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Abstract: Smoking by women is associated with adverse pregnancy outcomes such as spontaneous
abortion, preterm delivery, low birth weight, infertility, and prolonged time to pregnancy. Anogenital
distance (AGD) is a sensitive biomarker of prenatal androgen and antiandrogen exposure. We
investigated the effect of smoking and passive smoke exposure during pregnancy on anogenital
distance in offspring at 4 years in the INMA-Asturias cohort (Spain). Women were interviewed
during pregnancy to collect information on tobacco consumption, and anogenital distance was
measured in 381 children: Anoscrotal distance in boys and anofourchetal distance in girls. We also
measured maternal urinary cotinine levels at 32 weeks of pregnancy. We constructed linear regression
models to analyze the association between prenatal smoke exposure and anogenital distance and
adjusted the models by relevant covariates. Reported prenatal smoke exposure was associated with
statistically significant increased anogenital index (AGI), both at week 12 of pregnancy (β = 0.31, 95%
confidence interval: 0.00, 0.63) and at week 32 of pregnancy (β = 0.31, 95% confidence interval: 0.00,
0.63) in male children, suggesting altered androgenic signaling.

Keywords: anogenital distance; maternal cigarette smoking; tobacco smoking; endocrine-disrupting
chemicals

1. Introduction

Tobacco use and passive smoking during pregnancy can exert multiple effects on off-
spring, which may persist into adulthood [1,2]. Passive exposure to cigarette smoke in child-
hood is a global public health problem associated with respiratory symptoms, increased
risk of invasive meningococcal disease, and high blood pressure [3–5]. In Spain, 3.2% of
children aged up to 4 years and 7.7% of children aged 5–14 years are exposed to cigarette
smoke in enclosed spaces [6], and the effects of exposure have been well-documented [2,7].
Some constituents of tobacco or cigarette smoke have endocrine-disrupting properties [8].
Adverse pregnancy outcomes such as spontaneous abortion [9], preterm delivery [10], and
low birth weight [11] can result from maternal smoking, as well as female infertility [12]
and prolonged time to pregnancy [13,14]. Cigarette smoking rates among women and
during pregnancy vary by region and similar differences apply to passive smoke exposures,
sometimes termed environmental tobacco smoke [15–18].
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Animal and epidemiological studies have shown that in utero exposure to cigarette
compounds, including cotinine [19], may affect developmental reproductive biology.
Among men, prenatal tobacco exposure is associated with increased hypospadias [20],
reduced testis size and semen quality [21], reduced sperm count [22], altered reproductive
hormone levels, precocious puberty, and final height and body mass index (BMI) [23].
These findings support the hypothesis of endocrinological disruption [24,25] following
intrauterine exposure to substances that behave as antiandrogenic endocrine-disrupting
chemicals. In women, intrauterine exposure to tobacco has been linked to premature
menopause [26], reduced fertility, and early puberty and menarche [12,27].

Anogenital distance (AGD) has been validated in epidemiological studies as an an-
thropometric marker of intrauterine exposure to antiandrogens and androgens [28,29].
During the critical period of early fetal life termed “masculinization programming win-
dow” (8–14 weeks of gestation), AGD can represent fetal androgenic activity [30] and
may be a predictor of lifelong reproductive health [31]. There is growing evidence that in
men, exposure to androgens lengthens AGD and exposure to antiandrogens shortens AGD.
In mammals, AGD is longer in males and reflects in utero masculinization. Endocrine-
disrupting chemicals such as polybrominated diphenyl ethers, phthalates, polychlorinated
biphenyls, and bisphenol A have been linked to shorter AGD in male children [28,32–37].
Furthermore, AGD may be a biomarker of hyperandrogenemia in women [38,39]. By
contrast, an androgenic environment during intrauterine life may induce masculinization
and a longer AGD [40]. Other studies have shown that female infants with congenital
adrenal hyperplasia [41] and women with higher testosterone levels [42] or multifollicular
ovaries [43] have a longer AGD. Shorter AGD in boys appears to be inversely related to
testosterone levels, volume and quality of sperm, cryptorchidism, and hypospadias [44–49].

To date, few studies have been conducted on the influence of prenatal tobacco exposure
on AGD [50,51]. To our knowledge, only one epidemiological study has linked maternal
smoking to longer weight-adjusted AGD in female infants [52], and another study linked
gestational tobacco use to longer AGD in male fetuses [51]. In the present study, we
examined the effect of maternal smoking and passive exposure to cigarette smoke during
pregnancy on AGD in children aged 4 years.

2. Materials and Methods
2.1. Study Design and Participants

The study population was drawn from a cohort of mother-child pairs enrolled in the
INMA (Infancia y Medio Ambiente (Environment and Childhood))-Asturias cohort and
has been described in detail in our prior studies [53–55]. Four hundred and ninety-four
pregnant women recruited between May 2004 and June 2007 agreed to participate. All
participants met the inclusion criteria: aged ≥ 16 years, no assisted conception, enroll-
ment at 10–13 weeks of gestation, singleton pregnancy, delivery scheduled at the reference
hospital (San Agustin Hospital, Avilés, Spain), and no communication handicap. During
the third trimester of pregnancy, 416 of the women completed a questionnaire on gesta-
tional tobacco use and other variables and provided urine samples for determination of
urinary cotinine levels. A total of 485 children were born, and follow-up was carried out
4–5 years later on 453 children (93.4% participation rate) through questionnaires on diet,
environmental health data, and sociodemographic variables (Figure 1). Two pediatricians
examined 412 of those children and recorded anthropometric characteristics. The research
protocol was approved by The Asturias Regional Clinic Research Ethics Committee; all
women provided written informed consent prior to inclusion and then signed a second
consent to enroll the children into the INMA-Asturias cohort.

2.2. Smoking Status

Questionnaires on tobacco use, including patterns of consumption, smoking history,
and exposure to passive smoking were administered by one trained interviewer twice
during pregnancy (around 12 and 32 gestational weeks). The following variables were
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extracted from the information collected in the questionnaires, we have obtained the
following variables: Smoking at the beginning of pregnancy, smoking at week 12 of
pregnancy, and smoking at week 32 of pregnancy (all yes/no). The number of daily
cigarettes consumed during pregnancy was also collected. Maternal passive smoking
exposure was assessed at week 32 and specified by location: home, work, or in leisure
activities outside the home such as in bars, restaurants, and homes. The methodology
regarding information on tobacco consumption has been reported previously [56–58].

2.3. AGD

AGD was measured according to methods described in detail elsewhere [59] and
reported in our previous studies [34,35]. Vernier calipers were used to perform measure-
ments in increments of 0.1 mm by two trained pediatricians. We measured AGD from the
center of the anus to the posterior convergence of the fourchette in girls and from the center
of the anus to the junction of the smooth perineal skin with the rugated skin of the scrotum
in boys. The pediatricians faced the children and made independent measurements of
AGD using one digital caliper. To assess inter-examiner variability, pediatricians took
independent measurements of 10% of the entire sample using the same protocol. The
outputs did not differ substantially, so only one measurement was noted.

2.4. Urinary Cotinine Levels

Urine samples were collected during the third trimester in 100-mL polyethylene
containers and stored at −20 ◦C. One aliquot from each of the participants was analyzed
by the Public Health Laboratory of Bilbao (Spain). A competitive enzyme immunoassay
using commercial microplate test kits (OraSure Technologies, Inc., Bio-Rad Laboratories,
Hercules, CA, USA) was performed to determine salivary cotinine adapted for urine
samples using urine controls (0, 2.5, 10, and 50 ng/mL, Bio-Rad, Hercules, CA, USA).
Samples with urinary cotinine levels above 50 ng/mL were diluted. The technique was
validated using a certified reference material (EPA/NIST Reference Material 8444) to assess
the repeatability and reproducibility. The quantification limit was 4.0 ng/mL, and the
coefficients of repeatability and reproducibility were 7% and 10%, respectively [56].

2.5. Potential Confounders

The following maternal variables were considered potential confounders from the
findings of prior studies: age, pre-pregnancy weight (self-reported), education (primary,
secondary, or university), maternal social class (I–II (highest), III, or IV–V (lowest)), gesta-
tional age (weeks) at delivery, parity (1, 2, or ≥3), and pre-pregnancy BMI. Pre-pregnancy
BMI was obtained by dividing self-reported pre-pregnancy weight by height at week
12 and was categorized as underweight (<18.5 kg/m2), normal (18.5–24.9 kg/m2), over-
weight (25.0–29.9 kg/m2), or obese (≥30 kg/m2). Child covariates considered potential
confounders were height and BMI at 4 years.

2.6. Statistical Analysis

Demographic characteristics of the participants were expressed using counts and per-
centages for categorical variables and means and standard deviation (SD) for continuous
variables. Following the procedure developed by Swan and colleagues, we calculated
the anogenital index (AGI) as AGD divided by weight at age of examination [28]. Linear
regression models were constructed to estimate and quantify the association between AGI
at 4 years, which was treated as the dependent variable, and each one of the prenatal smoke
exposure variables, which were treated as the independent variables. Bivariate analyses
were conducted to identify the variables related to both AGI and prenatal smoke exposure,
and those with a p-value < 0.2 were considered potential covariates. For this bivariate anal-
ysis, differences between continuous variables were evaluated using Spearman correlation
coefficients, and differences between categorical variables were evaluated by x2 or Fisher’s
exact test, as appropriate. Differences between continuous and categorical variables were
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analyzed by t-Student’s t-test or analysis of variance for normally distributed continuous
variables and by the Mann–Whitney and Kruskal–Wallis tests for continuous variables
that were not normally distributed. Models were first adjusted by child height at 4 years,
maternal weight gain during pregnancy, and maternal pre-pregnancy BMI. Other potential
covariates were selected from the literature using direct acyclic graphs and selecting the
minimally sufficient adjustment set [60] (maternal age, gestational age at delivery, parity,
maternal education level, and social class). When the associations between maternal smok-
ing and AGI at 4 years was evaluated, the model was adjusted by the variables for passive
smoking and vice versa. To avoid overfitting, only covariates that modified the exposure
coefficient by 10% or more following forward stepwise regression were included in the
final model.

Cotinine level (log-transformed) was included in the models as a continuous variable
and as a categorical variable with 27 ng/mL as the cut-off point [56]. All statistical analyses
were stratified by child sex. Linear regression models were validated by testing the
normality, homoscedasticity, and independence of the residuals, and the variance inflation
factor was used to study the multicollinearity of the regression models.

For sensitivity analyses, we evaluated the association between AGI at 4 years and each
prenatal smoke exposure variable using the same adjusted model and including all statisti-
cally significant covariates for each child sex. We also analyzed the association between
cotinine levels a categorical variable and AGI at 4 years using various cut-off points [61].
Finally, we evaluated the association between maternal consumption of cigarettes dur-
ing pregnancy and AGI at 4 years to test a dose–response relationship. All analyses and
graphics were performed in R 3.6.2 (R Development Core Team, Vienna, Austria) [62], and
p < 0.05 was considered as statistically significant.

3. Results

Table 1 lists the characteristics of study participants. After excluding participants who
withdrew, were lost to follow-up, underwent abortions, miscarried, or did not have com-
plete exposure and outcome data, the analysis included 381 mother–child pairs (Figure 1).
The socioeconomic and anthropometric measures of the children included in the analysis
did not differ substantially from those of children who were excluded (n = 114, Table S1).
For male children, the mean maternal age was 31.9 years (range: 19–42 years) and mean
(SD) maternal height and weight were 162.4 (5.61) cm and 62.3 (11.31) kg, respectively.
Approximately 30% of mothers were overweight or obese, and 42% had a university educa-
tion. With regard to tobacco use, 28.5% were occasional or regular smokers at the beginning
of the pregnancy, but only 17.7% reported smoking at week 12 of pregnancy and 17.2% at
week 32. Among the women who reported smoking at the beginning of pregnancy, the
average number of cigarettes consumed per day was 13. This consumption was reduced
to eight cigarettes per day on week 12 of pregnancy and six on week 32. Half (51.5%) of
the women were not exposed to passive smoking during pregnancy, 36% were exposed to
one source, and 12.5% were exposed to more than one source. The mean maternal urinary
cotinine level was 351.1 ng/mL. The use of a valid cut-off point is important in a reliable
marker of tobacco smoking such as urinary cotinine that can discriminate nonsmokers from
regular or occasional smokers during pregnancy are crucial issues. In 74.1% of women,
urinary cotinine levels were under our cut-off point of 27 ng/mL (Figure S1). Descriptive
data were similar among female children (Table 1). No disorders or genital malformations
were detected in the 381 children. The mean AGD in boys was 33.92 (11.37) mm (range:
25–62 mm) and the mean (SD) AGI was 1.83 (0.63) mm/kg. In girls, the mean AGD was
17 mm (range: 13–90 mm) and mean AGI was 0.96 (0.27) mm/kg (Table 1).
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Table 1. Characteristics of mothers and children enrolled in the INMA-Asturias cohort study.

Variables Female Children (n = 180) Male Children (n = 201)

Child characteristics n % Mean (SD) n % Mean (SD)

AGD at 4 years (mm) 180 17.00 (4.89) 201 33.92 (11.37)
AGI at 4 years (mm/kg) 180 0.96 (0.27) 201 1.83 (0.63)
Birth weight (kg) 180 3.17 (0.48) 201 3.34 (0.45)
Birth length (cm) 180 49.23 (2.18) 201 49.99 (2.1)
Weight at 4 years (kg) 180 17.91 (2.78) 201 18.86 (2.98)
Height at 4 years (cm) 180 104.67 (4.53) 201 107.05 (4.45)
BMI at 4 years (kg/m2) 180 16.29 (1.79) 201 16.38 (1.79)

Maternal characteristics

Age (years) 180 31.73 (4.19) 201 31.96 (4.40)
Gestational age (week) 180 39.57 (1.68) 201 39.35 (1.52)
Pre-pregnancy BMI 180 201

Underweight (<18.5 kg/m2) 3 1.67 11 5.47
Normal (18.5–24.9 kg/m2) 122 67.78 129 64.18
Overweight (25.0–29.9 kg/m2) 43 23.89 42 20.90
Obese (≥30 kg/m2) 12 6.67 19 9.45

Weight (kg) 180 62.74 (11.11) 201 62.33 (11.31)
Height (cm) 180 162.62 (5.60) 201 162.48 (5.61)
Weight gain (kg) 176 13.36 (5.55) 195 13.99 (4.8)
Education 180 201

Primary 32 17.78 32 15.92
Secondary 83 46.11 84 41.79
University 65 36.11 85 42.29

Social class 180 200
I–II (highest) 35 19.44 54 27.00
III 37 20.56 44 22.00
IV–V (lowest) 108 60.00 102 51.00

Parity 180 201
One 106 58.89 126 62.69
Two 65 36.11 68 33.83
Three or more 9 5.00 7 3.48

Cotinine (ng/mL) 167 301.16 (806.92) 178 351.1 (838.64)
Cotinine 167 178

<27 ng/ml 129 77.25 132 74.16
≥27 ng/ml 38 22.75 46 25.84

Cigarettes/day at the beginning of pregnancy a 172 11.92 (9.01) 192 13.19 (10.04)
Smoking at the beginning of pregnancy 172 192

No 126 73.26 138 71.88
Yes 46 26.74 54 28.12

Cigarettes/day at week 12 of pregnancy a 169 6.74 (4.93) 192 7.74 (6.62)
Smoking at week 12 of pregnancy 171 192

No 145 84.80 158 82.29
Yes 26 15.20 34 17.71

Cigarettes/day at week 32 of pregnancy a 172 6.83 (5.12) 192 5.77 (3.61)
Smoking at week 32 of pregnancy 172 192

No 147 85.47 159 82.81
Yes 25 14.53 33 17.19

Passive smoke exposure during pregnancy 172 192
No exposure 96 55.81 99 51.56
One between home/work/rest/leisure 53 30.81 69 35.94
More than one between home/work/rest/leisure 23 13.37 24 12.50

a Mean and standard deviation were calculated only for those women that reported smoke in this period; BMI, body mass index.
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who had been exposed prenatally to tobacco. The difference in AGI means between 
children with mothers whose cotinine levels ≥ 27 ng/mL and < 27 ng/mL was 0.12 mm/kg 
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Figure 1. Flowchart of the study population in the present study from the INMA-Asturias cohort.

Figure 2 shows the AGI stratified by sex and its relationship with the different variables
of exposure to tobacco. In boys, but not girls, the AGI was slightly larger in those who
had been exposed prenatally to tobacco. The difference in AGI means between children
with mothers whose cotinine levels ≥ 27 ng/mL and < 27 ng/mL was 0.12 mm/kg
(95% confidence interval (CI): −0.10; 0.34). The difference in AGI means between children
with mothers who smoked at the beginning of pregnancy and those who did not was
0.13 mm/kg (95% CI: −0.06; 0.33). The difference in AGI means between children with
mothers who smoked at week 12 of pregnancy and those who did not was 0.20 mm/kg
(95% CI: −0.04; 0.45). The difference in AGI means between children with mothers who
smoked at week 32 of pregnancy and those who did not was 0.19 mm/kg (95% CI: −0.06;
0.44). However, in girls, we did not observe any differences in AGI means between these
groups (cotinine levels ≥ 27 ng/m vs. cotinine level < 27 ng/mL: 0.03 mm/kg (95% CI:
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−0.08; 0.14); mothers who smoke at the beginning of pregnancy vs. those who do not:
0.005 mm/kg (95% CI: −0.00; 0.09); mothers who smoke at week 12 vs. those who do not:
<0.001 mm/kg (95% CI: −0.11; 0.10), and mothers who smoke at week 32 vs. those who do
not: <0.001 mm/kg (95% CI: −0.12; 0.09)).

Int. J. Environ. Res. Public Health 2021, 18, 4774 7 of 14 
 

 

mm/kg (95% CI: −0.06; 0.33). The difference in AGI means between children with mothers 
who smoked at week 12 of pregnancy and those who did not was 0.20 mm/kg (95% CI: 
−0.04; 0.45). The difference in AGI means between children with mothers who smoked at 
week 32 of pregnancy and those who did not was 0.19 mm/kg (95% CI: −0.06; 0.44). 
However, in girls, we did not observe any differences in AGI means between these groups 
(cotinine levels ≥ 27 ng/m vs. cotinine level < 27 ng/mL: 0.03 mm/kg (95% CI: −0.08; 0.14); 
mothers who smoke at the beginning of pregnancy vs. those who do not: 0.005 mm/kg 
(95% CI: −0.00; 0.09); mothers who smoke at week 12 vs. those who do not: <0.001 mm/kg 
(95% CI: −0.11; 0.10), and mothers who smoke at week 32 vs. those who do not: <0.001 
mm/kg (95% CI: −0.12; 0.09)). 

 
Figure 2. The effect of maternal smoking and anogenital distance in children from the INMA–Asturias cohort at 4 years. 

Table 2 summarizes the variables affecting AGI in children. Maternal reported 
smoking at week 12 and at week 32 of pregnancy was associated with an increase of 0.31 
mm/kg (95% confidence interval (CI): 0.00, 0.63) in boys. We also observed a positive 
borderline statistically significant association between smoking at the beginning of 
pregnancy and the AGI (β = 0.20, 95% CI: −0.05, 0.46) in boys. In girls, we observed a 
marginal association between maternal urinary cotinine levels (continuous) and AGI (β = 
0.01, 95% CI: 0.00, 0.03). We did not identify associations with passive smoking exposure 
and AGI for either sex. 

  

Figure 2. The effect of maternal smoking and anogenital distance in children from the INMA–Asturias cohort at 4 years.

Table 2 summarizes the variables affecting AGI in children. Maternal reported smok-
ing at week 12 and at week 32 of pregnancy was associated with an increase of 0.31 mm/kg
(95% confidence interval (CI): 0.00, 0.63) in boys. We also observed a positive borderline
statistically significant association between smoking at the beginning of pregnancy and the
AGI (β = 0.20, 95% CI: −0.05, 0.46) in boys. In girls, we observed a marginal association
between maternal urinary cotinine levels (continuous) and AGI (β = 0.01, 95% CI: 0.00, 0.03).
We did not identify associations with passive smoking exposure and AGI for either sex.
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Table 2. Association between prenatal exposure to tobacco and anogenital index in 4-year-old children.

Female Children (n = 180) Male Children (n = 201)

β 95% CI p-Value β 95% CI p-Value

Active smoke exposure
Cotinine (continuous) 1 0.01 (0.00, 0.03) 0.07 −0.01 (−0.05, 0.03) 0.66
Cotinine (categorical) 2 0.06 (−0.05, 0.17) 0.30 0.11 (−0.18, 0.36) 0.45
Cigarettes/day at the beginning of pregnancy 2 0.00 (0.00, 0.01) 0.54 0.01 (−0.00, 0.03) 0.17
Smoking at the beginning of pregnancy 3 0.00 (−0.10, 0.10) 1.00 0.20 (−0.05, 0.46) 0.12
Cigarettes/day at week 12 of pregnancy 2 0.00 (−0.02, 0.02) 0.90 0.02 (−0.01, 0.04) 0.27
Smoking at week 12 of pregnancy 3 0.01 (−0.12, 0.13) 0.87 0.31 (0.00, 0.63) 0.05
Cigarettes/day at week 32 of pregnancy 2 0.00 (−0.02, 0.01) 0.85 0.02 (−0.03,0.06) 0.46
Smoking at week 32 of pregnancy 3 0.00 (−0.13, 0.13) 0.99 0.31 (0.00, 0.63) 0.05

Passive smoke exposure 4

One between home/work/rest/leisure 0.04 (−0.06, 0.14) 0.45 −0.13 (−0.33, 0.08) 0.23
More than one between home/work/rest/leisure 0.02 (−0.11,0.15) 0.81 −0.02 (−0.35, 0.32) 0.93

β: Regression coefficient; CI: Confidence interval. 1 Cotinine was log-transformed. Adjusted by height at four years, maternal weight gain
during pregnancy, pre-pregnancy BMI, mother passive smoke exposure during pregnancy. 2 Adjusted by height at 4 years, maternal weight
gain during pregnancy, pre-pregnancy BMI, gestational age (week), maternal age, social class, parity, mother passive smoke exposure
during pregnancy. 3 Adjusted by height at 4 years, maternal weight gain during pregnancy, pre-pregnancy BMI, gestational age (week),
maternal age, maternal education, social class, parity, mother passive smoke exposure during pregnancy. 4 Reference category: no exposure.
Adjusted by height at 4 years, maternal weight gain during pregnancy, pre-pregnancy BMI, gestational age (week), maternal age, maternal
education, social class, parity, and smoking at week 12.

4. Discussion

We studied the association between maternal smoking or exposure to passive smoking
during pregnancy and AGI in children at 4 years and found that maternal smoking during
the third trimester of pregnancy was associated with higher AGI in boys. To our knowledge,
this is one of the first epidemiological studies in the literature that assessed gestational
tobacco use and its effects on AGD.

Prenatal exposure to cigarette smoke is one modifiable cause of intrauterine growth
restriction [63]. In the INMA cohort, associations between prenatal exposure to maternal
smoking or maternal exposure to secondhand smoke and child BMI in the first 4 years
of life have been observed [64]. In addition, fetal growth has been shown to be restricted
by maternal smoking during pregnancy [65]. Tobacco use during pregnancy has been
linked to a longer AGD and small size at birth in female newborns [52], although without
correlating with the number of cigarettes smoked. However, another study reported that
shorter AGD was associated with body weight and length at birth [50]. Adjusting for
weight may restrict the use of AGD measurements, so AGD values should be normalized
when assessing exposure to compounds with endocrine-disrupting properties such as
cigarette smoke or persistent and non-persistent organic pollutants.

Fowler and colleagues reported that tobacco consumption during the second trimester
of pregnancy was associated with longer AGD in male newborns [50] and after birth [51].
Gestational exposure to tobacco is known to negatively affect reproductive health in men
(e.g., infertility, reduced testicular weight, and sperm count) [66,67]. Our findings are con-
sistent with those of Fowler et al., indicating that in the male fetus, there is a dysregulation
of masculinization just after the testosterone peak occurs [68]. The function of human fetal
Leydig cells during the second trimester of pregnancy is probably dependent on stimula-
tion via the chorionic gonadotropin/luteinizing hormone receptor; serum levels of human
chorionic gonadotropin peak around weeks 10–14 of gestation and then decline [68,69]. A
plausible explanation is that androgen-dependent development of the genital structure
may be altered in children of smoking women [51], suggesting that exposure to cigarette
smoke in utero may be associated with poor androgenic action in boys [52]. In the same
way, the increase in AGD we found in smoke-exposed boys may have been triggered
immediately after the peak time of androgen action.

Smoke-induced changes in AGD during the second trimester remotely seems to be
caused by direct changes in androgen levels, and tobacco consumption does not appear to
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affect fetal testosterone levels [67]. Nonetheless, the circulating testosterone levels could
not be the most effective indicator for measuring the androgen exposure to the external
genitalia given that androgen synthesis has been shown as a relevant alternative [70]. In this
regard, a more complete analysis of the circulating androgens and the effects of maternal
smoking in male fetus would be necessary to fully characterize the impact of smoking on
steroidogenesis. Otherwise, maternal smoking during pregnancy has an influence on the
fetuses’ AGD directly over interaction with the effects of androgens or other endocrine
systems. This can be through effects on androgen receptor expression or through activity in
the region of the external genitalia [71]. Consequently, alterations in hCG levels appear to
be associated with maternal smoking and be sex specific. Moreover, hCG has been linked
to adverse consequences that might be generated by some EDCs such as phthalates [72].
On the other hand, gonadotropins appear to play an important role in effects on AGD that
are not dependent on androgen as an intermediate. In addition, tobacco smoke contains
compounds that can act as activating ligands for aryl hydrocarbon receptor (AHR), such
as polycyclic-chromatic hydrocarbons, and studies in rodents have shown that these are
among the active substances that affect female reproductive development [73]. In the
same way, adverse effects in the human fetal ovary have been shown to be associated
with changes in fetal AHR signaling [74]. The effects of AHR stimulation have not been
established yet in tissues that respond to androgens, such as the external genitalia, and it
could be possible that the AHR system is involved in some way in the association between
tobacco use during pregnancy and altered AGI.

In pregnant women, tobacco use may lower estrogen levels and increase androgen
levels [75]. Placental aromatase regulates the conversion of testosterone to estradiol and
is inhibited by cigarette smoke, which therefore exerts an estrogenic effect [76,77]. In
girls, only one study reported that maternal smoking during pregnancy was associated
with longer weight-adjusted AGD [52]; these findings are in agreement with our analysis,
as we found that urinary cotinine levels were positively associated with the AGI in our
female dataset. This suggests that estrogens affect the development of the external genitalia
in women. The biological mechanism may be increased estrogenic activity and not the
androgenic effects seen in men. Prenatal exposure to some endocrine-disrupting chemicals
has been shown to affect AGD through estrogenic pathways [38]. We previously reported
that polychlorinated biphenyl 101 and dichlorodiphenyltrichloroethane and its derivates
increased the AGI [35], and another group showed that maternal exposure to bisphenol A
shortened the AGD in female newborns [37].

Several limitations should be noted. First, our information on tobacco use during preg-
nancy was self-reported and may not be reliable; although we validated the information
against urinary cotinine levels and observed a positive borderline statistically significant
association between cotinine levels and AGI in female children. By contrast, no such
association was observed in male children, but the regression coefficient was negative,
suggesting that a shorter AGI may be the result of exposure to other endocrine-disrupting
chemicals [28,34–36] and in contrast to what we observed when analyzing self-reported
smoking variables. Moreover, maternal smoking status was recorded during the third
trimester of pregnancy, which may have led to some misclassification of the exposure
early in pregnancy. Furthermore, it should be noted that we cannot evaluate the time
window of pregnancy with greater sensitivity. This is due to the fact that the pregnant
women’s exposure is essentially the same at weeks 12 and 32. Therefore, we can only
conclude that the differences in AGI observed in male children are a consequence of the
exposure during pregnancy. To sum up, the effects of the first and the third trimesters
are indistinguishable. Second, two pediatricians performed the AGD measurements, lead-
ing to possible variability in the results. Unfortunately, only one AGD measurement per
child was recorded. We tested inter-examiner reliability in 10% of samples and found no
substantial variability. Third, we do not have data on testosterone levels in the children
either prenatally or perinatally; to date, only a few studies have assessed the association
between AGD and hormone levels at birth [78,79] or later in childhood [80]. One study
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reported that testosterone and estradiol measured in cord blood were not correlated with
AGD [79], which is a finding corroborated by another study that suggested that AGD
is unaffected by androgens [78]. By contrast, maternal smoking during pregnancy has
been suggested to alter AGD through direct effects in androgen levels [50,51]. In addition,
factors other than circulating estrogen or androgens may be responsible for alterations in
the structure of external genitals [52], and autocrine/paracrine regulation may influence
the levels of maternal or fetal hormones [81]. Therefore, we hypothesize that the threshold
concentrations of some exogenous chemicals may account for the discrepancies in the
literature. However, our study has notable strengths: We measured AGD at an age that has
not previously been investigated, and our research used a well-regulated birth cohort. To
date, studies on gestational tobacco exposure focused on measuring AGD at birth [50–52].

5. Conclusions

Our findings provide evidence that prenatal smoke exposure is associated with larger
AGI in male children and are consistent with previous reports in the epidemiological
literature. AGI was longer in smoke-exposed male children, suggesting altered androgenic
signaling during the first and third trimester of pregnancy and during the gestational
window of masculinization that affects genital development.
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