lado, las tablas de crecimiento también se utilizan a nivel nacional, ya 

que las tablas internacionales son menos representativas de la población local que los 

estándares aplicados. utilizando la metodología correcta en la población de 

referencia. Estas tablas internacionales se realizan mezclando poblaciones muy 

diversas, y tergiversan lo que es apropiado para las especificidades locales. Esto 

conduce a una clasificación errónea del estado de crecimiento de los niños y, por lo 

tanto, a una identificación errónea de los niños con sobrepeso u obesidad. 

Según la OMS, la obesidad en todo el mundo casi se ha triplicado desde 1975, lo 

que indica que, en 2016, el 39% de los adultos mayores de 18 años tenía sobrepeso y 

el 13% padecía obesidad, lo que resultó en 1.900 millones de adultos con sobrepeso y 

650 millones de adultos obesos en 2016. Además de afectar a la población adulta, la 

obesidad se está convirtiendo en un problema que afecta cada vez más a niños y 

adolescentes. Como afirma la OMS, más de 340 millones de niños y adolescentes, 
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alrededor de uno de cada tres de 5 a 19 años, tenían sobrepeso u obesidad en 2016, y 

38 millones de niños menores de 5 años tenían sobrepeso u obesidad en 2019. Los 

estudios más recientes apuntan que, en España, la prevalencia de sobrepeso se sitúa 

alrededor del 34% con una tasa de prevalencia de obesidad del 10% para población 

infantil y adolescente. 

Recientes investigaciones, apuntan a una mayor necesidad de establecer otro tipo 

de marcadores que describan de una forma más específica el metabolismo de la 

obesidad y su relación con el desarrollo de otras enfermedades como la hipertensión, 

la diabetes tipo II, las enfermedades cardiovasculares o el aumento de la probabilidad 

de sufrir algunos tipos de cáncer.  

Esta relación con las enfermedades citadas, provoca que la obesidad sea la causa 

de 4.7 millones de muertes prematuras en el mundo en 2017, representando el 8% de 

las muertes totales mundiales. Además, se encontró que las personas obesas, tenían 

costos médicos que eran aproximadamente un 30% mayores que las personas con 

peso normal. 

En este sentido, las herramientas moleculares de análisis como la metabolómica, 

la genómica o el estudio del microbioma intestinal, nos permiten avanzar en un 

mayor conocimiento del comportamiento metabólico humano y favorecen el 

planteamiento de nuevos métodos de diagnóstico, tanto de la obesidad, como de 

ciertas enfermedades asociadas.  

Los lípidos tienen un papel determinante en la obesidad debido tanto a sus 

funciones estructurales, como de señalización molecular. Aunque la composición de 

ácidos grasos (AG) de cada tejido es específica, el eritrocito maduro es considerado 

un buen reportero del estado metabólico de diferentes órganos, tejidos y células, ya 

que es una célula circulante y su membrana refleja una imagen general del 

metabolismo de cada individuo. Al mismo tiempo, es una muestra de fácil obtención 

y presenta un ciclo de vida de aproximadamente 120 días, lo que permite recopilar 
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información sobre los cambios de composición de la membrana que se producen en 

todo el organismo, a partir de los 4 meses anteriores. 

Por este motivo, definir el perfil lipídico de membrana de eritrocito maduro 

(PLME), permitirá conocer el estado metabólico y nutricional de los individuos 

estudiados, siendo de gran utilidad en la caracterización molecular de la obesidad.  

Teniendo en cuenta estas consideraciones, el objetivo del presente trabajo de tesis 

consiste en definir el PLME que caracteriza a la población infantil obesa y establecer 

su relación con el metabolismo y los hábitos dietéticos, para poder diseñar estrategias 

nutricionales de precisión. Para ello, se realizó un estudio en población infantil entre 

6 y 16 años con normopeso, sobrepeso y obesidad.  

Se analizó la composición del PLM mediante cromatografía de gases con detector 

de ionización de llama (GC-FID). Los hábitos alimentarios se evaluaron mediante 

cuestionarios validados de frecuencia de consumo (FFQ) y el test para la medición de 

la adherencia a la dieta mediterránea para niños (KIDMED). 

En comparación con los niños normopeso, los niños con obesidad mostraron un 

perfil inflamatorio en los AG de los eritrocitos maduros, evidenciado por niveles más 

altos de ácidos grasos poliinsaturados ω‐6 (principalmente ácido araquidónico). Los 

niños con sobrepeso u obesidad presentaron niveles más bajos de AG 

monoinsaturados en comparación con los niños con normopeso, lo que resultó en un 

aumento de la proporción de ácidos grasos saturados/ monoinstaturados. A su vez, 

destacar que se observó una menor ingesta de frutos secos en los niños con obesidad. 

A su vez, se llevó a cabo un estudio para establecer las diferencias respectivas al 

PLME entre adultos y niños con obesidad con el fin de poder establecer 

recomendaciones nutricionales específicas y personalizadas según las diferencias 

observadas por edad y derivadas del propio metabolismo de la obesidad.  
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Los niños con obesidad presentaron niveles más altos de ácidos grasos 

poliinsaturados ω-6 (principalmente ácido linoleico) y valores más bajos de ácidos 

grasos ω-3 (principalmente DHA) en comparación con los adultos. En cuanto a los 

parámetros bioquímicos, los niños con obesidad presentaron niveles más bajos de 

glucosa, colesterol LDL y alanina aminotransferasa en comparación con los adultos 

con obesidad. Estas diferencias deberán considerarse para proporcionar 

recomendaciones nutricionales específicas para diferentes grupos de edad, basadas 

en una ingesta adecuada de grasas. 

También se utilizaron técnicas estadísticas de clusterización para aislar un 

subgrupo de población infantil obesa que presenta un PLME similar a los normopeso. 

El grupo obeso metabólicamente sano (MHO) mostró niveles de AG similares a los 

niños normopeso, caracterizados por valores más bajos de ácido araquidónico, ω-6 

total, la ratio ω6/ω3 y valores más altos para EPA, DHA y ω-3 total en comparación 

con el resto de los niños con obesidad. El análisis del PLME como biomarcador de 

inflamación, permite generar conocimiento que contribuye a la caracterización 

molecular de los llamados obesos metabólicamente sanos. Al mismo tiempo, la 

ausencia de un perfil inflamatorio en este grupo requiere de unas recomendaciones 

nutricionales diferentes y adaptadas a sus necesidades metabólicas para llevar a cabo 

intervenciones efectivas. 

Para reestablecer la composición óptima del PLME, es necesario establecer una 

adecuada estrategia nutricional compuesta no solo por una dieta óptima y adaptada 

a las necesidades metabólicas específicas, sino que, en muchos casos, debe 

acompañarse del uso de suplementos de ω-3, ya que estos AG presentan propiedades 

antiinflamatorias y contrarrestan los efectos derivados de un exceso de AG ω-6 

observados en los niños con obesidad.  

Sin embargo, en la situación actual, en la que las nuevas tendencias conducen a 

recomendaciones nutricionales y de salud individualizadas, el uso de tecnologías 
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ómicas para una suplementación más precisa y personalizada, en cuanto a dosis o 

diferentes suplementos de ácidos grasos, parece ser crucial para lograr los beneficios 

de salud. En este sentido, la aplicación de la lipidómica de la membrana celular brinda 

una opción válida para comprender los cambios estructurales y funcionales en la 

composición de ácidos grasos tanto en estados normales como patológicos. También 

proporciona una medida de las necesidades específicas de AG de cada individuo en 

función de sus niveles metabólicos basales, así como de los diferentes cambios 

metabólicos que se producen con la suplementación. 

Además de determinar el perfil lipidómico de un individuo, también es necesario 

generar nuevos conocimientos a nivel molecular, integrando diferentes herramientas 

ómicas, con el fin de diseñar estrategias nutricionales precisas, monitorear el efecto 

de la intervención nutricional, o como una nueva forma de definir nuevos 

biomarcadores tempranos de la enfermedad estudiada. 

En el campo cada vez más importante de la nutrición de precisión, el objetivo 

final es el de diseñar recomendaciones nutricionales personalizadas para tratar o 

prevenir los trastornos metabólicos. Más específicamente, la nutrición de precisión 

busca desarrollar pautas nutricionales únicas para cada individuo, combinando 

factores genéticos, ambientales y de estilo de vida para desarrollar enfoques efectivos. 

Para ello, los enfoques de nutrición de precisión incluyen diferentes ciencias ómicas 

como la genomica, la metabolómica o la microbiómica junto con otros factores como 

los hábitos alimentarios, el comportamiento alimentario y la actividad física. 

Desde un punto de vista de la nutrición de precisión, conocer el PLME de la 

población infantil obesa, junto con la integración de otros parámetros moleculares, 

hábitos dietéticos, preferencias y conducta alimentaria, es de gran interés para 

comprender su relación con el metabolismo de la obesidad y plantear futuras 

estrategias de intervención nutricional, que puedan ser efectivas a largo plazo, y 

revertir el aumento de la prevalencia de la obesidad. 
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Por tanto, se espera que las investigaciones futuras basadas en la lipidómica 

tengan un impacto a nivel socioeconómico, ya que se pueden desarrollar nuevos 

productos (kits) con fines de diagnóstico, pronóstico e intervención, así como nuevos 

alimentos y suplementos para su uso en niños con obesidad. 
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1.1. Obesity 

Obesity is a condition in which fat accumulates in the body to a point where it is 

a risk factor or marker for a number of chronic diseases, including diabetes, 

cardiovascular diseases (CVDs) or cancer. Furthermore, it has adverse effects on 

overall health (2, 3). The pathophysiology of obesity is well understood. It occurs 

when the energy intake is greater than the energy expenditure and requirements. A 

more clinically-orientated definition describes obesity as an inflammation of body fat 

mass affecting health. As such, obesity can be interpreted as a failure of the body 

systems to use external and/or internal input in order to regulate energy reserves (4). 

Obesity has, for a long time, been characterized only as a major and modifiable 

risk factor for premature mortality, morbidity, and disability (5-8). However, in recent 

times, several organizations, such as the American Association of Clinical 

Endocrinologists (AACE) or the American Medical Association (AMA), have 

officially declared that obesity is a disease per se and requires treatment (9).  

Obesity is currently considered a global epidemic, and its implications in 

childhood and adulthood are increasingly important as it has been found to decrease 

health-related quality of life and overall life expectancy.  

Body mass index (BMI) is a statistical index using a person's weight and height 

to provide an estimate of body fat in males and females. It is calculated as weight in 

kilograms (kg) divided by height in meters squared to define a person as 

underweight, normal weight, overweight, or obese. Overweight is defined as  BMI of 

25 to <30 kg/m2 and obesity as BMI of > 30 kg/m2 (10). 

In the pediatric population, BMI percentile charts are taken as reference to define 

the different categories, using an age- and sex-specific pediatric z-score table, normal 

weight being defined when the standard deviation (SD) of BMI is -1 <SD ≤ +1, 

overweight when it is +1<SD ≤ +2 and obesity when it is > +2. This means that a BMI 

at or above the 95th percentile for children is classified as obesity. There is some 
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controversy regarding the use of age- and sex-specific tables for defining obesity in 

children (11). In order to homogenize the definition of childhood obesity, some 

international tables, such as the International Obesity Task Force (IOTF) (12), Centers 

for Disease Control and Prevention (CDC) (13) and the World Health Organization 

(WHO) are used (14, 15). These tables enable the comparison of the different scientific 

studies carried out in different countries and permit monitoring the development of 

the disease worldwide.  

On the other hand, growth charts are also used at national level (e.g., Spain, 

France, Germany, Italy) (16, 17), as the international tables (IOTF and WHO) are less 

representative of the local population than the standards applied using the correct 

methodology in the reference population. These international tables are carried out 

by mixing very diverse populations (18), and they misrepresent what is appropriate 

for local specificities. This leads to a misclassification of children’s growth status and 

thus, a misidentification of children with overweight or obesity (11).  

Moreover, national growth charts (19, 20) have been used more than international 

tables (21) to study the evidence of the screening ability and relationship to morbidity, 

to classify childhood obesity. This fact supports the use of national tables for national 

studies.  

For all these reasons, in this work, age- and sex-specific tables of the Spanish 

population will be used, since they are more representative to define obesity and 

overweight in the population studied (22, 23).  

1.2. Obesity in numbers 

According to the World Health Organization (WHO), worldwide obesity has 

nearly tripled since 1975, indicating that, in 2016, 39% of adults aged 18 years and 

over were overweight, and 13% suffered from obesity, resulting in 1.9 billion 

overweight adults and 650 million obese adults in 2016 (Figure 1) (24). 
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Figure 1: Prevalence of overweight and obesity among adults. Overweight defined as BMI ≥25 and 

obesity as BMI ≥30. (From Hannah Ritchie (2017)-"Obesity". Published online at 

OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/obesity' [Online Resource]) 

In addition to affecting the adult population, obesity is becoming a problem that 

increasingly affects children and adolescents, too. As the WHO states, more than 340 

million children and adolescents, around one in three from 5 to 19 years, were 

overweight or obese in 2016, and 38 million children under the age of 5 were 

overweight or obese in 2019 (24). 
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Figure 2: Prevalence of obesity among children between 5 and 9 years old, calculated as BMI > +2 

standard deviations above the median. Data from 2016. Source: WHO. 

In a study on the prevalence of obesity among adults and children in the United 

States, carried out by the CDC, an upward trend in obesity can be observed for both 

population groups in the 21st century (Figure 3) (25).  

 

Figure 3: Trends in obesity prevalence among adults aged 20 and over (age adjusted) and youth 

aged 2–19 years: United States(25). SOURCE: NCHS, National Health and Nutrition Examination 

Survey, 1999–2016. 

 The Global Burden of Disease is a major global study on the causes and risk 

factors for death and disease published in the medical journal “The Lancet” (26). 

Obesity is a risk factor for several of the world’s leading causes of death, including 
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heart disease, stroke, type II diabetes (27, 28) and various types of cancer (29). Obesity 

is not the direct cause of any of these health impacts, but it can increase the likelihood 

of them occurring.  

According to the Global Burden of Disease study, 4.7 million people died 

prematurely in 2017 because of obesity (Figure 4). To put this into context: this was 

close to four times the number that died in road accidents, and close to five times the 

number that died from HIV/AIDS in 2017. 

 

Figure 4: Number of deaths by Risk Factor worldwide, across all age groups and both sexes. Source: 

IHME. Global Burden of Disease (GBD) 

Globally, 8% of the deaths in 2017 were the result of obesity, representing an 

increase from 4.5% in 1990.  

More specifically, in Europe, although the prevalence of obesity in general has 

increased over the past 10 years, considerable variations - up to 10% - can be observed 

between countries (30). Recent data show that this variation goes from 18–19% of the 

population in low prevalence obesity level countries to high prevalence levels of 28–

30% (Figure 5).  
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Figure 5: Trend of obesity prevalence of adults in Europe. Source: WHO. 

This obesity pandemic situation is accompanied by higher public spending by 

governments for diseases associated with obesity. More specifically, obesity was 

estimated to account for between 0.7% and 2.8% of a country’s total healthcare 

expenditures worldwide(31).  

In Spain, different studies have evaluated the prevalence of obesity in adults and 

children in the last 20 years. According to the Spanish Society of Obesity (SEEDO 

2003), the percentage of obese people in the Spanish population was 14.5% (32). The 

ENRICA and Di@betes studies estimated prevalence of obesity, in the period between 

2008 and 2010, of 22.9% and 28.2%, respectively (33). The most recent data correspond 

to the period 2014-2015 and are provided by the ENPE study: 21.6% among adults 

between 25 and 64 years of age (22.8% among men and 20.5% among women) (Figure 

6). 
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Figure 6: Map of obesity prevalence in the adult population (aged 25-64 years) in Spain. Age-

adjusted rates. 95% confidence interval between parenthese0s (34) 

In Spain, the latest ENPE study results included population aged 3 to 24 years 

(n=1601), and considered 3 different standardized international protocols to define 

overweight and obesity (the IOTF, WHO and Orbegozo 2011 criteria), concluding that 

the prevalence of excess overweight was estimated at 34.1% and obesity at 10.3% (35). 

The prevalence of weight excess in 6 to 9 year-old school children in Spain has 

decreased by 3.2% since 2011, due to the decrease in overweight, whilst obesity 

remained stable according to the latest results from the ALADINO study (36). 

Approximately 1 in 4 obese children and adolescents have a cluster of cardiovascular 

risk factors contributing to the "metabolic syndrome" (37), and this, in the mid-term, 

appears to increase the risk of developing heart disease by ten compared to healthy 

children (38). 

Additionally, obese individuals were found to have medical costs that were 

approximately 30% greater than people with normal weight (31).  
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If obesity could be addressed early in life, it could have a substantial impact on 

healthcare costs. Wang et al 2010 reported that if the number of individuals aged 16 

and 17, who are overweight or obese, could be reduced by 1%, this would result in a 

decrease of life-time medical costs of around 480 million euro (39). 

 

1.3. Intervention strategies 

Over the last 50 years, dietary patterns in high-income countries have shifted, because 

of the increased availability and low cost of highly processed foods, towards non-

healthy diets. These diets are characterized by a higher intake of energy-dense foods, 

which are rich in saturated fats and sugars, and an increased intake of ω-6 PUFA-s, 

favoring a high ω-6/ω-3 ratio and promoting inflammation (40). These changes in diet 

come hand in hand with an increase in sedentary lifestyles associated with the nature 

of many forms of work, the change in transport modes, and the increase in urban 

development (41).  

There is a growing body of evidence of an inverse association between socioeconomic 

status and child obesity in developed countries as the prevalence of overweight and 

obesity is high in all age groups in many countries, but especially worrying in 

children and adolescents in developed countries and economies in transition (42). 

However, many low- and middle-income countries are now facing a "double burden" 

of malnutrition. While these countries continue to deal with the problems of infectious 

diseases and undernutrition, they are also experiencing a rapid upsurge in 

noncommunicable disease risk factors such as obesity and overweight, particularly in 

urban settings. Increased obesity rates in these low socioeconomic groups are 

associated with higher unemployment, lower education levels, unhealthy dietary 

habits, and low physical activity (43). 
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Although many of the causes of obesity are preventable and reversable, there appears 

to be a complex relationship between biological, psychosocial, and behavioral factors 

(44). Due to this complexity, most successful strategies for the treatment and 

prevention of obesity have focused on the psychological-behavioral and social 

components in order to modify dietary habits, but all this complexity represents 

potential barriers to reducing weight and maintaining healthy long-term lifestyles. 

As obesity occurs due to excessive energy intake, food consumption is the cornerstone 

of the cause and treatment of this condition (45). Low-fat diets, to reduce calory 

intake, have been the most recommended strategy for people with obesity in past 

decades (46). Moreover, there is not enough evidence from randomized control trials 

supporting beneficial effects of low-fat diets over other dietary interventions for long-

term weight loss (46). A comparison of a low-carbohydrate diet with a standard low-

fat diet produced no statistically significant differences in terms of BMI or BMI z-score 

reduction (47). Actually, in mice, it has been observed that a balanced fatty acid intake 

induces less lipogenic and inflammatory effects than a high carbohydrate diet (48). 

Besides, recent scientific evidence has shown that low fat diets reduce LDL and HDL 

cholesterol and increase triglycerides. Further, the replacement of saturated fatty 

acids (SFA) with monounsaturated fatty acids (MUFA) has been proposed as an 

appropriate strategy to reduce obesity, since substituting SFA with MUFAs raises 

HDL-cholesterol levels, improves insulin sensitivity, and lowers LDL-cholesterol 

levels (49-51).  

Other dietary plans have been proposed including low-carbohydrate diets, high-

protein diets, very low-caloric diets with meal replacements, and diets with 

intermittent energy restrictions. However, controversial results have been reported 

evidencing that a successful diet must be healthy, balanced and without nutritional 

deficiencies (52, 53). 



Introduction 

13 

 

These different diet plans are strategies mainly used for adults with obesity, while in 

children, the strategies focus mainly on lifestyle modification due to the lack of 

evidence from nutritional or pharmacological treatments on severe obesity in 

children. As children tend to overeat and not to do enough physical exercise, the 

actions should focus on increasing the consumption of healthy foods, physical 

exercise, improving nutritional literacy in schools, weight management, monitoring, 

and evaluation (54). 

The Mediterranean dietary pattern is being widely studied because of the multiple 

associated health benefits, such as lower risk of cardiovascular diseases, a decreased 

risk of developing type II diabetes, and prevention of some types of cancer (55-58). 

The main characteristics of the Mediterranean diet pattern are an abundant 

consumption of plant foods (whole grains, fruit, vegetables, legumes, nuts and seeds), 

olive oil as the main source of fat, a moderate/high consumption of fish and shellfish, 

a moderate consumption of eggs, poultry and dairy products, and a low consumption 

of red meat. Moreover, the consumption of fresh, local, and seasonal food, rich in 

biodiversity, must be considered as this also represents a sustainable lifestyle model 

(59). 

In any case, most of the nutritional strategies to manage weight loss, include general 

dietary recommendations rather than specific dietary plans based on individual 

metabolism (52), and no differentiation between adults and children has been 

evaluated in previous studies, in order to identify metabolic and behavioral 

differences that may be affecting the success of interventions (60).  

However, obesity prevalence in both child and adult populations continues to 

increase worldwide, as observed in Figure 3 and Figure 5, so, it is time to seek new 

approaches for effective interventions. Consequently, public health policies should 

focus on preventive strategies starting at early ages to prevent obesity. To be effective, 

these preventive strategies require defining reliable tools to determine such 
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parameters as the cutoff value or weight category to be considered for early diagnosis 

(61), and other biomarkers that can better represent the risks associated with obesity. 

Childhood obesity generally continues into adulthood (62-64), therefore it is 

extremely important for obesity prevention to begin in children. Estimates have 

shown that the risk of adult obesity was ≥2 times greater for children with obesity 

than for nonobese children (65). Childhood obesity is not only considered the main 

predictor of obesity in adulthood (66), but also, adults who have been obese since 

childhood, have a worse perspective for developing diabetes or cardiovascular 

diseases (67, 68). 

Most successful programs developed to reduce or prevent overweight and obesity 

during infancy, use school and family environments to implement interventions in 

order to change dietary behavior and lifestyles (54, 69-71). Experts agree that different 

community members, including families, schools, health professionals and local 

policymakers must collaborate in obesity prevention strategies (72). Some strategies 

include different digital tools to improve nutritional literacy through mobile apps, 

including gamified activities for children to stimulate and incentive them (73). Few 

nutritional intervention studies have been developed to study the effect of some 

specific diets to control obesity in children.  

There is a high need for the young population to follow a healthy diet adapted to their 

needs, metabolism, preferences, and lifestyles. Additionally, there is a lack of 

personalized strategies focused on youth population with the aim of motivating them, 

and to provide precise information about which type of food and physical activity is 

more appropriate to their profile. 

1.4. Metabolically healthy obesity (MHO) 

Even though the obesity prevalence continues to increase, in both  adults and children 

(Figure 3 and Figure 5), with all the associated risks - described above - that this 
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entails, there is emerging evidence that some people with obesity do not display the 

traditionally obesity-associated metabolic disorders, such as insulin resistance, 

arterial hypertension or dyslipidemia, among others. Several studies have shown that 

MHO patients have a reduced risk of cardiovascular disease and mortality (74). 

Although these “metabolically healthy obese” individuals (MHO) were described, for 

the first time, twenty years ago (75), the factors and mechanisms underlying these 

protective effects remain unknown. This is the first study to be presented that 

correlates the group of MHO with normal visceral adipose tissue, lower triglycerides, 

and increased high-density lipoprotein (HDL)-cholesterol compared with the rest of 

the patients with obesity. Over the years, several studies have established that the 

prevalence of the MHO phenotype between 10-35% (76-78) is more frequent in 

women than in men and that it decreases, regardless of gender, with age (79). One of 

the reasons for this variation in prevalence is that there is no single standardized 

criterion to define MHO, either in adults or in children. In most of the studies in 

adults, a BMI ≥ 30 kg/m2 with no indication of associated metabolic disorders, such as 

type II diabetes or dyslipidemia, has been used to classify MHO individuals. Some 

studies focus on body fat content (more than 25% for men and more than 30% for 

women), instead of BMI to define MHO (80), while others highlight the importance 

of insulin resistance together with the body fat percentage to categorize MHO (81). In 

pediatric populations, several criteria have also been used to define MHO. For 

example, Prince et al based their definition of MHO on insulin resistance and 

cardiometabolic risk factors, such as serum lipids, blood pressure and glucose (82), 

while Vukovic et al. focused on insulin sensitivity, classifying MHO as the lower 

quartile of HOMA-IR (≤2.75) (83). However, fewer studies have been carried out in 

children than in adults, so there is an added difficulty in defining a unified MHO 

criterion.  

Recently, greater interest in including inflammatory markers in the definition of 

MHO has emerged. There is increasing evidence suggesting that subclinical 
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inflammation could be the underlying mechanism that determines whether an obese 

individual is metabolically healthy or not (84). This subclinical inflammation is 

associated with insulin resistance and some inflammatory markers, such as the white 

blood cell count, have emerged as adequate predictors of (vascular) inflammation, 

cardiovascular disease and the metabolic syndrome (85). White blood cell count has 

the advantage that it correlates with metabolic syndrome markers in children, too 

(86). 

Other inflammatory markers such as circulating cytokines, number of free fatty acids, 

and activation status of peripheral leukocytes, have been studied as representative 

sites of adipose tissue and systemic inflammatory status, showing that MHO 

individuals present a lower degree of inflammation compared with non-healthy 

individuals with obesity (87).  

Philips et al, measured a wide range of circulating inflammatory markers, such as 

proinflammatory cytokines, adipokines and acute-phase response proteins, 

correlating a lower degree of inflammation of the MHO compared with non-healthy 

individuals with obesity (88).  

In addition, it has been observed that MHO individuals have lower visceral, liver, and 

muscle fat content compared to non-healthy individuals with obesity, suggesting that 

the MHO phenotype is associated with a better ability to trap free fatty acids in 

adipose tissue. The latter is linked to the increasing importance that an additional 

marker, such as liver fat content, is attaining in the context of the MHO phenotype, 

since the prevalence of non-alcoholic fatty liver disease (NAFLD) seems to be 

significantly lower in patients with MHO compared to metabolically non-healthy 

individuals (89).  

These inflammatory markers can be crucial to understand the mechanisms involved 

in the development of obesity and its associated comorbidities, and can also be used 

to design new nutritional intervention strategies based on this approach.  
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1.5. Omic Sciences and Nutrition 

In this sense, personalized intervention strategies could provide precise nutritional 

guidance and contribute to successful long-term interventions (90). Even though 

dietary guidelines for macronutrient intake in adults and children are established (91, 

92), according to the different scientific evidence on requirements of both population 

groups, especially from energy intake, interventions to control obesity in children and 

adults are not specific or differentiated, regarding the intake of food groups or specific 

nutrients. For that reason, the optimal macronutrient distribution of the diet to 

improve weight status is unclear (47).  

The use of molecular tools can provide new scientific evidence related to the 

characterization of different obesity phenotypes together with the impact of diet on 

metabolism (93). This can be useful to personalize therapy, and contribute to 

providing more precise nutritional recommendations, mainly for an adequate fat 

intake for different age groups and health conditions (94-96). 

In the past two decades, our ability to study cellular and molecular systems has been 

transformed through the development of omic sciences. Omic sciences aim at the 

collective characterization and quantification of pools of biological molecules that 

translate into the structure, function, and dynamics of an organism or organisms (97).   

Omics sciences can be separated into four major blocks consisting of genomics, 

transcriptomics, proteomics and metabolomics. Genomics represent the study of the 

structure, function, evolution, and mapping of genomes, and aim at the 

characterization and quantification of genes, which direct the production of proteins 

with the assistance of enzymes and messenger molecules. Transcriptomics is the set 

of all messenger RNA molecules in one cell, tissue, or organism. It includes the 
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amount or concentration of each RNA molecule in addition to the molecular identities 

(97).  

Proteomics is the science that studies the biochemical properties and functional roles 

of all the proteins in a cell, tissue, or organism, and how their quantities, 

modifications, and structures change during growth and in response to internal and 

external stimuli. Proteomics have been applied in chronic diseases with a known 

nutritional component, such as obesity (98), or that involve a dietary intervention, for 

example in an study in which serum changes were measured after fish oil 

supplementation (99). 

The metabolome refers to the collection of all metabolites in a biological cell, tissue, 

organ, or organism, which are the end products of cellular processes. Metabolomics 

is the science that studies all chemical processes involving metabolites. More 

specifically, metabolomics is the study of chemical fingerprints that specific cellular 

processes establish during their activity; it is the study of all small molecule 

metabolite profiles.  

In clinical practice, one of the greatest difficulties lies in the ability to design effective 

nutritional strategies that include nutritional and supplement recommendations to 

control or prevent metabolic diseases. In this sense, omic sciences are being applied 

in medicine and precision nutrition, although with certain barriers given the difficulty 

in integrating the different biological knowledge to characterize the specific needs of 

individuals and population groups in order to provide a precise and personalized 

nutritional recommendation (100). 

Precision nutrition aims to develop more complete and dynamic nutritional 

recommendations based on changing parameters, interacting with an individual’s 

internal and external environment. The scientific community in general indicates that 

the future of precision nutrition should not just be based on nutrigenetics but also 
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include other factors, such as eating habits, eating behavior, physical activity, 

microbiota and metabolome (101, 102). 

Apart from this characterization of biological molecules using the molecular tools 

mentioned above, the measurement of the interaction between diet and these 

biomarkers is of great interest to give precise nutritional recommendations. For 

example, nutrigenetics characterize the interaction of gene variants with specific 

nutrients associated with different diseases, such as obesity (103). These interactions 

occur both ways, as genes can determine the effect of diet on health and, on the other 

hand, nutrients can modify the gene expression through epigenetic variations (104). 

In this way, personalized nutritional recommendations can be designed according to 

an individual’s genetic profile, to improve different metabolic states (105). For 

example, Loria-Kohen et al. demonstrated single nucleotide polymorphisms, in genes 

involved in lipid metabolism, and associated with dairy food consumption and 

susceptibility to developing cardiovascular disease (106). 

The intricate diet-genetics interaction suggests that some biomarkers could only be 

valuable for particular segments of a population depending on their specific genetic 

characteristics. This represents the general use of nutritional biomarkers to properly 

assess nutritional status or to monitor the effect of nutritional intervention studies in 

non-targeted populations (107). 

Regarding metabolomics, metabolites represent the real endpoints of the metabolism, 

and of underlying physiological regulatory processes. Individual metabolites, such as 

cholesterol, glucose, fatty acids and others are considered markers for health or 

disease status (108). In nutrition, metabolomics can be applied to characterize 

metabolite profiles, which define the molecular mechanism of bioactive compounds, 

discover status biomarkers, and allow the monitorization of dietary interventions 

studies (109, 110). 
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However, we need a better understanding of interindividual variability in response 

to diet in order to design nutritional strategies adapted to the age, type of pathology, 

and food preferences of each individual. In the era of nutrition and precision 

medicine, the search for new biomarkers is directed towards integrative markers that 

reflect not only nutritional status but also connect with metabolism, and therefore 

reflect the connection between nutrition and health status (111). The central problem 

is that appropriate biomarkers are not yet available for many health disorders, and 

those that are available require highly invasive or complex methodologies and are, 

therefore, costly from an economic point of view.  

In this sense, the use of biomarkers that can be measured by these omic sciences and 

that have a direct interaction with the diet are of great interest when designing 

nutritional interventions, since they allow personalized recommendations, 

depending on the characterized needs. 

1.6. Lipidomics 

Lipidomics was first described by Han and Gross (112) as a branch of metabolomics 

that consists of a qualitative and quantitative analysis of the lipidome, which refers to 

whole lipids in cells. Apart from identifying and quantifying all lipids, lipidomics 

focuses on the characterization of their interactions with other lipids and proteins, 

along with protein expression associated with lipid metabolism and function, and 

gene regulation in response to a stimulation or disturbance. At the same time, it shows 

a strong correlation with diet as measured lipid levels will be affected by both 

metabolism and dietary intake. 

The analyses of these metabolites are important in order to obtain more data that will 

integrate cellular function at a molecular level, and in this way, define the phenotype 

of each cell, or tissue, in response to environmental or genetic modifications (113). 



Introduction 

21 

 

Within the study field of lipidomics, how lipids influence membrane structure and 

respond to environmental changes due to physiological processes, as well as their 

response to diets, is studied. These studies correlate lipids with metabolites and/or  

metabolic pathways, together with the metabolic health status, and try to establish 

relationships between changes in the regulation of lipid metabolism and pathologic 

processes (114). 

Many individual lipid molecular species have been closely involved in the processes 

of different diseases. Several studies have demonstrated that lipid dysregulation 

caused different diseases, and can be potential biomarkers of diabetes (115), metabolic 

syndrome and obesity, aging, cardiovascular disease, or cancer, shedding some light 

on the metabolic pathways involved (113). 

Technological advances, including mass spectrometry (MS)-based shotgun 

lipidomics and MS, coupled with separation technique-based lipidomics, can be 

applied to characterize and discover  the role of lipids in cellular functions and disease 

biomarkers in several pathologies that are related to lipids (116). These advances are 

not trivial, since they have opened the doors to a robust analysis of different lipids, 

facilitating a better understanding of lipid metabolism. 

These biochemical experiments for the study of lipid functions, begin with the 

extraction of lipids from tissues or cells ( ) (117). The complex lipid mixture, either in 

Figure 7: Lipidomics-systems-level scale analysis of lipids and their interactors. Modified from Wenk et al 

(2004)(1)  
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its unprocessed form or after sample modification, is then analyzed by one or more 

analytical techniques to obtain a ‘lipid profile’, which contains information on the 

lipid composition and abundance of individual lipids present in the starting material. 

Typically, such experimental results are compared with a control condition to 

elucidate distinct metabolites whose levels change upon perturbation of the biological 

system under investigation (117). 

Lipidomics will include profiling lipid extracts in order to identify metabolic 

pathways and enzymes that are affected by the perturbation of interest ( ). A major 

advantage of such lipidomics-based discovery is that, together with our relatively 

good understanding of many biosynthetic and metabolic pathways, it will lead to the 

identification of pathways and enzymes (and enzyme modulators).   

Integration of the lipid profile through the use of multivariate statistics, can be helpful 

to discover potential biomarkers, by understanding disease pathology, and the 

mechanisms of lipid-mediated disease (118). As metabolites are considered direct 

products of biochemical processes, they are easily correlated with the studied 

phenotype. 

At the same times, analysis of a lipid profile allows for the evaluation of a disease 

onset and its progression, enabling, by measuring the quantification of the lipidome 

alterations, the personalization and monitorization of the treatment.  

Of all lipids that are present in the body, the lipid components of biological 

membranes have long been considered passive bystanders with a purely structural 

function. Although it is true that the shape of the lipid assemblages is determined, at 

least in part, by the geometric properties of the individual lipid molecules, the 

discovery that membrane lipids can act as precursors for second messengers has 

opened up a range of possibilities for lipid metabolism study. In addition to acting as 

precursors, many membrane lipids themselves act as signaling components, taking 

part in many cellular processes (1, 119). 
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This correlation between lipids and the variations that occur in pathological states 

and the respective exogenous influences that act on them, are based on the fact that 

these variations are reflected on the metabolism, since lipids regulate the membrane 

lipid structure and membrane-related signaling events. In turn, the diet-metabolism 

interaction can be studied, as membrane lipid composition will be driven by both 

factors. 

One of the practical applications of lipidomics, in this sense, could be the membrane 

lipid therapy, a new perspective based on the development of molecules that regulate 

membrane lipids in order to treat different diseases such as cancer, neurological 

pathologies, metabolic disorders or cardiovascular diseases (120). All these factors 

make the measurement of the lipids that constitute the cell membrane a major point 

of interest. 

1.7. Cellular Membrane 

The cell theory establishes that the minimum living autonomous system is a cell, and 

that all organisms are made up of several of them (121). The nature of the biological 

entity that defines cells is the plasma membrane, which, in addition to acting as a 

border with the cell exterior, regulates molecular traffic between internal and external 

spaces. 

On the other hand, in eukaryotic cells there are membranes within the cells 

themselves, which form organelles that perform essential functions such as energy 

conservation, development of reaction sequences, and intra- and intercellular 

communication (122).  

All membranes have a series of physical properties that allow them to perform a wide 

variety of functions in which they are involved. Their flexibility allows them to adapt 

to changes in shape derived from cell growth and movement; they are self-sealing, 

which favors them being able to carry out exocytosis and endocytosis; and they are 
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selectively permeable to compounds and ions, allowing them to incorporate and 

excrete only those that are necessary (123). 

Cellular membranes are highly organized structures composed of 3 main 

components: the polar lipids, the proteins, and the carbohydrates. The relative 

composition of each of them varies depending on the cell type, but they share some 

common characteristics. 

The glycerophospholipids are the building blocks of cellular membranes. They are 

characterized by an amphipathic structure with a hydrophobic tail composed of two 

fatty acyl chains linked by an ether bond to positions 1 and 2 (sn-1 and -2) of a glycerol 

backbone, and a hydrophilic head group consisting of a phosphate group linked to 

position 3 (sn-3) of the glycerol with a phosphodiester bond (124). 

Hydrophobic chains of membrane glycerophospholipids are commonly divided into 

two subclasses depending on whether they are derived from SFAs, characterized by 

a straight hydrocarbon chain commonly containing an even number of carbon atoms, 

or from MUFA or polyunsaturated fatty acids (PUFA) containing one or several 

double bonds (125, 126). The physicochemical properties of FAs and FA-derived 

lipids depend on both the chain length and the saturation level of the acyl chains.

  

On the other hand, cell membranes incorporate a series of specialized proteins into 

their structure that allow different cellular processes to occur, such as the transport of 

compounds, reception and transmission of signals, and communication and union 

with neighboring cells, forming superior structures such as tissues. Finally, the 

composition of the membrane itself also varies depending on the cell type, thus 

developing different processes (127).  

The membranes also contain carbohydrates which, together with proteins and 

phospholipids, form a dynamic structure known as the fluid mosaic model (Figure 

8). In this structure, most of the interactions between the components occur through 
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non-covalent bonds, which allows freedom of movement between lipids and proteins. 

In addition, cells change membrane fluidity by modifying the concentration of 

cholesterol and the proportions of FA. Another of the properties that characterizes the 

membrane is the asymmetry of the bilayer that allows it to have different functions 

on one side and the other (122). 

 

Figure 8: Fluid mosaic model of the lipid bilayer. Modified from Nelson, et al. (2017)(128) 

In this research work we will focus on the FA profile of the phospholipids of the 

membranes, as the study of the great variety of proteins, lipids, and carbohydrates 

that we can observe in a membrane, both from the point of view of the composition 

and the functions they exert, represent a huge field of study. 

1.8. Erythrocyte Membrane 

As described above, cell membranes can act as key reporters of processes that occur 

in certain cellular environments and can provide a link between metabolism and 

dietary intake. It must be considered that the compositions of the membranes of the 

different cells adapt to the function that they must perform in each case. That is why 

there is great interest in the use of biomarkers, that facilitate obtaining information 

that leads to the conception of a global scenario of the metabolism. In this context, the 
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use of mature erythrocytes emerges as an ideal candidate due to some unique 

characteristics. 

It is an easy sample to obtain as it only requires a blood draw. 

It is a cell that circulates throughout the body and interacts with all types of tissues, 

sharing the fatty acids of its membrane with the rest of the tissues. Previous studies 

described in literature correlate the fatty acids of the erythrocyte membrane with the 

membranes of other tissues (129-131). 

It is a cell devoid of organelles, a fact that facilitates the analysis of membrane lipids 

by not having to separate them from those of the mitochondrial membrane. In 

addition, it does not have genetic material that can influences its composition. 

Its composition is representative of the general condition of the rest of the tissues and 

is subject to the metabolic modifications that may occur in them. However, it is not 

affected by variations of short periods of time, such as sporadic changes in diet. In 

this way it differs from plasma, which is much more influenced by these sporadic 

alterations. 

All the fatty acid families (saturated, monounsaturated, polyunsaturated ω-6 and ω-

3) are present in its membrane composition, which allows establishing relationships 

with the composition of the different tissues of an organism. 

It presents a life cycle of about 120 days, which permits collecting information about 

the membrane composition changes that take place throughout the body, from the 

previous 4 months. It also presents changes in density depending on its age. In this 

way, the variation in the membrane associated with the life of the cell can be avoided, 

since it is possible to always study those cells that have similar age ranges (132). 

For a new effect to be reflected in the erythrocyte membrane, it must be applied 

constantly for about 3-4 months, a complete life cycle of these cells.  
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1.9. Non-essential fatty acids 

1.9.1. Saturated fatty acids (SFA) 

SFAs are chains of carbon atoms 

organized in pairs (2 + 2), forming 

a linear structure (Figure 9). These 

fatty acids are synthesized by the 

body from the acetyl-CoA formed 

during glycolysis, and by 

adding carbon pairs until reaching palmitic acid (C16: 0). This process is known as de 

novo synthesis of FA and can be carried out thanks to the fatty acid synthase (FAS) 

enzyme. Its activity is necessary for cell proliferation, as it can generate the simplest 

unit of SFA that will be used in the formation of membranes. 

Once C16: 0 is formed, cells use another series of enzymes that allow the synthesis of 

more complex fatty acids, reaching compounds of up to 26 carbon atoms. However, 

fatty acids with longer chains (> 20 carbons) have a higher affinity for desaturase 

enzymes, responsible for introducing unsaturations, so they do not accumulate in 

large quantities (133). In any case, these FAs are synthesized according to cell 

demand, which can be very different in each type of cell. The elongases (ELOVL) are 

the enzymes responsible for this elongation and can act on SFAs, monounsaturated 

fatty acids (MUFA) and polyunsaturated fatty acids (PUFA).  

The function of SFAs in the membrane is highly relevant since it is related to structural 

aspects. Due to their lack of unsaturation, they are linear chains that link together with 

relative ease, providing rigidity and hydrophobicity. In addition, they are involved 

in transport processes, as they serve as anchors to different membrane proteins (122). 

In nature, it is relatively easy to find sources of SFAs, since they are very common in 

animal fats and in some vegetables, such as palm and coconut oils.  Because of the 

ease with which SFAs can be obtained through diet, one might think that FAS tends 

Figure 9: Stearic acid (C18:0). 
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to be frequently inactivated. Indeed, the enzyme responds in this way to the presence 

of exogenous SFA, but, on many occasions (such as during a cell proliferation 

process), it responds positively to other cellular signals, remaining active, which can 

lead to excess SFA by combining both exogenous and endogenous sources (134). 

Taking into account both the metabolic and nutritional considerations, the WHO 

recommends not to exceed the consumption of SFAs by more than the 10% of the 

caloric intake (135). 

1.9.2. Monounsaturated fatty acids (MUFA) 

MUFAs are structurally very similar to SFAs, with the difference that they have a 

double bond between two carbon atoms (Figure 10). Like the previous group, they 

can also be synthesized by the body but, in this case, the simplest are formed from 

C16:0 and stearic acid (C18:0) (Figure 9) through the action of the desaturase enzymes, 

Delta-9-desaturase (∆9D) and Delta-6-desaturase (∆6D) 

to form palmitoleic acid (C16:1; 9c), oleic acid (OA, 

C18:1; 9c), and sapienic acid (C16:1; 6c) (Figure 11). 

Figure 10: Oleic acid (C18:1; 9c). 
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Figure 11: Metabolic pathway for the synthesis of fatty acids. Malonyl CoA is formed from acetyl-CoA 

by acetyl-CoA carboxylase. Then, by the action of the fatty acid synthase (FAS), pairs of carbon atoms 

are added to form palmitic acid (C16:0). Once formed, C16:0 can stay on the SFA path by lengthening 

its chain through elongases (ELOVL), or form MUFAs through desaturases (∆6D or ∆9D) that 

incorporate unsaturation in one of their bonds. 

Depending on the type of MUFA, it will fulfil different roles, but in general the 

structural function also stands out since, having an unsaturated bond, the chain of 

atoms does not maintain its linear shape, and it will be more difficult for it to be able 

to bond with adjacent FAs, as occurred with SFAs. It thereby gives fluidity properties 

to the membrane, while it maintains the hydrophobicity. 

The natural sources of MUFA usually come from vegetable oils, such as olive oil, 

seeds, and nuts. In this case, although they can be synthesized endogenously, the 

European Food Safety Authority (EFSA) does not establish an indication of maximum 

consumption, but around 10-15% of the caloric intake is indicated (136). 
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1.10. Essential fatty acids  

1.10.1. Polyunsaturated fatty acids (PUFA) 

 These fatty acids have more than one unsaturation in the bonds of their carbons 

(Figure 12). PUFAs are essential fatty acids that must be obtained from the diet 

because humans and other mammals lack endogenous enzymes to synthesize them. 

Although mammalian cells cannot synthesize PUFAs, they can metabolize them into 

more physiologically active compounds.  These FAs fulfill an important function both 

at structural level and in cell signaling. 

In this group of FAs, we have two differentiated families, classified as omega-6 (ω-6) 

and omega-3 (ω-3), depending on where they have their last unsaturation, at six 

carbons from the final group or at three. The two precursors from which all the rest 

of metabolic compounds of both families can be synthesized are linoleic acid (LA), for 

the ω-6 family, and alpha- linolenic acid (ALA), for the ω-3 family. Since several 

enzymes are shared between the metabolic pathways of ω-3 and ω-6 PUFAs, ω-3 and 

ω-6 substrates compete to access these enzymes. Both precursors can be metabolized 

into more physiologically active compounds by a set of desaturating enzymes via ∆5 

and ∆6 desaturases and by lengthening the acyl chain via elongases (137) (Figure 13).  

 Figure 12: Docosahexaenoic acid (DHA, C22:6; ω-3). 
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Figure 13: Metabolic pathways of ω-6 and ω-3. The cascade begins with the essential FAs, linoleic acid 

(C18: 2 ω-6) and α-linolenic acid (C18: 3 ω-6) to form, through desaturase and elongase enzymes, the 

rest of the semi-essential FA. C20: 4 ω-6 is a precursor of inflammation processes and C20: 5 ω-3 and 

C22: 6 ω-3, of anti-inflammation. ∆6D: Delta-6 desaturase. ELOVL: elongase. ∆5D: Delta-5 desaturase. 

1.10.2. The ω-6 pathway 

Once the metabolic cascade has started, γ-linolenic acid (GLA)(C18:3 ω-6) is formed 

from LA due to the action of ∆6D, and is subsequently metabolized into γ-linolenic 

dihomo (DGLA) (C20:3 ω-6) through elongation. This fatty acid develops decisive 

functions in the cell, as it can be converted by inflammatory cells into 15-(S)-hydroxy-

8,11,13-eicosatrienoic acid and prostaglandin E1 , which possess  anti-inflammatory 

and anti-proliferative properties (138). It also regulates the action of the 

phospholipase A2 enzyme (responsible for the extraction of FA from the 

phospholipids of the membrane), and is a key element in the maturation of 

lymphocytes and, therefore, the functioning of the immune system. (139).  
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Then, DGLA is metabolized into Arachidonic Acid (AA), through the action of the 

delta-5 desaturase (∆5D). This FA is a main character of the metabolic pathway as it 

is the precursor to several potent pro-inflammatory mediators such as series 2 

prostaglandins and series 4 leukotrienes (140). 

Finally, it must be pointed out that the activity of the enzymes involved in the 

metabolic pathway can be affected by some factors, such as the absence of several co-

factors and vitamins, and the presence of SFAs and trans FAs that inhibit their activity 

for ∆6D and for ∆5D. Apart from the absence of co-factors and vitamins, the presence 

of insulin can stimulate their activation (141). 

As essential FAs that must be obtained from diet, the most common sources of ω-6 

PUFA are some vegetable oils, such as sunflower, corn and soy, which are rich in LA, 

and egg yolk and lean meats, which are rich in AA. Currently, it is easier to find ω-6 

than ω-3 in the foods that surround us, as they are widely used in a wide variety of 

products. For this family of PUFA, the WHO recommends that the intake should be 

between 2.5 - 9% of total caloric intake (135). 

1.10.3. The ω-3 pathway 

Alpha-linolenic acid (ALA) is the precursor of the metabolic pathway for ω-3 FA and 

can be found in green leafy vegetables and in some seeds (flax, rape, chia, perilla, and 

walnuts). The same enzymes that, in the ω-6 pathway, converted the LA into DGLA 

and AA, will metabolize the ALA in eicosapentaenoic acid (EPA). This FA is a 

precursor of prostaglandins, leukotrienes and resolvins, which have an anti-

inflammatory response. EPA acts as a competitive inhibitor for proinflammatory AA 

on cyclooxygenase (COX), which produces proinflammatory eicosanoids (142) 

(Figure 14). 
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Figure 14: EPA competitively inhibits PGE2 formation by COX-1 and COX-2. EPA competitively binds 

with COX-1 and COX-2 and produces less-inflammatory PGE3 while suppressing AA binding which 

produces highly inflammatory PGE2. AA, arachidonic acid; COX, cyclooxygenase; EPA, 

eicosapentaenoic acid; PGE2/3, prostaglandin E2/3. Calder (2009) was used as reference for the 

design(143). 

Then, elongations and unsaturations occur again until docosahexaenoic acid (DHA), 

a precursor of D-series resolvins, is formed, which, in combination with the products 

formed from EPA, generate a strong anti-inflammatory response. In addition, DHA 

is also highly involved in the central nervous system and in nerve cells, as it is one of 

the main components of the membrane that guarantees its correct cellular functioning 

(144). 

Although EPA and DHA can be synthesized from shorter plant-derived ω-3 FA 

precursors such as ALA, this metabolic pathway is not efficient in humans. Only 

about 8-20% of ALA is converted to EPA in humans, while conversion of ALA to DHA 

is estimated to be around 0.5-9% (145, 146).  

Apart from these conversions of ALA, these FA can be obtained through diet as they 

are present in some marine algae, rich in EPA and DHA and, within the animal 

kingdom, particularly in oily fish. 

EFSA establishes that the total caloric intake of ω-3 PUFAs should be around 0.5-2%, 

with a minimum daily consumption of 250mg of EPA+DHA (136). 
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On the other hand, we must consider the fact that, due to globalization, the nutritional 

habits of many populations have changed, prioritizing the consumption of ω-6 

PUFAs over ω-3 PUFAs, causing an imbalance in the ω-6/ω-3  ratio of around 15:1 in 

western diets, while the optimal ratio of PUFA intake should be between 1:1-4:1 (147). 

Considering that both metabolic pathways compete for the same set of enzymes, an 

adequate proportion of both PUFAs should be ingested in order to maintain an 

optimal balance. 

1.10.4. Trans fatty acids (TFA) 

These fatty acids contain at least one double bond, but, unlike the previous FA, this 

bond is in trans isomerism. Despite the unsaturations, the shape that TFAs acquire in 

space is closer to that of SFAs, since their configuration is linear (Figure 15).  

 

 

 

 

 

Some industrial processes can produce changes in the structure of FAs that undergo 

isomerization reactions of the double bonds, transforming the cis bonds into trans. 

Margarines are an example of this isomerization reaction as they go through 

hydrogenation processes, or fish oil-based supplements that also suffer from 

isomerization, due to deodorization processes and high temperatures. These fatty 

acids have harmful effects on health, since they can reduce the availability to 

metabolize PUFAs by inhibiting the activity of ∆5D, ∆6D and elongases (148). It 

should be noted that there are no enzymes capable of transforming a trans bond to a 

Figure 15: Structure of a FA with double 

bond in trans isomerism (C18: 1; 11t). 



Introduction 

35 

 

cis one, so they can only take part as a structural component, providing a similar effect 

of rigidity to the membrane as SFA. 

Endogenously, the formation of TFAs is also possible through the reaction between a 

free radical that may appear under conditions of cellular stress and a cis double bond 

of lipids. The isomerization of the double bonds is one of the strategies to neutralize 

free radicals, thus preventing them from damaging other cell structures (133). 

1.11. Precision Nutrition: Personalized diet and 

dietary supplements to control obesity. 

Modern western diets contain excessive levels of ω-6 PUFAs but very low levels of ω-

3 PUFAs, leading to an unhealthy ω-6/ω-3 ratio of 20:1, instead of the 1:1 proportion 

that occurred during human evolution (149). As an illustrative example, around 70% 

of dietary calories currently consumed in the modern western diet did not exist in 

hunter-gatherer diets (150). Technological advances in food production and 

processing have provided high-caloric foods with a high content in sugars, refined 

grains and oils (151). Concerning FAs, because of the advice given to reduce SFAs, to 

lower cholesterol levels (152), a higher consumption of vegetable oils, such as 

soybean, corn or canola oil, rich in LA and poor in ω-3 PUFAs and MUFAs, has 

occurred. This increased consumption of vegetable oils has occurred to an extent of 

more than 1000-fold in the last century, representing around 7% of daily caloric intake 

(153). 

Thus, an unbalanced ω-6/ω-3 ratio in favor of ω-6 PUFAs is highly proinflammatory, 

as described above, contributing to the prevalence of different diseases related to 

chronic inflammation such as atherosclerosis, obesity, or diabetes. 

Because of this imbalance towards ω-6 PUFAs, reaching optimal levels of ω-3 PUFAs 

becomes vital for the metabolism, in order to restore the optimal equilibrium between 

the two FA families. As explained above, the ω-6/ω-3 ratio of Western diets has clearly 
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shifted towards ω-6 PUFAs, so even if the best option to obtain the necessary ω-3 

levels comes through dietary intake, sometimes this is hard to achieve solely with 

diet. 

The EAT-Lancet Commission “healthy reference diet” (154) shows that the leading 

dietary risk factors for mortality are diets high in sodium, low in whole grains, low in 

fruit, low in nuts and seeds, low in vegetables, and low in ω-3 fatty acids; each 

accounting for more than 2% of global deaths. An optimum daily consumption of fish 

of 28g/day can provide the recommended daily intake of essential ω-3 fatty acids (200-

300 mg of EPA+DHA/day) that is associated with reduced risk of cardiovascular 

disease and total mortality rate (Figure 16).  

 

Figure 16: Number of deaths attributable to individual dietary risks at the global level in 2017 

(Lancet 2019; 393: 1958–72). 

It is in this sense where the use of specific ω-3 supplements arises as an adequate 

option to increase the consumption of ω-3 PUFAs.  
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These supplements have experimented an important growth during recent decades 

(155), as nowadays, supplements use 20 to 25% of world fish oil, up from just 5%, 

which was used in 1990 (156). For example, the use of ω-3 supplements among adults 

in the U.S. has increased from 4.8% in 2007 to 7.8% in 2012 (157). 

Supplements containing these ω-3 FA oils, come from certain plant, marine or algae 

sources. Fish oils are sold as ω-3 PUFA supplements or in a concentrated form as ethyl 

esters or acylglycerols, whereas algal, fungal, and single-cell oils have recently 

become popular as novel and renewable sources of ω-3 PUFAs. In addition, krill oil 

containing both triacylglycerol and phospholipid forms containing EPA and DHA 

has been successfully marketed. Researchers have also incorporated ω-3 PUFAs into 

different oils such as borage oil and evening primrose oil to provide a better balance 

of PUFA components. 

Even if ω-3 supplements are becoming more and more popular among consumers, 

most of them take ω-3 dietary supplements without the recommendation or 

supervision of a healthcare provider (158). Added to this lack of supervision, the 

countless options available in the market make it difficult for consumers to choose an 

appropriate option. 

Many intervention trials with ω-3 supplements have been described in literature, but, 

even if the beneficial health properties of ω-3 FAs are well described in literature 

(159), these intervention trials show controversial results (160, 161). Multiple issues 

seem to be responsible for these results. The intervention duration and dose, the 

balance of the ω-6/ω-3 ratio obtained from diet during the intervention, the 

measurement of the baseline levels to design an optimal supplementation 

intervention, the stability of the ω-3 supplements, and different content proportions 

of specific FAs in ω-3 supplements, among other factors, seem to be crucial for an 

effective treatment (161). 
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It is in this sense where omic sciences, and above all, lipidomics, acquire a vital role 

in monitoring these type of intervention trials. Membrane lipidomics emerges as an 

effective tool to evaluate the content and effects of lipids, together with their 

interaction with other metabolites, allowing a membrane‐based strategy for 

personalization of the diet and supplements (162). Lipidomics reflect the relationship 

between nutrition and membranes that can have a cascading effect on other relevant 

metabolic and signaling processes. Through the evaluation of membrane status and 

need for specific FAs to overcome membrane imbalance, lipidomic monitoring 

becomes a suitable method to assign FAs according to personal needs, facilitating an 

adequate use of ω-3 supplements (162). 
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2.Hypotheses and Objectives 
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Monitorization of the RBC FA profile in childhood obesity through lipidomics, will 

determine the relationship between the FA composition of the membrane and the 

nutritional status. It will allow the detection of specific metabolic needs related to the 

diet and the metabolism of each individual and from there, innovative nutritional 

strategies would be designed to improve health status. 

The objective of this doctoral thesis is to characterize the fatty acid profile of the 

mature erythrocyte membrane of children with obesity, and establish the specific 

needs of FAs, and its relationship with nutritional and metabolic status. Once these 

differences have been established, they will form the basis for tailoring dietary 

interventions based on specific FA needs. 

To achieve this objective, the following specific objectives were established: 

Definition of the childhood obesity profile: characterization of the mature erythrocyte 

membrane lipid profile of children with obesity, and its relationship with nutritional 

and metabolic status compared to normal weight and overweight children. 

Characterization of the differences in membrane lipid profile between children and 

adults with obesity, to differentiate effective nutritional strategies/interventions 

between both populations, based on specific FA needs. 

Clustering of children with obesity, to determine the MHO presented by a FA profile, 

similar to children with normal weight, in order to personalize more dietary 

interventions. 

The use of cell membrane lipidomic for precision nutrition together with personalized 

diet and ω-3 supplements, as a strategy to obtain the optimal levels of specific 

individual FAs.  
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3.Materials and Methods 
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3.1.  Study Design 

The study design of the present work consists of two phases that are described below. 

All children participants were recruited from pediatric endocrinology unit at the 

Hospital Universitario Cruces (Barakaldo, Spain) and adult participants, in the 

endocrinology department at the Hospital Universitario Cruces (Barakaldo, Spain).  

The characteristics of each population group included in the different studies of this 

thesis work are described further in each chapter. 

Body weight (kg) and height (cm) were measured by standardized methods (22). 

Body mass index (BMI) was calculated as weight (kg) divided by the square of the 

height (m2). Anthropometric parameters, as well as blood sampling, were collected 

by specialized personal during the participant’s visit to the Hospital. 

Children were classified according to body mass index (BMI), using age and sex-

specific pediatric z-scores from Orbegozo tables (23). The BMI was taken as a 

reference to define the different categories, defining normal weight when the 

standard deviation (SD) of BMI was -1 <SD ≤ +1, overweight when +1<SD ≤ +2, and 

obesity when SD> +2. 

 For adults, BMI>30 was taken as reference to classify obesity and 18.5<BMI<25 for the 

group with normal weight. 

In all the conducted studies, subjects were excluded if they presented any kind of 

acute or chronic diseases, were taking medications, had any presence of metabolic 

syndrome symptoms or obesity associated to any type of pathology.  

3.2.  Food Habits and Nutrient Intakes 

Estimations of food consumption, including dietary diversity and variety, were 

measured using a quantitative food frequency questionnaire (FFQ) on-line completed 
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by the parents of the children, except in those cases of adolescents, which were 

encouraged to complete it themselves, or by each adult volunteer.  

For our study, an adapted FFQ was used, which was previously validated with the 

portion sizes and food groups for the Spanish juvenile population and for adults (163, 

164). These questionnaires were then analyzed using the DIAL® software (UCM & 

Alce Ingeniería S.A. Madrid. Spain) (V 3.4.0.10) to translate the intake of specific foods 

into their corresponding energy and nutrient values.  

 

3.3.  Red Blood Cell (RBC) Membrane Fatty Acid 

Analysis 

The fatty acid composition of mature RBC membrane phospholipids was obtained 

from blood samples (approximately 2 mL) collected in vacutainer tubes containing 

ethylenediaminetetraacetic acid (EDTA). Samples were shipped to the Lipidomic 

Laboratory and upon arrival underwent quality control for the absence of hemolysis. 

During the blood work-up, before lipid extraction and lipid transesterification to fatty 

acid methyl esters (FAMEs), the automated protocol includes the selection of mature 

RBCs, as reported previously  (165-168). 

 First, the whole blood in EDTA was centrifuged (4000 rpm for 5 min at 4ºC), and the 

mature cell fraction was isolated based on the higher density of the aged cells (169) 

and controlled by the use of cell counter (Scepter 2.0, EMD Millipore, Darmstadt, 

Germany).  

All the subsequent steps were automated and included cell lysis, isolation of the 

membrane pellets, phospholipid extraction from pellets using the Bligh and Dyer 

method (170), transesterification to FAMEs by treatment with a potassium hydroxide 

(KOH)/methyl alcohol (MeOH) solution (0.5 mol/L) for 10 min at room temperature, 

and extraction using hexane (2 mL).  
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The FAMEs were analysed using capillary column gas chromatography (GC). GC 

analysis was run on the Agilent 6850 Network GC System, equipped with a fused 

silica capillary column Agilent DB23 (60 m x 0.25 mm x 0.25 μm) and a flame 

ionization detector (FID). Optimal separation of all fatty acids and their geometrical 

and positional isomers was achieved. Identification of each fatty acid was made by 

comparison of commercially available standards. The amount of each FA was 

calculated as a percentage of the total FA content (relative %), as described in section 

2.5, being more than 97% of the GC peaks recognized with appropriate standards. 

3.4. Erythrocyte Membrane Lipid Profile 

The same 12 FAs, previously stablished by Ferreri and Chatgilialoglu (171) were 

analysed in all the studies, as representative cluster of the main building blocks of the 

RBC membrane glycerophospholipids and of the three FA families (Table 1). 

Table 1: Selection of fatty acids from the erythrocyte membrane 

Families Common name Abbreviation IUPAC 

Saturated (SFA) 
Palmitic acid  C16:0 

Stearic acid  C18:0 

Monounsaturated 

(MUFA) 

Palmitoleic acid  C16:1; 9c 

Oleic acid OA C18:1; 9c 

cis-Vaccenic acid  C18:1; 11c 

Poliunsaturated 

(PUFA) 

ω-6 

Linoleic acid LA C18:2; ω-6 

Dihomo γ-linoleic acid DGLA C20:3; ω-6 

Arachidonic acid AA C20:4; ω-6 

Poliunsaturated 

ω-3 

Eicosapentaenoic acid EPA C20:5; ω-3 

Docosahexaenoic acid DHA C22:5; ω-3 

Trans 
Elaic acid  C18:1; 9t 

trans Arachidonic acid  C20:4; t 

 

Additionally, the enzymatic indexes of elongase and desaturase enzymes, the two 

classes of enzymes of the MUFA and PUFA biosynthetic pathways, were determined 

by calculating the product/precursor ratio of the involved FAs (Table 2). 
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Table 2: Indexes established for different combinations of fatty acids. 

Indexes Formula 

FA indexes  

Saturation SFA / MUFA 

Unsaturation (MUFAx1)+(LAx2)+(DGLAx3)+(AAx4)+(EPAx5)+(DHAx6) 

Peroxidation (MUFAx0.025)+(LAx1)+(DGLAx2)+(AAx4)+(EPAx6)+(DHAx8) 

Inflammatory risk ω-6 / ω-3 

PUFA Balance (EPA+DHA)/PUFAx100 

Omega-3 Index (172) EPA + DHA 

De Novo Lipogenesis 

(173) 
Palmitic acid/LA 

Enzymatic Indexes  

∆5D AA / DGLA 

∆6D + ELO DGLA / LA 

∆9D 16 C16:1; 9c / C16:0 

∆9D 18 C18:1; 9c / C18:0 

 

This selection of FA-s and Indexes provides varied information. 

Both saturated and monounsaturated FA, together with their indexes, allow the 

determination of the optimal balance between these components with opposite 

effects. From a structural point of view, SFA-s provide rigidity to the membrane, 

while MUFA-s provide fluidity. It should not be forgotten that, although both FA-s 

are present in the diet, they can also be synthesized endogenously. In fact, the 

palmitoleic acid levels provides information about the activation degree of the ∆9D 

enzyme, since it is a FA with little presence in the diet, it allows to determine if the 

synthesis of SFA or MUFA is favoured. 

Regarding PUFA-s, the ω-6 and ω-3 concentrations together with their related index 

levels, allow us to know the balance between both families and its influence on the 

different aspects related to cell signalling, especially inflammation, thanks to the 

analysis of AA as an inflammatory precursor, and DGLA, EPA and DHA, as anti-

inflammatories. On the other hand, ω-3 concentrations are being related to beneficial 

effects in a wide variety of pathologies, as explained before. As these FA-s have to be 
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obtained through diet, their actual levels can provide information whether their 

intake is being adequate or not. 

Two trans FA-s are also measured, such as elaidic acid and trans arachidonic acid. 

Elaidic acid levels provide information on its contribution in the diet and trans 

arachidonic acid, reports on its endogenous synthesis and the degree of response to 

free radicals. 

The estimated enzymatic indices indicate the degree of activation of various enzymes, 

allowing us to know if there is a greater activation of any of the routes that may have 

an impact on health. 
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4.General Discussion 
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The development of this research thesis has always been aligned with the 

scientific-technological objectives of a research center such as AZTI. This has 

allowed for a global and multidisciplinary vision, enabling the future 

application of the results, with the subsequent impact on society. 

This thesis contributes to the search for new molecular biomarkers of obesity, 

and more specifically, biomarkers that reflect the nutritional and metabolic 

status associated with obesity.  

The literature correlating membrane lipid profile with obesity is sparse 

compared to the large number of studies that have correlated obesity with 

plasma lipids and lipoproteins. Pan and collaborators (174) related dietary fat 

to membrane lipid metabolism, observing an increase in Δ9-desaturase activity 

and a decrease in Δ5-desaturase activity in obese people. Other studies 

correlated plasmatic FA composition with the metabolic syndrome and low-

grade inflammation,  establishing higher levels of SFA in overweight 

adolescents, and a protective effect of the intake of ω-3 PUFA (175). Another 

study described modifications in plasma FA composition, which were 

associated with the reduction of adiposity, and an improvement in 

cardiometabolic profiles in adolescents (176). Other studies described a 

correlation between an altered FA profile and estimated desaturase activities, 

consisting in high levels of SFA, SCD and D6D, and low levels of PUFA and 

D5D, with an increased probability to develop metabolic syndrome (177). 

Pietilainen et al. (178) established that, despite low dietary intakes of 

polyunsaturated fat, obese individuals had high palmitoleic and arachidonic 

acid ratios.  

In summary, the biochemical studies carried out to date are important because 

they confirm the feasibility and validity of our experimental approach. 

Furthermore, they point to possible changes, as yet not well defined, in the 
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physiological activity of membranes and their associated enzymes, induced by 

changes in the lipid composition of the membrane, which in turn are caused by 

obesity, and the impact that diet can have on it.  

The fatty acid composition of each tissue is specific, as is that of the erythrocyte 

membrane (179). That is, the proportion of fatty acids present in the erythrocyte 

membrane depends on the metabolic and environmental conditions of the cell 

at any given time. A dynamic view of phospholipid metabolism and, in 

particular, fatty acid transformations combined with nutritional aspects and 

their impact on an individual's health status, can provide important 

information for molecular medicine and nutrition (162). RBCs can serve as a 

surrogate marker for estimating major organ levels of EPA, DHA and AA. The 

extent to which the RBC can be used as an accurate marker of organ levels of 

these ω-3 FA levels is dependent on the target tissue of interest (140, 180). 

To our knowledge, this is the first time that a characterization of the FA profile 

of RBC membranes in obese and overweight children, in comparison to 

normal-weight children, has been made. This study design allows us to 

establish optimal levels of the measured FAs using the RBC FA levels of 

children with normal weight as the control group. This aspect is important in 

nutrition intervention strategies when establishing nutritional 

recommendations based on FA levels, due to the importance of knowing the 

optimal levels of RBC FAs associated with a healthy condition compared to a 

diseased metabolism. The application of mature RBC membrane lipidomics in 

a huge population group will permit a more robust and effective 

characterization of obesity, and consequently, a better definition of the optimal 

levels of each fatty acid. 

After comparing the three studied groups, an altered metabolism was observed 

in children with obesity. Obesity is supposed to be a silent chronical 
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inflammatory state (181) and this fact is reflected in the mature RBC FA profile 

of children with obesity, as they present higher levels of AA, DGLA and total 

ω-6 FAs.  

These ω-6 FAs, especially the AA, are described in literature as precursors of 

proinflammatory mediators (182, 183) that act through different mechanisms 

on inflammatory processes. At the same time, unlike the other ω-6 FAs, 

children with obesity showed lower LA levels compared with children from 

the normal weight group. Higher RBC LA levels have been linked with 

improved body composition, insulin resistance, and lower levels of 

inflammatory markers in previous studies (184). 

This imbalance of PUFA metabolism towards ω-6 FAs has also been described 

in literature, as it seems to contribute to excessive adipose tissue development, 

representing an emerging risk factor for obesity (185, 186). In this sense, the 

measurement in future studies of inflammation markers such as lipokines, 

cytokines or prostaglandins, among others, together with the measurement of 

RBC membrane FAs, would be of great interest, in order to confirm that high 

levels of the precursors of these inflammatory molecules positively correlate 

with inflammatory metabolites, and perfectly describe the state of silent 

inflammation that appears in obesity. 

Together with this imbalance of PUFA levels, an altered ratio of SFA/MUFA in 

children with obesity has been determined. This mainly occurs due to lower 

levels of oleic acid, and higher levels of stearic acid. This imbalance in the 

SFA/MUFA ratio affects the rigidity of cell membranes, as both FA families 

have opposing effects. SFAs provide the membrane with a more rigid packing, 

whereas MUFAs possess a bent structure with a fluid effect on the membrane 

assembly (162). 
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The enzymatic activity of the Δ-9-desaturase, measured indirectly by the ratio 

between oleic and stearic acids, was observed to be less for the group with 

obesity. The overall picture that comes from examining the FA remodeling that 

takes place in obesity highlights the role of the de novo lipogenesis, with 

formation of SFAs and their enzymatic transformation into MUFAs, linked to 

the functioning of Δ-9 desaturase, and the respective gene expression (SCD1, 

Stearoyl CoA Desaturase).  

In turn, the direct measurement of enzymatic activity would be interesting to 

confirm the measured differences between children with obesity and children 

with normal weight, since it would permit a better description of the metabolic 

processes that occur in obesity. In this study we correlated the enzymatic 

activity by means of the ratio between product and precursor, which, although 

its use is common in the literature, is still an indirect measure and therefore, of 

less precision. 

Our work has allowed us to identify a typical childhood obesity RBC profile 

and compare it to an optimal profile in a normal-weight population. This will 

allow us to design an optimal diet for the prevention and control of childhood 

obesity, highlighting the need to reduce, increase or include new functional 

foods that provide the necessary nutrients and the most appropriate fats, 

according to the metabolic status of each individual. Our results reveal the need 

to increase sources rich in ω-3 fats, both to increase their levels and to reduce 

the levels of ω-6 observed in erythrocytes, as well as the need for a higher intake 

of foods rich in MUFA fats to reduce the SFA/MUFA ratio.  

Regarding the type of nutritional strategies that are currently used to combat 

obesity, there is no clear differentiation between children and adults, although 

macronutrient and micronutrient requirements are defined according to the 

type of population (91, 187). In this sense, as described in chapter 2, the 
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characterization of RBC FA membrane profiles in children compared to the 

adult population revealed very different lipid profiles. Children with obesity 

presented higher LA, DGLA and total ω-6 values, along with lower DHA and 

total ω-3 values, compared to adults with obesity. At the same time, children 

with obesity presented lower levels of palmitic acid and a lower value of the de 

novo lipogenesis index compared to adults with obesity. These differences must 

be considered to provide more specific food group recommendations based on 

individual FA needs, rather than giving general recommendations for the 

population with obesity, as a whole and regardless of age. 

Based on these differences, future nutritional intervention studies should be 

developed, in order to evaluate the power of RBC membrane FA analysis as a 

molecular tool applied to design a precision nutrition strategy in obesity. 

Although some intervention studies have already attempted to demonstrate 

the effect of diets rich in MUFA and ω-3, the use of lipidomics allows us to 

identify the baseline level and needs at the level of individual FA, so that the 

design of the strategy will be much more precise and will ensure the success of 

the intervention. However, a larger number of interventional clinical trials are 

needed to demonstrate the efficacy of a lipidomics-based intervention. 

During the course of this thesis, we realized that some children with childhood 

obesity presented profiles that did not fit the typical profile of an obese child. 

Using statistical clustering techniques based on membrane fatty acid levels, we 

were able to identify a subgroup of obese children whose lipid profile was 

similar to the group of normal-weight children, who did not present an 

inflammatory profile. 

Such statistical techniques applied to the fatty acid values obtained by 

membrane lipidomics of mature erythrocytes allow the differentiation of this 

MHO subgroup, and therefore enable us to design different intervention 
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strategies for this group compared to the rest of obese children, who do present 

a clear inflammatory profile. 

At the same time, these types of statistical tools and RBC lipidomic analysis can 

be applied to isolate and characterize those children with normal weight that 

present an inflammatory profile, even if they are not overweight. The existence 

of this subgroup of individuals displaying metabolic outcomes, traditionally 

related to obesity, was first proposed in 1981 when patients with type II 

diabetes, hypertension, and hypertriglyceridemia, who were not obese but who 

responded positively to caloric restriction, were correlated (188). They defined 

this subgroup as metabolically obese normal weight (MONW) individuals. 

This phenomenon has been described in literature (189, 190) with different 

names, but as occurs with the MHO individuals, described in the third chapter 

of this thesis, there is no unified criterium related to the use of adequate 

biomarkers to define metabolically unhealthy individuals with normal weight.  

Anyway, previous studies described in literature measure the risk that these 

MONW individuals have of suffering negative health outcomes compared to 

healthy normal weight individuals. An example of this can be found in a meta-

analysis of 14 prospective cohort studies which compared MONW individuals 

with healthy individuals with normal weight, observing, in the former group, 

an increased risk of suffering cardiovascular diseases and all-cause death (191). 

The characterization of these metabolically unhealthy patients, particularly in 

pediatric populations, is of great interest when studying the negative metabolic 

outcomes that may result in the long-term. The application of RBC membrane 

lipidomics to characterize those MONW individuals, as in the case of MHO, 

can be a good point of study due to all the advantages that its analysis presents. 

These advantages have already been described previously in this document, 

such as, for instance, being a good biomarker to define inflammatory profiles. 
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Therefore, studying MHO and MONW individuals could provide important 

insights into the inter-relationships between inflammation, metabolic health, 

and obesity (88). 

However, we are aware that the results of this thesis set the starting point for 

future research in the field of precision nutrition, as nutritional intervention 

trials using mature erythrocyte membrane lipidomics are needed to design an 

optimal nutritional strategy adapted to the metabolic needs of each individual. 

This will demonstrate the efficacy of a personalized diet (food and supplements 

of certain fatty acids if necessary) to restore the balance and functionality of the 

membrane, and therefore have an effect on the individual’s health.  

In the different chapters of this thesis, the need to increase the intake of ω-3 

fatty acids has been highlighted as a possible strategy to counteract the 

inflammatory effects caused by the presence of high levels of ω-6 (AA and 

DGLA), observed in obese individuals.  In this sense, one of the nutritional 

strategies could be to include or increase foods rich in ω-3 fats containing, in 

particular, EPA and DHA (oily fish, algae, or flax seeds and oil), but the 

supplementation of fatty acids through nutraceuticals would permit 

rebalancing the erythrocyte membrane in a precise and effective way. As 

described in chapter 4, ω-3 supplementation is becoming increasingly popular, 

but the effectiveness of ω-3 supplementation will always depend on the 

measurement of the patient's baseline status. Defining their metabolic needs 

will influence what dose and type of fat should be supplemented to restore the 

optimal balance of RBC membrane FAs. The over-intake of these FAs can have 

potentially harmful effects (192) so its dosage should also be addressed with 

molecular tools such as lipidomics.  

However, it is important to determine not only an individual’s lipidomic 

profile, but we also need to generate new knowledge at molecular level, 
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integrating different omics tools, in order to design precise nutritional 

strategies, monitor the effect of the nutritional intervention, or as a way to 

define new early biomarkers of the studied disease (193).  

In the increasingly important field of precision nutrition, the final target is to 

design tailored nutritional recommendations to treat or prevent metabolic 

disorders (194). More specifically, precision nutrition seeks to develop unique 

nutrition guidelines for each individual, combining genetic, environmental and 

lifestyle factors to develop effective approaches (194). For that purpose, 

precision nutrition approaches include different omic sciences such as genetics, 

metabolomics or microbiomics together with other factors such as dietary 

habits, food behavior and physical activity (Figure 17) (102).  

 

Figure 17: A representation of the main factors worth considering when addressing Precision 

Nutrition. Modified from de Toro. et al (102) 

In this sense, while numerous genes and polymorphisms have already been 

identified as relevant factors in this heterogeneous response to nutrient intake 

(195-198), clinical evidence supporting these statistical relationships is 

currently too weak to establish personalized nutritional interventions in most 

cases (199). Thus, most of the findings on this topic are still relatively far from 
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giving their fully expected potential in terms of translation and application of 

this knowledge to precision nutrition (200). Regarding the obesity and 

metabolic syndrome, recent published studies focusing on gene-environment 

interactions have revealed important insights into the impact of macronutrient 

intake in the association of genetic markers with metabolic health, fat mass 

accumulation or body composition. This is relevant for precision nutrition, 

since results from these studies, focusing on macronutrient intake, open the 

door to efficiently tailor diets based on the individual genetic composition. In 

this regard, a recent work by Goni et al. (201) has analyzed the impact of 

macronutrient intake in the genetic risk on obesity prediction, while other  

studies, which correlated BMI to single nucleotide polymorphisms (SNPs), 

have revealed that a high intake of sugar-sweetened beverages (202, 203), fried 

foods (204) or SFA-s (205) can also modulate the risk to develop obesity. 

Together with this nutrigenomic profiling, the examination of gut microbiome 

is generating great interest in nutritional interventions, and the impact of 

specific dietary factors on the diversity of the gut microbiome is currently the 

subject of many ongoing investigations (102). The development of nutritional 

interventions, based on individual profiles, focuses on optimizing gut 

microbial composition, both in terms of richness and diversity, and emerging 

evidence suggests that gut microbiota profiling should be included as a key 

feature of precision nutrition (206). 

In fact, both the composition and diversity of gut microbiota have been 

identified as potential risk factors for the development of several metabolic 

disorders including the metabolic syndrome, type II diabetes and CVD (207). 

In this regard, studies have described how gut microbiome profiling could 

represent an efficient tool, providing an accurate glucose response prediction 

after a meal (208). 
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Like RBC lipidomics, monitoring the gut microbiome during a nutritional 

intervention in obesity is necessary to provide more evidence regarding the 

effect of specific dietary patterns or nutrients on obesity metabolism. This will 

help to understand the biological function of gut microbiome better, as well as 

the association between microbiome modulation and progression of disease in 

order to define precise nutritional interventions.  

To date, the PREDIMED study (209, 210) and the Food4Me project (211) could 

be considered as state-of-the-art trials in the field of precision nutrition, and 

two of the most stimulating wide-scale approaches in this field, which will 

hopefully provide guidance about how precision nutrition could be used to 

successfully prevent and manage cardiometabolic disorders. As already 

mentioned, such integrated approaches have the potential to improve dietary 

behaviors in an individualized or in a group-based manner, and to generate 

new and innovative tools, methods, and procedures. 

The application of these results in future studies will focus on analyzing the 

association or correlation between membrane lipidomics and biochemical 

parameters, and the microbiota profile in obese children, as they will shed light 

on the effectiveness of a specific diet for the prevention or control of obesity.  

The integration of genomics, microbiome, and other omics, with the lipidomics 

already described in this study, will allow a more global vision of the problem 

of childhood obesity, as well as a more specific and, therefore, more effective 

response to this disease. 

In addition to the molecular profile, it is essential to take into account other 

behavioral aspects and preferences of an individual, in order to design a 

strategy that will be successful in the long term. In this sense, an individual's 

motivation, food preferences and behavior, as well as other socioeconomic 

factors will influence the design of a personalized strategy. 
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Any of the proposed lines of study will provide novel insights into childhood 

obesity, and investigating the correlation between them will raise new 

questions, and undoubtedly lead to further research. It will also lay the 

foundations for future studies on the impact of diet on other aspects of health, 

such as food intolerances, digestive system disorders, or severe diseases, such 

as cardiovascular diseases, cancer, or neurodegenerative diseases. 

It is therefore expected that future research with the application of lipidomics 

will have an impact at a socioeconomic level, as new products (kits) can be 

developed for diagnostic, prognostic and intervention purposes, as well as new 

foods and supplements for use in children with obesity. 

Likewise, the review of specific diets and the knowledge of the impact of the 

intake of different foods will allow the food sector to adapt its products to 

prevent obesity, and to design novel formulas and supplements for this 

purpose, opening up new market niches. 
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The main conclusions of this work are collected, which contribute to a greater 

knowledge about the characterization of the RBC membrane lipid profile of children 

with obesity: 

1. An altered RBC FA profile of the pediatric population with obesity, characterized 

by two main features has been determined. An increased ω-6 FA levels, regardless of 

PUFA dietary intake, which can create a predisposition for unbalanced inflammatory 

signaling that departs from membranes, is presented in children with obesity. At the 

same time, higher SFA levels in RBC membranes, which can perturb membrane 

organization providing rigidity, are observed for children with obesity. 

Virtually, no differences were observed in terms of dietary intake between children 

with obesity, overweight and normal weight. 

2. Children and adults with obesity, presented differentiated RBC FA profiles. 

Children with obesity present higher LA, DGLA and total ω6 values in RBC 

membranes, along with lower DHA and total ω3 values, compared to adults with 

obesity, even after adjusting the values by their dietary intake. At the same time, 

children with obesity presented lower levels of palmitic acid and a lower value of the 

de novo lipogenesis index compared to adults with obesity. These differences, 

provided by obesity metabolism and age, must be considered to provide specific food 

groups recommendations based on individual FA needs, rather than giving general 

recommendations for population with obesity. 

3. The RBC membrane FA profile can be used as a tool to identify MHO children from 

the rest of children with obesity, using a clustering method. 

The MHO cluster presented similar FA levels than normal weight children and a 

differentiated profile compared to the rest of children with obesity. These differences 

in RBC membranes were characterized by: 

• Lower stearic and total SFA levels. 
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• Higher oleic and total MUFA levels. 

• Lower DGLA, AA and total ω-6 levels. 

• Higher EPA, DHA and total ω-3 levels. 

• Lower levels of ω-6/ω-3, SFA/MUFA and Δ9D 18:0 indexes. 

• Higher Δ6D+ELO levels. 

4. The analysis of the FAs of the mature erythrocyte membrane is a useful tool to 

evaluate the metabolic and nutritional status of children with obesity, and applicable 

to the design of personalized nutritional strategies. 
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Abstract: Obesity is a chronic metabolic disease of high complexity and of multifactorial origin. 
Understanding the effects of nutrition on childhood obesity metabolism remains a challenge. The 
aim of this study was to determine the fatty acid (FA) profile of red blood cell (RBC) membranes as 

a comprehensive biomarker of children’s obesity metabolism, together with the evaluation of their 

dietary intake. An observational study was carried out on 209 children (107 healthy controls, 41 who 

were overweight and 61 with obesity) between 6 and 16 years of age. Mature RBC membrane 

phospholipids were analyzed for FA composition by gas chromatography‐mass spectrometry (GC‐ 

MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ) and the 

Mediterranean Diet Quality Index for children (KIDMED) test. Compared to children with normal 

weight, children with obesity showed an inflammatory profile in mature RBC FAs, evidenced by 

higher levels of ω‐6 polyunsaturated FAs (mainly arachidonic acid, p < 0.001). Children who were 

overweight or obese presented lower levels of monounsaturated FA (MUFA) compared to children 

with normal weight (p = 0.001 and p = 0.03, respectively), resulting in an increased saturated fatty 

acid (SFA)/MUFA ratio. A lower intake of nuts was observed for children with obesity. A 

comprehensive membrane lipidomic profile approach in children with obesity will contribute to a 

better understanding of the metabolic differences present in these individuals. 

Keywords: childhood obesity; inflammation; membrane lipidome; omega‐6 fatty acids; red blood 
cell 

1. Introduction 

Interventions to control obesity have typically consisted of combined strategies including diet, 

exercise, and behavior therapy [1]. Despite efforts by governments, the food industry, and the science 

community, obesity and overweight rates keep increasing in both child and adult populations 

Nutrients 2020, 12, 3446; doi:10.3390/nu12113446 www.mdpi.com/journal/nutrients 

 

 

mailto:ijauregibeitia@azti.es
mailto:kportune@azti.es
mailto:itueros@azti.es
mailto:ricaechevarria@osakidetza.eus
mailto:velascovielba@osakidetza.eus
mailto:GRAUBOLADO@osakidetza.eus
mailto:trebolazabalaquirante@osakidetza.eus
mailto:castanogonzalez@osakidetza.eus
mailto:larocca@lipinutragen.it
mailto:ferreri@isof.cnr.it
mailto:sarranz@azti.es
http://www.mdpi.com/journal/nutrients


 

 

Nutrients 2020, 12, 3446 2 of 16 

worldwide [2,3], demonstrating a need for personalized strategies that guarantee the success of 
interventions in treating obesity. 
The focus on early clinical markers for overweight/obesity onset is, nowadays, a clear research 
target [4]. A new trend to focus on fats, and specifically the quality of dietary lipids, is crucial for the 
prevention and treatment of obesity [5]. In this sense, a strong contribution from the molecular 
approach developed in the last two decades, characterizing fat accumulation, highlights different 
kinds of signaling occurring in this disease and leading to comorbidities [6]. Since fat accumulation 

is strictly connected with the quality and quantity of fatty acids (FAs) in human tissues, the lipidomic 

approach was found to have a key role in describing the scenario of molecular signaling, providing 

crucial information on the various phases of weight increase, from overweight to obesity [7]. 

Indeed, membrane fatty acid‐based lipidomics has reached a high technology readiness level, 

developing simple (i.e., inexpensive and high‐throughput) and robust analytics of high resolving 

power, as demonstrated by several applications to diseases [8,9]. 

Molecular information on membrane lipid composition is of great importance at least for two 

reasons: (i) the set of membrane fatty acid controls the fluidity and permeability properties as well as 

the thickness of the bilayer, which are all implicated in the receptor and channel responses [10], and 

(ii) lipid signaling departs from the fatty acid residues of the membrane phospholipids. Therefore, 

the fatty acid composition directly describes the cellular predisposition to respond to the various 

stimuli that arrive from the extracellular environment [11]. Therefore, the balance in the fatty acid 

composition of the cell membrane leads to the balance in the functions of each individual cell and, 

hence, of the tissues and the whole organism [12]. 

It is worth recalling that to measure the lipid composition of blood, different blood compartments 

have been targeted [13]. Plasma or serum FA levels have been widely analyzed because they reflect 

short‐term dietary fat intake. However, analysis of lipid compositions from mature red blood cell 

(RBC) membranes offers an advantage over analysis of plasma because these cells last on average 120 

days in the blood compared to 3 weeks for platelet or plasma lipids, reflecting better long‐term dietary 

FA intake and tissue conditions [14]. Apart from this, RBCs maintain a more stable FA composition 

compared to plasma FA levels [15]. 

It is important to note that although future nutritional intervention studies are necessary to better 

understand the impact of personalized diet on lipid metabolism in children, lipidomics can help 

monitor the ω‐6 fatty acid content involved in the inflammation pathways that can be accompanied 

by essential FA deficiencies in the diet, which can be connected to many diseases and tissue 

malfunctions. As a matter of fact, monitoring the RBC membrane FA profile at the individual level 

can be an excellent candidate biomarker as it can offer the possibility to follow up the optimal intake, 

membrane incorporation, and biochemical transformations in order to personalize dietary 

intervention designed to recover FA deficiencies to prevent or control disease. Fatty acids in 

phospholipids represent the combination between nutritional and metabolic factors, with a strong 

contribution of the individual metabolism and condition of the patients. 

This study aims to generate knowledge on the importance of different fatty acid families (saturated 

fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)) for 

the cell membrane lipidome in a pediatric population. In this exploratory study, analysis of the RBC 

membrane shows its potential to provide indications of dietary and metabolic distinctions between 

children with overweight and obesity that can contribute, in the future, to designing more precise 

nutritional strategies that may be more effective at correcting the molecular imbalance in obesity. 

2. Materials and Methods 

2.1. Study Design 

An observational case‐control and retrospective study was conducted on 209 children (113 boys and 

96 girls) between 6 and 16 years old, recruited from the pediatric endocrinology unit at the Hospital 

Universitario Cruces (Barakaldo, Spain). Children were classified according to body mass 
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index (BMI), using an age and sex‐specific pediatric z‐score from Orbegozo tables [16]. BMI was taken 
as a reference to define the different categories, defining normal weight when the standard deviation 
(SD) of BMI was −1 < SD ≤ +1, overweight when the +1 < SD ≤ +2, and obesity when SD > +2. Groups 
were homogeneously distributed by gender and age. Finally, 107 children with normal weight, 41 
children with overweight, and 61 children with obesity were enrolled in the study. 
Subjects were excluded if they presented any kind of acute or chronic diseases, were taking 
medications, or had any presence of metabolic syndrome symptoms or obesity associated to any type 

of pathology. A physical examination was performed by a pediatrician. 
The  study  protocol  was  approved  by  the  Euskadi  Clinical  Research  Ethics  Committee 
(permission number PI2016181) and accomplished according to the Helsinki Declaration in 1975, 
revised in 2013. Subjects under study were included after acceptance (of the parents) to participate in 
the study and signing of informed consent. All the informed consent documents were signed by their 
parents, and in the case of children between 12 and 16 years of age, the informed consent was also 

signed by themselves, according to  the Euskadi Ethical Committee and sample biobank laws 
(Organic Law 3/2018, of December 5, on Protection of Personal Data and guarantee of digital rights; 

Law 14/2007 on Biomedical Research and RD 1716/2011 of Biobanks). 

2.2. Anthropometric Measures 

Body weight (kg) and height (cm) were measured by standardized methods [17]. Body mass index 

(BMI) was calculated as weight (kg) divided by the square of the height (m2). Anthropometric 

parameters as well as blood sampling were all conducted by pediatricians during the first visit to the 

Hospital Universitario Cruces. 

2.3. Food Habits and Nutrient Intakes 
 

During the first visit, a pediatrician interviewed the participants and collected personal data, 

including family medical history and information on the history of medication usage. Estimations of 

food consumption, including dietary diversity and variety, were measured using a quantitative food 

frequency questionnaire (FFQ), completed online by the parents of each volunteer, except in those 

cases of adolescents, who were encouraged to complete it themselves. For our study, an adapted FFQ 

was used, which was previously validated with portion sizes and food groups for the Spanish 

juvenile population [18–20]. Information about different food items collected from these 

questionnaires was then analyzed using DIAL®  software to translate their intake into their 

corresponding energy and nutrient composition (UCM & Alce Ingeniería S.A, Madrid, Spain) 

(v3.4.0.10). 

Dietary habits were also measured using the KIDMED test (Mediterranean Diet Quality Index), a 

validated questionnaire for the Spanish juvenile population that measures adherence to the 

Mediterranean diet, which is widely considered to be an optimally healthy diet for most populations 

[21,22]. According to the KIDMED index, a score of 0–3 reflects poor adherence to the Mediterranean 

diet, a score of 4–7 describes average adherence, and a score of 8–12 good adherence. 

2.4. Red Blood Cell (RBC) Membrane Fatty Acid Analysis 
 

The fatty acid composition of mature RBC membrane phospholipids was obtained from blood 

samples (approximately 2 mL) collected in vacutainer tubes containing ethylenediaminetetraacetic 

acid (EDTA). Samples were shipped to the Lipidomic Laboratory at a controlled temperature and, 

upon arrival, underwent quality control for the absence of hemolysis. During the blood work‐up, 

before lipid extraction and lipid transesterification to fatty acid methyl esters (FAMEs), the automated 

protocol includes the selection of mature RBCs, as reported previously [9,23–25]. Briefly, the whole 

blood in EDTA was centrifuged (4000 revolutions per minute (rpm) for 5 min at 4 °C) and the mature 

cell fraction was isolated based on the higher density of the aged cells [26] and controlled by the use 

of a cell counter (Scepter 2.0 with Scepter™ Software Pro, EMD Millipore, Darmstadt, Germany). All 

the subsequent steps were automated and included cell lysis, isolation of the membrane pellets, 
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phospholipid extraction from pellets using the Bligh and Dyer method [27], transesterification to 
FAMEs by treatment with a potassium hydroxide (KOH)/methyl alcohol (MeOH) solution (0.5 

mol/L) for 10 min at room temperature, and extraction using hexane (2 mL). The FAMEs were 

analyzed using capillary column gas chromatography (GC). GC analysis was run on the Agilent 6850 
Network GC System (Agilent, USA), equipped with a fused silica capillary column Agilent DB23 (60 
m × 0.25 mm × 0.25 μm) and a flame ionization detector. Optimal separation of all fatty acids and 
their geometrical and positional isomers was achieved. Identification of each fatty acid was made by 
comparison to commercially available standards and to a library of trans isomers of MUFAs and 

PUFAs. The amount of each FA was calculated as a percentage of the total FA content (relative %), as 

described in Section 2.5, being more than 97% of  the GC peaks recognized with appropriate 

standards. 

2.5. Red Blood Cell Membrane Fatty Acid Cluster 
 

Twelve FAs were chosen as representative cluster of the main building blocks of the RBC membrane 

glycerophospholipids and of the three FA families (SFA, MUFA, and PUFA): for SFAs, palmitic acid 

(C16:0) and stearic acid (C18:0); for MUFAs, palmitoleic acid (C16:1; c9), and oleic acid (C18:1; c9), 

cis‐vaccenic acid (C18:1; c11); for ω‐3 PUFAs, eicosapentaenoic acid (EPA) (C20:5) and 

docosahexaenoic acid (DHA) (C22:6); for ω‐6 PUFAs, linoleic acid (LA) (C18:2), dihomo‐gamma‐ 

linolenic acid (DGLA) (C20:3), and arachidonic acid (AA) (C20:4); for geometrical trans fatty acids 

(TFAs): elaidic acid (C18:1 t9) and mono‐trans arachidonic acid isomers (monotrans‐C20:4; ω‐6 

recognized by standard references as previously described by Ferreri et al. [28]). Considering these 

fatty acids, different indexes previously reported in the literature [25] were calculated: Omega‐3 

Index: (%EPA + %DHA) an index suggested as a cardiovascular disease risk factor; (%SFA/%MUFA) 

index related with membrane rigidity; inflammatory risk index (% ω‐6)/(% ω‐3); PUFA balance 

(%EPA + %DHA)/total PUFA × 100; free radical stress index (sum of trans‐18:1 + summary (Σ) of 

monotrans 20:4 isomers); unsaturation index (UI) (%MUFA) + (%LA/2) + (%DGLA/3) + (%AA/4) + (% 

EPA/5) + (%DHA/6); peroxidation index (PI) (%MUFA/0.025) + (%LA) + (%DGLA/2) + (%AA/4) + (% 

EPA/6) + (%DHA/8). 

Additionally, the enzymatic indexes of elongase and desaturase enzymes, the two classes of enzymes 

of the MUFA and PUFA biosynthetic pathways, were inferred by calculating the product/precursor 

ratio of the involved FAs. 

2.6. Statistical Analysis 

A power calculation was performed using G*power software (v3.1.9.7., Heinrich‐Heine‐ University, 

Düsseldorf, Germany), to determine the total sample size for analysis of covariance (ANCOVA) fixed 

effects, main effects, and interactions. A priori, we expected a medium effect size f 

= 0.25, (as the ratio of the variation among the group means to the average variation among subjects 

within each group as measured by their standard deviations), using an alpha = 0.05 as probability of 

the type I error, to have a 95% confidence for significative results, and beta = 0.2, as the acceptable 

probability of type II errors, concluding in a 0.8 power (where power is equal to 1‐beta). It is estimated 

that a lower value would imply too great a risk of incurring a type II error. A higher value would 

imply excessively expanding the sample [29]. The total sample size required was 158, which 

corresponds with 53 participants for each group. 

Differences between groups for nutrient intake, food group intake, and KIDMED test were 

determined by conducting a Kruskal‐Wallis test because the data were not normally distributed. 

Normal data distribution was assessed by Shapiro‐Wilk’s test or/and the Kolmogorov‐Smirnov test. 

Subsequently, Dunn’s (1964) test was performed for post hoc comparisons. A Bonferroni correction 

for multiple comparisons was made, to correct for the increased risk of type I error. 

An analysis of covariance test (ANCOVA) was run to determine the differences between RBC 

membrane fatty acids from children with normal weight, overweight, and obesity, after controlling 

for variables selected  as  potential  confounders,  such  as  age,  gender,  and  dietary  macro‐ and 

micronutrient intake. Post hoc analysis was performed with a Bonferroni adjustment for multiple 
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comparisons. First, a principal component analysis (PCA) was run on 18 dietary nutrient intake 
variables (individual FAs, families (SFA, MUFA, and PUFA), total lipids (%Energy), carbohydrates, 

fiber, proteins, and calories), obtained with DIAL software (v3.4.0.10, Department of Nutrition 

(UCM) & Alce Ingeniería, S.L., Madrid, Spain) after transforming the information about food items 

from FFQ questionnaires into micro‐ and macronutrient values, in order to reduce and simplify the 

dimensions of these variables and use the generated factors as diet covariates [25]. Kaiser‐Meyer‐ 

Olkin (KMO) and Bartlett’s test of sphericity were used to verify the sampling adequacy for the 

analysis. The PCA revealed three components that had eigenvalues greater than one and which 

explained 83.74% of the total variance. These components were included in the ANCOVA analysis 

as diet covariates. The level of significance was set at p < 0.05. 

In order to establish correlations between the RBC membrane FA profile and the dietary intake and 

other parameters measured in this study, due to the non‐normality of the data of most of the 

variables, Spearman’s rank‐order correlation was conducted. In those cases where all variables had 

a normal distribution, a Pearson product‐moment correlation was run. All statistical analyses were 

performed using SPSS (IBM Corp. v24.0, Armonk, NY, USA). 

3. Results 

3.1. Dietary Intake 

Table 1 shows dietary intake according to food categories calculated via food questionnaires. The 

diet of children with obesity was characterized by lower intake of cereals (p = 0.04), dairy products 

(p = 0.05), and nuts (p = 0.01), compared to children with normal weight. The overweight group only 

showed significant differences of lower intake of cereals compared with the group of children with 

normal weight (p = 0.004). Regarding diet quality, the KIDMED questionnaire was conducted to 

measure the adherence of different groups to the Mediterranean diet. As we can see in Table 1, only 

children with normal weight achieved good adherence (KIDMED score ≥8), while children with 

overweight and obesity showed mild adherence to the Mediterranean diet (less than 8 points and 

equal to or greater than 4 points) [21]. Even so, children with normal weight just had a difference of 

one point in the KIDMED scale compared with the other groups and no statistically significant 

differences were observed, (p = 0.07). KIDMED and BMI showed a statistically significant slight 

negative correlation (Pearsonʹs Correlation coefficient rs (98) = ‐0.198, p = 0.004). The KIDMED index 

did show some slight correlation with RBC membrane AA, EPA, and DHA levels (rs (98) = 

−0.183, p = 0.010, rs (98) = 0.195, p = 0.006, and rs (98) = 0.227, p = 0.001, respectively). 
Table 2 shows the differences among three groups in macronutrients and individual fatty acid 
daily intake expressed as % of Kcal. No differences among groups were observed for macronutrients, 

except for the group of children with normal weight that showed a lower intake of total lipids 
compared with the overweight group (p = 0.01). Considering the intake of specific fatty acids, the 

children with normal weight reported a higher intake of C16:0 and total SFAs compared to the groups 

with overweight and obesity, but no other differences were observed. 
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Table 1. Food group intakes. 

Children with Normal 
Weight (NO) 

n = 107 

Children Who Are 
Overweight (OV) 

n = 41 

Children with 
Obesity (OB) 

n = 61 

Post hoc Pairwise 
Comparison (p *) Food Groups (g/day) Kruskal‐Wallis H Test (p) 

                                                   Med (Q1–Q3)               Med (Q1–Q3)        Med (Q1–Q3)                                                     NO:OV   NO:OB   OV:OB 

Fruits 
Vegetables 
Cereals 
Legumes 
Olive oil 

Dairy products 

Eggs 
Red meat 
White meat 

Dried fruits and nuts 
Lean fish 

Oily fish and shellfish 
Sugary drinks 

Juices 

KIDMED score 

423 (297–532) 
159 (96–259) 
161 (118–210) 
91 (54–102) 
15 (15–37) 

325 (255–512) 

15 (15–34) 
21 (21–21) 
50 (21−50) 
2.1 (0–6.4) 
27 (27–27) 
27 (13–27) 
18 (0–45) 
80 (27–250) 

8 (7–9) 

354 (273–509) 
154 (77–250) 
127 (96–171) 
80 (51–102) 
15 (12–15) 

314 (226–329) 

15 (15–34) 
21 (21–50) 
50 (36–50) 
1.1 (0–6.4) 
27 (27–27) 
27 (9–31) 
21 (0–54) 

107 (27–196) 

7 (6–9) 

419 (272–603) 
141 (74–232) 
139 (105–188) 
75 (48–96) 
15 (12–37) 

302 (207–358) 

15 (15–34) 
21 (21–50) 
50 (21–50) 
1.1 (0–2.1) 
27 (13–27) 
27 (11–31) 
16 (0–54) 
80 (27–250) 

7 (6–9) 

0.50 
0.49 
0.01 
0.52 
0.26 
0.10 

0.36 
0.31 
0.15 
0.03 
0.613 
0.55 
0.95 
0.95 

0.07 

0.01 0.11 0.95 

0.73 0.03 0.96 

Data are expressed as medians and quartile 1 and quartile 3 (Med Q1‐Q3). Not normally distributed variables. * Pairwise comparison conducted with a Bonferroni 

adjustment. 
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Table 2. Dietary daily intake expressed as % of energy (%E). 

Children with Normal 
Weight (NO) 

n = 107 

Med (Q1–Q3) 

Children Who Are 
Overweight (OV) 

n = 41 

Med (Q1–Q3) 

Children with 
Obesity (OB) 

n = 61 

Med (Q1–Q3) 

Post Hoc Pairwise 
Comparison (p *) Variables Kruskal‐Wallis H Test (p) 

NO:OV NO:OB OV:OB 

Calories (Kcal/day) 
Proteins (%E) 

Carbohidrates (%E) 

Simple sugars (%E) 

Lipids (%E) 

2058 (1749–2376) 
16.3 (15.0–17.7) 
46.7 (43.2‐ 49.9) 
20.9 (18.5–23.8) 
33.7 (29.9–37.0) 

1983 (1516–2335) 
16.8 (15.3–18.5) 
48.1 (43.9–53.3) 
20.9 (17.9–24.8) 
31.1 (27.0–35.4) 

1916 (1709–2167) 
16.4 (14.9–17.3) 
46.7 (43.4–51.1) 
21.8 (18.9–25.0) 
32.9 (27.4–38.2) 

0.18 
0.42 
0.19 
0.42 
0.05 

C14:0 
C16:0 
C18:0 

Tot. SFA 
C16:1 
C18:1 

Tot. MUFA 
C18:2 

C20:4 
Tot. ω6 
C18:3 

C20:5 (EPA) 

C22:5 (DPA) 
22:6 (DHA) 
Tot. ω3 

Tot. PUFA 

ω‐6/ω‐3 

1.0 (0.8–1.2) 
6.3 (5.7–7.1) 
2.4 (2.1–2.7) 
9.7 (8.7–10.9) 
0.51 (0.46–0.58) 
14.2 (11.4–16.5) 
14.7 (11.9–17.1) 
3.6 (3.2–4.2) 

0.04 (0.03–0.05) 
3.5 (3.0–4.4) 

0.52 (0.50–0.61) 
0.07 (0.04–0.1) 

0.017 (0.011–0.024) 
0.14 (0.09–0.19) 
0.8 (0.7–1.0) 
4.3 (3.8–5.3) 

4.6 (4.0–5.4) 

0.8 (0.6–1.1) 
5.8 (5.1–6.7) 
2.2 (1.9–2.5) 
9.0 (7.8–10.1) 
0.49 (0.42–0.54) 
12.3 (10.1–14.8) 
12.7 (10.5–15.2) 
3.6 (3.1–3.9) 

0.04 (0.03–0.06) 
3.7 (2.8–4.5) 

0.50 (0.46–0.54) 
0.07 (0.02–0.11) 

0.017 (0.006–0.025) 
0.13 (0.05–0.20) 
0.8 (0.6–0.9) 
4.5 (3.5–5.4) 

4.8 (3.7–6.8) 

0.9 (0.7–1.1) 
5.8 (5.2–6.7) 
2.2 (2.0–2.6) 
9.0 (7.9–10.4) 
0.50 (0.42–0.60) 
13.3 (11.0–17.3) 
13.9 (11.4–17.8) 
3.6 (2.9–4.3) 

0.04 (0.03–0.05) 
3.4 (3.1–5.0) 

0.52 (0.45–0.58) 
0.07 (0.04–0.1) 

0.016 (0.009–0.025) 
0.13 (0.09–0.19) 
0.8 (0.6–0.9) 
4.3 (3.6–5.5) 

4.9 (4.0–6.7) 

0.02 
0.01 
0.05 
0.004 
0.1 
0.08 
0.07 
0.99 

0.78 
0.97 
0.44 
0.88 

0.59 
0.84 
0.36 
0.96 

0.25 

0.06 
0.04 

0.08 
0.03 

1.0 
1.0 

0.02 0.04 1.0 

Data are expressed as medians and quartile 1 and quartile 3 (Med Q1‐Q3. Not normally distributed variables. SFA‐saturated fatty acid; MUFA‐monounsaturated 

fatty acid; PUFA‐polyunsaturated fatty acid, (%E)‐%Energy. * Pairwise comparison conducted with a Bonferroni adjustment. 

Individual FA (% E) 

Macronutrients 
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3.2. RBC Membrane Fatty Acid Profile 
 

In order to compare RBC FA profiles between groups, a one‐way ANCOVA was conducted using 

age, sex, and dietary intake as covariates to adjust the error made by those confounding factors (Table 

3). The group with obesity showed higher levels of stearic acid (p = 0.03) and total SFA (p = 

0.03) than the normal weight group. Oleic acid and total MUFA levels in the groups with obesity and 

overweight were lower compared with the children with normal weight. Regarding ω‐6 FA, linoleic 

acid was higher for the normal weight group compared to children with obesity (p = 0.03), but 

dihomo‐γ‐linolenic acid (DGLA) and arachidonic acid levels were higher for children with obesity 

compared with the children with normal weight (p = 0.002 and p = 0.0003, respectively). Individual 

and total ω‐3 levels did not show significant differences. The SFA/MUFA ratio was higher for children 

with obesity and overweight compared with children with normal weight (p = 0.001 and p = 0.03, 

respectively), and for the ω‐6/ω‐3 ratio, children with obesity and overweight showed higher but not 

statistically significant values compared with the children with normal weight (p = 0.09 and p = 0.1, 

respectively). 

With respect to enzymatic activity, ∆9D was lower for children with obesity, indicating the 

hypoactivity of this enzyme to convert stearic acid (C18:0) to oleic acid (9c C18:1). 

In order to explore possible relationships between dietary intake components and RBC lipid 

profile, a Spearman’s rank‐order correlation was carried out. Only dietary EPA, DPA, and DHA 
showed mild correlations with levels of EPA in the RBC (rs (98) = 0.33 p < 0.0001, rs (98) = 0.363 p < 
0.0001, and rs (98) = 0.313 p < 0.0001, respectively). 
At the same time, dairy products and cereal intake were higher for children with normal weight 
compared to  children with obesity, but neither showed significant correlations with the  RBC 
membrane FAs. 



 

 

Nutrients 2020, 12, 3446 9 of 16 

Table 3. Red blood cell (RBC) membrane fatty acid profile. 

Children with Normal Children Who Are Children with 
ANCOVA p‐Value a

 
         Weight (NO)                Overweight (OV)        Obesity (OB)   Fatty Acids (%) 

                                                            Mean               SE          Mean       SE       Mean               SE                       p             NO:OV    NO:OB    OV:OB 

Palmitic acid (C16:0) 
Stearic acid (C18:0) 

TOT. SFA 

Palmitoleic acid (C16:1) 

Oleic acid (9c C18:1) cis‐

Vaccenic acid (11c C18:1) 

TOT. MUFA 

Linoleic acid (C18:2) 

DGLA (C20:3) ARA 

(C20:4) TOT. ω‐6 

EPA (C20:5) 

DHA (C22:6) TOT. 

ω‐3 

TOT. PUFA 

Trans C18:1 

Trans C20:4 

22.44 
17.67 

40.12 

0.40 

17.48 

1.19 

19.09 

14.28 

2.01 

18.76 

35.06 

0.60 

4.97 

5.57 

40.63 

0.08 

0.08 

0.10 
0.10 

0.10 

0.01 

0.13 

0.02 

0.13 

0.13 

0.04 

0.13 

0.15 

0.02 

0.11 

0.12 

0.14 

0.01 

0.01 

22.54 
17.94 

40.48 

0.45 

16.68 

1.14 

18.27 

14.30 

2.30 

19.23 

35.83 

0.49 

4.67 

5.16 

40.99 

0.09 

0.06 

0.16 
0.17 

0.16 

0.02 

0.20 

0.03 

0.22 

0.21 

0.06 

0.21 

0.25 

0.03 

0.17 

0.19 

0.22 

0.01 

0.01 

22.49 
18.13 

40.58 

0.43 

16.65 

1.14 

18.27 

13.71 

2.23 

19.66 

35.65 

0.54 

4.79 

5.34 

40.98 

0.09 

0.08 

0.13 
0.14 

0.14 

0.02 

0.17 

0.02 

0.18 

0.17 

0.05 

0.18 

0.21 

0.03 

0.14 

0.16 

0.18 

0.01 

0.01 

0.86 
0.03 

0.02 

0.08 

<0.001 

0.12 

<0.001 

0.02 

<0.001 

<0.001 

0.12 

0.01 

0.29 

0.16 

0.21 

0.88 

0.31 

1.00 
0.54 

0.21 

0.12 

<0.001 

0.35 

0.01 

1.00 

<0.001 

0.18 

0.03 

0.02 

0.41 

0.21 

0.51 

1.00 

0.65 

1.00 
0.03 

0.03 

0.31 

<0.001 

0.23 

0.001 

0.03 

0.002 

<0.001 

0.08 

0.35 

0.95 

0.73 

0.39 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.09 

1.00 

0.37 

1.00 

0.66 

1.00 

1.00 

1.00 

1.00 

0.41 

               TOT. TRANS                       0.17               0.01          0.15       0.01       0.17               0.01                   0.47             0.71           1.00          0.72   

                                                                                                                         Indexes   

ω‐6/ω‐3 
Omega 3 Index 

SFA/MUFA 

∆6D + ELO 20:3/18:2 b 

∆5D 20:4/20:3 

∆9D 16:1/16:0 

∆9D 18:1/18:0 

PUFA BALANCE 

Peroxidation Index 

Unsaturation Index 

6.59 
5.57 

2.12 

0.142 

9.59 

0.018 

0.994 

13.71 

137.18 

161.58 

0.18 
0.12 

0.02 

0.003 

0.18 

0.001 

0.01 

0.28 

0.81 

0.57 

7.33 
5.16 

2.21 

0.158 

8.46 

0.02 

0.928 

12.58 

136.62 

161.27 

0.28 
0.19 

0.03 

0.004 

0.29 

0.001 

0.017 

0.45 

1.31 

0.91 

7.23 
5.34 

2.24 

0.164 

8.96 

0.019 

0.916 

13.00 

138.00 

162.28 

0.24 
0.16 

0.02 

0.004 

0.24 

0.001 

0.014 

0.37 

1.10 

0.76 

0.09 
0.16 

<0.001 

<0.001 

0.004 

0.07 

<0.001 

0.08 

0.71 

0.67 

0.09 
0.21 

0.03 

0.10 
0.73 

0.001 

1.00 
1.00 

1.00 

0.004 
0.07 

0.004 

0.11 

1.00 

1.00 

0.12 
0.43 

<0.001 

0.40 

1.00 

1.00 

0.59 
1 

1 

1.00 

1.00 

1.00 

Data are presented as mean ± standard error (SE). Adjusted for age, sex, and dietary components, extracted from the principal component analysis of dietary nutrient 

intake (individual FAs, families (SFA, MUFA, and PUFA), total lipids (%Energy), carbohydrates, fiber, proteins, and calories). a Post hoc tests were conducted with a 

Bonferroni adjustment. b Levene’s test of homogeneity of variance was not met. 
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4. Discussion 
 

Lipidomic monitoring of mature RBC membranes evaluated in this study contributes to highlighting 

the importance of each fatty acid class as a molecular parameter to better understand the lipidomic 

pathways connected with childhood obesity. Our results indicate molecular inflammation derived 

from unbalanced levels of membrane fatty acids and dysregulation of desaturase enzymatic activity 

as key parameters for the metabolic outcome in obesity. 

Different studies have been published reporting RBC membrane lipid profiles of adult populations 

with overweight and obesity [30,31] and a few, also, on child populations with obesity [32]. 

In a meta‐analysis study published by Fekete et al. [33], the FA profiles from different blood 
fractions were analyzed in order to determine the long‐chain PUFA status in obesity. In total plasma 
lipids and phospholipids, high variability in individual FA levels was observed throughout the 

different studies analyzed. All the studies agreed that differentiated lipid profiles were observed for 
subjects with overweight and obesity compared to subjects with normal weight, characterized by a 
greater alteration in ω‐6 FA. In agreement with our results, all the biomarkers analyzed in this meta‐ 

analysis showed increased levels of DGLA and decreased LA for the population with overweight 

and/or obesity. This meta‐analysis could not find any significant result for AA, despite increased 

levels of AA in adipose tissue, which has been previously associated with obesity [34–36]. However, 

our results revealed significant increased levels of AA in RBC membranes in children with obesity. 

This heterogeneity points towards a need for a more precise biomarker to characterize and compare 

different population groups, highlighting the advantages of choosing mature RBC membrane as a 

representative of nutritional and metabolic contributions [11]. 

Our results can be seen also in view of other studies that have also analyzed RBC membranes. A 

study on children with overweight and obesity with metabolic syndrome from 5 to 18 years of age in 

an Italian population showed similar FA levels of total ω‐6 and total SFAs, whereas for all the other 

measured PUFAs and indexes, differences could be observed [32]. The variability in RBC FA between 

different countries [37] might be the reason, and this is an important point to emphasize in our 

approach, which proposes common features of an automatized procedure for cell sampling and 

membrane isolation and of a precise cluster of fatty acids to analyze. 

To our knowledge, this is the first time that a systematic approach was employed that analyzes 

FAs from isolated mature RBC membranes in pediatric populations with overweight and obesity 
compared to children with normal weight in order to identify specific characteristics of the fatty acid 
profile for childhood obesity. Furthermore, as the composition of the RBC membrane is substantially 
affected by diet and metabolism, the elimination of the effect of diet as a confounding variable in our 
ANCOVA analysis allows a more robust and realistic examination of the effects of metabolic status 
of the obesity condition on the RBC FA profile. 
According to data obtained in our study, the group with obesity is characterized by an increase 

in ω‐6 fatty acids due to the higher levels of AA and, at the same time, of DGLA, but ω‐3 mediated 
signaling also has to be balanced. Omega‐6 FAs have been previously described in the literature as 

precursors  of  proinflammatory mediators  [38,39]  that  act  through  different  mechanisms  on 
inflammatory processes. Unlike the other ω‐6 FAs, LA showed lower levels for the group with obesity 
compared with the children with normal weight. Higher RBC LA levels have been linked with 

improved body composition, insulin resistance, and lower levels of inflammatory markers in 

previous studies. This disequilibrium of PUFA metabolism towards ω‐6 FAs seems to contribute to 

excessive adipose tissue development and represents, itself, an emerging risk factor for obesity 
[40,41]. 
Previous studies have shown an inverse correlation between ω‐3 intake and AA levels in RBCs 
that can be due the competition of the Δ6‐desaturase [42]. Although we did not observe differences 
in the dietary intake of ω‐3, nor in RBC ω‐3 levels, but considering that AA levels appear to be 

enhanced in obesity, an increase in ω‐3 consumption in the population with obesity can be a crucial 

dietary recommendation in order to counteract proinflammatory precursors linked with the disease. 
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Regarding SFA and MUFA levels, an altered ratio in the group with obesity can be observed, 
mainly due to lower levels of oleic acid and higher levels of stearic acid in the group with obesity 

compared with the children with normal weight. The enzymatic activity of Δ‐9‐desaturase or 

stearoyl‐CoA desaturase‐1 (SCD1), measured indirectly by the ratio between oleic and stearic acids, 

showed a lower activity for the group with obesity. The overall picture that comes from examination 

of the fatty acid remodeling occurring in obesity highlights the role of de novo lipogenesis with the 

formation of saturated fatty acids (SFA) and their enzymatic transformation to monounsaturated 

fatty acids (MUFA), connected with the functioning of delta‐9 desaturase and the corresponding gene 

expression (SCD1, Stearoyl CoA Desaturase). As a consequence, the main fatty acid biomarkers of 

weight increase are MUFAs, such palmitoleic acid (9 cis‐16:1) and oleic acid (9 cis‐18:1), the former 

being considered for its role as a lipokine [43] and the latter being considered the main fatty acid 

accumulating in adipose tissue as triglycerides [44–48]. 

Although higher dietary intake of SFAs was observed in the normal weight group compared with 

the group with obesity, the SFA level in RBC membranes was slightly higher in the study population 

with obesity. Possible explanations for this result, as explained above, could be due to the greater 

activity of SCD1 in the children with normal weight, which may have converted higher proportions 

of SFAs to MUFAs, as reflected in higher oleic acid levels in this group. At the same time, the 

SFA/MUFA ratio, which is correlated with increased membrane rigidity, appears in higher levels in the 

group with obesity [12,49]. 

Precision nutrition based on molecular data considers that the assessment of dietary patterns 

provides a more reliable picture of real food intake compared to the assessment of individual 

macronutrient intake [50]. Links between dietary patterns and RBC lipid composition have been 

considered in our study to provide information that could be useful for more precise nutritional 

recommendations. Dietary patterns of children with normal weight were characterized by higher 

intake of nuts compared with the group with obesity and a higher intake of cereals compared with 

the overweight group, but neither food groups showed correlations with the RBC membrane FAs. 

However, different epidemiological and nutritional clinical trials conducted in adults have reported 

an inverse relationship between nut consumption and body mass index (BMI) [51–53], associated 

with several health benefits, such as antioxidant, hypocholesterolemic, cardioprotective, anticancer, 

anti‐inflammatory, and antidiabetic benefits, among other functional properties [54,55]. Previously 

published results based on self‐reported intakes using food frequency questionnaires pointed out 

that a high intake of grains could be protective against obesity [56,57]. Regarding diet quality, 

measured by the KIDMED test, statistically significant differences were not observed. Even so, a 

tendency of a higher adherence to Mediterranean diet in the children with normal weight, compared 

with the groups with overweight and obesity, can be observed (p = 0.07), and these results agree with 

other studies with pediatric populations with overweight and obesity [58]. 

In our opinion, there are several points to be considered for the identification of a fat biomarker 

in obesity, as well as in other physio‐pathological states. The first focus is on the choice of the sample 
to examine: (i) mature red blood cells are representative for both functional and structural roles of 

the  fatty  acid  residues  which  compose  its  membrane  phospholipids; (ii)  the  fatty  acids  in 
phospholipids represent the combination between nutritional and metabolic factors, with strong 
contribution to the individual metabolism and condition of the patients. 

The second focus is on the variations in the fatty acid residues of membrane phospholipids, which 

point to a differentiation between the overweight and obese status: (a) oleic acid is reduced in 

both subjects with overweight and those with obesity, which is interesting since, in adults, it is known 

that the decrease in this fatty acid is correlated with weight increase [31]. The role of the FFQ checked 

in our study clarified that there is no increase in SFA intake in children with obesity, thus shifting the 

attention to the metabolism of children with obesity and enzymatic functioning. It should be noted 

that in overweight and obesity, the decrease in desaturase delta‐9 activity is significant, thus 

suggesting a shift in the enzyme functioning toward the SFA pathway, and (b) the role of the omega‐ 

6 pathway for the arachidonic acid increase is clearly shown in the comparison between children with 
normal weight and children with obesity, showing that in obesity, the increase in inflammatory 
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signals could be crucial to be controlled in order to treat metabolic deficiencies related to childhood 
obesity. 
This is an exploratory study that highlights some aspects to be further assessed in larger 
populations but also gives an indication for dietary and metabolic distinctions between children with 
overweight and obesity, to be further explored with intervention studies. At the same time, the 
indirect measurement of enzyme activity by the ratio between product and precursors, although very 
popular, could be considered as a limitation of the study and should be measured directly to 

emphasize and reaffirm the conclusions obtained. The use of an FFQ is also a limitation of the study 

as this type of questionnaire usually underestimates dietary intake [59]. Regarding the sample size, 

the authors are aware that the overweight group did not achieve the expected sample size, which 

was attributed to difficulties in recruiting, typically observed in human studies and especially in 

recruiting children; therefore, there might not have been enough power to detect differences in the 

overweight group and this could have led to a type II error. Future work should be focused on 

increasing the study sample size to achieve a greater statistical power. In order to compare with other 

studies that use international tables for determining obesity, such as the International Obesity Task 

Force (IOTF) or the World Health Organization (WHO), using the Spanish tables described above can 

be seen as a limitation, even if they better describe our study population. We can summarize that the 

presented study showed an altered RBC FA profile of the pediatric population with obesity, 

characterized by two main features: (i) an increased ω‐6 molecular contribution, although no 

differences in PUFA dietary intake between groups were observed, which can create a predisposition 

for unbalanced signaling that departs from membranes; (ii) higher SFAs in the RBC membranes of 

children with obesity, contrary to the SFA intake that was found to be higher in controls, which can 

perturb membrane organization. Both results highlight the crucial role of molecular diagnostics for 

precise evaluation of patient status. Indeed, the lipidomic analysis of mature RBCs provides a 

systematic, automatized approach for the characterization of the lipid composition in these cells from 

the pediatric population with obesity, which can provide molecular insights to assist further 

development of precise and personalized nutritional strategies. Restoration of the optimal levels of 

each individual fatty acid, families, and ratios appears to be an important strategy to be considered 

in the treatment of potentially metabolic deficiencies related to childhood obesity from a nutritional 

point of view. Future studies, mainly nutritional intervention studies with children, are needed to 

elucidate an adequate selection among the types of fats that must be ingested, with the crucial target 

of the recovery of the homeostatic levels of the cell membrane, for proper functioning, both of 

signaling and metabolic pathways. 
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Abstract: As the obesity epidemic continues to grow inexorably worldwide, the need to develop 

effective strategies to prevent and control obesity seems crucial. The use of molecular tools can be use- 

ful to characterize different obesity phenotypes to provide more precise nutritional recommendations. 

This study aimed  to determine the fatty acid (FA) profile of red blood cell (RBC) membranes, together 

with the evaluation of their dietary intake  and biochemical parameters, of children and adults with 

obesity. An observational study was  carried out  on 196 children (113 with normal weight and  83 

with obesity) and  91 adults (30 with normal weight and  61 with obesity). Mature RBC membrane 

phospholipids were  analyzed for FA composition by gas chromatography-mass spectrometry (GC- 

MS). Dietary habits  were evaluated using  validated food frequency questionnaires (FFQ). Children 

with obesity presented higher levels  of ω-6 polyunsaturated FAs (mainly linoleic  acid,  p = 0.01) 

and  lower values of ω-3 FAs (mainly DHA,  p < 0.001) compared with adults.  Regarding blood 

biochemical parameters, children with  obesity presented lower levels of glucose, LDL cholesterol, 

and alanine aminotransferase compared with adults with obesity.  These lipidomic differences could 

be considered to provide specific nutritional recommendations for different age groups, based  on an 

adequate fat intake. 
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1. Introduction 

In the last decades, unhealthy dietary patterns are increasing and affecting the preva- lence  

of noncommunicable diseases in the world. According to the World Health Organi- zation 

(WHO), worldwide obesity has  nearly tripled since 1975, indicating that, in 2016, 

39% of adults aged 18 years and over,  were overweight and 13% suffered from  obesity [1]. 

In addition to affecting the adult population, obesity is becoming a rising problem affecting 

children and adolescents as well.  As the WHO states, more than 340 million children and 

adolescents, around one in three from  5 to 19 years, were overweight or obese  in 2016 and 

38 million children under the age of 5 were overweight or obese  in 2019 [1]. 
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Obesity prevention and  treatment strategies include lifestyle and  behavioral interven- 

tions, focused on changes in diet and physical activity. Low-fat diets, aimed at reducing 

caloric intake, have been the  most recommended strategy for people with obesity in the 

past decades [2].  Moreover, there is not  enough evidence from randomized control tri- 

als supporting the  beneficial effects of low-fat diets over other dietary interventions for 

long–term weight loss  [2].  Besides, recent scientific evidence showed that low-fat diets 

reduced LDL and HDL  cholesterol and increase triglycerides. Further, the  replacement 

of saturated fatty acids (SFA)  with monounsaturated fatty acids (MUFA) has  been pro- 

posed as an appropriate strategy to reduce obesity, since substituting SFA with MUFAs 

raises HDL-cholesterol levels, improves insulin sensitivity, and lowers LDL-cholesterol 

levels [3–5]. Other dietary plans, as a strategy for obesity management, have  been proposed 

including low–carbohydrate diets, high-protein diets, very-low-calorie diets with meal  re- 

placements, Mediterranean diet, and  diets  with intermittent energy restrictions, evidencing 

that a successful diet  to reduce weight must be healthy, balanced and without nutritional 

deficiencies. In any  case,  most of them include general dietary recommendations rather 

than specific dietary plans based on individual metabolism [6]. 

However, obesity prevalence in both  child  and  adult populations continues increasing 

worldwide, suggesting that, personalized intervention strategies could provide precise 

nutritional guidance and  contribute to successful long-term interventions [7]. Even though 

dietary guidelines for macronutrients intake in adults and children are established [8,9], 

according to the different requirements of both  population groups, especially from  energy 

intake, interventions to control obesity in children and  adults are not specific  nor differenti- 

ated, regarding the intake of food  groups or specific  nutrients. For that  reason, the optimal 

macronutrient distribution of the diet  to improve weight status is unclear [10]. The use of 

molecular tools  (metabolomic, nutrigenetic, metagenomic, etc.) can provide new  scientific 

evidence related to the characterization of different obesity phenotypes together with the 

impact of diet on metabolism [11]. This can be useful to personalize therapy and  contribute to 

providing more precise nutritional recommendations, mainly for an adequate fat intake for 

different age groups and health conditions [12–14]. 

The use  of mature erythrocyte membrane as a representative site for all other body tissues 

in FA profiling is an established protocol for membrane-based molecular diagnos- tics [15–

17]. The measure of the lipid  profile at the cellular level, precisely at the membrane 

phospholipid level, provides not  only information related to the  nutritional status of an 

individual, but also information related to FA metabolism that  is involved in the formation 

of the most important lipid building blocks  for cell life, which are the phospholipids. This 

approach has a profound diagnostic meaning, not only  from  the biochemical point of view 

related to the lipid pathways, but  also  from the biophysical and biological consequences, 

since the  balance reached by the  FA components of the  membrane phospholipids must 

respect the tissue type  and, ultimately, satisfy the homeostatic requirement for the optimal 

cell functioning [18]. 

This  study aimed to  evaluate lipid profile differences in  mature RBC membranes 

between children and adults with obesity, in relation to their nutrient intake. Defining 

these  differences in RBC FA profiles, related to individual molecular and  nutritional status, 

will  allow the  design of differentiated nutrition strategies for  children and adults with 

obesity, giving relevance to the functional roles  of different types of dietary fats. 

2. Results 

2.1. Descriptive Characteristics of the Participants 

A total of 83 children with obesity (26 boys and 57 girls) between 6 to 16 years old and  

a group of 61 adults with obesity (19 males and  42 females) between 19 to 68 years  old 

participated in the study (Table  S1 in Supplementary Material). At the same time, control 

subjects, consisting of 113 children and  30 adults with normal weight and  same  age ranges 

were  also included. A matched gender distribution was found for children and  adults with 

obesity (p = 0.83) but for normal weight group, there was not a matched gender distribution 
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(p = 0.04). Obvious differences were observed for age  between children and adults with 

obesity and children and adults with normal weight. 

2.2. Red Blood Cell Membrane Fatty Acids Profile 

The pediatric group with obesity showed lower levels of palmitic acid and  cis–vaccenic acid (p 

= 0.01 and  p = 0.05 respectively) compared to the adult group with obesity (Table  1). LA,  

DGLA, and total ω–6 FA  levels in  the  pediatric group with obesity were higher 

compared with the adult group with obesity (p = 0.01, p = 0.04, and p < 0.01 respectively). 

DHA  and  total  ω-3 FA levels  were lower for the pediatric group with obesity (p < 0.01 and p 

< 0.01 respectively) and hence, the ω-6/ω-3 ratio  was  higher (p < 0.01). Regarding other 

indexes, PUFA balance, PI, and  UI were  lower for the pediatric group with obesity (p < 0.01, p 

= 0.01 and p = 0.04 respectively). 

Table 1. Red blood  cell (RBC) membrane fatty acid profile. 

Group with Obesity Group with Normal Weight 

Pediatric n = 83 Adult n = 61 Ancova Pediatric n = 113 Adult n = 30 Ancova 

Fatty Acid (%) Mean SE Mean SE p * Mean SE Mean SE p * 

Palmitic  acid (C16:0) 

Stearic acid (C18:0) 

22.31 

18.22 

0.16 

0.18 

23.22 

17.54 

0.22 

0.24 

0.01 

0.06 

22.51 

17.68 

0.10 

0.10 

22.72 

17.66 

0.23 

0.23 

0.43 

0.94 

TOTAL SFA 40.55 0.16 40.78 0.21 0.48 40.21 0.10 40.22 0.23 0.97 

Palmitoleic acid (C16:1) 

Oleic acid (9c C18:1) 

cis–Vaccenic acid (11c 

C18:1) 

0.46 

16.55 
 

1.17 

0.02 

0.20 
 

0.04 

0.37 

17.08 
 

1.34 

0.03 

0.27 
 

0.06 

0.08 

0.20 
 

0.05 

0.41 

17.46 
 

1.22 

0.02 

0.12 
 

0.02 

0.48 

17.79 
 

1.32 

0.03 

0.27 
 

0.05 

0.08 

0.29 
 

0.07 

TOTAL MUFA 18.19 0.21 18.78 0.29 0.18 19.10 0.13 19.57 0.28 0.17 

Linoleic acid (C18:2) 

DGLA (C20:3) 

ARA (C20:4) 

14.00 

2.35 

19.73 

0.27 

0.07 

0.21 

12.39 

2.07 

19.39 

0.37 

0.09 

0.29 

0.01 

0.04 

0.44 

14.22 

2.05 

18.75 

0.12 

0.04 

0.14 

13.12 

1.81 

18.32 

0.27 

0.08 

0.32 

<0.01 

0.02 

0.26 

TOTAL ω6 36.12 0.29 33.84 0.39 <0.01 35.02 0.16 33.27 0.35 <0.01 

EPA (C20:5) 

DHA (C22:6) 

0.49 

4.52 

0.04 

0.19 

0.63 

5.84 

0.06 

0.26 

0.10 

<0.01 

0.59 

4.93 

0.02 

0.10 

0.65 

5.83 

0.05 

0.23 

0.31 

<0.01 

TOTAL ω3 5.01 0.21 6.47 0.29 <0.01 5.52 0.11 6.48 0.26 <0.01 

TOTAL PUFA 41.12 0.24 40.31 0.32 0.10 40.54 0.15 39.88 0.33 0.09 

Trans C18:1 

Trans C20:4 

0.08 

0.07 

0.01 

0.01 

0.07 

0.08 

0.01 

0.01 

0.65 

0.59 

0.08 

0.07 

0.01 

0.01 

0.10 

0.10 

0.02 

0.02 

0.34 

0.14 

TOTAL TRANS 0.15 0.01 0.15 0.02 0.98 0.16 0.01 0.14 0.02 0.46 

Indexes 

ω6/ω3 

SFA/MUFA 

Omega–3 Index 

∆6D+ELO 20:3/18:2 a 

∆5D 20:4/20:3 

∆9D 16:1/16:0 

∆9D 18:1/18:0 

DNL Index  16:0/18:2 

PUFA BALANCE 

Peroxidation Index 

Unsaturation index 

7.55 

2.24 

5.01 

0.17 

8.60 

0.02 

0.91 

1.62 

12.13 

136.77 

161.53 

0.27 

0.03 

0.21 

0.006 

0.31 

0.001 

0.02 

0.03 

0.52 

1.42 

0.92 

5.51 

2.19 

6.47 

0.17 

9.51 

0.016 

0.98 

1.85 

16.09 

145.07 

165.51 

0.37 

0.04 

0.29 

0.008 

0.41 

0.001 

0.02 

0.05 

0.70 

1.91 

1.24 

<0.01 

0.37 

<0.01 

0.96 

0.15 

0.06 

0.07 

<0.01 

<0.01 

0.01 

0.04 

6.66 

2.12 

5.52 

0.14 

9.45 

0.018 

0.99 

1.59 

13.61 

136.81 

161.25 

0.15 

0.02 

0.11 

0.003 

0.21 

0.001 

0.01 

0.02 

0.27 

0.82 

0.61 

5.11 

2.07 

6.48 

0.14 

10.55 

0.02 

1.00 

1.72 

16.21 

141.31 

163.57 

0.34 

0.04 

0.26 

0.006 

0.47 

0.001 

0.01 

0.03 

0.61 

1.89 

1.37 

<0.01 

0.32 

<0.01 

– 

0.05 

– 

0.67 

<0.01 

<0.01 

0.04 

0.15 

Data are presented as mean  ± standard error  (SE). * Adjusted for age, sex, and  dietary components, extracted from the principal component 

analysis of dietary nutrient intake (individual FAs, families (SFA, MUFA,  and PUFA),  total  lipids, carbohydrates, and proteins). Post hoc 

tests  were conducted with a Bonferroni adjustment. a Levene’s test of homogeneity of variance was  not met. 
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After  observing these differences, a sample of normoweight adults (30) and children 

(113) were analyzed to determine if these differences observed between the  groups with 

obesity were due only  to age differences or whether they  could be attributed to metabolic 

differences. Similar patterns for LA, DGLA,  DHA,  total  ω-3 FA levels,  total  ω–6 FA levels, 

and ω-6/ω-3 ratios were observed in the  normoweight populations, but  no differences 

for  palmitic acid, cis–vaccenic acid, or  UI  were observed when comparing adult and 

child populations with normal weight. The  DNL  index [19], which is the  ratio between 

C16:0/C18:2 ω-6 fatty acids, that correlates directly with the  liver  fat content, appears in 

higher levels for adults with normal weight and  obesity when compared with the respective 

child  populations (p < 0.01 for both). 

2.3. Blood Biochemical Parameters 

Blood biochemical parameters were determined in a subsample of the study (Table 2). 

Glucose levels were significantly higher in the  adult populations with obesity (p < 0.001) 

but not for the groups with normal weight (p = 0.38). Alanine Aminotransferase (ALT/GPT) 

values were lower for children with obesity compared with adults with obesity (p = 0.03) 

but  no differences were observed between groups with normal weight. Cholesterol and 

triglycerides were statistically higher for adults with obesity (p < 0.01 for both) compared 

to children with obesity, but  no  differences between groups with normal weight were 

observed. 

Table 2. Biochemical values measured in plasma in a fraction of the observed groups. 

Group with Obesity Group with Normal Weight 

Pediatric n = 69 Adult n = 44 p * Pediatric n = 34 Adult n = 30 p * 

Med (Q1–Q3) Med (Q1–Q3) Med (Q1–Q3) Med (Q1–Q3) 

Glucose  (mg/dL) 

Uric Acid (mg/dL) 

Total Cholesterol 

(mg/dL) 

Triglycerides (mg/dL) 

HDL cholesterol 

(mg/dL) 

LDL cholesterol 

(mg/dL) AST/GOT 

(U/L) ALT/GPT 

(U/L) Bilirubin  

(mg/dL) 

85 (79–89.25) 

4.95 (4.375–5.7) 
 

150 (132.7–172) 
 

76 (55.5–108.7) 
 

44.6 (40.0–54.25) 

97 (90.5–107.5) 

5.6 (4.9–6.95) 
 

180 (158–211) 
 

123 (89.5–180.5) 
 

47 (41.75–56) 

<0.01 

<0.01 
 

<0.01 
 

<0.01 
 

0.32 

84 (81–89) 

3.95 (3.37–4.62) 
 

165 (148.5–186.7) 
 

65.5 (46–86) 
 

55 (48.5–64.5) 

85 (79.75–92) 

4.75 (3.8–5.22) 
 

176.5 (141.7–206.2) 
 

68 (58.75–84.75) 
 

59 (48.5–71) 

0.38 

0.03 
 

0.46 
 

0.48 
 

0.48 

88.4 (71.25–98) 
 

22 (19–26.25) 

18.5 (15–23.25) 

0.4 (0.3–0.6) 

118 (95–141) 
 

20 (16.5–26.5) 

23 (15–35.5) 

0.4 (0.2–0.5) 

<0.01 
 

0.12 

0.03 

0.5 

95 (77–110) 
 

26 (22–27) 

16 (13.75–18) 

0.6 (0.4–1) 

102 (72.5–121) 
 

19 (16.75–23.5) 

17 (12.75–21.25) 

0.4 (0–0.625) 

0.35 
 

<0.01 

0.59 

0.01 

Data expressed as medians and  quartile 1 and  quartile 3 (Med (Q1–Q3)). * Not normally distributed variables. A Mann-Whitney U test was 

carried out. 

2.4. Food Groups 

To compare the  dietary pattern of each  study group, we  considered food groups as shown 

in Table S2 (Supplementary Material) and observed that both adults with obesity and with 

normal weight showed a higher intake of vegetables, olive  oil,  white meat, oily  fish,  

sugary drinks and dried fruits and nuts (p < 0.01 for all) compared to a group of children. 

On  the  other hand, cereals, legumes, and juice  intakes were higher for  the pediatric 

population (p < 0.01 for both obese  and normoweight). In any  case, these results should be 

taken into  account from the  perspective that, adults, reported a higher intake of daily 

calories, so when comparing food groups in grams per  day units, it is normal to observe 

differences. 

2.5. Nutrient Intake 

Regarding macronutrient intake shown in Table 3, as both population groups differ in 

terms of quantity requirements, to compare each  other, variables were expressed in % 
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of the energy obtained from each  macro-micronutrient. Differences between obese adults 

and children were observed for total calories (Kcal/day) and the intake of carbohydrates, 

simple sugars, and total lipids.  Some  of these differences, such as  calorie differences 

(p < 0.01) can  be related to different requirements depending on  age.   The  distribution 

of the  energy intake obtained from macronutrients differs between both populations for 

carbohydrates (p < 0.01),  being higher for  the  pediatric population.  Although adults 

showed, proportionally, a higher intake of total  lipids than children (p < 0.01), the pediatric 

population showed a higher intake of stearic acid  (p = 0.04).  Oleic  acid  and total MUFA 

intake were higher for the adult population. Regarding PUFAs, total ω-6, corresponding 

ω-6 fatty acids (LA and AA), and total ω-3 dietary intake were higher for adults than for 

children. The ω-6/ω-3 ratio was  lower for the pediatric population (p < 0.01). 

Table  3.  Macronutrients and  individual fatty  acids  (FA) intake expressed as % energy (%E) in 

pediatric and adult groups with obesity. 

Pediatric Group with 

Obesity, n = 83 

Adult Group with 

Obesity, n = 61 

Mann-Whitney 

U Test 

Mean SD Mean SD p 

Macronutrient 

Calories  (Kcal/day) 

Proteins (%E) 

Carbohydrates (%E) 

Simple sugars (%E) 

Lipids  (%E) 

2044.1 

16.5 

46.7 

21.7 

33.6 

564.3 

2.1 

5.3 

4.9 

6.3 

2480.1 

16.3 

36.3 

19.1 

42.6 

794.2 

3.2 

6.6 

6.4 

6.3 

<0.01 

0.54 

<0.01 * 

<0.01 

<0.01 * 

Individual Fatty Acids 

C14:0 

C16:0 

C18:0 

Total SFA 

C16:1 

C18:1 

Total MUFA 

C18:2 

C20:4 

Total ω6 

C18:3 

C20:5 (EPA) 

C22:5 (DPA) 

22:6 (DHA) 

Total ω3 

Total PUFA 

ω6/ω3 

1.0 

6.1 

2.3 

10.8 

0.5 

14.1 

15.0 

4.1 

0.04 

4.1 

0.54 

0.07 

0.02 

0.15 

0.79 

5.1 

5.5 

0.5 

1.3 

0.6 

2.9 

0.1 

3.5 

3.6 

1.7 

0.01 

1.7 

0.13 

0.06 

0.01 

0.09 

0.22 

1.8 

2.2 

0.8 

5.6 

2.3 

11.2 

0.5 

18.9 

19.9 

6.9 

0.08 

7.0 

0.79 

0.07 

0.02 

0.14 

1.03 

8.2 

7.2 

0.3 

1.0 

0.5 

2.2 

0.1 

4.1 

4.2 

2.5 

0.04 

2.5 

0.34 

0.05 

0.01 

0.08 

0.39 

2.7 

2.8 

0.08 

0.02 * 

0.93 

0.09 

0.86 

<0.01 * 

<0.01 * 

<0.01 

<0.01 

<0.01 

<0.01 

0.24 

0.48 

0.62 

<0.01 

<0.01 

<0.01 

Data  presented as mean and standard deviation (SD). Not  normally distributed variables. A Mann–Whitney U 

test was  carried out.  * Normally distributed variables, an independent-samples t-test  was  performed. 

2.6. RBC FAs and Blood Biochemical Parameters Correlation 

Different correlation profiles between RBC FAs  and biochemical parameters were 

observed for children and adults with obesity (Figures 1 and 2, respectively). 

For the  pediatric population inverse correlations between LA and total cholesterol and 

LDL cholesterol were observed, as well  as an inverse correlation between EPA  and 

triglycerides. 

For adults, other correlations were observed. DHA correlated positively with AST and 

ALT. At the same time,  oleic acid showed an inverse correlation with LDL cholesterol, and 

stearic acid  correlated inversely with HDL  cholesterol. 
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2.7. RBC FAs and Food Groups Values Correlation 

Different correlations between RBC FAs and food groups were observed for adults and  

children with obesity (see heatmaps in Supplementary Figures S1 and  S2, respectively). 

Children showed a positive correlation between EPA in RBC and white fish intake, and 

DHA in RBC with oily  fish.   Read meat correlated positively with cis-vaccenic acid  in 

RBC. For adults, only  positive correlations between trans fatty  acids  in RBC and  eggs were 

observed. 

Figure 1. Heat map of the correlations between red blood cell membrane fatty acids and biochemical  parameters for children 

with obesity. The color represents the Spearman correlation coefficient (ρ) (blue  = positive; red  = negative). * Represent 

significant  correlations (p < 0.05) between variables. The pair variables that have an * above and below the diagonal line are 

significantly correlated after correction for multiple comparisons (q < 0.05). 
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Figure 2. Heat map of the correlations between red blood cell membrane fatty acids and biochemical parameters for adults 

with obesity. The color represents the Spearman correlation coefficient (ρ) (blue  = positive; red  = negative). * Represent 

significant  correlations (p < 0.05) between variables. The pair variables that have an * above and below the diagonal line are 

significantly correlated after correction for multiple comparisons (q < 0.05). 

3. Discussion 

To our  knowledge, this is the first time  that  a comparison of RBC membrane FA com- position 

between adults and children with obesity has been  made to determine metabolic 

differences, to establish dietary requirements that can  contribute to design more precise 

nutritional strategies based on dietary fat quality to manage obesity at different age stages. 

The  fact  that the  RBC membrane fatty acid  composition is close  to that of hepatocytes, 

having saturated (43% vs. 42%), monounsaturated (23.0% vs. 23.8%), polyunsaturated ω-6 

(27.6 vs. 27.4%) and  ω-3 (5.7% vs. 4.6%) fatty  acid residues in almost similar quantities [20] is 

an important observation as the RBC examination avoids to run  invasive investigations, 

especially in children. 

Regarding individual nutrient intake, differences were observed between children and 

adults with obesity, taking into  account that the  nutritional recommendations for both 

population groups differ because metabolism requirements are  different [21]. Two main  

reasons to measure dietary intake through a FFQ questionnaire were:  to establish the eating 

pattern of each  group and to consider dietary intake as a confounding factor in the Ancova 

analysis, of the  study of metabolic differences, between the  children and adults 
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with obesity [22]. The elimination of the variability generated by diet in the RBC FA profile, 

allows us to focus on the metabolic differences between adults and children with obesity. 

Concerning the dietary pattern of each group, the higher levels  of ω6/ω3 intake for adults 

with obesity was an interesting result, showing its relationship with the  quality and not 

with the quantity of lipids intake. 

Measurement of RBC FAs revealed two  differentiated profiles between children and adults 

with obesity, where not  all the differences were attributable to age, as those results have  

been  compared with a population of adults and  children with normal weight and  can be due 

to metabolic differences. 

Related with age,  differences in PUFA levels between pediatric and adult, for both group 

with normal weight and obesity, were observed. Adults with obesity showed a 

proportionally, higher intake of ω6 FAs than children with obesity, contributing to a higher 

intake ratio  of ω6/ω3, but in the RBC membrane profile, adults with obesity showed lower 

levels of ω6/ω3 FA ratio. Even if the  children´s intake of ω6 was lower compared with 

adults, a higher value of ω6/ω3 FA ratio in RBC membrane was  determined for children 

with obesity. It can be observed, that  for children the contribution to ω6 levels  is given,  in a 

significantly higher manner, by linoleic and DGLA acids, whereas for ω3 levels, is given 

by DHA, revealing a different metabolic fate of the dietary intakes. Certainly, the greater 

proportion of DHA needed for heart and  brain tissues [23], could be responsible for a higher 

distribution of this  FA in children compared to the  adult group, because of the  growth 

associated with that  stage  of life [24]. In our opinion, levels of DHA specifically determined 

in cell membranes, in particular in mature RBC membranes where PUFA  ω-3 were found 

higher than in non-selected RBC [18], should be considered as important information of 

the bioavailability of essential or semi-essential FA for the fundamental building up  of the 

membrane compartment. Formation of membranes is needed for living organisms [25] 

and must be combined with an appropriate composition of the  FA pool to avoid critical 

imbalances. The fatty acid–based membrane lipidomics is a diagnostic tool that provides 

an important piece  of information in the puzzle of the metabolic pathways of health and 

disease [18]. 

Similar connections with mediator formation can be inferred for the ω6 FAs in RBC, as LA 

and DGLA levels  were higher for the pediatric population compared with the adult 

population, indistinctly for  groups with obesity and normal weight. Higher values of 

DGLA in children compared to adults can indicate a metabolic connection with mediators 

for  inflammatory, immune and defense processes, since this  FA is a precursor of series 

1 prostaglandins, like  PGE1,  connected with the  cAMP activity and this  can  occur in a 

higher rate  in children, regardless of the intake [26]. 

These metabolic differences appear as important factors to evaluate the  fat quality and 

quantity especially in  diseases which involve fats,  such as  obesity.  The  adequate 

nutritional strategies for  each  population group should be  personalized, for  example, 

reinforcing the  ω3 FAs intake recommendation in the  pediatric population compared to 

the  adult population, because of their higher requirements [8]. Increasing dietary intake 

of ω3 sources such  as oily fish and seafood, especially cold-water fatty  fish (sardine, tuna, 

salmon, mackerel) and vegetable sources such as walnuts, chia  seeds, flaxseed, or even 

with a personalized nutraceutical plan [27] could be a roadmap. 

When comparing MUFA and SFA levels in RBC, adults with obesity showed higher levels 

of palmitic acid  and cis–vaccenic acid  compared with children with obesity, while these 

differences were not  observed among the  normoweight groups (Table 1). The % of energy 

obtained from  palmitic acid in the diet,  appears in a higher proportion for children with 

obesity than for adults with obesity, but  contrary than expected adults with obesity, reflect  

a higher value of RBC palmitic acid  in the membrane profile. 

The higher value in the DNL index in adults with obesity compared with children with obesity, 

reflects a higher de novo synthesis of lipids, that can explain the  higher levels of palmitic 

acid in adults with obesity [28]. Together with this higher DNL index, a tendency of a 

reduced activity of delta-9-desaturase (p = 0.06) for adults with obesity compared with 
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children with obesity can be observed. This  reduced activity of the  enzyme is correlated 

to factors that have been recalled several times in the  SFA pathway, as:  the  absence of 

enzymatic cofactors, the inhibition of desaturase activity and  liver impairment [29]. A high– 

carbohydrate diet can  increase rates of DNL,  that has  been suggested to  contribute to 

the  pathogenesis of non–alcoholic fatty liver disease (NAFLD), linked in its turn to the 

development of type 2 diabetes mellitus [30]. 

As  desaturase transformation prevents SFA  accumulation and toxicity triggering 

hepatocellular apoptosis and liver damage [31], adults with obesity, that have suffered 

the  accumulation of SFA for years, or at least for a longer time than children, might be a 

plausible reason that  delta-9-desaturase presents a tendency of less activity in adults than 

in children with obesity. 

In any  case, recommendations should consider these differences between adults and 

children, highlighting the  importance of not  promoting de  novo synthesis in adults by 

lowering the intake of SFA and simple carbohydrates. Moreover, increasing the intake of 

PUFAs has  been associated to inhibitory effects on SFA and MUFA biosynthesis [32] and 

could be seen  as a proper recommendation. 

According to biochemical parameters, even if most of them are  within the  optimal ranges 

in both groups with obesity and normal weight, it is remarkable that  glucose, total 

cholesterol, LDL cholesterol, triglycerides and  ALT/GPT showed significative lower values 

for children with obesity compared with adults with obesity, fact that  was  not observed in 

the group with normal weight. Additionally, differentiated correlations between biochemi- 

cal parameters and RBC FAs were observed. For children, higher levels of LA inversely 

correlated with LDL cholesterol and total cholesterol were determined (Supplementary 

Figure S1). This correlation has been  previously reported also for both,  circulating LA and 

RBC LA and cholesterol [33,34].  Food groups with higher content of LA, such as nuts, 

would be recommendable to lower LDL cholesterol levels in pediatric populations. On 

the other hand, adults showed an inverse correlation with oleic acid  and LDL cholesterol, 

so higher consumption of food groups containing this  FAs,  such as olive  oil, would be 

recommendable to reduce LDL cholesterol levels. SFA/MUFA ratio in adults, showed a 

positive correlation with LDL cholesterol, so the replacement of SFA with MUFAs in dietary 

intake would be advisable in order to reduce LDL cholesterol levels.  For adults, DHA  and 

total  ω3 showed positive correlations with ALT and AST. Anyway, it has been  reported in 

the literature that  PUFAs  can only  decrease ALT and  AST after  long  term  supplementation 

in children [35]. 

As  a limitation of the  study, the  uneven group distribution, the  number of each group, 

should be noted even if in this  type of observational studies, a perfect match is hard to 

achieve. At the  same time, the  indirect measurement of enzyme activity by the ratio 

between product and precursors, although very popular, could be considered as a 

limitation of the  study and should be measured directly to emphasize and reaffirm the 

conclusions obtained. Another limitation of the study was the use of a population subgroup 

for the analysis of differences in biochemical parameters, which reduces the possibility of 

finding more significant differences and correlations. 

In conclusion, the present study establishes the differences of RBC FA profiles, between 

children and adult with obesity, demonstrating that both groups have differentiated profiles. 

Children with obesity present higher LA, DGLA and total ω6 values, along with lower 

DHA and total ω3 values, compared to  adults with obesity, even after adjusting the 

values by their dietary intake. At the  same time, children with obesity presented lower 

levels of palmitic acid  and a lower value of the  de  novo lipogenesis index compared 

to adults with obesity. These differences must be  considered to provide more specific 

food group recommendations based on individual FA needs, rather than giving general 

recommendations for a population with obesity, as a whole and regardless of age. 
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4. Materials and Methods 

4.1. Subjects and Study Design 

An observational, case-control, and  retrospective study was  conducted on 83 children with 

obesity (26 boys and 57 girls) between 6 to 16 years old  and a group of 61 adults with 

obesity (19 males and 42 females) between 19 to  68 years old,  recruited from pe- diatric 

endocrinology and the  endocrinology department at the  Hospital Universitario Cruces 

(Barakaldo, Spain). Control subjects, consisting of 113 normoweight children and 

30 normoweight adults, were also recruited from  the same centers as patients with obesity. 

Children were classified according to body mass index (BMI), using age and sex-specific 

pediatric z-scores from Orbegozo tables [19]. The BMI was  taken as a reference to define 

the different categories, defining normal weight when the standard deviation (SD) of BMI 

was  −1 < SD ≤ +1, overweight when +1 < SD ≤ +2, and  obesity when SD > +2. For adults, 

BMI > 30 Kg/m2 was  taken as a reference to classify obesity and 18.5 < BMI < 25 Kg/m2
 

for the normoweight group. 

Subjects were excluded if they presented any kind of acute or chronic diseases, were tak- ing 

medications, had  any presence of metabolic syndrome symptoms, or obesity-associated with 

any type  of pathology. A physical examination was  performed by an endocrinologist. 

The study protocol was approved by the Euskadi Clinical Research Ethics Committee 

(permission number PI2016181) and  carried out according to the Declaration of Helsinki Good 

Clinical Practice guidelines.  Subjects under study were included after acceptance (by  the 

parents in the  case  of the  pediatric population) to participate in the  study and signing of 

informed consent. In the case of children between 12–16 years of age the informed consent was 

also signed by themselves according to the Euskadi Ethical Committee and sample biobank 

laws (Organic Law  3/2018, of December 5, on Protection of Personal Data and guarantee of 

digital rights; Law 14/2007 on Biomedical Research and RD 1716/2011 of Biobanks). 

4.2. Anthropometric Measures 

Bodyweight (kg) and  height (cm) were  measured by standardized methods [36]. Body mass 

index (BMI) was  calculated as weight (kg) divided by the square of the height (m2 ). 

Anthropometric parameters, as well as blood sampling, were  all conducted by pediatricians 

and  doctors during the participant’s visit to the Hospital Universitario Cruces/IIS Biocruces 

Bizkaia. 

4.3. Nutrient Intakes 

During the  participant’s visit  with the  endocrinologist, the  doctor interviewed the 

participants and  collected personal data, including family medical history and  information 

on the  history of medication usage. Estimations of food consumption, including dietary 

diversity and variety, were measured using a quantitative food frequency questionnaire 

(FFQ) on-line completed by the parents of the children, except  in those  cases of adolescents, 

which were encouraged to complete it themselves, or by each adult volunteer. For our study, 

an adapted FFQ was used, which was previously validated with the portion sizes and  food 

groups for the Spanish juvenile population and adults [37,38]. These  questionnaires were 

then analyzed using the  DIAL® software (UCM & Alce  Ingeniería S.A., Madrid, Spain) 

(V 3.4.0.10)  to translate the  intake of specific foods into  their corresponding energy and 

nutrient values. 

4.4. Red Blood Cell (RBC) Membrane Fatty Acid Analysis 

The fatty acid composition of mature RBC membrane phospholipids was obtained from 

blood samples (approximately 2 mL) collected in vacutainer tubes containing ethylene- 

diaminetetraacetic acid  (EDTA). Samples were shipped to the  Lipidomic Laboratory ap- 

proved for the method by the UNI  CEI EN ISO/EIC 17025:2018 (#1836L belonging to the 

company Lipinutragen, Bologna, Italy) and  upon arrival underwent the certified procedure 

MEM_LIP_1 according to the quality control guidelines. At first, the absence of hemolysis 

was checked upon arrival. From the  blood, the  protocol consists of the  selection of ma- 
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ture RBCs by a robotic platform, as reported previously [17,22,39,40],  followed by lipid 

extraction and lipid transesterification to fatty acid  methyl esters (FAMEs). Briefly,  the 

whole blood in EDTA  was centrifuged (4000 rpm for 5 min at 4 ◦ C), and the  mature cell 

fraction was isolated by  the  robotic platform, based on  the  higher density of the  aged 

cells [41], and checked by the use  of cell counter (Scepter 2.0, EMD Millipore, Darmstadt, 

Germany). The automation included cell lysis, isolation of the membrane pellets, phospho- 

lipid extraction from pellets using the  Bligh  and Dyer method [42], transesterification to 

FAMEs by treatment with a potassium hydroxide (KOH)/methyl alcohol (MeOH) solution 

(0.5 mol/L) for 10 min  at room temperature, and extraction using hexane (2 mL). The final 

FAME  mixtures were analyzed using capillary column gas  chromatography (GC).  GC 

analysis was run on the  Agilent 6850 Network GC System, equipped with a fused silica 

capillary column Agilent DB23 (60 m × 0.25 mm × 0.25 µm) and  a flame ionization detector. 

Optimal separation of all fatty acids and their geometrical and positional isomers was 

achieved. Identification and quantification of each  fatty acid  were made by  calibrated 

procedures that are  part of the  MEM_LIP_1 method.  Commercially  available standards 

and a library of trans isomers of MUFAs and polyunsaturated fatty acids (PUFA) were 

used as standards. The amount of each  FA was  calculated as a quantitative percentage of 

the total FA content (relative quantitative %), as described in Section 4.5, being more than 

97% of the GC peaks recognized with appropriate standards. The use of mass  spectrometry 

is only  at the level of comparing the LIBRARY of fatty  acid  standard references mass data 

with the GC peaks and masses obtained from  the samples. 

4.5. Red Blood Cell Membrane Fatty Acid Cluster 

12 FAs were  selected as a representative cluster of the dominant glycerophospholipids present 

in the  RBC membrane, as well  as three FA families (SFA, MUFA and PUFA): for SFAs, 

palmitic acid (C16:0) and  stearic acid (C18:0); for MUFAs,  palmitoleic acid (C16:1;9c), oleic  

acid  (C18:1;  9c),  cis-vaccenic acid  (C18:1;  11c);  for  ω-3 PUFAs, eicosapentaenoic acid  

(EPA)  (C20:5),  docosahexaenoic acid  (DHA) (C22:6);  for  ω-6 PUFAs, linoleic acid (LA) 

(C18:2), dihomo–gamma–linolenic acid  (DGLA) (C20:3) and arachidonic acid  (AA) (C20:4);  

for  geometrical trans fatty acids (TFA):  elaidic acid  (C18:1  9t) and mono–trans 

arachidonic acid  isomers (monotrans-C20:4; ω-6 recognized by  standard references as 

previously described by Ferreri et al. [43]. Considering these fatty  acids, different indexes 

previously reported in the literature [22] were calculated: (%SFA/%MUFA) index related 

with membrane rigidity; Omega-3 index (DHA + EPA);  Inflammatory risk  index (%ω- 

6)/(%ω-3); PUFA  balance [(%EPA  + %DHA)/total PUFA  × 100]; Free radical stress index 

(sum of trans-18:1 + Σ monotrans 20:4 isomers); Unsaturation Index (UI)  [(%MUFA) + 

(%LA/2) + (%DGLA/3) + (%AA/4) + (% EPA/5) + (%DHA/6)]; Peroxidation Index (PI) 

[(%MUFA/0.025) + (%LA) + (%DGLA/2) + (%AA/4) + (% EPA/6) + (%DHA/8)]; De Novo 

Lipogenesis index (DNL)  [(%Palmitic acid)/(%LA)] [44]. 

Additionally, the  enzymatic indexes of elongase and desaturase enzymes, the  two classes 

of enzymes of the  MUFA and PUFA biosynthetic pathways, were inferred by 

calculating the product/precursor ratio of the FAs involved in these reactions. 

4.6. Biochemical Parameters 

Blood  biochemical parameters were measured with standard laboratory assays after 

collecting venous blood samples performed in the morning in fasting state from a subgroup 

of the  studied population (69 children vs.   44 adults with obesity and 34 pediatric vs. 

30 adults with normal weight). Plasma concentrations of glucose, serum concentrations of 

total  cholesterol (TC), high–density lipoprotein cholesterol (HDL-C), low–density lipopro- 

tein  cholesterol (LDL-C), triglycerides (TG),  aspartate aminotransferase (AST),  alanine 

aminotransferase (ALT), uric  acid,  and bilirubin were measured. 
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4.7. Statistical  Analysis 

Differences between groups for  the  nutrient intake and biochemical values were 

determined by using the Mann–Whitney U test for data that  were  not normally distributed 

and the  t–student test  for normally distributed variables. Normal data distribution was 

assessed by Shapiro–Wilk’s test and Kolmogorov–Smirnov test. 

An  ANCOVA was run to determine the  differences between RBC membrane fatty acids 

from children and adults with obesity, and also  for normoweight children and nor- 

moweight adults, after controlling for variables selected as potential confounders, such 

as gender, BMI, and dietary intake [45].  Post  hoc  analysis was performed with a Bon- 

ferroni adjustment. First,  a Principal Component Analysis (PCA) was run on 15 dietary 

nutrient intake variables (individual FAs, families (SFA, MUFA, and PUFA), total lipids, 

carbohydrates, and proteins) obtained with the DIAL software  (v3.4.0.10, Department of 

Nutrition (UCM) & Alce Ingeniería, S.L., Madrid, Spain) after transforming the  informa- 

tion  about food items from FFQ questionnaires into  micro and macronutrient values, to 

reduce and simplify the  dimension of these variables and use  the  generated factors as 

diet  covariates [22]. The Kaiser–Meyer–Olkin (KMO)  and Bartlett’s test of sphericity were 

used to verify the  sampling adequacy for the  analysis. PCA  revealed four components 

that had eigenvalues greater than one  and which explained 82.55% of the  total variance. 

These  components were included in the ANCOVA analysis as diet  covariates. The level of 

significance was  set at p < 0.05. 

Correlations between the RBC membrane FA profile and  dietary intake and  FA profile and 

biochemical values were performed using Spearman’s rank-order correlation coeffi- cients 

(ρ) and p-values were adjusted with the  false  discovery rate  method for multiple 

comparisons. Correlation plots  were  visualized using the R heatmap.2() function. All other 

statistical analyses were performed using SPSS (IBM Corp. v24.0, Armonk, NY, USA). 

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198 
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(ρ) (blue = positive; red = negative). * Represent significant correlations (p < 0.05) between variables. 

The pair variables that have an * above and below the diagonal line are significantly correlated after 

correction for multiple comparisons (q < 0.05)., Figure S2: Heat  map  of the correlations between 

red blood cell membrane fatty acids and  food groups for adults with  obesity. The color represents 

the Spearman correlation coefficient (ρ) (blue  = positive; red  = negative). * Represent significant 

correlations (p < 0.05) between variables. The pair  variables that  have  an * above and  below the 

diagonal line are significantly correlated after correction  for multiple comparisons (q < 0.05). Table S1: 
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 Data presented as mean and standard deviation (SD). Not normally distributed variables.  
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Table S13: Characteristics of population groups 



 

 

 

Data expressed as medians and quartile 1 and quartile 3. *Not normally 

distributed variables. A Mann-Whitney U test was carried out. 

 

 

 

 

 

 

 

 

 

Food Groups (g/day) Group with obesity Group with normal weight 

 Pediatric Adult p* Pediatric Adult p* 

 Med (Q1 - Q3) Med (Q1 - Q3)  Med (Q1 - Q3) Med (Q1 - Q3)  

Fruits 390 (264 - 577) 353 (231 - 682) 0.74 413 (297 - 531) 361 (210 - 691) 0.72 

Vegetables 134 (76 - 237) 296 (158 - 442) <0.01 160 (100 - 248) 313 (222 - 476) <0.01 

Cereals 132 (102 - 185) 98 (60 - 175) <0.01 158 (117 - 210) 114 (94 - 224) 0.09 

Legumes 80 (54 - 96) 43 (32 - 64) <0.01 91 (50 - 102) 48 (40 - 86) <0.01 

Olive oil 15 (12 - 38) 38 (24 - 39) <0.01 15 (15 - 38) 20 (16 - 38) 0.04 

Dairy products 298 (207 - 374) 268 (163 - 509) 0.91 325 (254 - 513) 306 (175 - 436) 0.17 

Eggs 15 (15 - 35) 30 (10 - 30) 0.45 15 (15 - 35) 30 (0 - 30) 0.21 

Red meat 21 (21 - 50) 36 (18 - 63) 0.13 21 (21 - 21) 36 (18 - 47) <0.01 

White meat 50 (21 - 50) 98 (54 - 116) <0.01 50 (21 - 50) 36 (0 - 112) 0.91 

Dried Fruits 

and nuts 
1 (0 - 3) 6 (0 - 21) <0.01 2 (0 - 6) 7 (2 - 36) <0.01 

Lean fish 27 (27 - 27) 21 (11 - 64) 0.91 27 (27- 27) 21 (21 - 21) <0.01 

Oily fish and 

shellfish 
27 (13 - 35) 61 (39 - 108) <0.01 27 (13 - 27) 68 (47- 126) <0.01 

Sugary drinks 16 (0 - 54) 29 (14 - 86) <0.01 18 (0 - 43) 14 (0 - 32) 0.18 

Juices 80 (29 - 243) 14 (0 - 71) <0.01 71 (27 - 250) 14 (0 - 89) <0.01 

Table S24: Food groups intake 



 

 

Supplementary Figure S1.  

 

Figure S1: Heat map of the correlations between red blood cell membrane fatty acids and 

food groups for children with obesity. The Key Colour represents the Spearman correlation 

coefficient (ρ) (blue = positive; red = negative). * Represent significant correlations (p <0.05) 

between variables. The pair variables that have an * above and below the diagonal line are 

significantly correlated after correction for multiple comparisons (q <0.05). 

 

 

 



 

 

Supplementary Figure S2.  

 

Figure S2: Heat map of the correlations between red blood cell membrane fatty acids and 

food groups for adults with obesity. The Key Colour represents the Spearman correlation 

coefficient (ρ) (blue = positive; red = negative). * Represent significant correlations (p <0.05) 

between variables. The pair variables that have an * above and below the diagonal line are 

significantly correlated after correction for multiple comparisons (q <0.05). 
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7.3.1. Abstract 

Metabolically Healthy Obesity (MHO) has been described as BMI ≥ 30 

kg/m2, without metabolic disorders traditionally associated with obesity. 

Beyond this definition a standardized criterion, for adults and children, has not 

been established yet to explain the absence of those metabolic disorders. In this 

context biomarkers of inflammation have been proposed as suitable candidates 

to describe MHO. The use of mature red blood cell fatty acid (RBC FA) profile 

is here proposed, since its membrane lipidome includes biomarkers of pro- and 

anti- inflammatory conditions with a strict relationship with metabolic and 

nutritional status that can differentiate MHO children. An observational study 

was carried out in 194 children (76 children with obesity and 118 children with 

normal weight) between 6 and 16 years old. RBC FA-s were analysed by gas 

chromatography-flame ionization detector (GC-FID). Dietary habits were 

evaluated using validated food frequency questionnaires (FFQ). An 

unsupervised hierarchical clustering method was conducted on children with 

obesity, based on the RBC FA profile, to isolate the MHO cluster. The MHO 

cluster showed FA levels similar to children with normal weight, characterised 

by lower values of arachidonic acid, total ω-6 FA, ω6/ω3 FA ratios and higher 

values for EPA, DHA and total ω-3 FA compared to the rest of the children 

with obesity (obese cluster). The MHO cluster also presented lipid indexes for 

higher desaturase enzymatic activity and lower SFA/MUFA ratio compared to 

the obese cluster. These differences are relevant for the follow-up of patients, 

also in view of personalized protocols providing tailored nutritional 

recommendations for the essential fatty acid intakes. 

7.3.2. Introduction 

Obesity is a growing health problem affecting children and adolescents. 

According to the WHO states, with more than 340 million children and 

adolescents, around one in three from 5 to 19 years old, in condition of 



 

 

overweight or obesity in 2016, and 38 million children under the age of 5 

overweight or obese in 2019 (24). Furthermore, children with obesity tend to be 

obese later in life, increasing their risk for morbidity and mortality (212).  

Within this large patient cohort, there is an emerging evidence that not all 

of them display common obesity-associated metabolic disorders, such as 

insulin resistance, glucose intolerance, arterial hypertension, or dyslipidemia, 

suggesting that a paradox of metabolically healthy obesity (MHO)  can exist, 

independent of fat accumulation (213). Indeed, although most people with 

obesity are metabolically unhealthy, a percentage varying from 10 to 30% of 

those with obesity (75, 78, 80, 214, 215), are considered MHO and do not present 

metabolic abnormalities (216). 

Even though the existence of MHO has been known for decades (217), 

there is still a lack of a proper definition of metabolically healthy obese 

individuals. Some studies describe MHO as BMI ≥ 30 kg/m2, without metabolic 

disorders (e.g. type 2 diabetes or dyslipidemia)(75, 213, 216) while others take 

into account their body fat percentage and insulin resistance (218). The MHO 

phenotype has been associated with a good metabolic profile characterized by 

high levels of insulin sensitivity, low prevalence of hypertension, and a 

favourable fasting glucose, lipid, and inflammatory profile (219). However, no 

consensus has been reached to define a standardized criterion to categorize 

MHO in adults. Recent investigations showed the importance of including 

inflammatory parameters as possible biomarkers to define MHO (84, 220) such 

as circulating blood proinflammatory cytokines, adipokines and acute-phase 

response proteins, that have been studied as possible underlying factors of 

inflammation (221). 

Pediatric MHO was recently defined (222), as those children characterized 

by the absence of traditional cardiometabolic risk factors. However, recent 

studies also focused on considering other parameters such as hepatic steatosis, 



 

 

inflammatory biomarkers, as well as the degree of visceral fat accumulation 

(223), as  is considered in adult populations. Obesity in children has been also 

associated with circulating inflammatory mediators (224), where essential fats, 

such as ω-6 and ω-3 FAs, have a direct impact on the onset and control of 

metabolic pathways of inflammation (140). 

Currently, there are only limited longitudinal studies on pediatric 

population evaluating MHO according to inflammatory biomarkers, and this 

is a limitation both in the clinical evaluation and in the personalization of the 

therapeutical approach, including nutritional intervention strategies for 

children with obesity, according to their metabolic health status. 

In this regard, the use of mature erythrocyte as a representative site for all 

other body tissues, in particular determining the fatty acid-based membrane 

lipidomic profile, is an established protocol for membrane-based molecular 

diagnostics (165, 171, 225) and can help with monitoring the ω-6 and ω-3 FA 

contents in phospholipids that are directly linked with the inflammation 

mediators. Arachidonic acid, which is the main ω-6 FA in the RBC membrane, 

is released from membrane phospholipids, and exerts its activity in defence 

mechanisms, but the presence of a continuous inflammatory stimulus can 

induce an excess of inflammatory mediators thus triggering inflammation as a 

chronic status. The unbalance created by essential FA deficiency in diet, mainly 

ω-3 FA,  is known to be connected to many symptoms and tissue malfunctions 

(162). On this basis, the membrane RBC the fatty acid profile can ultimately 

define the status of “silent inflammation” in obesity patients. It is worth adding 

the role of a key fatty acid in ω-6 pathway, namely the AA precursor, dihomo-

gamma linolenic acid (DGLA), that is well known for its anti‐inflammatory 

effects through the transformation into series 1 prostaglandins (226).  

Moreover, a balance between ω-6 and ω-3 FA has been described as a good 

marker for inflammation status in a subject (40, 227). 



 

 

In view of the intense research on molecular medicine and the set-up of 

nutritional intervention studies to better understand the impact of personalized 

diet on lipid metabolism in children, we were interested in understanding the 

role of mature RBC lipid profile to individuate metabolic differences in patients 

with obesity, extending  previously published works on this subject (227-229).   

In this study we used the mature RBC FA profile as a comprehensive 

biomarker to individuate the pro- and anti-inflammatory conditions and 

distinguish metabolically healthy obesity in children in relation with their 

nutritional status.  

7.3.3. Materials and Methods 

7.3.3.1. Subjects and study design 

An observational study was conducted on 194 children (76 children with 

obesity and 118 children with normal weight) between 6 and 16 years old, 

recruited from the pediatric endocrinology unit at the Hospital Universitario 

Cruces (Barakaldo, Spain). Children were classified according to body mass 

index (BMI), using age- and sex-specific paediatric z-scores from Orbegozo 

table (23). BMI was taken as a reference to define the different categories, 

defining normal weight when the standard deviation (SD) of BMI was -1 <SD 

≤ +1 and obesity when SD> +2. Groups were homogeneously distributed by age.  

Subjects were excluded based on the following criteria: they presented any 

kind of acute or chronic diseases, were taking medications, had any presence 

of metabolic syndrome symptoms, or if their obesity condition was associated 

to any type of pathology. An anthropometric examination was performed by 

an endocrinologist.  

The study protocol was approved by the Euskadi Clinical Research Ethics 

Committee (permission number PI2016181) and accomplished according to the 



 

 

Helsinki Declaration in 1975, revised in 2013. Subjects under study were 

included after acceptance (by the parents of the individuals) to participate in 

the study and signing of informed consent. All the informed consent 

documents were signed by their parents and in the case of children between 

12-16 years of age the informed consent was also signed by themselves 

according to the Euskadi Ethical Committee and sample biobank laws (Organic 

Law 3/2018, of December 5, on Protection of Personal Data and guarantee of 

digital rights; Law 14/2007 on Biomedical Research and RD 1716/2011 of 

Biobanks). 

7.3.3.2. Anthropometric measures 

Body weight (kg) and height (cm) were measured by standardized 

methods (22). Body mass index (BMI) was calculated as weight (kg) divided by 

the square of the height (m2). Anthropometric parameters, as well as blood 

sampling were all conducted by pediatricians during the participant’s visit to 

the Hospital Universitario Cruces. 

7.3.3.3. Nutrient Intakes 

During the first visit, a pediatrician interviewed the participants and 

collected personal data, including family medical history and information on 

the history of medication usage. Estimations of food consumption, including 

dietary diversity and variety, were measured using a quantitative food 

frequency questionnaire (FFQ) on-line completed by the parents of each 

volunteer except in those cases of adolescents, which were encouraged to 

complete it themselves. For this study, an adapted FFQ was used, which was 

previously validated with the portion sizes and food groups for the Spanish 

juvenile population (163, 164, 230). Information about different food items 

collected from these questionnaires were then analyzed using the DIAL® 

software to translate the intake into their corresponding energy and nutrient 

composition (UCM & Alce Ingeniería S.A, Madrid, Spain) (V 3.4.0.10).  



 

 

Dietary habits were also measured using the KIDMED test (Mediterranean 

Diet Quality Index), a validated questionnaire for the Spanish juvenile 

population that measures the adherence to the Mediterranean diet, which is 

widely considered to be an optimally healthy diet for most populations (231, 

232). According to the KIDMED index, a score of 0–3 reflects poor adherence 

to the Mediterranean diet, a score of 4–7 describes average adherence, and a 

score of 8–12 good adherence. 

7.3.3.4. Red Blood Cell (RBC) Membrane Fatty Acid 

Analysis 

The fatty acid composition of mature RBC membrane phospholipids was 

obtained from blood samples (approximately 2 mL) collected in vacutainer 

tubes containing ethylenediaminetetraacetic acid (EDTA). Samples were 

shipped to the company Lipinutragen (Bologna, Italy) and upon arrival 

underwent quality control for the absence of hemolysis. During the blood 

analysis, the automated protocol consists of selection of mature RBCs, as 

reported previously (165-168), followed by lipid extraction and lipid 

transesterification to fatty acid methyl esters (FAMEs). Briefly, the whole blood 

in EDTA was centrifuged (4000 rpm for 5 min at 4ºC), and the mature cell 

fraction was isolated based on the higher density of the aged cells (169) and 

controlled by the use of cell counter (Scepter 2.0, EMD Millipore, Darmstadt, 

Germany). All the subsequent steps were automated and included cell lysis, 

isolation of the membrane pellets, phospholipid extraction from pellets using 

the Bligh and Dyer method (170), transesterification to FAMEs by treatment 

with a potassium hydroxide (KOH)/methyl alcohol (MeOH) solution (0.5 

mol/L) for 10 min at room temperature, and extraction using hexane (2 mL). 

The FAMEs were analyzed using capillary column gas chromatography (GC). 

GC analysis was run on the Agilent 6850 Network GC System, equipped with 

a fused silica capillary column Agilent DB23 (60 m x 0.25 mm x 0.25 μm) and a 



 

 

flame ionization detector (FID). Optimal separation of all fatty acids and their 

geometrical and positional isomers was achieved. Identification of each fatty 

acid was made by comparison of commercially available standards and to a 

library of trans isomers of MUFAs and PUFAs. The amount of each FA was 

calculated as a percentage of the total FA content (relative %), as described in 

section 2.5, being more than 97% of the GC peaks recognized with appropriate 

standards. 

7.3.3.5. Red Blood Cell Membrane Fatty Acid Profile 

A pool of 12 FAs were selected as a representative profile of the dominant 

glycerophospholipids present in the RBC membrane, as well as three FA 

families (SFA, MUFA and PUFA): for SFAs, palmitic acid (C16:0) and stearic 

acid (C18:0); for MUFAs, palmitoleic acid (C16:1;9c), oleic acid (C18:1; 9c), cis-

vaccenic acid (C18:1; 11c); for ω-3 PUFAs, eicosapentaenoic acid (EPA) (C20:5), 

docosahexaenoic acid (DHA) (C22:6); for ω-6 PUFAs, linoleic acid (LA) (C18:2), 

dihomo-gamma-linolenic acid (DGLA) (C20:3) and arachidonic acid (AA) 

(C20:4); for geometrical trans fatty acids (TFA): elaidic acid (C18:1 9t) and 

mono-trans arachidonic acid isomers (monotrans-C20:4; ω-6 recognized by 

standard references as previously described by Ferreri et al (233). Considering 

these fatty acids, different indexes previously reported in the literature (168) 

were calculated: (%SFA/%MUFA) index related with membrane rigidity; 

Omega-3 index (DHA + EPA); Inflammatory risk index (% ω-6)/(% ω-3); PUFA 

balance [(%EPA + %DHA)/total PUFA x 100]; Free radical stress index (sum of 

trans-18:1 + Σ monotrans 20:4 isomers); Unsaturation Index (UI) [(%MUFA) + 

(%LA/2) + (%DGLA/3) + (%AA/4) + (% EPA/5) + (%DHA/6)]; Peroxidation 

Index (PI) [(%MUFA/0.025) + (%LA) + (%DGLA/2) + (%AA/4) + (% EPA/6) + 

(%DHA/8)]; De Novo Lipogenesis index (DNL) [(%Palmitic acid)/(%LA)](173).  

Additionally, the enzymatic indexes of elongase and desaturase enzymes, 

the two classes of enzymes of the MUFA and PUFA biosynthetic pathways, 



 

 

were inferred by calculating the product/precursor ratio of the FAs involved in 

these reactions. 

7.3.3.6. Statistical Analysis 

In order to classify individuals based on metabolic similarities in their fatty 

acid profile, an unsupervised hierarchical clustering method was conducted on 

children with obesity, based on the RBC FA profile, using SPSS v.25 (IBM, 

Chicago, IL, USA). The idea of cluster analysis is to measure the distance 

between each pair of objects (participants) in terms of the variables suggested 

in the study (PLM FA levels), and then to group subjects which are close 

together. More specifically, based on the distance matrix, the clustering 

algorithm identifies the closest observations (i.e., subjects with similar RBC FA 

profile levels) and iteratively merged them within the same cluster until all 

clusters were merged together(234). The result is a hierarchical classification 

tree(235) (Figure 18).  

The clustering was performed based on the method of Ward (1963), which 

was found to be most suitable as it creates a small number of clusters with 

relatively more participants. Additionally, the Ward method has proved to 

outperform other hierarchical methods (Punj and Stewart, 1983; Harrigan, 

1985) in producing homogeneous and interpretable clusters. 

Once the MHO cluster was isolated from the rest of the children with 

obesity (the rest of the obese clusters that were not the MHO cluster, were 

merged to form the obese cluster), statistical analyses was made between the 

MHO cluster, the obese cluster and the children with normal weight groups. 

Differences between the MHO cluster, obese cluster and children with 

normal weight for nutrient intake, food group intake and KIDMED test were 

determined by conducting a Kruskal-Wallis test for the data that was not 

normally distributed. Normal data distribution was assessed by Shapiro-Wilk's 



 

 

test or/and Kolmogorov-Smirnov test. Subsequently, Dunn's (1964) test was 

performed for post hoc comparisons. A Bonferroni correction for multiple 

comparisons was made, to correct for the increased risk of type I error. For 

normally distributed variables, a one-way ANOVA with Tukey post hoc 

analysis was conducted. 

An Analysis of Covariance Test (ANCOVA) was run to determine the 

differences between RBC membrane fatty acids from the obese cluster, MHO 

cluster and children with normal weight, after controlling for variables selected 

as potential confounders, such as age, gender and dietary macro and 

micronutrient intake. Post hoc analysis was performed with a Bonferroni 

adjustment for multiple comparisons. First, a Principal Component Analysis 

(PCA) was run on 15 dietary nutrient intake variables (individual FAs,  families 

(SFA, MUFA and PUFA), total lipids (%E), carbohydrates and proteins), 

obtained with the DIAL software after transforming the information about 

food items from FFQ questionnaires into micro and macronutrient values, in 

order to reduce and simplify the dimensions of these variables and use the 

generated factors as diet covariates (168). The Kaiser-Meyer-Olkin (KMO) and 

Bartlett’s test of sphericity were used to verify the sampling adequacy for the 

analysis. PCA revealed four components that had eigenvalues greater than one 

and which explained 83.74% of the total variance. These components were 

included in the ANCOVA analysis as diet covariates. The level of significance 

was set at p < 0.05. All statistical analyses were performed using SPSS (IBM 

Corp. V 24.0, New York, USA). 



 

 

7.3.4. Results 

7.3.4.1. Clustering 

A hierarchical clustering was performed using the squared euclidean 

distance and Ward's method to classify each subject based on the 12 FA 

measured in the RBC analysis. Five cluster where isolated (Figure 18), one of 

them presenting an RBC fatty acid profile similar to children with normal 

weight. Such cluster was determined as the MHO cluster and all the others 

were merged to form the obese cluster. 

Figure 18: Hierarchical clustering classification tree 

7.3.4.2. Descriptive characteristics of the clusters  

A total of 194 children between 6 and 16 years old took part in the study 

sample (Table 5). The MHO cluster and the obese cluster together with normal 

weight group were included in a comparative analysis to describe their 

characteristics (Table 5). A matched gender distribution was found for the 

obese cluster and MHO but not for the normal weight group. Three groups 

presented similar age without statistically significative differences. No 

variation was observed for BMI between the obese cluster and the MHO 

cluster.    

 



 

 

Table 5: General characteristics of the studied population 

  Obese Clusters 

(G1) 
MHO Cluster (G2) Normoweight (G3) 

Kruskal-

Wallis 

H test 

(p) 

Post hoc Pairwise 

comparison(p)   
n=65   n=11   n=118   

  Mean SD Mean SD Mean SD   G1:G2 G1:G3 G2:G3 

Age 11.0 0.3 10.8 0.7 10.9 0.3 0.94 
   

Gender(%girls) 68   72.7   46.5   0.01 1.00 0.01 0.26 

BMI 28.7 0.4 29.0 1.23 18.4 0.3 <0.001 1.0 <0.001 <0.001 

 

7.3.4.3.  Red blood cell membrane fatty acids profile  

In order to compare RBC FA profiles between groups, a one-way 

ANCOVA was conducted using age, sex and dietary intake as covariates to 

adjust the error made by those confounding factors (Table 10). No statistically 

significant difference was observed between the MHO cluster compared with 

the control group, apart from the 20:4 trans FA that showed higher levels for 

the MHO cluster (p=<0.001).  

The obese cluster presented significant differences when it was compared 

with both MHO cluster and the control group. The obese cluster presented 

higher values for total SFA, AA, total ω-6, ω6/ω3, SFA/MUFA and D9D 18:0 

and lower values for oleic acid, total MUFA, EPA, DHA, total ω-3, D6D+ELO 

and PUFA Balance. The obese cluster also had higher values of DGLA and 

stearic acid compared to the normoweight group (p=<0.001 for both), but not 

differences with the MHO cluster were observed (p=0.08 for both). The obese 

cluster presented lower levels of 20:4 trans FA compared to the MHO cluster 

(p=<0.001) but no differences with the normoweight group.  



 

 

Table 6: RBC membrane fatty acid profile 

 
Obese Cluster 

(G1) 

n=65 

MHO Cluster 

(G2) 

n=11 

Normoweight 

(G3) 

n=118 

Ancova Post hoc Pairwise comparison (p-value) 

Fatty acids (%) Mean SE Mean SE Mean SE p G1:G2 G1:G3 G2:G3 

16:0 22.38 0.13 22.62 0.32 22.50 0.09 0.64 1.00 1.00 1.00 

18:0 18.35 0.13 17.59 0.32 17.72 0.10 <0.001 0.08 <0.001 1.00 

TOT. SFA 40.72 0.12 39.84 0.32 40.13 0.09 <0.001 0.03 <0.001 1.00 

16:1/9c 0.42 0.02 0.50 0.04 0.40 0.01 0.07 0.28 0.83 0.76 

18:1/9c 16.34 0.15 17.34 0.37 17.45 0.11 <0.001 0.04 <0.001 1.00 

18:1/11c b 1.13 0.03 1.32 0.07 1.19 0.02 0.02  - -  -  

TOT. MUFA 17.92 0.16 19.15 0.39 19.06 0.12 <0.001 0.01 <0.001 1.00 

18:2 13.90 0.17 13.91 0.41 14.24 0.12 0.26 1.00 0.33 1.00 

20:3 2.32 0.05 2.05 0.11 2.02 0.03 <0.001 0.08 <0.001 1.00 

20:4 20.02 0.17 18.16 0.43 18.62 0.13 <0.001 <0.001 <0.001 0.93 

TOT. ω6 36.23 0.20 34.12 0.49 34.94 0.15 <0.001 <0.001 <0.001 0.33 

20:5 0.46 0.03 0.77 0.07 0.61 0.02 <0.001 <0.001 <0.001 0.09 

22:6 4.52 0.13 5.57 0.33 5.01 0.10 0.001 0.01 0.01 0.33 



 

 

TOT. ω3 4.92 0.15 6.33 0.36 5.63 0.11 <0.001 <0.001 <0.001 0.20 

TOT. PUFA 41.20 0.18 40.45 0.46 40.57 0.14 0.02 0.38 0.03 1.00 

18:1t 0.09 0.01 0.06 0.02 0.08 0.01 0.52 0.79 1.00 1.00 

20:4t 0.06 0.01 0.13 0.02 0.07 0.01 <0.01 <0.001 0.72 <0.001 

TOT. TRANS 0.14 0.01 0.19 0.03 0.16 0.01 0.21 0.27 1.00 0.61 

Indexes 

ω6/ω3 7.65 0.21 5.58 0.51 6.47 0.15 <0.001 <0.001 <0.001 0.29 

SFA/MUFA 2.28 0.02 2.11 0.06 2.13 0.02 <0.001 0.01 <0.001 1.00 

Δ6D+ELO 6.09 0.16 6.91 0.38 7.20 0.11 <0.001 0.14 <0.001 1.00 

Δ5D 20:4 8.87 0.24 9.06 0.59 9.43 0.18 0.18 1.00 0.20 1.00 

Δ9D 16:0 58.21 2.49 51.42 6.17 59.11 1.86 0.50 0.91 1.00 0.72 

Δ9D 18:0 1.13 0.01 1.01 0.03 1.02 0.01 <0.001 <0.001 <0.001 1.00 

PUFA BALANCE 12.02 0.35 15.72 0.86 13.91 0.26 <0.001 <0.001 <0.001 0.14 

Peroxidation Index 137.00 1.05 140.18 2.55 137.12 0.76 0.74 0.74 1.00 0.77 

Unsaturation index 162.17 0.76 163.00 1.88 161.33 0.56 1.0 1.00 1.00 1.00 

DNL Index 1.63 0.02 1.60 0.05 1.59 0.02 1.0 1.00 0.36 1.00 

Data is presented as mean ± standard error. Adjusted for age, sex and dietary components extracted from the Principal Component Analysis of 

dietary nutrient intake (individual FAs, families (SFA, MUFA and PUFA), total lipids (%E), carbohydrates, proteins and calories).  
a Post hoc tests were conducted with a Bonferroni adjustment. b Levene's test of homogeneity of variance, was not met.



 

 

7.3.4.4. Dietary intake 

Table 11 shows the differences in macronutrients and individual fatty acid 

daily intake expressed as % of Kcal among the three groups. No statistically 

differences were observed for any of measured macro and micronutrients 

intake except for total PUFA, for which obese cluster showed lower intake 

compared to the normoweight group (p=0.03).  

  



 

 

Table 7: Dietary daily intake expressed as % of energy (%E). 

 
Obese Clusters (G1) 

n=65 

MHO Cluster (G2) 

n=11 

Normoweight (G3) 

n=118 

Kruskal-

Wallis H test  

Post hoc Pairwise comparison(p) 

Macronutrients 
 

Mean SD Mean SD Mean SD  G1:G2 G1:G3 G2:G3 

Calories (Kcal/day) 2002.34 583.09 2320.70 371.52 2479.31 1811.90 0.09    

Proteins (%E) 16.54 2.16 16.34 1.89 16.37 2.68 0.96    

Carbohydrates (%E) 46.96 5.25 45.73 5.84 42.64 7.50 0.64*    

Simple sugars (%E) 21.74 5.25 21.72 2.28 20.38 5.84 0.90*    

Lipids (%E) 33.34 6.25 35.05 6.83 37.28 7.33 0.64    

Individual FA (% E) 

C14:0 0.95 0.43 1.17 0.73 0.91 0.39 0.31*    

C16:0 6.07 1.21 6.58 1.74 5.93 1.18 0.17    

C18:0 2.32 0.56 2.49 0.83 2.33 0.58 0.62*    

Tot. SFA 10.61 2.65 11.84 4.32 10.98 2.45 0.09    

C16:1 0.52 0.14 0.56 0.18 0.52 0.12 0.65    

C18:1 13.91 3.63 14.63 2.95 16.27 4.17 0.55*    

Tot. MUFA 14.86 3.72 15.66 3.09 17.22 4.22 0.50    



 

 

C18:2 4.19 1.78 3.63 1.30 5.00 2.44 0.33    

C20:4 0.53 0.12 0.60 0.14 0.65 0.27 0.82*    

Tot. ω-6 4.23 1.78 3.68 1.33 5.07 2.46 0.37    

C18:3 0.04 0.01 0.04 0.01 0.06 0.03 0.25    

C20:5 (EPA) 0.08 0.06 0.07 0.05 0.07 0.05 0.97    

C22:5 (DPA) 0.02 0.01 0.02 0.01 0.02 0.01 0.68    

22:6 (DHA) 0.15 0.10 0.14 0.08 0.15 0.09 0.96    

Tot. ω-3 0.78 0.22 0.82 0.24 0.90 0.33 0.46    

Tot. PUFA 5.14 1.84 4.67 1.48 6.11 2.67 0.01 1.00 0.03 0.12 

ω6/ω3 5.70 2.34 4.57 1.19 6.00 3.20 0.05    

Data is presented as mean ± standard deviation. Not normally distributed variables. Pairwise comparison conducted with a 

Bonferroni adjustment. *ANOVA was conducted instead of Kruskal-Wallis. Post hoc pairwise comparisons are only shown for cases 

with a significant difference between FA using ANOVAs or Kruskal-Wallis tests. 



 

 

7.3.4.5.  Food Groups 

Table 12 shows dietary intake according to food categories calculated via 

food frequency questionnaires. The MHO cluster showed a significantly higher 

consumption of fruits than the obese cluster (p=0.01) and the normoweight 

group (p=0.02). The obese cluster presented a lower intake of cereals compared 

with the normoweight group (p=0.04) and a lower score from the Kidmed test 

(p=0.02). No other differences were observed regarding food groups intake. 

  



 

 

Table 8: Food groups intake 
 

Obese Clusters 

(G1) 

n=65 

MHO Cluster 

(G2) 

n=11 

Normoweight 

(G3) 

n=118 

Kruskal-

Wallis H test 

(p) 

Post hoc Pairwise comparison(p*) 

Food Groups (gr/day) Mean SD Mean SD Mean SD 
 

G1:G2 G1:G3 G2:G3 

Fruits 434.7 39.5 611.3 56.4 445.9 23.8 0.01 0.01 0.77 0.02 

Vegetables 166.4 16.3 180.0 27.6 192.1 13.4 0.3    

Cereals 142.9 7.0 173.8 20.8 172.9 8.5 0.04 0.45 0.04 1.0 

Legumes 79.0 3.7 75.0 8.3 81.2 3.6 0.86    

Olive oil 19.5 1.6 27.3 3.5 21.1 1.1 0.06    

Dairy products 340.0 28.7 271.9 37.4 360.3 15.8 0.12    

Eggs 20.9 1.4 28.5 4.1 24.4 1.9 0.28    

Red meat 30.2 2.5 36.7 6.8 27.7 1.8 0.34    

White meat 40.3 2.3 47.4 2.6 41.2 2.6 0.25    

Dried Fruits and nuts 3.8 0.9 4.7 2.6 5.3 0.7 0.24    

Lean fish 29.0 2.5 41.8 7.8 31.6 1.8 0.16    

Oily fish and shellfish 28.4 2.9 32.5 6.6 26.1 2.1 0.27    

Sugary drinks 46.0 10.3 43.8 16.2 43.6 12.0 0.65    

Juices 123.8 15.0 148.5 28.4 134.9 15.2 0.68    

Kidmed 7.11 2.23 7.60 1.90 7.95 1.87 0.02 1.0 0.02 1.0 

Data is presented as mean ± standard deviation. *Pairwise comparison conducted with a Bonferroni adjustment.  



 

 

7.3.5. Discussion 

To our knowledge, this is the first time that RBC FA membrane profile has 

been used as a biomarker to differentiate MHO in a cohort of obese patients, 

and especially in children, that present metabolic imbalances. Inflammation 

seems to play a key role in distinguishing metabolically healthy from 

metabolically unhealthy individuals with obesity(213), so here the analysis of 

a RBC FA profile as a comprehensive biomarker of the pro- and anti-

inflammatory status, is assayed, that can be applied as a potential tool to 

distinguish MHO. 

Previous studies in MHO adults and children have been focused on 

biochemical parameters such as insulin resistance, blood pressure, serum lipids 

and glucose (75, 78, 80, 214, 215), but it has been increasingly suggested to 

include circulatory inflammatory markers in the definition of MHO (84, 236). 

The RBC FA profile characteristic of children with obesity has been 

previously reported in the literature(227), compared to children with normal 

weight, with a clear shift of the group with obesity towards a pro-inflammatory 

condition, mainly due to the higher levels of arachidonic acid, a well described  

precursor of inflammatory mediators(182, 237), accompanied by a higher 

SFA/MUFA ratio. 

After conducting a hierarchical clustering analysis of our patient cohort, 

within those individuals with obesity, a MHO cluster was isolated, which 

showed a differentiated FA profile, compared to the rest of the children with 

obesity, and, similar profile to children with normal weight. Our MHO cluster, 

matched the previously published prevalence of 10 to 30% of the study 

population (14% in our study)(75, 78, 80, 214, 215). 



 

 

Compared to children with obesity, the MHO cluster, showed lower levels 

of total ω-6 FA, mainly due to significant lower value of  AA (p<0.001), a well-

known precursor of proinflammatory mediators prostaglandins, thromboxane 

A2 and prostacyclins (182, 237). The MHO cluster does not present a shift to an 

inflammatory metabolism, as with other children with obesity do, and displays 

values of ω-6 FAs similar to children with normal weight. 

Regarding ω-3 FAs, the MHO cluster presents higher values of EPA, DHA 

and total ω-3 FAs (p<0.001, p=0.001 and p<0.001 consecutively) compared to 

children with obesity withsimilar values compared to the normal weight 

children. This is an important feature as, ω-3 PUFAs can improve impaired 

metabolism in obesity by modulating main metabolic pathways(238), such as 

promoting anti-inflammatory response or insulin sensitivity(239), regulating 

the adipocyte apoptosis(240) or modulating membrane fluidity by altering 

lipid rafts(241). In fact, a balanced ω-6/ω-3 ratio is important in the prevention 

and management of obesity, as both metabolic pathways compete to bind the 

same enzymes and an unbalanced ratio towards the ω-6 PUFAs, appears 

remarkably enhanced in obesity(40).   

Regarding SFA, the MHO cluster showed lower levels of total SFA in RBC 

membranes (p=0.03) and higher values of total MUFA (p=0.01), mainly due to 

higher levels of oleic acid (p=0.04). However, these differences were not 

associated to different dietary intake of SFA or MUFA, as could be considered 

a priori, because no differences were observed for any nutrient intake between 

the MHO cluster and the rest of children with obesity. The MHO cluster only 

showed lower intake for total PUFA intake (p=0.03), which could be associated 

to lower levels of total PUFA in RBC for MHO cluster (p=0.03). However, 

dietary variables that can act as confounder factors, have been used as 

covariates in the ANCOVA analysis, as explained in the experimental section, 

to observe differences in RBC profile between groups. Moreover, despite food 



 

 

frequency questionnaires used in this study are validated and  widely used, 

they have their limitations to describe accurately diet intake and this could be 

seen as a limitation of the study(242). 

Regarding food groups intake,  only a higher intake of fruits was observed 

(p=0.01) for MHO compared to other children with obesity, which can be 

considered a protective factor together with the consumption of vegetables due 

to a higher consumption of fiber and low glicemic load(243), since it can 

provide an antioxidant intake that exert their protection toward the FA in the 

lipid pools, especially PUFA. However, this could be enough explaining the FA 

composition in our cohort, considering that no differences were observed for 

the KIDMED score.   

As practically no differences were seen in terms of reported intakes, our 

attention turned to evaluate enzymatic activity by using lipid indexes in order 

to explain the differentiated levels of RBC SFA and MUFA. The enzymatic 

activity of the Δ-9-desaturase (namely, stearoyl-CoA desaturase-1, SCD1) 

appeared higher for the MHO compared to the rest of the children with obesity 

(p<0.001) and indicated the higher proportions of SFAs converted to MUFAs, 

as reflected in higher oleic acid levels and almost statistically significant lower 

stearic acid levels (p=0.08) in this group. A reduced activity of the enzyme in 

the obese cluster is correlated to factors that have been recalled several times to 

explain the involvement of SFA pathway in metabolic derangements, such as: 

the absence of enzymatic cofactors, the inhibition of desaturase activity and 

liver impairment (162), since the desaturase transformation prevents SFA 

accumulation and toxicity triggering hepatocellular apoptosis and liver 

damage (244).  

It is worth mentioning that, although very popular, the indirect 

measurement of enzyme activity, by partition between product and precursors, 



 

 

could be considered as a limitation of the study whereas the direct 

measurement is needed to reaffirm the conclusions obtained. 

The underlined differences between MHO cluster and the rest of children 

with obesity are connected with the importance of a personalised approach in 

obesity, in particular regarding nutritional recommendations based on the 

specific FA needs. Currently, general recommendations for individuals with 

obesity, such as low caloric diets with restriction on fats, are given(46), but not 

considering the quality of fats and specifically the types of FA needed. The 

membrane FA lipidome analysis should be included in the protocols for two 

reasons: i) to better define and differentiate the molecular status of the patients; 

ii) to envisage adequate nutritional strategies for each population group and to 

test their effects increasing the personalization of the treatments. According to 

our results, individuals in the obese cluster need a higher intake of ω-3 FA, to 

induce a better balance between ω-6 and ω-3 pathways and reduce the 

inflammatory precursors. This recommendation is not extended to all children 

with obesity, as the MHO cluster has optimal levels of both ω-3 and ω-6 FAs.  

The capacity of the mature RCB FA profile can be used for larger 

population studies, to extend its validation as a biomarker to differentiate 

MHO in children and describe the characteristics of those children with obesity 

that do not display typically obesity-associated metabolic imbalances. At the 

same time, intervention studies, with personalised nutritional strategies, can be 

carried out keeping the optimal balance of the RBC FA profile as a molecular 

target to couple with clinical observations. 

 

  



 

 

7.4. Future perspectives for precision nutrition 

There is no doubt that diet has an impact on health, but its implication in 

well-being, as well as in different pathologies, is difficult to determine due to 

the individual molecular response. As the metabolic diversity leads to 

differences in nutrient requirements and responses to diet between individuals, 

recent research, is pointing out to the personalization of the nutritional 

recommendations (245).  

The holistic study of lipid metabolism and the specific application of cell 

membrane lipidomic for precision nutrition builds a strong basis for 

understanding the biological significance of lipids on obesity which will allow 

establish a correct lifestyle and diet (probably enriched in certain fats), for 

comprehensive precision nutrition recommendations and personalized obesity 

management. 

As we have evidenced in previous chapters of this thesis work, children 

with obesity requires of specific dietary fats, mainly ω-3, to establish an optimal 

balance between ω-6 and ω-3 pathways to restore the cell membrane structure 

and reduce inflammatory status. Moreover, dietary MUFA (especially oleic 

acid) are relevant dietary fats that must be increased in replacement of SFA to 

improve the action of the D9D enzyme. 

Literature reported that ω-3 supplementation can be an adequate strategy 

to improve lipid metabolism in obesity and other associated risk factors such 

as CVD (246, 247). Although national and international guidelines recommend 

increasing ω-3-rich foods, and sometimes supplementation, there are some 

controversial results from recent trials (248).  

In the following review we summarize the utility of ω-3 PUFA 

supplements as a personalized nutrition strategy to restore optimal levels of 

this ω-3 PUFA in the RBC membrane based on a precision nutrition approach.   
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Abstract Increasing evidence has shown that fatty acids play a key factor in nutrition and health. 

Despite the well described health benefits associated to the omega-3 fatty acids (ω-3 FA) intake 

from epidemiological and clinical trials, controversial results are found from some clinical trials 

regarding the effect of ω-3 FA supplementation to handle certain diseases. In this review, we 

provide orientation for the reader to understand the importance of a personalized recommendation 

of the ω-3 polyunsaturated fatty acid supplementation based on a precision nutrition approach. 

We begin by reviewing the metabolic relevance of ω-3 fatty acids and then discuss the current 

state of ω-3 fatty acid supplements regarding their indications, regulation, variety from brand to 

brand, adverse effects and the need to implement a personalized supplementation. We conclude 

with future perspectives for practitioners and general guidance on precision nutrition. 
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1. Introduction 

In the last decades, omega-3 fatty acids (ω-3 

FA) supplements have experienced a growing 

increase in consumption by the general public, 

becoming an increasingly important part of the 

diet [1]. For example, the use of ω-3 supplements 

among adults in the U.S. has increased from 4.8% 

in 2007 to 7.8% in 2012 [2]. The factors that 

explain this increase in consumption, among 

others, are the more scientifically backed 

evidences on the beneficial health effects of ω-3 

FA [3] and the fact that typical current dietary 

habits in western countries do not meet the 

recommended amount of ω-3 FA intake that 

should be used for optimal health conditions [4].  

2. Metabolic Relevance of ω-3 

Fatty Acids 

ω-3 FA are essential fatty acids that must be 

obtained from the diet because humans and other 

mammals lack endogenous enzymes to 

synthesize them. Alpha-linolenic acid (ALA) is 

the precursor of the metabolic pathway for ω-3 

FA and can be found in green leafy vegetables 

and in some seeds (flax, rape, chia, perilla and 

walnuts). Even if mammalian cells are not able to 

synthesize ALA, they can metabolize it into more 
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physiologically active compounds by a set of 

desaturating enzymes via ∆5 and ∆6 desaturases 

and by lengthening the acyl chain (elongation) 

via elongases, thus converting them into longer-

chain fatty acids of 20 and 22 carbon atoms [5].  

Metabolically speaking, the most important ω-

3 FA are EPA (20:5 ω-3) and DHA (22:6 ω-3), 

which have been associated with numerous 

health benefits. Adequate consumption of ω-3 

FA, mainly EPA and DHA fatty acids, has been 

proven to be vitally important for fetal and infant 

development [6], improved cardiovascular health 

[7], benefits in cancer by promoting tumor cell 

apoptosis [8], immune system [9], or a decreased 

inflammatory response to injury [10], among 

other benefits. 

Although EPA and DHA can be synthesized 

from shorter plant-derived ω-3 FA precursors 

such as ALA,  

this metabolic pathway is not efficient in humans. 

Approximately only 8-20% of ALA is converted 

to EPA in humans, while conversion of ALA to 

DHA is estimated to be around 0.5-9% [11], 

although this rate may be affected by hormones 

[12], sex [13], genetics [14] and age [15]. In 

addition, since several enzymes are shared 

between the metabolic pathways of ω-3 and ω-6 

PUFAs, ω-3 and ω-6 substrates compete for 

access to these enzymes and this competition is 

highly influenced by the relative ratios of each 

type of PUFA. Furthermore, the ratio of ω-6/ω-3 

FA is highly affected by dietary intake and is 

found in excess of ω-6 in many Western countries 

(i.e.20:1 ω-6/ω-3 compared to the 1:1 ratio during 

evolution), due to increased consumption of the 

linoleic acid (LA), a precursor of the ω-6 

metabolic pathway that is rich in vegetable oils 

[16]. For example, consumption of LA in the U.S. 

according to the U.S. Department of Agriculture 

has increased 8 times for men and 6 times for 

women from the beginning of the XIX century to 

nowadays [17].  

An added problem lies in the fact that long 

chain ω-6 and ω-3 PUFAs synthesized from LA 

and ALA not only have different, but often 

opposing effects on immunity and inflammation. 

Arachidonic acid, which is the main long chain 

ω-6, metabolites promote acute and chronic 

inflammation acting as local hormones. In 

contrast, EPA and DHA can be metabolized to 

anti-inflammatory mediators [18]. 

This illustrates the importance of a sufficient 

dietary intake of EPA and DHA to provide 

enough levels of ω-3 FA for optimal human 

health. 

3. Indications for ω-3 Fatty 

Acid Intake 

Currently, different recommendations are 

given by associations and government 

organizations regarding the dosage of ω-3 FA for 

the maintenance of optimal health conditions or 

alleviation of possible disease states. For 

example, in the UK, the recommendation of ω-3 

FA intake is at least two fish meals per week 

including at least one meal consisting of oily fish 

(i.e.salmon, tuna, anchovies, sardines etc..), in 

which translates to an EPA+DHA 

recommendation of around 450 mg/day [19]. In 

France, the official recommendation for ω-3 FA 

intake is 400–500 mg/day of EPA+DHA with at 

least 100–120 mg/day DHA [20]. The Superior 

Health Council of Belgium recommends a 

minimum of 1-2% energy from ω-3 FA for 

adults, with at least one oily fish per week to 

supply 250 mg/day of EPA+DHA [21]. The 

Health Council of the Netherlands establishes a 

weekly consumption of one serving of fish, 

preferably oily fish, for a target quantity of 225 

mg/day of EPA+DHA [22]. The target intake for 

Australia and New Zealand is 160 mg/day 

EPA+DHA for men and 90 mg/day for women 

[23]. The European Food Safety Authority and 

the Dietary guideline for Americans, from the 

U.S. Department of Agriculture and the 

Department of Health and Human Services, point 

out that as the available data on ω-3 FA intake is 

insufficient to derive an average requirement, an 

intake of 250 mg per day of EPA+DHA appears 

to be sufficient for cardiovascular prevention in 

healthy subjects [24,25]. The World Health 

Organization recommends regular fish 

consumption (one to two servings per week; each 

serving should provide the equivalent of 200–500 

mg of EPA+DHA) [26]. 

Differences in ω-3 FA intake 

recommendations are reflected in differences in 

the actual average intake of EPA and DHA 

between countries with western diets [27]. For 

example, a nationally representative cross-

sectional survey collected by the National Center 



148 Journal of Food and Nutrition Research  

 

for Health Statistics of the Centers for Disease 

Control and Prevention in the U.S. showed that 

the intake of DHA and EPA from foods and 

dietary supplements for adults was 72 ± 4 mg/d 

and 41 ± 4 mg/d, respectively [28]. The average 

consumption of ω-3 FA in Canada is around 177 

mg/day, in Australia around 143 mg/day, and in 

many parts of Europe the daily intake of EPA + 

DHA by adults is <100 mg/d, since many never 

eat oily fish [29]. 

Regarding this, the European Food Safety 

Authority (EFSA) reported different health 

benefits associated to daily intake of ω-3 FA that 

can be included as health claims in manufactured 

food labeling [30]. 

A recommended dietary allowance for the 

optimum minimum intake of EPA and DHA ω-3 

FA is therefore needed for the general population 

without considering any disease state or other 

specific requirement in special situations (i.e. 

pregnancy, sports performance) that could 

potentially alter the recommended amount of 

each respective fatty acid. 

At the same time, there is not a current 

consensus regarding the tolerable upper intake 

level (UL) for ω-3 supplements due to 

insufficient data. Different recommendations 

have been established in different countries. For 

example, Australia, New Zealand, and The US 

Food and Drug Administration set a reference 

value for the UL of EPA+DHA at 3 g/d [26].  

Meanwhile, EFSA states that long-term 

supplemental intakes of combined EPA and DHA 

up to 5 g/day do not appear to increase the risk of 

adverse side effects such as spontaneous bleeding 

episodes or bleeding complications, or lipid 

peroxidation among others [4]. 

4. Regulation of ω-3 

Supplements 

Since dietary supplements are widely available 

to the general public (i.e. they are not over-the-

counter drugs and are not regulated as such), their 

purity, chemical integrity, efficacy and safety 

remains unverified [31]. Some studies show that 

the concentration of ω-3 FA was lower than what 

it was stated in the supplemental labels [32] and 

contained higher oxidation levels than what was 

permitted by current legislation [33]. In this 

sense, lipid peroxides contribute to accelerate 

oxidation of other fatty acids leading to lipid 

membrane peroxidation, cell damage, and 

oxidative stress [34]. Endogenous membrane 

lipid peroxidation results in altered membrane 

fluidity, transport, and cell signaling [35]. 

At the same time, levels of trans-isomers have 

been measured in different concentrations [36] 

likely due to the high temperatures and pressures 

used during the manufacturing of concentrated 

supplements [37]. The dietary intake of trans-fatty 

acids (TFA) has adverse effects on blood lipid 

levels because they cause an increase on LDL-

cholesterol and a decrease on HDL-cholesterol 

[38], both well-established markers of 

cardiovascular disease [39]. Similarly, cohort 

studies demonstrated that high intake of TFA is 

associated with an increased coronary heart 

disease and mortality rates [40,41]. 

Current product formulations of ω-3 

supplements are offered in various options, 

ranging from soft gels (most common) to liquids, 

powders, and gummies, with oil sources from 

fish, krill, algae and plants. The quantities and 

prices of ω-3 FA found in dietary supplements 

are highly variable within and between brands. 

The dosage recommendations for ω-3 

consumption by different manufacturing brands 

also largely differs, even for recommendations 

for the treatment of the same disease. For 

example, figure 1 shows a comparison of the 

recommendations of the daily intake of EPA, 

DHA and  

 

EPA+DHA for treating cholesterol from 10 

different commercial ω-3 supplement products 

that authors have selected from available 

products in the European market. This 

comparison reveals large differences between the 

recommended doses of supplements from one 

brand to another, leading to an increased 

confusion in consumer choice for selecting the 

adequate supplemental dosages.  

ω-3 FA in supplements can be found in 

different forms such as triglycerides, free fatty 

acids, ethyl esters and phospholipids. 

Bioavailability of ω-3 PUFAs as phospholipids 

(as it appears mainly in krill oil) is higher than  

other forms of ω-3s (249)], while triglycerides 

and free fatty acids have higher bioavailability 

than ethyl esters (250)]. This is another feature 

that must be considered when deciding between 

the appropriate supplement for personal use. 
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Figure 1. Daily EPA+DHA intake recommended for treating 

cholesterol from selected European brands. 

5. Personalized 

Supplementation 

Due to the controversy regarding specific 

recommendations of adequate intake of ω-3 for the 

general population as well as different population 

sub-groups (i.e. those with diet-related diseases), 

personalized ω-3 intake strategies should be 

adopted. Implementation of new omic tools, such 

as genomics, metabolomics, proteomics and 

transcriptomics, to the field of precision nutrition 

can facilitate detailed information on specific 

genotypes as well as the current levels of proteins 

and metabolites, thus enabling the identification 

of metabolic deficiencies or genetic variations 

within individuals. Hence, information obtained 

from these technologies can lead to a more 

precise personalized nutritional recommendation 

by providing information on different responses 

to diets, on dietary intake, and on new early 

biomarkers of certain diseases [44], all of which 

should be considered for recommendations of 

adequate dosage for each individual. 

Examples of applying targeted-omic tools to 

asses ω-3 supplementation include studying the 

effect of PUFAs on genetic variation via 

epigenetic modifications [45] or the study of 

different metabolomic and transcriptomic 

profiles of responders and non-responders of ω-3 

supplementation [46]. 

Cell membrane lipidomics, a specific sub-

group within metabolomics, offers analyses of 

long-term food consumption and metabolism 

history: cell membrane composition reflects the 

absorption efficiency of the ingested fatty acids, 

metabolism and distribution of the resulting 

molecules [47,48]. Cell membrane lipidomic 

monitoring can also be applied to large 

populations allowing the molecular 

characterization of specific diseases or health risk 

factors, such as, diabetes mellitus [49], 

cardiovascular disease [50], obesity/overweight, 

cancer, allergies/intolerance [51]. By 

determining the actual levels of cell membrane 

fatty acids of an individual, innovative nutritional 

strategies to improve health status can be 

designed, including diet and specific supplements 

targeting different population groups to help 

consumers to properly choose the adequate fatty 

acid supplementation among commercially 

available products according to their specific 

needs. 

Controversial results from ω-3 

supplementation trials can be found in the 

literature for patients with cardiovascular disease 

[52]. One reason that ω-3 supplementation was 

not beneficial in these studies may be due to the 

fact that they did not measure the basal and 

endpoint ω-3 FA levels [53,54], therefore it is 

impossible to determine the actual changes in ω-

3 levels in these patients. This further supports 

the application of lipidomic tools to these studies 

in order to assess the potential benefits of ω-3 FA 

supplementation. 

6. Conclusions 

It can be concluded that the intake of ω-3 

supplements is a useful way to reach the 

recommended levels of ω-3 FA when the current 

dietary habits don´t meet these demands, 

especially in cases where higher levels may be 

required (i.e. disease, pregnancy, infant 

development). Nevertheless, more research 

should be carried out in the field to establish an 

adequate recommended dietary allowance for ω-

3 FA in order to provide a clear message to the 

general public.  
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However, in the current situation where more 

research is leading to individualized health and 

nutritional recommendations, the use of omic 

technologies for a more precise and personalized 

supplementation appears to be crucial in order to 

achieve the expected health benefits and to allow 

consumers to make correct choices for their 

needs concerning dosage or different fatty acid 

supplements.  This is not a trivial issue because 

the supplements are at the reach of any consumer, 

without any control, and when they are consumed 

in excess or for long-term, can negatively impact 

health. 

In this sense, the application of cell membrane 

lipidomics provides a valid option to understand 

the structural and functional changes in fatty acid 

composition in both normal and pathological 

states. It also provides a measurement of the 

specific fatty acid needs for each individual based 

on their basal metabolic levels, as well as 

different metabolic changes that occur 

supplementation. 

Future perspectives should focus as well on the 

effectiveness of different ω-3 FA sources for 

supplements (marine and vegetable oils) and how 

new industrial processes can affect the quality of 

these supplements.  
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