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1.1. CRYSTAL ENGINEERING: BRIEF HISTORY AND GENERALITIES 

 The cornerstone for technological proliferation has always been the synthesis of new 

materials. However, in the beginning it was considered an art rather than a science. This was 

mainly due to the fact that most of the new synthesized compounds were obtained by 

serendipity and using methods not considered very scientific such as "mix and wait". This 

methodology was used with good results in the 20th century, but nowadays the increasing 

requirement of materials with specific functions demands ad hoc design of new material.[1]  

 One of the first major changes in the rational design of materials was the use of rigid 

and well-defined building blocks. In this way, one of the main problems, i.e. the lack of control 

in the synthesis, was solved, in such a way that the building blocks would maintain their 

structural integrity throughout the construction process, smoothing over the synthesis of the 

targeted product.[2] Note dispensing with such building blocks leads to a poor correlation 

between the reactants and the targeted products. This breakthrough in materials science was 

boosted by crystalline engineering, a field that covers computational studies of interactions 

and their role in determining crystal packing, molecular and supramolecular synthesis, and 

also, by a wide variety of techniques to establish and quantify properties of the obtained 

materials. In this way, it is possible to direct the synthetic methods towards a specific 

compound that is able to fulfil the functional requirements of a desired application, that is, 

carrying out a rational design of a functional molecular solid.[3]  

An outstanding area within the field of crystal engineering is the reticular synthesis 

(named by O. Yaghi).[4] Reticular synthesis is distinguished from supramolecular assembly,[5] 

because in the former, building blocks are linked by strong bonds throughout the crystal, while 

in the second the assembling is conducted by weaker non-covalent interactions. 

 The correlation between shape, symmetry and intermolecular forces is key to the 

successful design of crystalline architectures.[6] To carry out a crystalline design in molecular 

materials, without the presence of coordination bonds, the concepts of tectons and synthons 

are used. Tectons are molecular entities that assemble into aggregates by synthons 

                                                             
1 (a) Stein, A.; Keller, S. W.; Mallouk, T. E. Science, 1993, 259, 1558–1563. (b) Yaghi, O. M.; O’Keeffe, M.; Kanatzidis, M. G. J. Solid 

State Chem., 2000, 152, 1–2. 
2
 (a) Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res., 1998, 31, 474–484. (b) Eddaoudi, M.; Moler, D.; Li, H.; 

Chen, B.; Reineke, T.; O´Keeffe, M.; Yaghi, O. M. Acc. Chem. Res., 2001, 34, 319–330. 
3
 (a) Braga, D.; Grepioni, F.; Orpen, A. Crystal engineering: From molecules and crystals to materials; Kluwer Academic Publishers: 

Boston, 1999. (b) Braga, D.; Brammer, L.; Champness, N.R. CrystEngComm 2005, 7, 1. 
4 (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature, 2003, 423, 705. (b) Ohrstrom, L.; Larsson, 

K. Molecular Based Materials: The Structural Network Approach; Elsevier: Amsterdam, 2005. 
5
 Lehn, J. M. Chem. Scr., 1988, 28, 237–262. 

6
 (a) Desiraju. G. R. Angew. Chem .lnt. Ed. 1995, 34. 2311-2327. (b) Stang, P.J.; Olenyuk, B. Acc. Chem. Res., 1997, 30,502–518. 
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(combinations of functional groups or molecules that are usually linked by the same type of 

non-covalent interactions), giving rise to a supramolecular structure with controlled 

geometries.  

The crystal engineering of metal-organic systems can be divided into two main lines:  

(a) Crystals formed by extended structures (coordination polymers) that are 

propagated by coordination bonds between the metal and the ligand. 

(b) Crystals formed by molecular building blocks (neutral or ionic) that are joined by 

non-covalent interactions. 

Coordination polymers, including metal-organic frameworks (MOF), belong to the first 

case as their framework and crystal design is based on coordination bonds. The second case 

includes organic molecular structures and coordination compounds consisting of discrete 

complex entities, among others, since building blocks are assembled by intermolecular 

interactions. Supramolecular metal-organic frameworks (SMOF), subject of the current PhD 

Thesis, belong to the latter class as they consist of discrete complex entities (see section 1.3).  

1.2. METAL-ORGANIC FRAMEWORKS  

 MOFs or formerly called coordination polymers (CP) are compounds that became 

known in the mid-20th century[7] although they did not arouse any special interest until 

decades later. The seminal papers published by the teams of Robson[8], Kitagawa[9], Yaghi[10], 

Lee and Moore[11] and Férey[12], can be considered the first works that identified the 

outstanding potential of this novel family of porous solids. Due to the increment in works 

related to metal-organic compounds, the terminology referring to MOFs expanded, using 

different names to refer the same types of coordination polymers (1D, 2D, 3D), regardless of 

whether they are compact or open structures.[13] Therefore, observing the great boom that the 

area of MOFs was experiencing, in order to clarify the unceasing increase of ambiguous terms, 

the IUPAC recommended the following definitions: 

                                                             
7 (a) Kinoshita, Y.; Matsubara, I.; Higuchi, T.; Saito, Y. Bull. Chem. Soc. Jpn.1959, 32, 1221–1226. (b) Berlin, A.A.; Matveeva, N.G. 

Russ. Chem. Rev. 1960, 29, 119–128. (c) Block, B.P.; Roth, E.S.; Schaumann, C.W.; Simkin, J.; Rose, S.H. J. Am. Chem. Soc. 1962, 84, 
3200–3201. (d) Knobloch, F.W.; Rauscher, W.H. J. Polym. Sci.1959, 38, 261–262. (e) Kubo, M.; Kishita, M.; Kuroda, Y. J. Polym. Sci. 
1960, 48, 467–471. (f) Tomic, E.A. J. Appl. Polym. Sci., 1965, 9, 3745–3752. 
8 (a) Batten, S.R.; Hoskins, B.F.; Robson, R. J. Am. Chem. Soc., 1995, 117, 5385–5386. (b) Hoskins, B.F.; Robson, R. J. Am. Chem. 

Soc., 1990, 112, 1546–1554. 
9
 (a) Kitagawa, S.; Kawata, S.; Nozaka, Y.; Munakata, M. J. Chem. Soc. Dalton Trans., 1993, 9, 1399–1404. (b) S. Kitagawa, S. 

Matsuyama, M. Munakata, T. Emori, J. Chem. Soc. Dalton Trans. 1991, 11, 2869–2874. 
10

 Yaghi, O.M.; Li, H.L. J. Am. Chem. Soc., 1995, 117, 10401–10402. 
11 Gardner, G.B.; Venkataramani, D.; Moore, J.S.; Lee, S. Nature, 1994, 374, 792–795. 
12

 Riou, D.; Ferey, G. J. Mater. Chem., 1998, 8, 2733–2735. 
13

 Rowsell, J. L.C.; Yaghi, O. M. Micropor. Mesopor. Mat. 2004, 73, 3. 
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Coordination compound: any compound that contains a coordination entity being an ion or a 

neutral molecule, which is composed by a metallic central atom attached to a group of atoms, 

called ligands.  

Coordination Polymers (CP): a coordination compound that spans in 1, 2, or 3 dimensions 

through coordination links. 

Metal-Organic Framework (MOF): a coordinating polymer (or alternatively a coordination 

network) with an open framework that has potentially accessible holes. 

 MOFs are crystalline compounds consisting of both inorganic and organic units. The 

inorganic units are the metal ions or clusters, which can be termed as nodes. Its geometry is 

determined by the coordination number, coordination geometry of the metal ions, and the 

nature of the functional groups. The organic units act as a linkers, connecting the nodes by 

coordination bonds of moderate strength.[14] 

 In fact, the high existing knowledge about these components allows to carry out a 

rational design in order to obtain a material with specific properties. Moreover, the correct 

selection of the metal ion, the ligands and the way in which both can be coordinated are of 

vital importance, allowing a reticular design of the coordination compounds and, therefore, of 

their physical and chemical properties. Figure 1.1 shows the most common coordination 

numbers for each metal ion while Figure 1.2 displays some examples of organic ligands and 

their usual coordination mode in the building up of coordination polymers.  

 

Figure 1.1. Most common coordination numbers and coordination geometries for each metal ion. 

                                                             
14 (a) Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. 

Pure Appl. Chem., 2013, 85, 1715–1724. (b) Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, 
L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. CrystEngComm, 2012, 14, 3001–3004. 
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Figure 1.2. Examples of different organic linkers used in crystal engineering. 
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 The self-assembly process between metal nodes and organic linkers is led by the 

formation of coordination bonds as well as by hydrogen bonds and van der Waals interactions 

between non-metallic components. Therefore, the variation of the coordination geometries of 

the metal ions and functional groups of the ligands, leads to a wide structural diversity ranging 

from discrete entities to extended systems (1D, 2D, 3D) (Figures 1.3 and 1.4).  

Metallic node Ligand/linker                Structure Dimensionality 

 

Figure 1.3. Different structures obtained by node-linker combinations. 
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Metallic node Ligand/Linker                    Structure Dimensionality 

    

Figure 1.4. Different structures obtained by node-linker combinations (cont.). 

 In principle, a bridging ligand (ditopic, tritopic, tetratopic, or multitopic linkers) reacts 

with a metal ion with more than one vacant or labile site. Depending on the ligand features 

and on the coordination number/geometry of the metal ion and synthesis conditions, infinite‐

extended polymeric or discrete oligomeric structures can arise. Furthermore, to control the 

dimensionality of the coordination entity, auxiliary ligands can also be used to block some 

positions of the coordination sphere, imposing geometries of the metallic centre that hinder 

the growth of high dimensionality network or at least, partially reduce it (Figure 1.5). 
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Figure 1.5. Examples of how auxiliary ligands can direct the topology and dimensionality of the 

coordination entity. 

 Sometimes is nearly impossible the design of complex structures just by the 

connection between metallic ions and organic linkers so the use of secondary building units 

(SBUs) takes a great relevance. SBUs are formed not only by the metals that make up the 

cluster but also by the functional groups that give cohesion to it. In this way, a variety of SBU 

geometries with different number of points of connection have been observed in MOF 

structures, such as octahedron (six points), trigonal prism (six points), square paddle-wheel 

(four points), and triangle (three points) (Figure 1.6). 
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INORGANIC UNITS 

 
Triangle 

 
Paddle-Wheel 

 
Tetrahedron 

 
Octahedron 

 
Trigonal Prism 

 

ORGANIC UNITS 

 
Trigonal 

 
Square planar 

 
Tetrahedral 

 
Trigonal 

Figure 1.6. Examples of SBUs. C, N and O atoms are shown in black, green and red respectively. The 

polyhedra in inorganic units are shown in blue while polyhedron defined by carboxylate carbon atoms 

(SBUs) are red. In organic units the polyhedra are shown in green. 
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1.3. SUPRAMOLECULAR METAL-ORGANIC FRAMEWORKS 

1.3.1. Generalities 

 Considering the great potential of MOFs, some time ago it was decided to explore a 

related type of material, in which the coordination bonds are replaced with supramolecular 

interactions as linkers to yield SMOFs that would also contain potential voids (Figure 1.7).  

 

 

 

 

 

(a) (b) 

Figure 1.7. Similarity between (a) coordination bonds and (b) hydrogen bonding interactions as 

structure directing agents. 

Related to this, the area of supramolecular chemistry[15] has experienced a rapid 

growth over the past decades.[16] As previously stated, the supramolecular term includes a 

variety of non-covalent intermolecular interactions, such as, van der Waals forces, π–π 

interactions, and other weak interactions. Despite these type of interactions are not 

individually as strong as covalent interactions, they have demonstrated to be highly valuable in 

the design of large entities called supramolecules,[17] being hydrogen bonding the most 

predominant. Speaking about these last interactions, during decades, the concept of hydrogen 

bonding has evolved through numerous discussions. As a result, there were several 

                                                             
15

 (a) Lehn, J. M. Angew. Chem., Int. Ed., 1990, 29, 1304–1319. (b) Menger, F. M. Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4818–

4822. 
16 (a) Prins, L. J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. Nature, 1999, 398, 498–502. (b) Scherman, O. A. Nat. 

Chem., 2009, 1, 524–525. (c) Aida, T.; Meijer, E. W.; Stupp, S. I. Science, 2012, 335, 813–817. (d) C. Hansell, Nat. Chem., 2014, 6, 
459. 
17

 Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives, Wiley VCH, 1995. 
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definitions[18] until 2011, when the IUPAC published a definitive description of the hydrogen 

bond describing it as “an attractive interaction between a hydrogen atom from a molecule or a 

molecular fragment X–H [the hydrogen-bond donor] in which X is more electronegative than 

H, and an atom or a group of atoms [the hydrogen-bond acceptor] in the same or a different 

molecule, in which there is evidence of bond formation”.[19] 

 Although, there are clear structural analogies between SMOFs and MOFs, a crystal 

structure predominantly grown through only supramolecular interactions has different 

properties from that sustained solely by coordination bonds. In this regard, as above 

mentioned, the strength of supramolecular interactions is generally weak and due to ability of 

molecular solvents to form this type of interactions, many supramolecular networks depend 

on solvent guests. Therefore, the solvent removal, can promote the collapse of the 

supramolecular networks. In fact, despite the large number of porous supramolecular 

structures reported, only a few of them correspond to compounds with permanent porosity 

(Figure 1.8).[20] Nonetheless this apparent disadvantage, provides the ability to regenerate at 

room temperature the structure through dissolution and recrystallization, which is unique 

feature for molecular porous materials (including SMOFs), in contrast to other porous 

materials based on covalent or coordination bonds (Figure 1.9).[21] 

 

Figure 1.8. Representation of the solvent evacuation from a MOF (upper scheme) and SMOF (lower 

scheme). The figure aims to depict the most common cases for each type of compound. 

                                                             
18 Gilli, G.; Gilli, P. Oxford University Press: Oxford, 2009. 
19

 Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; 

Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure 
Appl. Chem. 2011, 83, 1637−1641. 
20 Cooper, A. I. Angew. Chem., Int. Ed., 2012, 51, 7892. 
21 (a) Mastalerz, M.; Oppel,I. M. Angew. Chem., Int. Ed., 2012, 51, 5252. (b) Liu, Y.; Hu, C.; Comotti, A.; Ward, M. D. Science, 2011, 

333, 436. 
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Figure 1.9. Regeneration ability of SMOFs through dissolution-recrystallization process. 

1.3.2. Supramolecular engineering 

 As above mentioned, hydrogen-bonding is the most predominant interactions used to 

build up pre-designed supramolecules, due to both its directionality and its relative strength 

compared to other non-covalent forces. It must be taken into account that, in terms of energy, 

the bond strength of supramolecular interactions is not as strong as covalent interactions but 

the former is often decisive in the resulting crystal structure. In fact, computational 

calculations overall bond energies do not present a significant difference between the two 

interactions in orders of magnitude.[22] However, that depends on the type of hydrogen 

bonding that is used to form the supramolecular synthon. The energy of hydrogen bonds 

ranges from 0.2 to 40 kcal mol−1. This wide energy range is due to several weak forces, such as, 

the polarization, electrostatic, dispersion, charge transfer and exchange-repulsion forces that 

depend on the atoms that are taking part in the hydrogen bonding. Thus, hydrogen bonds can 

be classified in three types, based on their bond energies: weak, moderate, and strong:[23]  

 Weak hydrogen bond (<4 kcal mol−1): dominated by electrostatic and dispersive 

forces. 

 Moderate hydrogen bond (4−15 kcal mol−1): dominated only by electrostatic forces. 

 Strong hydrogen bond (15−40 kcal mol−1): strongly covalent in nature. 

 In contrast to this classification, Desiraju provides a slightly different organization 

based on the strength (Figure 1.10).[24] 

                                                             
22 Gavezzotti, A., New J. Chem, 2016, 40, 6848–6853. 
23

 Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997. 
24

 Desiraju, G. R. Acc. Chem. Res. 2002, 35, 565−573. 
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Figure 1.10. Energies of a wide range of chemically diverse hydrogen bonds (darker coloured areas 

indicate higher bond energies).
 

 Numerous studies in the late of 20th century by Etter,[25] Desiraju[26] and others stated 

that hydrogen bonds are able to connect molecules by well-defined structural units . Desiraju 

termed these structural fragments as supramolecular synthons (Figure 1.11).[6] 

 

(a) 

 

(b) 

Figure 1.11. Supramolecular hetero- (a) and homosynthons (b), coloured in blue, formed by two 

compatible molecular functional groups 

 Since in the area of molecular crystals, supramolecular synthons are the basic building, 

the selection of the synthon is the key to tune the features of the supramolecular aggregate. 

Figure 1.12 lists some examples of supramolecular synthons. 

                                                             
25

 (a) Panunto, T. W.; Urbanczyk-Lipkowska, Z.; Johnson, R.; Etter, M. C. J. Am. Chem. Soc. 1987, 109, 7786−7797. (b) Etter, M. C. J. 

Phys. Chem. 1991, 95, 4601−4610. (c) Etter, M. C.; Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.;Panunto, T. W. J. Am. Chem. Soc. 
1990, 112, 8415−8426.(d) Etter, M. C. Acc. Chem. Res. 1990, 23, 120−126. 
26 (a) Desiraju, G. D. Crystal Engineering: The Design of Organic Solids; Elsevier: New York, 1989. (b) Desiraju, G. R. Prog. Solid 

State Chem. 1987, 17, 295−353. 
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(a) 

 

(b) 

Figure 1.12. Examples of supramolecular synthons divided in (a) homosynthons and (b) heterosynthons.  

1.3.3. Design principles of supramolecular metal-organic frameworks. 

The design of a supramolecular metal-organic framework must be based on the 

following key factors in order to obtain a 3D crystal building that contains potentially 

accessible voids and that is sustained by hydrogen bonds, among other supramolecular 

interactions, as connectors: 

1. Rigid building units. 

2. Rigid synthons connecting this building units. 

3. Non-coplanarity of functional groups involved in the synthons.  

 Although supramolecular engineering presents a wide variety of ways in which the 

previously proposed guidelines can be completed, the following will be taken as the 

cornerstone: the stiffness of the synthesized structures is obtained due to the use of non-

flexible ligands, which in turn have functional groups capable of forming complementary 

hydrogen bonds in more than one position. In this way, a perfect building block is obtained for 

the formation of a rigid and stable supramolecular compound. Although with these guidelines, 

the formation of a supramolecular compound would be allowed, the self-imposed requirement 
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of obtaining three-dimensional structures requires the use of at least three non-coplanar 

synthons. 

1.3.4. Biomolecules as ligands in SMOF 

 For biological or environmentally compatible applications, ligands that meet other 

requirements in addition to those mentioned above are required. For applications where 

organisms will be in contact (such as the release of drugs into living bodies), the generated 

SMOF must be non-toxic. In this sense, biomolecules are ideal candidates to act as 

construction units in the formation of metal-biomolecule framework (MBioFs).[27] MBioFs are 

defined as MOFs built by at least one biomolecule that acts as organic linker. While the time 

studying BioMOF (10 years) is significantly shorter than other types of compounds, they have 

attracted great attention due to their rich supramolecular chemistry, that endorse them 

molecular recognition capability and unique biomimetic properties. Nonetheless, the use of 

biomolecules can also imply significant disadvantages. For instance, symmetry defects that 

cause difficulties synthesizing ordered crystalline materials are characteristic of this type of 

compound. Furthermore, due to the flexibility of some of the biomolecules and their labile 

metal-ligand coordination, biomolecular ligands can lead to interpenetration and unfavourable 

geometries or stoichiometries, resulting in non-porous structures. These disadvantages hinder 

the development of new BioMOFs. For all this, the correct selection of biomolecules and metal 

centres has a considerable nuance in this type of supramolecular chemistry. 

 The use of nucleobases is a very promising area in the synthesis of SMOFs due to their 

ability to allow the formation of rigid structures that fulfil the aforementioned requirements 

based on their multiple possible coordination modes and a series of well suited functional 

groups to stablish rigid synthons. Regarding the potential synthons, note that the pyrimidine 

and purine rings of nucleobases are capable to assemble neighbouring nucleobases by π-π 

interactions. Furthermore, they display several hydrogen bonding donor and acceptor groups 

capable of participate simultaneously in the formation of hydrogen bonds not only with other 

ligands but also with themselves by complementary base pairing interactions.  

 Natural nucleobases, divided in two groups (purines: adenine, guanine and 

pyrimidines: thymine, cytosine and uracil) are the keystone of the basic life, being the primal 

structure of the DNA and RNA double helices (Figure 1.13).  

                                                             
27 (a) Imaz, I.; Rubio‐Martínez, M.; An, J.; Solé‐Font, I.; Rosi, N. L.; Maspoch, D. Chem. Commun. 2011, 47, 7287–7302. (b) Rabone, 

J.; Yue, Y. F.; Chong, S. Y.; Stylianou, K. C.; Bacsa, J.; Bradshaw, D.; Darling, G. R.; Berry, N. G.; Khimyak, Y. Z.; Ganin,  A. Y.; Wiper, P.; 
Claridge, J. B.; Rosseinsky, M. J. Science, 2010, 329, 1053–1057. (c) Rojas, S.; Devic, T.; Horcajada, P. J. Mater. Chem. B, 2017, 5, 
2560–2573. (d) Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P., Coord. Chem. Rev., 2016, 307, 342–360. (e) Beobide, 
G.; Castillo, O.; Cepeda, J.; Luque, A.; Pérez-Yañez, S.; Roman, P.; Thomas-Gipson, J. Coord. Chem. Rev., 2013, 257, 2716–2736. 
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PURINES 

 

 

PYRIMIDINES 

Figure 1.13. Structure of the nucleobases. 

 According to canonical base pairing interactions, (1) adenine binds to thymine or uracil 

by means of two hydrogen bonds, in DNA and RNA, respectively, and (2) guanine, in contrast, 

establishes three hydrogen bonds with cytosine. The large number of available heteroatoms in 

these biomolecules, allows them to act as multidentate organic ligands, in addition to being 

able to form a wide network of hydrogen bonding, which make them suitable ligands for the 

construction of coordination compounds.[28] Due to their great role as ligands in the 

construction of biomimetic compounds,[29] their use in the construction of porous materials is 

not surprising.[30] In this way, the purine type nucleobases are considered the most suitable 

within the nucleobases due to their greater number of coordination atoms since they have two 

aromatic rings. Between the purine nucleobases, the adenine is the most used because of its 

solubility and coordination capability.[31] In contrast, the low solubility and inappropriate 

geometric arrangement of the hydrogen bond donor atoms of guanine limits greatly its use as 

ligand.  

 Adenine or 6-aminopurine has five nitrogen atoms (four endocyclic and the exocyclic 

nitrogen N6) in the following order of basicity: N9> N1> N7> N3> N6,[32] which gives it great 

versatility as ligand. In fact, sixteen different coordination modes have been found where 

adenine coordinates to one or more metal centres (Figure 1.14). 

                                                             
28 (a) Hadjiliadis, N; Sletten, E. Metal Complex-DNA Interactions; John Wiley & Sons: Chichester, 2009. (b) Lippert, B. Coord. Chem. 

Rev. 2000, 200-202, 487. 
29 Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010, 43, 79–91. 
30

 García–Teran, J. P.; Castillo, O.; Luque, A.; García-Couceiro, U.; Roman, P.; Lezama, L. Inorg. Chem. 2004, 43, 4549. 
31 (a) Amo-Ochoa, P.; Zamora, F., Chem. Soc. Rev., 2005, 34, 9–21. (b) Verma, S.; Mishra, A.K.; Kumar, J., Acc. Chem. Res., 2009, 43, 

79–91. 
32 de Meester, P.; Skapski, A. C. J. Chem. Soc., Dalton Trans. 1973, 424. 
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[N3] [N7] [N9] [N3, N9] 

 

[N7, N9] [N1, N9] [N1, N7] [N3, N7] 

 

[N6, N9] [N6-N7, N9] [N3, N7, N9] [N1, N6, N9] 

 

[N3, N6, N9] [N6, N6, N9] [N3, N6, N6, N9] [N1, N3, N6, N9] 

Figure 1.14. Coordination modes of the adenine ligand. 

 As observed in the previous figure, the adenine can act as a simple monodentate 

ligand through the N3, N7 and N9 sites.[33] It can also act as a bidentate ligand with a great 

variety of combinations such as [N3, N9], [N7, N9], [N1, N9], [N1, N7], [N3, N7] and [N6, N9].[34] 

Moreover, as a tridentate ligand [N1, N6, N9], [N3, N6, N9], [N6, N6, N9], [N3, N7, N9] and [N6-

N7, N9] can appear with a wide variety of coordination modes being the exocyclic amine 

capable of coordinating up to two different metal centres.[35] Finally, even though is not very 

                                                             
33 (a) Pérez-Yañez, S.; Castillo, O.; Cepeda, J.; García-Terán, J.P.; Luque, A.; Román, P. Inorg. Chem. Acta, 2011, 365, 211–219. (c) 

García-Terán, J.P.; Castillo, O.; Luque, A.; García-Couceiro, U.; Beobide, G.; Román, P. Dalton Transactions, 2006, 902–911. 
34

 (a) Stylianou, K.C.; Warren, J.E.; Chong, S.Y.; Rabone, J.; Basca, J.; Bradshaw, D.; Rosseinsky, M.J. Chem. Comm., 2011, 47, 3389–

3391. (b) Wang, F.; Tan, Y.-X.; Yang, H.; Zhang, H.-X.; Kang, Y.; Zhang, J., Chem. Comm., 2011, 47, 5828–5830. (c) Paul, A.K.; Sanyal, 
U.; Natarajan, S., Crystal Growth & Desing, 2010, 10, 4161–4175. An, J.; Geib, S.J.; Rosi, N.L. J. Am. Chem. Soc., 2010, 132, 38–39. 
35 (a) Li, T.; Chen, D.-L.; Sullivan, J.E.; Kozlowaki, M.T.; Johnson, J.K.; Rosi, N.L. Chemical Science, 2013, 4, 1746–1755. (b) Pérez-

Yañez, S.; Beobide, G.; Castillo, O.; Cepeda, J.; García-Terán, J.P.; Luque, A.; Aguayo, A.T.; A.; Román, P. Inorg. Chem., 2011, 50, 
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usual, it can also coordinate with four metal centres.[36] Note that although there are lot of 

examples of compounds containing adenine as ligand, herein we have just included some 

referential works. Of all these coordination modes, the [N3,N9] is the most interesting one, 

because of its close resemblance to the coordination mode of a carboxylate group, replacing 

the two oxygen atoms with the nucleobase nitrogens.  

All these features, make adenine one of the more valuable ligand in the design and 

construction of SMOFs.[37] In fact, most of the reported SMOFs are built with this ligand. An 

example is provided by the recurrent paddle-wheel shaped dinuclear complex. This ligand in 

combination with several transition metal ions, under suitable synthesis conditions, can 

provide porous supramolecular compounds (Figure 1.15). 

 

Figure 1.15. View of the crystal packing of the [Cu2(C5H4N5)4(H2O)2]·4H2O paddle-wheel structure 

showing the supramolecular interactions.[38] 

 Another example that fulfils the requirements to be SMOF is a Zn(II) based compound 

[Zn6(µ-ade-κN7:κN9)6(pyridine)6(dimethylcarbamate)6]·10.5DMF, which is composed by zinc-

adeninate hexanuclear entities capable of forming rigid entities, allowing to meet the first 

requirement. The supramolecular scheme of this compound occurs through the Watson-Crick 

faces of the adeninatos, where hydrogen bonding interactions allow to connect each hexamer 

ring to the neighbouring ones in order to form a three-dimensional supramolecular network 

                                                                                                                                                                                   
5330–5332. (c) Pérez-Yañez, S.; Beobide, G.; Castillo, O.; Cepeda, J.; Luque, A.; Román, P. Crystal Growth & Desing., 2012, 12, 
3324–3334.  
36 (a) Yang, E.-C.; Zhao, H.-K. Feng, Y.; Zhao, X.J. Inorg. Chem., 2009, 48, 3511–3513. (b) An, J.; Farha, O.K.; Hupp, J.T.; Pohl, E.; Yeh, 

J.I.; Rosi, N.L., Nat. Comm., 2012, 3, 604. 
37 Beobide, G.; Castillo, O.; Luque, A.; Pérez-Yáñez, Cryst. Eng. Comm. 2015, 17, 3051-3059. 
38 Gonzalez-Perez, J.M.; Alarcon-Payer, C.; Castineiras, A.; Pivetta, T.; Lezama, L.; Choquesillo-Lazarte, D.; Crisponi, G.; Niclos-

Gutierrez, J. Inorg. Chem., 2006, 45, 877. 
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(Figure 1.16). The channels in this network are obtained through the voids generated by each 

individual hexameric unit, which are ordered in the same dimension. However, their entry is 

obstructed by the presence of the pyridine molecule so it is necessary to partially remove it in 

order to use the compound for gas adsorption. In this way, this compound will be able to 

adsorb gaseous molecules although with fairly low results. In the case of N2 the adsorption is 

negligible while in the case of H2 and CO2 the results obtained are 1% of mass and 3.5 mmol/g 

respectively.[39] 

 

Figure 1.16. Hexanuclear ring and 3D supramolecular network of [Zn6(µ-ade-

κN7:κN9)6(pyridine)6(dimethylcarbamate)6]·10.5DMF entity.[39] 

 Following the line of SMOFs with permanent porosity (i.e. capable of adsorbing gases), 

we can stand out the family of compounds based on [Cu2(µ-Hade-κN3:κN9)4Cl2]2+ building unit. 

In these compounds, the nucleobases are tightly anchored to the metal centres by two donor 

positions at the same time (N3 and N9 sites), imposing a rigid building unit. The metal 

coordination geometry imposes a rigid geometrical restraint among the nucleobases providing 

a set of non-coplanar synthons that otherwise would be difficult to achieve. As many hydrogen 

donor/acceptor positions of the nucleobase remain free, these discrete entities are able to 

self-assemble among them by means of complementary double hydrogen bonds (rigid 

synthons) prompting the growth of extended supramolecular solids in which great channels 

are present. In these compounds, the presence of the anion (Cl– or Br–) causes a non-coplanar 

orientation of the dimeric entities to allow obtaining three-dimensional supramolecular 

structures (Figure 1.17). However, the use of neutral adenines implies the presence of 

chloride/bromide counterions to balance the charge, reducing the accessible volume in the 

crystal structure. However, this apparent disadvantage in reducing the accessible volume 

allows this compound to be highlighted as a material that selectively adsorbs gases, that is, it 

                                                             
39

 An, J.; Fiorella, R.P.; Geib, S.J.; Rosi, N.L.,JACS. 2009, 131, 8401–8403. 
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allows the passage of CO2 molecules while preventing the entry of others such as N2, H2 or CH4 

causing a great interest as a selective adsorption material.[40] 

 

Figure 1.17. Supramolecular 3D structure made by [Cu2(µ-Hade-κN3:κN9)4Cl2]2+ entities.[40] 

 In both cases, the requirements necessary to form the desired porous SMOF 

compounds have been met. In the following case, examples of supramolecular compounds will 

be given that do not meet all the requirements and, therefore, do not allow obtaining porous 

structures. 

 The first case belongs to the [Co3(µ-Hade)2(µ-Cl)4Cl2(H2O)4]·2H2O compound where the 

linkage of the metal centres occurs through the bridges generated from four chloride ions and 

two adenines. Although the coordination mode through the N3 and N9 atoms of adenine 

guarantees that the Watson-Crick face of adenines are free, in such a way that they can form a 

hydrogen bonding scheme analogously to the previous compounds, the water molecules 

interact with the N1 atom of the purine base. As a consequence, a one-dimensional chain is 

formed through the chloride ions and the water molecules instead of a three-dimensional 

structure (Figure 1.18). As the water molecules present in the compound (due to its 

participation as a solvent in the synthesis) have prevented the formation of the desired three-

dimensional structure, it would be expected that a synthesis in the absence of solvent could 

provide the desired structure. 

                                                             
40 Thomas-Gipson, J.; Beobide, G.; Castillo, O.; Fröba, M.; Hoffmann, F.; Luque, A.; Pérez-Yáñez, S.; Román, P., Cryst. Growth Des. 

2014, 14, 4019-4029. 
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Figure 1.18. Hindrance in the formation of supramolecular bond between adenines due to the presence 

of water molecules.[41] 

 The last example is given by the compound [Co3(6-Clpur)2(H2O)4]·4H2O. In this case the 

Co(II) metal centres are linked through the N9 positions of two 6-chloropurine and four water 

molecules. As a result, a rigid structure is obtained due to the intramolecular hydrogen 

bonding scheme that occur between the N3 atom of 6-chloropurine and the adjacent water 

molecules (Figure 1.19). Due to the deprotonation of 6-chloropurine, interactions between 

neighbouring 6-chloropurine molecules only happen through π–π stacking. For all this, the 

compound does not present any porosity. 

                                                             
41 Thomas-Gipson, J.; Beobide, G.; Castillo, O.; Luque, A.; Pascual-Colino, J.; Pérez-Yáñez, S.; Román, P., CrystEngComm 2018, 20, 

2528-2539. 
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Figure 1.19. Hydrogen bonding (blue dot lines) and π–π stacking (red dot lines) interactions 

between entities.[41] 

1.4. SYNTHETIC METHODS 

 Another point to consider is the synthesis conditions, since they can influence 

significantly in the final product obtained. The choice of solvents, mixtures or even the absence 

of them, as well as the control of the pH, the temperature, humidity and pressure are factors 

to consider. The selection and variation of these factors is of special interest allowing to obtain 

different crystalline structures generated from the same building blocks. Next, the most 

commonly used synthesis methods to obtain new metal-organic compounds are briefly 

detailed.[42] 

 Solvent evaporation method. In order to successfully obtain crystals of new 

compounds, previously, certain requirements must be met. Firstly, the concentration 

of the obtained product must be high enough to reach saturation. Likewise, special 

care must be taken in the cooling process, due to the possible crystallization of sub-

products, obtained in the synthetic process. In fact, the constants of solubility for each 

product play a fundamental role, since the continuous evaporation of the solvent can 

cause by-products that were dissolved to crystallize, reaching saturation values (Figure 

1.20). 

                                                             
42

 Hermann, W.A. Synthetic Methods of Organometallic and Inorganic Chemistry, Georg Thieme Verlag Stuttgart, New York 1977. 
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Figure 1.20. Schematic representation of the synthetic method. 

 Diffusion method. This method is based on the slow interaction of the species in 

solution due to a physical barrier and can be divided into two depending on the barrier 

that separates the species. In the first one, the barrier is a solvent liquid layer that 

separates the metal salt in a solvent and another containing the organic linker. They 

must have different densities, being the solvent layer the one that must be in the 

middle of the other two. In this way, the organic ligand containing solvent slowly 

diffuses into the separate layer and crystal growth occurs at the interface (Figure 

1.21a). The second one, involves a physical barrier that slows the diffusion of reactants 

(Figure 1.21b). The diffusion method is preferred to obtain single crystals suitable for 

X-ray diffraction analysis instead of powder products, especially if the products are 

poorly soluble. 

  

(a) (b) 

Figure 1.21. Schematic representation of two diffusion methods. 
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 Hydro(solvo)thermal method. This method exploits the self-assembly of products 

from soluble precursors.[43] It was originally used for the synthesis of zeolites, but it has 

been adapted to the synthesis of MOFs. In contrast with the previous synthetic 

methods, the temperature range is significantly higher, with values that oscillate 

between 80–260 ᵒC. The entropic effect of high temperatures favours a greater 

connectivity between the metal centres, giving access to new 3D MOFs structures. In 

these conditions, the properties of the solvent vary (reduction of the viscosity, 

modification of its dissociation constant, ...) increasing the solubility of the reagents, 

which allows the use of a large number of both organic and inorganic precursors. The 

reagents, that previously are homogenized, are added inside a closed reactor 

(autoclave) under autogenous pressure (Figure 1.22). The type of product that can be 

obtained is mainly influenced by onset temperature and the rate of cooling speed at 

the end of the reaction. 

 

Figure 1.22. Representation of the synthetic route in a solvothermal procedure. 

 Microwave reaction and ultrasonic methods. These are not often used, for the 

preparation of single-crystals of MOFs, but are an invaluable technique to perform 

high-speed synthesis. It is also a good method to control the size and the shape of the 

resulting particles. In contrast to solvothermal synthesis, where heating the reactor 

with the mixture of reagents occurs by convection and conduction from the outside of 

the reactor to its interior, in microwave synthesis it is due to the interaction of the 

                                                             
43

 (a) Tian, Y.-Q.; Zhao, Y.-M.; Chen, Z.-X.; Zhang, G.-N.; Weng, L.-H.; Zhao, D.-Y. Chem. Eur. J., 2007, 13, 4146. (b) Meek, S. T.; 

Greathouse, J. A.; Allendorf, M. D. Adv. Mat., 2011, 23, 249. (c) Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. 
Micropor. Mesopor. Mater., 2010, 132, 121. (d) Zubieta, J.: Comprehensive Coordination Chemistry II, Elsevier Ltd, 2004, 1, 
697. 
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electric field of microwave radiation with the dipole moment of the molecules in the 

reaction medium, producing a heating from the inside to the outside (Figure 1.23).[44] 

Microwave heating Conventional heating 

 

Figure 1.23. Differences between heating using a microwave and a conventional oven.[45] 

1.5. APPLICATIONS OF POROUS METAL-ORGANIC MATERIALS 

 Synthesis conditions in porous compounds significantly influence the applicative 

properties of the products obtained. Although the type of ligand, the metal and the 

coordination mode are very important variables to consider, the porous nature is the 

cornerstone in order to model its properties. In fact, their high and permanent porosity levels 

are one of the most important characteristics of metal-organic networks, being also 

noteworthy for their low density and high surface value.[46] Next, some of the most widely-

known applications of this type of compounds are going to be detailed.[47] 

 In addition, the progress that has involved the use of these easily tunable materials for 

industrial purposes has led to the development of new chemical methodologies to 

                                                             
44 (a) Amo-Ochoa, P.; Givaja, G.; Sanz Miguel, P. J.; Castillo, O.; Zamora, F. Inorg. Chem. Comm., 2007, 10, 921–924. (b) Thi Dang, 

Y.; Trung Hoang, H.; Cao Dong, H.; Thi Bui, K.-B.; Ho Thuy Nguyen, L.; Bach Phan, T.; Kawazoe, Y.; Le Hoang Doan, T. Micr. Meso. 
Mat., 2020, 298, 110064. (c) Wu, X.; Bao, Z.; Yuan, B.; Wang, J.; Sun, Y.; Luo, H.; Deng, S. Micr. Meso. Mat., 2013, 180, 114–122.  
45

 Sweygers, N.; Alewaters, N.; Dewil, R.; Appels, L., Scientific Reports, 2018, 8, 7719. 
46 Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, F.; Yazaydin, A.; Snurr, R.Q.; O´Keeffe, M.; Kim, J.; Yaghi, O.M. 

Science, 2010, 329, 424-428. 
47

 Phan, A.; Czaja, A. U.; Gándara, F.; Knobler, C. B.; Yaghi, O. M. Inorganic Chemistry, 2011, 50, 7388-7390 



Introduction 

 

  27 

functionalize their internal areas,[48] to generate new flexible porous materials (also known as 

breathing),[49] and to obtain them in shape thin-film[50] or as nanoparticles.[51] Additionally, 

simple synthetic methods have been developed to scale the production of these compounds to 

industrial quantities, helping their applications to be extended.[52] Table 1.1 shows referential 

examples of MOFs and their applications. 

1.5.1. Sorption and storage 

 It has been decided to combine the sorption and storage properties because they are 

usually overlapping processes that take place in many MOFs. The term of sorption is given 

when the porous compound is able to occlude within its channels, in a satisfactory manner, 

several molecules. At this point, this sorption process can be divided into two depending on 

the state of aggregation of the compound that are being added. It is called absorption when 

the compounds are in liquid phase, usually solvents, and adsorption when gas-phase 

molecules are trapped in the pores. Molecules in gas phase tend to be in greater demand, 

because they are released as a by-product in many industrial chemical reactions (CO2, SO2, 

NOx…) as well as in the use of cleaner fuels (H2, CH4), encouraging green chemistry and 

reducing pollution (Figure 1.24).[53] 

 The chemical storage systems have either low storage capacity or need high 

temperature to release the adsorbed gas molecule. In physical adsorption, molecules are 

adsorbed inside the micropores of porous materials. The basic advantage of physical 

adsorption is its reversibility and fast kinetics of sorption compared to chemical adsorption, 

but it has also disadvantages as the very low adsorption enthalpy, resulting in high storage 

capacity only at very low temperatures. In fact, MOFs have shown quite high storage capacity 

for hydrogen through physical adsorption.[54] 

                                                             
48 Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315. 
49 Férey, G.; Serre, C. Chem. Soc. Rev. 2009, 38, 1380. 
50 Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Chem. Soc. Rev. 2009, 38, 1418. 
51 Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Chem. Soc. Rev. 2009, 38, 1218–1227. 
52

 Czaja, A. U.; Trukhan, N.; Müller, U., Chem. Soc. Rev. 2009, 38, 1284. 
53

 (a) Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Adv. Funct. Mater. 2006, 16, 520–524. (b) Saha, D.; Wei, Z.; Deng, S.; Int. J. 

Hydr. En. 2008, 33, 7479–7488. (c) Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Micr. and Mes. Mat. 2012, 152, 246–252. 
(d) Bao, Z.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q.; Lu, X.; Deng, S. J. Col. Int. Sci., 2011, 357, 504–509. (e) Moellmera, J.; Moellera, 
A.; Dreisbach, F.; Glaeser, R.; Staudt, R. Micr. and Mes. Mat. 2011, 138, 140–148. 
54

 Kaneko, K.; Rodríguez-Reinoso, F. Nanoporous Materials for Gas Storage, Singapore : Springer, 2019. 
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Figure 1.24. Schematic illustration of selective gas adsorption in a flexible MOF.[55] 

1.5.2. Drug delivery and medical applications 

 A great challenge in the medical field was finding a non-toxic material that allows a 

proper storage and subsequent release of drugs. Because of their ability to adjust and 

functionalize pore size, MOFs have been shown to be useful in the field of biomedicine (Figure 

1.25). The large surface area and pore sizes of these materials guide the therapeutic pathway 

of many drugs,[56] becoming particularly applicable as a protection and supply in molecular 

therapies, biocatalysis, virus and cell manipulation and biopharmaceuticals. Not all the MOFs 

fulfil the prerequisites to be a drug deliver: the particle size of their porous must be 

nanometric, and it cannot be toxic.[57] Good examples are mesoporous MIL-100 and MIL-101 

MOFs from Horcajada et al., storing and releasing many drugs such as ibuprofen.[58] 

 

Figure 1.25. Drug delivery scheme of MIL-101.[59] 

                                                             
55 Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev., 2009, 38, 1477–1504. 
56

 Jiao, L.; Joanne, S.; Skinner, W.; Wang, Z.; Jiang, H.-L. Materials Today. 2019, 27, 43–68. 
57 Lanchas, M. (2015). “Métodos no convencionales para la preparación de polimeros de coordinación porosos. Una aproximación 

económica, medioambientalmente amigable y escalable”, D. Tesis, UPV-EHU, Leioa (España). 
58 Horcajada, P.; Serre, C.; Vallet‐Reg, M.; Sebban, M.; Taulelle, F.; Frey, G. Angew. Chem. Int. Ed. 2006, 45, 5974 –5978. 
59 Wang, X.G.; Dong, Z.Y.; Cheng, H.; Wan, S.S.; Chen, W.H.; Zou, M.Z.; Huo, J.W.; Deng, H.X.; Zhang, X.Z. Nanoscale, 2015, 7, 

16061. 
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1.5.3. Catalytic activity 

 MOFs have been widely used as a catalyst, to carry out both organic and inorganic 

reactions. In fact, this activity was one of the first proposed applications for metal-organic 

networks, and also has been demonstrated with a plethora of examples.[60] The pore sizes of 

MOFs are suitable for acting as hosts for small molecules and for chemical reactions. In 

addition, due to their orderly and well-defined pore structure, they can be used for 

encapsulating metal nanoparticles or binding catalyst molecules.[61]  

 One of the most typical catalytic activity in these porous materials was the solid base 

heterogeneous catalysts[62], which has attracted a great deal of attention for the advantages 

that they can accomplish in comparison with the homogeneous analogues. Firstly, solid bases 

are less corrosive. Moreover, it is much easier the separation between the catalysts and the 

products, allowing to be reused.[63] As a result, these solid bases are economically and 

ecologically helpful dealing a strong impact in green chemistry. Its importance has been 

effectively demonstrated in Knoevenagel[64], aldol condensation[65], Michael addition[66] and 

esterification reactions[67], among others.  

  

                                                             
60 Valtchev, V.; Mintova, S.; Tsapatsis, M. Ordered Porous Solids, Recent Advances and Prospects, Elsevier Science, 2009. 
61 Saha, D.; Sen, R.; Maity, T.; Koner, S. Langmuir, 2013, 29, 3140–3151. 
62 (a) Niebing, S.; Janiak, C. Molecular Catalysis, 2019, 467, 70–77. (b) Zhao, S.-N.; Song, X.-Z.; Song, S.-Y.; Zhang, H.-j. Coord. Chem. 

Rev. 2017, 337, 80–96. (c) Ren, Y.‐w.; Liang, J.‐x.; Lu, J.‐x.; Cai, B.‐w.; Shi, D.‐b.; Qi, C.‐r. Jiang, H.‐f.; Chen, J.; Zheng, D. Eur. J. Inorg. 
Chem. 2011, 28, 4369–4376. 
63

 (a) Valvekens, P.; Vermoortele, F.; Vos, D. D. Catal. Sci. Technol. 2013, 3, 1435–1445. (b) Larrea, E. S.; Fernández de Luis, R.; 

Orive, J.; Iglesias, M.; Arriortua, M. I. Eur. J. Inorg. Chem. 2015, 10, 4699–4707. 
64

 Valvekens, P.; Vandichel, M.; Waroquier, M.; Van Speybroeck, V.; De Vosa, D. Jornal of Catalysis, 2014, 317, 1-10. 
65 Kikhtyanin, O.; Kubička, D.; Čejka, J. Catalysis Today, 2015, 243, 158–162. 
66

 Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Chem. Rev. 2017, 117, 8129−8176. 
67

 Xu, Z.; Zhao, G.; Ullah, L.; Wang, M.; Wang, A.; Zhang, Y.; Zhang, S. RSC Adv., 2018, 8, 10009–10016. 
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Table 1.1. Some examples of MOFs and their applications. 

Application MOF Metal Ligand 

Adsorption 
Adsorption of CO2 over 
N2

[68] 
Mn3(HCOO)6·nDEF Mn Formic acid 

Ar and CH4 sorption[69] *Cu(trans‐fum)+ Cu Fum: Fumaric acid 

Reversible H2O 
sorption/desorption[70] 

[Ni7(suc)6(OH)2 (H2O)2·2H2O Ni Suc: Succinic acid 

Highly selective 
adsorption of CO2

[71] 
CD‐MOF‐2 Rb γ‐CD 

Adsorption[72] CD‐MOF‐1, CD‐MOF‐2 and CD‐MOF‐3 K, Rb and Cs γ‐CD 

Storage 

Methane storage[73] MOF‐5 Zn4(1,4‐bdc)3 Zn Bdc 

Adsorption and 
storage[74] 

HKUST( Hong Kong University of Science 
and Technology)‐1 Cu2(H2O)2(CO2)4 

Cu H3btc 

Medical applications 

Drug delivery[58] MIL‐101 *Cr3O(OH,F,H2O)3(1,4‐bdc)3 and 
MIL‐100 

Cr 1,4‐benzenedicarboxylate 
moieties (bdc) or H3btc 

Antibacterial[75] Cu‐BTC(MOF‐199) Cu H3btc 

Cation drugs and 
lanthanide ions 
exchange 
capabilities[76] 

Zn8(Ade)4(bpdc)6O·2 Me2NH2·8 

DMF·11H2O 

Zn Adenine and bpdc: 
biphenyldicarboxylate 

Therapeutic agent[77] BioMIL-1 Fe Nicotinic acid (vitamin B3) 

Drug storage/release 
or immobilization and 
organization of large 
biomolecules

[76]
 

Bio‐MOF‐100 Zn Adenine 

Catalytic activity 

Heterogeneous 

asymmetric catalysts 

for the methanolysis of 

rac‐propylene oxide[78] 

Ni2(L‐Asp)2(4,4′‐bipy)·(HCl)1.8(MeOH) 

Cu2(L‐Asp)2(bpe)·(HCl)2·(H2O)2 

Ni 

Cu 

L‐Asp and 4,4′‐bipy 

L‐Asp and bpe: 1,2‐bis(4‐

pyridyl)ethane 

                                                             
68 Dybtsev, DN; Chun, H; Yoon, SH; Kim, D; Kim, K., J. Am. Chem. Soc. 2004, 126, 32–33. 
69

 Seki, K; Takamizawa, S; Mori, W. Chem. Lett. 2001, 30, 122–123. 
70 Forster, PM; Cheetham, AK. Angew. Chem., 2002, 41, 457–459. 
71 Gassensmith, JJ.; Furukawa, H.; Smaldone, RA.; Forgan, SS.; Botros, YY.; Yaghi, OM.; Stoddart, JF. J. Am. Chem. Soc. 2011, 133, 

15312–15315. 
72 Forgan, RS.; Smaldone, RA.; Gassensmith, JJ.; Furukawa, H.; Cordes, DB.; Li, Q.; Wilmer, CE.; Botros, YY.; Snurr, RQ.; Slawin, 

AMZ.; Stoddart, JF. J. Am. Chem. Soc. 2012, 134, 406–417. 
73

 (a) Li, H; Eddaoudi, M; O'Keeffe, M.; Yaghi, O. M. Nature, 1999, 402, 276–279. (b) Eddaoudi, M; Kim, J; Rosi, N; Vodak, D; 

Wachter, J; O'Keeffe, M; Yaghi, O. M. Science, 2002, 295, 469–472. 
74

 Rowsell, JLC.; Yaghi, OM. J. Am. Chem. Soc. 2006, 128, 1304–1315. 
75

 Rodrıguez, HS.; Hinestroza, JP.; Ochoa‐Puentes, C.; Sierra, CA.; Soto, CY. J. Appl. Polym. Sci. 2014, 131, 40815. 
76 An, J.; Geib, SJ.; Rosi, NL. J. Am. Chem. Soc. 2009, 131, 8376–8377. 
77

 Miller, SR.; Hertaux, D.; Baati, T.; Horcajada, P.; Greneche, JM.; Serre, C. Chem. Commun. 2010, 46, 4526–4528. 
78

 Ingleson, MJ.; Barrio, JP.; Bacsa, J.; Dickinson, C.; Park, H.; Rosseinsky, MJ. Chem. Commun. 2008, 11, 1287–1289. 
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1.6. OBJECTIVES 

Keeping in mind the crystal design principles described in section 1.3.3., the main goal 

of the current PhD thesis is to develop new supramolecular metal-organic materials, built up 

from discrete molecular building blocks which are based on ligands suited with functional 

groups that can lead the self-assembly process by means of the establishment of robust 

synthons. Implicit in this major goal, the performed research aims to deeply analyse the 

obtained crystal structures in order to understand how the features of the synthesised 

molecular building blocks govern the crystal packing and porosity of the obtained compounds. 

Furthermore, the performed research work aims also to design molecular building 

blocks with tunable magnetic behaviour, with the capacity to self-assemble into a 

multifunctional material that brings together porosity with relevant magnetic properties. 

As a last objective, the current research work pursues to explore the application of the 

developed SMOFs. This is an important point, since although the applications of MOF have 

been widely explored, the studies performed on SMOF are scarce and circumscribed to gas 

sorption experiments, trapping of certain chemical species and luminescent properties. Thus, 

the discovery of novel and promising application for SMOFs, could boost the interest from the 

scientific community in this kind of materials.  

Regarding the units comprising the molecular building blocks, we have selected 

copper(II) ion as metal centre, due to the plasticity of its coordination sphere, to its 

intermediate Pearson hardness that makes it suitable for common N and O donor atoms, and 

straightforward modelling of the magnetic properties of its compounds. Nonetheless, the 

aimed modulation of the magnetic properties will conduct us to incorporate other transition 

metals (M) in order to achieve heterometallic Cu/M building blocks (M: Cr(III), Mn(III), Co(II), 

Ni(II), Zn(II)).  

As ligands, we have selected 2-hydroxyquinoline-4-carboxylate and adenine due to 

their potential capability to yield, upon the coordination to a transition metal ion, molecular 

building blocks that can fulfil the three criteria required to self-assemble as a SMOF (Figure 

1.26). 
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2-hydroxyquinoline-4-carboxylato ligand Adeninato ligand 

Figure 1.26. Representation of the selected ligands showing a coordination mode that would provide a 

rigid molecular building block, suited with predictable and rigid synthons. 
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2.1. INTRODUCTION 

 This chapter assesses the capability of 2-hydroxyquinoline-4-carboxylate (HQ) ligand to 

generate supramolecular metal-organic frameworks. In this respect, this section rationalises 

the criteria in which is based the selection of the ligand and summarises some of the most 

representative published research works that have dealt with metal-HQ complexes.  

 Neutral or monoanionic HQ ligand presents a tautomeric equilibrium between its 

quinoline and quinolinone forms (Figure 2.1).[79] In any case, as it is described below both 

tautomers are expected to behave analogously in terms of crystal design. 

 

Figure 2.1. The tautomers of the HQ ligand in its neutral form. 

 As mentioned in the introductory chapter, the assembling of discrete or low 

dimensionality metal-organic complexes by means of non-covalent interactions (hydrogen 

bonds and π-π interactions) has demonstrated to be well-suited tool in the crystal engineering 

of supramolecular metal-organic framework (SMOF). The success of such goal relies on the 

fulfilment of a series of prerequisites: (a) the use of rigid building blocks, (b) the formation of 

rigid synthons in a predictable manner between the building blocks and (c) the presence of a 

minimum set of synthons contained in non-parallel planes that ensures the growth in three 

dimensions.[80] 

 Keeping in mind the aforementioned, 2-hydroxyquinoline-4-carboxylate has been 

chosen as ligand for its envisaged suitability to yield molecular building blocks that fulfil all the 

three criteria. Firstly, HQ ligand presents several possible modes of coordination (Figure 2.2), 

among which B (carboxylate chelation), C (carboxylate syn-syn bridging), E and F can provide 

stiff building blocks, in which the double N–H···O=C synthon (see below) would be potentially 

enable. However, the most recurrent coordination mode, i.e. A-coordination mode, binds to 

the metal through a single coordination bond through which the rotation of the HQ ligand 

                                                             
79

 (a) Bernstein J. Phys. Chem. 1987, 91, 27, 6610-6614. (b) Tokay, N.; Ögretir, C. J. Mol. Struct. (Theochem). 2002, 594, 185–197. 

(c) Bu, Lintao; E. Himmel, M; R. Nimlos, M. ACS Symposium Series, 2010, 1052, 99–117. 
80 Thomas-Gipson, J.; Pérez-Aguirre, R.; Beobide, G.; Castillo, O.; Luque, A.; Pérez-Yáñez, S.; Román, P. Cryst. Growth Des. 2015, 

15, 975-983. 
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would be permitted and therefore, the resulting building blocks would not fulfil the first 

criterion. 

 

                      (a)                                     (b)                                      (c) 

 

            (d)                                (e)                             (f)                            (g) 

 

Figure 2.2. Coordination modes of HQ ligand and frequency of occurrence of each coordination mode 

subtracted from a search in CSD (Cambridge Structural Databases).
[81] 

The search has considered the 

two tautomeric forms of Figure 2.1. 

                                                             
81 (a) Cambridge Structural Database (CSD). Version 5.41 (2019). (b) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta 

Cryst. 2016, 72, 171-179. 

0

5

10

15

20

25

30

A B C D E F G

Fr
eq

u
en

cy
 o

f 
o

cu
rr

en
ce

 (%
) 



2-Hydroxyquinoline-4-carboxylic acid based SMOFs 

 

  38 

 Secondly, the disposition of the endocyclic N-atom and OH group (or alternatively, C=O 

and N-H ensemble in its quinolinone tautomer) is suitable to guide a self-assembly process by 

means of complementary hydrogen bonding (i.e. a rigid and predictable synthon) (Figure2.3).  

 

Figure 2.3. Complementary hydrogen bonding scheme between neutral HQ tautomers. 

 Last but not less, the ionic charge of the carboxylate form (2-hydroxyquinoline-4-

carboxylate) implies the coordination of at least two HQ molecules per M(II) centre, which 

might be helpful to generate a building block capable of stablishing synthons that provide non-

parallel supramolecular growing vectors. In this sense, note that the use of charge neutral 

bulky co-ligands can make more favourable to afford non-parallel synthons. Alternatively, the 

increase of the charge of the metal centre could make also even more favourable the 

fulfilment of the third criteria, since to afford a charge neutral complex entity; more than two 

HQ ligands per metal centre would be required. Nonetheless, as the carboxylate syn-syn 

bridging mode is the preferred mode, it seems feasible the formation of paddle-wheel type 

M(II)-dinuclear complexes,[82] in such a way, that to balance the charge, each dinuclear 

complex should incorporate four monoanionic HQ bridges. Consequently, the proposed 

building block would fulfil simultaneously the above-mentioned three criteria. Figure 2.4 

shows the plausible paddle-wheel shaped Cu(II)-dinuclear entities of formula [Cu2(HQ)4] for 

each HQ tautomer, indicating the sites through which the supramolecular self-assembly 

process is expected to occur. 

                                                             
82 (a) Van Niekerk, J. N.; Schoening, F. R. L. Acta Crystallogr. 1953, 6, 227. (b) Rap, V. M.; Manohar, H. Inorg. Chim. Acta 1979, 34, 

L213. (c) Yamanaka, M.; Uekusa, H.; Ohba, S.; Saito, Y.; Iwata, S.; Kato, M.; Tokii, T.; Muto, Y.; Steward, O. W. Acta Crystallogr. 

1991, B47, 344. (d) Werner, U.; Christina, S.; Matthias, V.; Marcus, L.; Friedhelm, R.; Jutta, K. Z. Anorg. Allg. Chem. 2015, 641, 253–

260. 
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(a) (b) 

Figure 2.4. Plausible paddle-wheel shaped Cu(II)-dinuclear entities for the two tautomers of HQ 

ligand (D: hydrogen bond donor site; A: hydrogen bond acceptor site). Note, that the relative position 

of the HQ ligands is inverted between the neighbouring ones, while it is equivalent between the 

opposed ones. This kind of configuration is called up-down-up-down (UDUD). Other, possibilities are 

UUDD and UUUU. The type of configuration of course, will determine the resulting topology of the 

supramolecular network. 

 A detailed analysis of the 19 metal-organic crystal structures containing HQ ligand 

published up date in the CDS,[82] reveals that ten of them are built of discrete metal/HQ 

complexes, including mononuclear and dinuclear species (Figure 2.5). The mononuclear Ni(II) 

entity[84] does not meet the first criteria, since it allows the rotation along the single metal-HQ 

coordination bond and as a result, it does not render what we could consider a SMOF. Both 

reported Ga(III) complexes, [Ga2(HQ)2(CH(SiMe3)2)4]·2THF and [Ga4(HQ)4(CH(SiMe3)2)4]·6THF, 

can be regarded as rigid building blocks; the former complex meets the second criteria but not 

third one, while the second one meets all the three criteria required to afford a SMOF. 

However, the selected synthesis solvent (H2O) is a strong hydrogen bonding acceptor and acts 

as disruptor of the HQ pairing interactions, inhibiting the self-assembly of the complexes. 

Contrarily, [M2(HQ)6(H2O)4] 8H2O (M(III): La, Ce, Pr, and Eu) and [M2(HQ)6(H2O)2(DMF)2] 2H2O 

(M(III): Eu, Dy and Ho) fullfill the three criteria simultaneusly and, as expected, the self-

assembling of the complex units weaves a 3D porous supramolecular architecture with 1D 

channels (Figure 2.6) in which crystallization water molecules are hosted (porosity: 3.0–19.1%). 

This was not reflected by the authors in the original manuscript, which was mainly focus on the 

luminescence properties of the compounds. The remaining nine structures have polymeric 

frameworks (1D and 3D) and therefore, they have been disregarded from this prelimar 

analyisis. 
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 In any case, none of the reported structures fits to our above envisaged paddle-wheel 

type structure, but we must note that the published examples are relatively scarce and most of 

them are built up with unsuitable metal centres (i.e. higher coordination number and/or ionic 

charge: lanthanide(III), cadmium(II) and gallium(III)). So that herein we have selected Cu(II) as 

metal centre due to (a) its relation with the research work developed in the next chapters and 

(b) its trend to form paddle-wheel type entities.  

 

[Ni(HQ)2(H2O)4][83] 

  

         [Ga2(HQ)2(CH(SiMe3)2)4]·2THF[84] [Ga4(HQ)4(CH(SiMe3)2)4]·6THF[85] 

  

[M2(HQ)6(H2O)4]·8H2O (M(III): La, Ce, 

Pr, and Eu)[85] 

[M2(HQ)6(H2O)2(DMF)2]·2H2O (M(III): Eu, Dy and Ho)[86] 

Figure 2.5. Examples of compounds with HQ and BPA and the coordination modes of HQ. 

                                                             
83 Yuan, G.; Qin, J.-S.; Su Z.-M.; Shao, K.-Z.; Fu, Y.-M. Acta Cryst. 2008, 64, m389-390. 
84 Uhl, W.; Stefaniak, C.; Vo, M.; Layh, M.; Rogel, F.; Kosters, J. Z. Anorg. Allg. Chem. 2015, 641, 253. 
85 Rui, F.; Fei-Long, J.; Ming-Yan, W.; Lian, C.; Chun-Feng, Y.; Mao-Chun, H.; Cryst. Growth Des. 2010, 10, 2306–2313. 
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Figure 2.6. View of the crystal packing in [M2(HQ)6(H2O)4]·8H2O (M(III): La, Ce, Pr, and Eu).
[86]

 Hydrogen 

atoms have been omitted for clarity.  

 Keeping in mind the described analysis, several synthetic conditions were explored 

with the aim of obtaining metal/HQ complexes that fulfil the requirements to assemble into a 

SMOF. Precisely, the effect of the synthesis temperature and use of bulky co-ligands were 

assessed. Room temperature syntheses, provided dinuclear complexes (codes: 0D-

CuHQMEOH, 0D-CuHQAQ) with µ-HQ-κOcarboxylate:κOcarboxylate bridging mode for the HQ ligand, 

but not with the pursued carboxylate syn-syn bridging mode. In both cases, the observed 

dinuclear building block is rigid, but the synthons implying the N-H/O groups of the HQ (Figure 

2.3) are parallel. Thus, in a third trial, we included pyridine (PY) and 4,4’-bipyridinethane (BPA) 

as bulky co-ligands with the aim of (a) favouring the occurrence of non-parallel synthons (PY 

and BPA) and (b) providing an alternative growing vector (the cross-linking of complex entities 

through BPA) that could make more probable the formation of a robust and porous 3D 

structure sustained by a combination of complementary synthons and bridging ligands. 

However, steric hindrance of pyridine led to a change into the bridging mode of the HQ ligand 

(µ-HQ-κOcarboxylate:κOcarbonyl) and rendered a dinuclear entity (0D-CuHQPY) in which the 

aforementioned synthons are still parallel, ruling out again the formation of a 3D open 

supramolecular framework sustained by robust and predictable synthons. Similarly to pyridine, 

the coordination of the BPA ligand alters the coordination mode of the HQ ligands to µ-HQ-

κOcarboxylate:κO’carboxylate, rendering a 2D coordination network in which HQ pairing interactions 

only take place within the polymeric layers.  

 Coming back to compounds 0D-CuHQMEOH and 0D-CuHQAQ, since each copper atom 

of the dinuclear entities exhibits two coordinated solvent molecules, the accomplishment of 



2-Hydroxyquinoline-4-carboxylic acid based SMOFs 

 

  42 

targeted paddle-wheel structure should be entropically favoured at higher synthesis 

temperatures. Accordingly, upon a mild increase of the synthesis temperature (358 K), Cu(II) 

and HQ assembled as the paddle-wheel structure depicted in Figure 2.4a. As predicted, the 

obtained complex (1D-CuHQ) fulfils all the three criteria and the self-assembling by means of 

the complementary hydrogen bonding between HQ ligands weaves an open 3D 

supramolecular-framework (lvt-type topology). In any case, the overall structure is doubly 

interpenetrated, in such a way, that the dinuclear entities of the two coexisting 

supramolecular lvt-type networks are successively assembled by means of an elongated 

coordination bond that implies the free apical position of the paddle-wheel entity. Thus, the 

crystal structure could be alternatively described as a 1D coordination polymer crosslinked by 

complementary hydrogen bonding of HQ groups. At higher synthesis-temperature (433 K), 

unexpectedly, HQ ligand exhibits a cycloaddition process to yield cyclobutadiquinoline (CBDQ) 

ligand. The resulting compound (0D-CuCBDQ) is built from paddle-wheel shaped dinuclear 

entities analogous to that of 1D-CuHQ and again, the self-assembling through HQ pairing 

interactions (Figure 2.4) yields a dia-type porous network, being in this case triply 

interpenetrated. Contrarily to 1D-CuHQ, in 0D-CuCBDQ, the steric-hindrance imposed by the 

cycloadded HQ (i.e. CBDQ), hinders the assembling of neighbouring paddle-wheel complexes 

through their apical positions and as a result, the crystal structure is solely sustained by means 

of supramolecular interactions. 

2.2. SYNTHESIS AND CHEMICAL CHARACTERIZATION 

2.2.1. Synthesis 

 The six compounds synthesized and characterized in this chapter are listed in Table 

2.1. In all compounds, suitable single-crystals have been obtained to carry out their structural 

characterization by X-ray diffraction. Figure 2.7 shows a scheme that depicts the synthetic 

procedures used in this chapter. 
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Table 2.1. Formula and code of the compounds synthetized with Cu(II) and HQ. 

Compound Code 

[Cu2(µ-HQ-κOcarbxylate:κOcarboxylate)2(HQ-κOcarbxylate)2(H2O)2(CH3OH)2]·4H2O·CH3OH 0D-CuHQMEOH 

[Cu2(µ-HQ-κOcarbxylate:κOcarboxylate)2(HQ-κOcarbxylate)2(H2O)4]·4H2O·2DMF 0D-CuHQAQ 

[Cu2(µ-HQ-κOcarboxylate:κOcarbonyl)2(HQ-κOcarboxylate)2(H2O)2(PY)2] 0D-CuHQPY 

[Cu2(µ-HQ-κOcarboxylate:κO’carboxylate)4(µ-BPA-κN:κN’)+n 2D-CuHQBPA 

[Cu2(µ-HQ-κOcarboxylate:κO’carboxylate)2(µ3-HQ-κOcarboxylate:κO’carboxylate:κOcarbonyl)2]n 1D-CuHQ 

[Cu2(µ-CBDQ-κOcarboxylate:κO’carboxylate)4(H2O)2]·x(solvent) 0D-CuCBDQ 

 
Figure 2.7. Synthesis scheme for the compounds of chapter 2. 
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2.2.1.1. Synthesis of compound 0D-CuHQMEOH 

 10 mL of an aqueous solution of copper(II) sulfate (0.2 mmol, 0.050 g) were added 

over 10 mL of a methanol solution of 2-hydroxyquinoline-4-carboxylic acid (0.4 mmol, 0.076 g), 

under continuous stirring at 80 ᵒC to facilitate the dissolution of HQ. The resulting greenish 

solution is cooled down to room temperature and stored in a crystallizer. Compound 0D-

CuHQMEOH crystallized several hours later as poor quality crystals. Single-crystals suitable for 

X-ray diffraction were obtained by placing the reaction mixture in a closed vial at 60 ᵒC in an 

oven during 24 h. The crystals were filtered off, washing them with DMF to dissolve the 

unreacted 2-hydroxyquinoline-4-carboxylic acid that began to precipitate as soon as the 

temperature decreased. Yield: 70–75% (based on metal).  

2.2.1.2. Synthesis of compound 0D-CuHQAQ 

 10 mL of an aqueous solution of copper(II) sulfate (0.2 mmol, 0.050 g) were added 

over a 10 mL solution of DMF containing 2-hydroxyquinoline-4-carboxylic acid (0.2 mmol, 

0.038 g). The reaction mixture was stirred for few minutes. 0D-CuHQAQ precipitated as blue 

coloured poor quality crystals. Single-crystal X-ray diffraction quality specimens (dark-blue 

coloured with square prism habit) were obtained by placing in a closed vial the above 

described reaction mixture and heating it at 60 ᵒC during 24 h. They were filtered off and 

washed with DMF. Yield: 35–45%. 

2.2.1.3. Synthesis of compound 0D-CuHQPY 

 5 mL of an aqueous solution of copper(II) sulfate (0.2 mmol, 0.050 g) were added over 

5 mL of a methanol solution of 2-hydroxyquinoline-4-carboxylic acid (0.4mmol, 0.076 g), under 

continuous stirring at 80 ᵒC. Pyridine (0.2 mmol, 32.2 µL) was added drop by drop and the final 

mixture was allowed to stand at room temperature. Again, several hours later small-sized poor 

quality crystals were obtained. Similarly, to previous cases, good quality square prismatic blue 

single-crystals were obtained by subjecting the reaction mixture to 85 ᵒC in a closed vial. Yield 

65%. 

2.2.1.4. Synthesis of compound 2D-CuHQBPA 

 The synthesis process of 2D-CuHQBPA was similar to that of 0D-CuHQPY, but adding 

BPA (0.2 mmol, 0.050 g; in 5 mL of methanol) instead of pyridine. The reaction mixture was 

placed in a sealed vial and heated up to 85 ᵒC in an oven during 24 h. Thereafter, blue coloured 

prismatic crystals were filtered off and thoroughly washed with methanol. Yield 40%. 

  



2-Hydroxyquinoline-4-carboxylic acid based SMOFs 

 

  45 

2.2.1.5. Synthesis of compound 1D-CuHQ 

 Copper(II) sulfate (0.4 mmol, 0.100 g) and 2-hydroxyquinoline-4-carboxylic acid (0.2 

mmol, 0.038 g) were placed in a sealed vial containing 5 mL of H2O and 5 mL of MeOH. The 

reaction mixture was left in an oven at 85 ᵒC for 24 hours. Thereafter, dark green needle-

shaped crystals were collected and filtered off, washing them with methanol. Yield: 17%.  

2.2.1.6. Synthesis of compound 0D-CuCBDQ 

 A mixture of 2-hydroxyquinoline-4-carboxylic acid (0.4 mmol, 0.076 g) and copper(II) 

sulfate (0.2 mmol, 0.050 g), was placed in 20 mL of an aquo-methanolic solution (1:1 V/V) and 

stirred at 80 ᵒC during ten minutes. The obtained solution was transferred to a sealed vial and 

heated up to 160 ᵒC during 24 h. After cooling down the vial, light green plate-like crystals 

were obtained. Only few crystals of 0D-CuCBDQ were yielded, so its characterization was 

limited to the structural analysis performed upon single-crystal X-ray diffraction data. Yield: 

not determined. 

2.2.2. Infrared spectroscopy 

 Infrared spectroscopy with attenuated total reflection (ATR-FTIR) has been used to 

qualitatively identify molecular species comprising the herein synthesized compounds. Figure 

2.8 and Figure 2.9 show collected spectra, while the assignment of the most relevant bands,[86] 

the relative intensity and the wavenumber are shown in Table 2.2. Note that all spectra lack of 

the carbonyl ν(C=O) vibration mode located at ca. 1750 cm–1 for –COOH groups and, contrarily, 

present the antisymmetric νas(OCO) vibration mode of carboxylate groups at ca. 1650 cm-1. 

Both observations point to the deprotonation of carboxylic groups and their subsequent 

coordination to the metal centres. 

  

                                                             
86 (a) Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds; John Wiley & Sons: New York, 1997. (b) 

Ghose, R. Synth. React. Inorg. Met. Org. Chem. 1992, 22, 379. (c) Ghose, R. Inorg. Chim. Acta 1989, 156, 303. 
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Table 2.2. Infrared spectra bands (cm–1) of the neutral HQ ligand and the compounds of chapter 2.[a] 

HQ 0D-CuHQMEOH 0D-CuHQAQ 0D-CUHQPY 1D-CuHQ 2D-CUHQBPA Assignment[b] 

3006s over over over over over ѵ(C-H)  

1716 - - - - - ѵ(C=O)c[c] 

1650vs 1651s 1650s 1658s 1651s 1655vs ѵas(COO) + ѵ(C=O)r[c] 

1612vs 1612vs 1613vs 1619vs 1613vs 1610vs δ(NH)+ ѵ(CC) 

1545s 1536m 1539m 1549s 1535m 1543s ѵ(CC) 

1433s 1436m 1430m 1436m 1436m 1430s ѵ(CC) + δ(NH) + 

δ(CH) 

1383m 1378s 1368s 1358 vs 1377s 1360 vs δ(NH)+ δ(CH) 

1320w 1329w 1329m 1319vw 1330w 1326m ѵ(C–O)+ δ(NH)+ 

δ(OH) 

1279vs 1265s 1265s 1268s 1265s 1267s δ(NH)+ δ(CH) 

1258vs 1241w 1257m 1251w 1241w 1243vw ѵ(CN)+ δ(CH) 

1229vs 1223vw 1233vw 1218s 1224vw 1225w ѵ(CC)+ δ(CH) 

1154m 1158s 1158s 1165m 1158s 1157m δ(CH)+ δ(OH) 

1137w 1134s 1135w 1137w 1135s 1137m δ(CH)+ ѵ(C-OH) 

1041vw 1044w 1040vw 1038w 1044w 1033m δ(CH)+ ѵ(CC) + γ(CH) 

1004w 988w 985vw 979w 988w 981w ω(C-C)ring breathing 

937m 951vs 943vw 937w 950vs 945vw γ(CH)+ γ(NH) 

880s 882s 881s 881s 880s 876m γ(NH)+ γ(C=O)r 

853s 862m 861m 854m 862m 838m ѵ(NC)+ γ(CH) 

+ѵ(C–C–O) 

773m 768m 765m 770w 766m 775w γ(CH)+ γ(COOH) 

759s 755s 744vs 760m 755s 761m γring + γ(CO)c 

711s 709m 696m 697vs 708m 698s γring + γ(NH)+ γ(CH) 

654vs 650vs 663s 647m 650vs 648s γ(NH) + γ(OH) 

[a]
vs = very strong, s = strong, m = medium, over = overlapped, w = weak, vw = very weak. [b] ν = tension vibrations, δ = 

deformation vibrations, τ = torsion, γ = plane vibration, ω = ring breathing. [c] tension vibration of c = carboxylate group, r = 

carbonyl group of ring. 
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Figure 2.8. Infrared spectra of compounds 0D-CuHQMEOH (blue), 0D-CuHQAQ (red) and 0D-CuHQPY 

(green). 
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Figure 2.9. Infrared spectra of compounds 1D-CuHQ (blue) and 2D-CuHQBPA (red). 

2.2.3. Thermal analysis 

 The results of the thermogravimmetric analyses (TGA) and the thermal differential 

analyses are plotted in Figure 2.10, while the processes occurring in each degradation stage 

are gathered in Table 2.3. Note that all experimental mass losses fit fairly well with those 

expected from the chemical formula of the compounds. All the measurements were run using 

synthetic air (79% N2, 21% O2) as atmosphere.  
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Figure 2.10. Thermogravimetric measurements performed upon representative samples. 
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Table 2.3. Thermoanalytic data for compounds of Chapter 2.[a] 

Step Ti Tf Tpeak ΔH Δm(%) ΣΔm(%) ΣΔmtheo(%) 

0D-CuHQMEOH 

1 

2 

3 

 

30 

250 

365 

 

165 

310 

490 

 

125 

295 

455 

 

Endo 

Exo 

Exo 

 

18.1 

26.5 

66.8 

 

18.1 

44.6 

84.9 

 

18.8 (–6H2O –3CH3OH) 

45.5 [Cu2(C10H6NO3)2(C2O4)] 

85.3 (2CuO) 

0D-CuHQAQ 

1 

2 

3 

 

30 

100 

250 

 

100 

215 

385 

 

75 

170 

345 

 

Endo 

Endo 

Exo 

 

10.0 

14.5 

62.4 

 

10.0 

24.7 

87.1 

 

9.2 (–6H2O) 

24.7 (–2H2O –2C3H7NO) 

86.4 (2CuO) 

0D-CuHQPY 

1 

2 

3 

 

150 

260 

230 

 

210 

355 

425 

 

190 

355 

375 

 

Endo 

Exo 

Exo 

 

19.5 

26.1 

65.8 

 

19.5 

45.6 

85.3 

 

18.1 (–2H2O –2C5H5N) 

44.9 [Cu2(HQ)2(C2O4)] 

85.2 (2CuO) 

2D-CuHQBPA 

1 

 

220 

 

280 

 

275 

 

Exo 

 

26.7 

 

26.7 

 

27.1 [Cu2(HQ)2(C2O4)(BPA)] 

2 280 520 -- Exo 56.7 83.4 85.0 (2CuO) 

1D-CuHQ 

1 

 

315 

 

350 

 

345 

 

Exo 

 

30.4 

 

30.4 

 

32.8 [Cu2(HQ)2(C2O4)] 

2  515 450 Exo  81.8 81.9 (2CuO) 

[a]
Ti = initial temperature; Tf = final temperature; Tpeak = peak temperature ATD; Δm(%) = mass loss percentage in each step; ΔH = type of process 

according to DTA; ΣΔm(%) = cumulative mass loss after each step; ΣΔmtheo(%)= cumulative loss mass theoretically calculated from the crystallographic 
formula.  

 Compounds 0D-CuHQMEOH, 0D-CuHQAQ and 0D-CuHQPY decompose similarly by 

releasing in a single step or successive steps the co-crystallized solvent molecules and/or 

coordinated co-ligands. This first decomposition stage finishes at a temperature close to 200 ᵒC 

and the resulting desolvated Cu/HQ entity remains stable up to ca. 290 ᵒC. At this 

temperature, the organic constituent decomposes in two overlapped exothermic processes, a 

first in which two of the four HQ ligands decompose to lead [Cu2(C10H6NO3)2(C2O4)] than almost 
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immediately decompose further to yield CuO as the final product. The identification of the 

final product was performed by PXRD analysis. 

 Note that as compounds 1D-CuHQ and 2D-CuHQBPA lack co-crystallized solvent 

molecules or co-ligands, they remain stable up to ca. 290 ᵒC, after which decompose following 

a similar two-step decomposition pattern to that aforementioned.  

2.3. RESULTS AND DISCUSSION 

2.3.1. Crystallographic analysis 

 The crystallographic data and details of the refinement parameters of each compound 

have been gathered in Table 2.4 and Table 2.5. All non-hydrogen atoms were refined 

anisotropically, except those corresponding to disordered entities. The hydrogen atoms 

belonging to organic entities have been geometrically fixed and refined according to a riding 

model with an isotropic thermal parameter linked to the atom to which they are attached (120 

%). In most of the cases, the hydrogen atoms of the coordination and the crystallization water 

molecules have been located in the difference Fourier map, while in the remaining cases the 

routine CALC-OH[87] implemented in WinGX interface has been employed. The refinement of 

water hydrogen atoms has been performed using an isotropic thermal parameter of 150 % 

regarding their parent atom. 

 In the case of 0D-CuHQMEOH, after fixing all the atoms comprising the metal complex, 

the analysis of the computed electron density map revealed three Q peaks whose intensity 

ratio (1:0.5:0.5 for Q1, Q2 and Q3) and distances (Q1···Q2: 1.46 Å and Q1···Q3: 2.6 Å) led us to 

model them as two site-sharing group of atoms with an occupation factor 0.5 for each one 

(group 1: O3w and O4w modelled from Q1 and Q3, and group 2: methanol molecule modelled 

from Q1 and Q2). The resulting refinement was stable upon the application of DFIX restrains 

and isotropic displacement parameters, and it rendered a coherent hydrogen bonding scheme. 

 0D-CuHQAQ was refined as a two component twin with a batch scale factor (BASF) 

parameter of 0.318 and where the second component is rotated by a binary axis (i.e. 180 ᵒ) 

around [1 0 0] direction. Regarding 2D-CuHQBPA, the initial resolution showed anomalous 

elongated ellipsoids for a series of atoms of one of the crystallographically independent 

quinolones (C19, C110, O12). The elongation of the ellipsoids suggested a disorder of the 

double ring of the ligand into two positions (quinolone-1A and quinolone-1B) that swing along 

the C17–C14···N11 axis (implying a fixed carboxylate group). The occupation factor was refined 

                                                             
87

 Nardelli M., J. Appl. Crystallogr. 1999, 32, 563-571. 
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leading to a ratio of 0.52:0.48 for each part. All the non-hydrogen atoms of the disordered HQ 

counterparts were also refined anisotropically.  

 1D-CuHQ shows two isolated voids each of ca. 180 Å3 per unit cell. However, the 

analysis by means of the SQUEEZE routine of PLATON[88] renders two electrons per void, 

implying that the they are essentially empty. This crystallographic analysis is consistent with 

the assessment of TGA results. Contrarily, in compound 0D-CuCBDQ, after locating all the 

atoms comprising the metal complex, the crystal structure presents four isolated void per unit 

cell, each one of 368 Å3 and 85 electrons, which would imply 32–36 H2O molecules per unit cell 

or 8–9 molecules per formula (or void). Unfortunately, we could not collate this result with 

TGA data as there was not enough sample. 

  

                                                             
88

 Spek, A. L. Acta Crystallogr. 2009, D56, 148. 
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Table 2.4. Crystallographic data and refinement details of compounds 0D-CuHQMEOH, 0D-CuHQAQ and 

0D-CUHQPY. 

 0D-CuHQMEOH 0D-CuHQAQ 0D-CUHQPY 

Formula C43H48Cu2N4O21 C46H54Cu2N6O22 C50H38Cu2N6O14 

M (g mol
–1

) 1084 1170 1074 

Cryst. Sist. Triclinic Triclinic Triclinic 

Space group P ̅ P ̅ P ̅ 

a (Å) 7.0532(4) 7.0221(14) 9.0948(12) 

b (Å) 10.8576(7) 11.4720(3) 10.7660(3) 

c (Å) 15.9938(8) 16.0600(2) 12.2521(15) 

α(ᵒ) 103.263(5) 90.9010(15) 95.515(15) 

β (ᵒ) 98.947(4) 100.3870(15) 100.8960(11) 

γ(ᵒ) 103.078(5) 107.0950(19) 92.4360(16) 

V (Å3) 1133.1(1) 1213.1(4) 1170.3(4) 

Z 1 1 1 

ρcalcd (g·cm-1) 1.588 1.602 1.524 

Color Green Blue Light blue 

F(000) 560 606 550 

µ (cm-1) 1.934 1.882 1.773 

θ range (°) 2.909–76.353 4.042–75.161 4.134–75.876 

hkl range 

–8≤h≤8; 

–13≤k≤12; 

–18≤l≤20 

–8≤h≤7; 

–14≤k≤14; 

–19≤l≤19 

–11≤h≤10; 

–11≤k≤13; 

–14≤l≤15 

Meas./indep. refl. 8452/4626 12468/7573 9742/4757 

R eqv. 0.0493 0.1222 0.0827 

Obs. Refl. *I > 2ς(I)+ 3611 3817 2674 

R, Rw[a,b] 0.0565/0.1448 0.1077/0.2788 0.0756/0.2006 

R, Rw(all) 0.0747/0.1608 0.1752/0.3374 0.1336/0.2480 

Gof(S)[c] 1.029 1.021 1.011 

Parameters 350 345 326 

Weighting sch.[d] Shelxl Shelxl Shelxl 

Max./min. Δρ (e Å–3) 1.728/-0.608 1.179/-1.486 1.253/-1.184 

Difractometer SuperNova SuperNova SuperNova 

λ (Å) 1.54184 1.54184 1.54184 

Temperature (K) 100(2) 100(2) 100(2) 

*a+ S = *∑w(F0
2
 - Fc

2
)

2
 / (Nobs- Nparam)]

1/2
 [b] R1 = ∑||F0|-|Fc|| / ∑|F0| [c] wR2 = *∑w(F0

2
 - Fc

2
)

2
 / ∑wF0

2
]

1/2
; w = 1/[ς

2
(F0

2
) + (aP)

2
 + bP] 

where P = (max(F0
2
,0) + 2Fc

2
)/3. a) 0D-CuHQMEOH (0.0873), 0D-CuHQAQ (0.2000) and 0D-CUHQPY (0.1324). b) 0D-CuHQMEOH 

(0.221). 
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Table 2.5. Crystallographic data and refinement details of compounds of 2D-CUHQBPA, 0D-CuBCDQ and 

1D-CuHQ. 

 2D-CUHQBPA 1D-CuHQ 0D-CuBCDQ 

Formula C52H36Cu2N6O12 C40H24Cu2N4O12 C80H56Cu2N8O26 

M (g mol–1) 1064 880 1672 

Cryst. Sist. Monoclinic Tetragonal Tetragonal 

Space group P21/n P42/n I41/a 

a (Å) 12.7028(7) 21.1781(1) 25.9460(7) 

b (Å) 6.8477(4) 21.1781(1) 25.9460(7) 

c (Å) 24.5923(12) 8.1870(1) 11.7125(9) 

α(ᵒ) 90 90 90 

β (ᵒ) 100.8170(5) 90 90 

γ(ᵒ) 90 90 90 

V (Å3) 2101.2(2) 3671.9(6) 7884.8(7) 

Z 2 4 4 

ρcalcd (g·cm-1) 1.675 1.591 1.409 

Color Green Green Light green 

F(000) 1080 1784 3432 

µ (cm-1) 1.093 2.058 0.625 

θ range (°) 1.691–27.364 5.794–74.429 1.570–28.287 

hkl range 

–15≤h≤16; 

–7≤k≤8; 

–26≤l≤30 

–25≤h≤26; 

–26≤k≤18; 

–9≤l≤10 

–26≤h≤34; 

–34≤k≤33; 

–13≤l≤15 

Meas./indep. refl. 8270/4206 29289/3721 29166/4630 

R eqv. 0.1027 0.0452 0.0645 

Obs. Refl. *I > 2ς(I)+ 2281 3355 3665 

R, Rw[a,b] 0.0808/0.1269 0.0260/0.0687 0.0516/0.1314 

R, Rw(all) 0.1607/0.1622 0.0297/0.0711 0.0679/0.1428 

Gof(S)[c] 0.999 1.055 1.083 

Parameters 359 262 266 

Weighting sch.[d] Shelxl Shelxl Shelxl 

Max./min. Δρ (e Å–3) 0.759/-0.626 0.309/-0.409 0.772/-0.552 

Difractometer SuperNova SuperNova SuperNova 

λ (Å) 0.71073 1.54184 1.54184 

Temperature (K) 100(2) 100(2) 100(2) 

*a+ S = *∑w(F0
2
 - Fc

2
)

2
 / (Nobs- Nparam)]

1/2
 [b] R1 = ∑||F0|-|Fc|| / ∑|F0| [c] wR2 = *∑w(F0

2
 - Fc

2
)

2
 / ∑wF0

2
]

1/2
; w = 1/[ς

2
(F0

2
) + (aP)

2
 + bP] 

where P = (max(F0
2
,0) + 2Fc

2
)/3. a) 2D-CUHQBPA (0.0206), 1D-CuHQ (0.0384) and 0D-CuBCDQ (0.0646). b) 1D-CuHQ (1.3341) and 

0D-CuBCDQ (20.0495).  

2.3.2. Structural description 

2.3.2.1. Structural description of compounds 0D-CuHQMEOH, 0D-CuHQAQ and 0D-CuHQPY. 

 The crystal structures of herein described compounds consist of dinuclear entities 

(Figure 2.11, Figure 2.12 and Table 2.6) built by the assembling of [Cu(HQ-κOcarbxylate)2(H2O)(L)] 

mononuclear entities (L = MeOH, H2O or pyridine in compounds 0D-CuHQMEOH, 0D-CuHQAQ 

and 0D-CuHQPY, respectively). In compounds 0D-CuHQMEOH and 0D-CuHQAQ the assembling 

between the monomeric entities takes place by means of the coordinated Ocarboxylate atom 
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setting a double µ-HQ-κO:κO bridge. Whereas in compound 0D-CuHQPY the steric hindrance 

imposed by the pyridine molecule precludes the aforementioned assembling and, as a 

consequence, the monomers are linked together through the carbonyl O atom of one each HQ 

ligands to form a double µ-HQ-κO:κO’ bridge. Note that µ-HQ-κO:κO coordination mode of HQ 

bridge sets markedly shorter intradimeric Cu···Cu distances (3.44 and 3.39 Å for 0D-

CuHQMEOH and 0D-CuHQAQ, respectively) than that corresponding to µ-HQ-κO:κO’ mode 

(7.25 Å for 0D-CuHQPY).  

 In all cases, the coordination polyhedron around the Cu(II) atoms resembles a 

distorted square pyramid, in which the basal plane is defined by the four donor atoms of the 

monomeric sub-unit (with short bond distances: 1.92–2.01 Å), while the apical position is 

occupied by the bridging Ocarboxytale atom of an upper monomer influenced by the Jahn-Teller 

elongation (Cu–Ocarboxytale bond distances: 2.31–2.45 Å). In contrast to the neutral HQ and the 

free HQ anion where the carboxylate group is in the same plane as the rest of the molecule, 

the carboxylate groups of these Cu(II) complexes are twisted respect to the fused aromatic 

rings by 45.5–47.5ᵒ. Such distortion from the planarity of the HQ can be ascribed to the steric 

hindrance occurring upon the approach of two monomeric sub-units during the assembling 

process. It deserves to note that the pyridine molecule establishes an intramolecular hydrogen 

bonding with the non-coordinated carboxylate O-atom of the terminal HQ ligand (C32–

H32···O172; see Table 2.10). 
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(a) 

 
(b) 

Figure 2.11. Dimeric entities of compounds 0D-CuHQMEOH (a) and 0D-CuHQAQ (b). 
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Figure 2.12. Dimeric entity of compound 0D-CuHQPY. 

Table 2.6. Coordination bond distances (Å) of compounds 0D-CuHQMEOH, 0D-CuHQAQ and 0D-

CuHQPY.
1
 

0D-CuHQMEOH 

Cu1–O171 1.958(2) Cu1–O1 1.960(3) 

Cu1–O271 1.926(2) Cu1–O1W 1.952(3) 

Cu1–O271a 2.395(2) Cu1···Cu1a 3.441(9) 

0D-CuHQAQ 

Cu1–O171 1.936(6) Cu1–OW1 1.923(8) 

Cu1–O271 1.958(6) Cu1–OW2 1.958(8) 

Cu1–O271a 2.447(4) Cu1···Cu1a 3.393(4) 

0D-CuHQPY 

Cu1–O171 1.936(4) Cu1–O22a 2.308(4) 

Cu1–O271 1.941(4) Cu1–O1W 2.011(5) 

Cu1–N31 2.012(7) Cu1···Cu1a 7.255(2) 

1 Symmetry-codes: 0D-CuHQMEOH, (a): –x+2, –y+1, –z+2; 0D-CuHQAQ, (a): –x+1, –y, –z+2; 0D-CuHQPY, (a): –x+1, –

y, –z+1. 
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 In spite of the structural and chemical dissimilarities of the metal complexes all of 

them give rise to similar crystal packing. Precisely, each dinuclear entity is linked to a 

neighbouring one through the double N–H···Ocarbonyl hydrogen bonding pairing between the HQ 

ligands, leading to 1D supramolecular chain. These chains are crosslinked by means of the 

hydrogen bonding interactions established between a coordinated water molecule (O1w) and 

the non-coordinated carboxylate oxygen atoms, yielding a square grid-like (sql) 

supramolecular layer (Figure 2.13).  

 
(a) 

 
(b) 

Figure 2.13. Supramolecular interactions between neighbouring dimeric entities in compounds 0D-

CuHQMEOH and 0D-CuHQAQ (a) (the green atoms depict the coordinated methanol or water 

molecule) and in compound 0D-CuHQPY (b). 

 These layers pile up one above each other generating one-dimensional (diameter: ca. 

3.50 and 5.10 Å) channels that account for the 18.4 and 26.4 % of the unit cell volume in 

compounds 0D-CuHQMEOH and 0D-CuHQAQ, respectively (Figures 2.14a and 2.14b). The 

channels are occupied by solvent molecules: water and methanol in compound 0D-

CuHQMEOH and water and DMF in compound 0D-CuHQAQ. Compound 0D-CuHQPY (Figure 

2.14c), in contrast, exhibits isolated voids (diameter: ca. 3.10 Å) that remain unoccupied, 

probably due to their hydrophobic nature (i.e. no hydrogen bonding or acceptor groups lie on 

the pore wall). Table 2.7 and Figure 2.15 show the porosity features and pore size distribution 

of all of them.  
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(a) 

 
(b) 

 
(c) 

Figure 2.14. Crystal packing of compounds 0D-CUHQMEOH (a), 0D-CUHQAQ (b) and 0D-CUHQPY (c) 

showing the voids in yellow. 
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Table 2.7. Porosity features of compounds 0D-CUHQAQ, 0D-CUHQMEOH and 0D-CUHQPY.1 

Sample Vpore(cell) (A
3
) Vpore(sp) (cm

3
·g

-1
) Porosity (%) Dlim (Å) Dmax (Å) Dim. 

0D-CUHMEOH 209.0 0.128 18.4 3.10 3.5 1D 

0D-CUHQAQ 321.0 0.203 26.5 4.00 5.1 1D 

0D-CUHQPY 73.0 0.041 6.2 -- 3.1 0D 

1
: Vpore(cell) and Vpore(sp) stand for pore volume per unit cell and specific pore volume, respectively. Dlim and Dmax 

correspond to limiting and maximum pore diameters. Dim. stands for dimensionality of the pore system. 

 

Figure 2.15. Pore size distribution in compounds 0D-CUHQMEOH (green), 0D-CUHQAQ (red), and 0D-

CUHQPY (blue). 

 In the case of compound 0D-CUHQMEOH, neighbouring layers interact through a 

direct hydrogen bond between an aromatic H-atom and a non-coordinated carboxylate O-

atom (C111–H111···O172) (Figure 2.16a). The adhesion between layers is further reinforced by 

means of the hydrogen bonding network implying the crystallization solvent molecules and the 

donor/acceptor groups of complexes of neighbouring layers. In compound 0D-CUHQAQ, the 

interlayer space is somewhat greater and all meaningful interactions between supramolecular 

layers take place via crystallization solvent molecules hosted in the pores (Figure 2.16b). On 

the other hand, in compound 0D-CuHQPY neighbouring layers are connected through a 

hydrogen bonding occurring between an aromatic H-atom and a non-coordinated carboxylate 

O-atom (C29–H29···O12) and through a CH/π interaction between an aromatic H-atom of PY 

and the π-system of one HQ (C35–H35···C210: 3.686 Å and 159.85ᵒ) (Figure 2.17). Tables 2.8, 
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2.9 and 2.10 gather representative parameters of the non-covalent interactions of the herein 

described compounds. 

 
(a) 

 
(b) 

Figure 2.16. View of the crystal packing representing the non-covalent interactions between 

supramolecular in compounds 0D-CuHQMEOH (a), 0D-CuHQAQ (b). 
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Figure 2.17. View of the crystal packing representing the non-covalent interactions between 

supramolecular in compound 0D-CuHQPY. 
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Table 2.8. Hydrogen-bonding parameters (Å, ᵒ) of compound 0D-CuHQMEOH.
1
 

D–H···A H···A D···A D–H···A 

O1–H1···O2w 1.72 2.643(6) 177 

O3w–H3w···O22a 1.92 2.822(1) 164 

O2w–H2w2···O12b 1.88 2.789(2) 165 

O2w–H2w1···O3wc 2.06 2.894(1) 151 

O1w–H1w1···O272d 1.75 2.632(5) 162 

O1w–H1w2···O172d 1.76 2.678(5) 172 

O4w–H4w1···O2we 1.90 2.849(6) 176 

O4w–H4w2···O22e 2.12 3.076(6) 177 

N11–H11···O22f 1.93 2.777(7) 171 

N21–H21···O12g 1.96 2.818(4) 178 

C2–H2B···O1wb 2.36 3.266(5) 157 

C23–H23···O4wh 2.60 3.043(8) 110 

C110–H110···O172i 2.50 3.422(6) 169 

1: Symmetry-codes: (a) 2–x, 1–y, 1–z; (b) –x, 1–y, –z; (c) 1–x, 1–y, 1–z; (d) 1–x, 1–y, –z; (e) x, –1+y,z; (f) –1+x, y, –1+z; 

(g) 1+x, y, –1+z; (h) x, 1+y, z; (i) 1–x, 2-y, –z. 
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Table 2.9. Hydrogen-bonding parameters (Å, ᵒ) of compound 0D-CuHQAQ.1 

D–H···A H···A D···A D–H···A 

N21–H21···O12a 1.96 2.811(10) 171 

O1w–H1W1···O1b 1.71 2.612(12) 165 

O1w–H2W1···O3wd 1.87 2.702(9) 148 

O2w–H2W2···O172c 1.80 2.682(9) 160 

O2w–H1W2···O272c 1.70 2.638(10) 171 

O3w–H1W3···O22d 1.83 2.749(10) 168 

O3w–H2W3···O4wd 1.95 2.854(12) 160 

O4w–H1W4···O12e 1.84 2.742(12) 162 

N11–H11···O22f 1.90 2.758(10) 178 

C2–H2A···O172d 2.54 3.350(2) 142 

C210–H210···O3wb 2.49 3.272(14) 141 

1: Symmetry-codes: (a) –1+x, y, –1+z; (b) 1–x, –y, 1–z; (c) 2–x, 1–y, 1–z; (d) 1–x, 1–y, 1–z; (e) –1+x, y, z;(f) 1+x, y, 1+z. 
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Table 2.10. Hydrogen-bonding parameters (Å, ᵒ) of compound 0D-CuHQPY.
1
 

D–H···A H···A D···A D–H···A 

O1w–H1W1···O272a 2.04 2.708(5) 137 

O1w–H2W1···O172a 2.01 2.734(9) 146 

N11–H11···O22b 2.13 2.976(7) 167 

N21–H21···O12b 1.88 2.734(8) 170 

C23–H23···O271 2.47 3.094(10) 124 

C29–H29···O12c 2.57 3.403(5) 149 

C32–H32···O172 2.56 3.345(6) 142 

C111–H111···O171 2.46 2.999(8) 117 

C211–H211···O272d 2.51 3.006(1) 114 

1: Symmetry-codes: (a) –x, –y, 1–z; (b) –x, –y, 2–z; (c) 1+x, 1+y, z; (d) 1–x, 1–y, 1–z. 

2.3.2.2. Structural description of compound 2D-CuHQBPA. 

 The crystal structure of compound 2D-CuHQBPA consists of a two dimensional 

coordination framework of formula [Cu2(µ-HQ-κOcarboxylate:κO’carboxylate)4(µ-bpa-κN:κN’)+n in 

which the asymmetric unit is comprised by a Cu(II) atom, two bridging HQ ligands and half 

bridging BPA ligand (Figure 2.18). As in previous cases, the NO4 donor set fits to a distorted 

square pyramid polyhedron where the coordination bond implying the apical atom (O272a) is 

substantially longer than those corresponding the basal plane atoms (N31, O171, O271, 

O172a) (see Table 2.11). 
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Figure 2.18. Depiction of the asymmetric unit of compound 2D-CuHQBPA. For clarity, the disordered 

counterpart of HQ-1 (see section 2.3.1) has been omitted in all the graphic representations of the 

current section. 

Table 2.11. Coordination bond distances (Å) of compound 2D-CuHQBPA.1 

2D-CuHQBPA 

Cu1–O271 1.952(4) Cu1–N31 2.000(5) 

Cu1–O171 1.964(4) Cu1–O272a 2.369(4) 

Cu1–O172a 1.981(4)   

1: Symmetry-codes: (a) –x+1/2, y–1/2, –z+3/2. 

 With regard to the molecular structure of the polymeric framework, subsequent Cu(II) 

atoms are assembled by double µ-HQ-κOcarboxylate:κO’carboxylate bridges into one-dimensional 

chains running along the [0 1 0] crystallographic direction (Figure 2.19). These chains are cross-

linked by means of BPA bridges to yield a two-dimensional coordination network with a brick-

wall type topology (point symbol: (6, 3)) (Figures 2.20a and 2.20b). It must be emphasized that, 

despite both symmetrically independent HQ ligands coordinate through equivalent donor 

atoms, HQ-1 and HQ-2 exhibit syn-syn and syn-anti bridging modes, respectively. This feature 

is of particular interest in the magnetic properties of complexes based on µ-carboxylate-κO:κO’ 

bridges, as the nature and magnitude of the magnetic exchange is tightly related to the syn-

syn, syn-anti and anti-anti coordination modes. Therefore, it is further discussed in section 

2.3.3 when describing the magnetic properties of compound 2D-CuHQBPA.  
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 The 2D molecular structure is further stabilized by the recurrent pairing interaction 

(N21–H21···O22) between faced HQ-2 ligands of neighbouring chains (see inset graphic in 

Figure 2.21 and Table 2.12). Contrarily, HQ-1 is exposed outwards the coordination framework 

layers and it contributes to supramolecular self-assembling of the polymeric complexes (see 

below). 

 

Figure 2.19. Fragment of the 1D chain built from Cu(II) and double µ-HQ-κOcarboxylate:κO’carboxylate bridges. 

For clarity, H atoms were omitted and BPA ligand was depicted by green atoms.  
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(a) 

 
(b) 

 

Figure 2.20. (a) View of the 2D coordination network through [1 0 1] crystallographic direction. The inset 

graphic shows an enhanced area highlighting the complementary hydrogen bonding interactions 

between faced HQ-2 ligands (the fragment has been slightly rotated in order to observe more clearly the 

hydrogen bonding interaction). (b) Simplified representation of the 2D coordination network to 

enlighten brick-wall type topology (only Cu(II) atoms and donor groups of the bridging ligands were 

retained). 



2-Hydroxyquinoline-4-carboxylic acid based SMOFs 

 

  69 

 The 2D polymer layers pile up, in a staggered manner, along the [1 0 1] crystallographic 

direction (Figure 2.22). The resulting packing is compact and voids were not detected using a 

molecular probe of 1.2 Å. Neighbouring layers interact by means of the hydrogen bonding 

taking places between HQ-1 and HQ-2 ligands (N11–H11···O22). Furthermore, couples of HQ-1 

ligands of upper and lower layers interact through face-to-face π-π contacts implying their 

phenyl group rings (centroid···centroid distance: 3.29 Å; centroid to plane distance: 3.05 Å; 

lateral displacement: 1.25 Å; plane tilting: 0.00 °; shortest C···C distance range: 3.05–3.31 Å). 

 

Figure 2.21. Crystal packing view of compound 2D-CuHQBPA showing the HQ-1 mediated inter-layer 

interaction set (dashed and dotted lines stand for hydrogen bonding and π–π stacking respectively). 

Table 2.12. Hydrogen bonding parameters (Å, ᵒ) in compound 2D-CuHQBPA.1 

D–H···A H···A D···A D–H···A 

N11b–H11b···O22 2.17 2.921(3) 145 

N21–H21···O22a 1.96 2.871(3) 171 

C111–H111···O271 2.59 3.505(9) 169 

N18b–H18b···O22 2.50 3.200(2) 132 

C32–H32···O171 2.54 2.990(5) 110 

C36–H36···O172c 2.40 2.853(3) 110 

C211–H211···O272 2.59 3.116(6) 116 

1: Symmetry-codes: (a) 2–x, –y, –z; (b) 1–x, –y, –z;(c) 3/2–x, 1/2+y, 1/2–z. 
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2.3.2.3. Structural description of compound 1D-CuHQ. 

 Compound 1D-CuHQ is built up with the [Cu2(µ-HQ-κOcarboxylate:κO’carboxylate)4] paddle 

wheel entities envisaged in Figure 2.4 of the introductory section, however, unexpectedly 

these dinuclear entities self-assemble into a 1D-chain through an elongated coordination bond 

implying the coordinative unsaturated apical position and the carbonyl oxygen atom of a 

neighbouring dinuclear complex (Figure 2.22). As a result, while two of the HQ ligands (HQ-1) 

present the expected µ2-κOcarboxylate:κO’carboxylate coordination mode for a carboxylate bridge in a 

paddle-wheel type structure, the two remaining ones (HQ-2) behave as tridentate ligand (µ3-

HQ-κOcarboxylate:κO’carboxylate:κOcarbonyl) linking to a third metal atom (that of a neighbouring dimer) 

through their carbonyl oxygen atom (O22). The coordination polyhedron around the copper 

atoms adopts a distorted square pyramid geometry, where the basal positions are occupied by 

the oxygen atoms of four carboxylate groups (with short bond distances: 1.96–1.97 Å) and the 

apical position is occupied by the oxygen atom of the carbonyl group (Cu1–O22: 2.14 Å). Table 

2.13 shows the coordination bond lengths and angles around Cu(II) centres. The intradimeric 

Cu···Cu distances are as short as 2.63 Å, while the shortest interdimeric ones extend to 7.05 Å. 

As discussed in section 2.3.2, the latter feature will let us to model the magnetic behaviour of 

1D-CuHQ as dinuclear entities.  

 

Figure 2.22. Dinuclear entity of compound 1D-CuHQ showing the labelling scheme. The HQ ligands 

adopt an UUDD configuration (see legend of Figure 2.4). 
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Table 2.13. Coordination bond distances (Å) of compound 1D-CuHQ. 

1D-CuHQ 

Cu1–O171 1.963(1) Cu1–O272a 1.973(1) 

Cu1–O172a 1.960(1) Cu1–O22b 2.138(1) 

Cu1–O271 1.970(1) Cu1···Cu1a 2.633(4) 

1: Symmetry-codes: (a) –x+1, –y+1, –z; (b) x, y, 1+z.  

 Figure 2.23a shows a fragment of the polymeric chain which run along the [0 0 1] 

crystallographic direction. Despite the polymerization of the dinuclear entities, the 

supramolecular structure is governed by a similar synthon scheme to that predicted for the 

paddle-wheel shaped Cu/HQ complex (Figure 2.4). Precisely, each [Cu2(µ-HQ-

κOcarboxylate:κO’carboxylate)4] subunit binds to another four subunits of neighbouring 1D-chains by 

means of the N–H···O pairing interactions of the HQ ligands (Figure 2.23b and Table 2.14). In 

fact, when considering the paddle-wheel entity as a node and the pairing interactions (N21–

21···O6 /N11–H11···O1) among the HQ ligands as connectors, the overall three-dimensional 

network can be described topologically[89] as a doubly interpenetrated 4-connected uninodal 

net with lvt topology (point symbol: (42.84)). Thus, the crystal structure could also be 

alternatively described as doubly interpenetrated porous lvt-type hydrogen-bonded networks, 

in which the paddle-wheel entities of the two coexisting supramolecular networks are 

successively assembled by means of an elongated coordination bond that implies the free 

apical position. The latter result can be regarded as a validation of the working hypothesis 

stated in the goals of this chapter. Furthermore, the HQ pairing interaction must be considered 

as a governing factor in the crystal packing, not necessarily being subordinated to the 

polymerization occurring through the elongated coordination bonds. In fact, when considering 

the amount of hydrogen bonds and coordination bonds that each dinuclear complex 

establishes (4 hydrogen-bond pairing interactions and 4 elongated coordination bonds) and 

their mean bond energies (hydrogen-bond paring: –52 kJ/mol an equivalent N–H···O taking 

place in uracil ensembles[90]; elongated-coordination bond: from –98 to –114 kJ/mol for 

equivalent Cu···O interactions taking place with the apical position of [Cu2(COO)4] paddle-

wheel entity, it becomes clear that both growing vectors do not differ greatly in magnitude (4 

                                                             
89 (a) TOPOS Main Page. http://www.topos.ssu.samara.ru (accessed Jan. 2015). (b) O’Keeffe, M.; Yaghi, O. M. Chem. Rev. 2012, 

112, 675. 
90

 (a) Hobza, P.; Jurečka, P.; Šponer, J.; J. Am. Chem. Soc. 2004, 126, 10142-10151. (b) Heine, T.; Mavrandonakis, A.; Supronowicz, 

B.; J. Phys. Chem. C. 2015, 119, 3024−3032. 
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hydrogen-bond pairing: –208 kJ/mol; 4 elongated-coordination bond: –392 to –456 kJ/mol). 

Nonetheless, further evidence provided by computed bond-energies on the current system will 

be desirable to support the aforementioned statement. To end up, it must be mentioned that 

in spite of the interpenetration, crystal packing exhibits isolated voids of ca. 180 Å3 that 

account for the 10 % of the total pore volume (Figure 2.24). 

 
(a) 

 
(b) 

Figure 2.23. (a) Fragment of 1D polymeric chain of compound 1D-CuHQ. (b) HQ pairing interactions 

occurring between neighbouring paddle-wheel entities. 
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Table 2.14. Hydrogen-bonding parameters (Å, ᵒ) of compound 1D-CuHQ.
1
 

D–H···A H···A D···A D–H···A 

N11–H11···O22a 2.23 3.066(17) 164 

N21–H21···O12b 1.84 2.691(18) 172 

C18–H18···O171c 2.58 3.428(2) 151 

1: Symmetry-codes: (a) 1+x, y, 2–z; (b) x, 1+y, 2–z; (c) 1+x, y, 1–z. 

 

Figure 2.24. Crystal packing of compound 1D-CuHQ showing the voids in yellow. 

2.3.2.4. Structural description of compounds 0D-CuCBDQ. 

 The crystal structure of compound 0D-CuCBDQ is comprised of paddle-wheel shaped 

entities with formula [Cu2(µ-CBDQ-κOcarboxylate:κO’carboxylate)4(H2O)2]. Figure 2.25a shows a view of 

the complex structure with the numbering scheme, while Table 2.15 gathers the coordination 

bond distances. The coordination polyhedron of each Cu(II) resembles a distorted square 

pyramid in which the basal plane is completed by four carboxylate oxygen atoms of the CBDQ 
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ligands (distances of 1.92-2.03 Å) and the apical position is occupied by a water molecule with 

somewhat longer bond distance (ca. 2.10 Å). Contrarily to 1D-CuHQ, in compound 0D-CuCBDQ, 

the steric hindrance exerted by the bulkier CBDQ ligands hinders the self-assembling among 

neighbouring dinuclear entities into an analogous polymeric chain, and thus, the coordinative 

unsaturated sites of the paddle-wheel complex are occupied by two water molecules. The µ-

κOcarboxylate:κO’carboxylate coordination mode of the carboxylate groups leads to intradimeric 

Cu···Cu distance (2.66 Å) comparable to that found in 1D-CuHQ (2.63 Å), but markedly shorter 

than those observed in the dinuclear entities of section 2.3.2.1 (0D-CuHQMEOH, 0D-CuHQAQ 

and 0D-CuHQPY). 

 As mentioned in the introductory section of the current chapter, the high 

temperatures employed in the synthesis conditions of this compound caused the cycloaddition 

of the HQ ligands rendering CBDQ. This cycloaddition changes the hybridization of the third 

and fourth C-atoms (CX3 and CX4; X = 1 or 2) of the two cycloadded HQ ligands to sp3 (Figure 

2.25b) breaking the planarity of one of the rings. Besides, the cycloaddition of the ligand 

causes the torsion of the carboxylate groups (torsion angles: 104.13–114.35 ᵒ and 109.70–

119.55 ᵒ for coordinated carboxylate and free carboxylate, respectively) to be much greater 

than in the above compounds, due to the tetrahedral geometry adopted by the CX4 atoms and 

to the resulting unrestrained rotation trough the CX4–Ccarboxylate axis. Note that only one of the 

two carboxylate groups is implied in the coordination bonding, while the second one remains 

protonated. 

 

 

(a) (b) 
Figure 2.25. Dimeric entity (UDUD configuration) of compound 0D-CuCBDQ (a) and the CBDQ ligand 

resulting from the cycloaddition of two HQ molecules (b). 
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Table 2.15. Coordination bond distances (Å) of compound 0D-CuCBDQ.1 

0D-CuCBDQ 

Cu1–O171 1.916(1) Cu1–O172c 2.032(1) 

Cu1–O171a 1.916(1) Cu1–O1w 2.102(3) 

Cu1–O172b 2.032(1) Cu1···Cu1b 2.659(9) 

1: Symmetry-codes: (a) –x+1, –y+1/2, z; (b) –x+5/4, y–7/4, –z–9/4; (c) x–5/4, –y–1/4, –z–9/4. 

 With regard to the crystal packing, it must be considered that despite of the 

unexpected cycloaddition the resulting paddle-wheel shaped Cu/CDBQ complex fulfils the 

aforementioned three criteria to yield a SMOF. Accordingly, the complex units are rigid 

molecular building blocks (1st criteria) that self-assemble by means of rigid and predictable 

synthons (2nd criteria) consisting of the complementary hydrogen bonding between N–H/C=O 

groups (as foreseen in Figure 2.3). Furthermore, the high number and disposition of the 

synthons ensures the three-dimensional growth of the supramolecular network (3rd criteria). In 

fact, considering the paddle-wheel entity as a node and the pairing interaction (N21–

H21···O22; Table 2.16) among the CDBQ ligands as connectors, the overall three-dimensional 

network can be described topologically[91] as a 4-connected unimodal net with diamond (dia) 

topology with a net point symbol (66). Note that the growth of the supramolecular building by 

means of the complementary N–H/C=O hydrogen bonding implies only the non-coordinated 

HQ fragment of the CDBQ (Figure 2.25).  

 At this point, it becomes clear that the relative disposition of the HQ (or cycloadded 

HQ) ligands within the paddle-wheel structure (see legend of Figure 2.4), determines the 

resulting topology of the supramolecular porous network, in such a way that the UUDD 

configuration of 1D-CuHQ yield lvt-type network, while the UDUD configuration of 0D-CuCDBQ 

renders a dia-type network. 

 The dia-type framework of 0D-CuCDBQ is, as expected, highly porous (Figure 2.26a). 

However, the remaining porosity (72.9 %) is wide enough to allow the interpenetration of two 

more equivalent networks, giving rise to a triply interpenetrated diamond-like supramolecular 

network (Figure 2.26b). In spite of it, the overall crystal structure presents isolated voids of 365 

Å3 that account for the 18.8 % of the total cell volume (Figure 2.27).  

                                                             
91

 Blatov, V. A.: Multipurpose crystallochemical analysis with the program package TOPOS. IuCr CompComm. Newsl. 2006, 7, 4–38. 
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 It deserves to note, that neighbouring supramolecular networks interact by means of 

the single hydrogen bonding (N11–H11···O271; Table 2.16) occurring between the N–H group 

of a coordinated HQ fragment (HQ-1) and the carboxylate C=O group of the non-coordinated 

fragment (HQ-2). The remaining hydrogen bonding donor/acceptor groups are pointing 

towards the voids, which presumably enable to interact with the solvent molecules that could 

not be crystallographically located.  
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(a) 

 
(b) 

Figure 2.26. Crystal packing of compound 0D-CuCBDQ showing the different single dia-like 

supramolecular network (a) and the triply interpenetrated structure (b). For clarity, hydrogen atoms 

have been omitted and complex entities belonging to the second and third networks have been 

coloured in blue and green, respectively. 
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Figure 2.27. Crystal packing of compound 0D-CuCBDQ showing the voids in yellow. 

Table 2.16. Hydrogen-bonding parameters (Å, ᵒ) of the non-covalent interactions in compound 0D-

CuCBDQ. 

D–H···A H···A D···A D–H···A 

N11–H11···O271a 2.08 2.887(3) 156 

N21–H21···O22b 2.02 2.871(3) 171 

1: Symmetry-codes: (a) –1/4+x, 1/4–y, –1/4+z; (b) –x, –y, 2–z. 

2.3.3. Magnetic properties. 

 According to the thermal evolution of the plots of the molar magnetic susceptibility 

(χm) and the χmT product (Figure 2.28 and 2.29), all the compounds described in this chapter 

exhibit an antiferromagnetic behaviour. χm curves of 0D-CuHQMEOH, 0D-CuHQAQ and 0D-

CuHQPY display rounded maximums around 4.4, 4.4 and 7.8 K, respectively. The fitting of the 

χm
-1 to the Curie-Weiss law provides Neel temperatures (TN) of 2.44, 2.49 and 4.01 K, 

respectively. In compound 2D-CuHQBPA χm increases as the temperature decreases from room 

temperature and reaches a rounded maximum at approximately 40 K. Below 20 K, a new 

increase in the magnetic signal appears, attributable to the presence of paramagnetic 

impurities. In compound 1D-CuHQ, the magnetic susceptibility decreases continuously from 

room temperature until a null value at temperatures close to 50 K, which is indicative of a 
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stronger antiferromagnetic coupling probably coming from the intradimeric subunit 

interactions (Cu···Cu: 2.633 Å) as the coordination mode bridging these dimeric subunits is 

longer (Cu···Cu: 7.054 Å) and involves the elongated apical copper(II) position. The increase 

observed upon further cooling can be again attributed to the presence of paramagnetic 

impurities.  

  
(a) (b) 

 
(c) 

Figure 2.28. Thermal evolution of the molar magnetic susceptibility (χm) and the χmT product in 

compounds 0D-CuHQMEOH (a), 0D-CuHQAQ (b) and 0D-CuHQPY (c). Experimental χm value is 

represented by red circles, while the fitting to the magnetic data is depicted by a continuous line. 
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(a) (b) 

Figure 2.29. Thermal evolution of the molar magnetic susceptibility (χm) and the χmT product in 

compounds 2D-CuHQBPA (a) and 1D-CuHQ (b). Experimental χm value is represented by red circles, 

respectively, while the fitting to the magnetic data is depicted by a continuous line. 

 In compounds 0D-CuHQMEOH, 0D-CuHQAQ, 0D-CuHQPY and 2D-CuHQBPA, the 

product χmT at room temperature (RT) corresponds to the expected value for two magnetically 

isolated copper atoms (S = 1/2, g = 2.1, χMT(expected) = 0.840 cm3mol–1K). The value of the χmT 

product remains almost unchanged until it reaches temperatures below 50 K, where it suffers 

a significant drop typical of the antiferromagnetic coupling. Contrarily, in compound 1D-CuHQ, 

χmT value at RT, is significantly below of the expected value and it continuously decreases upon 

cooling. This issue is indicative of the presence of stronger antiferromagnetic exchange 

interactions.[92-93] 

 Compounds 0D-CuHQMEOH, 0D-CuHQAQ, 0D-CuHQPY and 1D-CuHQ can be 

considered as magnetically isolated dinuclear entities and thus, the magnetic data have been 

adjusted to the Bleaney-Bowers[94] equation for copper(II) dimers (H = –JS1S2; S = ½), modified 

to include the presence of impurities. In compound 2D-CuHQBPA, despite of being a 

bidimensional coordination polymer, the magnetic coupling through µ-bpa-κN:κN’ bridge 

(Cu···Cu: 13.405 Å) its longer and it can be disregarded with respect to the shorter double µ-

HQ-κOcarboxylate:κO’carboxylate bridge Cu···Cu: 3.783 Å. Therefore, the fitting of its magnetic data 

has been performed using the numerical expression obtained for an antiferromagnetic chain 
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93 (a) Rodríguez-Fortea, A. Alemany, P.; Alvarez, S.; Ruiz, E. Chem. Eur. J. 2001, 7, 627. (b) Youngme, S.; Cheansirisomboon, A.; 

Danvirutai, C.; Pakawatchai, C.; Chaichit, N.; Engkagul, C.; A. van Albada, G.; Sanchez-Costa, J.; Reedijk, J. Polyhedron 2008, 27, 
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Chem. Eur. J. 2011, 17, 13217. (d) Cejudo, R.; Alzuet, G.; Borrás, J.; Liu-González, M.; Sanz-Ruiz, F. Polyhedron 2002, 21, 1057. 
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from the Hamiltonian H = –J∑SiSi+1 whit S = ½. [95] The data obtained from the fittings are shown 

in Table 2.17. 

Table 2.17. Magnetic data of all compounds. 

 χmT (cm3mol–1K)[a] J (cm–1)[b] g ρ (%)[c] 

0D-CuHQMEOH 0.848 -4.86 2.14 0.0 

0D-CuHQAQ 0.838 -4.93 2.12 0.0 

0D-CuHQPY 0.971 -7.64 2.26 0.0 

2D-CuHQBPA 0.526 -37.70 2.20 5.5 

1D-CuHQ 1.014 -312.00 2.25 0.2 

[a] χmT value at room temperature. [b] Calculated value of the constant of magnetic coupling. [c] Paramagnetic 

impurity percentage. 

 For Cu(II) dinuclear complexes, the constant of magnetic coupling can be defined with 

this equation (J = 2j + 4βS = JF + JAF)
[96] where j, β and S are the bielectronic exchange, 

monoelectronic resonance and overall integrals between the two magnetic orbitals centred at 

the two metal atoms. The first term is positive and represents the ferromagnetic contribution 

(JF), favouring parallel alignment of the spins, while the second one is negative and represents 

the antiferromagnetic contribution (JAF), favouring antiparallel alignment of the spins.  

 In compounds 0D-CuHQMEOH and 0D-CuHQAQ the magnetic coupling is dominated by 

the features of the double µ-HQ-κO:κO bridge in which each O-bridge atom shows an axial-

equatorial arrangement with regard the magnetic orbital (Figure 2.30). Note that according to 

the distorted square-pyramid coordination geometry of the Cu(II) atoms, the unpaired 

electron resides primarily on a dx2–y2 orbital, and therefore, the axial bonds established by the 

bridging O-atom are almost perpendicular to the magnetic plane. This type of disposition leads 

to small overlap between the localized magnetic orbitals and thus weak antiferromagnetic or 

ferromagnetic interactions are observed with J values usually ranging from –5 to +1 cm–1.[97] 

The nature and magnitude of the magnetic coupling constant of complexes with asymmetric 

                                                             
95
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double μ-oxo bridges, depend largely on the angle φ (Cu–O···Cu) and the out of plane bond 

length Ro (Cu···O), since these factors determine the degree of overlap between dx2–y2 magnetic 

orbitals.[98] For φ values greater than 97.5ᵒ antiferromagnetic term prevails, which is in 

agreement with the J values observed for 0D-CuHQMEOH and 0D-CuHQAQ (φ: 104ᵒ and 100ᵒ, 

respectively). 

 

Figure 2.30. Schematic representation of a Cu(II) dimer in which the double bridge μ-oxo establishes a 

parallel disposition between the magnetic planes. 

 With regard to 0D-CuHQPY compound, despite the double µ-HQ-κO:κO’ bridge 

establishes larger Cu···Cu distance (7.25 Å) than the those found in the previous two 

complexes (3.44 and 3.39 Å for 0D-CuHQMEOH and 0D-CuHQAQ, respectively), the 

antiferromagnetic coupling is slightly greater. This probably can be attributed to the 

delocalization of the magnetic orbital into the π-system of the HQ ligand and the related spin 

polarization taking place along the bridge.[99] 

 For compounds 1D-CuHQ and 2D-CuHQBPA, where the metal atoms are bridged 

through the carboxylate group of the HQ ligand (µ-HQ-κOcarboxylate:κO’carboxylate), the nature and 

magnitude of the coupling constant is intimately associated to the coordination geometry of 

the carboxylate (Figure 2.31). While anti-syn and anti-anti coordination modes[100] exhibit very 
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weak ferro- or antiferromagnetic couplings (from +1.7 to –82.0 cm-1) and weak 

antiferromagnetic couplings (from –1.1 to –41.0 cm-1), respectively, the syn-syn coordination 

mode leads to stronger antiferromagnetic couplings (from –156 to –378 cm-1).[101] In compound 

2D-CUHQBPA, each pair of copper atoms are bridged by both syn-syn and syn-anti carboxylate 

with equatorial···equatorial and equatorial···axial arrangement, respectively. Therefore, the 

magnetic coupling of the Cu(II) atoms is mainly driven through the syn-syn carboxylate bridge. 

In fact, the resulting J value fits reasonably well respect to the expect one. In compound 1D-

CuHQ, the Cu(II) atoms are bridged simultaneously by four syn-syn carboxylate bridges within 

the dinuclear cores, [Cu2(µ-HQ-κOcarboxylate:κO’carboxylate)4], and reasonably, the magnetic coupling 

is notably greater than that of the previous case, but comparable to other reported Cu(II) 

paddle-wheel structures based on carboxylate bridges. 

 
(a) 

 
(b) 

Figure 2.31. Coordination geometries of a bidentate carboxylate bridge (A) and the coordination modes 

found in compound 2D-CuHQBPA and 1D-CuHQ respectively (B). 
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The magnetization vs applied field (M-H) curves at 2K of all compounds are gathered at 

Figure 2.32. On one hand, the magnetization curves of 1D-CuHQ (J = –312.0 cm-1) and 0D-

CuHQBPA (J = –37.7 cm-1) are in good agreement with the expected ones for antiferromagnetic 

sample with smaller slope. Thus, the antiferromagnetic interaction increases and the 

magnetization values at 70 kOe are far below from the theoretical saturation magnetic 

moment (2 µB per Cu dinuclear unit). On the other hand, it is noteworthy that the curves of 0D-

CuHQMEOH, 0D-CuHQAQ and 0D-CuHQPY resemble sigmoidal shapes, which suggests the 

occurrence of a metamagnetic phase transition, from an antiferromagnetic state to an 

intramolecular ferromagnetic state. Moreover, take into account that the first slope change 

observed in compound CUHQAQ (also in compound CUHQBPA) is due to the presence of the 

paramagnetic impurities detailed in the magnetic susceptibility measurement. 

 

 
 
 

 
(a) (b) 

Figure 2.32. Magnetization (M) vs applied field (H) curves at 2 K for compounds of Chapter 2: (a) 0D-

CuHQMeOH (black), 0D-CuHQAQ (pink), 0D-CuHQPY (orange), 0D-CuHQBPA (green) and 1D-CuHQ 

(blue).(b) Clear observation of the metamagnetic effect in compounds 0D-CuHQMeOH (black), 0D-

CuHQAQ (pink) and 0D-CuHQPY (orange). 

 This kind of magnetic phenomena is favoured in compounds with very weak 

antiferromagnetic interactions in which the latter is overcome by an external applied field.[102] 

This transition can be explained by the split of the spin states caused by the applied magnetic 

field (i.e Zeeman effect) (Figure 2.33). At null magnetic field, antiferromagnetically coupled 

Cu(II) atoms yield an S = 0 ground state and an S = 1 excited state separated by an energy gap 
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(J). Under an applied external magnetic field, the degeneracy of the triplet state is broken, so 

that there is a critical field (Hc) at which the energy gap between the ground state and the 

lower branch of the excited state is supressed. At this point, the ground state is no longer than 

the singlet state but it is higher than the Ι1, -1> level derived from the triplet state. The general 

expression for the energy of the spin-state (equation 1) and the magnetic coupling J parameter 

definition (equation 1) can be assembled to provide an estimation of the critic field (equation 

3) at which this transition takes place.  

 

E(S) = –
 

 
 [ (   )]                      Equation 1 

Δ =–E1 (   ) –E0 (   )= –J Equation 2 

H = – 
 

   
                                            Equation 3 

 

Figure 2.33. Energy diagram for a 

antiferromagnetically coupled Cu(II) dimer, 

showing the splitting produced under an applied 

magnetic field. 

 Accordingly to it, the stronger the antiferromagnetic coupling, the greater the critic 

magnetic field. This qualitative assertion is in good agreement with the trend observed for the 

Hc experimental values (Table 2.18). The Hc calculated values using equation 3 slightly 

overestimate the experimental ones, but they follow the same trend. Finally, the compounds 

with almost the same J value also show very similar Hc values.  

Table 2.18. Comparison of the experimental and calculated critic magnetic fields with the magnetic 

coupling constants of compounds 0D-CuHQMEOH, 0D-CuHQAQ and 0D-CuHQPY.1 

  Hc (exp.) (kOe)  Hc (calc.) (kOe) J (cm–1)[b] 

0D-CuHQMEOH 31.6 48.7 -4.86 

0D-CuHQAQ 31.1 49.8 -4.93 

0D-CuHQPY 44.0 72.4 -7.64 

1 Hc (exp.): experimental critic magnetic field estimated from the magnetization data. Hc (calc.): calculated critic 

magnetic field using equation 3.  
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Chapter 3: Homometallic adenine 

nucleobase based SMOFs 
 

  
3.1. Introduction 

3.2. Synthesis and chemical characterization 

3.3. Results and discussion 
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3.1. INTRODUCTION 

 Considering the results obtained in the previous chapter, it was decided to go a step 

further in the formation of SMOFs, using instead the HQ ligand, the well-known puric base 

adenine. Adenine (6-aminopurine) is the most widely used nucleobase for the formation of 

coordination compounds since it has five nitrogen atoms that give it great versatility as a 

ligand. Adenine, as many nitrogen bases, is characterized by its acid-base balance, which 

allows it to be found both in neutral (adenine: HAD), cationic (adeninium: H2AD) and anionic 

(adeninate: AD) forms depending on the pH of the medium, with the consequent modification 

of its coordinative properties (Figure 3.1). Being a stronger base, it allows obtaining not only 

monomeric[103] and polynuclear compounds,[104,105] but also 3D networks.[30] 

 

Figure 3.1. Acid-base equilibria of adenine. 

 In order to synthesize SMOFs, this ligand provide, at one hand, the advantage of the 

increased rigidity of the supramolecular building block due to the coordination through 

multiple positions, and, at the other hand, it presents many edges capable of establishing 

complementary hydrogen bonding interactions that provide rigid and predictable synthons 

capable of promoting the self-assembly of the building blocks (Figure 3.2 and Figure 3.3).[106]  
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(a) (b) 

Figure 3.2. Capability of adenine to establish supramolecular interactions through hydrogen bonding (a) 

and π-π stacking (b). 

  

(a) (b) 

 

(c) 

Figure 3.3. Hydrogen-bonding patterns of the adenine dimers and their bond energy. 

 Due to the large amount of copper(II) puric-base compounds described, whose most 

recurrent coordination mode in the bibliography is the entity with the shape paddle-wheel 

(consisting of a metal-organic dimer in which the metal centres are joined through four organic 

ligands that act as a bridge), it was decided to go a step further in the formation of these 

compounds, trying to synthesize polynuclear complexes different to recurrent paddle wheel, in 
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order to assess novel SMOF assemblies. Note that presumably, greater building blocks would 

allow the formation of larger cavities. 

 Accordingly, it was decided to explore the syntheses of Cu/adeninato complexes at 

basic pH values, where the hydroxide can act as co-ligand and give rises to new and more 

extended building blocks. In a first approach, of a solution containing a Cu(II) source (CuSO4) 

and adenine was acidified with H2SO4 and thereafter, basified by the addition of triethlyamine 

(NEt3) up to pH ≈ 9. This process led to obtain an octanuclear complex of formula [Cu8(μ3-

OH)4(μ4-OH)4(ade)4(μ-ade)4(μ-Hade)2] (Cu8AD), builds up by the stacking of Cu(II) dimeric 

entities. Seeing that the synthetic route allowed the formation of an entity that fulfilled the 

aimed goal, it was decided to exploit the synthetic route more exhaustively. Thereby we 

obtained, firstly, a compound built from neutral dinuclear Cu(II) entities and secondly, a family 

of porous compounds based on cationic heptameric copper(II) entities (Figure 3.4). 

 

Figure 3.4. Scheme of pH variation in the synthetic route of Cu-AD complexes. 
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 At a pH value below that providing the octanuclear complex, a dinuclear entity of 

formula [Cu2(μ-ade-κN3:κN9)4(H2O)2] was obtained (Cu2ADSO4NHEt3). The assembly of the 

neutral dimeric entities gives rise to an open 3D supramolecular architecture in which the 

pores are occupied by solvent, sulfate and triethylammonium molecules. Nonetheless, it 

deserves to note that this complex lacks of hydroxide co-ligands, being in fact the recurrent 

paddle-wheel structure.  

Consequently, it was decided to explore the influence of higher pH values in the 

synthesis process. In this way, the compounds labelled as Cu7ADSO4NHEt3-1 and 

Cu7ADSO4NHEt3-2 were obtained, featured by a heptanuclear complex of formula [Cu7(μ-

H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+. The complex entity contains a central [Cu(OH)6]4- core 

linked to six additional copper(II) metal centres which are further connected by bridging 

adeninato ligands. This building block also fulfils the requirements to yield a SMOF in which the 

porous network hosts solvent, sulfate and triethylammonium molecules. Taking these results 

in mind, the base, triethylammonium, was replaced by sodium hydroxide, resulting in the 

formation of the compound Cu7ADSO4, which is comprised by the heptanuclear entities, 

sulfate counterions and solvent molecules. 

 As the overall supramolecular network of these compounds involves a strong 

interaction not only with the sulfate anions but also with the solvent molecules present in the 

channels, their crystal structures are very sensitive to the solvent. Thus, their release caused, 

as for example, by slight temperature changes, collapses the crystal structure when attempting 

to empty the channels. Therefore, 6-hydroxynicotinate (HN) was used as alternative 

counterion, due to its ability to form complementary hydrogen bonds and π-π stacking 

interactions that could allow yielding more stable supramolecular networks. This synthetic 

approach yielded two new compounds based on the heptanuclear entity, labelled as 

Cu7ADHN-1 and Cu7ADHN-2. 

3.2. SYNTHESYS AND CHEMICAL CHARACTERIZATION 

3.2.1 Synthesis 

 This chapter describes the synthesis and characterization of eight different 

compounds, listed in Table 3.1. Suitable single-crystals have been obtained from all of them to 

carry out the structural characterization by X-ray diffraction. Figure 3.5 shows a scheme that 

summarizes the synthetic procedures described in this chapter.  

It is worth to mention that each pair of compounds, Cu7ADSO4NHEt3-1/-2 and 

Cu7ADHN-1/-2, without taking into consideration the solvent molecules hosted in the pores 
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can be considered as polymorphs. In the case of Cu7ADSO4NHEt3-1 and -2, employing different 

crystallization times, we can obtain the compound Cu7ADSO4NHEt3-1, which is the kinetically 

favoured or compound Cu7ADSO4NHEt3-2 which is the thermodynamically favoured one. 

Table 3.1. Synthetized compounds. 

Compound 
Code 

[Cu2(μ-ade-κN3:κN9)4(H2O)2]·2{(NHEt3)2(SO4)}·10H2O·2CH3OH Cu2ADSO4NHEt3 

[Cu8(μ3-OH)4(μ4-OH)4(ade-κN9)4(μ-ade-κN3:κN9)4(μ-Hade-κN3:κN9)2] Cu8AD 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](NHEt3)2(SO4)2·42H2O Cu7ADSO4NHEt3-1 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](NHEt3)2(SO4)2·23H2O Cu7ADSO4NHEt3-2 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)·18H2O Cu7ADSO4 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](C6H4NO3)2·20H2O Cu7ADHN-1 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](C6H4NO3)·29H2O Cu7ADHN-2 

 

Figure 3.5. Synthesis scheme for all the compounds of this chapter (except Cu8AD). 
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3.2.1.1. Synthesis of Cu2ADSO4NHEt3 

0.200 g of CuSO4·5H2O (0.8 mmol) dissolved in 20 mL of water were added dropwise to 

an aqueous/methanolic (10 mL/10 mL) solution of 0.108 g of adenine (0.8 mmol). The resulting 

deep blue mixture was acidified to pH 1.5 by adding H2SO4. The resulting pale blue solution 

was placed in a small crystal beaker that was introduced into an Erlenmeyer flask containing a 

triethylamine aqueous solution (1/20 volume ratio). The vapour diffusion taking place inside 

the closed Erlenmeyer flask slowly basified the copper–adenine solution prompting the 

growing of purple crystals of Cu2ADSO4NHEt3 four days later (solution pH = 8.6). Yield: ca. 40% 

(based on metal). 

3.2.1.2. Synthesis of compound Cu8ADSO4 

 20 mL of an aqueous methanolic solution (1:1) containing adenine (0.8 mmol, 0.108 g) 

were added to 20 mL of an aqueous solution of CuSO4·5H2O (0.4 mmol, 0.100 g) leading to a 

solution of pH = 3. Immediately a dark blue precipitate appeared. Then, sulfuric acid was 

added until complete dissolution of the precipitate (pH = 1.5). A glass vial with the resulting 

solution was placed in an Erlenmeyer flask containing triethylamine favouring the diffusion of 

the base into the solution. A few days later, at pH = 8.5, a small amount of purple crystals of 

Cu8ADSO4 appeared. 

3.2.1.3. Synthesis of compound Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2 

 A solution of 0.200 g (0.8 mmol) of copper(II) sulfate pentahydrate dissolved in 20 mL 

of water was added dropwise to a 20 mL aqueous-methanolic (1/1) solution containing 0.108 g 

(0.8 mmol) of adenine. Immediately a dark blue precipitate appeared which was dissolved 

adding few drops of H2SO4 concentrated to set the pH value at 1.5. Later the pH was fixed at 10 

by adding triethylamine and the resulting mixture was placed in a small beaker that was 

introduced into an Erlenmeyer flask containing a 1/5 (v/v) sulfuric acid solution. The vapor 

diffusion taking place inside the closed Erlenmeyer flask slowly acidified the solution allowing 

the growth of blue prismatic crystals of compound Cu7ADSO4NHEt3-1 four days later (pH = 8). If 

the beaker containing the reaction mixture is removed from the Erlenmeyer flask and left open 

in contact with atmosphere air, crystals of compound Cu7ADSO4NHEt3-1 appears, which 

evolves towards new blue cubic crystals belonging to compound Cu7ADSO4NHEt3-2 (pH = 7.0). 

Yield: 42% for compound Cu7ADSO4NHEt3-1 and 33% for compound Cu7ADSO4NHEt3-2, 

respectively. 
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3.2.1.4. Synthesis of compound Cu7ADSO4 

 Adenine (0.8 mmol, 0.108 g) was dissolved in a mixture of 20 mL water / methanol in a 

1:1 ratio under continuous stirring and heating. Thereafter, it was added to an aqueous 

solution of 20 mL of copper(II) sulfate pentahydrate (0.8 mmol, 0.200 g). The appearance of a 

bluish suspension was observed at pH = 2.9. The suspension was redissolved by adding sulfuric 

acid dropwise to pH = 1.8. Then, 1 M sodium hydroxide was added dropwise obtaining a new 

dark blue suspension (pH = 10.1) that was placed in a small beaker and introduced into an 

Erlenmeyer flask containing a 1/5 (v/v) sulfuric acid solution. The vapor diffusion taking place 

inside the closed Erlenmeyer flask acidified the solution slowly. After four days, blue cubic 

crystals of Cu7ADSO4 were obtained (pH = 9.1). Yield: 60%. 

3.2.1.5. Synthesis of compound Cu7ADHN-1 and Cu7ADHN-2 

 A solution of 0.200 g (0.8 mmol) of copper(II) sulfate pentahydrate was dissolved in 20 

mL of water. After the complete dissolution, the mixture was added dropwise to a 20 mL 

aqueous-methanolic (1/1) solution containing 0.108 g (0.8 mmol) of adenine and 0.110 g (0.8 

mmol) of HN. Then, a few drops of H2SO4 were added to reduce the pH value to 1.0. As soon as 

the pH was stable, trimethylamine (in compound Cu7ADHN-1) or NaOH 1M (in compound 

Cu7ADHN-2) was added to increase the pH up to 9.1 and 10.5. Thereafter, the solution was 

introduced into an Erlenmeyer flask containing of 1/5 (v/v) sulfuric acid solution. The vapor 

diffusion taking place inside the closed Erlenmeyer flask promoted the growth of blue 

prismatic crystals of Cu7ADHN-1 and Cu7ADHN-2, respectively, five days later (pH = 8.6 and 

9.3). Yield: 25 % for both compounds. 

3.2.2. Infrared spectroscopy 

 Infrared spectroscopy with attenuated total reflection (ATR-FTIR) has been used to 

determine qualitatively the presence of sulfate counterions, adeninato and 6-

hydroxynicotinato ligands. Figures 3.6 and 3.7 show the IR spectrum of all the compounds and 

Tables 3.2 and 3.3 gather the assignment of the most relevant bands, with their relative 

intensity and wave numbers. 

 At ca. 3430 cm–1 all the compounds exhibit an intense and broad band attributable to 

the O–H stretching of hydroxide and water molecules. At lower wave number, ca. 3200 cm–1, 

the N–H stretching of the amine group of the adeninato emerges as an overlapped peak or 

shoulder. The signals corresponding to the Car–H stretching of AD and C–H stretching of NHEt3, 

expected around 3000–3100 and 3000–2850 cm–1 respectively, are masked or appear as very 

weak peaks. The intense band around 1600 cm–1, is attributed to the C=C stretching vibration 
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or to deformation vibration of NH2 group of the adenine. In those compounds containing the 

sulfate anion, the S=O stretching vibration is observed at 1108 cm–1. In the case of the 

compounds containing the HN counterion, the representative asymmetric stretching vibration 

of the carboxylate group (expected for the free anion at around 1680 cm–1) is overlapped with 

that adenine C=C and C=N stretching.[86,107]  

Table 3.2. Infrared spectroscopy bands (cm
–1

) of the AD ligand and the compounds described in this 

chapter.[a] 

Adenine Cu2ADSO4NHEt3 Cu7ADSO4NHEt3-1 Cu7ADSO4NHEt3-2 Cu7ADSO4 Assignment[b] 

-- 3430vs 3438vs 3439vs 3433vs ѵ (O–H) 

3303s 3386sh 3422sh 3416sh 3422sh ѵ (N–H) 

3123s 3120vw 3200sh 3194sh 3200sh ѵ (C8–H + C2–H)  

- 2980s 2982s -- -- ѵ (CEt–H + CEt–H)  

 

1605vs 

1644vs 

1600vs 

1652vs 

1605vs 

1652vs 

1605vs 

1641vs 

1605vs 

 

ѵ (C=N) + ѵ (C=C) + 

δ (NH2) 

1560s 1564m 1586s 1585s 1547s ѵ (C4–C5  

+ N3–C4–C5) 

1471m 1462s 1461m 1461m 1463m δ (C2–H + C8–N9)  

+ ѵ (C8–H) 

1419s 1400s 1408m 1408m 1400m δ (N1–C6–H6) 

1309s 1306s 1305m 1306m 1305m  

ѵ (N9–C8 + N3–C2)  

+ δ (C–H) 

1271vs 1277m 1277m 1275m 

1263s 1190s 1198m 1198m 1198m  

δ (C8–H) + ѵ (N7–

C8) 

1150m 1152m 1148m 1148m 

-- 1110s 1102s 1102s 1108s ѵ (S=O) 

1023w 1030m 1033w 1030w 1028w τ (NH2) 

940s 940w 935w 933w 933w ѵ (N1–C6) + τ (NH2) 

[a]
 vs = very strong, s = strong, m = medium, w = weak, sh = shoulder. 

[b]
 over = overlapped, ν = tension vibrations, δ = deformation 

vibrations, τ = torsion. 

  

                                                             
107 Santos, C. R.; M. B. B. M. Figueira, R.; M. Piedade, M. F.; P. Diogo, H.; Minas da Piedade, M. E. J. Phys. Chem. 2009, 113, 14291–

14309. 
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Table 3.3. Infrared spectroscopy bands (cm
–1

) of the AD ligand and the compounds described in this 

chapter (cont.).[a] 

6-Hydroxynicotinic acid Adenine Cu7ADHN-1 Cu7ADHN-2 Assignment
 [b]

 

 -- 3388vs 3355vs ѵ (O–H) 

 3303s 3342sh 3333sh ѵ (NH2) 

 3123s 3188sh 3169sh ѵ (C8–H + C2–H)  

 -- 3197vs 3198vs ѵ (O–H) 

1639vs  

1605vs 

1640vs 

1601vs 

1641vs 

1602vs 

ѵas (COO) + ѵ (C=N) + 

ѵ (C=C) + δ (NH2) 

1560s  1566s 1566s ѵs (COO) 

  1550s 1548s ѵ (C4–C5 + N3–C4–C5) 

 1471m 1462m 1464m δ (C2–H + C8–N9)  

+ ѵ (C8–H) 

 1419s 1400m 1399m δ (N1–C6–H6) 

 1309s 1306m 1306m  

ѵ (N9–C8 + N3–C2)  

+ δ (C-H) 

 1276m 1275m 

 1263s 1198m 1195m  

δ (C8–H) + ѵ (N7–C8)  1155m 1150m 

 1108s 1108s 1108s ѵ (S=O) 

 1023w 1032w 1029w τ (NH2) 

 940s 935w 933w ѵ (N1–C6) + τ (NH2) 

[a]
 vs = very strong, s = strong, m = medium, w = weak, sh = shoulder. 

[b]
 over = overlapped, ν = tension vibrations, δ = deformation 

vibrations, τ = torsion. 
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Figure 3.6. Infrared spectrum of compounds Cu2ADSO4NHEt3, Cu7ADSO4NHEt3-1 (blue), Cu7ADSO4NHEt3-

2 (red) and Cu7ADSO4 (green). 
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Figure 3.7. Infrared spectrum of compounds Cu7ADHN-1 (blue) and Cu7ADHN-2 (red). 

3.2.3. Thermal analysis 

 The thermal behaviour of the synthesized compounds (TG/ATD curves) are plotted in 

Figure 3.8. The degradation processes taking place in each compound are analysed in Table 

3.4. All measurements were performed using synthetic air (79 % N2, 21 % O2) as atmosphere. 
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Figure 3.8. Thermogravimetric measurements performed upon representative samples. 

  



Homometallic adenine nucleobase based SMOFs 

 

  101 

Table 3.4. Thermoanalytic data of the compounds described in the chapter.  

Step Ti Tf Tpeak ΔH Δm(%) ΣΔm(%) ΣΔm(%)theo 

Cu2ADSO4NHEt3 

1 

 

2 

3 

4 

5 

 

25 

 

150 

215 

260 

350 

 

140 

 

180 

250 

330 

440 

 

-- 

 

-- 

-- 

 

400 

 

Endo 

 

Endo 

Endo 

Endo 

Exo 

 

8.8 

 

4.1 

8.2 

15.3 

42.5 

 

8.8 

 

12.9 

21.1 

36.4 

78.9 

 

8.3 (–(10H2O + 2CH3OH)) 

11.9 (–6H2O) 

18.8 (–2NEt3) 

34.8 (–2NEt3 + C5H5N5) 

78.3 (4CuO + 2CuSO4) 

Cu7ADSO4NHEt3-1 

1 

 

2 

 

30 

 

230 

 

200 

 

475 

 

70 

 

400 

 

Endo 

 

Exo 

 

26.7 

 

45.8 

 

26.7 

 

72.5 

 

26.4 (–24H2O –9H2O –

(N(Et)3)) 

72.5 (7CuO) 

Cu7ADSO4NHEt3-2 

1 

 

2 

3 

 

30 

 

280 

320 

 

250 

 

320 

465 

 

70 

 

300 

400 

 

Endo 

 

Endo 

Exo 

 

30.3 

 

4.6 

32.3 

 

30.3 

 

34.9 

67.2 

 

30.0 (–23H2O –9H2O –

(N(Et)3)) 

34.4 (–N(Et)3) 

68.4 (5CuO + 2 CuSO4) 

Cu7ADSO4 

1 

2 

3 

 

30 

100 

235 

 

100 

235 

450 

 

50 

- 

375 

 

Endo 

-- 

Exo 

 

17.0 

8.9 

40.3 

 

17.0 

25.9 

66.2 

 

17.2 (–18H2O) 

25.8 (–9H2O) 

66.2 (6CuO +CuSO4) 

Cu7ADHN-1 

1 

2 

3 

4 

 

30 

100 

265 

330 

 

100 

220 

300 

465 

 

75 

-- 

 

425 

 

Endo 

-- 

 

Exo 

 

17.2 

7.8 

9.0 

40.4 

 

17.2 

25.0 

34.0 

73.4 

 

17.2 (–20H2O) 

25.0 (–9H2O) 

34.0 (–2C5H4NO) 

73.4 (7CuO) 

Cu7ADHN-2 

1 

2 

3 

4 

 

30 

115 

260 

350 

 

115 

215 

285 

495 

 

85 

-- 

-- 

480 

 

Endo 

-- 

-- 

Exo 

 

17.9 

7.7 

6.5 

41.6 

 

23.2 

30.5 

32.1 

73.7 

 

24.6 (–29H2O) 

32.2 (–9H2O) 

36.6 (–C5H3NO) 

73.8 (7CuO) 

[a] Ti = initial temperature; Tf = final temperature; Tpeak = peak temperature ATD; Δm(%) = loss mass percentage in each step; ΔH = type of process 
acording to ATD; ΣΔm(%) = total loss mass after each step; ΣΔm(%)theo = total loss mass theoretically calculated. [b] Eliminate water molecules and 
final residue per compound formula. 
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 All the compounds described in this chapter display similar decomposition processes. 

First, from room temperature to values below 100 ᵒC, the loss of the crystallization water 

molecules is observed through an endothermic process. Secondly, above 100 ᵒC, the loss of 

coordination water molecules takes place. In the case of the heptanuclear complexes, is 

followed by the release of water molecules yielded by the dehydroxilation of the cluster, 

summing up nine water molecules per heptamer, six bridging waters and three more water 

molecules obtained in the condensation process of the six hydroxide bridges. In those 

compounds containing NHEt3
+ cation, the loss of amine form (NEt3) takes place at different 

temperatures, which is probably due to differences on the eventual porosity of the sample and 

the stability of ionic pairs formed. In the compounds Cu7ADHN-1 and -2, after the dehydration 

process at ca. 260 ᵒC, the HNA ligands are decomposed pyrolytically to yield 

Cu7O3(C5H4N4)6(C2O4). The formation of oxalate derivate is similar to that described for HQ 

ligand in Chapter 2. Finally, in the last stage, the decomposition of the adeninato ligands 

occurs through a strong exothermic process, generating the corresponding copper oxide or a 

mixture with copper sulfate. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Crystallographic analysis 

 The crystallographic data and details of the refinement parameters of each compound 

are gathered in Table 3.5 and Table 3.6. Single crystal diffraction data were collected at 100(2) 

K on Agilent Technologies Supernova diffractometers (λCu-Kα = 1.54184 Å for compounds 

Cu7ADSO4NHHEt3-1, Cu7ADSO4HN-1 and Cu7ADSO4HN-2 and λMo-Kα = 0.71073 Å for compounds 

Cu2ADSO4NHEt3, Cu8AD, Cu7ADSO4NHHEt3-2 and Cu7ADSO4). The data reduction was done with 

the CrysAlisPro program.[108] Crystal structures were solved by direct methods using the SIR92 

program[109] and refined by full-matrix least-squares on F2 including all reflections (WinGX).[110] 

In the compounds Cu2ADSO4NHEt3, Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2 and Cu7ADSO4 almost 

one adeninato ligands is disordered in two coplanar arrangements with inverted orientation 

regarding the coordination mode (µ-κN3:κN9 / µ-κN9:κN3).[111] In compounds Cu7ADSO4NHEt3-

1, Cu7ADSO4NHEt3-2 and Cu7ADSO4 there are two symmetry related to sulfate anions per 

heptamer. Therefore, the occupation factors of the sulfate molecule have been fixed to the 

stoichiometrically required, i.e., 0.75 from compound Cu7ADSO4NHEt3-1 and 0.5 from 

                                                             
108 CrysAlisPro, version 1.171.35.19; Agilent Technologies:Yarnton, UK, 2011. 
109

 Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343-350. 
110 (a) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838. (b) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122. 
111 (a) Cepeda, J.; Castillo, O.; García-Terán, J. P.; Luque, A.; Pérez-Yáñez, S.; Román, P. Eur. J. Inorg. Chem. 2009, 2344-2353. b) 

Pérez-Yáñez, S.; Beobide, G.; Castillo, O.; Cepeda, J.; Luque, A.; Román, P. Cryst. Growth Des. 2013, 13, 3057-3067. 
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Cu7ADSO4NHEt3-2 and Cu7ADSO4. On the other hand, compound Cu7ADHN-1 presents two 

heptameric clusters and HN ligands crystallographically independents. One of the six adeninato 

ligands of each cluster and one of the HN ligand are disordered in two positions. It is 

noteworthy that the crystal structure of all compounds display the presence of great channels 

in which the solvent molecules and co-crystallized ions are placed. The high disorder of some 

of these entities (solvent molecules in most of the cases or triethylammonium-sulfate ionic 

ensembles in Cu7ADSO4NHHEt3-1 and -2) precluded their modeling and, as a consequence, the 

electron density at the voids of the crystal structure was subtracted from the reflection data by 

the SQUEEZE method[112] as implemented in PLATON.[89] The electron density provided by the 

SQUEZEE routine matches the expected from the number of the species hosted in the 

channels. Although in most compounds there is not a big difference with respect to the water 

molecules observed between single crystal and thermogravimetric analysis, in the case of 

Cu7ADSO4NHHEt3-1 there is a significant difference probably due to a partial dehydration 

process. In all cases, the molecular weight used in the magnetic analysis was the obtained by 

single crystal data. 

  

                                                             
112

 Van der Sluis, P.; Spek, A. L. Acta Crystallogr. 1990, A46, 194-201. 
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Table 3.5. Crystallographic data and refinement details of compounds of Cu2ADSO4NHEt3, Cu8AD, 

Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2. 

 Cu2ADSO4NHEt3 Cu8AD Cu7ADSO4NHEt3-1 Cu7ADSO4NHEt3-2 

Formula C86H152Cu6N64O26S2 C50H50Cu8N50O8 C42H158Cu7N32O62S2 C42H120Cu7N32O43S2 

M (g mol–1) 2944 1987 2612 2270 

Cryst. Sist. Monoclinic Orthorhombic Monoclinic Trigonal 

Space group P21/n Ccca C2/c R ̅c 

a (Å) 13.0248(3) 20.1899(5) 15.5705(6) 18.9582(5) 

b (Å) 20.9011(4) 28.964(2) 22.3823(10) 18.9582(5) 

c (Å) 23.1090(7) 16.5403(5) 27.2969(9) 43.2908(14) 

α(ᵒ) 90 90 90 90 

β (ᵒ) 102.207(2) 90 101.102(4) 90 

γ(ᵒ) 90 90 90 120 

V (Å3) 6148.8(3) 9672.6(8) 9335.0(6) 13474.7(7) 

Z 2 4 4 6 

ρcalcd (g·cm
-1

) 1.590 1.365 1.778 1.258 

Colour Purple Purple Blue Blue 

F(000) 3060 3984 3260 5070 

µ (cm-1) 1.149 1.790 2.666 1.739 

θ range (°) 1.660–27.000 1.740–27.000 3.630–66.464 1.560–27.000 

hkl range 

–16≤h≤15; 

–26≤k≤26; 

–29≤l≤29 

–8≤h≤22; 

–26≤k≤26; 

–36≤l≤37 

–18≤h≤18; 

–26≤k≤26; 

–23≤l≤32 

–19≤h≤24; 

–23≤k≤21; 

–55≤l≤52 

Meas./indep. refl. 50515/13317 33482/5277 16386/8210 34104/3280 

R eqv. 0.0456 0.0630 0.0849 0.0516 

Obs. Refl. *I > 2ς(I)+ 10772 3803 5128 2014 

R, Rw[a,b] 0.0714/0.1541 0.0721/0.2115 0.1205/0.3766 0.0969/0.3083 

R, Rw(all) 0.0893/0.1625 0.0872/0.2221 0.1479/0.4025 0.1142/0.3237 

Gof(S)[c] 1.133 1.092 1.519 1.157 

Parameters 823 272 423 122 

Weighting sch.[d] Shelxl Shelxl Shelxl Shelxl 

Max./min. Δρ (e Å–3) 1.796/–0.637 3.959/–1.064 1.528/–1.018 1.914/–0.591 

Diffractometer SuperNova SuperNova SuperNova SuperNova 

λ (Å) 0.71073 0.71073 1.54184 0.71073 

Temperature (K) 100(2) 100(2) 100(2) 100(2) 

*a+ S = *∑w(F0
2
 - Fc

2
)

2
 / (Nobs- Nparam)]

1/2
 [b] R1 = ∑||F0|-|Fc|| / ∑|F0| [c] wR2 = *∑w(F0

2
 - Fc

2
)

2
 / ∑wF0

2
]

1/2
; w = 1/[ς

2
(F0

2
) + (aP)

2
 + bP] 

where P = (max(F0
2
,0) + 2Fc

2
)/3. a) Cu2ADSO4NHEt3 (0.0365), Cu8AD (0.1845), Cu7ADSO4NHEt3-1 (0.2000) and Cu7ADSO4NHEt3-2 

(0.2000). b) Cu2ADSO4NHEt3 (31.9990) and Cu8AD (162.7088). 
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Table 3.6. Crystallographic data and refinement details of compounds of Cu7ADSO4, Cu7ADHN-1 and 

Cu7ADHN-2. 

 Cu7ADSO4 Cu7ADHN-1 Cu7ADHN-2 

Formula C30H74Cu7N30O32S C42H90Cu7N32O48 C36H103Cu7N31O44 

M (g mol–1) 1880 2096 2119 

Cryst. Sist. Orthorhombic Monoclinic Triclinic 

Space group Cccm P21/c P ̅ 

a (Å) 10.5044(3) 19.3489(4) 10.4648(7) 

b (Å) 24.8711(10) 20.0870(4) 15.9781(15) 

c (Å) 27.0088(11) 21.7594(5) 24.6138(11) 

α(ᵒ) 90 90 88.970(5) 

β (ᵒ) 90 94.845(2) 83.389(5) 

γ(ᵒ) 90 90 73.308(7) 

V (Å3) 7056.2(5) 8426.8(3) 3915.5(5) 

Z 4 4 2 

ρcalcd (g·cm
-1

) 1.770 1.652 1.353 

Colour Light blue Blue Blue 

F(000) 3796 4252 1598 

µ (cm-1) 2.202 2.796 2.629 

θ range (°) 3.091–27.421 2.999–76.300 3.383–74.341 

hkl range 

–13≤h≤13; 

–32≤k≤31; 

–34≤l≤34 

–23≤h≤24; 

–24≤k≤23; 

–21≤l≤27 

–13≤h≤9; 

–19≤k≤19; 

–30≤l≤27 

Meas./indep. refl. 29071/3879 40513/17237 29877/15469 

R eqv. 0.0791 0.0372 0.0485 

Obs. Refl. *I > 2ς(I)] 3000 12494 7746 

R, Rw[a,b] 0.1123/0.2717 0.0737/0.2033 0.1453/0.4271 

R, Rw(all) 0.1324/02813 0.0963/0.2237 0.1929/0.4729 

Gof(S)[c] 1.135 1.028 1.489 

Parameters 221 876 759 

Weighting sch.[d] Shelxl Shelxl Shelxl 

Max./min. Δρ (e Å
–3

) 2.835/–1.585 2.190/–0.829 1.870/–0.647 

Diffractometer SuperNova SuperNova SuperNova 

λ (Å) 0.71073 1.54184 1.54184 

Temperature (K) 100(2) 100(2) 100(2) 

*a+ S = *∑w(F0
2
 - Fc

2
)

2
 / (Nobs- Nparam)]

1/2
 [b] R1 = ∑||F0|-|Fc|| / ∑|F0| [c] wR2 = *∑w(F0

2
 - Fc

2
)

2
 / ∑wF0

2
]

1/2
; w = 

1/[ς
2
(F0

2
) + (aP)

2
 + bP] where P = (max(F0

2
,0) + 2Fc

2
)/3. a) Cu7ADSO4 (0.0576), Cu7ADHN-1 (0.1006) and 

Cu7ADHN-2 (0.2000). b) Cu7ADSO4 (501.8563) and Cu7ADHN-1 (29.1698). 

3.3.2. Structural description 

3.3.2.1. Structural description of dimeric compound. 

 The dimeric entity consists of two crystallographically independent neutral 

paddlewheel shaped [Cu2(μ-ade-κN3:κN9)4(H2O)2] discrete entities (A and B dimers) 

crystallized with triethylammonium sulfate and solvent molecules (water and methanol). In the 

dimeric entities, four bridging adeninato ligands connect the copper(II) atoms through their N3 

and N9 nitrogen atoms to provide the core of the paddle-wheel shaped dinuclear entity. 



Homometallic adenine nucleobase based SMOFs 

 

  106 

Moreover, two water molecules are located in the apical positions of the elongated square 

pyramidal coordination environment of the metal centres (Figure 3.9, Table 3.7).  

 

A Dimer 

 

B Dimer 

Figure 3.9. Crystallographically independent [Cu2(μ-ade-κN3:κN9)4(H2O)2] entities in compound 

Cu2ADSO4NHEt3. 
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Table 3.7. Coordination bond distances (Å) of compound Cu2ADSO4NHEt3. 

Cu2ADSO4NHEt3 

Cu1–N19 2.020(4) Cu2–N49 1.994(4) 

Cu1–N29 2.004(4) Cu2–O2w 2.185(4) 

Cu1–N39 1.979(4) Cu1···Cu2 2.956(9) 

Cu1–N43 2.024(4) Cu3–N53 2.024(4) 

Cu1–O1w 2.246(4) Cu3–N59a 1.992(4) 

Cu2–N13 2.028(5) Cu3–N63a 2.031(4) 

Cu2–N23 1.994(4) Cu3–N69 2.011(4) 

Cu2–N33 2.038(4) Cu3···Cu3a 2.965(12) 

a
Symmetry codes: (a) –x + 2, –y, –z+1. 

 The coordination mode of the adenine ensures the rigid built unit of the discrete 

dimeric entities, (as it was required by our first requirement to achieve porous materials; see 

Chapter 1). ‘‘A” dimers are crosslinked through hydrogen bonding interactions involving the 

Watson–Crick and Hoogsteen faces of adjacent nucleobases to give a R2
2(9) ring (by four 

adjacent symmetry related to other ones). The dihedral angles between the base paring 

adenines (171/137 ᵒ) allow a 2D propagation interactions in the supramolecular 2D square grid 

(Figure 3.10, Table 3.8) give rise to a significant ondulation on the dimeric entities arrangement 

along this b-direction (dihedral angle: 137 ᵒ). 
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(a) 

 
(b) 

Figure 3.10. Base pairing assembled 2D supramolecular sheets of [Cu2(μ-ade-κN3:κN9)4(H2O)2] ‘‘A” 

entities: frontal (a) and lateral (b) views. The disorder of one of the adeninato ligands has been omitted 

for clarity. 

  



Homometallic adenine nucleobase based SMOFs 

 

  109 

Table 3.8. Hydrogen-bonding parameters (Å, °) in compound Cu2ADSO4NHEt3.a 

D–H···Ab H···A D···A D–H···A 

N16A−H16A···N31a 2.56 3.405(11) 166.3 

N16A–H···O3a 2.03 2.807(10) 150.7 

N16B–H···N31a 2.05 2.894(11) 166.5 

N16B–H···O3a 2.46 3.227(12) 149.0 

N26–H···N61b 2.40 3.209(6) 157.9 

N26–H···N41c 2.18 2.990(6) 157.0 

N36–H···O3wd 2.39 3.216(7) 160.8 

N36–H···N17e 2.13 2.966(6) 163.0 

N46–H···N27f 2.10 2.885(7) 150.8 

N46–H···O6wg 2.34 2.982(7) 132.1 

N56–H···O8wd 2.18 2.862(8) 136.4 

N66–H···N61h 2.12 2.943(6) 160.8 

N66–H···O1wi 2.36 3.196(6) 163.8 

O1w–H···N67j 1.97 2.752(5) 152.5 

O2w–H···N47g 1.90 2.798(6) 163.5 

O3w–H···N37k 1.82 2.666(6) 172.6 

O5w–H···N11j 2.08 2.858(6) 150.9 

O7w–H···N21 1.99 2.838(6) 175.0 

O1M–H···N57 1.97 2.780(6) 155.1 

a
Symmetry codes: (a) x – 1, y, z; (b) –x + 2, –y, –z + 1; (c) x + 1/2, –y + 1/2, z + 1/2; (d) –x + 5/2, y + 1/2, –z + 1/2; (e) x + 1, y, z; (f) x – 

1/2, –y + 1/2, z – 1/2; (g) –x + 2, –y, –z; (h) –x + 1, –y, –z + 1; (i) –x + 3/2, y – 1/2, –z + 1/2; (j) –x + 3/2, y + 1/2, –z + 1/2; (k) –x + 5/2, 

y – 1/2, –z + 1/2. 
b
D: donor; A: acceptor. 

 Additionally, the base pairing assembled [Cu2(μ-ade-κN3:κN9)4(H2O)2] layers are held 

together through an additional hydrogen bonding interation involving the coordinated water 

molecule as donor and the N7 position of the adeninato ligand as acceptor. As a consequence, 

a 3D architecture (Figure 3.11) with hexagonal BN (bnn) topology[90], point symbol (46.64), and 

network of channels with a diameter of 4.6–8.2 Å is observed. The estimated surface area, 

2200 m2/g based on theoretical calculations, displays of 45% of the total void space. 
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(a) 

 
(b) 

Figure 3.11. (a) Assembly of the base pairing 2D sheets into a 3D supramolecular network. (b) Potential 

3D interconnected channel system generated by the assembly of [Cu2(μ-ade-κN3:κN9)4(H2O)2] ‘‘A” 

entities. 

 The space present in the channels is not enough to allow the interpenetration of a 

second supramolecular network of the same type. However, there is space enough to permit 

the interpenetration of a second but different supramolecular network of base pairing [Cu2(μ-

ade-κN3:κN9)4(H2O)2] entities (dimer B). These dimeric entities only employ two of their four 

adeninato ligands, in trans arrangement, to self-assemble through base pairing interactions. 

Interestingly, in this case, the base pairing interactions involve only the Watson–Crick faces 

and the interacting adeninato ligands are parallel. As a result, it generates 1D supramolecular 

linear chains that propagate along the space generated in between the 2D supramolecular 

sheets during their assembly into the 3D supramolecular architecture previously described 
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(Figure 3.12). The two subnetworks interact through the hydrogen bonding interaction 

established between the O1w coordinated water molecule of dimer ‘‘A” and the N7 position of 

the adeninato ligand of an adjacent dimer ‘‘B”. 

 
(a) 

 
(b) 

Figure 3.12. (a) Base pairing assembled supramolecular chain of [Cu2(μ-ade-κN3:κN9)4(H2O)2] ‘‘B” 

entities. (b) Overall description of the interpenetration of both [Cu2(μ-ade-κN3:κN9)4(H2O)2] 

subnetworks and the cocrystallization of (NH2Et2)2SO4 in the voids of the crystal structure. 

 The remaining available space within the channels is occupied by triethylammonium 

cations, sulfate anions, crystallization water and methanol molecules that establish a complex 
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hydrogen bond network involving also the donor/acceptor positions of the adeninato ligands 

not involved in the base pairing interactions. 

3.3.2.2. Structural description of octameric compound. 

 This compound consists of [Cu8(μ4-OH)4(μ3-OH)4(ade-κN9)4(μ-ade-κN3:κN9)4(μ-

adenine-κN3:κN9)2] octameric clusters formed by the stacking of four Cu2(μ-OH)2 dimers that 

are 90ᵒ rotated and linked by a semicoordination to the neighbouring Cu(II) atoms through the 

hydroxide bridges (Figure 3.13, Table 3.9). The resulting aggregate can be described as the 

stacking of three cubanes (cubes with the vertices alternatively occupied by the metal and the 

bridging ligand). The surface of each octamer is occupied by eight adeninato and two neutral 

adenine ligands. Four adeninato and the neutral adenine entities act as bidentate N3, N9-

bridging ligands. These bridging ligands are disordered into two coplanar arrangements with 

inverted orientation regarding the coordination mode (μ-κN3:κN9/μ-κN9:κN3). The remaining 

adeninato ligands are anchored to the corners of the cluster as terminal ligands through N9, 

and their stiffness is reinforced by intramolecular hydrogen bonds involving the hydroxide 

bridges and the N3 positions of the nucleobases. All the adenines, adeninatos, and hydroxides 

are rigidly anchored to the octameric entity because of their multiple coordination bond 

(OH/adenine/adeninato) or the combination of a coordination bond and an intramolecular 

hydrogen bond (adeninato). 
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(a) 

 
(b) 

Figure 3.13. Whole octameric entity (a) and [Cu8(μ4-OH)4(μ3-OH)4] unit (b). 

Table 3.9. Coordination bond distances (Å) of compound Cu8AD.a 

Cu8AD 

Cu1–N33 1.960(1) Cu2–O2 1.920(8) 

Cu1–O1 1.967(6) Cu2–O2a 1.994(8) 

Cu1–O1a 1.998(5) Cu2–N19 1.962(7) 

Cu1–N23 1.974(9) Cu2–N29 1.962(9) 

Cu1–N39b 2.031(1) Cu1···Cu1a 3.018(2) 

  Cu2···Cu2a 2.988(2) 

a
Symmetry codes: (a) –x +3/2, y, –z+1/2; (b) x, –y, –z+1/2. 
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 The interaction of each octamer with the adjacent ones is by means of a hydrogen 

bonding scheme involving the hydroxide anions and the N7 imidazolic atom of terminal 

adeninato ligands giving rises to a bidimensional network (Figure 3.14, Table 3.10). Moreover, 

the bridging adeninato ligands direct their Watson−Crick and Hoogsteen faces outward in 

those supramolecular layers in such a way that they establish complementary hydrogen 

bonding interactions with neighbouring tectons. As in previous compounds the Watson−Crick 

faces establish a R2
2 (8) hydrogen bonding ring. The combination of the above described 

interactions leads to a 3D 8-connected uninodal supramolecular net with a sqc3 topology, 

point symbol being (44 .62),[90] where the geometrical requirements imposed by the rigidity of 

the octameric unit and the hydrogen bonding interactions avoid the full occupancy of the 

space. This is reflected by the presence of large monodimensional channels of ca. 4.9 Å (Figure 

3.14B) spreading along the [1 0 0] direction, which corresponds to a calculated surface area of 

366 m2/g and a 30% of void space. 

Table 3.10. Hydrogen-bonding parameters (Å, °) in compound Cu8AD.a 

D–H···Aa H···A D···A D–H···A 

N16−H16A···N11Ab 2.51 3.340(3) 161 

N36−H36B···N13a 2.56 3.317(7) 148 

O1−H1···N37c 2.09 2.947(5) 177 

O2−H2···N33d 2.18 3.015(6) 167 

a
Symmetry codes: (a) x, −y + 1/2, −z + 1/2; (b) −x + 3/2, y, z − 1/2; (c) −x + 3/2, −y + 1, z; (d) −x + 3/2, y, z + 1/2. 

b
D: donor; A: 

acceptor. 
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(a) 

 
(b) 

Figure 3.14. Crystal packing of compound Cu8AD (a) showing the voids in yellow (b). 
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3.3.2.3. Structural description of heptameric compounds. 

 The crystal structure of all of the heptameric compounds contains cationic [Cu7(μ-

H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ heptanuclear entities which consists of a central [Cu(OH)6]4- 

core, connected to six additional copper(II) metal centers in a radial and planar arrangement 

through the hydroxides with μ3-bridging mode (Figure 3.15). It generates a wheel shaped 

entity in which water molecules and µ-κN3:κN9 adeninato ligands bridge the peripheral copper 

atoms. All the metal centers present an octahedral geometry with the usual Jahn-Teller 

tetragonal elongation but it is far more pronounced for the peripheral copper(II) centers (Δd ≈ 

0.5-0.6 Å) than for the central one (Δd = 0.2 Å), probably because of the rigidity of the wheel 

shaped heptanuclear entity. The elongation at the peripheral copper atoms takes place along 

the metal-water coordination bonds, in such a way that the coordinated water molecules are 

less strongly held to the complex entity than the adeninato ligands that establish shorter 

coordination bonds. In any case, the heptameric entity can be considered as a rigid building 

unit as all the components establish at least two coordination bonds. 

 

Figure 3.15. Heptameric cationic entity of compounds Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2, Cu7ADSO4, 

Cu7ADHN-1 and Cu7ADHN-2. 
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 The scheme of supramolecular interactions between adjacent heptameric units of each 

compound has significance differences for several reasons. On one hand, the type of 

counterion or co-crystallization species conditions the way in which the heptanuclear 

complexes are self-assembled. On the other hand, minor changes in the synthesis conditions 

also influence the assembly of the structural units, and as consequence, it yields to compounds 

that can be considered polymorphous, if the solvent molecules hosted in the pore are 

neglected (Cu7ADSO4NHEt3-1/-2 and Cu7ADHN-1/-2). As mentioned in the synthesis section of 

the current chapter, as Cu7ADSO4NHEt3-1 and -2 differ on the crystallization times, 

Cu7ADSO4NHEt3-1 can be regarded as the kinetically favoured polymorph, while compound 

Cu7ADSO4NHEt3-2 would be the thermodynamically favoured one. 

3.3.2.3.1. Structural description of compounds Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2 and 

Cu7ADSO4. 

 Compounds Cu7ADSO4NHEt3-1 and -2 contain doubly capped sultate/heptamer/sulfate 

rigid assemblies, where the hydrogen bond donor positions of the [Cu(OH)6]4- core are 

employed to tightly anchorage the two sulfate anions, above and below the complex. In fact, 

the doubly capped sulfate/heptamer/sulfate rigid assembly is not only the key structural unit 

that fulfils the SMOF building criteria expounded in the introductory section, but it is also the 

point of disparity between the supramolecular schemes of these two polymorphous 

compounds (see below). Note, that the presence of two sulfate anions per heptanuclear 

complex is in agreement with the chemical formulas gathered in Table 3.1. Contrarily, in 

compound Cu7ADSO4 there is one sulfate anion per heptamer which links successively upper 

and lower [Cu(OH)6]3– cores of neighbouring complexes giving rise to a one-dimensional 

hepatmer/sulfate rigid aggregate.  

In compound Cu7ADSO4NHEt3-1 (Figure 3.16, Table 3.11), the hydrogen-bond donor 

positions of the [Cu(OH)6]4− core are employed to tightly anchor two sulfate anions, above and 

below the complex, through three O−H···O hydrogen bonds to each anion (Figure 3.16b). This 

doubly capped heptamer-sulfate rigid assembly is the key structural unit that fulfils the SMOF 

building criteria expounded in the introductory section, since it allows interacting with four 

adjacent ones through two different rigid synthons (Figure 3.17 and Table 3.12). The first one 

comes from double adeninato···adeninato π−π stacking interactions taking place between the 

heptamer and two of the four adjacent heptamers. The second one involves a single 

adeninato···adeninato π−π stacking and a N6adeninato···Osulfate···OHcoordinated hydrogen bond chain. 

The rigidity of both the heptameric discrete entity and the synthons, built from the 
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combination of two relatively loose supramolecular interactions, generates a CdSO4-like cds 

topology with a (65.8) point symbol (nodes being the heptameric units and connectors being 

the π−π stacking interactions between the adeninates).[90] This supramolecular network 

presents one-dimensional (1D) channels (mode: 5.5 Å) that imply a 49.0% of unit cell volume in 

which disordered solvent molecules and triethylammonium cations are placed. 

 
(a) 

 
(b) 

Figure 3.16. [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+

 heptanuclear entity (a) and hydrogen bond 

anchorage of the sulfate anions (b) in compound Cu7ADSO4NHEt3-1. Dashed lines indicates hydrogen 

bond. 
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(a) 

  
(b) (c) 

Figure 3.17. Supramolecular interactions connecting each [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+ 

heptanuclear entity to four adjacent ones (a) and projection of the crystal packing along the 

crystallographic c axis (b) for compound 1 showing the voids in yellow (c). Double dotted lines and “+” 

indicate π−π stacking interactions. 

In compound Cu7ADSO4NHEt3-2 (Figure 3.18, Table 3.11), the sulfate anions, although 

still occupying the top and bottom of the heptameric entity, are only anchored through two 
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hydrogen bonds to the hydroxide bridges (Figure 3.18b). It decreases the steric hindrance 

around the complex entity allowing the adeninato ligands to supramolecularly connect each 

complex entity to six adjacent ones (Figure 3.19 and Table 3.13). The same rigid synthon, 

involving adenine···adenine π−π interactions and a N7adeninato···Owcrystallization···Owcoordinated 

hydrogen bond chain, accounts for all the interactions between the heptamers. The sulfate 

counterions, although disordered, are held to the Hoogsteen edge of the adeninato ligands 

through hydrogen bonds. Again, an open structure is achieved, with α-Po primitive cubic pcu 

topology and a (412.63) point symbol, in which 1D channels (mode: 5.8 Å) that encompass the 

41.5 % of the unit cell volume are present. 
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(a) 

 

(b) 

Figure 3.18. [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ heptanuclear entity (a) and hydrogen bond 

anchorage of the sulfate anions (b) in compound Cu7ADSO4NHEt3-2. Dashed lines indicate hydrogen 

bond. 
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(a) 

 

(b) 

 

(c) 

Figure 3.19. Supramolecular interactions connecting each [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+ 

heptanuclear entity to six adjacent ones (a) and crystal packing of the structure showing the presence of 

1D channels (b and c). 
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In compound Cu7ADSO4 (Figure 3.20, Table 3.11), each sulfate anion connects 

successively upper and lower [Cu(OH)6]4– cores of neighbouring heptamers by means of four 

hydrogen bonding interactions, yielding a one-dimensional heptamer/sulfate supramolecular 

assembly (Figure 3.21, Table 3.14). Its heptanuclear complex is connected to four surrounding 

ones again by rigid double synthon that imply adenine···adenine π−π interactions and a 

N1/7adeninato···Owcoordinated hydrogen bond. Two of them seem to be excessively long to be 

considered as π−π interactions. However, the quasi-perfect overlap of adeninatos and 

references suggest otherwise.[90] This rigid synthon provides again a porous supramolecular 4-

connected unidodal structure with sql Shubnikov tetragonal plane net topology and a (44.62) 

point symbol, containing 1D channels that account for 26.7% of the unit cell volume. 
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(a) 

 
(b) 

Figure 3.20. (a) [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+

 entity and (b) hydrogen bond anchorage of 
sulfate anions in compound Cu7ADSO4. 
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(a) 

 
(b) 

 
(c) 

Figure 3.21. Supramolecular interactions connecting each [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+ 

heptanuclear entity to four adjacent ones (a) and crystal packing of the structure showing the presence 

of 1D channels (b and c). 
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Table 3.11. Coordination bond distances (Å) of compounds Cu7ADSO4NHEt3-1
1
 Cu7ADSO4NHEt3-2 and 

Cu7ADSO4.
a
 

Cu7ADSO4NHEt3-1 

Cu1···O1 1.975(5) Cu3–O2 1.995(6) Cu4–N23 2.031(9) 

Cu1···O2 1.973(6) Cu3–O3 1.973(6) Cu4–N39i 1.945(8) 

Cu1···O3 2.117(5) Cu3–N13 2.017(11) Cu4–O3w 2.516(9) 

Cu2–O1 1.937(6) Cu3–N29 1.973(9) Cu1··· Cu2 3.047(2) 

Cu2–O2 1.965(5) Cu3–O1w 2.459(9) Cu2··· Cu4a 3.126(2) 

Cu2–O1w 2.409(9) Cu3–O2w 2.465(9) Cu1··· Cu3 3.138(2) 

Cu2–O3w 2.509(9) Cu4–O1a 2.026(6) Cu2··· Cu3 3.129(2) 

Cu2–N33 1.996(8) Cu4–O3 1.957(5) Cu1···Cu4 3.153(2) 

Cu2–N19 1.945(9) Cu4–O2w 2.510(9) Cu3··· Cu4 3.086(2) 

Cu7ADSO4NHEt3-2 

Cu1–O1 2.047(4) Cu2–O1a 1.977(4) Cu2–O1w 2.444(5) 

Cu2–O1wb 2.463(5) Cu2–N3b 1.988(5) Cu1··· Cu2 3.1037(7) 

Cu2–O1 1.961(4) Cu2–N9 2.012(4) Cu2··· Cu2b 3.1042(7) 

Cu7ADSO4 

Cu1–O1 2.313(1) Cu2–O1w 2.307(1) Cu3–N19B 1.820(2) 

Cu1–O1a 2.313(1) Cu2–N13 2.113(2) Cu3–N19Bc 1.820(2) 

Cu1–O2 1.975(1) Cu2–N19A 1.942(7) Cu1···Cu2 3.161(1) 

Cu1–O2a 1.975(1) Cu2–N23 2.108(1) Cu1···Cu2a 3.161(1) 

Cu1–O2b 1.975(1) Cu3–O2 1.962(1) Cu1···Cu3 3.002(2) 

Cu1–O2c 1.975(1) Cu3–O2c 1.962(1) Cu1···Cu3a 3.002(2) 

Cu2–O1 1.942(7) Cu3–N13A 2.101(1)   

Cu2–O2 1.999(8) Cu3–N13Ac 2.101(1)   

a 
Symmetry codes Cu7ADSO4NHEt3-1: (a) –x+2, -y, –z+1. Cu7ADSO4NHEt3-2: (a) x–y+1, x, –z+1; (b) y, –x+y+1, –z+1. Cu7ADSO4: (a) –x,-

y, –z; (b) x, y, –z; (c) –x, –y, z. 
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Table 3.12. Hydrogen bonding parameters (Å, ᵒ) and π–π interactions of compound Cu7ADSO4NHEt3-1.a
 

Hydrogen bonding interactions    

D-H...A[b] H...A D...A D-H...A 

O1–H1···O13 1.939 2.739 158 

O2–H2···O11a 2.093 2.740 139 

O3–H3···O14 2.340 2.976 139 

N26–H26B···O14b 2.144 2.976 163 

N41–H41···O12 2.008 2.894 164 

N41–H41···O11 2.608 3.293 133 

O1w–H1w2···O14 1.960 2.807 175 

O2w–H2w2···O13a 2.058 2.892 166 

O3w–H3w1···O11 1.989 2.811 161 

π-π interactions[c]      

Ring...Ring[d] α DC β DZ DXY 

p1···h3c 4.7 3.91 26.6 3.50 1.75 

h2···h2b 0.0 4.13 31.6 3.51 2.16 

a
 Symmetry codes: (a) –x+2, -y, –z+1; (b) –x+3/2, –y+1/2, –z+1; (c) 2–x, y, ½–z.

 [b] 
D: donor; A: acceptor.

[c] 
Angle: dihedral angle 

between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle 

(°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: 

hexagonal ring of the adeninato and p: pentagonal ring of the adeninato. The numbers 1, 2 and 3 are related with each of the 

crystallographically independent adenines.
 [d] 

p1: C14, C15A, N17, C18, N19; h2: N21, C22, N23, C24, C25, C26; h3: N31, C32, N33, 

C34, C35, C36. 
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Table 3.13. Hydrogen bonding parameters (Å, °) and π–π interactions in compound Cu7ADSO4NHEt3-2.
a 

Hydrogen bonding interactions    

D-H...A[b] H...A D...A D-H...A 

O1–H1···O2Sa 2.058 2.788 162 

O1–H1···O2Sb 2.211 2.839 141 

N16–H16A···O2S 1.979 2.834 173 

N16–H16A···O2Sc 2.189 2.960 149 

π-π interactions[c]      

Ring...Ring[d] α DC β DZ DXY 

h···pd 0.0 3.89 27.1 3.47 1.77 

h···h 
d 0.0 3.77 24.6 3.43 1.57 

p···hd  0.0 3.89 28.3 3.43 1.84 

p···pd  0.0 4.00 30.0 3.47 2.00 

a 
Symmetry codes: (a)–x+y+2/3, y+1/3, z–1/6; (b) –y+5/3, –x+4/3, z–1/6; (c) –x+y, –x+1, z; (d) 4/3–X,2/3–X+Y,7/6–Z.

 [b] 
D: donor; A: 

acceptor.
[c] 
Angle: dihedral angle between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between 

mean plane of the rings. β: angle (°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: 

lateral displacement (Å), 
[d] 

h: hexagonal ring of the adeninato and p: pentagonal ring of the adeninato. 

Table 3.14. Hydrogen bonding parameters (Å, °) and π–π interactions in compound Cu7ADSO4.
a 

D–H···A[b] H···A D···A D–H···A 

N26–H26A··· N26a 2.61 2.98(2) 107 

O1–H1····O2Sb 1.87 2.75(2) 148 

O1w–H1wA····O1S 1.91 2.74(2) 149 

π-π interactions[c] 

Ring...Ring[d] α DC  DZ DXY 

p1A··· p1Ac 12.0 5.72(4) 56.6 3.15(1) 4.77 

p1A··· p1Bc 8.0 5.07(4) 45.9 3.52(9) 3.64 

p2A····p2Ab 0.1 4.62  4.58  

a 
Symmetry codes: (a) –x + 3/2, –y – 1/2, z; (b) – x + 1, –y, z; (c) –x, y, –z – 1/2.

 
.
 [b] 

D: donor; A: acceptor.
[c] 

Angle: dihedral angle 

between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle 

(°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: 

hexagonal ring of the adeninato, p: pentagonal ring of the adeninato.  

3.3.2.3.2. Structural description of compound Cu7ADHN-1 and Cu7ADHN-2. 

 The asymmetric unit of compound Cu7ADHN-1 consists of two half heptamer and two 

HN counterions (Figure 3.22, Table 3.15). The capability of HN to behave as hydrogen bond 

donor/acceptor and as π-bonding platform, give rises to an interaction scheme among the 
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building completely different to those above described, controlling in great extent the 

resulting crystal packing, as described below. The parameters representing the principal 

supramolecular interactions are gathered in Table 3.16. 

 

Figure 3.22. Both [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ entities in compound Cu7ADHN–1. 

Figure 3.23a shows the supramolecular 2D framework (parallel to cb crystallographic plane) 

with sql topology consisting of 4-connected heptamer-2 units bridged by the rigid synthon 

stablished by one of the 6-hydroxinicotinate anions (HN-2) which is hydrogen bonded to 

hydroxide and water ligands (O78···H–O6w, O77···H–O4, O72···H–O4w) and sandwiched by π–

π interactions between two adeninatos (AD-5 and AD-6) of the neighboring heptamers. 

Heptamer-2 units of neighboring layers are crosslinked by the interactions established by the 

HN-1/hepatmer-1/HN-1 ensemble (Figure 3.23b) to yield a like 3D supramolecular network. 

Note that HN-1 bridges neighboring heptamer-1 and heptamer-2 by double rigid synthons: (1) 

it binds to heptamer-1 by means of a double hydrogen bonding established by the carboxylate 

O-atoms with hydroxide and water ligands (O87···H–O3w, O88··· H–O2, O72···H–O4w) and by 

π–π interactions with an adeninato (AD-2), and (2) it binds to heptamer-2 again through a 

double hydrogen bonding stablished by the carbonyl O-atom and the neighboring aromatic H-

atom with Hoogsteen face of an adeninato (AD-4) (O82···H–N46, C83–H···N47). Some other 

weaker interactions (displaced π-interactions and H···π interactions) have been omitted from 

the discussion for clarity. The overall crystal structure contains an intricate system of 3D 

channels that imply a 26.2% of unit cell volume, which host the crystallization solvent 

molecules (Figure 3.24).  
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(a) 

 

(b) 
Figure 3.23. Supramolecular chain formed by the assembly of heptamer-2/HN-2 units (a). HN-

1/hepatmer-1/HN-1 supramolecular ensemble crosslinking of upper layers (b). 
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(a) 

 
(b) 

Figure 3.24. Crystal packing of compound Cu7ADHN-1 (a) showing the voids in yellow (b). 
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Table 3.15. Coordination bond distances (Å) of compound Cu7ADHN-1.a 

Cu7ADHN-1 

Cu11–O1  1.954(4) Cu22–N53 2.003(6) 

Cu11–O1a  1.954(4) Cu22–N69b 1.981(6) 

Cu11–O2 2.104(4) Cu22–O4 1.988(4) 

Cu11–O2a 2.104(4) Cu22–O5 1.956(4) 

Cu11–O3 2.180(4) Cu23–N43 2.025(6) 

Cu11–O3a 2.180(4) Cu23–N59a 1.967(7) 

Cu12–N13 1.995(6) Cu23–O5 1.992(4) 

Cu12–N39 1.998(6) Cu23–O6 1.943(4) 

Cu12–O1a 1.997(4) Cu23–O5w 2.437(5) 

Cu12–O3 1.949(4) Cu24–N49 1.964(6) 

Cu12–O3wa 2.333(4) Cu24–N63 1.983(6) 

Cu13–N19 1.985(5) Cu24–O4b 1.980(4) 

Cu13–N29 1.996(5) Cu24–O6 1.956(6) 

Cu13–O2 1.988(4) Cu11···Cu12 3.095(5) 

Cu13–O3 1.971(4) Cu11···Cu12a 3.095(5) 

Cu14–N23 2.013(6) Cu11···Cu13 3.189(6) 

Cu14–N23a 1.979(6) Cu11···Cu13a 3.189(6) 

Cu14–O1 1.990(4) Cu11···Cu14 3.071(5) 

Cu14–O2 1.965(4) Cu11···Cu14a 3.071(5) 

Cu14–O3w 2.425(4) Cu21···Cu22 3.050(9) 

Cu21–O4  2.014(4) Cu21···Cu22b 3.050(9) 

Cu21–O4b  2.014(4) Cu21···Cu23 3.140(9) 

Cu21–O5  2.016(4) Cu21···Cu23b 3.140(9) 

Cu21–O5b  2.016(4) Cu21···Cu24 3.153(8) 

Cu21–O6  2.224(4) Cu21···Cu24b 3.153(8) 

Cu21–O6b  2.224(4)   

a 
Symmetry codes: (a) –x + 1, –y + 1, –z + 1; (b) –x + 2, –y, –z + 1. 
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Table 3.16. Hydrogen bonding parameters (Å, °) and π–π interactions in compound Cu7ADHN-1.a 

D–H···A[b] H···A D···A D–H···A 

N26–H26A··· N26b 2.60 3.15(1) 123 

N46b–H46Ab···O82 2.09 2.87(9) 151 

N66A–H66A···N17a 2.22 2.99(2) 149 

C28–H28···N61b 2.67 3.47(1) 145 

C83–H83···N47b 1.90 2.83(8) 175 

O2–H2···O88 1.85 2.82(7) 171 

O4–H4···O77Ac 1.88 2.84(6) 170 

O4–H4···O77Bc 1.77 2.70(6) 158 

O1w–H1wA···O88 2.35 3.21(9) 176 

O3w–H3wA···O87 1.92 2.77(6) 170 

O4w–H4wA···N16a 2.40 3.15(8) 147 

O4w–H4wA···O72b 2.59 2.88(3) 100 

O5w–H5wB···O77Bc 1.97 2.79(7) 160 

O6w–H6wB···O78Ab 2.05 2.89(9) 163 

O6w–H6wB···O78Bb 2.11 2.97(8) 173 

π-π interactions[c]     

Ring...Ring[d] α DC β DZ DXY 

hh1B···p5a 9.8 5.37(1) 53.7 3.18(1) 3.74 

hh1B ···h5b 8.0 4.27(2) 37.0 3.38(3) 2.57 

hh1B ···p6b 5.6 3.76(1) 19.8 3.40(9) 1.27 

hh2···p1a 32.0 3.96(4) 13.8 2.89(2) -- 

hh2···p2a 13.4 4.55(4) 46.9 3.47(4) 3.32 

hh1A···p5a 14.3 5.71(8) 43.1 3.08(9) 3.90 

hh1A ···h6b 5.0 4.04(1) 29.1 3.37(3) 1.96 

hh1A ···p6b 4.9 3.79(1) 25.0 3.41(5) 1.60 

a 
Symmetry codes: (a) x – 1, –y + 1/2, z – 1/2; (b) –x + 1, –y, –z + 1; (c) x + 1, y, z.

 [b] 
D: donor; A: acceptor.

[c] 
Angle: dihedral angle 

between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle 

(°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: 

hexagonal ring of the adeninato, p: pentagonal ring of the adeninato and hh: ring of the hydroxynicotinato. The numbers from 1 to 

6 are related with each of the crystallographically independent adenines and hydroxynicotinato. p1: C14, C15, N17, C18, N19. p2: 

C24, C25, N27, C28, N29. h5: N51, C52, N53, C54, C55. p5: C54, C55, N57, C58, N59. h6: N61, C62, N63, C64, C65. p6: C64, C65, 

N67, C68, N69. hh1A: N71A, C72A, C73A, C74A, C75A, C76A. hh1B: N71B, C72B, C73B, C74B, C75B, C76B. Hh2: N81, C82, C83, C84, 

C85, C86. 
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The asymmetric unit of compound Cu7ADHN-2 consist of two half heptamers 

(heptamer-1 and heptamer-2) and a whole dianionic HN counterion (Figure 3.25, Table 3.17). 

Thus, the heptamer/HN ratio is reduced to 1/1, which induces significant differences in the 

crystal packing with regard to the previous case which contains two couterions per heptamer. 

It must be noted that the pH values in the synthesis of Cu7ADHN-2 (10.5) is higher than that of 

Cu7ADHN-1, and is also close to the pKa2 (ca. 11) corresponding to the amidic proton of 2-

pyridone form, which might explain the inclusion of HN as dianion in this latter structure.  

Table 3.18 gathers the parameters describing the main non-covalent interactions of 

Cu7ADHN-2. Heptamer-1 and heptamer-2 entities assemble successively by means of a double 

set of π– π stacking interactions (AD-1···AD-4 and AD-3···AD-5) to yield a supramolecular strip 

heptamers extending along the [101] direction. Each HN counterion is hydrogen bonded to 

hydroxide and water ligands (O71···H–O6w, O72···H–O4, O6N···H–O1) and sandwiched by π–π 

interactions between two adeninatos (AD-1 and AD-4) of heptamer-1 and heptamer-2 entities 

of neighbouring chains (Figure 3.26A). This rigid synthon is the same as that described for HN-2 

in Cu7ADHN-1. As a result, the connection between heptamer-1 and heptamer-2 entities yields 

2D supramolecular ensemble parallel to ac-plane. These layers are connected by means of the 

displaced π–π interactions taking place between adjacent heptamer-2 entities (Figure 3.26). 

The resulting crystal structure contains a 3D channel system that hosts the solvent molecules 

and accounts for 26.1 % of the total volume (Figure 3.27). 

 

Figure 3.25. The two [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ entities in compound Cu7ADHN–2. 
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(a) 

 
(b) 

Figure 3.26. Set of interactions connecting hept-1 and hept-2 entities (A) and resulting supramolecular 

2D ensemble in compound Cu7ADHN–2 (B). In (A) H-atoms were omited and HN anions were couloured 

in green for clarity. 
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(a) 

 

(b) 

Figure 3.27. Crystal packing of Cu7ADHN-2 viewed along [1 0 0] crystallographic direction (a) and 

representation of the voids (b). 
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Table 3.17. Coordination bond distances (Å) of compound Cu7ADHN-2.
a
 

Cu7ADHN-2 

Cu11–O1  2.014(8) Cu22–N49 1.955(11) 

Cu11–O1a  2.014(8) Cu22–N69 1.973(13) 

Cu11–O2 2.064(10) Cu22–O4 1.966(8) 

Cu11–O2a 2.064(10) Cu22–O5 1.981(8) 

Cu11–O3 2.167(9) Cu22–O4w 2.422(12) 

Cu11–O3a 2.167(9) Cu22–O6w 2.506(12) 

Cu12–N19 1.966(11) Cu23–O5  1.972(8) 

Cu12–N33 1.970(14) Cu23–O6 1.962(8) 

Cu12–O1 1.982(8) Cu23–N49 1.955(11) 

Cu12–O3a 1.962(9) Cu23–N53 1.978(9) 

Cu12–O1w 2.494(4) Cu23–N59 1.978(9) 

Cu12–O2w 2.454(4) Cu23–O4w 2.482(4) 

Cu13–O1  1.962(9) Cu23–O5w 2.512(4) 

Cu13–O2 1.996(8) Cu24–O4  1.958(10) 

Cu13–N13 1.997(11) Cu24–O6b 1.967(9) 

Cu13–N23 2.024(9) Cu24–N53b 2.009(9) 

Cu13–N29 2.024(9) Cu24–N59b 2.009(9) 

Cu13–O2w 2.454(4) Cu24–N63 1.999(14) 

Cu13–O3w 2.447(4) Cu24–O5w 2.462(4) 

Cu14–O2  1.976(9) Cu24–O6w 2.562(4) 

Cu14–O3 1.944(10) Cu11···Cu12 3.098(10) 

Cu14–N23 1.994(9) Cu11···Cu12a 3.098(10) 

Cu14–N29 1.994(9) Cu11···Cu13 3.080(11) 

Cu14–N39a 2.003(13) Cu11···Cu13a 3.080(11) 

Cu14–O1w 2.512(4) Cu11···Cu14 3.150(12) 

Cu14–O3w 2.532(4) Cu11···Cu14a 3.150(12) 

Cu21–O4  2.253(9) Cu21···Cu22 3.142(11) 

Cu21–O4b  2.253(9) Cu21···Cu22b 3.142(11) 

Cu21–O5 1.982(7) Cu21···Cu23 3.040(14) 

Cu21–O5b 1.982(7) Cu21···Cu23b 3.040(14) 

Cu21–O6 2.058(9) Cu21···Cu24 3.161(10) 

Cu21–O6b 2.058(9) Cu21···Cu24b 3.161(10) 
a 

Symmetry codes: (a) –x + 1, –y, –z + 1; (b) –x, –y, –z. 
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Table 3.18. Hydrogen bonding parameters (Å, °) and π–π interactions in compound Cu7ADHN-2.a 

D–H···A[b] H···A D···A D–H···A 

O1–H1··· O6Na 2.14 2.90(2) 170 

O4–H4···O72b 1.92 2.74(2) 160 

O6w–H1W6···O71b 2.12 2.77(3) 133 

O3w–H1w3···N1c 2.47 3.14(2) 136 

N26A–H26A···N36d 2.52 2.93(5) 110 

π-π interactions[c]     

Ring...Ring[d] α DC β DZ DXY 

p1···p4b 2.0 3.98(9) 30.3 3.43(6) 2.00 

p1···h4b 2.0 4.83(1) 44.5 3.44(7) 3.39 

hh ···p1a 4.3 3.54(9) 10.4 3.48(6) 0.64 

p3···p5Ab 3.0 5.50(1) 54.0. 3.23(6) 4.45 

h1···p4b 2.3 4.77(9) 44.9 3.38(6) 3.36 

h1···h4b 2.9 4.90(1) 46.3 3.39(1) 3.54 

hh ···h1a 4.2 4.09(1) 30.9 3.51(6) 2.10 

hh ···p4c 6.0 3.85(9) 24.7 3.49(6) 1.60 

a 
Symmetry codes: (a) –x + 1, –y + 1, –z + 1; (b) –x + 1, –y, –z + 1; (c) x – 1, y – 1, z; (d) 2 – x, –y, 1 –z.

 [b] 
D: donor; A: acceptor.

[c] 

Angle: dihedral angle between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between mean plane 

of the rings. β: angle (°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral 

displacement (Å), 
[d] 

h: hexagonal ring of the adeninato, p: pentagonal ring of the adeninato and hh: ring of the hydroxynicotinato. 

The numbers from 1 to 6 are related with each of the crystallographically independent adenines and hydroxynicotinato. p1: C14, 

C15, N17, C18, N19. p3: C34, C35, N37, C38, N39. p4: C44, C45, N47, C48, N49. p5A: C54a, C55a, N57a, C58a, N59a. h1: N11, C12, 

N13, C14, C15, C16. h4: N41, C42, N43, C44, C45, C46. hh1A: N1, C2, C3B, C4, C5, C6.  

3.3.2.4. Temperature variable PXRD experiments. 

 In these compounds, whose channels have a considerable size, the number of solvent 

molecules, especially water, is usually very variable. The structural stability depends on the 

network of supramolecular interactions taking place among the [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-

κN3:κN9)6]2+ cations and the counterions (SO4
2– or HN), but it is also influenced by the 

presence of the solvent molecules contained in the channels. Temperature variable PXRD 

measurements were made for compounds Cu7ADSO4NHEt3-1, Cu7ADSO4 and Cu7ADHN-1 in 

order to analyse how the crystal structure evolves upon the desolvation caused by the 

increases of the temperature. Accordingly, PXRD were collected from room temperature to 

200 ᵒC (Figure 3.28a).  
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Cu7ADSO4NHEt3-1 

 
 

Cu7ADSO4 

 

 

Cu7ADHN-1 

(a) (b) 

Figure 3.28. (a) Temperature variable PXRD plots for compounds Cu7ADSO4NHEt3-1, Cu7ADSO4 and 

Cu7ADHN-1. Initially, the temperature increases from 30 to 40 ᵒC and after that, increases 20 ᵒC per 

measurement up to 200 ᵒC. Compound Cu7ADSO4NHEt3-2 has not been included in this study because it 

shared the same thermal stability than its analogue, compound Cu7ADSO4NHEt3-1. (b) Theoretical PXRD 

patterns computed from the pristine crystal structures. In the case of Cu7ADHN-1, the diffraction pattern 

was simulated using [0 3 1] as preferred orientation.  

 As it can be observed, the temperature evolution of the PXRD patterns of compounds 

Cu7ADSO4 and Cu7ADHN-1 shows significant changes immediately after room temperature (40 

ᵒC), which can be ascribed to a structural change caused by a partial solvent evaporation. 
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Compound Cu7ADSO4NHEt3-1 does not show this change in its reflections because it had 

previously occurred, when it had been in contact with the atmosphere while the sample was 

manipulated for the experiment preparation. Therefore, it becomes clear that the initial 

diffraction pattern might change depending on factors such as the exposition at room 

temperature, relative humidity and storage time during the sample manipulation. As an 

example, Figure 3.29 shows a time dependence PXRD of compound Cu7ADSO4 collected at 30 

ᵒC. 

 

Figure 3.29. Time dependence PXRD at 30 ᵒC with 134 second steps between each measurement for 

compound Cu7ADSO4. 

 Something quite significant is the temperature at which the crystal structure of the 

compounds collapses and renders an amorphous product. In compound Cu7ADSO4NHEt3-1 this 

amorphization takes place at ca. 160 ᵒC, which probably can be ascribed to the evacuation of 

crystallization solvent molecules in such a way that the supramolecular interactions among the 

tectons are not robust enough to retain the crystallinity. Contrarily, Cu7ADSO4 and Cu7ADHN-1, 

remain crystalline after the solvent release, and do not collapse until ca. 200 ᵒC, probably due 

to the dihydroxylation of the cluster. It is interesting to analyse further the case of compounds 

Cu7ADSO4NHEt3-1 and Cu7ADSO4. Despite in both compounds the connection among the 

[Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ entities is similar (4-connected nodes by π–π stacking of 

adenines and coordination water molecules mediated hydrogen bonding with N1/N7 atoms of 

adenines), in Cu7ADSO4 the sulfate counter ions connect further the heptanuclaer entities 

giving rise to a supramolecular ensemble that extends into one-dimension 

(…sulfate/heptamer/ sulfate/heptamer…). This feature seems to explain the superior stability 

of Cu7ADSO4 respect to Cu7ADSO4NHEt3-1. In the case of compound Cu7ADHN-1, the stability of 
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the crystal structure after pore evacuation, is not only explained by the direct interactions 

between the heptamers, but also by the π–π interactions and hydrogen bonding interaction 

implying the –COOH and the –C=O of the 6-hydroxynicotinate counterion, that connect further 

the adjacent heptameric clusters. 

 To analyse the reversibility of the desolvation process, fresh samples of compounds 

Cu7ADHN-1 and Cu7ADSO4 were heated in an oven at 40 ᵒC under vacuum during 30 minutes 

to promote the release of the solvent molecules hosted in the pores. The blue colour 

characteristic of the crystal turned to green during this process. The samples (hereafter called 

Cu7ADHN-1green and Cu7ADSO4green) were weighed to check the mass loss.  Cu7ADSO4green 

and Cu7ADHN-1green samples were exposed to ambient humidity, while a follow-up of the 

mass evolution along the time was made (Figure 3.30). Cu7ADSO4green, behaves as a highly 

hygroscopic solid, re-adsorbing water very quickly in an almost completely reversible process. 

In fact, its colour turned from green to blue immediately after it was exposed to ambient 

humidity. However, Cu7ADHN-1 practically do not change its mass, which is probably ascribed 

to the robust set of interactions provided by the HN counterion. 

Thus, Cu7ADSO4 behaves as flexible structure that can realise and reabsorb water. In 

this sense, further experiments would be desirable taking into account the increasing interest 

on the application of porous solid for fresh water supply. 

  
(a) (b) 

Figure 3.30. Mass (%) gained comparison between compounds Cu7ADSO4green (A) and Cu7ADHN-1green 

(B) in contact with atmospheric humidity. 100% correspond fresh Cu7ADSO4 and Cu7ADHN-1 samples. 
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3.3.3. Magnetic properties. 

 Figure 3.31 shows the temperature dependence of the molar magnetic susceptibility 

(χm) and χmT curves of compounds Cu2ADSO4NHEt3, Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2, and 

Cu7ADSO4 respectively, measured at 1 kOe after cooling without an applied magnetic field 

(ZFC). As it can be seen, in the case of compound Cu2ADSO4NHEt3, the χmT curve suffers an 

initial rise upon cooling from room temperature to gain the maximum value at 200 K. 

Afterwards, it decreases and reaches a minimum value in the vicinity of 60 K and increases 

again at lower temperatures as a result of the presence of paramagnetic impurities. Room-

temperature χmT values are lower than that expected for two uncoupled paramagnetic S = 1/2 

centre (0.75 cm3 mol-1 K, g = 2.0) which is indicative of strong intradimeric interactions. The 

experimental magnetic data were fitted by using the Bleaney–Bowers equation (H = –JS1S2) for 

a dinuclear copper(II) complex modified to take into account the presence of the paramagnetic 

impurities.  

 In contrast with the aforementioned compound, the molar magnetic susceptibility in 

the heptameric compounds increases with decreasing temperature up to 2 K for all 

compounds. The χmT reaches a value of 2.92 (Cu7ADSO4NHEt3-1), 3.08 (Cu7ADSO4NHEt3-2), and 

3.19 (Cu7ADSO4) emu K/mol Oe at 300 K per heptameric complex, which is moderately larger 

than the spin-only value (2.63 emu K/mol Oe) expected for seven magnetically non-interacting 

Cu2+ ions with S = 1/2 and g = 2.0.[113] These values slightly diminish as temperature decreases 

to achieve a minimum at 140 K (2.83 emu K/mol Oe), 155 K (3.03 emu K/mol Oe), and 228 K 

(3.13 emu K/mol Oe), respectively. Upon further cooling it increases rapidly to reach a 

maximum at 6 K (4.24 emu K/mol Oe), 3 K (4.93 emu K/mol Oe), and 6 K (4.88 emu K/mol Oe), 

respectively.  

  

                                                             
113

 Handbook of Magnetochemical Formulae; Boca, R. A Elsevier: 1013 Amsterdam, The Netherlands, 2012, 1010. 
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(a) (b) 

  

(c) (d) 

 

(e) 
Figure 3.31. Thermal evolution of the molar magnetic susceptibility (χm) (red) and the χmT product (blue) 

in compounds Cu2ADSO4NHEt3 (a), Cu7ADSO4NHEt3-1 (b), Cu7ADSO4NHEt3-2 (c) and Cu7ADSO4 (d). Due to 

the similarity in the magnetization curves of all compounds in Chapter 3, as representative case, the 

magnetization at 2 K of compound Cu7ADSO4NHEt3-1 is only presented (e), while the remaining ones can 

be found in Figure A.5.1 of Appendix 5.  
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 The field dependence of the magnetization at 2 K of the three compounds (Figure 

3.31E and Figure A.5.1 of Appendix A.5) displays a linear dependence, from 0 to 15 kOe, which 

slowly tends to saturate at 50 kOe (5.65, 5.15 and 5.15 μB/CuII ion for compounds 

Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2 and Cu7ADSO4). The values obtained at this magnetic 

field are lower than the theoretical saturation moment for seven CuII ions ferromagnetically 

coupled with a magnetic spin S = 1/2 and g ≈ 2 (7.00 μB) but agrees fairly well with a S=5/2 

ground state. This behaviour seems to indicate the presence of ferrimagnetic heptameric 

entities in which the central copper(II) atom is antiferromagnetically coupled to the external 

ferromagnetic hexanuclear ring. Moreover, the magnetization at 2 K shows no hysteresis (have 

neither coercitivity nor remanence). 

 The magnetic susceptibility measurements of compounds Cu7ADHN-1 and Cu7ADHN-2 

show that, although the change of counterion modifies the supramolecular set of synthons, 

the overall magnetic properties of the heptameric cluster are not significantly affected. Figure 

3.32 shows the temperature dependence of the molar magnetic susceptibility (χm) and χmT 

curves of these compounds. The room temperature χmT values are 3.12 (Cu7ADHN-1) and 3.38 

(Cu7ADHN-2) emu K/mol Oe per heptameric complex. Upon further cooling it increases quite 

fast to reach a maximum at 3 K (4.92 emu K/mol Oe) and 6 K (4.85 emu K/mol Oe), 

respectively. The field dependence of the magnetization at 2 K (Figure A.5.1 of Appendix A.5), 

like in the previous compounds, displays a linear dependence, from 0 to 15 kOe, which slowly 

tends to saturate at 50 kOe (4.77 and 4.95 μB/CuII ion for Cu7ADHN-1 and Cu7ADHN-2, 

respectively, which are slightly lower than in the previous compounds, probably due to the 

contribution at low temperature of the intermolecular interactions provided by the HN 

counterion). 

 
 

(a) (b) 
Figure 3.32. Thermal evolution of the molar magnetic susceptibility (χm) and the χmT product of 

Cu7ADHN-1 (a) and Cu7ADHN-2 (b). 
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 Additionally, the magnetic susceptibility of the compound resulting from the 

dehydration Cu7ADHN-1, i.e. Cu7ADHN-1green (see section 3.3.2.3) was also measured (Figure 

3.33). This compound exhibits similar magnetic behaviour as its counterpart, except for the χmT 

values below 10 K. Here, a significant decrement is observed, with a value of 64 emu K/mol Oe 

at the maximum sited, 4 K. This issue could be ascribed to the influence of stronger 

intermolecular antiferromagnetic interactions caused by the compaction of the crystal 

structure upon dehydration process. 

 
Figure 3.33. Thermal evolution of the molar magnetic susceptibility (χm), the χmT product of Cu7ADHN-

1green. 

 Taking into account the molecular structure of the [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-

κN3:κN9)6]2+ heptanuclear entities and the Jahn-Teller elongated octahedron of the central 

copper(II) atom, the simplest Hamiltonian (Equation 1) describing the magnetic behaviour of 

these compounds involves three different superexchange magnetic exchanges between the 

copper ions and its first neighboring ones (J1, J2 and J3; see Figure 3.34).  

 

Figure 3.34. The magnetic topology and the magnetic exchange coupling scheme for all compounds of 

Chapter 3. 
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H = –J1 ( ⃗2 ·  ⃗3 +  ⃗3 ·  ⃗4 +  ⃗4 ·  ⃗5 +  ⃗5 ·  ⃗6 +  ⃗6 ·  ⃗7 +  ⃗7 ·  ⃗2)  

–J2 ( ⃗1 ·  ⃗2 +  ⃗1 ·  ⃗3 +  ⃗1 ·  ⃗5 +  ⃗1 ·  ⃗6)– J3 ( ⃗1 ·  ⃗4 +  ⃗1 ·  ⃗7)–gµB ⃗⃗· ⃗ 
Equation 1. 

 J1 represents the superexchange interaction between the external CuII ions bridged by 

-adeninato and μ-OH2 bridges. J2 and J3 are assigned to the superexchange interactions 

between the central and the exterior copper ions taking place through double μ-OH bridges. J3 

involves a mixture of equatorial-equatorial and equatorial-axial coordinated μ-OH bridges, 

whereas J2 presents only an equatorial-equatorial arrangement of the bridging hydroxides. The 

fitting of the χmT experimental data above 10 K to this model was performed using the 

MagProp software tool distributed with DAVE.[114] The best fitting parameters from compounds 

Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2, Cu7ADSO4, Cu7ADHN-1, Cu7ADHN-2 and Cu7ADHN-

1green (see the red continuous line in Figure 3.27) are gathered in Table 3.19. 

Table 3.19. Magnetic properties of compounds Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2 and Cu7ADSO4. 

Compound J1 J2 J3 

Cu2ADSO4NHEt3 –248.00   

Cu7ADSO4NHEt3-1 75.01 –228.02 14.88 

Cu7ADSO4NHEt3-2 97.52 –221.13 6.98 

Cu7ADSO4 96.88 -212.35 49.45 

Cu7ADHN-1 90.94 –205.31 63.93 

Cu7ADHN-2 96.00 –184.28 53.48 

Cu7ADHN-1green 95.83 –192.77 64.59 

 The results of the fitting show similar ferromagnetic values for the three compounds in 

the coupling constant involving the external copper(II) ions bridged by adenine and hydroxide 

ligands (J1). Usually, both the presence of non-linear NCN bridges or wide angle -oxido 

bridges (ca. 104ᵒ) cause strong antiferromagnetic couplings.[115] However, the coexistence of 

these two types of bridges counterbalances their effects.[116] In fact, the splitting of the 

molecular magnetic orbitals is reversed for each type of bridging ligand, thus leading to an 

almost negligible energy difference between them and, as a consequence, to the observed 
                                                             
114 Azuah, R. T.; Kneller, L. R.; Qiu, Y.; Tregenna-Piggott, P. L. W.; Brown, C. M.; Copley, J. R. D.; Dimeo, R. M. J. Res. Natl. Inst. Stan. 

Technol. 2009, 114, 341-358. 
115

 (a) Sonnenfroh, D.; Kreilick, R. W. Inorg. Chem. 1980, 19, 1259-1262. (b) Cañadillas-Delgado, L.; Fabelo, O.; Pasán, J.; Delgado, 

F. S.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. Inorg. Chem. 2007, 46, 7458-7465. 
116 (a) Pérez-Yáñez, S.; Castillo, O.; Cepeda, J.; García-Terán, J. P.; Luque, A.; Román, P. Eur. J. Inorg. Chem. 2009, 3889-3899. (b) 

Nishida,Y.; Kida, S. J. Chem. Soc., Dalton Trans. 1986, 2633-2640. (c) McKee, V.; Zvagulis, M.; Reed, C. A. Inorg. Chem. 1985, 24, 
2914-2919. 



Homometallic adenine nucleobase based SMOFs 

 

  147 

ferromagnetic interaction. On the other hand, there are some significant differences on the 

coupling constants involving the central and external copper atoms (J2 and J3). In these 

compounds, J2 (involving two short -hydroxide bridges and Cu-O-Cu angles around 99-103 ᵒ) 

is antiferromagnetic and stronger than the ferromagnetic J3 which implies a short and a long 

hydroxide bridge. The antiferromagnetic nature of J2 agrees with the stated by Hatfield et al. 

for symmetrically double bridged hydroxido dinuclear complexes, in which angles larger than 

98.5ᵒ promote an antiferromagnetic coupling, while a ferromagnetic coupling is established for 

smaller angles.[117] On the other hand, the weak ferromagnetic J3 interaction is related to the 

orthogonality between the magnetic orbitals imposed by the combination of symmetric and 

asymmetric -OH bridges. Searching in the literature, copper(II) centres usually bridged by this 

arrangement of the hydroxide bridges showing a ferromagnetic behaviour with J values 

ranging from +10 to +90 cm-1.[118] We are aware of the fact that the over-parameterization of 

the model could lead to similar fitting agreements using different parameter values, but the 

similarity of the achieved superexchange constants and the reports found in the literature for 

similar bridging modes of the hydroxides make us to be confident on the experimental data 

fitting results. These results also agree with the reported ones for analogous wheel shaped 

heptanuclear copper(II) entities in which the external copper(II) centres are ferromagnetically 

coupled among them and antiferromagnetically to the central one.[119,120] A single crystal with a 

larger size (ca. of 1 cm3) would allow to compare in detail these data with an experimental 

determination from polarized-neutron-diffraction experiments.[121] 

3.3.4. Specific heat. 

 The temperature dependences of the molar heat capacity, Cp, for zero magnetic field 

are represented between 0.4 and 300 K in Figure 3.35a and Figure 3.35b for compounds 

Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2, respectively. In both cases Cp have a tiny maximum 

of magnetic origin at low temperatures (ca. 11 K) and then it increases continuously due to the 

phonon contribution. The experimental data do not show any tendency to saturation not even 

at room temperature, where the values of Cp are 2100 and 1700 J K−1 mol−1 for compounds 

Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2, respectively, still far from the expected values 

according to the Dulong and Petit law, 75574 and 6136 J K−1 mol−1 for compounds 

Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2, respectively. This behaviour is attributable to the 

                                                             
117

 Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. Inorg. Chem. 1976, 15, 2107-2110. 
118 Tercero, J.; Ruiz, E.; Alvarez, S.; Rodríguez-Fortea, A.; Alemany, P. J. Mater. Chem. 2006, 16, 2729-2735. 
119

 Liu, Z. Y.; Zhang, H. Y.; Yang, E. C.; Liu, Z. Y.; Zhao, X. J. Dalton Trans. 2015, 44, 5280-5283. 
120 Ferreira, B. J. M. L.; Brandão, P.; Dos Santos, A. M.; Gai, Z.; Cruz, C.; Reis, M. S.; Santos, T. M.; Félix, V. J. Coord. Chem. 2015, 68, 

2770-2787. 
121

 Campo, J.; Luzón, J.; Palacio, F.; McIntyre, G. J.; Millán, A.; Wildes, A. R. Phys. Rev. B 2008, 78, 054415. 
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presence of a high number of hydrogen atoms within the compounds, which display very high 

excitation energies. At very low temperatures, where the phonon contribution is negligible, Cp 

displays a second broad maximum (∆CP = 4.2 J/mol K in both compounds) centred at 0.6 and 

0.5 K for Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2, respectively (see upper insets in Figure 

3.35). Although these anomalies do not present the characteristic λ shape appearance of a 

second order transition, it can be attributed to the establishment of a three-dimensional 

magnetic order. This behaviour is confirmed by the effects of the magnetic field on Cp, since 

the field increase promotes the peak growing and shifting to higher temperatures, and 

apparently, disappearing for fields higher than 30 kOe in both compounds. This behaviour is 

later clarified analysing the magnetic contribution to the heat capacity (Cmag). 

  
Cu7ADSO4NHEt3-1 Cu7ADSO4NHEt3-2 

Figure 3.35. Specific heat of compounds Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2 between 2 and 300 K 

(a). Upper inset shows the experimental data (red full dots), estimated phonon contribution (blue 

dashed line) and magnetic contribution (brown full dots). The lower inset is the specific heat at different 

applied magnetic field (H ≤ 90kOe). Magnetic specific heat as a function of temperature in the presence 

of external magnetic fields (b).  
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 In order to extract Cmag form the heat capacity measurements, we determined the 

phonon contribution (Cpho) and then subtracted it from the experimental data. In the absence 

of a nonmagnetic isomorphous compound, we used a theoretical model to determine Cpho, 

with the Debye model being the most common. However, due to the large differences in the 

atomic weights of the elements, more than one phonon spectra are expected. This approach 

has been used successfully in previous studies in other complex insulators materials.[122] In the 

present case, due to the large amount of ions and solvent molecules, the minimum number of 

Debye temperatures that is required to fit the heat capacity has been five. The good quality of 

the fits (see the blue continuous line in Figure 3.35) allows us to consider that this 

phenomenological model determines reasonably well the phonon contribution. 

 The temperature dependence of the magnetic contribution, determined as Cmag = Cp − 

Cpho, is depicted in Figure 3.35 for both compounds, respectively. In these figures are also 

included the temperature dependences of Cmag under applied magnetic fields up to 90 kOe. In 

both compounds, at zero field, the most significant features are i) the jump in Cmag at the order 

temperature has a small value, suggesting the existence of a complex magnetic order[123] and ii) 

in addition to the low temperature peak, appears a broad maximum centred around 11 K, 

which usually is attributed to the existence of two-dimensional magnetic order, crystalline 

electrical field or the presence of short-range magnetic interactions.[124] 

 Therefore, in the present case, these results suggest that at 11 K appears a local 

magnetic order inside the wheels and, by decreasing the temperature around 0.5 K, the 

wheels are coupled magnetically resulting in a three-dimensional (3D) magnetic ordering. The 

general effect of the magnetic field on Cmag is to increase the size of both peaks and to shift the 

low temperature peak to higher temperatures. This shift is characteristic of a ferromagnetic 

coupling. In addition, we should point out that the low temperature peak has a strong increase 

for 10 kOe and then tends to saturate for fields above 30 kOe, in concordance with the 

saturation of the magnetization curves. Taking into account the structural features of the 

compounds, the long-range ordering detected at low temperatures probably comes from the 

adeninato···adeninato π-π stacking interactions taking place between the heptamers units. 

From the 3D magnetic ordering temperature values (Tc = 0.5 and 0.6 K) and the Curie-Weiss 
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 (a) de Pedro, I.; Rojo, J. M.; Fernández, J. R.; Fernandez-Diaz, M. T.; Rojo, T. Phys. Rev. B 2010, 81, 134431. (b) de Pedro, I.; 
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temperature (p = 20.7 and 11.0 K for Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2, respectively) 

we can obtain information of the magnetic spin frustration, f, given by │/Tc│ of these open 

supramolecular structures[125] where f parameter reaches values of 41.4 and 18.3 for 

Cu7ADSO4NHEt3-1 and Cu7ADSO4NHEt3-2 respectively. A value above 10 indicates the presence 

of strong frustration.[126] Therefore, it indicates that both SMOFs display complex 3D magnetic 

structures with the presence of stronger spin frustration in the Cu7ADSO4NHEt3-1 compound. 
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4.2. Synthesis and chemical characterization 
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4.1. INTRODUCTION 

 In the previous chapter it was observed how the supramolecular network built up from 

the heptameric [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]
2+ entity underwent significant changes 

depending on the added counterion. Despite the supramolecular rearrangements induced by 

such counterions, the impact on the intramolecular magnetic behaviour is slight and only 

appreciable at very low temperatures, where the magnetic ordering through non-covalent 

interaction pathways is more relevant.[127–128] 

 In this chapter, the goal relies on the fine tuning of the intramolecular magnetic 

properties by conveniently selecting the paramagnetic metal ions that comprise the central 

position of the heptameric wheel. Precisely, the central Cu(II) has been replaced by Cr(III), 

Mn(III), Co(II), Ni(II) and Zn(II), while retaining the radial Cu(II) whose coordination plasticity 

and affinity towards N-donor ligands make it particularly suitable to fit such position (Figure 

4.1). As a result, we show how the magnetic superexchange scheme and the total spin of the 

heptanuclear complex can predetermined in rationalized manner. 

Figure 4.1. Heptameric cluster depicting the targeted replacement of the central metal atom. 

Heterometallic MOFs have led to remarkable advances in molecular magnetism, 

electrochemistry, catalysis, and gas absorption partly due to the charge transfer phenomena 

and synergistic effects between different metal centres.[129-130] Regarding the magnetic 

properties, it deserves to note that the combination of different paramagnetic centres has 

                                                             
127 Zheng, Y. Z.; Tong, M. L.; Xue, W.; Zhang, W. X.; Chen, X. M.; Grandjean, F.; Long, G. J. Angew. Chem. 2007, 119, 6188-6192. 
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Mondal, K. C.; Mereacre, V.; Kostakis, G. E.; Lan, Y.; Anson, C. E.; Prisecaru, I.; Powell, A. K. Chem. Eur. J. 2015, 21, 10835-10842. 
129 (a) Qi, Y.-J.; Zhao, D.; Li, X.-X.; Ma, X.; Zheng, W.-X.; Zheng, S.-T. Cryst. Growth Des., 2017, 17, 1159–1165. (b) Li, X. X.; Gong, Y. Q.; Zhao, 

H. X.; Wang, R. H. Cryst. Eng. Comm. 2014, 16, 8818–8824. 
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demonstrated to be well suited tool to modulate the magnetic anisotropy and total spin of the 

system.[131−132]  

 Within these heterometallic MOFs, both transition metal ions and lanthanide ions have 

been widely used as excellent magnetic building blocks. Particularly, lanthanide ions are very 

suitable to build up single-molecule magnets (SMMs) due to the large magnetic moment and 

significant single-ion anisotropy derived from spin−orbit coupling which are not easily satisfied 

in transition-metal.[133] However, the octahedral coordination geometry and coordination bond 

lengths required to fit central position of the heptameric cluster, led us to disregard 

lanthanides and limit our selection to certain transition metal centres, as it is discussed below.  

 As depicted in the analysis performed in the CSD database (Figure 4.2), the 

coordination index (C.I. = 6) of the central position of the heptameric wheel is not located 

between the preferred bonding of lanthanide ions (Ln(III), C.I. = 8 and 9). Contrarily, selected 

transition metals (Cr, Mn, Co, Ni, Cu and Zn) are prone to exhibit a coordination index equal to 

6. At this point, it can be proposed that the coordination sphere of a central Ln(III) atom might 

be completed by solvent molecules. However, there is a second fact that points again as a 

suitable option the selected transition metal centres and discourages a replacement of the 

central position using lanthanides: i.e. adjustability of the ionic radii (Figure 4.3). Selected 

transition ions do not differ greatly in size with regard to Cu(II), so the replacement of the 

central position should not cause a significant strain of the outer Cu6-ring. Adversely, the 

greater ionic radii of Ln(III) series would imply an increase of the radial distance and therefore, 

a lengthening of the arc or Cu···Cu distances, which would weaken (destabilize) the Cu6-ring. 

                                                             
131 (a) Griffiths, K.; Tsipis, A. C.; Kumar, P.; Townrow, O. P. E.; Abdul-Sada, A.; Akien, G. R.; Baldansuren, A.; Spivey, A. C.; Kostakis, 
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13078−13086.  
132 (a) Mondal, K. C.; Sundt, A.; Lan, Y.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. 
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Figure 4.2. Coordination-index and frequency of occurrence for lanthanide ions. 

 

Figure 4.3. Minimum and maximum bond distances vs ionic radius in octahedral coordination complexes 

of lanthanides(III) and selected transition metals (M(III): Mn, Cr; M(II): Co, Ni, Cu, Zn). Bond distances 

were obtained from a parametrized search in the CSD database
[81]

 while ionic radius data was obtained 

from Database of Ionic Radii.[134] 
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4.2. SYNTHESYS AND CHEMICAL CHARACTERISATION 

4.2.1. Synthesis 

 The formula and name of the compounds synthesized and characterized in this chapter 

are provided in Table 4.1. Figure 4.4 shows a scheme depicting the synthesis procedure of each 

compound, while detailed descriptions are provided below. It must be emphasized that the 

amount of the reagent used for the central metal source, exceeded slightly the 

stoichiometrically demanded (1.5:6 vs 1:6 for Mcentral:Curing), in order to favour the formation of 

the heterometallic wheel. 

Despite the described synthesis procedures exhibit relatively high yields, the quality of the 

obtained crystals was not good enough for the elucidation of the crystal structure from single-

crystal diffraction data. Accordingly, applying the base-vapour diffusion driven crystallization 

described in Chapter 3, suitable single-crystals were obtained in all cases except for compound 

Cu6NiAD whose structural analysis is based on PXRD data. The vapour diffusion process 

provided few crystals and therefore, it was disregarded for bulk sample characterisation 

purposes.  

Table 4.1. Formula and code of the compounds synthetized with the heterometallic heptameric cluster. 

Compound Code 

[Cu6Cr(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)1.5·17H2O Cu6CrAD 

[Cu6Mn(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)(OH)·12H2O Cu6MnAD 

[Cu6Co(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)·14H2O Cu6CoAD 

[Cu6Ni(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)·12H2O Cu6NiAD 

[Cu6Zn(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6](SO4)·16H2O Cu6ZnAD 
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Figure 4.4. Synthetic route of the heterometallic compounds of Chapter 4. 
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4.2.1.1. Synthesis of compound Cu6CrAD 

 Adenine (0.8 mmol, 0.108 g) was dissolved in 20 mL of water/methanol mixture (1:1 

volume ratio), heating under continuous stirring for 20 minutes. Then, a 20 mL aqueous 

solution of copper(II) sulfate pentahydrate (0.8 mmol, 0.200 g) and chromium(III) sulfate 

monohydrate (0.2 mmol, 0.078 g) was added. Immediately after mixing the solutions a green 

suspension was formed with pH = 3.02. This suspension was dissolved by acidifying with 

sulfuric acid until a light green solution is obtained at pH = 1.46. Subsequently, the solution pH 

was shifted to 9.2 by adding triethylamine, obtaining a green suspension which was left in a 

crystallizer sealed with sealing film (ParafilmTM) slightly holed to allow the slow solvent 

evaporation. After three days, the suspension recrystallized as green needle-shaped crystals. 

Yield: 75–85 %. 

4.2.1.2. Synthesis of compound Cu6MnAD 

 20 mL of an aquo-methanolic (1:1 volume ratio) solution of adenine (0.8 mmol, 0.108 

g) was mixed with 20 mL of an aqueous solution containing copper(II) sulfate pentahydrate 

(0.8 mmol, 0.200 g) and manganese(II) sulfate monohydrate (0.2 mmol, 0.079 g). As a result, a 

bluish suspension formed (pH = 3.67) which was dissolved by adding sulfuric acid until pH = 

2.7. After that, sodium hydroxide 1 M was added until a green-brown suspension appears at 

pH = 10 and the resulting suspension was transferred to a crystallizer that was closed with a 

sealing film. After five days, dark green plate-like crystals of Cu6MnAD were formed. It 

deserves to note that Mn(II) was oxidized to Mn(III) upon the synthesis conditions. Yield: 60–

65 %. 

4.2.1.3. Synthesis of compound Cu6CoAD 

 An aqueous solution containing copper(II) sulfate pentahydrate (0.8 mmol, 0.200 g) 

and cobalt(II) sulfate heptahydrate (0.2 mmol, 0.056 g) was added to a solution of adenine (0.8 

mmol, 0.108 g) in 20 mL of methanol/water (1:1 volume ratio), heating under continuous 

stirring. After 10 minutes, the reaction mixture was left to temper, obtaining a blue suspension 

with pH = 3.78 which was left stirring for one hour (the colour turns to violet). Then, sodium 

hydroxide (1 M) was added dropwise until a pH value of 10.1 is reached. Finally, the resulting 

suspension was placed into a crystallizer covered with sealing film and left in a fridge at 6 °C. 

After five days, blue needle-shaped crystals were obtained. Yield: 60–70 %. 
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4.2.1.4. Synthesis of compound Cu6NiAD 

 Adenine (0.8 mmol, 0.108 g) and nickel(II) chloride (0.2 mmol, 0.048 g) were added 

into a solution of 20 mL of methanol/water (1:1 volume ratio), heating it up under continuous 

stirring until a green solution was obtained. To that, 20 mL of an aqueous solution of copper(II) 

sulfate pentahydrate (0.8 mmol, 0.200 g) was added, obtaining a bluish suspension with pH = 

3.27 which was acidified with sulfuric acid until it was completely dissolved (pH = 2.1) into a 

light green solution. Thereafter, triethylamine was added until the formation of a blue-green 

suspension at pH = 9.48 which was transferred to a crystallizer covered with a sealing film. 

After two days, rectangular blue crystals were obtained. Yield: 52–58 %. 

4.2.1.5. Synthesis of compound Cu6ZnAD 

 20 mL of an aqueous solution of copper(II) sulfate pentahydrate (0.8 mmol, 0.200 g) 

and zinc(II) sulfate pentahydrate (0.2 mmol, 0.055 g) were poured onto 20 mL of a hot 

water/methanol solution containing adenine (0.8 mmol , 0.108 g). The pH of the resulting light 

blue suspension (pH = 3.1) was shifted to 8.5 by adding dropwise 1 M solution of sodium 

hydroxide. After six days, needle-like light blue crystals were formed. Yield: 52–57 %. 

4.2.2. Infrared spectroscopy 

 As in the previous chapter, infrared spectroscopy has been able to determine 

efficiently the presence of the bands corresponding to the adenine ligand and sulfate 

couterion. The infrared spectra of the compounds are presented in Figure 4.5 and Figure 4.6. 

Table 4.2 shows the wavenumber, the relative intensity and the assignation of the observed 

bands.  

 In all cases, the infrared spectra show a wide band around 3400 cm–1 characteristic of 

the O–H stretching of the bridging hydroxides, coordination water molecules and 

crystallization water molecules. The extent of the latter band, allows fairly identifying the N–H 

stretching of the amine group of the adenine as a fine shoulder at ca. 3200 cm–1, but it masks 

the signals corresponding to the Car–H stretching expected around 3100 cm–1. Over 1600 cm–1, 

appears one of the most intense bands of the spectra which is mainly attributable to C=C 

stretching vibration and deformation vibration of NH2 group of the adenine. Another 

representative band of this series of heterometallic compounds appears near of 1108 cm–1 

which corresponds to S=O vibration of the sulfate counterion.[87] 
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Table 4.2. Infrared spectra bands (cm
–1

) of the neutral adenine ligand and compounds of Chapter 4.
[a]

 

Adenine Cu6CrAD Cu6MnAD Cu6CoAD Cu6NiAD Cu6ZnAD Assignment[b] 

 3388vs 3355vs 3333vs 3333vs 3400vs ѵ (O–H) 

3303s 3200sh 3200sh 3200sh 3200sh 3200sh ѵ (NH2)+ 

3123s over over over over over ѵ (C8–H + C2–H)  

 

1605vs 

1642vs 

1603vs 

1642vs 

1603vs 

1638vs 

1600vs 

1638vs 

1600vs 

1642vs 

1608vs 

 

ѵ (C=N) + ѵ (C=C) + δ 

(NH2) 

1560s 1548s 1545s 1545s 1546s 1551s ѵ (C4–C5 + N3–C4–C5) 

1471m 1463m 1463m 1466m 1463m 1466m δ (C2–H + C8–N9)  

+ ѵ (C8–H) 

1419s 1402m 1397m 1397m 1396m 1400m δ (N1–C6–H6) 

 

1309s 

1304m 1306m 1305m 1306m 1306m  

ѵ (N9–C8 + N3–C2)  

+ δ (C–H) 
1277m 1277m 1275m 1275m 1271m 

 

1263s 

1195m 1195m 1198m 1198m 1195m  

δ (C8–H) + ѵ (N7–C8) 1152m 1148m 1148m 1150m 1148m 

1108m 1108m 1105m 1109m 1108m 1108m ѵ (S–O) 

1023w 1033w 1028w 1030w 1030w 1031w τ (NH2) 

940w 935w 933w 933w 935w 937w ѵ (N1–C6) + τ (NH2) 

[a]
 vs = very strong, s = strong, m = medium, w = weak, sh = shoulder. 

[b]
 over = overlapped, ν = tension vibrations, δ = deformation 

vibrations, τ = torsion. 
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Figure 4.5. Infrared spectra of compounds Cu6CrAD (red), Cu6MnAD (blue) and Cu6CoAD (green). 
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Figure 4.6. Infrared spectra of compounds Cu6NiAD (red) and Cu6ZnAD (blue). 

4.2.3. Thermal analysis 

 Thermogravimmetric and thermal differential analysis of these compounds are plotted 

in Figure 4.7, while the decomposition processes in each degradation stage are gathered in 

Table 4.3. All measurements were performed under a synthetic air atmosphere (79 % N2, 21 % 

O2) . 
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Figure 4.7. Thermogravimetric measurements performed upon representative samples. 
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Table 4.3. Thermoanalytic data of the compounds of Chapter 4.[a] 

Step Ti Tf Tpeak ΔH Δm(%) ΣΔm(%) ΣΔm(%)theo.
[b] 

Cu6CrAD 

1 

2 

3 

4 

 

30 

95 

300 

475 

 

95 

230 

475 

800 

 

50 

 

425 

 

 

Endo 

-- 

Exo 

 

16.3 

10.3 

37.9 

6.3 

 

16.3 

26.6 

64.5 

70.8 

 

16.3 (–17H2O) 

26.6 (–9H2O) 

64.5 (Cu6CrO6(SO4)1.5) 

70.8 (6CuO + 0.5Cr2O3) 

Cu6MnAD 

1 

2 

3 

 

30 

90 

300 

 

90 

255 

465 

 

45 

 

415 

 

Endo 

-- 

Exo 

 

12.8 

11.4 

41.4 

 

12.8 

21.6 

63.0 

 

12.8 (–10.4H2O) 

21.6 (–(2.6 + 9 )H2O) 

63.0 (Cu6MnO6(SO4)1) 

Cu6CoAD 

1 

2 

3 

 

30 

65 

290 

 

65 

265 

470 

 

60 

 

410 

 

Endo 

-- 

Exo 

 

14.0 

9.0 

41.8 

 

14.0 

23.0 

64.8 

 

14.0 (–14H2O) 

         23.0 (–9H2O) 

  64.8 (Cu6CoO6(SO4)1) 

Cu6NiAD 

1 

2 

3 

4 

 

30 

85 

290 

515 

 

85 

260 

515 

800 

 

60 

 

355 

 

Endo 

-- 

Exo 

 

12.5 

8.9 

42.7 

4.5 

 

12.5 

21.4 

64.1 

68.6 

 

12.2 (–12H2O) 

21.4 (–9 H2O) 

64.2 (Cu6NiO6(SO4)1) 

68.6 (6CuO+NiO) 

Cu6ZnAD 

1 

2 

3 

 

30 

85 

290 

 

85 

250 

465 

 

55 

 

415 

 

Endo 

-- 

Exo 

 

15.0 

9.3 

39.0 

 

15.0 

24.3 

65.3 

 

15.6 (–16 H2O) 

23.7 (– 9H2O) 

65.3 (Cu6ZnO6(SO4)1) 

[a]
 Ti = initial temperature; Tf = final temperature; Tpeak = peak temperature ATD; Δm(%) = loss mass percentage in each step; ΔH = 

type of process acording to ATD; ΣΔm(%) = total loss mass after each step; ΣΔm(%)theo = total loss mass theoretically calculated. 
[b]

 

Eliminate water molecules and final residue per compound formula. 

 All the compounds gathered in this chapter display a similar decomposition process. 

First, the loss of the crystallization water molecules occurs, in an endothermic process, from 

room temperature to a value below 100 ᵒC. Subsequently, partially overlapped with the 

previous mass loss process, it takes place the loss of nine water molecules, corresponding to 

the six bridging waters and to the three water molecules formed upon the condensation 

process of the six hydroxide bridges. Despite water desorption and hydroxide condensation 
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reaction are endothermic and exothermic processes, respectively, no clear peak in the DTA 

curve is observed.  

Thereafter, the decomposition of the organic part occurs through a strong exothermic 

process, generating a residue consisting on copper(II) oxide and the central metal sulfate 

according to PXRD analysis. In compounds Cu6MnAD, Cu6CoAD and Cu6ZnAD, where the final 

analysis temperature was set at 600 ᵒC, no further mass changes are observed. On the other 

hand, in compounds Cu6CrAD and Cu6NiAD, the analysis was performed until 800 ᵒC, in such a 

way that the decomposition process of the metal sulfate to the corresponding oxide is 

observed. This process allows corroborating the sulphur content set from the crystallographic 

analysis, as the mass loss is ascribed to the release of SO3.  

4.3. RESULTS AND DISCUSSION 

4.3.1. Crystallographic analysis. 

 The crystallographic data and details of the refinement parameters of each compound 

are gathered in Table 4.4. All non-hydrogen atoms were refined anisotropically, except those 

corresponding to disordered entities. The hydrogen atoms belonging to adeninato ligands have 

been geometrically fixed and refined according to a riding model with an isotropic thermal 

parameter linked to the atom to which they are attached (120 %). The hydrogen atoms of the 

coordination crystallisation water molecules and hydroxide groups have been located in the 

difference Fourier map or using the routine CALC-OH[87] implemented in WinGX interface. The 

refinement of the latter hydrogen atoms has been performed with an isotropic thermal 

parameter of 150 % respect to their parent atom. Regarding the crystallization water 

molecules, not all of them could be located due their high disorder and therefore, their 

contribution was removed using the SQUEEZE[112] procedure as implemented in the PLATON[135] 

software. Accordingly, the hydrogen atoms of the located crystallization water molecules were 

not included due to high disorder present within the voids. Compound Cu6MnAD show the 

peculiarity of only being possible to locate one SO4
2- entity per heptameric unit, which is not 

enough to ensure the charge balance in this compound ([Cu6Mn(μ-H2O)6(μ3-OH)6(μ-ade)6]3+). 

Therefore, it has been assumed the remaining negative charge comes from an additional non 

coordinated hydroxide anion as it has been reported for some other MOFs synthesized under 

highly basic conditions.[136] 

                                                             
135

 Spek, A. L. Acta Crystallogr., Sect. D, 2009, 65, 148−155. 
136

 Sadakiyo, M.; Kasai, H.; Kato, K.; Takata, M.; Yamaudi, M. J. Am. Chem. Soc., 2014, 136, 1702–1705. 
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 Compounds Cu6MnAD and Cu6ZnAD were refined as a two component twin with a 

batch scale factor (BASF) parameter of 0.286 and 0.420 respectively. During the structural 

resolution of the heptameric entities of Cu6CrAD, Cu6MnAD and Cu6CoAD, the initial resolution 

showed anomalous elongated ellipsoids for a series of atoms attributed to the adeninato 

ligands. These large values of the thermal movements were related to a disorder implying two 

coplanar puric bases with inverted dispositions regarding the bridging mode (μ-κN3:κN9 / μ-

κN9:κN3). This disorder has been modelled by refining the occupation of each part (A and B) 

and ensure they sum up a total occupation factor of one. Furthermore, in compounds 

Cu6MnAD and Cu6CoAD the use of several restraints (DFIX and FLAT) were required in order to 

retain the expected geometry of the adeninato ligands during the data refinement process.  

 In compounds Cu6CrAD and Cu6CoAD, there are two symmetry related sulfate anions 

per heptamer. Thus, the occupation factors of the atoms comprising the sulfate have been 

fixed to the stoichiometrically required, i.e., 0.75 and 0.5 respectively. In compound Cu6ZnAD, 

there are also two sulfate anions per heptamer, but each sulfate appears grouped together 

with two crystallization water molecules (O2w, O4w) in such a way that this ensemble is 

disordered in three position related by a ternary axis crossing along the sulfate O3S atom. 

Accordingly, the occupation factor of the atoms comprising the ensemble has been set to 1/6.  

 Although the lack of suitable single crystals has prevented the structural resolution of 

Cu6NiAD compound, a profile fitting of its PXRD pattern has yielded similar cell parameters 

(Table 4.5 and Figure 4.8) to those of compound Cu7ADSO4, described in Chapter 3. Therefore, 

they can be considered isostructural compounds.  
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Table 4.4. Crystallographic data and refinement details of the compounds of Chapter 4. 

 Cu6CrAD Cu6MnAD Cu6CoAD Cu6ZnAD 

Formula C30H76Cu6CrN30O35S1.5  C30H67Cu6MnN30O21S C30H70Cu6ZnN30O28S C30H74Cu6ZnN30O32S 

M (g mol–1) 1898.48 1780.32 1803.33 1845.82 

Cryst. Syst.  Monoclinic Monoclinic Trigonal Trigonal 

Space group C2/c P21/c R ̅c R ̅c 

a (Å) 15.583(3) 9.383(1) 19.058(3) 19.108(1) 

b (Å) 22.219(4) 27.106(5) 19.058(3) 19.108(1) 

c (Å) 27.400(3) 27.732(2) 43.157(9) 43.046(3) 

α(ᵒ) 90 90 90 90 

β (ᵒ) 101.386(14) 90.677(8) 90 90 

γ(ᵒ) 90 90 120 120 

V (Å
3
) 9300.0(3) 7052.9(16) 13575.0(5) 13610.9(17) 

Z 4 4 6 6 

ρcalcd (g·cm–1) 1.124 1.676 1.378 1.654 

Colour Green Dark green Blue Light blue 

F(000) 3120 3660 5515 7020 

µ (cm–1) 3.224 4.506 4.124 1.775 

θ range 3.291–59.871 3.581–59.991 3.371–64.999 3.106–23.499 

HKL range 

–17≤h≤10; 

–21≤k≤24; 

–30≤l≤30 

–-7≤h≤10; 

–30≤k≤30; 

–31≤l≤31 

–22≤h≤22; 

–22≤k≤21; 

–50≤l≤50 

–20≤h≤21; 

–20≤k≤21; 

–48≤l≤48 

Meas./indep. refl. 14606/6738 23766/5609 27448/2581 29410/5438 

Reqv. 0.0982 0.3726 0.4476 0.3814 

Obs. refl. *I > 2ς(I)+ 2202 1591 571 1367 

R, Rw
[a,b]

 0.1149/0.3034 0.1593/0.4070 0.1190/0.3128 0.1252/0.3443 

R, Rw(all) 0.2119/0.3789 0.3359/0.4852 0.2646/0.3810 0.2676/0.3747 

Gof (S)[c] 0.958 1.020 0.785 0.967 

Parameters 413 440 118 151 

Weighting sch.[d] Shelxl Shelxl Shelxl Shelxl 

Máx./min. Δρ (e Å–3) 0.675/-0.406 1.089/-1.162 1.018/-0.467 1.143/-0.658 

Diffractometer SuperNova SuperNova SuperNova SuperNova 

λ (Å) 1.54184 1.54184 1.54184 0.71073 

Temperature (K) 100(2) 100(2) 100(2) 100(2) 

*a+ S = *∑w(F0
2
 - Fc

2
)

2
 / (Nobs- Nparam)]

1/2
 [b] R1 = ∑||F0|-|Fc|| / ∑|F0| [c] wR2 = *∑w(F0

2
 - Fc

2
)

2
 / ∑wF0

2
]

1/2
; w = 1/[ς

2
(F0

2
) + (aP)

2
] where P 

= (max(F0
2
,0) + 2Fc

2
)/3. a: Cu6CrAD (0.1803), Cu6MnAD (0.2000), Cu6CoAD (0.1864) and Cu6ZnAD (0.1458). 
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Table 4.5. Crystal data and refinement details obtained from PXRD data for compound Cu6NiAD. 

Cu6NiAD 

Formula C30H66Cu6NiN30O28S Z 4 

M (g mol–1) 1767.07 Colour Blue 

Cryst. Syst.  Orthorhombic ρcalcd (g·cm–1) 1.345 

Space group Cccm 2θ range (°)  5.01–69.98 

a (Å) 10.559(1) ∆2θ step (°) 0.026 

b (Å) 25.048(2) Time per step (s) 2 

c (Å) 27.301(4) χ
2
 3.66 

α(ᵒ) 90 Rf
a
 1.73 

β (ᵒ) 90 Rb
b 1.44 

γ(ᵒ) 90 Rp
c 20.4 

V (Å3) 7220.6(1) Rwp
d 20.2 

a
 Rf = ∑│(Iobs)

1/2
–(Icalc)

1/2
│ / ∑(Iobs)

1/2
. 

b
 Rb = ∑│Iobs–Icalc│ / ∑Iobs. 

c
 Rp = ∑│yiobs–yicalc│ / ∑yiobs. 

d
 Rwp = [Σωi|yiobs– yicalc|

2
 / Σωi(yiobs)

2
]

1/2
. 

 

 

 

(a) (b) 

Figure 4.8. (a) Comparison of the experimental PXRD of Cu6NiAD (blue) with the simulated (green) and 

experimental (red) ones of Cu7ADSO4. (b) Profile fitting of the PXRD pattern of Cu6NiAD. 

 

 

 

 

 

  



Heterometallic adenine nucleobase based SMOFs 

 

  170 

4.3.2. Structural description 

 All the crystal structures herein described consist of [Cu6MIII(μ-H2O)6(μ3-OH)6(μ-ade-

κN3:κN9)6]3+ or [Cu6MII(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ heterometallic heptanuclear 

entities (MIII: Cr, Mn; MII: Co, Ni, Zn), sulfate couterions and crystallization water molecules. 

The connectivity within the heptanuclear entities is essentially identical, in such a way that a 

central [MIII(OH)6]3– or [MII(OH)6]4– core is connected to the six copper(II) metal centers 

comprising the external ring. The peripheral copper atoms are further connected among them 

through the double µ-H2O and µ-ade-κN3:κN9 bridge.  

 In addition, XPS (X-ray photoelectronic spectroscopy) measurements suggest that the 

external copper(II) ring has remained unaltered during the replacement process of the central 

metal atom (Figure 4.9). In the same way, the expected binding energies for Cu(II) are 

compared with experimental values of Cu6MAD compounds. The bonding energies of the Cu(II) 

and the substituted central metals are reflected in Table 4.6.  

 

Figure 4.9. Bonding energies of the Cu(II) ions of all compounds of Chapter 4. 
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Table 4.6. Expected and experimental binding energies values for Cu(II). [137] 

 B.E (eV)Theo. Cr B.E (eV)exp. Mn B.E (eV)exp. Co B.E (eV)exp. Ni B.E (eV)exp. Zn B.E (eV)exp. 

Cu 2p 3/2 934.4 933.9 934.5 933.6 933.8 934.4 

Cu 2p 3/2 sat 941.9 941.4 942.3 941.4 941.6 942.1 

Cu 2p 1/2 953.7 953.7 954.5 953.7 954.3 954.3 

Cu 2p 1/2 sat 961.9 961.9 962.5 961.9 962.3 962.3 

 The comparison of the theoretical data with the experimental one of the substituted 

metal centres demonstrates qualitatively the presence of the metal centres in the oxidation 

states; MIII: Cr[138], Mn[139] and MII: Co[140], Ni[141], Zn[142]. See the appendix A.2.6 for more details 

of the spectra and binding energies. Manganese compound was also measured using a Mg X-

ray source, due to the overlap of the peak with the Auger Cu LMM line. The binding energies 

observed for this compound do not allow a firm assertion of the oxidation state present in the 

structure due to the proximity of the binding energies of the +2 and +3 states. However, more 

references have been found for Mn(III) compounds that fit the peaks of Cu6MnAD comparing 

to the reported for Mn(II) compounds.[144] The slight discrepancies between the binding 

energies of these compounds and those reported in bibliography could be attributable to the 

differences with in the coordination environment or the experimental conditions of the 

measurements.  

It is noteworthy that, Cu6CoAD and Cu6ZnAD are isostructural to Cu7ADSO4NHEt3-2, 

Cu6CrAD to Cu7ADSO4NHEt3-1 and Cu6NiADE to Cu7ADSO4. In spite of that, in certain cases, 

slight differences have been observed in the balance of the supramolecular interactions 

caused by the different content of guest molecules hosted in the pores. No equivalent crystal 

structure was found for Cu6MnAD among the compounds reported in the current PhD thesis. 

Next, the description of each crystal structure is gathered, providing in each case a view of the 

                                                             
137 NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 

2012); http://srdata.nist.gov/xps/. 
138 (a) El-Mehalmey, W. A.; Ibrahim, A. H.; Abugable, A. A.; Hassan, M. H.; Haikal, R. R.; Karakalos, S. G.; Zaki, O.; Alkordi, M. H. J. 

Mater. Chem. A, 2018, 6, 2742. (b) Flores-Cano, J. V.; Leyva-Ramos, R.; Carrasco-Marin, F.; Aragon-Piña, A.; Salazar-Rabago, J. J.; 

Leyva-Ramos S. Adsorption, 2016, 22, 297–308. 
139 (a) Van De Vondel, D.F.; Wuyts, L.F.; Van Der Kelen, G.P.; Bevernage, L. J. Electron Spectrosc. Relat. Phenom., 1977, 10, 389. (b) 
Vannerberg, N.G. Chem. Scr., 1976, 9, 122. (c) Ivanov-Emin, B.N.; Nevskaya, N.A.; Zaitsev, B.E.; Ivanova, T.M., Zh. Neorg. Khimii, 

1982, 27, 3101. (d) Carver, J.C.; Schweitzer, G.K.; Carlson, T.A. J. Chem. Phys., 1972, 57, 973. 
140

 A. M., Su; L. S., Wang; Q. F., Zhang; J., Xie; Q., Luo; D. L., Peng, J. of Mat. Sci.: Mat. in Elec., 2018, 29, 9814–9820. 
141

 Alammar, T.; Shekhah, O.; Wohlgemuth, J.; Mudring, A.-V. J. Mater. Chem., 2012, 22, 18252. 
142 (a) Wayu, M. B.; King, J. E.; Johnson, J. A.; Chusuei, C. C. Electroanalysis, 2015, 27, 2552–2558. (b) Cano, A.; Rodríguez-

Hernández, J.; Reguera, L.; Rodríguez-Castellón, E.; Reguera E., Eur. J. Inorg. Chem. 2019, 1724–1732. 
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heptanuclear entity with its numbering scheme, coordination bond-lengths and main details 

on the crystal packing.  

4.3.2.1. Structural description of compound Cu6CrAD. 

The heptanuclear complex of compound Cu6CrAD together with its numbering scheme 

is shown in Figure 4.10, while the corresponding coordination bond lengths are gathered in 

Table 4.7. As expected, all the coordination bonds around the central Cr(III) atom are similar, 

since it is not affected by the Jahn-Teller effect. Note that in the analogous Cu7ADSO4NHEt3-1 

compound, the coordination polyhedron around central Cu(II) resembles an elongated 

octahedron with 4 short coordination distances (1.97–2.00 Å) and two longer ones (2.11–2.16 

Å). The [Cr(OH)6]3– core is tightly anchored to two sulfate anions, below and above the 

heptameric entity, through three O–H···O hydrogen bonds to each anion. As a result, the 

supramolecular packing is driven by the self-assembling of these robust 

sulfate/heptamer/sulfate supramolecular ensembles (Figure 4.11; Table 4.8). In this regard, 

each heptamer acts as a four-connected node showing the same connectivity features as those 

described for Cu7ADSO4NHEt3-1: firstly, each heptamer binds to two neighbouring ones 

through double adeninato π–π interactions (ADE-2···ADE-3; minimum distances: 3.42–3.61 Å; 

tilt angle between mean planes: 2.91ᵒ) and secondly to another two heptamers again through 

additional adeninato π–π interactions (ADE-1···ADE-1; minimum distances: 3.45–3.67 Å; tilt 

angle between mean planes: 0.50ᵒ) and sulfate mediated hydrogen bonding (N16adeninato-

H···Osulfate···OHcoordinated). It deserves to note that these π–π interactions imply both the 

endocyclic atoms and the exocyclic amino group, whose lone electron pair is delocalized in the 

π–system of the adenine. As in Cu7ADSO4NHEt3-1, the rigidity of both the heptameric discrete 

entity and the double synthons connecting the entities, generate a supramolecular porous 

architecture with cds (CdSO4 like) topology with a (65.8) point symbol. The pore system is 

comprised by 1D channels that imply a 44.3 % of unit cell volume as it can be observed in 

Figure 4.12. This porosity is somewhat smaller than that probed for Cu7ADSO4NHEt3-1 (49 %) 

which can be related to the different content of guest molecules and to certain structural 

flexibility. 
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Figure 4.10. Heptameric entity of compound Cu6CrAD. 

Table 4.7. Coordination bond distances (Å) of compound Cu6CrAD.1 

Cu6CrAD 

Cr1–O1 1.999(9) Cu1–O2w 2.384(1) Cu3–O2a 2.016(1) 

Cr1–O1a 1.999(9) Cu1–N29 1.982(2) Cu3–O3 2.019(8) 

Cr1–O2 1.961(8) Cu1–N33 1.982(1) Cu3–O1wa 2.380(1) 

Cr1–O2a 1.961(8) Cu2–O1 1.967(1) Cu3–O3w 2.442(8) 

Cr1–O3 1.992(1) Cu2–O3 2.030(9) Cu3–N13 1.935(1) 

Cr1–O3a 1.992(1) Cu2–O2w 2.412(1) Cu3–N39a 1.999(1) 

Cu1–O1 2.013(9) Cu2–O3w 2.414(1) Cr1···Cu1 3.058(1) 

Cu1–O2 1.964(9) Cu2–N19 1.862(2) Cr1···Cu2 3.097(2) 

Cu1–O1w 2.429(1) Cu2–N23 2.032(4) Cr1···Cu3 3.100(2) 

1
 Symmetry-codes: (a): –x, –y+1, –z+1.  
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(a) 

 
(b) 

Figure 4.11. (a) Detail of the sulfate/heptamer/sulfate supramolecular ensemble and (b) non-covalent 

interactions among neighbouring heptamers in compound Cu6CrAD. 
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Table 4.8. Hydrogen-bonding parameters (Å, ᵒ) and π–π interactions in compound Cu6CrAD.a 

D–H···A[b] H···A D···A D–H···A 

N16–H16B···O14a 2.08 2.92(3) 167 

O4w··· N31 -- 2.71(2) -- 

N36–H16B···O4w 2.56 3.18(2) 130 

O1w–H12w···O12c 2.29 3.05(2) 149 

O2w–H21w···O4wb 1.89 2.68(18) 154 

O2w–H22w···O14 1.98 2.85(19) 176 

O3w–H32w···O13c 2.15 2.96(2) 157 

O1–H1···O12c 1.73 2.66(2) 157 

O2–H2···O13c 1.67 2.61(2) 159 

O3–H3···O14 1.90 2.81(3) 153 

π-π interactions[c] 

Ring...Ring[d] α DC β DZ DXY 

p3···h2b 1.0 5.62(1) 52.8 3.40(9) 4.47 

p2···p3b 5.0 5.12(1) 48.6 3.38(9) 3.84 

h1···h1b 0.5 3.55(3) 32.1 3.45(2) 4.29 

1
 Symmetry-codes: (a): –x, –y+3/2, –z+1; (b) –x, y, –z+3/2; (c) –x, –y+1, –z+1.

 [b] 
D: donor; A: acceptor.

[c] 
Angle: 

dihedral angle between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between 

mean plane of the rings. β: angle (°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar 

distance (Å), DXY: lateral displacement (Å), 
[d] 

h: hexagonal ring of the adeninato and p: pentagonal ring of the 

adeninato. The numbers 1, 2 and 3 are related with each of the crystallographically independent adenines. h1: 

N11, C12, N13, C14, C15, C16. h2: N21, C22, N23, C24, C25, C26. p2: C24, C25, N27, C28, N29. p3: C34, C35, N37, 

C38, N39. 
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(a) 

 

(b) 

Figure 4.12. Crystal packing of compound Cu6CrAD (a) showing the voids in yellow (b). 
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4.3.2.2. Structural description of compound Cu6MnAD. 

 Figure 4.13 and Table 4.9 show the heptameric entity and coordination bond distances 

of compound Cu6MnAD. The central manganese atom shows four short coordination bond 

distances (2.06–2.09 Å) and two longer ones (ca. 2.2 Å). This observation led us to disregard +2 

oxidation-state, as MnII–O bond distances are expected to be more isotropic and range 

between 2.15 and 2.25 Å.[8] A central Mn(II) is neither compatible with the observed magnetic 

behaviour. Therefore, Mn(III) can be assigned as central atom, which is also influenced by the 

Jahn-Teller effect (t2g
3eg

1). We have analysed the distribution of coordination bond lengths in 

MnIIIO6-type coordination polyhedra using the ConQuest [version 2.05] search engine 

implemented in the CSD (Figure 4.14 and Table 4.10). The equatorial bond lengths range 

roughly between 1.9 and 2.0 Å (mean: ca. 1.94 Å), while the axial mean bond lengths are 2.2(1) 

Å and 1.87(2) Å for elongated and compressed polyhedra, respectively. This seems to indicate 

that a central MnIII with a Jahn-Teller elongation is the most likely option despite, certain 

disorder might be affecting it, as the equatorial bond distances are somewhat larger than 

expected. It must be indicated that the aerobic oxidation of Mn(II) to Mn(III) is favoured in 

aqueous alkaline media, such as that employed in the synthesis of these compounds. In any 

case the presence of Mn(III), matches with the thermogravimmetric analysis and XPS 

observations, and it is further supported by the magnetic data (see section 4.3.3.).  

 

Figure 4.13. Heptameric entity of compound Cu6MnAD. 
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Table 4.9. Coordination bond distances (Å) compounds Cu6MnAD.1 

Cu6MnAD 

Mn1–O1  2.090(2) Cu4–N33  2.043(5) 

Mn1–O2  2.200(2) Cu4–N49  1.977(6) 

Mn1–O3 2.066(1) Cu4–O3  1.960(2) 

Mn1–O4  2.068(2) Cu4–O4  1.974(1) 

Mn1–O5  2.158(2) Cu4–O3w  2.482(2) 

Mn1–O6  2.088(1) Cu4–O4w  2.594(1) 

Cu1–N19  2.072(5) Cu5–N43  2.066(5) 

Cu1–N63  1.987(4) Cu5–N59  1.987(6) 

Cu1–O1  1.975(1) Cu5–O4  1.954(2) 

Cu1–O6 1.957(2) Cu5–O5  1.950(2) 

Cu1–O1w  2.749(1) Cu5–O4w 2.577(1) 

Cu1–O6w 2.419(2) Cu5–O5w 2.488(1) 

Cu2–N13 2.033(5) Cu6–N53  2.105(5) 

Cu2–N23 2.046(4) Cu6–N69  1.977(5) 

Cu2–O1  1.936(2) Cu6–O5  1.918(2) 

Cu2–O2 1.910(2) Cu6–O6  1.955(2) 

Cu2–O1w  2.667(2) Cu6–O5w 2.589(1) 

Cu2–O2w 2.481(2) Cu6–O6w 2.505(1) 

Cu3–N29 1.927(5) Mn1···Cu1  3.115(6) 

Cu3–N39 2.050(4) Mn1···Cu2 3.159(4) 

Cu3–O2  1.972(2) Mn1···Cu3 3.144(5) 

Cu3–O3  1.990(2) Mn1···Cu4 3.106(7) 

Cu3–O2w  2.519(1) Mn1···Cu5 3.146(7) 

Cu3–O3w  2.556(2) Mn1···Cu6 3.121(5) 
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Table 4.10. Equatorial and axial mean bond lengths in elongated and compressed Mn
III

O6 type 

polyhedra.
1
 

 

Elongated Compressed 

 

Mean (Å) σ (Å) Mean (Å) σ (Å) 

Axial 2.185 0.101 1.868 0.023 

Equatorial 1.942 0.052 1.935 0.043 
1
: ς: standard deviation. 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 4.14. Distribution of equatorial and axial bond lengths (Å) in elongated and compressed MnIIIO6 

type polyhedral showing the amount of compounds with each length distribution. 

Despite the complex wheel has the same ionic charge as that of compound Cu6CrAD 

compound, the set of supramolecular interactions involving the heptameric entity show 

significant differences (Figure 4.15, Table 4.11). Each sulfate anion links successively upper and 

lower [Mn(OH)6]3– cores of neighbouring heptamers by means of four hydrogen bonding 

interactions (Figure 4.15a) to give rise to a one-dimensional heptamer/sulfate aggregate. On 

the other hand, each heptamer is connected to seven surrounding heptamers through an 

intricate network of interactions: (1) it binds to three neighbouring heptamers by means of the 

π– π interactions (see green entities in Figure 4.15b) stablished through five of its adenines 

(ADE–1, –2, –3, –5 and –6), (2) it is hydrogen bonded to one neighbouring complex by means 



Heterometallic adenine nucleobase based SMOFs 

 

  180 

of the pairing interaction (N46–H···N41) taking place between Watson-Crick faces of adeninato 

ligands (ADE–4, blue entity), and (3) it stablishes less robust single-hydrogen bonding 

interactions (N26–H26B···N31, N26–H26B···N31, N56–H56A···N47, N66–H66X···N21) with three 

surrounding heptamers (depicted as yellow entities). Thus, if we consider each heptameric 

entity as a node of the network and both π-π interactions and hydrogen bonds between 

adeninato ligands as linkers, the structure can be described as a 7-connected uninodal net with 

(33.43.512.63) point symbol that affords an unprecedented topology. The resulting 

supramolecular network presents 1D channels that imply a 22.2 % of unit cell volume as it can 

be observed in Figure 4.16. 
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(a) 

 

(b) 

Figure 4.15. Sulfate/heptamer 1D supramolecular ensemble (a) and interaction of a heptameric entity 

with seven surrounding ones in compound Cu6MnAD (b). Hydrogen atoms were omitted for clarity; 

green, blue and yellow entities are assembled by means of π–π, pairing interaction through Watson-

Crick face and single-hydrogen bonding interactions, respectively. 
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Table 4.11. Hydrogen-bonding parameters (Å, ᵒ) and π–π interactions in compound Cu6MnAD.a 

D–H···A[b] H···A D···A D–H···A 

N26–H26B···N31a 2.41 3.25(3) 166 

N46–H46B ···N41b 1.89 2.71(3) 159 

N56–H56A ···N47c 2.57 3.36(5) 153 

N66–H66B ···N21d 2.30 3.142(6) 168 

O3w–H3···O3Se  2.87(2)  

O5w–H5···O2Se  2.88(3)  

O1–H1···O1S 1.93 2.86(4) 158 

O3–H3···O4S 2.44 3.22(4) 136 

O4–H4···O2Se 2.43 3.24(3) 140 

O4–H4···O3Se 1.99 2.90(5) 153 

π-π interactions[c] 

Ring...Ring[d] α DC β DZ DXY 

h1···p1f 0.0 5.43(2) 50.3 3.47(1) 4.18 

p2···p5g 3.0 5.53(2) 50.1 3.35(1) 4.24 

h3···p6g 3.3 4.89(3) 45.0 3.26(8) 3.46 

p3···p6g 3.3 3.84(2) 25.9 3.38(1) 1.68 

h4···p5c 54.1 4.47(7) 26.0 1.96(1) -- 

p4···p5c 54.1 4.49(4) 26.7 0.78(8) -- 

a
 Symmetry-codes: (a) 2–x, –1/2+y, 3/2–z. (b) –x+3, –y+1, –z+2. (c) –x+2, –y+1, –z+2. (d) –x+2, –y, –z+2. (e) x+1, y, z. (f) –x+1, –y, –

z+2.(g) x, –y+1/2, z–1/2.
 [b] 

D: donor; A: acceptor.
[c] 

Angle: dihedral angle between the planes (ᵒ), DC: distance between the 

centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle (°) between the normal to the first ring and the DC 

vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: hexagonal ring of the adeninato and p: pentagonal ring 

of the adeninato. The numbers from 1 to 6 are related with each of the crystallographically independent adenines. h1: N11, C12, 

N13, C14, C15, C16. p1: C14, C15, N17, C18, N19. p2: C24, C25, N27, C28, N29. h3: N31, C32, N33, C34, C35, C36. p3: C34, C35, 

N37, C38, N39. h4: N41, C42, N43, C44, C45. p4: C44, C45, N47, C48, N49. p5: C54, C55, N57, C58, N59. p6: C64, C65, N67, C68, 

N69. 
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(a) 

 

(b) 

Figure 4.16. Crystal packing of compound Cu6MnAD (a) showing the voids in yellow (b). 
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4.3.2.3. Structural description of compounds Cu6CoAD and Cu6ZnAD. 

 As mentioned in the introductory section of the structural description of this chapter, 

the compounds Cu6CoAD and Cu6ZnAD are isostructural to Cu7ADSO4NHEt3-2, described in 

Chapter 3. Although in general terms the crystal packings are analogous, some slight 

differences are observed in the coordination bond distances (Figure 4.17 and Table 4.12) and 

in some supramolecular interactions implying the sulfate anions. The central metal atom (Co 

or Zn) is sited on a special position containing an inversion centre and a ternary axis. 

Interestingly, despite the symmetry site of the central metal atom forces all the M–OH 

coordination bond distances to be equal, the hydroxide O-atoms could be refined 

anisotropically, as both exchanged central metal atoms have a weak or lack of Jahn-Teller 

effect (CoII and ZnII, respectively), i.e. there should not be great differences between 

coordination bond lengths. Contrarily, in compound Cu7ADSO4NHEt3-2, the O-atoms of the 

[Cu(OH)6]4– core could only be refined using isotropic displacement parameters because if 

anisotropic ones are employed too elongated ellipsoid are generated indicative of an 

unresolved disorder.  

Table 4.13 and Table 4.14 show the structural parameters of the hydrogen bonding of 

compounds Cu6CoAD and Cu6ZnAD, respectively. In these compounds, the heptameric entities 

appear sandwiched between sulfates, but they display some dissimilarities with regard to 

Cu7ADSO4NHEt3-2 in terms of disposition and/or site occupancy of the sulfate entities (Figure 

4.18). In the Co(II) compound, each sulfate anion is hydrogen bonded like a tripod to three OH 

groups of the heptamer, similarly to Cu6CrAD and Cu7ADSO4NHEt3-1, but the total site 

occupancy for each sulfate is set to 1/2 to counterbalance the charge of the complex entity. 

Note that the ternary axis crosses through apical S–O1s bond of the sulfate. In the Zn(II) 

analogous compound, the disposition of the sulfate anion is similar to that of Cu7ADSO4NHEt3-

2: a ternary axis crosses through a peripheral sulfate O-atom (O3s) in such a way that the anion 

and two related crystallization water molecules (O2w and O4w) appear disordered in three 

symmetry related positions and therefore, the heptamers are sandwiched by two sets of three 

sulfates (each with a total occupancy of 1/6). Furthermore, in Cu6ZnAD, as it occurs in the 

isostructural parent compound (Cu7ADSO4NHEt3-2), each sulfate is only anchored through two 

hydrogen bonds to the hydroxide bridges.  

Regarding the self-assembly of the heptamers, each entity is six-connected by means 

of π–π interactions (comprising its six adeninatos) to three upper and to three lower ones, 

resembling a close packing model of spheres (Figure 4.19). However, again, some mild 

differences are observed due to the unlike disposition of sulfate couterions. In compound 
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Cu6CoAD, the sulfate, anchored as tripod to the three hydroxide of a heptamer, bridges 

surrounding heptamers by means of the hydrogen bonding interaction stablished with the 

amino group of the adenine. In compound Cu6ZnAD, similarly to Cu7ADSO4NHEt3-2, the 

heptamers are further connected by means of the hydrogen bonding that stablishes the 

capping sulfate/water ensemble with the Hoogsteen face of the adeninato ligands of 

neighbouring heptamers. In both cases, the rigid synthons generated from the combined set of 

π–π and hydrogen bonding interactions lead to, an open structure, with α-Po primitive cubic 

pcu topology and a (412.63) point symbol. The resulting 3D channels comprise the 46.1% and 

49.0% of the unit cell of compounds Cu6CoAD and Cu6ZnAD, respectively (Figure 4.20). 

 

Figure 4.17. Heptameric entity of compound Cu6CoAD and Cu6ZnAD, M being Co(II) or Zn(II). 
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Table 4.12. Coordination bond distances (Å) compounds Cu6CoAD and Cu6ZnAD.a 

Cu6CoAD 

Co1–O1 2.066(1) Cu1–N13Be 1.892(1) 

Co1–O1a 2.066(1) Cu1–N19Ae 1.890(1) 

Co1–O1b 2.066(1) Cu1–N19B 1.894(1) 

Co1–O1c 2.066(1) Cu1–O1e 1.992(1) 

Co1–O1d 2.066(1) Cu1–O1 1.993(1) 

Co1–O1e 2.066(1) Co1···Cu2 3.104(4) 

Cu1–N13A 1.892(1)   

Cu6ZnAD 

Zn1–O1 2.078(1) Zn1–O1c 2.078(1) 

Zn1–O1a 2.078(1) Zn1–O1d 2.078(1) 

Zn1–O1b 2.078(1) Zn1–O1e 2.078(1) 

Cu2–N3a 2.013(2) Cu2–O1c 1.985(1) 

Cu2–N9 1.947(2) Cu2–O1wa 2.411(1) 

Cu2–O1 1.970(1) Zn1···Cu2 3.117(2) 

a
 Symmetry-codes. Cu6CoAD: (a) –x, –y, –z+1; (b) x–y, x, –z+1; (c) –x + y, –x, z+1; (d) –y, x–y, z+1; (e) y, –x + y, –z+1. Cu6ZnAD: (a) y, –

x+y+1, –z+1; (b) –y+2, x–y+1, z; (c) x–y, x, –z+1; (d) –x+2, –y+2, –z+1; (e) –x+y+1, –x+2, z. 
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(a) 

 
(b) 

Figure 4.18. Interaction of the sulfate anion with a heptmeric in entity of Cu6CoAD (a) and Cu6ZnAD (b) 

compounds. For clarity, in compound Cu6ZnAD two of the disordered sulfate/water ensembles (related 

by the ternary axis) were omitted. 
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(a) 

 
(b) 

Figure 4.19. Supramolecular interactions between neighbouring heptameric entities in compounds 

Cu6CoAD (a) and Cu6ZnAD (b). 
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Table 4.13. Hydrogen-bonding parameters (Å, ᵒ) and π-π in compound Cu6CoAD.
a 

Cu6CoAD    

D–H···A[b]       H···A D···A          D–H···A 

N16A–H16A···O2S       1.84 2.70(4)          173 

O1–H1···O2S       1.89 2.83(4)          160 

π-π interactions[c] 

Ring...Ring[d] α DC β DZ DXY 

p1A···p1Aa 0.0 4.79(5) 50.9 3.02(1) 3.72 

p1A···p1Ba 0.0 5.20(2) 43.7 3.76(1) 3.59 

p1A···p1Bb 33.0 3.99(9) 57.8 2.13(1) -- 

p1B···p1Ac 71.0 4.00(2) 55.6 2.26(1) -- 

p1A···h1Aa 0.0 4.74(7) 39.5 3.66(2) 3.02 

p1A···h1Ba 0.0 4.50(2) 43.0 3.29(8) 3.07 

p1B···p1Ba 0.0 3.99(9) 32.0 3.39(2) 2.11 

p1B··· h1Aa 0.0 4.14(3) 34.9 3.39(6) 2.37 

p1B··· h1Ba 0.0 4.63(1) 47.7 3.11(8) 3.42 

h1A···h1Ba 0.0 4.28(3) 39.7 3.29(3) 2.73 

h1A···h1Aa 0.0 4.06(6) 25.9 3.65(8) 1.77 

h1B···h1Ba 0.0 4.16(5) 41.6 3.11(2) 2.76 

a
 Symmetry-codes : (a) 1/3+x–y, –2/3–y, 5/6–z. (b) x–y, x, 1 –z. (c) y, –x+y, 1–z.

 [b] 
D: donor; A: acceptor.

[c] 
Angle: dihedral angle 

between the planes (ᵒ), DC: distance between the centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle 

(°) between the normal to the first ring and the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: 

hexagonal ring of the adeninato and p: pentagonal ring of the adeninato ligand. h1A: N11A, C12A, N13A, C14A, C15A, C16A. h1B: 

N11B, C12B, N13B, C14B, C15B, C16B. p1A: C14A, C15A, N17A, C18A, N19A. p1B: C14B, C15B, N17B, C18B, N19B.  
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Table 4.14. Hydrogen-bonding parameters (Å, ᵒ) and π-π in compound Cu6ZnAD.
a
 

Cu6ZnAD    

D–H···A[b] H···A D···A D–H···A 

N16–H16A···O1S 2.09 2.95(4) 178 

N16–H16B···O2w 2.38 3.21(7) 163 

N16–H16B···O4S 2.07 2.85(5) 149 

O1w–H11w···O2w 2.32 3.04(7) 136 

O1w–H11w···O4w 1.92 2.81(6) 164 

O1w–H11w···O5w 2.05 2.89(4) 160 

O1w–H11w···O4S 2.09 2.77(3) 131 

π-π interactions[c] 

Ring...Ring[d] α DC β DZ DXY 

p1···p1a 0.0 4.02(5) 31.8 3.42(1) 2.12 

a
 Symmetry-codes : (a) 1+x–y, x, 1–z.

 [b] 
D: donor; A: acceptor.

[c] 
Angle: dihedral angle between the planes (ᵒ), DC: distance between 

the centroids of the rings (Å), : angle (°) between mean plane of the rings. β: angle (°) between the normal to the first ring and 

the DC vector (ᵒ), DZ: interplanar distance (Å), DXY: lateral displacement (Å), 
[d] 

h: hexagonal ring of the adeninato and p: 

pentagonal ring of the adeninato. p1: C14, C15, N17, C18, N19.  
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(a) 

 
(b) 

Figure 4.20. Crystal packing of compounds Cu6CoAD and Cu6ZnAD (a) showing the voids in yellow (b). 

 As it can be seen in Figure 4.21, although both compounds are isostructural, the 

simulated PXRD shows slight differences. This is explainable by the different number of water 

molecules present in the channels of the compounds, which is affected by the ambient 

humidity or temperature and probably preferential orientation effects. 
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Cu6CoAD Cu6ZnAD 

  

a= 19.058(3) 

b= 19.058(3) 

c= 43.157(1) 

a= 19.108(1) 

b= 19.108(1) 

c= 43.046(1) 

Figure 4.21. Comparison between the PXRD taken at 293 K of compounds Cu6CoAD and Cu6ZnAD. Cell 

parameters obtained from the pattern matching analysis are also included. 

4.3.3. Magnetic properties. 

Figure 4.22 shows the molar magnetic susceptibility (χm) and the χmT product for 

compounds Cu6MIIIAD and Cu6MIIAD (M(III): Cr, Mn; M(II): Co, Ni, Zn), measured at 1 kOe after 

cooling without an applied magnetic field (ZFC). Table 4.15 compares the experimental χmT 

values at room temperature with those values calculated (χmTcalc) from the van Vleck equation 

(equation 2 of appendix A.3) for magnetically non interacting six Cu(II) and one central MIII or 

MII atom. In most cases, the experimental χmT value at RT are close to the calculated values. 

However, in the case of Cr(III) the experimental value is significantly larger than the calculated 

one, which could be attributed to the influence of the intramolecular magnetic interactions, 

that require higher temperatures than RT to decay.  

In the case of Cu6CrAD and Cu6ZnAD analogues, χmT value increases as temperature 

decreases from room temperature, which is associated to intramolecular ferromagnetic 

interactions. Indeed in the Cr(III) compound, the maximum in χmT is found at 25 K (3.88 emu 

K/mol Oe), after which it decreases sharply probably due to intermolecular antiferromagnetic 

interactions, similar to those observed in the homometallic Cu-heptamers (see chapter 1). In 

the case of Cu6MnAD and Cu6NiAD, the χmT values slightly diminish upon cooling until a 

minimum close to 108 K (5.76 emu K/mol Oe) and 85 K (3.91 emu K/mol Oe), respectively. 

Further cooling of the compounds leads to a sharp increase of χmT values to get a maximum at 

6 K (8.05 emu K/mol Oe) and 8 K (4.85 emu K/mol Oe) for manganese and nickel analogues, 

respectively. Finally, the χmT product of Cu6CoAD remains almost constant in the high 

temperature range (4.78 emu K/mol Oe) to start smoothly decreasing upon cooling below 150 

K down to 18 K and then more sharply. This magnetic behaviour can be attributed to both a 
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zero-field splitting ground state of cobalt(II) ion (S = 3/2)[143] and to intermolecular 

antiferromagnetic interactions.  

  

Cu6CrAD Cu6MnAD 

  

Cu6CoAD Cu6NiAD 

 

Cu6ZnAD 
Figure 4.22. Thermal evolution of χm (red) and χmT product (blue) for the heterometallic compounds of 

Chapter 4. Experimental χmT values are represented by blue circles, while the fitting to the magnetic 

data is depicted by a continuous line. 

                                                             
143 (a) Krzystek, J.; Zvyagin, S. A.; Ozarowski, A.; Fiedler, A. T.; Brunold, C. T.; Telser, J., J. Am. Chem. Soc., 2004, 126, 2148–2155. 

(b) Kobak, J.; Bogucki, A.; Smoleoski, T.; Papaj, M.; Koperski, M. Potemski, M.; Kossacki, P.; Golnik, A.; Pacuski, W. Phys. Rev., 2018, 
97, 4–15. (c) Idešicová, M.; Titiš, J.; Krzystek, J.; Boča, R. Inorg. Chem. 2013, 52, 9409–9417. 
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 Figure 4.23 represents the field dependence of the magnetization at 2 K of all 

compounds. In general, between 0 and 10 kOe, all the curves show a linear dependence with 

regard to the magnetic field applied and then, they tend to saturate without the presence of a 

hysteresis loop (have neither coercitivity nor remanence). In Table 4.13 the saturation 

magnetization values (MS) at 2K are compared with the theoretical saturation moment (ST) of 

each heterometallic heptamer considering various scenarios. First, in the case Cu6CrAD, the Ms 

value (9.36 μB per heptamer molecule) agrees with a total spin of 9/2 resulting from a 

ferromagnetic Cu6-ring (6.00 μB, assuming SCu6-ring = 6/2 and g ≈ 2) coupled ferromagnetically 

with the central chromium ion (3.00 μB, SCr = 3/2). Note that a ferromagnetic coupling among 

the central atom and the peripheral Cu(II) atoms is expected considering the orbital 

orthogonality taking place between copper(II) (eg)
1 and chromium(III) (t2g)

3 magnetic orbitals. 

Second, for Cu6CoAD and Cu6NiAD, the values obtained are near from the theoretical 

saturation moment corresponding to an antiferromagnetic coupling between Cu6-ring and 

metal centre (SCo = 3/2, SNi = 1) i.e. a total S = 3/2 and 2 per heptameric entity, respectively. 

Third, in Cu6ZnAD with a central diamagnetic ion (Zn(II); d10) the saturation magnetisation (5.79 

μB) is close to that for six isolated Cu(II) ions ferromagnetically coupled (Cu6-ring).  

Table 4.15. Relevant data on magnetic susceptibility and magnetization measurements.a 

Compound χMTRT χMTcalc. Ms ST Compound χMTRT χMTcalc. Ms ST 

Cu6CrAD 6.36 4.40 9.36 9/2 Cu6NiAD 4.23 3.58 4.83 2 

Cu6MnAD 5.73 5.52 6.78 3 Cu6ZnAD 2.62 2.52 5.79 3 

Cu6CoAD 4.68  4.40 3.57 3/2      

a
: χMT (RT): experimental χmT values (emu·K·mol–1·Oe–1) at room temperature. χMTcalc.: calculated χmT values for non-

interacting paramagnetic centres. Ms: saturation magnetization (μB per heptamer molecule). ST : total spin resulting 

from the magnetic coupling scheme. 
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Figure 4.23. Compendium of the magnetization curves at 2 K for compounds of Chapter 4. Cu6CrAD 

(pink), Cu6MnAD (green), Cu6ZnAD (red), Cu6NiAD (blue) and Cu6CoAD (black), respectively. 

Finally, Cu6MnAD presents a saturation magnetization of 6.78 μB per heptamer. If the 

central manganese(III) atom displays a high spin configuration, t2g
3eg

1, SMn(H.S.) = 2, coupled 

ferromagnetically to four of the peripheral copper(II) atoms and antiferromagnetically to the 

other ones, the total spin of 3 per heptamer will be 6.00 μB. In the case of Mn(III) in low spin 

configuration, t2g
4,SMn(L.S.) = 1, a ferromagnetic coupling with the outer Cu6-ring, reaches a 

saturation magnetization value of 8 μB with ST(L.S.) = 4 or even assuming an antiferromagnetic 

coupling, which would be highly unusual due to symmetry orthogonality between the 

copper(II) eg and Mn(III)LS t2g magnetic orbital, a saturation magnetization value of 4 μB with 

ST(L.S.) = 2.  

Mn(II) (S = 5/2) in high spin configuration, (t2g)
5 coupled ferromagnetically with the 

Cu6-ring would render a total spin of 11/2 and antiferromagnetically coupled a total spin of 2. 

In low spin configuration (S = 1/2) a ferromagnetic coupling with the outer Cu6-ring, reaches a 

saturation magnetization value of 7/2, close to the observed one. However, as a first row 

transition metal ion in a low oxidation state and weak field ligands (hydroxide) would imply a 

small crystal-field splitting parameter (∆o). Moreover, Mn(II) is disregarded from the 

discussion, as the observation of two elongated coordination bonds which suggest that the 

electronic configuration of the central metal atom must be compatible with a Jahn-Teller 

effect. All in all, coupling scheme envisaged for a high spin Mn(III) centre is compatible with 

the calculated coupling constants (see discussion below).  
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To determine the Hamiltonian for the calculation of superexchange magnetic coupling 

constants of the compounds detailed in this chapter, the influence of the Jahn-Teller effect on 

the central metal atom in each heptanuclear entity [Cu6M(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]n+ 

(n =2 or 3) has to be considered. In the case of Cu6CrAD, Cu6CoAD and Cu6NiAD, with lack of 

Jahn-Teller distortion (with Cr(III), Ni(II) and Co(II) oxidation states) the Mcentral–(OH)2–Curing 

bridges can be considered equivalent. Therefore, for this series of compounds a Hamiltonian 

consisting of two different magnetic superexchanges (Figure 4.24a) that account for the 

couplings within the Cu6-ring (J1) and between the central paramagnetic centre and the 

peripheral copper(II) atoms (J2).[144] On the contrary, in Cu6MnAD, the [Mn(OH)6]3– core exhibits 

two elongated coordination bond distances and four shorter ones (see Table 4.9 of the 

structural description) as consequence of a sizeable Jahn-Teller effect. Accordingly, a third 

coupling constant (J3) has been included (Figure 4.24b) to account for the magnetic 

superexchange taking place along the elongated bridge. Finally, in compound Cu6ZnAD, the 

proposed Hamiltonian (Figure 4.24c) only considers the coupling among the neighbouring 

peripheral Cu(II), as the central Zn(II) is diamagnetic.  

  

                                                             
144

 Estes, E. D.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem., 1974, 13, 1654–1657. 



Heterometallic adenine nucleobase based SMOFs 

 

  197 

 

H = –J1 ( ⃗2 ·  ⃗3 +  ⃗3 ·  ⃗4 +  ⃗4 ·  ⃗5 +  ⃗5 ·  ⃗6 +  ⃗6 ·  ⃗7 +  ⃗7 ·  ⃗2)  

–J2 ( ⃗1 ·  ⃗2 +  ⃗1 ·  ⃗3 +  ⃗⃗⃗1 ·  ⃗4 +  ⃗1 ·  ⃗5 +  ⃗1 ·  ⃗6 +  ⃗1 ·  ⃗7)–gµB ⃗⃗· ⃗ 

(a) 

  

H = –J1 ( ⃗2 ·  ⃗3 +  ⃗3 ·  ⃗4 +  ⃗4 ·  ⃗5 +  ⃗5 ·  ⃗6 +  ⃗6 ·  ⃗7 +  ⃗7 · 

 ⃗2) –J2 ( ⃗1 ·  ⃗2 +  ⃗1 ·  ⃗3 +  ⃗1 ·  ⃗5 +  ⃗1 ·  ⃗6) –J3 ( ⃗1 ·  ⃗4 + 

 ⃗1 ·  ⃗7)–gµB ⃗⃗· ⃗ 

H = –J1 ( ⃗2 ·  ⃗3 +  ⃗3 ·  ⃗4 +  ⃗4 ·  ⃗5 +  ⃗5 · 

 ⃗6 +  ⃗6 ·  ⃗7 +  ⃗7 ·  ⃗2) –gµB ⃗⃗· ⃗ 

(b) (c) 

Figure 4.24. The magnetic topologies and their corresponding J coupling hamiltonian for the Cu6Mc 

clusters. 

The fitting of the χMT data above 10 K was performed on the basis of the above 

described equations using the MagProp software tool distributed with DAVE.[115] The resulting 

magnetic coupling constants (Table 4.16) are in concordance with the expectations on the 
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magnetic topology inferred from the saturation magnetization of Cu6M clusters. In general 

terms, the peripheral Cu(II) atoms are coupled ferromagnetically (J1 > 0) due to the 

counterbalance between the magnetic orbitals induced by the double bridge 

adenine/hydroxide (see further details in Chapter 3, section 3.3.3).[145] The differences on the 

magnitude of the J1 coupling constants are attributable to the accuracy of the data fitting but 

also to the slight differences in the coordination bond lengths and angles of each compound 

and disposition of the hydrogen atom of the hydroxide group. Note, that the displacements on 

the hydrogen atoms of bridging hydroxide groups caused by the counterions present in the 

structures, have demonstrated to strongly influence the sign and magnitude of the magnetic 

interaction.[146] 

With regard to the coupling taking place between the central metal atom and the Cu6-

ring, the fitting of the magnetic data reveals a ferromagnetic J2 value for Cu6CrAD, which is in 

good agreement with the envisaged magnetic topology and with the orthogonality between 

the magnetic orbitals of Cu(II) and Cr(III) (see above). In compound Cu6CoAD and Cu6NiAD, the 

symmetry of the magnetic orbitals of the central metal atom (Co(II) or Ni(II)) and the 

peripheral Cu(II), ensures an efficient overlap through the hydroxide bridges, thus it would 

favour an antiferromagnetic coupling (J2).[147] In a simplified approach the magnetic coupling 

between two paramagnetic centres can be expressed as the sum of a ferromagnetic term (JF) 

and an anti-ferromagnetic term (JAF), i.e. J = JF + JAF,
[148]. JAF is proportional to the energy 

difference between the singly occupied molecular orbitals (∆ between SOMOs), JAF ∝ ∑∆2, 

which strictly depends on the overlap between magnetic atomic orbitals. While JF depends on 

the exchange bielectronic integrals (j), JF ∝ ∑j. Thus, an efficient overlap between the magnetic 

orbitals, increases the energy difference between the SOMOs, it favours a low spin state or an 

antiferromagnetic coupling. 

  

                                                             
145 Pérez-Aguirre, R.; Beobide, G.; Castillo, O.; de Pedro, I.; Luque, A.; Pérez-Yañez, S.; Rodriguez Fernandez, J.; Román, P. Inorg. 

Chem. 2016, 55, 7755–7763. 
146 Ruiz, E.; Alemany, P.; Alvarez, S.; Cano, J., J. Am. Chem. Soc. 1997, 119, 1297–1303. 
147 (a) Hatfield, W. E. ACS, 1974, 5, 108–141. b) Lewis, D. L.; McGregor, K. T.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem., 1974, 13, 

1013–1019. (b) McGregor, K. T.; Watkins, N. T.; Lewis, D. L.; Drake, R. F.; Hodgson, D. J.; Hatfield, W. E. Inorg. Nucl. Chem. Lett., 
1973, 9, 423–428. 
148

 Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884. 
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Table 4.16. Magnetic data obtained from the fitting of the magnetic susceptibility curves.a 

Compound J1 J2 J3 D ST (2K) 

Cu6CrAD 80.06 50.50 --  9/2 

Cu6MnAD 70.09 -66.81 18.59  3 

Cu6CoAD 63.15 -19.11 -- 55.71 3/2 

Cu6NiAD 47.26 -30.58 --  2 

Cu6ZnAD 18.20 -- --  3 

a: J1–3 and D: magnetic coupling constants (cm–1) and zero field splitting parameter (cm–1). 

The case of the manganese(III) heterometallic cluster is more interesting as only one of 

the two eg orbitals is occupied by an unpaired electron (t2g
3 eg

1). It leads to the 

crystallographically observed Jahn-Teller elongation but also to the differentiated magnetic 

coupling interactions that it establishes with the external Cu(II) metal centers. At this point, it 

deserves to note that there are two type of radial magnetic interactions, those involving 

eg(Mn)···eg(Cu) of antiferromagnetic nature, as previously observed for the homometallic Cu7 

clusters, and the t2g(Mn)···eg(Cu) interaction of ferromagnetic nature due to symmetry dictated 

strict orthogonality between the involved orbitals. Therefore, as the main lobules of the single 

occupied dz2 orbital only extends along the z direction while not in the x and y directions it is 

expected the magnetic interactions to be ordered in the same way: 2 antiferromagnetic 

interactions involving the dz2 orbital and 4 ferromagnetic interactions coming from the orbital 

orthogonality. This situation comes very similar to the situation observed for Cu7 heptamers in 

which we also observe a similar radial distribution of 2 antiferromagnetic interactions and four 

ferromagnetic ones in addition to the peripheral ferromagnetic interactions among the 

external copper(II) metal centers. However, the relative magnitude value of these interactions 

differ: 

Cu7: |JAF(radial)|, |JF(peripheral)| > |JF(radial)| which leads to the ferrimagnetic spin 

arrangement described in the previous chapter to provide a ST = 5/2 at low temperature. 

Cu6Mn: |n1·n2·JAF(radial)|, |n1·n2JF(radial)| > |JF(peripheral)| (n1 and n2 being the 

unpaired electrons at copper and manganese metal centers, respectively) which adopts a 

different arrangement of the spins with the interactions established by the central 

manganese(III) atom imposing their preferences over the, this time weaker, JF peripheral 

interactions to generate a ST = 3 at low temperature (n1 and n2, stand for the unpaired 

electrons of Cu(II) and Mn(III), so that n1·n2 term (4·1) must be considered in order to scale the 

magnetic interaction). 
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In both compounds, a spin frustration situation arises as there is no an optimal spin 

ordering within the heptameric entity that could fulfill all the magnetic interaction preferences 

(notice that the JF(radial) and JF(peripheral) coupling preferences are unfulfilled in compounds 

Cu7AD and Cu6CrAD, respectively). However, the strength ordering of the magnetic 

interactions change due to the contribution of the t2g magnetic orbitals, not present in the 

copper(II) magnetic centers, which strengthen the radial ferromagnetic term above the 

peripheral one. The latter one coming from the previously explained orbital 

countercomplementarity of the µ-N3:N9-adenine and µ-OH bridging ligand. 

4.3.4. Magnetic sustentation experiments. 

 As previously stated, these compounds establish complex magnetic interactions at low 

temperatures but at room temperature they are well placed in the paramagnetic regime as it 

can be deduced from their χMT product at room temperature. Therefore, the attraction force 

exerted by a relatively strong external magnetic field (i.e. that of magnets or electromagnets) 

on the particle of the samples is very weak not being able to overcome the earth gravity 

attraction under normal conditions and as a consequence, no displacement takes place on 

these particles. However, under reduced gravity conditions such as when the particles are 

immersed in a liquid, the magnetic field attraction is strong enough to avoid them from 

depositing at the bottom (Figure 4.25) and even to move them if the magnetic field is strong 

enough (Figure 4.26). In this sense, a double pole electromagnet was employed in order to get 

fine control on the applied magnetic field. The equation mediating the attraction between the 

paramagnetic particles and the magnetic field implies:    (   ), where the gradient   is 

the change of the quantity     per unit distance ( : magnetic dipole of the particle and    

external magnetic field), and the direction is that of maximum increase of    . If   is in the 

same direction as H, as it happens for paramagnetic particles, then the gradient pulls the 

particles into regions of maximum H-field. This equation is strictly only valid for zero size 

magnets, but is often a good approximation for tiny particles as it is the case. 
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Figure 4.25. Image of compound Cu6CrAD particles sustained by the pole of an electromagnet while 

immersed in methanol.  

   

   

Figure 4.26. Image of particles jumping to the closest electromagnet pole while the vial is displaced from 

one to another. 

Taking into account the paramagnetic nature of the particles, the magnetic dipole of 

the particles can be expressed based on the external magnetic field and taken away from 

gradient as the particles being so small the magnetic dipole moment can be considered 

constant all along the particle (equation 1): 
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          (  ) (1) 

Being Fp the magnetic attraction force on particle, μ0 the permeability of vacuum, 

  molar susceptibility,    the molecular weight of the compound framework (excluding the 

solvent molecules located in the pores),  
 
 the density of the compound framework, Vp 

particle volume,   and  (  ) magnetic field and field gradient in the centre of the particle. 

 It implies that the magnetic force on the particles is not going to be uniform on the 

whole surface of the pole but achieves a maximum value on the edge of the pole pointing 

toward the central axis of the pole. It means that only at the bottom of the pole perimeter 

where the magnetic attraction force is opposite to the gravitation force, the particles of these 

compounds can accumulate (Figure 4.25). This phenomenon was corroborated using three 

different solvents: CCl4, H2O and MeOH (see Table 4.17). The denser the solvent a lower 

magnetic field is required to maintain the particles attached to the pole of the electro-magnet. 

However, due to wettability related problem found for water the experiment was far easier to 

perform with MeOH and CCl4 and due to environmental and health concerns, the following 

experiments were performed using MeOH. 

Table 4.17. Physical properties of the solvents under normal room conditions. 

Properties CCl4 H2O MeOH 

Density (g/ cm-3) 1.59 1.00 0.79 

Surface tension (mN/m) 26.95 71.97 22.60 

The use of an electromagnet provides a unique opportunity to exactly determine the 

minimum magnetic field required by each compound for their particles to fall from the pole 

bottom edge. Accordingly to equation (1), it must be dependent on the molecular 

susceptibility which can be estimated using spin-only expression depicted by equation (2): 

    
[   (    )]   [    (     )]

  
 (2) 

It allows to calculate the exact magnetic field value at which the particles will fall from the pole 

by matching the opposite gravitation and magnetic attraction forces. However, having in mind 

the flotation force exerted by the solvent on the particles, it only applies to the compound 

framework and not to the volume occupied by the pores of the material as the molecules 

placed there, freely exchange with the solvent. It leads to equation (3): 
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[   (    )]   [    (     )]

     
          (  )   (     )       (3) 

where     is the solvent density and   is gravity of earth.  

At this point, it is necessary to perform two approximations in order to simplify the 

previous equation. The first one relays on the molecular mass similarity of most of the 

compounds reported in this chapter (see Table 4.18) that allows to assume the MW parameter 

remains essentially constant. The same applies for the density of the compound framework 

(  ). 

Table 4.18. Formula and molecular mass of all the heterometallic compounds. 

Name code Formula MW    (cm3/g)    (    ) 

Cu6ZnAD [Cu6Zn(H2O)6(OH)6(C5H4N5)6](SO4) 1557 2.09 0 

Cu7AD [Cu7(H2O)6(OH)6(C5H4N5)6](SO4) 1555 2.13 3 

Cu6NiAD [Cu6Ni(H2O)6(OH)6(C5H4N5)6](SO4) 1550 -- 4 

Cu6CoAD [Cu6Co(H2O)6(OH)6(C5H4N5)6](SO4) 1551 2.11 15 

Cu6CrAD [Cu6Cr(H2O)6(OH)6(C5H4N5)6](SO4)1.5 1592 2.18 15 

Cu6MnAD [Cu6Mn(H2O)6(OH)6(C5H4N5)6](SO4)(OH) 1564 2.11 24 

 Accepting those two approximations implies that now there are only two variables: 

   (    ) and    (  ). The remaining parameters in the formula can be simplified into A 

and B constants (equations 4 and 5) to lead equation (6): 

 [   (    )]    [    (     )]  
(     )           

            (  )
 =
(     )        

         (  )
 (4) 

 [   (    )]    
 

   (  )
 (5) 

 [   (    )]  
 

   (  )
   (6) 

 Therefore, the experimental points at which the particles detach from the pole must fit 

to a    (    ) vs 
 

   (  )
 a straight line.  

 In order to check the validity of these equations the magnetic field and its gradient was 

measured on the pole surface of the electromagnet at different current   values. Figure 4.27 

depicts the magnetic field measured along the plane corresponding to the surface of the 

magnetic pole in the vertical z-axis. The magnetic data were fitted to a fourth order polynomial 

expression and    and      were computed. The particles are keep sustained at the 
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position where the upwards force is maximum, according to equation (1) it corresponds to the 

position of most negative      product: close to the lower end of the pole. Figure 4.28 

shows the dependence of the most negative      product for each current value with the 

magnetic field measured in the center of the pole.  

 

Figure 4.27. Magnetic field measured along the plane corresponding to the surface of the magnetic pole 

in the vertical z-axis for intensity currents increasing from 0.0 to 2.5 mA (step: 0.1 mA)and the computed 

   and      values. The z = 0 value corresponds to the pole centre. 

 

Figure 4.28. Polynomic equation of the gradient field vs the magnetic field at the centre of the pole. Left 

second order polynomial fitting of the entire magnetic field range and right linear fit within the range at 

which the experimental data appear for these compounds. 

 Now depicting the experimental data in the    (    ) vs 
 

   (  )
 graph (Figure 

4.29), the values lie in a straight with positive slope as predicted with the exception Cu6CoAD 

probably due to the well-known orbital contribution of Co(II) that significantly deviates the 

spin-only susceptibility towards greater values. The second exception correspond to Cu6CrAD 

which is the compound with a greater deviation of the PM with respect to the other members 

of this family because of the presence of 1.5 sulfate anions per formula instead a single sulfate. 

It is worthy to note that at magnetic fields above 0.4 T there is a linear relationship between 
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ΔH and H (Figure 4.30 left), as a consequence the experimental data, all of them lying within 

this H region, show also a linear correlation between    (    ) and 
 

 
. 

  
(A) (B) 

Figure 4.29. Spin-term dependence with respect to the 
 

   (  )
 (A) and 

 

 
 (B) values at which the particles 

are detached from the electromagnet pole. 
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5.3. Electromagnet sustentation experiment on drug loaded Cu6CrAD 
samples 



Application on the drug capture and magnetic sensing 

 

  208 

 

  



Application on the drug capture and magnetic sensing 

 

  209 

 

 

5.1. INTRODUCTION 

Emerging pollutants are nowadays one of the ever-increasing environmental concerns 

due to the adverse ecological and human health effects.[149] These pollutants (pesticides, drugs, 

food additives, etc.) are ubiquitously found in the world and have been detected in lot of 

environmental matrices, including aquatic media (groundwater, wastewater, drinking water, 

…).[150] That is why there is a global emergency to employ quick and effective methodologies 

for the removal of those emerging pollutants. Among all the methodologies explored so far, 

the one based on adsorbents is considered one of the most appropriate options given that it 

shows an excellent removal capacity.[151] More specifically, up to now, the most commonly 

used adsorbents have been activated carbon, zeolites, mesoporous silica, cyclodextrins and 

chitosan beads.[152] In this challenging quest for the ideal adsorbent MOFs have emerged as a 

suitable platform.[153] These ordered crystalline porous materials are renowned due to their 

high surface areas, tunable pores and intriguing functionalities which make them fulfil several 

applications.[56] Thus far, Férey's group first described promising adsorption and release 

properties of ibuprofen on non-toxic porous iron(III)-based MOFs.[58] In fact, only a few MOFs 

allow high amounts of drugs to be loaded, with a complete delivery time range from 6 to 23 

days.[154] A related burgeoning field is that of SMOFs (supramolecular metal-organic 

frameworks) in which the coordination bonds are released from guiding the crystal structure 

and supramolecular interactions (π-π stacking interactions and/or hydrogen bonds) play this 

role.[40] 

5.2. DRUG ACTIVE-CAPTURE EXPERIMENTS 

In the previous chapter it has been shown several SMOFs that have bring together 

intrinsic porosity (pore volume greater than 40%) and interesting magnetic features that range 

from ferrimagnetic to ferromagnetic behaviour at low temperatures.[145] In the first compound 

of this family, the heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-ade-ĸN3:ĸN9)6]2+ wheels are joined 

                                                             
149

 (a) Zhang, Y., Emerging Chemicals and Human Health, Ed.; Springer: Singapore, 2019. (b) Barceló D.; Alastuey, A., Emerging 

Organic Contaminants and Human Health; The Handbook of Environmental Chemistry, V. 20; Springer: Heidelberg, 2012. 
150 Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging 

pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research. 
2015, 3, 57–65. 
151

 Gupta, V. K.; Ali, I.; Saleh, T. A.; Nayak, A.; Agarwal, S., RSC Advances, 2012, 2, 6380–6388. 
152 Sophia, C.A.; Lima, E.C. Ecotoxicology and environmental safety, 2018, 150, 1–17. 
153 Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-Y., Coord. Chem. Rev. 2019, 380, 330–352. 
154 Agostoni, W.; Chalati, T.; Horcajada, P.; Willaime, H.; Anand, R.; Semiramoth, N.; Baati,T.;  Hall, S.; Mauri, G.; Chacun, H.; 

Bouchemal, K.; Martineau, C.; Taulelle, F.; Couverur, P.; Rogez-Kreuz, C.; Clayette, P.; Monti, S.; Serre, C.; Gref, R. Adv. Healthcare 
Mater., 2013, 2, 1630–1637. 
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together by means of π-π stacking interactions and the central copper(II) centre is 

antiferromagnetically coupled to external ones which are ferromagnetically coupled among 

them leading to a S = 5/2 ground state, while for the heterometallic heptanuclear [Cu6Cr(μ-

H2O)6(μ3-OH)6(μ-ade-ĸN3:ĸN9)6]3+ entity all magnetic interactions are ferromagnetic giving rise 

to a S = 9/2 ground state. In addition to that, the above-mentioned heptanuclear entity has 

been recurrently described in other SMOFs[155] and it has been recently reported as a building 

unit of a MOF.[156] Worthy to mention the case of the SMOFs given that the nature and size of 

the voids have proved to accommodate different types of anionic molecules not only inorganic 

but also organic ones through the molecular recognition capabilities provided by the adeninato 

ligands decorating the outer surface of the wheel shaped heptamers.  

Among the heterometallic members of this family of heptameric entities, compound 

[Cu6Cr(μ-H2O)6(μ3-OH)6(μ-ade-ĸN3:ĸN9)6](SO4)1.5·nsolvent (now called Cu6CrAD(1)) outstands as a 

very interesting candidate to capture potentially hazardous molecules from water but, as it will 

be described below, not only through a passive diffusion dominated procedure as it is usually 

employed for classical porous materials and MOFs. In these compounds, the rich acid-base 

chemistry of the adenine nucleobase allows its solution in acid aqueous solutions while 

retaining the molecular structure of the heptameric entities. The µ-κN3:κN9 coordination 

bridging mode for the adeninato leaves the N1 and the N7 positions as suitable acceptor 

positions for protonation without, in principle, altering the key features of the wheel shaped 

heptamer. In our first trials, it was attempted to carry out this experiment with the 

homometallic Cu7 analogue, but the lability of copper(II) makes the acid media not only 

attacking the base positions in the adeninato ligand but also the hydroxide anions bridging the 

central metal atom to the peripheral ones, leading to its dissociation as clearly deduced from 

the adeninium sulfate ((C5H6N5)2SO4) precipitation. However, the presence of the chromium(III) 

atom at the central position plays a crucial role as its kinetical inertness provides stability to 

the [Cr(OH)6]3– central core, in such a way that the protonation takes place only at the 

nucleobases that are able to deal with it without collapsing the molecular structure of the 

heptameric entities. This fact allows its complete solution at pH below 2.0. The obtained 

solution is stable for a few hours before starting the thermodynamically favoured breakdown 

of the heptameric unit with the appearance of the previously mentioned adeninium sulfate 

precipitate. It confirms the kinetical stability of the Cu6Cr entity in an acid media. Furthermore, 

                                                             
155 (a) Pascual-Colino, J.; Beobide, G.; Castillo, O.; da Silva, I.; Luque, A.; Pérez-Yáñez, S., Cryst. Growth Des. 2018, 18, 3465–3476. 

(b) Pascual-Colino, J.; Beobide, G.; Castillo, O.; Lodewyckx, P.; Luque, A.; Pérez-Yáñez, S., Román, P.; Velasco, L. F., J. Inorg. 
Biochem. 2020, 202, 110865. 
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if the solution is not allowed to stand for long at these very acid pH values, for example by 

basifying with NaOH up to pH 6.5, it provides again the starting compound (Figure 5.1) with 

the peculiar magnetic features provided by the presence of the Cu6Cr entity. Note that the 

stoichiometric mixture of the reagents at acid pH, followed by a comparable pH increase 

provides an amorphous product which chemical and magnetic characterization could not be 

related with the presence of heptanuclear entities. This indirect evidence further supports the 

toughness of the Cu6Cr entity at acid solution. 

 

Figure 5.1. pH induced reversible solubilisation/precipitation of the Cu6CrAD compound. 

Figure 5.2 shows how the magnetization value of the recycled Cu6CrAD(2) compound 

remains at the expected values (Ms = 9.21). Similarly, Figure 5.3 and Table 5.1 shows a 

comparison between the thermogravimetric measurements of both Cu6Cr heptanuclear 

entities, being the greater difference only due to a different amount of water molecules 

present in each compound. The IR spectra also reflect this similarity (Figure 5.4). The integrity 

of the heptameric unit has also been ensured by XPS (X-ray photoelectronic spectroscopy) 

measurements as we will describe later. 
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Figure 5.2. Magnetization curve at 2 K for compound Cu6CrAD after the solution/recrystallization 

process. 

  

(a) (b) 
Figure 5.3. Thermogravimetric measurements of the heptameric Cu6Cr entity before (a) and after (b) the 

dissolution/recrystallization process. 
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Table 5.1. Thermoanalytic data of the compounds of Chapter 5.[a] 

Step Ti Tf Tpeak ΔH Δm(%) ΣΔm(%) ΣΔm(%)theor.
[b] 

Cu6CrAD(1) 

1 

2 

3 

4 

 

30 

95 

280 

625 

 

95 

230 

475 

715 

 

50 

 

425 

 

 

Endo 

-- 

Exo 

 

16.3 

10.3 

37.9 

6.3 

 

16.3 

26.6 

64.5 

70.8 

 

16.3 (–17H2O) 

26.6 (–9H2O) 

64.5 (Cu6CrO6(SO4)1.5) 

70.8 (6CuO + 0.5Cr2O3) 

Cu6CrAD(2) 

1 

2 

3 

 

30 

255 

600 

 

255 

460 

800 

 

55 

425 

-- 

 

Endo 

Exo 

-- 

 

23.0 

42.6 

5.1 

 

23.0 

65.6 

70.7 

 

23.9 –(16 + 9H2O) 

65.6 (Cu6CrO6(SO4)1.5) 

70.7 (6CuO + 0.5Cr2O3) 

[a]
 Ti = initial temperature; Tf = final temperature; Tpeak = peak temperature ATD; Δm(%) = loss mass percentage in each step; ΔH = 

type of process acording to ATD; ΣΔm(%) = total loss mass after each step; ΣΔm(%)theo = total loss mass theoretically calculated. 
[b]

 

Eliminated water molecules and final residue per compound formula. 

 

Figure 5.4. IR spectra of the original (1) and reconstituted (2) Cu6CrAD samples. 

However, it deserves to note here that the PXRD pattern indicates that the crystal 

structure of the reconstituted compound has been altered, but it is not so unusual as several 
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cases of polymorphism has been also reported for the homometallic Cu7 analogues (Figure 

5.5).[10–11] 

 

Figure 5.5. Comparison between PXRD of compound Cu6CrAD, simulated without preferred orientation 

(pink), with preferred orientation (brown), experimental (blue) and after the 

dissolution/recrystallization process. The preferred orientation was set using hkl = 0 1 0, with a peak 

shape FWHM 0.3 and a March–Dollase parameter being 0.6, which is typical of platy shape crystals. 

 At this point, we decided to combine all these features to provide a material that could 

actively entrap medically extensively employed molecules such as the nonsteroidal anionic 

anti-inflammatory drugs (NSAIDs) naproxen and ibuprofen molecules which are nowadays a 

source of water contamination concern.[157] These drugs have been selected because of their 

the capability to form supramolecular interactions with the heptameric entity, either hydrogen 

bonding or π–π stacking. Second, the anionic nature of these drugs allows them to replace the 

SO4
2- anions to balance the positive charge of the heptameric cluster.  

                                                             
157

 (a) Sun, W.; Li, H.; Li, H.; Li, S.; Cao, X. Chem. Eng. J., 2019, 360, 645-653. (b) Paunovic, O.; Pap, S.; Maletic, S.; Taggart, M.A.; 

Boskovic, N.; Sekulic, M.T. J. Colloid. Interf. Sci., 2019, 547, 350-360. (c) Górny, D.M.; Guzik, U.; Hupert-Kocurek, K.; Wojcieszyoska, 
D. Ecotox. Environ. Safe., 2019, 167, 505-512. (d) Li, Z.; Liu, G.; Su, Q.; Jin, X.; Wen, X.; Zhang, G.; Huang, R. Arab. J. Chem., 2018, 11, 
910-917. (e) Domínguez, J.R.; González, T.; Palo, P.; Cuerda-Correa, E.M. Desalination., 2011, 269, 231-238.  
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 NSAIDs are members of a drug class that reduces pain, decreases fever, prevents blood 

clots, and in higher doses, decreases inflammation.[158-159] These drugs act as nonselective 

inhibitors of the cyclooxygenase (COX) enzymes, inhibiting both the cyclooxygenase-1 (COX-1) 

and cyclooxygenase-2 (COX-2) isoenzymes (Figure 5.6).[160] The COX enzymes produces 

prostaglandins, a family of chemicals that promote inflammation that is necessary for healing, 

but also results in pain, and fever; support the blood clotting function of platelets; and protect 

the lining of the stomach from the damaging effects of acid.[161] This inhibition is competitively 

reversible (albeit at varying degrees of reversibility), as opposed to the mechanism of aspirin, 

which is irreversible inhibition.[162]  

 

Figure 5.6. Schematic action mechanism of the drugs employed in this chapter. 

 These two drugs (ibuprofen and naproxen) have been derived from propionic acid 

(Figure 5.7). Ibuprofen is a widely available and moderately potent NSAID that has a low 

systemic toxicity, and, unlike some other NSAIDs, such as aspirin, indomethacin, and 

piroxicam, it has a relatively low risk of side-effects caused by gastric damage.[17] Ibuprofen has 

not only been considered for acute pain relief, but it has also been used to treat chronic 

                                                             
158

 Bally, M; Dendukuri, N; Rich, B; Nadeau, L; Helin-Salmivaara, A; Garbe, E; Brophy, BMJ., Clinical Research Ed., 2017, 357, j1909. 
159

 Lanas, A; Chan, FK. Lancet., 2017, 390, 613–624. 
160 Harris, Randall E. COX-2 Blockade in Cancer Prevention and Therapy, SPRINGER SCIENCE + BUSINESS MEDIA, LLC, 2003. 
161

 Vane, J. R.; Botting, R. M. Am. J. Med. 1998, 104, 2S−8S. 
162

 Knights, Kathleen. Expert Review of Clinical Pharmacology., 2010, 3, 769–776.  
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inflammatory and degenerative diseases[163] and is also under consideration for treating a 

variety of cancers.[164-165] The drug naproxen shares the same characteristics as ibuprofen, being 

from the same family.  

 

Figure 5.7. Acid-base equilibrium of ibuprofen and naproxen drugs. 

 One of the biggest problems caused by this type of medication is its high consumption, 

being easy to obtain anti-inflammatory drugs (no prescription is necessary). The concentration 

of each capsule is substantially higher than that needed by the body, because the drug travels 

throughout the body instead of being selective to the affected area. This causes that large 

concentrations of the same are excreted by the organism, ending up into the residual waters. 

Thus drugs have been continually detected in groundwater, seawater, polluted water and 

drinking water because they were not treated completely by the wastewater treatment 

plant.[157] It has been reported that naproxen may not only affect the water quality and 

organisms resulting in the reduction of the biodiversity,[157] but also induces heart disease and 

causes endocrine disruption.[157-166] Hence, it is crucial to develop effective methods for the 

removal of these drugs from wastewater. 

 To accomplish the active capture experiments of these drugs, 0.0413 mmol of 

Cu6CrADSO4 (0.0785 g) were added to 5 mL of water and H2SO4 was added dropwise until its 

                                                             
163

 Wyss-Coray, T.; Mucke, L. Nat. Med. 2000, 6, 973−974. 
164 Khwaja, F.; Allen, J.; Lynch, J.; Andrews, P.; Djakiew, D. Cancer Res., 2004, 64, 6207−6213. 
165

 Harris, R. E.; Alshafie, G. A.; Abou-Issa, H.; Seibert, K. Oncol. Rep., 2000, 60, 2101−2103. 
166

 Domínguez, J.R.; González, T.; Palo, P.; Cuerda-Correa, E.M. Desalination., 2011, 269, 231-238.  
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complete dissolution around pH 1.7–2.0. Throughout the synthesis process, pH control takes 

special relevance. In this case, the pH value at which it dissolves must not be lower than 1.6, if 

so, the heptameric cluster would break, making its reconstruction impossible. Simultaneously, 

three 1 L diluted solutions for each of the two drugs were prepared with concentrations of 

248, 413 and 826 µM (corresponding to 51, 85 and 170 mg/L for ibuprofen and 57, 95 and 190 

mg/L for naproxen). These two will be mixed leading to a Cu6CrAD heptamer:drug ratios of 1:6, 

1:10 and 1:20, respectively. During the addition of the highly acidic solution of the heptamer, 

the pH of the solution was keep between pH 7–8 by the simultaneous addition of 1M NaOH in 

order to prevent the precipitation of the highly insoluble neutral forms of the drugs. As the 

heptamer was added to the drug, a green suspension appeared, but interestingly the amount 

of precipitate clearly increases as the concentration of the drug solution increases. The 

characterization of the resulting precipitates indicated that the amount of the anionic form of 

the drug captured by the heptameric entities differ from 1:3 (for naproxen), 1:6 (for ibuprofen 

and naproxen) and 1:9 (for ibuprofen and naproxen). The 1:3 ratio ibuprofen sample was 

achieved as the result with the less concentrated ibuprofen sodium salt solution provided what 

seemed to be a mixture of 1:3 and 1:6 precipitates. 

 The infrared spectroscopy has been able to determine efficiently in these precipitates 

the presence of the bands corresponding to the adenine ligand and the drugs ibuprofen and 

naproxen, respectively. The infrared spectra of the compounds are presented in Figures 5.8 

and 5.9. Tables 5.2 and 5.3 show the wave number, relative intensity and the assignation of 

the observed signals.  

 The absence of a signal around 1700–1730 cm–1 takes out the presence of protonated 

carboxylic groups in these precipitates, excluding the possibility of a coprecipitation or 

incorporation of ibuprofen and naproxen in their neutral forms which are highly insoluble. On 

the contrary, the sodium salt form of these drugs are highly soluble in water (≥ 100 mg/mL), 

therefore their precipitation can be also excluded. In addition to that, the bands corresponding 

to ibuprofenato and naproxenato anions can be clearly observed. First of all, the assignation of 

the CH3 asymmetric stretching, as well as the CH2 asymmetric stretching vibration (2860–2975 

cm–1) are clearly noticeable in contrast with the Cu6CrAD compound. Secondly, the COO– 

asymmetric stretching band of the drugs (1630–1640 cm–1) was also detected among others. In 

both spectra, the presence of the C–O stretching (1183 cm–1),[167] CH2 scissoring vibration (1462 

cm–1) and CH–CO deformation (1420 cm–1) are also detected. The specific stretching vibration 

of the metoxil group at 1366 cm–1 is only observed in the naproxenato anion containing 

                                                             
167

 Pretsch, E.; Bühlmann, P.; Badertscher, M., Structure Determination of Organic Compounds, Ed. 4
th

, Springer, 2009. 
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samples, which is a referential feature in the naproxen related compounds.[168] In all the cases, 

the characteristic band of the C=C stretching vibration and deformation vibration of NH2 group 

of the adenine among others appears in the original Cu6CrAD and drug containing samples. 

Finally, the IR of the drug containing samples clearly showed the disappearance of sulfate 

characteristic v (S–O) band around 1108 cm–1.[87] 

 

Figure 5.8. Infrared spectra of compounds Cu6CrAD/ibuprofen 1:6 (red), Cu6CrAD/ibuprofen 1:6 (blue) 

and Cu6CrAD (pink). 

                                                             
168 (a) Acharya, M.; Mishra, Satyaki, Sahoo, R.; Mallick, S., Acta Chim. Slov., 2017, 64, 45–54. (b) Saji, R.; Prasana, J.; Muthu, S.; 

George, J.; Kuruvilla, T.; Raajaraman, B.R., Spectrochimica Acta Part A, 2020, 226, 117614. 
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Figure 5.9. Infrared spectra of Naproxen sodium, Cu6CrAD/Naproxen 1:3 (purple), Cu6CrAD/Naproxen 

1:6 (green), Cu6CrAD/Naproxen 1:9 (blue) and Cu6CrAD (pink). 
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Table 5.2. Infrared spectra bands (cm
–1

) of the ibuprofen molecule, Cu6CrAD and the samples obtained 

during the ibuprofen capture experiments.[a] 

Ibuprofen Cu6CrAD Ibu 1:6 ibu 1:9 Assignment[b] 

 3388vs 3346vs 3355vs ѵ (O–H) 

 3200sh 3217vs 3217vs ѵ (NH2)+ 

 over -- -- ѵ (C8–H + C2–H)  

2958vs  2955vs 2955vs ѵas (CH3) 

2868vs  2866vs 2866vs ѵs (CH2) 

1650s 1642vs 

1603vs 

1644s 

1597s 

1647s 

1597s 

ѵas (COO-) 

ѵ (C=N) + ѵ (C=C) + δ (NH2) 

 1548s 1545s 1533s ѵ (C4–C5 + N3–C4–C5) 

 1463m 1463m 1463m δ (C2–H + C8–N9) + ѵ (C8–H) 

1462s  1461s 1461s δas (CH3) + τ (CH2) 

1420s 1402m 1405s 1405s δ (N1–C6–H6) + δ (CH–CO) 

 1304m    

ѵ (N9–C8 + N3–C2) + δ (C–H)  1277m 1285m 1288m 

 1195m 1203m 1202m δ (C8–H) + ѵ (N7–C8) 

 1152m 1150m 1152m 

1183s  1200s 1200s ѵas (CO) 

 1108m -- -- ѵ (S–O) 

 1033w 1020w 1022w τ (NH2) 

 935w 921vw 922vw ѵ (N1–C6) + τ (NH2) 

[a]
 vs = very strong, s = strong, m = medium, w = weak, sh = shoulder. 

[b]
 over = overlapped, ν = tension vibrations, δ = deformation 

vibrations, τ = torsion. 
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Table 5.3. Infrared spectra bands (cm
–1

) of the naproxen molecule, Cu6CrAD and the samples obtained 

during the naproxen capture experiments.[a] 

Naproxen Cu6CrAD Nap 1:3 Nap 1:6 Nap 1:9 Assignment[b] 

 3388vs 3338vs 3340vs 3336vs ѵ (O–H) 

 3200sh 3190vs 3190vs 3193vs ѵ (NH2)+ 

 over -- -- -- ѵ (C8–H + C2–H)  

2958vs  2973vs 2975vs 2970vs ѵas (CH3) 

2900vs  2903vs 2906vs 2900vs ѵs (CH2) 

1630s 1642vs 

1603vs 

1633s 

1603s 

1635s 

1603s 

1633s 

1603s 

ѵas (COO-) 

ѵ (C=N) + ѵ (C=C) + δ (NH2) 

 1548s 1551s 1551s 1550s ѵ (C4–C5 + N3–C4–C5) 

1503s  1501s 1502s 1503s ѵ (C=C) + δ (CH2) 

 1463m 1463m 1463m 1463m δ (C2–H + C8–N9)  

+ ѵ (C8–H) 

1462s  1461s 1461s 1461s δas (CH3) + τ (CH2) 

 1402m 1393s 1397s 1393s δ (N1–C6–H6)  

1366s     ѵs (C-O) + δ (CH) 

 1304m     

ѵ (N9–C8 + N3–C2) + δ (C–H)  1277m 1265m 1266m 1265m 

 1195m 1210m 1209m 1210m δ (C8–H) + ѵ (N7–C8) 

 1152m 1150m 1150m 1152m 

1190w  1210s 1209s 1210s ѵas (CO) 

      

 1108m -- -- -- ѵ (S–O) 

 1033w 1033w 1030w 1033w τ (NH2) 

 935w 926w 926vw 926w ѵ (N1–C6) + τ (NH2) 

855s  852s 852s 852s ѵs (C–O) 

[a]
 vs = very strong, s = strong, m = medium, w = weak, sh = shoulder. 

[b]
 over = overlapped, ν = tension vibrations, δ = deformation 

vibrations, τ = torsion. 

 The incorporation of a maximum of 9 monoanionic drug molecules per heptameric 

entity enables to assume that in the acidic solution of Cu6CrAD, the heptameric entities have 

been able to incorporate 6 H+ probably located on the non-coordinated endocyclic nitrogen 

atoms of the adenines in such a way that the discrete entities acquire a 9+ charge allowing so 

to capture up to 9 anions of these drugs per formula. Apparently, depending on the 

concentration/ratio of the drug solution, the addition of these highly protonated 9+ entities 

into a nearly neutral solution leads to two competing processes: (a) the neutralization of these 
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acidic entities and (b) their precipitation in the form of a cationic heptamer – anionic drug 

insoluble compound (Figure 5.10). At high concentrations, the second process takes place 

before any neutralization process and it results in the isolation of H6Cu6CrAD/Ibu 1:9 (ibu: 

ibuprofen) and H6Cu6CrAD/Nap 1:9 (Nap: naproxen) compounds. At intermediate 

concentrations, partial neutralization takes place before the anionic drug is able to precipitate 

it, giving rise to samples H3Cu6CrAD/Ibu 1:6 and H3Cu6CrAD/Nap 1:6 compounds. At the lower 

end of employed concentrations, the neutralization can be completed for Cu6CrAD/Nap 1:3 

but for the ibuprofen analogue on a mixture of the apparently 1:3 and 1:6 compounds is 

achieved as previously mentioned. 

 

Figure 5.10. Protonation of the adeninato ligand with the increment of the drug concentration. 

 The drug contents have been corroborated by the elemental analysis of the 

precipitated compounds. Table 5.4 shows the experimental values obtained in the elemental 

analysis of the compounds, compared with the calculated values, and the proposed formulas.  
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Table 5.4. Calculated and experimental elemental analysis values for the compounds with the proposed 

formulas. 

Compound 
N(%) C(%) H(%) S(%) 

Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. 

Cu6CrAD 19.75 21.07 18.87 19.87 3.46 4.44 2.19 2.41 

[Cu6Cr(H2O)6(OH)6(C5H4N5)6](SO4)1.5·17H2O·3CH3OH 

H3Cu6CrAD/Ibu 1:6 14.20 14.27 45.98 46.93 6.22 6.13 0.00 0.00 

[Cu6Cr(H2O)6(OH)6(C5H5N5)3(C5H4N5)3](C13H17O2)6·7CH3OH 2H2O 

H6Cu6CrAD/Ibu 1:9 11.76 11.89 52.04 52.29 6.64 6.16 0.01 0.01 

[Cu6Cr(H2O)6(OH)6(C5H5N5)6](C13H17O2)9·9CH3OH 

Cu6CrAD/Nap 1:3 16.55 16.82 39.88 39.91 6.02 5.40 0.00 0.00 

[Cu6Cr(H2O)6(OH)6(C5H4N5)6](C14H13O3)3·CH3OH·H2O 

H3Cu6CrAD/Nap 1:6 14.45 14.48 47.89 47.61 4.84 4.76 0.00 0.00 

[Cu6Cr(H2O)6(OH)6(C5H5N5)3(C5H4N5)3](C14H13O3)6·CH3OH·2H2O 

H6Cu6CrAD/Nap 1:9 11.43 11.37 52.30 52.32 5.27 5.10 0.00 0.00 

[Cu6Cr(H2O)6(OH)6(C5H5N5)9](C14H13O3)9·5CH3OH·H2O 

The thermogravimmetric analysis (TGA) also confirmed the above described amount of 

drug incorporated per heptamer (Figure 5.11 and Table 5.5). All measurements were 

performed using synthetic air (79 % N2, 21 % O2) as atmosphere under a 5 ᵒC/min heating 

ramp. 
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Figure 5.11. Thermogravimetric measurements performed upon representative samples. 
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Table 5.5. Thermoanalytic data of the compounds of Chapter 5.[a] 

Step Ti Tf Tpeak ΔH Δm(%) ΣΔm(%) ΣΔm(%)theo.[b] 

Ibu 1:6 

1 

2 

  

3 

 

30 

140 

 

280 

 

120 

280 

 

480 

 

-- 

175 

 

335 

 

-- 

Exo 

 

Exo 

 

4.0 

38.5 

 

37.8 

 

5.3 

45.7 

 

80.3 

 

4.5 (–7H2O) 

46.9 –(6H2O + 6C10H14) 

[Cu6Cr(OH)6(C5H5N5)3(C5H4N5)3](C3H3O2)6 

80.3 (6CuO + 0.5(Cr2O3)) 

Ibu 1:9 

1 

2 

  

3 

 

30 

150 

 

190 

 

85 

195 

 

450 

 

60 

190 

 

210/340 

 

Endo 

-- 

 

Exo 

 

31.0 

27.6 

 

29.9 

 

31.0 

58.6 

 

88.5 

 

31.2 (–83H2O) 

59.1 –(6H2O + 9C10H14) 

[Cu6Cr(OH)6(C5H5N5)6](C3H3O2)9 

88.5 (6CuO + 0.5(Cr2O3)) 

Nap 1:3 

1 

2 

 

3 

 

30 

130 

 

285 

 

130 

260 

 

450 

 

60 

170 

 

350 

 

Endo 

Exo 

 

Exo 

 

8.2 

23.8 

 

45.0 

 

8.2 

32.0 

 

77.0 

 

11.2 (–15H2O) 

35.4 –(6H2O + 3C11H10O) 

[Cu6Cr(OH)6(C5H4N5)6](C3H3O2)6 

77.0 (6CuO + 0.5(Cr2O3)) 

Nap 1:6 

1 

2 

 

3 

 

30 

135 

 

300 

 

105 

270 

 

385 

 

-- 

170 

 

400 

 

-- 

Exo 

 

Exo 

 

5.5 

34.5 

 

41.8 

 

5.5 

38.0 

 

81.8 

 

7.1 (–12H2O) 

41.3 –(6H2O + 6C11H10O) 

[Cu6Cr(OH)6(C5H5N5)3(C5H4N5)3](C3H3O2)6 

81.8 (6CuO + 0.5(Cr2O3)) 

Nap 1:9 

1 

2 

  

3 

 

30 

140 

 

290 

 

80 

290 

 

500 

 

55 

165 

 

multi 

 

Endo 

Exo 

 

Exo 

 

10.5 

41.1 

 

31.6 

 

10.5 

50.0 

 

86.1 

 

11.8 (–26H2O) 

49.6 –(6H2O + 9C11H10O) 

[Cu6Cr(OH)6(C5H5N5)6](C3H3O2)9 

83.2 (6CuO + 0.5(Cr2O3)) 

[a]
 Ti = initial temperature; Tf = final temperature; Tpeak = peak temperature ATD; Δm(%) = loss mass percentage in each step; ΔH = 

type of process acording to ATD; ΣΔm(%) = total loss mass after each step; ΣΔm(%)theo = total loss mass theoretically calculated. 
[b]

 

Eliminate water molecules and final residue per compound formula. 

 All the compounds gathered in this chapter undergo a similar decomposition proces. 

First, the loss of the crystallization water molecules is observed which is featured by an 

endothermic DTA peak and usually spans from room temperature to values between 70–150 

ᵒC depending on the amount of water in the pores. Shortly after the previous process, the 
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release of the six water molecules coordinated to the discrete heptameric entities takes place 

altogether with the fragmentation and release of the drug molecules as depicted in Figure 

5.12. This fragmentation of the drug molecules has been previously reported[169] and lefts 

behind a propenoato anion that ensures the charge balance of the resulting product. The mass 

loss observed in this step increases with the amount of captured anionic drug molecules. 

Thereafter, the combustion of the organic part occurs through a strong exothermic process, 

generating the corresponding metal oxides. A very informative decomposition step is that 

corresponding to the decomposition of the sulfate anion into SO3 and O2- (which takes place 

around 650-700 ᵒC and it is clearly observed in the sulfate containing Cu6CrAD compound) 

which it is not observed in these samples. The absence of this latter process corroborates also 

the substitution of the sulfate anion by these anionic drugs. 

 

Figure 5.12. Pyrolytic fragmentation process of the anionic drugs. 

 Finally, the integrity of the heptameric discrete units has been further ensured by XPS 

(X-ray photoelectronic spectroscopy) measurements. The bond energies of both the external 

ring copper(II) and the central chromium(III) metal centres do not change, indicating that their 

chemical environment has remained unaltered (Figure 5.13).[138] 

                                                             
169 (a) Zayed, M.; Hawash, M.; Fahmey, M.; El-Gizouli, A., J. Therm. Anal. Calorim., 2012, 108, 315–322. (b) Zayed, M.; Hawash, M.; 

El-Desawy, M.; El-Gizouli, A., Arabian Journal of Chem., 2017, 10, 351–359. 
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(a) (b) 
Figure 5.13. X-ray photoemission spectra of the Cu(II) (a) and Cr(III) (b) ions of all compounds of Chapter 

5. 

5.3. ELECTROMAGNET SUSTENTATION EXPERIMENT ON DRUG LOADED Cu6CrAD SAMPLES 

 As previously stated in section 4.3.3 of Chapter 4, under the strong magnetic field 

generated by the electromagnet, the paramagnetic response of these compounds is enough to 

provide mobility to the particles immersed in a solvent and to attach them to the lower end of 

the magnetic pole. In this case, all the samples contain the same paramagnetic heptameric 

Cu6CrAD entity but differ on the nature and amount of the counterions. In this case, the 

variation of the magnetic field at which the sustentation of the particles ends will not depend 

on the number of unpaired electrons as the metal atoms in the heptameric entity did not 

differ. However, they do on the counterion total mass that makes the gravitation attraction to 

increase and necessarily displaces the critical magnetic field towards higher values (Figure 

5.14). To find the dependence between the counterion total mass and the magnetic field 

required to keep the particles attached to the electromagnet pole. For that purpose, the 

framework volume of the particle must now be divided into the volumes occupied by the 

heptameric entity (VH) and by the counterions (VC): VF = VH + VC. The attraction by the magnetic 

field can be expressed only on VH as it is the only source of the paramagnetism responsible of 

this attraction, but the gravitation-flotation part requires both terms VH and VF, equation (1): 

  
[    (     )]   [    (     )]

      
          (  )   (     )       + (     )       (1) 

 It is possible to relate VH and VC, equations (2) and (3),through the molecular density 

and molecular weights of both components, equations (4) and (5): 
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     (5) 

 Replacing this value in equation (1) an expression is obtained from which the volume 

term can removed, equations (6) and (7): 
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(     )  
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[    (     )]   [    (     )]

   (     )
    (  )  

(     )        

(     )  
 (9) 

 Assuming the counterions molecular density is similar and that the remaining 

parameters apart from      and    (  ) are constant, equation (9) can be simplified into a 

linear equation with two constants (A and B), equation (10).  

           (  )    (10) 

Accordingly, the experimental data depicted on a      vs    (  ) fits satisfactory to a 

straight line (Figure 5.15). The same can be observed if the experimental data are plotted on a 

     vs   graph due to linear relationship between    (  ) and   for magnetic fields above 

0.4 T (see Figure 4.28 of Chapter 4).  
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Figure 5.14. Scheme simulating the replacement of the anionic part, changing the minimum magnetic 

force needed to attach a particle in the magnetic pole. 

  

(a) (b) 

Figure 5.15. Dependence of the molecular weight of the captured drug with respect to   (  ) (a) and H 

(b) values at which the particles are detached from the electromagnet pole. 
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6.1. CONCLUSIONS 

 Seventeen new metal-organic compounds have been synthesized and characterized 

using either 2-hydroxyquinoline-4-carboxylato or adeninato as bridging ligands and Cu(II) as 

major metal centre. Furthermore, in certain cases, co-ligands (pyridine or 4,4'-bipyridinethane) 

or additional transition metal centres (Cr(III), Mn(III), Co(II), Ni(II), or Zn(II)) were employed to 

enrich the structural and chemical diversity of the compounds. The major conclusions arising 

from this work are listed below: 

 The coordinative versatility of the HQ ligand has allowed to obtain three dimeric 

structures (0D-CuHQMEOH, 0D-CuHQAQ and 0D-CuHQPY) and two polymeric ones (1D-CuHQ 

and 2D-HQBPA).  

 Initially obtained 0D-CuHQMEOH and 0D-CuHQAQ, met the first and second criteria to 

build up an SMOF, but no the third one. For this reason, several co-ligands (BPA and PY) have 

been added with the aim of favouring the formation of non-coplanar synthons that could 

provide alternative growth vectors necessary to achieve a robust three-dimensional structure 

sustained by a combination of complementary synthons. However, both approaches were 

unsuccessful. The steric hindrance of the PY ligand led to a change into the bridging mode of 

the HQ ligand, rearranging the structure in such a way that the parallel synthons were 

maintained. Similarly, the addition of the BPA ligand has led to an increase of the 

dimensionality of the network.  

 Through the use of higher synthesis temperature, a polymeric structure (1D-CuHQ) and 

a paddle-wheel shaped structure (0D-CuCBDQ) (433 K) were obtained. Whereas the polymeric 

structure was built up from the semi-coordination through the carbonyl-O atoms of [Cu2(HQ)4] 

paddle-wheel shaped complexes with UUDD configuration, the HQ of the 0D–CuCBDQ 

experiments a cycloaddition, to generate cyclobutadiquinoline (CBDQ), obtaining as a result, a 

paddle-wheel-shaped [Cu2(CBDQ)4] dinuclear entity with UDUD configuration.  

 Each dinuclear complex fulfils the three criteria required to yield a SMOF, and 

accordingly, they self-assemble by complementary hydrogen bonding (N–H···O=Ccarbonyl) to 

yield lvt-type and dia-type supramolecular porous network, respectively. However, the large 

pore size generated causes a double and a triple interpenetration of the network that has 

almost completely eliminated the porosity of the compound 1D-CuHQ and left compound 0D-

CuCBDQ with a remaining pore volume of ca. 19%. 

 The nature and magnitude of the magnetic coupling constant is closely related to the 

coordination mode displayed by the HQ ligand. Those based on µ-HQ-κOcarboxylate:κOcarboxylate or 

µ-HQ-κOcarboxylate:κOcarbonyl yield weak intramolecular antiferromagnetic interactions that are the 
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source of the metamagnetic behaviour observed in the magnetization curves. Contrarily, 

compounds exhibiting µ-HQ-κOcarboxylate:κO’carboxylate coordination modes, present intermediate 

or strong antiferromagnetic coupling constant values depending on the syn–syn or syn–anti 

disposition of the carboxylate bridge.  

 Regarding to the Cu(II)/adeninato system, the nuclearity of the resulting complex is 

highly affected by the pH of the synthesis, obtaining from dinuclear entities to octanuclear and 

heptanuclear ones upon the increase of the basicity of the reaction media. 

 The obtained neutral [Cu2(μ-ade)4(H2O)2] paddle-wheel dimer self-assemble through 

pairing interactions into a 3D supramolecular network with bnn topology and a 45% of void 

volume (Cu2ADSO4NHEt3). Voids are big enough to host not only solvent molecules but also 

NHEt3
+/SO4

2– ion pairs and a 1D-supramolecular chain of [Cu2(μ-ade)4(H2O)2] complexes.  

 The octameric clusters, [Cu8(μ3-OH)4(μ4-OH)4(ade)4(μ-ade)4(μ-Hade)2] (Cu8AD), fulfil 

also the criteria to yield an SMOF, and accordingly they self-assemble by hydrogen bonding to 

yield a porous 3D network with sqc3 topology and a 30% of void space (Cu8AD). 

 The cationic nature of the heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-ade)6]2+ complexes 

makes the packing very sensitive to the ionic species present in the media and as consequence 

five different porous crystal packings were obtained using this complex entity 

(Cu7ADSO4NHEt3-1, Cu7ADSO4NHEt3-2, Cu7ADSO4, Cu7ADHN-1 and Cu7ADHN-2). The porosity, 

the scheme of the supramolecular interactions, and the stability of the structure is closely 

related to the counterions hosted in each crystal structure with a void space ranging from 26% 

to 49%. 

 The magnetic characterization indicates the central Cu(II) atom is anti-

ferromagnetically coupled to the external ferromagnetic Cu6-ring, leading to a S = 5/2 ground 

state. 

 The robustness of the heptameric entity allowed us to replace the central Cu(II) atom 

by Cr(III), Mn(III), Co(II), Ni(II) and Zn(II), giving rise to a novel family of heterometallic 

complexes of general formula [Cu6MIII(μ-H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]3+ or [Cu6MII(μ-

H2O)6(μ3-OH)6(μ-ade-κN3:κN9)6]2+ (Cu6MADSO4; M: Cr, Mn, Co, Ni, Zn)  

 The replacement of the central atom allowed us to tune the magnetic behaviour of the 

complex obtaining total spins that vary from 3/2 to 9/2. The paramagnetic behaviour of these 

porous heptanuclear compounds at room temperature is enough to attach them to the 

magnetic pole of an electromagnet when the particles are immersed in a liquid. Interestingly, it 

was showed how the field at which the material particles are detached, keeps a linear 

dependence with the paramagnetic contribution of the central metal atom (   (    )).  
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 Finally, we observed that the Cr(III) heptanuclear (Cu6CrAD) complex is able to 

disassemble and reassemble at room temperature conditions upon controlled pH 

changes. This exclusive behaviour together with its cationic nature and anchored 

nucleobases provide the ability to capture anionic drugs. Furthermore, it was 

demonstrated how the critical magnetic field at which the material is detached from the 

magnetic pole, shows a linear relationship with the molecular weight of the trapped drug, 

which could be a valuable tool for drug identification purposes. 
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A.1. CHEMICALS 

 All chemicals employed for the synthesis of the compounds were of reagent grade and 

used as commercially obtained. Tables A.1.1 and A.1.2 gather the reactants, formula, 

commercial supplier (CS), assay (AS), molecular weight (MW), Chemical Abstracts Service 

number (CAS), and risk (R) and safety (S) statements for their manipulation. 

Table A.1.1. Employed reactants. 

Name Formula CS AS M.W. (g/mol) CAS R S 

Chromium(III) 
sulfate 
monohydrate 

Cr2(SO4)3 xH2O Aldrich ≥98% 392.18 15244–38–9 36/37/38 24/25 

Cobalt(II) 
sulfate 
heptahydrate 

CoSO4 7H2O Aldrich ≥95% 281.10 10026–24–1 22/42–43/49/50–
53/60/68 

45/53/
60–61 

Copper(II) 
sulfate 
pentahydrate 

CuSO4 5H2O Aldrich ≥98% 249.69 7758–99–8 22–36/38–50/53 22–60–
61 

Manganese(II) 
sulfate 
monohydrate 

MnSO4 xH2O Aldrich ≥99% 169.02 10034-96-5 48/20/22–51/53 22/61 

Methanol CH3OH Scharlau ≥99% 32.04 67-56-1 11–23/24/25 7–16–
36/37-
45 

Nickel(II) 
chloride 

NiCl2 Aldrich ≥98% 129.60 7718-54-9 23–25/38/42–
43/49/50–
53/61/68 

45/53/
60/61 

Zinc(II) sulfate 
pentahydrate 

ZnSO4 5H2O Aldrich ≥99% 251.53 7446–20–0 22/41/50–53 60–61 

Table A.1.2. Employed ligands. 

Name Formula CS AS M.W. 
(g/mol) 

CAS R S 

2–
hydroxyquinoline–
4–carboxylate 
acid 

C10H7NO3 Aldrich ≥97% 189.17 84906–
81–0 

36/37/38–22 26–36 

4,4’–
bipiridinethane 

C10H8N2 Aldrich ≥98% 156.18 553–
26–4 

25 22–24/25–37–45 

6–
hydroxynicotinic 
acid 

C6H5NO3 Aldrich ≥98% 139.11 5006–
66–6 

315/319 264/280/302/305/332/33
7/362 

Adenine C5H5N5 Aldrich ≥99% 135.13  73–24–
5 

22 26–36 

Aspirin C9H8O4 Aldrich ≥99% 180.16 50–78–
2 

302 301/312/330 

DMF C3H7NO Scharlau  73.09 68–12–
2 

20/21/36/61 45/53 

Ibuprofen C13H18O2 Aldrich ≥98% 206.28 15687–
27–1 

22/61 45/53 

Naproxen sodium C14H13O3Na Aldrich ≥98% 252.24 26159–
34–2 

22/61 45/53 

Pyridine C5H5N Aldrich ≥99% 79.10 110–
86–1 

11–20/21/22 
36/38–52 

26–28 

Triethylamine C6H15N Aldrich ≥99% 101.19 121–
44–8 

11–20/21/22- 
35 

3–16–26–29– 
36/37/39–45 
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A.2. INSTRUMENTAL TECHNIQUES 

A.2.1. Infrared spectroscopy 

 The IR spectra were recorded on a FTIR 8400S Shimadzu spectrometer of the Inorganic 

Department of the Science and Technology Faculty of the UPV/EHU in the 4000–400 cm–1 

spectral region (Figure A.2.1). The measurements were made using the attenuated total 

reflection (ATR) technique with approximately using 3 mg of each compound. A spectrum 

correction was made in 2000–1000 cm–1 bands in order to palliate the background noise and 

be able to appreciate more precisely the IR spectra in this region. 

 

Figure A.2.1. FTIR 8400S Shimadzu spectrophotometer. 

A.2.2. Thermal analysis 

 The thermogravimetric studies (TG, DTG, and DTA) were carried out in a METTLER 

TOLEDO TGA/SDTA851 thermal analyser of the Inorganic Department of the Science and 

Technology Faculty of the UPV/EHU (Figure A.2.2). The measures were performed in an 

atmosphere of synthetic air (79% N2 / 21% O2) with a flow rate of 150 cm3 min–1, between 25 

and 600 or 800 ᵒC, with a heating rate of 5 ᵒC / min. 

 

Figure A.2.2. METTLER TOLEDO TGA/SDTA851 thermal analyser. 

A.2.3. Elemental analyses  

 Elemental analyses (C, H, N) were performed on an Organic elemental Thermo 

Scientific Modelo FLASH 2000 mycroanaliser (Figure A.2.3A) provided by Burgos University, 
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whereas the metal content was determined by inductively coupled plasma (ICP–AES) 

performed on a Horiba Yobin Yvon Activa spectrometer (Figure A.2.3B), provided by the SGIker 

of the University of the Basque Country (UPV/EHU). 

  

(a) (b) 

Figure A.2.3. Organic elemental Thermo Scientific Modelo FLASH 2000 mycroanaliser (A) and 

Horiba Yobin Yvon Activa spectrometer (B). 

A.2.4. Single-crystal X-ray diffraction 

 The single crystal X-ray diffraction data collections were done at 293(2) K and at 100(2) 

K on an on an Agilent Technologies Supernova (λMo−Kα = 0.71073 Å and λCu−Kα = 1.5418 Å) 

diffractometers of the SGIKer of the UPV/EHU (Figure A.2.4).  

 

Figure A.2.4. Agilent Technologies Supernova diffractometer. 

 The data reduction was done with the CrysAlis PRO. Most of the structures were 

solved by direct methods using the SIR92 program[111] and refined by full-matrix least-squares 
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on F2 including all reflections (SHELXL97),[170] with all calculations performed using the WINGX 

crystallographic software package. The representation of the crystal structures has been made 

by MERCURY.[171] 

A.2.5. X-ray powder diffraction 

 The X-ray powder diffraction patterns were collected on a Phillips X'PERT powder 

diffractometer of the SGIKer of the UPV/EHU with Cu-Kα radiation (λ = 1.5418 Å) over the 

range 5 < 2θ < 50ᵒ with a step size of 0.02ᵒ and an acquisition time of 2.5 s per step at 25 ᵒC 

(Figure A.2.5). Indexation of the diffraction profiles were made by means of the FULLPROF 

program (pattern-matching analysis) on the basis of the space group and the cell parameters 

found for isostructural compounds by single crystal X-ray diffraction.  

 

Figure A.2.5. Phillips X'PERT powder diffractometer. 

 A Bruker D8 Advance Vario powder diffractometer of the SGIKer of the UPV/EHU with 

Cu-Kα1 (λ = 1.5406 Å) was used to perform the variable-temperature X-ray powder diffraction 

measurements, heating the samples from room temperature with a heating rate of 5 ᵒC·min–1 

and measuring a complete diffractogram every 20 or 30 ᵒC as appropriate (Figure A.2.6). 

 

                                                             
170 G. M. Sheldrick, SHELXL97, University of Göttingen, Göttingen, Germany, 1997. 
171 Macrae, C. F.; Sovago, I. S.; Cottrell, J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, 

M.; Wood, P. A.; J. Appl. Cryst., 2020, 53,226–235. 



  Appendices 

 

  258 

 

Figure A.2.6. Bruker D8 Advance Vario powder diffractometer. 

A.2.6. X-Ray Photoelectron Spectroscopy 

 X-Ray Photoelectron Spectroscopy (XPS) measurements were performed on a SPECS 

system (Berlin, Germany) equipped with Phoibos 150 1D-DLD analyser and Al Kα 

monochromatic radiation source (1486.7 eV) (Figure A.2.7).  

 

Figure A.2.7. SPECS system equipped with Phoibos 150 1D-DLD analyser. 

A.3. THERMAL ELLIPSOID PLOT REPRESENTATIONS  

All the compounds described below have been drawn using the MERCURY program.[3] The 

ellipsoids are represented with a probability factor of 50%. Hydrogen atoms have been 

omitted for clarity. 
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A.3.1. Chapter 2 

 

Figure A.3.1. Compound 0D-CuHQMEOH. 

 

Figure A.3.2. Compound 0D-CuHQAQ. 
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Figure A.3.3. Compound 0D-CuHQPY. 

 

Figure A.3.4. Compound 2D-CuHQBPA. 
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(a) (b) 

Figure A.3.5. Compound 0D-CuCBDQ (A) and the CBDQ ligand (B). 

 

Figure A.3.6. Compound 1D-CuHQ. 
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A.3.2. Chapter 3 

 
 

(a) (b) 
Figure A.3.7. Compound Cu2ADSO4NHEt3. 

 

Figure A.3.8. Compound Cu8ADSO4. 
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Figure A.3.9. Compound Cu7ADSO4NHEt3-1. 

 

Figure A.3.10. Compound Cu7ADSO4NHEt3-2. 
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Figure A.3.11. Compound Cu7ADSO4. 

 

Figure A.3.12. Compound Cu7ADSO4HN-1. 
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Figure A.3.13. Compound Cu7ADSO4HN-2. 

A.3.3. Chapter 4 

 

Figure A.3.14. Compound Cu6CrADSO4. 
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Figure A.3.15. Compound Cu6MnADSO4. 

 

Figure A.3.16. Compound Cu6CoADSO4. 
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Figure A.3.17. Compound Cu6ZnADSO4. 

A.4. XPS ANALYSIS 

 An initial analysis was carried out to determine the elements present (wide scan: step 

energy 1 eV, dwell time 0.1 s, pass energy 80 eV; X-ray source: Al anode) and detailed analyses 

of the detected elements were performed (detail scan: step energy 0.08 eV, dwell time 0.1 s, 

pass energy 30 eV) with an electron exit angle of 90 ᵒ. The spectra were adjusted using the 

CasaXPS 2.3.16 software, which models the Gauss-Lorentzian contributions, after a subtraction 

of the background (Shirley). Figure A.4.1 represent the shape and intensity of the XPS peaks 

used to validate the composition and determine the oxidation state of all the heterometallic 

centres. 

 Additional analysis of the Cu6MnAD sample was carried out using Mg anode as X-ray 

source, in order to a analyse better the Mn 2p line, due to the observed overlap of the Mn 2p 

and Cu LMM lines (Figure A.4.2). 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure A.4.1. XPS representation of all heterometallic centres being (a) Cr, (b) Mn, (c) Co, (d) Ni and (e) 
Zn using Al anode as X-ray source. 
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Figure A.4.2. XPS of compound Cu6MnAD using Mg anode as X-ray source. 

A.5. MAGNETIC FITTING MODELS 

  Then, the different models and equations used in the analysis of the molar 

magnetic susceptibility (χm) data are exposed. For the dimeric compounds calculations 

described in Chapter 2 and Chapter 3, the mathematical model used corresponds to the 

Bleaney-Bowers dimeric model of S = 1/2 interacting paramagnetic centres (Equation 1): 

χm = 
     

  
 ( )    where  ( )  

    ( )

       ( )
 (x = J/KT) (1) 

 In Chapter 4, where the scheme of the magnetic interactions is far more complex, the 

fitting of the χmT experimental data above 10 K to obtain the superexchange parameters was 

performed using the MagProp software tool distributed with DAVE.[114]  

The DAVE software package is an experimental neutron scattering data reduction, 

visualization, and analysis system. In order to analyse the magnetic behaviour, the MagProp 

program module for the workup, visualisation and analysis of magnetic data is used (Figure 

A.5.1). This program incorporates a Hamiltonian matrix generator that allows generating a 

matrix representation of a given Hamiltonian from a symbolic expression (Figure A.5.2a). Then 

the desired magnetic couplings constants are added with the g value expressed as gx, gy and gz, 

using the common Zeeman terms (Figure A.5.2b). Once the desired Hamiltonian is generated, 

the energy values of the magnetic excited states can be computed and placed in the Van Vleck 

equation (2) to calculate the compound χm and χmT values at different temperatures. The 

program incorporates a fitting algorithm that allows modifying the magnetic parameters (J, g, 

diamagnetisms, molecular field approximation…) (Figure A.5.3). 

   
  ∑   

( ) 
   (   

( )
   ) 

  ∑    (   
( )
   ) 

    (2) 
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Figure A.5.1. The main application window of DAVE. 

 

(a) 

 

(b) 

Figure A.5.2. (a) Hamiltonian generation window corresponding to the Cu6CrAD compound with a 

central Cr(III) and a ring of six Cu(II) metal centres and (b) the generated Hamiltonian including the 

superexchanges J constants and the Zeeman terms.  
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Figure A.5.3. Graphical display of a magnetic fitting, using the diamagnetism and molecular field 

approximation in addition to J and g parameters. The experimental χmT is indicated as the white line 

while the calculated is indicated as a red line. 
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A.6. MAGNETIZATION CURVES OF COMPOUNDS OF CHAPTER 3 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure A.6.1. Field dependence of the magnetization at 2 K of (A) Cu7ADSO4NHEt3-1, (B) Cu7ADSO4NHEt3-

2, (C) Cu7ADSO4, (D) Cu7ADHN-1, (E) Cu7ADHN-2 and (F) Cu7ADHN-1green. 
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A.7. PUBLICATIONS ARISING FROM THIS WORK 

This work has led to the publication of some articles in international scientific journals that are 

attached below: 

1. Thomas–Gipson, J.; Pérez–Aguirre, R.; Beobide, G.; Castillo, O.; Luque, A.; Pérez–Yañez, S.; 

Román, P.: Unravelling the Growth of Supramolecular Metal−Organic Frameworks Based on 

Metal-Nucleobase Entities. Cryst. Growth Des. 2015, 15, 975−983. 

2. Pérez–Aguirre, R.; Beobide, G.; Castillo, O.; de Pedro, I.; Pérez–Yañez, S.: Supramolecular 

extended systems based on discrete paddle-wheel shaped metal–adeninate entities. Inorganica 

Chimica Acta, 2016, 452, 222–228. 

3. Pérez–Aguirre, R.; Beobide, G.; Castillo, O.; de Pedro, I.; Luque, A.; Pérez–Yañez, S.; Rodríguez–

Fernandez, J.; Román, P.: 3D Magnetically Ordered Open Supramolecular Architectures Based 

on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels. Inorg. Chem. 2016, 55, 

7755−7763. 
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ABSTRACT: The present work provides the basis to obtain three-dimensional (3D)
extended porous supramolecular assemblies named supramolecular metal−organic
frameworks (SMOFs). This goal can be achieved by considering three key factors: (i)
the use of rigid building units, (ii) the establishment of predictable and rigid synthons
between the building units, and (iii) the non-coplanarity of functional groups involved in
the predictable synthons. Throughout this report we demonstrate the suitability of this
synthetic strategy supported by six new SMOFs based on metal-nucleobase entities which
fulfill the stated requirements: [Co(ThioG)3] (SMOF-4; ThioG = thioguaninato),
[Co(Hade)2X2] (SMOF-5, SMOF-6; Hade = adenine and X = Cl−, Br−), [Cu8(μ3-
OH)4(μ4-OH)4(ade)4(μ-ade)4(μ-Hade)2] (SMOF-7; ade = adeninato), [Cu4(μ3-ade)4(μ-
ade)2(pentylNH2)2(CH3OH)2(CO3)2(H2O)2] (SMOF-8; pentylNH2 = 1-pentylamine),
and [Cu2(μ-ade)2(ade)(μ-OH)(H2O)(CH3OH)]n (SMOF-9). SMOF-4 is built up from
monomeric entities in which bidentate thioguaninato ligands establish complementary
hydrogen bonding interactions in non-coplanar directions leading to supramolecular layers that are further connected resulting in
a porous structure with one-dimensional (1D) channels. The hydrogen bonding interactions among Watson−Crick and sugar
edges of monomeric entities in SMOF-5 give rise to a triply interpenetrated supramolecular framework. Octameric clusters in
SMOF-7 are self-assembled by hydrogen bonding to yield a porous 3D network. SMOF-8 is built up from tetranuclear units that
are linked via base pairing interactions involving Watson−Crick faces to afford layers whose assembly generates a two-
dimensional pore system. SMOF-9 is in between pure MOFs and SMOFs since it consists of 1D infinite coordination polymers
held together by complementary hydrogen bonding interactions into a 3D supramolecular porous structure.

■ INTRODUCTION

Metal−organic frameworks (MOFs) encompass an area of
chemistry that has experienced impressive growth during the
last decades because of their various potential applications in
catalysis, gas storage, chemical separations, sensing, ion
exchange, drug delivery, and optics.1 Regarding the adsorption
field, it is worth mentioning that their large surface areas,
adjustable pore sizes, and controllable functionalities are key
factors that make MOFs promising candidates for adsorptive
separations and purification purposes.2,3 Taking into account
the great potential of MOFs, we decided to explore a related
type of material, in which the coordination bonds are replaced
with hydrogen bonds as connectors, which are also directional
and predictable interactions, to sustain the three-dimensional
(3D) crystal building containing potentially accessible voids
(Figure 1).4,5 Although such kinds of alternative materials can
arise a similar fascination to that of MOFs, the crystal
engineering principles and the synthetic approach are not yet
settled, and examples of this kind of material are rather scarce.
In this sense a first clue to reach this goal can be inferred using
the naive analogy of soft and rigid balls. Soft balls can adjust
their shape to provide an efficient packing leaving almost no
space in between. However, rigid balls do not have the option
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Figure 1. Similarity between (a) coordination bonds and (b) hydrogen
bonding interactions as structure directing agents.
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of changing their shape, and, as a consequence, their packing is
less effective giving rise to the presence of voids. In other
words, flexible objects pack effectively, while rigid objects do
not unless they present very specific and appropriate shape,
such as cubes, triangular, rectangular and hexagonal prisms,
etc.6 This simple idea has helped us develop a synthetic strategy
to obtain supramolecular metal−organic frameworks
(SMOFs)7,8 with potentially accessible voids as an alternative
to more conventional metal−organic frameworks (MOFs).
The synthetic strategy is based on the following key factors:

(i) the use of rigid building units, (ii) the establishment of
predictable and rigid synthons between the building units, and
(iii) the noncoplanarity of functional groups involved in the
predictable synthons. The rigidity of the building units (discrete
complexes) can be achieved using rigid ligands bonded through
multiple positions. It means, in most common cases, a double
anchoring of the ligand by means of two simultaneous
coordination bonds or the combination of a coordination
bond and an intramolecular hydrogen bond. The predictability
and rigidity of the synthons require the presence of adjacent
functional groups, incorporated into the rigid ligands, able to
establish complementary hydrogen bonding interactions.
Finally, the requisite of noncoplanar arrangement of the
synthons comes from our objective of obtaining 3D extended
systems that is achieved by the presence of at least three
noncoplanar synthons. The use of nonplanar coordination
geometries for the complexes makes this last condition easy to
accomplish.
From previous studies we realized that a suitable system that

would fulfill all of the above-described requirements for
obtaining SMOFs are the discrete metal-nucleobase systems,
especially those based on purine nucleobases.9−11 These ligands
provide, on the one hand, the advantage of increased rigidity of
the supramolecular building block due to the coordination
through multiple positions, and, on the other hand, they
present many edges capable of establishing complementary
hydrogen bonding interactions that provide rigid and
predictable synthons (Scheme 1). Therefore, the adequate
selection of the metal-nucleobase discrete entity that would
afford a non-coplanar arrangement of the nucleobases could
provide the desired supramolecular porous materials.

The preliminary results were achieved employing [Cu2(μ-
adenine)4(X)2]

2+ (SMOF-1 and SMOF-2; X = Cl−, Br−) as
supramolecular building blocks in which two or more
nucleobases are tightly anchored to the metal centers by two
donor positions (N3 and N9 sites), imposing a rigid building
unit.7,12 Moreover, this coordination motif imposes a rigid
geometrical restraint among the nucleobases providing a set of
noncoplanar synthons that otherwise would be very difficult to
achieve. As many hydrogen donor/acceptor positions of the
nucleobase remain free, these discrete entities are able to self-
assemble among them by means of double hydrogen bonds to
provide extended supramolecular solids in which great channels
are present. These compounds present a surface instability that
creates a diffusion barrier permeated only by strong interacting
adsorbate molecules such as CO2 but not N2, H2, and CH4,
which makes them attractive for selective gas adsorption and
separation technologies. Zaworotko et al. reported an
analogous compound, based on the [Cu2(μ-adenine)4(X)2]

2+

dinuclear entity, replacing the halides by bulkier TiF6
2− anions

improving the chemical stability of the supramolecular network
toward humidity, thus avoiding the surface instability, and
therefore, being able to adsorb CO2, CH4, and N2.

13 These
studies also pointed out the relevance of the solvent selection
because strong hydrogen bond donor and acceptor solvents
such as water molecules could disrupt the direct hydrogen
bonding interactions between the nucleobases that are the key
factors to achieve this type of compound.
In this report we demonstrate the suitability of this synthetic

strategy to afford the self-assembly of rigid mono- or
polynuclear entities by means of a set of non-coplanar synthons
into supramolecular porous materials.

■ EXPERIMENTAL SECTION
Synthesis of SMOF-4, [Co(ThioG)3]. 0.59 mL (0.4 mmol) of
pentylamine was added dropwise to 0.0685 g (0.4 mmol) of 6-
thioguanine dissolved in 20 mL of water, and the mixture was stirred in
an ice bath for 1 h. To this mixture was added a 10 mL solution of
0.0291 g (0.1 mmol) of Co(NO3)2·6H2O dissolved in water. The
brown-colored solution was then stirred for 2 h in an ice bath and then
left for evaporation. Brown-colored single-crystals were separated after
2 weeks. The compound was also obtained on replacing Co(NO3)2·
6H2O with CoSO4·7H2O. Yield: 60%. Anal. Calcd (found) for
C15H12CoN15S3·6.7H2O: C, 26.56 (26.68); H, 3.78 (3.70); N, 30.98
(31.29), S, 14.18 (14.21), Co, 8.69 (8.75). Main IR features (cm−1;
KBr pellets): 3422s, 1611m, 1498w, 1459w, 1385m, 1306sh, 1243vs,
1190m, 1146s, 983s, 933w, 893w, 836w, 803w, 743w, 716w, 680w,
630w, 523w.

Synthesis of SMOF-5, [Co(Hade)2Cl2]. This compound was
obtained as deep blue polycrystalline form by the dropwise addition
of a propanolic solution of adenine (0.0270 g, 0.2 mmol) into a stirring
solution of 0.0238 g of CoCl2·6H2O (0.1 mmol). When the synthesis
was performed in methanol bad quality crystals were obtained. Then,
single crystals of good quality were obtained by using diffusion
techniques. Yield: precipitate 70%, crystals 50%. Anal. Calcd (found)
for C10H10Cl2CoN10: C, 30.02 (30.09); H, 2.52 (2.47); N, 35.01
(34.93); Co, 14.73 (14.82) %. Main IR features (cm−1; KBr pellets):
3391vs, 3258vs, 3133vs, 3058vs, 2346w, 2280w, 2186w, 2016w,
1943w, 1790w, 1696vs, 1611s, 1498m, 1459w, 1397s, 1327m, 1237m,
1171m, 1105w, 1066w, 1016w, 942m, 895m, 856w, 778m, 712m,
631w, 610m, 530m.

Synthesis of SMOF-6, [Co(Hade)2Br2]. The synthesis is the same
as for SMOF-5 but replacing CoCl2·6H2O by CoBr2. Yield: precipitate
60%. All the attempts to grow single-crystals were unsuccessful. Anal.
Calcd (found) for C10H10Br2CoN10: C, 24.56 (24.49); H, 2.06 (2.15);
N, 28.64 (28.57); Co, 12.05 (12.01) %. Main IR features (cm−1; KBr
pellets): 3450s, 3341vs, 3066s, 2817w, 2671w, 2284w, 1951w, 1663vs,

Scheme 1. Adenine Edges Capable of Establishing Rigid
Complementary Double Hydrogen Bonding Synthons
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1596vs, 1513w, 1480s, 1416s, 1360w, 1343s, 1306s, 1246s, 1170w,
1120w, 1020w, 1063w, 1030w, 973m, 910m, 870w, 791m, 763m, 722s,
680w, 638m, 627m, 557s, 545m, 532s.
Synthesis of SMOF-7, [Cu8(μ3-OH)4(μ4-OH)4(ade)4(μ-ade)4(μ-

Hade)2]. Twenty milliliters of an aqueous methanolic solution (1:1)
containing adenine (0.8 mmol, 0.108 g) were added to 20 mL of an
aqueous solution of CuSO4·5H2O (0.4 mmol, 0.0998 g) leading to a
solution of pH = 3. Immediately a dark blue precipitate appeared.
Then, sulfuric acid was added until complete dissolution of the
precipitate (pH = 1.5). A glass vial with the resulting solution was
placed in an Erlenmeyer flask containing triethylamine favoring the
difussion of the base into the solution. A few days later a small amount
of purple crystals appeared mixed with a major unknown phase.
Synthesis of SMOF-8, [Cu4(μ3-ade)4(μ-ade)2(pentylNH2)2-

(CH3OH)2(CO3)2(H2O)2]. Single crystals of this compound were
obtained by adding a 10 mL methanolic solution of 0.0198 g of
Cu(OOCCH3)2·H2O (0.1 mmol) to a methanolic solution (20 mL) of
0.0206 g of adenine (0.15 mmol) mixed with 0.59 mL of pentylamine.
The green-colored solution was stirred for 1 h and left evaporating at
room temperature. On evaporating the color of the solution started
changing to blue-violet. After 2 weeks, violet-colored prismatic shaped
crystals appeared. The crystals are unstable out from the mother liquid.
Synthesis of SMOF-9 , [Cu2(μ-ade)2(ade)(μ-OH)(H2O)-

(CH3OH)]n. Single crystals of this compound were obtained by the
slow addition of a 10 mL methanolic solution of 0.0199 g of
Cu(OOCCH3)2·H2O (0.1 mmol) into a methanolic solution (50 mL)
of 0.0546 g of adenine (0.4 mmol) mixed with 0.59 mL of
pentylamine. The green-colored solution was stirred for 1 h and left
evaporating at room temperature. Few blue needle like crystals that
correspond to SMOF-9 appeared in a time period of 1 week, mixed
with violet crystals of SMOF-8. Yield: 5%. Anal. Calcd (found) for
C16H19Cu2N15O3·8.5(CH3OH): C, 33.87 (33.77); H, 6.15 (6.08); N,
24.18 (24.09); Cu, 14.63 (14.74) %. Main IR features (cm−1; KBr
pellets): 3446s, 3356vs, 3123s, 1671s, 1418m, 1398m, 1385m, 1333m,
1308s, 1268m, 1251w, 1191m, 1149m, 1123w, 1022w, 979w, 939m,
910w, 875w, 845w, 797m, 738w, 723s, 641m, 620w, 570w, 541m.
Physical Measurements. Elemental analyses (C, H, N, S) were

performed on an Euro EA elemental analyzer, whereas the metal
content was determined by inductively coupled plasma atomic
emission spectrometer (ICP-AES) from Horiba Yobin Yvon Activa.

The IR spectra (KBr pellets) were recorded on a FTIR 8400S
Shimadzu spectrometer in the 4000−400 cm−1 spectral region.
Dinitrogen (77 K) and carbon dioxide (273 K) physisorption data
were recorded on activated samples (vacuum at 100 °C for 4 h) with a
Quantachrome QUADRASORB-SI-MP and a Quantachrome Auto-
sorb-iQ-MP, respectively. The specific surface area was calculated from
the adsorption branch in the relative pressure interval from 0.01 to
0.10 using the Brunauer−Emmett−Teller (BET) method.

X-ray Diffraction Data Collection and Structure Determi-
nation. Single-crystal X-ray diffraction data were collected on an
Oxford Diffraction Xcalibur diffractometer with graphite monochro-
mated Mo Kα radiation (λ = 0.71073 Å) at 100(2) K for SMOF-4 and
SMOF-7, and at 293 K for SMOF-8, and on an Agilent Technologies
SuperNova diffractometer with Cu Kα radiation (1.54185 Å) for
SMOF-5 and SMOF-9. Data reduction was done with the CrysAlisPro
program.14 All the structures were solved by direct methods using the
SIR92 program15 and refined by full-matrix least-squares on F2

including all reflections (SHELXL97).16 All calculations for these
structures were performed using the WINGX crystallographic software
package.17 After the initial structure solution was completed, the
difference Fourier map for SMOF-4, -7, -8, and -9 showed the
presence of substantial electron density at the voids of the crystal
structure that was impossible to model. Therefore, its contribution was
subtracted from the reflection data by the SQUEEZE method18 as
implemented in PLATON.19 During the data reduction process it
became clear that the crystal specimen of SMOF-8 was a non-
merohedric twin with a twin law: (1.026 −0.077 0.038/0.070 0.963
0.012/−0.023 −0.000 1.003). The final result showed a percentage of
twinned component of 24.3%. Additionally, one of the metal centers
(Cu2) and its coordinated ligands present a partial occupation of 0.78.
Relevant data adquisition and refinement parameters are gathered in
Table 1. CCDC 1038651−1038655 contain the supplementary
crystallographic data for this paper.

■ RESULTS AND DISCUSSION

Structural Description of [Co(ThioG)3] (SMOF-4). The
basic media of the reaction favored the oxidation to Co(III), as
ensured by its diamagnetic nature, giving rise to neutral
monomeric [Co(ThioG)3] entities. Three thioguaninato

Table 1. Crystallographic Data and Structure Refinement Detailsa

SMOF-4 SMOF-5 SMOF-7 SMOF-8 SMOF-9

formula C15H12CoN15S3 C10H10Cl2CoN10 C50H50Cu8N50O8 C30.85H46.80Cu3.55N21.55O8.20 C16H19Cu2N15O3

MW (g mol−1) 557.51 400.11 1987.72 1076.37 596.54
crystal system trigonal monoclinic monoclinic triclinic monoclinic
space group P3̅ C2/c Ccca P1̅ C2/c
a (Å) 16.7297(14) 11.2442(18) 20.1899(5) 12.646(5) 23.472(7)
b (Å) 16.7297(14) 6.9401(7) 28.964(2) 13.136(5) 16.398(3)
c (Å) 6.5245(4) 18.760(2) 16.5403(5) 13.158(5) 18.803(5)
α (deg) 90 90 90 73.784(5) 90
β (deg) 90 95.000(13) 90 81.840(5) 112.30(3)
γ (deg) 120 90 90 62.368(5) 90
V (Å3) 1581.4(2) 1458.4(3) 9672.6(8) 1859.2(12) 6696(3)
Z 2 4 4 1 8
ρcalcd (g cm−3) 1.171 1.822 1.365 0.961 1.184
μ (mm−1) 0.769 12.758 1.790 1.047 1.899
reflections collected 4690 5201 33482 6909 5529
unique data/parameters 2300/103 1462/109 5277/272 6909/269 5529/325
Rint 0.1278 0.0656 0.0630 0.1840 0.0972
goodness of fit (S)b 1.033 1.045 1.092 0.773 0.741
R1
c/wR2

d [all data] 0.0924/0.1673 0.0664/0.1606 0.0872/0.2221 0.2330/0.2882 0.1519/0.2091
R1
c/wR2

d [I > 2σ(I)] 0.0646/0.1585 0.0606/0.1560 0.0721/0.2115 0.1044/0.2691 0.0800/0.1840
aReported data do not include the variable amount of solvent molecules present in the channels. bS = [∑w(F0

2 − Fc
2)2/(Nobs − Nparam)]

1/2. cR1 =
∑∥F0| − |Fc∥/∑|F0|.

dwR2 = [∑w(F0
2 − Fc

2)2/∑wF0
2]1/2; w = 1/[σ2(F0

2) + (aP)2 + bP] where P = (max(F0
2,0) + 2Fc2)/3 with a = 0.0691 (1),

0.0897 (2), 0.1440 (3), 0.1283 (4), 0.0584 (5) and b = 4.8645 (2), 1.6779 (3).
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ligands, in its 9H-tautomeric form, are coordinated in a
bidentate chelating mode to the Co(III) atoms by their N7 and
S6 atoms affording an octahedral coordination environment.
Coordination bonds lengths and angles are gathered in the
Supporting Information. The coordination mode of the
nucleobase analogue renders a rigid metal-complex and, at
the same time, exposes its Watson−Crick (N1, N2) and sugar
edges (N3, N9) providing a set of non-coplanar synthons with
dihedral angles of 87° (Figure 2a). Therefore, this discrete

complex entity fulfils the previously stated requirements for the
success in obtaining a supramolecular porous material. In fact,
there is a previous work based on similar discrete entities but
using 6-thioguanosine that provides a complementary hydrogen
bonding interaction involving only the Watson−Crick face
(N1, N2) as the sugar edge is blocked by the sugar residue. It
affords a supramolecular assembly containing great voids that
are occupied by the sugar residue of the thioguanosine.20 In
SMOF-4 both sides of the 6-thioguaninato are available to
contribute to the supramolecular assembly. The sugar edge
(N3, N9) of the nucleobases establishes a double hydrogen
bonding interaction with the nucleobases of three neighboring
entities to give a R2

2(8) ring (Table 2). This rigid synthon,
based on direct thioguaninato···thioguaninato pairing inter-
actions, leads to layers in the ab plane in which Δ and Λ
isomers of the trischelate complex are sequentially arranged
similarly to what happens in layered [M(ox)3]

n− based
compounds.21,22 The resulting arrangement corresponds to

the Shubnikov hexagonal hcb topology with a (63) point
symbol.23−25 The interactions among the three-connected
uninodal two-dimensional (2D) nets are linked via weaker
hydrogen bonds (N2−H···S6 and C8−H···S6) and reinforced
with π−π interactions, (Table 2) leading to an acs topology and
(49.66) point symbol that corresponds to a porous crystal
structure with an estimated surface area of 887 m2/g and 43%
of void space based on theoretical calculations.26,19 The
resulting porous structure consists of one-dimensional (1D)
channels that run along the crystallographic c axis with a
diameter of 8.2−9.4 Å (Figure 2b). It is worth mentioning the
template effect exerted by the pentylamine. This molecule
provides the basic media that this reaction requires, and, at the
same time, the tendency of the aliphatic tails to form aggregates
in water promotes the growth of the supramolecular structure
around them. In fact, the same synthesis but using different
amines with shorter aliphatic tails does not provide this
compound.
According to N2 (77 K) and CO2 (273 K) adsorption

studies, this compound is highly selective toward CO2
adsorption (Figure 3). The N2 adsorption curve exhibits
features of a nonporous material, and, accordingly, the fitting of
the adsorption area to BET equation leads to a negligible value.
However, it shows a significant CO2 uptake with a non-
saturating curve reaching a value of 1.4 mmol/g at 1 bar. This
behavior has been described in the introduction section for

Figure 2. (a) Interactions among the monomeric entities and
numbering scheme. (b) Projection of the crystal packing of SMOF-
4 along the crystallographic c axis. Green-colored regions represent the
solvent accessible void.

Table 2. Structural Parameters (Å, °) of Noncovalent
Interactions in SMOF-4a

Hydrogen Bonding Interactions

D−H···Ab H···A D···A D−H···A

N19−H19···N13i 2.03 2.875(5) 167
N12−H12···S16ii 2.69 3.467(4) 151
C18−H18···S16iii 2.67 3.415(4) 138

π−π Interactionsc

ring···ringd angle DC α DZ DXY

h···hiv 0.0 3.46 18.5 3.28 1.10
aSymmetry codes: (i) −x, −y + 1, −z + 2; (ii) x − y, x, −z + 1; (iii)
−x + y, −x + 1, z + 1; (iv) −x, −y + 1, −z + 1. bD: donor; A: acceptor.
cAngle: dihedral angle between the planes (deg), DC: distance
between the centroids of the rings (Å), α: angle between the normal to
the first ring and the DC vector (deg), DZ: interplanar distance (Å),
DXY: lateral displacement (Å). dh: hexagonal ring of the thioguanine.

Figure 3. Adsorption isotherms for N2 (77 K) and CO2 (273 K), of a
fresh sample of SMOF-4.
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SMOF-1 and SMOF-2, and its explanation for SMOF-4
probably would also be related to a crystal surface instability.
Structural Description of [Co(Hade)2Cl2] (SMOF-5).

SMOF-5 contains neutral monomeric [Co(Hade)2Cl2] units.
9H-Adenine acts as a monodentate ligand, and it is coordinated
to the Co(II) metal center through the N7 position that it is
very usual for unsubstituted adenine moieties, but it requires a
second anchoring position of the nucleobase to be stiff enough
to meet our requirements. Such stiffness is achieved by the
presence of intramolecular hydrogen bonding interactions
between the amino hydrogen atom and the chloride one.
The adenine also exposes its Watson−Crick and sugar-edges to
establish intermolecular complementary hydrogen bonding
interactions with adjacent adenine molecules (Figure 4a).

The rigid synthons involving WC···WC and sugar···sugar edges
interactions give rise in both cases to R2

2(8) hydrogen bonding
rings, that are well-known structural synthons between self-
assembling adenine fragments.27−33 These interactions build up
a four-connected uninodal 3D supramolecular net with dia
topology and (66) point symbol that would represent a new
porous material with an estimated internal surface area of 3600
m2/g and 67% of void space.
Nevertheless, it would contain such huge channels that the

real crystal structure involves three interpenetrated networks
that occupy all the available space providing a nonporous
material. This entanglement problem is also common in
MOFs.34 Porous materials try to minimize the system energy
through optimal filling of void space, but structural inter-

penetration may occur only if the pore space of an individual
net is sufficiently large to accommodate an additional net. In
addition to this, various weak supramolecular forces such as H-
bonding, π−π aromatic stacking interactions, and van der Waals
forces are believed to play vital roles in the formation of
interpenetrated structures. SMOF-5 follows the same pattern,
provided that it contains such a huge percentage of void. Thus,
the resulting structure can be described as a 3-fold inter-
penetrated network as shown in Figure 4b. The attempt to
avoid this interpenetration using the more voluminous bromide
anion instead of chloride did not succeed, providing the same
triple interpenetrated supramolecular structure (SMOF-6, see
Supporting Information).

Structural Description of [Cu8(μ4-OH)4(μ3-OH)4(ade)4-
(μ-ade)4(μ-Hade)2] (SMOF-7). This compound consists of
[Cu8(μ4-OH)4(μ3-OH)4(adeninato-κN9)4(μ-adeninato-
κN3:κN9)4(μ-adenine-κN3:κN9)2] octameric clusters formed
by the stacking of four Cu2(μ-OH)2 dimers that are 90° rotated
and linked by a semicoordination to the neighboring Cu(II)
atoms through the hydroxide bridges (Figure 5a). The resulting
aggregate can be described as the stacking of three cubanes
(cubes with the vertices alternatively occupied by the metal and
the bridging ligand). The surface of each octamer is occupied
by eight adeninate and two neutral adenine ligands. Four
adeninato and the neutral adenine entities act as bidentate
N3,N9-bridging ligands. These bridging ligands are disordered
into two coplanar arrangements with inverted orientation
regarding the coordination mode (μ-κN3:κN9/μ -
κN9:κN3).35,36 The remaining adeninato ligands are anchored
to the corners of the cluster as terminal ligands through N9,
and their stiffness is reinforced by intramolecular hydrogen
bonds involving the hydroxide bridges and the N3 positions of
the nucleobases. All the adenines, adeninates, and hydroxides
are rigidly anchored to the octameric entity because of their
multiple coordination bond (OH/adenine/adeninato) or the
combination of a coordination bond and an intramolecular
hydrogen bond (adeninato).
The interaction of each octamer with the adjacent ones is by

means of a hydrogen bonding scheme involving the hydroxide
anions and the N7 imidazolic atom of terminal adeninato
ligands giving rise to a bidimensional network. Moreover, the
bridging adeninato ligands direct their Watson−Crick and
Hoogsteen faces outward in those supramolecular layers in such
a way that they establish complementary hydrogen bonding
interactions with neighboring tectons. As in previous
compounds the Watson−Crick faces establish a R2

2(8)
hydrogen bonding ring. The combination of the above-
described interactions leads to a 3D 8c uninodal supra-
molecular net with a sqc3 topology, point symbol being (44.62),
where the geometrical requirements imposed by the rigidity of
the octameric unit and the hydrogen bonding interactions avoid
the full occupancy of the space. This is reflected by the
presence of large monodimensional channels of ca. 4.9 Å

Figure 4. (a) Rigid synthon formed by direct supramolecular
interactions in SMOF-5. (b) Triple interpenetrated crystal structure
of SMOF-5. Each subnet is represented using a different color.

Table 3. Hydrogen Bonding Interactions (Å, °) in SMOF-5a

D−H···Ab H···A D···A D−H···A

N6−H6A···N1ii 2.06 2.912(6) 173
N6−H6B···Cl1i 2.39 3.237(4) 167
N9−H9···N3iii 2.11 2.833(6) 165

aSymmetry codes: (i) −x, y, −z + 1/2; (ii) −x + 1/2, −y + 1/2, −z +
1; (iii) −x, −y − 1, −z + 1. bD: donor; A: acceptor.
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spreading along the [100] direction, which corresponds to a
calculated surface area of 366 m2/g and a 30% of void space.
Structural Description of [Cu4(μ3-ade)4(μ-ade)2-

(pentylNH2)2(CH3OH)2(CO3)2(H2O)2]·n(solvent) (SMOF-8).
SMOF-8 is built up by tetranuclear [Cu4(μ3-ade)2(μ-ade)2-
(pentylNH2)2(CH3OH)2(CO3)2(H2O)2] units in which two
types of neutral building units coexist: a dimeric [Cu2(μ-
ade)4(H2O)2] entity and two monomeric [Cu(pentylNH2)-
(CH3OH)(CO3)] moieties (Figure 6).
The dimeric fragment is centrosymmetric and is made of two

Cu(II) atoms bridged by four μ-N3,N9-adeninate anions in a
paddle-wheel shaped arrangement. The apical position of the

distorted square pyramidal coordination around Cu1 atom is
completed with a water molecule. Each dimeric entity is linked
to two neighboring monomeric units via the N7 imidazolic
atoms of two adeninato ligands. Therefore, two adeninate
anions behave as tridentate μ3-N3,N7,N9 bridging ligands,
whereas the other two act as bidentate μ-N3,N9. The basal
plane of the square pyramidal chromophore around Cu2 atom
is completed with two oxygen atoms from a carbonato ligand,
an oxygen atom of a methanol molecule, and the nitrogen atom
of a pentylamine molecule.
Each tetranuclear entity is linked to four adjacent ones via

double N6−H···N1 hydrogen bonding interactions between
the Watson−Crick faces of neighboring entities to give a R2

2(8)
ring. This assembling of tetrameric entities gives rise to layers
that can be described as a four-connected uninodal net with
Shubnikov tetragonal sql topology and (44.62) point symbol. It
is worth noting that the dinuclear paddle-wheel entity of
SMOF-1 and SMOF-2 presents analogous four-connected
nodes (using Watson−Crick base pairing interactions), but the
absence of the bulky capping monomeric entities allows the
growth of a 3D supramolecular network (nbo, 64.82). However,
in SMOF-8 the 3D cohesion requires additional hydrogen
bonding interactions involving the coordination water mole-
cule, the carbonato ligand, and the pentylamine molecule
(Figure 7, Table S4) leading to an α-Po pcu topology. The
overall packing generates a 2D pore network with channels
running along the b and c axes of 3−5 Å of diameter, that
represents 43% of void space and a calculated surface area of
402 m2/g. However, the crystals decompose upon removal
from the mother liquor and even when immersed in pure
methanol. This fact is probably due to the loss of pentylamine
that seems to play a key role stabilizing the crystal structure.

Structural Description of [Cu2(μ-ade)2(ade)(μ-OH)-
(H2O)(CH3OH)]n·n(solvent) (SMOF-9). The basic structural

Figure 5. (a) [Cu8(μ4-OH)4(μ3-OH)4] unit, (b) whole octameric
entity, and (c) three-dimensional packing of SMOF-7.

Table 4. Hydrogen Bonding Interactions (Å, °) in SMOF-7a

D−H···Ab H···A D···A D−H···A

N16−H16A···N11Aiii 2.51 3.34(3) 161
N36−H36B···N13i 2.56 3.317(7) 148
O1−H1···N37iv 2.09 2.947(5) 177
O2−H2···N33v 2.18 3.015(6) 167

aSymmetry codes: (i) x, −y + 1/2, −z + 1/2; (iii) −x + 3/2, y, z − 1/
2; (iv) −x + 3/2, −y + 1, z; (v) −x + 3/2, y, z + 1/2. bD: donor; A:
acceptor.

Figure 6. Structural unit of SMOF-8 with the atomic numbering
scheme.
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unit of this compound consists of 1D infinite coordination
polymers held together by complementary hydrogen bonding
interactions in a 3D supramolecular porous structure. The
coordination polymer can be described as noncentrosymmetric
dinuclear units (Figure 8) in which two Cu(II) atoms are
bridged with two adeninate moieties by the N3 and N9 atoms
and also by one hydroxyl group (Figure 9a). One of the metal
centers is also coordinated to a water molecule while the other
to the oxygen atom of a methanol molecule. These dinuclear
units are connected by additional bridging adeninates that are
coordinated to the Cu(II) centers by the N7 and N9 atoms to
provide a 1D coordination chain. An interesting structural
feature is that the bridging adeninates inside the dinuclear units
are tilted by 22°, but they present wider tilt angle with respect
to those connecting the dimeric units (56 and 78°, respectively)

in the polymeric chain. This fact together with the
complementary double hydrogen bonding interactions of the
nucleobases promotes a three-dimensional propagation of the
supramolecular structure. The μ-κN3:κN9-adeninates are able
to establish double WC···WC and H···H synthons leading to
R2

2(8) and R2
2(10) hydrogen bonding rings, respectively. On

the other hand, the μ-κN7:κN9-adeninates are hydrogen
bonded to the bridging hydroxide and the coordinated water
molecule of an adjacent polymeric chain through N1 and N6
positions of the Watson−Crick face. The resulting supra-
molecular crystal structure shows the presence of large channels
along the b axis with a calculated surface area of 295 m2/g and
44% of void space.
This compound is an interesting case because it is in between

pure MOFs and SMOFs as it polymerizes into 1D through
coordination bonds and further extends to supramolecular array
through complementary hydrogen bonding interactions result-
ing in a 3D porous network (Figure 9c).

■ CONCLUSIONS
In this report we have paid special attention to the design
prerequisites of SMOFs: (i) rigid building unit/complex, (ii)
rigid and predictable synthons, and (iii) at least three non-
coplanar synthons. This approach is supported by six new
SMOFs based on different metal centers, nucleobases, and
synthetic conditions. It also highlights the suitability of metal-
nucleobase systems, specially purine based ones, to obtain
SMOFs since many of them accomplish the above stated
requirements: (i) the rigidity of the building unit is achieved
using nucleobases because they can be coordinated through
multiple positions, normally by a double anchoring (double
coordination bonds or the combination of a coordination bond
and an intramolecular hydrogen bond), (ii) the well-known
complementary hydrogen bonding interactions between the
nucleobases ensures the necessary rigidity of the predictable
synthons, and (iii) the metal coordination geometries impose,
in many cases, a non-coplanar arrangement of the nucleobases
affording a non-coplanar disposition of the synthons that allows
three-dimensional propagation of the nucleobase···nucleobase
complementary hydrogen bonding assembly.

Figure 7. (a) Linkage of the tetranuclear entities by the Watson−Crick
faces and (b) crystal packing along the b axis of SMOF-8, showing the
generated voids.

Table 5. Hydrogen Bonding Interactions (Å, °) in SMOF-8a

D−H···Ab H···A D···A D−H···A

N6−H6A···N11ii 2.13 2.978(11) 167
N6−H6B···O1 2.11 2.965(13) 175
N6−H26B···N21iii 2.08 2.935(17) 172
O1w−H12w···O3iv 1.94 2.790(13) 169
N31−H31A···O2v 1.94 2.843(18) 176

aSymmetry codes: (ii) −x + 2, −y + 1, −z + 1; (iii) −x + 2, −y, −z;
(iv) x − 1, y, z; (v) −x + 3, −y, −z + 1. bD: donor; A: acceptor.

Figure 8. Ortep representation of the dimeric unit [Cu2(μ-
ade)2(ade)(H2O)(μ-OH)(CH3OH)] together with the numbering
scheme in SMOF-9.
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a b s t r a c t

The present work deals with the design and construction of supramolecular extended systems built up
from paddle-wheel shaped metal–adeninate entities in which the deprotonation of the adenine affords
a neutral [Cu2(l-ade-jN3:jN9)4(H2O)2] (ade: adeninate anion) that would avoid the presence of
counterions in the channels of the generated supramolecular architecture as happens for the cationic
[Cu2(l-Hade)4(X)2]2+ (Hade: adenine) entity. This strategy allows us to obtain a new compound of
formula 3[Cu2(l-ade-jN3:jN9)4(H2O)2]�2{(NHEt3)2(SO4)}�10H2O�2CH3OH (1) in which the assembly of
the neutral dimeric entities gives rise to an open 3D supramolecular architecture with a 45% of void
volume. However, such a great available space allows its interpenetration by a second, although different,
network of the same neutral [Cu2(l-ade-jN3:jN9)4(H2O)2] entities assembled into 1D linear chains. The
remaining available space within the channels is occupied by triethylammonium cations, sulphate
anions, crystallization water and methanol molecules. The resulting crystal structure has been rational-
ized in terms of the rigidity of the building block, the predictability and rigidity of the synthons and the
arrangement of these synthons around the metal–nucleobase discrete entity. The thermal and magnetic
characterization of the compound has been also accomplished.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Design and construction of metal–organic frameworks (MOFs)
are of great interest because of their potential applications in areas
such as gas storage, chemical separations, sensing, ion exchange,
drug delivery and optics [1]. In order to create such materials, a
careful choice of the metal ion and the organic ligand is a key issue
[2]. In this sense, the unsubstituted adenine nucleobase is a good
candidate because it contains at least five donor sites which
endows it of great versatility as ligand [3]. In fact, there are several
examples of metal–adenine based MBioFs that present permanent
porosity [4]. However, at the present, we are focused on the ade-
nine nucleobase as a molecule able to establish strong hydrogen
bonding recognition processes in combination with its coordina-
tion capacity. Recently, we have developed a new family of porous
materials in which the coordination bonds that sustain the 3D
building of the MOFs are replaced with hydrogen bonds as connec-
tors, which are also directional and predictable interactions (Fig. 1).
These new materials containing accessible voids has been named
Supramolecular Metal–Organic Frameworks (SMOFs) [5,6] and

constitute an alternative to more conventional Metal–Organic
Frameworks (MOFs).

The crystal engineering principles and the synthetic approach
to achieve this kind of materials are sustained in three require-
ments: (i) the use of rigid building units, (ii) the establishment of
predictable and rigid synthons between the building units, and
(iii) the non-coplanarity of functional groups involved in the pre-
dictable synthons. The rigidity requirement appearing in the first
two conditions comes from the fact that condensed structures
are preferred over the open ones. Flexible building units along with
non rigid supramolecular interactions lead to systems with a
potentially high structural diversity that mostly results in the crys-
tallization of condensed structures. Therefore, a rational approach
to get access to open structures would be working with systems
in which the degrees of freedom inside the building units and
the supramolecular interactions are reduced. In other words, rigid
systems. The rigidity of the building units (discrete complexes) can
be achieved using rigid ligands bonded through multiple positions.
It means, in most common cases, a double anchoring of the ligand
by means of two simultaneous coordination bonds or the combina-
tion of a coordination bond and an intramolecular hydrogen bond.
The predictability and rigidity of the synthons requires the pres-
ence of adjacent functional groups, incorporated into the rigid

http://dx.doi.org/10.1016/j.ica.2016.02.049
0020-1693/� 2016 Elsevier B.V. All rights reserved.
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ligands, able to establish complementary hydrogen bonding inter-
actions. In this regard, the adenine nuclebase has been widely pro-
ven to provide both rigid discrete entities and rigid supramolecular
synthons. It is usually anchoraged to the discrete complex entities
through its N3 and N9 donor positions and exposes its Watson–
Crick (N1/N6 positions) and Hoogsteen (N7/N6 positions) sides to
provide rigid and predictable complementary hydrogen bonding
interactions.

Finally, the requisite of non-coplanar arrangement of the syn-
thons comes from our objective of obtaining three-dimensional
extended systems that is achieved by the presence of at least three
non-coplanar synthons. The use of non-planar coordination
geometries for the complexes makes this last condition easy to
accomplish.

Among our previously reported works on SMOFs, we can high-
light two porous supramolecular compounds of formula
[Cu2(l-Hade)4(X)2]2+ (SMOF-1 and SMOF-2; X = Cl�, Br�) [3]. In
these compounds the nucleobases are tightly anchored to the
metal centers by two donor positions at the same time (N3 and
N9 sites), imposing a rigid building unit. The metal coordination
geometry imposes a rigid geometrical restraint among the nucle-
obases providing a set of non-coplanar synthons that otherwise
would be difficult to achieve. As many hydrogen donor/acceptor
positions of the nucleobase remain free, these discrete entities
are able to self-assemble among them by means of complementary
double hydrogen bonds (rigid synthons) prompting the growth of
extended supramolecular solids in which great channels are
present. However, the use of neutral adenines implies the presence
of chloride counterions to balance the charge, reducing the
accessible volume in the crystal structure.

In this work, we have focused our research on the use of depro-
tonated adenines (adeninates, ade) to obtain neutral paddle-wheel
shaped [Cu2(l-ade)4] entities that could self assemble into an open
structure without the need of additional ions in the channels to
counterbalance the charge of the supramolecular network.

2. Experimental

2.1. Synthesis of 3[Cu2(l-ade-jN3:jN9)4(H2O)2]�2{(NHEt3)2(SO4)}�
10H2O�2CH3OH (1)

0.200 g of CuSO4�5H2O (0.8 mmol) dissolved in 20 mL of water
were added dropwise to an aqueous/methanolic (10 mL/10 mL)
solution of 0.108 g of adenine (0.8 mmol). The resulting deep blue
mixture was acidified to pH 1.5 by adding H2SO4. The resulting
pale blue solution was placed in a small crystal beaker that was
introduced into an Erlenmeyer flask containing a triethylamine
aqueous solution (1/20 volume ratio). The vapour diffusion taking
place inside the closed Erlenmeyer flask slowly basified the cop-
per–adenine solution prompting the growing of purple crystals of
1 four days later. Yield of ca. 40% (based on metal). Main IR features
of compound 1 (cm�1, KBr pellet): 3430vs, 3197vs, 3120vs, 1644vs,
1600vs, 1564m, 1462s, 1400s, 1337m, 1306s, 1271vs, 1190s,
1150m, 1110s, 1071m, 1030m, 973w, 940w, 880w, 835w, 795m,
738m, 693m, 655m, 620m, 556m. Anal. Calc. for C86H152Cu6N64O26S2:
C, 35.08; H, 5.20; Cu, 12.95; N, 30.45; S, 2.18. Found: C, 35.25; H,
5.07; Cu, 12.87; N, 30.42; S, 2.20%.

2.2. Physical measurements

Elemental analyses (C, H, N, S) were performed on a Euro EA ele-
mental analyzer analyzer, whereas the metal content was deter-
mined by inductively coupled plasma atomic emission
spectrometer (ICP-AES) from Horiba Yobin Yvon Activa. The IR
spectra (KBr pellets) were recorded on a FTIR 8400S Shimadzu
spectrometer in the 4000–400 cm�1 spectral region. Thermal anal-
ysis (TG/DTG/DTA) were performed on a TA Instruments SDT 2960
thermal analyzer in a synthetic air atmosphere (79%N2/21%O2)
with heating rate of 5 min�1. The X-ray powder diffraction patterns
(XRPD) were collected on a Phillips X’PERT powder diffractometer
with Cu Ka radiation. Magnetic measurements were performed on
polycrystalline samples of the complexes taken from the same uni-
form batches used for the structural determinations with a Quan-
tum Design SQUID susceptometer covering the temperature range
5.0–300 K at a magnetic field of 1000 G. The susceptibility data
were corrected for the diamagnetism, as estimated from Pascal’s
tables [7], the temperature-independent paramagnetism and the
magnetisation of the sample holder.

2.3. X-ray structure determination

A blocklike crystal (0.35 � 0.10 � 0.10 mm) was mounted on a
Oxford Diffraction Xcalibur equipped with graphite-monochro-
mated Mo Ka radiation (k = 0.71073 Å) at 100(2) K. Data were pro-
cessed and corrected for Lorentz and polarization effects. During
the data reduction process it become clear that the crystal speci-
men was twinned containing a major domain and many minor
ones. Therefore, the structure solution and refinement was per-
formed using only the diffraction data belonging to the major
domain. Additionally, one of the adeninato ligands is disordered
in two coplanar arrangements with inverted orientation regarding
the coordination mode (l-jN3:jN9/l-jN9:jN3), as it is relatively
common for metal–adenine dimers [8]. Crystallographic details for
structure 1 are summarized in Table 1.

The structure was solved by direct methods using the SIR97 pro-
gram [9]. Full matrix least-squares refinements were performed on
F2 using SHELXL97 [10]. All non-hydrogen atoms were refined
anisotropically. All calculations were performed using the WinGX
crystallographic software package [11].

Fig. 1. Metal–nucleobase coordination-bond sustained MOFs (a) and base pairing
assembled SMOFs (b).
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3. Results and discussion

Single-crystal X-ray diffraction analysis shows that compound 1
consist of two crystallographically independent neutral paddle-
wheel shaped [Cu2(l-ade-jN3:jN9)4(H2O)2] discrete entities (A
and B dimers) cocrystallized with triethylammonium sulphate
and crystallization solvent molecules (water and methanol). In
the dimeric entities, four bridging adeninato ligands are linked to
the copper(II) atoms through their N3 and N9 nitrogen atoms to
provide the core of the paddle-wheel shaped dinuclear entity and
two water molecules occupy the apical positions of the elongated
square pyramidal coordination environment of the metal centers
(Fig. 2). The structural parameters listed in Table 2 are similar to
those reported for dimeric compounds containing l-jN3:jN9
bridging purine ligands [12]. The coordination mode of the adenine
ensures the rigidity of the building unit, the discrete dimeric enti-
ties, as required by our postulated first requirement to achieve por-
ous materials.

It is well known that these entities can self-assemble through
the base pairing of the Watson–Crick (N6–H, N1) and Hoogsteen
faces (N6–H, N7) and by p–p stacking interactions. These base
pairing interactions constitute the required predictable and rigid
synthons (second requirement). Nonetheless, additional factors
present in the reaction media, such as interactions with solvent
molecules or counterions, can disrupt the direct hydrogen bonding
interactions between the nucleobases.

The presence of non coplanar synthons propagating the
supramolecular crystal structure in 3D can also be fulfilled in the
case of the dimeric entities if both Watson–Crick and Hoogsteen
faces are involved in the base pairing interactions.

Taking into account all the above mentioned requirements, the
crystal structure shows a relatively unexpected result as each crys-
tallographically independent [Cu2(l-adeninato-jN3:jN9)4(H2O)2]
entity establishes its own supramolecular network without signif-
icant interactions between the nucleobases belonging to each sub-
network. ‘‘A” dimers are cross linked to four adjacent symmetry
related ones through hydrogen bonding interactions involving
the Watson–Crick and Hoogsteen faces of adjacent nucleobases
to give a R2

2(9) ring. The propagation of this synthon gives rise to
a supramolecular 2D square grid (Fig. 3). The topological analysis
indicates a sql/Shubnikov tetragonal plane net with point symbol
(44.62) [13].

At this point, it is worth noting that the base pairing interaction
between the [Cu2(l-Hade-jN3:jN9)4Cl2]2+ in reference [3a] leads
to a 3D supramolecular network. The differences between both
dimeric entities comes from the fact that in the cationic dimeric
entity, only the Watson–Crick face (WC: N6–H and N1) is available

for base pairing interaction whereas the Hoogsteen face (H: N6–H
and N7–H) cannot establish complementary hydrogen bonds. As a
consequence, direct adenine� � �adenine interactions involve
WC� � �WC pairing. On the contrary, the neutral [Cu2(l-ade-jN3:
jN9)4(H2O)2] entity contains both the Watson–Crick (N6–H and
N1) and Hoogsteen (N6–H and N7) faces available for base pairing
and the interactions present in this crystal structure are almost all
of them WC� � �H type. However, as each adeninato ligand only
employ one of these faces on the base pairing interactions, this dif-
ference does not seem to be so relevant on determining the final
supramolecular topology. There is a second main difference that
in our opinion would account for it, the dihedral angle between
the base pairing adenines: 117� for [Cu2(l-Hade-jN3:jN9)4Cl2]2+

entities and 171/137� for the neutral [Cu2(l-ade-jN3:jN9)4
(H2O)2] (Fig. 4). This difference implies that the relative orientation

Table 1
Crystal data and structure refinement parameters for 1.

Formula C86H152Cu6N64O26S2
Formula weight 2944.08
Crystal system monoclinic
Space group P21/n
a (Å) 13.0248(3)
b (Å) 20.9011(4)
c (Å) 23.1090(7)
V (Å3) 6148.8(3)
Dcalc (g cm�3) 1.590
l (mm�1) 1.149
T (K) 100(2)
k (Å) 0.71073
Sa 1.133
R1, wR2

b [I > 2r(I)] 0.0714, 0.1541
R1, wR2

b [all] 0.0893, 0.1625

a S = [Rw(Fo2 � Fc
2)2/(Nobs � Nparam)]1/2.

b R1 =R(||Fo| � |Fc||)/R|Fo|. wR2 = [Rw(||Fo| � |Fc||)2/Rw|Fo|2]1/2.

Cu1Cu2 O1w
O2w

N19

N43

N41
N49 N47

N33

N39
N31

N36
N37

N23

N21

N26

N27
N29 N17

N11
N16A

A dimer

N13

N46

N16B

Cu3 Cu3IO3w

N53

N51

N56
N57

N59

N63
N61

N66

N67

N69

N63i

N59i

B dimer

Fig. 2. Crystallographically independent [Cu2(l-ade-jN3:jN9)4(H2O)2] entities
found in compound 1. The disorder present in one of the adeninato ligands is
represented by dotted lines.

Table 2
Selected bond lengths [Å] for 1.

Cu1–N19 2.020(4) Cu2–N13 2.028(5)
Cu1–N29 2.004(4) Cu2–N23 1.994(4)
Cu1–N39 1.979(4) Cu2–N33 2.038(4)
Cu1–N43 2.024(4) Cu2–N49 1.994(4)
Cu1–O1w 2.246(4) Cu2–O2w 2.185(4)
Cu3–N53 2.024(4) Cu3–N63i 2.031(4)
Cu3–N59i 1.992(4) Cu3–N69 2.011(4)
Cu3–O3w 2.178(4)
Cu1� � �Cu2 2.9562(9) Cu3� � �Cu3i 2.9653(12)

Symmetry codes: (i) �x + 2, �y, �z + 1.
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of the intradimeric Cu� � �Cu axes between adjacent dimeric entities
also differs. It is nearly perpendicular in the case of the interacting
[Cu2(l-Hade-jN3:jN9)4Cl2]2+ entities, directing the supramolecu-
lar assembly into a 3D architecture. Probably because of the chlo-
ride counterion that interacts strongly with the Hoogsteen sides of
the adenines and directs, in this sense, the final crystal structure. In

the case of neutral [Cu2(l-ade-jN3:jN9)4(H2O)2] entities, the
arrangement of the interacting nucleobases is more or less parallel,
only allowing a 2D propagation of the base pairing interactions.
This 2D pattern resembles a corrugated supramolecular sheet
where the dimeric entities interacting through almost parallel
adenines (dihedral angle: 171�) are collinear but those held
together through less pallarel interactions (dihedral angle: 137�)
give rise to a significant ondulation on the dimeric entities arrange-
ment along this direction.

Coming back to the crystal structure of compound 1, the base
pairing assembled [Cu2(l-ade-jN3:jN9)4(H2O)2] layers are held
together through an additional hydrogen bond involving the coor-
dinated water molecule as donor and the N7 position of the aden-
inato ligand as acceptor. It provides a 3D architecture (Fig. 5), with
hexagonal BN (bnn) topology and point symbol (46.64), which con-
tains a 3D connected network of channels with a diameter of 4.6–
8.2 Å, an estimated surface area of 2200 m2/g, and 45% of void
space based on theoretical calculations [14,15].

The space present in the channels is not enough as to allow the
interpenetration of a second supramolecular network of the same
type as happens in the related supramolecular structure of com-
pound [CoCl2(Hade)2] [6]. However, there is space enough to allow
the interpenetration of a second but different supramolecular net-
work of base pairing [Cu2(l-ade-jN3:jN9)4(H2O)2] entities (dimer
B). These dimeric entities only employ two of their four adeninato
ligands, in trans arrangement, to self assemble through base pair-
ing interactions. Interestingly, in this case the base pairing interac-
tions involve only the Watson–Crick faces and the interacting
adeninato ligands are parallel. As a result, it generates 1D
supramolecular linear chains that propagate along the space gener-
ated in between the 2D supramolecular sheets during their assem-
bly into the 3D supramolecular architecture previously described
(Fig. 6). The two subnetworks interact through the hydrogen

(a)

(b)

Fig. 3. Base pairing assembled 2D supramolecular sheets of [Cu2(l-ade-jN3:
jN9)4(H2O)2] ‘‘A” entities: frontal (a) and lateral (b) views. The disorder of one of
the adeninato ligands has been omitted for clarity.

Non innocent
chloride counterion

(a)

(b)

Fig. 4. Dihedral angles between the base pairing nucleobases between the cationic
[Cu2(l-adenine-jN3:jN9)4Cl2]2+ (a) and neutral [Cu2(l-adeninato-jN3:jN9)4
(H2O)2] (b) entities.

Base pairing assembled 2D sheet

(a)

(b)

Fig. 5. (a) Assembly of the base pairing 2D sheets into a 3D supramolecular
network. (b) Potential 3D interconnected channel system generated by the
assembly of [Cu2(l-ade-jN3:jN9)4(H2O)2] ‘‘A” entities.
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bonding interaction established between the O1w coordinated
water molecule of dimer ‘‘A” and the N7 position of the adeninato
ligand of an adjacent dimer ‘‘B”. There is also a close contact
between one of the N6–H position of dimer ‘‘B” pointing to the
N9 position of dimer ‘‘A” (almost perpendicularly with respect to
the adeninato mean plane), resembling a T type p interaction
(N56� � �N19: 3.286(6) Å).

The remaining available space within the channels is occupied
by triethylammonium cations, sulphate anions, crystallization
water and methanol molecules that establish a complex hydrogen
bond network involving also the donor/acceptor positions of the
adeninato ligands not involved in the base pairing interactions. It
is worth mentioning that although parallel p–p stacking of nucle-
obases is common in many systems, there is no evidence of this
kind of interaction in compound 1. Table 3 gathers the hydrogen
bonding interactions present in this compound.

Fig. 6. (a) Base pairing assembled supramolecular chain of [Cu2(l-ade-jN3:jN9)4
(H2O)2] ‘‘B” entities. (b) Overall description of the interpenetration of
both [Cu2(l-ade-jN3:jN9)4(H2O)2] subnetworks and the cocrystallization of
(NH2Et2)2SO4 in the voids of the crystal structure.

Table 3
Hydrogen bonding interactions (Å, �) involving the adeninato ligands.

H� � �A D� � �A D–H� � �A
N16A–H� � �N31i 2.56 3.405(11) 166.3
N16A–H� � �O3i 2.03 2.807(10) 150.7
N16B–H� � �N31i 2.05 2.894(11) 166.5
N16B–H� � �O3i 2.46 3.227(12) 149.0
N26–H� � �N61ii 2.40 3.209(6) 157.9
N26–H� � �N41iii 2.18 2.990(6) 157.0
N36–H� � �O3wiv 2.39 3.216(7) 160.8
N36–H� � �N17v 2.13 2.966(6) 163.0
N46–H� � �N27vi 2.10 2.885(7) 150.8
N46–H� � �O6wvii 2.34 2.982(7) 132.1
N56–H� � �O8wiv 2.18 2.862(8) 136.4
N66–H� � �N61viii 2.12 2.943(6) 160.8
N66–H� � �O1wix 2.36 3.196(6) 163.8
O1w–H� � �N67x 1.97 2.752(5) 152.5
O2w–H� � �N47vii 1.90 2.798(6) 163.5
O3w–H� � �N37xi 1.82 2.666(6) 172.6
O5w–H� � �N11x 2.08 2.858(6) 150.9
O7w–H� � �N21 1.99 2.838(6) 175.0
O1M–H� � �N57 1.97 2.780(6) 155.1

Symmetry codes: (i) x � 1, y, z; (ii) �x + 2, �y, �z + 1; (iii) x + 1/2, �y + 1/2, z + 1/2;
(iv) �x + 5/2, y + 1/2, �z + 1/2; (v) x + 1, y, z; (vi) x � 1/2, �y + 1/2, z � 1/2;
(vii) �x + 2, �y, �z; (viii) �x + 1, �y, �z + 1; (ix) �x + 3/2, y � 1/2, �z + 1/2; (x)
�x + 3/2, y + 1/2, �z + 1/2; (xi) �x + 5/2, y � 1/2, �z + 1/2.

Fig. 7. Thermogravimetric curves (TG/DTA) in synthetic air atmosphere for
compound 1.

Table 4
Thermogravimetric data for compound 1.

Step Ti � Tf (�C) Dm/
P
Dm (%)

P
Dm (%)teo DH

1 25–140 8.8/8.8 8.28 (�10H2O + 2CH3OH) Endo
2 150–180 4.1/12.9 11.9 (�6H2O) Endo
3 215–250 8.2/21.1 18.8 (�2NEt3) Endo
4 260–330 15.3/36.4 34.8 (�2NEt3 + 2C5H5N5) Endo
5 350–440 42.5/78.9 80.4 (4CuO + 2CuSO4) Exo

Fig. 8. vM and the vMT vs. T plots. Blue coloured circles correspond to experimental
vM values while blue coloured squared correspond to experimental vMT ones. Black
line corresponds to the best theoretical fit for both curves. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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The thermal degradation under synthetic air atmosphere (Fig. 7
and Table 4) shows that the compound starts losing the non coor-
dinated solvent molecules from room temperature to 140 �C.
Almost immediately, in a process that starts at 150 �C and ends
at 180 �C, the coordinated water molecules are released. The
resulting anhydrous product remains stable up to 215 �C after
which it undergoes several decomposition processes to provide a
mixture of CuO and CuSO4 as the final residue at temperatures
above 440 �C.

The thermal evolution of the molar magnetic susceptibility (vM)
and the vMT product are indicative of strong intradimeric antifer-
romagnetic interactions. The vM curve suffers an initial rise upon
cooling from room temperature to gain the maximum value at
200 K. Afterwards, it decreases and reaches a minimum value in
the vicinity of 60 K and increases again at lower temperatures as
a result of the presence of paramagnetic impurities. Room-temper-
ature vMT values are lower than that expected for two uncoupled
paramagnetic S = 1/2 centre (0.75 cm3 mol�1 K, g = 2.0) which is
indicative of strong intradimeric interactions. Continuous drop is
observed to reach a plateau below 50 K attributed to the presence
of a small amount of paramagnetic impurities (Fig. 8). The experi-
mental magnetic data were fitted by using the Bleaney–Bowers
equation (H = �JS1S2) for a dinuclear copper(II) complex [16] mod-
ified to take into account the presence of the paramagnetic impu-
rities. The obtained J value (�248 cm�1) falls within the range of
previously reported compounds with [Cu2(l-purine ligand)4(X)2]n+

(n = 0, 2, 4; X = H2O, Cl, Br) entities (Table 5), in which the disper-
sion of the J values pointed out that structural/chemical parame-
ters strongly influence the magnitude of the magnetic coupling.
In particular, the J value can be related to the increase in the num-
ber of electron lone pairs in the bridging ligand (by means of the
deprotonation or by substitution of the exocyclic amine group by
a chlorine atom). This fact increases the extension of the molecular
orbitals of the bridging ligands and the N3 and N9 atoms con-
tribute to a lesser extent, so they overlap less efficiently with the
metal-centered magnetic orbitals and a weaker antiferromagnetic
interaction is observed, as it can be noticed for the herein studied
compound.

4. Conclusions

The result shows that neutral [Cu2(l-ade-jN3:jN9)4(H2O)2]
neutral entities can effectively generate supramolecular open
architectures, but some other subtle factors such as the solvent,
the presence of other apparently innocent ions and the possibility
of interpenetration play also a significant role in transforming
these supramolecular open structures into real porous materials.

Acknowledgments

This work was supported by the Ministerio de Economía y Com-
petitividad (MAT2013-46502-C2-1-P), Eusko Jaurlaritza/Gobierno
Vasco (Grant IT477-10), and Universidad del País Vasco/Euskal
Herriko Unibertsitatea (UFI 11/53, postdoctoral fellowship for S.P.
Y.). Technical and human support provided by SGIKer (UPV/EHU,
MINECO, GV/EJ, ERDF, and ESF) is gratefully acknowledged.

Appendix A. Supplementary material

CCDC 1440642 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.
uk/data_request/cif. Supplementary data associated with this arti-
cle can be found, in the online version, at http://dx.doi.org/10.
1016/j.ica.2016.02.049.

References

[1] (a) H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43 (2014) 5415. and all articles of
this special issue;
(b) H.-C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112 (2012) 673. and all articles
of this special issue.

[2] (a) M. Zhang, M. Bosch, T. Gentle, H.-C. Zhou, CrystEngComm 16 (2014) 4069;
(b) H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341 (2013) 974;
(c) M.G. Goesten, F. Kapteijn, J. Gascon, CrystEngComm 15 (2013) 9249.

[3] (a) S. Verma, A.K. Mishra, J. Kumar, Acc. Chem. Res. 43 (2010) 79;
(b) A. Domínguez-Martín, M.P. Brandi-Blanco, A. Matilla-Hernández, H. El
Bakkali, V.M. Nurchi, J.M. González-Pérez, A. Castiñeiras, J. Niclós-Gutiérrez,
Coord. Chem. Rev. 257 (2013) 2841.

[4] (a) I. Imaz, M. Rubio-Martínez, J. An, I. Solé-Font, N.L. Rosi, D. Maspoch, Chem.
Commun. 47 (2011) 7287;
(b) G. Beobide, O. Castillo, J. Cepeda, A. Luque, S. Pérez-Yáñez, P. Román, J.
Thomas-Gipson, Coord. Chem. Rev. 257 (2013) 2716;
(c) G. Beobide, O. Castillo, A. Luque, S. Pérez-Yáñez, CrystEngComm 17 (2015) 3051.

[5] (a) J. Thomas-Gipson, G. Beobide, O. Castillo, J. Cepeda, A. Luque, S. Pérez-
Yáñez, A.T. Aguayo, P. Román, CrystEngComm 13 (2011) 3301;
(b) J. Thomas-Gipson, G. Beobide, O. Castillo, M. Fröba, F. Hoffmann, A. Luque,
S. Pérez-Yáñez, P. Román, Cryst. Growth Des. 14 (2014) 4019.

[6] J. Thomas-Gipson, R. Pérez-Aguirre, G. Beobide, O. Castillo, A. Luque, S. Pérez-
Yáñez, P. Román, Cryst. Growth Des. 15 (2015) 975.

[7] A. Earnshaw, In: Introduction to Magnetochemistry, Academic Press, London,
1968.

[8] (a) J. Cepeda, O. Castillo, J.P. García-Terán, A. Luque, S. Pérez-Yáñez, P. Román,
Eur. J. Inorg. Chem. (2009) 2344;
(b) S. Pérez-Yáñez, G. Beobide, O. Castillo, J. Cepeda, A. Luque, P. Román, Cryst.
Growth Des. 13 (2013) 3057.

[9] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115.

[10] G.M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.
[11] J. Farrugia, WINGX, A Windows Program for Crystal Structure Analysis,

University of Glasgow, Glasgow, 1998.
[12] (a) J.M. González-Pérez, C. Alarcón-Payer, A. Castineiras, T. Pivetta, L. Lezama,

D. Choquesillo-Lazarte, G. Crisponi, J. Niclós-Gutiérrez, Inorg. Chem. 45 (2006)
877;

Table 5
Structural parameters and J values of some representative compounds together with the observed for herein studied compound.a

Compounds Cu–N Cu–X Cu� � �Cu Tmax Jexp References

[Cu2(ade)4(NH3)2]�6H2O — — — 222 — [12c]
[Cu2(ade)4(H2O)2]�(bpa)�8H2O 2.01 2.21 2.95 180 �222 [8a]
[Cu2(ade)4(Pip)2]�6H2O — — — 210 �246 [12c]
This work 1.99–2.04 2.19–2.25 2.96 200 �248
[Cu2(ade)4(H2O)2]�5H2O 2.02 2.20 2.95 — �257 [12d]
[Cu2(Hade)4Br2]Br2�2H2O — — — — �284 [17]
[Cu2(Hade)4(H2O)2](NO3)4�2[Cu(Pic)2(H2O)]�6H2O 2.00 2.17 3.00 — �288 [8a]
[Cu2(Hade)4Cl2]Cl2�6H2O 2.03 2.43 3.07 251 �285 [18]
[Cu2(Hade)4(H2O)2](SO4)�6H2O — — — 253 �305 [12c]
[Cu2(Hade)4(H2O)2](ClO4)�2H2O 2.03 2.17 2.95 243 �312 [12c, 12e]
[Cu2(Hypox)4Cl2]Cl2�6H2O 2.00 2.43 3.02 212 �211 [12c,19]
[Cu2(Hypox)4Br2]Br2�2H2O — — — — �284 [17]
[Cu2(6ClPur)4(H2O)2]�6H2O 2.02 2.12 2.97 220 �250 [8a]

a Cu–N: equatorial copper–nitrogen distance; Cu–X: axial copper–ligand distance; Cu� � �Cu: distance between intradimeric copper atoms.

R. Pérez-Aguirre et al. / Inorganica Chimica Acta 452 (2016) 222–228 227

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
http://dx.doi.org/10.1016/j.ica.2016.02.049
http://dx.doi.org/10.1016/j.ica.2016.02.049
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0005
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0005
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0010
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0010
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0015
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0020
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0025
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0030
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0035
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0035
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0035
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0040
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0040
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0045
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0045
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0050
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0055
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0055
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0060
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0060
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0065
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0065
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0070
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0070
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0070
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0075
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0075
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0080
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0080
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0085
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0085
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0090
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0095
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0095
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0095
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0095
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0095
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0100
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0100
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0100


(b) J.W. Suggs, M.J. Dube, M. Nichols, J. Chem. Soc., Chem. Commun. (1993)
307;
(c) D. Sonnenfroh, R.W. Kreilick, Inorg. Chem. 19 (1980) 1259;
(d) E. Sletten, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25
(1969) 1480;
(e) A. Terzis, A.L. Beauchamp, R. Rivest, Inorg. Chem. 12 (1973) 1166.

[13] (a) TOPOS Main Page. http://www.topos.ssu.samara.ru (accessed Nov. 2015).;
(b) V.A. Blatov, IUCR Comp. Comm Newslett. 7 (2006) 4;
(c) M. O’Keeffe, O.M. Yaghi, Chem. Rev. 112 (2012) 675;
(d) V.A. Blatov, M. O’Keeffe, D.M. Proserpio, CrystEngComm 12 (2010) 44;

(e) E.V. Alexandrov, V.A. Blatov, A.V. Kochetkov, D.M. Proserpio,
CrystEngComm 13 (2011) 3947.

[14] L. Sarkisov, A. Harrison, Mol. Simulat. 37 (2011) 1248.
[15] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[16] B. Bleaney, K.D. Bowers, Proc. Roy. Soc. Ser. A 214 (1952) 451.
[17] T. Asakawa, M. Innoue, K.-I. Hara, M. Kubo, Bull. Chem. Soc. Jpn. 45 (1972)

1054.
[18] P. De Meester, A.C. Skapski, J. Chem. Soc. A 13 (1971) 2167.
[19] E. Sletten, Acta Crystallogr., Sect. B 26 (1970) 1609.

228 R. Pérez-Aguirre et al. / Inorganica Chimica Acta 452 (2016) 222–228

http://refhub.elsevier.com/S0020-1693(16)30065-2/h0105
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0105
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0110
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0115
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0115
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0120
http://www.topos.ssu.samara.ru
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0130
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0135
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0140
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0145
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0145
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0150
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0155
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0160
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0165
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0165
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0170
http://refhub.elsevier.com/S0020-1693(16)30065-2/h0175


3D Magnetically Ordered Open Supramolecular Architectures Based
on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels
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ABSTRACT: The present work provides two new examples of
supramolecular metal−organic frameworks consisting of three-
dimensional extended noncovalent assemblies of wheel-shaped
heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]

2+

entities. The heptanuclear entity consists of a central [Cu-
(OH)6]

4− core connected to six additional copper(II) metal
centers in a radial and planar arrangement through the
hydroxides. It generates a wheel-shaped entity in which water
molecules and μ−κN3:κN9 adeninato ligands bridge the
peripheral copper atoms. The magnetic characterization indicates
the central copper(II) center is anti-ferromagnetically coupled to
external copper(II) centers, which are ferromagnetically coupled
among them leading to an S = 5/2 ground state. The packing of
these entities is sustained by π−π stacking interactions between the adenine nucleobases and by hydrogen bonds established
among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions
creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure
(40−50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent
molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant
features.

■ INTRODUCTION

Metal−organic frameworks (MOFs) encompass an area of
chemistry that has experienced impressive growth during the
last decades because of their various potential applications in
catalysis, gas storage, chemical separations, sensing, ion
exchange, drug delivery, and optics.1 Their large surface areas,
adjustable pore sizes, and controllable functionalities are the
key factors on their multiple applications.2,3 Recently, we
explored a related type of material, supramolecular metal−
organic frameworks (SMOFs), in which the three-dimensional
(3D) crystal building containing potentially accessible voids is
sustained by hydrogen bonds as connectors, which are also
directional and predictable interactions. The design of this kind
of material is based on the following key factors: (i) the use of
rigid building units, (ii) the presence of rigid synthons
connecting the building units, and (iii) the non-coplanarity of
functional groups involved in the synthons.4 The stiffness of the
building units (discrete complexes) can be achieved using
nonflexible ligands anchored to the metal center through
multiple positions. The predictability and rigidity of the
synthons requires the presence of adjacent functional groups
in the ligands able to establish complementary hydrogen-
bonding interactions. Finally, the requisite of non-coplanar

arrangement of the synthons comes from our objective of
obtaining 3D extended systems that is achieved by the presence
of at least three non-coplanar synthons. The use of nonplanar
coordination geometries for the complexes makes this last
condition easy to accomplish. From previous studies we
realized that a suitable system that would fulfill all the above-
described requirements for obtaining SMOFs are the discrete
metal-nucleobase systems, especially those based on purine
nucleobases.5 These ligands provide, on one hand, the
advantage of the increased rigidity of the supramolecular
building block due to the coordination through multiple
positions, and, on the other hand, they present many edges
capable of establishing complementary hydrogen-bonding
interactions that provide rigid and predictable synthons
(Scheme 1). However, some other factors such as pH, solvent
molecules, or other species present in the reaction media can
direct the resulting final crystal structure and are also factors
that need to be kept in mind.
Moreover, the building of SMOFs from transition metal ions

set up the possibility of designing functional nanoporous
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materials with additional physical properties. Among these, the
development of magnetic open-framework structures based on
nucleobases is an appealing challenge for sensing applications,
as it would bring together porosity, magnetism, and the well-
known molecular recognition ability of biomolecules.6

It must be pointed out that there exists a notable number of
MOFs that successfully meet porosity and relevant magnetic
properties. However, there are also enormous difficulties in
increasing pore sizes without compromising the strength of
magnetic couplings.7 Without a doubt, magnetic exchange
interactions between metal ions take place through a
superexchange coupling involving ligand orbitals, a mechanism
that is strongly dependent on the distance and angle between
interacting ions. Although some systematic rules have been
defined for the design of bigger pore size and different
topologies, such modifications are expected to decrease, or in
the worst case disrupt, the superexchange magnetic coupling.
To overcome these disadvantages, alternative methods are
being explored. Among them, the use of metal clusters as nodes
with a high-spin ground state or single-molecule magnet
behavior outstand, which can be further connected by spacers
(ligands) of any size without prejudicing the pristine magnetic
properties of the nodes.8 A recent example published by Zhao
et al. consists of a (3,6)-connected two-dimensional coordina-
tion polymer built from sulfoisophthalate/adeninato-derived
CuII7 wheels and S = 5/2 ground state.9 It is worth mentioning
the relationship of the spin topology of the wheels with the
frustrated triangular anti-ferromagnetic (AF) lattice, which is
one of the very few solvable models in spin-frustrated
systems.10 It makes this system an attractive target for
displaying magneto caloric effect (MCE) and using it for low-
temperature refrigeration purposes. In fact, such effects have
been recently observed in a molecular cluster based on GdII7
and FeIII7 with this triangular AF lattice structure.11

Herein we report two new SMOFs consisting of
heptanuclear metal-nucleobase entities with a high-spin ground
state (S = 5/2), which self-assemble by means of hydrogen
bonding and π−π interactions into two supramolecular open
architectures with long-range magnetic ordering.

■ EXPERIMENTAL PROCEDURES
Chemicals. All the chemicals were of reagent grade and were used

as commercially obtained.
Synthesis of [Cu7(μ-H2O)6(μ3-OH)6(μ-Adeninato-κN3:κN9)6]-

(NHEt3)2(SO4)2·42H2O (1) and [Cu7(μ-H2O)6(μ3-OH)6(μ-Adenina-
to-κN3:κN9)6](NHEt3)2(SO4)2·23H2O (2). A solution of 0.1996 g
(0.8 mmol) of CuSO4·5H2O dissolved in 20 mL of water was added
dropwise to a 20 mL aqueous methanolic (1/1) solution containing

0.1080 g (0.8 mmol) of adenine. Immediately a dark blue precipitate
appeared, which was dissolved by adding a few drops of H2SO4
concentrated to set the pH value at 1.5. Later the pH was fixed at 10
by adding triethylamine, and the resulting mixture was placed in a
small beaker that was introduced into an Erlenmeyer flask containing a
1/5 (v/v) sulfuric acid solution. The vapor diffusion taking place inside
the closed Erlenmeyer flask slowly acidified the solution allowing the
growth of blue prismatic crystals of 1 after 4 d (pH = 8; yield: 80−
90%). If the beaker containing the reaction mixture is removed from
the Erlenmeyer flask and left open in contact with atmosphere after
the appearance of crystals of compound 1, the solution evolves toward
the disappearance of the prismatic crystals of 1 and the apparition of
new blue cubic crystals belonging to compound 2 (pH = 7; yield: 60−
70%).

Physical Measurements. The IR spectra (KBr pellets) were
recorded on an FTIR 8400S Shimadzu spectrometer in the 4000−400
cm−1 spectral region. Variable-temperature magnetic susceptibility
measurements were performed using a standard Quantum Design
PPMS magnetometer while heating from 2 to 300 K at 1 kOe range
after cooling in the absence (zero-field cooling, ZFC) of the applied
field. Magnetization as a function of field (H) was measured using the
same magnetometer in the −50 ≤ H/kOe ≤ 50 at 2 K after cooling
the sample in zero field. The susceptibility data were corrected for the
diamagnetism estimated from Pascal’s Tables,12 the temperature-
independent paramagnetism and the magnetization of the sample
holder. Heat capacity was measured with the same device between
0.40 and 300 K at several magnetic fields from 0 to 90 kOe using a
standard relaxation method with a two-tau model. To guarantee a
good thermal contact, a piezon N grease was used to glue the sample
to the sample holder. The addenda (sample holder and grease) were
measured under different magnetic fields before the sample measure-
ments were taken and then subtracted from the total heat capacity to
get the sample heat capacity. The sample used was a 4.54 and 4.38 mg
plate for 1 and 2 obtained compressing the original thin powder.
Thermal analyses (thermogravimetry (TG)/differential thermal
analysis (DTA)) were performed on a TA Instruments SDT 2960
thermal analyzer in a synthetic air atmosphere (79% N2/21% O2) with
a heating rate of 5 °C·min−1. The purity of the samples was assessed by
powder X-ray diffraction, TG, and FTIR analyses (see Supporting
Information).

X-ray Diffraction Data Collection and Structure Determi-
nation. Single-crystal diffraction data were collected at 100(2) K on
Agilent Technologies Supernova diffractometers (λCu−Kα = 1.541 84 Å
for 1 and λMο−Kα = 0.710 73 Å for 2). The data reduction was done
with the CrysAlisPro program.13 Crystal structures were solved by
direct methods using the SIR92 program14 and refined by full-matrix
least-squares on F2 including all reflections (WINGX).15,16 One-third
of the adeninato ligands in compound 1 and all of them in compound
2 are disordered into two coplanar arrangements with inverted
orientation regarding the coordination mode (μ−κN3:κN9/
μ−κN9:κN3).17 The crystal structure of both compounds revealed
the presence of large channels in which the solvent molecules,
triethylammonium, and sulfate anions are placed. The high disorder
that these entities present precluded their modeling and, as a
consequence, the electron density at the voids of the crystal structure
was subtracted from the reflection data by the SQUEEZE method18 as
implemented in PLATON.19 The electron density provided by the
SQUEZEE routine matches the expected from the number of
triethylammonium, sulfate, and solvation water molecules hosted in
the channels. Details of the structure determination and refinement of
all compounds are summarized in Table 1.

■ RESULTS AND DISCUSSION

The direct reaction between CuSO4 and adenine immediately
produces a very fine powder in a quantitative yield. All the
attempts to grow X-ray diffraction suitable single crystals of this
product were unsuccessful. Therefore, it was decided to acidify
the reaction media until complete solubilization of this product
is achieved. Later, the pH was increased by slow vapor diffusion

Scheme 1. Capability of Adenine to Establish
Supramolecular Interactions through Hydrogen Bonding (a)
and π−π Stacking (b)
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of a weakly coordinating amine to precipitate again the
copper−adenine product. This indirect route allowed us to
get suitable single crystals of compounds 1 and 2 (depending
on the crystallization time) that otherwise would be almost
impossible to obtain by direct reaction of the reagents.
The crystal structure of compounds 1 and 2 contains cationic

[Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]
2+ heptanu-

clear entities, sulfate, and triethylammonium ions. The complex
entity consists of a central [Cu(OH)6]

4− core that is connected
to six additional copper(II) metal centers in a radial and planar
arrangement through the hydroxides (Figures 1 and 2). The
hydroxide anions adopt a μ3-bridging mode in such a way that
they connect the central metal atom to two external ones. It
generates a wheel-shaped entity in which water molecules and
μ−κN3:κN9 adeninato ligands bridge the peripheral copper
atoms. All the metal centers present an octahedral geometry
with the usual Jahn−Teller tetragonal elongation, but it is far
more pronounced for the peripheral copper(II) centers (Δd ≈
0.5−0.6 Å) than for the central one (Δd = 0.2 Å), probably
because of the rigidity of the wheel-shaped heptanuclear entity.
The elongation at the peripheral copper atoms takes place
along the metal−water coordination bonds in such a way that
the coordinated water molecules are less strongly held to the
complex entity than the adeninato ligands that establish shorter
coordination bonds. In any case, the heptameric entity can be
considered as a rigid building unit, as all the components
establish at least two coordination bonds. Bond distances
around the copper atoms are listed in Table S1 in the
Supporting Information.
It is remarkable that the central copper(II) atom in the

heptanuclear cluster of compound 2 shows an apparent regular
octahedral geometry instead of the expected elongated one due
to the Jahn−Teller effect. However, they are clearly pointing
out that this is an artifact of the X-ray diffraction, which
provides average arrangement of the atoms, as the M−O
distance in this compound lies midway between the short (ca.

1.97 Å) and long (ca. 2.12 Å) distances found in compound 1.
It could be due to a disorder of the elongation among the
heptanuclear entities, which is evidenced by the fact the
hydroxide oxygen atoms were refined isotropically, because
when refining with anisotropic displacement parameters it
provided very elongated ellipsoids that are a usual signal of
disorder.
The difference between both crystal structures is due to the

spatial arrangement of the heptameric entities. In compound 1,
the hydrogen-bond donor positions of the [Cu(OH)6]

4− core
are employed to tightly anchor two sulfate anions, above and
below the complex, through three O−H···O hydrogen bonds to
each anion (Figure 1b). This doubly capped heptamer-sulfate
rigid assembly is the key structural unit that fulfills the SMOF
building criteria expounded in the introductory section, since it
allows interacting with four adjacent ones through two different
rigid synthons (Figure 3 and Table 2). The first one comes
from double adeninato···adeninato π−π stacking interactions
taking place between the heptamer and two of the four adjacent
heptamers. The second one involves a single adeninato···
adeninato π−π stacking and a N6adeninato···Osulfate···OHcoordinated
hydrogen bond chain. The rigidity of both the heptameric
discrete entity and the synthons, built from the combination of
two relatively loose supramolecular interactions, generates a

Table 1. Crystallographic Data and Structure Refinement
Details of Compounds 1 and 2

1 2

empirical formula C42H158Cu7N32O62S2 C42H120Cu7N32O43S2
formula weight 2612.83 2270.54
crystal system monoclinic trigonal
space group C2/c R3̅c
a (Å) 15.5705(6) 18.9582(5)
b (Å) 22.3823(10)
c (Å) 27.2969(9) 43.2908(14)
β (deg) 101.102(4)
V (Å3) 9335.0(6) 13 474.7(7)
Z 4 6
T (K) 100(2) 100(2)
λ (Å) 1.541 84 0.710 73
ρcalcd (g·cm

−3) 1.320 1.258
μ (cm−1) 2.666 1.739
Sa 1.519 1.158
Rint 0.0849 0.0516
final R indices
[I > 2σ(I)] R1

b/wR2
c 0.1205/0.3766 0.0969/0.3083

all data R1
b/wR2

c 0.1479/0.4025 0.1142/0.3237
aS = [∑w(F0

2 − Fc
2)2/(Nobs− Nparam)]

1/2. bR1 = ∑∥F0| − |Fc∥/∑|F0|.
cwR2 = [∑w(F0

2 − Fc
2)2/∑wF0

2]1/2; w = 1/[σ2(F0
2) + (0.2000P)2 +

b] where P = (max(F0
2,0) + 2Fc

2)/3.

Figure 1. [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]
2+ hepta-

nuclear entity (a) and hydrogen bond anchorage of the sulfate anions
(b) found in compound 1. Dashed lines indicate hydrogen bonds.
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CdSO4-like cds topology with a (65.8) point symbol (nodes
being the heptameric units and connectors being the π−π
stacking interactions between the adeninates).20 This supra-
molecular network presents one-dimensional (1D) channels
(mode: 5.5 Å) that imply a 49.0% of unit cell volume in which
disordered solvent molecules and triethylammonium cations
are placed.
In compound 2, the sulfate anions, although still occupying

the top and bottom of the heptameric entity, are only anchored
through two hydrogen bonds to the hydroxide bridges (Figure
2b). It decreases the steric hindrance around the complex entity
allowing the adeninato ligands to supramolecularly connect
each complex entity to six adjacent ones (Figure 4 and Table
3). The same rigid synthon, involving adenine···adenine π−π
interactions and a N7adeninato···Owcrystallization···Owcoordinated hy-
drogen bond chain, accounts for all the interactions between
the heptamers. The sulfate counterions, although disordered,
are held to the Hoogsteen edge of the adeninato ligands
through hydrogen bonds. Again, an open structure is achieved,
with α-Po primitive cubic pcu topology and a (412.63) point
symbol, in which 1D channels (mode: 5.8 Å) that encompass
the 41.5% of the unit cell volume are present.
If we do not pay attention to the different amount of

crystallization water molecules, the two compounds can be
considered as polymorphs, compound 1 being the kinetically

preferred one, as it is formed at the beginning, and compound 2
the thermodynamically favored one.

Magnetic Properties. Figure 5 shows the temperature
dependence of the molar magnetic susceptibility (χm) and χmT
curves of 1 and 2, measured at 1 kOe after cooling without an
applied magnetic field (ZFC). As it can be seen, the molar
magnetic susceptibility increases with decreasing temperature
up to 2 K for both compounds. The χmT reaches a value of 2.92
(1) and 3.08 (2) emuK/molOe at 300 K per heptameric
complex, which is moderately larger than the spin-only value
(2.63 emuK/molOe) expected for seven magnetically non-
interacting Cu2+ ions with S = 1/2 and g = 2.0.21 These values
slightly diminish as temperature decreases to achieve a
minimum at 140 K (2.83 emuK/molOe) and 155 K (3.03
emuK/molOe), respectively. When further cooled, it increases
quite fast to reach a maximum at 6 K (4.24 emuK/molOe) and
3 K (4.93 emuK/molOe) for 1 and 2, respectively. The
temperature dependence of the inverse susceptibility (1/χm)

Figure 2. [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]
2+ hepta-

nuclear entity found in compound 2 (a), showing the hydrogen bond
anchorage of the sulfate anions and crystallization water molecules to
heptameric entity (b).

Figure 3. Supramolecular interactions connecting each [Cu7(μ-
H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]

2+ heptanuclear entity to
four adjacent ones (a) and projection of the crystal packing along
the crystallographic c axis (b) for compound 1. Double dotted lines
and “+” indicate π−π stacking interactions.
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curves (not shown) were fitted in the paramagnetic range (T >
10 K) using the Curie−Weiss law for S = 1/2 in the molecular
field approximation. The effective paramagnetic moment (μeff)
and Curie−Weiss temperature (θP), obtained from the fitting,
have a value of 1.73 and 1.82 μB/Cu ion and 20.7 and 11.0 K,
for 1 and 2, respectively. This is in good agreement with the
expected value of 1.73 μB for Cu

2+ ion with a magnetic spin S =
1/2 and other Cu(II)-containing complexes.22

The field dependence of the magnetization at 2 K of both
compounds (see inset of Figure 5) displays a linear depend-
ence, from 0 to 15 kOe, which slowly tends to saturate at 50
kOe (5.65 and 5.15 μB/Cu

II ion for 1 and 2, respectively). The
values obtained at this magnetic field are lower than the
theoretical saturation moment for seven isolated CuII ions
ferromagnetically coupled with a magnetic spin S = 1/2 and g ≈
2 (7.00 μB) but agrees fairly well with a total S =5/2 in the
molecule. This behavior seems to indicate the presence of
ferromagnetic heptameric entities in which the central copper-
(II) atom is anti-ferromagnetically coupled to the external
ferromagnetic hexanuclear ring. Finally, the magnetization at 2
K shows no hysteresis (have neither coercitivity nor
remanence) at this temperature.
Taking into account the molecular structure of the [Cu7(μ-

H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]
2+ heptanuclear enti-

ties and the Jahn−Teller elongated octahedron of the central
copper(II) atom, the simplest Hamiltonian (eq 1) that would
describe the behavior of this compound involves three different
magnetic superexchange parameters accounting for the
couplings between the copper ions and its first neighboring
ones (J1, J2 and J3; see Figure 6).

μ

= − ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗

− ⃗ · ⃗ + ⃗ · ⃗ − ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗

+ ⃗ · ⃗ + ⃗ · ⃗ + ⃗ · ⃗ − ⃗ ⃗

H J S S S S S S S S

J S S S S J S S S S S S

S S S S S S g BS

( )

( ) (

)

1 1 2 1 3 1 5 1 6

2 1 4 1 7 3 2 3 3 4 4 5

5 6 6 7 2 7 B (1)

J1 and J2 are assigned to the superexchange interactions
between the central and the exterior copper ions taking place
through double μ-OH bridges. J1 involves a mixture of
equatorial−equatorial and equatorial−axial coordinated μ-OH
bridges, whereas J2 presents only an equatorial−equatorial
arrangement of the bridging hydroxides. J3 represents the
superexchange interaction between the external CuII ions
bridged by μ-adeninato and μ-OH2 bridges. The fitting of the
χmT experimental data above 10 K to this model was performed
using the MagProp software tool distributed with DAVE.23 The
best fitting parameters (see the red continuous line in Figure 5)
are gathered in Table 4.
The results of the fitting shows similar ferromagnetic values

for 1 and 2 in the coupling constant involving the external
copper(II) ions bridged by adenine and hydroxide ligands (J3).
Usually, both the presence of nonlinear NCN bridges or wide-
angle μ-oxido bridges (ca. 104°) cause strong AF couplings.24

However, the coexistence of these two types of bridges
counterbalances their effects.25 In fact, the splitting of the
molecular magnetic orbitals is reversed for each type of bridging

Table 2. Structural Parameters (Å, deg) of More Relevant
Noncovalent Interactions in Compound 1a

hydrogen-bonding interactions

D−H···Ab H···A D···A D−H···A

O1−H1···O13 1.939 2.739 158
O2−H2···O11i 2.093 2.740 139
O3−H3···O14 2.340 2.976 139
N26−H26B···O14ii 2.144 2.976 163
N41−H41···O12 2.008 2.894 164
N41−H41···O11 2.608 3.293 133
O1w−H1w2···O14 1.960 2.807 175
O2w−H2w2···O13i 2.058 2.892 166
O3w−H3w1···O11 1.989 2.811 161

π−π interactionsc

ring···ringd angle DC α DZ DXY

p1···h3
iii 4.7 3.91 26.6 3.50 1.75

h2···h2
ii 0.0 4.13 31.62 3.51 2.16

aSymmetry codes: (i) −x + 2, −y, −z + 1; (ii) −x + 3/2, −y + 1/2, −z
+ 1; (iii) 2 − x, y, 1/2 − z. bD: donor; A: acceptor. cAngle: dihedral
angle between the planes (deg), DC: distance between the centroids of
the rings (Å), α: angle between the normal to the first ring and the DC
vector (deg), DZ: interplanar distance (Å), DXY: lateral displacement
(Å). dp1: C14, C15A, N17, C18, N19; h2: N21, C22, N23, C24, C25,
C26; h3: N31, C32, N33, C34, C35, C36.

Figure 4. Supramolecular interactions connecting each [Cu7(μ-
H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]

2+ heptanuclear entity to
six adjacent ones (a) and crystal packing of the structure showing
the presence of 1D channels (b).
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ligand, thus leading, on one hand, to an almost negligible
energy difference between them and, as a consequence, to the
observed ferromagnetic interaction. On the other hand, there
are some significant differences on the coupling constants
involving the central and external copper atoms (J1 and J2). In
both compounds, J2 (involving two short μ-hydroxide bridges
and Cu−O−Cu angles around 99−103°) is AF and stronger
than the ferromagnetic J1 which implies a short and a long
hydroxide bridge. The AF nature of J2 agrees with the stated by
Hatfield et al. for symmetrically double bridged hydroxo
dinuclear complexes, in which angles larger than 98.5° promote
an AF coupling, while a ferromagnetic coupling is established
for smaller angles.26 On the other hand the weak ferromagnetic
J1 interaction is related to the orthogonality between the
magnetic orbitals imposed by the combination of symmetric
and asymmetric μ-OH bridges. In the literature most cases of
copper(II) centers bridged by this arrangement of the
hydroxide bridges show a ferromagnetic behavior with J values
ranging from +10 to +90 cm−1.27 We are aware of the fact that
the overparameterization of the model could lead to similar
fitting agreements using different parameter values, but the
similarity of the achieved superexchange constants and the
reports found in the literature for similar bridging modes of the
hydroxides make us confident of the experimental data fitting
results. These results also agree with the reported ones for
analogous wheel-shaped heptanuclear copper(II) entities in
which the external copper(II) centers are ferromagnetically
coupled among them and antiferromagnetically to the central
one.9,28 A single crystal with a larger size (ca. of 1 cm3) would
allow to compare in detail these data with an experimental
determination from polarized neutron-diffraction experi-
ments.29

The temperature dependences of the molar heat capacity Cp
for zero magnetic field are represented between 0.4 and 300 K
in Figures 7 and 8 for compounds 1 and 2, respectively. In both
cases Cp has a tiny maximum of magnetic origin below 1 K, and
then it increases continuously due to the phonon contribution.
The experimental data do not show any tendency to saturation,

even at room temperature, where the values of Cp are 2100 and
1700 J K−1 mol−1 for compounds 1 and 2, respectively, still far
from the expected values according to the Dulong and Petit
law, 7557 and 6136 J K−1 mol−1 for compounds 1 and 2,
respectively. This behavior is attributable to the presence of a

Table 3. Structural Parameters (Å, deg) of More Relevant
Noncovalent Interactions in Compound 2a

hydrogen-bonding interactions

D−H···Ab H···A D···A D−H···A

O1−H1···O1Ai 2.058 2.788 162
O1−H1···O4Aii 2.211 2.839 141
N6A−H6A2···O1A 1.979 2.834 173
N6A−H6A2···O4Aiii 2.189 2.960 149
N6B−H6B1···O2wiii 2.620 3.201 126

π−π interactionsc

ring···ringd angle DC α DZ DXY

h···piv 0.0 3.89 27.1 3.47 1.77
h···h iv 0.0 3.77 24.6 3.43 1.57
p···hiv 0.0 3.89 28.3 3.43 1.84
p···piv 0.0 4.00 30.0 3.47 2.00

aSymmetrycodes: (i) −x + y + 2/3, y + 1/3, z − 1/6; (ii) −y + 5/3,
−x + 4/3, z − 1/6; (iii) −x + y, −x + 1, z; (iv) 4/3 − x, 2/3 − x + y,
7/6 − z. bD: donor; A: acceptor. cAngle: dihedral angle between the
planes (deg), DC: distance between the centroids of the rings (Å), α:
angle between the normal to the first ring and the DC vector (deg),
DZ: interplanar distance (Å), DXY: lateral displacement (Å). dh:
hexagonal ring of the adeninate and p: pentagonal ring of the
adeninate.

Figure 5. ZFC thermal evolution of the molar magnetic susceptibility
(χm) and χmT product for 1 (a) and 2 (b). (insets) The magnetization
curves at 2 K. The red line shows the fitting of the χT experimental
data.

Figure 6. [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6]
2+ hepta-

nuclear entity emphasizing the relationship of the magnetic topology
and the 3-J coupling scheme for the local CuII7 cluster.
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high number of hydrogen atoms within the compounds, which
display very high excitation energies. At very low temperatures,
where the phonon contribution is negligible, as commented
previously Cp displays a broad maximum (ΔCp = 4.2 J/mol K in
both compounds) centered at 0.6 and 0.5 K for 1 and 2,
respectively (see upper insets in Figures 7 and 8). Although
these anomalies do not present the characteristic λ shape
appearance of a second-order transition, it can be attributed to
the establishment of a 3D magnetic order. This behavior is
confirmed by the effects of the magnetic field on Cp, since the
field increase promotes the peak growing and shifting to higher
temperatures, and apparently disappearing for fields higher than

30 kOe in both compounds. This behavior is later clarified
analyzing the magnetic contribution to the heat capacity (Cmag).
To extract Cmag we determine the phonon contribution

(Cpho) and then subtract it from the experimental data. In the
absence of a nonmagnetic isomorphous compound, we should
use a theoretical model to determine Cpho, with the Debye
model being the most common. However, because of the large
differences in the atomic weights of the elements, more than
one phonon spectrum is expected. This approach has been used
successfully in previous studies in other complex insulators
materials.30 In the present case, because of the large amount of
ions and solvent molecules, the minimum number of Debye
temperatures that is required to fit the heat capacity was five.
The good quality of the fits (see the blue continuous line in
Figures 7 and 8) allows us to consider that this phenomeno-
logical model determines reasonably well the phonon
contribution.
The temperature dependence of the magnetic contribution,

determined as Cmag = Cp − Cpho, is depicted in Figures 7b and
8b for compounds 1 and 2, respectively. In these figures are
also included the temperature dependences of Cmag under

Table 4. Main Magnetic Data for Compounds 1 and 2

compound 1 compound 2

g 2.12 2.12
J1 (cm

−1) +14 +6
J2 (cm

−1) −228 −221
J3 (cm

−1) +75 +97

Figure 7. (a) Specific heat of 1 between 0.4 and 300 K. (upper inset)
Experimental data (red ●), estimated phonon contribution (blue
dashed line), and magnetic contribution (green ●). (lower inset)
Specific heat at different applied magnetic field (H ≤ 90 kOe). (b)
Magnetic specific heat as a function of temperature in the presence of
external magnetic fields.

Figure 8. (a) Specific heat of 2 between 0.4 and 300 KK. (upper inset)
Experimental data (red ●), estimated phonon contribution (blue
dashed line), and magnetic contribution (brown ●). (lower inset)
Specific heat at different applied magnetic field (H ≤ 90 kOe). (b)
Magnetic specific heat as a function of temperature in the presence of
external magnetic fields.
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applied magnetic fields up to 90 kOe. In both compounds, at
zero field, the most significant features are (i) the jump in Cmag
at the order temperature has a small value, suggesting the
existence of a complex magnetic order,30,31 and (ii) in addition
to the low-temperature peak, appears a broad maximum
centered around 11 K, which usually is attributed to the
existence of two-dimensional magnetic order, crystalline
electrical field or the presence of short-range magnetic
interactions.30,32

Therefore, in the present case, these results suggest that at 11
K appears a local magnetic order inside the wheels, and by
decreasing the temperature around 0.5 K, the wheels are
coupled magnetically resulting in a 3D magnetic ordering. The
general effect of the magnetic field on Cmag is to increase the
size of both peaks and to shift the low-temperature peak to
higher temperatures. This shift is characteristic of a
ferromagnetic coupling. In addition, we should point out that
the low-temperature peak has a strong increase for 10 kOe and
then tends to saturate for fields above 30 kOe, in concordance
with the saturation of the magnetization curves. Taking into
account the structural features of the compounds, the long-
range ordering detected at low temperatures probably comes
from the adeninato···adeninato π−π stacking interactions
taking place between the heptamer units. From the 3D
magnetic ordering temperature values (Tc = 0.5 and 0.6 K)
and the Curie−Weiss temperature (θp = 20.7 and 11.0 K for 1
and 2, respectively) we can obtain information on the magnetic
spin frustration f, given by |θ/Tc| of these open supramolecular
structures.33 The f parameter reaches values of 41.4 and 18.3 for
1 and 2, respectively, where a value above 10 indicates the
presence of strong frustration.34 Therefore, it indicates that
both SMOFs display complex 3D magnetic structures with the
presence of stronger spin frustration in the 1 compound.

■ CONCLUSIONS
The use of long spacer to connect the paramagnetic centers in
MOFs and SMOFs (the spacer being a ligand or supra-
molecular synthon, respectively) is crucial in the porosity
pursuit, but it tends to pauperize the magnetic interactions. A
strategy to overcome such problem has been previously settled
for MOFs in which a metal cluster with a high-spin ground
state is employed as node that is further connected by extended
ligand, giving rise to magnetically appealing porous materials.
Herein, we have transferred this strategy to the burgeoning field
of SMOFs. The fine-tunning of the synthesis conditions gave
rise to a node consisting of heptanuclear [Cu7(μ-H2O)6(μ3-
OH)6(μ-adeninato-κN3:κN9)6]

2+ wheel in which the spokes
are built by short μ3-hydroxido bridges, while tire is formed by a
μ-adenine and μ-aqua double bridge. The shape of the complex
entity exposes the adeninato ligands available for supra-
molecular interactions. As previously stated, the nucleobases
interact among them mainly by hydrogen bonding and π−π
stacking interactions. There are several examples of porous
supramolecular architectures based on complementary hydro-
gen-bonding interactions taking place among the nucleobases
anchored to a metal center, but examples based on the
nucleobase π−π stacking capacity as the driving force that
sustains the 3D porous supramolecular structure are more
scarce. In comparison to hydrogen bond, π−π stacking
interactions do not define a highly preferential orientation
between the interacting molecules. It is true that these
molecules must arrange nearly parallel with an interplanar
distance of ca. 3.5 Å, but the orientation within the plane is

looser. However, it is possible to achieve a rigid synthon by the
combination of two of these interactions or by its combination
with a second supramolecular interaction. Compounds 1 and 2
provide experimental evidence to the latter statement, as the
CuII7 wheels are simultaneously bridged by means of π−π
stacking interactions among the adenine nucleobases and by
hydrogen bonds established between the hydroxide ligands, the
sulfate anions and adenine nucleobases. The sum of both types
of interactions into a double supramolecular bridge creates a
rigid synthon that in combination with the rigidity of the
heptameric entity fulfills all the SMOF design criteria and
generates an open supramolecular structure (40−50% of
available space) in which additional sulfate and triethylammo-
nium ions are located altogether with solvent molecules.
Furthermore, the magnetic characterization indicates that the
central copper(II) atom individual spins are coupled to yield an
S = 5/2 ground state. The supramolecular assembly of CuII7
wheels, mediated by π−π stacking interactions between the
adenines, is able to provide a 3D ferromagnetic ordering below
1 K. Further work is in progress to analyze the influence of the
guest molecules hosted in the channels of these compounds on
the magnetic properties, as subtle changes such as the O−H
bond displacement from the Cu2O2 core imply significant
change on the mediated magnetic interactions.
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Growth Des. 2015, 15, 975−983.
(5) Beobide, G.; Castillo, O.; Luque, A.; Peŕez-Yañ́ez, S.
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   Se ha sintetizado y caracterizado una extensa  
   familia de nuevos materiales metal-orgánicos  
  multifuncionales que combinan porosidad y magnetismo.  
  Estos materiales se caracterizan por estar basados en  
  entidades metal-orgánicas discretas, donde la especificidad  
  de las interacciones supramoleculares que tienen lugar entre  
  las mismas es el origen de la naturaleza porosa de estos 
materiales. Esta especificidad en las interacciones supramoleculares es obtenida mediante la 
apropiada selección de la parte orgánica de estas entidades, normalmente nucleobases o 
piridinas funcionalizadas con grupos dadores y aceptores de enlaces de hidrógeno 
adyacentes.  

En lo que hace referencia a las propiedades magnéticas los centros paramagnéticos que 
constituyen los centros metálicos interaccionan entre sí de forma eficaz a través de los 
diversos puentes µ-adeninato, µ-hidróxido y µ-carboxilato presentes en las entidades. En 
este sentido cabe destacar las entidades heptaméricas [Cu6M(OH)6(adeninato)6(H2O)6]n+ 
(M3+: Cr, Mn y M2+: Co, Ni, Cu, Zn) donde la sustitución del metal central permite modular el 
comportamiento magnético para obtener materiales tanto ferri- como ferromagnéticos con 
valores de ST variable y cuyas propiedades magnéticas se aúnan con la porosidad inherente 
al empaquetamiento de estas entidades. Como colofón, esta combinación de propiedades 
ha sido empleada para la captura activa de los fármacos ibuprofeno y naproxeno.  Asimismo 
la respuesta de estos materiales frente a campos magnéticos externos permite cuantificar la 
masa adsorbida por estos compuestos en un claro ejemplo de materiales multifuncionales. 
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