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SUMMARY 

To overcome fossil fuel exhaustion and global warming, renewable energy resources are taking 

lead to protect the environment and the global economy. The qualities of renewable energy 

generation are often surpassed by their intermittent nature and uneven geographic distribution, 

thus the development of clean energy technologies such as energy conversion and storage is 

considered as the most possible conservation choice for the development of sustainable energy 

policies to fulfil the worldwide demand. At present, the main challenge is in the technology 

development process by focusing on the improvement of their performances, stability, life 

expectancy, safety, and cost with the specific accents according to the application. 

In this regard, electrochemical capacitors or supercapacitors are envisioned as potential next-

generation energy storage systems because of their excellent storage capacity, power density, and 

long-term durability. However, all these advantages are overshadowed by their poor energy 

density. Therefore, currently, several efforts and research are aimed at the development of high-

energy supercapacitor without compromising its power performance in order to make them more 

commercially viable for many applications. There are several factors which enhance the overall 

performance of this energy storage device, such as high surface area electrode material with 

heterochiral porosity is always preferable for electric double-layer capacitors (EDLCs) for high 

power, whereas the high-capacitive faradaic electrode materials demonstrations superior 

performances when high energy is required. Thus, towards the development of supercapacitor, 

the major challenge is the implementation of new materials along with the optimization of cell 

design. 

The objective of this dissertation covers the research associated with the improvement of the 

supercapacitor device through the integration of advanced material and cell configuration to 

achieve high-power density as well as high energy density.  

The manuscript is sectioned into seven chapters. 

In the first chapter, the literature review briefly presents the background of energy storage 

systems and key concepts of electrochemical capacitors. This section also describes the different 

working principles and applications of the supercapacitors along with the most often used 

electrode materials and their different energy storage mechanisms. Special attention is devoted 
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to the importance of the various engineered carbonaceous electrode materials and the systematic 

cell configurations of supercapacitors. 

In the second chapter, synthesis related chemicals, and reagents, characterization techniques 

(physicochemical and electrochemical), and instrumentation details are briefly described. 

Besides, the specific experimental procedure of electrode preparations and cell fabrication is also 

explained. 

In the third chapter, the work demonstrates a development of simple synthesis route for highly 

porous carbon materials with good electronic conductivity as electrodes in standard symmetric 

EDLC and investigate its performance in different electrolytes to select the best active 

material/electrolyte match in terms of the capacitance value as well as rate capability and 

cyclability. Herein, the porous carbon spheres (PCS) is synthesized by carbonization of the sol-

gel process of resorcinol-formaldehyde polymer in presence of a catalyst (i.e. FeCl3). The 

physicochemical characterization of this PCS reveals that this PCS material contains mostly 

micro-and small amount of mesopores, which is intended as electrode material for the symmetric 

EDLC system. Thus, to understand the role of the electro-adsorption process of electrolyte ions 

with the pore size, a detailed electrochemical study is performed of the PCS electrodes both as 

positive and negative in three different electrolytes, i.e. 6M aq. KOH, 1M aq. Li2SO4 and 1.5 M 

TEABF4/acetonitrile, based on their cation/anion size variation. The obtained findings exhibit 

that the positive electrode delivers more capacitance compared to the negative in KOH 

electrolyte, whereas the behavior is entirely opposite in the case of organic TEABF4/acetonitrile 

electrolyte. On the other hand, similar capacitive behavior on both electrodes is noticed in the aq. 

Li2SO4 electrolyte. Therefore, this study reveals the selection of the appropriate electrolytes based 

on the porous texture of the material is effective to increase the overall charge storage 

performance of the electrode material. 

In the fourth chapter, the work is focused on the development of aqueous asymmetric 

supercapacitors (AAS) in full cell configuration by making a variation in electrode mass 

balance. Besides, this work also introduces a facile and scalable one-step synthetic method of 

high surface area activated carbon and a simple synthesis approach of nickel cobalt oxide. To 

observe the overall electrochemical performance of the AAS, a full cell device is fabricated by 

combining a capacitive-type (high surface area activated carbon) and faradaic-type (nickel-cobalt 



  Summary 

____________________________________________________________________________________ 
 

oxide) with different mass balance between positive and negative electrode. This hollow-core 

floral nickel cobalt oxide spheres consists of nanothrones like crystalline sheets which allows 

unrestricted movement of the electrolyte ions during electrochemical process and this binary 

metal oxide shows high capacitance with faradaic behavior. Besides, our polymer derived 

activated carbon has very high surface area (~3000 m2/g) and its electrochemical studies evidence 

the importance of the hierarchical structures of the active materials to maintain good capacity 

retention at high current densities. The optimization of the electrode mass balance within the 

AAS devices leads not only to both excellent energy and power densities but also to outstanding 

stability. The obtained results predict that the best positive: negative mass ratio in this particular 

AAS device is 1:2 ratio, which allow delivering maximum gravimetric energy density of 24.3 W 

h kg-1. Most importantly, this 1:2 AAS device exhibits excellent long-term cycling stability up to 

10,000 cycles with only 13% capacity decay. This study demonstrates that the electrochemical 

performance of asymmetric supercapacitors not only depends on the excellence of electrode 

materials but also on the smart strategy of assembling electrodes in full cell configuration. 

In the chapter five and six demonstrates the development of the dual carbon lithium-ion hybrid 

capacitor (LIC) to improve the energy-power output with two different approaches, such as cell 

voltage variation (chapter five) and electrode mass variation (chapter six). Special attention is 

paid to the electrode material excellence and device engineering by aiming to extract the best 

performance of LICs. 

In chapter five, the work introduces a dual carbon LIC device by assembling a polymer derived 

spongy hard carbon (HC) and an activated carbon (AC), as negative and positive electrodes, 

respectively. In this system, the semi-graphitic spongy-shaped HC is used for lithium 

intercalation (battery-type) and the high specific surface area AC for fast ions adsorption 

(capacitor-type), that conducts a remarkable capacity values and highly stable rate performances 

at high current rates. Apart from high energy-power density aim, to enhance the overall 

performance of the LIC device in terms of operational safety point of view, a comprehensive 

potential window variation study is also performed. Among the different tested potential ranges, 

the best-obtained results predict that 1.5-4.0V LIC device shows the safest operational potential 

range with very good reversibility without any chances of lithium plating even at high current 

density of 10 Ag-1. At such high current density, this LIC device delivers specific cell capacity 
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of 25 mAh-1 within an incredibly discharge time of only 9 seconds. This corresponding to an 

energy density of 64 W h kg-1 at an extreme power density of 28 kW kg-1. Furthermore, within 

this operational potential range, this hybrid device exhibited an excellent capacity retention of 

82% even after 10,000 charge-discharge cycles. Thus, this potential window variation study of 

hybrid system demonstrates to improve the overall electrochemical performance LICs can be 

possible with the optimization the safe operational potential window. 

In the chapter six, the work describes the importance of material excellence and the electrode 

mass variation approach to improve the overall dual carbon LIC performance. In general, most 

LICs include graphite or non-porous hard carbon as negative electrode often failing the demand 

of high energy at high power densities. This study introduces a new LIC device by the assembling 

of a polymer derived hollow carbon spheres (HCS) and a superactivated carbon (AC), as negative 

and positive electrodes, respectively. The obtained results from the individual electrode 

performance reveals that the hollow microstructure of HCS and the ultra large specific surface 

area of AC maximizes the lithium insertion/diffusion and ions adsorption in each of the electrodes 

that leads to remarkable capacity values and rate performances. Thus, to improve the performance 

of the LIC system from a stability point of view, an optimization in electrode mass balance study 

is also performed. Optimized LIC, using a 2:1 negative to positive electrode mass ratio, shows 

very good reversibility within the operative voltage region of 1.5–4.2 V and it is able to deliver 

an energy density of 68 W h kg-1 at an extreme power density of 30 kW kg-1. Moreover, this LIC 

device shows an outstanding cyclability, still retaining more than 92% of the initial capacity after 

35,000 charge–discharge cycles. This prolong cyclability performance indicates that the electrode 

mass variation approach is highly effective to enhance the self-life of the LIC device.  

Finally, in chapter seven, a conclusive statement of each study explains briefly about the current 

challenges and opportunities for the development of the as high-performance supercapacitor.  
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RESUMEN 

 

Las energías renovables como la eólica o la solar representan una alternativa más ecológica a los 

combustibles fósiles, responsables en gran medida del calentamiento global experimentado en 

las últimas décadas en nuestro planeta. Sin embargo, su producción tiene lugar de manera 

intermitente, por lo que implementación requiere del desarrollo de tecnologías de 

almacenamiento más eficientes que permitan la acumulación de energía cuando haya un exceso 

de producción para su uso en los momentos de escasez.   

Los condensadores electroquímicos o supercondensadores son sistemas de almacenamiento de 

energía que presentan una serie de propiedades como su alta densidad de potencia, amplio rango 

de temperatura de operación, fiabilidad o alta ciclabilidad que las hacen muy atractivos en un 

cierto número de aplicaciones, sin embargo, su limitada densidad de energía restringe su uso en 

otros campos de aplicación.  

El objetivo de esta tesis consiste en el estudio del impacto que tiene la integración de nuevos 

materiales sintéticos como electrodos, así como la influencia de algunos de los parámetros de 

celda, en el rendimiento de distintos condensadores electroquímicos.  

La tesis se divide en siete capítulos que incluyen la revisión bibliográfica y estado del arte (primer 

capítulo), así como las técnicas y métodos utilizados para la caracterización físico-química de los 

materiales y la caracterización electroquímica de los sistemas (segundo capítulo). 

El tercer capítulo se centra en el desarrollo de esferas de carbón altamente porosas a partir de 

resinas fenólicas a través de un procedimiento de síntesis simplificado. Su rendimiento como 

electrodo en condensadores electroquímicos de doble capa se investigó utilizando en tres 

electrolitos diferentes (KOH 6M, Li2SO4 1M y TEABF4 1,5 M en acetonitrilo). El estudio del 

comportamiento individual llevado a cabo en cada uno de los electrodos muestra que cuando se 

utiliza KOH como electrolito el electrodo positivo presenta una mayor capacitancia que el 

negativo, al contrario que en el caso del electrolito orgánico TEABF4/AN. Sin embargo, en el 

caso del sistema formado por Li2SO4 como electrolito se observó que ambos electrodos presentan 

capacitancias similares, poniendo de manifiesto la importancia en la selección del electrolito en 

función de las propiedades texturales de los materiales activos de electrodo.   
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En el cuarto capítulo se investiga la optimización de supercondensadores acuosos asimétricos 

formados por un óxido metálico como electrodo positivo y un carbón activado como electrodo 

negativo. Para ello se sintetizaron carbones altamente porosos mediante un procedimiento en una 

sola etapa y óxidos de níquel cobalto nanoestructurados. El rendimiento de la celda se optimizó 

mediante el ajuste en la relación de masas entre el electrodo positivo y el negativo. Los mejores 

resultados se obtuvieron para una relación 1:2 lo que permite alcanzar densidad de energía 

gravimétrica de 24,3 W h kg-1. Lo más importante es que este dispositivo acuoso asimétrico 

optimizado es que presenta una estabilidad excelente durante más de 10,000 ciclos de carga y 

descarga con solo un 13% de disminución de la capacidad inicial.  

Los capítulos cinco y seis se centran en la mejora de prestaciones de condensadores híbridos de 

litio (LIC) basados en electrodos de carbono a través de dos enfoques diferentes: (1) La variación 

de voltaje de la celda (capítulo cinco) y la variación de la relación de masas entre electrodos 

(capítulo seis).  

En el capítulo cinco se desarrolla un LIC mediante el ensamblaje de un hard carbón (HC) 

derivado del pirólisis de un polímero y un carbón activado altamente poroso (AC), como 

electrodos negativo y positivo, respectivamente. Además del objetivo de mejora de la densidad 

de energía y potencia del sistema, se modificaron los rangos de voltaje para mejorar la estabilidad 

y seguridad del dispositivo. Los mejores resultados se obtienen en el sistema que opera en el 

rango 1.5-4.0 V de potencial, que muestra una excelente reversibilidad sin evidencias de 

deposición de litio incluso a densidades de corriente de 10 A g-1. A estas densidades de corriente 

el LIC presenta capacidades específicas de 25 mA h-1 con tiempos de descarga de solo 9 

segundos, lo que se corresponde con una densidad de energía de 64 Wh kg-1 a 28 kW kg-1. 

Además, en este rango de potencial operativo, el dispositivo híbrido exhibe una excelente 

retención de la capacidad del 82% incluso después de 10.000 ciclos de carga y descarga.  

En el sexto capítulo se estudia la importancia que tienen la estructura de los materiales en el 

dispositivo LIC y su relación en masa dentro de la celda. Para ello se sintetizaron esferas de 

carbono huecas (HCS) y un carbono superactivado (AC) que sirvieron como electrodos negativo 

y positivo, respectivamente. Los resultados de los estudios realizados en cada uno de los 

electrodos revelan que la microestructura de las HCS y la alta área superficial del AC maximizan 

tanto la inserción/difusión de litio como la adsorción de iones en cada uno de los electrodos, lo 
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que conduce a altos valores de capacidad a altas densidades de corriente. Mediante la variación 

en la relación de masas de los electrodos se optimizó un LIC capaz de almacenar una densidad 

de energía de 68 W h kg-1 a una potencia de 30 kW kg-1. Este dispositivo presenta además una 

excelente ciclabilidad, conservando más del 92% de la capacidad inicial después de 35.000 ciclos 

de carga-descarga. Esta gran estabilidad confirma que el enfoque de variación de masa del 

electrodo es muy eficaz para mejorar la vida útil de estos dispositivos. 

Finalmente, en el capítulo siete, se incluyen las conclusiones generales alcanzadas en esta tesis y 

los desafíos futuros para el desarrollo del supercondensador de alto rendimiento. 
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LABURPENA 
 

Erregai fosilak gure planeta osoan azken hamarkadetan izandako berotze globalaren erantzule 

izan dira, eta hori ekidite aldera, haizea edo eguzki-energia bezalako energia berriztagarriak 

alternatiba berdeago bezala nabarmendu dira. Hala ere, energia berriztagarrien produkzioa 

aldizkakoa da, eta beraz, energia-sistema eraginkor bat izateko biltegiratze-teknologiak 

ezinbestekoak dira energiaren ekoizpena gehiegizkoa denean hori metatu eta ekoizpena baxua 

denean erabil ahal izateko. 

 

Energia biltegiratzeko sistemen artean, kondentsadore elektrokimikoak edo 

superkondentsadoreak potentzia dentsitate altuko sistemak dira. Gailu hauek erabilera-

tenperatura zabalak aurkezten dituzte, fidagarriak dira eta beraien bizitza-ziklo altuak direla eta 

karga/deskarga denbora azkarrak behar dituzten hainbat aplikaziotarako erabil daitezke. Hala ere, 

beraien energia dentsitatea mugatua da eta honek superkondentsadoreen aplikazio-eremua 

mugatu egiten du. 

 

Tesi honen helburua, alde batetik, material sintetiko berriak elektrodo gisa erabiltzea litzateke, 

eta ondoren, elektrodo horiek eta gelaxka elektrokimikoaren beste zenbait parametrok 

kondentsadore elektrokimiko ezberdinen errendimenduan duten eragina aztertzea. 

 

Tesia zazpi kapitulutan banatua dago. Lehenengo kapituluan berrikuspen bibliografikoa eta 

teknologiaren egungo egoeraren azterketa egiten dira. Bigarren kapituluak materialen 

karakterizazio fisiko-kimikoan eta sistemen karakterizazio elektrokimikoan erabiltzen diren 

teknikak eta metodoak biltzen ditu. 

 

Hirugarren kapituluak, sintesi-prozedura sinplifikatu baten bidez erretxina fenolikoetatik 

lortutako karbono-esfera oso porotsuen garapena eta karakterizazioa ditu aztergai. Karbono-

esfera horiek geruza bikoitzeko kondentsadore elektrokimikoetan elektrodo gisa duten 

funtzionamendua ikertu da hiru elektrolito ezberdinetan, 6M KOH (aq), 1M Li2SO4 (aq) eta 1.5M 

(C2H5)4N(BF4) (azetonitriloan) -laburbiltzeko TEABF4 (AN)-, hurrenez hurren. Sistema 

elektrokimiko bakoitzean materialak duen portaeraren azterketak erakusten duenez, KOH (aq) 

elektrolito gisa erabiltzen denean elektrodo positiboak negatiboa baino kapazitantzia handiagoa 
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erakusten du, TEABF4 (AN) elektrolito organikoaren kasuan kontrako egoera ematen delarik. 

Aldiz, Li2SO4 (aq) elektrolito gisa erabiltzean, bi elektrodoek antzeko kapazitantzia aurkezten 

dutela behatu da. Hortaz, emaitza hauek elektrolitoaren aukeraketa elektrodoetako materialen 

testura-propietateen arabera egin behar dela erakusten dute. 

 

Laugarren kapituluan, NiCo2O4 oxido metalikoz (elektrodo positibo) eta ikatz aktibatuz 

(elektrodo negatibo) eraikitako eta elektrolito urtsua darabilten superkondentsadore asimetrikoen 

optimizazioa ikertu da. Horretarako, etapa bakarreko prozedura bat jarraituz ikatz oso porotsuak 

eta NiCo2O4 nanoegituratuak sintetizatu ziren. Ondoren, gelaxka elektrokimikoaren 

errendimenduaren optimizazioa elektrodo positibo eta negatiboen arteko masa erlazioa egokituz 

burutu da. Emaitza onenak 1:2 masa erlazioarekin lortu dira, 24.3 Wh kg-1-ko energia dentsitatea 

lortuz. Datu aipagarrienen artean, elektrolito urtsua darabilen sistema asimetriko optimizatuaren 

egonkortasun bikaina litzateke, izan ere, 10,000 karga/deskarga ziklo baino gehiagoren ostean 

hasierako kapazitantziarekin alderatuz %13ko beherakada soilik erakusten du. 

 

Bost eta sei kapituluetan ikatzezko elektrodoetan oinarritutako litio ioi kondentsadore hibridoen 

(ingelesez lithium ion capacitor, LIC) errendimendua hobetzeko jarraitutako optimizazio bideak 

aztertzen dira: (1) gelaxkaren tentsioa (bosgarren kapitulua) eta elektrodoetako material aktiboen 

masa-erlazioaren eragina (seigarren kapitulua) aztertuz. 

 

Bosgarren kapituluan garatutako LIC-ak polimero baten pirolisitik eratutako ikatz gogor bat 

(ikatz ez-grafitizagarria) eta ikatz aktibatu oso porotsu bat erabiltzen ditu elektrodo negatibo eta 

positibo gisa, hurrenez hurren. Sistemaren energia eta potentzia dentsitatea hobetzeaz gain, 

potentzial tarte ezberdinak aztertu dira gailuaren egonkortasuna eta segurtasuna hobetzeko. 

Emaitza onenak 1.5-4.0 V tentsioan lan egiten duen sistemarekin lortzen dira. Gainera, sistema 

horrek itzulgarritasun bikaina erakusten du, 10 A g-1-eko korronte dentsitatean ere litio-metaketa 

arrastorik erakutsi gabe. Korronte dentsitate balio horietan LIC-ak 25 mAh g-1-ko kapazitate 

espezifikoa aurkezten du, deskarga denbora 9 segundokoa baino ez delarik. Hau da, 64 Wh kg-1-

ko energia dentsitatea biltegira (edo eman) dezake 28 kW kg-1-ko potentzian. Gainera, sistema 

hibridoak %82ko kapazitate-erretentzio bikaina erakusten du 10,000 karga/deskarga zikloren 

ondoren. 
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Seigarren kapituluan, materialen egiturak eta elektrodoetako materialen masa erlazioak LIC-aren 

funtzionamenduan duen garrantzia aztertzen dira. Horretarako, karbono-esfera hutsak (ingelesez 

hollow carbon spheres, HCS) eta gainaktibatutako ikatza sintetizatu ziren elektrodo negatibo eta 

positibo gisa erabiltzeko, hurrenez hurren. Elektrodo bakoitzaren gainean egindako ikerketen 

emaitzek agerian uzten dute HCS-ren mikroegiturak eta gainaktibatutako ikatzaren azalera altuek 

litioaren txertaketa/difusioa hala nola ioien adsortzioa ahalbidetzen dutela. Ondorioz, kapazitate 

balioa altuak lortzen dira korronte dentsitate handitan. Elektrodoen masa erlazioa egokituz, 

30 kW kg-1-ko potentzian 68 Wh kg-1-ko energia dentsitatea biltegiratzeko gai den LIC bat eraiki 

ahal izan da. Gailu honek bizitza-ziklo bikaina erakusten du eta hasierako kapazitatearekin 

alderatuz %92 baino gehiago mantentzeko gai da 35,000 karga/deskarga zikloren ondoren. 

Egonkortasun altu honek elektrodoen masa-erlazioaren egokitzapenak gailuen bizitzan eragin 

nabarmena duen parametroa dela baieztatzen du. 

 

Azkenik, zazpigarren kapituluan, tesi honetan lortutako ondorio orokorrak eta etorkizuneko 

errendimendu handiko superkondentsadorea garatzeko gainditu beharreko erronkak jasotzen 

dira. 
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1.1. Energy overview  

In last few decades, the ever-increasing global demand for energy is associated with the vast 

population and economic growth, and this rising trend in energy consumption contributes to 

environmental and economic risks.[1-2] Excessive consumption of fossil fuels (such as coal, 

petroleum, natural gas, and crude oils) leads to higher greenhouse gas emissions (particularly 

carbon dioxide), which impacts global warming and pollutions.[1, 3] For the sustainable 

development of human society, clean energy technology like energy conversion and storage plays 

the most important role in overcoming problems of fossil fuels.[1, 3] Therefore, the replacement 

of conventional highly polluting energy sources has been possible with alternative greener energy 

sources like renewable ones, accompanying greater prosperity as well as new challenges. The 

most popular renewable energy sources currently are solar, wind, hydro, tidal and geothermal 

energy. The more widespread use of these renewable energy sources with better efficiency can 

only deal with these socio-economic issues. According to the World Energy Balances: Overview, 

published by the International Energy Agency, the share of renewables in final energy 

consumption is currently reached upto 26 % (Figure 1.1.) in the world, following the rapid rise 

in recent decade.[4]   

 

Figure 1.1. World electricity generation mix by fuel, 1971-2018 (World Energy Balances: 

Overview, International Energy Agency data up to 2019).[4] 
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Renewable energy sources now cover  36% of the power mix in Europe, 26% in China and around 

18% in the United States, India and Japan as presented by global energy statistical yearbook 2020. 

[5] Forecast for the year 2024 shows that 50-60% of world energy demand would be fulfilled from 

energy obtained from renewable sources. This energy production will be led by solar photovoltaic 

(PV) and followed by wind energy, hydropower, and bioenergy. Beside this energy conversion 

sources, energy storage is also taking lead to fulfill the demand of renewable energy supplies. 

1.2.  Energy storage technologies 

Most of the renewable energy sources are intermittent, for example, solar and wind power mainly 

depends on the time of the day and regional weather conditions, which can often cause power 

supply fluctuations.[1, 6] Thus, energy storage devices are used as strong complementary systems 

to comprehend the eventual distribution and accessibility of these harvested renewable energies 

when it is needed. The main target of the energy storage system is to accumulate-store-integrate 

the electricity into the electrical grid on peak demand.[6]  

There are several technologies that can store energy through different mechanisms, showing 

distinct properties such as the amount of energy, power, lifetime, and cost. At large scale, 

compressed air energy storage, fireless locomotive, flywheel energy storage, solid mass 

gravitational, hydraulic accumulator, and pumped-storage hydroelectricity are the most common 

mechanical bulk energy storage systems.[6-7] Among them, at present, the major bulk energy 

storage is controlled by hydroelectric dams, both conventionally as well as pumped.[7]  

On the other hand, supercapacitors and rechargeable batteries, which store the energy through 

the electrostatic and electrochemical mechanism, are used to store lower amounts of energy and 

typically bring into service as “portable” devices.[6-8] Their applications in electronics, hybrid 

vehicles, aircrafts, and smart grids are widespread.[8-9] For this reason, development of energy 

storage devices is on high demand in the last few decades because of their electric storing viability 

when needed and released as per required. Thus, the challenge is to improve the efficiency of 

energy storing technologies in case of both short term and long-term purposes. 

For short term devices, inductors and capacitors are the known specimens for their energy-storing 

capacity through the magnetic field and electric field, whereas for long term purpose batteries 

and fuel cells takes the lead to provide high capacity for the industrial and personal demand.[10] 
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Moreover, the different types of the large-capacity hybrid energy storage system are usually 

equipped with the power-conditioning system (PCS) to deliver energy efficiently as well as 

uninterrupted electric power generated through energy conversion technologies.[10] Therefore, the 

generated power from the windmill or solar panel can be stored by hybridizing these energy 

storage devices for the supply of stable electric power without any frequent fluctuation.[6, 10] In 

this regard, the performance of these energy storage devices need to be improved in order to 

fulfill the autonomy requirements of some of these integrated devices.  

With the rising demands of long runtime portable energy storage devices, the energy research 

sector is being extended and integrated into new innovative technologies and cord-less 

applications. This need leads to the advancement in the high-performance energy storage system. 

Therefore, exploring highly efficient, prolong cycle life, reliable, and large‐capacity energy 

storage devices are strongly demanded to encounter the current challenges of portable energy 

storage devices.[6-7] 

1.3.  Batteries versus electrochemical capacitors 

Batteries can be divided into two types, such as primary and secondary batteries, depending on 

whether they have single-use (galvanic cell, alkaline battery and dry cell) or rechargeable [nickel-

metal hybrid (Ni/MH) batteries, lead acid battery (PbO2/Pb) and lithium-ion battery (LIB)], 

respectively.[11-12]  

In rechargeable batteries energy storage depends on electrochemical redox reactions, that limits 

the charge transfer process due to its slow mass diffusion. However, the main drawback of 

batteries is their short cycle life (~2000 cycles) and very low power density that cannot meet the 

necessary demands for electronic devices.[12-13] Consequently, supercapacitors that store energy 

electrostatically like common capacitors can utilize fast electrosorption processes on the surface 

of the electrode.  

The importance of supercapacitors is that they can provide high power by utilizing the fast 

electrolyte ion transportation, but they always suffer from low-energy.[11, 13] Thus, for the past 

few decades, the supercapacitor research field is focused on improving energy density without 

compromising its power density. Significantly, in recent times Hybrid capacitors (such as 

Lithium-ion capacitor or LIC) are rapidly approaching to forefront position by combining the 
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advantages of both lithium-ion battery and electrochemical capacitors such as long cycle life 

expectancy, reliability and superior energy efficiency.[14]  

The Ragone plot, displayed on Figure 1.2.shows the specific energy and specific power ranges 

of these technologies.   

 

Figure.1.2. Ragone Plot of different energy storage devices.[11] 

Another advantage of supercapacitors is that they can work in a wide operating temperature range 

ranging from -40oC to 80oC, maintaining the stability, whereas battery operations is limited at 

low temperature for its kinetic issues.[13] From a safe-handling perspective the use of 

supercapacitors is much more beneficial compared to batteries due to the use of low reactive 

species as electrode materials.  

In the case of batteries, the use of highly reactive alkali-metal based materials struggles with 

thermal instability and flammability, which can cause serious concerns regarding safe and secure 

operations. Therefore, supercapacitors are highly efficient when fast charge-discharge operation 

is needed for high power application purposes over a longer time span. Despite the several 
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advantages of supercapacitor over batteries, cost reduction (20 € per watt hour) is a crucial issue 

for commercial scale-up.  

Thus, the industrial R&D is highly focused on the advancement of electrode material-electrolyte 

and cell construction which can improve performance at a reduced cost for the global market. 

Thus, supercapacitor as energy storage devices retain several high-impact attributes such as 

prolong charge-discharge cycles, fast charging abilities and uninterrupted operational capacities 

at a broad range temperature. Comparison between the main characteristics of both technologies 

is shown in table 1.1.  

Table 1.1. Comparative features of the electrochemical capacitors and lithium ion batteries.[15-16] 

Features Lithium ion Batteries Electrochemical Capacitors 

Charge Time ~3-5 mins ~1 second 

Discharge Time ~3-5 mins ~1 second 

Cell Cycle Life <5000 at 1C rate >1,000,000 

Specific Energy (Wh kg-1) 70-100 5-10 

Energy Density (Wh l-1) 50-300 0.5-5 

Specific Power (kW kg-1) 0.5-1 5-10 

Power Density (kW l-1) <0.5 1-3 

Cycle Life Efficiency (%) <50% to >90% <75% to >95% 

Energy-Cost/Wh 0.5-2 €/Wh 10-20 €/Wh 

Power-Cost/kW 75-150 €/kW 25-50 €/kW 

 

1.4.  Classification of electrochemical capacitors  

The advancement in capacitor technology over the years not only focuses on materials but also 

on the cell fabrication-design to ensure the performance over long periods of operation. Today 

many commercial capacitor/supercapacitor devices are available in the market but to reach this 

stage it has gone through several development steps. By looking up the history of capacitors, 

electrostatic and electrolytic capacitors could be considered as first- and second-generation 

capacitors.[17] 
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Figure.1.3. Classification of electrochemical capacitors based on materials, cell configurations 

and electrolytes. 

In the 1830s, Michael Faraday reported the basic phenomenon for the charge storage mechanism 

of a capacitor system. After that, several types of capacitors started to become known, such as 

mica capacitor (1909), ceramic capacitor (1920), tantalum electrolytic capacitors (1930) and 

polymer film capacitors (1954).[13, 18-19] In 1966, General Electric experimented with 

electrochemical capacitors (ECs) by using porous carbon electrodes to patent “low voltage 

electrolytic capacitors with porous carbon electrodes” and then NEC commercialized these 

devices in 1978.[19] Since then scientists and engineers have invested tremendous effort for further 

improve their power density, energy density, reliability, safety and cost effectivity to reach the 

specific requirements for different ES applications. The third-generation or electrochemical 

capacitors, also known as supercapacitor or ultracapacitors, incorporate an electrolyte that allows 

to adsorb charges at the surface of the electrodes. Figure 1.3 represents the taxonomic 

classification of the supercapacitors.[17] The supercapacitor can be classified, according to (i) the 

charge storage mechanism (electrode materials), (ii) electrolytes or (iii) device configurations 

storage theories, material properties, electrolyte categories, and device configurations, 

respectively.  

1.5.  Energy storage mechanism in electrochemical capacitors 

Electrochemical capacitors are primarily formed by two electrodes (a positive and a negative) in 

combination with an electrolyte and a separator. Those electrodes consist of active materials 

along with conductive additives and a binder, coated onto a current collector. The separator 
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allows the electrolyte ion permeability through its pores and avoids direct contact between 

electrodes to prevent short circuit of the cell.[13] 

 

Figure.1.4. Schematic configuration and basic charge/discharge mechanism of the 

electrochemical capacitor. 

Thereby, the opposite charges are accumulated at the electrode/electrolyte interface during the 

polarization of the electrode by the electrostatic charge separation process. Figure 1.4 shows a 

scheme of the inside components of the electrochemical capacitors and the basic charge/discharge 

process undergone upon the application of the potential difference.  

There are two main types of charge storage mechanisms: “electric double layer (EDL) theory” 

and “Faradic charge transfer process”. The EDL theory is the principle foundation of the 

electrochemical processes taking place at the electrostatic interface between the charged 

electrode material and electrolyte. The German physicist Herman von Helmholtz (in 1853) 

proposed first of this EDL theory. Figure 1.5a schematically explains the double-layer interface 

model (Grahame model), which depicts an amalgamation of anions and cations charge 

distribution.[20] Later, this theory was further developed by Gouy, Chapman, and Stern.[13, 19] 

According to the Gouy-Chapman model (Figure 1.5b), the EDL refers two parallel layers of 

charges on the electrode-electrolyte interface. The first layer corresponds to the opposite charges 

accumulated by the surface chemisorption process of ions, whereas the second layer comprises 

the ions attracted via coulombic force after electrically screening the first layers. Thus, the second 

layer trends to loosely attached ions with the electrode surface, so they can move freely in the 

fluid medium under the influence of thermal motion and electric attraction. This scattered layer 
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along with the firmly anchored opposite charge array on the electrode-electrolyte interface is 

called the “diffuse layer”.  

 

Figure 1.5. Different models of the EDL at a positively charged surface, (a) the Helmholtz model, 

(b) the Gouy–Chapman model, and (c) the Stern model, showing the IHP and OHP.[21] 

Afterwards the Stern model advances this surface charge storage mechanism by introducing the 

Stern layers. In Stern layers (Figure 1.5c), the “Inner Helmholtz Plane (IHP)” is known as the 

compactly attached solvent layer on the electrode surface, another side the term “Outer Helmholtz 

Plane (OHP)” expresses the association of solvent and solvated ions. The layer beyond the OHP 

is still considered as diffusing layer. 

The total capacitance (Cdl, F) of the EDL interface is according to the following equation (Eq. 1), 

                                            
1

𝐶𝑑𝑙
=

1

𝐶𝐼𝐻𝑃
+

1

𝐶𝑂𝐻𝑃
+

1

𝐶𝑑𝑖𝑓𝑓
    1 

Cdl is equivalent to a series relationship in between CIHP, COHP, and Cdiff as shown in the following 

circuit pattern. 
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In Fact, Cdiff is usually much larger than both CIHP and COHP, so the contribution of the diffusion 

layer to the EDL capacitance is neglected in many cases. The IHP could be considered as a 

dielectric layer, so combination of the CIHP and COHP represents C (total Capacitance), which is 

more realistic expression of double-layer capacitance and can be determined by the following 

equation (Eq. 2), 

                                                              𝐶 =
𝐴𝜀

𝑑
      2 

Where, A is the surface area (m2) of the interface between the electrode-electrolyte, ɛ is the 

permittivity of the dielectric material and d is the EDL thickness (m). The capacitance value 

depends on the surface area that differentiates supercapacitors from the other capacitors. In 

electric double layer capacitors (EDLCs), porous carbon materials with the large surface area are 

generally used as electrode materials to obtain high capacitance. The porosity of materials not 

only induces the adsorption of the ions from the electrolyte, but it also helps their access to the 

whole surface of the active material. 

When a potential difference (V) is applied in supercapacitor systems, positive charges (Q+) and  

negative charges (Q-) are accumulated as a result of the movement of electrons in the outer 

circuit. The current passes to the electrodes until an equal balance is made between the potential 

difference and the supplied voltage, by generating opposite charges within supercapacitors. The 

total accumulated charges (Q = ǀQ+ǀ + ǀQ-ǀ) is considered in coulombs, C, and the applied 

potential difference in V, yields the capacitance values in farads, F. The capacitance values can 

be calculated as (Eq. 3): 

                                                           𝐶 =
𝑄

𝑉
       3 

Therefore, the stored energy (E) can be expressed by the following equation in the EDL system 

(Eq. 4), 

                                                           𝐸 =
𝐶𝑉2

2
                  4 

Pseudocapacitors are a type of electrochemical capacitors in which charge storage is produced 

by fast and reversible faradaic reactions at the surface of the electrodes, where the 

“pseudocapacitance” generates by the faradic charge transfer process in the electrode materials 
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through thermodynamically and kinetically favored electrochemical reduction-oxidation (redox). 

Due to these interfacial redox reactions a larger quantity of charges can be stored and therefore 

the capacitance values achieved by pseudocapacitive materials are much higher than those 

obtained by EDLCs. CPseudo, can be calculated from the generated charges on the electrode (dQ) 

that depends on the applied potential difference (dV) and this derivation relation can be expressed 

by the following equation (Eq. 5)[22], 

                                                       𝐶𝑃𝑠𝑒𝑢𝑑𝑜 =
𝑑𝑄

𝑑𝑉
      5 

Consequently, the energy (E, W h) stored by the pseudocapacitors can be calculated by the 

integral of voltage over the applied potential (Eq. 6 and 7)[22]: 

   𝐸 = − ∫ 𝑉
𝑄

0
𝑑𝑄                               6 

                              𝐸 = − ∫ 𝑉 𝑑𝐶𝑉
𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥
= −𝐶 ∫ 𝑉 𝑑𝑉 =  𝐶 

(𝑉𝑚𝑎𝑥
2 − 𝑉𝑚𝑖𝑛

2 )

2

𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥
            7 

The importance of using integration formulas for calculating pseudocapacitive energy 

efficiencies are highly essential for reporting the correct values of pseudocapacitive energy 

storage devices.  

Furthermore, the power values (P) depend on the obtained energy and the discharge time (Δt, h) 

of the supercapacitor. The power (P) will be expressed as (Eq. 8): 

                                                                𝑃 =
𝐸

𝛥𝑡
                                            8 

When the energy and power are represented in terms of the gravimetric or volumetric perspective 

of the EDLC device, they are denoted as energy density (ESP, W h kg-1 or W h l-1) and Specific 

power  (PSP, W  kg-1 or W  l-1).  

EDLCs generally suffer from limited energy density because the amount of charge storage is 

restricted to the surface of the active materials. Compared to EDLCs, pseudocapacitive materials 

provide much higher energy values due to the additional contribution of surface faradaic charge 

storage.[23] The primary difference in the charge storage mechanism of battery electrodes from 

the supercapacitor electrode is that battery electrodes involve diffusion-controlled kinetics, while 
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the capacitive and pseudocapacitive electrodes have only surface-controlled processes during 

charge-discharge.[23] Figure 1.6 illustrates the individual behavior of the electrochemical energy 

storage materials to understand the intrinsic operative charge storage mechanisms of energy 

storage systems. 

 

Figure 1.6. Schematics of the charge storage processes occurring at (a) electrical double-layer 

capacitive, (b) pseudocapacitive, and (c) battery-type electrodes. [23]  

Three types of pseudocapacitive mechanisms have been described in the literature depending on 

the intrinsic charge storage of the electrode materials.[24] They are: (i) “under potential 

deposition”, where a monolayer of metal can be deposited on the working electrode,  (ii) “Surface 

redox pseudocapacitance”, where the electrode surface participates in redox reaction by utilizing 

only the electrode materials oxidation states, and (iii) “intercalation pseudocapacitance”, where 

ions intercalate in the core structure of the electrode material to find the redox-active surface 

without any deformation in material structure and phase change.[24-25]  

The term “pseudocapacitance” is sometimes wrongly used for materials that store charges 

through a classical faradaic battery type mechanism. During the charge-discharge of 

pseudocapacitive materials, highly reversible redox reactions occur at the surface of host material 

without any phase transformations. However,  in the classical battery electrode materials, 

reversible phase transformation takes place during the faradaic charge-discharge process.[23-24] 
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Figure 1.7. Comparative characteristics of the different types of charge storage materials, (a) 

electrical double-layer capacitive, (b) surface redox pseudocapacitance, (c) intercalation 

pseudocapacitance, and (d) batteries. [24] 

Therefore, this electrochemical phenomenon is entirely different and is clearly distinguishable 

by the faradaic redox peaks in their cyclic voltammograms and the plateaus under constant 

applied current in charge-discharge profiles.  

Figure 1.7 summarizes the distinguishable features of the different energy storage materials. 

According to pragmatic calculations, surface faradaic processes show prominent peaks only, that 
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can be more widened varying on the interaction between the reactants and electrolytes, but the 

capacitive response cannot be through that mechanism. 

1.6.  Applications of electrochemical capacitors 

Electrochemical capacitors are very interesting energy storage technologies for some specific 

applications and can be used as alternative to batteries. When high-power shuttling applications 

are needed along with high energy source, the coupling with batteries can be a reliable and highly 

suitable configuration. Supercapacitors are very useful in a wide range of mobility applications 

purpose (backup power for a temporary UPS system, rail-tram transportation, shipping, 

automotive), semi-stationary (high power cranes, heavy excavators), stationary sector (wind/solar 

power plant grid and backup power of pitch system), and for regenerative braking for hybrid or 

electric vehicle.[26, 29-30] However, the development of supercapacitors depends on not only the 

market demand but also on social needs. It is very promising that the present scenario is changing 

so fast towards market growth. Especially, in the automotive sector, the growth rate of the 

supercapacitor industry is exponentially increasing along with eco-friendly social demand.  

Nowadays numerous companies are involved in the development and manufacturing of power 

devices that can fulfill different application ranges to cover market growth, which is expected to 

increase from 1.2 to 5.5 billion euros in 2022. Figure 1.8 illustrates the probable future market 

demand of commercially available electrochemical capacitors and table 1.2 summarizes some of 

the important features of commercial cells.[26-28]  

 

Figure 1.8. (a) Estimation of the future addressable market of EDLC (Skeleton Technological 

Group), and (b) commercially available supercapacitor cells [Maxwell 3400 F (top left), Skeleton 

3200 F (top right), Ioxus 3000F (bottom left), and JM Energy 3300 F (bottom right)]. [26-27] 
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Table 1.2. Details of different commercial supercapacitors available in the market. [28] 

Manufacturer Voltage (V) Capacitance (F) ESR (Ω) 

APowerCap 2.70 450 - 

NipponChemi-Pon 2.50 1400 1.1 

BatScap 2.70 2680 0.20 

Fuji 3.80 1800 1.50 

Ioxus 2.85 3150 0.22 

LS Mtron 2.80 3200 0.25 

Maxwell 3.00 3400 0.22 

NessCap 2.70 3640 0.30 

Skeleton 2.85 3200 0.12 

Yunasko 2.70 7200 1.40 

JM Energy 3.80 3300 0.7 

 

Those applications differ according to their energy or power requirements for extended charge-

discharge cycles with an interval range of 10-60 seconds in some cases, while other cases may 

need less than even 1 second. In the case of the heavy transportation sector (especially in trains 

and trams), the use of supercapacitor is extremely highly efficient in regenerative energy recovery 

systems where the braking energy is reused for the acceleration. In electric vehicles, high 

efficiency with low-cost power devices plays a huge role in eco-friendly transportation to reduce 

CO2 emission.[26] Thus, several countries like Spain, China, Taiwan, Germany, Austria, UK, USA 

are trying to implement supercapacitors for zero-emission electric transportations.[26]  

China is experimenting with the advanced design of electric buses by using EDLC supercapacitor 

systems, known as Capabus, which can run without any continuous overhead and are able to 

quickly recharge within a few seconds at any bus stop (each stop will be equipped with the 

charging system, so-called electric umbrellas).[29, 31] The Chinese company Sunwin (a joint 

venture between Volvo and China's largest automaker SAIC) already developed and has been 

operating a fleet of electric buses equipped with a supercapacitor operative system. 
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In Graz, Austria, a few routes are successfully running with short intermediate recharging electric 

buses, using 24-32 kWh EDLCs.  

Besides electric buses, Spanish manufacturer CAF developed catenary-free trams using 

supercapacitors to save energy from regenerative braking and preserve the historical heritage and 

urban environment, which has been successfully running on a 1.6 kilometer tramway in Seville 

since 2010 and is also successfully extended to other Spanish cities (Granada and Zaragoza).[32] 

Likewise, the tramway in Kaohsiung (Taiwan) has also introduced supercapacitor operated trams 

in 2016.[33] In each stoppage of the tramway has charging ports and it takes only 20 seconds to 

charge up the supercapacitor and then the tram can run until the next destination without any 

disturbance. Figure 1.9 shows pictures of the trams boosted by EDLC supercapacitors in 

Kaohsiung and Spain. 

 

Figure 1.9. Fully operative supercapacitor trams in Taiwan and Spain. 

Skeleton Technologies is well-known in the European market as a supercapacitor manufacturer 

and they will supply supercapacitor systems to Škoda Electric (a traction equipment 

manufacturer), for making 114 trams will operate in Mannheim, Heidelberg, and Ludwigshafen 

in Germany.[34] The advancement in energy storage technologies will attract more commercial 

applications. 

1.7.  Materials for electrochemical capacitors 

The most common electrode materials for supercapacitors are carbons, transition metal oxides, 

and conducting polymers.  
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1.7.1 Carbon-based materials  

Carbon is the preferred material for the fabrication of supercapacitors because it has a high 

specific surface area, easily tailored porosity, high electronic conductivity, inertness, and it is 

cheap. Besides, they are mechanically and thermally very stable for longer operations. However, 

because of its electrostatic surface charging mechanism, EDLCs devices constructed with carbon 

electrodes always experience a limited energy density. Several studies focus on strategies to 

modify carbon morphologies or heteroatoms doping to further improve the performance versus 

pristine materials.  

The electronic configuration of carbon is 1s22s22p2. In the case of the carbon atom, the 

hybridization of s and p orbital results in different crystalline (ordered) allotropes, such as 

diamond (sp3), graphite (sp2), fullerenes (distorted sp2), carbyne (sp). Among those, graphite is a 

very common electrode material for energy storage applications (particularly in Li-ion batteries) 

but its slow kinetics is the main drawback for electrochemical operations. Thus, different carbon 

engineering with tailoring porosity has revealed promising results as a replacement of “graphite” 

because of its disordered structure along with limited aligned crystalline graphite-like layers.  

Among them “soft” and “hard” carbons are well known materials for Li-ion hybrid capacitors as 

well as batteries and can be classified on the basis of heat treatment temperature that helps to 

increase the graphitization degree in carbon matrix.[13, 35-36] For graphite, the pyrolysis 

temperature generally maintains at 2500oC to obtain high crystallinities. Consequently, 

graphitization states of “soft” carbons can be easily controlled during the heat-treatment at 1100-

2000oC, where often layers are stacked with arbitrary orientations and this turbostratic 

misalignment delivers high rate charge-discharge.[37-39]  

On the other side, “hard” carbons or non-graphitizable carbons (temperature ca. ~600oC to 

1000oC) contains mainly single layers arrangements with a larger space gap between the carbon 

layers than graphite.[37-39] This disordered pattern leads to doubling the theoretical capacity 

compared to graphite because of its nutshell like morphology can utilize the more space for the 

insertion electrolyte ion on the graphite-like regions. In general, the electrodes are made of porous 

carbon materials with very large specific surface area (SSA) can store more charges on their 

electrode/electrolyte interphases. Pores can be classified depending on their pore size, such as 
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micropores (<2 nm), mesopores (2-50 nm), and macropores (>50 nm), which is described in 

Figure 1.10. [40] 

  

Figure 1.10. Pore classification of different pore size parameters.[36] 

They are typically synthesized by utilizing different carbon precursors by applying a heat 

treatment under an inert atmosphere, which results in different degrees of graphitization on their 

base frame. Figure 1.11. represents the several nanostructured carbons in EDLCs.[41] 

 

Figure 1.11. Different carbon structures are used in EDLCs.[37] 

Among the various forms of carbons, ‘activated carbons’ are widely used in industries because 

of their SSA (~1000 - 3000 m2 g-1), which is required to maximize capacitance values. However, 

SSA is not the only relevant parameter to achieve high specific capacitance values, the presence 

of hierarchical porosity can also help to fasten the ions diffusion processes.[35, 41] A high SSA 

carbon material along with mixed porosity (mesopores 20-30% along with micropores) enhances 
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the electrochemical performance to support high-power.[42] Thus, porosity parameters are highly 

important to get a good performance in carbon electrodes. Precursors, such as coal pitch, 

petroleum pitch, and some polymers exhibit liquid phases during carbonization. Figure 1.12. 

represented the hierarchical porous structure of an activated carbon.   

 

Figure 1.12. Hierarchical porosity distribution outline in activated carbons.[43] 

Consequently, the carbons made from those precursors can maintain highly ordered graphitic 

layers and are known as soft carbons. Whereas carbons from compound precursors, such as 

biomass (woods, coconut shells) and thermosetting polymers (PVC, PVDC) do not provide 

ordered graphitic structures, even by applying high-temperature treatments and are considered as 

hard carbons.[21, 44] In such cases, the volatile component releases during the heat treatment that 

produces porous structures within the carbon frame.  

Numerous activation approaches for the preparation of high SSA carbons are described in the 

literature. There are two typical activation processes: physical and chemical. In the physical 

activation process, the carbon reacts with the water molecules present on the carbon frame under 

heat treatment (temperature ~700-1000oC) and releases H2, CO, or CO2 gases. However, 

chemical activation needs an activating/dehydrating agent [MCln or M(OH)n where M: Na, K, 
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Zn and n:1, 2], which reacts with carbon and produces M2CO3, M2O, and H2 gases during the 

carbonization (temperature ~400-700oC).[21, 38, 44]  

After carbonization, acid wash is required to remove the metal precursors and a high SSA carbon 

where the pores are much wider than the physical activations. 

Templated microporous carbon has also drawn research attention for the past few decades. 

Template systems provide highly ordered pores within the carbon frame which fasten the charge 

rate capabilities and overall storage capacities. Templated porous carbons are generally prepared 

by two methods, known as hard and soft templated synthesis. In the case of the hard-templated 

method, silica, zeolite, and metal-organic framework are introduced as templates along with 

carbon precursors (Figure 1.13.).[21, 44]  

 

Figure 1.13. Schematic representation of the templating synthetic approach.[39] 
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The carbonization is followed by an acid wash to obtain a template free highly ordered porous 

carbon replica. Consequently, the soft templated method requires an organic structure-directing 

agents to create porous carbon structures, such as surfactant molecules, block copolymers, or 

liquid crystals.[21, 44-45]  

The carbon surface morphology and ordered porosity can be tailored by carefully controlling the 

carbon precursor and the types of template. However, their synthesis usually involves several 

steps and the removal of the sacrificial template with strong acids is not environmentally benign. 

Thus, both are time-consuming approaches and difficult to scale up, and the cost of these methods 

limits their use for commercial energy storage applications. 

Graphene and graphene oxide are new advanced carbon material with a special 2D hexagonal 

lattice that distinguishes them from other carbons.[46] Graphite consists of tightly stacked sheets 

of a highly ordered carbon frame, which has angstrom level interspacing between the basal plane 

of each graphene layer due to strong π-π interactions. The combination of mechanical robustness, 

excellent electrical conductivity, and high theoretical SSA (2630 m2g-1) makes graphene a 

promising electrode material for energy storage applications.[47] However, the main drawback of 

graphene-based materials is their restacking tendency. Restacking reduces the surface area as 

well as capacitance. Thus, in most cases, these materials suffer from low-density issues which 

gives adverse effects in volumetric terms in performance indicators.  

In literature, several methods are being studied to lower the agglomeration and restacking issues 

of graphene (Figure 1.14.).[48] Among them, “top-down”( Mechanical exfoliation/ milling of 

graphite, chemical exfoliation of graphite, etc.) and “bottom-up”(Epitaxial growth, chemical 

vapor deposition or CVD, etc.) are two types of approaches used in the fabrication of graphene.  

The top-down approach involves the exfoliation of graphite into its graphene sheets, whereas the 

bottom-up approach implements carbon molecules as building blocks for the attainment of 

graphene layers. In the top-down approach, the most known methods are ‘graphene synthesis 

from modified hummer’s method and ultrasonication’.[49-50] Bottom-up approach generally yields 

higher quality graphene than top-down synthetic routes, but in contrast, since they need ultra-

high vacuum conditions they are more expensive and difficult to be scaled up. [48] 
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Figure 1.14. Schematic representation of several techniques involved in the production of 

graphene-based materials. [44] 

Carbon nanotubes or CNTs as supercapacitor electrode material have drawn attention due to their 

relatively large SSA, excellent mechanical and thermal stability, and remarkable electrically 

conductive properties.[21, 35] CNTs can be categorized according to the number of graphitic walls, 

such as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes 

(MWCNTs). The graphitic planes generate electrically conductive carbon tubes. The most known 

method to produce CNTs is the CVD method. Compared to MWCNTs, SWCNTs show excellent 

capacitive performance, though the production process of SWCNTs generally suffers from high 

cost and scalable issues. Like CNTs, carbon onions have also quasi-spherical concentric graphitic 
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shells. The main advantage of carbon onions is the possibility to utilize the entire surface for 

electrolyte access very easily through its porous channels. Carbon onions, graphene, and CNTs 

are always a good choice for microsupercapacitors.[21, 35, 51] 

 1.7.2. Pseudocapacitive materials 

Some transition metal oxides and conductive polymers are additionally stored energy through 

interfacial redox reactions. Carefully selecting metal oxide components and their morphology, 

the charge storage can be boosted through easily accessible surface redox reactions. Whereas, in 

the case of conducting polymers charge storage mechanism includes the accumulation of charges 

via proton doping interactions on the overall material surface. 

1.7.3. Transition metal oxides 

Transition properties of different metal oxides, such as ruthenium (RuO2), vanadium (V2O5), and 

manganese (MnO2) are widely used as pseudocapacitive materials because of their multiple 

oxidation states.[52-54] These crystalline metal oxides are also highly conductive, which helps 

charge propagations on their lattice structure. However, in the case of hydrous metal oxides, 

conductivity is a major issue. To overcome this problem, metal oxides crystalline properties can 

be increased by the reduction of the active surface area via the removal of water and pore spacing 

in material structure. 

RuO2, both amorphous or crystalline, shows very interesting properties such as chemical-thermal 

stability, high catalytic activity, or high electronic conductivity.[53] RuO2 exhibits high reversible 

capacitance and good long-term stability. However, RuO2 exhibits such outstanding properties 

that favor its pseudocapacitive performance, its scarcity, and its high cost limits its application as 

an electrode in supercapacitors.[52-54]  

Therefore, vanadium, manganese, cobalt, and nickel oxides have emerged as the best alternatives 

when working in aqueous electrolyte (Table 1.3). [52-55] Among them, manganese oxides have 

shown the best balance between performance compared to other oxides such as vanadium and 

niobium oxides. However, the capacitive performance of MnO2 is limited by poor electronic 

conductivity.[52, 54]  
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Table 1.3. Comparative specific capacitance values of transition metal oxides reported in 

literature. 

Transition metal Oxides 
Specific capacitance  

(F g-1)  

Specific capacity  

(mA h g-1)  

RuO2 768[54] 172[54] 

MnO2 350[55] 50[54] 

V2O5 910[55] 540[55] 

NiO 309[55] 198[55] 

Co3O4 382[53] 229[53] 

MnCo2O4 346[53] 173[53] 

NiCo2O4 1400[53] 672[53] 

 

In recent times, many research investigations have been accomplished to increase the capacitive 

performance along with better electronic conductivity by using of multi-metallic compounds of 

cobalt, such as Mn-Co, Co-Ru, Co-Mo, Co-Al, Ni-Zn-Co, and Ni-Co.[56-61] These materials can 

significantly enhance the energy density by giving specific capacitance about 2-5 times higher 

than monometallic oxides and these materials are often considered as battery-type materials.  

Moreover, cobalt in combination with lithium has also exhibited excellent performance, such as 

LiCoO2 is the first layered oxide type cathode material for batteries.[54] Among the multi-metallic 

compounds of cobalt, a binary metal oxide, NiCo2O4, has been investigated to be a potential 

electrode material in the electrochemical energy storage system due to its excellent capacitance 

with high rate capability and also higher electronic conductivity compared to its monometallic 

counterparts.[59, 61] Furthermore, a complete understanding of the relationship between the 

electrochemical characteristics and the microstructure of binary Ni-Co oxides for supercapacitors 

is still lacking. Several research efforts are involved to find more affordable synthesis methods 

to prepare and nanostructure Ni-Co oxides with an excellent capacitor performance. 
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1.7.4. Conductive Polymers 

Conducting polymers show relatively higher conductivity, and capacitance values compared to 

carbon-based electrode materials.[62] Several electrode configurations can be used for conducting 

polymers, in the case of n/p type configurations, that is, the assembly between a negatively 

charged (n-doped) and a positively charged (p-doped) polymer, provides a high energy density. 

The most common conducting polymers are polypyrrole (PPy), polyaniline (PANI), and poly-

(3,4)-ethylenedioxythiophene (PEDOT).[62-63] Among them, PANI is considered as the most 

efficient supercapacitor electrode material due to its high conductivity, remarkable capacity, and 

easy synthesis process. However, its mechanical instability induces the rapid degradation of 

overall electrochemical performance during long-term cycling operations. To avoid this 

limitation, a combination of PANI with carbon materials can strengthen the overall electrical and 

mechanical stability of PANI.[64] 

1.8.  Electrolytes 

Electrolyte provides ionic conductivity which accelerates charge compensation on each electrode 

in the cell, where the salt and the solvent are the main components of electrolyte. In 

supercapacitors, the most common electrolytes are aqueous- and organic-based.[12, 65-66]
 The 

major limitation of an aqueous electrolyte is its low operating voltage of ca. 1.0 V (due to the 

thermodynamic decomposition of H2O), whereas organic medium allows a much higher voltage 

window of about 2.7 V.[12]
 Thus, the recent trend in the development of supercapacitors is 

interested in switching to an organic medium in comparison with aqueous.  

Mostly commercial supercapacitors use organic electrolytes with a wide cell voltage of 2.7–3.0 

V, based on aprotic solvents, i.e. acetonitrile (ACN) or propylene carbonate (PC) as carbonate-

based solvents.[12, 66] Despite the advantage of non-aqueous electrolytes, they suffer from low 

conductivity and low dielectric constant compared to aqueous electrolytes, which leads to power 

deterioration and low capacitance. [12, 66]
  From a safety perspective also, organic solvents are 

highly flammable and toxic. Besides this, the cost is a major issue for organic electrolytes. Ionic 

liquids(ILs) are also another type of electrolyte, consists of organic salts with a lower melting 

point than room temperature, which can be used as a liquid state.[67-68] The main advantages of 

ILs are their non-volatility and broad operational potential window within a wide-ranging 
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temperature, though its low ionic conductivity, high viscosity, and high cost limit their 

applications. [67-68]  

The electrolyte properties depend on: (a) the ionic size and mobility; (b) the solubility of the salt 

in a solvent; (c) the solvent and ion concentration; (d) viscosity; (e) reactions concerning the ion 

and the solvent; (f) electrode-electrolyte interactions; and (g) the operating potential window.[12, 

66] Those parameters have a significant influence on the overall capacitance as well as the 

energy/power densities and also on long term operation. Different characteristics of electrolyte 

ions are given in table 1.4. 

Table 1.4. Relevant properties of ions commonly used in aqueous electrolytes. a, b and c sourced 

from [12], d sourced from [69] 

Ion Bare  
ion size (Å) 

Hydrated  
ion size (Å) 

Ionic conductivity 
(S cm2 mol-1) 

H
+

 1.15
a

 2.80
a

 350.1
b

 

Li
+

 0.6
c

 3.82
a,c

 38.69
a

 

Na
+

 0.95
c

 3.58
a,c

 50.11
a

 

K
+

 1.33
c

 3.31
a,c

 73.5
a

 

SO
4

2-

 2.90
c

 3.79
c

 160.0
a

 

Cl
-

 1.81
c

 3.32
a,c

 76.31
a

 

NO
3

-

 2.64
c

 3.35
c

 71.42
a

 

OH
-

 1.76
d

 6.3
d

 198
a

 

 

1.8.1. Aqueous electrolytes 

Aqueous electrolytes can be grouped into acidic, alkaline, and neutral. Within aqueous 

electrolytes, the most frequently used electrolytes are potassium hydroxide (KOH) as alkaline, 

sulfuric acid (H2SO4) as acidic, and sodium sulfate (Na2SO4) as neutral. The maximum ionic 

conductivity of 6M KOH is 0.6 S cm-1 and 1 M H2SO4 is around 0.8 S cm-1. [12, 66] Due to the 
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decomposition of the water molecule, the hydrogen evolution happens at 0.0 V vs. standard 

hydrogen electrode (SHE) and the oxygen evolution occurs at 1.23 V. Thus, the cell voltage of 

the aqueous electrolytes limited to ca. 1.0 V. Highly concentrated solutions are essential to 

minimize the equivalent series resistance or ESR, although acidic medium always tends to be 

more corrosive than the alkaline counterpart. Therefore, highly concentrated alkaline KOH or 

NaOH solutions are generally preferred. [12, 66]  Unlike the low operational voltage window of 

both alkaline and acidic media, some neutral aqueous electrolytes (such as LiCl and Li2SO4) can 

provide higher stable cell voltages of up to 1.6-2.2V. [12, 66]  This electrochemically stable 

extended potential window can be operated due to the presence of a lower concentration of H+ 

and OH- in neutral pH electrolytes, which allows them to have a higher overpotential for H2 and 

O2 evolution reactions compared to the acidic and the alkaline electrolytes.[70]  

In general, the combination of ions size and high ionic conductivities of aqueous electrolytes 

benefits them compared to other types of electrolytes. Therefore, they can easily penetrate on to 

the electrode surface and this accessibility helps them to achieve higher capacitance values. [12, 

66]  Consequently, the presence of H+ and OH- ions can also participate during the surface faradaic 

reactions by interacting with heteroatoms and their related functional groups, which also helps to 

obtain higher capacitance. [12, 66]   Besides, the EDL capacitance in aqueous electrolytes is much 

higher due to their higher dielectric constant in an aqueous medium. For these reasons, the neutral 

electrolyte can be a promising choice for their non-corrosive properties but also highly cost-

effective as well as environmentally friendly. [12, 66] 

 1.8.2. Organic electrolytes 

Organic electrolytes are the most used ones in commercial devices. Tetraethylammonium 

tetrafluoroborate ((C2H5)4NBF4) salt dissolved in acetonitrile (ACN), or in propylene carbonate 

(PC) is the most common used electrolyte, where ACN is used because of its large dielectric 

constant which can provide high conductivity and PC is used for a better safety purpose though 

its conductivity is much lower than ACN, i.e 15 mS cm-1 vs. 60 mS cm-1.  

The operational voltage window of these solvents can easily reach up to 2.7~3.0 V. [12, 66] 

Moreover, organic electrolytes are less corrosive in nature because they allow the use of cheap 

and light current collectors, such as Al. Normally, organic-based electrolytes provide lower 
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specific capacitance compared to aqueous electrolytes, because of their larger solvated ion sizes 

and lower dielectric constants. Besides, in aqueous media, oxygenated functional groups undergo 

a fast redox reaction that contributes to additional pseudocapacitance due to the proton 

participation, but such contribution is not favored in the aprotic organic electrolytes. Therefore, 

adapting the ion size to the pore size of the electrode material can maximize the overall specific 

capacitance. [12, 66] 

 1.8.3. Ionic liquid (IL) electrolytes 

ILs usually contain a large asymmetric organic cation and an inorganic/organic anion; thus, this 

special combination of cations and anions contributes to a low melting point. [67-68] IL can be 

classified into aprotic, protic, and zwitterionic according to their composition. Aprotic types are 

suitable for LIBs and supercapacitors, whereas protic is appropriate for fuel cells, and zwitterionic 

is useful for ILs based membranes. However, their highly viscous nature and low conductivity is 

the main drawback, that limits the overall rate performance and the power density in 

supercapacitor applications.  

Mostly, Imidazolium based ILs have the highest conductivity, while pyrrolidinium based ones 

have a larger voltage window. [67-68] For practical applications, ILs still has limitation because of 

their high price and temperature-dependent phenomenon which involves ultra-stringent carbon 

drying process to go beyond the practical voltage of the solvent-based cell, resulting in the surplus 

overall cost of supercapacitors. 

1.9.  Cell configurations of electrochemical capacitor 

Depending on the cell components and construction, supercapacitor technologies can be 

categorized into three different sections.  

 1.9.1. Symmetric and asymmetric capacitor 

In symmetric systems, the charge storage mechanism should be the same in both electrodes. 

Mostly, the same type of electrode materials is used both as positive and negative, but the low 

potential window in this design persists a fundamental problem to maximize the energy density 

of the cell (Figure 1.15).  
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Figure 1.15. Schematic representation of the potential window span for the symmetric and 

asymmetric capacitor.[22] 

The development of an asymmetric system is a good alternative to improve performance in 

supercapacitor technology. This asymmetric system can be designed by various types of 

combinations, such as, ‘different nature capacitive-type electrodes’, ‘pseudocapacitive and 

capacitive-type’, and ‘capacitive-type and battery-type electrodes.[23-24] Among them, increasing 

the overall potential window by combining a pseudocapacitive material along with EDLC 

material has been proven to be an effective way to increase the energy density. The energy density 

is comparatively much higher (at least four to five times) than that of the asymmetric system. 

Despite these advantages, asymmetric systems restraints the stability for long term operations 

due to the degradation of the redox-active material, which affects the cycling performance of the 

cell.[23-24]  

 1.9.2. Hybrid capacitor 

A hybrid capacitor is a subclass of the asymmetric system with a special cell configuration, where 

one non-faradic and one faradic battery-type material are coupled in a single cell set-up. [71] 

Figure 1.16 illustrates a hybrid system where one of the electrodes can store charges through ion 

insertion-extraction in the battery-type electrode material, while the capacitor-type electrode 

accumulates charge by ionic adsorption/desorption process.  This configuration can store a high 



                                                                                                                                   Chapter 1 

____________________________________________________________________________ 

31 
 

amount of energy at low current by utilizing high-capacity battery-type material, simultaneously 

it can supply high power through non-Faradic material. 

 

Figure 1.16. Hybridization of EDLC and Battery system to develop metal ion capacitors. 

Hybridization of EDLC and battery type electrodes can be categorized into “internal series 

hybrids”/ISHs and “internal parallel hybrids”/IPHs.[14] For ISH type, one battery-type electrode 

is coupled with one EDLC type electrode. The battery-type can work at a constant potential 

delivering high charge storage capacity, but their slow diffusion process limits capacity at high 

current.  

On the other side, the capacitive-type material exhibits a linear (sloppy) potential profile, which 

limits their capacity but due to the fast ion diffusion process, they retain the capacity at high 

current. This ISH type hybridization can be seen in commercial LIC systems. Meanwhile, the 

IPH type hybridization uses a mixture of battery and capacitive electrode in each electrode, which 

provides much higher energy at low current, but it can also work at high current due to the 

capacitive electrode material. Thus, combining both faradic and non-faradaic mechanisms 

synergistically into a hybrid system allows not a moderate energy value at high power but also 
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able to maintain long-lasting cycle life. Therefore, their individual role can provide high energy 

density without compromising high power densities. A detailed comparative parameter of these 

different supercapacitor configurations is given in Table 1.5.   

Table 1.5. Comparative parameters of the different supercapacitor configurations.[13] 

Parameters 

Supercapacitor 

Li-ion hybrid capacitor 

Symmetric Asymmetric 

Internal resistance Low Low medium 

Voltage range 0-2.7 0-1.6 1.5-4.2 

Discharge time 1-30 sec 1-30 sec 1-5 mins 

Energy Density (W h Kg-1) 4-6 2-8 100-200 

Power Density (kW Kg-1) 1-2 0.5-1 1-40 

Cycle life 1000k 100k 100k 

Self-Discharge High Medium low 

Safety Highly stable Highly safe Moderately safe 

 

 1.9.3. Lithium-ion capacitor 

Among the commercially available hybrid capacitor system, lithium-ion capacitors (LICs) are 

the most popular. Many different materials are evaluated as negative electrodes of the LIC system 

such as lithium titanium oxide (LTO), Lithium-compound and intermetallic-alloys, graphite, 

disordered carbon, etc.[39, 71-72]  On the other hand, high surface area activated carbons are mostly 

used as a positive electrode.  

The LIC system comprising of lithium-intercalating carbons as negative, and high surface area 

carbon as positive is called “dual carbon LIC”. The energy storage capacity of dual carbon LICs 

is almost five times higher than the EDLCs with maintaining good power density and long 

cyclability. In this system, AC is generally used as a positive electrode, and various carbonaceous 

materials have been explored as battery-type negative electrodes, eg. Graphite, hard and soft 
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carbons, graphene.[39, 73] Several carbonaceous battery-type materials can be pair with activated 

carbons (AC), such as graphite/ AC, hard carbon /AC, soft carbon /AC, Graphene/AC.[35, 39, 72, 74] 

Figure 1.17 represents the schematic structural pattern of graphite soft carbon and hard carbon. 

It can be observed that the orientation of the graphitic layer is less parallel in soft carbons and the 

ultimate misorientation is prominent in hard carbon. 

 

Figure 1.17. The textural pattern of (a) graphite, (b) soft carbon, and (c) hard carbon.[75] 

Among them, hard carbon (HC) has revealed promising results as a replacement of “graphite” is 

the most commonly used carbonaceous negative electrode material because of its disordered 

structure along with limited aligned crystalline graphite-like layers.[74, 76-77]  

 

Figure 1.18. Structural illustration of the lithium consumption in the carbon layer and the typical 

charge/discharge profile of (a) graphite and (b) hard carbon.[76] 
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This disordered pattern leads to doubling the theoretical capacity compared to graphite because 

of its nutshell like morphology can utilize more space for the insertion of the Li+ ion on the 

graphite-like regions.[71-72] Thus, using hard carbon can be the best alternative negative electrode 

instead of graphite in the dual carbon-LIC system. Figure 1.18 suggests that lithium ions can be 

placed on one side of a graphene layer in graphite, whereas in HC, each lithium layer can be 

inserted on both sides of it.  

In contrast, disordered carbons as anode sometimes suffer from a steep decrease in cell voltage 

due to an imbalance of lithium-ion intercalation/de-intercalation process when associated with 

the voltage changes occurs in capacitive electrodes during the charge-discharge operations. This 

loss of anodic voltage range leads to a decrease in energy density.  

To improve the energy density of the LIC device the pre-lithiation process in the anode can fulfill 

the excess demand of the lithium ions which cannot be achieved only from electrolytes. Thus, an 

additional internal sacrificial lithium metal electrode in the device helps to provide the abundant 

sources of Li+. This pre-lithiation not only suppresses the irreversible capacity of the negative 

electrode but also reduces the electrode resistance.[78] Thus, a pre-doped carbon anode in LIC can 

provide 1.14 and 2.3 times higher the energy and power densities compared to using only pristine 

carbon LICs.[79] 

 Besides lithium, other metals such as sodium (Na) are also getting attention in this hybrid 

supercapacitor research field. Although, the commercialization of this hybrid system is still 

relying on LICs.[73, 80] Moreover,  lithium-containing organic electrolytes are mostly used, which 

are almost the same as those used for LIBS, such as, salts of LiPF6, LiClO4, or LiTFSI in organic 

carbonate-based solvent mixtures chosen from ethylene carbonate, dimethyl carbonate, ethyl 

methyl carbonate, etc.[66, 72]  

Due to the wide electrochemical stability window obtained in these organic electrolytes (3-4.3V), 

these hybrid systems can deliver high energy densities (above 30 Wh kg-1) than other 

supercapacitor configurations. The information regarding the commercial LIC cells available in 

the market several related based on different technology roadmaps are given in Table 1.6. 
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Table 1.6. Different parameters for state-of-art commercial LIC products.[39] 

Company Cell Type 

Work 

Voltage 

(V) 

Capacitance 

(F) 

Gravimetric 

Energy 

Density 

(Wh Kg-1)) 

Volumetric 

Energy 

Density 

(Wh L-1) 

Cycles (n) 

JM energy Laminate 2.2-3.8 2100F 24 40 300 000 

JM energy Laminate 2.2-3.8 1100F 10 20 1000 000 

General 

Capacitor  
Laminate 2.2-3.8 3000 18 - 100 000 

Taiyo 

Yuden 
Laminate 2.2-3.8 200 10 20 100 000 

Vina 

Technology 
Cylinder 2.2-3.8 270 - - - 

Aowei 

Technology 
Module 2.2-3.8 9000 >20 >35 >30 000 

Greenway Cylinder 2.0-4.0 333 10.7 22.2 50 000 

 

1.9.4. Working principles of dual carbon hybrid capacitors  

Carbonaceous materials are always known for their mechanically and thermally very stable 

characteristics for a prolonged operation. In the organic EDLC system with a typical ACN based 

electrolyte, the obtained stable operating voltage is around 2.7V.  

Meanwhile, in a hybrid system (an organic carbonate-based battery-type electrolyte), it can 

deliver around 4-5 times the higher energy density than EDLCs because of their wide potential 

range which is 4.2V. By modifying their internal configuration, a hybrid system can achieve a 

safe working potential window as schematically shown in Figure 1.19.  

Using carbonaceous battery type material (such as Hard Carbon or graphite) provides higher 

capacities by storing charges through the insertion-deinsertion process, which widen the cell 

voltage output by increasing the upper potential. [39, 79, 81] Thus, the energy density is always 

higher compared to an EDLC system. 
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Figure 1.19. Typical voltage profiles of an EDLC and a hybrid supercapacitor (Left), and 

individual galvanostatic charge-discharge profile of a dual carbon LIC (hard carbon//AC).[24] 

On the other side, the capacitor-type electrode (Activated carbon/AC) can rapidly provide the 

fast-ionic diffusion process through its surface adsorption-desorption at a high current rate, which 

helps to obtain high power density. Combining both types of electrodes in a device facilitates not 

only its high-energy but also high-power densities along with a very stable cycle life. Thus, the 

dual carbon hybrid capacitor can work at high current densities without compromising its energy 

and power output. 

In 2008, ULTIMO supercapacitors introduced the first commercialized LIC on the market and 

later they become known for their energy/power provider due to the improved energy density, 

higher cell voltage, and charge retention than the traditional EDLC supercapacitors. Besides, 

these LIC cells also contain incredible cycle life, fast charge/discharge rates, high power density, 

long-lasting with low maintenance cost. Their product line consists of both individual laminate 

and prismatic cells along with multi-cell modules and both designs differ significantly from the 

cylinder-shaped designs which are generally available in the LIC market. Some inherent defects 

directly affects the performance of the LIC unit (such as, limitation of anode material properties). 

It is quite challenging to overcome the defects of the material itself, such as graphite material 

suffers a poor compatibility issue with solvent and terrible C-rate performance. On the other way, 

hard carbon materials also have low efficiency for their highly irreversible capacity. Thus, to 

enhance the performance of the LIC, the development of applicable anode materials is crucial. 



                                                                                                                                   Chapter 1 

____________________________________________________________________________ 

37 
 

At present, several types of research are focused on the development of electrode materials and 

the improvement in production technology, which can help to reach the desired performance of 

high energy and high-power devices.  

1.10. Research motivation 

Although supercapacitors have the capability to provide high-power supply when it comes to 

high energy output there are still issues that need to be addressed. To overcome this issue most 

of the research and development have been focusing on the advancement of the high capacitive 

electrode materials, whereas smart design, selection of appropriate current collectors and 

deployment of the customized electrolyte can also make a significant improvement in the overall 

cell performance. However, these developments must also consider the cost and safety issues 

from the commercialization point of view. Thus, the general objective of this thesis is to 

contribute to the collective knowledge of the development efforts made in the arena of 

supercapacitors.  

After the EDL system, asymmetric and hybrid systems in supercapacitors come forth with lots of 

attention in this era due to their excellent capability of providing high power density along with 

high energy density. Although in this sector, marked improvements can be noticeable in the area 

of electrode and electrolyte, there is still a lot of space for research to further upgrade the 

durability and safety issues. In this regard, EDL supercapacitors have a huge reputation for their 

very safe operation, whereas asymmetric and hybrid systems are still lacking full assurance. Thus, 

different approaches can be used to improve the safety of a hybrid system, such as variation in 

electrode masses or optimizing the operative potential window, etc. Careful optimization of these 

above-mentioned parameters during the development of the cell design needs to be considered 

for the sake of the best electrochemical performance. 

Hence, the main focus of this thesis is not only to correlate the physicochemical properties of the 

new materials with its performance as an electrode, but also investigating the issues related to the 

applicability, development, or design of full cell systems from a perspective to understand the 

better electrochemical performance in different segments of supercapacitor configurations (EDL, 

asymmetric and hybrid). Therefore, this thesis emphasizes a detailed work on the improvement 

in the full cell performance by developing the high capacitive material of electrodes, selecting 
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the appropriate electrolytes, variating in the operative cell voltage, and optimizing the electrode 

mass balance. These different aspects can achieve not only the high energy and power densities 

but also to obtain good cycling stability without compromising its safety matters for the intended 

applications.  

1.11. Specific objectives 

To attain the main objective, several other partial intentions have been taken into considerations. 

Here in this thesis, four specific approaches are presented with different capacitive mechanisms, 

those will be developed and studied in detail for the supercapacitor application.  

➢ Chapter 3 focuses on the development of a synthetic strategy of nanostructured carbon 

materials by a very simple method and the evaluation of their performance as electrode 

in EDL capacitors using different electrolytes to select the best active 

material/electrolyte match in terms of the capacitance value as well as rate capability and 

cyclability. 

 

➢ Chapter 4 focuses on the synthesis of faradaic (metal oxide) and non-faradaic (porous 

carbon) material for the integration into a new aqueous asymmetric supercapacitors, 

and the optimization of the full cell by the mass balance between both electrodes. 

 

 

➢ Chapter 5 focuses on the synthesis of battery-type and capacitive-type carbon electrode 

materials for the study of dual-carbon hybrid LIC performance. Here, the impact of 

operative cell voltage optimization is investigated to achieve the best electrochemical 

performance in terms of safe handling without compromising its energy and power 

output.  

 

➢ Chapter 6 focuses the study of dual-carbon hybrid supercapacitor by optimizing the 

electrode mass variation in the negative and positive electrode in the LIC system and how 

this effort can make a significant change to utilize each electrode’s working potential span 

which can be effective to improve the energy density at high current rates as well as its 

cycle life without worrying about safety issues.  
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2.1. Experimental section 

2.1.1. Reagents 

Lists of chemicals and reagents used for the experiments are given in the following table 2.1. 

Table 2.1. The details of the general materials used for the experiments. 

Chemicals Company 

Resorcinol (mol wt. 110.11) Sigma-Aldrich 

Formaldehyde (≥36 wt.% in H2O) Sigma-Aldrich 

FeCl3·6H2O (97%) Sigma-Aldrich 

Hydrochloric acid (37%) Sigma-Aldrich 

Melamine (mol wt. 126.12) Sigma-Aldrich 

Terephthalaldehyde (mol wt. 134.13) Sigma-Aldrich 

Potassium hydroxide or KOH (mol wt. 56.11) Sigma-Aldrich 

Nickel (II) nitrate hexahydrate or Ni (NO3)2.6H2O (mol wt. 290.79) Sigma-Aldrich 

Cobalt (II) nitrate hexahydrate or Co (NO3)2.6H2O (mol wt. 291.03) Sigma-Aldrich 

Urea (mol wt. 60.06) Sigma-Aldrich 

Triton-X-100 Sigma-Aldrich 

Aniline (≥99.5% -mol wt. 93.13) Sigma-Aldrich 

Pyrrole (98% -mol wt. 67.09) Sigma-Aldrich 

Ammonium persulfate (≥98% -mol wt. 228.20) Sigma-Aldrich 

Phosphoric acid (85% - mol wt. 98.00) SAFC 

Ethanol (≥99.5% -mol wt. 46.07) Sigma-Aldrich 

Glass fiber, Z242063 Whatmann® 

Lithium metal foil, battery grade 7439-93-2 Rockwood 

N-Methyl-2-pyrrolidone (NMP) 99.5%, 872-50-4 Sigma-Aldrich 

Poly(vinylidene fluoride), 24937-79-9 Solef® 
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Carbon Black Super P®1333-86-4 TIMCAL, TIMREX® 

1M LiPF6 in EC/DMC (1:1 v/v) Solvionic 

Li2SO4 Sigma-Aldrich 

1M TEABF4 in acetonitrile Sigma-Aldrich 

 

2.1.2. Apparatus 

Huanyu teflon lined hydrothermal autoclave reactor, MMERT drying oven, CARBOLITE 

horizontal tubular furnace, TELSTAR LYOQUEST freeze dryer, THERMO SCIENTIFICTM 

centrifuge, and HEIDOLPH hotplate & magnetic stirrer was used as the general equipment for 

the synthesis of materials. 

2.2. Physicochemical characterization techniques 

The development and optimization of supercapacitors require the understanding and correlation 

between the properties of the materials and their electrochemical behavior. Standard 

characterization techniques and protocols have been followed in order to optimize the electrode 

materials morphology-chemical compositions-textural parameters and its electrochemical 

behavior. Materials synthesized along this thesis have been characterized by different analysis 

methods. For physicochemical characterization, Electron microscopies (SEM and TEM), X-ray 

diffraction, Raman spectroscopy and Gas adsorption-desorption process are used. Synthesized 

materials have been processed to make electrodes and electrochemically characterized by cyclic 

voltammetry, galvanostatic charge-discharge and impedance spectroscopy to extract the essential 

information about their electrochemical behavior in electrolytes. The details of these techniques 

are briefly explained in the following section.  

2.2.1. Electron microscopy 

Electron microscopy is the most recognized standard tool to characterize morphology, particle 

size or shape of nanomaterials.[1] The technique is widely well-known and considered for an wide 

range of analysis, from biomaterials to organic-inorganic materials. It can offer exceptionally 

high-resolution in nanometer range down to single atoms. For the design and synthesis of 

nanomaterials requires fundamental understanding of the relationship between their diffusion 
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differences and their structural properties. The optimization of material properties in nanoscale 

can only be realized by precise interpretation and control over size, composition, phase, strains. 

Thus, electron microscopy techniques are highly useful to study the core material morphological 

characteristics.  Figure 2.1. provides the comparative characterization resolution regimes of the 

optical and electron microscope. 

 

Figure 2.1. Working range of various microscopy techniques;  CTEM: conventional transmission 

electron microscopy; HRTEM: high resolution electron microscopy.  

A typical microscope includes several parts, such as electron beam, electron column, 

electromagnetic lenses, specimen holder, and a set of detectors. Besides, the methods generally 

require a proper inside vacuum environment. There are two main different types of EM are 

particularly useful in material characterization techniques: scanning electron microscopy and 

transmission electron microscopy.  

2.2.1.1. Scanning electron microscopy  

In scanning electron microscopy (SEM), the electron beam scans the sample in a raster pattern. 

Firstly, the electron source generates electrons, which are emitted due to their thermal energy 

when overcomes the work function of the source material. when, the primary electron beam 

penetrates the sample, the electrons are scattered and get absorbed in a zone, which is called as 

“interaction volume region”. [1] This interaction of the primary electron beam with the sample 

causes electron elastic scattering. Other side, the emission of secondary electrons results in 

inelastic scattering, and X-ray photon emission, each of which can be spotted by specialized 

detectors. A schematic representation of the technology of a SEM is shown in Figure 2.2. 
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Figure 2.2. Schematic representation showing the core component of a SEM.[2] 

Secondary electrons can provide high-resolution images while backscattered electrons give lower 

resolution images. Though, backscattered electrons present different contrast pattern that depends 

on the composition of the multiphase of the topographic images. The information about crystal 

structure and the orientation of the minerals can be obtained from diffracted backscattered 

electrons while characteristic X-rays are generally used for elemental analysis. The maximum 

resolution of SEM images mainly depends on the electron spot size and the volume of the electron 

beam during the contact with the sample. It can resolve below 1 nm scale, but on average it is 

able to provide the image with a high resolution of 1-20 nm. 

Energy-dispersive X-ray (EDX) spectroscopy is used to identify and quantify the elements 

present in the sample. This technique can be also used to evaluate the element distribution on the 

sample through map drawing. The chemical composition can be discerned by the X-ray emission, 
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during the interaction of electron beams with the specimen. When the sample is bombarded by 

the SEM electron beam, electrons are emitted from the atoms comprising the surface of the 

sample. Then, the electron vacancies are filled by electrons from a higher energy state. During 

this transition state from a higher energy state to a lower energy state, the created energy 

difference can be released as X-rays.  

The SEM and EDX analysis data provided in this thesis were taken in FEI Quanta 200 FEG high 

resolution microscope (Figure 2.3.). The working voltage in this microscope is in the range of 3-

30 kV and the maximum resolution is 3-5 nm.   

 

Figure 2.3: FEI Quanta 200 FEG SEM (Themofischer). 

2.2.1.2. Transmission electron microscopy  

Transmission electron microscope (TEM) can acquire high resolution in the nanoscale range for 

the extremely shorter wavelength when applied electron beams can accelerate at several hundred 

kilovolts (~300kV).[3] Unlike SEM, in TEM the transmitted electrons beam pass through the 



Physicochemical and electrochemical characterization and techniques 
____________________________________________________________________________________ 

52 

 

sample. TEM shows many characteristics of the sample, such as morphology, crystallization, or 

even magnetic domains, whereas SEM only shows the morphology of samples. 

 

Figure 2.4. Schematic representation of the core components of a TEM.[2] 

Figure 2.4 shows the schematics diagram of a typical TEM microscope and the mechanism of its 

imaging system. TEM can also be utilized to detect the crystal structure and chemical 

composition of the materials. A high energy beam of electrons is transferred through a thin 

sample and the interaction between the specimen and the electrons produces the image. The 
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mechanism of the focusing of electrons is generally based on the wavelike characteristics of 

electrons, as they are negatively charged particles, they can be directly deflected by 

magnetic/electric fields. By applying condenser lenses in a TEM, the crystal structure information 

of a sample could also be obtained from paralleled electrons beams. The magnification of TEM 

varies within the range of 100X to more than 1000,000X. The image producing system contains 

electromagnetic lenses such as a condenser, objective, and a projective lens, as well as a movable 

sample stage, which helps to focus the electron beam through the sample. Finally, high-magnified 

TEM images can be obtained in a phosphorescent screen or charge-coupled device (CCD) 

camera. 

 

Figure 2.5. FEI Tecnai G2 F20 S-TWIN TEM (Thermofischer). 

The TEM analysis data provided in this thesis was taken in FEI Tecnai G2 F20 S-TWIN 

microscope equipped with a field emission gun operating at 200 kV (Figure 2.5.). The sample 

preparation was carried out by ultra-sonication of the powdered samples in ethanol followed by 

casting a few droplets of the dispersion on a holey carbon film fixed on a 3 mm copper TEM grid 

of 200 mesh. 
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2.2.2. X-ray diffraction. 

X-ray diffraction (XRD) is a non-spectroscopic technique that is most widely used for the 

identification of unknown crystalline materials. The patterns registered from the interactions 

between the X-ray and the atoms provide information about the atomic structure of crystalline 

materials.[4]  

 

Figure 2.6. Schematic representation of the core components of X-ray diffractometer.[5] 

The X-ray diffractometer consists of three basic parts, which are X-ray tube, a sample holder and 

a detector (Figure 2.6). X-rays are generated in the X-ray tube by heating a filament to produce 

electrons and accelerates directly towards the target by applying voltage and then bombards the 

target material with electrons. When these electrons acquire sufficient energy to disrupt inner 

shell electrons of the target material, this produces the characteristic X-ray spectra. These X-rays 

are filtered through a monochromator to produce monochromatic X-rays required for diffraction 

analysis. The target used in most of the modern powder X-ray diffractometers are Cu, and it 

produces characteristic monochromatic radiation called Cu Kα with a wavelength of 1.5418 Å. 

Then this radiation is collimated and targeted to the sample holder. Then the radiations are 

reflected from the sample and recorded on intensity. Through the rotation of the sample holder, 

the interaction of the incident X-rays with the targeted sample produces constructive interference. 

This interference is recorded in a detector based on intensity in the form of diffraction peaks by 

fulfilling the Bragg’s Law. (nλ=2d sin θ), where n is the integer, λ is the wavelength of 

electromagnetic radiation and θ is the diffraction angle, d is the lattice spacing in a crystalline 
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sample. The intensity vs. 2θ (º) archetype attained from this technique provides a fingerprint of 

the crystal pattern of the studied material that gives more knowledge about the structure-phase 

and its crystallinity.  

 

Figure 2.7. Bruker D8 discover XRD system. 

The XRD patterns of the synthesized samples included in this thesis were measured by using 

Bruker D8 discover X-ray diffractometer (Figure 2.7.) for powdered samples and the data were 

attained at 40 kV and 30 mA using CuKα radiation over 2θ range from 5 to 90° with a step of 

0.02° and a residence time of 5 seconds.  

2.2.3. Raman Spectroscopy 

Raman spectroscopy is a non-destructive analysis technique depend on the scattering interaction 

of light with the chemical bonds within a material. It can provide detailed information about 

chemical structure, crystallinity, phase, and molecular interactions in different types of materials 

ranging from inorganic to biological. It is primarily used to identify the vibrational modes of the 

different energy states of the studied molecule, while rotational and additional low-frequency 

modes of systems may also be uncovered.[6] When a monochromatic light from a high-intensity 

laser light source hits an analyte molecule, inelastic and elastic scattering of light takes place. 

While most of the scattered light has the same wavelength as incident light (Rayleigh scattering) 
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and does not give any useful information, a small amount of light is scattered at different 

wavelength depending on the chemical structure of the analyte molecule (Raman scattering).  

Figure 2.8 shows the schematic outlook of basic Raman spectroscopic configuration. A typical 

Raman spectrum consists of several peaks, displaying the intensity and wavelength position of 

the Raman scattered light. Each of the peaks is a fingerprint of specific molecular bond vibration, 

including individual bonds (C-C, C=C, N-O, C-H) as well as a group of bonds (benzene ring 

breathing mode, polymer chain vibrations, lattice modes, etc.). [7] Figure 2.4. shows the schematic 

diagram of the basic Raman spectroscopic configuration. 

 

Figure 2.8. Schematic representation of the basic Raman spectroscopy configurations.[6] 

All the Raman spectra data for this thesis were recorded by a Renishaw spectrometer (Nanonics 

Multiview 2000), operating with an excitation wavelength of 532 nm under an Ar ion laser. The 

spectra were assimilated with an exposition time of 10 seconds of the laser beam to the sample.  

2.2.4. Elemental Analyzer 

Elemental analysis technique is used for the interpretation of the chemical elements in the organic 

and inorganic samples. By using the Elemental analyzer, the major elements such as carbon, 

hydrogen, nitrogen, and sulfur can be detected through gas chromatographic techniques.[8] In 

commercial CHN and CHNS-O analyzers, oxidative decomposition starts after insertion of the 

https://en.wikipedia.org/wiki/Periodic_table
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samples which leads to the subsequent reduction to form the final products, such as carbon 

dioxide (CO2), water (H2O), elemental nitrogen (N2), and sulfur dioxide (SO2) measured. An 

autosampler is generally connected to a reactor placed in the pre-set furnace (temperature 

~900°C), once the gasification of the sample begins in the furnace, the chromatographic column 

starts to detect the analyzing component through a thermal conductivity detector. It also can 

identify different isotopes of the same element, which makes this instrument a versatile tool 

for isotopic labeling. The Flash 2000 elemental analyzer is used for the elemental analysis 

purpose in the thesis (Figure 2.9). 

 

Figure 2.9. The Flash 2000 Elemental Analyzer. 

2.2.5. Gas adsorption-desorption 

Gas adsorption is a very well-known technique for the characterization of porous materials.[9-10] 

In general, the physisorption takes place when an absorbable gas is approached to direct contact 

with the surface of a material. The information related to the specific surface area (SSA) and pore 

size distribution (PSD) of the material can be extracted from the adsorption-desorption isotherm. 

https://en.wikipedia.org/wiki/Isotope
https://en.wikipedia.org/wiki/Isotopic_labeling
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N2 gas adsorption at the temperature of -195.8ºC is the widely used technique to determine the 

porosity of the material. 

An updated classification of adsorption-desorption isotherm can be categorized into six types 

(Figure 2.10).  

Type I has a prominent steep uptake at very low relative pressure P/Po, which draws a concave 

curve with respect to the gas amount absorbed at Y-axis, and this typical isotherm is the 

characteristics of microporous materials. This is a very typical isotherm for high surface area 

activated carbon. 

Type II isotherms are the characteristics of non-porous or macroporous absorbents, due to 

unrestricted adsorption of monolayer-multilayer at high relative pressure P/Po. This type of 

isotherms can be seen in the case of CNT and carbon black. 

 

Figure 2.10. Different types of adsorption isotherms as classified by IUPAC.[11] 

Type III isotherms appear with a convex shape throughout the entire range of relative pressure. 

This also another characteristic for nonporous or macroporous solids, but those are very rare 
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cases. The interactions between adsorbent-adsorbate are generally very weak, thus the amount 

adsorbed at P/Po remains finite. 

Type IV isotherms are very prominent characteristics of mesoporous adsorbents. First, capillary 

condensation occurs in mesopore, which limits the adsorption capacity over a broad range of 

relative pressure P/Po. The very initial steep path at a low relative pressure of this isotherm is 

quite resembled with the type II isotherm, thus this pattern can be attributed to the transition of 

adsorption from monolayer to multilayer. This type of isotherms is typical for templated carbons 

where mesopores are the main substance for tailoring the porosity. 

Type V isotherm is the characteristic of weak adsorbent-adsorbate interactions like type III, 

mostly observed in the case of hydrophobic microporous and mesoporous adsorbents. 

Type VI isotherm is typical of layer-by-layer adsorption on an extremely uniform non-porous 

surface. 

Hysteresis is also an important factor like isotherms when the adsorption and desorption do not 

follow the same direction. It delivers information about the nature of patterns of pore present in 

the material.  

H1 is known for well-defined cylindrical pore channels or agglomeration of uniform spheres. 

Mostly it is observed where the material consists of typical tubular-shaped pores open on both 

sides. 

H2 is the type of disordered distribution of pores that are quite complicated to interpret. It is 

typical of “bottleneck” pores with a large body and narrow neck. 

H3 differs from the above two hysteresis. It represents the slit-shaped pores or pores produced 

by plate-like agglomerations. 

H4 is generally parallel with relative pressures but gas amount adsorbed vertical cycles resemble 

with H3 type, i.e. narrow slit form. In addition, this hysteresis with a type I adsorption isotherms 

indicates the presence of micropores. 

According to the hysteresis pattern, we can determine the nature of pores present in the samples, 

which is given in Figure.2.11. 
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Figure 2.11. Schematic representation of different types of hysteresis patterns and the 

corresponding pore structures.[12] 

For this thesis, all the synthesized materials were characterized by N2 adsorption/desorption 

technique. The analysis was carried out by using N2 gas -195.8ºC (77 K) using a Micromeritics 

ASAP 2020 instrument. Before the analysis samples were outgassed for 12 h at 250ºC. Specific 

surface area values of some samples were calculated using the Brunauer, Emmett, and Teller 

(BET) model within a range of relative pressure 0.05–0.2, where P/Po=0.95 in two steps. In the 

first step, the adsorption isotherm was transformed into the BET plot by using the following BET 

equation: 

                                     
𝑝 𝑝0⁄

𝑛(1−𝑝 𝑝0⁄ )
=

1

𝑛𝑚𝐶
+

𝐶−1

𝑛𝑚𝐶
(𝑝 𝑝0⁄ )       1 

Where n is the specific amount adsorbed at the relative pressure p/p0 , nm specific monolayer 

capacity and C is a parameter related to the energy of monolayer adsorption. In the second step 

the BET area was calculated from the monolayer capacity 

                                           𝑎𝑠(𝐵𝐸𝑇) =  𝑛𝑚𝐿𝜎𝑚/𝑚      2 

For evaluation of pore size distribution of slit, cylindrical and spherical pores, several semi-

empirical methods have been proposed by Horvath and Kawazoe (the HK method), Saito and 

Foley, and Cheng and Yang, respectively.  

Despite their inaccuracy for pore size estimation, they have been popularly used to compare 

microporous materials. For more reliable analysis of pore size over the entire pore range, the 

microscopic analysis applied to the molecular behaviour of constrained fluids such as density 
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functional theory and molecular simulation are considered as better methods. Among the 

different models used to study different pore shapes, the non-local density functional theory 

(NLDFT) is extended in commercial software and allows more accurate measurement.  

In this method, the pore size distribution function is calculated by correlating an experimental 

adsorption isotherm N(p/p0) with the core of a theoretical adsorption or desorption isotherms 

N(p/p0, W) based on the following equation:  

                                 𝑁(𝑝 𝑝0⁄ ) =  ∫ 𝑁(𝑝 𝑝0, 𝑊⁄ )𝑓(𝑊)𝑑𝑊
𝑊𝑚𝑎𝑥

𝑊𝑚𝑖𝑛
    3 

In this thesis, recently established 2D-NLDFT was used to measure SSA and PSD of the porous 

carbon materials from the adsorption isotherm using the data reduction software ‘SAIEUS’ 

(developed by Jacek Jagiello) 

2.3. Electrochemical characterization techniques 

All electrochemical measurements for this thesis were made using a VMP3 

Potentiostat/Galvanostat/EIS (from BioLogic Science Instruments). 

2.3.1. Cyclic voltammetry  

Cyclic voltammetry (CV) can be considered as a qualitative and quantitative technique that 

provides the information during the interactions between the surface and solution of an 

electrochemical reaction. Thus, we can obtain the details about electrochemical kinetics, reaction 

reversibility, and mechanism. During CV measurements, the potential of a target/working 

electrodes can be measured in an electrochemical set up against the reference electrode through 

linear scanning back and forth between a specific potential rage. As result of a recorded CV, the 

passing current via the working electrode is plotted as a function of the electrode potential.  

In the case of ideal electrochemical double-layer capacitors (EDLCs), a typical rectangular 

profile can be noticed clearly. So, as the capacitance is constant, CV is formed by a straight line, 

and the capacitance (C) can be calculated from the following equation:[13] 

                                                  𝑐 (𝐹) =
𝑞 

𝛥𝐸
=

∫ 𝐼 .ⅆ𝑡 
𝑡

0

𝛥𝐸
=

𝐼

𝑣 
                           4 
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where, q is the stored charge (c, coulomb), ΔE is a potential difference (V), I is the current (A), t 

is time (s), and υ is the potential scan rate (V s-1).  

On an ideal supercapacitor, the increase in the sweep rate would produce a proportional increase 

in the current. However, in the case of a real device, if the potential scan rate is too fast, there is 

a restriction of ion diffusion on the entire surface area of the material resulting in slowing down 

the electrochemical kinetics. Thus, a decay of capacitance is noticed at higher scan rates.  

 

Figure 2.12. (a) i-t plot and (b) cyclic voltammograms and the respective equivalent circuits of 

an ideal supercapacitor. Cyclic voltammograms of a supercapacitor (c) with series resistance (Rs), 

and of (d) with series and leak resistance(Rl). 
[13] 

Additionally, the continuous cycle of the CVs also provides the self-life of the studied material. 

If the material starts to degrade or decompose for a longer period, the loss in capacitance will be 

noticed in consecutive CV plots. Besides this, the shapes of CV cycles become much thinner or 

titled which gives the indications of the resistive behavior of the material. However, CVs cannot 

be fully reliable as a precise electrochemical technique to determine capacitance values, 

especially for real supercapacitors. CVs can present leak resistance as Rl, and series resistance as 

Rs, which causes the distortions from the ideal rectangle shape. These deviations are increased at 

high scan rates, which make it more complicated to interpret the value of capacitance. The 

differences can be seen in figure 2.12. 
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2.3.2. Galvanostatic charge-discharge  

Galvanostatic charge-discharge (GC/GD) measurements can be performed by using a fixed 

current within a potential range. In this technique, a constant current is applied within the fixed 

potential range to the working electrode and its resulting potential is measured against a reference 

electrode as a function of time. GC/GD measurements can be carried out in half-cell or full 

configuration. The typical curve provides the variation of the ‘potential vs. time’, from where we 

can calculate the stored charge, the capacitance and capacity values, the equivalent series 

resistance (ESR) of the working electrode along with the specific energy and power of the overall 

device.  

The charge stored, q on electrodes can be calculated by the integral of the applied constant current 

and the consumed charge/discharge time.  So, the capacitance (C) value of a device can be 

expressed as the following equations (Eq. 5 and 6)[13]: 

𝑞 = ∫ 𝐼 (𝑡)
𝑡

0
 𝑑𝑡     5 

𝐶 (𝐹) =
𝑞

∆𝐸 
      6 

Furthermore, when charge/discharge cycles perform for a longer period, degradation in 

electrodes is often noticed, which can cause irreversible loss of capacity due to the continuous 

electrode-electrolyte reactions. Thus, Coulombic Efficiency (CE) is an important parameter to 

observe those capacity decay (Eq. 7). 

𝐶𝐸 (%) =
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
     7 

The specific cell capacitance (CSP) values of supercapacitors studied in this thesis are calculated 

by the data obtained from the slope of the discharge curve, as shown in Eq. 8, where I is the 

applied current (A) and mAM (mg) the mass of the active material. Moreover, the specific capacity 

(QSP),), is calculated from the total discharge time, td, and the applied current, I. as shown in Eq. 

9[14] 

           𝐶𝑆𝑃 (𝐹 𝑔−1) =
𝐼

𝑚𝐴𝑀⁄

ⅆ𝑉
ⅆ𝑡⁄

 =  
𝐼

𝑆𝑙𝑜𝑝𝑒𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 .𝑚𝐴𝑀
   8 
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           𝑄𝑆𝑃 (𝑚𝐴ℎ 𝑔−1) =
𝐼×(𝑡𝑑)

𝑚𝐴𝑀
     9 

The specific electrode capacitance in an asymmetric EDLC system can be measured by 

multiplying the specific cell capacitance by the factor of 4.  

While the ESR values of GC/GD curves are calculated from the potential/voltage drop during the 

current inversion as shown in (Eq. 10), 

   𝐸𝑆𝑅 (𝛺) =
∆𝐸𝑑𝑟𝑜𝑝

∆𝐼
            10                                                  

In capacitors, the resistance in a system can be expressed as the ESR, which generates from 

interfacial contact, ionic diffusion hindrance, and electrolyte ionic resistances. Thus, a voltage 

drop can be seen during the charge or discharge steps.  

For the capacitive type storage mechanism of EDL capacitors, the energy density is calculated 

from the linear type GC/GD plots following the (Eq. 11) by using the capacitance value and the 

square potential difference, where Vf  is the voltage after iR drop and Vi is the lower cut-off 

voltage.. However, for the non-linear GC/GD characteristics of asymmetric and hybrid capacitor 

system with faradaic contribution, the energy density is calculated from integral calculation of 

the area under the GD curve (Eq. 12).[14] 

𝐸 (𝑊ℎ 𝐾𝑔−1) =
𝐶𝑆𝑃×(𝑉𝑓

2−𝑉𝑖
2)×1000

2×3600
    11 

𝐸 (𝑊ℎ 𝐾𝑔−1) =
𝐼

𝑚𝐴𝑀
∫ 𝑉 (𝑡) 𝑑𝑡

𝑡2

𝑡1
    12 

Power density of hybrid devices has been calculated from the energy density and the discharge 

time (Eq. 13). 

  𝑃(𝑊 𝐾𝑔−1) =
𝐸×3600

∆𝑡
       13 

2.3.3.  Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) is generally used to measure the ability of an 

equivalent circuit to resist to an electric current (AC) flow, which can provide accurate 

information about the charge transport properties in an energy storage device. In EIS process, the 
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response of an AC current signal is measured by applying a sinusoidal potential excitation. This 

sinusoidal signal is consecutively applied at different frequency range. The impedance (Z(ω)) can 

be specified as a complex resistance of AC current and voltage and is expressed by Eq. 14: 

                                             𝑧 =
𝛥𝑉

𝛥𝐼
=  |𝑍(𝜔)|𝑒−𝑗𝜑 = 𝑍′ +  𝑗𝑍′′                                       14 

Nyquist plot is a very well-known EIS plot, which demonstrates the absolute imaginary 

impedance vs. the real impedance. Figure 2.13. illustrates the Nyquist plots of capacitors.  

 

Figure 2.13. Illustration of Nyquist diagram.[15] 

When porous materials are used as electrode materials, the plot line tends to go upwards (~45° 

angle) at the high frequency region that is followed by a quasi-vertical line, represents the ionic 

resistance insides the pores (diffusion kinetics). Additionally, a semicircle at high frequency 

represents the charge transfer resistance characteristics between the electrode and the current 

collector.  

2.3.4. Electrode processing and cell assembly  

For this thesis, different electrochemical set-ups were used for studying the electrochemical 

behavior of the material. Those are: (1) three-electrode configuration (Figure 2.9.), (2) two 

electrode configurations (Figure 2.10.). The three-electrode configurations were carried out either 

in a beaker cell or in a SwagelokTM T-type cells in aqueous or organic electrolytes using a 

working, counter and a reference electrode (Figure 2.14). The electrodes were prepared by mixing 
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Active material along with carbon black (CB) and polytetrafluorethylene (PTFE) in the presence 

of a few drops of ethanol. The dough was kneaded continuously until reaching plasticity, 

uniformly rolled until a thickness of 40-60 μm, punched out into disk shaped (12 mm in diameter), 

and finally dried at 120 °C overnight.  

 

Figure 2.14. Three electrode configurations in a beaker cell (left) and SwagelokTM T-type cell 

for testing symmetric and asymmetric supercapacitor. 

Working electrodes for beaker type cells were prepared by compressing these disk-shaped 

electrodes (2-4 mg cm-2) onto a 2 mm thick Nickel foam (99.8% pure, MTI Corp.) that served as 

a current collector.  

A Pt coiled wire was used as a counter electrode in the beaker type cell, which was cleaned prior 

to the measurements with acidic piranha solution (3:1 mixture of conc. H2SO4 conc and H2O2 (30 

v/v %)) to remove any surface impurities. For SwagelokTM T-type cell, working and counter 

electrodes were made of the same carbon material. When aqueous alkaline electrolyte was used, 

a Hg/HgO (saturated in 1 M NaOH) electrode served as the reference electrodes, whereas a 

Hg/HgSO4 in 0.1M K2SO4 served as the reference electrode for an aqueous neutral electrolyte. 

For Organic electrolyte Ag wire was used as a quasi reference electrode, which was polished with 

emery paper followed by surface etching in aqueous nitric acid to remove surface oxides. 

In the case of a two-electrode configuration symmetric system, electrodes with similar masses 

were assembled into SwagelokTM-type cells (Figure 2.15.).[16] The disk-shaped electrodes were 

prepared following the above-mentioned process by mixing Active material along with CB and 
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PTFE binder. A porous glass fiber (Whatman GFB) membrane was used as a separator between 

them and stainless-steel rods as current collectors. The electrodes and the separator were wetted 

with a few drops of aqueous electrolytes. 

 

Figure 2.15. Two electrode configurations in a SwagelokTM-type cell.[16] 

For hybrid capacitor testing, three-electrode configuration SwagelokTM-type cells were used. The 

negative electrode slurry was prepared by mixing in a weight mass ratio of 90:5:5, (active 

material + Super-C C65 + CB) in presence of polyvinylidene fluoride (PVdF) binder in N-methyl-

2-pyrrolidone (NMP) solvent. The components were mixed under vigorous stirring for at least 1 

h using a magnetic stirrer. The obtained negative electrode material slurry was coated onto a 

copper foil current collector.  

For the positive electrode slurry, the activated carbon, Super-C C65 and PVdF was mixed by 

following the same above-mentioned weight mass ratio in NMP solution under continuous 

stirring for 1 h and then the positive electrode material-based slurry was laminated onto an 

aluminum foil. Laminates were placed immediately into a vacuum oven for drying at 80 ºC for 

12 h under constant vacuum. The mass loading of the positive electrode was 1-1.5 mg cm−2 while 

the loading in the negative electrode ranged from 1.5 - 3 mg cm−2.  

The electrochemical characterization of the anode was evaluated in a three-electrode 

configuration using an airtight Swagelok T-cell. Metallic Li was used as both the counter and the 

reference electrode, and the anode was cycled within the potential range of 0.002 V to 2V vs. 
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Li+/Li. The same cell assembly procedure was followed to perform the electrochemical 

characterization of the cathode within the 1.5-4.2 V vs. Li+/Li potential range. 

 

Figure 2.16. Three electrode SwagelokTM-type cell configurations for testing hybrid Lithium-ion 

capacitor. 

Lithium hybrid supercapacitor full cells (negative//positive) were assembled using a three-

electrode configuration (Swagelok T-cell) with a metallic Li reference that was chosen to record 

the individual electrode potential changes (Figure 2.16.). Stainless steel current collectors and a 

porous glass fiber separator (Whatman GFB) were used and the electrolyte used was 1 M LiPF6 

in EC:DMC (1:1). Before testing, both negative and positive electrodes were preconditioned to 

maximize the output voltage. Thus, the negative electrode was cycled at least five times between 

0.002 and 2 V vs. Li/Li+ at 0.1C rate in order to form solid electrolyte interphase (SEI) and supply 

enough lithium to compensate the first irreversible cycle. After that, a cut-off potential of 0.2 V 

vs. Li/Li+ was set in order to evade any chances of lithium plating. The positive electrode was 

also charged up to a cut-off potential of 4.2 V vs. Li/Li+. After this pre-lithiation process, the 

LICs full cells were built for their extensive electrochemical characterization.  
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This chapter presents a facile and scalable approach for the preparation of uniform porous 

carbon spheres with 3D interconnected pore architecture from the pyrolysis of phenolic resins 

obtained through the sol-gel process between resorcinol and formaldehyde catalyzed by FeCl3. 

The resulting porous carbon spheres (PCS) exhibit a high specific surface area of 2072 m2 g-1 

and a pore volume of 1.33 cm3 g-1. The pore size distribution also confirms the combination of 

micro/meso sized pores centered around 0.9-2.0 nm, which is suitable for supercapacitor 

applications. To study their charge storage behavior on the electrode surface s PCS have been 

used as electrode and tested in symmetric EDLCs using three different electrolytes, i.e. 6M aq. 

KOH, 1M aq. Li2SO4 and 1.5 M TEABF4/acetonitrile, based on their cation/anion size variation. 

The electro-adsorption of electrolyte ions on the positive and negative electrode was individually 

monitored during the cyclic voltammetry and galvanostatic charge-discharge test using a 

reference electrode. The PCS electrodes show an excellent specific capacitance of 168, 110, 114 

F. g-1 in KOH, Li2SO4, and TEABF4/acetonitrile electrolyte at the current density of 0.1 A g-1, 

and able to maintain good capacitance retention even at a high current density of 10 A g-1. Due 

to the high surface area and suitable micro/mesoporosity, these electrodes exhibit superb cycling 

performance even after 5000 charge-discharge cycles.  
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3.1. Introduction 

Among the different supercapacitor systems, electrochemical double layer capacitors (EDLCs) 

based have drawn the tremendous attention due to their fast charge-discharge rates over unlimited 

cycles, which is required not only for the development of hybrid electric vehicles but also for the 

portable electronics and industrial power-energy management purpose.[1-3] Porous carbon are the 

most used materials for the fabrication of electrodes for EDLC due to their low toxicity, good 

electronic conductivity, high accessible surface area and optimum porous architecture, which are 

extremely desirable for charge storage purposes in the electrode/electrolyte interface.[4-5] Porous 

carbons can be synthesized by several methods, such as hard or soft templated method, 

carbonization of polymer blends, chemical activations and also through the catalytic activation 

by using metal salts.[6] Development of simple and cost-effective strategies are highly challenging 

to synthesize the nanostructured carbon materials to save time and energy as well as to reduce 

the consumption of expensive precursor.  

In this context, carbons synthesized from the polycondensation polymerization reaction of the 

resorcinol (R) and formaldehyde (F) precursor are quite well known for the synthesis of carbon 

aerogels and xerogels.[7-11] Several studies have reported how the nanoporous structure of RF 

carbon controls the performance of EDL behavior.[9, 11] This synthesis process involves three 

major steps. These are, 1) preparation of the solution mixture, where ‘gelation and curing’ 

happens, 2) drying of the wet gel, 3) and carbonization of the dry gel. The main factor of this 

synthesis process depends on the ‘gelation and curing’ step, where endothermic, 

polycondensation and polymerization reaction takes place in presence of a catalyst.[7, 11] Different 

types of acid and base catalysts can be used for this polymerization reaction. Among the base 

catalysts, (Na2CO3, NaOH, KOH) are predominantly used, which reduces the gelation time by 

accelerating the reaction and also improves the crosslinking of the polymer particles.[7, 9, 12-14] The 

crosslinking process during the condensation reaction is referred as an ‘ageing step’, reducing 

this ageing step in presence of an acid catalyst also plays an important role to increase the EDL 

capacitance.  

In this regard, various acid catalysts and salts of transition metals (e.g. Pt(NH)3, PdCl2, or 

Ag(COO-CH3)2, Fe(COO-CH3)2, FeCl3) are also utilized.[8, 15-17] The main advantages of using 
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these acid catalysts are decreasing in reaction temperature, increase in the surface area as well as 

micro- and mesopore volumes, and the reduction of gelation time.[18] Among them, FeCl3 is 

highly promising due to its widely regarded chemical activation effect to produce activated 

carbon. [19-21] It has many advantages compared to traditional activation agent such as lower cost 

and environment friendliness.[22-23] Furthermore, use of iron containing salt can also act as a 

catalyst for producing localized graphitic domains in the carbons obtained from the dry gel during 

the pyrolysis process at relatively low pyrolysis temperature (<1000oC).[18, 24-27] This induced 

graphitization in carbon can enhance the electrical conductivity, which helps to achieve better 

electrochemical performance compared to the conventional amorphous activated carbons. 

Generally, the carbon obtains from the RF gel usually has poor porosity because of the non-

porous nature of polymeric precursors. However, this issue can be resolved by using polymeric 

gels impregnated with the transition metal salts resulting in carbon materials having both 

graphitic domains as well as significant porosity.[8, 24] 

As the energy density of supercapacitors depends on the capacitance and the potential window 

of the system, thus increasing the operating voltage is the prime challenge for the performance 

improvement of this energy storage device. In fact, the cell voltage of the EDLC system is mainly 

limited to the stability potential window of the electrolytes. Therefore, the careful selection of 

aqueous and non-aqueous mediums can restrain the overall electrochemical performance. In 

aqueous medium, the practical operating voltage is limited at ca. 1.0 V because of the 

thermodynamic instability of water, whereas the organic electrolytes are ranging ~2.5–2.7 V but 

their main drawbacks are the low conductivity and larger ionic size.  

Generally, H2SO4 and KOH are quite common and most studied aqueous electrolytes for 

supercapacitors. The high over-potential for dihydrogen evolution reaction can improve the 

operating voltage in the carbon electrode, however, the corrosive property of H2SO4 prevents the 

wide-ranging applications. In this regard, KOH is comparatively safer, but it also degrades the 

electrode material and the current collector during prolonged application.[28] Though these acidic 

and alkaline electrolytes have much higher ionic conductivities, which help to achieve the high 

specific capacitance, they exhibit adverse effects in cycle performance. On the other side, neutral 

electrolyte (LiCl, Li2SO4, Na2SO4, etc.) contains the negligible concentration of H+ and OH- 

compared to the acidic and alkaline aqueous electrolytes, thus high overpotential of gas evolution 
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(H2 and O2) reaction can be expected that helps to increase the working potential window.[28-30] 

Although neutral electrolytes provide much lower specific capacitance, their higher cell voltage 

(~1.7 V), less corrosive nature, stability resulted in an enhanced energy storage performances of 

the devices.[1, 28] Apart from these aqueous electrolytes, an organic electrolyte such as 

tetraethylammonium tetrafluoroborate (TEABF4) in acetonitrile or propylene carbonate (PC) 

solvent is used in most of the commercial EDLCs.[31] Despite having lower specific capacitance, 

higher cost, volatility issues, still they dominate the commercial market because of their much 

better operation potential window around 2.7 V, which provides not only high energy density but 

also better cycle life.[28, 32] 

In this chapter, porous carbon spheres were synthesized by using resorcinol and formaldehyde in 

a sol-gel process with the aid of FeCl3 as an acid catalyst followed by carbonization. FeCl3 serves 

as a catalyst during the gel condensation and as activating agent during its carbonization. These 

synthesized porous carbon spheres were used as the electrode material to study its 

electrochemical behavior in different voltage limits by using various electrolytes. We selected 

KOH as alkaline, Li2SO4 as neutral, and TEABF4/acetonitrile as organic electrolyte respectively 

to observe the intrinsic and extrinsic behavior of the full cell performance of the porous carbon 

sphere electrode. In this regard, the detailed electrochemical analyses were performed to 

understand the relationship of the different electrolyte ions with the porous textural properties of 

this catalytic graphitic carbon. 

3.2. Material synthesis 

The porous carbon spheres (PCS) were synthesized by the carbonization of the dry polymeric gel 

under a dynamic inert atmosphere. In this typical synthesis, 880 mg of resorcinol, 1.2 mL of 

formaldehyde, and 216 mg of FeCl3·6H2O were dissolved in the mixture solvent of DI water and 

ethanol. After the complete mixing, the resultant solution was kept it in an oven at 60 °C for 48 

h in a closed container to form a gel. Then this wet gel was kept under the same heating condition 

for a sufficient period to dry properly. After that, this dried gel was carbonized at 950 °C for 3 h 

under the stream of N2 gas (0.5 L min−1) with a heating rate of 4 °C min−1. Then the carbonized 

sample was washed with 3 M HCl in EtOH/H2O (1/1 in volume) to remove Fe species from the 

obtained carbon. 
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3.3. Physicochemical characterization 

Figure 3.1.a shows the XRD patterns of the carbonized sample prepared from the RF precursor 

in the presence of a certain amount of FeCl3, which served as both catalyst and an activating 

agent. The smooth XRD pattern without any graphitic peaks shows that the synthesized porous 

carbon spheres are amorphous in nature high porous surface. A few sharp diffraction peaks can 

be seen in the XRD patterns, which are assigned to Fe-oxide species (Fe3O4 and Fe2O3). During 

the carbonization process, some FeCl3 catalyst reacts with the other functional groups of the resin 

forming these Fe-oxides. Although extensive washing with an acidic solution was done post 

carbonization, the presence of these residual Fe- oxide species are observed, which are difficult 

to be accessed and leached from the carbonaceous matrix. 

 

Figure 3.1. (a) XRD profile, (b) Raman spectra, (c) low magnification SEM image, and (d) EDX 

spectra of the PCS. 
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Figure 3.1.b shows the Raman spectrum registered for PCS. The bands registered at around ~1340 

and ~1600 cm−1 are ascribed to the vibration modes of the defect in sp3 carbons (D band) and the 

graphite sp2 carbons (G band), respectively. Besides, the ratio of the integrated area of ID and IG 

was found to be 1.16 form Raman spectrum provides the information about the significant 

disordered morphology of this amorphous PCS contains a large concentration of defects and/or 

pores, which supports the XRD result. Figure 3.1.c shows a low magnification SEM image. From 

this image, it can be observed that the carbon nanospheres are homogeneously dispersed with a 

few localized agglomerations of the metal compounds seen on the surface and that can be 

assigned to the presence of some Fe-oxides in the carbon matrix. Thus, the further investigation 

obtained from the EDX analysis (Figure 3.1d) confirmed the presence of Fe (2.69 at %) together 

with other metallic elements (Al and Cu) from the sample holder. 

Figure 3.2.a depicts the porous structure of carbon employing in SEM, where it can be found that 

no bulky aggregation of the carbon spheres is observed. In order to observe the microstructure, 

PCS was further investigated by TEM analysis, as shown in Figure 3.2.b. The low magnification 

TEM images in Figure 3.2.b confirms that the PCS is formed by individual and isolated spherical 

particles. These images also confirm the presence of tinny metallic particles embedded in the 

carbonaceous matrix. Meanwhile, figure 3.2.c shows that PCS possess fine micropore channels 

without any detectable existence of mesopores or macropores.  

To obtain the additional information about the textural features of this carbon, nitrogen 

adsorption-desorption measurements were performed, and the results are plotted in figure 3.2.d 

and 3.2.e. As revealed from figure 3.2.d, PCS shows a type I profile isotherm (according to the 

IUPAC classification), which indicates that the PCS is predominantly microporous in nature.[33] 

The calculated DFT specific surface area were found to be 2072 m2 g-1, which is at least 2.5 times 

higher than other carbon synthesized from similar phenolic resins.[8, 34-37] This is due to the use 

of FeCl3 catalysts during the preparation of resorcinol formaldehyde gel, which also worked as 

activation agent during the pyrolysis of the gel. Many studies validated the high efficacy of  FeCl3 

as activation agent for synthesis of highly porous carbon from different precursors such as resin, 

waste biomass, coal tar etc. [19-21] The pore size distribution analysis calculated by the 2D-NLDFT 

model shows that the PCS carbon has total pore volume of 1.33 cm3 g-1 out of which micropore 

volume is 1.05 cm3 g-1, which is almost 80 % of the total pore volume.  
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Figure 3.2. (a) SEM and (b) TEM image of the microspherous PCS, (c) high magnification TEM 

image of the outer surface of the PCS, (d) N2 adsorption-desorption isotherm, and (e) pore size 

distribution curve. 

Many studies suggested that Fe3O4 and Fe2O3 formed during the pyrolysis of FeCl3 containing 

carbon precursors promote the formation of micropores.[22, 38-39] These micropores are derived 

from the interstices of the remaining turbostratic framework in the carbon spheres. The pore size 

distribution is observed to be broad in the range of 0.4-3.0 nm with two peaks at 0.9 and 2.0 

nm.The chemical transformation of FeCl3 during this activation process is explained in the 

following steps (Eq. 1-6)) [19]:  

At 200-330 °C: decomposition of FeCl3·6H2O into amorphous Fe-species 

              FeCl3+2H2O→FeOCl·H2O+2HCl (g)→FeOOH+3HCl (g)    1 

At 330-700 °C: formation of Fe2O3 from FeOOH, which reacts with carbon to form Fe3O4 

                                       FeOOH→Fe2O3+H2O                  2 
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                                      Fe2O3+C→4Fe3O4+CO2     3 

At 700-800 °C: Reaction of Fe2O3 and Fe3O4 with carbon to form metallic Fe. 

                                   2Fe2O3+3C→4Fe+3CO2      4 

                                  Fe3O4+2C→3Fe+2CO2      5 

                                   Fe3O4+4C→3Fe+4CO      6 

Therefore, these results confirmed that PCS mostly contain pores within the micro- and small 

mesopores range, which could be highly beneficial for the formation of the electrical double layer 

in both aqueous and organic electrolytes.  

3.4. Electrochemical characterization 

3.4.1. Electrode processing and cell assembly 

Electrodes were processed by mixing the synthesized PCS material (90 wt. %), super-C65 

conducting carbon additive (5 wt. %), and a polytetrafluorethylene (PTFE) binder (5 wt. %, from 

a 60 wt. % aqueous dispersion). The mixture was homogenized and was kneaded continuously 

to form a dough with good plasticity, followed by uniformly rolling the dough until forming a 

self-standing film with a thickness of nearly 40 μm. 11 mm diameter disk-shaped self-standing 

electrodes were punched out from the film and dried at 120 °C overnight. The mass loading for 

the tested electrodes was kept uniform in the range of 4-5 mg/cm2. The electrochemical 

performances of the fabricated electrodes were assessed in a special symmetrical three-electrode 

SwagelokTM cell system as shown in Figure 3.3.  

Two carbon electrodes of similar mass loading with a porous glass fibre membrane (Whatman 

GFB) in between them were sandwiched between two stainless steel current collectors and 

assembled within a Teflon SwagelokTM airtight T type cell, which formed a two-electrode EDLC 

cell. A third reference electrode was introduced in the cells, which is kept equidistant from both 

carbon electrodes for differentiating the potential evolution of each of them with the scan rate 

and the cut-off voltage being enforced between the positive and negative electrodes. Three 

different electrolytes (Aqueous alkaline (6M KOH), aqueous neutral (1M Li2SO4), and organic 
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(1M Tetraethylammonium tetrafluoroborate [TEABF4] in acetonitrile) were used in this study to 

test the electrochemical performance. For aqueous alkaline and neutral electrolytes, two different 

types of calomel reference electrodes namely Hg/HgO in 0.1M NaOH and Hg/HgSO4 in 0.1M 

K2SO4, respectively were used. For organic electrolytes, an Ag wire was used as a quasi-reference 

electrode. The Ag wire was polished with emery paper and etched in nitric acid solution to 

remove surface oxides and impurities.  

 

Figure 3.3. Three electrode SwagelokTM-type cell configurations for testing symmetric EDLC. 

3.4.2. Electrochemical evaluation 

The high specific surface area and appropriate porosity of PCS could envision the potential of 

this material as electrode material for EDL capacitors. Thus, three different electrolytes, i.e. 

aqueous alkaline, aqueous neutral, and organic electrolytes were selected to evaluate the co-

relation of textural features of PCS materials with the ionic size and conductivity of the 

electrolytes. High salt concentration in the solvent is required to reach high ionic conductivity of 

the electrolyte, which is necessary to achieve good capacitive performance, especially at high 

current densities. For aqueous alkaline electrolyte, this is not an issue because they can achieve 

high concentration although it can increase the corrosive degradation.  

For neutral aqueous media, some salts such as K2SO4 cannot achieve very high concentration due 

to its solubility limit. On the other side, many studies claimed that 1M Li2SO4 as neutral 

electrolyte has not only excellent conductivity but also can operate in a wide electrochemical 

potential range.[28, 32] For organic electrolytes, the conductivity is dependent on both salt and 
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solvent. Among the commonly used solvents, acetonitrile has a lot of advantages, such as low 

viscosity, high dielectric constant and most of the electrolyte salts can get easily desolvated also 

in this media, which can enhance the capacitive performance significantly.[28]. Therefore, the 

electrolytes chosen for this study were 6M KOH (aqueous), 1M Li2SO4 (aqueous), and 1.5M 

TEABF4 (acetonitrile), respectively.  

Another important factor for selecting these three electrolytes is their difference in the ionic size 

of cations and anions. For KOH electrolyte, the ionic size of the cation is smaller than anion, 

whereas it is completely opposite in case of TEABF4 based electrolytes.[28] In the case of Li2SO4 

electrolyte, the ionic size of cation and anion are nearly equal. Since the cations and anions are 

electroadsorped in negative and positive electrode to form the electric double layer, thus their 

differences in ionic size can directly influence the degree of electroadsorption and thereby 

affecting the overall charge storage performance.[40-41] Several studies has been reported on the 

effect of ionic size on electrochemical charge storage behavior in different types of aqueous and 

organic electrolytes.[42-46]  In this context, Chen et al. has carried out an interesting study, where 

they have used biomass derived porous carbon to compare the effect of three types of aqueous 

electrolyte (acidic, alkaline and neutral) and organic electrolyte on EDL charge storage 

beheaviour.[29] However, their study does not have much information on the charge storage 

behavior in individual electrodes of a two-electrode cell. From this perspective, the 

electrochemical study carried out in this work has gone through a detailed evaluation of charge 

storage properties in the individual electrode by fabricating a special three-electrode SwagelokTM 

cell (Figure 3.3), where two PCS electrodes are coupled with a reference electrode.  

Figure 3.4. shows CV profiles recorded at 5 mV s-1 scan rate and GC-GD profiles recorded at 0.1 

A g-1 in the three different electrolytes. All CV curves show rectangular and symmetric profiles 

whatever the electrolyte used, A sharp shift of capacitive current transient at the cut-off voltage 

limit is also observed in all CVs.[47] This behavior can be interpreted as a nearly ideal EDL 

mechanism, indicating a typical characteristic of good microporous carbon with high electrical 

conductivity. The electrosorption behavior of the different electrolyte ions in the micropores of 

PCS materials can be observed from the electrochemical response of the individual electrodes as 

shown in Figure 3.4.  
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Figure 3.4. Cyclic voltammograms at a scan rate of 5 mV s-1 and galvanostatic charge-discharge 

profiles at the current density of 0.1 A g-1 for the tested EDLCs in different electrolytes, (a and 

b) 6M KOH, (c and d) 1M Li2SO4, and (e and f) 1.5M TEABF4. Cell voltage (black dashed line) 

vs. potential evolution of individual electrodes: positive electrode in red and negative electrode 

marked in blue. 
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It can be observed that in the case of KOH electrolyte (Figure 3.4.a), the CV curve associated to 

the positive electrode has a larger area compared to the negative electrode, which means the 

electrosorption of hydrated OH˗ ion stores the charge more favorably in larger voltage window 

than the K+ ion. This is due to the larger size of hydrated OH˗ ion (0.63 nm) compared to the K+ 

ion (0.33 nm) in the 6M KOH solution. [28, 42-43] However, CV profile recorded in Li2SO4 

electrolyte (Figure 3.4.c) exhibits both positive and negative electrodes has almost equal CV area, 

which indicates that both electrodes have nearly similar charge storage behavior. The ionic size 

of the hydrated Li+ and SO4
2- ions are also almost the same in size (i.e. 0.38 nm).[40, 48]. Therefore, 

the contribution from both cation and anion towards charge storage is as well very identical. In 

case of a cell measured using1M TEABF4/acetonitrile as electrolyte (Figure 3.4.e), the CV area 

in the negative electrode was found to be larger than the positive electrode, indicating that the 

TEA+ ion has bigger ionic radii in both solvated and desolvated form than BF4
- ion, which 

explains electroadsorption of TEA+ ion are more favorable compared to the BF4
- ion.[1, 46, 49] 

Ideally, the charge built up in the positive and negative electrode is equivalent to each other, i.e. 

𝑄+ =  𝑄−, which can be rewritten as 

𝐶+∆𝐸+𝑚+ =  𝐶−∆𝐸−𝑚−                                       7 

Where, C+ is the capacitance, ∆E+ the voltage range, m+ the mass of the positive electrode, and 

C-, ∆E-, m- corresponds to the negative electrode values. Since the electrode mass is kept almost 

equal for both positive and negative, thus the capacitance in each electrode is inversely 

proportional to the voltage evolution.  

Figure 3.4.b, d, and f show the GC-GD profiles recorded at 0.1 A g-1 current density. In the case 

of both aqueous electrolytes, the symmetric GC-GD profiles exhibit equal charge and discharge 

time with negligible iR drop. The GC-GD profile registered in the organic electrolyte also shows 

a symmetric profile with almost negligible iR drop but with a slightly longer charge time than 

discharge. Moreover, figure 3.4.b shows the GC-GD profiles of individual electrodes in KOH 

electrolyte, where the potential evolution in the positive electrode is found to 60 % of the total 

voltage evolution. This indicates that the negative electrode delivers 60% of the total specific 

capacitance.[43] Whereas, in Li2SO4 electrolyte, the GC-GD profiles (Figure 3.4.d) of individual 

electrodes display almost equal voltage evolution in both positive and negative electrodes, 
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suggesting their similar contribution towards the total capacitance. In the case of TEABF4 

electrolyte (Figure 3.4.f), the potential swing of negative electrode is found to be larger than that 

observed for the positive electrode, meaning that the positive electrode has a larger contribution 

on the capacitance of the cell. 

Figure 3.5.a, c and e show the CV patterns registered at increasing sweep rates from 10-100 mV 

s-1. It is clearly observed that the profile remains stable with a negligible shift from the ideal EDL 

behavior in the whole range. This validates the optimum porosity of the PCS material, which 

allows the unrestricted ion movement throughout its porous network. It is worth to point out the 

absence of redox peak in CV curves, especially in the KOH electrolyte that supposed to appear 

due to the presence of residual iron oxide crystal in the PCS material. This indicates that the iron 

oxides are embedded within the carbonaceous matrix and avoiding its direct exposure to the 

electrolytes. Figure 3.5.b, d and f show the GC-GD profiles of the PCS electrodes in the three 

different electrolytes in the current density range of 1.0-10 A g-1. It can be noticed that the 

appearance of iR drop in KOH electrolyte is significantly smaller than the other two electrolytes 

by comparing their GC-GD profiles of 1 A g-1. It is noteworthy to mention that the iR drop in aq. 

Li2SO4 electrolyte is higher than the TEABF4/acetonitrile.  

Figure 3.6.a shows the specific capacitance evolution calculated from the discharge branch at 

different current rates (0.1 to 10 A g-1). It can be observed that the electrode tested in aq. KOH 

electrolyte showed the highest specific capacitance of 168 F g-1 at 0.1 A g-1 compared to 110 and 

114 F g-1 that observed in aq. Li2SO4 and TEABF4 in acetonitrile, respectively. Furthermore, the 

specific capacitance retention values of these EDLCs are found to be 73 (aq. KOH), 67 (aq. 

Li2SO4), and 73 % (TEABF4/acetonitrile) even at the high current density of 10 A g-1. 

This huge difference in the capacitive performance can be attributed to two main factors. (1) Aq. 

KOH electrolyte has a much higher conductivity of 544 mS cm-1 compared to 77.6 and 59 mS 

cm-1 in aq. Li2SO4 and TEABF4/ acetonitrile respectively.[28, 40, 50] (2) Aq. KOH electrolyte can 

also contribute pseudocapacitive charge storage in the microporous carbon through the redox 

interaction of OH- ion with the surface functional moieties.[28, 32, 40] Thus, the higher capacitance 

retention behavior at high current density in aq. KOH than Li2SO4 can be attributed to the faster 

ionic mobility of solvated K+ and OH˗ ions than the Li+
 and SO4

- ions. Moreover, the poor 

wettability of aqueous neutral electrolytes with porous carbon material can also be the reason for  
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Figure 3.5. Cyclic voltammograms at different scan rates and galvanostatic charge-discharge 

profiles at different current densities for the tested EDLCs in different electrolytes, (a and d) 6M 

KOH, (b and e) 1M Li2SO4, and (c and f)1.5M TEABF4. 

lowering the capacitance retention of aq. Li2SO4 compared to the acidic, alkaline, or organic 

electrolyte.[28] This capacitance fading behavior can be related to the higher iR drop (i.e. 0.03V) 
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measured in the Li2SO4 electrolyte as it can be compared to the other two electrolytes observed 

in figure 3.5.d. 

On the other side, the excellent capacitance retention of 73 % that showed in the organic 

TEABF4/acetonitrile electrolyte indicates the pore distribution in the synthesized PCS material is 

well suited to accommodate the bigger organic salt ions in both solvated and desolvated form.[28, 

32, 40] This result suggests that the PCS materials hold the possibility to perform good charge 

storage behavior also in the ionic liquid electrolytes.  

After the rate performance tests, the EIS analysis was performed on all the cells with an open 

circuit potential after leaving them with a rest period of 1 h.  Figure 3.6.b shows the comparative 

Nyquist plots obtained from the EIS analysis, indicates the typical curves of the porous carbon 

electrodes. The insignificant semicircle of aq. KOH and TEABF4/acetonitrile electrolytes 

indicate that the cells exhibit very low interfacial resistance. Whereas the electrode in aq. Li2SO4 

electrolyte shows the formation of a quite prominent semicircle in high to medium frequency 

range. This can be directly attributed to the poor wettability of the porous carbon electrode in the 

aqueous neutral electrolyte as explained above. 

The internal cell resistance in each electrolyte was measured by extrapolating the low-frequency 

region of the Nyquist curves to X-axis. As expected, the electrode in KOH electrolyte shows the 

lowest ESR of 0.25 Ω compared to 1.45 Ω and 0.75 Ω that showed in aq. Li2SO4 electrolyte and 

TEABF4/acetonitrile electrolyte, respectively, which supports the GC-GD results explained 

above. The low-frequency region of all the Nyquist curves showed vertical straight lines parallel 

to the Y-axis, which validates the formation of EDL type charge storage in all the electrolytes. 

From the middle to low-frequency region in aq. Li2SO4 electrolyte, a small diversion in Y-axis is 

indicating the ion diffusion resistance in this electrolyte was much higher than the other two.  

Figure 3.6.c demonstrates the comparative Ragone plots corresponding energy vs. power 

densities for all the EDLCs. The highest energy densities obtained for the cells in aq. KOH, aq. 

Li2SO4 and TEABF4/acetonitrile electrolytes are 5.8, 10.8, and 28.4 Wh kg-1 at 50, 85, and 133 

W kg-1 power density, respectively. Therefore, the energy density in the TEABF/acetonitrile 

electrolyte was almost 5 and 2.5 times more than aq. KOH and aq. Li2SO4 electrolytes. Moreover, 

the energy density in TEABF4 electrolyte still retained 19 Wh kg-1 at a high-power density of  
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Figure 3.6. Comparative (a) rate capability, (b) Nyquist plots (registered after the rate 

performance evaluation) (c) Ragone plots, and (d) cyclic stability performance for the tested 

EDLCs in different electrolytes. 

12.9 kW kg-1 which is very promising for commercial applications. The cells in aq. KOH and aq. 

Li2SO4 electrolyte retained the energy density of 3.8 and 5.6 Wh kg-1 at a high-power density of 

4.8 and 7.7 kW kg-1. 

The long-term stability of these full cells was also accomplished by performing GC-GD tests at 

3 A g-1 for 5000 cycles. From the resultant cycling stability plots in Figure 3.6.d, it can be 

observed that all the EDLCs was achieved excellent capacitance retention of 99, 97, and 96 % of 

its initial capacitance, which is really impressive. 
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3.5. Conclusion 

In summary, sol-gel derived porous carbon spheres using FeCl3 as a catalyst were tested as 

electrode material for an electric double layer capacitor. Three different electrolytes based on 

ionic size dissimilarity in cations and anions were used in this study. In aqueous 6M KOH 

electrolyte, the negative electrode was found to deliver more capacitance compared to the 

negative electrode due to the smaller size of cation, whereas it is completely opposite in case of 

organic TEABF4/acetonitrile electrolyte. On the other hand, aqueous Li2SO4 electrolyte showed 

similar charge storage performance on both electrodes. Due to high ionic conductivity and 

additional pseudocapacitive contribution, the KOH electrolyte was found to deliver the highest 

specific capacitance of 168 F g-1 at 0.1 A g-1 for the porous carbon sphere electrode. Both KOH 

and TEABF4/acetonitrile showed excellent rate performance of 73 % at 10 A g-1, closely 

followed by the Li2SO4 electrolyte. In overall, the porous carbon spheres showed maximum 

energy and power density of 28.4 Wh kg-1 and 12.9 kW kg-1, respectively.  These results along 

with the simplicity and scalability of the synthesis process make this synthesized porous carbon 

spheres a potential candidate for commercial exploration. 

 

 

  



                                                                                                                                    Chapter 3 

____________________________________________________________________________ 
 

89 
 

Bibliography 

1.  Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E., Carbons and electrolytes for advanced 

supercapacitors. Advanced materials 2014, 26, 2219-2251. 

2.  Miller, J. R., Engineering electrochemical capacitor applications. Journal of Power Sources 

2016, 326, 726-735. 

3.  González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on supercapacitors: 

technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206. 

4.  Miller, J. R.; Burke, A. F., Electrochemical capacitors: Challenges and opportunities for real-

world applications. Electrochemical Society Interface 2008, 17, 53-57. 

5.  Pandolfo, A. G.; Hollenkamp, A. F., Carbon properties and their role in supercapacitors. 

Journal of Power Sources 2006, 157, 11-27. 

6.  Wang, L.; Hu, X., Recent advances in porous carbon materials for electrochemical energy 

storage. Chemistry–An Asian Journal 2018, 13, 1518-1529. 

7.  Al‐Muhtaseb, S. A.; Ritter, J. A., Preparation and properties of resorcinol–formaldehyde 

organic and carbon gels. Advanced materials 2003, 15, 101-114. 

8.  Hasegawa, G.; Kanamori, K.; Nakanishi, K., Facile preparation of macroporous graphitized 

carbon monoliths from iron-containing resorcinol–formaldehyde gels. Materials Letters 2012, 

76, 1-4. 

9.  Calvo, E. G.; Ania, C. O.; Zubizarreta, L.; Menéndez, J.; Arenillas, A., Exploring new routes 

in the synthesis of carbon xerogels for their application in electric double-layer capacitors. Energy 

& fuels 2010, 24, 3334-3339. 

10.  Xu, Y.; Wang, S.; Yan, M.; Zhang, L.; Zhai, Z.; Liu, Z., Synthesis of carbon aerogels based 

on resorcinol–formaldehyde/hydroxyethyl cellulose/carbon fiber and its electrochemical 

properties. Journal of Porous Materials 2018, 25, 1505-1511. 

11.  Kakunuri, M.; Sharma, C. S., Resorcinol-formaldehyde derived carbon xerogels: A 

promising anode material for lithium-ion battery. Journal of Materials Research 2018, 33, 1074. 

12.  Despetis, F.; Barral, K.; Kocon, L.; Phalippou, J., Effect of aging on mechanical properties 

of resorcinol-formaldehyde gels. Journal of Sol-Gel Science and Technology 2000, 19, 829-831. 

13.  Saliger, R.; Bock, V.; Petricevic, R.; Tillotson, T.; Geis, S.; Fricke, J., Carbon aerogels from 

dilute catalysis of resorcinol with formaldehyde. Journal of non-crystalline solids 1997, 221, 

144-150. 

14.  Zhu, Y.; Hu, H.; Li, W.; Zhang, X., Resorcinol-formaldehyde based porous carbon as an 

electrode material for supercapacitors. Carbon 2007, 45, 160-165. 



EDLC (different electrolyte study)                                                                                                   

_________________________________________________________________________ 

90 

 

15.  Maldonado-Hódar, F.; Ferro-Garcıa, M.; Rivera-Utrilla, J.; Moreno-Castilla, C., Synthesis 

and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and 

their carbonized derivatives. Carbon 1999, 37, 1199-1205. 

16.  Berthon, S.; Barbieri, O.; Ehrburger-Dolle, F.; Geissler, E.; Achard, P.; Bley, F.; Hecht, A.-

M.; Livet, F.; Pajonk, G. M.; Pinto, N., DLS and SAXS investigations of organic gels and 

aerogels. Journal of non-crystalline solids 2001, 285, 154-161. 

17.  Kiciński, W.; Szala, M.; Nita, M., Structurally tailored carbon xerogels produced through a 

sol–gel process in a water–methanol–inorganic salt solution. Journal of sol-gel science and 

technology 2011, 58, 102-113. 

18.  Maldonado-Hódar, F.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y., 

Catalytic graphitization of carbon aerogels by transition metals. Langmuir 2000, 16, 4367-4373. 

19.  Xu, Z.; Zhou, Y.; Sun, Z.; Zhang, D.; Huang, Y.; Gu, S.; Chen, W., Understanding reactions 

and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of 

magnetic activated carbon. Chemosphere 2020, 241, 125120. 

20.  Yang, J.; Zhao, Y.; Ma, S.; Zhu, B.; Zhang, J.; Zheng, C., Mercury removal by magnetic 

biochar derived from simultaneous activation and magnetization of sawdust. Environmental 

science & technology 2016, 50, 12040-12047. 

21.  Boudou, J.; Bégin, D.; Alain, E.; Furdin, G.; Marêché, J.; Albiniak, A., Effects of FeCl3 

(intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel 1998, 77, 601-606. 

22.  Oliveira, L. C.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, 

K., Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating 

agents. Journal of hazardous materials 2009, 165, 87-94. 

23.  Zazo, J.; Bedia, J.; Fierro, C.; Pliego, G.; Casas, J.; Rodriguez, J., Highly stable Fe on 

activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. 

Catalysis today 2012, 187, 115-121. 

24.  Rastegar, H.; Bavand-Vandchali, M.; Nemati, A.; Golestani-Fard, F., Catalytic graphitization 

behavior of phenolic resins by addition of in situ formed nano-Fe particles. Physica E: Low-

dimensional Systems and Nanostructures 2018, 101, 50-61. 

25.  Thompson, E.; Danks, A.; Bourgeois, L.; Schnepp, Z., Iron-catalyzed graphitization of 

biomass. Green Chemistry 2015, 17, 551-556. 

26.  Ōya, A.; Ōtani, S., Catalytic graphitization of carbons by various metals. Carbon 1979, 17, 

131-137. 

27.  Carriazo, D.; Gutiérrez, M. C.; Jiménez, R.; Ferrer, M. L.; del Monte, F., Deep‐Eutectic‐

Assisted Synthesis of Bimodal Porous Carbon Monoliths with High Electrical Conductivities. 

Particle & Particle Systems Characterization 2013, 30, 316-320. 

28.  Zhong, C.; Deng, Y.; Hu, W.; Sun, D.; Han, X.; Qiao, J.; Zhang, J., Electrolytes for 

electrochemical supercapacitors. CRC press: 2016. 



                                                                                                                                    Chapter 3 

____________________________________________________________________________ 
 

91 
 

29.  Chen, Z.; Wang, X.; Ding, Z.; Wei, Q.; Wang, Z.; Yang, X.; Qiu, J., Biomass‐based 

Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on 

the Electrochemical Performance. ChemSusChem 2019, 12, 5099-5110. 

30.  Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I., Performance of carbon–carbon 

supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power 

Sources 2010, 195, 5814-5819. 

31.  Balducci, A., Electrolytes for high voltage electrochemical double layer capacitors: A 

perspective article. Journal of Power Sources 2016, 326, 534-540. 

32.  Béguin, F.; Frackowiak, E., Supercapacitors: materials, systems, and applications. John 

Wiley & Sons: 2013. 

33.  Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the 

determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 

1985, 57, 603-619. 

34.  Chen, H.; Zhou, M.; Wang, Z.; Zhao, S.; Guan, S., Rich nitrogen-doped ordered mesoporous 

phenolic resin-based carbon for supercapacitors. Electrochimica Acta 2014, 148, 187-194. 

35.  Przepiórski, J.; Tryba, B.; Morawski, A. W., Adsorption of carbon dioxide on phenolic resin-

based carbon spheres. Applied surface science 2002, 196, 296-300. 

36.  Wang, M.-X.; Huang, Z.-H.; Kang, F.; Liang, K., Porous carbon nanofibers with narrow pore 

size distribution from electrospun phenolic resins. Materials Letters 2011, 65, 1875-1877. 

37.  Lenghaus, K.; Qiao, G. G.; Solomon, D. H.; Gomez, C.; Rodriguez-Reinoso, F.; Sepulveda-

Escribano, A., Controlling carbon microporosity: the structure of carbons obtained from different 

phenolic resin precursors. Carbon 2002, 40, 743-749. 

38.  Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J., Controllable synthesis 

of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for 

efficient removal of organic pollutants: an overlooked influence. Carbon 2016, 99, 338-347. 

39.  Ahmed, M. J.; Theydan, S. K., Adsorptive removal of p-nitrophenol on microporous 

activated carbon by FeCl3 activation: equilibrium and kinetics studies. Desalination and Water 

Treatment 2015, 55, 522-531. 

40.  Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J., A review of electrolyte materials 

and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015, 44, 7484-

7539. 

41.  Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R., Electrolyte selection for 

supercapacitive devices: a critical review. Nanoscale Advances 2019, 1, 3807-3835. 

42.  Karthik, M.; Redondo, E.; Goikolea, E.; Roddatis, V.; Doppiu, S.; Mysyk, R., Effect of 

mesopore ordering in otherwise similar micro/mesoporous carbons on the high-rate performance 



EDLC (different electrolyte study)                                                                                                   

_________________________________________________________________________ 

92 

 

of electric double-layer capacitors. The Journal of Physical Chemistry C 2014, 118, 27715-

27720. 

43.  Garcia-Gomez, A.; Barranco, V.; Moreno-Fernandez, G.; Ibañez, J.; Centeno, T.; Rojo, J., 
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Optimization of aqueous asymmetric supercapacitors by using 

nickel cobalt oxide and superactivated polymer-derived carbon 

as electrode materials 
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We investigated the performance of an aqueous asymmetric supercapacitor (AAS) assembled by 

using novel nanostructured NiCo2O4 as the positive electrode and a polymer derived 

superactivated carbon (SAC) as the negative electrode. The combination of both the 

nanostructured NiCo2O4 and the carbon with hierarchical porosity and ultrahigh specific surface 

area (above 3000 m2g-1) led to excellent rate performances and long stability of the system. The 

optimization of the AAS device is further achieved through the variation of mass ratio between 

positive and negative electrodes. The optimized AAS full cell exhibits reversibility within the    

0.0-1.5 V operative voltage region, delivering a specific cell capacity of 24.6 mAh g-1 1 at a 

current density of 1 A g-1. This results in a remarkable energy density of 13 Wh kg-1 at a power 

density of 26.2 kW kg-1 and an excellent cycling durability above 87% of the initial capacity after 

10,000 charge–discharge cycles. 
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4.1. Introduction 

Aqueous electrolytes-based supercapacitor have always higher ionic conductivity, are non-

flammable, cheaper and are more environmental friendly than those ones operating with organic 

electrolytes.[1, 2] In contrast, the utilization of aqueous electrolyte in symmetric supercapacitors 

tends to show much lower energy density due to their narrow electrochemical stability window. 

Therefore, it is a tremendous challenge to improve the energy density of aqueous electrochemical 

capacitor without compromising its environmental benignity, cost and power density. On this 

note, aqueous asymmetric supercapacitor (AAS) combining a battery-type positive and an EDLC 

type negative electrode has allured widespread attention in the energy storage field to become an 

inexpensive alternative or supplement to LIBs in many applications.[2]  

Activated carbons are traditionally chosen as negative electrodes for AAS because of their high 

specific surface area, chemical stability, good conductivity and low cost.[3-4] Other nanostructured 

carbons such as stacked graphene films, graphene oxides or carbon nanotubes have been also 

postulated as promising candidates for the negative electrode.[5-6] For the positive electrode, 

various faradaic-type materials including mono or multi-metallic transition compounds and 

conductive polymers are mostly investigated due to their excellent charge storage capability by 

reversible redox reactions.[5,7,8-14] Among the various transition metal oxides, a binary metal 

oxide, NixCo(3-x)O4, has been discovered to hold tremendous promise due to its excellent 

theoretical capacity (over 2000 F g-1 in terms of capacitance) along with high electronic 

conductivity facilitating high rate performance compared to its monometallic counterparts.[15-17] 

Moreover, nano-sized positive electrode materials  are highly desired, since in this case, redox 

active functional groups concentration is maximized and its accessibility is improved, leading to 

better rate performances and reversibility.[18-24]  

Regarding activated carbons, the large concentration of ultramicropores (pore size <0.7 nm) and 

tortuous microporosity, inherent to the activation processes of preformatted rigid precursors using 

steam, CO2, KOH or NaOH ,[25] strongly decrease their performance at high current rates, 

resulting in a failing balance of the high capacity exhibited by the positive electrodes.[7,10] In this 

context, we have synthesized a novel and straightforward synthetic process to easily obtain a very 

high surface area carbon by the simultaneous polymerization, carbonization and chemical 
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activation of a mixture of melamine and terephthalaldehyde with KOH (activating agent). These 

super-activated carbons showed an excellent performance when tested as active electrode 

material in symmetric EDLCs in different aqueous electrolytes.[26] The combination of high 

specific surface area and its hierarchical structure of pores at the meso and microscale favors the 

ion transport making of it an excellent candidate to be used as carbonaceous material for high 

power asymmetric energy storage devices.  

Apart from the characteristic properties of individual electrode materials, the mass-balance 

between positive and negative electrodes is an important parameter to investigate during testing 

of the electrochemical performance of advanced hybrid supercapacitors. Mass balance of the 

negative and positive electrode allows to control the potential span of each electrode in an 

asymmetric cell and is thus the key to achieve a high energy density with high cycle life without 

compromising the power density.  

The research study presented in this chapter, was designed a robust AAS cell and studied the role 

of electrode mass-balance on the electrochemical performance. In this system, we are using our 

lab synthesized a high surface area porous carbon (SAC) as the negative electrode and NiCo2O4 

nano-thorns assembled into floral-like spheres as the positive electrode.  

4.2. Material synthesis 

The super-activated carbon (hereafter denoted as SAC) was synthesized as previously described 

elsewhere.[26] Briefly, 1.24 g of melamine, 1.36 g of terephthalaldehyde and 5.0 g of KOH were 

finely ground in an agate mortar and then directly heated in the furnace at 250 °C for 3 h and then 

at 800 °C for 1 h with a heating ramp of 1°C min-1 in Ar atmosphere. The carbonized material 

was washed several times with 3 M HCl and DI water, then dried at 120 °C in an oven.  

NiCo2O4 was synthesized in the following way: 0.126 g of Ni (NO3)2.6H2O, 0.251 g of 

Co(NO3)2.6H2O and 0.462 g of urea were mixed under continuous stirring for 30 min in 10 mL 

of DI water. Then, the clear solution was poured in a Teflon-lined autoclave and kept in oven for 

180 °C for 2 h. The purple precipitates were collected by centrifugation and washed with ethanol 

and DI water several times. After drying at 60 °C for 6 h, the samples were calcined in air at       

300 °C for 3 h. 
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4.3. Physicochemical characterization 

The structure and morphology of the NiCo2O4 was studied by scanning electron microscopy 

(SEM). Figure 4.1.a clearly shows that the material is composed of dendritic microspheres 

formed by the assembly of NiCo2O4 nanothorns, where it is prominent that the hollow core 

morphology of these floral spheres wall is a tightly packed bundle of nanothorn-like crystalline 

sheets of NiCo2O4. These types of self-assembled hierarchical structures are generally obtained 

by hydro/solvothermal synthesis where urea plays the role of both the self-template organizer and 

the precipitator.  

 

Figure 4.1. (a) SEM image (inset: higher magnification SEM image of the sphere surface), (b) 

& (c) TEM image showing the assembly of small crystalline nanoparticles into nano-thorn (inset: 

high magnification TEM image) and (d) EDX spectra recorded for this NiCo2O4 material. 
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Meanwhile, in Figure 4.1.b and c, transmission electron microscopy (TEM) images reveal that 

the thorn bundles are decorated with a stone-pillar-like array with well-defined porous structures, 

which may help the electrolyte ions accessing the surface. The inset of Figure 4.1.c indicates the 

well-distinct polycrystallinity of each grain with the spacing between the adjacent fringes of 

~0.273 nm, which is in agreement to the theoretical (111) interplane distance within the NiCo2O4 

spinel phase. According to Energy dispersive X-ray (EDX) analysis (Figure 4.1.d), the atomic 

ratio between Ni and Co is similar to the ratio used in the pristine solution media. 

The X-ray diffraction (XRD) pattern registered for the synthesized nickel cobalt oxide is depicted 

in Figure 4.2.a. As it can be observed, the pattern shows well-defined diffraction peaks at 18.9°, 

30.9°, 36.6°, 44.6°, 55.4°, 59.0° and 64.8°, which can be assigned to the (111), (200), (311), 

(400), (422), (511) and (440) lattice planes indexed for the crystalline NiCo2O4 according to the 

standard JCPDS file no. 73-1702. It is worth noting that only these peaks are observed, discarding 

the presence of other crystalline impurity phases in the sample. Besides, these XRD findings are 

in good agreement with the above mentioned EDX analysis i.e. the formation of crystalline 

NiCo2O4 spinel phase. To get more information on the textural properties of this sample, the 

oxide was investigated by nitrogen gas adsorption-desorption technique.  

 

Figure 4.2. (a) XRD profile and (b) Nitrogen adsorption desorption isotherms (inset: pore size 

distribution curve) of NiCo2O4. 

The isotherm registered for the NiCo2O4, shown in Figure 4.2.b, exhibits a profile in between 

type II and type IV according to the IUPAC classification, [27] with a small hysteresis loop (H3) 
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in the relative pressure region between 0.4 and 1.0. These isotherms are characteristic of 

mesoporous materials containing slit-shaped pores. It is worth to highlight the quite large BET 

specific surface area calculated for this mixed metal oxide that reached 255 m2g-1. The pore size 

distribution calculated from the adsorption branch through the Barrett-Joyner-Halenda (BJH) 

approach shows a bimodal distribution with two pore systems centered at ~4.0 nm and ~22 nm, 

which correspond to the interparticle voids between primary crystalline particles within the thorns 

and to the pores between adjacent thorns in the NiCo2O4 flowers, respectively, giving rise to a 

total pore volume of 0.56 cm3g-1.  

 

Figure 4.3. (a) Nitrogen adsorption desorption isotherms (inset: pore size distribution curve), (b) 

SEM image and (c) TEM image registered for the SAC, (d) XRD pattern (inset: Raman 

spectrum). 
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The nitrogen adsorption-desorption isotherm registered for the SAC is shown in Figure 4.3.a. 

This isotherm shows a profile between type I and II with a H4-type hysteresis loop according to 

the IUPAC classification.[27] The adsorption at high relative pressures indicates the presence of 

medium size or large mesopores in SAC.  

The BET specific surface area and pore volume of SAC are calculated to be 3071 m2g-1 and        

2.8 cm3g-1, respectively. The inset of Figure 4.3.a depicts the pore size distribution curve of this 

carbon, which clearly shows that SAC comprises a bimodal distribution of micro-mesopores with 

pores of 1–3 nm combined with mesopores ranging from 4.5 to 8 nm.   

A more detailed structural characterization of this carbon was performed by SEM and TEM 

analysis. The SEM image (Figure 4.3.b) illustrates the rough surface of the carbon showing 

irregular-shaped carbon particles of approximately ~50 nm. The inter-particle voids in carbon can 

be the reason for the high content of mesopores in this material (1.8 cm3g-1), which overall 

endows the SAC with a good amount of hierarchical porosity at different pore lengths. On the 

other hand, the high magnification TEM image (Figure 4.3.c) shows the presence of maggot-like 

shaped nanopores randomly distributed along the sample.  

The XRD pattern of the SAC in Figure 4.3.d shows a smooth profile without the presence of any 

significant diffraction peak, which is characteristic of the highly porous amorphous carbons. The 

Raman spectrum registered for the SAC (inset of Figure 4.3.d) shows a typical profile of 

amorphous carbons; two predominant bands at nearly 1350 cm-1 and 1580 cm-1, which 

correspond to the D and G bands respectively, are observed together with a broad and low intense 

peak recorded at 2700 cm-1 which is ascribed to the G stretching mode.  

The D band is generally activated by surface defects and it is used to measure the degree of 

disorder within the carbon materials whereas G band results from the bond stretching vibration 

of sp2 carbon pairs.[26,28] Furthermore, the presence of the G band in carbon-based materials 

indicates the perfection of hexagonal symmetry which leads to the formation of a partially 

graphitic structure. The obtained spectrum supports the amorphous nature characteristic of carbon 

walls, which contains a large number of defects and pores, which is in good agreement with the 

XRD measurement. 
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4.4. Electrochemical characterization 

4.4.1. Electrode processing and cell assembly 

Electrochemical performance of NiCo2O4 was first assessed in a conventional three-electrode 

configuration using a 6M KOH aqueous solution as electrolyte. The electrodes were prepared by 

mixing 60 wt% of NiCo2O4 with 30 wt% of carbon black (CB) and 10 wt% of 

polytetrafluorethylene (PTFE) in the presence of a few drops of ethanol. The dough was kneaded 

continuously until reaching plasticity, uniformly rolled until a thickness of nearly 40 µm, punched 

out into disk shaped (12 mm in diameter) and finally dried at 120oC overnight.  

Working electrodes were prepared by compressing these disk-shaped electrodes (~2.12 mg cm-

2) onto a 2 mm thick Nickel foam (99.8% pure, MTI Corp.) that served as current collector. A Pt 

coiled wire and a Hg/HgO (saturated in 1M NaOH) electrode were used as counter and reference 

electrodes, respectively. The counter electrode was cleaned prior the measurements with acidic 

piranha solution to remove any surface impurities. 

Symmetric SAC//SAC supercapacitors were built using a two-electrode configuration and 

electrodes with similar masses (~2.3 mg cm-2) were assembled into SwagelokTM-type cells. The 

disk-shaped electrodes with ~130 µm thickness were prepared following the above-mentioned 

process by mixing 90 wt% of the SAC with 5 wt% of CB and 5 wt% of PTFE. A porous glass 

fiber (Whatman GFB) membrane was used as a separator between them and stainless-steel rods 

as current collectors. The electrodes and the separator were wetted with a few drops of 6M KOH 

aqueous electrolyte.  

Asymmetric cells of Ni-Co-oxide//SAC were built using four different mass ratios of positive 

and negative electrodes, i.e. 1:1, 1:2, 1:3 and 1:4, respectively in SwagelokTM-type two-electrode 

cells. Porous glass fiber was used as separator, stainless steel current collectors, and 6M KOH as 

an electrolyte.  

4.4.2. Electrochemical performance of the positive electrode (NiCo2O4) 

The electrochemical activity of the synthesized nanostructured NiCo2O4 was firstly investigated 

in a three-electrode configuration using 6M KOH aqueous solution as the electrolyte.  
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Figure 4.4. (a) CV curve registered at 5 mV s-1 and (b) at higher sweep rates (10-100 mV s-1) for 

the NiCo2O4. (c) Galvanostatic discharge curves recorded at indicated current densities                 

(1-20 A g-1) and (d) Capacity evolution vs. Current for the NiCo2O4. 

Figure 4.4.a displays the CV curve registered for the working electrode containing NiCo2O4 at a 

sweep rate of 5 mV s-1 in the potential range between 0 V and 0.6 V vs. Hg/HgO. A pair of well-

defined cathodic and anodic peaks are observed at ca. 0.38 V and 0.27 V.[29] Another pair of 

small yet distinguishable redox peaks can also be observed around 0.44 V and 0.36 V vs. 

Hg/HgO. All these peaks can be ascribed to the reversible transitions between the oxidation states 

Co3+/Co4+ and Ni2+/Ni3+ accompanying with the hydroxyl ion in the alkaline electrolyte as given 

in Eq. 1 and 2.[29-31] 

                        NiCo2𝑂4 + OH− + 𝐻2𝑂 ↔ NiOOH + 2CoOOH + 2e−      1 

                                    CoOOH + OH− ↔ CoO2+ H2O + e−     2 
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With increasing the scan rate, the oxidation peaks of the CV curve shift towards more positive 

potentials while the reduction peaks shift more negative direction (Figure 4.4.b), indicating some 

uncompensated resistance in the cell, most likely the slow redox kinetics as previously reported 

elsewhere.[30]  

Figure 4.4.c displays the galvanostatic discharge curves of NiCo2O4 floral spheres at different 

current densities from 1 to 20 A g-1 in the potential range of 0.0−0.50 V. The non-linear 

characteristic of the discharge curves prove that this material has battery-like faradaic charge 

storage behavior rather than pseudocapacitive.  

Nevertheless, the cell exhibited a specific capacity of 37 mAh g-1 at a discharge rate of 1 A g-1 

and excellent capacity retention of ~66% at the high current density of 20 A g-1 (Figure 4.4.d). 

The results suggest that the porous architecture of this binary metal oxide electrode is ideally 

suited as a positive electrode material for fast and efficient AAS. 

4.4.3. Electrochemical performance of the negative electrode (SAC) 

The electrochemical performance of SAC electrodes was tested in two-electrode configuration 

using 6M KOH aqueous solution as the electrolyte. Figure 4.5.a shows the CV profiles at various 

scan rates ranging from 5 to 100 mV s-1 between 0 and 1.0 V. All of the CV curves show large 

areas with near rectangular-like shapes, which is a characteristic feature for an ideal EDLC 

behaviour with good dynamic charge propagation.[26]  

A sharp change in capacitive current transient upon altering the polarization direction near 

voltage limits (0.0 and 1.0 V) signifies a very low internal resistance of the cell. This can be 

attributed to the presence of a high amount of medium or large-sized mesopores and the high 

electrical conductivity of the SAC-based electrode. The SAC comprises bimodal micro-meso 

porosity which promotes an unrestricted access of electrolyte ions to the available active surface. 

This highly porous carbon framework helps absorbing more electrolyte ions on the active 

electrode surface and also ensures the efficacy of double layer capacitance.[28] 

Galvanostatic charge-discharge (CD) curves were registered for SAC at various current densities 

between the 0.0 and 1.0 V voltage range are included in figure 4.5.b. 
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Figure 4.5. (a) CV curves registered at indicated sweep rates, (b) charge-discharge curve at 

labeled current densities, inset shows a magnified view of the 0.8-1.0 V region, and (c) specific 

capacitance evolution of SAC sample at different current rates. 

It is worth noticing that this material exhibits a triangular CD profile with almost 100% of 

coulombic efficiency (i.e. charge time = discharge time) and the very low ohmic drop associated 

to each cycle even at very high current rates (see the inset in figure 4.5.b).  

The specific capacitace value calculated for this sample at 1 A g-1  correspond to 250 F g-1, and it 

shows an excellent capacitance retention up to 220 F g-1 at a high current density of 30 A g-1. The 

excellent rate capability exhibited by this carbon, as evidenced by the high capacitance retention 

of ~88% of its initial value at 30 A g-1  as (Figure 4.5.c) support the use of the SAC carbon as 

attractive candidate to be used as negative electrode for AAS system.  
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4.4.4. Electrochemical performance of the NiCo2O4//SAC asymmetric supercapacitor  

AAS full cells were fabricated by assembling nanostructured NiCo2O4 and SAC as positive vs. 

negative electrodes, respectively, and using a 6M KOH aqueous solution as the electrolyte. To 

evaluate and optimize the electrochemical performance of the AAS cells, four different mass 

ratios i.e., 1:1, 1:2, 1:3 and 1:4 of positive vs. negative electrodes respectively were investigated 

by changing only the negative electrode mass with respect to a fixed positive electrode mass 

(Figure 4.6.). It was observed that increasing the mass of the negative electrode has a noticeable 

impact on the overall performance of the asymmetric cells.  

 

Figure 4.6. (a) Comparative CV profiles at low potential scan rate of 5 mV s-1 and (b) high scan 

rate of 100 mV s-1, (c) Comparative discharge curve at current density of 1 A g-1 and (d) rate 

capability of AAS device [NiCo2O4//SAC]. 

Figure 4.6.a and b show CV curves registered for the AAS cells assembled using different 

electrode mass ratios at low and high scan rates of 5 and 100 mV s-1 in the 0.0-1.5 V potential 
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range. All of the AAS cells exhibit a combinative CV geometry consisting of both faradaic and 

EDLC type contribution. Some prominent redox peaks can be observed in the voltage range of 

0.8 to 1.5 V resulting from faradaic charge storage in the positive electrode, whereas the potential 

below 0.8 is mostly non-faradaic in nature. No oxygen evolution was observed until the operating 

voltage of 1.5 V, which is estimated to be the appropriate operating potential for an AAS device. 

As can be observed, the charging and discharging current densities gradually increase as the 

sweep rate is increased indicating the fast-kinetic reversibility of this AAS system.[32]  

The specific capacity and rate capability of these AAS cells was determined by means of 

galvanostatic charge-discharge tests at different current rates within the 0.0-1.5 V voltage range. 

Figure 4.6.c shows the comparative discharge profiles corresponding to the AAS cells with 

different mass ratios registered at 1 A g-1. As can be clearly observed, all of them exhibit a non-

linear potential vs. time profile, which indicates the contribution of faradaic battery-type storage 

mechanisms. 

Figure 4.6.d shows the variation of the calculated specific cell capacities of the AAS cells for 

different current densities up to 30 A g-1. The capacity retention at high current rates of all the 

AAS cells, except for the 1:1 ratio, are found to be high, which could be ascribed to the 

praiseworthy contribution from SAC by generating fast electron conduction path as well as a 

good stability. We found that there is a significant enhancement of electrochemical capacity with 

the increase in mass of the negative electrode compared to the positive but with a limitation up 

to certain level.  

The best specific capacity was obtained for the 1:2 ratio, reaching specific capacity values of  

24.6 mAh g-1 at 1 A g-1 and 15 mAh g-1 at 30 A g-1, while no enhancement was observed with 

further increase in the negative electrode mass. This can be explained because the necessary 

charge was already stabilized by the negative electrode in 1:2 ratio AAS cell, which is sufficient 

enough to utilize the full capacity of the positive electrode.  

We can relate this with the principle of charge balance (Q+ = Q-) from individual performance of 

NiCo2O4 and SAC electrodes. Further increase in the mass of the negative electrode (up to four 

times that of the positive electrode), become ineffective to increase the cell capacity. Although 

the electrochemical behaviour as well as capacitive performances of 1:3 and 1:4 ratio AAS cells 
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are not hugely different from that of the best performed 1:2 ratio, but when it comes to 1:1 ratio, 

the capacity performance is quite low compared to others and the corresponding results are given 

in table 4.1.  

Table 4.1. Comparative electrochemical parameters calculated for the different AAS devices 

 

This clearly indicates that a sufficient mass of the negative electrode was not available in this cell 

to balance charge storage capacity of the positive electrode. It is evident that the charge balance 

approach is playing an important role in full cell asymmetric device. This difference in 

performance is also manifest from the equivalent series resistance (ESR) vs current density plots 

of the AAS cells where the 1:1 ratio shows a much higher ESR compared to negligible values of 

the other cells (Figure 4.7.a).  

Moreover, figure 4.7.b represents the Ragone plots of the corresponding energy vs power 

densities for all of the AAS cells. The cell with 1:2 ratio has achieved a high energy density of 

24.3 Wh kg-1 at a power density of 1.0 kW kg-1 (current density of 1 A g-1). Furthermore, this cell 

still retains 13 Wh kg-1 energy density value at high power density of 26.2 kW kg-1, which is very 

promising towards the development of high energy aqueous supercapacitors.  

From all these GC-GD results, it was found that the 1:2 AAS cell shows the best performance in 

terms of both specific capacity and rate capability. So, this 1:2 AAS cell is selected to investigate 

the long-term stability by performing GC-CD cycles at 5 A g-1 current density. From the resultant 

cyclic stability plot in Figure 4.7.c, it can be observed that the specific cell capacity increases 

steadily at the initial ~200 cycles. 

AAS device electrode name 

(Positive//Negative) 

[NiCo2O4//SAC] 

Capacity,  

QD  

(mAh g-1) 

Coulombic 

efficiency  

(ηt) 

ED (Wh kg-1)[a] & PD (kW kg-1)[b] at Current Densities 

 1 A g-1 10 A g-1 20 A g-1 30 A g-1 

1:1 12.9 71.5 
ED 12.0 7.5 3.6 0.5 

PD 0.8 5.0 7.4 16.7 

1:2 24.6 88.1 
ED 24.3 20.7 18.4 13 

PD 1.0 5.1 10.0 26.2 

1: 3 17.3 87.1 
ED 17.3 13.7 11.2 5.1 

PD 1.0 5.5 10.1 18.4 

1: 4 13.9 85.3 
ED 13.8 10.1 8.05 3.5 

PD 1.0 5.2 9.85 20.5 

[a] ED: Energy density. [b] PD: Power density 
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Figure 4.7. (a) Plots of cumulative ESR values, (b) comparative Ragone plots, (c) cycling 

stability and (d) Stability tests performed under floating conditions for the optimized AAS using 

positive: negative 1:2 ratio and (inset GC-GD registered at indicated times during the floating 

tests. of 1:2 AAS device [NiCo2O4//SAC] measured at 5 A g-1. 

This slight activation process could be ascribed to the gradual penetration of the electrolyte into 

the active material surface.[33-34] Subsequently, after reaching the maximum capacity at around 

200 cycles, it stabilizes up to 1000 cycles and then it decreased slowly. After 10,000 cycles of 

charge-discharge, this AAS cell still delivered about 87% of its initial capacity, which is an 

outstanding cycling performance compared to the reported results in similar AAS systems.[30,32]  

Such high stability can be attributed to its unique material morphology, which can resist the 

volume changes in the active electrode in presence of electrolyte insertion/extraction process.[32-

37]  
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Additional stability tests were performed under floating potential (Figure 4.7.d). This procedure 

can be considered a more realistic evaluation for cells and further confirms the outstanding 

stability of this optimized AAS even under this harsh cycling conditions. We have also compared 

our best AAS results with commercially available Norit carbon by maintaining same mass 

balance and found that SAC carbon shows better performance than Norit carbon, which predicts 

our lab synthesized SAC carbon has much more potential to give excellent stability ( figure 4.8.a-

d and table 4.2). Commercially available Norit activated carbons has the surface area of         

~1000 m2 g-1 with high inner porosity and as a consequence, a large interior surface. In 

comparison with SAC, norit as a negative electrode is not capable to balance sufficient charge 

storage in this particular AAS system.  

 

Figure 4.8. (a) CV curves registered at 5 mV s-1, (b) GC-GD recorded at current density 1 A g-1, 

(c) cell specific capacity evolution, and (d) Nyquist plot for the 1:2 AAS device [NiCo2O4//SAC] 

(Red) and other AAS [NiCo2O4//Norit] assembled using commercially available activated carbon 

(purple).  
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This result confirms that through a judicious selection of the positive and negative electrodes and 

careful balance between their amounts we can successfully design advanced a low-cost aqueous 

hybrid supercapacitor system to compete with the commercially available counterparts. Table 

4.2. summarizes the electrochemical performance of this 1:2 ratio AAS cell, compared with other 

recently reported results in similar AAS devices. It can be observed that the present 

[NiCo2O4//SAC (1:2)] device outperform most of the previously reported AAS cells not only in 

terms of energy and power densities, but also in terms of much better cycling stability. 

Table 4.2. Summary of some representative electrochemical values reported elsewhere for 

previous Ni-Co-Oxide/hydroxide based asymmetric supercapacitor together with the results 

obtained in the present study.  

 

AAS device electrode 

name(Positive//Negative) 
Electrolyte 

AAS 
capacitance  

F g-1 at  

1 A g-1 

Cycling stability 

Retention 

ED (Wh kg-1) & PD (kW kg-1) at Current Density 

 1A g-1 10A g-1 20A g-1 30A g-1 

Ni-Co Oxide//APDC1 2M KOH 188 
89% upto 4000 

cycles at 5 A g-1 

ED 67 52 41.6 - 

PD 0.8 8.0 16 - 

NiCo2O4//AC2 2 M KOH 77.3 
108.1% upto 10000 

cycles at 3 A g-1 

ED 24.15 16.50 13.75 12.06 

PD 0.23 2.30 4.60 6.67 

NCH11/G/NF//AC3 2 M KOH 108 
84.4% upto 2000 

cycles at 4 A g-1 

ED 33.75 20.84 - - 

PD 0.75 7.5 - - 

Ni-Co-Oxide//AC*4 1 M KOH 60 
85% upto 2000 

cycles at 8 mA 

ED 12 9.5 7.4 - 

PD 0.09 0.95 1.90 - 

NiCo2O4-rGO//AC5 2 M KOH 96 
83% upto 2500 

cycles at 1 A g-1 

ED 22.5 18 10.46 - 

PD 0.66 6.60 13 - 

NiCo2O4//RGO6 6 M KOH 101.7 
93.5% upto 10000 

cycles at 5 A g-1 

ED 23.87 18.77 15.28 13.82 

PD 0.66 6.70 13.89 19.75 

C7N3//AC7 2 M KOH 82 
86.4% upto 10000 

cycles at 2 A g-1 

ED 34.92 19.94 - - 

PD 0.875 8.75 - - 

1: 2 AAS device 

[NiCo2O4//MTK] 
6 M KOH 81 

87% upto 10000 

cycles at 5 A g-1 

ED 24.312 20.68 18.45 13.00 

PD 1.015 5.06 10 26.25 

1: 2 AAS device 

[NiCo2O4//Norit] 
6 M KOH 33 - 

ED 12.00 8.5 6.4 2.08 

PD 1.05 5.09 11.5 19.08 

Ni, Co-HC//HPC8 PVA/KOH 100 
100% upto 19,000 

cycles at 2 A g-1 

ED 37 30 - - 

PD 0.8 8.5 - - 

AC= Activated Carbon, APDC= Activated polyaniline derived carbon, RGO=  reduced graphene oxide, NCH11/G/NF=Ni-Co binary 
hydroxide deposited on graphene coated Nickel foam (Ni and Co precursor molar ratio of 1:1), C7N3= Ni-Co-Oxide (Ni and Co precursor 

molar ratio of 3:7), ED: Energy Density, PD: Power density; * current density in A cm-2 
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4.5. Conclusions 

The present work shows the energy storage potential of a novel aqueous asymmetric system, 

which is formed by coupling a superactivated carbon as negative electrode and a nanostructured 

NiCo2O4 as positive electrode, and further highlights the impact of the mass balance between 

both electrodes for the optimum performance of the system. The electrochemical studies evidence 

the importance of the hierarchical structures of the active materials to maintain good capacity 

retention at high current densities. The optimization of the electrode mass balance within the 

AAS devices leads not only to both excellent energy and power densities but also to outstanding 

stability. It was found that the best positive: negative mass ratio in this particular AAS device is 

1:2 ratio, which allow delivering maximum gravimetric energy density of 24.3 Wh kg-1 at            

1.0 kW kg-1 and still showing 13 Wh kg-1 at 26.2 kW kg-1. Most importantly, this AAS device 

exhibits excellent long-term cycling stability up to 10,000 cycles with only 13% capacity decay 

which is outstanding among its peers.  
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The major challenge of hybrid metal-ion capacitor is to improve the energy-power output along 

without sacrificing the cycle life. To extract the best performance of a hybrid device, two main 

factors need to be considered, which are, electrode material excellence and device engineering. 

Besides, we can also significantly improve the overall electrochemical performance of a lithium-

ion capacitor (LIC) cell by optimizing the safe operational potential window. Herein, we 

introduce a new LIC device by assembling a polymer derived spongy hard carbon (SHC) and an 

activated carbon (PAC), as negative and positive electrodes, respectively. In this system, the 

semi-graphitic 3D like network of SHC is used for lithium intercalation (battery-type) and the 

high specific surface area of PAC for fast ions adsorption (capacitor-type), that leads a 

remarkable capacity values and very stable rate performances even at high current rates. Apart 

from the high energy-power density target, to improve the overall performance of the LIC device 

in terms of operational safety point of view, a detailed potential window variation study is also 

performed. Among the tested variations, the potential range of 1.5-4.0V was found to be the 

operationally safest with very good reversibility as well as no chances of Li plating even at a 

high current density of 10 A g-1. At such high current density, this LIC device is capable to provide 

a specific cell capacity of 25 mAh g-1 within an incredibly discharge time of only 9 seconds, which 

corresponds to an energy density of 64 Wh kg-1 at an extreme power density of 28 kW kg-1. 

Furthermore, within this operational potential range, this hybrid device exhibited an excellent 

capacity retention of 82% even after 10,000 charge-discharge cycles. 

 

 

 

 

 

 

 



                                                                                                                                   Chapter 5 

__________________________________________________________________________ 
 

119 

 

5.1. Introduction 

Most common dual carbon hybrid supercapacitors use graphite as negative electrode, which 

shows a theoretical capacity of 372 mAh g-1 according to the LiC6 stoichometry. [1-2]  However, 

graphite exhibits slow Li+ intercalation kinetics that limits the charge-discharge efficiency at high 

applied current. [3-5] On the other hand, graphitizable carbon (soft carbon) and non-graphitizable 

carbon (hard carbon) have been studied as anode material for LIBs and also for metal ion hybrid 

capacitors.[6-7] Graphene layers of soft carbons often get stacked due to their random 

orientation.[1] This turbostratic misalignment has the ability to provide better charge-discharge 

capacity at higher current rates but the capacity gradually deteriorates due to their structural 

deformations during the prolonged cycling. In contrast, HCs or non-graphitizable carbons contain 

mainly graphene layers not stacked in a parallel way like in a “house of cards” model, where 

lithium ions can intercalate in the pores an cavities formed by the carbon sheets. [8-9] Thus, HCs 

can provide not only high charge discharge capacity (~740 mAh g-1 for Li2C6) but also excellent 

cyclability. For this reason, in recent years, several research works have been focused on the 

development of different HCs to better understand their morphological effects as negative 

electrodes in both batteries and hybrid system. 

Recently, 3D porous carbons with high surface area and hierarchically interconnected pore 

architectures have shown excellent energy storage excellent energy storage capacity and rate 

capability, enabling high mass loading supercapacitor and secondary batteries.[2, 10-12] In this 

regard, nanostructured spongy porous carbons are not only interesting because Li storage can be 

maximized but also because they facilitate electron conduction in their carbon matrix through 

their porous structure, which ultimately helps to enhance electrolyte kinetics.[10, 13-14] Besides, 

during the pre-lithiation process, Li+ ion can also easily accommodate inside the porous network 

without major obstacles, which helps to sustain the extreme mechanical strain for longer 

utilization.[15] Also, from the economic and easy to scale up point of view, high surface area 

activated carbons (ACs) synthesized by a single step process from cheap carbon precursors have 

drawn the attention because of their meso-microporous structure, which is highly suitable for fast 

electrolyte diffusion.[16-17] Therefore, above mentioned materials with their preferable porous 

nature are among the most suitable choices as the negative and positive electrodes respectively 

for dual carbon hybrid LIC systems. 
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Apart from materials, cell optimization has also a great impact on the electrochemical on the 

electrochemical performance of LIC devices. Due to the difference in ion diffusion kinetics of 

HC anodes and AC cathodes, they exhibit a very different capacity retention performance when 

the current density increases. This creates a severe charge imbalance at high current rates that 

leads to Li plating on the anode, resulting in a severe capacity fading as well as an unsafe 

process.[18] 

In this chapter, we are introducing a facile synthetic route towards the 3D nanostructured spongy 

shaped hard carbon (SHC) as anode material. This SHC anode was coupled with a high surface 

area polymer derived activated carbon (PAC) cathode in a full LIC cell system. The individual 

electrochemical performance shows the excellent utilization of their corresponding porosity and 

textural properties when used as anode and cathode in a LIC cell. Besides, the performance of 

the hybrid LIC system was further improved by optimizing the cell potential window to avoid 

the lithium plating at high current densities. Through this approach, we are able to define a safe 

and very stable operative potential window, where the system can work very efficiently without 

compromising its energy and power density values along with an extended self-life for long term 

operation.  

5.2. Material synthesis 

For the synthesis of the polymeric molecular framework, first 0.081 g of Triton-X-100 was 

dispersed properly in 50 mL de-ionized (DI) water. In this mixture, 450 μL of aniline and 340 μL 

of pyrrole were added under continuous stirring until the complete dissolution was ensured and 

then this solution was kept in an ice-bath to maintain a temperature of 3-5 ºC. For the oxidative 

polymerization, already precooled (3-5 ºC) aqueous ammonium persulfate solution (0.8 g was 

dissolved in 1 mL of DI water) was added to the above solution and stirred for a few minutes. 

Then, 2 mL of phosphoric acid (85%) were added quickly and the resulting solution was cooled 

down at 4 oC for one day. Finally, the obtained very dense dark-grayish colored precipitate was 

collected and continuously washed with DI water for several times by centrifugation. This 

polymeric sediment was kept in a freeze-drier to maintain the interconnected microscopic 

structure of the polymeric frame. Finally, the product was carbonized at 800 ºC under Ar 



                                                                                                                                   Chapter 5 

__________________________________________________________________________ 
 

121 

 

atmosphere for 2 h with a heating ramp rate of 3 ºC min-1 to get the final SHC material. The 

calculated overall yield of HSC was ~40%. 

For the synthesis of the PAC, first, 1.1 g of resorcinol, 0.68 g of terephthaladehyde and 5.0 g of 

KOH were vigorously mixed in an agate mortar and then the mixture was carbonized in a tubular 

furnace. The annealing temperature was first set to 250 ºC for 3 h and then using a heating ramp 

rate of 1 oC min-1 the sample was kept at 800 ºC for 1 h under Ar atmosphere. Finally, the 

carbonized product was washed several times with 3M hydrochloric acid and DI water until the 

pH value was ~7. The final PAC material was dryed in a vacuum furnace at 120 ºC overnight. 

The calculated overall yield of PAC was ~30%. 

5.3. Physicochemical characterization 

The polymer-derived SHC was prepared by using a simple synthetic route of “molecular 

framework” strategy, involving a crosslinking polymerization of two monomers (aniline and 

pyrrole) in the presence of phosphoric acid which acts as catalyst. In this process, initially a 

combination of these two hydrophobic monomers was introduced with a surfactant (Triton X-

100) to form a polymeric micelle. In this synthesis, Triton X-100 is used to locally confine the 

polymer and restric its growing, to reduce the polymer particles sizes. A molecular cross-linked 

conjugated polymeric network was formed by an addition of an oxidizing agent (aqueous 

ammonium persulfate) and a cross-linker (phosphoric acid). During the thermal annealing 

process, the phosphate linkage (P-O-C bonds) in phosphoric acid not only helps to retain the 

volatile molecular species but also maintains the interlinked network very well.[10, 19] Thus, the 

obtained yield of SHC after the carbonization process is much higher compared to the other 

polymer-derived carbons or biomass-derived carbons without much collapsing its carbonaceous 

microstructure.  

The interconnected porous network gives this SHC a spongy shaped texture, which can be clearly 

observed from the SEM image in Figure 5.1.a. More in-depth information of this carbon 

nanostructure is further confirmed from the TEM image (Figure 5.1.b). The carbon cluster 

contains small spherical-like dispersed homogenous nanoparticles with uniform size between ~30 

to ~40 nm. There are lots of void areas left between the particles which form a 3D like 

interconnected network. This interparticle void space (~4 - 8 nm) can also be confirmed from the 



Lithium-ion hybrid capacitor (operative cell potential window variation study) 

__________________________________________________________________________  
 

122 
 

pore size distribution (PSD) profiles in the inset of Figure 5.1.c. Besides, the N2 adsorption-

desorption isotherm indicates a profile in between type I and II with H3 type hysteresis according 

to the IUPAC classification, signaling the microporous characteristics of this carbon that form 

monolayers and partial multilayers under the low to medium pressure pore-filling range.[20] Due 

to the presence of a large amount of micropores, the calculated BET specific surface area was 

found to be 440 m2 g-1 with a bimodal pore size distribution exhibiting both pores below 1 nm as 

well as mesopores with a mean pore size of 6 nm.  

 

Figure 5.1. (a) SEM image and (b) TEM image, (c) Nitrogen adsorption–desorption isotherms 

(inset: pore size distribution curve) and (d) XRD pattern (inset: Raman spectrum) of the SHC). 

The XRD pattern (Figure 5.1.d) of SHC displays the two typical broad diffraction peaks 

corresponds to (002) and (100) planes, indicates the turbostratic nature of this carbon with low 
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graphitization degree. The interlayer spacing at the (002) plane was found to be 3.30 Å, which is 

very close to that of graphite (3.34 Å). From the Scherrer equation, the thickness of the graphitic 

domain size was calculated to be 7.7 Å, suggesting that they are formed by 2 to 3 stacked layers 

of graphene. The Raman spectrum (inset of Figure 5.1.d) illustrates two distinctive peaks at nearly 

1356 cm-1 and 1583 cm-1, which correspond to the D-band (defects in the carbon lattice) and G-

band (stretching vibration in C-C bonds), respectively. The integrated ratio of D and G bands in 

the structure is often widely used to reveal the level of the defect quantity in graphitic materials. 

The integrated area of ID/IG was found to be 0.86, confirming that this carbonaceous material has 

a low graphitization degree.[21-22] Moreover, another pair of broad peaks can be distinguishable 

in the region of 2500-3200 cm-1 corresponding to 2D and D+G bands, which appear due to the 

lattice disordered induced band of this material. 

Figure 5.2. (a) SEM image, (b) TEM image, (c) N2 adsorption-desorption isotherms (inset: 

pore size distribution curve) and (d) Raman spectrum registered for the PAC. 
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Figure 5.2.a represents the SEM image of the PAC. According to the micro-images the material 

is formed by non porous large particles that contain some voids, which are formed as consequence 

of the gas evolution during the resin condensation process. A closer evaluation of the material's 

texture is done by transmission electron micrsocopy. High resolution TEM image (Figure 5.2.b.) 

show the presence of graphene layers and worm-type micropores randomly distributed on the 

surface that are produced by the in-situ chemical activation of the material. The formation of this 

microporous structure can also be confirmed from the N2 adsorption-desorption isotherm (Figure 

5.2.c), indicating this carbon has type I isotherm.[20] The BET specific surface area and the pore 

volume was found to be 2090 m2 g-1 and 1.32 cm3g-1, respectively. The PSD profile (inset of 

Figure 5.2.c) indicates the material exhibits a combination of meso- and microporosity. 

This hierarchical pore distribution observed in the PAC can be effective for an EDLC type 

electrode where the ion diffusion process can be facilitated through the porous structure and, 

therefore, the physisorption of the electrolyte ions can be eased. The smooth XRD profile (Figure 

5.2.d) also suggests a highly porous amorphous characteristics for this carbon. Besides, the ratio 

of the integrated area of ID and IG  from the Raman spectrum was found to be 1.33 (inset of Figure 

5.2.d), which also suggests a significantly disordered morphology containig a large concentration 

of defects and/or pores, which can be related with the XRD measurements.[21-22] 

Additional textural information extracted from the nitrogen adsorption-desorption isotherms are 

given in table 5.1 

Table 5.1.: Textural information obtained from N2 adsorption-desorption measurement. 

Samples VT 
(cm3 g-1) 

BET DFT 
Dubinin- 

Radushkevich Equation 

SSA 
(m2 g-1) 

SSA 
(m2 g-1) 

 

Micro-

SSA 
(m2 g-1) 

VT-DFT 
(cm3 g-1) 

Vmicro 
(cm3 g-1) 

 

Micro- 
SSA 
(m2 g-1) 

Average 

micropore 
size (nm) 

VDR-micro 

(cm3 g-1) 

SHC 0.33 440 570 499 0.36 0.14 416 0.83 0.172 

PAC 1.32 2090 2111 1907 1.21 0.98 1353 1.32 0.895 

VT : Total pore volume by applying Gurvitsh rule;  SSA: Specific Surface Area;  VT-DFT : Total pore volume calculated from 

DFT method by applying 2D-NLDFT theory;  VDR-micro : Micropore volume obtained from Dubinin-Radushkevich Equation 
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5.4. Electrochemical characterization 

5.4.1. Electrode processing and cell assembly 

The SHC anode electrode slurry was prepared by mixing 90 wt% of active material, 5 wt% of 

Super P C65 carbon black and 5 wt% of polyvinylidene fluoride (PVdF) as a binder in N-methyl-

2-pyrrolidone (NMP). All the components were mixed under vigorous magnetic stirring for at 

least 1 h. Then, this SHC slurry was coated onto a copper (Cu) foil current collector. Similar 

procedure was used for the preparation of positive electrodes based on PAC. but this slurry was 

coated onto aluminium foil.  All laminates were immediately dried under dynamic vacuum at 

80 ºC for at least 12 h. The mass loading of the positive and negative electrode was kept in the 

range of 1.4-1.6 mg cm-2. The electrochemical characterization of both anode and cathodes was 

performed in individual airtight Swagelok T-cells in a three-electrode configuration. Metallic 

lithium was used as both the counter and the reference electrode. In the case of the anode, the 

three-electrode cell was cycled within the potential range of 0.002 V to 2 V vs. Li/Li+, whereas 

for the measurement of the cathode, this was set within the 1.5-4.2 V vs. Li/Li+ potential range. 

Lithium hybrid capacitor full cells were assembled by using SHC as negative and PAC as positive 

electrode Swagelok-type T-cell. The mass ratio between negative and positive electrode was 

maintained in a 1:1 mass ratio. A porous glass fiber membrane separator (Whatman GFB) and 

stainless steel current collectors were used to assemble the cells along with 1 M LiPF6 in 

EC:DMC (1:1) electrolyte. Three different potential windows or cell voltages were set for 

analysis, i.e. 1.5-4.2 V, 1.5-4.0 V and 2.0-4.0 V, respectively. A metallic Li was used as reference 

to record the potential evolution in individual electrode of the full cell. Before performing 

electrochemical measurements, a preconditioning step was performed in both negative and 

positive electrodes to maximize the output voltage. In this step, the negative electrode (SHC) was 

cycled at least five times between 0.002-2.0 V vs. Li/Li+ at the current rate of 0.1C in order to 

prelithiate and to form a stable solid electrolyte interface (SEI). A cut-off potential of 0.002 V vs. 

Li/Li+ was set in order to avoid any chances of lithium plating. Once this pre-lithiation process 

was finished, the positive electrode (PAC) was also charged up to a cut-off potential of 4.2 V vs. 

Li/Li+. After this preconditing, the LIC full cells were set for further extensive electrochemical 

characterization under different potential windows as mentioned above. 
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5.4.2. Electrochemical performance of anode (SHC) 

First, the performance of the SHC anode material was investigated in a half-cell configuration 

(T-type Swagelok) using Li foil as both the counter and the reference electrode and the obtained 

results are presented in figure 5.3. For this SHC anode, first cyclic voltammetry (CV) 

measurements were performed at 1 mV s-1 within a potential range of 0.002-2.0 V vs. Li/Li+. In 

the first cycle, a broad reduction peak is positioned in between ~1.2 V to 0.5 V (Figure 5.3.a), 

which correlates to the solid electrolyte interface (SEI) formation due to the reductive 

decomposition of organic compounds of the carbonate solvent from the electrolyte.  

 

Figure 5.3. Electrochemical characterization of SHC as anode in half-cell configuration tested 

between 0.002 and 2.0 V; (a) CVs vs. Li/Li+, (b) GC-GD vs. Li/Li+, and (c) rate capability and 

coulombic efficiency. 
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When the anode material undergoes the reduction process at low potentials close to the electrode 

potential of metallic Li, both the solvent and the salt of the electrolyte solution become 

thermodynamically unstable. The composition of the SEI layer mostly corresponds to the 

formation of insoluble inorganic compounds such as Li2CO3 and can also partially contain LiF 

(decomposition product of the LiPF6 salt).[4, 23] In general, it is expected that the SEI overgrows 

is noticeable with continuous operation, but in our case, no such significant increment has 

evidenced after 10th cycle. In the CV profile (Figure 5.3.a), the diffusion-controlled lithium ion 

insertion occurs in between 0.45 V to 0.00 V, where the starting point of the steep slope near 

0.45 V indicates that the ion insertion occurs first within the interlayers of the graphene-like 

disordered sheets and later into the randomly distributed sealed and open micropores of those 

stacked turbostratic interlayers (i.e. near the plateau like region of ~0.25 V to 0.00 V).[24]  

In this context, it is well known that hard carbon as anode materials can be described as “house 

of card” like model.  In this model, the disordered structure of the material consists of cross-

linked interlayer carbon sheets (graphene like layers), where the ions can easily intercalate on 

each side of these sheets.[25] CV results are in a good agreement with galvanostatic charge-

discharge (GC-GD) measurements performed at 0.1C rate (0.037 A g-1considering a theoretical 

capacity of of graphite at 372 mA h g-1).  

As shown in Figure 5.3.b, a distinguishable sloping down and/or plateau-like region are 

noticeable at the same potential range as that observed in the CV. The first discharge curve shows 

a very high specific capacity of 1415 mAh g-1. However, the first charge specific capacity was 

found to be ~596 mAh g-1. It gives a initial coulombic efficiency (CE) of ~42%. This is is due to 

the  due to its high specific surface area of SHC containing abundant micropores, which 

intensifies the electrolyte decomposition and SEI formation. The second charge-discharge cycle 

shows that the discharge capacity was quickly stabilized at 652 mAh g-1 with a impressive CE of 

83 %. In the  subsequent cycles at 0.1C, the discharge capacity and CE values become stabilized 

at and at the end of 10th cycle, the discharge capacity and CE reaches 400 mAh g-1 and 96%.  

Figure 5.3.b also shows the charge discharge profiles of SHC anode at increasing current rate 

upto 100C (37.2 A g-1 ). It can be readily observed that discharge curves shows a decreasing trend 

of the plateau formation with increase in current rate, which can be ascribed to decrease in Li 
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insertion-extraction ability of SHC anode. However, the rate capability test results (Figure 5.3.c) 

shows a substantial capacity retention upto high applied current rate of 100C. At an applied 

current of 10C the delivered capacity value was 250 mAh g-1, which corresponds to a 42% of 

capacity retention considering the initial reversible capacity set in the 5th cycle, likewise at 30C 

the materials still maintains 26% of the initial capacity. With this notation, even at 100C rate, the 

SHC anode can ensure 61 mAh g-1, which demonstrates the applicability of the material even at 

such extreme and demanding conditions. Besides, 96% of the initial reversible capacity was 

successfully retrieved when the applied current was set again at 0.1C rate, indicating that the 

microstructure of this carbonaceous material is adequately capable to sustain such harsh 

conditions.  

These electrochmical features points out that SHC could be a good candidate to be used as high 

energy battery type electrode in hybrid supercapacitors.  

5.4.3. Electrochemical performance of cathode (PAC) 

The electrochemical characterization of the PAC within a potential range of 1.5-4.2 V vs. Li/Li+ 

is shown in Figure 5.4. The CV profiles at low scan rate of 5 and 10 mV s-1 shows quasi-

rectangular butterfly-shaped profiles with minima around OCP (Figure 5.4.a), which is 

anindicative of a capacitive charge storage. with minima around OCP (Figure 5.4.a) is a clear 

indicative of a capacitive charge storage low electrolytic distributed resistance.[26-27] This type of 

CV profile is typically shown by phenolic resin-based activated carbon and is attributed to the 

potential dependence of the ion penetration into nanopores, which is assumed to be minimal at 

the OCP.[27] The CV profiles at increasing scan rate up to 10 mV s-1 shows that the quasi-

rectangular CV pattern is retained, although with some charge polarization.  

Figure 5.4.b shows the GC-GD profiles at different current densities of the PAC cathode. These 

ideally symmetric GC-GD curves also evidence the capacitive charge storing behavior of the 

PAC cathode. Besides, the iR drop increment is very minute even when it is tested at high current 

density of 10 A g-1. In the rate performance profile (Figure 5.4.c) the specific capacity and 

capacitance values at different current densities are depicted. At a current density of 1 A g-1 these 

values are 129 mAh g-1 and 173 F g-1, respectively, and even at the very demanding current 

density of 30 A g-1, the decrease in capacity (or capacitance) is only 20%, evidencing that this 
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AC can maintain a very stable performance without a major deterioration in LiPF6 electrolyte. 

Therefore, these results confirm that the hierarchical and interconnected pore structures of this 

PAC cathode is highly capable to provide high power density for hybrid system due to their 

uninterrupted fast ionic diffusion onto the electrode surface. 

 

Figure 5.4. Electrochemical characterization of PAC cathode in half-cell configuration tested 

between 1.5 to 4.2 V vs. Li/Li+; (a) CVs at different scan rates from 5 mV s-1 to 100 mV s-1, (c) 

GC-GDs, and (c) capacity and capacitance values vs. current densities. 

5.4.4. Electrochemical performance of the SHC//PAC hybrid LIC   

The individual electrochemical performance of each electrode material suggests the possibility 

of using both the polymer-derived SHC and PAC in a hybrid system capable of working for high 

power requirements. The main challenge of the hybrid technology is, in fact, to improve the 

energy density without compromising the power outcome. For this reason, the mass ratio 
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(SHC:PAC) is adjusted to maximize the performance at high current densities.The specific 

capacity values of both materials at different current densities are summarized in Figure 5.5.a.  

At a high applied current density of 10 A g-1, the SHC and the PAC deliver 168 mAh g-1 and 

106 mAh g-1, suggesting a SHC:PAC mass ratio of 1.5:1 for the full cell set up. This ultimate 

theoretical prediction of the capacity balancing ratio might be risky considering both lithium 

plating and a faster SHC electrode degradation at high current densities. Thus, for the sake of a 

safe-handling and stable performance, we decided to construct a full cell using a SHC:PAC mass 

ratio of 1:1 instead. Besides, we also performed a prelithiation step of SHC negative electrode, a 

lithium metal foil was introduced in the system as third electrode and SHC was first discharged-

charged at 0.1C rate for 5 cycles in between the 2V and 0.002 vs. Li/Li+. This step is a effective 

approach to replenish the Li+ lost during initial dishchage process, which substantially enhance 

the LIC performances (high quolombic efficiency, superior rate capability, high capacity 

retention, and high energy and power density).[28] This prelithiation process also form an uniform 

SEI layer in the negative electrode, which safeguards further decomposition of electrolyte on 

negative electrode. Then the lower cut-off potential was set at 0.2V vs. Li/Li+ to avoid any 

possibilities of lithium plating. Thereafter the PAC positive electrode charged at 0.1C rate up to 

4.2V vs. Li/Li+.  

 

Figure 5.5. (a) Specific capacity of the SHC vs. PAC at different applied current densities, and 

(b) GC-GD profiles of each electrode at different current density of 5 A g-1 of 1.5-4.2 V LIC cell 

(yellow colored marked zone indicates Li Plating). 
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After this preconconditioned process, the full cell was set for further electrochemical 

characterization. In order to give an in-depth electrochemical evaluation to set a practical 

potential range of the hybrid system, first, we selected a wide potential range of 1.5-4.2 V. At 

this potential range, it was expected that the cell must perform without any hindrance. While 

testing the full cell, we noticed that the full cell was started to suffer from lithium plating at the 

current density of 5 A g-1 during the operation (Figure 5.5.b).  

To avoid this lithium plating, we decided to decrease the maximum cathode potential from 4.2  

to 4.0 V. Meanwhile, we also lowered the minimum cathode potential from 1.5 to 2.0 V.  Thus, 

to optimize the intrinsic and extrinsic parameters limiting upon the overall cell performance, we 

fixed two different sets of potential range i.e. 1.5-4.0 V and 2.0-4.0 V for further evaluation. 

In Figure 5.6, all the GC-GD curves of LICs (SHC:PAC=1:1) summarizes the individual potential 

swing of the SHC anode and PAC cathode (plotted vs. Li/Li+) at different current densities with 

various potential range, i.e. 1.5-4.2 V, 1.5-4.0 V and 2.0-4.0 V, respectively.  

Among these three different potential range variation, it is clearly illustrating that the 1.5-4.2 V 

is performing better than the rest at low current densities while at the high current density of        

10 A g-1, the best performance is obtained from the potential range of 1.5-4.0V without any 

chances of lithium plating along with a full cell discharge time of 9s. From this individual 

potential swings at the high current density (10 A g-1), evidencing that the reduction of the 

maximum cathode potential from 4.2 to 4.0 V is facilitating the SHC anode to achieve the charge 

balance by utilizing the maximum potential swing of PAC cathode (1.73 V) in 1.5-4.0 V cell. 

These mesurements reveal that the use of the highest cathodic potential (i.e. 4.2 V) may unsettle 

the charge balance in between the anode and cathode that leads to lithium plating chances at high 

current rates by extreme usage of anodic potential. Even by reducing the minimum cathodic 

potential from 1.5 to 2.0 V, we also observed that the LIC cell is able to balance perfectly the 

overall charge distribution among cathodes and anodes, but the full utilization of the anode is not 

happening here by reducing this slight potential scale. Thus, the obtained full cell discharge time 

of 2.0-4.0 V is quite lesser than the 1.5-4.0 V. 
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Figure 5.6. Comparative GC-GD profiles of each electrode in SHC//PAC full LICs measured at 

different current densities of 0.1, 1 and 10 Ag-1, (yellow colored marked zone indicates Li 

Plating). 

Figure 5.7.a shows the evolution of the specific cell capacity at different current densities. It is 

visible that 1.5-4.2 V potential range reveals the highest obtained capacity values, though this 

LIC cell was suffering from lithium plating (yellow marked points at higher current rates). Thus, 

the safest and reliable full cell capacity value can be taken into account from the potential range 

of 1.5-4.0 V. At high applied current the electrochemical performance started to differ with the 

variation in potential window range, even though the mass ratio of SHC and PAC was maintained 

same in each LIC cells of (i.e. 1:1).   
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Figure 5.7. Comparative (a) rate capability and (b) Ragone Plot of SHC//PAC full cells by 

applying the variation in the potential range [(1.5-4.2V), (1.5-4.0V), (2.0-4.0V)].; (b) cycling 

stability at the current density of 5 A g-1 and potential swings of each electrode of the (c) 1.5-

4.0V  and (d) 2-4.0 V LIC cells during the cycling test. 

A Ragone plot is displayed in Figure 5.7.b, evaluating how all these LIC devices perform when 

turned to the energy-to-power proportion. From this plot it can be claime that the LIC fixed within 
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the 1.5-4.0 V range not only shows the most reliable behaviour but also shows a good energy and 

power values compared to the others. So, the obtained energy density value from this LIC was 

104 Wh kg-1 at the power density of 275 W kg-1 and this potential range can maintain an energy 

density of 64 Wh kg−1 at an extreme power density of 28 kW kg−1, which means the full cell 

discharge time can be attained within 9s.  

Following performance of each cell, we decided to perform the cycling test of 1.5-4.0 V and 2.0-

4.0 V LIC cells at the current density of 5 A g-1 (Figure 5.7.c). For a better evaluation of the 

stability of the cell, the potential swing of each electrode has been monitored during the 

cyclability tests.  

The cycling stability test of 1.5-4.0 V LIC cell (Figure 5.7.d) shows that there is a shift in anodic 

potential minima and cathodic potential maxima towards the positive direction. Moreover, it is 

pointing a prominent gradual expansion in the anode potential range and concurrent shrinkage of 

cathodic potential range with time. On the other hand, the potential swing of 2.0-4.0 V LIC cell 

(Figure 5.7.e) shows the shift in anodic and cathodic potential range without any 

expansion/shrinkage of anode/cathode potential window. This behaviour has been previously 

explanied by Sun et al. which claimed that the capacity fading upon cycling is related to the slow 

irreversible Li deposition on the anode, that causes the expansion of the anodic potential window 

and this can not fully compensate the charge balance in the cathode, resulting in the shrinkage of 

the cathode potential window.[18] However, the results from our study shows that after 10,000 

cycles, both cells revealed the same capacity retention rate.  

Therefore, it can be inferred that the expansion/shrinkage of anode/cathode potential window 

does not affect the capacity fade as much as the drifting of anodic and cathodic potential towards 

the positive direction. This drifting can results in the imbalance of lithiation-delithiation process 

that fades the overall cell capacity with time.  

Hence, the overall results of this study suggest that the 1.5-4.0 V range is more suitable for LIC 

in terms of energy and power density along with cyclic stability. Table 5.2 summarizes the 

electrochemical performance of this 1.5-4.0 V LIC, compared with other recently reported results 

in similar dual carbon LIC devices. 
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Table 5.2. summarizes the electrochemical performance of this 1.5-4.0V LIC, compared with 

other recently reported results in similar dual carbon LIC devices. 

Device Configuration 

Negative Electrode//Positive 

Electrode 

Cell Voltage 

(V) 

Max Energy 

(Wh kg-1) 

@ Power   

(W kg-1) 

Energy (Wh kg-1) 

@ max 

Power (W kg-1) 

Cycling 

Performance 

 

Ref. 

HC // AC 2-4 82@100 14@20000 
97% over  

600 cycles 
[25] 

HC // AC 1.4-4.3 80@150 
65@2350 

 

82% over  

10000 cycles 
[1] 

HC // bio-mass derived 

mesoporous carbon 
1.7-4.2 

121@300 

 

50@9000 

 

81% over  

8000 cycles 
[29] 

Polymer derived HC// AC 1.5-4.2 
150@150 

 

70@25000 

 

83% over  

10000 cycles 
[30] 

HC // AC 2-4 
73.6@60 

 

36@11900 

 

96.5% over 

500 cycles 
[18] 

HC // AC 2-4 85.7@600 20@7600 
96.0% over 

5000 cycles 
[31] 

Bio-mass derived- HC // AC 1.5-4.2 100@150 22@18000 
94% over 

10000 cycles 
[32] 

This Work (SHC//PAC) 1.5-4.0 104@275 64@28000 
82% over 

10000 cycles 
- 

 

5.5. Conclusions 

The performance of hybrid metal-ion capacitor field has been predominantly linked to the 

excellence in electrode material in the reported literature untill now less importance has been 

given to the cell design. The observation made from this study confirms that the variation in 

individual electrode potential can also significantly impact on the overall cell performance for 

the prolonged application. With the careful control of the cathodic potential limit not only can 

help to avoid the decomposition of the electrolyte but also can save electrode from intrinsic 

degradation behaviour. Thus, the selection of the safe operational potential range is firmly related 

with risk-free device handling that enables its long cyclability. The quality and integrity of the 

electrode materials also matter to obtain a high-performance LIC system. Thus, the LIC device 
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designed with our lab-synthesized exclusive nano-architectured carbonaceous materials along 

with potential window variation provides very promising results towards the development of the 

safe hybrid energy storage devices for future applications.  
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Most lithium-ion capacitor (LIC) devices include graphite or non-porous hard carbon as 

negative electrode often failing when demanding high energy at high power densities.  Herein, 

we introduce a new LIC formed by the assembly of polymer-derived hollow carbon spheres (HCS) 

and an activated carbon (AC), as negative and positive electrodes, respectively. The hollow 

microstructure of HCS and the ultra large specific surface area of AC shown maximize lithium 

insertion/diffusion and ions adsorption in each of the electrodes, leading to individual 

remarkable capacity values and rate performances. To optimize the performance of the LIC not 

only in terms of energy and power densities but also from a stability point of view, a rigorous 

mass balance study is also performed. Optimized LIC, using a 2:1 negative to positive electrode 

mass ratio, shows very good reversibility within the operative voltage region of 1.5–4.2 V and it 

is able to deliver specific cell capacity of 28 mAh g-1 even at a high current density of 10 A g-1. 

This leads to an energy density of 68 Wh kg-1 at an extreme power density of 30 kW kg-1. 

Moreover, this LIC device shows an outstanding cyclability, still retaining more than 92% of the 

initial capacity after 35,000 charge–discharge cycles. 
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6.1. Introduction 

As anode material, hard carbon signifies high specific capacity and favorable cyclic performance 

in LIBs and LICs.[1-7] Among the different nanostructured hard carbon materials, carbon 

nanosheets, nanospheres, carbon nano pipes or carbon nanofibers have been recently investigated 

as negative electrodes for LICs. Tuning the microstructure of these hard carbons at the nanoscale 

brought about significant improvements in terms of structural stability, transport kinetics, 

cyclability, and coulombic efficiency (CE).[5, 8-10] The morphology of hollow carbon spheres 

(HCSs) results particularly convenient since they provide electrolyte reservoirs and fasten Li+ 

intercalation/deintercalation processes through the thin carbon walls.[11, 12] Additionally, their 

ample inner space can buffer the volume changes undergone during charge/discharge processes, 

thus improving the mechanical stability of the electrode. [12, 13]  

As the positive electrode, activated carbons (ACs) are preferentially chosen due to their large 

specific surface areas and open porosity, which allows fast ionic transport to the whole surface 

of the electrode.[2, 14] We have synthesized a novel and straightforward synthetic route for the 

preparation of ultra-high specific surface area ACs. This synthesis strategy, consisting of a facile 

one-step process in which polymerization, carbonization and chemical activation of the carbon 

precursors occur all at once and yields carbons with specific surface areas slightly above 

3000 m2 g-1 and a hierarchical micro-mesoporous structure. Both their suitable porous structure 

and easy preparation make them a suitable choice as positive electrode materials in LIC 

systems.[15] 

The performance of hybrid supercapacitors can be improved through the optimization of the mass 

balance between the positive and the negative electrode.[16] Thus, different mass balances 

translate into different working potential spans and, therefore, a different degree of utilization of 

each electrode, which can be used to maximize the energy density of the device. Indeed, most of 

the scientific reports focus on the best-obtained energy/power results, not paying much attention 

to safety and stability.  

In this chapter, we present a facile synthetic route towards HCSs by the pyrolysis of nitrogen 

containing monomers. This material was coupled in a full cell with our lab-synthesized 
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superactivated carbon as the positive electrode. The optimization of the mass balance of the 

electrodes, within an operative potential window of 1.5-4.2 V, was also investigated.  

6.2. Material synthesis 

The HCS were synthesized by the carbonization of polymeric hollow spheres under a dynamic 

inert atmosphere. For the synthesis of the co-polymeric hollow nanospheres, 0.08 g of Triton-X-

100 was dispersed in 50 mL deionized water, and then 0.456 mL of aniline and 0.346 mL of 

pyrrole were added to the mixture under continuous stirring that was kept until complete 

dissolution. Then, the solution was kept under continuous stirring in an ice bath to maintain a 

temperature of 3-5 ºC. For the oxidative polymerization, aqueous ammonium persulfate (0.8 g 

was dissolved in 1 mL DI water) was precooled at 3-5ºC and added to the above solution. The 

mixture was stirred for a few minutes and the resulting solution was kept in the refrigerator for 

24 h at 4 oC. Finally, the obtained dark greenish polymer precipitate was collected by 

centrifugation and washed with DI water several times. The product was freeze-dried to maintain 

the microscopic structure of the polymeric hollow spheres and then carbonized at 800 ºC in Ar 

atmosphere for 2 h using a heating rate of 3 ºC min-1. 

For the synthesis of superactivated carbon (AC), at first, 1.24 g of melamine, 1.36 g of 

terephthaladehyde and 5.0 g of KOH were grounded using an agate mortar and then the mixture 

was carbonized under Ar atmosphere. The temperature was first raised up to 250 ºC for 3 h and 

then increased to 800 ºC for 1 h using heating ramps of 1 oC min-1. (CAUTION: certain amount 

of potassium cyanide may be formed during the carbonization process, so carbon should be 

carefully manipulated, and the wastes treated accordingly). Then the final product was washed 

several times with 3 M HCl, and DI water followed by drying at 120 ºC in a furnace.[15] 

6.3. Physicochemical characterization 

The schematic diagram included in Figure 6.1. summarizes the approach followed for the 

preparation of the HCS that will serve as negative electrode in this study. First, polymeric hollow 

microspheres were prepared by a simple strategy that involves the interfacial co-polymerization 

of aniline and pyrrole in the presence of Triton X-100.[13, 17] Due to their different hydrophobicity, 
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the molecules of aniline mainly sit at the outer layer of the micelle-water interface, whereas the 

more hydrophobic pyrrole molecules tend to diffuse towards the inner wall of the micellar core.  

 

Figure 6.1 Schematic diagram of the synthesis process of hollow polymer spheres (HPS) and 

hollow carbon spheres (HCS). 

Polymerization leads to the formation of hollow polymeric spheres (HPS) and its posterior 

carbonization under inert atmosphere yields HCS. The HCS maintain the pristine microstructure 

of the HPSs but undergo a slight shrinkage of their size (Figure 6.2.a and b).  

 

Figure 6.2. (a) SEM images of HPS and (b) HCS obtained after the pyrolysis of HPS, (c) XRD 

pattern recorded for HCS (inset: Raman spectrum registered for HCS), (d) low magnification. 

The TEM image of HCS and (e) high magnification TEM image of HCS outer surface, (f) N2 

adsorption-desorption isotherms registered for HCS. 
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The thickness of the carbon walls was of ca. 110 nm (Figure 6.2.d). XRD pattern of the 

carbonized sample (Figure 6.2.c) shows two low intensity and broad X-ray diffraction peaks at 

~26º and ~50º (2θ) angles, which correspond to the (002) and (100) planes characteristic of 

disordered carbons with a low degree of graphitization. The Raman spectrum (Figure 6.2.c, inset) 

shows two predominant bands at ~1356 cm-1 and ~1594 cm-1, which reflect the defects in the 

carbon lattice (D-band) and the stretching vibration in C-C bonds (G-band), respectively. 

Additionally, two broad and very low intense peaks can be identified in the 2500-3000 cm-1 

region that are ascribed to the G´ stretching mode. Defects in the forms of edges and surface 

imperfections like defects, cracks, cavities, and active sites act as catalytic sites, which can be 

active for formation of solid-electrolyte interface (SEI) layer formation as well as lithiation-

delithiation process in the negative electrode of the LIC cell.[18]  

The high-resolution TEM images (Figure 6.2.e) evidenced the presence of micropores in the 

carbon shells. To get additional information about the textural features of these carbon spheres, 

nitrogen gas adsorption-desorption measurements were carried out. The N2 adsorption-desorption 

isotherm registered for the HCSs (Figure 6.2.f) shows a profile in between types I and IV 

according to the IUPAC classification, with a H4 hysteresis loop.[19] The large adsorption of 

nitrogen at low relative pressures confirmed the microporous nature of the material. Due to the 

presence of a large amount of micropores, the BET specific surface area calculated for this 

material was 282 m2 g-1. We have also performed the elemental analysis of the HCS carbon to 

obtain the nitrogen content in this anode material. This analysis showed that HCS carbon has 9.1 

wt.% nitrogen in the framework. It is well-known that the incorporation of nitrogen-containing 

groups in the carbon network not only improves electronic and ionic conductivity but also 

provides active sites and enhances ion adsorption leading to an increase in capacity and rate 

capability.[13, 20] 

Physicochemical characterization of the superactivated carbon prepared by the in-situ 

polymerization, carbonization, and activation of melamine and terephthalaldehyde is included in 

Figure 6.3. SEM images (Figure 6.3.a) show irregular-shaped carbon utricles with a size of 

~50 nm and a very rough surface. High magnification TEM image (Figure 6.3.b) reveal that the 

sample contained randomly distributed nanopores. The N2 adsorption-desorption isotherm 

registered for this activated carbon exhibits a profile in between type I and IV with a 
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distinguishable capillary condensation step in the relative pressure range of 0.3-0.6.[15] The abrupt 

increase of N2 absorption at low relative pressures is indicative of its highly microporous 

structure. Indeed, the specific surface area and pore volume calculated for this material was as 

high as 3180 m2 g-1 and 2.8 cm3 g-1, respectively. 

 

Figure 6.3. (a) SEM image, (b) TEM image, (c) N2 adsorption-desorption isotherms (inset: pore 

size distribution curve) and (d) Raman spectrum registered for the AC. 

The pore size distribution calculated from the isotherm data (inset in Figure 6.3.c) shows the 

contribution of pores with two sizes in the micro- and mesopore range, centered at ca. 1.0 nm 

and 2.3 nm, respectively. The ultra-large specific surface area combined with the hierarchical 
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distribution of pore sizes, i.e. the physical adsorption of a large number of ions with a low 

diffusion resistance, make this carbon good candidate as an EDLC electrode material.  

The Raman spectrum in Figure 6.3.d displays the typical D and G bands at ~1350 cm-1 and     

~1590 cm-1, respectively, pointing out that a significant amount of graphitic carbon is still present 

in the carbonaceous network despite the large concentration of defects and/or pores in sample.[20] 

6.4. Electrochemical characterization 

6.4.1. Electrode processing and cell assembly 

The negative electrode slurry was prepared by mixing 90 wt% of hollow spherical carbon (HCS) 

with 5 wt% Super-C C65 carbon black (Imerys Graphite & Carbon, Willebroek, Belgium) and 

5% polyvinylidene fluoride (PVdF) in N-methyl-2-pyrrolidone (NMP). The components were 

mixed under vigorous stirring for at least 1 h using a magnetic stirrer. The obtained HCS-based 

slurry was coated onto a copper foil current collector. For the positive electrode slurry, the 

activated carbon, Super-C C65, and PVdF were mixed in a weight mass ratio of 90:5:5 in NMP 

solution under continuous stirring for 1 h and then the AC-based slurry was laminated onto an 

aluminum foil. Laminates were placed immediately into a vacuum oven for drying at 80 ºC for 

12 h under constant vacuum. The mass loading of the positive electrode was of 1-1.3 mg cm−2 

while the loading in the negative electrode ranged from 1.4 to 2.6 mg cm−2.  

The electrochemical characterization of the anode was evaluated in a three-electrode 

configuration using an airtight Swagelok T-cell. Metallic Li was used as both the counter and the 

reference electrode, and the anode was cycled within the potential range of 0.002 to 2.0 V. The 

same cell assembly procedure was followed to perform the electrochemical characterization of 

the cathode within the 1.5-4.2 V potential range. 

Lithium hybrid supercapacitor full cells (HCS//AC) were assembled using four different 

negative-to-positive electrode mass ratios: (1.1:1), (1.3:1), (1.7:1) and (2:1). A three-electrode 

configuration (Swagelok T-cell) with a metallic Li reference was chosen in order to record the 

individual electrode potential changes. Stainless steel current collectors and a porous glass fiber 

separator (Whatman GFB) were used and the electrolyte used was 1 M LiPF6 in EC:DMC (1:1). 

Before testing, the negative and positive electrodes were preconditioned to maximize the output 
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voltage. Thus, the HCS electrode was cycled at least five times between 0.002 and 2 V vs. Li/Li+ 

at 0.1C rate to form solid electrolyte interphase (SEI) and supply enough lithium to compensate 

the initial irreversible cycles. After that, a cut-off potential of 0.2 V vs. Li/Li+ was set to evade 

any chances of lithium plating. The AC electrode was also charged up to a cut-off potential of 

4.2 V vs. Li/Li+. After this pre-lithiation process, the LICs full cells were built for their extensive 

electrochemical characterization.  

6.4.2. Electrochemical performance of Anode (HCS) 

First, the performance of HCS as anode material was investigated in a half-cell configuration (T-

type Swagelok) using Li foil as both the counter and the reference electrode. The cell cycled 

within the potential range of 0.002–2.0 V vs. Li+/Li. Figure 6.4.a illustrates the 1st, 5th and the 

10th cyclic voltammograms (CVs) recorded at 1 mV s-1. It can be observed that most of the 

capacity is stored below 1.0 V. In the first CV, a broad reduction peak can be distinguished 

between ~1.0 to 0.3 V, which resembles the formation of a SEI layer due to the carbonate solvent 

decomposition.[21] The intercalation of Li+ into the HCS takes place between 0.3 and 0.01 V, 

while the deintercalation process shows a maximum current peak at 0.23 V. The Galvanostatic 

charge-discharge curves (GCD) performed between 2.0 V and 0.002 V at different current rates 

are shown in Figure 6.4.b.  The first discharge at 0.1C (C = 372 mA h g-1) from its open circuit 

potential shows two distinct plateaus at ~1.0 V and ~0.25 V corresponding to SEI formation and 

Li+ intercalation, which are in good agreement with the CV. The first discharge shows a very 

large specific capacity of ca. 910 mA h g-1, whereas the first charge shows a specific capacity of 

523 mA h g-1 corresponding to an irreversible capacity loss of ~43%. Such high irreversible 

capacity loss measured in the first cycle is attributed not only to the formation of the SEI layer 

caused by the decomposition of carbonate electrolyte but also due to the irreversible reaction of 

Li+ with oxygen-containing functional groups present in the HCS.[22] It can be observed in the 

second and fourth charge-discharge curves that there is an additional charge storage between 1.5 

and 0.25 V in addition to the Li+ intercalation between 0.25 and 0.01 V. This explains the high 

specific discharge capacity values of 500 and 430 mA h g-1, respectively. These additional 

specific capacity values are attributed to the highly disordered nature of HCS carbon that 

promotes Li+ storage through other mechanisms such as excess bulk storage, storage in cavities 
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and nanopores, interfacial/surface storage and the effect of heteroatoms, which gradually 

decreases during the subsequent cycles stabilizing after the fifth cycle.[23]  

The HCS anode showed excellent capacity retention at increased current rates (Figure 6.4.d). 

Thus, 173 mA h g-1 and 100 mA h g-1 were achieved at 10C and 30C (measured in the 5th cycle 

registered at each current rate), which corresponds to a retention of the initial capacity of ~40% 

and ~24%, respectively. Even after testing at the very high current rate of 100C, 87% of the initial 

capacity was retrieved when the current rate was set again to 0.1C. 

 

Figure 6.4. Electrochemical characterization of hollow carbon spheres as an anode in half-cell 

configuration tested between 0.002 and 2.0 V; (a) CVs vs. Li/Li+, (b) GC-GD vs. Li/Li+, (c) SEM 

image of HCS electrode surface and (d) rate capability and coulombic efficiency. 

The SEM images registered for an anode containing HCS and the binder show that the carbon 

spheres are well dispersed, which ensures that lithium ions can easily access all the available 

microporous carbon surfaces (Figure 6.4.c). Additionally, the microstructure of the HCS is 
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undoubtedly responsible for such advanced rate performance. Both the interparticle space and 

the spherical voids in the core of the HCSs act as ion-buffering reservoirs, which shorten the 

diffusion path towards the thin microporous carbon shell.[12, 13] It is also noteworthy that although 

the CE in the first cycle was merely 57%,  it quickly raised up to 95% in the next cycles and 

stabilized at a value of 98% in the subsequent cycles and maintained even at the high current rate. 

Such high CE indicates that this carbon architecture is very capable of enduring the mechanical 

stress induced at harsh current rates. 

6.4.3. Electrochemical performance of cathode (AC) 

The capacitive performance of the superactivated carbon was evaluated in the potential range of 

1.5-4.2 V vs. Li+/Li using LiPF6 in 1:1 (EC:DMC) as the electrolyte (figure 6.5).  

 

Figure 6.5. Electrochemical characterization of AC cathode in half-cell configuration tested 

between 1.5 to 4.2 V; (a) & (b) CVs at low and high scan rate of 5 mV s-1 and 100 mV s-1 (vs. 

Li/Li+), (c) GC-GDs vs. Li/Li+, and (d) capacity vs. current density (rate performance). 
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Figures 6.5.a and b include the CV curves registered at 5 and 100 mV s-1. At the lowest scan rate, 

the plot is square-shaped and very symmetric, evidencing the capacitive behavior of the material. 

Generally, the open circuit potential of activated carbon cathodes falls in between the potential 

range of 3.0-3.1 V vs. Li/Li+ in a Li-ion electrolyte.  

Therefore, the electrical double layer stores ions of opposite charge depending on the potential 

range, i.e. it adsorbs PF6
− anions from 3.0 to 4.2 V and Li+ cations from 3.0 to 1.5 V. Even at the 

high sweep rate of 100 mV s-1 the plot shows the characteristic rectangular-shaped profile, 

pointing out the fast and effective polarization undergone due to the charge separation at the 

electrode/electrolyte interface.  

Figure 6.5.c shows the GC-GD profiles of the AC cathode at different current densities. The 

symmetric triangular-shaped GC-GD curves showing almost 100% of CE confirm the purely 

capacitive behavior of the superactivated carbon. Interestingly, this AC achieved a specific 

capacitance of 208 F g-1 at 1 A g-1, and retained 203 F g-1 at a high discharge rate of 10 A g-1 

(Figure 6.5.d). Such good capacitance retention is favored by the extremely high specific surface 

area of the AC combined with its hierarchical and interconnected porous network, which allows 

the unimpeded diffusion of electrolyte ions onto the active carbon surface.[15, 16] The excellent 

rate capability observed together with the absence of ohmic drop at the beginning of the discharge 

branches point out this activated carbon as a promising positive electrode material for LIC 

systems.  

6.4.4. Electrochemical performance of the HCS//AC hybrid LIC   

In view of the good performances exhibited by both carbonaceous materials, LIC full cells were 

assembled using HCS and AC as anode and cathode electrodes, respectively. As a rule of thumb 

in asymmetric capacitor configuration, there should be charge balance between anode and 

cathode based on the specific capacity and potential window.[24] However, this rule does not 

always result in optimum performance in case of Li-ion capacitor. This is because there is stark 

difference between the kinetics of faradaic lithiation in anode and non-faradaic PF6
− adsorption 

on cathode. This difference results in contrasting specific capacity performance of anode and 

cathode at low and high current densities (Figure 6.6.a), which make it almost impossible to 

estimate the charge balance effectively only by considering the specific capacity at low current. 
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Therefore, to evaluate and optimize the electrochemical performance of the full cell as well as to 

achieve the best possible performance in terms of specific capacity, cycling stability and safety, 

a variation of the electrode mass ratio was investigated. Thus, four LIC cells were assembled 

using anode/cathode electrode mass ratios of 1.1, 1.3, 1.7 and 2.0.  

 

Figure 6.6. (a) Specific capacity of HCS vs. AC at different applied current densities, 

comparative electrochemical characterization of HCS//AC full cells with different electrode mass 

ratios: GC-GDs at a current density of (b) 0.1 A g-1 and (c) 10 A g-1, and (d) ohmic drop values 

with respect to different current densities. 

In Figure 6.6.b and c, the GC-GD curves recorded for these four LIC cells at 0.1 and 10 A g-1, 

respectively, in the 1.5-4.2 V potential range are summarized. At the lowest current density, a 

progressive decrease of the discharge time was observed when the mass ratio was increased from 

1.1:1 to 2:1. This trend is inverted when the current density is increased to 10 A g-1. At this current 

rate, a prominent decrease in the ohmic drop combined with an increase in the discharge time 
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(almost twice higher) is observed when the mass ratio is increased from 1.1 to 2.0. The effect of 

mass ratio is also clearly exhibited from Ohmic drop vs. current density plots of all LIC cells is 

shown in Figure 6.6.d. The better electrochemical performance of the high mass ratio LIC cell 

seems to be the deeper utilization (larger operating voltage) of the EDLC electrode during the 

fast-anionic adsorption-desorption process. 

Thus, the LICs with the lower mass ratios seem to be limited by the anode. Figure 6.7.a shows 

the evolution of the specific capacity with the current density for all the studied LIC cells. At 

current densities below 1 A g-1 the lower mass ratio (1.1:1) LIC cell shows the highest specific 

capacity, whereas the LIC cell assembled using the 2.0:1 electrode mass ratio shows the best rate 

capability and the largest value of specific capacity at high current rates, achieving 28 mAh g-1 

at a current density of 10 A g-1.  

Figure 6.7.b represents the comparative Ragone plots calculated for the different LICs. At the 

lowest current density, the 1.1:1 cell achieved an energy density of 141 Wh kg-1, and this value 

slightly decreased with the increase of the mass ratio down to the 117 Wh kg-1 reached by the 

2.0:1 cell. With the increase of the applied current, the differences between the different cells 

become more noticeable. Indeed, at the highest current density (8 seconds of discharge) the LIC 

with the highest loading in the negative electrode obtained an energy density as high as  

68 Wh kg-1 at a power density of 30 kW kg-1.  

 

Figure 6.7. Comparative (a) rate capability and (b) Ragone plot of HCS//AC full cells. 
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In order to get deeper insights into the electrochemical performance of the LICs, the performance 

of each electrode was monitored. The GC-GD profiles registered for the AC cathodes and the 

HCS anodes (plotted vs. Li/Li+) at a current density of 1 A g-1 are shown in Figure 6.8.a-d.  

In the 1.1:1 LIC cell (Figure 6.8.a) the anode potential swing is significantly high (~1.85 V), 

which evidences a high utilization of the anode for the Li+ intercalation-deintercalation process. 

Therefore, this configuration allows extraction of the highest amount of charge stored thus 

delivering the highest specific capacity. However, since the anodic process is kinetically much 

slower than the adsorption-desorption of PF6
− occurring in the positive electrode, this 

configuration limits the charge extraction at high current densities. This anode potential swing is 

gradually decreased from ~1.38 to ~0.34 V, as it can be observed from Figures 6.8.b, c, and d, 

with an increase in anode/cathode mass ratio.  

 

Figure 6.8. Comparative GC-GD profiles of each electrode in LICs with different electrode mass 

ratios at a current density of 1 A g-1. The cells were run in the 1.5 – 4.2 V potential range. 
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This decrease results in less utilization of anode capacity but results in less particle volume 

expansion, electrolyte decomposition and lithium consumption. On its behalf, with the increase 

in anode/cathode mass ratio, the potential swing in the cathode increased significantly from        

1.0 V (1.1:1 cell) to 2.38 V (2:1 cell) thus gradually enhancing the cathode capacity. Therefore, 

the 2:1 electrode mass ratio guarantees the best rate capability of the cell taking advantage of 

high utilization of the porous electrode surface. On the other hand, the lower polarization 

registered in the anode limits the extraction of the anode capacity, and thus, it results in a full cell 

of less specific capacity. However, concurrently this lower anode polarization avoids the chances 

of lithium plating, which is beneficial in terms of safety as well as durability. Figure 6.9.a-d shows 

the GC-GD plots of each electrode as well as the corresponding LIC for all cell combinations at 

a current density of 10 A g-1. These figures almost mirror the observation revealed from Figure 

6.8.a-d with additional evidence.  

 

Figure 6.9. GC-GD curves of each electrode in LICs with different electrode mass ratios at an 

applied current density of 10 A g-1 (the yellow colored zone in the Y axis (V) is indicating the 

lithium plating). 
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Figure 6.9.d reveals that the 2:1 LIC cell is still fully operative within the 1.5- 4.2 V potential 

range even at such a high current rate. Moreover, the anode potential swing is still limited to 

~0.38 V. However, the 1.1:1 LIC cell (Figure 6.9.a) shows a significant increase in anode 

potential swing up to ~2.26 V. This results in severe Li+ plating on the anode can be seen in 1.1:1 

and 1.3:1 LIC cell (yellow color marked area in Figure 6.9.a and b), which not only degrades the 

cell performance but also aggravates safety issues. The other two mass ratio LIC cells show a 

gradual decrease in the anode potential swing, thus enhancing the power performance. From all 

these GC-GD results, it was found that the 2:1 LIC cell shows the best performance in terms of 

both specific capacity and rate capability. This is due to a steady cathode potential window 

combined with contended use of the anode i.e. CE very close to 100%, which allows the stable 

performance of the full cell. So, this 2:1 LIC cell is selected to investigate the long-term stability 

by performing GC-CD cycles at 10 A g-1 current density.   

 

Figure 6.10. Electrochemical performance of the 2:1 LIC: (a) cycling stability; (b) potential 

swings of each electrode during the cycling test; (c) comparative Ragone plots of our 2:1 LIC 

and other representative LICs reported in the literature. 
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The resultant cyclic stability plot in Figure 6.10.a shows that this LIC cell delivered an 

outstanding cycling performance, retaining 98.7% of its initial capacity after 10,000 cycles, and 

92% after 35,000 cycles. The potential swing of each electrode during the cycling test is plotted 

in Figure 6.10.b. As can be seen, although the cathodic potential window shows a small upward 

shifting, it remains steady during the whole test, which validates the stable performance of the 

full cell.  For the sake of comparison, Figure 6.10.c collects the Ragone plot of our optimized 

LIC as well as those of other representative LIC systems recently reported in the literature. It is 

worth to highlight the excellent energy density measured for our selected LIC, especially in the 

high-power region in which most of the previously reported LICs suffer from an abrupt decay of 

their energy densities. [1, 6, 9, 10, 14, 25, 26] 

6.5. Conclusions 

Micro-sized hollow carbon spheres have been synthesized by an easy procedure. This material 

exhibits improved performance in the lithium insertion-extraction process especially at very high 

current rates, which point it as a promising candidate for its use as the negative electrode in LICs. 

LICs were assembled by coupling this micro-structured hollow carbon spheres versus a 

superactivated micro-mesoporous carbon using different electrode mass ratios. The hollow 

carbon spheres are able to resist the volume changes during repetitive lithiation-delithiation 

cycles, while the hierarchical porosity of the superactivated carbon offering very low resistance 

to ion diffusion assured a good response at high current rates. It was found that the best 

negative/positive electrode mass ratio in this LIC system is 2:1, the cell delivering a maximum 

gravimetric energy density of 117 Wh kg-1 at 0.34 kW kg-1 and still 68 Wh kg−1 at an extreme 

power density of 30 kW kg−1. The robustness of the LIC was confirmed by its remarkable long-

term stability over 35,000 cycles with only 8% of capacity decay registered. This outstanding 

performance makes our proposed LIC a promising energy storage system standing out among its 

peers.  
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7.1. Conclusions 

The thesis has presented different approaches that aimed to improve the electrochemical 

performance of supercapacitors in different configurations, such as EDLCs, asymmetric and 

hybrid LIC system. The following descriptions can be concluded from the individual works 

which were performed to establish the specific objectives of the thesis. 

7. 1.1. EDLC System 

In this work, a straightforward synthetic approach has been developed for the preparation of 

spherical nanostructured carbons with high specific surface area from the polycondensation 

polymerization reaction of the resorcinol and formaldehyde precursor in presence of an acid 

catalyst and its electrochemical characteristics were studied in different electrolytes.  

• The presence of an acid catalyst (FeCl3) fasten the polycondensation process and induce 

the formation of an interconnected microporous network along the carbon framework, 

which may maximize the electrical double layer formation and enhance the ions 

movement through the whole surface of the carbon. 

 

• The electrochemical double-layer capacitive storage capacity of this material was 

evaluated in different electrolytes, such as aqueous (alkaline and neutral) and organic 

medium. Selecting different electrolytes based on their operative potential window not 

only enhances the overall performance but also has a lot of impact on its long-term 

stability. 

 

• This material shows the best electrochemical performance in aqueous electrolytes due to 

the fast-kinetic response of electrolyte ions into pores, whereas the organic electrolyte 

exhibited the best energy-power output because of their wide potential window.  

 

• A more accessible ultramicroporous surface area of the carbon can be utilized in EDLCs 

by selecting the electrolyte according to the appropriate ionic sizes which can boosts the 

surface-controlled kinetics during prolong stability performance. 

7.1.2. Aqueous asymmetric system 
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In this work, we have investigated the performance of a robust AAS cell assembled using a 

proprietary ultrahigh specific surface area carbon as the negative electrode and a nanostructured 

NiCo2O4 as the positive electrode (a combination of EDLC and faradaic type materials), and the 

impact of the electrode mass balance on the electrochemical performance of the system. 

• This electrochemical study evidenced the importance of the hierarchical structures of the 

active materials to maintain good capacity retention at high current densities. 

 

• The mass balance between positive and negative electrodes showed a huge impact on the 

electrochemical performance of the resultant advanced hybrid full cells. The mass balance 

allows controlling the potential span and degree of utilization of each electrode within the 

asymmetric capacitor. 

 

• The optimization of the electrodes mass balance within the AAS devices led not only to 

both excellent energy and power densities but also to significant cycling stability. 

7.1.3. Hybrid LIC System 

In this section, we have developed different hard carbons and activated carbons as a negative and 

positive electrode for the study of the dual carbon LIC cell. We have performed two sets of studies 

with the objective to increase the overall electrochemical performance of the full LIC system. 

• In the first approach, we demonstrated that the high energy density along with the power 

density can be achieved by the careful optimization of the full cell operative potential 

window. For the electrode material, we synthesized a spongy shaped hard carbon and high 

surface area activated carbon by using a simple method. This study is not only helpful to 

obtain a safe potential window but also useful for improved overall performance. 

 

• In the second approach, we demonstrated that prolong cycling stability can be achieved 

by the optimization of mass balance. In this work, we have developed a polymer derived 

hollow carbon spheres as the negative electrode, which can resist the volume changes 

during repetitive lithiation-delithiation cycles, while the hierarchical porosity of the 

superactivated carbon as positive electrode offering very low resistance to ion diffusion 
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assured a good response at high current rates. The robustness of the LIC was confirmed 

by its remarkable long-term stability. 

 

• From those above-mentioned approaches, the study was focused to find out excellent 

electrode material and also a very safe operational method to increase the specific energy 

density in hybrid LIC full cell. Besides, the obtained results were evidencing the effect 

on overall electrochemical cell performance after considering those strategies for the 

development of the full LIC cell.  

The Ragone plot in Figure 7.1 summarizes the energy to power values measured for the different 

systems evaluated in this thesis. In order to study different segments of supercapacitor 

configuration, the objective of the thesis was to focus on the development of the electrode 

material along with the strategic cell design to increase the specific energy. Besides, it is worth 

mentioning that these detailed studies also signify the approach made here in this thesis has a 

huge impact on the safe handling issues for prolonging applications purpose. However, 

considering costs as well as stability and reproducibility, dual carbon hybrid LIC system is 

exhibiting the promising future to compete against the second-generation battery. 

 

Figure 7.1. Comparative Ragone plots of different supercapacitors based on the studies made in 

this thesis. 
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7.2. Perspectives 

Recommendations for future research work are discussed as follows.  

• Apart from Iron chloride, several other transition metal salts can be used as acid catalysts 

for the synthesis of graphitic carbon. Most of them are not yet fully investigated to 

understand their effect on the reaction time and temperature during catalytic activation. 

The EDL results achieved in this thesis showed better capacitive performance in aqueous 

alkaline electrolyte compared to aqueous neutral and organic electrolyte due to the 

microporous nature of the synthesized carbon. Therefore, a detailed study on the role of 

different acid catalysts towards the development of the new graphitic carbon with tailored 

porosity might give a direction to understand the relationship of the porous textural 

properties with different electrolyte ions. 

 

• In this thesis, cobalt is used as one of the binary metal compounds for its excellent 

electrochemical behaviour for the asymmetric supercapacitors. But compared to toxic and 

expensive cobalt, other transition metal oxides, like manganese, also can be an attractive 

alternative as inexpensive and non-toxic metal in combination with nickel to improve the 

cell voltage, energy, and power densities. Meanwhile, a lightweight, flexible asymmetric 

cell design can be developed using solid polymer electrolyte. Thus, solid-state 

asymmetric supercapacitors with high energy and power densities will increase the future 

research attention for their promising applications in stretchable and wearable electronics. 

 

• In this thesis, the electrochemical pre-lithiation process is utilized for the dual carbon 

hybrid LIC system by using Lithium metal as an additional electrode in the pre-lithiation 

step. However, this lab-scale confined strategy is not suitable for large-scale production 

and it needs to be considered for successful commercialization. The recent advancement 

of the novel electrode materials and sacrificial cell components as an internal source of 

Li-ions hold the excellent potential to compensate for the first cycle irreversibility. Thus, 

there is a huge prospect for future research to resolve this issue by not through developing 

new materials but also optimizing the overall cell design during the fabrication of hybrid 

LIC system. 
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The electrochemical capacitors or supercapacitors are envisioned as potential next-generation energy 

storage systems because of their excellent storage capacity, power density, and long-term durability. 

However, all these advantages are overshadowed by their poor energy density. Thus, this thesis aims 

to achieve a high-energy supercapacitor device without compromising its power performance to make 

them more commercially viable for many applications. The research work is associated with the 

improvement of the supercapacitors in different device configurations, such as EDL, asymmetric, and 

hybrid LIC systems by integration of advanced material and cell design. The results obtained from the 

studies of different supercapacitor systems demonstrate that the variation in electrode mass, cell 

voltage, and electrolyte has a huge impact on the overall electrochemical performance, stability, life 

expectancy, and safety of the device. Therefore, careful optimization of cell design and advancement 

in electrode materials retains the high importance driving factors of the supercapacitors for the 

development of future energy storage technology. 
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