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Introduction

HE story tells that a day between 214-212 BC, during the Second Punic War

between romans and carthaginians, Archimedes burnt the roman ships that were
attacking Syracuse by using mirrors as reflectors to focus sunlight on the ships and
set them on fire. Little information has reached the present days about Archimedes
and his life, and the veracity of this incident has been contested many times [1].
Be it a fictitious tale, or part of the Ancient History, the idea of focusing light has
inspired the creation of many artifacts and tools that have proven to be beneficial
during History, albeit for less dramatic applications, such as to gain sight of distant or
small objects, undistinguishable otherwise. Indeed, enhancing our visual capability
is the cornerstone of many technological improvements and scientific discoveries.
For instance, magnifying glasses and in particular the appearance of the first optical
microscopes in the 16'" and 17*" centuries boosted advances in biology and medicine,
improving the quality of live of human beings to this day.

Visible and infrared light are widely used for imaging and in other optical mi-
croscopy techniques, although only features similar in dimension, or larger, than the
wavelength of the illuminating light, can be distinguished this way, i.e., traditional
optical systems are limited by the diffraction limit [2]. To be observable, objects of
sub-wavelength sizes require techniques that overcome the diffraction limit by con-
fining light into sub-wavelength dimensions. Such extreme localization of light is



possible due to the interaction between light and matter at the nanoscale, which is
addressed by the field of Nanophotonics [3].

Sub-wavelength confinement of light can be achieved, for instance, using Surface
Plasmon Polaritons (SPPs), i.e., resonant electron density waves that are excited at
metal/dielectric interfaces as an hybridization of collective oscillations of conduction
electrons in the metal (surface plasmons) and incident electromagnetic (EM) fields at
visible and near-infrared frequencies [2,4]. Electrons in the metal and their behavior
under an external electromagnetic field have been addressed with different levels of
complexity within nanoplasmonics. For instance, within the so-called Drude model,
the optical response of the conduction electrons of a metal are described as a non-
interacting free electron gas. Despite its simplicity, this approach is widely used
in nanophotonics, as it provides good accuracy to describe the response at energies
below d-band excitations and allows for understanding the main trends in optical
spectroscopy of metals.

Drude model

In the frequency-domain, w, the relative dielectric permittivity of a metal,
€m(w), within the Drude model can be expressed as:

(.4.)2

i
em(W) = €00 G ) (1)
where v, is the damping coefficient that accounts for the losses in the metal,
€00 18 the background screening that accounts phenomenologically for the po-
larizability of bounded electrons (the damping related to these contributions
is not included in the Drude model) and w, is the plasma frequency of the
metal, which is related to the electron density of the metal, n, as:

ne?
wp =

(2)

E()m*’

with g¢ the vacuum permittivity, e the electron charge, and m* the effective
electron mass.

Propagating SPPs confine optical fields in the region near a flat metal/dielectric
interface extending a few tens of nanometers in the direction normal to the interface,
as sketched in Fig. 1. Although SPPs in a perfectly planar geometry cannot couple
to incoming light due to the mismatch in the momentum associated to light and
SPPs [5, 6], different strategies have been proposed to overcome this problem. For
instance, in scanning near-field optical microscopy (SNOM) a sharp metallic tip is
placed on top of the metallic interface [7]. Another technique consists in placing
fluorescent molecules near the metallic interface [8,9]. Another common solution to
overcome such momentum mismatch and excite SPPs is creating grated patterns in
a region of the metallic surface [10,11]. These strategies have been used to overcome
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Figure 1: a) Sketch of a Surface Plasmon Polariton (SPP) propagating at the metal-dielectric interface,
where the z-component of the electric field decays exponentially. b) Dispersion relation for a SPP (solid red
line) in comparison to the light cone dispersion (blue) for photons in free space. The horizontal black line
marks the SPP frequency, which satisfies em (wspp) = —eq4 [see Eq. (3)]

such momentum mismatch and excite SPPs.

Surface Plasmon Polaritons (SPPs)

For a planar metal/dielectric interface illuminated by a monochromatic plane
wave, the boundary conditions for the EM field at the interface lead to parallel
component of the wavevector of the propagating SPP at the metal/dielectric
interface k, = kspp [2,4] (see Fig. 1):

Em(w)eq w
em(w) +eq ¢’

3)

kspp =

where g4 is the relative permittivity of the dielectric, ¢ is the speed of light in
vacuum and kg = w/c is the electromagnetic plasmon wavevector in vacuum.
Complete theoretical definitions can be found in Ref. [2].

While propagating SPPs travel along a metal/dielectric interface, Localized Sur-
face Plasmons (LSPs) are confined at small nanoparticles (NPs) and can be excited
by direct illumination. The extra momentum needed to overcome the mismatch be-
tween the SPP dispersion relation and light is given by the finite geometry of the
NP. Under illumination, small spherical metallic NPs, such as the one depicted in
Fig. 2(a), show a plasmonic resonance that corresponds to the Dipolar Plasmon (DP)
mode of the spherical NP [see Fig. 2(b)], clearly apparent in the charge distribution
of Fig. 2(a). The dipolar pattern oscillates in time resonantly at the frequency of
the illumination, with a w/2 phase offset with respect to the excitation EM field,
producing a large enhancement (total field amplitude at each point normalized to
the amplitude of the incident field, |E/Ey|) and localization of the near fields around
the nanoparticle [see Fig. 2(c)]. Interestingly, the field is localized in a region with
dimensions much smaller than the wavelength of the incoming light. The plasmon



resonance frequency strongly depends on the size, shape, material and surroundings
of the NPs [12-15], which make them useful for designing sensitive nanodevices that
require optical responses with specific properties. Moreover, the strongly localized
fields by the SPPs and LSPs can be used to enhance light-matter interactions of
matter deposited nearby [16,17] inaccessible by other means.

Localized Surface Plasmons (LSPs)

For a small spherical NP with radius R much smaller than the wavelength
of light (R < \) the optical response can be calculated analytically within
the quasistatic approximation. For a metallic spherical NP with permittivity
€m(w), embedded in a dielectric medium &4, the dipole moment induced at the
nanoparticle by an electric field Eg is obtained from the NP’s polarizability [2],

P(w) = cqa(w)Eo(w), (4)
where
_ em(w) — &4
a(w) = 4ﬂ80R3m. (5)

The DP resonance is excited for a frequency wpp that satisfies the condition
em(wpp) = —2e4. If the metal is modeled as a lossless Drude metal without
background screening, v, = 0 and €5, = 1, in Eq. (1), we obtain:

Wp

w = — .
bP V1+2¢eq4

Therefore, if the surrounding medium is vacuum (¢4 = 1), the energy of the
DP in Eq. (6), wpp, becomes wpp = wp/\/g, which is accurate for perfect
Drude-like metals. The scattering and absorption cross sections are given by,

(6)

4
Tral) = o-la(@)P, (7
Oabs(w) = kIm[a(w)], (8)

with k = w/c,/eq the wavenumber of the incident EM wave. The scattering
and absorption cross sections can be found by comparing the powers dissipated
into absorption and scattering with the intensity of the incident illumination.
Their sum provides the extinction cross section, Cext(w) = Ogca(w) + Taps(W).

In the case of noble metals such as gold (Au) and silver (Ag) there is a discrep-
ancy between the theoretical value predicted by Eq. (6) and the experimental value
mainly due to the contribution to the response of these materials of the background
polarizability of bound d-electrons. The optical properties of noble-metal NPs are
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Figure 2: a) Sketch of the charge density corresponding to a Localized Surface Plasmon (LSP) excited by
an incoming plane wave with amplitude Ey and momentum k and the corresponding induced dipole moment
p. b) Extinction cross section oext of such a spherical Au particle as a function of the illumination frequency
w. ¢) Near-field enhancement (|E/Eg|) at the wavelength of the DP resonance. d) Dielectric function of
gold from experimental data [18] and Drude model.

well reproduced when the contribution of these bound electrons and the damping
of the material is included in the response[see Fig. 2(d) for the contribution of such
bound electrons onto the metal dielectric function &, (w)].

Plasmonic nanoparticles are referred to as optical nanoantennas due to their ca-
pability not only to localize light but to also scatter it effectively into the far field.
These nanoantennas have sizes that are in the range of a few nanometers to hundreds
of nanometers. One of the many challenges in plasmonics has been the fabrication
of NPs with high control of their shape, composition and positioning on a substrate.
Indeed, the improvement and exploration of new fabrication techniques has received



much effort and attention over the last decades, allowing remarkable precision in top-
down fabrication approaches [19-21], and large versatility in bottom-up ones [22-24].

Such control in the properties of plasmonic nanostructures is at the core of
nanophotonics, mainly due to the high dependence of the near-field localization on
the geometry of the metal/dielectric interface. Indeed, even if the incoming light
is out of resonance with respect to the plasmon, a nanostructure can exhibit non-
resonant field enhancement at sharp metal tips or NP vertices. This phenomenon,
known as the “lightning rod” effect (LRE) in electrostatics, occurs due to an accumu-
lation of charge at sharp metallic endings, i.e., the equipotential lines get closer from
each other near sharp geometries, which implies larger EM fields in such regions [2].
The LRE, along with the field confinement due to plasmon resonances, is exploited
for instance in scattering-type scanning near-field optical microscopy (s-SNOM) [25].

Further field enhancement and localization of the EM field can be reached by cou-
pling of plasmons in adjacent metallic nanostructures due to Coulomb interaction.
Indeed, nanostructures separated by gaps of ~ 1 nm or smaller show so-called elec-
tromagnetic “hot-spots”, provide increased field enhancement at the gap due to the
coupling between the plasmons of adjacent nanostructures. The optical response of
such coupled nanostructures, i.e., a dimer in the case of two nanoparticles, strongly
depends on the gap length and morphology, offering a platform for high spectral
sensitivity. In this sense, the great field intensities confined into such nanogaps, also
named nanocavities, can enhance optically-driven processes.

Nanocavities are formed by two NPs in close proximity, in which the Coulomb
interaction between the charges associated to the individual LSP modes of each
particle produce a hybridization of the modes forming a Bonding Dimer Plasmon
(BDP), hybridized modes produced in a similar way as atomic orbitals hybridize
when forming molecules [26-28]. Charge is accumulated at facing metallic surfaces
across the gap, as shown in Fig. 3(a), leading to significant increases of the localization
and enhancements of the near field at the gap, as compared to the single particle case
[29, 30], as observed in Fig. 3(b). Moreover, due to the strong Coulomb interaction
between these charges the spectral position of the BDP resonances is very sensitive to
the gap separation distance [30,31], turning the gap nanoantennas into very sensitive
plasmonic rulers.

When the particles are at physical contact electric charge can be transferred
between two NPs and Charge Transfer Plasmon (CTP) modes can be excited. More-
over, CTPs can also be excited without direct contact if electrons can still flow from
one NP to another by other mechanisms, such as electron tunneling [32, 33].

An alternative to dimers for obtaining nanometer-scale confinement of light can
be found in structures such as the NanoParticle-on-Mirror (NPoM), which consists of
a metallic nanoparticle placed on top of a metallic substrate and separated by a thin
spacer-film in-between to prevent conductive contact, creating a nanogap between the
NP and the substrate [see Fig. 3(c)]. NPoM structures show great stability and offer
a suitable platform to perform molecular spectroscopy experiments onto molecules
deposited in the cavity.

One of the most used molecular spectroscopic techniques is Raman scattering,
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Figure 3: a) Dimer formed by two spherical nanoparticles showing charge accumulation, ogyr, at the
regions close to the gap. b) Charge accumulation at the gap produces large localization and enhancement
of the near field |E|/|Ep|. <) Nanocavities can also be formed by placing a nanoparticle on top of a
metallic substrate, separated by a thin spacer to prevent conductive contact and create a nanogap. d) Atomic
protrusions at the nanogap can further increase the localization and enhancement of the near field at the
nanogap due to a lightning rod effect.

with applications in archaeology [34], medicine [35], drug detection [36] and chemical
sensing [37]. Raman scattering was discovered by C. V. Raman in the 1920s [38]
and describes an inelastic light-scattering process in which an incident photon (light)
excites a molecule to a virtual state, which can relax back to a different state emitting
a photon of smaller energy with the production of a vibration (Stokes process), or
alternatively it can relax to a state emitting a photon of larger energy, while absorbing
a vibration (anti-Stokes process), Raman scattering complements Lord Rayleigh’s
scattering theory, which describes an elastic process of light.



Raman Scattering

An incident photon of energy hig can excite a molecule from the vibrational
ground state Ey to a virtual state®, which can relax back to the ground state
emitting a photon of the same energy hvy (elastic process), or to another state
of different energy (inelastic process) [see Fig. 4(a)]. The former case is known
as Rayleigh scattering, being the dominant process.

Raman scattering is an inelastic process in which the molecule relaxes to a
different state and therefore emits a photon with different energy to that of the
incident photon. The most common situation is a relaxation to an excited
state of energy Foy + hv,, where hv,, is the energy of a vibration, which,
following energy conservation, is accompanied by the emission a photon of
energy hvg — hvy,, i.e., the emitted photon if of lower energy than the incident
photon, and is known as Stokes scattering.

An inverse situation can also happen, i.e., a molecule can initially be in an
excited state of energy Fy + hv,,, and after excited to a virtual state, the
molecule can relax to a state of lower energy, such as the ground state Ej.
This process, known as anti-Stokes scattering, is accompanied by the emission
a photon of higher energy than the incident photon (hvy + hvy,).

%A very short-lived, unobservable quantum state, which is an intermediate state in a
multi-step process that mediates otherwise forbidden transitions, as in Raman scattering.

In Raman scattering, the difference in energy of the scattered light from the in-
cident light corresponds to the difference in energy of the vibrational states of the
probed molecule. As a molecule can have multiple vibrational modes, the scattered
light can have different wavelengths, each corresponding to a Raman scattering pro-
cess of a different vibrational mode. Thus, the resulting spectrum is very useful to
identify vibrational modes and functional groups within a molecule, offering a tool
to reconstruct the chemical structure of the molecule under study. The Raman scat-
tering spectrum of a molecule is therefore considered as the vibrational fingerprint of
such molecule.!

Anti-Stokes scattering requires the molecule to be in an excited state. Indeed,
for zero temperature 7' = 0 K all molecules are considered to be in the ground state,
so no anti-Stokes scattering can be observed in those circumstances. Experiments
performed at room temperature typically show a dominance of Stokes scattering as
molecules are mainly at the ground state [see Fig. 4(b)]. Moreover, the Stokes/anti-
Stokes ratio is used to measure the temperature of the molecule if one assumes a
Bose-Einstein distribution of vibrational states.

Nevertheless, Raman scattering has a big drawback, which is its small cross sec-
tion, with typical Raman cross section having values often < 1072% m2. The viability
of Raman scattering as a spectroscopy technique is greatly improved by exploiting

I'Raman spectra are typically plotted with an z-axis of Raman shift (cm™1) calculated as 1/Ao —
1/ARaman Where Ag is the wavelength of the incident light and Agaman the wavelength of the emitted
Raman light.
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Figure 4: a) Energy-level diagrams in Rayleigh scattering (left), Stokes Raman scattering (center), and
anti-Stokes Raman scattering (right), for a molecule with ground state energy with £y and excited state with
energy o +hvm. b) A typical SERS spectrum (Raman intensity vs Raman shift) at 633 nm laser excitation is
shown for rhodamine 6G molecules (RH6G) with several Raman peaks on the Stokes side and their (weaker)
anti-Stokes counterparts. Figure adapted from [39]. ¢) Raman (non-SERS) and SERS spectra at 633 nm
laser excitation for RH6G. The vertical intensity axis is in arbitrary units but its is the same for both spectra.
Bottom spectrum corresponds to the signal of ~ 7.8 x 105 RH6G molecules with 400 s integration time, while
top spectrum corresponds to the signal from a single RH6G molecule under the same experimental conditions
but with 0.05 s integration time, implying an amplification of the Raman signal by an enhancement factor of
~ 7.3 x 10%. Figure adapted from [39]. d) Sketch showing the electronic Raman scattering process in metals.
Figure adapted from [40].



the enhancing effect of a plasmonic nanoantenna, which improves the performance of
Raman scattering from molecules deposited at the near field of antenna resonances.
This happens, for instance, when molecules are located in the near field of a nanocav-
ity, which enhances light emission from the molecules, a technique known as Surface
Enhanced Raman Scattering (SERS) [41]. Indeed, as the Raman scattering process
scales with the 4** power of the local EM field, the plasmonic field can lead to SERS
enhancement factors of ~ 1019 [see Fig. 4(c)].

The near field in nanocavities can be further enhanced and localized by the pres-
ence of atomic protrusions, giving rise to an atomic-scale lightning rod effect and
reaching subnanometric light localization in the so-called picocavities, which we in-
troduce in Chapter 2. Picocavities can boost the coupling of photons with electronic
transitions of single emitters [42] or with vibrations of a molecule in optomechani-
cal interactions [43]. Moreover, the large field gradients around picocavities break
the symmetry rules of vibrations in molecules, opening the path to probe forbidden
molecular transitions in SERS, appearing as additional sharp peaks in the SERS
spectra [43].

Apart from the additional sharp peaks when a picocavity is formed in a nanocav-
ity, there are additional spectral features that are often observed in the SERS spectra.
In particular, broad background signal increases occurring on a timescale of ms have
been observed in the literature [44-48]. The background signal of SERS spectra has
been addressed as inelastic light scattering due to an electronic Raman scattering
(ERS) process in the hosting metal, similar to molecular Raman scattering, but for
electrons undergoing transitions within the Fermi sea of the metal [see Fig. 4(d)]. We
give further details about this processes in Chapter 3.

Another possibility to see at the nanoscale, or to even to resolve atoms, is to
produce matter excitations using swift electrons as probes. Since the first prototype
in Transmission Electron Microscopy (TEM) was demonstrated by Ernst Ruska and
Max Knoll in 1931 [49,50], TEMs have become one of the most important tools in
modern science and have been crucial in many discoveries made in physics, chemistry
and biology during the 20th century [51,52].

Improvements in electronics have allowed the generation of tightly focused, atom-
sized electron beams that scan the sample at high rates, obtaining images with atomic
resolution. Sub-Angstrom resolution imaging is possible with the current state-of-
the-art aberration-corrected scanning transmission electron microscopes (STEM) [53,
54], which can capture the diverse signals emerging from the interaction of the fast
electron with matter (e.g., electromagnetic radiation, secondary and Auger electron
emission) correlated with the well-controlled position of the electron beam at the
various detectors attached to the microscope. Therefore, STEM represents a versatile
technique for spatially-resolved analysis of materials at the atomic scale.

Electron probes transmitted through or near a sample lose a small fraction of
their initial energy (and momentum) as a results of the interaction with the sample.
The probability to lose such energy is directly related to the excitations produced
by the probe in the sample [see Fig. 5(a)]. An spectral analysis of the electron
energy loss (EEL) probability serves to identify matter excitations in a broad energy
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Figure 5: a) Schematics of an electron beam interacting with a sample (a nanoparticle) in aloof geometry,
where we show the main terms describing the interaction between the electron beam and the sample. b)
Qualitative overview of the major excitations that contribute to an electron energy loss probability, I'ggrrs,
spectrum over a wide loss energy, w (eV) range. Plasmons are excited in the range of a few eV. Figure
adapted from [60].

range, which makes electron energy loss spectroscopy (EELS) an important analytical
technique in STEM. For instance, EELS can be used to detect core losses at high
energies (from approximately 50 €V up to keVs) coming from excitations of electrons
in inner atomic shells [55, 56], which provide chemical information correlated with
atomic-scale imaging [57-59]. On the other hand, at low energies (typically below
50 eV) valence electronic excitations, interband electronic transitions and lattice or
molecular vibrations can appear in EEL spectra [see Fig. 5(b)].

Within the framework of classical electrodynamics a fast electron beam can be
described as a point-like charge at position r.(t) = ro+ vt with rq the initial position,
v its velocity and evolution in time ¢. The field created by the fast traveling electron
acting on a nanostructure gives rise to an induced EM field, [E™(r,t), B™(r, )],
that acts back on the probing electron. Within the classical description, these EM
fields exert an EM (Lorentz) force F(r,t) = —e[E™(r,t) + v x B™(r,#)] on the
probing electron of charge e; which is responsible for the energy loss of this probing
electron. The energy loss can be evaluated by integrating the the force along the
electron trajectory [61,62]. For highly energetic probing electrons, it is assumed that
the recoil due to the perpendicular force is negligible [63], and therefore the electron
energy loss W can be expressed as:

W=e [ div-E™[r.(t),1] (9)

where r.(t) is the position of the probing electron.

Within the quasistatic approximation, which we use in Chapters 4 and 5 of this
thesis dedicated to EELS, the electron energy loss W can be expressed as (atomic
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units are used e = h =m, = 1):

o 1 > > ,aqb(r,w)
W—%[mdwﬁmdziaz

where the potential in frequency domain w, ¢(r,w), satisfies E™d (r,w) = =Vo(r,w).
Integrating this expression by parts and taking into account that the induced poten-
tial created by a nanoparticle vanishes at infinity, ¢(z,y, £00) — 0, and the condition
p(r,w) = p*(r, —w), and therefore, ¢(r,w) = ¢*(r, —w), we finally obtain

1 o0 o0 X ,
W = —/ dww/ dz'Im{ —o(r',w)e ? /”}. (11)
™ Jo —0o0

efiwz'/v. (10)

z=z'

Electron energy loss probability

The probability for an electron to lose energy fiw, I'sgrs(w), the so-called
electron energy loss probability, is defined according to [61]:

W = / dwaEELs(w), (12)
0

Thus, the electron energy loss probability is given by,

FEELs(w> = % /OO dz’Im{ — (ﬁ(r/’w)e_iwz’/v}. (13)

The evanescent field created by the fast electrons can efficiently couple to plas-
mons in the energy range of a few eV. Interestingly, this evanescent nature of the
broadband electromagnetic field associated to the fast probing electrons in STEM-
EELS brings the possibility of exciting “dark” plasmons that are not possible to
access with conventional light-spectroscopy techniques. Characterization of the near
field, which is naturally accessible by the fast electron probes [64], is often crucial for
understanding the behavior and functionality of plasmonic nanostructures.

The use of EELS to investigate plasmonic excitations and nanoplasmonic struc-
tures is widespread nowadays. It is worth mentioning that the identification of bulk
plasmons [65,66] and the discovery of SPPs in the 1950s and 1960s [61] are directly
linked to EELS experiments with broad electron beams interacting with metallic foils
and interfaces [67,68]. Studies at that time were typically performed with a broad
(unfocused) beam and devoted to momentum-resolved EELS, as such measurements
can be related to the dispersion of the excited modes.

In the last two decades STEM-EELS has witnessed several technical improve-
ments [69-71] that have enabled sub-nanometer resolution [53,72], and sub-eV en-
ergy sensitivity [73]. Such progress has opened the possibility for characterization of
novel materials and nanostructures [54,74], vibrational spectroscopy with nanometer
resolution of phonons [56,75-78] or characterization of biomaterials with low energy
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beams and radiation damage reduction [56,79,80]. The aforementioned improve-
ments have allowed to perform single-NP EELS experiments with NP sizes below 10
nm [81-86] with sub-Angstrom resolution.

In recent years the size-dependent shifts observed in the resonance energy of the
LSPs in such small metallic NPs have received considerable attention in the literature
[82-84, 87-89]. Moreover, the increased resolution obtained for the experimental
setups has motivated the development of a wide variety of theoretical models to
account for specific quantum effects in the properties of LSP resonances, such as
electron confinement [90], electron spill-out at the interfaces [31,91-93], non-local
effects [94,95] in the dielectric response, modification of local environments [86], or
activation of quantum tunneling across subnanometer interparticle gaps [33,87,96].
Nevertheless, the faceted shape of such small NPs and the influence of atomic-scale
features on EEL spectra, has been usually neglected by considering the NPs to have
spherical shape.

Apart from the excitation of LSPs confined to the surface of metallic NPs, elec-
tron beams can excite longitudinal pressure waves of the electron density within their
volume, i.e., confined bulk plasmons (CBPs) [94]. CBPs were first observed exper-
imentally in thin-films in 1971 in Ag [97] and in K [98] using optical spectroscopy.
Moreover, they have been also observed more recently in Mg films down to three
atomic monolayers using core-level photoemission [99]. Within EELS, CBPs have
been observed experimentally for a wide range of structures and materials, includ-
ing Ge nanorods [100], Bi nanowires [101], Bi NPs [90,102], and Al nanodisks [85].
Theoretically, CBPs arise naturally within hydrodynamic models of the response of
the electron density at the target sample, which accounts for the dynamical screen-
ing of the electrons in the target sample, as opposed to the local dielectric response
approximation. Nanostructures with at least one finite dimension can confine the vol-
ume oscillations of the charge density in such dimension producing standing waves.
For instance, theoretical studies for cylinders [103-105] show excitation of CBPs for
penetrating probing electron trajectories. In this thesis, we explore the interaction
between noanometer-scale matter and electromagnetic sources, such as light and elec-
tron beams, with a special focus on the influence of atomic-scale features present in
small metallic nanoparticles and nanocavities.

In Chapter 1 we introduce the numerical methods used for the description of the
optical response of plasmonic nanostructures and the excitations: (i) the Boundary
Element Method (BEM), a local response method that assumes the media to be
continuous and homogeneous, as well as bounded by sharp interfaces, (ii) a modified
Discrete Dipole Approximation (DDA) in which the atoms composing the nanostruc-
tures are described as dipoles, and (iii) ab initio atomistic Time-Dependent Density
Functional Theory (TDDFT) which includes the atomistic structure and quantum
effects in the response of the plasmonic nanostructure.

Using the aforementioned methods, in Chapter 2 we explore the optical response
and near-field localization at Na nanometer-size NPs (clusters of 380 atoms) that
present atomistic features such as vertices, edges and facets. The presence of such
atomistic features allows for localizing and confining the near field down to subnano-
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metric dimensions [106], well below the underlying plasmonic background, pushing
the spatial features of the induced near fields below the limit imposed by nanocav-
ities, and thus reaching the realm of picocavities. By adopting a sharp boundary
interface which resembles the electronic density profile of the corresponding atom-
istic distribution within a plasmonic structure, we show that classical approaches
can faithfully reproduce the properties of the near field induced at the surface of
these NPs, including the subnanometric confinement of the field. We identify the
extra localization of the field as a non-resonant atomic-scale lightning rod effect that
enhances the plasmon-driven near field, and propose a simplified local model to ad-
dress it. Moreover, we extend this concept to cover the influence of picocavities
in nanogaps, obtaining a good agreement between quantum and classical models of
the response in these extreme situations. The quantum description of these optical
picocavities at the full atomistic level reveals the importance of atomic-scale fea-
tures, although such a detailed description is limited by computational demands,
which make them unfeasible in large nanostructures. The simplified local classical
approach proposed in this thesis allows for addressing the presence of such picocavi-
ties in larger nanostructures, thus allowing standard methods of electrodynamics to
tackle the optical response in this challenging regime [107].

In Chapter 3 we discuss the emission of transient broadband spectral features
in SERS spectra obtained for NPoM structures hosting molecules at the nanogap.
We term these events of inelastic light scattering “flares”, and provide a conceptual
framework to effectively address their optical properties. We analyze flares observed
in experimental SERS spectra obtained within the group of Prof. Jeremy J. Baum-
berg at the University of Cambridge. We propose a model of flares based on the
dynamic restructuring of atoms at transient defects, such as twin planes and grain
boundaries, which leads to localized changes of the plasma frequency of the metal,
inducing a stronger electric field within the metallic NP and thus an increase in the
background ERS signal.

As in optical spectroscopy, discussed in Chapter 2, ab initio atomistic TDDFT
also provides an appropriate framework to consider quantum effects in a complete
manner including the role of the atomistic structure in EELS. In Chapter 4 we study
the influence of atomic-scale features on the EEL spectra in small Na nanoparticles
using TDDFT and compare the results with those obtained within classical descrip-
tions which reproduce the atomic faceting of the NP by introducing sharp surface
boundaries, as a way to address the influence of subnanometric features in EELS. We
prove that these atomistic features reveal their footprints in EEL spectra, showing
great sensitivity to the relative orientation of the NP with respect to the electron
trajectory and departing from the spectra of a typical spherical nanoparticle. More-
over, we identify the excitation of LSPs and CBPs in the EEL spectra, the latter
only occurring in the case of penetrating electron beam trajectories, and study their
dependence on the impact parameter of the incident electron beam.

The footprints of the CBPs observed in the TDDFT spectra presented in Chap-
ter 4 are further explored in Chapter 5, using a linear Hydrodynamic Model of the
response that takes into account non-locality. We obtain an impact parameter depen-
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dent semi-analytical expression for the EEL probability of a spherical NP, including
penetrating trajectories. Such model allows for a clearer analysis of the dependence
of CBPs on parameters such as the NP size, electron beam velocity and impact pa-
rameter, which we exploit to analyze the EEL spectra in spherical Na NPs. We show
that the energy shifts in the main peaks corresponding to bulk plasmons observed
experimentally for Al disks [85] are ruled by similar symmetry arguments to those
applied to LSP modes.

The contribution of quantum and classical models to the optical response in
plasmonic nanoantennas and nanocavities showing atomic-scale features is proven
to be an adequate strategy to unveil novel optical fingerprints in such structures.
This thesis thus offers an initial step to address picophotonics in the framework of
optical and electron spectroscopies.

15






Numerical Methods

LASSICAL electrodynamics describes the optical response of matter using the

macroscopic formulation of Maxwell’s equations and corresponding boundary
conditions at the interfaces of an inhomogeneous system. It is commonly assumed
that the materials’ response to external electromagnetic excitation sources is local
in nature but at the nanoscale this description shows limitations. Quantum effects
emerge at the nanometer scale as the atomistic structure and wave nature of the
constituent electrons play a major role in the response.

In this chapter we present the numerical methods used to obtain the results
presented in this thesis. First, in Sec. 1.1, we provide the main ingredients of the
Boundary Element Method (BEM), a local response method that assumes the media
to be continuous and homogeneous, as well as bounded by sharp interfaces. These
surfaces are discretized and boundary conditions are solved numerically to obtain the
response of the nanostructures to external electromagnetic stimuli, including light and
electron beams. Layered structures require a special treatment within BEM, which
is also described in this chapter. This approach is used to describe nanoparticles on
top of surfaces as considered in Chapter 3. BEM is the main tool in this thesis and
was used to obtain the results presented in Chapters 2 to 4.

Furthermore, in Sec. 1.2, we summarize the Discrete-Dipole Approximation (DDA),
a local response method in which matter is considered to be composed of polarizable
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1.1 Boundary Element Method (BEM)

units which respond as discrete dipoles to an external electromagnetic field. This
method was used to obtain some of the results presented in Chapter 2.

Last, in Sec. 1.3, we briefly introduce the Time-Dependent Density Functional
Theory (TDDFT) used to calculate the plasmonic response of Na clusters to light
and electron beam excitations, as used in Chapters 3 and 5. This theory allows us
to compare predictions of modified local and non-local response models with those
of a quantum model which accounts for many-body dynamical screening and general
quantum effects.

Analytical methods developed in this thesis to account for nonlocal effects in the
plasmonic response of spherical nanoparticles are treated separately and included in
Chapter 5.

1.1 Boundary Element Method (BEM)

The classical electromagnetic interaction of external sources with matter can be de-
scribed by Maxwell’s equations, and in the presence of arbitrarily shaped abrupt
dielectric interfaces, their solution can be expressed in terms of surface integrals that
involve surface charges and currents acting as sources of the induced electromag-
netic field. The boundary element method (BEM) [108] introduced in this section
is based on finding self-consistently those interface charge and current distributions
for a given external field. We use the Matlab implementation of this method to
simulate the plasmonic response of metallic nanoparticles (MNP), using a boundary
element method (BEM) approach (MNPBEM) developed by Hohenester et al. [109].
Macroscopic Maxwell’s equations in frequency-domain can be expressed as?,

4 .
VxH+ikD =75, (1.2) VxE-ikB=0, (1.4)
C

where k = w/c¢, w being the angular frequency and ¢ the speed of light, D = ¢E is
the electric displacement field, B = pH is the magnetic induction, o is the charge
density and j is the electric current density. The dielectric function e(r,w) and the
magnetic permeability u(r,w) might depend on space r and frequency w in the local
response approximation. The last two equations [Egs. (1.3) and (1.4)] allow us to
write the electric and magnetic fields E and H in terms of scalar ¢ and vector A
potentials as,

2We use Gaussian units.
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Figure 1.1: Schematic representation of the elements involved in the boundary element method (BEM).
The interface (black solid line) separates medium 1 from medium 2. We chose the interface normal ns (black
solid arrow) at point s to be directed towards medium 2. The interaction between two points in a given
medium j is described by the Green’s function G; (dashed arrows), and the field at position r is expressed
by the sum of the external sources (located at r’) plus a contribution from the boundary charges and currents,
o;(s) and h;(s), respectively, that account for the influence of any external and induced sources beyond the
boundary surface.

1
E=ikA—V¢, (15 H= VxA (16

Adopting the Lorenz gauge,
V- A =ikeud, (1.7)

the first two equations [Egs. (1.1) and (1.2)] can be recast as two decoupled wave
equations for ¢ and A,

(V2 1 k2ep)p = 47r<§ + 05), (1.8)
(V24 Fep)A =~ (uj + m), (19)
where,
oy = %D : vé, (1.10)
m = —%[iwqﬁV(eu) +eH x Vi, (1.11)

are the charge density and current density respectively. These expressions are valid
for inhomogeneous media where dielectric functions e(r,w) and magnetic permeabili-
ties p(r, w) change in space. For abrupt interfaces separating two homogeneous media
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1.1 Boundary Element Method (BEM)

with frequency dependent response functions [e1(w), u1(w)] and [e2(w), pa(w)], the
charge densities o, and current densities m only contribute at the interface, and
they can be understood as extra charges and currents localized at the surface, which
originate from the discontinuity of € and p at the boundary. While m cannot be
considered as a physical current in a general basis (it is not parallel to the interface,
and in particular for nonmagnetic materials it is perpendicular to the interface?), o
is related to the surface polarization charges. Instead of using s and m, the inter-
faces are separated into two parts (inside and outside the boundary, defined by the
normal vector n,) and effective surface charges o; and currents h; are introduced in
order to satisfy self-consistently the appropriate boundary conditions at the interface
(see Fig. 1.1).

The general solution of Egs. (1.8) and (1.9) that vanishes at infinity for r inside
medium j is written as,

1 / ! /
60 = 15 / ' G (jr — 1'|)o(r’) + /S 056l s ) (1.12)
A5 = ) [y =i + [ dsGe-shigs). (113)

J

Here S; refers to the boundary of media j = 1,2. Moreover,

, eikj\rfr'\
Gj(lr —1'|) = ar— (1.14)

is the Green’s function that satisfies the wave equation,
(V2 4+ )G (Jr — v']) = —4x8(Je — ') (1.15)

in medium j, and k; = k,/gj;, with Im{k;} > 0. The first integrals on the right
hand side of Eqgs. (1.12) and (1.13) satisfy Egs. (1.8) and (1.9) outside the interface
where 0, = 0 and m = 0. The additional integrals are relevant at the interface, as
they include the effects of o5 and m and compensate the discontinuity of the Green’s
function at the interface. Thus Egs. (1.12) and (1.13) are solutions of Egs. (1.8)
and (1.9) if the boundary charges and currents o; and h; are chosen to satisfy the
customary boundary conditions. Moreover, there is some freedom when choosing o
and hj, i.e., one can choose them in such a way that the field induced in medium
J is just produced by charges lying in the side of the boundary S; facing medium
J (which is in general the implementation used in the MNPBEM Toolbox [109-111]
used throughout this thesis), or by the whole set of interface charges at both sides.

3For an abrupt interface where the interface normal ns points towards medium 2 (see Fig. 1.1,
we have 4mos = (— - —)ns -Dés, and 4mm = [iw(e1p1 — e2p2)dns + (w1 — p2)cH X nglds,

where 5 is a surface Dirac delta ¢ function placed at the interface. It is straightforward to see
that in general, m is not parallel to the surface, and in particular for nonmagnetic materials it is
perpendicular to the surface.
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The numerical implementation to calculate the charge densities o; and current
densities h; which meets the boundary conditions of Maxwell’s equations relies on
the discretization of the interface integrals into contributions evaluated at a finite
number (N) of discrete points at the interface. The external sources and the charge
and current distributions (o;, h;) are assumed to have very small variations within
contiguous discretization elements, so that they are considered constant within each
finite element. This reduces the problem to a system of equations where the operators
can be approximated by matrices of dimension N x N. In particular, the surface
integrals become sums of boundary elements, ASy:, as:

/ Gj(Sl — S/)O'j(S/)dS/ = ZGj,ll/o'j,l/ASl/ (116)
Sj v

where indices [ and I’ refer to the Ith and [’th discrete elements, respectively.

Matrix notation will be adopted from now on, which implies a summation over
the surface elements for matrix-vector products such as Gy o;.. The potentials inside
and outside the boundaries are therefore given by,

¢1 = G101 + G1209 + 7 (1.17)
¢2 = G202 + Goo1 + 95 (1.18)
A = Giihy + Giohy + AT (1.19)
Ay = Gaohy + Go1hy + AT, (1.20)

where ¢§Xt and A;Xt are the potentials of the external excitation. Here G1; connects
elements of the inner boundary, Gao connects elements of the outer boundary, and
G12 and G271 connect elements from the inner to the outer boundary and vice versa. In
Figure 1.2(a) the case of a sphere formed out of two hemispheres of distinct materials,
labelled II and III surrounded by medium I, is shown to illustrate the connectivity of
the Green’s functions. Surfaces Sa, Sp and S¢ define the interfaces separating the
media, with normal vectors na, ng and n¢ defining the inside and outside of each
interface, respectively. We also show the scheme representing the Green’s functions
as matrices in Figure 1.2(b). Each matrix can be subdivided into blocks that connect
the elements of different interfaces, e.g., the only nonzero elements in Go; are those
connecting the inner elements of interface Sp with the outer elements of interface
Sc, i.e., GSB.

The boundary conditions of the electromagnetic fields, i.e., the continuity of the
tangential component of the electric field and the normal component of the magnetic
induction, along with the Lorenz gauge condition given in Eq. (1.7), imply the con-
tinuity of ¢ and A. Thus, the scalar potential and vector potential need to have the
same value at each side of the interface separating medium 1 and medium 2, yielding,

G101 — Gaoy = ¢F* — ¢ = ¢ (1.21)
Gihy — Gohy = A — A = A, (1.22)
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Figure 1.2: (a) Sketch of a sphere surrounded by a medium with electric permitivitty e; and magnetic
permeability prand formed out of two hemispheres of materials with optical properties (77, prr, and 17,
prrr). The left hemisphere is bounded by surfaces S4 and S¢, and the right hemisphere by surfaces Sp
and S¢. Solid arrows represent the outward normal vectors of each surface (n4, np, and n¢), and the
dashed arrows show the connectivity of the Green'’s functions. (b) Sketch of the matrices defining the Green's
functions G11, G22, G21 and G2, blank spaces mean regions filled with Green’s functions that equal zero
(as they do not connect boundary elements within the same medium).

where, we have used,

G1 = G11 — Gai; ¢ = 5t — o7 (1.23)
GQ = G22 — G12; ACXt = AgXt — A?Xt (124)
From here on we will assume that the media are nonmagnetic, i.e., u; = 1.

Indeed, for this case it holds that both the tangential derivatives of all components
of the vector potential and the normal derivative of the tangential vector potential
must be continuous (enforced by the continuity of the tangential component of the
magnetic field and the vector potential). Using the continuity relationships and the
Lorenz condition given by Eq. (1.7), one obtains that (n, - V)A — ingkepd is also
continuous. Thus, the following equation yields?:

H1h1 — H2h2 — ikns(Glalol — G2€20'2) = Q, (1.25)
where
a = (ng - VA +ikng(e105" — e065"). (1.26)

and Hiy o = Fy 2 &+ 27 is the normal derivative of the Green’s function G; (not to
be confused with the magnetic field), which must be taken from both sides of the

4Following Ref. [108] here we use e2G2 = Gaea which later results in Eq. (1.38) for the gener-
alization to an arbitrary number of media. This exchange is possible because G2 connects points
within the same medium. This will not hold when introducing infinite layers in Sec. 1.1.2, as the
reflected Green’s functions can connect points in different layers and different media [111].
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interface, and Fj is the surface derivative of the Green’s function, given by,

ng-(s—s')

Fj = (n,-Vy)G(s —s) = (ikj|s — s'| — 1)e?kils=s'] (1.27)

|s — /|3
The singular contribution originating from the limit r — s gives rise to the 27 term
and has to be dealt with care [108,112].

On the other hand, the continuity of the normal component of the electric dis-
placement vector e ng - (ikA — V), leads to,

Hiei101 — Hoeoog — ikng - (Gie1hy; — Gaeshy) = D, (1.28)
where
D™t =, - [e1 (IRAT™ — V™) — e2(ikAT" — V.05%)]. (1.29)

Considering the vectorial character of some of the quantities in Egs. (1.21), (1.22),
(1.25) and (1.28), these equations constitute a system of eight linear surface integral
equations with eight unknown complex functions of the interface coordinates (o; and
h; for j = 1,2).

After some algebra [108,112], the solutions for the charge and current distribu-
tions, can be obtained:

oy = Gy 10! [DCX“ +ikng(Ly — LQ)A’lo/}, (1.30)
o1 = GT (G0 4 ¢°Y), (1.31)
hy = Gy 1A [ian(Ll — Ly)Gaoa + a'}, (1.32)
h; = G;H(Gahy + A™Y), (1.33)
where,
DY = D&t _ 971D 6% 4 jkn, - LAY, (1.34)
o =a — X A% +ikngLq¢%t, (1.35)
Y =%1L1 — SoLy +k®ng - (L1 — Ly)A™'ng(Ly — Ly), (1.36)
A=3% — %, (1.37)
L= G1,2€1,2Gi§. (1.38)

The discretized problem of 8 N linear equations requires a computation time propor-
tional to (8N)3 if direct inversion is to be used to find the solution. Nevertheless, by
separately manipulating the IV x IV matrices such as G, the calculation time can be
reduced to times proportional to 6 N3 [108].

Quasistatic approximation

The electromagnetic interaction between two points can be considered instantaneous
if their distance is much smaller than the wavelength of the interaction A. This holds
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1.1 Boundary Element Method (BEM)

for small particles of size R < A\, where one can assume k — 0, reducing Helmholtz
equation [Eq. (1.8)] to Poisson’s equation,

V2¢(r) = _4“6’ (x) (1.39)

This equation can be solved with the quasistatic Green’s function that describes the
Coulomb interaction,

1
Gir—r')= .~ = G(r,r) (1.40)
and is the solution of the equation,
V2G(r —1') = —4nd(r — 1), (1.41)

in an unbounded, homogeneous medium. For inhomogenous dielectric environments,
with sharp boundaries S; separating regions V; of homogeneous dielectric medium
inside a given region, the solution takes the form

o(r) = G(r,s)o(s")ds' + ¢ (r), (1.42)
S,

where ¢®™'(r) is the scalar potential of the external excitation source and o(s) is a
surface charge distribution located at the boundaries S;. In analogy to the retarded
case, the solution is constructed in such a way that Poisson’s equation is automat-
ically satisfied, and the surface charge distribution o(s) has to be chosen such that
it satisfies the boundary conditions of the electromagnetic field at the boundaries.
The continuity of the tangential electric field at the boundary is satisfied when the
potential is continuous along the boundary, which is fulfilled if o(s) is the same at
both inner and outer sides of the boundary. On the other hand, the continuity of
the normal component (with respect to the boundary) of the electric displacement
implies the boundary integral equation

lim ng - Vo(r) = lim 62(1') = lim/ Mo(s’)ds' + M (1.43)
S

r—s ros On ros on on

J

Special caution has to be taken to deal with the integral on the RHS for r — s.
By considering a coordinate system with normal vector ng pointing in the z direction,
i.e.,, ngy = 2, we can write, r = (0,0, z) and s = p(cos @, sin ¢, 0) in polar coordinates.
By assuming the charge distribution o(s) constant in a small circle of radius R, the
boundary integral becomes,

/ R
- d
lim ns~/ids’ ~ lim 27rz/ P Lon (1.44)
z—=+0 |r — '3 240 o (p? +22)3/2
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The sign depends on whether the direction of approximation is from the inside or
outside the boundary (i.e. positive for the inside case, negative for the outside case).
We finally obtain,

ext (S)

hm n, - Vo(r) o

/ F(s,s)o(s')ds" + 2no(s) + (1.45)

where,

0G(s,s’)
on
Now, we discretize the boundary into small surface elements and assume that the

charges are located at the centroids of each ith surface element. Then, Eq. (1.45)
becomes,

F(s,s') = (1.46)

8(;5 8¢)CXt
(8n> = ZFijaj + 270, + < o) (1.47)
3 J K3
which can be written in compact matrix notation as:
) ext
99 = Fo + 2710 + 9¢ (1.48)
n on

The continuity of the normal component of the electric displacement field sets:

ext ext

g9 F0+27ro+a¢ =g FO'727T0'+8¢ . (1.49)
on on
From this expression we obtain for the surface charge distribution:
a¢ext
—(A+ F) L . 1.50
(A+ P2 (1.50)
where,
A=2r2TEy (1.51)
g — €1

This implies that the material parameters (included in A) and geometrical properties
(included in F') are fully decoupled. This is the central equation of the quasistatic
BEM approach. Once the charge distribution is calculated, one can all the sought
quantities, e.g., electric fields, optical spectra or electron energy loss spectra.

1.1.1 Electron energy loss spectroscopy within the BEM

In principle, the BEM can address for any external source by establishing the external
scalar and vector potentials [110]. This includes the case of swift electrons of electron
microscopes which lose energy exciting plasmons by passing close to or penetrating
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A v

<Y

Figure 1.3: Sketch showing the electron (blue dot) with a trajectory along the z-axis defined by r(¢) =
ro + vt (blue arrow), with velocity v = vz (green arrow) and constant position in the xy-plane rg (red arrow),
setting the impact parameter.

metallic nanoparticles, . Here we briefly introduce the basics of the calculation of the
quantities analyzed within electron energy loss spectroscopy (EELS). In particular
in MNPBEM the kinetic energy of the exciting electron is assumed to be much
higher than the plasmon energies (typical electron microscopes operate with electron
energies of several hundreds of keV). Thus, the change in the velocity of the electron
due to plasmon excitations can be considered negligible, and therefore the loss process
can be described in the lowest order perturbation theory. As emphasized in Ref. [110],
this approach is not suited for low electron energies or thick samples.

Without any loss of generality, let us consider an electron trajectory along the
z-axis, with the position of the electron given by r(¢) = ro + vt, with v = vz the
velocity of the electron, as sketched in Fig. 1.3. The electron charge distribution is
thus,

o(r,w) = —e/dtei‘"tzs(r —ro— Vt) = —S(?(p —b)eiv(zm20), (1.52)

where —e is the charge of the electron, and b is the impact parameter in the xy-plane.
In the quasistatic approximation, the external potential is given by the solution of
Poisson’s equation

_ o(r',w) L
¢ext/€( d (1.53)

r,w)r—r|

In unbounded space the potentials associated with the charge distribution of Eq.
(1.52) are given analytically by the Liénard-Wiechert potentials [113], leading to
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(64,108,110]:
2 w b w
(bext(r)—Ko( P - |) 5 (zm=0) (1.54)
vej v
v
Acxt(r) = &5 dext (1), (1.55)

where Ko(z) is the modified Bessel function of order zero, and ~v; = (1 — ;0% /c?) "=
the Lorentz factor. Within MNPBEM these expressions for the unbounded medium
can be directly introduced into Egs. (1.12) and (1.13), as the charge and current
distributions ¢; and h; will automatically guarantee that the boundary conditions
are satisfied at the interfaces.

We have already introduced in the Introduction the electron energy loss, W, in
Eq. (9), which can be calculated from the work performed by the electron against

the induced field, Ej,q, as:

W—e/dtv Eonalr(t / dw o Trs () (1.56)

where I'grrs(w) is the electron energy loss probability, given per unit of transferred
energy,

I'eeLs(w) = %/dtRe{e*’mv - Einalr(t),w]}, (1.57)

and Einq[r(t),w] is the induced electric field evaluated at the electron’s trajectory.
Within the local response approximation, the electron energy loss probability can be
separated into two contributions,

I'eers = I'boundary + I'bulk, (1.58)

where I'boundary is the energy loss probability due to localized surface plasmons, which
can be calculated from the surface charge and current distributions ¢; and h;; and
T'buik is the bulk loss probability for electron propagation inside a lossy medlum

i) = Som{ (2 - 5 (i) 0

where L is the propagation length inside the medium, k& = w/c is the wavenumber
of light with frequency w in vacuum, ¢ is assumed to be local (independent of wave
vector q) and g, is a cutoff for collected momentum transfer [64].

In most cases, I'boundary can be calculated by obtaining an expression for the
induced electric field along the electron trajectory and evaluating the expression
given in Eq. (1.57). By introducing the induced potentials of Egs. (1.12) and (1.13)
into the energy loss probability of Eq. (1.57) one obtains a more efficient scheme for
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9V

Figure 1.4: Sketch of an electron with velocity v = vZ (white arrow) along a trajectory following the
z — axis (dashed lines) that crosses the boundary with medium j (blue region) at the entrance and exit
points, z? and z]l. respectively.

calculating I'youndary:

Choundary (W) = % /OJ dz Re {e‘i‘”/“ - dav - {z’ij(r —s)h;(s)
—VG;(r— s>aj(s)}] (1.60)

where z? and zjl are the entrance and exit points of the electron beam in a given
medium, r = ro+ 22 gives the electron trajectory, and 0V} is the boundary separating
each medium, as sketched in Fig. 1.4. Integration by parts allows to write the second

term in the parentheses of Eq. (1.60) as:

2 . (r— : 21 ;
/ dzefzwz/'u 8G.7 (I‘ S) _ efzwz/'qu(r _ S)|Zé +i867lwz/vépj(s),
z J v

0 0z
M

2t )
where the potential-like term @;(s) = [/ dze”™#/VG(r — s) associated with the
electron propagation inside medium j is introduced. The first right-hand side (RHS)
1

term, once introduced in Eq. (1.60), gives e™*/V § G, (r — s)o'j(s)da\z{,, where the
J

integral expression corresponds to the scalar potential at the crossing points of the

trajectory with the particle boundary. Moreover, as the potential is continuous across

the boundaries, this term needs to be zero for all crossing points. Finally we end up
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with:

. dapj(s){kv-hj(s) —wo;(s)}|, (1.61)

e
Fboundary (W) = - E Z Im |: fé}
J
where the integration, instead of along the electron trajectory, is only performed over
the boundary, where the surface charge and current distributions ¢; and h; have been
already calculated. It must be noticed that the points where the trajectory crosses
the boundary have to be treated with care in Egs. (1.54), (1.55) and (1.61) [110].

Quasistatic approximation in EELS

As already mentioned, in the quasistatic approximation Laplace or Poisson’s equation
needs to be solved instead of Helmholtz equation.

Details about the calculation of EELS probabilities within the BEM can be found
in Refs. [64, 108,110, 114], and here only the basics are outlined. First one can
calculate the external potential from the solution of Poisson’s equation given by Eq.
(1.53), and then one calculates the surface charge distribution o(s,w) by solving the
boundary integral equation, given by Eq. (1.50). Once the charge distribution is
calculated, it is straightforward to obtain the induced potential along the electron
beam path [see Eq. (1.12)] and therefore the electron energy loss probability, as given
by Eq. 13 in the Introduction,

FEELs(w) = % /dt Im{f@nd[r(t),w]e*i“’t} (162)

in the quasistatic approximation, and can be written in terms of the surface charge
distribution as,

IepLs(w) = —%j{Ko(w\R — Ryl/v) Im{a(s,w)ewz/”}da +Tpux(w).  (1.63)

In the quasistatic approximation, considering the limit ¢ — oo, the bulk loss proba-
bility Thuik given by Eq. (1.59) reduces to,

() = 2ztnd = = e, (1.64)

where L is the propagation length inside the medium and ¢, is a cutoff for collected
momentum transfer in the detector [64].
1.1.2 Infinite layers in the Boundary Element Method

Many experiments are performed with nanoparticles placed on top of substrates or
embedded within layered structures, with the corresponding influence on the plas-
monic response of the nanostructure. This effect of infinite substrates has been
included in the plasmonic response of metallic nanostructures within the BEM, and
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a)

discretized surface
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Figure 1.5: a) A metallic nanoparticle placed on top of an infinite substrate, showing the discretization of
the NP’s boundary. b) Infinite layers are incorporated in the MNPBEM by taking into account the reflected

Green'’s function due to the substrate [111]. ¢) The reflected Green’s functions G3°, Gh"*, Gbo, G§™ and Glz‘)
are obtained in a three step process: (i) first, the scalar and vector potentials originating from the source
points (e.g., o in the sketch) are expanded in cylindrical waves; (ii) second, the reflection and transmission
coefficients, i.e., charge and current densities induced at the layer (e.g., ) are calculated using the boundary
conditions of Maxwell's equations;(iii) last, the potentials (e.g. G§7) at the observation points are computed
by integrating over all cylindrical waves.

implemented in the MNPBEM Toolbox [111]. In this section we give the details of
such implementation, as used in this thesis to obtain the theoretical results presented
in Chapter 3.

For substrates with the outer surface normal pointing in the z-direction, i.e.,
substrates extending in the xy-plane, the current distribution can be decomposed
into parallel h! (lying in the xy-plane) and perpendicular components h* (pointing in
the z-direction). Equation (1.25) shows that the parallel component h!l is decoupled
from the perpendicular component ht and the charge distribution o, and that h*
and o are coupled through layer interactions. The first step is to rewrite Egs. (1.21),
(1.22), (1.25) and (1.28) for a layered structure, followed by expressing h! in terms
of h* and o, the one needs to set up the coupled equations for A and ¢ and solve
them within the BEM through matrix inversion. This approach deals with matrices
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of order 2N instead of matrices of order IV, which is the case of the BEM approach
without layers.

We will first consider an isolated nanoparticle located in a dielectric environment
of a layered structure as in Fig. 1.5(a), and assume that all boundary elements con-
nected to the layered structure are outer elements (labelled with 2). The potentials
inside the nanoparticle are still expressed as ¢1 = G101 + ¢$**. For the boundary
elements outside the nanoparticle, one needs to replace G by the Green’s function
for the layered structure and to account for the fact that hy- and oo become coupled,

by = ¢ + G300 + G hy, (1.65)
Ay = AP + GEhy + GE7 0. (1.66)
The continuity of potentials becomes,
Gioy = G3702 + GS"hy + ¢ (1.67)
Gihi = G3"hy + G§7oy + A™ (1.68)
Gihll = Gl + Al (1.69)

On the other hand, the continuity of Lorentz’s condition becomes,
Hih| — H)n) — ikdl (2,Gro1 — 62G3705 — £,G3"h3) = ol (1.70)
Hihi — HY"hy — HY7 0y — ik (e1Gro1 — €2G5705 — 2GS "y ) = o, (1.71)

where all and ot are the parallel and perpendicular components of alpha [see Eq.
(1.26)], respectively. The continuity of electric displacement vector reads as,

61H10’1 — €2H20002 — SQthhé_ — Zkﬁ” . (61G1h¥ — EQGth)
—Z'kﬁL (ElGlh% - EQG’Qthé_ - 82G§UUQ) = DeXt. (172)

The surface charges and currents for this situation are then obtained from Egs.
(1.67)-(1.72) after some rearrangements (outlined in Appendix A of Ref. [111]):

(e151GS° — e2HS Yoo + (e151GS" — o HS" ) hy
— ikl ral(e; — 0)(G3700 + GS"hy) — ikt (61 — £2) (Gh70n + GR"hy
= D™ — 136 ik e A% Al Dol - D A 4ikale gty (1.73)
(£1G57 — HY) oo + (S1GE" — HIM)hy — ikivt(e1 — €2) (G370 + G hy)
=) — D A pikate ¢t (1.74)
with ¥ = H G Y, Eg = Hgngfl and I' = ik(e; — e2)(21 — 2!)-1. Equations
(1.73) and (1.74) can be understood as a matrix equation for (o2, ha’) to be solved

through matrix inversion. Once both quantities are obtained, h! is calculated from
the following equation:

(21 — =D GInl = ikl (25 — £1) (G575 + G5"ha ) + all — 5, A 4 igalle, gt
(1.75)
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The rest of the quantities (oy, hi- and h!) can be obtained from Eqgs. (1.67) - (1.69).

The generalization to structures made of an arbitrary number of media is not
straightforward. In the absence of a layered structure, the Green’s functions can be
considered such that they connect only points within the same medium, as in [108],
which makes it possible to use Goeo = £2Go. Nevertheless, with the presence of
layers this is no longer valid, as the reflected Green’s functions can connect points
within different media, and thus €5 and G5 cannot be exchanged. In particular, the
potentials are given by,

¢1 = G101 + G1202 + ¢

b2 = G350y + G50 hy + Garoy + 5
AT = Giiht + Giohy + AT

Ay = Ghzhy + G550y + G by + A5
Al = Gun! + Gonl + AT

A} = Gl,h) + Garh + A

The continuity of the potential can be expressed by Eqs. (1.67), (1.68) and (1.69),
by redefining the Green’s functions as

G1 = GH — G21 (182) Ggh - G%’ - G12 (185)
G§7=G35 — G (1.83) Gl=al, -G (1.86)
G3" = a3y (1.84) Gho = Ghg, (1.87)

which also holds for the derivatives of the Green’s functions H. In a similar fashion,
the continuity of the Lorentz’s condition and continuity of the electric displacement
vector can be expressed by Egs. (1.70), (1.71) and (1.72), by considering the following
relations:

€1G1 = €1G11 —e2Ga1 (1.88) €2G£Lh = EQG%L —e1G12 (1.91)
€2G37 = 2G55 —e1G12 (189) EQGQ = EQGQQ —e1G1a (1.92)
220G = e2G5y (1.90) £2Ghe = .Gl (1.93)

Let us refer to e1G1 = él and similarly for eoGo = ég. Now, by proceeding as
for two media, the following equations are obtained:

(1G5 — HY%)oa + (1G5 — H{Mhy — ikal - ral[(L,G37 — G37) oy
+ (L1 G3" — G3")Hy] — ik [(L1G5” — G57)oa + (L1 Gy — G5")hy]
= D — £, + ikAL A + Al . M(al = 5 A 1 iknl DY), (1.94)
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and

(S1Gh7 — HY?)oo + (51G5" — HJ")hy — ik [(L1GS7 — G37)os
+ (L1GS" — G3Mhg] = - — 1 A% 4 ikt Lyg™t, (1.95)

where, ¥y = H1GyY, T = ik(Ly — L))(2, — 21, Ly = G167, and Ly = GlGI™
have been used. As previously, this expression can be understood as a matrix equa-
tion for (og,h3) to be solved through matrix inversion. Once both quantities are

obtained, hg is calculated from,

(81 - =Y)Ghh) = ika (LGS — G57)os + (L1GS" — GS™)hs]
+al = s A 4 ikal L gt (1.96)

The Green’s functions G!, g9, GSh, Gho and G&M are the essential ingredients of
the BEM approach for layered structures, and are computed similarly to related field-
based approaches [115,116]. For instance, let us consider a boundary element with
surface charges o and currents h within a layered structure [see Figure 1.5(c)]. These
sources lead to potentials ¢*** = Go and A" = Gh evaluated at the interfaces of the
layered structure. In accordance to field-based approaches, the induced potentials
containing the interaction with the layers are calculated in three steps: (i) first the
scalar and vector potentials originating from the source points, where the source
surface charges o and currents h are located, are expanded in cylindrical waves, (ii)
second the surface charge densities, o, o and current densities hg, h} induced at the
interfaces are computed by using the BEM equations, and (iii) finally the potentials
at the observation points are computed by integrating over all cylindrical waves.

In step (i) the Sommerfeld identity

I .7 ik
=1 Jo(kpp)e dk, (1.97)
r o k=

is employed [115], with Jy(z) the Bessel function of order zero and the wavevector k
decomposed into the radial component k, and the z-component k., = |/k? — k%.

The wave impinging at the interface is reflected and transmitted, and therefore
in step (iii) one needs to sum up over all reflected and transmitted waves to calculate
the potentials at the observation points, i.e., one has to calculate integrals of the
form,

I:i/o 2 (o)™ Ak, k)b, (1.98)
where A(k,, k,) is a generalized reflection or transmission coefficient to be discussed
below. To evaluate the integral of Eq. (1.98) we directly follow reference [116] and
deform the integration path in the complex plane using the recipes given in that
work.
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Figure 1.6: Scheme representing the layered structure. The intra-layer Green'’s function Gg connects
points at layer 2z, in medium u and the inter-layer Green’s function G, connects points between different
layers (located at layers z;, and z,—1) in medium p.

To compute the reflection and transmission coefficients in the BEM for the layered
structure, we proceed as follows. Consider a layered structure with interfaces at z,,.
As shown in Fig. 1.6, we denote the medium above the layer with p and the medium
below the layer with g+ 1. Thus, u = 1 denotes the uppermost medium. We assume
that the outer surface normal points into the positive z-direction, and denote the
surface charges and currents at the upper side of z, with o4 and hf, and at the lower
side of z, with ot and h{*'. Additionally, we introduce the intra-layer Green’s
function Gf that connects points in layer z, and in medium g (on the same side
of the interface), and inter-layer Green’s function G* that connects points between

different layers.

Let ¢1', and AY, denote the external excitations described by scalar and vector
potentials, respectively. As the BEM equations (1.21), (1.22), (1.25) and (1.28)
decouple h! from (o, h*), we can treat excitations Al and ¢, AL separately. For
parallel excitations, A’f,Q, we obtain the following set of equations for the parallel
surface currents hf ,:

GHH BT — GERY — GPRY 4 GRS = AL — AT (1.99)
omi(h T 4 hY) — BAGPRY — EELGR I RS = BRAL 4+ BPTIANTE (1.100)

which can be solved for each wavevector through matrix inversion. For a perpendicular
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vector potential Af , or a scalar potential ¢ , the BEM equations become:
Gh gttt Gl ol — Glot + GRTLahT! = gl — gt ! (1.101)
GETIRETY — GERY — GRRY + GPTIRET = Al — ALY (1.102)
2i (5#+10f+1 + 5ﬂa§‘> + k(ijHe#Hh‘fH - Ggs#h‘;)
— kle, Glot — kP, 1 GFTLol T — ke \GHRY + ke GRTIRE T
= kPe, b + ki e T 4 ke AY — ke AT (1.103)
2mi(B T 4 0 ) + k(GE ol T = Gleuot)
— EEGHRE — EPPIGRTIRETY — ke GO+ ke GRTLT!
= kPAY + PP ARTY ke bl — ke 0T (1.104)

The reflected Green’s functions for layered structures can be computed from these
equations. For instance, one can calculate G"® by considering an exciting scalar
potential produced by a surface charge o at the source point, and then computing
the perpendicular component of the vector potential produced by the induced surface
current density hf , at the observation point.

In summary, the reflected Green’s functions are calculated following a three-step
process: (i) first, the positions of a set of sources in space (source points) need to
be defined; (ii) for each source point the surface charges and currents induced at the
interface of a layered structure are calculated; (iii) the scalar and vector potentials,
generated by the source point and influenced by the layered structure, are obtained
in another set of points in space (observation points).

The evaluation of the reflected Green’s functions is rather time consuming, and
it can be a bottleneck for BEM simulations. Waxenegger et al. implemented in the
MNPBEM Toolbox [111] an approximate method to calculate the reflected Green’s
functions and therefore to speed up the calculation. The approach is based on setting
up a table of reflected Green’s functions, for which a suitable grid of different radii r
and z-values is defined, followed by an interpolation. The reflected Green’s functions
G(r, z1, z2) depend on the radial distance between the observation and source points
r, and the z-values of the observation points z; and the source points z5. For the
uppermost or lowermost medium, the Green’s functions only depend on the distance
in the z-axis between the observation points, i.e., z1 + 2z [115], which allows for an
additional calculation speed-up. In order to evaluate Hs, the derivatives F,. = 0G/0r
and F, = 0G/Jz are also needed. Moreover, instead of directly interpolating, a
further assumption is made, by assuming that G, F,., and F, follow a functional
dependence of the form,

G(’I", 21,22) = g(T’ZE’Z2)7 F’I‘ - fr(’r7 Zl’ZQ)T

fa(r,21,22)%
r 73 ’

’7:3 )
(1.105)

FZ(T',Zl,ZQ) = -

where 7 is the sum of the z; and z5 distances to the respective closest layer interfaces,
¥ =+/ra+ 2o, and g, f., f. are tabulated values. Equation (1.105) has the advantage
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1.2 Discrete Dipole Approximation (DDA)

that for small r and z-values the functional shape is the same as for quasistatic
Green’s functions using image charges [113], and for layered structures g, f,., and f,
are expected to have only a weak spatial dependence in general.

Once the reflected Green’s functions have been computed, they can be used along
with the direct Green’s functions to obtain the solutions of the BEM equations (1.94)
and (1.95). Nevertheless, there is a critical issue regarding the boundary elements
that are directly located on an interface. Before pondering on such interface elements,
we recall that in the normal BEM approach one has to be careful when computing
the surface derivative of the Green’s function for diagonal elements [108]

lﬂ(ﬁ -Vy)G(r,s') = (0 Vs)G(s,s) £ 2m(s — §'), (1.106)
where the sign of the singular term depends on whether r approaches s from the inside
or outside. Inspection of Eq. (1.105) shows that a similar singular contribution is
present in the reflected Green’s function for elements belonging to a layer interface.
The surface derivative F, of the reflected Green’s function is now split into two
contributions (note that n points into the z-direction):

z z
F.(r,21,22) = —foﬁ — [f2(r, 21, 22) — f0]7§7 (1.107)
where fo = limT; 0 f2(r,Z). When approaching the boundary through lim,_,s F. (r, 21, 22),
the first term gives a singular contribution £27 fyd(s — s'), similarly to Eq. (1.106),
whereas the second term has a smooth r and z dependence and can be safely inte-
grated over the boundary element.

In summary, infinite layered structures can be efficiently handled within BEM by
setting a table of reflected Green’s functions that can be used via interpolation to
calculate the induced charge and current densities at the boundaries of a nanostruc-
ture with arbitrary shape. The consideration of infinite layers is useful in situations
such as the one presented in Chapter 3 where we simulate the optical response of
nanoparticle-on-mirror (NPoM) structure, which consists of a metallic nanoparticle
placed on top of a metallic substrate and separated by a thin spacer-film in-between
to prevent conductive contact, creating a nanogap between the NP and the sub-
strate. We use the implementation of infinite layered structure for the MNPBEM
Toolbox [111] with such purpose.

1.2 Discrete Dipole Approximation (DDA)

We explain in this section the discrete interaction model (DIM) as introduced in
Ref. [117] which is used to calculate the optical response of small metallic clusters
to compare with the results obtained within the BEM and TDDFT in Chapter 2.
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In the DIM the nanoparticle is described as formed by a number of atoms, each
characterized by its corresponding polarizability. One could consider the DIM as an
atomistic variant of the discrete dipole approximation (DDA), which is commonly
used to simulate the plasmonic response of large metallic nanoparticles. The DDA
consists in discretizing the volume of the particle in an array of points, each acquiring
a dipole moment in response to a local electric field, which is calculated iteratively.
Indeed, the DIM is an extension of the point-dipole interaction (PDI) model used
to calculate the optical response of molecules [118-121], by representing each atom
with an atomic polarizability and calculating atomic induced dipoles self-consistently
through their interactions with each other and with the external electric field ac-
cording to classical electrostatics. The PDI model has been extended to include a
damping term related to the internal electric fields at short distances [122-128], and
also intramolecular charge-transfer using either atomic capacitances [121,129,130] or
atomic electronegativity [131-133].

The molecular behavior of small metallic clusters has motivated the extension
of the PDI model to metallic clusters as a capacitance-polarizability interaction
model (CPIM) [134,135]. The CPIM bridges the gap between quantum mechani-
cal methods and the macroscopic electrodynamic description, although often relies
in the parametrization of atomic polarizabilities and capacitances with data calcu-
lated within TDDFT, which limits its practical aspect. In the DIM this barrier is
tackled by only taking into account the atomic polarizabilities, which are calculated
from a Claussius-Mossotti relationship [117]. This is the scheme used to obtain the
results presented in this thesis.

For a system with N interacting atoms such as the one shown in Fig 1.7, where
each ith atom is characterized by a polarizability a; g, the total energy of the system,
V', can be written as:

N
Zui“ff a7 ol — ZZM;“S T s =3 EStund, (1.108)
i jFEe i

where Roman subscripts, 4, j, denote ith and jth atoms, Greek subscripts, «, f,
denote (z,y, z) components, and ,u“‘d is the induced dipole at the ith atom. Einstein
summation convention is used for Greek subscripts. The first term is the self-energy
required for creating an induced atomic dipole moment, where o; g represents a
component of the atomic polarizability tensor of atom i. The second term is the

dipole-dipole interaction, where Tl(j L 5 = VaVs(1/R;j) is the interaction tensor of
rank 2, with R;; the interatomic distance. The last term in Eq. (1.108) is the inter-
action between the atomic dipoles and an external electric field E**. In the DIM
a Gaussian charge distribution is used to describe the polarizable atom (considered
to be a sphere) to ensure that there is no “polarizability catastrophe” [123], i.e., to
make sure that the equations do not diverge as the interatomic distance tends to

zero. The interaction tensor is therefore renormalized, which effectively introduces a
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Atomistic cluster

Atom
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Figure 1.7: In the discrete interaction model (DIM) the atoms are represented by spheres with atomic
polarizability a; o3, where the Roman subscript, 4, denotes the ith atom, and Greek subscripts, «, 3, denote
x, y and z components. For an atomistic cluster of IV interacting atoms the total polarizability of the atomistic

cluster ozNg can be found by minimizing the total energy of the system [Eq. (1.108)].

screening of the interaction at short distances [132,135], given by,

2
2) _ 3lijalijs — Oapli; [erf( Tij ) 2 Ty —(ry /Ry
ij,a3 ,,,5 Rij \/>R1]

i
__ 4 TigaTigs e~ (ris/Ris)* (1.109)

VT(Ri)?

where r;; is the atomic distance between the ith and jth dipole, R;; = [(R;)* +
(R;)?*/%, and R; is the effective radius of the dipole i, which we consider to be the
radius of the atom, and erf(x) is the error function. In contrast, the DDA model
treats the atoms as point objects and thus the bare unscreened interaction tensor is
used in that approach. Retardation effects are not included in our case because of
the small size of the nanoparticles studied, however, this could be straightforwardly
included using the fully retarded interactions tensor [136,137].

The induced self-consistent dipole of an atom i, along direction g can then be
found by minimizing the total energy given by Eq. (1.108) with respect to the induced
atomic dipoles, which leads to the following set of linear response equations

1n eX 2 m
i = aﬂ(E t+ZT(] ) ah Jg) (1.110)
J#i

which are solved self-consistently using an iterative solver. The total polarizability
of the entire NP is then calculated by summing up on all atoms as:

md
Z aEext’ (1.111)
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from which the optical absorption cross section at frequency w is obtained as

A (@ (), (1.112)

Oabs (LU) =

where n is the refractive index of the surrounding medium and @F (w) is the isotropic
polarizability of the nanoparticle,

1

—NP NP NP NP

The electric field around the nanoparticle can be obtained directly from the atomic
dipoles, using either the renormalized interaction tensor in the DIM or the bare inter-
action tensor in the DDA. In our calculations we consider the atomic polarizability
to be isotropic and obtained from the Clausius-Mossotti relationship as [117]:
6 3€—¢o

o= —
! T e+ 2

(1.114)

where ¢ is the dielectric constant of the NP and g¢ is the dielectric constant of
vacuum.

1.3 Atomistic ab-initio quantum model: Time-Dependent Den-
sity Functional Theory

The study of the interaction of electromagnetic fields and matter has gathered much
effort and interest throughout the history of modern physics. During the previous
century, the description of this interaction surpassed the realm of classical macro-
scopic physics and reached down to the level of atoms and molecules with the aid
of quantum mechanics (QM). In the approach presented here, the external fields are
considered to be of low intensity, and therefore correctly described within perturba-
tion theory. The optical perturbation is treated as a classical electric potential, while
the perturbed system obeys the laws of QM. While our main interest is on the re-
sponse of the system to the external perturbation, we first need to briefly summarize
the theory behind the description of the unperturbed system, i.e. the ground-state
of the system, and then formulate the time-dependent perturbation theory to fol-
low the evolution of the excited states. The ground-state is obtained according to
density functional theory (DFT), and the excited states are described by using linear-
response time-dependent DFT (TDDFT). A priori, both DFT and TDDFT make it
possible to model matter of arbitrary chemical composition with minimal empirical
input, and are therefore considered to be ab initio frameworks.

The electrons and nuclei composing the atoms are fully described by the wave
function ¢ (ry, ra, ..., R1,Ra, ...;t) which depends on the electrons’ coordinates r;, the

39



1.3 Atomistic ab-initio quantum model: TDDFT

coordinates of the nuclei R; and time ¢. The wave function represents a “probabil-
ity amplitude”. Although this amplitude is not directly measurable, its square in
an infinitesimally small volume in the many-body configurational space gives the
probability of finding the system at time ¢ in a given configuration [138]. More-
over, the probability of finding particles at certain positions should not be time-
dependent in the absence of a time-dependent perturbation, and so the wave func-
tion can be separated into a time-independent amplitude ¢ (ry,ra, ..., R1,Ro, ...) and
a time-dependent phase. The time-independent term obeys the eigenvalue equation

Hey = &, (1.115)

where the eigenvalues £ are the total energies that the system can have. In the non-
relativistic approximation the Hamiltonian operator H can be constructed from the
Schrodinger equation [139]

1 1 Zr Z17 g
- — + ,
2M[ 2;|I‘Z‘—I‘j| %:|I‘i—R[| ZlR[—le

I£J

ﬁ:—

(1.116)

where m, is the mass of the electron, r; the position of the ith electron, and Mj,
R; and Z; are the mass, position and atomic number of the Ith atomic nucleus,
respectively. The small indices ¢, run over electrons and the capital indices I, J
run over nuclei. The first two terms of the Hamiltonian Eq. (1.116) correspond to
the kinetic energy terms of electrons and nuclei, while the rest of the terms cor-
respond to the Coulomb interaction between all pairs of bodies (electron-electron,
electron-nucleus and nucleus-nucleus). Unfortunately, Eq. (1.116) does not allow
for a simple separation of variables, neither for analytical solutions in almost all
cases. Therefore, the diagonalization problem in Eq. (1.115) will require a dis-
cretization of the multi-dimensional wave function. Moreover, a direct diagonal-
ization is generally impractical as the computational complexity will grow expo-
nentially with the number of particles. Fortunately, it is possible to find accurate
approximate solutions to Eq. (1.115) by using different methods, such as DFT.
The first step, not exclusive to this method, consists in separating the electron
and nuclei variables in the wave function, based on the three orders of magni-
tude difference between the mass of the electron m. and the nuclei M,,, such that
’lﬂtoml(rl,rg, ...,Rl, Rg) = welec(rl,rg, ...,I'N) X "r/)nuclei(Rla RQ, ceny RM), also known
as the Born-Oppenheimer approximation [138]. Moreover, in most cases the masses
of nuclei can be safely assumed to behave as classical point particles and treated
according to classical mechanics [139]. Therefore, the Hamiltonian in Eq. (1.116) can
be further approximated by considering the interaction of the nuclei with the elec-
trons as an external potential Vo (r), acting on the electrons. Thus, the Hamiltonian
for a system with IV electrons can be expressed under these approximations as,

_Z{ et (T2) Z ™ _m} (1.117)
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where p; is the momentum of the ith electron, and Ve (r) the external potential at
position r. The Hamiltonian can also be expressed as,

H =T + Viyy + Wee, (1.118)

with 7' the kinetic-energy operator, Vext the external potential operator and Wee
the electron-electron (Coulombian) interaction operator. Nevertheless, still further
approximations are needed to treat this Hamiltonian, as the exact wave function
Yelec(r1, T2, ..., n) cannot be so easily simplified. DFT is one of the theories allowing
to effectively separate variables within the electronic wave function.

1.3.1 Density Functional Theory

As explained above, the main challenge to obtain quantities of interest in the many-
body problem is the exponential growth of the computational complexity with the
number of particles N. Among these quantities, one of great interest is the ground-
state energy Fg. This quantity can be obtained from the variational principle with
the following minimization [138]:

Ey = min <¢’H‘¢> (1.119)

where the search is over all N-electron anti-symmetric wave functions 1 (rq,ra, ...,ry),
normalized to unity < ¢|i) >= 1. DFT greatly reduces the complexity of the many-
boy problem by reformulating the variational theorem in terms of the electron density
n(r), defined from the wave function tejec(r1, T2, ..., TN) as

n(r) :N/d3r2/d3r3.../d3erg‘lec(r,r2,...,rN)weleC(r,rg,...,rN). (1.120)

Moreover, the electron density n(r) is normalized to the number N of electrons in
the system, [ n(r)d3r = N. In this section, we will highlight the main ingredients of
DFT. Complete reviews and applications of DF'T in atomic, molecular and solid-state
physics can be found in Refs. [139,140].

Hohenberg-Kohn theorems

In 1964 Hohenberg-Kohn (HK) demonstrated [141] that the ground-state electron
density n(r) determines the potential Vo (r) up to an arbitrary additive constant
cte, thus there cannot exist two local potentials differing by more than a constant
which have the same ground-state density.

The Hohenberg-Kohn theorem states that [141]: “the ground-state density n(r)
determines the potential Vet (r), which in turn determines the Hamiltonian, and thus
everything about the many-body problem. In other words, the potential Vi (r) is a
unique functional of the ground-state density n(r)”. Therefore, all the ground-state
properties will be functionals of the electronic density n(r). The ground-state wave
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1.3 Atomistic ab-initio quantum model: TDDFT

function 4 for potential V(r) is itself a functional of n, denoted by 1[n], which was
exploited by HK to define the universal (i.e., independent from the external potential)
density functional

Fln] = (4[n]|T + W

w[n]>. (1.121)

The universal density functional F[n] can be used to define the total electronic energy
function E[n] for a specific external potential Vi (r),

E[n] = F[n] + / Vet (t)n(r)d>r. (1.122)

Moreover, by minimizing the total electronic energy functional E[n] with respect
to N-electron densities with some local potential (referred to as V(z)-representable
densities) we can obtain the ground-state energy Ej of the system considered. This
minimum energy is reached for a ground-state density no(r) that corresponds to the
potential Voy(r):

Ey = min E[n]. (1.123)

Summarizing, the existence of the mapping from a ground-state density ng(r) to the
external potential Vo (r), the existence of the universal density functional F[n], and
the variational property of the ground-state energy with respect to the density n(r)
constitute the set of Hohenberg-Kohn theorems.

Kohn-Sham method

In 1965 Kohn and Sham (KS) [142] proposed to decompose the universal functional
F[n] using a single-determinant wave function ®, and a constrained search formula-
tion for the kinetic energy

Fln] = min <<1>)T‘q>> + Biixelnl, (1.124)

P—n
with Epxc[n] the Hartree-exchange-correlation functional and ® — n meaning that
the minimization is done over the normalized single-determinant wave function ®. We

use Ts[n] as the non-interacting kinetic energy functional, Ts[n] = énin <®’T}<I>> =
—n
(@[]

given density (non necessarily unique), which is called the KS wave function. The
idea of the KS method is then to use the exact expression of Ts[n] by reformulating
the variational property of F[n] in terms of @,

T’@[n]>, with ®[n] the minimizing single-determinant wave function for a

Ey zmin{ min <<I>‘T‘<I>> + Erixe[n] + / Vext(r)n(r)d?’r}

n d—n

=i (27 + Vo

<1>> + Ech[”<1>]}~ (1.125)
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Input no(r)

(Mixing n(r) and no(r)J

Calculate the density

N
n(r) =3 loi(o)l?
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Energy, Forces, ...

 /
Effective Potential Solve Kohn-Sham
Ve (r) He(r)gi(r) = ei¢i(r)

Figure 1.8: Schematic representation of the self-consistent loop used to solve the KS equations. One
starts from an initial guess for the electron density corresponding to the ground state ng(r), which is used
to calculate the effective potential Vog(r) to be introduced in the Kohn-Sham equation. The Kohn-Sham
equation is solved and from the eigenfunctions ¢;(r) that are obtained one calculates the new charge density
n(r). The new charge density is mixed with the old charge density no(r) to obtain the mixed n{(r) to again
begin the loop until the charge densities calculated between successive loops are converged.

Thus, the exact ground-state energy Fy and density ng(r) can in principle be obtained
by minimizing over single-determinant wave functions only. The advantage of the
KS scheme is to use the single-determinant wave function ® instead of the multi-
determinant wave function t, which represents a tremendous simplification. With
the single-determinant wave function, ®, the kinetic energy can be treated explicitly,
and only FEpxc[n] remains to be determined as a functional of the density.

Moreover, the minimization in Eq. (1.125) over the single-determinant wave func-
tion @ can be reformulated to a minimization of the total electronic energy, as

E[{¢:}] = Z / o; ( - %Vz + Vext(r)) ¢i(r)d®r + Brye[n], (1.126)

with respect to the spatial orbitals ¢;(r), which form a set of N orthonormal functions
{¢i(r)}i=1,...~. The density is then expressed in terms of the spatial orbitals ¢;(r)
as,

N
n(r) = Zl@(r)l? (1.127)

The method of the Lagrange multipliers can then be used to perform the mini-
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mization with the Lagrangian

N
£l = Bl - S [ e wntonr 1), (1.128)

1=1

The Lagrange multiplier ¢; is associated to the normalization condition of ¢;(r). The
functional derivative of the Lagrangian £ with respect to ¢ (r) leads to the following
equation,

(SEch [TL}
d¢; (r)
since the Lagrangian £ should be stationary with respect to the variations of orbitals
¢i(r). The derivative of the functional Hartree-exchange-correlation energy Epyxc[n]

with respect to ¢} (r) is given by,
0Eye[n] / 0 Erxe[n] on(r’) 3,0
spr(x) ) on(r) d¢i(r)

One can introduce the Hartree-exchange-correlation potential Vi (r), which is a
functional of the density, as the function derivative of Eyyxc[n] with respect to n(r)

( - %Vz + Vext(r)> bi(r) + = g;¢i(r), (1.129)

(1.130)

6Ech [n]

Vitxe(r) = on(r)

(1.131)
Using the decomposition Epyc[n] = Eu[n]+ Exc[n], where Ey[n] is the Hartree energy
functional, and Ey.[n] is the exchange-correlation energy functional, we get,

dFEun]  6FExc[n] dExc[n]

Xc = = s 1.132
Vise(r) = 005+ oy — 0+ 50 (1.132)
where the Hartree potential Vi (r) = 5(?“1[:;] is defined as:

(1.133)

Ir*r’\

Furthermore, from Eq. (1.127) one can obtain the derivative of n(r) with respect to
the orbitals ¢;(r)

on(r’)
5¢7 (r)
Injecting Eq. (1.134) into Eq. (1.130) and using the definition given in Eq. (1.132) of

the Hartree-exchange-correlation potential Vigy.(r), we finally obtain the Kohn-Sham
equations

= ¢;(r)d(r — 1'). (1.134)

Her(r)oi(r) = igi(r), (1.135)
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where ¢; are the KS orbital energies with Heg(r) = —3V? + Veg(r) the one-electron
KS Hamiltonian and Veg(r) = Vext(r) + Viixe[n](r) the so-called KS potential. The
orbitals ¢; which satisfy the KS equation (1.135) are called KS orbitals. The KS
equations constitute a set of coupled self-consistent equations since the potential
Vixe[n](r) depends on all the occupied orbitals {¢;(r)};=1,. ~ through the density
n(r). The ground-state density n(r) of the KS system of N non-interacting electrons,
defined by the effective Hamiltonian H.g, is the same that the exact ground-state
density no(r) of the physical system of N interacting electrons. The exact ground-
state energy Ej is then easily obtained by injecting the KS orbitals into Eq. (1.126).

Ideally, DFT is an exact theory and, with the Kohn-Sham method described pre-
viously, the approach is very appealing since the solution of a self-consistent one-body
problem is much simpler than the original correlated many-body problem. Unfor-
tunately, the exchange-correlation (xc) energy Ey. cannot be determined exactly
and must be approximated. A number of approximations exist, such as the local-
density approximation (LDA) [142,143] or the generalized gradient approximation
(GGA) [144,145] which are the ones used in the results shown in this thesis.

1.3.2 Time-Dependent Density Functional Theory

The DFT can only be used to calculate physical quantities related to the ground-
state of the system. To calculate the response of a system to an external perturbation
one needs to implement the time-dependent DFT (TDDFT). A system under a time-
dependent perturbation can be described by the time-dependent wave function, which
satisfies the time-dependent Schrodinger equation [138]:

A(ty(t) =i 0

1.1
-, (1.136)

with H(t) the time-dependent Hamiltonian similar to the time-independent Hamil-
tonian but with a time-dependent external potential Vey. The initial (unperturbed
at ¢ = 0) wave function is typically obtained from the ground-state obtained within
DFT. Moreover, as E. Runge and E. K. U. Gross demonstrated in 1984 [146], and in
analogy to the HK theorems of DFT, in TDDFT there is a correspondence between
the time-dependent density n(r;¢) and the external perturbation Vey(r;t), except for
a constant. Following the idea of Kohn and Sham, one can define a fictitious system
of non-interacting electrons that satisfy the time-dependent Kohn-Sham equations:
. 2
200 [ T 4 Vialal0)] o), (1.137)
ot 2
where n(r;t) is the electron density computed from the time-dependent KS orbitals
¢i(r;t) similarly to Eq. (1.127) but now depending on time,

N
n(rit) = 3 Jou(rsn). (1.138)
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The KS density n(r;t) is defined to be precisely that of the real system. By virtue of
the one-to-one correspondence, the potential Vog(r;t) yielding this density is unique.
We then define the xc potential, Vi (r;t), as part of the total effective potential,
Ve (x5 1), as:

Vest(r; t) = Vexe (r58) + Vu(r; t) + Vie(r3 1), (1.139)
where the Hartree potential is given by

n(r’;t)
v —r'|’

Vi(r;t) = / d*r' (1.140)
The xc potential Vi.(r;t) is a functional of the entire history of the density, n(r;t).
This time-dependent functional V. (r;t) is more complex than the similar functional
for the ground-state case, and its knowledge implies the solution of all the time-
dependent Coulomb interacting problems.

According to the KS theorem discussed previously, the ground-state of a quantum
system is determined uniquely if the ground-state is non-degenerate. Therefore, the
time-dependent xc potential is a functional of the time-dependent density alone only
if the many-electron and KS wave functions are non-degenerate.

In ground-state DFT, the xc potential Vi.(r;t = 0) is the functional derivative

of the xc energy functional Exc[n], i.e., Vic(r) = 5?;&31]. It would be useful to find

an xc functional Ey.[n] whose functional derivative gives the xc potential Vi (r;t) =
e
the adiabatic functionals, the xc action Ay.[n](r;t) depends on the instantaneous
density n(r;t), i.e., there is no memory of previous times. This is a strong but very
common approximation. Besides allowing us to use any standard approximation
for the ground-state (as far as the xc kernel can be computed), this approximation
solves the problem of the causality breaking, since all xc effects only depend on
the instantaneous electron density. Moreover, in this thesis we mainly focus on
spectroscopy properties of the system, therefore we will further assume a weak time-
dependent perturbation §Vex(r; t) to the time-independent external potential Ve (),

In this work, we are using adiabatic time-dependent xc functionals. In

Vit (T3 8) = Vet (T) 4 Ve (13 ). (1.141)

The perturbation theory for TDDFT can be formulated via so-called linear-response
functions. In the following we discuss the linear-response theory within TDDFT.

1.3.3 Linear-Response Theory

Spectroscopic information about optical excitations within the time-dependent KS
formalism can be extracted using the time-dependent KS Eqgs. (1.137) - (1.139) with
a simple adiabatic functional for the time-dependent xc potential Vi.[n](r;t). The
system is usually assumed to be in its ground-state before the perturbation is applied
at ¢ = 0, and therefore the KS ground-state (occupied KS orbitals) can be used
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as the initial state. We can compute the time-dependent induced dipole moment
D;(t) = [r;0n(r;t)d*r by adding a weak kick-like perturbation §Vex; = Eext - v 6(2)
at instant ¢ = 0, and solving the KS Eqs. (1.137) - (1.139). The Fourier transform of
the induced dipole moment, D;(t) will give the spectrum of the dipole polarizability
a(w), which is related to the optical absorption cross section given by Eq. (1.112).
In fact, this procedure is found in many implementations of TDDFT [147,148].

Compared to real-time TDDFT, linear-response TDDFT is restricted to small
perturbations, and usually misses some information on the excitations (non-linear
processes) and some other effects (charging/discharging) that are modeled within
real-time TDDFT. Nevertheless, the computational cost of linear-response TDDFT
is notably smaller than that of real-time TDDFT, as the frequency resolution of the
latter is linked to the total propagation time, which also requires stable algorithms.
Moreover, real-time TDDFT also requires sufficiently stable algorithms for the time
propagation, which are not completely trivial [147,148]. On the other hand, linear-
response TDDFT is less general, although being formulated directly in frequency
domain, it simplifies the interpretation of the results. Moreover, as described below,
it can be formulated in an efficient way that allows for studying very large systems.

In the framework of linear-response TDDFT, the induced charge density dn(r;t)
is given by the convolution product in time of the external potential §Veys(r;t) with
the so-called response function x(r,r’;¢):

on(r;t) = /dt'/d3rx(r,r’;t—t’)é‘/;xt(r’;t’), (1.142)

i.e., if the external potential is slightly changed at positione r and time ', x encodes
the information about how the density will be changed at point r and later time .
Moreover, we note that y is a function only of t — ¢', and not of (¢,t'), as it does not
depend on the time tg at which the perturbation is switched on. Since the present
framework is in real-space, we can drop the spatial variables temporarily for the sake
of clarity:

on(t) = /dt’x(t — Ve (t). (1.143)
Now, the Fourier transform of this expression is simply
on(w) = x(w)dVext (w), (1.144)
or
on(w) = xo(w)dVeg(w), (1.145)

where Veg = 0Vext + Vixe is the KS potential which includes the small perturba-
tion 0Vext, and xo(w) is the non-interacting response as defined in Eq. (1.145). In
particular, xo(w) encodes how the non-interacting KS electrons would respond to
changes in the effective potential 6Veg(w). Thus, although x and o are generally
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1.3 Atomistic ab-initio quantum model: TDDFT

different quantities, both must yield the same density response dn(w). The reason
behind using Eq. (1.145) over Eq. (1.144) is that yo(w) has a close expression in
terms of KS orbitals and energies, which is not the case of x(w):

LN O3 (1) G (1) 65, (') o (1)
XO(rarvw)_gl_IR) (fn_fm) w*(Em*En)+Z.€ ’

n,m

(1.146)

where (n,m) are indices summing over the KS orbitals, and ¢,, and E,, are the KS
states and eigenfrequencies, respectively. Moreover, f,, are occupation terms: if n and
m are both occupied or unoccupied states then f,, — f,,, = 0, otherwise, f, — fi, # 0.
The constant ¢ is an infinitesimally small value to avoid divergency. Thus, x¢ is
obtained from the occupied and virtual ground-state KS orbitals ¢,, obtained within
DFT. In particular, if the Hartree-exchange-correlation potential Vi, is set not to
change in response to the external perturbation §Vix(w), we end up with x = xo. In
such situation the excitations of the system can be exactly described as one-electron
excitations in the KS potential obtained from the ground-state density. From Egs.
(1.145) and (1.144) we obtain:

o) = on(w)
e 6%::((:;)7 (1.147)
Xo(w) = 5‘/eff(w) .

Since 0Veg(w) = §Voxt (w) + 6 Virxe (w), taking the variational derivative with respect
to dn(w), we get:

5‘/:35(‘*)) _ 6‘/:3xt(w) 5VHXC(W)
on(w) on(w) on(w)

(1.148)

Furthermore, taking into account that éVeg/dn = xq Land 0Vey/6n = x~!, and

defining Mgf:‘i(if;") = Kuxe(w), usually referred to as xc kernel, we obtain:
Xo (W) = Kxe(w) + X' (), (1.149)
or
X Hw) = [xg ' (W) = Kaxe(w) + x~Hw)] 7 (1.150)

Then, after some algebra, we can obtain:

X(@) = x0(w) + xo(w) Knxc(w)x (). (1.151)

This equation is the well known Petersilka-Gossman-Gross equation [149], which can
be further simplified using Egs. (1.147):

[1 — xo0(w)Kuxc(w)]0n(w) = xo(w)d Vot (w). (1.152)
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Moreover, including Eq. (1.145) into Eq. (1.147), we obtain the following system of
integral equations

[1 = xo0(w)Kuxe(w)]xo(w)dVer(w) = xo0(w)dVext (w). (1.153)

Acting from the left in the last equation with the inverse of the non-interacting
response function y, ' (w), we end up with:

[1 — Kpxe(w)xo(w)]dVesr(w) = dVext (w). (1.154)

We note that Eq. (1.154) might be slightly more handy than Eq. (1.152) because,
after determination of the effective potential 6V.g(r;w), one can easily apply several
types of analysis of the induced density dn(r;w) [150], which are difficult to achieve
otherwise. The algorithm to discretize and solve the linear Egs. (1.151) or (1.152),
developed by D. Sanchez-Portal’s group [151], is further detailed in the following
lines.

1.3.4 Response Function within LCAO with Numerical Atomic Orbitals

The linear combination of atomic orbitals (LCAQO) method was developed in the early
days of quantum mechanics to expand molecular orbitals. Using the LCAO method
one can expand the KS states ¢, (r) in Egs. (1.135) and (1.146) as

Pn(r) = X f*(r — Rq). (1.155)

where Einstein’s summation convention is used over index a, which refers to the ath
atomic nucleus. The expansion coeflicients X' are determined by self-consistently
solving Eq. (1.127) and (1.135), while f%(r) is a set of atomic orbitals, i.e., a set of
known functions centered at the atomic nuclei R,. The atomic orbitals f*(r) possess
a radial-angular decomposition (using Einstein’s summation convention):

fex) = () Yigm, (v), (1.156)

where f%(r) is a radial function depending on the radial distance to the origin r, and
Y} .m(r) are the spherical harmonics which will be chosen as real spherical harmonics.
In order to assert in the notation the independence of the radial orbitals f*(r) on
the magentic quantum number m,, we use also a multiplet index u:

fom () = () = f4 )Yy m (1) (1.157)

In this notation, the multiplet index p and magnetic quantum number m determine
the orbital index a = a, .

When inserting the LCAO ansatz of Eq. (1.155) into Eq. (1.146) to describe
the response function, one encounters products of localized functions f2(r)f?(r),
a set of quantities that are known to be linearly dependent. There is extensive
literature [152-154] on the linear dependence of products of atomic orbitals.
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1.3 Atomistic ab-initio quantum model: TDDFT

The approach described here and initially devised by D. Foerster [155], constructs
the basis for the products of orbitals f¢(r)f°(r) relying on the diagonalization of a
Coulomb metric in the basis of original orbital products < ab|ed >. The diagonal-
ization is done for each atomic pair individually in order to maintain the locality
of the constructed product basis (PB). Moreover, in the process of constructing, we
use the spatial symmetry of the orbitals’ products in order to further reduce the
dimension of the diagonalized metric [151,155]. The resulting basis set of dominant
products is of controlled quality and is locally-optimal by construction. However, the
dominant functions belonging to different atom pairs could still overlap strongly and,
thus, the problem of linear dependence is not fully solved. Therefore, the basis of
dominant products was augmented by a re-expression procedure allowing to use only
atom-centered product functions. Both product basis sets, the dominant products
as well as the atom-centered PB set, allow to expand the atomic orbitals products
f(r) fb(r) within the so-called product vertex ansatz [156]:

fe@) fo(x) = VI Fr(r), (1.158)
where Vlfb are the product vertex coefficients and F*(r) are the product functions
of the orbitals of two atoms [u stands as a shorthand for the ordered pair of atoms

(a,b)]. Inserting the product vertex ansatz of Eq. (1.158) into the response function
[Eq. (1.146)], the following is obtained:

(r,r';w) ZF" XW w)F"(r'), (1.159)

where the matrix X9, (w) is given by:

(X Vb X (X Vit X )

X (@) = (f = fm)—+ o (1.160)

Furthermore, inserting the expansion of Eq. (1.159) into the Petersilka-Grossman-
Gross equation for the interacting response given in Eq. (1.151), we obtain the matrix
equation:

qu(w) = qu(w) + qu/(w)Kﬁxyc Xl/u(w)7 (1161)

for the interacting response matrix x ., (w). Inserting the PB in Eq. (1.154), one gets
the linear equation for the induced effective potential §V(w):

[ = KB ()] 0ViR(w) = 0V (), (1.162)

to be solved iteratively. The interaction kernel K/}, is defined by

Kiiee = /d37"d3r’F“(r)Kch(r,r’)F”(r’), (1.163)
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while the external 6V (w) and effective §V/;(w) potentials are defined by

OVE (w) = /dng“(r)(SVext(r;w), (1.164)
SVE(w) = / 1P (2)0 Vg (1 ). (1.165)

In the following sections we apply this method to calculate the response of a cluster
with two types of external excitations, of interest in this thesis: extended electro-
magnetic planewaves and electron beams.

1.3.5 Optical Polarizability Tensor

The external electric field of a monochromatic electromagnetic plane wave can be
expressed as 0Eqy(r;w) = Eoe® ", where Eq is the amplitude of the electric field
and k is the wavevector. If the characteristic size of the excited system R is much
smaller than the wavelength of the incoming field A = 2% = % > R, the optical
perturbation of the system can be accurately described by the external potential
0Vext = Eq - r, as expressed within the quasistatic approximation. The optical re-
sponse 6V/g(w) [p stands as a shorthand for the ordered pair of atoms (a, b)] for any
direction of the external field Ey can be calculated by inserting the external potential
Vext in Eq. (1.162):

’

(G = KEL XD ()] 0ViR(w) = (1.166)
where the dipole moment d!' is given by
dt = / d3rF*(r)r;, (1.167)

and the indices i enumerates the Cartesian space coordinates (x,y,z). Once the
effective KS potential 6V ;(w) is known, the induced density can be calculated as

dny, = X, ()0 (w), (1.168)
which can be transformed back into real space
on;(r;w) = F“(r)éni. (1.169)

We will analyze the induced charge density én(r,w) in Naggg clusters in Chapter 2 un-
der optical excitation and in Chapter 4 for excitation with electron beams. Moreover,
the quasistatic approximation gives rise to the notion of the optical polarizability ten-
sor

Pij(w) = /d?’rd?’r’nx(r, r'; w)r. (1.170)
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1.3 Atomistic ab-initio quantum model: TDDFT

The absorption cross section o(w) is proportional to the trace of the imaginary part
of the polarizability P;;(w)
4w

0(w) = = 2T [Pra (@) + Py () + Poz ()] (L171)

which provides the optical response of the whole macroscopic object under study.

1.3.6 Electron Energy Loss Spectroscopy within TDDFT

In the previous section the iterative TDDFT method was applied to compute the
optical polarizability tensor within the dipole approximation. The iterative method
to calculate the induced density can be used to calculate the response of the system
under other external perturbations, such as fast electrons as those used in Electron
Energy Loss Spectroscopy (EELS). The observable measured in experiments within
EELS, using TEM, is the electron energy loss probability I'ggrs(w) (see Chapter ).
Typically the electron probes carry kinetic energy ranging from tens to hundreds
of keVs. For such electrons their wavelength is rather short (from 0.5 to 4 A), and
therefore the interaction of the probe with the nanoparticle is too short to pro-
voke any change in the trajectory with significant probability. The velocity of the
probing electron is therefore considered to be constant. Moreover, the current den-
sity of the probe electrons can be kept small (i.e., the separation distance between
consecutive electron probes is larger than the emission wavelength) and the interac-
tion of the probe electrons with the target electrons remains in the linear-response
regime [64]. Furthermore, in this thesis we focus on valence electron excitations. The
later, together with the high speed of electrons, justifies the use of a linear-response
formulation to obtain standard EEL spectra.

The general expression for the electron energy loss probability I'ggy,s(w) is given in
Eq. (1.57) as a function of the induced field Ejpq(r;w) created by the induced density
on(r;w). As in the classical approximation, retardation effects are not relevant due
to the nanometer size of the particles considered here, and therefore the Coulomb
potential can be used to calculate the induced field. After some algebra [157], the
electron energy loss probability can be expressed in terms of the induced density
on(r;w) and the external potential created by the moving charge §Veys (r;w):

IreLs(w) = —fIIn/clB’réVeXt r;w)on(r;w), (1.172)

f%hn//dgrdg "oV (ryw)xo(r, r'sw) 0 Ve (/s w). (1.173)

The induced charge density dn(r;w) can be calculated within the linear-response the-
ory by expansion in terms of { F*(r)}, Eq. (1.168), and using linear Eqs. (1.145) and
(1.154) to compute the expansion coefficients dn,(w). In this way, the components
of the external potential §V/, are expressed by

SVE (W / dte’? / — (1.174)
| elec ‘
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where R} (t) = Ro+vet—R/ and R" are the positions of atomic nuclei at which the
product functions { F*(r)} are centered, and (Ry, ve) are the electron probe position
and velocity, respectively. In order to compute the components in Eq. (1.173), we will
use the Laplace expansion [113] of the Coulomb interaction and Fourier transform of
the components in time domain, as

SVE (1) / d3r
‘I‘ elec

r /\
2l + 1 /d3 H<‘1Y2m r)Y—lm( clec( ))Fﬂ(r)’ (1175)

where r« = min(r,7’), r~ = max(r ') and Y}, () are real spherical harmonics. Since
Fi(r) = F*(r)Y), m, (t) and J Y5 ()Y (£)dSY = 8117 6mums, we can then remove the
sum over [ and m, obtaining,

4 R <
VL) = g7 Y Fhe) [ 77 5 PP (1.176)

The final step consists in separating the radial integral into two integration intervals

4 u 1 elec (V) Lut2
—Y o (F )| —=——— wTER d
Vi, (e O) | e [ e

elec

+oo r
st [T )

R* T'l“ -1

elec

Ve (t) =

Using the components computed in time domain, following Eq. (1.177), we apply
Fourier transform (FFT is used) and get the components as in Eq. (1.174) in the
frequency domain. Although it is possible to obtain a closed analytical expression
for 6V, (w) for external trajectories, i.e., when the trajectory passes outside the sup-
port region of a given product basis functions F*(r), general trajectories do overlap
with these function, and therefore 6V, (w) is computed numerically. In principle,
following the work of Ferrel and Echenique [75] it is possible to find a close analytical
expression for V£ (w). Finally the electron energy loss probability can be expressed
as a scalar product using the product basis set, as

IgeLs(w) = —fIm(éV”*( )ont(w)), (1.178)

ext

which is the expression implemented in the calculation of spectra in Chapter 4.
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Optical response of metallic

picocavities

OST of the fascinating properties and applications of plasmonic nanoparticles
M are based on the tunability of their optical response, along with their abil-
ity to enhance electromagnetic fields, squeezing the electromagnetic energy down to
nanometer scale volumes around sharp tips or at interparticle gaps, producing “hot
spots”, behaving as effective optical nanoantennas [29,158-160]. This is possible
through the excitation of localized surface plasmons that couple efficiently to light,
allowing to overcome the diffraction limit [161]. The near-field patterns in nanostruc-
tures under light excitation strongly depend on the size, composition, and shape of
the individual particles, along with plasmon hybridization in coupled nanostructures.

Light scattering of nanoparticles of arbitrary shape and size is usually well ad-
dressed within a classical electrodynamics framework (with the use of a suitable
dielectric function), by solving Maxwell’s equations for specific compositions, mor-
phologies, and environments [17,162-171]. When the size or the separation distance
between plasmonic nanoparticles becomes on the order of a few nanometers or even
smaller, the quantum nature of the electron dynamics emerges due, among others, to
the particle-size effect in the electron confinement [82,172-175], the inhomogeneous
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dynamical screening of the electron response [176,177], the electron spill-out at the
metal interfaces [31], the presence of atomistic inhomogeneities [106,178], or even the
activation of quantum tunneling [179, 180] across subnanometer interparticle gaps.
All of these effects are initially not included in typical local classical electrodynam-
ical descriptions of the optical response, and different levels of approximation have
been adopted to address their influence in the optical response in extended classical
models [95,96,181,182]. Among all these effects, the presence of atomic-scale fea-
tures at the surfaces has not been deeply explored in the context of plasmonics up
to recently, due to the intrinsic limitations of most of the phenomenological classi-
cal models, which do not address the quantum effects mentioned above. A proper
description of the effect of atomic-scale edges, wedges, vertices, and protrusions at
surfaces requires, in principle, a complete quantum theoretical framework, which in-
cludes the atomistic structure of the nanoparticles and the wave nature of electrons
building up the plasmonic excitations.

Ab initio atomistic methods provide an appropriate quantum framework to con-
sider the aforementioned effects including the atomistic structure in a straightfor-
ward and complete manner [162,183-186], with the drawback of being computa-
tionally demanding. Recently, a few works [106, 178,187, 188] have shown the im-
pact of the atomistic structure on the optical response of metal clusters of a few
nanometers and dimers within atomistic time-dependent density functional theory
(TDDFT) [146,189], showing that the atomistic structure at the interfaces of a metal-
lic nanostructure needs to be considered for an accurate description of the local field
distribution around atomic-scale features. It has been shown [106], that the presence
of single atoms or atomic edges in facets of the nanoparticles allows for localizing
and confining the near field down to subnanometric dimensions, well below the un-
derlying plasmonic background. This level of field confinement goes beyond that of
nanocavities, where the field is localized to larger nanometric regions, thus reaching
the realm of picocavities. This has enabled a possible route toward photonics at
the picoscale, where the localization of EM fields in atomic-scale cavities leads to
extremely small effective mode volumes, thus boosting the coupling of photons with
the electronic transitions of single emitters [42] or with the vibrations of a molecule
in optomechanical interactions [43].

The quantum description of these optical picocavities at the full atomistic level
reveals the importance of atomic-scale features. However, such a detailed description
is often limited by the computational requirements, even with the relatively efficient
TDDFT methods. Here we propose the use of a simplified local classical approach to
address the optical response and the EM field distribution around picocavities. By
adopting a sharp boundary interface that coincides with the electronic density profile
of the atomistic distribution within a plasmonic structure we show in Sec. 2.1 that
a faithful reproduction of the near-field properties of the picocavity can be achieved
for single metallic nanoparticles. The extra localization of the field around atomic-
scale features is identified as a non-resonant atomic-scale lightning rod effect in Sec.
2.2. This concept is extended to cover the influence of picocavities in nanogaps in
Sec. 2.3. The proposed methodology is capable of exposing the extreme nanophotonic
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properties of these picocavities embedded in larger structures, thus allowing standard
methods of electrodynamics to address this challenging regime [107].

The data corresponding to the results obtained within TDDFT were performed
by Marc Barbry in the group of Prof. Daniel Sdnchez-Portal, while the DDA data
was calculated by Yao Zhang in the group of Prof. Javier Aizpurua, both at the
CFM in Donostia. The analysis and visualization of such data were performed by
myself.

2.1 Subnanometric features in single metallic nanoparticles

To understand the effects of subnanometric features in the plasmonic response of
small metallic nanoparticles, we consider nanoparticles with icosahedral symmetry
that present atomic-scale features such as facets, edges and vertices. We attempt
to separate the influence of these morphological features from other effects such as
electron confinement, inhomogeneous dynamical screening of the electron response,
the electron spill-out at the metal interfaces, etc., and analyze to what extent classical
approaches can reproduce the properties of the far- and near-field obtained within
atomistic quantum approaches, with special interest in the field localization and
enhancement around the vertices.
For such a purpose, we use three different approaches.

i) First, we consider a Naggg atomistic cluster within TDDFT framework de-
scribed in Chapter 1, which is the largest cluster size for which the global min-
imum icosahedral symmetry (as described using an effective Murrell-Mottram
potential [190]) is available [191]. This structure® is further relaxed using den-
sity functional theory (DFT), as implemented in the SIESTA code [192,193],
within the Generalized Gradient Approximation (GGA), with the use of the
Perdew-Burke-Ernzerhof functional [144]. The geometry relaxation ensures the
stability of the structure and that it corresponds at least to a local minimum
of the DFT energy landscape of Naggg. Subsequently, we obtain the TDDFT
linear optical response of the cluster within the so-called adiabatic local density
approximation [142,143]. Using an iterative scheme developed by Koval and
co-workers [150] we calculate the optical response at the TDDFT level for large
systems at moderate computational cost [106,150,188,194].

ii) Secondly, we consider the same atomistic structure within a classical approach,
i.e., the dipoles within DDA [117,121, 134, 135] are placed at the very same
positions as the atoms in TDDFT. Each atom ¢ is characterized by an atomic

5The initial structure of the Na380 cluster was downloaded from the Cambridge Cluster
Database. Wales, D. J.; Doye, J. P. K.; Dullweber, A.; Hodges, M.; Naumkin, F.; Calvo, F;
Hernandez-Rojas, J.; Middleton, T. F. http://www-wales.ch.cam.ac.uk/CCD.html.
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2.1 Subnanometric features in single metallic nanoparticles

iii)

polarizability «;, obtained from the bulk dielectric function (w) through the
Clausius-Mosotti relationship, a; « (¢ — 1)/(e + 2). Each atom is treated as a
sphere with polarizability a;, and radius r4; = 2.08 A. The interaction between
atoms is described as a point dipole-dipole one and the distance between dipoles
is determined from the relaxed atomistic structures. The optical response is
obtained from the total polarizability of the system, au.t, given by the coherent
sum of the self-consistent atomic polarizabilities azor = ), o, i.e., the optical
absorption cross section of the structure is calculated as o445 = 47w Im(ayer).

Last, we consider a continuous classical approach within the Boundary Element
Method (BEM), which assumes the medium within the nanoparticle (metal)
to be homogeneous and isotropic and to be separated from the surrounding
medium (vacuum) by an abrupt boundary interface resembling the electronic
density profile of the atomistic distribution. The optical response of the metal
is characterized by a local dielectric function, e(w). The calculations are carried
out with the MNPBEM Toolbox [109,110]. BEM requires the discretization
of the boundary surfaces, instead of the whole volume of the different dielec-
tric media, speeding up the solution of Maxwell’s equations in inhomogeneous
media. For the size of the nanoparticles studied in this work, below the intrin-
sic mean free path of conduction electrons in bulk metals, surface scattering
effects become important. In order to account for this effect in the classical
approach, we include a correction to the free-electron model (Drude model) of
the dielectric response following the prescriptions in the literature [195], with
the assumption that surface scattering effects lead to a reduced effective mean
free path Leg, which adds a damping factor in the Drude dielectric function
of the bulk metal. When specular reflection of electrons at the boundaries is
assumed, as in the so-called Billiard model [196], the effective mean free path is
given by Leg = 4V/A, where V and A are the volume and area of the nanopar-
ticle, respectively [197]. Therefore, we adopted the modified Drude model of
the dielectric function given by

w2

e(w) =¢€0o — i (2.1)
w? + iw(L”CFH + 7d)
where w, = 6.05 eV [198] is the Na plasma frequency, vg is the Fermi velocity

(vp = 1.07 x 105 m/s for Na [198]) and the intrinsic damping term is v4 =
27.6 meV [199)].

More details about the three approaches used to perform the numerical calcula-
tions are included in Chapter 1.

2.1.1

Influence of smoothening nanoparticle tips and edges

While the atomistic structure of nanoclusters is constrained by the crystallography
and relaxation of the structure, continuous approaches such as that developed within
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b
Atomistic ) Continuous

Figure 2.1: (a) Atomistic cluster composed by 380 atoms (dipoles) used in TDDFT (DDA) calculations.
(b) Sketch of the continuous icosahedral cluster used in BEM calculations. The sphere of radius » = 18.5 A
surrounding the icosahedron has been drawn for reference. The tips and edges have been rounded to have a
minimum cap radius of N, = 2.08 A.

BEM have the “freedom” to model any shape, a versatile aspect which can be ex-
ploited with care, and adapted to the context. For instance, an infinitely sharp
apex is unphysical, even more for Angstrom scales, and thus it usually requires some
smoothening or rounding of the surface. We choose the endings of tips and edges
in our structures to be rounded by means of a spherical cap of radius ry, ~ 2.08 A
(Wigner-Seitz radius of sodium) as shown in Fig. 2.2, i.e., we consider these ending-
features to have the curvature of an atom approximated by a sphere.

Figure 2.3 shows the absorption cross section of single icosahedral particles of radii
r=1nm,1.6 nm, 1.8 nm and 2 nm with non-smoothened and with smoothened tips
and edges in their surface morphology following the approach iii) described above.
The radius r is defined as the minimum radius of the sphere surrounding the non-
smoothened icosahedrons thus, the smoothened nanoparticles after the rounding are
slightly smaller. The smoothening radius ry, has been kept fixed for all particle
sizes, while the damping term in the dielectric function due to surface scattering
effects depends on the size of the nanoparticle following Eq. 2.1. Overall, the spectra
show a dominance of the dipolar plasmonic (DP) mode, but the relative weight of
higher-order modes with respect to the DP is larger in particles with sharp geometries
(dashed lines) than in smoothened geometries (continuous lines). Also the plasmonic
resonances of the smoothened geometries are slightly blue-shifted and spectrally more
dispersed, as compared to the non-smoothened ones.

Regarding the influence of size in the absorption cross section, as the smoothen-
ing radius is kept constant for different particles sizes, the smaller the particle, the
smoother its overall shape is, i.e., more similar to a sphere. Thus, the particle size
affects both the relative weight and position of the plasmon peaks for smoothened
NPs. On the other hand, for decreasing particle sizes, the damping due to surface-
scattering effects increases, broadening the signal and smearing out the effects of
the particle smoothening on the spectrum, which is observed for example in the re-
sponse of the particle with = 1 nm in Fig. 2.3, where only a broad peak can be
distinguished.
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a)

smoothening

v

d)

Figure 2.2: (a) Surface mesh used to model the initial reqular icosahedral particle (sharp tips and edges).
(b) Detail of one of the tips to be smoothened. (c) Location of the sphere of radius rn, used to smoothen
the tip. (d) Smoothened tip with the spherical cap in place. The smoothened surface matches the contour of
the sphere. (e) Detail of the tip of the final smoothened particle. (f) Complete view of the final smoothened
icosahedral particle. The number of elements of the surface mesh is kept constant during the smoothening
process.

2.1.2 Far-field and near-field optical response of single nanoparticles

Now that we have set the procedure of the rounding of a continuous cluster, we explore
the optical response and field localization around atomic-scale features associated
with the edges and vertices of nanoparticle morphologies in isolated particles within
the three different approaches. To that end we perform calculations of the absorption
cross section and near-field distribution in single Na icosahedral clusters using the
numerical methods introduced in Chapter 1. As mentioned above, quantum atomistic
calculations adopt the geometry shown in Fig. 2.1(a), whereas the classical local
calculations adopt the smooth icosahedral shape displayed in Fig. 2.1(b) (with r =
1.85 nm). Additionally, the situation of a smooth spherical geometry with no atomic-
scale features is also considered as a reference. The absorption cross sections obtained
from the three approaches are compared in Fig. 2.4. In the TDDFT calculation (blue
line) we observe a single peak at 3.15 €V, corresponding to the dipolar plasmon (DP)
resonance, and a shoulder at around 3.8 V. In the DDA calculation (green line) we
observe a single peak at 3.25 eV corresponding to the DP and a broad shoulder. The
BEM calculation (red line) shows two clear peaks emerging at 3.2 eV and 3.6 €V,
and corresponding to the DP and a higher order plasmon (HOP) mode, respectively.
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Figure 2.3: Absorption cross-section as a function of energy for icosahedral nanoparticles with smoothened
(straight lines) and sharp (dashed lines) tips and edges in their morphology, as obtained using the BEM.
The radii of the minimum sphere surrounding the nanoparticles are » = 1 nm, 1.6 nm, 1.8 nm and 2 nm.
The smoothening radius has been set to rn, = 2.08 A for all the nanoparticle sizes.

Moreover, due to the high symmetry of the system, the dependence of the far-field
on the polarization of incident light is negligible.

The difference in the energies of the DP among the different models is minimal,
but more pronounced differences can be found in their intensity, especially in the
calculation with DDA. Moreover, when smoother geometries are considered in the
classical BEM calculations, there is a predominance of the DP mode and a smearing
out of the HOP mode, as shown in Fig. 2.3. This explains the presence of a clear
second peak in the BEM cross section, as compared to the shoulder obtained in
the full quantum calculation, effectively rounded by the effect of the electron cloud
spilling at the interfaces. The spectrum corresponding to a classical spherical particle,
of similar size (r = 1.85 nm) sketched in Fig. 2.1(b), is also shown (dashed black line)
for reference. A single peak, corresponding to the DP, emerges at 3.45 eV for the
smooth spherical particle. The difference in the intensity of the DP arises in part
due to the activation of higher order modes in the case of the icosahedral particle.

One of the most important aspects of an optical resonator is its capacity to local-
ize the optical mode to an effective volume as small as possible. In Fig. 2.5 the field
distribution around the Na nanoparticle is mapped for two perpendicular incident
polarizations. The energy considered in all the plots corresponds to the dipolar plas-
monic resonance. Data are displayed in the (y, z) plane passing through the center of
the particle. The polarization of the incident field is parallel to the y-axis for the plots
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Figure 2.4: Absorption cross-section of a Na particle calculated using TDDFT (blue line), BEM (red line)
and DDA (green line). The energies of the dipolar plasmons obtained for all three models are highlighted
by round dots. The dashed black line corresponds to the absorption cross section of the sphere in Fig. 2.1
b), as calculated with BEM. A peak corresponding to a higher order plasmon (HOP) is observed for BEM
at w = 3.6 €V, while a shoulder is appreciated for TDDFT and DDA around w ~ 3.8 e¢V. TDDFT data
provided by Marc Barbry and DDA data provided by Yao Zhang, both in CFM.

on the top row, and along the z-axis for the plots on the bottom row. The atomistic
structure of the nanoparticle clearly emerges in the TDDFT and DDA results (left
and right columns), and as one might expect, there is no atomistic contrast in the
classical near-field map (middle column), due to the continuous description of the
media interfaces within this model. Remarkably, both model descriptions reproduce
very similarly the effect of localization of the near field at the atomic protrusions
within the particles interfaces (at their tips and edges), giving rise to pronounced
atomic scale “hot spots”. These subnanometric-scale hot spots are clearly identified
in all the field distributions on top of the plasmonic nanometric background, and they
are also correctly captured by the classical local description (middle column). One
can thus conclude that it is possible to describe the main features of sub-nanometric
localization of the fields if the atomistic structure of the particle is correctly approxi-
mated by a smooth and continuous surface. This extreme confinement of the field to
subnanometric effective volumes goes beyond that of nanocavities, where the field is
localized to nanometric regions, so these cavities showing subnanometric localization
are referred to as picocavities.

These results set the validity of classical approaches to effectively address the
actual local field distribution around atomistic features, even in the most extreme
situations of localization. With this result at hand, it can be proposed that atomic-
scale hot spots in large plasmonic configurations can be correctly tackled by a proper
classical approach which accounts for the atomistic structure geometrical profile.
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Figure 2.5: Induced near-field enhancement for a single icosahedral Na nanoparticle obtained using (a-b)
TDDFT, (c-d) BEM, and (e-f) DDA. The external field Eq is polarized along the y axis (top row) and along
z axis (bottom row). TDDFT data provided by Marc Barbry and DDA data provided by Yao Zhang, both in
CFM.

Next we analyze deeper the physical mechanism underlying this atomic-scale optical
localization.

2.2 Atomic-scale lightning rod effect

In the previous section we have studied the influence of atomic-scale features in the
optical response of single metallic nanoparticles, and observed that the electromag-
netic field can be localized in subnanometric regions. In this section we will show that
this extra-localization of the field around atomistic features is sustained by a non-
resonant effect which cooperates with the overall plasmonic enhancement produced
by the collective oscillation of the electronic surface charge density in the nanopar-
ticle. At the macroscopic scale, it is well known that isopotential regions which
expel the electric field and present a pronounced geometrical curvature produce an
abrupt change of the electrical potential, ¢(r), in their proximity (large potential
gradient), and thus strong induced electric fields E;,q, since, in the quasistatic limit,
Eina = —V¢(r). The field enhancement following a strong potential gradient due to
the curvature of a perfectly metallic curved interface is commonly described as the
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Figure 2.6: a) Sketch showing a tip on an icosahedral atomistic nanoparticle used in TDDFT (circles
represent atoms). The dotted line along the nanoparticle interface shows the surface used in the BEM
calculations. The zone where the field is localized has been highlighted with oblique lines. (b) Zoom-
in of the region enclosed by the cyan dashed lines of the TDDFT near-field maps from Fig. 2.5(b); (c)
zoom-in of the BEM near-field maps from Fig. 2.5(d). (d) Sketch of an atomic protrusion on a spherical
nanoparticle that produces an atomic lightning rod effect enhancing the background plasmonic field given
by the spherical nanoparticle. (e) Near-field enhancement map of the induced electric field |Ejnq| with
respect to the background plasmonic field |Ey|, corresponding to an almost flat protrusion (a/b =~ 0.1),
with practically no enhancement of the field. (f) Near-field enhancement map as in (e), corresponding to
a spherical protrusion (a/b ~ 1), giving a maximum field enhancement, |Ejnq|/|Epp|. of = 3. (g) Field
enhancement at the boundary (x = 0, z = a) of an oblate spheroidal protrusion as a function of the aspect
ratio. The colored dots correspond to the field enhancements at the positions marked in panels (b) and (c).
The enhancement of the induced fields has been calculated with respect to the plasmonic background field,
|[Ebp|, obtained at the boundary of a typical spherical surface, which is on the order of |Ey,,| ~ 6 [blue dot
as a reference in (g)] TDDFT data provided by Marc Barbry in CFM.

“lightning rod effect”. In analogy to the macroscopic situation, in the proximity of an
atomic protrusion, an atomic-scale lightning rod effect is produced, which is respon-
sible for the extra localization at the tips and edges of an interface [see schematics in
Fig. 2.6(a)]. In spite of the strong quantum effects that govern the optical response of
the electron gas at the subnanometric scale, including dynamical screening and spill-
out, the main features of the field localization and enhancement in atomic protrusions
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

can be correctly addressed by the consideration of a sharp curvature that follows the
atomistic profile, as demonstrated with the quantum and classical calculation of this
effect in Fig. 2.5(a-d). A zoom-in of the near field around one of these protrusions
[marked with blue dashed squares in Figs. 2.5(b,d)] is displayed in more detail in
Figs. 2.6(b,c). The classical calculation faithfully reproduces the spatial extension
and the intensity of the quantum atomic-scale localization, with a field distribution
that corresponds to a protrusion of the size of the metal atomic radius.

From nanocavities to picocavities

Photonic resonators or cavities withstand standing optical waves (modes) and
thus can be used to store energy. Their main properties are given by the
quality factor @), which gives the rate of energy loss relative to the energy
stored in the resonator in each optical cycle, and the effective mode volume
Vesr, which describes the spatial extension of the mode (i.e., how much is light
confined) within the cavity. Plasmonic nanoparticles and nanogaps present
low @ values (@ ~ 10) due to their intrinsic losses, but are able to confine
the electromagnetic field to nanometric dimensions (Veg > 1 — 100 nm?), and
are therefore referred to as nanocavities. The presence of atomic protrusions
or features on these nanostructures can produce an atomic-scale lightning
rod effect that, when mounted on a plasmonic resonance, decreases the Vig
to subnanometric dimensions (Veg < 1 nm?), and are thus referred to as
picocavities. These picocavities define the ultimate limit of the confinement
of light provided by condensed matter, which relies on the lightning rod effect
associated with the potential profile driven by the electron density in the
vicinity of a protruding atom.

A quantitative estimation of the atomic-scale lightning rod effect can be inferred
from a quasistatic analysis of the field distribution around a semispheroidal feature
on top of a metallic flat interface [see schematics in Fig. 2.6(d)]. The exemplary semi-
spheroidal feature mimics an atomic protrusion and is characterized by a semiwidth
b, and a semiheight a, as depicted in Fig. 2.6(f). We consider an incident background
plasmonic field Ey,;,, which would be the induced field in a spherical particle without
corrugations, and calculate the induced field E;,q distribution and intensity around
the semispheroidal protrusion for two distinctive situations: (i) a featureless protru-
sion of very small height (a/b = 0.1) in Fig. 2.6(e), and (ii) half an atom protruding
from the flat surface (a/b = 1) in Fig. 2.6(f), mimicking the supporting particle sur-
face (of much larger radius). Whereas the featureless protrusion hardly provides any
field enhancement (|Eing|/|Epp| = 1), the atomic-sized protrusion produces a 3-fold
extra enhancement over the incident background field. The full set of field enhance-
ments obtained for all the different values of a/b are shown in Fig 2.6(g), which is
given by:

E  sin’t
By 157

tant

(2.2)
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Figure 2.7: Sketch of the three inter-particle gap geometries considered, a) facet-to-facet , b) tip-to-facet
and c) tip-to-tip, and the polarization of the incident electric field Eq, oriented along the dimer axis.

where ¢ = acos(a/b). This analytical estimation is in very good agreement with the
actual values obtained from the classical and quantum calculations (red and green
dots in Fig. 2.6(g), respectively), validating the interpretation of a non-resonant light-
ing rod effect at the atomic scale as responsible for the extra enhancement observed
in atomistic protrusions.

The good agreement between the classical and quantum results paves the way to
perform simple and general calculations, and make predictions of the field enhance-
ment produced in much larger and complex structures in which these picocavities are
present. Quantum approaches generally cannot deal with nanometric structures of
large size due to the high computation demands of such systems. This atomic-scale
lightning rod effect is commonly present in many situations in nanophotonics, as for
instance in molecular spectroscopy, where the subnanometric localization of the field
has been key to resolve single-molecule picoscopy [43].

2.3 Picocavities in plasmonic nanogaps

We have analyzed the optical response of picocavities present in single metallic
nanoparticles, and characterized the subnanometric localization as an atomic-scale
lightning rod effect. One of the best plasmonic resonators is given by the formation of
a metal-insulator-metal (MIM) structure, connecting two metallic nanostructures at
a nanometric separation distance, forming a plasmonic nanogap as the one sketched
in Fig. 3(c) of the Introduction. In order to explore the properties of local field en-
hancements and effective mode volumes in plasmonic nanocavities with atomic-scale
protrusions, we consider three different configurations of metallic dimers formed by
the sodium clusters analyzed in the previous section, according to their mutual ori-
entation. The icosahedral clusters present atomistic features and are aligned across
the gap in configurations referred to as (a) facet-to-facet, (b) tip-to-facet, and (c)
tip-to-tip, as sketched Fig. 2.7. Moreover, the separation distance also affects the
properties of the system and will be considered as a parameter.
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2. OPTICAL RESPONSE OF METALLIC PICOCAVITIES

Figure 2.8: Sketch showing the parameters used to define the separation distance between particles in the
three approaches. For the two atomistic models, TDDFT and DDA, the separation distance is defined as the
smallest distance between the center of the atoms (circles) from opposite clusters, dsep, and for the continuous
approach, BEM, it is defined as the sum of the distance between the surfaces (dashed lines) that define the
continuous metallic particles, dc, corrected with the classical radius of a sodium atom, rn, = 2.08 A,
dsep = dc + 2TNa-

Due to the the distinct nature of the three approaches considered in this chapter,
we need to define the separation distance of the gap dscp differently for the atomistic
approaches (TDDFT and DDA) and the continuous classical approach (BEM). For
the atomistic framework, within both TDDFT and DDA, the separation distance is
set as the distance between the centers of the closest gap atoms (or dipoles for DDA)
from opposite clusters dsep. In the case of the continuous classical description, BEM,
the separation distance is considered as the distance between the closest points of
the particles surfaces, d., with an additional correction term corresponding to the
distance between the center of an outermost sodium atom and the surface of the
particle (the Na atoms have been considered as spheres of radius ry, = 2.08 A),
dsep = dc + 2 - TNa, as shown in Fig. 2.8.

2.3.1 Far-field optical response of picocavities

Before analyzing the local field and the effective mode volume, it is useful to ad-
dress the far-field response of each gap configuration as a function of interparticle
distance and compare the results obtained within TDDFT, BEM and DDA descrip-
tions. We perform calculations of the absorption cross sections for the three different
gap geometries corresponding to the three particle orientations, (a) facet-to-facet,
(b) tip-to-facet, and (c) tip-to-tip, sketched in Fig. 2.7. We trace the optical modes
of the cavities from a separation distance of ds, = 20 A to a situation of touching
and overlapping of the particles (dsep < 4 A). The polarization of the incident light
is oriented along the dimer axis.

The absorption cross section of all the plasmonic gaps is mainly characterized by
the existence of a bonding dimer plasmon (BDP) that slightly redshifts when the two
particles approach [26,30]. This effect is very clear in the classical calculations (middle
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Figure 2.9: Absorption cross-section spectra of icosahedral dimers obtained using TDDFT in the first
row a)-c), BEM in the second row d)-f), and DDA in the third row g)-i) as a function of the inter-particle
separation distance dsep. The hybridized bonding dimer plasmon (BDP) mode, bonding quadrupolar plasmon
(BQP) mode, charge transfer plasmon (CTP) mode and higher-order charge transfer plasmon (CTP’) mode
are highlighted in the spectra for those cases where such identification is possible. The minimum distance
(dc = 0 A) for which the continuous (BEM) particles overlap is highlighted with dashed white lines. TDDFT
data provided by Marc Barbry and DDA data provided by Yao Zhang, both in CFM.

and bottom rows in Fig. 2.9) and appears as less pronounced in the quantum results
(top row in Fig. 2.9). For large separation distances (dsep > 6 A) the gap modes
appear at a similar energy for all the configurations considered.

In the TDDFT calculations [first row in Figs. 2.9(a-c)] the BDP slightly red-shifts
as the interparticle distance decreases, and below dsp, = 6 A it eventually fades
away, indicating that the quantum tunneling regime is being reached [106]. At those
separation distances, the charge transfer plasmon (CTP) at lower energy (around 2
eV) emerges due to the current induced by the tunneling effect, even if the particles
are not in physical contact (dsep ~ 5 A, while the interatomic distance is ~ 4 A).
Notice the higher intensity of the CTP mode for the facet-to-facet geometry with
respect to the other two configurations, due to a larger particle surface area exposed
at the minimum gap distance, which includes a greater overlapping of the electron
densities of the clusters gap interfaces. Furthermore, for these short distances the
higher-order charge transfer plasmon (CTP’) mode is also excited at higher energy
(about 3 €V). Notice that for tip-to-facet and tip-to-tip geometries in Figs. 2.9(b,c),
the CTP’ modes have larger relative weight than the lowest order CTP mode, as the
tunneling transport of the electrons through the gap is reduced when going through
a tip, rather than in a situation of facet-to-facet tunneling [Fig. 2.9(a)].

Similarly to the situation of the isolated nanoparticle, we also mimic the config-
uration of the plasmonic gaps of different morphologies with the use of a classical
approach based on the BEM. Overall, the optical response calculated within the clas-
sical framework is very similar to the quantum one for dgep, > 6 A. For this classical
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separation range, a similar redshift of the BDP mode is observed in the classical
description to that observed in the results of the TDDFT calculation. This behavior
also appears for dimers composed by spheres [30], and it is enhanced here by the ex-
treme geometrical features of our system. This can be clearly observed by comparing
the facet-to-facet gap (d) which shows a slight excitation of the bonding quadrupolar
plasmon (BQP) and intense BDP mode, and the tip-to-tip (f) with a much stronger
excitation of BQP and lower BDP intensity.

Beyond this classical regime, major differences with respect to the TDDF'T results
are observed in the 4 A < dsep < 6 A separation range, where electron spilling effects
and a strong tunneling affect the optical spectra. A local classical electrodynamical
approach cannot reproduce these effects due to their pure quantum nature, even
though novel effective approaches have been developed to account for them with
extended classical treatments [96].

Finally, for overlapping particles with ds, < 4 A, the pattern observed in the
classical spectra, characterized by a distribution of charge transfer plasmons (CTPs
and CTP’s), perfectly reproduces that of the TDDFT results, although the relative
intensity of CTP and CTP’ are dramatically dependent on the geometry and width of
the neck connecting the particles. As far as the optical spectrum is concerned, most of
the spectral features are well reproduced by the classical approach, identifying clearly
the bonding plasmon at the gap and the charge transfer when overlap is produced.
The quantum situation for separations below 6 A requires further elaboration as
shown in the literature [96].

We complement our study on plasmonic gaps with the use of an atomistic classical
approach based on DDA. The optical response obtained within this framework shares
some spectral features as observed within both the quantum and continuous classical
approaches for ds, > 6 A. The BDP mode shows a similar redshift compared to
BEM (and thus slightly larger than in TDDFT) for decreasing separation distances.
Moreover, the comparison among the different configurations reveals the same trend
as in BEM: the facet-to-facet gap (g) shows an attenuated excitation of the BQP
and intense BDP compared to the tip-to-facet (h) and tip-to-tip (i) configurations,
although they are not as distinguishable as in BEM calculation.

As it happens for BEM calculations, the limitations of DDA are noticeable when
entering the quantum regime in the dsep, < 6 A separation range. Evenmore, difficul-
ties arise to properly address the situation for overlapping particles with dsep, < 4 A
In particular, this situation requires a different approach compared to TDDFT, as
the direct removal of layers of dipoles from a cluster leads to a new nanogap with
non-overlapping clusters. On the other hand, if the layers were kept in their position,
the dipoles would overlap leading to unphysical results. Thus, in an attempt to avoid
both situations, a smooth transition from non-overlapping to overlapping has been
modeled, which yet does not recover the response observed for TDDFT and BEM.
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Figure 2.10: Induced near-field enhancement maps in the plane (z,y) for a metallic dimer characterised
by a tip-to-facet gap configuration [sketch in Fig. 2.7(b)] calculated with quantum TDDFT (left column), with
classical BEM (middle column), and with DDA (right column). Separation distances between particles are
dsep = 20 A panels (a-c), dsep = 10 A panels (d-f), dsep = 6 A panels (g-i) and dsep = 1 A panels (j-1).
The most intense resonances are selected for each separation distance. In most of the cases this resonance
corresponds to the BDP, except those shown in panels (j-l), where the charge transfer CTP’ is the most
intense resonance. TDDFT data provided by Marc Barbry and DDA data provided by Yao Zhang, both in
CFM.

2.3.2 Near-field optical response of picocavities

The gap plasmon identified for the three morphologies in Fig. 2.9 is a canonical
mode in plasmonics widely exploited as a building block for molecular sensing and
spectroscopy [200-203]. We now analyze the validity of the classical approaches to
address the local field distribution and the effective mode volume of the gap mode.
We focus on the tip-to-facet configuration and analyze the local field distribution
for different separation distances within both quantum and classical approaches. We
select this configuration because it gathers both tip and facet features and thus
illustrates adequately the outcome for each morphology. In Fig. 2.10, we show the
induced fields for four different particle separations, namely, dsep, = 20 A (first row,
a-c), dsep = 10 A (second row, d-f), dsep = 6 A (third row, g-i) and dgep = 1 A (fourth
row, j-1), which have been chosen to illustrate the different interaction regimes: weak
interaction, medium interaction, strong interaction and charge transfer regimes.
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Quantum (TDDFT) results are displayed in the left column of Fig. 2.10, contin-
uous classical (BEM) results in the middle column, and atomistic classical (DDA)
results in the right column. In the weak interaction regime, (dsep = 20 A, a-c) the
near-field distribution resembles that in isolated single particles. Nevertheless, a
larger enhancement of the field is observed in the gap, meaning that an hybridization
of the dipolar modes of the particles into the BDP mode also emerges at this separa-
tion distance. Continuous classical (BEM), atomistic classical (DDA) and quantum
(TDDFT) results equally reproduce the presence of the atomic-scale hot spots, not
only in field distribution, but also in the intensity of the enhancement produced (of
the order of 25-fold) with respect to the incoming field, although DDA lacks some of
the field distribution around the nanoparticle and the field is mainly localized around
the tip rather than in the gap. As the nanoparticles’ gap is decreased, the BDP gets
more localized at the gap [Figs. 2.10(d-h)]. All approaches predict the progressive
localization of the field in the medium and strong interaction regimes, with values
of the field enhancement at the gaps of around 35 fold. Finally, as the nanoparti-
cles overlap [Figs. 2.10(j,1)], charge transfer across the particle is produced, expelling
the field from the gap producing, an effect correctly captured by the quantum and
continuous classical results, but not by the atomistic classical results. As observed
in the comparison between quantum and classical results in Fig. 2.10, the continu-
ous classical approach provides a very adequate framework to address the local-field
distribution around atomic-scale features, even in the extreme situation of small clus-
ters where quantum effects are more pronounced. We can thus conclude that this
classical approach can be safely used to describe atomic-scale features in much larger
plasmonic structures, which cannot be directly tackled by quantum methods.

The near-field maps in the charge transfer regime, plotted for the CTP’ mode
energies in Figs. 2.10(j,1) confirm that this regime can be also correctly captured by
means of a continuous classical description. In the case of the TDDFT description
(panel j) the charge is transferred through the “gap” due to the overlap of the electron
wave functions, so that the field is expelled to the surrounding of the gap and thus
the field confinement decreases. The same occurs in the classical BEM description
(panel h), where the particles’ profile follows the overlapping neck of the particles’
electronic wave functions, and thus the field is also expelled to the outside with a very
similar pattern when compared to the TDDFT result. Moreover, the main features
of the near-field distribution around the tips are also preserved in both models. On
the other hand, DDA fails to reproduce the field distribution pattern as there is
always an effective gap among the nanoparticles where the field is localized instead
of expelling it to the surrounding of the gap.

2.3.3 Effective mode volume of picocavities

One of the most important properties of an optical resonator is the effective mode
volume Vg associated to its resonance modes, i.e., the spatial confinement of the
modes. Following the common (normal mode) prescription, the effective mode vol-
ume can be obtained as an integration of the energy of the induced local fields of
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a mode, |Einq (2,7, z)|%, normalized to the maximum local energy, [ER%|2, over the
total volume, Viu:
|Eina(z, y,2)|?
‘/eﬂ‘ = / IT:ET”CZZU dy dz. (23)
Viot ind

The definition of a general effective mode volume has been source of debate within
the community of photonic cavities in the last decade [204,205]. We note that the
definition given above for Vg is rigorous for cavities with infinite quality factor
Q. A rigorous mathematical definition for leaky cavities (cavities that present losses,
due to radiation and/or absorption, and therefore finite () has been given within the
framework of Quasinormal Modes (QNM) [206]. Here we do not intend to explore the
intricacies of QNMs ¢ | but to analyze the field localization in the nanogap obtained
within the full electromagnetic response of the plasmonic system using TDDFT,
BEM and DDA. Thus, the above prescription for V.g is adequate to evaluate the
localization of the field in equal footing for the three models, taking into account
that the plasmonic resonances are spectrally well separated.

When an atomic-scale lightning-rod effect is mounted on a plasmonic resonance,
a slight modification of the field-enhancement and the effective mode volume is pro-
duced by this effect. As we have illustrated throughout this chapter, the classical
description of the atomic-scale features turns to be a very adequate framework to
address the properties of these picocavities. We thus compare now the maximal field
enhancement and effective mode volume obtained in the different plasmonic cavities
as a function of gap separation distance, dsp. Classical and quantum results for
the effective mode volumes are displayed in Fig. 2.11, for three mutual orientations
considered earlier in this chapter. Maximum near-field enhancement at the center
of the gap |EL5*|/|Eo| is shown in panels (a-c) of Fig. 2.11, and the corresponding
effective mode volume Vg in panels (d-f).

For separation distances larger than dgep, ~ 8 — 10 A, the maximum induced near
fields show similar trends for all the configurations with excellent agreement between
the quantum and the classical descriptions. For smaller separation distances, the
quantum model properly accounts for the quenching of the local field enhancement
produced by the quantum tunneling at optical frequencies [96], whereas the classical

6The fundamental difference between quasinormal modes and normal modes is that the for-
mer appear as solutions to a non-Hermitian differential equation problems, with complex eigen-
frequencies, and consequently, many concepts derived for the normal modes of Hermitian prob-
lems do not apply. For instance, for a resonator embedded in an otherwise homogeneous per-
mittivity distribution ep = nQB, quasinormal modes are obtained by solving the wave equation,
V X V X E(r,w) — k?¢(r,w)E(r,w) = 0, with the Silver-Muller radiation condition (equivalent
to Sommerfield radiation condition for scalar functions), & X V X E(r,w) + ingkE(r,w) — 0 (as
|r| = 0), as the boundary condition, where (r,w) is the position and frequency dependent relative
permittivity, k = w/c is the ratio of the angular frequency to the speed of light in vacuum and where
I is a unit vector in the direction of r. The use of this radiation condition turns the wave equation
into a non-Hermitian eigenvalue problem, even if ¢(r,w) is real, so that the eigenmodes are QNMs
f,, (r) with a discrete spectrum of complex resonance frequencies ZH = wy — 4yu. The radiation
condition ensures that the light propagates away from the cavity (for leaky resonators), although
the QNMs diverge (exponentally) at large distances, which is rather challenging conceptually and
numerically. Further details can be found in Ref. [204].
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Figure 2.11: (a-c) Maximum local induced-field enhancement |E;N%*|/|Eq| at the central plane bisecting
the gap between two nanoparticles forming a plasmonic gap in the three configurations shown on the top
of Fig. 2.7: facet-to-facet, tip-to-facet, and tip-to-tip, as a function of the separation distance between the
particles, dsep. The blue line stands for the TDDFT quantum calculations, the red line shows the classical
BEM results, and the green line the DDA results. The vertical dotted red line marks the touching situation,
dc = 0. Small arrows indicate the threshold separation distance below which the effect of quantum tunneling
becomes noticeable [96]. (d-f) Effective mode volume Vg of the local field, as defined in the text (Eq. 2.3), for
all three configurations. The data correspond to the energies for which the largest maximum of the induced
near field for each configuration and distance is obtained. The dashed black line addresses the effective mode
volume corresponding to the gap of spherical particles of radius = 1.85 A. TDDFT data provided by Marc
Barbry and DDA data provided by Yao Zhang, both in CFM.

picture provides an unphysical increase of the local field. The quantum description
(blue line, TDDFT) addresses the existence of a maximum of local field at dsep, = 8 A
for the facet-to-facet configuration, which is slightly shifted to a smaller separation
for the other configurations showing atomic-scale protrusions (dsep = 7 A for tip-
to-facet and tip-to-tip configurations), due to a reduced effect of the tunneling in
those configurations. In the classical descriptions (red and green lines in Fig 2.11,
the enhancement of the local fields increases exponentially as the gap is closed, with
larger values for tip-to-tip and tip-to-facet configurations due to a more pronounced
lightning rod effect. In light of these results one can conclude that the classical
description of the atomic scale local fields is correct until separation distances of
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about 8 A.

Along with the maximum absolute value of the field enhancement, the corre-
sponding effective mode volume, Vg for each situation is shown in Fig. 2.11(d-f). As
has been mentioned, Vg provides the effective localization volume in which the field
is localized in the middle of the gap. Figure 2.11(d-f) shows the results as a function
of dsep for the corresponding configurations and energies used in Fig. 2.11(a-c). For
the quantum and continuous classical approaches, the dependence of V,g shows sim-
ilar trends for all the configurations with slight differences due to the details of each
particular cavity. For deep > 5 A, where the BDP mode dominates the response in all
the gap configurations, there is a smooth increase of field confinement, i.e., decrease
of Ve, as the particles get closer, in both the quantum and classical descriptions.
The classical approach agrees very well with the quantum one: for a facet-to-facet
configuration [Fig. 2.11(d)] a confinement below 3 nm? is possible, only limited by the
extension of the atomic facets. An extreme situation is achieved with the presence
of atomic-scale tips (picocavities) [Figs. 2.11(e,f)]. In such a situation, the effective
mode volumes reach subnanometric volumes, below 1 nm?®. This level of confinement
of light is the ultimate limit provided by condensed matter and relies on the lightning
rod effect associated with the potential profile driven by the electron density profile
in the vicinity of a protruding atom, as described in Fig. 2.6.

It should be noted that the classical theory correctly describes this level of local-
ization in spite of the presence of spill-out or dynamical screening effects, as demon-
strated here. The atomistic quantum calculations are, for now, greatly limited in
particle size, i.e., they cannot go beyond structures of a few nanometers (few thou-
sands of atoms) due to computational cost. This barrier prevents direct comparison
with experiments using medium-to-large sized nanostructures that are usually used
in molecular spectroscopy. In particular, the large optical field gradient in these pic-
ocavities can change the Raman selection rules of molecules placed in their vicinity,
exciting otherwise forbidden vibrational transitions in single molecules [43].

For gap separation distances dsep < 8 A, the BDP mode is quenched due to
electron tunneling, and thus the effective mode volume increases as the local field
spreads out from the plasmonic cavity. This sets a threshold separation distance
below which the classical description is not appropriate. This behavior depends
much on the geometrical details of each particular configuration, as observed from
the difference in the blue line of Figs. 2.11(d-f).

2.4 Discussion and summary

The optical response of small metallic nanoparticles and nanogaps that contain
atomic-scale features has been analyzed in this chapter, paying special attention
to the extreme localization of light associated with them. In order to gain insight
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into the influence of morphology on this localization, we have applied three differ-
ent approaches to describe the atomic-scale boundaries, which account for different
“complexity" levels: ) an atomistic ab initio quantum description based on TDDFT,
i1) an atomistic classical approach based on the DDA, and %) a continuous classical
description based on the BEM.

We observe subnanometric localization of light around the tips of single metallic
nanoparticles using all three approaches. Lightning rod effect at the atomic scale is
identified as responsible for the extreme localization of light, induced by the electrical
potential gradient produced by the electronic wave functions of the atomistic features.
When superimposed on top of a nanometric plasmonic resonance, the lightning rod
effect acts as a multiplier effect, producing an extra factor of field enhancement,
which is characterized by a further spatial localization as compared to the supporting
underlying resonance, with a similar spectral distribution. We show that the effective
mode volumes of these atomistic features can reach subnanometric dimensions, taking
the localization of light to the realm of the picoscale, with mode volumes below 1 nm?.
Based on these results we introduce the concept of picocavity.

Our calculations show that a classical model which solves Maxwell’s equations,
where the atomic-scale features are described by sharp boundaries following the pro-
file of the electron density associated with the atoms, is able to reproduce very sat-
isfactorily the field localization and the effective mode volume in relevant canonical
plasmonic nanoresonators such as in single metallic nanoparticles and in nanometric
gaps formed by nanoparticle dimers. The current work has focused on Na nanopar-
ticles; however the classical description of the atomic-scale lightning rod effect can
be extended to noble metals, such as Ag or Au, widely used in nanoplasmonics,
with the appropriate description of the dielectric function to account for interband
transitions in these materials. Moreover, the good agreement between the classical
and quantum calculations supports the use of classical approaches in the calculation
of the optical response of medium-to-large plasmonic nanostructures that can also
show subnanometric localization of the field in the presence of atomic-scale features.
In particular, picocavities are exploited in many situations in nanophotonics, such
as molecular spectroscopy, where the the subnanometric localization of the field has
been key to resolve single-molecule picoscopy [42,43].
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Addressing structural
inhomogeneities in metallic

nanocavities as probed by
optical spectroscopy

HE presence of atomic-scale features and protrusions localizes light down to sub-
T nanometric volumes forming picocavities, as discussed in Chapter 2. The large
field enhancement and, specially, the large field gradients produced around these pic-
ocavities is of great interest in molecular spectroscopies, such as in Surface-Enhanced
Raman Scattering (SERS). In particular, symmetries forbidding the excitation of
specific molecular vibrational modes can be broken by these large field gradients,
making these modes accessible to probes used in optical experiments [43,207].

A suitable and robust structure to perform SERS experiments is the nanoparticle-
on-mirror (NPoM) structure [208], which consists of a metallic nanoparticle placed
on top of a metallic substrate and separated by a thin spacer-film in-between to pre-
vent conductive contact, creating a nanogap between the NP and the substrate as
sketched in Fig. 3.1(a). The charges induced in the NP under illumination produce a
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3.1 Nanoparticle-on-a-Mirror configuration

mirror image charge distribution at the substrate, producing a confined plasmon at
the nanogap similar to that produced in a NP dimer [209-211] (see Sec. 2.3 for dimers
with small nanoparticles). The presence of picocavities at the nanogap of NPoM
structures has been studied and successfully exploited to perform single-molecule
SERS. Moreover, light-induced atomic restructuring at the surface of metallic nanos-
tructures has been reported to be at the origin of the picocavities [43,212].

In time-resolved SERS, the characteristic spectral signature of picocavities is re-
vealed with the appearance and disappearance of light emission at specific wave-
lengths related to symmetry forbidden excitations/transitions. Along with these
phenomena, other dynamical features have been observed in time-dependent SERS
such as sudden broad-band Gaussian increases of the background signal [46-48],
which we refer to as emission flares. Nevertheless, the origin of these flares has
not been investigated systematically. In order to analyze these spectral events, ex-
periments were performed by Cloudy Carnegie at Cambridge University under the
supervision of Prof. Jeremy Baumberg to capture over a million time-dependent
scattering spectra for more than 3000 NPoMs.

Great part of the background SERS signal in NPoM structures is known to come
from electronic Raman scattering (ERS), which is proportional to the 4** power of
the electric field. In this chapter we study flares in SERS spectra and model them as
a dynamic restructuring of atoms at transient defects, such as twin planes and grain
boundaries, which lead to localized changes of the plasma frequency of the metal, and
thus induce a stronger electric field within the metallic NP. In Section 3.1 we analyze
the optical response of NPoM structures and characterize the modes present in such
structures. We analyze flares observed in experimental SERS spectra obtained by the
group of Prof. Jeremy Baumberg, which are included in this thesis for completeness,
in Section 3.2. We follow up in Section 3.3 by providing a theoretical background of
ERS. In Section 3.4 we theoretically study the influence of local changes in the plasma
frequency on the optical response and on the field penetration in NPoM structures
proposing a model to explain the appearance of flares in SERS spectra.

3.1 Nanoparticle-on-a-Mirror configuration

To understand the origin of the flares, we first need to gain insight into the optical
response of the plasmonic structure, i.e., the nanoparticle-on-mirror (NPoM) con-
figuration shown in Fig 3.1(a). As mentioned above, the NPoM structure consists
of a metallic nanoparticle placed on top of a metallic substrate, separated by a thin
spacer-film of thickness d in-between to prevent conductive contact. This creates a
nanogap between the NP and the substrate as observed in Fig. 3.1(a).

Real nanoparticles typically show crystallographic faceting, and as such, they lay
on one of the facets, creating a nanocavity of certain width w, which is similar to
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Figure 3.1: a) Sketch of a faceted spherical gold nanoparticle with radius R = 40 nm and facet width w
separated from a gold substrate by a dielectric spacer of thickness d = 0.9 nm and permittivity eg = 2.1,
under p-polarized illumination with angle of incidence & = 55°. b) Sketch of an infinite metal-insulator-metal
(MIM) structure. c) Bottom facet of the NP in the NPoM structure showing the finite MIM structure. d)
Dispersion relation of the infinite MIM structure, where kg = 27/ is the wavevector of incident light in
vacuum, k is the corresponding wavevector in the MIM waveguide. e) Extinction spectra map of the NPoM
geometry described in (a) as a function of w (from perfectly spherical NP to hemispherical NP as in the
schematics to the left). Open circles trace the resonance peaks of all excited modes, dashed grey lines track
the dispersion relation of the cavity modes s,,» and the red dashed line is a guide to the eye of the bonding
dimer antenna ¢; mode. f-i) Near-field maps at the center of the gap corresponding to the modes excited for
a facet width w = 20 nm (nominal facet width of the NPs often used in experiments). j-m) Corresponding
near field along the z-axis at the center of the gap.
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3.1 Nanoparticle-on-a-Mirror configuration

a finite metal-insulator-metal (MIM) waveguide. For small gaps (d < 10 nm) of
dielectric permittivity e, = n? between infinite metallic walls (ey,) the dispersion
relation of the lowest MIM modes can be expressed by [213,214]:

(’;2)2 =n§ff:sg+2<{1+ 1+(€g—€m)/c}, (3.1)

where kg = 27 /) is the wavevector of incident light in vacuum, k|| is the correspond-
ing wavevector in the MIM waveguide, and ¢ = (kodem/cg) 2, where d is the gap
distance. For very thin gaps and a Drude model with no damping for the metal this
equation reduces to

2e 2e w27t
by=——8=_""81o 2| | 2
= ", ~ 4 {5 oﬂ] (3:2)

We can obtain the penetration depth of the electric field in the metal by taking into
account that the wavevector satisfies kZ = k% + kﬁ, where &, is the perpendicular
(respect to the nanoparticle and substrate interfaces) wavevector, and that for typical
nanogap parameters such asd = 0.9 nm, e, = 2.1, w, = 9 eV, e, = 10, the nanogaps
adopt large high wavevectors (k| = 10 — 100k with kg = 27/)) and thus short
effective wavelengths, as observed in Fig. 3.1(d). Thus, k| > ko and,

_ 1 _ dsm
o Im{]ﬁ_} - 26g.

01 (3.3)

In the nanostructure considered, this continuum of MIM gap modes of the infinite
MIM structure is broken into discrete states, as imposed by the finite size of the bot-
tom facet of the NP, which localizes the modes in the gap due to partial reflection at
the discontinuities of the MIM gap. Indeed, a two-dimensional Fabry-Pérot resonator
model captures the nature and symmetry of the cavity modes sustained by the NPoM,
whose associated electric field can be well described in cylindrical field coordinates
(p, ¢, z) (= perpendicular to the particle and substrate interface) [113,215]:

E.(r,¢,2) = ZAme(kH,o)eim‘be_z/‘n7 (3.4)

where J,, are the cylindrical Bessel functions of order m, A,, are the expansion
coefficients, and k) the component of the wavevector parallel to the top and bottom
interfaces. For a finite-size cylindrical gap of width w, the discrete wavelengths are
given by [113,215,216]:

TWNeff

)\mn:amnfﬁl

(3.5)

Here ay,y, is the n'® root of the m'-order Bessel function Jm, with m the angular
momentum number related to the azimuthal dependence of the modes in the cylin-
drical symmetry and S an appropriate phase accumulated due to the reflection of the
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waves at the edges of the cavity [215-217]. Here we consider S = 7/2 as the fields
show a maximum near the edge of the cavity instead of a node. These cavity modes
are confined to the nanogap and show strong near field-enhancements, although they
are in general weakly radiative or nonradiative.

The structure of modes in a specific NPoM configuration is a result of a complex
coupling of these cavity modes, which can be labeled as s,,,,, modes, and the modes of
the nanoantenna deposited on the mirror, which one can label as “antenna” [ modes
[216]. Antenna modes with correct symmetry can couple to specific cavity modes
Smn, yielding strong anticrossings and mixed Sy, + ¢ = j, modes. We show in Fig.
3.1(e) the scattering cross section, oy, as a function of the facet width w for a NP
with radius R = 40 nm, separated from an semi-infinite gold substrate by a dielectric
spacer of thickness d = 0.9 nm and permitivitty e, = 2.1, as calculated within the
MNPBEM [111] with the implementation for infinite layers. The spectral map shows
that light is most efficiently coupled into the nanogaps around the anticrossings
between the ¢ and modes $,,, [216]. The bonding dimer plasmon mode, here labeled
as £ [red dashed line in Fig. 3.1(e)], efficiently couples to the incoming light polarized
along the NP-substrate axis, and thus dominates the far field. As it has been reported,
for small separations higher-order antenna modes, ¢5, ¢3, ... can also be efficiently
excited [30,210].

These modes show large field enhancement at the nanogap, as shown in the near-
field maps in Fig. 3.1(f-i) for the 4 lowest modes with a facet width w = 20 nm. The
field is localized at the nanogap, showing a number of azimuthally symmetric nodes
that increase in number with mode order. Moreover, as observed in Fig. 3.1(j-m) the
field profiles are not perfectly concentric. This happens in part due to retardation
effects, and, on the other hand, due to the slight mixing with the low wavelength
branches of the cavity $,,, modes [grey dashed lines in Fig. 3.1(b)]. The latter
specially happens for the low wavelength modes in small facet widths w < 20nm,
where cavity modes are spectrally closer from each other.

3.2 Experimental observation of flares

In this section we will briefly introduce the flares observed in SERS experiments
performed by Cloudy Carnegie in the University of Cambridge within the group
of Jeremy Baumberg [218,219], and summarize their main features. Further details
about the experimental setup and observations can be found in Refs. [218,219]. In the
study, nano-fabricated individual gold nanoparticles were spaced above an ultra-flat
gold film by a self-assembled molecular monolayer (SAM) (initially biphenyl-4-thiol,
BPT) forming a plasmonic hotspot in the gap between mirror and nanoparticle,
and tracked using automated nanoparticle location to collect statistics on millions of
events [212].
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Figure 3.2: a) Nanoparticle-on-Mirror structure, sandwiching a molecular self-assembled monolayer.
Inset shows typical icosahedral nanoparticle, with twin planes highlighted with dashed lines. b) Biphenyl-
4-thiol (BPT) molecule making up monolayer. c) Time-dependent SERS spectra showing transient spectral
features corresponding to picocavities (top panel, purple arrow) and multiple flares (bottom panel, blue
arrow). d) Integrated snapshots (At = 10 ms) of a picocavity event (top panel, purple line) and a broad flare
event (bottom panel, blue line) compared to stable BPT spectra for same nanoparticle (grey). Experimental
measurements from Cloudy Carnegie at Cambridge University. Figure adapted from [218].
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These NPoM structures of near-spherical 80 nm diameter colloidal noble-metal
particles are however not quite uniform, most commonly appearing as icosahedrons
and cuboctahedrons, as observed in the inset of Fig. 3.2(a). These nanoparticles
contain multiple grain boundaries and crystal defects, as they are not monocrys-
talline [220], which alter the local electron density in the immediate vicinity [221].
Furthermore, it has been shown that the crystallinity of nanoparticles is open to
movement and, therefore, not entirely fixed and constant [222-224], which is known
as the “quasi-molten” model of nanoparticles.

The sample is illuminated by a 633 nm laser and scattered light is collected and fil-
tered out to reveal inelastic scattering. The time-dependent SERS spectra, collected
with 10 ms timescales, shows the sharp lines corresponding to the BPT vibrational
modes on the Stokes side (see Introduction) in Fig. 3.2(c) (vertical persistent lines).
The close-packing in the SAM ensures fixed-energy stable persistent SERS lines to
be observed for the few hundred BPT molecules inside the nanogap. The molec-
ular temperature is estimated as 341 + 17K using the anti-Stokes-to-Stokes ratio,
although the electronic Raman scattering (ERS) background contribution suggests
the electrons in the metal might be up to 300K warmer in these pumped conditions.

Aside from the persistent lines, two other classes of spectral features are observed
in Fig. 3.2(c). The first corresponds to the appearance and disappearance of new
vibrational lines/peaks in both the Stokes and anti-Stokes spectra, evidencing “pic-
ocavity” formation. Picocavities, which have been studied in detail at cryogenic and
room temperature [43,212], arise from gold adatoms pulled out of the gap surface
facets by trapped light. The extra optical confinement and large local field gradients
around these picocavities lead to the breaking of Raman selection rules, giving single
molecule SERS [43,207]. Aside from picocavities, another spectral feature, rarer but
more intense, can occasionally be observed in the spectra. These features, which we
term as flares, are sudden Gaussian-shaped increases of the background of the SERS
spectra. They last for only fractions of a second, as it is seen in Fig. 3.2(c). Individual
events are plotted in Fig. 3.2(d) for a picocavity (top panel, purple line) and a flare
(bottom panel, blue line) along with a stable BPT spectrum (grey). Picocavity lines
are mirrored around the laser wavelength in the anti-Stokes, a behavior absent for
the flares. In fact, the peak of the flare is on the Stokes side and its tail extends into
the anti-Stokes, although no inversion symmetry is observed around the laser line.

To better identify the features of these events, the first SERS spectrum in each
time series is subtracted from all the subsequent spectra, which leaves only the in-
tensity increases for flare events (picocavity events are filtered out). Some cases can
be seen in Fig. 3.3(a) from a single NPoM that have been fitted to a Gaussian profile.
The transient peaks occurring briefly at different times vary in width and spectral
position, demonstrating that the Gaussian lineshape can vary within the observation
window (seconds) of a single nanostructure. Moreover, the lack of sharp features on
these spectra imply that the SERS of the molecular vibrations does not change during
flaring, which emphasizes their different origin to picocavities and their emergence
from electronic Raman scattering inside the metal itself.

In addition to the collection of inelastic-scattering data via laser irradiation, dark-
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Figure 3.3: a) Different flare inelastic scattering spectra (with persistent stable SERS lines subtracted, S)
from a single NPoM, that have been collected at different times ¢. Spectra has been sorted into groups |, Il
by emission wavelength. b) Map of plasmon £1 mode wavelength Ac against flare mode centre wavelength for
flares from 3411 NPoMs. Grey histograms show distributions, from which two distinct groups are identified.
Points corresponding to spectra in (a) highlighted with circles. c) Mean flares per second vs. power, for
NPoM samples immediately after self-assembly (black) or after 14 days in air at 300 K (blue), picocavities
(green). Here 500 NPoMs are surveyed for each power, lines show exponential fits, error bars indicate
standard deviations. Experimental measurements from Cloudy Carnegie at Cambridge University. Figure
adapted from [218].

field (elastic) measurements were also performed. The dark-field spectra were used to
elucidate the plasmonic modes of the NPoM before and after laser irradiation, giving
the range in nanoparticle size and geometry across the sample. To survey the range
of flares, a map of the fitted flare wavelength vs. nanoparticle £; mode wavelength
(Ac) is plotted in Fig. 3.3(b). Although the ¢; mode positions lie at A. ~ 800 nm,
there is a bi-modal distribution in flare wavelengths which is not resolved in standard
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elastic dark-field scattering experiments’. We label the two cluster groups I and II
[Fig. 3.3(a-b)] and note that even a single NPoM nanostructure can show flare events
of both types within the range of a few seconds, suggesting that flare events are not
entirely nanoparticle-dependent.

Dark-field scattering can also reveal morphological changes to the NPoM nanos-
tructures, in particular for the ¢; mode spectral peak at \., which red-shifts strongly
with an increase in bottom facet width linked to nanoparticle damage from laser
irradiation [216,225]. Nevertheless, the laser irradiation required for the inelastic
scattering measurements is not sufficient to cause significant damage to the nanos-
tructure. The red-shift in the #; mode has ben linked to a facet width increase which
requires movement of surface atoms on the nanoparticle, which suggests that if the
flare event is related to atomic displacements then the process that leads to a higher
degree of damage could also create flares.

In the following lines we sum up the main features observed for flares:

e Activation energy. Experiments performed for different laser powers show
an exponential power dependence, as can be observed in the average number of
flare events per second of measurement as a function of laser power in Fig. 3.3(c)
shows an exponential power dependence, suggesting that flare events require
an activation energy, and indicating a structural process at play. Compared to
picocavities, which have a known activation energy of ~ 0.8 eV [43], the flares
show an activation energy of ~ 4 eV (calculated from the gradient of the flare
power dependence), i.e., 5-fold that of the picocavity power. Samples left to
“age” in air for two weeks show an increase in the number of flares, although it
does not alter the activation energy as the gradient is unchanged. In fact, the
aging process does not alter the morphology of NPoMs on the sample, as can be
concluded from the near-identical distribution of the coupled-mode positions
for both samples [218]. Moreover, flares seem to be metastable as long as energy
continues to be injected.

e Influence of Molecular Spacers. Replacing the molecular spacer with other
spacers showed variations in flare occurrence, although no relationship between
the gap distance and number of flares was observed. Nevertheless, although
the gap distance and gap refractive index varies between the molecules, and
therefore the distribution in coupled-mode wavelengths is shifted [226, 227,
the wavelength of the flares is observed to be centered around similar spectral
ranges, suggesting that spacer molecules are not at the root of flares.

e Reversibility. With the aim of understanding what happens during flares,
in addition to laser excitation, the system was simultaneously irradiated with
broadband incoherent white-light, and the behavior of the coupled plasmon
mode peak was tracked in real time from the elastic scattering (Fig. B.1 in

"In dark-field scattering experiments the sample is illuminated with light that is not collected
back by the objective lens, and therefore is not part of the image, i.e., only the light scattered by
the sample is collected, with reflected light blocked.
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App. B). The ¢; mode stays almost unperturbed before and after the flare,
however when a flare happens there is a small but instantaneous red-shift of the
/1 mode and an overall increase in the intensity, before returning to the initial
position and intensity of the mode. Red-shifts to the ¢; at the exact time of
the flare event evidence structural changes in the NPoM that, nevertheless, are
reversible (opposed to processes that cause permanent damage), which suggest
metastable changes, or that they are ephemeral in the vicinity of the plasmonic
hot-spot.

Further details about the experimental setup and experimental observations can
be found in [218,219].

3.3 Background signal in SERS: Electronic Raman Scatter-
ing in metals

In the previous section we described the flares observed in the background signal of
SERS. The origin of the background signal of SERS has been assigned to an inelastic
light scattering process, also described as electronic Raman scattering (ERS) [40,228].
In ERS, electrons within the Fermi sea inside the metal are excited into a virtual state
by the incoming plasmon-coupled photon and then de-excited back down to an empty
state within the Fermi sea. The difference in photon energy between ingoing and
outgoing photons, A, requires a change in the momentum of the electron because of
the quadratic free-electron s-band dispersion in noble metals. This extra momentum
is supplied by the strongly localized field of the plasmon that couples photons into
and out of the metal. Moreover, the d-bands can be ignored within this picture, as the
incoming and outgoing photons are far detuned from any resonant transition between
electronic states. We will assume a zero temperature for the Fermi distribution to
retain analytic expressions, as in [40].

A sketch of the ERS process is depicted in Fig. 3.4(a). A pumping photon with
energy hv excites an electron from an initial state ¢ at the Fermi energy, &, to a
virtual state v with higher energy (solid blue arrow) together with a shift in the
wavevector Ak (solid orange arrow) and a relaxation back to the final state f on the
free electron dispersion band (solid red line), emitting a photon with energy hy — A,
where A is the energy difference between the initial 7 and final f states. Electrons
that are below the Fermi level down to energies & — A are also able to undergo this
process (dashed arrows), leaving the electron just above &p.

The rate R;; for each step of this process can be considered using Fermi’s golden
rule (in atomic units),

Rij = 2mgif| Mis |, (3.6)
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Figure 3.4: a) Intraband light scattering process of electronic Raman scattering (ERS), for pump (blue
arrows) and emission (red arrows) photons that differ by energy A. The required change in momentum Ak
is gained by the vertical transitions to a virtual state from the plasmon localization in space. Solid arrows
show the transitions from the highest energy initial state 7 at the Fermi energy, while dashed lines show the
lowest energy initial state ¢ for which the only allowed transition is to a final state f just above the Fermi
energy £p. b) Equivalent process of intraband scattering to real state r on the free particle dispersion. c)
Scattering from energy &; (blue solid line) to final energy £ (red solid line) requires different wavevectors
(orange arrows) along k.. For the particular transition shown, a strip of states (blue) along the sphere of
radius k; hold the same Ak,. d) Cross-section of k-volume that undergoes scattering of fixed Ak, in (c).
Figure adapted from [40].

where g7 is the density of states, and M,y is the matrix element for the transition
from the initial state ¢ to the final state f, and can be written as the overlap integral,

My = (f|Hli) = / 5 (1) HY ()i (1) (3.7)

where H' is the perturbation caused by electromagnetic field, r is the position of the
electron, and ¢;(r) and ¢¢(r) are the wave functions of the initial and final states.
The perturbation due to the electromagnetic field can be expressed as [229],

H =p-A (3.8)
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where p = —iV is the momentum operator and A is the vector potential describing
the electromagnetic field.

To evaluate the matrix element for each process we need to know the wave func-
tions of the states and the form of the perturbation due to the electromagnetic wave.
In the case of MIM structures such as the NPoM, the electromagnetic field is mainly
confined in one direction (here considered z), and it drops exponentially inside the
metal F(z) o< €79 with a penetration depth 1/¢ =4, = Cé%‘;, as given by Eq. (3.3).
Thus, here we exclude any dependence of the field on the xy-plane, therefore only the
z component of the initial momentum, k;,, of the electron is scattered, and the x and
y components of the initial momentum, k;;, k;y, are conserved in the process. On
the other hand, we consider the electron states to be described by the free particle
wave function 9 (r) o< ™.

One can calculate the rate R;, for the ¢ — v process shown in Fig. 3.4(a). The
matrix element M;, for this transition is given by,

M;, = (v|p - Ali) :E/dac e_ikf”eiki”/dy e~ vy gikiyy

z

~/dz e*ikfzzag(e*qzeik”z), (3.9)

where E is the amplitude of the electric field within the metal, and k¢, k¢, and k¢,
are the z, y and z components of the momentum of the final state f (the momentum
of the virtual state v, is the same as the final state f). For a specific initial state 4,
Eq. (3.9) yields

_ E2 kzzz +q2

2
Ml P RiE

(3.10)
with Ak, = k¢, —k;». The conservation of wavevectors orthogonal to k. implies that
kJ% — kfcz = k? — k2, and therefore,

Ak, = \Jk3 — K2 + k2, — ki = /62 + K2, — ki, (3.11)

with k% = k} — k7 = b(Ef — &) = bA, b= 2m/h?, & the energy of the initial state
and & the energy of the final states.

To calculate the rate for this transition we have to integrate over all possible
initial,

Er
Ry o / dE; g(&)| M2, (3.12)
Ep—A

and therefore we need to know the density of electronic states g(&;). For a specific
initial energy &; lying between & — A and Er (see Fig. 3.4(c)), the initial states lie on
a sphere set by the free electron dispersion relation & = h?|k|?/2m = k?/b, shown as
a blue circle in Fig. 3.4(c). Moreover, different initial states within the sphere defined
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by |k;| (blue line) require different wavevector changes Ak, (dashed orange arrows)
to reach a final state within the sphere defined by |kf| (red line). Nevertheless, the
wavevector change Ak, required for states with the same k;. and |k;| is the same, i.e.,
the rate is the same for a circular ribbon of k-space with constant k;,, as shown by
the green circular ribbon in Fig. 3.4(c-d) (green ribbon). The infinitesimal volume of
the circular ribbon is given by dVj = 2ndk;sdk;, = 2wdk;dk;,, which can be applied
to the integral over k-momentum space,

kr ki 2 2
Riy o E2 / dk; / dki bi: T4 : (3.13)
k

2
r—k —k; ( /&2 ¥ k?z _ kw) + (]2

with ¥’ = kp — \/b(Er — A), and kr = /b the Fermi wavevector.

On the other hand, the equivalent scattering rate from the virtual state back down
to the free electron dispersion branch (but this time with no momentum change), R, ¢,
only provides another factor of E? as there is no change in momentum.

The total scattering rate is given by

Rif 0.8 RmvaVm, (314)

where V,,, is the volume of the metal that is accessed by the plasmonic field. The lat-
eral spatial width of the field in the gap is well approximated by a Gaussian intensity
distribution with FWHM = /2Rd/e, , which gives an effective area of the plasmon
mode A,, ~ 2rRd/e, [32,208,230]. By taking into account that the penetration

depth is 1/g =9, = % [Eq. (3.3)], we obtain V,,, = A0, = (27;—1:‘1)(%) = ”ﬁf,

with f = 2e5/Re{l/em}, with Re the real part. As a result we obtain the full rate
as:

E*R 0\’
Rip o = (1—e®)ER (d) , (3.15)
g
where, we have defined the critical length ¢/ = % and the energy difference e =1 —

A/Er, and E. is the field enhancement at the cavity. Details about this derivation
can be found in Ref [40]. As in Raman scattering, this photon emission rate depends
on the fourth power of the field enhancement, which is expectable as they are very
similar processes. Both processes consist in exciting electrons up to a virtual state
before returning to a state lying higher higher in than the initial state. In the case of
anti-Stokes scattering, the final state would lay lower in energy than the initial state.

Instead of using the expression for the local field enhancement at the cavity, F.,
and to compare more accurately with experiments, one can use numerical simulations
to obtain the intensity of the local field in the metal, I(r) = |E(r)|?, at the wavelength
of the pumping light, A;, and light emission wavelength, Af, i.e., the local field
intensities Iy, (r) and Iy, (r) respectively, allowing us to write:

Rip oc kpl?(1 — €?) / I, (r) - I, (r)dV (3.16)
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where the integral over volume is only evaluated within the metal (where the electrons
can undergo ERS) and the prefactor depends on the material.

The inelastic light scattering (ILS) process shown here can be thought of as elec-
tronic Raman scattering (ERS, with no vibrational states involved). This process also
produces background light in addition to the vibrational fingerprints from molecules
nearby. For this reason, any change in the plasmonic structure (size, shape, etc.)
invariably will modify both the SERS vibrational fingerprints as well as the SERS
background [40, 228]. Nevertheless, a modification of the ratio between light just
inside and just outside the metal will correspondingly alter the ratio of vibrational
peaks to background.

3.4 SERS spectral flares from electron density inhomogeneities

In the previous section we have linked the background signal in SERS experiments
with ERS emission from the metallic structures, and it has been shown that this
effect depends on the fourth order of the electromagnetic field in the metal. Thus, a
temporary situation which produced larger electromagnetic fields in the metal could
explain the emergence of flares in the background SERS spectra shown at particular
instants of time, as shown in Fig. 3.2(c) in Sec. 3.2.

In principle, one could consider some other mechanisms as a possible source for
these spectral features. For instance, the broadband nature of flares could suggest
black-body radiation. The spectral range of the flares (640-700 nm) also matches that
of two-photon absorption and emission from some molecules. Hot electron emission
in small nanoparticles is another possibility. Instead, the behavior observed for flares
excludes some of these phenomena, based mainly on the following:

e Black-body radiation corresponding to the temperatures obtained from the
anti-Stokes/Stokes ratio from molecules (300-400K) and electrons in the metal
(600-1100K) does not match the measured flare wavelengths.

e The spectral range of the flares is not severely affected by the particular type
of molecules, which discards two-photon emission as possible mechanism of the
effect, which would depend on the concrete molecule.

e Experiments show millisecond time-scale dynamics for flares, which collides
with the picosecond time-scale of hot electron emission, not to mention that
both black-body radiation and two-photon emission should not depend on time.

Moreover, the broadband nature of the flares and the lack of new spectral lines
exclude the molecules deposited at the nanocavity as the source of spectral flares.
Thus here we consider that the spectral flares observed in the experiments could be
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Figure 3.5: 2D sketches of a) high-angle, b) low-angle and c) twin-plane grain boundaries adapted from
Ref. [231], where 6 is the misorientation angle. d) Data from Alekseeva et al. [220] showing high-angle
grain boundaries and twinning planes measured in 100 nm Pd nanoparticles. e) Simulations from Tschopp et
al. [232] showing an example of the variation in grain-boundary energy with misorientation angle, 6. Figure
composition adapted from [219].

due to dynamical local changes in the metallic structure that temporarily produce
larger field enhancements within the metal, producing a larger field in it and therefore
a temporary increase in ERS emission which would be observed as flares of the
background signal in SERS.

We base our reasoning on the fact that, although we consider the nanoparticles to
be spherical in our model calculations, as performed within the BEM [111], the ac-
tual nanoparticles used in the experiments have a crystallographic atomistic structure
with faceting and polyhedral shapes, which can present defects and crystal mismatch-
ing. In order to account for the effects of these atomistic structure, we consider in
a simple approach the crystalline defects in the metal nanoparticle and in the film,

91



3.4 SERS spectral flares from electron density inhomogeneities

made up of multiple crystal domains. The intersection between two crystallographic
configurations can host 2D or 3D defect planes, also known as grain boundaries.
Grain boundaries have been studied using electron microscopy methods [220, 233],
which can reach atomic-precision resolution and allows the identification of crystal
domains. Nevertheless, the effects of grain boundaries and crystallographic defects
on the plasmonic resonance of such systems has not been properly addressed up to
date. The simplest forms of grain boundaries are shown in Fig. 3.5(a-c) [231]. Here
we consider only lattice planes in 2D, and particularly highlight the distinction be-
tween low-angle and high-angle grain boundaries. The lattice planes are offset to
each other by certain angle, which defines the distinction between both categories:
low-angle boundary if the angle is # < 15°, and high-angle boundary if the angle is
6 2 15°. According to Alekseeva et al. [220], high angles outnumber low angles by
100 : 1 in nanoparticles of diameter D ~ 100 nm, although the nanoparticles used in
such study were made of palladium rather than gold, and were formed via hole-mask
colloidal lithography.

The angle between lattice planes, known as misorientation angle, determines the
amount of disorder and reduction in the density of metallic atoms in the grain bound-
aries. For instance, twinning plane defects such as those shown in Fig. 3.5(c), are a
special case in which the adjoining planes are exactly mirrored, so the crystal pat-
tern continues and there is no reduction in density. Figure 3.5(e) shows the angle-
dependence of the grain boundary energy, for which a maximum at 45° is observed.
The initial position with no misalignment is at 0° and for this particular lattice there
is a 90° rotational symmetry, resulting in a twinning plane and subsequent energy
minima at these points.

The consideration of exact lattices for complex geometries in the context of plas-
monics is still beyond the scope/reach of full ab initio quantum methods, such as
those based on TDDFT, due to their expensive computational requirements. To
circumvent this challenge, we model the effect of the grain boundaries, and the cor-
responding local change in the lattice structure by considering the alteration of the
average electron density at high- and low-angle boundaries as an effective change in
the local plasma frequency, Aw,, which yields an effective local plasma frequency
wgﬂ = wp — Aw, o /nf/m* [see Eq. (2)]. In the case of a twinning plane, there is
no change in the average electron density (by definition), but the band-structure of
the material is locally altered, thus modifying the effective electron mass m* [234],
and therefore we could also consider the plasma frequency to be altered.

The number of possibilities regarding the position, size, shape and material-
related properties of these localized regions with lower electron density is large and
challenging to be fully explored. Here we will focus on three canonical situations
which we deemed to be the most representative one among all considered and tested:
vacuum cracks at the bottom facet. The effect of these structural modifications in
the plasmonic response of the system is studied in the following sections.
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3.4.1 Cracks

As mentioned above, the nanoparticles used in the experiments show polyhedral
shapes, including pentagonal bipyramids which are known to have an angle mismatch
in their structure that causes variable strain throughout the nanoparticle [235]. Fur-
thermore, it has been shown that adatoms can form on the surface of nanoparticles,
a process that can be further fed by the the strong fields induced at the gap and
within the metal around the gap [43].

Although it is unclear to what extent optical fields localized at the gap can pro-
duce larger (nanometer-sized) changes in the crystal lattice, here we model the cre-
ation of a vacuum “crack” at the bottom of the nanoparticle with a geometry, as
illustrated in Fig. 3.6(a), where we show two representative cracks, a vertical one in
red, and an inclined one in purple. These cracks are assumed to be created due to the
strain in the lattice. The actual simulated geometry corresponds to an hemiellipsoid
of characteristic ellipsoid axis lengths of @ = 0.5 nm, b = 2.5 nm and ¢ = 5 nm.
These cracks can show an inclination angle 8 with respect to the xy-plane as shown
in Fig. 3.6(a).

The scattering-cross section of a NPoM with such a crack, shown in Fig. 3.6(b),
shows an almost identical spectrum for a vertical crack (6 > 90°) compared to the
situation without any crack (flat facet) for both the ¢; and so9 modes. Moreover, for
large inclination angles (6 > 60°) a slight redshift of the scattering peaks is observed
for wavelengths in the spectral flare region, although there is almost no dependence
of the 1 mode on the inclination angle. On the other hand, small inclination angles
of the crack (f < 60°) show a blueshift in the spectral flare region, which clashes
with the experimental results shown in Sec.3.2. Moreover, small inclination angles
(lightest blue line, 8 = 30°) also show the emergence of more scattering peaks and
a redshift and decrease in intensity of the ¢; mode due to the coupling of the lowest
side of the crack with the bottom facet, while a blueshift is observed for the ¢, mode.

Furthermore, the near-field map in the proximity of such cracks in Fig. 3.6(c)
shows large field enhancements and gradients around the bottom edges of the cracks
providing a lightning rod effect which would break the symmetry selection rules
for molecular SERS similar to the case of picocavities, as in Chapter 2. Instead,
the SERS spectra obtained in the experiments during the flare events do not show
extra vibrational lines from the molecules, which suggests that the field around the
molecules is not drastically affected. If disregarded that issue, inclined cracks would
be a good candidate to explain the spectral flares in ERS as they show larger field
enhancements inside the metal [Fig. 3.6(e)] when compared to the NPoM without
a crack [Fig. 3.6(f)]. Nevertheless, along with mentioned pitfalls of the model, this
geometry involves the creation of two new Au-air boundaries, which is energetically
unfavorable [236], suggesting that this form of geometrical crstallographic defects
might not be the most adequate candidate to explain the origin of the spectral flares.
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Figure 3.6: a) Detail of the nanoparticle cracks (red and purple regions) at the bottom of the nanoparticle in
the NPoM configuration, simulated for vertical orientation and inclination of the crack 6. b) Inclination angle-
dependence of the scattering cross-section for crack geometry with parameters ¢ = 0.5 nm, b = 2.5 nm
and ¢ = 5 nm. c) Near-field maps for crack inclination angle 30°, showing field localization near the crack.
Near-field maps showing the field inside the metal at the bottom facet of the nanoparticle around d) a vertical

crack (90°), e) an inclined crack (30°), and f) no crack.
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3.4.2 Grain boundaries at the NP facet edges

Instead of forming a crack, which is energetically unfavorable, it is more realistic
to consider that grain boundaries host a reduced density of gold atoms. Electron-
microscopy has confirmed that such grain boundaries appear at the facets of nanopar-
ticles [220,233], but alterations in their crystallographic structure have not been ob-
served yet using optical methods. Considering the nanometric extension of the grain
boundaries, we model the drop in the corresponding electron density as a reduction
of the local plasma frequency in the vicinity of the defect. The reduction of the local
plasma frequencies has been suggested to be of the order of 25% in the vicinity of a
grain boundary [221].

This model accounts more realistically for grain boundaries and lattice defects
than the crack described in Section 3.4.1 Grain boundaries could be placed at the
facets or at the edges of these facets. We first consider the later, which we model as
toroidal patches at the bottom facets with effective reduced plasma frequency, wgﬂ,
and size determined by parameters r, and h, as illustrated with brown dark color in
Fig. 3.7(a). This description effectively accounts for accounting for the existence of
different types of defects, at the NP facet edges.

The scattering cross-section of a NPoM including such edge defect [Fig. 3.7(b)]
shows a redshift and a decrease in intensity for increasing size (r, value) of patches.
The spectral region related to the flares (640 nm - 700 nm) shows variations with
patch size in the position of the spectral peaks and intensities. Moreover, the near
fields at the nanogap do not show any lightning rod effect around the NP edges
that would produce increased field gradients, and therefore no extra SERS lines from
the molecules deposited there would appear. This agrees well with the experimental
observations. The field penetration within the patch is also increased when the
plasma frequency at the edge is reduced, as shown in Figs. 3.7(d-e).

Changes at the edges of the bottom facet have been reported [225,237], which
are usually irreversible. For instance, light-induced damage is known to increase
the facet width, which produces a redshift of the ¢; mode [216,225], as observed in
Fig. 3.1(e). Nevertheless, the experimental results from Sec. 3.2 suggest a reversible
mechanism to be behind the flares. In particular, the experiments in which white-
light illumination was combined with inelastic laser light scattering described (in Fig.
B.1in App. B) show that the position and intensity of the ¢; mode regain their initial
position after a flare event.

3.4.3 Grain boundaries across the NP facet

So far we have considered the grain boundaries to be located at the edges of the
facet of the NP, but grain boundaries and twinning planes are also present along the
facets. The model considered for this situation is illustrated in Fig. 3.8(a), with the
size of the patch (determined by the three semiaxes of the patch a, b and ¢) and the
amount of effective wgﬂ reduction accounting for the existence of different types of
defects.

This structure accounts more realistically for grain boundaries and lattice defects
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Figure 3.7: a) Detail of the grain-boundary at the NP facet edge (toroidal shape in dark brown) as used
in model simulatlons b) Scattering cross-section for such a geometry as a function of patch size 7p, with

parameters wp = 8 eV and height of the edge inhomogeneity h = 2 nm. c) Near-field maps of the grain
boundaries at the edges of the facet with 7, = 2 nm, h = 2 nm and wf,ﬁ = 6.5 eV. Near-field maps

showing a zoom-in of the field inside the metal in d) a defect at the edge and e) edge with no defect.
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than the crack described in Section 3.4.1 We have calculated the dependence of the
scattering cross-section for such configuration on several parameters, such as the
reduction in effective plasma frequency in Fig. 3.8(b), patch size in Fig. 3.8(c) and
patch position in Fig. 3.8(d). The main scattering-cross section plots in Figs. 3.8(b-d)
show slight redshifts and decreases in intensity for the ¢; mode, specially for large
patches taking large areas of the bottom facet [Fig. 3.8(c)], as one would expect when
considering that a reduction of one of the metallic facets (NP or substrate) would
have a similar effect. Instead, the cavity modes across the 640-700 nm spectral region,
which cover the region in which the flares are experimentally observed, show greater
dependence on the inhomogeneity patch parameters, as the modes of the NPoM
structure are specially sensitive to any changes happening at the nanogap.

Furthermore, this model does not show increased field gradients around the grain
boundaries, as observed in Figs. 3.9(a), an issue that would cause additional Raman
lines from the molecules nearby. Instead, the field penetration increases within the
regions with reduced plasma frequency. According to Eq. (3.15) of the theory of ERS
emission, the Raman signal scales with the 4" power of the local field, and therefore,
one could expect a larger local field within the metal to produce larger background
ERS signal, i.e., flares.

With the aim of understanding these results, one can derive a simple expression
to estimate the increase in the ERS emission as a function of the parameters of our
model. First we will obtain the field penetration into the metal as a function of wgﬂ.
From the conservation of the perpendicular component of the displacement field D
at the metal-insulator interface, one gets:

EmE 1 m =l g, (3.17)

where e, and e, are the permittivities in the gap and metal respectively. The per-
mittivity of the metal depends on the plasma frequency wy, and the penetration into
the metal, 7 is then given by:

; (3.18)

which depends on the plasma frequency of the metal w,. In the grain boundary
regions w), is reduced by Aw,, which increases the field penetration into this region,

€g

n(wp — Bwy) = (3.19)

em(wp — Awp)

As mentioned in Sec. 3.1, the field within the metal decays exponentially at a rate
which depends on the effective wavevector of the plasmon in the MIM waveguide
[213,214]. Moreover, the field is mainly polarized in the perpendicular direction, so
from now on we will omit the explicit reference to the component L of the field. For
very thin MIM waveguides, the dispersion relation reduces to the one given by Eq.
(3.2), k= — 225 Moreover, the skin depth 6, = %= given by Eq. (3.3) depends on

dem 2eg
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Figure 3.8: a) Detail of the grain-boundary at the NP facet (hemiellipsoidal shape) simulated. b) Local
plasma frequency dependence of scattering cross-section for geometry with parameters a = b = 2 nm and
¢ =1 nm. c) Size dependence of scattering cross-section for geometry with parameters wgﬁ = 6.5 eV and
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Figure 3.9: a) Near-field map for hemiellipsoidal patches with a = b =2 nm and ¢ = 1 nm and wgff =
6.5 eV. Near-field maps showing the field inside the metal in a defect at the facet with b) w;ff = 6.5¢V,
c) wgﬂ = 7 eV, and d) no defect. Near field at the center of the gap (2 = 0.45 nm) for @ = 2 showing an
increase in the near field for decreasing wgﬁ.

the metal permittivity and is therefore inversely proportional to the field penetration,
d1 o 1/n(wp). Thus, the field in the metal is given by,

En(z) = n(wp)Ege_Z/‘n, (3.20)

where E, is the electric field at the nanogap. Furthermore, by assuming that the
Poynting vector is conserved for MIM plasmons propagating in the gap, one gets that
|E4|k) is conserved, which leads to field enhancements within the dielectric material
at the center of the facet of Ey oc /7, further increasing the field inside the metal
due to the reduction of wy,. This is supported by simulations, as shown in Fig. 3.9(e).
For instance, reducing w, = 9 eV to 6.5 eV gives a +24 % increase in E, as predicted.

Finally, as described in Sec. 3.3, the ERS in the metal giving rise to the flare is
proportional to the 4™ power of the optical the field in the metal, integrated over the
volume in which the field penetrates within the metal [see Egs. (3.15) and (3.16)]. To
calculate the contribution of metallic regions with different weT to the background
ERS intensity, Z, let us consider a small cylindrical region within one of the metallic
sides in the MIM, with radius a, height & > ¢, , and homogeneous plasma frequency
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3.4 SERS spectral flares from electron density inhomogeneities

wp. The contribution of such cylindrical region to the background ERS intensity can
be expressed as the volume integral of Eq. (3.20), which yields,

T x ma*d 1 [n(wp) Egl*, (3.21)

where we assume the field to be invariant in the direction parallel to the MIM struc-
ture.

Proceeding in a similar fashion we calculate the increase in the background ERS
intensity, Zg, due to a cylindrical patch with a reduction to the plasma frequency
Auwp, radius a and height ¢ > ¢, /4 ~ 1 nm, with ¢, o 1/n(wp, — Awy,), similar to the
ones shown in Fig. 3.9, as,

Ta o< ma*d'| [n(w, — Awp)Eé]4, (3.22)

which neglects the background contribution from the rest of the facet (as it is much
smaller), as detailed in Appendix C. Therefore the ratio of flares to background ERS
intensity given by:

where Tygq is the background ERS intensity from the whole facet of width w in the
absence of the grain boundary.

Effective plasma model for antenna mode shift

Larger Aw, changes in the defect “patch” region at the centre of the nanoparticle
facet and an increase in patch radius can affect the plasmonic modes and therefore
the optical response of the whole NPoM plasmonic structure as observed in Fig.
3.8(b-c). In order to gain insight into these trends we will consider an analytical
perturbation model to describe the system under consideration. We will focus on
the redshift of the wavelength of the #; mode, A, produced by the patch of reduced
effective wf;ﬂ. As shown in Sec. 3.1, the MIM dispersion relation [Eq. 3.2] provides a
good estimation of the modes within the NPoM cavity, which we can be recast as

wr= —2 . (3.24)

When the facet width w is fixed, this also fixes k| [see Eq. (3.5)], so that the MIM
dispersion becomes proportional to w,,.

We will assume that the main antenna mode, ¢1, follows a Gaussian intensity dis-
tribution [E(r)2 = I(r) o< e=41227/(A2)° with FWHM Az = \/2Rd/z, as sketched
in Fig. 3.10(a). The field is confined to the cavity due to a potential proportional
to the local plasma frequency of the metal V(r) o< wy(r). Thus, if the plasma fre-
quency wy(r) is not uniform along the finite MIM waveguide, the potential V'(r) and
frequency of the mode w, will also be affected.
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a) b)
Flat facet Inhomogeneity at the facet center

Unperturbed cavity

Perturbed cavity

V() oc wy(r)

I(r)

< Facet . > +Awp (r)

Figure 3.10: a) NPoM structure with flat facet (no inhomogeneity) showing a Gaussian intensity distribu-
tion, I(r), with 7 the radial position at the unperturbed bottom facet with width w of the NP with radius R,
separated from a metallic substrate by a dielectric spacer of thickness d. b) NPoM structure with a decrease
plasma frequency, Awy, at the center of the facet perturbing the cavity in a patch with width 2a. The panels
at the low row show a zoom-in of the potential associated with each situation, with the Gaussian intensity
distribution with FWHM Az in green.

We can calculate the wavelength shift §A. of the £; mode due to a perturbation
Aw, in a small region in the MIM [see Fig. 3.10(b)] using first order perturbation
theory. Taking into account that Eq. (3.24) follows the dependence w o wp, we will
consider that the frequency shift dw of the nanocavity mode is proportional to the
plasma frequency change Aw,. Therefore, considering wg, as the unperturbed plasma
frequency, the relative shift of the nanocavity mode is given by,

SN dw L[ rdr|E(r)P[-6(a - r)Aw,)
e we 2 S v dr|E(r)2w
_1Aw, Jo rdrI(r)

2wy [Prdari(r)

(3.25)

where the prefactor of 1/2 is included since the perturbation is assumed only on one
side of the waveguide (the NP’s facet side). Introducing the Gaussian dependence of
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Figure 3.11: a-b) Simulated (points) and analytical (dashed lines) coupled NPoM mode redshifts vs a
and Awyp, showing their agreement. c) Analytical model for relative flare intensity vs mode redshift for
(dashed) @ = 2,4,6,8,10 nm over Aw, = 0 — 3.5 eV and (solid) Awp, = 1,1.3,1.6,1.9,2.2,2.5,2.8 eV
over a = 0 — 15 nm. Grey histograms show experimental measurements of flare intensity (left) and ¢1 mode
redshift (bottom) ocurrence. Red marker shows maximum likelthood realization. Experimental measurements
from Cloudy Carnegie at Cambridge University. Figure adapted from [218].

the intensity,

1/ Aw, @ r2
= (= d 42—
Ae We 2(wp0>/0 " rexp( . Aw2>

1/ Awy 21n2¢,a2
= - 1-— - 2
(G [ () @20

which gives an analytical expression for ¢, mode shifts on the introduction of a patch
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of reduced wy,.

In Figs. 3.11(a~b) we compare the values given by this equation (dashed lines) with
those obtained within full electromagnetic calculations (BEM) (dots) and observe a
good agreement for low values of a and Aw,. Mapping the analytical flare intensity
and redshift vs. (a, Aw,), as indicated by the dashed and solid lines in Fig. 3.11(c),
allows us to compare these results of the analytical model with the number of flare
events in the experiments obtained in Cambridge (grey histograms), and so examine
the most appropriate effective parameters (a, Awp) to reproduce the occurrence of
events.

By inspection of the flares, we find that most of the data lies within ¢ =2 —3 nm
and Aw, = 2 — 3 eV, which implies that such inhomogeneities are indeed small
but strongly perturb the local electronic properties of Au. These parameters suggest
single- or few-plane defects, such as those which have been observed via other methods
such as TEM [220,233]. The patch areas are indeed consistent with a line defect 1
nm wide stretching across the entire facet, typically found in electron microscope
images.

This model matches many of the flares observed in the experiments. Moreover, the
spectral range of flares is well matched to the higher order modes (short wavelengths)
which are very sensitive to changes at the nanogap. Compared to the other two
geometries considered in Section 3.4.1 and 3.4.2, this is the only effective configuration
of ithomogeneities in which a change to the plasmonic modes is achieved without
producing a lightning rod effect.

In order to match the time-scale of the spectral flares, the modifications of grain
boundaries should happen on the millisecond time-scale, before reverting to an iden-
tical situation as before. Although this is unlikely, as this would imply a complete
reorganization of the NP crystal structure, a plausible explanation would be that
these defects move across and away from the plasmonic hot-spot on this time-scale,
and therefore would only be observable directly in the vicinity of the facet centre.

It is worth mentioning that although nanoparticles have been shown to have
a quasi-molten nature [222-224] and diffusive displacement [238,239] via electron
microscopy methods, this is the first time that these sort of effects have been observed
optically. If the formation and restructuring of atomic-scale surface defects is indeed
being observed via optical methods, this opportunities for non-destructive analysis
of nanoparticle grain boundaries, which can be measured in situ and under ambient
conditions. An inhomogeneous distribution of the plasma frequency serves as an
effective model which captures the modification of the whole optical response of an
entire NPoM, due to an underlying microscopic origin. Such simple effective models
thus prove to be valid to obtain rough estimations of the size and extension of the
inhomogeneity in the structure.
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3.5 Discussion and Summary

In this chapter we have linked the apparition of flares in ms time-dependent SERS
experiments of molecules in NPoM structures to dynamic changes of the atomic
structure of the metallic NP. We have effectively modeled this structural changes as
a drop in the local plasma frequency at small regions of the metallic nanostructure
due to the decrease of the electronic density at the grain boundaries. The model
explains the increase of the ERS due to a larger field penetration and the shifts
observed for the NPoM modes.

Although this model is successful in explaining a number of the observed flare
features, there are a number of issues not fully addressed. The increased likelihood
of flares with age of nanoparticle is not understood, although it is possible that
oxidative effects lead to a higher number of defects within the nanoparticle, leading
to a higher number of flare modes observed. However, more research would be needed
to ascertain whether defect numbers do in fact increase in this way, possibly through
correlation with electron microscopy. Similarly, the model presented here accounting
for grain changes in the grain boundaries at the bottom facet of the NP cannot
explain why more flares are observed for different spacer molecules. It is likely that
this difference is due to the effect of molecular binding to the gold (since purely
molecular processes have been ruled out), but a deeper understanding of this effect
is needed.

Additionally, although the red-shift in the ¢; mode is predicted by simulations,
the coupled-mode observations are not fully reproduced by the model based on a
drop of the electronic density at the grain boundaries. In experimental observations,
spectral flares are only observed in the 640-700 nm region, with broad-band white
light required in order to observe the higher-wavelength ¢; modes.

Finally it must be pointed out that this effective response model does not address
why an increase in the #ymode intensity is seen in the event of a flare. In fact,
simulations predict that all /1 mode red-shifts should be seen alongside a decrease in
intensity of the 1 mode. This could be explained by an stimulated electronic Raman
scattering process, which depends on the 8" power of the electromagnetic field,
assuming that the confinement is sufficiently high to generate CW SRS [240-243] at
the red- shifted coupled plasmon, even with incoherent illumination.

The effective local plasma frequency model presented in Sec. 3.4 explains with
relative success the origin of the spectral flares observed in SERS experiments, and as
an initial stepping stone, aims to address the need for a more fundamental framework
for understanding such phenomena. In fact, this effective model fails to address some
of the aspects observed for spectral flares, such as the increases in the scattered light
intensity observed for laser+white light illumination. A complete description of the
underlying physical mechanism would require for a quantum ab initio framework to
capture the dynamics of the atomic structure and their influence on the local electron
density, and therefore on ERS. Due the complexity of the system, the calculation
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of its optical response is out of the scope of full ab initio frameworks, although
they can be used, for instance, in simplified geometries (such as 2D infinite slabs)
to understand the influence of grain boundaries and atomic-scale dynamics on the
the local electron density at the surface of the metal, which can be useful for less
sophisticated frameworks in more complex geometries. Thus, there is plenty of room
to cover between the effective local plasma model and full ab initio frameworks in
the way to gain a more precise understanding of the origin of the spectral flares.
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Atomic-scale structural features

as probed by swift electrons

LECTRON energy loss spectroscopy (EELS) [55-58] in scanning transmission elec-

tron microscopy (STEM) [53,54], together with optical spectroscopies [244,245],
has played a crucial role in understanding the properties and dynamics of plasmons in
nanoparticles (NPs). In particular, technical progress in the performance of STEM-
EELS microscopy in the last two decades [69-71] has enabled sub-nanometer resolu-
tion [53,72] and sub-eV energy sensitivity [73] in EELS, opening new opportunities
for characterization of novel materials and nanostructures [54,74]. Thanks to these
advances it is possible to perform vibrational spectroscopy with nanometer resolu-
tion of phonons [56,75-78] or to characterize biomaterials with low energy beams
reducing radiation damage [56,79,80]. Although this technique has been successfully
used for decades in the characterization of localized plasmon resonances in metallic
nanoparticles [246,247], only with the aforementioned improvements it is now pos-
sible to implement single-NP EELS experiments with sizes in the range below 10
nm [81-86] with extraordinary resolution, turning STEM into a suitable tool for the
study of new and complex phenomena at the nanometer-scale.

In this context, much attention in the literature has been turned towards quantum
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size effects of collective resonances localized at the surface of NPs (LSPs). Blue-
shifts [82] of 0.5 eV were measured in the surface plasmon resonance energy of Ag
nanoparticles when their radius was decreased from 20 nm to less than 2 nm [82-
84,88,89]. The interaction between coupled gold nanoprisms has also been probed
by EELS showing mode hybridization and large field localization at the nanogaps
[248,249]. Quantum plasmon resonances controlled by molecular tunnel junctions
between two plasmonic Ag resonators have also been probed by EELS combined
with atomic resolution imaging [250]. Moreover, a tomography scheme based on
electron microscopy has allowed 3D-imaging of LSPRs in silver nanocubes [251], and
more recently, 3D maps of local density of states of plasmonic nanoparticles with nm
spatial resolution and sub-eV energy resolution have been obtained [252].

Classical electrodynamics, within local dielectric theory [64,253-255], has suc-
cessfully explained the plasmonic response of NPs, providing analytical expressions
to account for EELS in targets of simple geometries. Solutions of Maxwell’s equa-
tions have been implemented in numerical tools for EELS configurations such as the
BEM [108,110] or FDTD methods [256] which allow for simulation of EELS in struc-
tures of complex geometrical shapes and different environments. Nevertheless, the
increased resolution obtained in the last experimental setups has pushed the develop-
ment of phenomenological and semiclassical theories to account for specific quantum
effects in the properties of LSP resonances, such as electron confinement [90], elec-
tron spill-out at the interfaces [31,91-93], non-local effects [94,95] in the dielectric
response, modification of local environments [86], or activation of quantum tunneling
across subnanometer interparticle gaps [33,96]. Most of the classical and semiclas-
sical theories rely on spherical descriptions of the NP’s geometry, characterized by
a local £(w) or non-local e(w, k) dielectric functions with w the frequency and k the
wavevector of the excitations, but often these theoretical approaches do not consider
the specific crystallographic faceting of the NP’s sides, i.e., the atomic-scale surface
features.

In analogy with optical spectroscopy, discussed in Chapter 2, ab initio atomistic
methods such as TDDFT provide an appropriate quantum framework to consider
the aforementioned effects in a straightforward and complete manner including the
role of the atomistic structure in EELS. In the following we compare the results
of electron energy losses obtained within atomistic TDDFT for an icosahedral Nagsgg
cluster with those obtained within a classical BEM model that reproduces the atomic
faceting of the NP by means of sharp surface boundaries, as a way to address the
influence of subnanometric features in EELS. As a benchmark to understand the EEL
probability in small nanoparticles, we first explore in Sec. 4.1 the canonical case of
spherical nanoparticles within the local dielectric response approximation. We show
the influence of subnanomatric features in EELS and identify the modes excited for
axial electron trajectories in typical icosahedral NPs for different orientations in Sec.
4.2, which in general differ to those observed in a spherical nanoparticle. We extend
this study to analyze the impact parameter dependence of EEL spectra in Sec. 4.3
and identify the excitation of key LSPs and CBPs. The nature of the latter is further
explored in Chapter 5.
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4.1 Electron energy loss in small nanoparticles

One of the most studied configurations in EELS is the spherical nanoparticle. The
spherical symmetry simplifies the mathematical expressions of the electromagnetic
fields induced by a probing electron and provides a direct way to analyze the system’s
response. Different models have been proposed to account for the response of the
material constituting the NP, each accounting for certain effects, such as non-local
effects, quantum confinement, spilling out of the electron density, or electron-beam-
induced changes to the surrounding material. Nevertheless, all of these approaches
have in common that the nanoparticle is considered to be spherical, whereas actual
small nanoparticles (a ~ 1—10 nm), as studied within EELS, usually have polyhedral
shapes [84,86], which include crystallographic features forming atomic-sale geometries
such as facets, edges and vertices. Even so, the strength of a model that describes
the NP’s geometry as spherical relies on its simplicity, which allows for analytical or
semi-analytical solutions of the EEL probability, and a benchmark that is useful to
analyze the EEL spectra of nanoparticles with smaller degree of symmetry, such as
icosahedral nanoparticles.

Regarding the description of the material’s response, the local response approx-
imation is the simplest description, yet relatively accurate, which could be used to
describe the EEL probability in small nanoparticles. The expressions obtained for the
EEL probability of a spherical particle can be further simplified if the nonretarded
approximation is considered. For a spherical nanoparticle with radius a and whose
material response is described by a local dielectric function e(w) [see Fig. 4.1(a)], the
EEL probability of an electron, I'ggrs(w), at an impact parameter b (which can be
larger or smaller than the radius a) and velocity v, is given by the semi-analitycal
expression [257]:

Ters() = Toui) + o lf_oj::l@ o T im0
1 2610) = 5 | At + Tl )4 (41)
where,
auw) = Ji}&fﬁ 1_3)’ Ailw) = le(j)lillﬂ nw) = m (4.2)
and
)
Al = # /Om dzripm (i)glm (“;Z) (4.4)
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In these integrals, z = V72 — b2, P/"(x) is the associated Legendre polynomial of
degree [ and order m, and,

cos(z), if I+ m even
m(x) = 4.5
gim (@) {sin(x), if I +m odd. (4:5)

The first term in Eq. (4.1), T'puk(w), gives the bulk losses due to the electron trajec-
tory traveling a distance L = v/a? — b2 in a lossy medium. The other terms give the
losses due to the presence of the surface. In particular, the second term [~ (A, )?]
is related to the energy loss experienced by the electron when it is outside the sphere
(before entering or after exiting the sphere); the third term [~ A9 A! ] is related
to losses experienced by the electron outside the sphere (after exiting) by plasmons
excited when the electron is inside the sphere, and losses experienced by the electron
when it is inside the sphere by plasmons excited when the electron was outside the
sphere (before entering); the last term [~ (A )?] gives the losses experienced the
electron when it is inside the sphere by plasmons excited when the electron is still
inside the sphere.

For external trajectories (b > a) equation 4.1 reduces to the following analytical
expression [258,259], which has been widely used in the literature:

oo m=l

TepLs(w) = — P (l%:% (?) 2lK72" (o;b) i L(w)g(f)(l;ll)/l] ’
(4.6)

where K,,(x) is the modified Bessel function of the second kind of order m.

This latter expression gives some insight about the dependence of the energy
losses on the different parameters. For instance, when wa/v < 1, which is the case
for small nanoparticles (a ~ 1—10 nm) and fast electrons (Fy ~ 100 keV,v ~ 0.55¢),
and the electron is far from the particle (b > a), the dipolar term (I = 1) dominates.
For grazing trajectories, (b ~ a) the dominant contribution to each ! comes from
the m = [ term, and the dipolar mode does no longer dominate so strongly over the
high-order modes. The dependence of the EEL probability on the impact parameter
is illustrated in Fig. 4.1(b), where I'ggrs is plotted as a function of the impact
parameter for a Na nanoparticle of radius ¢ = 2 nm, whose material is characterized
as a Drude dielectric function with w, = 6.05 ¢V and v = 0.3 ¢V (including surface
scattering effects as described in Chapter 1, Sec. 1.1). For external trajectories with
large impact parameters (b > a), EELS provides similar plasmon excitation as those
obtained in optical spectroscopy. Grazing trajectories imply that the field generated
by the probing electron beam can no longer be considered to be similar to a plane
wave, and together with the dipolar plasmon, higher-order modes also couple to the
probing field as observed in Fig. 4.1(b) for b ~ a. The spectra in Fig. 4.1(b) also show
that the main losses are cased by excitations produced when the probing electron
trajectory crosses the NP.

For penetrating trajectories (b < a), we observe in Fig. 4.1(b) that the excitation
of LSPs shows great dependence on the impact parameter, and the excitation of the
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b/a

b/a 2 2 w( eV)

Figure 4.1: a) Spherical nanoparticle with radius a and frequency-dependent local dielectric function
e(w) and a electron traveling nearby with impact parameter b and velocity v. b) EEL spectra colormap for a
Na (wp ~ 6.05 eV) spherical nanoparticle with radius a = 2 nm. c) Waterfall plots of the EEL probability
spectra for the energy region corresponding to the LSPs for individual impact parameters (straight purple
lines) with the energy corresponding to each [-mode highlighted (dashed grey lines).

bulk plasmon at ~ 6 €V with a much larger intensity than the LSPs (see saturation
of T'grrs in Fig. 4.1(b). The excitation of the lowest five LSP modes (I = 1 — 5)
in such situation is tracked in Fig. 4.1(c). Here we observe that the dipolar mode
[ =1 fades away as the impact parameter tends to zero [left-hand side of Fig 4.1(b)
at w ~ 3.45 eV]. The reason for this behavior is explained by symmetry arguments:
due to azimuthal symmetry, only m = 0 modes are excited by the electron beam, and
as the external potential produced by the electron beam scales as gey (1, w) ~ €% /v
[see equation 1.54], the change in the phase of the potential along a spherical NP for
an axial trajectory is given by Ap = Lw/v, where L is the characteristic length of the
nanostructure (L =~ 2a in this case). For small nanoparticles (L = 2a ~ 4 nm) and
fast electrons (Ej ~ 100 keV), the change in the phase is almost negligible (Ap ~
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Figure 4.2: a) The contributions of the first = 10 modes to the EEL probability, normalized with the sum
of all contributions, is given for each I mode. Odd ! modes (blue color palette) dominate for 2aw/7wv ~ 2n+1
Vn € N, and even [ modes (red color palette) dominate for 2aw/mv ~ 2n Vn € N. b) The contribution of
modes with [ + m odd (blue palette) and I 4+ m even (red palette) to the total EEL probability (normalized
with the sum of all contributions) for impact parameters b/a = 0,0.25,0.5,0.75.

0.22 <« 7, for E ~ 6 V), which leaves the external potential almost unchanged along
the electron path, and thus mainly even [ modes are excited in the particle, as the
phase of the induced charge density at the entry and exit points of the electron has
to be almost equal. This happens for the excitation of the [ = 2 modes at E ~ 3.8eV
and zero impact parameter b = 0 in Figs. 4.1(b) and (c¢). The activation of the modes
ca be related to the properties of the terms in Eq. (4.1). The integrals Afo in Eq.
(4.1) are small for odd ! modes compared to even ! modes, as for odd ! modes one
gets glg(%) = sin (%) ~ “% < 1, while for even [ modes glo(%) = cos (%) ~1
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for axial trajectories (b= 0) &

In general, the contribution of even or odd ! modes for axial trajectories (b = 0)
depends on the reduced radius wja/v, where w; = wp+/{/(20 + 1) is the energy of
the | mode. In particular, the condition wa/v ~ Iw/2 determines the dominance
of either odd or even modes [255]. The dependence of odd and even modes on
the reduced radius aw;/7v is illustrated in Fig. 4.2(a). Moreover, this symmetry
argument not only holds for axial trajectories but for any penetrating trajectory
(as long as the nanoparticles are small and the velocity of electrons large), i.e., in
general, even [ + m modes dominate over odd [ + m modes. This behavior is clearly
demonstrated in Fig. 4.2(b), where the contribution of modes with odd and even [+m
to the total EEL probability is shown for impact parameters b/a = 0,0.25,0.5,0.75
as a function of the reduced length of the electron trajectory in the nanoparticle
L' = 2v/a? — b?w;/mv. One can observe that for small reduced lengths even | + m
modes dominate, almost independently of the impact parameter b, i.e., for small
nanoparticles and fast electrons, even [ + m modes are mainly excited.

4.2 Influence of subnanometric features in nanoparticle EELS

In the previous subsection we have presented EEL spectra near a spherical NP as
calculated within the local response approximation to describe the NP’s material
response. Most of the studies addressing EELS in this situations have focused on
the effects produced by quantum confinement, non-locality, spill-out, and changes in
the NP’s environment. The influence of the atomic-scale features of the NPs in the
plasmonic response is usually disregarded. Here we explore the sensitivity of EELS to
the specific atomistic structure of a NP by addressing the energy loss spectrum in the
valence region of a sodium nanocluster composed of 380 atoms, as shown in Fig. 4.3.
We calculate the atomistic ab initio electron energy loss probability within TDDFT
for different electron trajectories. This allows for including the crystallographic effects
of the NP’s facets naturally, within a quantum treatment of the electrons and atoms
that form the NP. The probing electron energy is considered to be 100 keV in all the
calculations. We select first three representative electron trajectories; crossing the
center of the particle, and penetrating it through (i) a vertex, (ii) an edge, or (iii)
a facet. In analogy to the previous chapter, and in order to ease the interpretation
of the results and to evaluate the need for full quantum calculations, we implement
three additional descriptions of the NP within a classical dielectric framework with
abrupt interfaces, using the MNPBEM [110]: (i) a perfect icosahedron resembling
the atomistic structure of the NP; (ii) a smoothed icosahedral NP which approaches

8For axial trajectories we have P/™(z/r) = P/"(1) = dmo, which reduces the integrals to Al =
1 a
Wfo dzzlglo(%) and A7) =a f L+1910(
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Electron
beam

Atomistic '
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Figure 4.3: Scheme of an atomistic Nasgo NP and electron beams, crossing through and passing by the
NP, at impact parameter b, defined with respect to the trajectory crossing the center of the NP. Atoms forming
atomistic features such as a vertex (red), edge (green) and facet (blue) are highlighted among generic Na
atoms displayed in purple.

the shape of the electronic cloud in the atomistic cluster and would capture effects
derived from the atomistic geometry; (iii) and a perfectly spherical nanoparticle
(radius a=1.85 nm), as a benchmark of the NP shape commonly used in the literature.

As pointed out, the trajectories considered cross the center of the NP with the
penetrating point at a vertex, a facet or an edge, as depicted in Fig. 4.4(a). Notice
that for a structure with perfect icosahedral symmetry these trajectories correspond
to the three symmetry axes of the icosahedron (5-fold, 3-fold and 2-fold, for vertices,
facets and edges, respectively).

The EEL spectra calculated within the atomistic TDDFT framework are shown in
Fig. 4.4(b). The sensitivity of the spectra to the particle orientation and the atomic-
scale features is apparent in this figure. Depending on the trajectory, different peaks
that correspond to the excitation of localized surface plasmons (LSPs) are activated:
a peak at energy w = 3.4 eV emerges for the vertex trajectory (red line); the trajectory
through the edge (green line) shows two peaks at w = 3.45 €V and w = 4.1 €V, the
latter being more intense; and a single peak at w = 4.05 eV is observed for the facet
trajectory (blue line). Moreover, a main peak at w = 6.35 eV and some shoulders
at lower and higher energies are observed for all three trajectories (with some slight
differences in intensity), which correspond to confined bulk plasmons (CBPs), as we
will prove further on. Just notice that the intensities of the later are similar or even
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Figure 4.4: a) Three icosahedral nanoparticles oriented respect to the symmetry axes of a regular icosa-
hedron: 5-fold, through two opposing vertices (red); 2-fold, through two opposing edges (green); and 3-fold,
through two opposing facets (blue). The electron beam trajectories are set to penetrate the nanoparticle
through/following these symmetry axes (marked by crosses). b) EEL spectra for the three trajectories shown
in panel a) for a Naggo nanocluster as calculated within TDDFT. c-f) Isosurfaces of the charge density
distribution for the main modes excited for each trajectory. g-j) Charge density distribution plotted at the
NP surface (the NP surface is obtained from the isosurface calculated for the unperturbed charge density;
more details in the main text). TDDFT data provided by Marc Barbry in CFM.
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higher than those of the LSPs at lower energy. The characteristics of CBPs will be
studied in detail in Chapter 5.

To get further insight into the impact of atomic-scale features in the EEL spec-
trum and into the properties of the corresponding plasmonic excitations, we explore
in Figs. 4.4(c-j) the induced charge density distributions associated to the main plas-
mon modes identified in the EEL spectra of Fig. 4.4(b). On the one side, in Figs.
4.4(c-f) we plot the isosurfaces of the induced charge density, which show its phase
(sign) at the NP’s surface (and within the NP), allowing for an identification of
the modes. Nevertheless, it is not straightforward to extract information about the
charge localization at the surface from these isosurfaces, as one usually needs to cal-
culate several isosurfaces for different isovalues of the charge density to that end.
We intend to better visualize the charge localization in Figs. 4.4(g-j) by proceeding
as follows: (i) we calculate an isosurface with an electron density threshold value
ne = 0.00169 /A3 [188] from the ground state charge density of the cluster in the
absence of any external perturbation (this corresponds to the surface of the NP,
which will be also used to create the smooth icosahedron geometry in the BEM
calculations, presented below?), (ii) we plot the induced charge density data at the
previously established NP surface, which makes easier to identify regions of greater
charge localization at the surface.

The lowest energy LSP at w = 3.4 eV excited for the vertex electron trajectory
[first column from the left, in Fig. 4.4(c,g)] shows a quadrupolar pattern [Fig. 4.4(c)].
Compared to the QP excited in spheres for axial trajectories (I = 2, m = 0), the
charge density distribution observed in Fig. 4.4(g) shows strong charge localization
around the vertices and a characteristic five-pointed star like charge distribution
around the electron path, directly related to the five-fold symmetry of the NP respect
to the electron trajectory. The LSPs excited for the edge (w = 4.1 €V, green) and
facet (w = 4.05 eV, blue) electron trajectories, show lower symmetry of the charge
distribution, with rhomboid, or triangle-like patterns around the electron path [Fig.
4.4(d-e)], but a stronger localization at vertices, edges and facets [Fig. 4.4(h-i)]. In
contrast, the charge density distributions of the CBPs excited at w = 6.35 eV for the
three trajectories do not show localization at vertices or patterns related to the shape
of the nanoparticle, as observed in the charge density distributions [Fig. 4.5(f,j)]. In
fact, due to the nature of the CBPs, i.e., electron collective oscillations localized in
the volume of the NP, these oscillations mainly depend on the size of the nanoparticle,
more than on the local atomistic morphology of the surface.

These results reveal the sensitivity of LSPs to the atomistic shape of a NP and to
the crystallographic orientation probed by the electron. In this sense, shape effects
in larger NPs have been studied extensively in the literature within the classical
dielectric formalism [260], which accounts accurately for the response of large metallic

9The electron density threshold value to create the isosurface that we for BEM calculations is
somewhat arbitrary [188]. Nevertheless, the volume of the resulting continuous NP used in the
BEM calculations is equivalent to 380 Na atoms with atomic radius 75 ~ 2.18A, which is close to
the Wigner radius s = 2.08A used to describe the plasmonic response, i.e., dielectric function, of
Na in the BEM calculations. The larger size is due to certain spillage of electrons to the vacuum,
making the NP effectively larger.
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NPs. Nevertheless, as nanometric and subnanometric nanoparticle sizes are reached,
the classical local dielectric formalism fails to reproduce quantum effects such as
electron confinement into the NP, or electron spill-out effects, which need to be
included in the material’s response. Although some of these effects have been tackled
for small spherical NPs [261], they oversight the influence of the NP’s shape and the
presence of crystallographic features, which greatly affect the EEL spectra, as we
have shown in this section. With the aim of understanding the role of these atomic-
scale features, we complete our atomistic study with classical calculations of the
EEL spectra within the BEM where we reproduce the crystallographic shapes of the
particles through classical sharp boundaries, mimicking the specific atomistic shape
of each NP. The comparison of the results of the EEL spectra obtained from one
and another method will reveal the accuracy and/or the limitations of classical local
dielectric theories, as commonly used in EELS, to capture atomistic features in NPs.

4.2.1 Continuous description of atomic-scale features

The presence of atomic-scale features breaks the spherical symmetry of a NP, and can
result in plasmon modes shifting and, even splitting [262], thus lifting the plasmon
energy degeneracy with respect to the modes of a spherical particle, as shown in Fig.
4.4(b). This is very clear, in particular, for the vertex electron trajectory, but not so
obvious for the edge and facet ones. The reason for this may be found in the electron
density distribution induced by the beam at the surface, which does not vary much
for an edge and the facet trajectories, but is quite different for the vertex trajectory.

This dependence of the EEL spectra on the NP’s geometry is further explored in
Fig. 4.5, where we show the results for two NPs using a continuous dielectric model
to address the material’s response within BEM. The geometries of the NPs, follow-
ing the atomistic geometrical shape of the nanocluster, are shown together with the
energy loss spectrum of a spherical NP of the same size (¢ = 1.9 nm). The numer-
ical BEM and the dielectric approach used are detailed in Chapter 1. The spectra
for the irregular smoothened icosahedron (sketch in the inset of Fig. 4.5(a), which
captures the geometry of the unperturbed electron density of the nanocluster used
in the atomistic TDDFT calculations, are plotted in Fig. 4.5(a). These spectra are
very similar to those of Fig. 4.4 (TDDFT results): two modes appear at w = 3.6 €V,
mainly excited for the vertex electron trajectory (red line), and w = 4.0 eV for the
edge (green line) and facet (blue line) trajectories. In contrast, the spectra obtained
for a regular icosahedron resembling the crystallographic/atomistic shape of the nan-
ocluster [sketch in Fig. 4.5(b)] show three separate modes, each one corresponding to
a specific trajectory; at w = 3.3 eV for the vertex trajectory (red line), at w = 3.9 eV
for the edge trajectory (green line), and at w = 4.2 eV for the facet trajectory (blue
line).

For reference, the spectrum of a spherical NP of the same size is shown with a
black line in Figs. 4.5(a,b). The later clearly differs from the spectra of the icosahe-
dral NPs used in TDDFT [Fig. 4.4(b)] and in the BEM simulations [Figs. 4.5(a,b)],
highlighting the signature of the atomistic surface structure in the EEL spectra of
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Figure 4.5: a) EEL spectra for a Na nanoparticle with smooth icosahedral shape and b) regular icosahedral
shape calculated within BEM for three different trajectories crossing each NP through two opposing vertices
(red), through two opposing edges (green), and through two opposing facets (blue). The EEL spectrum for a
spherical NP is plotted in black in each figure, and the shape of each NP is plotted in the inset. Charge
density plots representing the LSP modes highlighted with squares in Fig. 4.5 and with diamonds in Fig.
4.5(b) as calculated with BEM for c) a spherical Na NP of radius a =1.85 nm, d) for a smooth icosahedral
Na NP and e) for a regular icosahedral Na NP.
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nanoclusters. In particular, the main LSP peak observed for the spherical NP corre-
sponds to the surface quadrupolar plasmon (QP, [ = 2) at E = 3.8 €V, as depicted in
Fig. 4.5(c), left box. Notice that this is the main surface mode excited for the elec-
tron trajectory crossing the center of the NP, as the dipolar mode [ = 1 is inhibited,
due to its azimuthal symmetry (only m = 0 modes are excited) as already explained
in Sec. 3.1.

The induced charge densities in the smoothened irregular icosahedral and the
regular icosahedron NP modelings are represented in Figs. 4.5(d) and 4.5(e), respec-
tively. The patterns of the induced charge densities in the particles described with
continuous boundaries are very similar to those obtained within the full TDDFT (Fig.
4.4). The patterns obtained for the icosahedral particles are qualitatively similar to
those of Fig. 4.5(c) for the spherical NP. One can also observe the similarities be-
tween the charge density distributions of the smoothed continuous boundaries [Figs.
4.5(d,e)] and those of the atomistic TDDFT cluster [Fig. 4.4(c)] in spite of the energy
difference.

Apart from the LSPs discussed above, the most intense EELS excitation appears
at w = wp = 5.9 eV, which is a bulk plasmon footprint, independent (in energy) of
the nanoparticle’s shape (sphere, smooth icosahedron or regular icosahedron) and
trajectory. The lack of dependence on the NP shape and electron trajectory of the
bulk plasmon appearing in BEM simulations is a direct consequence of the continuous
dielectric framework, in which the contribution of the bulk plasmons to the energy
loss probability is introduced ad hoc (see equation 1.64 in section 1).

On the other hand, Figs. 4.5(c-e) show a strong charge localization around the
electron path, but no charge oscillations at the surface, in contrast to the TDDFT
results [Fig. 4.4(f,j)]. We will address this issue in detail in Chapter 5. The compar-
ison between the results obtained with the atomistic TDDFT and the three classical
continuous approaches illustrates unambiguously the influence of atomic-scale fea-
tures on the EEL spectrum, and the need for an accurate geometrical description of
the atomistic cluster. Although LSP patters are reasonably well addressed with the
use of classical description in smoothed surfaces, these approaches fail to describe
the properties of CBPs due to the intrinsic constraints of the dielectric framework.
The differences observed in bulk charge densities deserve a further analysis, which is
presented at the end of Chapter 5.

4.3 Impact parameter dependence

So far we have focused on a particular set of electron trajectories, although typical
EELS experiments usually scan the NPs, involving a wide variety of them, and par-
ticularly external trajectories. It is well known that for external trajectories with
large impact parameters (b > a), EELS provides plasmon patterns similar to those
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obtained in optical spectroscopy, i.e., the field generated by the electron beam at the
surface of the NP is similar to that of a uniform and homogeneous external field.
Under these conditions, the optical response of the icosahedral NPs does not differ
much from that of a spherical one (the dipolar plasmon dominates the spectrum for
small NPs, as observed in Fig. 2.4 of chapter 2), and does not show much dependence
on its relative orientation [106,260,263]. Nevertheless, as the beam gets closer to the
NP’s surface, (b ~ a), the intensity of higher order modes increases, and thus the
plasmonic response shows a dependence on the impact parameter [258,259], which is
no longer similar to that obtained with an optically homogeneous and uniform source.
Moreover, in the previous section we showed that for axial penetrating electron tra-
jectories the EEL spectra for icosahedral NPs depend on the relative orientation of
the NP with respect to the electron beam. Thus, one could expect that in general,
penetrating trajectories will show orientation dependent EEL spectra in atomistic
NPs, which will be different to the EEL spectra for spherical NPs. Therefore, we ex-
plore now the influence of the atomistic features of the nanocluster on the excitation
of different modes as a function of electron beam distance to the particle. To that
end, we calculate EEL spectra for both penetrating and external electron trajectories
for different impact parameters.

We show the dependence of the EEL spectra on impact parameter as calculated
within the atomistic ab initio theory, for three different orientations of the NP as
shown in the sketch of Figs. 4.6(a-c). Colormaps of such EEL spectra are shown
in Figs. 4.6(d-f). The spectra shown in Fig. 4.6(d) correspond to the orientation
labelled as “near-facet”, which is chosen such that the external electron trajectories
are parallel to the facet. The results shown in Fig. 4.6(e) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>