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Resumen
(In Spanish)

Esta memoria recoge los resultados del proyecto de investigaciéon de tesis doctoral que
lleva por titulo “Asymptotic structure of space-time and gravitational radiation with a
non-negative cosmological constant” | supervisada y tutelada por el prof. José Maria
Martin Senovilla y llevada a cabo en el departamento de Fisica Teérica e Historia de
la Ciencia, dentro del grupo de Gravitaciéon y Cosmologia, con el apoyo econdémico de
las ayudas n. FIS2017-85076-P (MINECO/AEI/FEDER, EU) y n. 1T956-16 (Gobierno
Vasco).

La investigacion se centra en el estudio de la radiacion gravitatoria desde un punto
de vista formal, asi como de la estructura de las regiones asintoticas del espacio-tiempo
en presencia de una constante cosmoélogica no negativa. A continuacion, se presenta
un resumen que incluye antecedentes, estado actual de las lineas de investigacion y una
breve compilacién de los resultados obtenidos durante el periodo de desarrollo de la tesis
doctoral.

Antecedentes

La tesis se enmarca dentro de la teoria de la Relatividad General fundada por Einstein
[1]. A dia de hoy, esta es la mejor teoria que tenemos para describir la gravedad a bajas
energias (no se espera que sea asi a altas energias, vedse por ejemplo la introduccion de
[2]). El estudio llevado a cabo se centra en la estructura asintética del espacio-tiempo y
en la radiacién gravitatoria (véase [3] para una revision histérica sobre este tema).

La constante cosmolégica

En 1917 Einstein [4] introdujo la constante cosmoldgica A en sus ecuaciones de campo.
Su motivacién original era la de conseguir una solucién homogénea y estatica, para lo
cual era necesario ajustar de manera precisa el valor de la constante cosmolégica. Sin em-
bargo, esta idea resulta poco acertada desde el punto de vista fisico, mientras que, desde
el punto de vista matematico, el término de constante cosmoldgica en las ecuaciones las
hace mds generales. Ese mismo ano, de Sitter [5] encontr6 una solucion a las ecuaciones



de campo con constante cosmologica positiva que, de hecho, incluia un régimen dinamico.
El descubrimiento observacional de Hubble [6] mostraba un universo en expansién, lo que
estaba en sintonia con los modelos de Fridman [7] y Lemaitre [8]. Setenta anos después,
mediciones de A usando supernovas [9, 10] evidenciaron que habitamos un universo con
constante cosmoldgica positiva, con un valor cercano a cero. El efecto de una A positiva
(sin importar cémo de grande es su valor) en nuestro universo es que este se encuentre en
una fase de expansién acelerada.

El pequenio valor de la constante cosmoldgica aiin carece de una explicacion ultrerior.
Ya en 1987, Weinberg us6é un argumento antrépico basado en la formacion de sistemas
gravitatorios ligados para predecir una cota superior en el valor de A [11]. Sin embargo,
los argumentos antrépicos aportan pistas para la busqueda de una explicacién subyacente
pero no constituyen por si mismos una teoria. Desde el punto de vista de fisica de particu-
las, se puede interpretar A como efectiva —en oposicién a pura— identificandola con una
densidad de energia de vacio. No obstante, el valor de A calculado en teoria de particulas
difiere en muchos 6rdenes de magnitud del valor observado [12]. Desde cierto punto de
vista, este es el llamado problema de la constante cosmolégica. Todo ello motiva el estu-
dio de las consecuencias fisicas que tiene una constante cosmoldgica en las ecuaciones de
campo de Einstein.

Para revisiones en esta materia véase [13, 14].

Estructura asintética

Nociones fisicas de importancia, como la energia del campo gravitatorio, se entienden
mejor si se consideran sistemas gravitatorios aislados [15-19]. Intuitivamente, tal sistema,
puede representar una estrella después de haber «vaciado» el universo de todo lo demas.
Una idea complementaria es que hay que alejarse muy lejos para poder considerar un
sistema como un todo. En esta descripcion pictérica, «muy lejos» significa en el infinito,
que matematicamente esta bien defino. Es alli donde ciertas cantidades fisicas, e incluso
nociones como la de onda gravitatoria, cobran mas sentido [20, 21]. Una descripcién
formal del infinito fue presentada por Penrose en 1963 [22]. Uno de los aspectos de su
idea es traer el infinito a una distancia coordenada finita o, en otras palabras, hacer
del infinito una regién local. Técnicamente, se le adhiere una frontera al espacio-tiempo
representando el infinito, tal que los campos fisicos puedan ser evaluados alli [23]. Es por
ello que la frontera codifica la fisica del las regiones asintéticas del espacio-tiempo. De
manera notable, la naturaleza de dicha frontera depende de si la constante cosmologica
es cero, positiva o negativa (pasando su caracter causal de ser luminoso a espacial o
temporal). Por la misma razén, la fisica del infinito se ve afectada por A. Es por ello
que el pequeno valor de A es suficiente para cambiar el escenario asintético de manera
abrupta con respecto a A = 0 [24].
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Radiacién gravitatoria

La naturaleza dinamica de la geometria espacio-temporal permite que se produzcan cam-
bios en el campo gravitatorio que afectan de manera causal distintos puntos del espacio-
tiempo. Este fenémeno de propagacion se denomina cominmente ondas gravitatorias (o
mas genéricamente radiacion gravitatoria) y es un efecto completamente no lineal. En las
primeras etapas de la teoria de la Relatividad General, el concepto de onda no estaba bien
definido, ni si quiera en 1918, cuando Einstein publicé su famosa formula del cuadrupolo
[25] en el limite de campo débil, estableciendo asi el primer paso hacia una teorfa de
radiacion gravitatoria. Su construccion estaba guiada por las soluciones de tiempo retar-
dado de la electrodinamica clasica. El hecho de que su féormula solo fuera vélida en el
régimen lineal de la teoria sembraba dudas sobre la veracidad de las ondas gravitatorias
en la teoria completa. De hecho, Einstein mismo y Rosen llegaron a la conclusién de
que las ondas no existian, después de encontrar una solucién de onda plana que contenia,
segun ellos, singularidades (estas no eran verdaderas singularidades, sino problemas en la
eleccién de coordenadas) [26, 27].

En los anos 50 y 60 llegaron nuevos avances. Un papel fundamental lo desempend
Pirani, quien buscé una caracterizacion algebraica de la radiacién gravitatoria habiéndose
inspirado en el libro de electrodindmica de Synge [28]. Su caracterizacién se bas6 en un
problema de valores propios del tensor de curvatura [29, 30], adecuandose de forma natu-
ral a la clasificacion previa de Petrov [31]. Obsérvese que, a falta de un tensor de energia
momento para el campo gravitatorio, Pirani hizo uso de la curvatura. Sin embargo, quien
llevé a su extremo este paralelismo fueron Bel [32, 33] y Robinson. Dieron la defini-
ciéon de un tensor, cuadratico en la curvatura, que compartia una cantidad asombrosa
de propiedades con el tensor energia-momento del campo electromagnético, a excepcion
de las unidades fisicas. Paralelamente, Trautman traté la cuestién de la radiacién estu-
diando condiciones de frontera en el infinito [34, 35], una manera de abordar el problema
reminiscente de la condicién de radiacion de Sommerfeld (véase [36]). La colaboracion
entre Trautman, Robinson [37, 38], Pirani y Bondi [39] culminé con una serie de articulos
[21, 40, 41] (véase también [42]) en los que los distintos enfoques convergian. Ejemplos de
ello son el postulado de una condiciéon de radiacion en el infinito en los trabajos de Bondi
y su equipo o la caracterizacion algebraica del tensor de Weyl en el denominado compor-
tamiento de pelado. Ademads, el tratamiento geométrico del infinito de Penrose llevé a
resultados similares [15, 43, 44], y en la década siguiente todo fue condensado de manera
geométrica y robusta por Geroch [17]. Algunos de estos hitos incluyen el llamado tensor
de Bondi y la energia-momento de Bondi-Trautman, asi como el descubrimiento del grupo
de simetrias asint6tico BMS (Bondi, Metzner y Sachs). Asi fue como se demostré que
la radiacion gravitatoria es un elemento intrinseco de la teoria completa v se despejaron
las dudas sobre su existencia desde el punto de vista teérico (véase [45] para una revision
histérica).
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Mas progresos llegaron en la década de 1970 y 1980. Ha de mencionarse la introduc-
cién de métodos simplécticos [46, 47] y la identificacion y caracterizacion de los grados de
libertad radiativos del campo gravitatorio en términos de clases de equivalencia de conex-
iones en el infinito [48]. También hubo avances hacia la definicién de momento angular
[49-51], y un estudio més profundo de la frontera asintética y del grupo de simetria BMS
[52-55]. Todo esto acompanado del descumbrimiento del pulsar binario PSR B1913+16
[56] cuyo andlisis brindé la primera prueba observacional (indirecta) de la existencia de
ondas gravitatorias (véase, por ejemplo, [57]).

Salvo la geometrizacion conforme de Penrose, los avances teéricos fundamentales arriba
citados solo son vdlidos cuando la constante cosmoldgica es cero.

Otros avances recientes

Actualmente, tenemos certeza de que hay objetos astrofisicos que pierden energia por
emision de ondas gravitatorias. Con el anuncio de la primera deteccion directa en 2016
[58], estas ondas se convirtieron en un hecho observacional robusto. Ademas, la constante
cosmoldgica (pura o efectiva) estd determinada con precision y es positiva [59]. Por tanto,
el escenario es un tanto paraddéjico: hay grandes logros tedricos en el campo de la radiacion
gravitatoria en el infinito que no son directamente aplicables al universo que habitamos.

En [60] se puso de nuevo la atencién en esta cuestién y més tarde se expuso la prob-
lemética de manera detallada en [61] desde el punto de vista de restricciones geométricas
y topoldgicas de la frontera conforme. Durante los tltimos anos se ha alcanzado cierta
comprension del problema por distintas vias que incluyen una férmula de cuadrupolo en el
régimen lineal [62, 63], una definicién espinorial de masa [64], caracterizaciones basadas en
coordenadas o coeficientes de spin [65, 66], métodos Hamiltonianos [67] y otros enfoques
[68-73] (véase [74] como revisién de algunos de estos trabajos). En [75] se propuso una
condicién de radiacion covariante en el infinito en presencia de una constante cosmologica
positiva; la idea se puso a prueba en el caso asint6ticamente plano en [76]. Aun asi, la
ausencia de una estructura universal, un grupo asintotico de simetrias y el problema de la
dependencia direccional cuando uno se aproxima al infinito [77] muestra la incompletitud
existente en la caracterizaciéon de la radiacién gravitatoria en el infinito con constante
cosmoldgica positiva.

Resultados

Esta tesis trata de resolver algunos de estos problemas abiertos. Se estudia tanto el caso
con constante cosmolégica positiva como el caso asintéticamente plano. En este tultimo,
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se consigue un refinamiento de propiedades ya conocidas (tales como la energia-momento
del campo gravitatorio y el comportamiento de pelado) y también resultados nuevos (una
condicién de radiacion geométrica o el comportamiento de pelado para el denominado
tensor de Bel-Robinson). De gran relevancia es el andlisis de la estructura asintética con
constante cosmoldgica positiva, que se estudia desde su base, revisitando conceptos bési-
cos y dando las expresiones relevantes de los campos fisicos en la frontera conforme. Se
emplean objetos definidos con el tensor de Bel-Robinson (lo que comtinmente se conoce
bajo el nombre de cantidades de ‘superenergia’), ya que se adaptan de forma natural a las
propiedades de marea del campo gravitatorio. La condicion de radiaciéon encontrada es
valida en los dos escenarios (con constante cosmoldgica positiva y sin ella), se construye
en el infinito y también tiene en cuenta las energias de marea. Ademas, se demuestra
una relacién geométrica entre las cantidades a nivel superenergético (o de marea) y otras
cantidades a nivel energético, siendo las primeras ‘fuente’ de las segundas. Esta relacion
sirve para formular una clase de tensores de tipo ‘news’, usando un resultado geométrico
hallado que generaliza un teorema de Geroch [17]. Ademas, la condicién de radiacién y
los tensores de tipo news y la estructura direccional del campo gravitatorio se ponen en
conexion con la formulacién de un criterio de ‘no radiacion entrante’, equipando la frontera
conforme con una congruencia de curvas. Esto lleva a la definicién de un grupo asintético
de simetrias que preserva las nuevas estructuras, y al estudio de cantidades conservadas.
Ademas, la correspondencia entre el caso con constante cosmoldgica positiva y el caso cero
es nitida, pudiéndose tomar el limite de la primera a la segunda situacién. Finalmente, se
aplican los resultados a varios ejemplos de soluciones exactas a las ecuaciones de campo
de Einstein, obteniéndose la respuesta esperada y demostrando asi la validez de de los
resultados.

Mas alla de lo especificado arriba, tres de las principales ideas que se destacan en la
tesis son las siguientes:

1. Las cantidades de superenergia estan naturalmente adaptadas al problema de la
caracterizacion de la radacion gravitatoria.

2. En el caso con constante cosmoldgica positiva, cualquier dinamica del campo gravi-
Dab)’
donde ¢ es una variedad Riemanniana en tres dimensiones (la frontera conforme),

tatorio en la frontera conforme tiene que estar codificada en la triada (_#, h,,

h,, es la métrica sobre dicha variedad y D,, es un tensor simétrico y sin traza.

3. Los tensores de tipo news estan asociados, al menos parcialmente, a variedades de
dimension 2 en el infinito.

Mientras que futuras lineas de investigacién incluyen:

e Definicién de una energia-momento en el caso con constante cosmolégica positiva
asociado a la estructura introducida en el infinito.



o Empleo de métodos simplécticos.
o Generalizacion de la construcciéon del teorema de pelado a curvas generales.

o Aplicacién de los métodos de marea propuestos al caso con constante cosmoldgica
negativa.
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Preface

Lee, mira y manipula este libro interactivo que te ird desvelando las mar-
avillas del universo. Coloca las pegatinas en el lugar apropiado para transfor-
mar las ilustraciones. Gira el disco para conocer la posicion de las constela-
ciones en cada época del ano y aprender a identificarlas. Usa el astrolabio,
como los navegantes del pasado, para saber la hora por la posicion de las es-
trellas. Despliega las pdginas para admirar el Sol y sus planetas. Ponte las
gafas para ver el firmamento en relieve. Descubre las dimensiones del espa-
cio leyendo el librito desplegable. Averigua como son las galazias, qué es una
enana blanca, un agujero negro, un pulsar y otros muchos datos interesantes
acerca de nuestro mundo maravilloso.*

*Viaja por el universo. SM saber. Biblioteca interactiva. SM, 1993. isbn: 8434841088.
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1 | Introduction

_®_

Gravity affects everything and everything is a source of gravity. This would be a very
condensed way' to convey one of the main ideas behind General Relativity, a theory that
was born with Einstein field equations [1]. The understanding of gravity as geometry of
the space-time is the best description of the gravitational interaction we have nowadays
—at least at the low-energy regime, since quantum effects are expected to appear at the
Planck scale, see e. g. the introduction of [2]. In a general situation, the gravitational
field is dynamical, and this is the same phenomenon by which the curvature of the space-
time can be altered. This thesis is a study of two particular features of the theory that
were formally immature or conceptually misleading until the renaissance? —to put it in
the words of C. M. Will- of General Relativity: infinity and gravitational radiation. Both
objects of study are closely related, as an adequate treatment of infinity allows to consider
isolated systems whose emission of gravitational waves can be characterised precisely in
the asymptotic regions of the space-time. Basic physical concepts for the gravitational
field, as energy-momentum, are defined at infinity when the cosmological constant A van-
ishes. In contrast, the presence a positive A alters the situation drastically.

The cosmological constant: observational fact and conundrum

In 1917, the cosmological constant was introduced by Einstein [4] who pursued a homoge-
neous static universe that could fit Mach’s philosophy. Although his original motivation,
which required the value of A to be fine-tuned, was not fortunate from the physical point
of view, the presence of A in the field equations makes them more general, and hence
one has to consider it. That very same year, de Sitter [5] found a solution to the field
equations for a positive cosmological constant —which indeed included dynamical features.

!This introduction aims at simplicity and non-technical descriptions; more detailed preambles are
found at the beginning of each chapter.

2Where to put the historic limits of this bright epoch of developments and achievements can be
ambiguous, although fundamental progress was made in the 1950s and 1960s. For a historical review
focusing on gravitational radiation see [3].



The observational discovery of Hubble [6] pictures an expanding universe, in agreement
with the previous models of Fridman [7] and Lemaitre [8]. In spite of this, the actual value
of the cosmological constant (if present) could not be inferred at the time. It was not after
70 years later that measurements of A using supernovae [9, 10] evinced that we inhabit
a universe with a positive cosmological constant. Its value, although only slightly above
zero, served to establish that the universe undergoes an accelerated expansion —with a
striking impact on the physics at infinity.

The tiny value of the cosmological constant has no ulterior explanation yet. As soon
as in 1987, Weinberg used an anthropic argument based on the formation of gravitational
bound systems in order to predict an upper limit for the value of the cosmological con-
stant [11]. However, anthropic arguments drop hints for the search of an explanation
but do not provide us with a fundamental description or theory by themselves. From
the point of view of particle physics, one can think of the cosmological constant as an
effective —in contrast to bare— term by identifying it with a vacuum energy. The particle
theory calculations give an outcome that differs from the observed value of A by several
orders of magnitude though —see [12]. This is, in a way, the cosmological constant problem.

Hence, even though we know that A has to enter Einstein field equations, its role in
cosmological dynamics and its value in our universe, truth is that the underlying nature
of this constant is still a conundrum. For reviews on the matter, see e.g. [13, 14].

Infinity is reachable

Important physical notions, such a gravitational mass, are better understood if one consid-
ers isolated (gravitational) systems [15-19]. Intuitively, such a system can represent a star
of the universe after removing everything else. A complementary idea is the requirement
of going far away from a system to see it as a ‘whole’. In this pictorical description, ‘far
away’ means at infinity. There, physical quantities, and even notions such as gravitational
waves, become clearer [20, 21]. Hence, a formal description of infinity is needed and was
put forward in 1963 by Penrose [22]. One aspect of his idea is to bring infinity to a finite
coordinate distance or, in other words, to make infinity a local place. Penrose’s elegant
treatment of infinity allows to attach a boundary to the space-time, so that physical fields
are actually evaluated there [23]. The boundary encodes the physics of the asymptotic
regions of the space-time. Remarkably, it is affected by the sign of the cosmological con-
stant in a profound way, and thus the same can be said of the asymptotic physics. From
the geometric point of view, the direct consequence of a negative, positive or vanishing
A makes infinity a timelike, spacelike or lightlike hypersurface, independently of how big
(small) A is. Hence, the tiny value of the cosmological constant in our universe is enough
to change the asymptotic arena abruptly from that with A = 0 [24].
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More than ripples of space-time

The dynamical nature of the space-time geometry allows for changes of the gravitational
field that affect causally different points of the space-time. This propagation phenomena,
commonly denominated gravitational waves —or more generically gravitational radiation—,
is a fully non-linear effect. The concept itself was fuzzy in the early stages of the theory.
In 1918, Einstein published his quadrupole formula [25] in the weak-field limit establishing
the first step towards a theory of gravitational radiation. His approach was guided by the
way one constructs retarded-time solutions in classical electrodynamics. Nevertheless, the
fact that his formula applies only to the linearised theory cast doubts upon the feature of
gravitational radiation in the non-linear regime. Indeed, Einstein himself and Rosen came
to the conclusion that gravitational waves did not exist, after finding a gravitational plane
wave solution [26, 27] which contained ‘singularities’ ~these were not true singularities,
but a coordinate illness of the solution. Hence, the concept of gravitational wave was not
clear at all at the time.

Advances came in the 1950-60’s. A key role was played by Pirani, who searched for
an algebraic characterisation of gravitational radiation, inspired by Synge’s book [28] for
the case of the electromagnetic interaction. He based his characterisation in a problem of
eigenvalues of the curvature tensor [29, 30] in harmony with previous Petrov’s classifica-
tion [31]. Observe that, in lack of an ‘energy momentum-tensor’ for the gravitational field,
Pirani made use of the curvature tensor. However, the parallelism with electromagnetism
of the algebraic method ran deeper with the work of Bel [32, 33] and Robinson. They
gave the definition of a tensor field, cuadratic in the curvature, and sharing an astonishing
number of properties with the energy-momentum tensor of the electromagnetism —except
the physical units. Parallelly, Trautman treated the problem of gravitational radiation
by studying boundary conditions at infinity [34, 35], an approach that is reminiscent of
Sommeferld’s radiation condition —see [36]-. The common collaboration of Trautman |,
Robinson [37, 38], Pirani and Bondi [39] ended up with a series of papers [21, 40, 41]
(see also [42]) in which the different approaches converged — e. g., the postulation of a
radiation condition at infinity in Bondi’s metric-based approach or the algebraic charac-
terisation of the curvature tensor and its interpretation in the so called peeling behaviour.
Moreover, Penrose’s geometrical treatment of infinity led to similar outcomes [15, 43, 44],
and in the next decade all the results were condensed in a solid geometrical description
by Geroch [17]. Some of those landmarks include the so called Bondi news tensor and
Bondi-Trautman momentum and the discovery of the asymptotic group of symmetries
BMS (named after Bondi, Metzner and Sachs). Gravitational radiation was shown to
be an intrinsic feature of the full theory and cleared up foregoing uncertainties on the
theoretical side —for a brief historical review see [45].

More progress was made in the late 1970s and 1980s. One has to mention the intro-



duction of simplectic methods [46, 47] and the identification and characterisation of the
radiative degrees of freedom of the gravitational field in terms of classes of equivalence
of connections at infinity [48]. Advances towards the definition of angular momentum
[49-51], and further study of the asymptotic boundary symmetries and momentum [52—
55] were made. All this was accompanied with the discovery of the binary pulsar PSR
B1913+16 [56] whose analysis provided the first observational evidence of the existence
of such waves —see e.g. [57].

Among these theoretical successful developments, the fundamental ones but the con-
formal geometrisation of Penrose are valid only when the cosmological constant vanishes.

The scenario

At the present time, we know certainly that astrophysical objects can loose energy by the
emission of gravitational waves. With the announce of the first direct detection in 2016
[58], these waves became a robust observational fact. Also, the cosmological constant
(bare or effective) is accurately determined as positive [59]. Thus, the scenario is a bit
of paradoxical: we have a lot of great theoretical achievements in the understanding of
gravitational radiation at infinity which cannot be applied to the universe we inhabit.

Attention to the problem of asymptotic characterisation of gravitational radiation was
revived in [60] and later the problematic was exposed accurately in [61] from the point of
view of restricting the topology and geometry of the conformal boundary: if one does not
restrict the asymptotic structure, it is not possible to identify an asymptotic symmetry
group but if the constraints are too strong one may loose too much information —asking for
conformal flatness, for instance, removes half the components of the gravitational field—.
During the last years some understanding has been achieved and different approaches
explored, which include a quadrupole formula and the study of the linear regime [62, 63],
a spinorial definition of mass [64], spin-coefficient/coordinate-based approaches [65, 66],
Hamiltonian methods [67] and others [68-73] — see [74] for a review of some of the works.
A geometric and covariant radiation condition at infinity in the presence of a positive
cosmological constant was proposed [75] and tested in the asymptotically flat case [76].
Still, the absence of a universal structure together with a general group of asymptotic
symmetries and the problem of the directional-dependence as one approaches infinity [77]
makes the whole picture incomplete.

This thesis aims at solving some of the open problems in the characterisation of radi-
ation at infinity with a positive cosmological constant. The task involves the study of the
vanishing-A case; refinement of old features —such as energy-momentum of the gravita-
tional field and the peeling behaviour— and new results —a geometric radiation condition
or the peeling behaviour of the Bel-Robinson tensor— are given. Of greatest relevance
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is the analysis of the asymptotic structure with a positive cosmological constant, which
is studied from its ground, reviewing some basic ideas and giving the expressions of the
relevant fields on the conformal boundary. Objects defined upon the Bel-Robinson tensor
are used (commonly called ‘superenergy’ quantities), which suit the tidal nature of the
gravitational field. The radiation condition —valid in both scenarios— at infinity is of a
tidal nature too and ruled by the asymptotic geometry itself, and a detailed analysis of it
is carried out. Moreover, a geometric relation between quantities at the superenergy level
(MT=2L73) and others at the energy level is established, being the latter ‘the source’
of the former. This relation serves to formulate a news-like class of tensor fields using a
general geometric result —which generalises a theorem by Geroch. In addition to that, the
radiation condition and the news-like tensors and the directional structure of the grav-
itational field at infinity are put in connection, formulating a criterion of no-incoming
radiation at infinity and equipping the conformal boundary with a selected congruence of
curves. This led to the definition of a group of asymptotic symmetries preserving the new
structures and to the study of conserved charges. Also, the limit of the cosmological con-
stant to zero shows that the main ideas in both scenarios exhibit a clear correspondence.
Finally, application of the results to exact solutions of Einstein Field Equations are given
to illustrate their validity.

Conventions and notation

Throughout the memoir, 4 space-time dimensions are considered and quantities in physi-
cal space-time M are distinguished from those in conformal space-time M by using hats.
Frequently used abbreviations include: KVF (Killing vector field), CKVF (conformal
Killing vector field), EFE (Einstein field equations) and PND (principal null direction).
Part of the notation is summarised in table 1.1.

The following conventions are used:
o Space-time metric signature: (—,+, 4, +).

o Space-time indices: «, (3,7, etc; three dimensional space-like hypersurfaces indices:
a, b, ¢, etc; surfaces indices: A, B, C, etc.

« Riemann tensor, Ricci tensor and scalar curvature: Ram%d = (vavﬁ - vﬁva) Vs
— H — v
R,s:=R,,5, R:=R,g".
« Choice of orientation: 1y 43 = 1, €193 = 1, €53 = 1.
+ Symmetrisation and antisymmetrisation: 27},5 := (Taﬁ — Tﬁa), 2T ) = (T ap T Tﬁa)'

« Commutator of two vector fields: [v, w]” := vV ,w® —w'V v®.



» Commutator of two endomorphisms or two (1, 1)-tensors: [4, B] " := (Aa“Buﬁ — B*AfP )

« Hodge dual operation on space-time two-forms: 2baﬁ =

« D’Alambert operator: [ := gV V.

i

v
a,@wm/ :

Physical Conformal Spacelike Surfaces S
space-time M space-time M hypersurfaces 7
Metric Gap 9ap P dAB
Volume R .
form Napys Napys €abe €AB
Covariant
deriva- V., V, A Dy
tive
Curvature s 5 4 s 5
tensor Ropy Ropy Rape Rype
Projector - - P ﬁab
Bases — — {e*,} {w,*} {EaA} {WGA}

Table 1.1: General notation. The first two columns corresponds to the physical and
conformal space-time M and M, the third one to any 3-dimensional hypersurface (in
particular this notation is used for #) and the last one to any 2-dimensional surface S
(like codimension-1 manifolds on _#).




2 | Superenergy

_®_

The impossibility of defining a local energy-momentum tensor for the gravitational field
does not rule out the possibility of describing the field’s strength. Apart from the asymp-
totic definitions of energy mentioned in chapter 1, a local notion of energy density divided
by area exists. This particular weighting of the energy is naturally associated to tidal
forces and is described by a rank-four tensor, quadratic in the Weyl curvature, called
the Bel-Robinson tensor [32]. Importantly, this object is defined locally and shows lots
of analogies with the energy-momentum tensor of the electromagnetic field [78]. As a
matter of fact, it can not have physical units of energy density and this led to assign the
name supernerqy quantities to objects defined with this tensor. Since its formulation, the
superenergy turned out to be a useful tool in a variety of studies of gravity, such as the
causal propagation of gravity [79], the algebraic characterisation of the Weyl tensor [80],
the formation of black holes [81] or the global non-linear stability of Minkowski space-
time [82]. In addition, it emerges in the quasilocal formulations of energy [83] and can
be formulated for fields other than gravity [84] exhibiting interchanges of superenergy
quantities and conserved mixed currents of different fields [85-87].

Superenergy is an indispensable tool in this thesis. Particularly inspiring for us is
Bel’s definition of ‘intrinsic radiative states’[33] —in agreement with Pirani’s ideas [30];
also there is a more recent definition of intrinsic radiative states and an analogue to the
Poynting theorem in electromagnetism [88]. The tidal nature of actual gravitational-wave
detections makes the Bel-Robinson an appealing candidate for grounding the study of
gravitational radiation —for other recent studies in which the tidal nature of gravitational
waves plays an important role see e.g. [89, 90]. As it becomes manifest in chapters 4, 5
and 8, one advantage of our superenergy-based methods is their easy and straightforward
application.

There exists a general definition of superenergy tensor [85] and, within that broader
class, the Bel-Robinson tensor is the basic superenergy tensor constructed with the Weyl
tensor. Next subsections apply to any basic superenergy tensor built with a Weyl-tensor

7
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candidate, i. e., a traceless tensor Wam‘s sharing all the algebraic symmetries of the Weyl
tensor.

2.1 Basic superenergy tensors

The basic superenergy tensor 7,45 {W } constructed with a Weyl-tensor candidate W4
is defined in 4 dimensions as
1
WB ny - gga[zg»ya W,uupo' WHPS,
(2.1)
Observe that, being quadratic in the Weyl-tensor candidate, its geometrised dimensions

N v " vy wo_ uw v

auyv audv

are L~*. However, the physical dimensions are energy-density per area, ML 3T2 [83~
85, 91, 92], and yet another simple proof was presented in [76] —see section 7.5. The
properties of this tensor include:

i) it is completely symmetric 7,55 = Togys -

ii) it is traceless 7%, =0,

iii) obeys a dominant superenergy property, 7,,,,

are causal and future oriented. In particular,

vFwYuPq” > 0, where the four vectors

iv) T o k"0°27 is future pointing and lightlike, if k", €7, 27 are lightlike and future
oriented. [93, 94].

In addition to these algebraic properties, let us include a differential one,

VM'T&B,Y i == QWN Y,B vH _'_ QWN'YVB YO{ Vi + gaﬁW'qu Y (22)

yra v pvp

where

[0}

and point out the following case:

Yopy =0 = Vzﬂ;ﬁv

F=. (2.4)

At this point, it is worth mentioning that for the particular case with 74,5 constructed
with the Weyl tensor, Y, 4, is the Cotton tensor and, if Einstein’s field equations hold,
the absence of matter fields implies Y, 5, =0 and 7,45 is divergence-free.

Later, we will be interested in relating the algebraic classification of W5 5 with T 5 s
in a precise way. A characterisation of the Petrov type of Waﬁvé and its repeated (or
degenerated) principal null directions (PND) is [80, 95]
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o Topyu K =0and T,5,; # 0 <= Petrov type N and £k is a quadruple PND.

o Topuu kK" =0and 7,5, k" # 0 <= Petrov type III and £ is a triple PND.

. Epw kPkVEH* = 0 and 7;Bvu kEVk* #£ 0 <= Petrov type II or D and k“ is a double
PND.

o Topu KKPEVEY = 0 and T, 770" # 0V lightlike /% <= Petrov type I and k®

is a non-degenerate PND.

. 7,

apyiL

are double PND.

KPRk = 0, T,

apop P00 =0 and T, 5., # 0 <= Petrov type D and k*, (°

For a detailed description of these and more general properties, see [80, 85] and references
therein.

2.1.1 Orthogonal decomposition

Choose a unit timelike future-pointing vector field u®. At each point, introduce a basis
{e*,} spanning the vector space whose elements are all the vectors orthogonal to u® at
that point. Also, define a basis {w,*} for the dual space of one-forms such that they are
orthogonal to u®. We call these objects orthogonal to u® ‘spatial with respect to u®’ or,
for simplicity, spatial —Latin indices denote spatial components and run from 1 to 3. Let
q® = e*,q" be any spatial vector, ¢®u, = 0. A projector' can be defined,

P = eo‘iw,@i = 0% +uug, P°ut=0, P ¢ =q". (2.5)

In this way, any space-time vector w® can be decomposed as a spatial part with respect
to u® together with another one tangent to u®,

w* = —uu,w" + W, with " = w'e”, (2.6)
such that
P wt =w" . (2.7)

This is generalised to higher-rank tensors in an obvious way. Latin indices are raised and
lowered with
. B b . b
hab = eaae bgaﬂv h'a = waawﬁ gaﬁ . (28)

With these tools, it is possible to decompose the Weyl-tensor candidate and 7%, into
tangent and spatial parts with respect to u®. The former is fully determined by its electric

!Throughout the text, projectors are denoted by a (decorated or not) P and defined according to
the context.
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and magnetic parts with respect to u®

D,g = u"u"W .5 , (2.9)
Cop =u' " W5 (2.10)
which are symmetric, traceless, spatial fields,
DO‘B — Dabwaawﬁb y <21]_)
Cop = Cppw,“wg” . (2.12)
The full splitting of 7,55 is
7;,375 = WuaUﬁU/,yU(; + 4f(aur3u7u5) + 4u(aQﬁ’y§) + 6t(aﬁu7u5) + taﬁ’yé . (2].3)

We are interested in the first three terms on the right-hand side. They have obvious

definitions in terms of the projector and u®. In particular, P* and Q, ,. are spatial, i. e.,

(67

f = eaafa, roﬁ'y
super-Poynting vector field, and have the following expressions in terms of the electric

apy
= wa“wﬂbwf@abc. The first two are called the superenergy density and

and magnetic parts of the Weyl-tensor candidate ([33, 78]):

W=D,D*+C,C", (2.14)
P =[C, D] e =2C"D, ™, (2.15)

where we have defined an alternating 3-dimensional tensor.
— Ugabe = naﬁvéeaaeabeac (2.16)
Also, the third one can be expressed as [88]
Qugy = Pag Py = 2(Da,Cpy + Dy, Co ) ufn,, . Q" =P, . (2.17)

The superenergy density and the super-Poynting vector field inherit their name from the
analogy with the electromagnetism when Waﬁ,y‘s is the Weyl tensor: the former represents
energy density per unit area and the latter, the spatial direction of propagation of supern-
ergy with respect to u®. Following this analogy, one can also define a supermomentum

Qo Vo P
P = —uMu"ufTS,,

= Wu* + P, (2.18)
which is non-spacelike and future pointing. One important feature is that

w,

[

5, =0= Ty, =0=W=0. (2.19)
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Particularly inspiring for us is the following definition by Bel [33]:

Definition 2.1.1. There is a state of intrinsic gravitational radiation at a point p when
P, # 0 for all unit timelike u®.

This classical definition agrees with the discussion by Pirani [30] and is based on the
analogy with null electromagnetic fields which are precisely the fields with a non-zero
Poynting vector for all possible observers. More recently, another similar characterization
was put forward in [88] in the following terms

Definition 2.1.2. There is a superenergy state of intrinsic gravitational radiation at a
point p when @4, [, 7 0 for all unit timelike u®.

Using (2.17) it is easy to check that every state of intrinsic gravitational radiation is
also a superenergy such state, but there are more cases of the latter in general.

2.2 Lightlike projections

Let u® be the unit timelike vector field, as defined in previous subsection, and r* a
unit, vector (field) —non necessarily defined everywhere— spatial with respect to u®, i. e.,
rou® = 0, r* = r%“,. There are two (up to a boost) independent lightlike directions
coplanar with u® and r*:

k® = — (u™ +r%) | 2.20
75 () (220
- 1
kY = — (u® —r® 2.21
75 (w7 =) (221)
such that & 'k, = —1. At each point, introduce a basis for the vector space constituted

by all vectors orthogonal to 'k, {'e®,} = {k®, E*,}, and do the same with respect to
k,,, {e%} = { k* E*,}. Notice that, as these vector fields are lightlike, k* = k! €%
and k® = +ki+e°‘i. One can introduce dual bases { w,*} = {— k,, W,*}, {w,} =
{~"%,, W, 4}, such that k* w,® =0, k* w,®* =0, k*w,®= k% k*w,®= k" Here,
{E*,}, {W_A} are bases spanning the two-dimensional vector space orthogonal to 7* and

@ —equivalently, orthogonal to e Any space-time vector w® decomposes into a part

u
tangent to u® and a spatial part, w®, which splits into a component tangent to r* and

another one that is orthogonal to both vector fields u® and %, @® = WwAE*,,

w® = —w, uu® + 0 = —w, v +w, rr* + o . (2.22)

The object
POy = 6% +ulug — 17y = 6% + k% ks + K kg (2.23)
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is the projector orthogonal to n® and r*

o

Pw’ =", P%r,=P%u,=0. (2.24)
Again, all this is generalised to higher-rank tensors in a natural way.
There are some useful lightlike projections of the Weyl-tensor candidate we are in-

terested in. Some of them are expressed in terms of {‘e®,} and {w,%} only, and are
orthogonal to 'k, in their contravariant indices and to k® in the covariant ones:

D= kW, = D e 2.25
+ +

B

—+Daﬂ — k:” kVW'uaVB — DAb+ +€18 ,

o= kW, = W
@ pav

b )

(
C«aﬁ — ku kl/*vv aﬂ_ Cab*aa . ( ‘

(

(

whereas others are written in terms of { e¢*;} and { w,%}, and are orthogonal to %, in
. . . . + . .
their contravariant indices and to k“ in the convariant ones:

D =} kW, %0 = DN e e (2.29)

O = K RW, 0P = M e e (2.30)
+- v - -

D, =k kW, = "Dl wre (2.31)
o= W, = e W, e (2.32)

Notice that these quantities are not completely independent from each other but all the
information of I/Voém‘s is contained in the first pair of the upper set plus the first pair of
the lower one. In terms of the Weyl scalars, the first set of equations contains ¢, 5 ,; the
second, ¢y, — see appendix D.2.

It will turn out to be very practical to introduce the following notation for any sym-
metric tensor B,

B,s = u'u"B,, u,us + u“ﬁ”(a ug B, + 2B, ufrug +r,r3B + 2é(a7”/3) + éaﬁ , (2.33)
and 1
Bog = Bog = 5P PB,, . B =0, (2.34)
where

f?aﬁ = P ]5”5 B,, B,:=r"B B = P", B, B:=r"""B,,. (2.35)

a poed «
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Obviously, éaﬁ and éa are orthogonal to r* and u®. The same notation will be used with
uppercase indices. Define

9aB = EQAEﬁBﬁ)a,B = EQAE'BB%[; , (2.36)
¢*P = W, AW, PP =W, AW, B pes (2.37)

to lower and raise capital Latin indices. Then,

1

Byp = EQAEBBBaB , Bap = Bap — §qABBCC , By= EAaTMBW . Byt=0
(2.38)
An alternating two-dimensional tensor can be defined by
TmEQAB - EmabEaAEbB . (239)
A list of properties of these quantities has been placed in appendix D.
The electric and magnetic parts of the Weyl-tensor candidate read:
1 il o N
D,, =D (Tarb - 2Pa,,> 2 Wy Dy + WAW, P D,y (2.40)
1 O o N
C,, =C (Tarb — 2Pab> +2r W, PCp + W, AW, °C s (2.41)

and equivalently, in terms of the lightlike components that we have just presented,

D, :;k“xk”tirarb + 21, Wy B (+ZO)B + T?B> +

1 o o 1 o
SWa W, (Das+ Dag) - ;kﬁk”*DWPab : (2.42)
C :ij;ﬁk”iCW rary + 21 Wy © (+C’B + _C’B) +
1 ° s 1 o
SWAWE (Cup ot Cup) = 5 W RO, By, (2.43)
2 2 i
Another quantity that will appear later on is:
+, +,
tapc = EaAEﬂBEWC *kuwaﬁw = lL2\/iqc[A DB] ) (2-44)
where
daB "= EaAEBBgaﬁ . (2.45)

2.3 Radiant superenergy

Now, we introduce a new kind of superenergy quantities associated to lightlike directions.
The use of these objects helps in identifying the radiative sectors of the superenergy
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tensor. For such reason, we refer to them as radiant superenergy quantities. Given a
future-oriented lightlike vector field ¢“ we define its associated radiant supermomentum,

¢

Q% == 0"’ TS, - (2.46)
Given any lightlike vector field k¢ such that k _{* = —1, Q% decomposes as”
Q% = Wk 4+ Q% = Wk* + 2o+ (05 + (°k, + k() Q" , (2.47)

where ZQO‘ is the radiant super-Poynting vector and W and Z the corresponding trans-
verse and longitudinal® radiant superenergy densities. Note that Z and (5;“ + 7k,
—l—kafu)lgu depend on the choice of k% In particular, for the previously defined ika,
the supermomenta read

Q= R KT, = WES Q% = Wk 4 Qe (2.48)
QY= — R RRTS,, = W QY= W+ Qe (2.49)
where
0t ="Zk+ 9 E", | (2.50)
oF ="z + Q'E", | (2.51)

Also, the following formulae hold*

+

W=-"k ‘o =2C, " =2"D, D" =2C,, CA =2"D,, DE >0,
W=-k, Q"=2C,, C"=2D, D"=2C,; C** =2D,,; D** >0,
Z=-%,Q"=2"C,C"=2"D,D"=4C,C">0,
Z=-%,Q"'=2"C, C"=2"D, D"=4C, C*>0,
‘4 = 4/2'C, CA,

O = —4V/2°Cp CAT .

The expressions on the right-hand side can be derived by direct computation, using
properties i), viii), ix), xv), xxxi) and xxxii) on page 211 . In addition, we define the

2The underlining used here should not be confused with the short bar placed under quantities associ-
ated to a congruence (compare to the notation of appendix A.3).

3For the Bel-Robinson tensor, the ‘transverse’ and ‘longitudinal’ modes of the gravitational radiation
determine completely W and [Z, respectively. This can be easily inferred from the expressions of these
quantities in terms of the Weyl-tensor candidate scalars in appendix D.2.

4This can be done for any lightlike vector fields /¢ and & as defined above. Just for convenience, we
present them for T
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Coulomb superenergy density as®:

V=K kKD, = C¥ Cp+ D¥PD,,=C*+D>>0. (2.58)
AB AB

pvpo

Obser fove the non-negativity of egs. (2.52) to (2.55) and (2.58). Contracting eq. (2.13)
four times with «® in the form

(" + k), (2.59)

Sl

one gets the relation
1+ + - =
WZZ[W+4Z+6V+4Z+ wl . (2.60)

Indeed, it is easy to generalise this formula for any kind of coplanarity and to obtain the
following lemma

Lemma 2.3.1. Let VW be the superenergy density associated to a unit timelike vector
field u®, and W, Z , V), the superenergy densities associated to a couple of lightlike
vector fields "k such that

“ = (qk* . ith ab = — . 2.61
u (ak —|—bk), with ab 5 (2.61)

Then,
W= [b"W + 4b%a'Z + 6a°b*V + 4ba” Z + ' W) | (2.62)
W=0«={v=0, W=0, Z=0}. (2.63)

Any radiant supermomentum ‘0” constructed with a future-pointing lightlike vector
field as in eq. (2.46) has some basic properties,

i) 0~ is lightlike, ZQ“[QM = 0, and future pointing. This follows by the dominant
superenergy condition in the version of property iv) on page 8.

ii) (5; + 0k, + k”ﬁu) [Q"ZQU = 2ZW, which can be shown applying property i) to

‘0~ and using eq. (2.47). From these same equations, it follows that
iii) IQO‘:O<:>£Z:0. And, also, 0 =0e= W=0=2.

If we contract the radiant supermomenta with P%;, we obtain their parts orthogonal to

SFor the Bel-Robinson tensor, this is completely determined by the Coulomb part of the gravitational
field —see the expressions in terms of the Weyl scalars in appendix D.2.
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/U/,
a o 1 + 1 o tNA e tHha
P, “_E(Z—W)r+gE = "o~ (2.64)
_ 1 . _ _
Pt =—— (Z2- W)r 4+ Q'E, = Q. (2.65)

V2

Using properties xv), xvii), xxi) and xxii) on page 212, we can write the radiant decom-
position in terms of the electric and magnetic parts of the Weyl-tensor candidate

+

2 =(Dy+e,5Cp) (DM +E20C,) (2.66)
2= (D, -¢&,"Cp) (D= e*PC ) : (2.67)
W =2(Cup = DT géay) (C4F = D, e (2.68)
W=2(Chp+ D" BeA ) (G2 4 D, TeM) (2.69)
=22 (C* = D, FeM) (C - eBEf)E) : (2.70)
ot =—2v2 (0P DM(BéAW) (Cp +¢5"Dy) (2.71)

And with these relations it is straightforward to compute

Z - Z =4D%,,C" (2.72)

24+ 2=2(C,C"+D,DY) (2.73)

W — W =8D"Pe,,C4, (2.74)

W+ W =4(DyD +C,yC*P) (2.75)

V2('Qt - Q") =8(CpCM + DyDPY) | (2.76)

V2 <+QA + *QA) _ _8éTA (l")PCwPT _ CEDET) ' ( )

We would like to have a complete relation between the radiant and the standard super-
momentum, and we already have the relation between superenergy densitites eq. (2.60).
Thus, it only remains to find an expression for the super-Poynting vector in terms of the

new quantities. For that purpose, substitute k¢ in terms of u® and 7 in egs. (2.48)
and (2.49),

1
+Qa N ﬁ (Qa o 3Dalﬂ’ﬂuurljrp - 3Daw/pr“uyup o ,Da/u/pruryrp) ) (2.78)
- 1
0% = —— (Qa — BDQMVpUMTVTp + 31Docluupruuuup + Do‘uypr“r”rp) . (279)

Thus,

0%+ 0 = (Qa — 3Dawpu“r”r”) ) (2.80)

Sl
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If we contract this equation with P, the right-hand side is determined by eq. (2.17),

P Dy i1 = =Qu, 71" = =Py 4 Arge s CADP + AW, Py (CAD — DAC)

(2.81)
which, after inserting eq. (2.72), becomes
a v 5 + - ° 2 8

P D, " = =Py — (2 = Z)ry +4W, ey, (CAD - DAC) (2.82)

The left-hand side is known by eqgs. (2.64) and (2.65), therefore

Loe - H = a ThA | A a
ﬁ<2— Z-W+ W)+ (et + Q) B2y
]- et - ° ° 2

= —= [4P"+3 ("2 - 2)r* - 12E°,¢", (C*D - D*C)] . (2.83)

V2

After recombining the terms, one finds the following relation:

4P'=(2Z2-2Z2- W+ W)r+ [V2(Q"+ Q") + 128", (CPD - DPC)| B,
(2.84)
The whole supermomentum is determined by egs. (2.60) and (2.84),

10° =[WH+AZ+6V+4 2+ W|u + (2Z-2Z - W+ W)r*+  (285)
+[V2 ('t + @) + 1264, (CFD - DPC)| B, . (2.86)

The radiant components contain no information about the traces D4, and C4,, whose
squares determine the Coulomb superenergy density V. Besides, the longitudinal radiant
superenergy densities “Z are controlled by €', D ,. Note that Equations (2.84) and (2.85)

contain a ‘mixed’ term

d* =&y (CPD - DPC) . (2.87)

Let us finish this section with some results. The first one follows from the Petrov
classification on page 8

Lemma 2.3.2. A radiant supermomentum, Q, constructed with a lightlike vector ¢¢
vanishes if and only if /% is a repeated PND of the corresponding Weyl-tensor candidate.

Lemma 2.3.3. Consider the lightlike projections of the Weyl-tensor candidate tensor
for a couple of lighlike vectors &> as in eq. (2.59). Let one of the associated radiant
supermomenta vanish, iQC“ = 0. Then,

e o o o . ¥, . Fo
i) Dy,=0= C, (<= D" =5CB) andthen C, = C4, Dy = D,

ii) Dypésy’ =+Cup,
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iii)

2 =4C,C* =4D,D* (2.88)
W = F16D7P¢, ,CA, = 16C ,,CAP = 16D ., DAP (2.89)
04 = 8v2C4PC, = +8v2D, PNy, | (2.90)

dy=e," (0,°D+Ce,") Cy . (2.91)

Proof. All the points above follow directly from egs. (2.66) to (2.77), using property iii)
on page 15. O

The next result follows by inspection of eq. (2.84),

Lemma 2.3.4. Consider the super-Poynting P” associated to a timelike, unit vector u®
and a couple of independent lightlike vectors as in eq. (2.59). Let "0 be their associated
radiant supermomenta. Then, the necessary and sufficient conditions on the radiant
quantities that make the super-Poynting vanish are

2(*2—*2)—*W+*W = 0

—P"'=0. 2.92
V2('Qt+ Q") +12d40 = 0 (292

Corollary 2.3.1. If one of the radiant supermomenta considered in lemma 2.3.4 vanishes,
say Q% =0, then

+

Q"=0<=7P"=0. (2.93)

The same holds true by interchanging the + with the — sign.

Proof. By property iii) on page 15, Q% = 0 <= Z = W = 0. Now, by that same
property and lemma 2.3.3, 'Q* =0 <= Z =W =0 = d, = 0. Then, eq. (2.92)
is trivially satisfied and P* = 0. For the converse, if P* = 0, by eq. (2.92) we get
"Z = =W, but the only possibility is "Z = W = 0 because both quantities are non
negative (egs. (2.52) and (2.54)). By property iii) on page 15, 'Q* = 0. O

Proposition 2.3.1. Consider the super-Poynting P" associated to a timelike, unit vector
u® and a couple of independent lightlike vectors as in eqs. (2.20) and (2.21). Let “Q® be
the two associated radiant supermomenta. The following conditions are all equivalent:

1. Q*="90=0.
2. Q*=0and P" = 0.
3. Q*=0and Pr, =0.

4. Dyg=Cup=0and D, =C, =0.
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5. In the basis {r*, £},

1 0 0 1 0 0
(D,)=Dlo -1/2 o |, @©,)=Cclo -1/2 o0 |. (2.94)
0 0 —1/2 0 0 —1/2

Remark 2.3.1. This case corresponds to the situation where the Weyl-tensor candidate
tensor has Petrov type D at those points where the above conditions hold and % are the
two double principal null directions.

Proof.
e 1 < 2: it follows from corollary 2.3.1.

e 2 <= 3: point 2 implies 3 trivially; by eq. (2.84), point 3 implies that the first line of
eq. (2.92) in lemma 2.3.4 holds and, noting property iii) on page 15, W=0=Z.
But, then, lemma 2.3.3 tells us that d, =0 = +QA. Altogether, by lemma 2.3.4, we

have P = 0.

o 1 <= 4: point 1 implies 4 by property iii) on page 15 and lemma 2.3.3. The converse
is shown noting that 4 implies W = 0 = “Z by eqs. (2.72), (2.73) and (2.75) which,
by property iii) on page 15, implies 1.

o 4 <= 5: point 4 is saying explicitly that in the basis of point 5, the tensors C,,,
D, have precisely the form displayed in eq. (2.94).

O
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Desde el final.

Al borde

de mi mismo.

Tan lejos.

En donde las ventanas

encendidas, son sélo otra pieza de la noche.

Benjamin Prado, Limite. Todos nosotros, 1998.

3 | Conformal geometry and infinity

_®_

Studying isolated systems, among other aspects of gravity, requires investigating the
asymptotic properties of the space-time. The first strong theoretical evidences for the
existence of gravitational waves in full General Relativity with vanishing cosmological
constant were grounded on metric-based methods [21, 34, 40] or on the —now usually
referred to as— Newman-Penrose (NP) formalism [96] —for reviews see [97-99]. Typically,
one defines a suitable radial coordinate —either an ‘areal coordinate’ or an affine param-
eter along outgoing null geodesics— and then make expansions of the metric or curvature
coefficients towards infinity (as described by asymptotic values of such radial coordinate).
Some of the results achieved on those works include: formulations of energy-momentum
of the gravitational field at null infinity in full General Relativity, an energy-loss formula
of a system emitting gravitational radiation or the discovery of an asymptotic group of
symmetries and the peeling behaviour of the Weyl tensor. Little time after, Penrose had
the innovative idea of describing infinity as a hypersurface avoiding the use of limits and
facilitating the employment of covariant methods [15, 22]. Schematically, one associates
to a given space-time an unphysical —or conformal- space-time with a boundary _# —the
precise idea is presented in the upcoming section. Indeed, this boundary ‘attached’ to
the space-time is the suitable arena for describing the gravitational radiation escaping
from —or entering into— the space-time. For a vanishing cosmological constant, Geroch
[17] studied the geometry of the conformal boundary setting the bases for the covariant
asymptotic characterisation of gravitational radiation and Ashtekar used it as the ‘kine-
matical arena’ of the radiative degrees of freedom of the gravitational field [48]. In view
of the mathematical elegance and rich physics that arise at the conformal boundary, our
approach to the problem of the characterisation of gravitational radiation in chapters 4
to 7 is based on fields on ¢

Most of the ideas introduced in this chapter are well known and can be found in
the literature —see e.g. [100, 101]. Nevertheless, we derive them from scratch with two
purposes:

1. Set the basic material of conformal structure in our conventions and present all the

21
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needed formulae in one place,

2. Derive the relations between physical geometric quantities and matter fields at in-
finity with our assumptions on the energy-momentum tensor.

3.1 Conformal completion

The physical space-times (M , gaﬁ) that we consider admit a conformal completion (un-
physical space-time) (M , ga5> d la Penrose with boundary _# [100, 101]:

i) There exists an embedding ¢ : M — M such that qb(M) = M\ _#, and the physical
metric is related to the conformal one as

where, abusing notation, we refer to the pullback of the conformal metric to the
physical space-time, (¢*9),5, bY gogs-

i) 2>0in M\ Z,Q=00on ¢ and N, :=V_Q (the normal to _¢) is non-vanishing
there.

iii) §,4 is a solution to EFE (3.12) with A > 0.

iv) The energy-momentum tensor, Taﬁ, vanishes at # and T,5 = Qflfaﬂ is smooth
there.

Depending on the specific matter content, property iv) can be strengthen. Indeed for many
relevant matter fields, Q27 , is smooth at _#. Notice that T := T#, = Q73T% := Q~°T.
Also, # is not connected, in general; it is divided into ‘future’ and ‘past’ components,
denoted by _#* respectively. In this section, we use _# generically to refer to any of them.
In some of the subsequent sections we will work with _#*, though. The connection of
the unphysical space-time can be written as

Faﬁv = Faﬁv + 7%7 ) (3.2)
where faﬁ,y is the connection of the physical space-time and
fo _ —1 « «
Yy = Q71 (20°: V)2 — g,,V°0) (3.3)
Accordingly, the Ricci tensor and the scalar curvature are given by

7 -1 -2 -1
RQ,B — RQB - QQ VQNB + 3Q gaﬂN,u N” - Q gaﬁv“Nu , (34)
R=Q7R—-6Q7'V N"+1207°N, N" . (3.5)
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The conformal completion is not unique: given (M , Qaﬂ> there is a conformal class of
completions related by

Q- Q=wQ withw>0on M. (3.6)

This rescaling of the conformal factor is a gauge freedom and, as such, can be used to sim-
plify matters. In the upcoming subsection we will fix it partially. A gauge transformation
changes the unphysical space-time geometry as

Jop = W' Gas - (3.7)
By =%, + C%, o C%, =0l (2rpy) — 57 (3.8)
Ros =R, — 2w 'V, w5 — w g sw,wh —w 9,5V W + dw 2w, wy (3.9)

R=w?R- 6w_3VMw“ , (3.10)

N, =wN, + Qu, (3.11)

where w,, := V_w. Here we have written the equations in terms of the original connection
and metric. Further gauge changes can be found in appendix C.

3.2 Fields at infinity

Einstein field equations in the presence of a cosmological constant (here assumed to be
non-negative) read

A

1A, X A

with 2z := 87Gc™*, where G is the gravitational constant and ¢ the speed of light. Thus,
the left-hand side extends smoothly to infinity. Using eqs. (3.4) and (3.5) we get

1 -2 -1 -2 2
Ry =5 R +39 2005 N, N" +20 (VaNy = gugVuN") +Q72Ng, 5 = 5T, . (3.13)
If we multiply by Q2 and evaluate at _# —i.e. set Q = 0, we obtain
3 1 /z

from where

7 A
N,NHE =T (3.15)
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This formula indicates the causal character of the conformal boundary; in this thesis,
either spacelike (A > 0) or lightlike (A = 0). Now, multiply eq. (3.13) by 2 to get

1 - -1
Qa5 = 50s +2 (vaNB - gaﬁVuN“) = {elp — (3Nu NE+ A) Jop  (3.16)

and observe that this equation is regular at _#, see eq. (3.14). Take its trace and evaluate
at Q=0: P
6V, N* = Q714 (3N, N* + A) . (3.17)

Then, insert this back into the previous equation. After evaluation at ¢, we derive

1
VN, £ 905V N (3.18)

«

Sometimes eq. (3.18) is referred to as ‘asymptotic Einstein condition’ [102]. It is well
known [17, 102-104] that the gauge can be chosen such that

S
Vv, NF=0. (3.19)
To show this, compute the gauge change using egs. (3.8) and (3.11)
VN = 20 N'Y w4+ w ™'V, N —w g C", o (N, + w0V ) + Q0w , (3.20)
evaluate at _# and multiply by w?
27 N Z af
W'V, N = 2NV w+wV N* — wg NMC"QB
A
= wV, Nt ANV w . (3.21)
Equating V uN * to zero gives a differential equation for the possible gauge factors

AN"Ow + w0 Z 0 (3.22)

which always has non-trivial solutions. From now on, we adopt this gauge fizing that we
call divergence-free gauge. Nevertheless, note that the freedom is still large and one can
change from one conformal gauge to another by keeping eq. (3.19) with the additional
restriction (given a solution w of eq. (3.22), @ := ww is a new solution)

s

£ewZ0. (3.23)

From eq. (3.18), this gauge implies

VN, 0. (3.24)
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Consider the combination! |

and eq. (3.13) as an equation for V,N;. Substitute kT = —R + 4A together with
T = Q3T and eq. (3.5),
1 1 1 Lol 1
Vo Ny = _igRaﬁ + éQRgaﬁ + Zgaﬁqu + 5%9 <Ta5 - 4Tga5> : (3.26)
and replace R,z with S,
1 1 1 Lol 1
It is convenient to define ]
Ti=T, — zTgaﬁ (3.28)
and introduce the scalar [105]
1 Q
=-V N+ — 2
fo= TVNF AR, (3:29)
which in our gauge vanishes at _#
fZo (3.30)
In terms of f, eq. (3.27) becomes
1 1,
VQNE = —iﬁsa,g + fgaﬁ + EQ %Ia,é’ . (331)

Or course, from this equation one deduces directly eq. (3.18). Once again, consider
eq. (3.13), this time as an equation for V,N#. Take its trace and multiply by €2:

03 A Q2 Q
N NH=—3T— —+ — —V N . .32
p 5% 3+12R+2VH (3.32)
As a check, one recovers eq. (3.15) after evaluating at _#. Introducing f in eq. (3.32), we
get
03 A
N, Nt = —»T — — +2Qf . .

B 5% 3 + 20 f (3.33)

If we contract eq. (3.31) with N#,
NtV N, —1V N, N") = 1QS N* N, 1 Q*NHT 3.34
au_§ a(u )__5 ap +f a+§% Lap ( )

INote that this is twice the Schouten tensor, whose standard definition in 4 dimensions is
1 1
3 (Ra/a - ERgaB)'
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and take the covariant derivative of eq. (3.33),

1 1, 1,
5 Ve (N, N#) = S VT + PN, T+ OV, f + [N, (3.35)

we arrive, equating both expressions, at

1 1
= ——S  N'+ —QuNT, ——92 v, T—fQ N, T . 3.36
Val = =55, N 4 50N T, — 57 8 (3.36)

If we want to extract information about the complete orthogonal component of S5 at
Z, we have to contract eq. (3.31) with N® and substitute S, N* in terms of eq. (3.36)

1 1
N#V, Ny = =S QN"S,, + [N, + P#N'T,,

L L s L
= Qvaf — 59 %NMIO(;L —+ ﬂQ %VaT + gQ %TNoz
1
+ fN, + fQQ%N“T

=QV . f+ fN, + 892%TN + 2493%v T. (3.37)

After this, contract eq. (3.36) with N* to find

1, 1
NHV, f = NtN? (—S + Q%T > — NH <24%Q v,.T + 8Q%TNu> (3.38)

9" mup

then take the covariant derivative of eq. (3.31) along N” taking into account the last two
equations

1 1 1, )
N*Y, (ValNs) = =5 ON"V, Sy5 + 5 N*Sy5 + 4o N7V f + SNV Ty + QeN*T
(3.39)

1 1., y 1 y
= —*QNPV Sozﬁ —+ §N S af T §S/WNHN gaﬁ + *Q%N“N Ip,l/gaﬁ

1
— ﬁszN“V Tgop + SQ%N #TGap + 503NV Lo+ QeNT o
(3.40)

Therefore, at _#
Nov (VoN,) 2 2s, — Lyenes 3.41
( ﬁ) 6 aB 5 ;u/goz,B : ( : )

According to eqs. (3.4), (3.5) and (3.25),
S

(e}

5 =545 +207'V Ny —Q %g,sN, N . (3.42)
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Take the covariant derivative and antisymmetrise the first pair of indices,

& _ -2 -1 -3
ViaSsy = ViaSgy — 202N, VN, + 207V, V4N, +207*N|, g5, N*N,
-2
—2072N*g. VN, | (3.43)

multiply by €2,

N N 1 -2
Via (2851,) = Nia Sy = VS, = 207 N VN, + 2V VN, + 2072 N g5, NN,
-1
— 207 'N*g, VN, | (3.44)

and replace the third term on the right-hand side using the Ricci identity and the Riemann
tensor decomposition,

Ropyu = Coapyp T GalySus = 98 Sua » (3.45)

to obtain

& & -1
Via (2853,) = Nia Sy = VS, = 207 Nio Vg, + Co "Ny + Gy Sy N
= 930S N + 207 Ng 951, NN, — 207 NF g5V N,
(3.46)

Notice that

alrSusN" = 951 5ua N = 951095, N — Nia Sy,
= 9yaauN" — QQ_IN“gV[anNu - Q_zgw[aNﬁ] N, N*
-1 —2
+ 207N, VN, — Q2N g4, N, N* | (3.47)

which substituted in eq. (3.46) produces
Via (285,) = WV1aSgp, + Capy" Ny + 0,105, N (3.48)

To see how the energy-momentum tensor enters into this equation, plug

A A 1 A A 1 ~ N 1 -2 2
Sup = Rag = G Rilas = 55 + 5 (A= 5D) oy = 50T 5 + 5 (Q72A = Qo) g,y (3.49)
into eq. (3.48),
Loy, Via (7T, Lov, (00T = OV, S, +C.3,'N
3 8 9ay + 7V o (LT, ) = 3% @ (2°T) g9, = QYo Sy, + Copy" N,

1 1,
+Q%g,y[aT6]# N'u — g%N'ug,‘Y[agm#QT + gAQ gw[aNB] s (350)
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and rearrange the terms to get

1
2 2
22Ny, (T ) + L 3eVio Ty = eNig g, T = 525V (1) g,
= OV, Sy, + Cap,' N, + Qaeg, . Ty, N* | (3.51)

where we have taken into account property iv) on page 222

The Cotton tensor, both of the physical and conformal space-time, is defined?® as

Yaﬁ'y = V[a By (352)
V1S, - (3.53)

At the end of this chapter, we are going to show that both the physical Cotton tensor
Y,s, and the Weyl tensor C’aﬁv‘; vanish at _#. Thus, it is natural to introduce a couple

of tensor fields regular at _#; the rescaled Cotton tensor

A

. 0-1
Yosy =0"Y

afy

(3.54)

—notice that it is defined in terms of the physical Cotton tensor, which is not a conformal-
invariant object— and the rescaled Weyl tensor
§._ -1 5

dop,” = Chp.’ . (3.55)
This last tensor field features the algebraic symmetries of the Weyl tensor and plays a
major role in the asymptotic study of the gravitational field and the properties of space-
times from the point of view of their conformal extensions — [17, 48, 106—109] are just
a few examples. The rescaled Weyl tensor (3.55) at ¢ is completely determined by its
electric and magnetic parts —see section 2.1.1 and note that the notation used there for a
Weyl-tensor candidate is used now for the rescaled Weyl tensor—,

Dy L ninvd (3.56)

pavp o

Cop £ ntn”d

(3.57)

pavp

2The vanishing of C’am‘; at _Z can be derived from this equation, depending on the matter content.
At the end of the chapter, we will give the proof under certain assumptions on the physical Cotton-York
tensor at _¢#, instead.

3Keep in mind the extra factor 2 with respect to the standard definition due to our definition of S, 5-
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From the contracted Bianchi identity one can show that

VY, (Cags) + Yoy =0, (3.58)
Vo (Copy) + Yag, =0. (3.59)

The first of these two equations can be rewritten in terms of the rescaled Weyl tensor,

OV, dos ! + oy "N, + Y5 =0, (3.60)

and evaluated at _#,

NN

dog'N, + Y5, Z0. (3.61)

We can multiply now eq. (3.51) by 271,

1
25Nio Tgpy = Nja gy T + Q3eV [ Ty, — 380520,15 Vo T

= v[aSﬁ]"/ ‘|‘ dOﬂB'YMNM + %g'Y[OCTB]M NM (362)
and evaluate it at ¢ using eq. (3.61),
7
Q%N[a TB]'V — %N[a ‘gﬁ]'YT - %g’Y[CYTB]/J Nt=0. (363)

The energy-momentum tensor determines, through the field equations, the Cotton tensor.
This appears explicitly from definition eq. (3.52) and eq. (3.49),

>

. . 1 R
Yagy = V1T = 520,5VaT - (3.64)

In order to write this formula in terms of quantities in M, note that
& 7 A
ViaTgyy = QViaTgy = N 9apy + 2N Ty (3.65)

g’Y[BVOC]T = 3N[a gﬁ]’yT + ng[ﬂva]T . (366)
Then,

1o A
Yogy =WV Ty — N0y + 2N Ty = Niaggpy T =

1

The relation between the conformal and physical connections gives

§ __ ¢ ) —1 0 )
ViiCost = ViuCasry” + 27 (0,34 Catp"N? = 60,Cgin

N?) (3.68)

I
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which, after taking the trace, yields the relation

V, (271C0") = Q7V,Clp (3.69)

aBy

which allows us to write equation eq. (3.59) as
Yogy + Vil = 0. (3.70)

To see which conditions on the matter content make the rescaled Weyl tensor divergence-
free at ¢, multiply eq. (3.67) by Q7!

1 —1A7A ~1 -1 1
ey = ViaTgy Q7 N Typ gapy + 207 Nig Ty = Nia gy T = 50,5V T - (3.71)

so that the following implication holds:

. ' s
Tl p~ O(Q) withp >2 = y,5. =05V, d,5)" =0 (3.72)
Substitution of eq. (3.70) into eq. (3.60) produces

To end this section, we summarise the relevant equations which are eqgs. (3.31), (3.33),
(3.36), (3.70) and (3.73),

1 1,

ValNg = =085 + fgap + 55 Lop (3.74)
02 A

Nt =237 — = 420 ,

N, o =5 +20f, (3.75)
1 1 1, 1

Vaf = _isa'u‘NM —|— §Q%NMIO4L — ﬂQ %VQT — gQ%NaT y (376)

dos" Ny, + Vi (Sgy) = Wag, =0, (3.77)

yaﬁ’y + vudaﬁfyu =0 ) (378)

Reogys = Qagys + Gapy 5158 — 9512950 - (3.79)
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whose evaluation at _# is

v.N, 20, (3.80)
N, N#Z —g : (3.81)
v.fZ —;SQ#N“ , (3.82)
dop" N, + Vi (S5,) 20, (3.83)
Yogy + Viudos " 20, (3.84)
Roos Z Gats Sty = 951 Ssia - (3.85)

Equations (3.74) to (3.79) [110-112] in vacuum — 7,5 = 0 = y,5, — constitute the so
called Metric Conformal Field Equations (MCFE) [107] which, when considered as a sys-

tem of differential equations for the variables (Q, d, Bvu o J5 Gaps Saﬂ), are equivalent to the

physical vacuum EFE —the Riemann components R, 4.5 are considered as functions of

afy
the metric components g,;.

Observe that the PND of daﬁv‘s and C’am‘S coincide on a neighbourhood U outside _#
and thus, the number and multiplicity of PND of daﬁf at the boundary of U, given by
#, will be equal or greater than that number for Caﬁf on U. For instance, the Weyl
tensor may be algebraically general in a neighbourhood of # and the rescaled Weyl ten-
sor, algebraically special at #. This follows by a simple argument: in an expansion of
aﬁ'yé at 2 = 0. Since £ is a PND of
Caﬁf around (2 = 0 if and only if it is a PND at every order in the expansion, it has to
be a PND of d,5.° at = 0, and with (at least) the same multiplicity.

Caﬁ'ya around €2 = 0 the first-order term is given by d

Finally, let us introduce the rescaled Bel-Robinson tensor:
Doprs = oy Ay’ + Aoy’ ds g (3.86)

which is the basic superenergy tensor of the rescaled Weyl tensor. It is regular and, in
general, non-vanishing at ¢, and plays a central role in our study of the asymptotic
structure of space-time. Its divergence is easily computed using egs. (2.2) and (3.78) and
reads
wo_ v v v
quaﬂw - Qd,wyyayﬁ a + 2d“7y6ya g + gaﬂd# pﬁ/y,uz/p ’ (387)

3.2.1 Matter content and the vanishing of the Weyl tensor at infinity

The components of the energy-momentum tensor of the matter fields at infinity and the
proof of the vanishing of the Weyl tensor at _# are presented more clearly if the A > 0
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and A = 0 cases are treated separately.

Positive A

Let us introduced the normalised version of N,

L

N .
o= 3N (3.88)

n

with N :=,/—N~N,, . In general, this definition is valid only on a neighbourhood of ¢,
where N, is timelike. In that neighbourhood we can introduce the projector to _# (see
appendix A):

P = 06% —nng . (3.89)

Note that the explicit form of n® reads

N , [3
n, = o Z. 2N, (3.90)
A_2ur_20f VA

3 12

and contracting with N eq. (3.80) one gets

v.NZo, (3.91)

which implies that the normalised 7, is covariantly constant at _# as well

J
Vang = 0. (3.92)

Before showing the vanishing of the Weyl tensor, we give the components of the tensor
S.s at Z. Using eq. (3.30) and comparing with eq. (3.76)

J s 3
Vof=-N,NV [ = ﬂNa NPN*S, (3.93)

from where we also deduce that
o Z
P NES,, =0. (3.94)
The contraction of this equation with N®N? shows that

n'n’S,, £ NENN*Y, (V,N,) . (3.95)
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Observe that contracting eq. (3.63) with N*N7P" gives
S
WP T, 20, (3.96)

Furthermore, if one contracts with N*P7 PP 55

1 1 7
NN, P\ P35 Ty, + 5Py NUNYT,, + NN, Thy; =0, (3.97)
and uses here eq. (3.89),
1 /
&) T S
NN, P\ P’ Ty, + SN'N, Py P, 20 (3.98)
Then, contract one more time with PX? to get
T, 20, (3.99)
Inserting this last line into eq. (3.98) the result is
v 7
P P%T,, =0. (3.100)
Finally, apply N®P? to eq. (3.63) to derive
Snener, L3N NT - N NPPPT 3.101
9 ap 9w Y By (3.101)
or, equivalently,
e
n o', = =T . (3.102)

We have just shown that, at ¢, the tensor T,,; has only one non-vanishing component
in general:

7

T,s £ ~Tnony . (3.103)

[0}

Equation (3.67), evaluated on _# and using eq. (3.103), reduces to

% z
Y5, =0. (3.104)
Recall that ¢ is spacelike, which implies that the Weyl tensor is completely determined

by the electric and magnetic parts in the standard 3+1 decomposition —as generally
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described for a Weyl-tensor candidate tensor in section 2.1.1,

By Zntn’Cos, (3.105)

B,z L n“n”*quﬁ .

(3.106)

Lemma 3.2.1 (Vanishing of the Weyl tensor at _# with a positive cosmological constant).
Assume that

2. C,p," is regular at ¢ and QV ,C,.° Zy.

87

Then,

I

Cos,’ =0 (3.107)

«,

Proof. We will use the lightlike decomposition of a Weyl-tensor candidate presented in
section 2.2. First, from egs. (3.59) and (3.69) one has

Qv ,Cos, = N,Cop./ +QY,5, =0. (3.108)
This equation evaluated at ¢ gives
N,C,z," =0. (3.109)
N S S .
But eq. (3.109) clearly implies £, =0 = B,,, i. e.,
Cs’Z0. (3.110)
0

Remark 3.2.1. Since all the terms in eq. (3.51) are regular at _#, including C, 3. ° which
by construction is regular there,

S
Cogr/'N, 20, (3.111)

from where eq. (3.110) is derived. Equation (3.51) depends on property iv) of page 22,

which by means of EFEs implies the vanishing of the Cotton-York tensor Y

gy » S it has

been shown previously.

Continuing the analysis, take equation eq. (3.62), apply O-1p° s N*N7 and evaluate
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at # using eqs. (3.71) and (3.73):
1
B AT B ara
E%P 5N NFYVBTga,Y “I‘ %P 5 N N’YV[aTﬁ]’Y
s B o NTY 12 1 upB pO—1

(We know, by eq. (3.96), that P’ NPQ~'T, , is regular at ). Dividing by N?,

!
6

« f o
2PV T + 5Pl n 'V, Ty, = —P5nn'V ,d s,

1
H ot 5%13/3’5 NeQ7'T, . (3.113)

Using our choice of gauge, the second term on the left-hand side can be rewritten as

(0% / (0% «
2P55n 'n/'YV[CM,Z—jB],y — PB(;TL nwvaTﬁ,}, - PB(;TL n’vaTa,},
L0V, (P50, ) — n® Y, (Pn?) + PV, T
N————

Zo

Z ey, Qo P, | + P5V,T
—_————
Regular at _¢#

Z Q' PE T, n® N, + P55V 4T

Then, eq. (3.113) reads

1 _ s o
gxpi VT — QP NT, = —Pin"n®V,d,z " .

Now, contract eq. (3.62) with Q~'n*’  N"N? and evaluate at ¢

s NPNTV Ty Z 8 NNV ,dos b

where the rest of the terms vanish because n®? 2o NPN? = 0. Notice, also, that

o Z
n ﬁpUNprv[aTBh

= nu,u,pcr

NPNYPH PN Ty,

s 1 va va /
= Shupo |NPP Y, (NTPHT, ) =T, NPV, (NTP*) (8 ¢+ a) | &
—_———
oV, 50
Then,

namvu’“daﬁf Zy.

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)
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Equations (3.115) and (3.118) give us information about the divergence of D, and C,,
at _#. From the first it is easy to see that*

_ m _ 1
wsV,, D" = QP NT,, — gxpﬁ V,T (3.119)

and from the latter,
v.omZo. (3.120)

In particular, D, is divergence free too in vacuum.

Vanishing A

Similarly to the A > 0 case, from eq. (3.62) one can deduce that at _#
7., ZuN. N (3.121)
af T HAV B :

for some function u. Using eq. (3.121) into eq. (3.67), the physical Cotton tensor vanishes

a j
y BA /; . (3 )

o

In fact, eq. (3.122) is one of the conditions involved in the vanishing of the Weyl tensor

at _Z (see [100])

Lemma 3.2.2 (Vanishing of the Weyl tensor at _# with vanishing cosmological constant).
Assume that _# has R x §? topology and that

s

1. f/aﬂv Z 0 and QVU?QM =0,

2. C’CZBV‘S and V ,C,

a575 are regular at ¢ .
Then,

7
Cos,’ =0 (3.123)

«

Proof. We will use the lightlike decomposition of a Weyl-tensor candidate presented in
section 2.2. First, from egs. (3.59) and (3.69) one has

«

This equation evaluated at ¢ gives

I

N,Cos" =0, (3.125)

4The intrinsic covariant derivative on ¢ is denoted by V,, while (w,®) is a basis of linearly indepen-
dent one-forms on _# orthogonal to n®. For further details, see appendix A.1, where we introduce this
notation for a general 3-dimensional hypersurface.
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immediately implying that Caﬁv“ has Petrov type N at _# with N the repeated principal
null direction. But this condition shows that the only components that survive at ¢ are

those of the symmetric traceless rank-2 tensor field

L

N /4 loa
E.s = "T'P, P°,C,

(3.126)

uov

where ¢ is any lightlike vector field on F, which we choose to be orthogonal to cuts, such
that "N, Z _1and
P% =05+ N+ Ng (3.127)

is the projector to the two dimensional space orthogonal to N and 7. Now, take the
derivative of eq. (3.124) and evaluate it at _#

7
No.vucaﬁ,y“ - Nuvacaﬁ,yu — 0 (3128)
Contract this equation with ¢°¢"¢” to obtain
Py, (TT°C,p,) = Copop P (PN, 4+ PLTV,T) £0, (3.129)

where we have used eqs. (3.125) and (3.127). If we contract now with P% , we find
wo "E Cow b ™~ s
PV, (Eg,) + (5,6 + 8,5) V" =0, (3.130)

where %aﬂy = ("' pr, poypPv. C,,,,. But by the properties in appendix D and eq. (3.125)

this tensor field vanishes at ¢, and therefore
PHPN (ZE ) Z (3.131)
= p\=Bp ‘ :

This equation is equivalently written by means of the intrinsic connection on each cut &
defined by ¢* as

Dy (E,M) 20 (3.132)

By assumption, the topology of the cuts is S?, and then ZEA 5 Is a traceless divergence-free
symmetric tensor on S? and must vanish [113],

E.p20. (3.133)

Since this happens on any § C _¢ for all cuts transversal to N —and _# can be foliated
by these cuts, it holds everywhere on _¢#, implying

7
Cop’ =0 . (3.134)

«
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]

A

Remark 3.2.2. Instead of assuming Y, 5., £ 0 in the proof, we could have started from
eq. (3.51), which makes use of property iv) on page 22. Both paths are equivalent since,
as have been shown above, the assumption iv) on the energy-momentum tensor implies
the vanishing of the physical Cotton-York tensor.



Detras.

Abajo.

Al limite.

En el sitio en que todo se retine en nosotros
igual que dentro

de un solo hombre suena

el bosque entero.

Benjamin Prado, Limite. Todos nosotros, 1998.

4 | Asymptotic structure with vanishing
cosmological constant

_®_

The geometry and physics present at infinity with a vanishing cosmological constant dif-
fer notably from the ones with a positive A. Those differences are discussed thoroughly
in chapters 5 to 7. Let us just mention here that the fundamental distinctions emerge
as a consequence of the change in the causal character of ¢, no matter how tiny the
cosmological constant is [24]. This chapter is devoted to the A = 0 scenario, in which the
unphysical space-time has a lightlike conformal boundary according to eq. (3.75). In this
context, # is endowed with a conformal class of degenerate metrics and null generators
which constitute a wuniversal structure. This structure underlies many of the favourable
features in the asymptotically flat situation.

Asymptotics with A = 0 can be tackled in the old metric-based approach [21, 40, 41]
—see also [114]—-, in the NP formalism [15, 96] or by employing covariant methods and
studying the intrinsic structure of ¢ [17, 48] in a gauge and coordinate-independent way.
For instance, one can derive the asymptotic symmetry group by first writing in coordinate
form the degenerate metric on ¢ and fixing the conformal gauge (3.6) such that the de-
generate metric is that of a round two-sphere —resulting in ‘Bondi gauge or system’[115]'—;
then, restricting the allowed coordinate transformations to those preserving the form of
the round metric. Alternatively, one can define it by determining those transformations
which leave invariant the universal sctructure of #. As another example, the classical
criterion that determines the presence of gravitational radiation arriving at ¢ is based on
the so called news tensor, which is a rank-2 symmetric traceless tensor field on _# orthog-
onal to the generators; this tensor field can be treated as what it is, or instead consider a
complex function —i.e., the news function— which after gauge fixing is determined by the
shear of a conveniently selected lighlike vector field on _#. However that is not the most
general picture. In contrast, the covariant approach does not fix the conformal gauge,
neither it needs of the introduction of coordinates. We incorporate this philosophy to our

For the study of asymptotics in alternative coordinate systems, see [116].

39
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new method for characterising gravitational radiation. They are the kind of techniques
that we find more appropriate; partly because they are geometrically meaningful and also
because they can be compared more easily to the A > 0 scenario to show why one can
not simply adapt the known A = 0 results as shortcuts to the new scenario. All these
ideas are made explicit in the course of the next sections and in chapter 5. For a review
of previously known results see e.g. [117, 118].

Although the main aim in this chapter is the characterisation of gravitational radiation,
there are other results that are worth remarking. After giving the grounds and deriving
the basic intrinsic geometry of _# based on Geroch’s ideas [17], an endomorphism at the
tangent space of any point in _¢ is found which provides the asymptotic behaviour of
physical fields approaching ¢ along null geodesics. Its application to the physical Weyl
tensor provides the so called peeling behaviour [40, 96], which is presented in form of a
theorem —see theorem 1. Not only that but we also use it to obtain the peeling behaviour of
the physical Bel-Robinson tensor —theorem 4— and, as a consequence of this, an alignment
of physical supermomenta towards infinity occurs. The second part of the chapter is
devoted to the characterisation of gravitational radiation at infinity, putting forward the
new —superenergy-based— criterion for determining the presence of gravitational radiation
at infinity and comparing it with the classical condition. Beautifully, the criterion is in
correspondence with the asymptotic alignment of supermomenta and the superenergy at
infinity can be understood as sourcing the so called news tensor field. All these features
provide a test of our approach towards the characterisation of gravitational radiation by
means of the rescaled Bel-Robinson tensor (3.86). The core of these ideas is applied to
the A > 0 scenario in chapters 5 and 6.

4.1 Asymptotic geometry and fields

Let us begin by studying the intrinsic geometry of ¢ and its relation to the physical
fields at infinity.

4.1.1 Some basic geometry of ¢

Let {e%,} be a basis of the set of vector fields tangent to ¢, i.e., orthogonal to N, , with
a=1,2,3, and let {w,*} be a dual basis. In particular, N® = N%®, is collinear with the
generators of # and N is the degeneration vector field of the induced first fundamental
form

Gab = eaaeﬁbgaﬁ , Ny =0. (4.1)

Equation (3.80) implies that the second fundamental form of # vanishes

a

K, =e" e, V,N, =0, (4.2)
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hence the intrinsic Lie derivative on ¢ of g,, along N is zero

£5Gap =0 (4.3)

and the induced connection
VX*=X%,, VY*=Y%",, X°V,)Y"=w/X"V, Y’ (4.4)

is torsion-free and ‘metric’,
V.G = 0. (45)

The induced connection coefficients T, are thus given by
7~C
et Vel =1 e, . (4.6)

One can introduce a volume three-form €,, on _# by means of the space-time volume
four-form 7,45,

- Na €abe é nauuaeﬂaeybeac ) (47)

and a contravariant version determined by ¢%¢c_, = 6. We fix the corresponding orienta-

abc
tions to €53 = 7193 = 1. The choice of gauge also implies that the induced connection is
volume preserving,

vaebcd - 0 . (48)

Although the metric is degenerate, one can define a contravariant object that ‘raises
indices’ by
geagedgdb = gab' (49)

There is a freedom in adding to g% any term of the form N%?’ 4+ N®%. One can make a,
choice, however, by picking out a dual basis {w,?} and instead defining g as

7 = el g g, =2, (410)
from where eq. (4.9) follows. Due to its topology, # admits a natural definition of cuts
S, i. e., any closed spacelike surface transversal to the generators everywhere. Every &
is a topological two-sphere S? with a positive-definite metric inherited from —and which
essentially is— G,

S _
Gap = B4 E 5 G0 (4.11)
where {E%,} is a basis of the set Xs of tangent vector fields on S, with A = 1,2. A

basis of tangent vector fields to S considered within M is {E%,} where £, = e* E,.
Similarly, we introduce bases {WGA} and {WaA} of the dual space As. At each cut S,
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there is a unique lightlike vector field ¢* other than N* such that

@“5#20, 020w, w20, EE“AQO’ @O‘Nai_1. (4.12)

o a~" o « a

This set of vector fields can be used to complete the bases on ¢ at S, {—EQ,WGA},
{Na, E“A}, and to write the projector to S:

Poy = B WM 265 4 (,N + Nyto (4.13)

Also, one has

gmbeumgya i wab + EaNba Emgam i (414)

and the projector to a given cut within _# takes the form

o

P% =0y + N, = 7°Gy - (4.15)

The intrinsic volume two-form of (S, q,z) reads

° S m n
_gaeAB = €amn A B> (416)

NoEAB £ comnyyy Ay B (4.17)
where the orientation is chosen such that é,3 = €53 = 1, and the inherited connection
a S a a S a S nyy m
vuUe= gL, UA, YVvesEL VA VMD, UA =W AVY, U (4.18)

is metric and volume preserving —ergo this is the intrinsic Levi-Civita connection on

(S,qa8)-

Equation (3.80) implies that
V,N’=0. (4.20)

The relation between the space-time covariant derivative and the induced derivative on
# for any tensor field 7% o defined at least on # is

a1 ar V1 Vg _p Ll T AFa1--ar
Wy, ew, ey ey e VT vy = v.T br...by
T
Q1...Q;—10G;41...Qr a;
- ZT b1...bq NU\IJ Zc (421>
i=1
where we have defined
at...ar ffi aq ar V1 Vq 1. L a . ,.a .V M
T broby = Wy M ewy, e, et T W = w, et VO (4.22)
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with ¢ any vector field on F satisfying ?aNa = —1 and Zawa“ = 0. We also have used
that K, = 0 —for general formulae see [119]-, whereas the relation between the induced
covariant derivative on ¢ and the intrinsic covariant derivative on & for a tensor field
T, 4, defined at least on S reads

Aq A, T Ng r X7 mi..my S HAL.. Ay
w,, W, "k Bq...E BqECVTT o =D,T By..B,

1..-Ng
q
Aq. Ay s
- ZT ! Bl...BiflsBiJrl...Bq N [:ICBZ (423)
i=1
with
TAlmATBlmBq :S: Wml Al...er ATEnqu ...Eanq Tmlmanl.‘.nq Y HAB :S: EaAEvaagb °
(4.24)
Observe that under conformal gauge transformations, the following changes apply
ﬁab — w2§(lb ; (425)
.S
Gap = W ap - (4.26)

The curvature tensor associated to the induced connection satisfies
(V.V, -V, V,)v! = —R,,v* weTl,, (4.27)
it is related to the space-time curvature through the ‘Gauss equation’
eaa65(3676(4;‘11?%,75 z Eabcd (4.28)
and has the properties

- d = ¢ =5 d

Rabc = _Rbacd ) R[abc]d =0, R =0, v[e}%ab]c =0. (429)

abc

Its non-vanishing trace constitutes a symmetric tensor field

- = d

Ry =Ry = Ry, - (4.30)

The curvature tensor can be expressed as
Rabc = 2gc[aSb] - 25[aSb}c ) (431)
where the tensor fields §,” and S, = g,,.5," = S,, will be shown to coincide with

pullbacks of the space-time Schouten tensor to _# —see section 4.1.2. Of course, one can
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lower the contravariant index of the curvature tensor with the degenerate metric g,
- PN e
Rabcd = gedRabc ) (432)

however, information is lost in this process and one has to treat the fully covariant version
as a different tensor. Using the ‘metricity’ of the induced connection, it follows that R,
has all the symmetries of a Riemann tensor, including

Eabcd = Rcdab = _Rabdc : (433)
In considering the action of Eabcd on N via eq. (4.27) and using eq. (4.20), one finds
R, N¢=0. (4.34)

This implies that
Naﬁa,bcd - 0 y (435)

hence the lower-index version of the curvature tensor is orthogonal to N* in all its indices.
This property makes it effectively a two-dimensional tensor field with the symmetries of
a Riemann tensor, thus we can write it as

R (G0cTap — TneFaa) (4.36)

Eabcd = 2

for some scalar field R. Using the properties presented so far, it follows that

°€ﬁﬁabcd - Nevepabcd — 0 5 Neveﬁ - O . (437)

Using eq. (4.31), R, can be expressed as

Rab = gab + gabgmm ) (438>

and R ; as

Eabcd = 2§c[a§b]d - 2§d[a§b]c : (439>
Because of eq. (4.35), one can take the traces of this tensor field with g*°. In doing so, if

one compares eqs. (4.36), (4.38) and (4.39), it follows that

S = S 7 (4.40)

(4.41)
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Hence, the following expression holds

_ _ 1 — 1
Sab = Rab - §§ab (gmann - 2R> : (442)

From eq. (4.23) it is easily deduced the ‘Gauss relation’ between the intrinsic curvature
R, 5o of any cut S and the curvature of ¢,

E BB R, "W, Py S (DyDy — DpDy)ve = RupcPvp . Yo, € As . (4.43)

One can readily show that

. . s = s 1
Ryp = RAMBM = qapSmnd = QRQAB ) (4.44)

R:=R,MERE2K (4.45)

where K is the Gaussian curvature of (S, q,5). Instead of single cuts S, one can consider
a generic foliation where each leaf S¢ is defined by a different constant value C' of a
function F' such that

F:=N"V,F+#0. (4.46)

Each leaf is a cut, by definition transversal to N®. Then, associated to a given foliation
there is a one-form

7 _;vap, NTT =1 (4.47)

a

We set univocally ¢, := w,*(, and require Zu?“ = 0, which implies that £, s ¢, on each
cut S. The restriction of £, to each cut S¢ of the foliation defines a £, there, as the

field uniquely defined by eq. (4.12). One can introduce couples of vector fields {Ea A}

and {WQA} ~with A = 2,3~ serving as bases for the set of vector fields and forms on ¢

orthogonal to £, and N°. Also, on each leaf S¢ they constitute bases for the vector fields
and forms that are orthogonal to N* and ¢, there. Let us introduce the projector

P :=¢6¢ + N, , Pl =0=P° N™ P <pe (4.48)

We will distinguish quantities projected to a single cut S¢ from those projected with P9
by using the following notation

(4.49)
b, = P™ o (4.50)
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and similarly

vg = E"gv,, , (4.51)
by 2 BT (4.52)
Of course, given any one-form field v, on _Z,
v, 24, (4.53)
A simple calculation leads to
£3l, =NV, =—P"V, InF (4.54)
and the next relations hold
PV, F =0 (<= E"0,=0), (4.55)
LyB% = —NE™,V, InF, £;W,*=0. (4.56)
In addition, one can define
dup = E* 4 E’ 5T - EIAB = WaAWngab ) (4.57)

where ¢, is such that it coincides with the metric g45 of each leaf Sc. All cuts are
isometric, though, as a quick calculation taking into account the above relations and
eq. (4.3) yields

£NQAB =0 s (458)

hence g, ., and q,p are essentially the same object. Hence, the curvature (4.44) is basi-
cally the same for every cut of the foliation, in agreement with eq. (4.37) and, indeed, all
cuts are isometric, even if they do not belong to the same foliation.

There is a special sort of foliations that we call adapted to N*. These are defined by
functions F' fulfilling
£3F=0. (4.59)

Given any adapted foliation, an appropriate gauge fixing (w = F) allows, via the trans-
formations of appendix C, to set

ga = —VQF 5 v[

ly=0, £30,=0, £3E%=0. (4.60)

We refer to this kind of foliations as canonically adapted to N¢.
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Finally, let us introduce the kinematical quantities

Ouw = P %) V.l (4.61)
Tap = Oup — ;gabgm@rs : (4.62)

Observe that on every cut S¢ of the foliation —see definition (4.24)-
B4 B0, % Hyp . (4.63)

Also, definition (4.62) is nothing but the shear of the one-form /¢, orthogonal to each cut
Sc of the foliation.

A deeper characterisation of the curvature and the interplay between the induced
connection, the choice of foliation and the space-time fields is given in section 4.1.2.

4.1.2 Curvature on _Z and its relation to space-time fields

If one considers the Gauss relation (4.28) and uses eq. (3.85), eq. (4.31) is obtained with

s 1
L 555 (4.64)

i

a

U

U

a

1
¢ ws' S, (4.65)

For simplicity, consider a foliation given by F with £, as in eq. (4.47) and /,, := w2/,
determined by Z#E“ = ( —see section 4.1.1-. Now, since f = 0, eq. (3.82) gives

NS %= N"L;f (4.66)

NS =0.

o
|
SN—

Provided eq. (3.80), a general formula [120] gives
£]\7fabc - EcdbaNd (4.68)

which in conjunction with egs. (4.31), (4.40) and (4.41) and egs. (4.66) and (4.67) provides
us with

‘Eﬁfabc = Na?bc + gchmgma = Na (gbc + gbc"gff) ’ (469)

m

(4.70)
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In a middle step in deriving the second formula, we have contracted the second and fourth
indices of eq. (4.31) with §f = —N®, + P9 . Also, a direct calculation using eqs. (4.39)
and (4.66) yields

N°R,,'T, = Gt rf + S (4.71)

whereas application of the ‘Ricci identity’ leads to
chc@ab - £Nza£ﬁzb - ‘Pm(a ‘Pnb) vm"{j]\_fzn = gabi)Zf + gab ) (472)

where we have symmetrised the free indices, introduced (4.61) and taken into account
that
NV, P% = N°NV 0, . (4.73)

One can take the trace-free part of eq. (4.72),

— _ 1 _ _ _ — _

chcgab = Sab - igabgmnsmn + "€]\7€a"€]\7£b + Em(a Enb) Vm"€]§f€n
1— —mn Y Y e \vi Vi

~ 50a0 (£50n Lyl + P PV £450,) (4.74)

which in terms of the function F' giving the foliation —see eqgs. (4.47) and (4.54)— reads

NV,0, =S, — ;gabgmnsmn + PV, (nF) PV, (InF) - P, PV, (P, V,InF
- ;gabgef PV, (nF) PV, (nF) - P, PV, (P, V,mF)| . (475)
On each cut, one can take the pullback with {E£%,} to find

NN .oup S S, — ;qAB Sy + Dy (nF) Dy (nF) + D Dyln F
- ;qAB Dy DY F + Dy (nF) DY (In F)| (4.76)

where eq. (4.56) has been used and we have introduced

& .S a b O S MS T —mnS
Sap = FE'AE°gSy, Sy = g =

mn

(4.77)

N[ =

s B
£

Now, let us consider the following lightlike projections —see section 2.2— of the rescaled
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Weyl tensor?,

"pes L Nunvg e = Db of, (4.78)
"oos L NuNvig e pLCmen of, (4.79)
where 1
* 0 .__ v 1)
Gog,” = S0 (4.80)

see section 2.2 for this kind of decomposition in general; some of the properties listed
therein will be used too. Contract eq. (3.83) with N?, raise the index  and contract with
eaawwb to get

D=7, D™ =N"V, 3"~ NV, (£5f) . (4.81)

One may lower the contravariant index with g,, so that

Doy =Gy D" = N"V,. S, - (4.82)
Notice that NDab is symmetric and effectively two-dimensional N™ NDam = 0. In addition,
if firstly one takes the Hodge dual of eq. (3.83) with n*#7° and contract once with N and
the remaining two free indices with w,®, then

RO v (4.83)
follows. Also, lowering an index,
NC’“b = gmbNC“m =PV, S, . (4.84)

It will become useful to consider the component
Ve, L0 — ey 5 (4.85)
On each cut, projecting with £?,, one has
—V2'c, LMD, 8, , . (4.86)
By general properties presented in appendix D, one has "D A =€ap "CB, hence

~v2'D, Z E1, D, 22D, 8, (4.87)

2Notation used in section 2.2 for lightlike projections associated to e applies here to N* simply by
changing a ‘4’ by an ‘N’ in the upper-right indices .
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From eq. (3.84), contracting twice with N*, one arrives at
< Npbm m
v, D = —y, P NN, (4.89)

which by means of the rescaled energy momentum tensor 7,5 reads —see eq. (3.67)—

V,. D™ £ xN*NY T, N, (4.89)
where 5
v 7z —1 v
NHEN OTW =0 NN TW (4.90)
i

is regular at _# because T, N*N” = 0 due to eq. (3.121). Equation (4.88) may be
expanded and contracted with ¢, to get on any cut

0,0,N*V," D" £ /2D, "DM — 5,, NV, 4P 1y, b N"E,NT . (4.91)

4.2 News, BMS and asymptotic energy-momentum

This section is devoted to the study of the asymptotic group of symmetries at _#, the
isolation of the radiative degrees of freedom of the gravitational field and the definition
of an asymptotic energy-momentum, which are closely related tasks.

421 Geroch's tensor rho and news tensor

A result by Geroch [17] gives the existence and uniqueness of a symmetric tensor field p,,
on _# whose gauge behaviour and differential properties play a fundamental role in finding
the so called ‘news’ tensor, N, — in the classical characterisation, the tensor field which
determines the presence of outgoing gravitation radiation at _#. In section 6.2, related
general results for two dimensional Riemannian manifolds are proven —see corollaries 6.2.2
and 6.2.3. Those results can be particularised for the present case, leading to Geroch’s
tensor. However, we take a different approach here due to the particular structure of the
three-dimensional manifold ¢ .

Lemma 4.2.1. Let ¢, be any symmetric tensor field on _#, orthogonal to N, whose
behaviour under conformal rescalings (4.25) is

. l<  2a_ a .
tab = tab — a;vawb + E(A}awb — ﬁwcwcgab (492)
S —
for some fixed constant a € R, where @, := V w. Then,

= — 1/ R _, _
v[cta}b = V[cta}b + ; (CL -9 dted> w[cga]b ) (493>
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In particular, for any symmetric gauge-invariant tensor field B,, on _# orthogonal to N¢,

- _ 1
VieBay = Vi By, — ;Bedg OG- (4.94)

Proof. A direct calculations yields

1aR_

= — 1 1_ de— _
V[cta]b = v[cta}b + ;tb[cwa] + ;gb[cta}egd Wy + aTw[cga}b : (495)

Observe that the term 1 1
—t, .01+ —qpp .t dezs 4.96
W b[c*d] wgb[c a}eg d ( )

is effectively two-dimensional (it is orthogonal to N¢). Hence, one can use the two-
dimensional identity [121]

ACAE - 2qE[AAC]DMqDM7 fOl” any teIlSOI" SuCh that ACAE - _AACE (497)

in order to write 1 1
—ty W+ —Gy b0 T, = ——t, g% , 4.98
w b[cwa] + wgb[c a]eg Wa w edd w[cQa}b ( )

arriving at the final result. For a gauge invariant tensor a = 0 in eq. (4.92), therefore one
only has to set this value in eq. (4.93) to obtain eq. (4.94). O

Corollary 4.2.1. A symmetric gauge-invariant tensor field m,, on ¢, orthogonal to N¢,
satisfies
V[cmb}a = v[cmb}a (499)

if and only if m_,g°* = 0.

Corollary 4.2.2 (The tensor p). There is a unique symmetric tensor field p,, on _#
orthogonal to N® whose behaviour under conformal rescalings (4.25) is as in (4.92) and
satisfies the equation

ViePap = 0 (4.100)

in any conformal frame. This tensor field must have a trace p, ;g% = aR/2 and is given
in the gauge where the cuts of _# are endowed with the round metric by p,, = g,aR/4.

Proof. Existence is proved by noticing that p,, = g,,aR/4 fulfils V,p,. = 0 in the round
metric sphere. Concerning uniqueness, notice that lemma 4.2.1 fixes the trace of p,, to
Pea0°¢ = aR/2, and recall the assumption that eq. (4.100) holds in any gauge. Then, if
two different solutions p,, and p,, exist, V[C ( Pap — g%]b) = 0. However, in that case
and since p, N = 0, the difference p,, — g is traceless, Codazzi tensor on S? and, as
a consequence of the uniqueness of this kind of tensors [113], p,, — 4 = 0. O

Remark 4.2.1. Geroch’s original tensor corresponds to a = 1.
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Remark 4.2.2. Since these results are in essence two-dimensional, one could have taken
a different path for the proof. Namely, use the general results for tensors p on two-
dimensional Riemannian manifolds presented in [122] that will be studied in section 6.2.

Remark 4.2.3. Applying the results of [122], one also finds that the Lie derivative on a
cut of the projection to that cut of p,, along any conformal Killing vector field (CKVF)
x? is proportional to D,DpD-XC, and in particular vanishes for Killing vector fields
(KVF).

Remark 4.2.4. Contraction of eq. (4.100) with N* gives
£5iPay = NV pa, = 0. (4.101)

Therefore, p,, is ‘constant’ along the generators of #. In particular, this feature makes
P, invariant under the so called supertranslations —see section 4.2.

A direct calculation for determining the gauge behaviour of S,, shows that

=~ _ 1— 2 _ r_ .
Sab = Sab - avawb + Ewawb - ﬁwcw Gab s (4102>
with @, é V,w. Also, this can be projected to any cut S
Y S 2 1 ° 2 ° ° 1 ° o
Sa = Sap — ;DAWB T WAl — ﬁwCWCQAB ; (4.103)

where we have used that in our gauge Nw, = 0. That is, S, has the adequate gauge
behaviour and trace (4.77) that imply by lemma 4.2.1

v[c‘so'a]b - v[cs",a]b (4104)

and allows to write the following result

Proposition 4.2.1 (News tensor). The tensor field on #
Noy = Sap = Pap - (4.105)

is symmetric, traceless, gauge invariant, orthogonal to N and satisfies the gauge-invariant
equation

v[agb]c - v[aNb} (4106)

where p,, is the tensor field of corollary 4.2.2 (for a = 1). Besides, N,, is unique with

these properties.

Proof. The tensor field N, is symmetric, traceless, gauge invariant and orthogonal to
N® as a consequence of eqs. (4.67) and (4.102) and corollary 4.2.2. That eq. (4.106) is
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gauge invariant follows from corollary 4.2.1. The uniqueness of N, is a consequence of
corollary 4.2.2 too and eq. (4.106). O

The tensor field N, is the news tensor, and can be projected on any cut S
Nap = E4GEsNy , "V Nyy =0, (4.107)
and the same can be done with p,,
pap = E4E5py (4.108)
Note that contraction of eq. (4.106) with N¢ and E, E®, E’5, respectively, yields
£5Say =NV Sy = NVN,, = LyN,, , D[CgA}B 2 DieNap (4.109)
and also observe that in general, one has
LyNy #0 (4.110)

and the notation
Nap =B E'5 £ 3N, (4.111)
will be used. From eqs. (4.82) and (4.83) and eq. (4.109), one gets

N

Co ="V N, | (4.112)
"Dy =N"V, N, (4.113)
and from eq. (4.85)
-V2'c, =1,V N, . (4.114)
On each cut
oA, =W, AR, Y SNy, M (4.115)
N S a N 1 o
Cph=FE% C, = —EERPDRNPA , (4.116)
NDAB = By B NDab = N g, (4.117)
1 o
"0, -—Dp,NM. (4.118)

V2

where we have used eq. (4.17), eq. (4.56). Some of these formulae will be used in sec-
tion 4.4.
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Looking back to eq. (4.75), inserting decomposition (4.105), it follows that

Gap =NV, 0, = Ny + pap —
- 30” [P7 5 (0 F) P9, (0 F) = P79, (P, 9, )]

i
4

or on each cut

. Ci 8 E . . .
Gap = NVeoap = Nap +pap — 1948 + Dy (lnF) Dy (lnF) —Dy (DB lnF)
1 EF . . .
— a4 Dy (nF) Dy (InF) = Dy (DpIn F)] (4.120)
This equation relates the news tensor to the ‘time’ derivative of the shear tensor o,.
Observe that in general only for canonically adapted foliations —eq. (4.60)— in which the
gauge fizing® gives the round metric on the cuts one obtains

a

4.2.2 Symmetries and universal structure

The conformal boundary for vanishing cosmological constant presents a universal struc-
ture [17] which gives rise to an asymptotic symmetry group know as the BMS group
—named after Bondi, Metzner and Sachs [21, 40, 43]-, which has been widely studied
[16, 17, 48, 123] —see also [103, 115]- and recently has attracted renewed attention with
proposals of generalisations and extensions [124-128]. The BMS group admits different
characterisations, from coordinate-based methods, to covariant ones. We focus on the lat-
ter and, particularly, in Geroch’s approach —see also [2] for more details. The asymptotic
infinitesimal symmetries are those vector fields preserving the universal structure

Definition 4.2.1 (Universal structure). Let N* be the tangent vector field to the gener-
ators of ¢ and g, its degenerate metric. Then, the universal structure of _# consists of
the conformal family of pairs

(galw Na) :

Two pairs belong to the same conformal family if and only if (?
where W is a positive function on _#.

N/a) _ (q]2gabv \I/lea)’

ab’

Remark 4.2.5. An equivalent formulation is to consider the gauge-invariant object [17]

G NN (4.122)

3The so called ‘Bondi gauge’ usually refers to this kind of gauge-fixing.

G+ PV, (ln F) ryvv, (ln F) - P", PV, (PT V,InF
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and the infinitesimal symmetries are those that leave it invariant, that is
£e(GuNNY) =0 (4.123)
The alegbra bms is characterised by the infinitesimal symmetries £ defined by

LN = —pN° (4.124)
£&Gab = 20T ap- (4.125)

The infinitesimal symmetries 7¢ proportional to N¢,
T = " (4.126)

are called supertranslations. They form an infinite-dimensional subalgebra t of bms and
the group of supertranslations 7T is a Lie ideal of BMS. One has

£:N*=0 | (4.127)

£7G0 =0 (4.128)
and

£oa=0. (4.129)

The resulting symmetry group BMS consists of the semidirect product [129] of the Lorentz
group SO(1,3) with the normal subgroup of supertranslations T,

BMS = T x SO(1,3) . (4.130)

Geroch identified a 4-dimensional subspace of infinitesimal translations, given by those
elements of t satisfying

_ _ 1 - < R
V., V,a+ap, = 3 (gm”VmVna + a4> Tap - (4.131)
An interpretation of this equation is given in section 6.2. These infinitesimal symmetries
enter into the definition of the Bondi-Trautman energy-momentum.

4.2.3 Asymptotic energy-momentum of the gravitational field

Any weakly asymptotically simple A = 0 space-time features the existence of a total
energy-momentum at _# -the so called Bondi-Trautman momentum [21, 34, 115]. This
four-vector field includes the energy of the gravitational field and yields the notion of
energy-loss due to the presence of gravitational waves. Geroch [17] presented it as a
particular case of a generalised momentum built upon a vector field associated to any
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supertranslation 7% = aN* and given by —see [51] for the spin-coefficient version—
M®:=a" D", —2(aV,, 0, +1,V,0) F7N, "N (4.132)

where (, is any one-form satisfying ¢, N™ = —1. It is possible to include Geroch’s
approach into our formalism of foliations —section 4.1.1. Let ¢, be any field associated to a
foliation, as in eq. (4.47), with the defining function F’ giving the cuts S¢ at constant values
F = C = constant and lightlike extension #,. The two-form M := M%,, dz" A dz°
integrated over any cut S¢ gives a charge associated to that cut and the supertranslation

abc

TCL

- / ! M= Mmoo (4.133)

_8777' 8 Sc T

This formula can be shown to be independent of the choice of £* in eq. (4.132), thus without
loss of generality, let us write £/, = £,. Using eq. (4.132) and introducing eq. (4.62), the
charge can be rewritten as

ESe] = ——

(a"D00, + ag, N™*) ¢ . (4.134)
T JSc

The first term contains essentially a Coulomb contribution from the gravitational field —
see eq. (D.10) where "D"*7 7, corresponds to D. The difference of the quantity (4.134) for
any two cuts S; and Sy, with the former to the future of the latter, is derived by computing
the divergence of eq. (4.132) and integrating over the three-dimensional portion A C ¢
bounded by the two cuts:

1 _ _ .
ElSl- 18] =~ /A (g, N TN + a8, N + NV, V,a)e.  (4.135)

Indeed, it is possible to differentiate along the foliation to obtain the infinitesimal change
in the charge (4.134) on a cut Sg,

d £ [Sc] __1/ a
dC 8nltso F
+DuDpN +y,/,N"IN? + N*PD,, (In ') Dy (In F) ]é (4.136)

{NPQS*PQ + NPOD,DyIn F — 2D, (NF) Dy In F

where eqgs. (4.91), (4.117), (4.118) and (4.120) have been used. Since the cuts are topo-
logical spheres, total divergences integrate out and one can simplify the expression above
to reach the nice formula

d & [Sc] _1/ 1
dC 8w Sc

= [aN*28, 5 + NAPD,Dya + asxN'N” T, &, (4.137)
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where the matter fields enter the integral through (see egs. (3.67) and (4.90))
m7y) / v
Y y N U NP = 3cNFN” T, . (4.138)

If one chooses 7 as an infinitesimal translation —i.e., « satisfying eq. (4.131)—, (4.134)
gives the Bondi-Trautman energy-momentum. In that case, eq. (4.135) and eq. (4.137)

yield
1 14
£18)— £181] =~ /A o (NN, +N“N" T, Ve . (4.139)
dTS [SC] 1 (6% PQ v °
S _&T/SC = (NTONpg + 5NINY T, ) ¢ . (4.140)

The second one is the Bondi- Trautman energy-momentum-loss formula. Both eq. (4.135)
and eq. (4.140) feature the same property: in the absence of the matter-field contribution
NENY T, , anon-vanishing news tensor diminishes the total energy-momentum. To our
knowledge, it is the first time eq. (4.140) is presented including the matter term and
the factors associated to the choice of foliation F' and translation «; in the literature,
either just eq. (4.139) is given [17], even without the matter contribution (see [130] for
a recent derivation), or just eq. (4.140) is considered, typically without the matter term
and the factor I corresponding to the choice of foliation [16, 22, 44, 100]. Moreover,
when « is set to a constant —equivalently, a ‘time’ translation is selected— to get the total
energy-loss, the dimensional analysis of eq. (4.140) becomes obscure —see section 4.4.2 for
the discussion of the units including o and F'. For later convenience, let us define the
energy-momentum loss associated to gravitational waves only (i.e., excluding the matter
term)

d€[S] 1

« .
1 —5 /s FNPQNPQE : (4.141)
C

Observe that eq. (4.140) is the general energy-momentum loss, whereas the commonly
presented energy-loss formulae involving the square of the Lie derivative along N® (4.120)
of the shear tensor (4.62) arise by making all or some of the following elections: a =1, a
canonical foliation (4.60), a round-metric gauge and the absence of the asymptotic matter
term (4.90).

4.3 Asymptotic propagation of physical fields and the peeling prop-
erty revisited
We deal now with the behaviour of physical fields when they are parallelly transported

along null geodesics. The outcome of this process when applied to the physical Weyl
tensor, typically receives the name of peeling property or behaviour [17, 40, 100, 103,



58 4.3 | Asymptotic propagation of physical fields and the peeling property revisited

115]. We adopt Geroch’s approach and refine it to define an endomorphism at the tan-
gent space of every point of # T, represented by the endpoint in (M , gaﬁ) of the chosen
future-pointing null geodesic.

Let v (A) be a curve parametrised by A € [—1,0], with one endpoint at py € #*
(corresponding to Ao := A| = 0) and the past endpoint at p; € M (with \; := )\’ =—1).
2t

Ppo

Points belonging to v corresponding to fixed values A = \; will be labelled by p;,
v L0 — M
A — D .
Denote the tangent vector field to the curve by ¢ and choose the parametrisation such

that
PN =—%= —1. (4.142)

At first order around \g = 0, €2 & —\. Observe that we do not require at this stage % to
be lightlike, though we have chosen it to be future-pointing. Next, denote by
t.” (\i, ;) , the parallel propagator w.r.t. T'%,

«

A~

t

«

A (i, A;) , the parallel propagator w.r.t. f“be ,

such that given any one-form v, defined at p;, the result of parallel-transporting it along
¢ from p; to p; results on the new one-form v, (A;) at p; given by

ya ()\1) = ta“ ()\Z, )\]) UM (>\J> s (4143)
and introduce the notation
v (N) =g (\) v, (i) - (4.144)

Observe that indices a and p in this relation belong to different tangent spaces. The
propagator t,” is a ‘bi-tensor’ [131] which is defined by the differential equation

dtaﬁéw =0T, (N () (4.145)
W =001 (NES (NN (4.146)
with ‘initial’ condition
t" (NN =65, (N N) =65, (4.147)
and satisfies
t (NS (N A) =05t (A h) =1, (A, ) (4.148)
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where

tua (>\17 AJ) = g,ucf (AU AZ) Iva ()\J7 )\.7) tall ()\’L? /\J> : (4149)

The main idea [17] is to perform 3 different parallel transports of any covariant tensor
field:

1. From pg to p (A\) with .2 (\, \o),
2. From p(\) to p; with £,% (A, \),
3. From p; to py with t,7 (Ao, \1).

That is, a transport along v back and forth, departing from #* and interchanging the
conformal connection by the physical one for a stretch of +. If one chains one operation
after another, the result is an endomorphism on the co-tangent space at py:

Y A

Lo =" o, M) L (A, A) 7 (A X)) - (4.150)
The upper and lower indices on the left-hand side of :L 5" indicate its dependence on the
curve v and the point p()). Since the notation may become cumbersome, we drop this
two labels in most of the calculations and recover them only when doing so happens to

be convenient. Since Lg* is a tensor at pg, acting on covariant objects, we introduce the
notation

«—

T o o= Ly L T (4.151)

a1...00 e *

The action on the metric at py gives

Jop = 2 9up> (4.152)

where one uses that the connections are metric-compatible with respect to g,5 and gz,
respectively, and introduces the definition

== (4.153)

—we will drop the label on the left-hand side. Equation (4.152) implies that the endomor-
phism L_? preserves the null cone (and obviously also the future orientation) and therefore
it is proportional to a Lorentz transformation at py. Recalling the first of eq. (4.148), it
is easy to verify that

-1

Ly =t (Ao, A) E,7 (A, A1) £, (A1, Xo) (4.154)

is the inverse operator, that is,
LS LS =0 (4.155)
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The version of Lﬁo‘ that acts on contravariant fields is defined as
/\E,Boz = taﬂ <)‘07 )‘) qup <)\7 )\1) tp/B ()\17 )\0) 5 (4156)

and a simple calculation using the second of eq. (4.148) shows that

—1

LP=1

« «

B 1 8
= §L o (4.157)

where P = gﬁ“LM”gm. Therefore, taking into account eq. (4.157) one can work only
with Lg% Some useful relations are

Nagrs = = Mages » (4.158)
L L g ::;;59“5 : (4.159)
v, W = 521}#10“ Voot w® (4.160)
where
T = g, (4.161)

The next task to be addressed is to find the explicit form of the operator L, °. We
believe that this could be done for arbitrary curves, however the most relevant case — and
easiest to deal with— is when (% is geodesic and lightlike with A\ an affine parameter,

00=0, (°V,(, =0. (4.162)

We assume this restriction from now on. Observe that for null geodesics (e.g. [103]) one
can always write

A

0, =1 (4.163)

« «

where fa is lightlike and geodesic with respect to the physical metric. This fact allows to
deduce the action of L_® on ¢, at py,

—

0, =1, . (4.164)

- «

Observe that L_° has at most 16 independent components. It can be expressed in the
bases {—N_,—(,,q,,7,} and {{* N® ¢% r*}, with ¢, and r, arbitrary unit one-forms
orthogonal to N* and ¢ at pg, as
T« v «a v «a T pa Ty pa RS R Ty o v « RS et
)\Lﬁ :AAN N,B +>\BN gﬁ—l—)\Cf £5+AD€ Nﬁ +)\Fq 7’5 +/\GT q/B +>\Hq qﬁ +>\IT 7"5
o Yo o Yo Yo oy Yoy
+ N Og + €% 15 + 2Ny + 55 . (4.165)

The dependence on the curve v and the point A is contained in the 8 scalars and 4 2-
dimensional vector fields correspondingly labelled in the formula above. By eqs. (4.157)
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and (4.163) direct simplifications take place:
A=0, B=-1, D=-E*, d43=0, i*=0. (4.166)
Projecting eq. (4.152) with the elements of the bases, one arrives at the expression
Ly = =Ny + Cly — 22Ny + F (°ry — 1°qg) + HP + (% + 50, (4.167)
with
222C = =B, = —i, 0", FP+ H?=E? (4.168)

and

0= —ib, — Fj, — Hj, , (4.169)
0=—w, + Fy, — Hy, , ( )
0=—-=%, — F, — Hi, , (4.171)
0= —2=%, + Fi, — Hb, . ( )

By construction, one has
a __ S8

>\1L5 =4, (4.173)
which implies
g =0, §;=0. (4.174)
Since L_” depends on )\, it makes sense to search for a differential equation for it. To that
purpose, notice that another version of eq. (4.145) can be written for ¢,° (A, \;) by using
eq. (4.148),

dt,? (A, A
é;) = —k'TP t.l (A, A) (4.175)

The final differential formula for L_° reads

dgfa = QEA)LB“A;“ (4.176)
where
Ag = A= QN7 (M) W) (N X0) 5" (Mo, A) (4.177)
= (335% + N — £ IV7 (4.178)
with
Ny = Nyi=t (0NN, (), N, =N, (4.179)
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and 7%, giving the difference between the unphysical and physical connection —see the
formulae of conformal transformations in appendix C. Observe that Az* is a tensor at py
that depends on \. Equation (4.176) is a Fuchsian system with a regular singular point at
A = )\ —recall that Q()\g) = 0. In components, one has the following non-trivial equations

‘35 _ Qg)‘fj 7 (4.180)
‘iif _ Qi)j& , (4.181)
i& _ QEA) B Cdlf; i, ]*Vp} | (4.183)
‘if’;z _ sz) yoq‘jf; iy ,31 , (4.184)
ddd;r _ QEA) :F]*quu +HN, 1" + 2@3&2] : (4.185)
ddﬁ;q - sz) :H]*quu — FN, "+ 21,2’;(1(3&] : (4.186)

Using eq. (4.173) as initial condition, eqs. (4.180) and (4.181) yield
F=0, H= g, (4.187)

and then, from eqs. (4.169) and (4.170),

w, = —Z7, . (4.188)

Since C' is determined by g, through eq. (4.168), it only remains to solve for g,. Equa-
tions (4.183) and (4.184) are two uncoupled linear ODEs; whose solution with the initial
condition (4.174) reads
Al

¢ = —Q (A ———— N\ . 4.189

7= =00 [ i ) (4.189
This solution is smooth in the limit A = \y. Taking this into account, if one multiplies
eq. (4.182) by @ and evaluates at Ao, it follows that

-2, 0= g, ,4"=0. (4.190)

All in all, the final expression of L is

o o 102(1 —2 po = Da —a e o )
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with 2 = 9" and g, determined by eq. (4.189), depending on the choice of curve
through N —given in eq. (4.179)- and on A. Consider the decomposition

L= ps K, (4.192)
Dyt = —NMy— ZMN, + EPY (4.193)
T oo e 1 °2 po o oo

K= (5u—§y€ b, =0, +9%, . (4.194)

The interest of this decomposition is that 1K .~ carries mostly details of the curve 7,
whereas zpﬂ“ contains essentially powers of €2 and no information about the curve v: just
the value of Q at the chosen point p; —see (4.153).

We are mainly interested in the asymptotic behaviour of Lg*, i.e. when A — Ag. It is

Weyl-tensor Non-vanishing © ; when PND
candidate “y, A=)\
“Coprs Y4 QA1) 2, GNENEND
“Caprs s Q) Pgs | (67,0000, N
“Coprs P Q) ey | (6,02, N, N
“c “ Q(\)~° ¢, N*, N* N°
afvyd 1/}1 ( 1) (bl ( ) ) ) )
"Caprs "o Q)% | (N, N, N, N°)

Table 4.1: The asymptotic propagation of the physical Weyl tensor (4.198) is composed
by the five terms listed above. Each one has the symmetries of a Weyl tensor and one
non-vanishing Weyl scalar which in the limit A — Ay = 0 coincides up to a multiplicative
constant with one of the scalars of the rescaled Weyl tensor daﬁw‘s. The repeated
principal null directions are listed in the last column.

very interesting the fact that details on the choice of v become irrelevant at zeroth order
in this regime because
Kg® =45 . (4.195)

In other words, the asymptotic behaviour is ruled by zpﬁu which we come to call the
asymptotic propagator. In order to derive this behaviour for any physical field, one has
to follow the next steps:
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1) Propagate the physical field from p (\) to py using 25%(Ao, A) ~hence defining a new
tensor of the same type at py on _#*.

2) Apply to the covariant version of the new tensor at py as many copies of L as free
indices has the field.

3) Expand the expression obtained previously in terms of A near Ay = 0.

Note that this program ‘compares’ the parallel propagation of the physical tensor field in
M from the point p; to p(A), with the propagation in M between the two points. Ex-
panding A around the limit value A\g = 0, one takes this comparison towards infinity of M.

The canonical example is the application to the physical Weyl tensor. Consider
C’aﬁw(/\), i.e. the physical Weyl tensor at p()\). Now, take step 1) to define a tensor

at po
1 1

(4.196)

Notice that
daﬂ’y& _ = daﬁfyé 5 (4197)

thus Qamé contains a pole of order 1 in the limit A — Ao = 0. Nevertheless, this divergence
is overcome in step 2),

A 0w, 2(3) 3(2) 4 (1) 5 (0)
Qa676 =} Caﬂvé + 0 Oa676 + 0 Cozﬁ'y(s + Ca,@'y& +Q Cocﬂ'y(57 (4198)

where (Q)C’aﬁwg with a = 0,1,2,3,4 are Weyl-tensor candidates, regular in the limit to
Ao = 0 and with algebraic properties listed in table 4.1. They depend on A and, assuming
that 2 admits a Taylor expansion around A\g = 0, we write them near \qg = 0 as

(a) (a,0) X (ari), ;
Oaﬁ'yé — Oaﬁ'yzs + Z Caﬂ’y(;)\ . (4199)
=1
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Their explicit expressions are expressed as

) 4 o w e .
Cama = gp (og) dronn S Ko T K G INEN Py P P, Py (4.200)

(
1
(

(3) ’ w o y - 5 . .
Catns = g () rnr " s KPXKU"{— 4P NY{y N?Ly Ny (7 — ANF("0 Ny P (N
— 4PN, Py N7UsP? ) — AN"( Py P "5]] 7 (4.201)

(2) 1 - w o o, ° ° o ° L o °
s = ngmf(# K, KPXKU”{P“QP o P2, P — PR P (P N; + P N,) —

— P P (PR Ny + PYy NP0, ) + A'N"ENT N, Ly Ny sy + APY Ny P Gy N7 ¢

[y

+4APY 0y Ph NN 4 4PV Py N, (0P N° + 4P% Py N, eﬁ]wv”} ,

(4.202)

"5 = mz)\l)gmanMTKwapran { — AP "Ny PN, (N — 40"N" N, Ly P N, (7
—APY, PYy ("N PPy — ANy P2 P 1505]] : (4.203)
“C s = QG?)\I)gwanKMTKV“’KpXKJW”F’]-E’[a“Nﬁ] BNy . (4.204)

Observe that the leading-order term of eq. (4.200) reads

(4.0) 4 N .
Cams = g (g oV N Pl 1 (4.205)

and is determined by the rescaled Weyl tensor dam‘s projected to a Petrov-type N Weyl-

candidate tensor. Now one can perform step 3), finally arriving at the next result:

Theorem 1 (Peeling of the Weyl tensor). Let (M, gaﬁ) be a conformal completion of a
physical space-time with A = 0 as presented on page 22 and let v be a lightlike geodesic
with affine parameter X\ and tangent vector field (% as in eq. (4.142). Also, let one end
point pg (A= Xo=0) of v be at _#+ and the other one, py (A =X\ =—1), in M. Then,

A

the asymptotic behaviour of the physical Weyl tensor C 5.5 along 7y follows by application
of steps 1) to 8) on page 64 and reads

«
(N)

A (I11) (11/D) (1) I
Qaﬁ'yé = A daﬁ'yﬁ + >\2 ea,nyé + )‘3 fozﬁ'y& + >‘4 ga,ﬁ’yé + >\5 >haﬁ'y5 + @ (/\6) ) (4206)

near A = \g = 0, where the tensors

(N)

Aoy = —

(4,0

Coprs (4.207)
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(III) (3,0) QQ (4,0) (4,1)
6a676 = Caﬂ’y(s + 7 Caﬁ’y5 — Caﬂ’yé s (4208)
(11/D) o (3.0) 3 (10) 3.1) 2)
fapys == Capys =2 Caps + 5= Cago + Cagrs = Clagao
QQ (4,1)
+ 2" (4.209)
92 afys
%) o) 35 (2.0 Q2 Q3 6o Q4 (1,0
Japys = Capys 5 Caprs T (4 3 Capro + 47 Capro
(2,1) (3,2) (4,3) QQ (4,2) (3,1)
Caﬁvz? + Caﬁ'y(i - Ca,@vé + 7 Cozﬂwé — Caﬁw&
Qg (4,1)
= (4.210)
6 afyé o
a ) (0,0) (1,0) Qs 3 5\ o 1 Q4 o
hags = — Cops — 20 "Cy s + <2 - 492> Cogrs + (69293 -5 ) " s
Q5 (4 D) (1,1) (2,2) (3,3) (4,4)
= Capno Claprs Claprs Caprs = Caprs
3 (2,1) (3,2) QQ (4,3) Q% (3,1)
58 Cags =t Capys + 5 Cagys + 7 Capys
Qg (3,1) Qg (472) Q4 (4,1)
3 Coprs + 5 Coprs + T Coprs - (4.211)

are Weyl-tensor candidates labelled with their Petrov type, respectively; €);, with i =
1,2,3,4,5, is the i-th derivative of Q0 w.r.t. X\ evaluated at A = \g = 0, and (G)C’aﬁwg,
with a = 0,1,2,3,4, are the Weyl-tensor candidates of table 4.1 each one having one
non-vanishing Weyl scalar “, in the tetrad containing (% and N¢.

Proof. The asymptotic propagation along «y of the physical Weyl tensor is given in eq. (4.198).
Then, one expands around Ay = 0 and rearranges the terms by powers of A\. The algebraic
structure of the first 5 terms of eqgs. (4.207) to (4.211) follows from the properties listed
in table 4.1. [

Remark 4.3.1. The Weyl-tensor candidates of eqs. (4.207) to (4.211) have the algebraic
structure specified in table 4.2. Notice that though this constitutes the so called peeling
property, the present derivation is purely geometric, showing neatly that we derive the
behaviour of the physical field (the Weyl tensor in this case) as it approaches ¢ along
null geodesics, thereby providing a solid foundation for the so-called peeling behaviour.
Notice, further, that once this construction has been performed, it can be applied to any
physical field whatsoever by just following the steps 1) to 3) on page 64 and using the
explicit form of Lg* eq. (4.191).

Remark 4.3.2. The Weyl scalars of the first three elements in eq. (4.206) have the
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following expressions:

1 Q3 (4.2) Qs (a)
- L e 4.212
N4 QQ(}\I)@ ; 4 502 ()\1)¢4 Yy + 5 ta, ( )
2 (4.1) Qy @.1)
_ _ __ 121
X4 292()\1)6254 Ya, T3 0 ()\1)¢3 + Vs, (4.213)
1 1
_ 1 1214
X3 03 (/\1>¢3 ’ T2 Ol ()\1)¢2 ) ( )

where ¢; with ¢ = 2,3,4 are the scalars of the rescaled Weyl tensor da575 and ") ; are

the scalars corresponding to the tensors (a’i)C’aﬂw of eq. (4.199).

Weyl-tensor Non-vanishing | degeneracy of /¢
candidate scalars as PND
(V)
Daprs T 4
(I11)
€apys X3 X4 3
(”/D)faﬁw T4 T3 To 2
(Ii(]aﬁws Vy V3 Vy Vg 1
I
Psos [i4 P32 f1 Ho 0

Table 4.2: The vector £*, tangent to -, is a principal null direction of the first four terms
in the asymptotic propagation of the physical Weyl tensor. The degree of degeneracy
decreases towards higher order terms; this effect is commonly referred to as the peeling
property of the Weyl tensor.

4.4  Asymptotic radiant supermomentum

As it has been exposed in the introduction, we give a characterisation of the gravita-
tional radiation grounded on the rescaled version (3.86) of the Bel-Robinson tensor. One
constructs the asymptotic radiant supermomentum as

Q* := ~NINYNPD",, . (4.215)
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The definition and description of general radiant supermomenta are studied in section 2.3;
the following fundamental properties were presented in [76]

i) Q" is lightlike Q"Q, Z 0 and future pointing at ¢, which follows from the causal
character of N* and known properties of superenergy tensors [85, 93].

ii) Under gauge transformations it changes as

Q
Q* —w ' (Qa - SMDaﬂpTNfBN”VTw> + 0(9?). (4.216)

iii) It is divergence-free at ¢, independently of the matter content,
S
V,Q"=0. (4.217)

The last property is easily verified by noting (3.87), so that, recalling eq. (3.80), one can
write

v, Q" ZANTDMy, L DECRP B Ny + V2 DPE NNy, (4.218)

where in the last equality we have exploited the fact that "Dos = ND“beO‘ae’B , and expanded
in the bases {N% E*, }, {—Za, WQA}. From eq. (3.67), taking into account eq. (3.121), it
follows that

1
BB Ny, Z 57404, N'N'T,,, (4.219)

I

E°sN*“N7yps =0 (4.220)

By properties listed in appendix D |, NDBCQ so = 0 and then property iii) follows®.

The asymptotic radiant supermomentum Q¢ is geometrically well defined, as it is built
only with the generators of # and the rescaled Weyl tensor daﬁw(s.
good gauge behaviour at _#, Q% = w7Q". These facts, together with the close relation
with the intrinsic fields on _# exhibited by the rescaled Weyl tensor —see section 4.1.2—,

suggests a link between Q* and the news tensor N, of eq. (4.107). To show that this is

Moreover, it has a

the case, first decompose the asymptotic radiant supermomentum as
a Z a5, A 0 —=a g
Q"=WIl +Q =Wl +Q%e, (4.221)

where {, = w,"?, is a lightlike field at _# associated to a foliation as in eq. (4.47) whose

4In [76], property iii) was presented in a less general situation. As we have shown, Q% is divergence-free
at _# independently of the matter content.
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restriction on each cut gives the ¢, of eq. (4.12). The quantity
W:=-N,Q">0 (4.222)
is the asymptotic radiant superenergy and the vector field
Q" :=ZN“+ Q*E*, with Z:=-(,0">0 (4.223)

is the asymptotic radiant super-Poynting [76]. Observe that W is invariant under the
choice of £, whereas Z and Q4 depend on the choice of foliation —one can consider this
decomposition on a single cut S only, and then these quantities depend on the choice of
that cut. From the general formulae of section 2.3, the relation between these quantities
and the lightlike projections of dam‘s is

w =2, c*? =2"D,,"D*" >0, (4.224)
z=4"Cc,'c*=4"D,"D* >0, (4.225)
ot =4v2°C,cAr (4.226)

Then, eqs. (4.115) to (4.118) bring forth the connection between the asymptotic radiant
supermomentum and the news tensor

W=2N"N..>0 , (4.227)
Z2 9D, NR.D,N"" >0 | (4.228)
o4 S _AN"p.NE, . (4.229)

4.4.1 Radiation condition

In [76] a new criterion to determine the presence of radiation at ¢ escaping from the
space-time was presented. The criterion holds in the A > 0 case [75] too and is analysed
in chapter 5. It translates into the following results

Theorem 2 (Radiation condition on a cut). There is no gravitational radiation on a
given cut S C _Z if and only if the radiant super-Poynting Q" vanishes on that cut:

Nyp=0 < 020 (= 2=0).

Proof. Consider equation (4.228). Since the right-hand side is a square, it follows that
Z =0 <= Dy Ng = 0. Using now property iii) on page 15 this happens if and only
if "Q* = 0. But Dy Npj = 0 —which is equivalent to DsN4p = 0— states that N p
is a symmetric and traceless Codazzi tensor on the compact 2-dimensional S, and then it
necessarily vanishes (e.g. [113] and references therein). Equivalently, N4p is a traceless
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symmetric divergence-free tensor on the closed S, which implies that Ny = 0. Hence
Ny =0<="Q"=0onS. O

Remark 4.4.1. Equivalently: there is no gravitational radiation on a given cut S C ¢
if and only if the radiant supermomentum is orthogonal to § everywhere and not collinear
with N, i. e.,

Q" EWI = N, 20 (4.230)

Remark 4.4.2. The topology of ¢ plays a key role in the proof. If the cuts do not have
S2-topology,
DyN"20 = 0"20,

even if N,z # 0. In any case, this does not pose a problem when considering portions of
¥, instead of single cuts —see remark 4.4.4.

Theorem 3 (No radiation on A). There is no gravitational radiation on the open portion
A C 7 with the same topology of Z if and only if the radiant supermomentum Q¢
vanishes on A:
A o A
N, =0 +— Q*=0.

Proof. According to remark 4.4.1 of theorem 2, absence of radiation on A requires that
Q“ s WI* on every possible S included in A. But this is only possible if Q¢ 2.
Another route to derive this result is to note that Nyp = 0 on every cut within A, and
thus Ny 20. In particular £ Ny, £ 0so that N 4p Vanishes too at any cut within A. [

Remark 4.4.3. The two following re-statements are equivalent to that of theorem 3:

» No gravitational radiation on A C ¢ <= Q® is orthogonal to all surfaces within
A.

)

« No gravitational radiation on A C _# <= N?| isa principal null vector of d,,4.,
A

A
The first point follows by remark 4.4.1, particularising to any possible cut within A —
hence, implying that Q¢ 2 (0. The second statement follows by lemma 2.3.2.

Remark 4.4.4. Regarding remark 4.4.2, it may be the case that even if one foliates A
by topological non-spheres, a different choice of foliation gives topological-S? cuts. Hence,
theorem 2 applies to those new cuts within A. It may be also the case that a foliation
by topological-S? cuts of a given A is not possible —as it happens in the C-metric [106]-,
hence the situation described in remark 4.4.2 has to be considered. However, if that is
the case, theorem 3 requires the whole supermomentum Q®, and not just Q", to vanish,
which involves N, as well —see eq. (4.227). Therefore, even if D, N, £ 0 on every
cut S C A of a given foliation, the criterion still detects gravitational radiation whenever

. A
N,g # 0. In principle, one could also choose a different interval A’ that can be foliated
by topological spheres and such that A’'NA # ), and then apply theorem 2 and theorem 3
to the region A'NA C _# to determine the presence of radiation there.
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4.472 Balance law

It is possible to write a balance law describing the outgoing superenergy flux and the news
tensor. Begin by considering a connected portion A C _#, with R x S? topology. Let
it be bounded by two (non-intersecting) cuts, S; and Ss, the latter to the future of the
former, and orthogonal lightlike vector fields (other than N®) (*and [(“ asin eq. (4.12),
respectively. Consider any lightlike field ¢, = w_*¢, in A with the properties of eq. (4.47),
such that

S 5 S
0= by, 0,2 4, (4.231)
Equation (4.217) decomposes as
v Ewen 2V, 9" (4.232)

where egs. (4.21) and (4.22) were used. Using the quantities and notation introduced in
section 4.1.1, integration of eq. (4.232) leads to a Gauss-law formula

/A TV W+ Wy Y e =[S, — 0[] . (4.233)
where ® [S] is the radiant superenergy density flux, defined as
@[S]::/SZEZO, B[S] =0 N, 20. (4.234)

Equation (4.233) shows that the change of the asymptotic radiant superenergy density
W along any outgoing lightlike direction €" in a volume A is balanced by the fluz of
radiant superenergy density on the boundary of A —constituted by the two cuts Sj,.
Let us remark that this formula is valid in the presence of arbitrary matter fields —
with the general assumption iv) on page 22. In other words, eq. (4.233) contains purely
geometric terms. The choice of £* does not change eq. (4.233), as the difference between
one choice and another can be checked to be a total divergence that integrates out [76].
Moreover, eq. (4.232) is gauge invariant. After some manipulation of the integrand and
using eq. (4.228), the radiant superenergy density flux reads

OS] = /S Npg (2KNT — D, DM NS ¢ | (4.235)

where K denotes the Gaussian curvature of the cuts. Observe that, although it does not
manifest itself explicitly so, the integral on the right-hand side of eq. (4.235) is positive.
It shows that the flux of radiant superenergy is indeed associated to the presence of
gravitational waves and sourced, ultimately, by the news tensor —as one could already
expect from eq. (4.227). The first term on the right-hand side of eq. (4.235) reminds
us of the energy-momentum loss due to gravitational waves of eq. (4.141). Without loss
of generality , one can consider a foliation containing S and select the function F' that
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appears in eq. (4.141) such that it fulfills eq. (4.59) at least on S. If one does so, it is
always possible to choose the conformal gauge in order to set

F
K— = constant , at Sy . (4.236)
a

Under such gauge choice, eq. (4.235) reads

I
®[S] = [167rKdi[SC / NRSDMDMNRS} , (4.237)
and eq. (4.233) can be rewritten as
F e[S >
/A (Z“VMW+Wz/zmm) [1677[(01[0 / NpsD, DM NESE ] (4.238)
S1

The interpretation of this formulae is essentially the same as eq. (4.233). Even so, let
us point out that for fixed S;, the change in the radiant superenergy density in the
volume A depends only on the initial and final evaluation of the news tensor N,

ab
N, | . Ina way, the integral on the left-hand side of eqs. (4.233) and (4.238) measures

1,2
the failure of the system to recover its initial state. From another point of view, consider

i.e., on

a gravitational system that is initially in equilibrium in the sense of having

N,z =0. (4.239)
S1
Then, the rate of change in the Bondi-Trautman energy at a later retarded time, i.e., on
Ss, can be expressed as the change of W in the volume A plus an additional term whose
interpretation is not clear to us and that vanishes if and only if° so does N, 5

d°€ [Ss)] a -
lon o v ") e+ [ NasDyDYNTSE 4.240
dC KF167TUA( W EWYT) et [ NasDag ‘ (4.240)
As a final remark, notice that when eq. (4.239) holds, eq. (4.234) implies
/A (VW +Wem, ) e=0 = Nyp| =0, (4.241)
Sa

and that N,z = 0 is a reasonable initial and final condition for any physical system
Si1,2

that at first is in equilibrium, then undergoes a change that takes it out of equilibrium

and finally settles down.

SDouble implication holds true whenever S has S2-topology.
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As a last remark, observe that eq. (4.238) allows us to perform a quick check of
the physical units®: [ [Sc] = ML*T2 so that [d € [Sc] /dC] = ML2T-2[C]™. As
[¢] = [C]L~? and taking into account [a] = L the right-hand side of (4.238) has dimensions
of [Ke/a]ML*T2[C]™' = ML™3T~2. Concerning the left-hand side, using that [L*] = L
and that [W] = {7;675 } L™*, we need to know the units of the volume integral on _#
but, according to (4.7), these are [€] = L*. Hence, {Daﬁw} = MT~2L73 and the physical
units of the Bel-Robinson tensor are

(Togns | = MT2LS (4.242)

4.4.3 Alignment of supermomenta and the peeling property of the BR-tensor

The tools presented in section 4.3, namely the asymptotic propagation of fields along null
geodesics, can be applied to the physical Bel-Robinson tensor

7:"5’76 = COC,U/YVC(SVﬁH + *C’o(‘u/yy C&/ﬁu . (4243)

Consider this tensor field at point p(A) and parallel propagate it along the curve 7 defined
as in section 4.3 to py. This process defines a new tensor at pg which we denote by j:xﬁvé .
Application of Ls* gives

Togrs = () (Qaw”gsyg“ + *gaw“*gayﬁ“) : (4.244)

where Cawy and *é(;uﬁ“ are the asymptotic propagated physical Weyl tensor (4.198) and
its Hodge dual, respectively. In order to arrive at eq. (4.244) one has to use eqgs. (4.148),
(4.158) and (4.160). Then, it is possible to derive the peeling property of the Bel-Robinson

tensor,

Theorem 4 (Peeling of the Bel-Robinson tensor). Let (M, gaﬁ) be a conformal completion
of a physical space-time with A = 0 as presented on page 22 and let v be a lightlike geodesic
with affine parameter \ and tangent vector field (* as in eq. (4.142). Also, let one end
point pg (A= Xo =0) of v be at Z and the other one, p1 (A =X = —1), in M. Then,
the asymptotic behaviour of the physical Bel-Robinson tensor 72575 along = follows by

6We use the notation [P] to denote the physical units of any object P; our choice is that the conformal
factors 2 and w are dimensionless.



74 4.4 | Asymptotic radiant supermomentum

application of steps 1) to 3) on page 64 and reads

1 + 2N 3@ 42 4 IIT) 53)
DT Oy) Lo = A Diogs + N X5 + MO s+ A+ N

(4) (I1/D) (5) (6) ()
+ )‘6 Xaﬂwé + /\6 ‘Faﬁ'yé + )‘7 chﬁ% + /\8 Xaﬁvc? + )‘8 gaﬂ’y&
+ N TX 5+ A0
apry

(
Xpprs + A Hogs + 0 (A1) (4.245)

near A\ = Ao, where

(N) (N)* p ()=

(N)Da,b”y(s S d&lﬁu + ™, dy, 6" (4.246)
(mr)(c/,aﬂfﬂs — (I”)Gam, (111)6(5”5“ (mr)*ea/w (III)*edyﬁM : (4'247)
(II/D).Faﬁ’Yé — (H/D)falw (H/D)f(;l,g (H/D>*fa/w (H/D>7§yﬁ ’ (4.248)
(1)ga675 o (I)QQMV(D%VB n <I>fgaw (”*géyﬁu ’ (4.249)

are basic superenergy tensors labelled with the Petrov type of the Weyl-tensor candidate
they are built with, respectively; the Weyl tensor candidates are the ones of theorem 1
described in table 4.2. The tensor ﬁelds Xogrs witha =1,2,3,4,5,6 are symmetric and
traceless, and contain cross terms:

1) L@ (HI) u (N)* (N)* L (111) () (1[1)* L ()=
Xaﬁvé T dauv €ovg T d,, apy €oug T Capry d51/5 eam déuﬁ ’
(4.250)
(2) @™ , (II/D) (N)* (I1/D)* (U/D) (I1/D)x p (N)* m
Xaﬁ'yé T doau f&/ﬁ da/fy féz/ﬁ fa;ry dél/ﬁ fozu'y d&uﬁ ’
(4.251)
®) L@ v po, (V)= p (D w o, D w o (D= )* "
Xaﬂ’y& T dozu'y géuﬁ + dawy géyﬁ + goz,uxy déyﬁ + 9o 7 déuﬁ
(I1/D) L (IIT) u (IT1/D)* y (V)= u (IIT) y {I1/D) (111)* y (II/D)x
fa/ry 661/6 fa,u'y 65115 eau f&uﬁ eoz;ry fJV,B )
(4.252)
(4) . (V) v (N)* (1) » () 1 (D)% v (W)
Xopgys = doy, héyﬁ + dy, h(;,jﬁ + hopy Ao o d(;,jﬁ
(I (111) " (I)* Ly (V)= " (111) v (D u (I1I)=* p (D*
ga,wy 661/6 + gau'y 661/,8 + ea,wy gcil/ﬂ + ea;ry g6uﬁ
(4.253)

Proof. Application of steps 1) and 2) leads to eq. (4.244). Then, a direct calculation of
the Taylor series around \g yields eq. (4.245). O

The interest of the above result lies in the following remarkable property of supermo-
menta:

Corollary 4.4.1. Let conditions of theorem 4 hold and 750[ be the supermomentum as-
sociated with a causal vector field 4%, constructed with the physical Bel-Robinson tensor
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7; 55 - Then, the asymptotic behaviour of the supermomentum along ~ follows by appli-
cation of steps 1) to 3) on page 64 and reads

P

B =9 () (5 W, 0 (¥) (1250

where W is the asymptotic radiant superenergy (4.222) and f?ﬂ = g"" L, 1, (No)-

Proof. Step 1) together with eq. (4.148) provides us with

P, = (NP0 s - (4.255)
Next, one applies step 2) and uses eq. (4.160),

N O O oS

P, = =6 (\) yﬁy'yyéz;/jw : (4.256)

This last expression has a Taylor expansion around g that reads

* %

P = Q0 ()" 070° "D, N + O (X)) (4.257)

where eq. (4.245) was used. Finally, using egs. (4.205) and (4.207) together with eq. (4.222),
the result follows. ]

Remark 4.4.5. Observe that eq. (4.254) is well behaved at A = )¢ if and only if Eug?“
does not diverge there. The equation, when regular, shows that at leading order only
the N component of 4“ contributes to the physical supermomentum transported along
a null geodesic reaching #. This is in natural agreement with (3), which bases the
determination of outgoing gravitational radiation precisely on the asymptotic radiant
supermomentum eq. (4.215), i.e., a radiant supermomentum for the ‘observer’ N.

Remark 4.4.6. Notice that 4 has to be causal, and in particular can be lightlike. Hence
the result applies to physical radiant supermomenta too.



76

4.4 | Asymptotic radiant supermomentum




La tarde forma péajaros sobre las azoteas.
Del color rojo sale una manzana.

En el perro que ladra

se van acumulando los tablones.

Salta un delfin

y es, durante un segundo,

parte del cielo.

Benjamin Prado, Limite. Todos nosotros, 1998.

5 | Asymptotic structure with a positive
cosmological constant

_®_

Observational data [9, 10] reveal that we inhabit an accelerated-expanding universe. This
empirical fact evince the presence of a positive (bare or effective) cosmological constant.
This scenario differs drastically from the asymptotically flat case, for ¢ is a spatial hy-
persurface —see eq. (3.81)— and its topology is not determined by universal constraints
[61]. Not only that, but an intrinsic notion of evolution is lacking, as the natural geomet-
ric observer n® (3.88) which is timelike at infinity is also normal to #. Hence, there is
no notion of a privileged congruence of curves —as in the case of the lightlike generators
for A = 0. This last feature is studied in section 5.4 and chapter 7 too.

As a consequence, while the conformal completion —see section 3.1— can be built for any
value of the cosmological constant A, its relationship with the news tensor and Bondi-
Trautman energy-momentum has only been established in the asymptotically flat case
with A = 0 —see chapter 4. Thus, a rigorous theoretical description of radiation escaping
to infinity in the presence of a positive A, no matter how tiny A may be, is necessary.
Signs of attention to this situation date back to [60], and were amplified in [61] where the
predicament was clearly presented. Some advances have been made [62, 64-66, 68-71]
(see [24, 74] for reviews), usually trying to adapt techniques from the A = 0 case to the
new scenario. One of the challenging difficulties is to understand and describe unambigu-
ously the directional dependence that emerges when one approaches infinity in different
lightlike directions [77]. Not to mention the absence of an asymptotic universal structure
of infinity. In summary, until recently [122] the next question had remained open: How to
tell when a space-time with positive cosmological constant contains gravitational radiation
arriving at infinity? This fundamental question underlies any other hypothetical deeper
characterisation, such as a formula for the energy carried away by the waves from an iso-
lated source or the definition of a mass-energy. We answered the question taking a fully
new perspective of the problem [75], different from the methods used previously in the
literature. As it has been emphasised in previous chapters, our investigation is grounded

77
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in studying tidal effects, motivated by the nature of the gravitational field and of actual
gravitational-wave measurements. Our approach is already supported by its successful
application to the well-established asymptotically flat case [76] —see chapter 4.

Summarising, this chapter contains the study of the intrinsic asymptotic structure
and its relation to the space-time fields. The approach followed is to treat ¢ as a
hypersurface and apply the formulae of appendix A —also, the notation for 3-dimensional
hypersurfaces introduced there is used for ¢ here-. The intrinsic curvature is connected
to the kinematics of the congruence of timelike curves tangent to the vector field n,.
Afterwards, a new satisfactory radiation condition at infinity in the presence of a positive
cosmological constant is presented and compared with the A = 0-limiting case. To our
knowledge, it is the first such criterion.

5.1 Infinity and its intrinsic geometry

In the present scenario, ¢ is a space-like three-dimensional hypersurface —see fig. 5.1.
Its topology is not fixed in general and typical cases include S?, S? x R or R?® —for some
examples see [61, 109]. Hence, one can always think of ¢ as S® or S after removing a
set of points. Also, an important element in chapters 6 and 7 is the introduction of cuts;
acut (S,q,5) on _#Z is a two-dimensional Riemannian manifold S C _# equipped with a
metric ¢ 5.
Begin by noting that, in view of eq. (3.92), the second fundamental form of (_Z, h,;)
—eq. (A.3)- vanishes,
Kgp =0 . (5.1)

This can be used to simplify the Gauss equation relating the space-time Riemann tensor
R,s,” and the intrinsic curvature Eabcd —eqs. (A.13) to (A.15)—, yielding

Rabcd = 6aa€/6beﬁ/cRaﬁ’Y§w5d ) (52)
= Z « «

R, = ¢"" R, +n’nse aeVCRaﬂf : (5.3)

RZR+ 2n“n" R, , (5.4)

The intrinsic Schouten tensor in three dimensions is defined as
_ _ 1—
Sab = Rab - ZRhab ) (55)

and we can use the equations above in order to write it in terms of the space-time curvature

1 1
- ERhab — 0" R Ry, . (5.6)

g ‘]p,l/ PO 0 SV
Sap = €€, +nfnet e R 5

puov
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Figure 5.1: In the presence of a positive cosmological constant, # usually has
S3-topology or S? without a set of points. Also, one can consider Riemannian surfaces, or
cuts, denoted by S§. The figure shows —with one dimension suppressed— the stereographic
projection of _# to the plane, including a couple of cuts labelled by &; and S,. Thus,
one can picture # as R?, which is how it is represented in the rest of the figures.

On _#Z the space-time curvature is determined by S,; completely, see eq. (3.85), and it
is possible to write

g 14 j 1 14 1 o 1
nn%e" e\ R, ., = —§e“ae pO s + §habnpn R, + ERhab, (5.7)
and use this to arrive at
Q / 1 ®no v
Sab — 56 ae bS;LV . (58)

Indeed, by egs. (3.85), (5.2) and (5.8) one can write

Ropea =20 gd]b - 2hb[c§d]a ) (5-9)

alc

which is valid in general for dimension 3. Note that on a neighbourhood of _# where n,
is well defined, since P is defined there too, we can consider

— 1

Also, we introduce the intrinsic Cotton tensor:

S (5.11)



80 5.1 | Infinity and its intrinsic geometry

together with the Cotton-York tensor,

_ 1 —

Y= —geaququ : (5.12)
The electric and magnetic parts of the rescaled Weyl tensor can be written explicitly in
terms of S,

1 1
Cab /:Z ieaaeﬁbnpgaun)\nudpaﬁ)\ é _ieaaeﬁbepaan)\dpab’)\
Zz 1L o 8 o A s L oo os o
= 5N at b€ p€ €N d 5\ = S aC b€ p€ €V 5015 - (5.13)

In the second line we have used eq. (3.73). A similar computation can be performed to
write an equation for D, and we end up with two important formulae:

3
Cab - \/Xepan[qu]b , (514)

3 13 —
—\&eaaeﬁbn#v[asm z \/;eaaeﬂbn“vusaﬁ . (5.15)

where in the last line we have used eq. (3.94). Remarkably, eq. (5.14) tell us that the
magnetic part of the rescaled Weyl tensor is completely determined by the geometry of ¢ .

I

Dab

In contrast, eq. (5.15) shows that the electric part is unknown from the intrinsic point
of view'. These two conclusions have direct implications in the search of the asymptotic
radiative degrees of freedom with a positive cosmological constant and must be taken fully
into account.

To see what implication a vanishing C,, would have on the geometry of _#, use
eq. (5.11) to write it as

7113 < 7 3—
Cup = 6pqa pgb — KYab .

1
ab 2V A (5 6)

It is well known (see [100], for instance) that the Cotton-York tensor of the metric of a
three dimensional manifold vanishes if and only if the metric is locally conformally flat.
Thus, the vanishing of the magnetic part of the rescaled Weyl tensor strongly constraints
the intrinsic geometry and the would-be degrees of freedom of the gravitational field —for
a discussion on this matter, see [62].

!Note that we are able to write D,, in terms of gaﬁ because it is defined on a neighbourhood of _#
and we can compute its derivative along n®.
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5.2 Kinematics of the normal to /

It can be elucidatory to connect the kinematic quantities —shear, acceleration and ex-
pansion®- of n, to the Schouten tensor and with the electric and magnetic parts of the
rescaled Weyl tensor through eqgs. (5.14) and (5.15). The relationship gives us an intuitive
idea of the impact that C, 5 and D,z have on the congruence of curves that an asymptotic
observer would follow.

To start with, we have to compute the covariant derivative of n, using egs. (3.31),

(3.35) and (3.36),

1 Q f 1 o
NQNBV N = ﬁsaﬁ + + -0

L Zr
NIap T 5% N Eas

1
Vanﬂ = NVaNﬂ

1 1 1
— Vs (2N, - 20V, f — (TN, — 0 T)

2N s ( f Vaf 7 12 Va
= —ﬁgs P, Psf+ —QQ%P 5L - (5.17)

It is easy to see that this vanishes at ¢, as it must, given our choice of gauge. In other
words, the kinematic quantities vanish at ¢ . Nevertheless, their ‘time derivatives’ —along
n“- may be non-vanishing at _#. To begin with, consider the acceleration,

— M - N iy o V4 vk é
a, =n"V n, 2NQP nts, +2NQ »P' n'T, =0, (5.18)

. 1 v 1 124
a, ==n"V ,a, = ﬁP WS, —QnPV, (2NP an“Sw)

1 1
— P’ 1T, + S, (NP”a n“TW) , (5.19)
and from eq. (3.94) we deduce that a, Zy. Next, consider the expansion

o _ 2 r
0 .= Vpnp = —ﬁﬁh“ﬂs + f + ﬁQ h“pzup =0. (5.20)

2By definition, n,, is proportional to an exact differential and, therefore, has vanishing rotation
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. 1 3 3
0=V, 0 = Sh"S,, — 'V, <2Nh f’SW> SV, = o fuV N

1 1 ,
QT + P, (T, = Pt (5.21)
3 3
0 {—npvp (2 NP“”S ) PP, 4 ST, + 8%T]
1
2 v
+3fanp (N ) — 75 ,ntn” +Q { #n’V (NP“ TW> - 8—N%n”V#T
71
= 55"” — 5, nnt" . (5.22)
Finally, the shear,
v 1 v v
O-aﬁ = (Puapﬁ_gpaﬂh'u>vn __ﬁQPuPBSﬂV Pﬂf
1
QP P, T (QPWS . 92 P, )P _
* 2N Lur T\ f 7 6
1
= ——QP" P” QQP“ P T < Qps,, 92 pPwT )P
2N ’BS 2N « B =pv + 6N 6N x =uv aff
2. (5.23)

pv wv

: 1 v 1 v

1 1 1
+Q{ Y ( NP“ P”BSHV> by (N P, P"S, ) — %Py P, T, + 5PV T,
1 1
2 v v
+ Q an <2]V%PM P Tl“’ 67N%PM T,ul/Paﬂ)

1
~ 5Pas P8, (5.24)

/1 v
2P“ P8 '

1%

Note that this quantity is different from zero (in general), completely tangent to ¢ and
coincides with the traceless part of the intrinsic Schouten tensor

6. 2T, — ghabS (5.25)

It will be necessary, as we will see shortly, to have the second derivative too,

1 1
&aﬂ = npvpdaﬂ - inpvpsaﬂ - 6 Oéﬂ TLMV‘LSVV
CN( = Y s P s Y NS, - e (V) 5%, P
aN'" VetaB T g tas ™ Vot u T o™ Saf T N2 * plap
1
— xP' P T, + 3}m“n Tﬂypal?) + QA+ PByy (5.26)

where A and B are regular (non-vanishing in general) symmetric tensors. Notice that
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contracting with n®P?7 eq. (3.61) and using eq. (3.94)
— 7
v, 5", £ 0. (5.27)

Observe, also, that by egs. (3.100) and (3.102) we have

v s 1
P“BP WL, = _ZTPaﬁ , (5.28)
v 7 3
nfn"Tl,, = _ZT : (5.29)

Taking into account these last equations we arrive at

s

. S o s
Uab—eae

From egs. (5.14), (5.15), (5.25) and (5.30), we get the desired relations:

30— . 1, _ .
Cap = \/; [quavﬂpaq]b + §€pbavca | (5-31)

1 /3.

For the first equation, we have used another interesting relation that can be obtained if
one considers eq. (5.25) and takes the trace in eq. (3.61),

5.3 Characterisation of gravitational radiation at _¢#

At this stage, we have presented the basic asymptotic structure with a positive cosmolog-
ical constant (section 5.1) and the superenergy formalism (chapter 2). Thus, we are ready
to tackle the problem of gravitational radiation at infinity. In this section we formulate a
radiation condition, and expand the contents originally presented in [75]. Let us remark
that to our knowledge, it is the first covariant, gauge-invariant criterion formulated in the
presence of a positive cosmological constant.

The obvious choice of superenergy tensor at infinity is the rescaled Bel-Robinson tensor
(3.86) which is regular and, in general, non-vanishing at _#. In order to define a supermo-
mentum, one needs to select an observer. Since we aim at an observer-independent charac-
terisation of radiation, the optimal way would be to have a natural privileged ‘asymptotic
observer’. But this is indeed given by the asymptotic geometry itself: the normal N, | »
is the suitable vector field. Hence, a natural definition of asymptotic supermomentum is
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—see eq. (2.18) for the general definition—

p* i= —N*N”NPD" (5.34)

wvp

or its canonical version
a . U Vo P
P = —n'n"n"D* . (5.35)

In a neighbourhood of ¢, where n® is well defined, these two vector fields are collinear,
P = N-3p®, and have the same causal orientation. The reason why we introduce them
both is that eq. (5.34) has a good behaviour in the limit A — 0 — if the limit exists— in
contrast to eq. (5.35). This issue will be analysed in section 5.5. Apart from this, the
properties that will be listed next apply to both versions of the asymptotic supermomen-
tum, unless explicitly said otherwise.

The orthogonal splitting of P* at ¢ is given by
P = —Wn® + > P" . (5.36)

which defines
o the asymptotic canonical superenergy density, VW := —n /P* > 0,

o and the asymptotic canonical super-Poynting vector, P* = pe, Pt = eaafa —see
eq. (2.18)—, which is a vector field tangent to #.

From the general properties presented in section 2.1, it follows that
i) P“ is causal and future pointing at and around ¢, —see property iii) on page 8.

ii) Using egs. (3.71), (3.87) and (3.103), the divergence of P~ at _# reads

v, P* < Na T, D (5.37)

17 ab

17 ab

physical space-time (M, §,,,) behaves near ¢ as Taﬁ | 7 ~ O(*) (which includes
the vacuum case Taﬁ = 0), then

where T :di QT L €',€". In particular, if the energy-momentum tensor of the

7
Vv, P £ 0. (5.38)

This follows from eq. (3.84), recalling eq. (3.92) and eq. (3.72).
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iii) Under gauge transformations, they change as

UJ_7

P — 573 | P*
(1 =2QN2N7w_— Q2w 2N"2w_wT)
- <3w_lQN_1n'”n”w“ + 3w 2PN " *nfw’w” + w_?’N_gQ?’wpw“w”) Dawjp} :

(5.39)

P —w ™’ {pa - (3w’1QN’1N”w“ + 3w 2P NPW W + w’3Q3w”w“w”) Dawp}
(5.40)
This behaviour is deduced using egs. (3.11), (3.55) and (C.8), and the fact that the

Weyl tensor is conformally invariant. At ¢, the asymptotic supermomentum has
good gauge-behaviour

pe 4 TP (5.41)
P~ 4 w p* . (5.42)

The divergence property of the canonical supermomentum can be expressed as

VP + 0"V, (W) £ Nac T, D . (5.43)
Under appropriate conditions, this expression leads to an integral balance-law —see sec-
tion 7.5. Typically, kinematic terms associated to n® enter this kind of equation [88],
however, due to our partial gauge-fixing they vanish at _#. Nevertheless, it is possible to
write P in terms of the derivatives of the shear by using egs. (5.31) and (5.32),
3 —

o S 6*[(1 st —a . cs
= —XV ((7 )0’,55 -+ ﬁO’ SVC (U ) . (544)

Or, using egs. (5.14) and (5.15), in terms of the Schouten tensor,

0 7 12 —Is [—, _
Pl el T (5““) W'V, 5., . (5.45)
Our asymptotic gravitational-radiation condition is built upon this object. In order to
characterise the presence of gravitational radiation at infinity, we aim at a criterion with

the following features:

i) Gauge-invariant, as any physical statement should not depend on the choice of the
representative within the conformal class of metrics.

ii) Observer-independent.
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iii) Strictly asymptotic, i. e., defined at _¢#.

iv) With the necessary and sufficient information encoded in (_#,h,,, D,,). This is
justified from the point of view of a fundamental result by Friedrich [112, 132] which
states that a solution of the A-vacuum Einstein field equations is fully determined by
initial/final data consisting of the conformal class of a 3-dimensional Riemmanian
manifold plus a traceless and divergence-free tensor D,,.

According to the justification of point iv), one cannot aspire to describe gravitational ra-
diation at ¢ without taking D, into account.

Our proposal, presented in [75], reads

Criterion 1 (Asymptotic gravitational-radiation condition with A > 0). Consider a 3-
dimensional open connected subset A C _¢. There is no radiation on A if and only if
the asymptotic super-Poynting vanishes there

PY 20— No gravitational radiation on A.

Remark 5.3.1. An equivalent statement is that in absence of gravitational radiation,
and only in that case, the supermomentum? points along the normal N* at ¢, or:

» No gravitational radiation on A C _# <= p® is orthogonal to all surfaces within

A

+ No gravitational radiation on A C _# <= N%|a is a principal vector (in the sense
of Pirani, i. e., those lying in the intersection of two principal planes, see [30, 33,
133]) of d,5.°|

afy 1A -

Remark 5.3.2. The criterion fulfils property i) as follows from eq. (5.41); property ii),
according to the discussion on the geometric nature of N* at the beginning of this section;
property iii), by definition; property iv), since by eq. (2.15) the presence of radiation is
completely given by the interplay of D, and C,,, the latter being fully determined by
the intrinsic geometry — see eq. (5.14).

Remark 5.3.3. According to the previous remark, the presence/absence of radiation
cannot be determined by the intrinsic geometry of ¢ exclusively in general —with the
exception of the trivial cases of a conformally flat metric h,, or a vanishing D,,.

Remark 5.3.4. From eq. (2.15), the radiation condition is equivalent to the vanishing
of the commutator of D, and C,;,, and this is only possible if d*4 5| » has Petrov-type I
or D [33, 88]. In accordance with remark 5.3.1, the Petrov type-D situation arises when
n®| y is coplanar with the two multiple PND.

3The same applies to the canonical supermomentum. However, the characterisation in terms of p®
can be compared with the A = 0 case, as we will see.
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Remark 5.3.5. Our criterion 1 is different, but gained some influence, from definition
2.1.1. Had we chosen to inspire our criterion on definition 2.1.2, we would have had to use
Qape| # constructed with n*| , instead of the asymptotic super-Poynting. The vanishing
of Q| 7 is equivalent to the electric and magnetic parts being proportional [88], that is

AC,, + BD,, Z 0 (5.46)

for some A and B. This is always the case for Petrov type D. Thus, the small difference

between both possibilities is that using (),;.| » there will be more radiative situations:

abc
those with the electric and magnetic parts commuting but not proportional to each other.

NQ(

b 4

Figure 5.2: Gravitational radiation arrives at an open region A on _#* but does not at
the open region A’. Our criterion states that the asymptotic super-Poynting is different
from zero on A and vanishes on A’.

Examples illustrating the soundness of this criterion were presented in [75] and some
of them will be expanded in chapter 8, as well as new ones presented. Furthermore, the
criterion has an equivalent formulation in the asymptotically flat scenario, see chapter 4.
In that case, it has been proved to be successful and equivalent to the traditional one in
terms of the so called news tensor. More details on the limit to A = 0 will be given in
section 5.5 but, before that, we investigate the relation between the radiation condition
and the radiant quantities.
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5.4 Lightlike approach and the directional-dependence problem

We have presented a reliable condition that tells if gravitational waves arrive at infinity
or not. Not only it is of special relevance by itself, but it constitutes a crucial first step
towards a deeper characterisation of gravitational radiation at _#. One of the biggest
challenges is the directional dependence that emerges when one approaches infinity in
different lightlike directions [77]. Our criterion 1 already bypasses this difficulty. Even
more, it states that the presence of radiation cannot be determined by the rescaled Weyl
scalar ¢, only, as it is sometimes assumed in the literature —~we are going to show this
presently. A better understanding of this directional dependence in the presence/absence
of radiation is needed. In our formalism, the logical way to proceed is to understand
the role of the lightlike projections of the rescaled Bel-Robinson tensor, by defining —see
egs. (2.20) and (2.21)—

(n® +m®) (5.47)

Figure 5.3: The lightlike decomposition (5.47) on _#. Given a unit spacelike vector field
m® tangent to _# and the unit normal n®, two coplanar lightlike directions are
determined.

n, plays the role of u, in section 2.2 and we denote by {E,} the basis spanning the
two dimensional space of vectors orthogonal to m® and n® —see appendix A.3 for more
details on that. The algebraic, lightlike decomposition of section 2.2 applies the same
now, though we substitute the over ring by an underbar in quantities projected with £,
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in order to distinguish them from objects projected with £,%-e.g., given any one-form
v,on 7, vy = E*wv, whereas v, := E*,v,. Also, we define the radiant supermomenta
—see eq. (2.46)— associated to the vector fields of eq. (5.47) using the rescaled Bel-Robinson

tensor:
Q% = R KDY, = WEY+ QY = Wk + Qe (5.48)
Q%= — kMK kDY, = WK+ QY= W+ Qe . (5.49)

Thus, the first step is to write criterion 1 in terms of the radiant quantities.

Lemma 5.4.1 (Radiant formulation of the asymptotic gravitational-radiation condition).
Consider a three-dimensional open connected subset A C ¢, then

2(2-"2)- W+ W =0
. - A <= No gravitational radiation on A . (5.50)
V2('Qt+ @Y +12d4 =0
Proof. 1t follows directly by application of lemma 2.3.4. [

Remark 5.4.1. In terms of Weyl scalars, the no-radiation condition in eq. (5.50) reads:

8,0y — 83y — 4940, + Aoy = 0, (5.51)
¢3&4 + ¢0(/B1 - 3¢1$2 - 3¢2$3 =0. (5-52)

This is easily deduced using the formulae of appendix D.2.

The directional freedom translates into the choice of m®, which then automatically
gives e by eq. (5.47). Indeed, this vector field may serve to define an intrinsic ‘evolution’
direction on _Z, if selected properly. Thus, one needs some physical criteria underlying
one choice or another. We propose two choices of increasing specialisation that we call
orientations,

Definition 5.4.1 (Weak orientation). We say that m® defines a weak orientation when
k% is aligned with a PND of the rescaled Weyl tensor.

Remark 5.4.2. For Petrov-type I alam‘S there are four possible, non-equivalent, weak
orientations; one for each PND. For type II, there are 3; for type D and III, 2; for type
N, just 1.

4The point of making this change of notation is to distinguish the quantities associated to r® of
section 2.2, which is not in general a field on _#, from those associated with m®, which is a vector field

on 7.
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Remark 5.4.3. The vector m® defines a weak orientation if and only if W = 0. See
eq. (2.53) and the Petrov characterisation on page 8.

Definition 5.4.2 (Strong orientation). We say that m® defines a strong orientation when
k< is aligned with a PND of highest multiplicity of the rescaled Weyl tensor ¢#.

5
afy

has Petrov type I, any strong orientation is a weak orientation too, hence there are four

Remark 5.4.4. The strong orientation is a particular case of weak orientation. If d

non-equivalent possibilities; for type II, III and N, there is one single strong orientation;
for type D, there are two.

Remark 5.4.5. The vector m® defines a strong orientation if and only if W =0= Z.
This follows by lemma 2.3.2 recalling property iii) on page 15.

An immediate result that follows by applying these definitions is the characterisation
of the Petrov type of d®s.; in the absence of radiation at infinity by means of the radiant
superenergy quantities:

Lemma 5.4.2 (Radiation condition and Petrov types). Consider a three-dimensional
open connected subset A C _¢. Choose m® defining a weak orientation according to
definition 5.4.1 and define “k* as in eq. (5.47). Let P* and 0" be the canonical asymp-
totic super-Poynting vector and the radiant supermomenta associated to iko‘, respectively.
Then,

2(2-"2)-W=o0
V2'Q* + 1244 20 = {Pa 20 and d®s. 5 Petrov type I on A} ,
A A
+Qa £0+£ Q°
(5.53)

{+Qa ENE _QO‘} — {Pa 20 and daﬁw Petrov type D on A} )
(5.54)

Proof. For daﬁw‘g of Petrov type I, set W = 0 in eq. (5.50) which, by property ii) on page

15, gives the first two lines in eq. (5.53). If Z =0, then £ is a repeated principal null

)

direction of d which is incompatible with Petrov-type I. The same occurs if 'Q* = 0.

afy o
Thus, the third line in eq. (5.53) follows. The case of Petrov type-D dam‘s is a consequence
of weak orientation, together with what it is said at the end of remark 5.3.4. [

More can be said on the direction of propagation of the superenergy, in this case
applying strong orientation,
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Coplanarity
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Figure 5.4: Flow of the asymptotic superenergy quantities. One starts from the
above middle node: strong orientation is chosen (—m® points along the spatial
projection to _# of a PND of the rescaled Weyl tensor with highest multiplicity). Then,
either the rescaled Weyl tensor is algebraically general (left-hand side of the diagram) or
it is special (right-hand side of the diagram). Moving to the left, either the radiant
superenergy W vanishes (above left-hand side) or not (below left-hand side). Thus, for
an algebraically general rescaled Weyl tensor on ¢, there are four configurations of
asymptotic radiant superenergy: in two of them, there is gravitational radiation (one
with W # 0, the other one with W = 0); in the other two there is no gravitational
radiation (the shaded nodes). Moving to the right, one finds the algebraically special
cases. There are four possibilities, from which just one corresponds to no radiation (the
shaded node, for Petrov type D or 0, the only case in which both radiant supermomenta
vanish).

Lemma 5.4.3. Choose m® defining a strong orientation according to definition 5.4.2, and
define % as in eq. (5.47). Let P* and “Q* be the canonical asymptotic super-Poynting
vector and the radiant supermomenta associated to iko‘, respectively. Then, the canonical
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asymptotic super-Poynting vector takes the form

~a / ]- + 1 B ) 1 +ANA A
P——<Z+W m® + [ ——="04 +3d4 | E°, | 5.55
hence, the superenergy flux cannot propagate in directions orthogonal to m® on _Z.

Furthermore,
m,P <0, (5.56)

equality holding if and only if P* = 0.
Proof. For the first part, one only has to plug W = 0 = Z in eq. (2.84). For the

second part, on the one hand, if m ,P° = 0, then W =0 = "Z and, by property ii) on
page 15 and eq. (2.48), 'Q* = 0. But then, since strong orientation requires Q% = 0

(remark 5.4.5) using lemma 2.3.4 P° = 0 follows. In that case there is no radiation
according to criterion 1. On the other hand, if m /P° # 0, by the positivity of Z and
W, msfs < 0 necessarily. n

Remark 5.4.6. Equation (5.56) supports the idea of considering any m® defining a strong
orientation as a good candidate for intrinsic ‘evolution’ direction. The reason is that
directions orthogonal to m® are transversal to the flux of superenergy, which can be
thought to be associated with ‘changes in the gravitational system’.

Remark 5.4.7. For d 4,
case is not strongly orientable and, by positivity of the radiant superenergy quantities, it

% of Petrov type I, the sign of msﬁs is not defined because this

is not determined in the general expression of eq. (2.84).

The Petrov characterisation of the rescaled Weyl tensor at _# in terms of the asymp-
totic superenergy quantities is summarised in fig. 5.4.

The idea of having a preferred, intrinsic, ‘evolution’ direction, m®, at ¢ is conceptually
important. Indeed, the existence of a congruence of curves intrinsic to _# will serve to
define further structure related to absence of incoming radiation and to the novel definition
of symmetries in chapter 7. Write the decomposition of the covariant derivative of this
vector field as —see appendix A.3 for details—

vaTnb = myay + Kap + Wab (557)

where the shear of m, is defined as the traceless part of k,,

Z]ab = By — 5P bPCd/jcd : (558)
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Also, define the symmetric, traceless part of the symmetrised, projected derivative of k_,

-7 - 1 P
0np = P, P Vi by — §Eaﬁ PV, k, (5.59)
This is, of course, the shear associated to k%. It coincides up to a factor with the shear
of m,,
-/ 1 v s
\/5 Q—aﬁ = __Pl/'a _PM/B V(Mmy) + §_aﬁ _Pu Vumy = _Zaﬁ7 (560)

where we have used egs. (3.31) and (5.1) and X5 = w,ws"S,,. In addition, let us
introduce the expansion of k¢,

0= PV, k, . (5.61)

It is possible to formulate an asymptotic ‘Goldberg-Sachs’-like theorem:

Lemma 5.4.4. On the neighbourhood of ¢ where n,, is well defined choose an extension

S ,
of m,, such that n_,m® = 0 and m_ m® = 1 there. Assume that d_;.° # 0 and +k5yABC Z
Ty ase 2 0Z KKy, . Then,

afy

“

I
\

_ /, f _
£ﬁ ‘Daﬁ — Daﬂ — y £ﬁ D

e

Remark 5.4.8. The condition D, z

to saying that m, defines a strong orientation on _# and k“ is a repeated principal null

D, Z0 s equivalent to Q_ = 0 and, therefore,

direction of da575.

Remark 5.4.9. The assumption on the components of the Cotton-York tensor, k? Yape Z

KBy ABC ZoZL s Ery Ap- 15 satisfied if the rescaled energy momentum tensor 7,5 fulfils
the corresponding equations coming form eq. (3.71). In particular, given eq. (3.72), the

assumption is satisfied in vacuum or if the physical energy-momentum tensor 7, ; decays
towards infinity as 7,5 | ,~ O (F) with p > 2.

Proof. We will need the Bianchi identities written in terms of the lightlike components
of the rescaled Weyl tensor, which can be found in appendix B —recall that one has to
substitute the over ring by an underbar in quantities carrying uppercase Latin indices

A, B,C, etc. Under the assumptions above 45+ Z and, using eq. (2.44), eq. (B.8)
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reads

z w g -+ + w Ny

O:_EAECk#vu Dwa_'_\/iDCEAkﬂvu kw
o + - - —+ - -

+2\/§QA[CE vy DYRIN  ky — Dy PYV K,
-+ anle 7] -+ T W N

+ Dy PTEN, K, —2 Do PPELY,

~ D (E*cE") —q,,P*")V, k. (5.62)
Taking the symmetric traceless part of this equation and noting property iii) on page 211,
after some manipulation, eq. (5.62) is expressed as

3

Doy + C E'pepaE0yd""V , k, — EQACEMN@MN ; (5.63)

II\
l\.’J\OJ

where we have split E" A E"5V , k, into its symmetric and antisymmetric parts, introduced
(5.59) and defined w,p = E¥,E"5V,, k,. Note that in two dimensions we have

_ 1 _
Wap = €ape”" Wep (5.64)

which after substitution into eq. (5.63) leads to

J 3
0%~ (D ose + Copeén”) - (5.65)

Equation (5.65) requires either ¢,z Z 0o

s .,
o5 40, CZDZo. (5.66)

If condition (5.66) holds, then 7+Da5 = 0 by property iii) on page 211, and we have to
consider eq. (B.4) —taking into account eq. (5.66) and using eq. (2.44)—,

0Z2v2" DYE' \ E“»V, k, —V2' D PV, K, , (5.67)

and in terms of o ,5,
0Z o4, DY . (5.68)
Because we are working in 2 dimensions and ¢ 4 is traceless, it cannot have eigenvectors

_ s
with zero eigenvalue and, thus, eq. (5.68) implies, if o,5 # 0, that

+

s
o 20, D, Z0. (5.69)

If condition (5.69) holds, eq. (B.2) reads ( k*g*’y,,,g Z ke KYap + KPYy,, Z
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— R Ky, Z 0)

0Z %v,D, (5.70)

which, recalling eq. (5.66), tells us that £5 pDZoZ +/<;“V D. Considering eqs. (5.66),
(5.68) and (5.69), eq. (B.3) gives

/ T .
0= D Y S VI (5.71)
or by means of ¢, recalling property vii) on page 211 and D,z = Dy,
0Z DM 4 . (5.72)
Next, taking into account all the quantities that vanish so far, it can be shown that the

trace of eq. (B.9) gives eq. (5.72) again, while contracting it with e gives (%“gaﬁya#ﬁ Z

R Ky Py, L =R R Ry, s £ 0)

S+ +2 - -
0% —kV,C+e D" (wpe + opo) . (5.73)

where we have taken into account D,z = Dp,. Equation (5.64) and property vii) on
page 211 simplify eq. (5.73) to

0Z %'V, (C)+ D, oy . (5.74)
Back to eq. (5.62), using egs. (5.66), (5.69) and (5.70), we arrive at
n'v,.CZ<0. (5.75)

Then, eq. (5.73) reads simply

s

0% "D, oh0. (5.76)

It is easily shown, given that ¢, and ‘D, are both symmetric and traceless, that
eqs. (5.72) and (5.76) imply —e.g., by writing these equations in components A = 2, 3—

_ S /
oap 20 = D20 (5.77)
But z ' e ZogZ -
ut D ,p = 0 together with egs. (5.66) and (5.69) and the assumptions DA =Z0% D,
leads to daﬂ 5 Z 0. This follows from the fact that in this case W Z 2 £ V£ () —see

egs. (2.52) to (2.55) and (2.58)— which, by lemma 2.3.1 and eq (2. 19) implies d,z.° = 0.

Alternatively, use egs. (2.42) and (2.43) to show that D, = C’ab = 0(«= d,p, 5 L 0).
However, this contradicts one of the assumptions of the theorem. Therefore, the only
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possibility is
0. (5.78)

Lemma 5.4.4 is in fact a result on m® as well, noting eq. (5.60):

Corollary 5.4.1. Under the same assumptions of Lemma 5.4.4, its conclusion can be
equivalently stated as

s

Ezzb

0.

55 The A =0 limit

In the preceding sections, we have discussed some differences and analogies of the A > 0
and A = 0 scenarios. Concerning the characterisation of gravitational radiation, one can
study the limit to A = 0 of criterion 1. In this subsection we will assume that limy_.q 9ap
exists and defines a good Lorentzian metric.

The limit of the normal to ¢, N, , coincides with the normal to ¢, the conformal

A=
boundary for A = 0. Also, we have alrez;dy mentioned in section 5.3 that the asymptotic
supermomentum p® (5.34) has a good limit to A = 0,

. a 20 Ao
/l\lg(l)p = Q°, (5.79)

where Q¢ is the asymptotic radiant supermomentum at _#; —see chapter 4-

Q* £ — (N*N"N"D", ) (5.80)

A=0

Therefore, the absence of gravitational radiation in the A > 0 case according to crite-
rion 1 implies that the asymptotic radiant supermomentum Q¢ vanishes in the A = 0
counterpart and, in consequence, that the news tensor vanishes there so that there is no
radiation —see theorem 3. This limit reinforces the validity of criterion 1.

Apart from p®, it is possible to study the limit of the radiant supermomenta of
egs. (5.48) and (5.49). The first thing to do is to define a couple of lightlike vector
fields on ¢ in a way that their limit to A = 0 is well-behaved. This can be achieved by
multiplying the expressions on the right-hand side of eqs. (7.6) and (7.7) by N,

. 1

K®:= — (N*+ M®) | (5.81)

K* =

S-S

(N = M), (5.82)
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where M := Nm® with the following normalisations:
9 K"K"=N? g, M'M"=N? g, N'M"=0. (5.83)
Vector fields on _# of the kind of M“ obey:

Lemma 5.5.1. Assume that limy 09,5 exists and let M* be any vector field on _#
whose norm is proportional to a positive power of the cosmological constant A. Then,

lim M £ BN®
A—0

, (5.84)

A=0

for some function B which may have zeros.

Proof. We know that the limit N¢ does not vanish and is lightlike at _#;. Then, we

A=0
have
; ) = 1 p_
lim (g M¥ M) lim fA? =0, (5.85)
. waAtv\ _ 1: o /EO . o v
/1\11)1% (gWM N ) = /1\13})0 =0= /1\1{)% (gWM )N , (5.86)

A=0

where f is a function and p € R, p > 0. The first of this formulae implies that the limit
of M* is either lightlike or zero at _#,. Taking this into account, the second formula
indicates that, if different from zero, the limit of M® has to be proportional to N% —as
the scalar product of two non-vanishing lightlike vector fields is zero if and only if they
are collinear. O

Then, by lemma 5.5.1, the limit of K reads

) Jo 1
lim K® %2 — (14+ B)N®| . 5.87
lim \/5( ) _ (5.87)

After this, define the radiant supermomenta associated to K o

‘¢ =~ "K"'K"'K"D*, (5.88)

q"=— K'"K" K'D*,, . (5.89)
these are nothing else than the radiant supermomenta given in eqgs. (5.48) and (5.49)
appropriately rescaled by a factor N3.

Lemma 5.5.2. Assume that lim, 0 g, exists. The radiant supermomenta (5.88, 5.89)
have, respectively, the regular limit

W 1
lim “¢° £ 550 B)* Q° (5.90)
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Figure 5.5: In the A = 0 limit vector fields of the class described in lemma 5.5.1 become

collinear with N®| , the vector field tangent to the null generators of _#;.
A=0

where Q¢ is the asymptotic radiant supermomentum (5.80) on _#, for a vanishing cos-
mological constant and B is a function which may have zeros. Moreover,

}\ir% +q°‘ =0= }\ir% ¢ = O° 20— No gravitational radiation at _#;.
— —

Proof. The limit of iq‘;Y is computed using eq. (5.87). Then, one notices that for non-
vanishing ﬁqu‘, it is not possible that both radiant supermomenta vanish simultaneously

in the limit unless Q% ey 0. The reason is that

B e . tq S 1 3 Aa

B=1 = /l\lg(l) q¢* =0, /1\11% = W5 (1+ B)" 9, (5.91)

_ S s 1 . 3 Aa . ta

B = 1:>/l\1g(1)q —2\/5(1 B)” Q% Il\lg%)q =0, (5.92)
a1

B#+1 = lim ¢° (1+B)’Q*. (5.93)
A—0

Hence, if we assume B = 1, limy_,o ¢* = 0 <— Q* £ 0. But if B = —1, then
limy 9 ¢ =0 <= Q“ Ly, Finally, if B # 41 the only possibility is limy .o ¢ =0 =
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limy o g <= Q* 2 0. 0

Corollary 5.5.1. If one (and only one) of the asymptotic radiant supermomenta jch“ of
eqs. (5.88) and (5.89) vanishes, then B = F1 and

lim M 2 £Ne| | (5.94)

A—0 Ao

lim K Ly, (5.95)
—

lim K £ 2N (5.96)

A—0 Ao

Proof. From the proof in lemma 5.5.2, if iq"‘ = 0, one has B = F1. Setting the corre-
sponding value of B in eqgs. (5.84) and (5.87) gives egs. (5.94) to (5.96). O

These results have a particularly interesting interpretation regarding incoming versus
outgoing radiation and intrinsic evolution directions that will be presented in section 7.3.
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Alli.

En el fondo.

Al filo.

Donde Nietzsche escribias:
“Di tu palabra y rémpete”.
Donde nadie te espera.

Benjamin Prado, Limite. Todos nosotros, 1998.

6 | In the search for news

_®_

In sections 5.3 and 5.4, we presented a gravitational radiation condition at infinity and
a characterisation of the asymptotic Petrov type of the rescaled Weyl tensor. The latter
was related to the directional-dependence problem and with the definition of an intrinsic
‘evolution direction” within #. A further step forward in the characterisation of grav-
itational radiation would be to find a news tensor, i.e., an object describing in the full,
covariant theory the two radiative degrees of freedom of the gravitational field like in in
the A = 0 case —see chapter 5. We wonder if a similar tensor may exist in the presence of
a positive cosmological constant and, if so, under which conditions.

It is worth recalling that historically the news tensor for A = 0 has been under-
stood from different perspectives: a term in the asymptotic expansion of the metric, the
derivative along N® of the shear tensor of outgoing null geodesics or, the most robust rep-
resentation, a rank-2 symmetric tensor field intrinsic to #, orthogonal to N everywhere
and depending on the geometry of (_Z, h,,) only. However, none of these approaches can
be completely successful if A > 0, since such a tensor, if it exists, must contain informa-
tion related to the electric part of the rescaled Weyl tensor; this is studied in sections 6.3
and 6.4 and also in section 7.2.

For the rest of the chapter, we will work with an arbitrary cut, as introduced in
section 5.1. We denote by { E“, } any basis of vector fields on S and by r* the unit normal
to the cut within _#. Let us emphasise that r is defined at least on S but not necessarily
everywhere on ¢, neither it is tangent to a congruence of curves on ¢ in general. The
metric g, is inherited from the ambient metric h,, and we denote the second fundamental
form, its trace and the shear by £ ,5, & and )3 A, respectively. Also, €,5 is the intrinsic,
canonical, volume two-form of the metric q,5. For more details, see appendix A.2. In
the same fashion as eq. (5.47), we introduce a pair of vector fields 'k, defined at least on
S. Notice that jE/cOZE‘* 4 = 0. Let us present some useful relations involving the intrinsic
Schouten tensor S, and the extrinsic curvature of S. First, define the tangent and

101
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orthogonal components to S —according to the general notation (2.35, 2.38)— as
Fab i gTa’/’b _'_ 2§BT(aWb)B + gABWaAWbB . (61)
After this, project eq. (3.85) thrice with £, and once with r* and use eq. (5.8) to obtain

qA[CSB] = D[C,%B]A 3 (62)

whose trace reads
SB :DCI%BC_DB/% . (63)

Also, by eq. (5.8) and egs. (A.31) and (A.32), it can be seen that

s 1 1 .
5 < — K Ryrtr 2 5K 5%, (6.4)
: le, 1
SE, =K+ 522 — Z’%Q : (6.5)

Here, K is the Gaussian curvature of the cut, which is related to its scalar curvature as
K = R/2 —see appendix A.2 for more details.

6.1 General considerations

The news tensor in asymptotically flat space-times vanishes if and only if the radiant
asymptotic super-Poynting does so —see chapter 4; indeed, the asymptotic superenergy
acts as source for the news tensor. In the presence of a positive cosmological constant,
however, the asymptotic supermomentum is not radiant. Thus, a question arises: do we
look for a news tensor which can be associated to a radiant supermomentum in a similar
fashion as in the A = 0 case or, alternatively, one that vanishes if and only if the asymp-
totic super-Poynting vanishes? In section 6.3 we will present a general programme valid
for both possibilities, while in section 6.4 we will explore thoroughly the first one.

Generically, we expect any news-like object to have some basic properties. First of
all, the would-be news tensor must appear at the energy-density level. From this point of
view, it is reasonable to think that the gravitational radiative degrees of freedom cannot
be extracted by local methods alone — for a discussion in the asymptotically flat case,
see [102]. For A = 0, _# is naturally foliated by two dimensional cuts; this is not the
case for A > 0 in general, and for that reason we are just considering a single cut S.
Another important difference is that in the A = 0 case any cut has a unique, lightlike,
orthogonal (outgoing for # %) direction that escapes from the space-time and is linearly
independent of the (incoming for ¢ ) lightlike direction given by the generators of #.
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For A > 0, there are always two independent, future lightlike directions orthogonal to any
cut S on _# pointing out of (or into) the space-time, K. Therefore, a priori there is no
reason why there should be only one news-like tensor for each cut instead of two, one for
each radiant supermomentum associated to ke, Secondly, to describe the radiative sec-
tor the would-be news tensor(s) should have two degrees of freedom. The most plausible
object is a symmetric, traceless, rank-2 tensor. Thirdly, it has to be gauge invariant to
have physical significance. Finally, a key feature that will guide us is that we want it to
vanish if and only if some meaningful superenergy quantity vanishes, such as the radiant
super-Poynting ig‘ or the canonical asymptotic super-Poynting P*. Thus, according to
eqs. (2.15), (2.54) and (2.55), the news tensor has to carry information from both the
magnetic C, and the electric D, parts of the rescaled Weyl tensor.

More concisely, the properties that the would-be news tensor is expected to have are:
i) Rank-2 tensor field on S.

ii) Symmetric.

iii) Traceless.

iv) Gauge invariant.

v) Contain information related to C,, and D,,.

vi) Vanish if and only if some meaningful superenergy quantity does (e.g., Z =0

or/and Z =0, or P* =0).
6.2 A geometric result: the counterpart of Geroch's tensor p

Here we present an intermediate and crucial step in our search. It begins with the following

. S
lemma, where w, = D w:

Lemma 6.2.1. Let t,5 be any symmetric tensor field on & whose behaviour under
conformal rescalings (C.15) is

- 1. 2a , a ., .o
tap =tap — aaDAWB + 2WAWE T 5 5Wel dap (6.6)

for some fixed constant a € R. Then,

. 1 ]
Dictayp = Dictap + " (aK - tEE) WicdalB > (6.7)
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where K is the Gaussian curvature of (S,q,5). In particular, for any symmetric gauge-
invariant tensor field B,5 on S,

. 1 ]
D[CBA]B = D[CBA}B — ;BEEW[CQA]B (68)

Remark 6.2.1. This results applies locally and it is valid for any Riemannian surface,
independently of the topology.

Proof. Using the formulae in appendix C for cuts, a direct calculations yields

- 1 . 1 . L.

D[CtA]B = D[CtA]B + ;tB[CwA] + ;qB[CtA]DwD + ;‘IKW[CQA]B . (69)
Then, one uses the two-dimensional identity [121]

AgE = 25[]:34AC]DD, for any tensor such that A, % = —A,.* (6.10)

in order to write

“tpio@a + —qeot gPop = ——tF o 6.11
o Blca) +qu[C Al Wo ol B¥cdas (6.11)

arriving at the final result. For a gauge invariant tensor a = 0 in eq. (6.6), therefore one
only has to set this value in eq. (6.7) to obtain eq. (6.8). O

Corollary 6.2.1. A symmetric gauge-invariant tensor field m 5 on S satisfies
Diciitga = Diepa (6.12)
if and only if m¥ = 0.

Corollary 6.2.2 (The tensor p). If S has S?>-topology, there is a unique symmetric tensor
field p 45 whose behaviour under conformal rescalingseq. (C.15) is as in (6.6) and satisfies
the equation

Dicpas =0 (6.13)

in any conformal frame. This tensor field must have a trace pf, = aK and obeys
£ypap = —aD,Dpo (6.14)

independently of the conformal frame, where x4 is any CKVF of (S,q,5) and ¢ :=
Dy xM /2. Specifically, it is invariant under transformations generated by KVF (and
homothetic Killing vectors) of (S,q,p). Furthermore, it is given for round spheres by

PaB — QABaK/2'

Proof. Existence is proved by using the (trivial) L*-orthogonality of the right-hand side
of eq. (6.13) with all conformal Killing vectors on S (see for instance [134], appendix
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H) or, more directly, by noticing that p,5 = qspaK/2 fulfils D,pp- = 0 in the round
metric sphere. Concerning uniqueness, notice that lemma 6.2.1 fixes the trace of p,5 to
pPp = aK, and recall the assumption that eq. (6.13) holds in any gauge. Then, if two
different solutions p,p and p,p exist, D, ( Pas— La B) = 0. However, in that case,
the difference p, 5 — pup is a traceless, Codazzi tensor on S* and, as a consequence
of the uniqueness of this kind of tensors [113], p 5 — pap = 0. To show eq. (6.14),
first define M5 = Lypsp +aD,Dg¢. This tensor field is gauge invariant and using
D,DM¢p = —£;K — 2¢K (this formulae can be found in appendix F of [122]) and
pc = aK one derives M, = 0. Also, write the formula for the commutator [£g, D]
(see e.g. [120]) acting on p,p

(£3Dc = Do £5) pap = —PEAfifECB - pEBfifECAa (6.15)
which, noting that
L3 cp =06Dgd + 05Dcd — qped” "D (6.16)
can be antisymetrised to get

(fip[c - D[cfi) pap = —PaDey® + dpiora Prd - (6.17)

Making use of eq. (6.13) one arrives at
1
DicMyp = ppaDlo® — dpopa Pud + CL§K (5ﬁxQC]B - QB[Aég]) =0 (6.18)

where the first equality follows by 2DDyDyo = Z%C 15-Dpo, and the second using
the identity (6.10) together with p®, = aK. Because M,p is symmetric, traceless and
divergence free (a “TT-tensor’) on the compact two-dimensional S? necessarily M, = 0.
For (homothetic) KVF, ¢ = constant and eq. (6.14) reads £5p 5 = 0, i.e., pyp is left
invariant by (homothetic) KVF. O

Remark 6.2.2. Let ¥ be a CKVF on (S, q,5),

L5448 = 2044p; (6.19)

generating a one-parameter group of local conformal transformations { \If} onS (( \If*q> =

AB
D2q,p) with ¢ :=d &/de| and &
conformal transformations 120

= 1. Then, the finite change of p 45 under these

e=0

5 1 2a a
PAB:PAB—GEDA E(I)B—i_?eq)fl fI)B_WfI)C fI)CQAB (6‘20)

€ €
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with @, := D, ®. Expression (6.20) follows from eq. (6.14) and the exponential map
from the Lie algebra to the finite group of conformal transformations.

Corollary 6.2.3 (The tensor p for non-S? manifolds). Let (S,q,5) be a 2-dimensional
Riemannian manifold, no necessarily with S? topology, and such that there exists a CKVF
x4 with a fixed point. Then, there is a unique symmetric tensor field p,; on S whose
behaviour under conformal rescalings (C.15) is as in (6.6) and satisfies the equations

Dicpap =0, (6.21)
Lipap = —aD,Dpo (6.22)

in any conformal frame, where ¢ := D,,;x™ /2. Furthermore, this tensor field must have
a trace p, = aK, is given for the metric with constant positive Gaussian curvature by
pap = qapal /2, vanishes for the flat Euclidean metric and is invariant under transfor-
mations generated by x* when this is a KVF (that is, when ¢ = 0).

Remark 6.2.3. In two dimensions the CKVF y# with a fixed point generates an axial
symmetry locally around the fixed point (see [135]). The existence of such vector field is
ensured for § =$?, § = §?\ {p1} = R? and § = S' x R —see appendix F in [122].

Remark 6.2.4. The further requirement of eq. (6.22) with respect to corollary 6.2.2
provides the uniqueness of p,z. Note that this is a natural condition to be imposed.
Actually, the validity of (6.22) for any CKVF would be motivated on physical arguments
as well, for it makes the tensor p,p respect the symmetries of the cut. This also would
fix the behaviour under finite conformal transformations to be of type (6.20).

Proof. Existence is proved by noticing that p,p = q4pak/2 fulfils D,pg- = 0 in the
metric with constant positive Gaussian curvature, and one can check using the gauge
change (6.6) and eq. (6.22) that this gives the vanishing tensor for the flat metric. Con-
cerning uniqueness, the proof follows along the same lines of corollary 6.2.4 and we also
arrive at D ( Pa— LA B) = 0, if two different solutions p,p and p,p exist. Then,
choose the conformal frame such that x* becomes a KVF (which necessarily keeps the
fixed point). To see that p,p is left invariant by x* in this conformal frame, one only has
to set ¢ = 0 in eq. (6.22). Now, the difference p 5 — . is trace- and divergence-free,
i.e., a TT-tensor which also fulfils the so called KID equations [136] for xy because of its
invariance by this KVF and we are working in 2 dimensions. Now, a result in [137] states
that the only solution to this problem if the KVF has fixed points —as it is the case of
x“- is the trivial one. Hence, Pap — Lap = 0. To see that uniqueness holds in any
conformal frame, recall that if two solutions exist, they have to coincide in the particular
frame(-family) in which y* is a KVF. Since the change of any two solutions to that frame
is the same (given by eq. (6.6)), the only possibility is p,5 = p4p in any conformal
frame. The proof that p,; vanishes for the flat metric will be completed below. O
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By these means we can recover, in a direct manner, a non-trivial result on the sphere
S? (with any metric) —first proven in [138],

Corollary 6.2.4. Let, as before, (S, q,5) be any Riemannian manifold, topologically S?,
with metric q,5. Then, for every conformal Killing vector field x4

/ LeKE=0. (6.23)
S

Proof. Equation (6.13) is equivalent to its trace,

D¢ (pa” — ad®,K) 20, (6.24)
which is a gauge invariant equation too. Contracting with y* and integrating over S one
obtains the desired result, noting that 2D 4 x 5y = ¢apDc x°. O

From now on, we will use p,p to denote this tensor field in the case a = 1. We

will later need the gauge change of the tensor pap but using the covariant derivative D "
instead of D,. To that end, we can use (6.6) with @ = 1 but applied to the conformal
change ¢ 5 = w2445, so that

2
~ S — S LR — w= ~ 1 1~

and expand the righthand side to get
1

ﬁqCD@c@DQAB . (6.26)

-5 D, —
PaB pAB+w AWE T 5

Interestingly, p,p is closely related to the p tensor field defined by Geroch in the
asymptotically flat case [17] —see corollary 4.2.2. Indeed, they are the same objects when
the latter is restricted to a cut. Its role in the existence of a news tensor will be made
clear in section 6.3.

6.2.1 The tensor p for axially symmetric 2-dimensional cuts
One can give the explicit form of p,5 for any 2-dimensional metric with axial symmetry
q4p- Lets choose coordinates x4 = {p, p} such that

q=F(p)dp* + G (p) dp? (6.27)
and 0, is the axial KVF. This metric is locally conformal to the round metric with constant
positive Gaussian curvature K

1
Q=7 (462 + sin® 0dp?) . (6.28)



108 6.2 | A geometric result: the counterpart of Geroch's tensor p

Assume that the conformal factor w relating both metrics (q45 = w?§4p5) Tespects the
axial symmetry. Then,

2 2
_ W o _Wgr A0
G(p) = 7o sin 0, F(p) = K@ , 0= s (6.29)
yields
20 ec S /Gy 1 — tan? (62
tang — Cec S VG ging = Ce , cosf = #(9/), (6.30)
2 1+ C2e2¢ [ VF/Gdp 1 + tan® (0/2)

where C has to be fixed (making the value of p at the fixed point of d4 correspond to
6 =0or 6 =m)and ¢ = 1. With this, the conformal factor reads

(6.31)

1 F' G dF dy)
—D wpdz?dz? = (¢ — — ) dp® + —wde?, with Fli=—, ¢/ = —
(6.33)

Setting pup = %K Gap and using the inverse conformal behaviour (6.26) one gets

1 w? 1
PAB =53 K + fiﬁ dap — ;DAWB : (6.34)

Now, inserting eq. (6.31) in this last expression gives the explicit form of p,5 for any
axially symmetric ¢,p5 (6.27):

y— ;w) QW (1 in?0+ 2 (Gy - G’)) 0

o F’
papdrtda? = ( sin? 0 — ' + 5 5
(6.35)

2G 2F

where sin? # must be understood as the function of p given in eq. (6.30).

We can apply the formula above to compute p 45 for the flat Euclidean metric written
in polar coordinates. This is simply eq. (6.27) with F(p) = 1 and G(p) = p?, while it can
be checked that the conformal factor is w = 1+ (K/4)p?. Application of eq. (6.35), where
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one must fix e = —1 and C' = 2/ V'K, then leads readily to

PAB’flat =0.

This finishes the proof of corollary 6.2.3

6.3 General approach to gauge-invariant traceless symmetric tensor

fields on ¢

We present a way of constructing equations for tensor fields fulfilling properties i) to iv)
on page 103. To that end, we take as starting point eq. (5.14) and contract it with r*E°,
to obtain

NCA = P (D Sy + ko Spy ) - (6.36)

By eq. (6.3), the right-hand side of eq. (6.36) can be rearranged as

EP (DUp™ = Tep™) (6.37)

with
Uap =S4 + ;"%iAB + (5132 - i22) qas =Uusg) » (6.38)
TABC = ; [5C[ADB] 22 —DC (ZO:D[B) iA}D} = T[AB]C ; (6.39)

and we can write eq. (6.36) in the equivalent form

1. .

§N€CACB =DicUnp —Toas - (6.40)
Observe that since T3¢ is antisymmetric on its two covariant indices, by the identity

(6.10) it is completely determined by its trace

1

D32 = 2Dy (£p5) + 357De (8] - (6.41)
The point of this decomposition is that Tz~ is gauge invariant
TABC = Typc (6.42)

and that U, transforms as

~ o 1 . 1., .
Upp =Uysp + 2WAYB ;DAWB - TCUQWPWPQAB : (6.43)
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where we have used the formulae of appendix C. In addition to that, taking eq. (6.5) into
account, the trace of U,y reads

R
Uty = 7 =K. (6.44)
Remarkably, these are the gauge behaviour and the trace of the tensor required to prove

the following:

Lemma 6.3.1. The tensor field D Up;, is gauge invariant,

Proof. 1t follows from lemma 6.2.1, noting the gauge behaviour of U,z —eq. (6.43)— and
its trace —eq. (6.44). O

Remark 6.3.1. In particular, the combination DioUp 4 +Tpc 4 is gauge invariant too, as
follows from the gauge invariance of Ty 5. This can also be proven looking at eq. (6.36)
and noting the gauge behaviour of C4 (see appendix C).

We write now an important result:

Proposition 6.3.1 (First component of news). Let (S, q,5) be a 2-dimensional Rieman-
nian manifold endowed with the metric ¢,5. If ¢4z has a CKVF with a fixed point, the
tensor field

Vap =Uap — Pag (6.46)

is symmetric, traceless, gauge invariant and satisfies the gauge-invariant equation
D[AUB]C = D[AVB}C ) (647)

where p,5 is the tensor field of corollary 6.2.3 (for a = 1). Besides, V5 is unique with
these properties.

Proof. The tensor field V,; is symmetric, traceless and gauge invariant as a consequence
of Equations (6.38), (6.43) and (6.44) and corollary 6.2.3. The uniqueness of V, 5 follows
from corollary 6.2.3 too and Equation (6.47). O

Remark 6.3.2. The existence of a CKVF with a fixed point is warranted for the topolo-
gies S =S?, S =R x S' and § = R? —see appendix F in [122].

In passing, notice the identity that follows taking the trace of eq. (6.40) and applying
proposition 6.3.1:

/ \® (NegpCF — 2T, ) =0 ¥ CKVF x” on a topological-§2 5. (6.48)
S
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We consider V5 an essential component of any news-like tensor as will be justified in
section 6.4. In general, one has

Proposition 6.3.2. Let (S,q,45) be a 2-dimensional Riemannian manifold with S?-
topology endowed with the metric q,5. If the equation

D[CZA]B = YCAB (649)

for a given gauge-invariant tensor field Yo 45 = Y|c4p has a solution for Z,5 = Z 4p,
whose gauge behaviour is given by (6.6) with a = 1, then this solution is unique and given

by

where X 5 is the unique traceless gauge invariant symmetric tensor field solution of
1 ... -
D[CXA]B =Youp — §N€CACB —Teap - (6.51)

Proof. Lemma 6.3.1 ensures the gauge-invariance of DicZ B> provided X ,5 is gauge
invariant and traceless and applying corollary 6.2.1. For the second part, note that by
eq. (6.40)

1. . -
DicZyp =D Xgp + §N€CACB +Teap (6.52)

from where eq. (6.51) follows immediately. If two different solutions 7,5 and _Z,p
exist, one has D ( Zag — 24 B) = 0. Then, because their difference is a traceless
Codazzi tensor on S?, the only possibility [113] is Z,5 — ,Z,5 = 0. O

Remark 6.3.3. The S? topology can be dropped from the assumptions if (S,q,5) is a
2-dimensional Riemannian manifold such that there exists a CKVF x# with a fixed point
and Z 5 fulfils the KID equations [136]. For proving this, one applies the result of [137]
which was used in the proof of corollary 6.2.3 to show that Dy, ( Zap — 2ZA]B) =0
implies 1ZA]B — 2ZA]B =0.

Remark 6.3.4. By proposition 6.3.1 (or with different appropriate assumptions, corol-
lary 6.2.3) and eq. (6.50), the general eq. (6.49) is written as

D[CNA]B =Youn (653)
where we have defined the gauge-invariant traceless symmetric tensor field
NAB = VAB +XAB . (654)
Equation (6.53) is equivalent to its trace,

DN, =2Y,, (6.55)
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with
Y, =Y., 4. (6.56)

Remark 6.3.5. For S topologically S?, solutions to eq. (6.53) exist if and only if

/S EYé=0, (6.57)

for any CKVF on (S, q,5) (see [134], appendix H). In general, one can always prescribe
Yoap (equivalently, Y, ) such that solutions exist, one plausible option is

Yy = AyDgy, Yy C*(S) (6.58)
which follows from a result proven in [138]: if assumptions in corollary 6.2.4 hold, then
/3 AyL yé =0, Yye C*(S) (6.59)

and this statement is conformally invariant.

N ,p as defined in (6.54) is our candidate for the news-like object we are secking. It
has two ‘components’, one given by V, 5 which is fully determined on each cut (see next
parapgraph), and another component, yet to be uncovered, which depends on the choice
of Y, . Note that N, fulfils properties i) to iv) on page 103. According to remark 6.3.5,
prescriptions of Y, 5~ are always possible such that these kind of tensor fields exist as
solutions to eq. (6.53). Nevertheless, the great difficulty stems in fizing Y, 5o such that
N, 5 makes a reasonable news tensor that satisfies all the requirements on page 103, in-
cluding properties v) and vi) too.

At this stage, there is no reason to ensure that there exists some function y such that
the choice (6.58) meets all these points in general. Observe, in this sense, that eq. (6.40)

in terms of V5 reads

1 . -
§N€CACB = D[(JVA]B —Teap (6.60)

and, therefore, V,5 is completely determined by C 4 and the intrinsic geometry of #.
Hence, in order to achieve a N, satisfying property v) in addition to the other ones
on page 103, the choice of Y,5~ has to incorporate the dependence on D_,. Not only
that, but it has to vanish in accordance with some meaningful superenergy quantity. As
mentioned earlier, there are several options for this quantity, such as the asymptotic super-
Poynting, or radiant 1. The problem of in- and out-going radiative sectors seems to make
it difficult to find a second component of N,5 associated to the former, as it contains
information from both sectors. This last difficulty can be connected to the freedom in
choosing a radiant 1 at _#. Next section deals with these issues by proposing a particular
fixing of Y, 5o -
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6.4 Second component of news

Now we take as a guide property vi) on page 103; throughout this section, in particular
we choose to focus on the vanishing of “Z. In the light of egs. (2.54) and (2.55), it is
+

clear that it is convenient to work with the quantities C',. Observe that eq. (6.60) can
be rewritten using properties xxi) and xxii) on page 212 as

NCA = P (D Vi * + Tpe ") (6.61)
2N CA 4+ NeADy, = &P (Do Vi * + Tpo™) (6.62)
2N C4 = NeACDy = &P (Do Vi * + T ) (6.63)
or equivalently
NépyCP = —D,V, P + 2T | (6.64)
ONépy CF — NDy = —DyVy P + 2T, | (6.65)
ONépy CF+ NDy =D,V P + 2T, . (6.66)

Recall that egs. (6.62), (6.63), (6.65) and (6.66) are nothing more than egs. (6.61)

o
and (6.64) expressed in terms of C',. It is useful to have them at hand, though.

One approach is to look for the necessary and sufficient conditions such that

—2N¢P'Cp =D np” | (6.67)
—2Ne&RPCy =Dy np” (6.68)

for “n ap Symmetric traceless gauge invariant tensor fields on S. These are the particular
versions of the general N, for the choices (6.67) and (6.68), as we prefer to keep the
generic name N, for the general method. The left-hand side of these equations corre-
spond to two different —compatible— choices of Y, in eq. (6.55), respectively. Hence, we
define

Y, = NP0, Y, = Negt o, (6.69)
Let us emphasise once more that V, 5 fulfils properties i) to iv) on page 103. According
to eq. (6.61), it does not satisfy property v) because it carries no information about D, .
Thus, intuitively one would expect the second component of n AB> D¢ Ap, to come from
an equation for D, such that the generic expression (6.54) becomes now

Mag=Vig + Xap , (6.70)
g = Vi + Xap (6.71)
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where “X 4p are unknown symmetric traceless gauge invariant tensor fields on §. Each
of them corresponds to a solution X ,5 in eq. (6.54) of the general approach . It can be
checked by direct computation that the necessary and sufficient conditions for egs. (6.67)
and (6.68) to hold are

1 1

—iNf)B =Ty + 5DC*XBC : (6.72)
1. 1. -
5NDp =Ty + ;Dc X7, (6.73)

which are satisfied if and only if for any CKVF x? on S

/ EY,e=0, (6.74)
S

/SXB*YB E=0, (6.75)

which of course fits the general construction —see remark 6.3.5. Summarising, if egs. (6.72)
and (6.73) hold, eqgs. (6.67) and (6.68) are satisfied for n 5 as in egs. (6.70) and (6.71)
and their square produces the following formulae:

N2 =Dg ('npS) Dp (nPP) (6.76)
N*Z =D (%) Dp (0"P) . (6.77)

Let us remark that the tensor fields X, satisfying eqs. (6.72) and (6.73) do not nec-
essarily exist in general. They are the two second components of n ap according to the
next result:

Proposition 6.4.1 (Radiant news). If the condition of eq. (6.72) (eq. (6.73)) holds on a
cut S with S?-topology, then

up=0<= Z=0. 6.78
AB
(nap=0+= 2=0) . (6.79)

Hence, n,p (n,4p) fulfills properties i) to vi) on page 103. Therefore, n 5 (7n,45) can
be seen as a news-like tensor for 'Q° ("Q") and we call them radiant news.

Proof. Properties 1) to iv) are fulfilled by the definition of 45 (7.,45), see eq. (6.70)
(eq. (6.71)) where V, 5 is the piece of news of proposition 6.3.1. From egs. (6.62) and (6.72)
(egs. (6.63) and (6.73)), property v) is fulfilled, as well. Since 7,5 (1 4p) is a symmetric
traceless tensor field on the sphere, n 5 = 0 <= Dy 1" =0 (7, p =0 <= D, ny’ =
0), and that, by eq. (6.67) (eq. (6.68)), this holds if and only if ¢, =0 (C, = 0) —
which by eq. (2.54) (eq. (2.55)) and property iii) on page 15, holds if and only if "Z = 0
(Z2=0). O
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Proposition 6.4.2 (Radiant pseudo-news tensors for non-S? cuts). Assume that the
condition of eq. (6.72) (eq. (6.73)) holds on a 2-dimensional Riemannian manifold (S, q,p5)
whose topology is non-necessarily S? and that the metric ¢, possesses a CKVF x4 with
a fixed point. Then,

=0 = Z=0. (6.80)
(Map=0 = Z2=0). (6.81)

And 7,5 (n,p) has all the properties i) to v) on page 103 but not property vi). There-
fore, we say that n 5 (7n45) is a pseudo-news tensor for 'Q* (" QF).

Proof. The first part of the proof follows the same lines as in proposition 6.4.1, where
now the tensor V,; is the one of corollary 6.2.3. Then, by eq. (6.67) (eq. (6.68)), T g =
0 = ¢, =0(nus =0 = €, =0) —which by eq. (2.54) (eq. (2.55)) and
property iii) on page 15, holds if and only if 'Z = 0 ('Z = 0). The converse is not true
in general, as the topology of S can be other than S2. n

Remark 6.4.1. Given any cut S with S*topology on _#, there always exists a unique
(intrinsic) first component of news, V5 , which is determined by the intrinsic geometry of
(7, h,,) and the cut. The existence of the entire news-like tensor depends on information
extrinsic to ¢ and, concretely in this section’s approach, on D 4, from where two different
second components, X a5 can emerge. Note that these tensor fields are extrinsic to ¢, in
the sense of not being determined by (_#, h,,). Eventually, one ends up with none, one or
two different radiant news tensors, “n 4, Which are each one the sum of the corresponding
first and second component — see egs. (6.70) and (6.71).

There are simple cases in which the conditions for the existence of news, eqs. (6.72)
and (6.73) (equivalently, eqs. (6.74) and (6.75)) are fulfilled. The following result shows
this:

Lemma 6.4.1. Consider any umbilical cut S with S*-topology on _# such that r, defines
a strong orientation on S, i. e., Z 2. Then, there always exists the radiant news given
by

ap=2Vag - (6.82)

Proof. On the one hand, the umbilical property (3,5 = 0) implies that 7, = 0 (see
eq. (6.41)). On the other hand, 2 = 0 <= D, = 0 — C, = 'C,. These two
conditions together make egs. (6.61) and (6.64) read

NC* = ePD Vi (6.83)
NEBE+éE - _DEVB 2 . (684)
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Thus, eq. (6.67) reads
29D,V " =Dy 'y . (6.85)

Then, one finds Dy (+ﬁBE —2Vp E) = 0, which holds if and only if n,p = 2V,z —the
divergence of a traceless, symmetric, two-dimensional tensor field on the sphere vanishes
if and only if the tensor itself vanishes. O]

In chapter 7, we will study how to extend these objects to tensor fields on _# by
introducing additional structure on _#. The relation between the radiant news and the
radiation condition of criterion 1 will be analysed in section 7.2.

6.4.1 Possible generalisation

There is a generalisation of the approach we have presented. Since each cut S is two-
+

dimensional®, the vanishing of C 4 1s trivially equivalent to the vanishing of any linear
combination

£ o 4, pie

B Cg+ Ny~ Cp (6.86)
where the coefficients A and iﬁ are such that they do not vanish simultaneously, i. e.,

N=0 = B#£0, (6.87)

B=0= A#£0. (6.88)

In other respects, A and iﬁ are arbitrary real functions. One can ask these coefficients
to fulfil

_2N (+65EB + +)\€OBE) +CE - DC+HBC 5 (689)
_ _ _ 1 _
—2N (BoFs + A&p") Cp = 5Dc ngC (6.90)
for n 4p Symmetric traceless gauge invariant tensor fields on §. Notice that for A =1

and B = 0 we are in the situation described above for egs. (6.67) and (6.68). Now, one
has to define

+

Yp =N (+55EB + +)‘gJEzE) +CE7 7YB =N (756EB + 7)‘€DBE> 7CE' (6.91)

'For higher dimensions the proposed generalisation would not work. Nevertheless, in that other case,
one can always define a matrix A, such that A, 2P = 0 iff 27 = 0, where 2P represents a hypothetical

vector field playing the role of c 4 for dimension greater than 2.



€3 | In the search for news 117

Again, one expects the second components "X 4p coming from an equation for Zo)ab to be
part of “n 5, together with V-

nap=Vap + Xap , (6.92)

It can be checked by direct computation that the necessary and sufficient conditions on
A and B for egs. (6.89) and (6.90) to hold are

1 . 0 o 1

—5NDy =Ty + (N =1) Néyo CC + BN'Cp, + 5DC*XBC : (6.94)
1. - _ e _ g 1 _
5 NDp =Ty + (A =1) Nége €9+ BN Cyy + 50c X5° . (6.95)

which are satisfied if and only if for any CKVF x® on S
BT
[ =0, (6.96)
S
[ =0, )
S

which again meets the general construction of section 6.3 —in particular, see remark 6.3.5.
Notice that equivalent expressions to egs. (6.94) and (6.95) in terms of C, are

NG (N0 = Bes) Dy = Ty + N3 [B6% + (N = 1) &) Cp + 300 X,
(6.98)

NG (A% = Bes”) Dy = Ty + N3 [50% + (A =1) ] Cp + 3P0 X,
(6.99)

This time, the conclusion is that if eqgs. (6.94) and (6.95) hold, egs. (6.89) and (6.90)
are satisfied for the symmetric traceless gauge-invariant tensor fields 7, of egs. (6.92)
and (6.93). In that case, one has:

N? (82 + N) 2 = D¢, ('nC) Dy (PP) (6.100)
N2 (B2 + N?) 2 =Do (ns”) Dp (nPP) (6.101)

Proposition 6.4.1 can be generalised straightforwardly:

Proposition 6.4.3 (Generalised radiant news). If the condition of eq. (6.94) (eq. (6.95))
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holds on a cut S with S%-topology, then

g =0 Z=0. (6.102)
(nap=0+= 2 =0) (6.103)

and n 5 (n,p) fulfils properties i) to vi) on page 103.

Proof. The proof is very much the same as the one of proposition 6.4.1, only that now one
uses egs. (6.89), (6.92) and (6.94) (egs. (6.90), (6.93) and (6.95)) instead of egs. (6.67),
(6.70) and (6.72) (egs. (6.68), (6.71) and (6.73)). O

One can generalise lemma 6.4.1 too. In fact, the following result serves to exemplify
the role of the coefficients “A and iB:

Lemma 6.4.2. Consider any umbilical cut S with S*-topology on _# such that r, defines

a strong orientation on S, i. e., Z 5. Then, there always exists the radiant news n AB
for '\ = constant and B = 0 given by

g =2AV,p . (6.104)

Proof. One follows the same steps as in the proof of lemma 6.4.1, this time using eq. (6.89)
instead of eq. (6.67), arriving at:

1

Setting ‘A = constant and B = 0, one finds D, (%BE —2\Vy E) = 0, which holds true
if and only if n 4z =2AV, 5. O

Remark 6.4.2. Given the assumptions of lemma 6.4.2, other solutions exist, for instance
"B = constant and A = 0. The role of iﬂ and "\ is nothing more but to find solutions,
ie., X,p tensors, to egs. (6.94) and (6.95). However, for particular cases —as the one
described in lemma 6.4.2— they are pure gauge, in the sense that setting them to one
constant value or another provides a combination of the same gauge-invariant symmetric
traceless tensor field’s divergence and its dual, as it is the case of eq. (6.105) where the
(two) fundamental degrees of freedom are encoded in V,5. Still in that case, if one
considers A and iﬁ as functions it does not affect the fact that the vanishing of Z s
equivalent to the vanishing of V5 . This gauge freedom arises as a consequence of asking
Z , a scalar function, to vanish if and only if the diverigence of some radiant news tensor

does, which allows one to construct combinations of C 4 and its dual, as in eqs. (6.89)
and (6.90).
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_®_

As it has been commented in the introduction to chapter 5, the positivity of A spoils any
universal structure. For A = 0, such structure consists on the conformal family of degen-
erate metrics on _# together with a privileged set of curves: the generators. For A > 0,
if one wishes to generalise the concept of radiant news tensor presented in chapter 6 for
arbitrary cuts of ¢ to a tensor field on _#, study some sort of evolution of the physical
fields intrinsically to ¢ or carry out a close analogy with the A = 0 scenario, one needs
to endow _# with further structure.

In particular, a selected family of curves is introduced, trying to keep it as general
as possible. In section 7.3 it is seen that such kind of additional structures can be well
motivated by physical conditions. Hence, in this section the formalism presented in ap-
pendix A.3 is used, where the necessary notation and definitions for the congruences of
curves associated to a unit vector field m® on ¢ can be found. Also, the same notation
as in chapter 6 for objects associated to the decomposition of fields with respect to m® is
followed, only that now underbars will be used instead of over-rings so that they become
distinguishable from quantities resulting from the decomposition with respect to r*. For
instance, for the intrinsic Schouten tensor one writes

S = Smymy, + 2Sm Wy + 8,5 W, "W, " (7.1)

and, in general, for any symmetric tensor B,
B,s Z n“n"BwnanB +n“f’”(a nﬁ)BW +23Mn“m(an3) +mamﬁB—|—25(am5) + B, » (7.2)

d
an 1

Ba/B = Baﬁ - 5—046 —PHVBMV ) (73)

with

B,s =P, P B B,:=m"B,,, B,:=P,m"B B :=m"m"B (7.4)

2 a
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and with capital indices too,

o 5 1
Bapi=E"4E’yB,s. Bap=Bap —50,,8% Ba=FE'm'B, . (7.5

Also, define a couple of lightlike vector fields on _¢# as

+,

k= (n®+m®) , (7.6)

K = — (n® —m®) . (7.7)

Sl =Sl

This notation applies to all the objects coming from the orthogonal and lightlike decom-
position of the rescaled-Weyl tensor (see section 2.2).

Let us start by stating what is meant by additional structure on #.

Definition 7.0.1 (Equipped #). We say that an open, connected, subset A C _¢# with
the same topology than ¢ is equipped when it is endowed with a congruence C of curves
characterised by a unit vector field m®. The projected surface Sy := A/C and C are
characterised by the conformal family of pairs

(Eab ) ma) ) (78)

where P, is the projector to So. Two members belong to the same family if and only if
(P /) = (¥2P,,, Um,), where U is a positive function on ¢ .

We will usually assume that A is actually one entire connected component of #. The
curves of C are parametrised by any scalar function v such that £;v # 0, and thus it is
only defined up to the following changes:

v— (U,CA), ({;1;/7&0, (7.9)

where (4 label each curve —see appendix A.3 for further details. One can always choose
adapted coordinates such that
m® = Ad, (7.10)

for some function A. This form is preserved by (7.9) as long as (A.38) is enforced for the

¢t

The orthogonal decomposition with respect to m® of S, and C,, gives among other
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quantities
Sy =Dg (55" +wp®) — Dyt — 20w, (7.11)
S 1 1 3
SEE =K + 522 - 1@2 - 5@2 ; (7.12)
3

Observe that D, g AB and €, represent a one-parameter family of connections, metrics
and volume forms on Ss, because they also ‘depend on v > —see appendix A.3. Here, K
is the function appearing in eq. (A.90). Taking these remarks into account, the formulae
look aesthetically the same as for any single cut § if C is a foliation (<= w,z = 0) in
which case we use a different name according to the following definition

Definition 7.0.2 (Strictly equipped _#). We say that ¢ is strictly equipped when it is
equipped and the unit vector field m?® is surface-orthogonal, providing a foliation by cuts
S, for v = constant, that is

m, = FV v

for some scalar function F'.

Indeed, many of the forthcoming results are considered if this happens, however one
has to notice that even when the equations resemble the ones for cuts, they are different.
Some insights into the case of general C will be given in sections 7.2 and 7.4 as well. There
is a third level of equipment, the highest one, given by

Definition 7.0.3 (Strongly equipped #). We say that ¢ is strongly equipped when it
is strictly equipped and m? is shear-free, so that it defines a foliation by umbilical cuts.

Remark 7.0.1. This definition is the particular case of definition 7.0.1 with w_, = 0 (i.e.,
m? orthogonal to cuts) and X, = 0 (i.e., umbilical cuts).

7.1 Decomposition of the Schouten tensor: kinematic expression

We are going to deduce an expression for S, in terms of the kinematic quantities of m®.
To begin with, note that the combination

1
— Jab = Lndap — QZaded - 5“2(11; (7.14)

satisfies properties i) to iv) on page 103. Consider its pullback to S; —and use the identity
2ZADZBD = E]ABZQZ
Sy 1

— fap =X ap — QABZ2 - §HZAB g (7.15)
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with
S up = BB s £330 = Lalap (7.16)

where the right-hand side follows from eq. (A.56). This term can be replaced using the
projection of the Schouten tensor noticing that

P bf Py memdﬁebcd =P bf Pfym® (vevbmc - vbvemc)
= L£i¥pq — 28, Vaym® — kmpag + 2m% e, + apa, — P’ P4 V,a,
+ Emyap + KXgr + Zdere + (152 + ;mev(ﬁ) Ty (7.17)
or equivalently
B E ymm Ry =X 45 + apap — Daag + dap <;£ﬁz”f - ;22 + i“z) . (718

Next, use eq. (5.9) to get

ebc

Then, take the trace of eq. (7.18) and replace eq. (7.12) in the resulting expression,

1. 1.1 1., 1
-5= 52/ c+t §K — 122 + gij + 5 (QEQE - @EQE + £mf§) . (7.20)
After that, use egs. (7.18) to (7.20) to derive a formula for the projection of the intrinsic

Schouten tensor

1 5 1 1
Sig = _Z/AB +Djag —aap — 945 2 (PEQE — QEQE> _ 122 _ §K + 8/@} , (7.21)
or more compactly,
’ 1 E E e 1 C
Sap =~ ap + Daap — axap — a4, |5 (Dpa® —apa®) - 55% — 55%| . (1:22)

These formulae are interesting on their own and valid for a general foliation on _#. It is
clear that they have the correct trace and, using the formulae in appendix C, they give
the right gauge behaviour —compare with eq. (C.20) in that same appendix. In terms of
the gauge invariant quantity f,z, we have

1

1
Sap = fap + Dadp — 405 — EﬁzAB ~das

S (Dpa” — aga®) - Lye

1
K
2 - 4~ 2_jL
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7.2 Radiant news tensor field on equipped ¢

In chapter 6 we have shown that a gauge invariant traceless symmetric tensor field V5
on any two-dimensional surface (with S?-topology or, with further assumptions, non-S?)
exists. This applies to cuts with S*-topology on _# where it represents a first component
of news-like tensors and actually defines, under suitable conditions —proposition 6.4.1—,
radiant news for a radiant supermomentum. However, the question of a news-like tensor
field on ¢ is still open. To address it, first we present some geometrical results:

Lemma 7.2.1. Let (Z, h,,) be any spacelike hypersurface Z with metric h,, and define
P¢ = ¢ — m®m, for any unit vector field m® on Z. Then, there are no tensor fields
M,, on T such that M, := P¢ P% M, is symmetric and traceless (P“M_, = 0) for all

a Ci
3 a
possible m®,

{IM,, | My =M, P"M,=0 vYm'}. (7.24)
Proof. Given M, , assume that two different vector fields m®, m’* exist such that

0=M", =M, —m'“m'"M, (7.25)
0= M =M, —mmiM, (7.26)

Then, the only possibility for this to happen Vm?® is
memt M, = m/“m'* M, Ym'* # m®. (7.27)

Thus, either M,, = —M,, (which cannot give rise to a symmetric tensor Mab) or M, =
0. O

This is in contrast with what happens at the conformal boundary for a vanishing cos-

mological constant, where any symmetric and traceless tensor field orthogonal to N
A=0
on #!is a symmetric and traceless tensor field on any cut. Precisely, this applies to the

news tensor N, on ¢ for A = 0; its pullback N, 5 to any cut is symmetric and traceless
there —see section 4.2. In any case, in general one has

Lemma 7.2.2. Let (Z, h,,) be any spacelike hypersurface Z with metric h,, and M, and
M’ any couple of symmetric tensor fields on Z, each one orthogonal to a unit vector
field m® and m'®, respectively. Assume that ﬁCndd — 0 and P’ “M., = 0, where ﬁca
and P’ ¢, are the orthogonal projectors associated to m® and m’*. Then, the tensor field
B, = AM, + oM’
h“B,, = 0.

as for arbitrary coefficients A and 3, is symmetric and traceless,

'Recall that ¢ is lightlike for A = 0, and N is the vector field tangent to the generators.
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Proof. The tensor field B, is symmetric and notice that

hM,, = m*m®M,, + PM,, =0, (7.28)
heAM! = m/“m/ M+ P M, =0 . (7.29)
Therefore, h*“B,, = 0. [

From lemma 7.2.1 it follows that a unique tensor field on _# cannot generate a would-
be news tensor field assigned to every possible cut S on #. Also, lemma 7.2.2 shows
that a linear combination of would-be news tensor fields, associated each one to a differ-
ent family of cuts, gives rise to a gauge-invariant traceless symmetric tensor field on ¢
Such a combination will have in general more than two degrees of freedom. All in all, we
are led to search for a tensor field on ¢ associated to the congruence C of definition 7.0.1.

Having presented the above general results, let us come back to the asymptotic geom-
etry. First, consider the case of a general C (w5 # 0). Equation (7.13) can be written
using eq. (7.11) as

NCA = P (D Upy ™ + Wep™ = Sep?) (7.30)
where
1
Usp =954 + 562;;3 + Lap (7.31)
1 1 3
Lap = (52 -5+ 4c_u2> Uy (7.32)
Scap '=Toap +3 [PD (C_UBD) - Q/DC_UBDC_UCA} ; (7.33)
1

Teas =5 |15 D= = Do (57) S (7.34)

1 3 3
Weas = —§5DB@D@(JA +a”kppwea + 5@0,4@1:)’53[) - 5@0,4@35 ; (7.35)

and it will be convenient to define

The gauge behaviour of these fields follows by direct computation, using the formulae of
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appendix C,
. 2 1 c
Uap =Usp — ;P(A@B) + R2YAYE T 5 5wl dap (7.37)
Soa = ScaB (7.38)
Toap =Toap (7.39)
- 1 1 D 1 5
Weoap =Weoap — %ongDB@CA T Wea |7 pWp — §P3£mw — £mwp + meW@B
(7.40)
where wy := D,w. Precisely, the interest of these definitions is that the combination
DicUpjs + Wepy is gauge invariant,
@[CﬁD}A + Wepa = DicUpja +Wepa (7.41)
and
Uf, =K. (7.42)

In order to recover a result of the kind of proposition 6.3.1, it is reasonable to consider
the splitting
Vap =Uap — Pan (7.43)

for some p 4 fulfilling the gauge-invariant equation
Diappic + Wape =0, (7.44)

and V,p a two-dimensional gauge-invariant symmetric traceless tensor field on ¢#. This
would constitute the first component of news-like objects when ¢ is equipped. However,
while existence of general solutions to eq. (7.44) may be provable, uniqueness is in prin-
ciple a non-trivial task. Indeed, this is an open problem which should be studied carefully.

Now we focus on the case of a strictly equipped _#, so that C defines also a foliation
(w,, = 0). In this case, it is always possible to write eq. (A.103), using the freedom (7.9)
if needed, as

— 1
m, = FV, v with 7= £_v, (7.45)

and each leaf of the foliation C is a cut S,, labelled by a constant value of the parameter
along the curves, v = 0 = constant, and with basis {£%,},, {WCLA}U. Therefore, on each
leaf we are in the situation described in chapter 6 for any single cut. In other words,
proposition 6.3.1 and corollaries 6.2.2 and 6.2.3 apply on each leaf. Hence, one has on

each cut
%A Su o
NCA 2 EP (D Vi A = Top?) (7.46)
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or, by means of iQ s
2N 'CA 4 NeACD 2 P (Do Vi * = Top™) (7.47)
2N G4 = Ne*¥Dg, 2 P (Do Vi * = Top ™) (7.48)
Moreover, because w,p = 0,
Sapc = Taper, Wape =0, (7.49)
which makes eq. (7.30) read
NC* = P (DioUp* — Top?) - (7.50)

Inserting w,z = 0 in eq. (7.37) too, noting eq. (A.71), it turns out that U,z has a
recognisable gauge behaviour,

- 1 2a a
UAB = UAB — a;'Z_DAC_UB + EC—‘)A@B - ﬁb_dc(«_dchB . (751)

Then, one can show some important results for strictly equipped ¢ (the first two are gen-
eral i.e., not only for _# but for any Riemannian 3-dimensional hypersurface Z equipped
with a foliation),

Lemma 7.2.3. Let ¢ be strictly equipped and t 45 be any symmetric tensor field on S,
whose behaviour under conformal rescalings (C.23) is

1 2a a

A c
tap =lap — @;DAC_UB + L2PAYB T 5 %o (7.52)
for some fixed constant a € R. Then,
_ 1 5
Digtap = Dictap + (GK —t E) Wicd gp (7.53)

where now K coincides with the Gaussian curvature K of each cut at v =constant. In
particular, for any symmetric gauge-invariant tensor field B,z on S,

L. 1
P[CBA]B = D[CBA}B - EBEE('—‘J[CQA}B (7.54)

Proof. One proceeds as in the proof of lemma 6.2.1. n

Corollary 7.2.1. Under the same assumptions of lemma 7.2.3, a symmetric gauge-
invariant tensor field B ,5 on S, satisfies

@[CBB}A = D[CBB}A (755)
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if and only if BE, = 0.
Now one can prove the following two results:

Corollary 7.2.2 (The tensor field p for strictly equipped ¢ with S? leaves). Assume #
is strictly equipped with v the parameter along the curves (7.10) and such that eq. (7.45)
holds. If the leaves have S?>-topology, there is a unique tensor field Pap 00 7 orthogonal to
m® (equivalently, a one-parameter family of symmetric tensor fields p, 5 (v) := E*4 E’5p,,
on the projected surface So) whose behaviour under conformal rescalings (C.23) is as in
eq. (7.52) and satisfies the equation

P, Py PN pg = 0 (7.56)

in any conformal frame. This tensor field must have a trace p°, := P*p,, = aK and
reduces, at each leaf, to the corresponding tensor of corollary 6.2.2 with all its properties.

In particular, it is given for the round-sphere one-parameter family of metrics by p,, =
‘Pab GK/Q

Proof. Let S; represent a leaf of the foliation for constant v = 0. If we evaluate eq. (7.56)
at v = 0, i.e., on the leaf S; and contract all the indices with the basis on S;, {E*, }, we
obtain the following equation there

S 0

Do (pap) =0 (7.57)

where D, is the canonical covariant derivative on S;. But the solution to this equation

exists and is unique
Sy
PaB = LAB (7.58)

with  p,p the tensor field of corollary 6.2.2 corresponding to S;. Then, one can define
Pap at any leaf simply by

Si
Pab = W, w, P L AB (7.59)

and this holds on each leaf —i.e., at any value of v. Since ¢ = LUJSU and S;, NS;, = 0 for
0y # 09, at every point on _Z eq. (7.56) has a unique solution given by

Par =W, W, B pap, mopu, =0 . (7.60)
Note that contraction of eq. (7.56) with {E%,} gives the equivalent equation on S

According to lemma 7.2.3, eq. (7.61) is satisfied in any conformal frame if and only
if p¥, = aK, which using the definition (A.45) of the projector P% can be recast as
P = P*p,, = aK. Finally, notice that by (7.60) and according to corollary 6.2.2, the
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solution p,p on each leaf is given by p,p S qapakK /2 for every cut with a round metric
and Gaussian constant curvature K. But K coincides on each cut with K, and then
contraction with {WGA} gives py, = P aK/2. O

Corollary 7.2.3 (The tensor p for strictly equipped _# with non-S? leaves). Assume ¢
is strictly equipped with v the parameter along the curves (7.10) and such that eq. (7.45)
holds. Assume that the leaves (S,, ¢45) are non-necessarily topological-S? and that there
is a vector field x* such that )_(A = W, 4x* is a CKVF, and has a fixed point, on each
leaf. Then, there is a unique tensor field p,, on ¢ orthogonal to m® (equivalently, a
one-parameter family of symmetric tensor fields p, 5 (v) :== E% E’5p,, on the projected
surface Sg) whose behaviour under conformal rescalings (C.23) is as in eq. (7.52) and
satisfies the equations

Eda Eeb ‘—Pfcv[fgd]e =0 ) (762)
£3pap+aD,Dpp =0 (7.63)

in any conformal frame, where ¢ := DCXC /2. Furthermore, this tensor field must have
a trace p°, = P*p,. = aK and coincides, at each leaf, with the corresponding tensor of
corollary 6.2.3 with all its properties.

Remark 7.2.1. An outstanding case for the existence of the vector field xy® is when this
is an azial CKVF of h, orthogonal to m®, that is, tangent to the leaves, and such that it
leaves the equipping congruence conformally invariant (£gm, o< m,). Actually, this could
be generalized to symmetries of the type we will introduce later on in definition 7.4.2.

Proof. One follows the same reasoning as in the proof of corollary 7.2.2, this time using
corollary 6.2.3 instead of corollary 6.2.2. After the first steps, one finds

D (pap) 20 (7.64)

on each cut. Taking into account that )_(A has a fixed point on every S, and eq. (7.63),
the solution to this equation exists and is unique on each cut

Sp
PAB = PLAB (7.65)

given by the tensor p,z of corollary 6.2.3. The rest of the proof follows the same steps as
in corollary 7.2.2. O]

Lemma 7.2.4 (No traceless Codazzi tensor fields on S, for foliations). Let M,z be
any one-parameter family of traceless and symmetric tensor fields on S, associated to
a congruence of curves C orthogonal to a family of surfaces foliating a 3-dimensional
space-like hypersurface Z with topological-S? leaves. Then

MAB = 0 < p[cMA]B - 0 (766)
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Proof. Defining on Z M, := W, AW,BM ,, it vanishes if and only if M,z so does, and
satisfies P, P% J_Dbf v[cMa}b = 0 if and only if Z_)[CM s = 0. Evaluating on each leaf S,

and contracting the equation P P P’ V.M, = 0 with {E£?,}, one finds D, (MA]B) S

0
Vv because M,p is a symmetric and traceless Codazzi tensor on each compact, two-

1%

0 Vv which using (6.10) is equivalent to its trace and holds if and only if M,z

dimensional cut S, (see e.g. [113] and references therein). This is equivalent to the
vanishing of M, on each S, and, since Z = US, and S; N Sy, = () for 01 # ¥q, to the
vanishing of M, at every point on Z too. O

Let us continue by showing the existence and uniqueness of a first component of news
on strictly equipped # with topological S? leaves:

Proposition 7.2.1 (The first component of news on strictly equipped ¢ with S? leaves).
Assume _Z is strictly equipped with v the parameter along the curves (7.10) and such
that eq. (7.45) holds. If the leaves have S*-topology, there is a one-parameter family of
symmetric traceless gauge-invariant tensor fields

Vagp =Usp —pap (7.67)

that satisfies the gauge-invariant equation
DuUpc = DaVpie (7.68)

where p,p is the family of tensor fields of corollary 7.2.2 (for a = 1). Besides, V5 is
unique with these properties.

Proof. The one-parameter family of tensor fields V,5 is symmetric, traceless and gauge
invariant as a consequence of eqgs. (7.31), (7.37) and (7.42), recalling w,z = 0, and
corollary 7.2.2. The uniqueness of V,z follows from corollary 7.2.2 too and Equa-
tion (7.68). O

Corollary 7.2.4 (The first component of news on strictly equipped # with non-S?
leaves). Assume _Z is strictly equipped with v the parameter along the curves (7.10)
and such that eq. (7.45) holds. Assume that the leaves (S,,q4p) are non-necessarily
topological-S? and that there is a vector field y® such that XA = W, 4" is a CKVF of
the metric ¢4 5 and has a fixed point on each leaf. Then, there is a one-parameter family
of symmetric traceless gauge invariant tensor fields

Vap =Usp — PaB (7.69)

that satisfies the gauge-invariant equation

DiaUpic = DiaVpie (7.70)
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where p, 5 is the tensor field of corollary 7.2.3 (for a = 1). Besides, V5 is unique with
these properties.

Proof. The proof proceeds as the one of proposition 7.2.1, only that this time one uses
corollary 7.2.3 instead of corollary 7.2.2. O]

Then, under assumptions of proposition 7.2.1 or corollary 7.2.4, one has on Sy (equiv-
alently on ¢ by taking the pullback)

S2

NC* 2 P (Do Vi * = Tep?) | (7.71)

Corollary 7.2.5. The tensor field on ¢

v

—a

p (0) = W, AW, PV, (7.72)

satisfies
Vi = WaAWbBUVAB ) mayab =0, (7-73)

where Vap is the first component of news associated to each leaf S, defined in proposi-
tion 6.3.1, respectively.

Proof. One can take the pullback to ¢ with {WaA} of eq. (7.69),
Vo = Usp = Pap » (7.74)

and see that
Uy =W, "W, " Jap, mUy =0 (7.75)

where Uyp is (6.38) for each leaf S, —using that m® and P9 are the normal and the
projector to each cut for constant v, respectively. Now, we have already shown that
(see corollary 7.2.2 and eq. (7.60)) E®4E’sp,, S pap where p,p is the tensor of
corollary 6.2.2 or corollary 6.2.3 for each leaf S,. Hence, one deduces that £, E°5 V., S
,Vap with  V,p the first component of news of proposition 6.3.1 for each leaf S,. [

By means of eq. (7.23), a formula for V,5 in terms of the acceleration a,, K, p,p
and the gauge invariant tensor field f,; is obtained for a general foliation:

1
Vug = fag — Pap T Djag —ajap — §gAB (pEQE - QEQE - K) . (776)

It is convenient to define the one-parameter family of tensor fields on S,

1
Tap = Datp — 405 — 54, (Dpa” —apa” — K) . (7.77)
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Interestingly, its gauge change is the same as the one of U,y and p,p —see eq. (7.52)-
and its trace coincides with the trace of p,p, ie., 7%, = K. Furthermore, taking the
covariant derivative of eq. (7.76), antisymmetrising and using eq. (7.56) one has

Dictap =D (YA}B - fA]B) ; (7.78)

which can be checked to be gauge-invariant, noting that V,5; — fip is a symmetric,
traceless and gauge-invariant tensor that fulfils corollary 7.2.1, and that 7,5 satisfies
lemma 7.2.3 for a = 1.

Lemma 7.2.5. The vanishing of the first component of news V,5 of proposition 7.2.1 on
¥ can be written as a relation between the kinematical quantities of m® (shear, expansion
and acceleration) and the curvature K,

1
Vap =0 Dicfap = D|c (@A]QB - QA]QB) - 593[,41_70] (PEQLE —apa®” — K) :
(7.79)
Equivalently,
Viap =0 Dj¢ (TA]B - fA]B) =0. (7.80)

Corollary 7.2.6. If ¢ is strongly equipped, ergo the leaves of the foliation are umbilical
(X 4p vanishes on _#') then

1

Vap =0 D¢ (DA]QB - Q'A}Q'B) - §QB[A@(J] (DEGE —apa® - K) =0. (7.81)

DO | —

Equivalently,

Remark 7.2.2. The dependence on x and ¥ ,5 is encoded in f, 5, see eq. (7.15).

Proof. Firstly, take the derivative of eq. (7.76) with D, and then antisymmetrise. Sec-
ondly, apply lemma 7.2.4. ]

Following the programme developed in chapter 6, we look now for the second com-
ponents of news and construct a couple of traceless gauge invariant symmetric families
of tensor fields iXAB on S, such that the pullback to ¢, jiXab(v) = WaAWbBiXAB,
satisfies .

a Sy *
E AEbB Xab = UXAB ) (7~83)

where fX 4p are the (undetermined) second components of news defined in chapter 6
fulfilling eqgs. (6.72) and (6.73) on each cut S,. The pullback of this pair of equations to
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#, taken with respect to {WbB}v, reads

1 1,
5 NPYD 2T, + 5PV, X, (7.84)

1 e Sy 1 X Y ¢
§NPbDe:Tb+§Pdcvd X" (7.85)

Because m® is orthogonal to each cut, observe that P9 & J—E’“b, e = W, AW, B¢, p and
T, := W, 2Ty = W, PTy. Thus, remarking that ¢ = US, and S;, NSy, = (0 for 9, # Dy,
eqs. (7.84) and (7.85) hold everywhere on _# and one can take the push-forward to S
using {E£%, },

_;NDB =1p + ;DC+ BC ) (7.86)
NDy =Ty + D0 X, (7.87)
Then, one has on Sy (equivalently, on ¢ after taking the pull-back)
N2 = D¢ ('np%) Dp (0PP) (7.88)
N*Z =D¢ () Dp (0"P) (7.89)
with
nap = Vap + Xap (7.90)
Nap=Vap + Xap , (7.91)
such that ‘n,, = W, AW, B, fulfils
E Y B g, 2 Ty Yo (7.92)

A generalisation of proposition 6.4.1 can be written for strictly equipped #:

Proposition 7.2.2 (Radiant news on strictly equipped _# with S? leaves). Assume that
Y is strictly equipped with v the parameter along the curves (7.10) and that the leaves
have S2-topology. Then, if the condition of eq. (7.86) (eq. (7.87)) holds,

ap=0= Z=0 |, (7.93)
(nap =0+ Z=0) (7.94)

where 45 (n,p) is the one-parameter family of tensor fields on S, given by eq. (7.90)
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(eq. (7.91)) that fulfils properties i) to vi) on page 103. Its pullback to ¢ as

7Lnab = WaAWbB+UAB> ma+nab =0 (795)

(analogously for n,,) is a v-dependent tensor field on ¢ fulfilling eq. (7.92). Hence, we
call it radiant news on _# for the radiant ‘00 (9.

Proof. By definition eq. (7.90) (eq. (7.91)) the one-parameter family of tensor fields n 5
( n4p) satisfies properties i) to iv) on page 103. Property v) is fulfilled as well, which can
be checked by inspection of egs. (7.71) and (7.86) (egs. (7.71) and (7.87)). Now, n,p
(n,4p) is symmetric and traceless on Sy and by lemma 7.2.4 45 = 0 <= Dy n¢ =0
(n,p =0 <= D, nz =0). But this vanish if and only if 'Z =0 (2 = 0) because of
eq. (7.88) (eq. (7.89)). O

Proposition 7.2.3 (Radiant pseudo-news on strictly equipped # with non-S? leaves).
Assume _Z is strictly equipped with v the parameter along the curves (7.10) and assume
the conditions of corollary 7.2.4. Then, if the condition of eq. (7.86) (eq. (7.87)) holds,

nap=0 = Z=0 |, (7.96)
(nap=0 = Z=0) , (7.97)

where 45 (n,p) is the one-parameter family of tensor fields on S, given by eq. (7.90)
(eq. (7.91)) that has the properties properties i) to v) on page 103, but in general it does
not fulfils property vi). One defines its pullback to ¢ as

+ + +

Ny = WaAWbB Nag, M* Ny =0 (7.98)

and analogously for n,,. The tensor field n, (n,,) is a v-dependent tensor field on _#
fulfilling eq. (7.92).

Proof. The proof is very much as the one in proposition 7.2.2, except for that now the
tensor V5 in eq. (7.71) corresponds to the one of corollary 7.2.4. Then, by eq. (7.88)
one has 2 =0 — +73AB = 0. Due to the non-S? topology of the cuts, lemma 7.2.4
does not apply and the inverse implications does not follow. O

7.2.1 Relation to the radiation condition

We have shown that under appropriate conditions radiant news inab for *g“ exist as ten-
sor fields on strictly equipped _#. Next task of our programme is to find equations for
the derivatives along m® of these objects. In principle, guiding ourselves by the A = 0
case, the derivative along the ‘evolution’ direction of a radiant news-like object should be
related to W. The approach that we will follow is similar to the one in section 6.4.
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Begin contracting eq. (5.14) with E%, E’; and symmetrising
\ S J—
Ne,®Cry = 8 4p = 64" Spyp — D(aSp) — Skap + 2550, , (7.99)

where we have defined
S g i=E Y E S £5S,, . (7.100)

Note that g(AEQB)E = g(AEC’B)E = ¢,BCpp; and also that S5 = £:5,5 —see eq. (A.56).
+

Equation (7.99) can be expressed in terms of "C' 5 using properties xv) and xvi) on page

212 of appendix D as

N_EBE:EQAE _ S/AB . E(ADSB)D _ Z_)(A‘SB) _ SEAB —+ QS(BQ/A) :|: NDAB . (7101)

We can write this equation in terms of Vg, pap, Lyp,

+
Neg” Coap=V'ap+p ap—Lap— Z(AD (VB)D + Ppyp — LB)D)

1 — .
Toh (VAB + Pap — LAB) —DuSp) = Skap +25pa4 END,yg ,  (7.102)

where, in addition, we have expanded k45 in terms of X ,5 and x and defined

Pa = Lipap (7.103)
+

W g = L Mg . (7.104)
A similar expression follows for C AB>

+
NCup=€5"\V'ap+pap—Lap— Z(AD (YE)D + Peyp — LE)D)

1 —_ .
L (YAE + Pap — LAE) —DuSp) — Skap +25pas £ NDyg (7.105)
Now, we propose the following ‘transport’ equations for n AB"
N§BE+CAE = +n/AB - Z(ACJrnB)c ) (7.106)
Neg® Cup = 145 — B0 npye (7.107)

with 4 defined as in eqgs. (6.70) and (6.71). The square of this expressions reads

+

W = (0 ap = S8 npyo) (07— 5 PO (7.108)
N2W = (045 = B0 ngye) (047 =29, 0BC) (7.109)

N2

Let us remark that eqs. (7.106) and (7.107) are gauge invariant, which follows from the
gauge transformations presented in appendix C, from where the next result is derived as
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well:

Lemma 7.2.6. Let j,, be any symmetric gauge invariant tensor field on equipped ¢
orthogonal to m?, i.e., m?®j,, = 0. Then,

Jw=—Jw (7.110)

where .z/ab = £mjab.

The sufficient and necessary conditions for eqs. (7.106) and (7.107) to hold are, re-

spectively:
N + + 1
~ND,p =~ X'4p+ Xci ZA)C - '5(AD (BB)D - LB)D) —oh (Vap) = L'ap
+ 0 ap —DaSp) — Stap +28pay , (7.111)
N - _ 1
ND,p=—X'yp+ Xep ZA)C - E(AD (EB)D - LB)D) L (Vap) — L' 4p
+ 0 ap — DaSp) — Skap + 250 - (7.112)

Therefore, by egs. (7.108) and (7.109), one has

Lemma 7.2.7. Assume ¢ is strictly equipped with v the parameter along the curves
(7.10) and such that eq. (7.45) holds. Assume that the leaves have S*-topology and
eqs. (7.86) and (7.111) (egs. (7.87) and (7.112)) hold there. Then,

Ny =0 = W=0. (7.113)
(nab 0= W= o) (7.114)

To see the effects of a vanishing ~ n,, on the presence of radiation at J, it is easier
if one studies the relation with the radiant supermomenta first

Proposition 7.2.4 (Radiant news and radiant supermomenta). Under the same assump-
tions of lemma 7.2.7,

+

Ny, =0+ Q*=0. (7.115)
(M =0 Q*=0) . (7.116)

Proof. We give the proof for 'Q®. By proposition 7.2.2, one has that 'Z = 0 <= +nAB =0
and, by lemma 7.2.7, that n,; = 0 = W = 0, therefore nuz =0 = 'Q* =0
—see property iii) on page 15. For the converse, Q=0 = W=0=Z and, by
proposition 7.2.2 again, Z=0 = +7:LAB =0. 0

With this intermediate result, we are able to write a theorem for the asymptotic
canonical super-Poynting vector field
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Theorem 5 (Asymptotic super-Poynting vector and news). Assume Z strictly equipped,
such that the leaves have S*-topology and egs. (7.86), (7.87), (7.111) and (7.112) hold there.
Then,

+

Ny =0=n, = P =0. (7.117)

Remark 7.2.3. According to criterion 1, the result states that n, = 0= n, = no
radiation at 7.

Proof. The proof follows directly by proposition 7.2.4 and corollary 2.3.1. O

7.2.2 Possible generalisation

We proceed to generalise the above results using the same technique of section 6.4.1. As
before, we ask for a couple of families of traceless gauge invariant symmetric tensor fields
X 45 on Sy satisfying eq. (7.83) where this time jX ap 1s the unknown tensor field of
chapter 6 appearing in eqs. (6.94) and (6.95) (instead of eqs. (6.72) and (6.73)). The
pullback of these equations to _# reads

1 1
—5 NP5 D, 27, + (N —1) Ne, P, O+ BNPSC, + S v, 'X,°,  (7.118)
1 e Sy - c vd - e 1 d~ v c
GNP D 2T, + (A= 1) Ne Py O BNP5, Co + 5 PUV X, . (T119)
On S,, contracting with {E£%, },
1
A —1) Nepo €+ BN'Cp + ;Do X5 (7.120)
_ _ _ 1 _
SNDp =Ty + (A —1) Nego €%+ BN Cpp + 5De X5, (7.121)

where

{3 / St Vv}, {*@ / RN w} (7.122)

and we assume A and i@ differentiable enough. A direct calculation provides on Ss
(equivalently, on ¢ after taking the pull-back)

N (B2 +2?) 2 = D¢ (0p°) Dp (07P) (7.123)
N?(B*+ 2?) 2 =Do (ns°) Dy (0”7) (7.124)

where the definitions
ap = Vap + Xap . (7.125)

nyp=Vag + Xap (7.126)
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were introduced. In a similar fashion, recalling that W vanishes if and only if iQ ap does
so, we consider combinations of the form

B Cap+ ves” Cac (7.127)
with J, 7 gauge-invariant, dimensionless, scalar functions obeying

T=0 = y#£0, (7.128)
N =0 = §#0. (7.129)

Now, we propose the following ‘transport’ equations for i?_’z AB"

N (75 Cyp + 77§BE70AE) = 045 — 2 ppe (7.131)

e+ + + + +
N ( 6 Cap + veg” CAE) = n'ap — Z(AC np)c (7.130)

The square of this expressions reads

+

W <+62 + +72) _ (+@,AB _ Z(AC+@B)C> (+@1AB . E(AC+BB)C> 7 (7.132)

N2W (*52 + *,.)/2) _ (*@/AB _ Z(AcllB)C) ( 1AB Z(AC*EB)C) ' (7.133)

N2

1S

This time, the sufficient and necessary conditions for egs. (7.130) and (7.131) to hold are,

respectively:
\ + + 1
~NDyp =~ X'yp+ X ZA)C - E(AD (BB)D - LB)D) —oh (Vap) = L'ap + 0 ap
—DaSp) — Sksp +25pay + N (+7 - 1) " Cap + N6 Chp,  (7.134)
. - _ 1
NDyp=—X'yp+ XC(B ZJA)C o E(AD (EB)D - _LB)D) - 5’5 (Vap) = L'ap+ 0 ap

—~D(4Sp) — Skiap +25gay + N (77 - 1) e5” Cap + N6 Cyp . (T.135)

Finally, one can write a generalised version of lemma 7.2.7, theorem 5, proposition 7.2.2
and proposition 7.2.4 by means of egs. (7.120), (7.121), (7.134) and (7.135) instead of
egs. (7.86), (7.87), (7.111) and (7.112).

7.3 Incoming radiation

We turn now to investigate possible ways of isolating outgoing radiation from incoming
components. This issue is relevant for characterising isolated sources which on physical
grounds one expects to contain no incoming contributions but only to emit gravitational
radiation that constitutes the outgoing component. In this section we will consider ra-
diation arriving at the future component of the conformal boundary, #*. The case of
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_# ~ can be treated similarly. Let us point out that the asymptotically flat scenario auto-
matically has a structure adapted to the outgoing radiation due to the lightlike character
of #*. In simple words, when A = 0 the radiation arriving at infinity and escaping
from the space-time necessarily follows lightlike directions transversal to the conformal
boundary. Therefore, the generators of #* can be considered to point along the direction
of propagation of incoming radiation or, from another point of view, incoming radiation
never propagates transversally to #*. In contrast, the A > 0 case presents the follow-
ing difficulty: every radiation component, incoming or outgoing, crosses #Z* and escapes
from the space-time. Hence, one is left with the problem of specifying physically reason-
able conditions capable of ruling out one of the radiative components —in our setting the
incoming one, by definition. This sort of constraints sometimes receives the name of no
incoming radiation conditions. There is already a proposal [72] in the literature which
requires information from the physical space-time. Since according to criterion 1 the pres-
ence of radiation at _#* is determined by the information encoded in (_#*, h,, D,;,) —see
property iv) on page 86 and remark 5.3.2—, we believe that absence of incoming radiation
should be encoded upon this same data.

Motivated by the A = 0 case (chapter 4), it is reasonable to think that the vanish-
ing of a radiant supermomentum ‘0~ is related to the absence of radiation propagating
transversally to the null direction /. This suggests that in our setup the vanishing of one
radiant supermomenta, say Q, could suppress the radiation travelling along transversal
directions, in particular along k®. Looking at the definition in eq. (7.6), this restriction
automatically turns m® into an intrinsic incoming direction field which in particular de-
fines a selected congruence of curves, hence equipping _#* —or the open portion A C _#+
with the same topology where Q¢ vanishes. In view of these properties, it makes sense
to consider m® as an intrinsic ‘evolution direction’ on # *: if we compare with the A =0
case, the incoming direction given by the generators of #* defines the evolution direc-
tion; the analogy goes further if we notice that the vector field m® points towards the
region where the worldlines of the isolated sources meet ¢#% —see fig. 7.1. As a further
positive property, the restriction Q = 0 can be expressed entirely with the information
available in (_Z ", hy,, D)

Lemma 7.3.1. Let # (or an open portion thereof) be equipped as in definition 7.0.1
and define Q® according to definitions of egs. (2.49) and (7.7). Then

N« 1 e e e
Q*=0<«= D, — §Defm m? (3m,my, — h,,) = mdeed(a (Cb) + mb)me’f ) . (7.136)
Proof. By eqs. (2.53) and (2.55) and property iii) on page 15, Q% = 0 <= D,p =

Cup =0= D, = C,. The result is obtained setting these values into eq. (2.42) and
using property xxviii) on page 212. O
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A £ A &

Figure 7.1: On the left: the asymptotically flat case, where the generators of _# rule the
natural evolution direction and outgoing radiation crosses #* transversally. On the
right: the A > 0 scenario, where any direction of propagation of gravitational radiation
is transversal to _#* and criterion 2 selects an intrinsic ‘evolution’ direction given by
m®, which points towards the region where the source meets ¢ .

Then, our proposal to describe absence of incoming radiation reads as follows:

Criterion 2 (No incoming radiation on _# ). We say that there is no incoming radiation
at _Z 7T (or on an open portion A C _#* with the same topology) propagating along a
vector field m* on ¢ %, if m® is such that, according to definitions (2.49, 7.7),

Q*=0 (7.137)

or equivalently

1
Dy = 5 Depmm! (3mgmy — hyy) = mecqq, (Cye +mym?Cy°) (7.138)
Remark 7.3.1. Equivalently, there is no incoming radiation propagating along m® on
(A C)_ 7" when m* defines a strong orientation there —see definition 5.4.2.

Remark 7.3.2. If criterion 2 holds, all the components of D, except m*m’D,, are
determined by C,. This is in close analogy to what happens at the conformal boundary
for A = 0 where the ‘electric’ part of the rescaled Weyl tensor defined with respect to the
null normal N (which algebraically is of the kind (2.25)), is determined by the ‘magnetic’
part (which is of the sort (2.26)) except for the N*N® component. In both scenarios, this
free component carries the information related to the Coulomb part of the gravitational
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field (see eq. (D.10)). This evinces that criterion 2 is a constraint that affects the radiative
degrees of freedom.

In other words, criterion 2 identifies a class of space-times which can be safely con-
sidered to describe situations with only outgoing gravitational radiation arriving at _# *:
those where the free data D,, are determined by the intrinsic geometry of (_#*, h,,) ac-
cording to (7.138) (for unit m®) except for the one component m®*m?D,, which remains
as the only extra free data independent of (_# ", h,). It seems interesting to study in
deep this class of space-times.

As a consequence of corollary 2.3.1 one has

Corollary 7.3.1. Assume that the no incoming radiation condition of criterion 2 holds.
Then,
Q=0 = P"=0. (7.139)

Remark 7.3.3. This provides further support to criterion 2 because if condition (7.137)
holds, the presence of gravitational waves at _#* (or on an open portion A C #%) is
completely determined, according to our criterion 1, by the outgoing components of the
radiation —which are associated to +QO‘.

Of especial interest is the case of a strictly equipped _# ", so that m® defines a foliation
(<= w,, = 0). In particular,

Lemma 7.3.2. Let #7 by strictly equipped such that m® satisfies condition (7.137)
of criterion 2. Assume that conditions in proposition 7.2.2 and eq. (7.87) hold on _# 7.
Then,

nag =0 (7.140)

with n 45 one of the news tensor fields of proposition 7.2.2.

Proof. On the one hand, condition in criterion 2 is saying that Q® = 0, which implies
'Z = 0. On the other hand, because of eq. (7.87), proposition 7.2.2 tells us Z =0 <
7@,43 = 0. Il

And for the particular case with ¢ strongly equipped,

Lemma 7.3.3. If _#* is strongly equipped (X, = 0) with S? leaves and the condi-
tion (7.137) of criterion 2 is satisfied, then there always exists the radiant news 7, of
proposition 7.2.2 and is given by

+'@AB =2Vap (7.141)

where V5 is the first component of news of proposition 7.2.1.
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Proof. Note that eq. (7.137) imposes A=A (and D ,e*P = —CB, see lemma 2.3.3)
and umbilicity implies Ty = 0 (see (7.36)). It is easy to see that eq. (7.86) is satisfied
with "X ;5 = V5. The result follows then by proposition 7.2.2. [

Lemma 7.3.4. Assume ¢ is strongly equipped with leaves that are non-necessarily
topological-S? and such that condition (7.137) of criterion 2 is satisfied. Assume also that
there is a vector field x® such that XA = W, 4x® is a CKVF with a fixed point on each
leaf. Then, there always exists the radiant pseudo-news n ap Of proposition 7.2.3 and is
given by

+

nap=2Vap (7.142)

where V, 5 is the first component of news of corollary 7.2.4.

Proof. The proof follows as in lemma 7.3.3, but now one uses proposition 7.2.3 instead of
proposition 7.2.2. O]

Remark 7.3.4. If instead one uses the generalised approach of section 7.2.2, it is possible
to show in a similar fashion that solutions

g =2 A\V4g (7.143)

always exist, where the values ‘A = constant and 8 = 0 are fixed. It may be the case
that the value of ‘A can be fixed by physical arguments.

If we use egs. (7.86) and (7.111), we end up with a theorem on the presence of radiation,

Theorem 6 (Asymptotic super-Poynting and radiant news under Criterion 2). Assume
that _#* is strictly equipped with S* leaves and that condition (7.137) of criterion 2 holds.
Assume also that egs. (7.86) and (7.111) hold on Z*. Then, radiant news n,p exists
such that

g =0<= P" =0 <= There is no radiation at g (7.144)

Proof. Criterion 2 implies that Q® = 0, and from corollary 7.3.1 we have 'Q® = 0 <
P = 0 (which according to criterion 1 occurs if and only if there is no radiation at ).
Then, proposition 7.2.4 shows that 'Q* = 0 <= 'n 5 = 0 ~the existence of 1,5 follows
from proposition 7.2.2. O]

Corollary 7.3.2. Let the assumptions of theorem 6 hold but now with a strongly equipped
JZ . Then
Vus =0 <= P" =0 <= There is no radiation at 7 . (7.145)

Proof. By lemma 7.3.3 'n 5 exists such that V,; =0 <= n,5 = 0. The result follows
then by theorem 6. O]
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7.4 Symmetries

Another field of study is that of symmetries at infinity. Although the asymptotically
flat scenario is well understood in this respect, such is not the case for the A > 0 case.
For a vanishing cosmological constant, a universal group of symmetries at ¢ —the so
called BMS group— emerges following different approaches. One possibility is to work in
the physical space-time and define the symmetries as those transformations preserving
some coordinate boundary condition, as in the original work of Bondi, Metzner and Sachs
[21, 40, 43]-after whom the symmetry group inherits its name— or by defining ‘approx-
imate asymptotic symmetries’ [103, 139]. Alternatively one can work in the conformal
space-time and define the asymptotic symmetry group as those mappings that leave in-
variant a particular conformal-gauge fixing, sometimes called ‘Bondi systems’ [115], or as
those transformations which leave invariant certain structure consisting on the degener-
ate metric and the generators of ¢ [17, 48]. Moreover, there is an alternative definition
of asymptotic symmetries as those which leave unchanged some gauge-invariant tensorial
quantity constructed with the elementary objects on ¢ —an ‘asymptotic geometry’, to put
it in Geroch’s words [17]. Indeed, this is the first approach we will consider for A > 0 and,
as we will see, it does not lead to the type of enhanced group of symmetries —analogous
to the BMS in a broad sense— that one may wish; for this reason we will explore other
different paths too, eventually arriving at a proposal providing an infinite-dimensional Lie
algebra.

Consider the gauge invariant object
Tabcdef = hachdDef (7146)

and define the generators of infinitesimal symmetries £* as

Expanding this equation we find
from where 1

Using this back into eq. (7.148) one gets
£eDoy = —D,y . (7.150)

Equation (7.149) implies that £* is a CKVEF of the metric h,. A result in [136] states
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that a Killing vector field of a A > 0-vacuum space-time induces a vector field on _# that
satisfies precisely egs. (7.148) and (7.150) and, conversely, a vector field on _# satisfying
eqs. (7.148) and (7.150) gives rise, via an initial value problem, to a KVF of the physical
space-time. From this point of view, the proposal of preserving (7.146) is fully justified.
Importantly, this definition does not require fixing the topology of ¢ nor requires the
metric to be conformally flat —with the high-restrictive aftermath this implies [61]. Also, it
includes D, as a fundamental ingredient, in accordance with our repeated claim that one
has to bring D, into the picture. Nevertheless, it is not completely satisfactory as there
may be cases in which no asymptotic symmetries exist. These are the basic asymptotic
symmetries

Definition 7.4.1 (Basic infinitesimal asymptotic symmetries). We define the basic in-
finitesimal asymptotic symmetries as those CKVF £ of (hy,, #) which satisfy

1
£y = —5 V" Doy - (7.151)

Nevertheless, definition 7.4.1 is not completely satisfactory as there may be cases in
which no such basic asymptotic symmetries exist. Alternatively, we can define other
asymptotic symmetries as those which preserve the structure of definition 7.0.1 in the
following sense:

Definition 7.4.2 (Equipped _# symmetries.). Consider # equipped according to def-
inition 7.0.1. The extended asymptotic symmetries are those preserving the conformal
class of the one-parameter family of projectors to Sy, and the direction of the congruence
C on _Z. In other words, these symmetries are the transformations acting on the pairs
(Py.m,) as

(—Pab ) ma) — (\1’2—Pab ) (I)ma) :

Remark 7.4.1. The infinitesimal version £ of these transformations is

Lem, = om, (7.153)

where £ generates a one-parameter (¢) family of transformations of the type defini-
tion 7.4.2, with ¢ = 0.P (€) |c=0, ¥ := 9.V (€) |c=o. Note that from these equations it
also follows

Lem® = —gm* (7.154)

and
Lehg, = 20m,my, + 20 P, . (7.155)
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The following gauge-changes follow from egs. (7.152) and (7.153):

=1+ £z(Inw) , (7.156)
¢3=¢+£§~(lnw) : (7.157)

Observe also that ¥ — ¢ = ¢ — ¢ is gauge invariant.

The group of symmetries of definition 7.4.2 will be denoted by B and it constitutes a
case of the so called biconformal transformations [140]. Taking into account that the Lie

derivative acts linearly and using the property £ 6.6 = £ é £ &= £ & £ ¢+ it can be easily
shown that these infinitesimal transformations form a Lie algebra which we denote by b

and that for £¢ = [15, 2§r one has

p=~Lyyp-Lyp, (7.158)
p=Lip-4Lz¢. (7.159)

Consider the general decomposition
§'=pm"+x", x'm,=0. (7.160)

We can obtain the necessary and sufficient conditions that 5 and x® have to satisfy so
that £* € b by decomposing into tangent and orthogonal parts eqs. (7.152) to (7.154),

Laf —ax. =9, (7.161)

"ggpab = zw_Pab ) ng + Dbﬁ + Q(LUebXe =0 ; (7162)
<:> a e a

Lgm, = ¢my, LaX" +x‘am” =0, (7.163)

2D Xy + 286y — 2P, = 0. (7.164)

In order to identify some sort of translational subgroup, it seems natural to ask for the

existence of a particular class of generators 7¢ fi am® completely tangent to m,

P oo =\, (7.165)
Tab =R L g, + Dy =0, (7.166)
£zm, = Am, ,

Notice that eq. (7.167) requires m® to be shear-free. However, this is not an assumption
in definition 7.0.1 and in general one has ¥, # 0.

e

m, = 0) produces

Furthermore, asking for n* to be a symmetry orthogonal to m, (n°m,
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the following set of conditions:

a‘n, = =, (7.168)

”EﬁPab = 2(prab ) ne@eb =0 ’ (7169)
<:> a e a

Lim, = pm, Lan® +n°am* =0, (7.170)

Doy — 9P =0 (7.171)

In this case, eq. (7.169) requires w,, = 0 —to prove this, note that 2w, = w4,
However, according to definition 7.0.1, the vector field m has non-vanishing vorticity, in
general. Importantly, to account for the existence of symmetries one has to study inte-
grability conditions too. Then, (multiple) solutions to the above equations may exist or
not. The general form of such conditions are out of the scope of this work, but one can
study them for each particular metric.

What we have seen is that, in general, definition 7.0.1 is too weak in order to get a
notion of translations within ¢ and along m®. We will explore the particular case in
which this kind of symmetries are present in section 7.4.2. Before that, we present a
derivation of the transformations of definition 7.4.2 without further constraints using a
different approach which also partly justifies the definition.

7.4.1 Derivation from approximate space-time symmetries

We are about to show that a particular sort of approximate space-time symmetries can
lead at infinity to the equipped- ¢ symmetries of definition 7.0.1. For simplicity, in this
subsection we set T,,; = 0 —~this does not affect the final result.

Begin by considering a vector field éo‘ on the physical space-time (M , gaﬁ) with a
smooth extension to ¢ on the unphysical space-time (M 2 G0 5), which in this subsection

we consider foliated by €2 =constant-hypersurfaces near #. On M one has

2
= = 2 ;‘A - = g . .
£59a5 Q ££9a5 + Q£§ () up (7.172)
We will require that
2p A
Q ,,Eggaﬁ = H,; (7.173)

for some symmetric tensor field H,; regular at #. Then, the idea is to ask H,; to
fulfil certain conditions such that éa ‘approximates’ a symmetry near _¢. Some obvious
examples are:

« If £ is a KVF for Gap, then H 5 = 0.
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o If éa is a CKVF for g,4, then H, 5 o< g,4.
Observe that assumption (7.173) and regularity of eq. (7.172) at _Z require

££~(Q) =0J (7.174)
for some scalar function J regular at ¢ . Of course, this implies that
en. Zo. (7.175)

Hence, 5‘” has to be tangent to _#. For later convenience let us define

s
IS

=g

where {e?,} is a basis on _#. Then, eq. (7.172) reads

e” &%, (7.176)

It is easy to obtain
.£gNa =N,J+QV_J, (7.178)

from where at ¢ (recall that P¢; is the projector to # (3.89))

£:Py L2 P + Hyy (7.179)

Next, we are going to see whether this equation contains components along N, or not.
Contraction of eq. (7.177) with N gives

LN = —JN® = H* +QV*J (7.180)
with
H® := N'H,* (7.181)
from where,
2
NLePyy = Hy + Q| =V +nyn°V,J — —ng <£§f + fJ)] : (7.182)

where f is the scalar (3.29). Then, contraction of eq. (7.179) with N* gives

o s
N°LeP,,; & Hy (7.183)

and contraction of eq. (7.182) with N7,

F

N*N°H,, = N’H, = 0. (7.184)
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Z e, H® and by eq. (7.180)

Hence, H*
e L (£5Na + JNO‘) . (7.185)

To see if there is any consistency condition for H,; compute the following:

LeL590p = 2L 5f Gup + 2f (27G0p + Hag) — QIS5 — QLS g (7.186)

L5EGop = 2L 57 op +2J (2£9ug — QSap) + L3Hos | (7.187)

£[§Jﬂ 905 = £(_s5-fi-av7) 908 = =7 (2905 = QS.5) = VoHy — VH, +20V,V,J
(7.188)

and then, use the identity £[5Jﬂ = £§£1\7 — £1\7£§ to get

0=2(£gf = £37+ 1) 90y +2f Hop = £ Ho 4tV o Hy+ V3 H, =0 (29, V50 + £5, )

(7.189)
After some computation, it can be checked that the right-hand side of eq. (7.189) does not
have components along N¢, therefore this equation contains no information orthogonal

to the (2 =constant hypersurfaces. Expanding the Lie derivative of H,5, eq. (7.189) turns
into an expression for the derivative of this tensor along N¢, Haﬂ =NV, H,z,

Hoy =V Hy+V,H, + (fgf . fJ) Gos + 9 <Hu(a Syt = 2V, V5 — £§5a5> .

(7.190)
If one projects this equation to _# with {e®,} and uses eq. (7.184), it reads
. Z — —
77 z
where J = J and we have used f = 0 (see eq. (3.30)) and
ev.fZ2o. (7.192)
Next, take the pullback of eq. (7.179) to _Z,
Lehy 2 2Thy, + Hy, | (7.193)

where it is evident that only the tangent part of H,; intervenes. Equation (7.193) is
important, as the meaning of H,, on ¢ it is clear here: how we choose H,, defines how
we define £ as an asymptotic-symmetry. Our goal is to choose H  such that one can say
that eq. (7.193) comes from an approximate space-time symmetry —as much as possible.
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Before entering into this task, let us remark that £ is in one-to-one correspondence with
the equivalence class

{5‘“6 '] = éa—g“’:ma}, (7.194)

where v® is any vector field on M. However, if we want any element of the equivalence
class to generate an asymptotic symmetry of the kind (7.193), Qu® itself has to satisfy all
the equations so far. Calling H,; and J the H, 4 and J associated to v, respectively,
from eqgs. (7.174) and (7.177) we have

Lo =QU'N, =Q J . (7.195)
£Qgga6 = QQV(aUﬁ) + 2U(OIN/B) = 20Jga,8 + OHQ/B . (7196)

Then, putting together these two equations we get a formula for H,g:
OHQ,B = QQv(avﬁ) + 2U(aNB) - QUMNHgag . (7197)

It can also be shown that H, := N" H, istangent at ¢ and satisfies

s 2. 7
JHao = —U“NM — N7y, = —P"avu ,
= — (£asN, + JN,) (7.198)

—compare with eq. (7.185). The combination H,s for arbitrary v® has no relevance for

&%, then, it can be considered as a gauge part in H,z. Hence, for any éo‘ € [éa} one uses

\

where we have defined v, := P¥, v,. Note that any term of type N, vz + Ngv, is pure

gauge in H 4, and the term in P, 5 is the one that makes the definition of {* unambiguous.
This is clearly seen projecting to ¢,

H,=H, —2(v'N h, . 7.200
ab ab “w ab
7

Therefore, within ¢ one gets

where we have used egs. (7.193), (7.195) and (7.200) together with J = T+ /- By typical
calculations, it can be proven that the set of such vector fields é"‘ on (M , gaﬁ) form a Lie
algebra, as well as their equivalence classes. One should not forget the conformal gauge
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freedom (3.6). Under such rescalings,

. 1
J=J+—fa, (7.202)
H,; =w’H,g (7.203)
H, =wH, +Qw’H,,, (7.204)

which follow form eqgs. (7.174) and (7.177) and the gauge transformations of appendix C.

Now we have to make a choice for /5. Should we follow Geroch and Winicour [139],

we would have to set H 4 Z (0. This fixing makes £* a CKVF of h,,, hence one probably,
at the best, recovers the basic symmetries preserving (7.146) of definition 7.4.1. However,
as we have argued, these kind of symmetries are not satisfactory. Thus, one is left with
the problem of specifying a different kind of H,4. It makes sense to think that H,; should
be a rank-1 matrix —at least on _#— up to redundancy-correction terms, that is

Ammg + Qx5 (7.205)

for some scalar function A and tensor field x,5. Moreover, the one-form m, has to be

tangent to ¢, i.e. m N z 0, so that it fulfils eq. (7.184). Still, in order to use (7.205)
as H,g, one has to add the redundancy-correction terms (7.197); the resulting expression
reads

where we have set C' := —2v, N*. The parameters A and C' are general and should not
be fixed beforehand, as doing so would restrict the available £¢. The pullback to ¢ is

H,, = Am,m, + Chy, , (7.207)
by means of which we can write eq. (7.193) as

Observe that egs. (7.204), (C.23) and (C.46) impose

7

s
NN

C=C, AZA. (7.209)
Let us define P,, := h,, —m,m,, as in eq. (A.46), to write the last formula as
Lehy = (27 +C) Py, + (A+ 2T +C) mym, . (7.210)

From this expression it becomes manifest that the resulting £ are biconformal vector fields
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on . The Lie-algebra structure of these infinitesimal transformations and eq. (7.210)
require

£eP,y, = 2¢P,, with ¢ :=2J4C, (7.211)
£em, = ¢gm, with ¢ = A+2J+C, (7.212)

which are actually eqs. (7.152) and (7.153) for m® the vector field of definition 7.0.1.
Observe that from egs. (7.202) and (7.209) one can deduce the gauge transformation of

Y and ¢:
1;:¢+z£5—au, qugzﬂ—gi“gw. (7.213)
w w

As a matter of fact, the space-time KVF (H,,; = 0) and CKVF (H,5 o g,5) only gen-
erate part of the asymptotic symmetries of definition 7.4.2 —if they also satisfy eq. (7.153).

7.4.2 Strongly equipped ¢

We consider now the asymptotic symmetries of definition 7.4.2 for strongly equipped #
of definition 7.0.3. Let us keep the notation that was used for denoting general (£%),
mf-orthogonal (n*) and m®-tangent (7%) symmetries, respectively.

Then, for £* := fm® + x*:

Laf —a’x, = ¢, (7.214)
£ePy, =208, Bay+ D=0, (7.215)
—
£em, = ¢m, , Lax®+ xfa,m* =0, (7.216)
WDy + (55— 2) Py =0, (7217)
For 7% := am™:
Lomar =\, (7.218)
LzP, =20PF, , e Jog,+Dya=0, (7.219)
Lrm, = m, , 1
Mo = Mg 0 — —ak = (7.220)
Finally, for n* (n°m, = 0):
an, =—u, (7.221)
Lol =208 Lan® +n°a;m® =0, (7.222)

Lim, = pm, ,

D(anb) - gp—Pab =0. (7223)
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It can be shown that all the vector fields 7 satisfying eqgs. (7.218) to (7.220) form a
subalgebra t which we call ‘bitranslations’. Moreover, for any £* € b and any 7 € t

L:6" = (ad — BA + ax‘a,)m® . (7.224)
Thus, the subalgebra t is a Lie ideal of b. For any two 7,7, € t,
(71, To)" = (a1 £y — awLar) m* (7.225)

therefore, t is non-Abelian. Note that t has a subalgebra, ct, of ‘conformal translations’
defined by those elements of t for which # = ), and that this is Abelian?. Furthermore,
given one element of t, multiplying it by a function v such that D,v = 0 produces a new
element of t; the subalgebra t is infinite dimensional and by eqs. (7.219) and (A.105) the
general form of an element 7 € t is

1
7 =v(v) Fm®, with = Lav (7.226)

where v is an arbitrary function of v and one has (using obvious notation)

(71, To)" = (N Ly — aLmrn) Fm® . (7.227)

In the same way, it is easily proven that the vector fields n® form a subalgebra c¢s and
are CKVF of the metric on each cut §,.

Importantly, wee see that any £* € b is a composition of a 7% € t, with A = ¢p+a°{, and
20 = D £+ kB — 29 (from eqs. (7.214) to (7.216) and (7.218) to (7.220)), and a n® € cs,
with u = ¢— £ (5) and 2¢ = 2¢p— k5 (from egs. (7.214) to (7.216) and (7.221) to (7.223)
). Let us denote the groups associated to these algebras by B, T, CS, respectively. Then,
we have that T is a normal subgroup of B and that it makes sense to define the quotient
group B/T whose Lie algebra we denote by b/t. But the elements of b/t are precisely the
elements of ¢s: any symmetry n* modulo a bitranslation is in ¢s. Furthermore, since these
are the conformal transformations of S,, if this has S*.-topology, CS is isomorphic to the
Lorentz Group SO(1,3). Another easily verifiable property is that any 7% € t commutes
with any n® € ¢s,
77" =0, (7.228)

as one simply has to set 5 =0, x* = n® and ¢ = u = —nca, in eq. (7.224). Note that
solutions « to eq. (7.219) always exist because m® defines a foliation — see eq. (A.105).

2And an ideal of the Lie subalgebra of b consisting on CKVF (¢ = v).
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Then, given «, one can take egs. (7.218) and (7.220) as definitions for A and 6. Also, if
we assume S?-topology for the cuts, there always exist (up to 6) conformal Killing vector
fields satisfying eq. (7.223). Equation (7.221) can be taken as the definition for u and

eq. (7.222) is equivalent to
meL:P," =0, (7.229)

which using w,, = 0 can be expressed as
n°k — PYmN nt =0 (7.230)

and does not hold in general. Then, given definition 7.0.3, solutions £ € b to egs. (7.214)
to (7.217) not necessarily exist®. In summary:

The asymptotic group of symmetries B that preserve the strong structure of
definition 7.0.3 is the (semidirect) product of the (normal) subgroup of bitrans-
lations T and the subgroup of conformal transformations in two dimensions

CS
B=TxCS. (7.231)

The subalgebra of bitranslations t is a non-Abelian Lie ideal and its elements
commute with the ones of the algebra ¢s of the group of conformal transfor-
mations on S,, CS.

Let us conclude this section by briefly commenting on the units of a. If eventually one
wished to take the limit of the symmetries to A = 0, assuming the limit exists and «

A=0
is regular, one has to rescale any infinitesimal symmetry as —see eq. (5.79)-

NE = aM® + Ny, (7.232)

where N&® should be dimensionless to fit with the asymptotic symmetries of the A = 0
case. Therefore, one has to assign « the dimensions of length, [o] = L. Another way of
seeing this is that by a conformal rescaling

1
Mt = —m" (7.233)
w

and as any infinitesimal symmetry £* must be conformally invariant
& = wa. (7.234)

Because w is dimensionless and lengths rescale with w, we arrive at the same conclusion,
ie., [o] = L.

30ne has not only to study the solutions 7® to eq. (7.230) but also the integrability conditions.



€3 | Equipped infinity and symmetries 153

7.4.3 Relation between the tensor p and asymptotic translations

It is possible to relate the asymptotic symmetries to p,, and the vanishing of V,, . For a
general foliation, using eq. (7.76), one has that V,, = 0 if and only if

1
pap = fap + Datp — aatp = 54, (Dpa” — apa” — K) . (7.235)

Hence, using the function F' of eq. (A.105)

Lemma 7.4.1. Assume _¢ is strictly equipped. Then

1
—D,DF + K} : (7.236)

1 1
Vap =0<= pap = fap — 5DsDpF + ja

F 91ap

As an immediate consequence,

Corollary 7.4.1. If ¢ is strongly equipped and 7% = am? is a bitranslation, then

1 1 1
Vap =0 pup = _a@A@Ba + BEYY: E@c@ca + K] . (7.237)

The last result follows by noting that if 7 € t then « satisfies eq. (7.219) and that for
umbilical cuts f 5 = 0 (see eq. (7.15)). Indeed, the equation

!
“p, D + K} | (7.238)
(6%

1 1
0= aDADBa+BAB ~ 5945

provides us with a neat interpretation for a,

Remark 7.4.2. If the leaves S, have topology S? then the solutions o correspond to
the | = 0,1 spherical harmonics; in fact, they are exactly a linear combination of the
[ = 0,1 spherical harmonics in the round gauge with 2p,5 = Kq,5, and one obtains for
eq. (7.238)

DDy — ;qABDCDC& 2. (7.239)
In other words, if ¢ is strongly equipped and 7¢ = am? is a bitranslation, the function
F appearing in eq. (7.226) is, on every leaf, a solution of (7.238) if and only if V4 &
there.

In view of this remark, we are induced to distinguish a class of asymptotic translations,

Definition 7.4.3 (Asymptotic translations). Let ¢ be strongly equipped. We say that a
bitranslation 7% = am® € tis an asymptotic translation if and only « satisfies eq. (7.238).
In particular, if the leaves have topology S?, in a round gauge the restriction & of « is a
linear combination of the [ = 0, 1 spherical harmonics.
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Observe that this results provide us with a notion of translations intrinsic to _# which,
as far as we know, have not been characterised before for A > 0*. Although we have
required a strongly equipped _# —that is, the existence of a foliation by umbilical cuts—
important examples have this structure, as the Kottler, Kerr-de Sitter and Robinson-
Trautman metrics or the C-metric. Definition 7.4.3 is supported by the fact that the
restriction of the four- dimensional group of translational KVF in de Sitter space-time are
asymptotic translations. All the KVF are tangent to _#, giving rise to the 10 CKVF of
S3, with a four-dimensional subgroup corresponding to translation in the 4-dimensional
cartesian embedding of S3. The latter are of the form

7" =WV, F (7.240)
with F' satisfying
= = F
V.V, F' = —?hab , (7.241)

where a is the constant ‘radius’ of the round 3-sphere. It is evident that 7, are surface-
orthogonal and that their shear vanishes. Contraction of eq. (7.241) with E¢,m? yields

D=0, (7.242)

where o := \/foa and m® := 7*/a. Hence, the restriction & of a to each cut is a constant
—« is not a first integral of m® though. Also, for the cuts associated to each translation,
Vyg = 0 —this follows from eq. (7.71) and C,, = 0, noting that the cuts are umbilical,
thus implying > 4,5 = 0 on each of them.

Proposition 7.4.1. Let éa be a CKVF of (M, gaﬁ) with non-vanishing restriction to ¢

and define P
€ =, tEe (7.243)

and

m® = ;f“ with a1 = /€& (7.244)

Assume that £% is orthogonal to cuts with S?-topology. Then
1. ¢&*is a CKVF of (_#,h,,) and a BCKVF of (m,, P,,) that belongs to t.
2. m® is shear-less (£,, = 0).

3. The restriction to the the leaves & of the function « is a solution of (7.238) (and
thus proportional to a combination of the first four spherical harmonics in a round
gauge) if and only if V,, = 0 and if and only if C, := E?,m*C,, = 0 (equivalently
+QA =—Cy).

4For A = 0, see [17].
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Proof. Point 1 is trivial. Point 2 follows by noting that bitranslations satisfy eq. (7.167).
Hence, ¥, = 0, which together with the assumption that m, is surface-orthogonal make
F strongly equipped. Then, by corollary 7.4.1 and its remark it follows that the restric-
tion & of « to the leaves is a solution of (7.238) if and only if V,;, = 0. Now, the fact
that T,z = 0 (which follows from ¥, = 0) eqs. (7.47) and (7.48), together with the
S2-topology of the cuts gives

V, =0 C, =0. (7.245)

]

7.5 Conserved charges and balance laws

We treat two type of charges and conserved currents associated with symmetries. The first
class is defined using symmetric tensor fields and symmetries intrinsic to _#; the second,
employs the rescaled Bel-Robinson tensor Dam‘s together with conformal symmetries of
(M , gaﬁ) and/or asymptotic symmetries. We comment on why the first or second class
currents presented below cannot give the right answer for a gravitational energy on ¢
The use of this charges can be fruitful in other investigations though.

7.5.1 First class charges

Let t,;, be any rank-two, symmetric tensor field on ¢ and n* a CKVF of (_¢, h,,). Define
the current
GO = 1, (7.246)

The divergence of this current reads
V., j% = 0,V 1 + Ayt (7.247)

where 3\ := V_n? If instead one uses a biconformal infinitesimal symmetry of defini-

tion 7.4.2 and defines the current
Yt = 17, (7.248)

its divergence gives
Voy* = &Vt + Py t™ + dmym,t™. (7.249)

Particular cases of conserved j®-currents include those constructed with any TT-tensor
(symmetric traceless divergence-free tensor), and for them the charge

J = /S jar ¢ (7.250)

is conserved, where § is any cut with normal r, and volume form e. This follows from
Stokes theorem, assuming a region A bounded by two such cuts . An example of conserved
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y®-currents is obtained using TT-tensors satisfying m,m,t® = 0. For any such current,

Y= /Sy“ra@ (7.251)

is a conserved charge. Observe that in this particular case ) is trivial for cuts orthogonal
to m, -if they exist-, that is, when m, = r, because of the requirement y,7¢ = 0.
Another case, is a y®-current constructed with a TT-tensor and a BCKVF with ¢ = 0.
Despite being obvious, it is necessary to remark that charges defined with y® or 7* may
be conserved even when the current itself is not divergence-free — it is enough that the
integral over the region A of the divergence of the current vanishes. In that sense, one
may also obtain conserved charges only for a particular family of regions A, as it is the
trivial case of A bounded with cuts such that the normal r* is orthogonal to the current.

It is tempting to define charges using D, or C,, —or a linear combination thereof, or

p as it has been already proposed in the literature for D, [61].

Dab’
The balance law associated to these charges that results from the application of Stokes

etc— for the tensor ¢,
theorem is not affected by the presence of gravitational radiation, and to illustrate this
with our formalism consider the specific case of a strongly equipped ¢ (definition 7.0.3).
Let £* be a member of the algebra of biconformal transformations b. We know that, in
general, it will be composed by a member 7% of the bitranslations t and an element
of the CKVF c¢s of the projector P, —see the end part of section 7.4. For ¢, = D, in
eq. (7.248),

yZ/Sy“maéz/S{aDeraDa}g. (7.252)

Let A be a region bounded by two cuts S 2 of the foliation given by m®, then
¥ =¥ = [ Vo= [ [(€¥.D")+ (- v) D], 7.253
o, s, = L Vavte= [ (& VaD™) + (6 - ) D] (7.253)

The divergence V ;D% is sourced by the matter fields (see eq. (3.119)), whereas the second
term only contains Coulomb contributions and vanishes identically for conformal symme-
tries of (_#,h,,), in particular for the asymptotic basic symmetries of definition 7.4.1.
Unfortunately, there is no contribution by gravitational radiation even when gravita-
tional waves can be arriving at ¢ according to criterion 1. The same formula holds
interchanging D, by C,,, only that now the first term in the integrand vanishes identi-
cally due to eq. (3.120). And similar results can be found for linear combinations of D,
and C,,, and for 'D,,. This is surprising, as the charge (7.252), or the analogous ones
using linear combinations of D, and C,, or iDab etcetera, include terms of type x,D?
which are associated to the radiative sector of the gravitational field. This opens the door
for modifications of these currents associated to D, and C,, by adding extra terms that
may lead to a more satisfactory balance law. This is work in progress. Next, assume
that criterion 2 holds, and thus —m® points in the spatial projection of the propagation
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direction of radiation, as discussed in sections 5.4 and 7.3. Then, charges defined on the
‘natural’ cuts orthogonal to m® might be sensible to radiative contributions. But now D*
is the divergence of the symmetric traceless tensor field V,, , the first component of news,

ND,=-D.V,°, (7.254)
which on any cut of the foliation is written by means of the intrinsic connection as
NDy =-D.V5° . (7.255)

Then, for topological spheres, and in general for compact cuts, the term y,D? integrates
out on using (7.217) and the charge reads

yz/y“magz/ozl)g, (7.256)
S S

which only contains the Coulomb contribution D. A very similar cancellation occurs if
one uses a CKVF of ¢ because the tangent part to an umbilical cut of the conformal
symmetry is a CKVF of the metric on that cut too. Hence, neither these charges nor
their difference, given by the general eq. (7.253), contain explicit radiative terms. Of
course, the discussion of sections 5.4 and 7.3 on the interpretation of the Coulomb and
radiative terms as such depends on the choice of m,,. Still, the fact that a general firs-class
current y“ is identically conserved in the absence of matter fields and for any conformal
transformation shows that the associated charges ) for any choice of cut are insensible
to gravitational radiation. Indeed, for # =S* or _# = R? the radius of the topological
2-spheres can be shrunk to 0, hence making these charges to vanish identically. This is
not the case for R x S? and thus one could consider the vanishing of these charges as a
topological feature.

Of course, the interest of having conserved charges is not only related to the existence
of gravitational radiation, and in that sense the above charges may be very useful in
different contexts.

7.5.2 Second class charges

When dealing with fields other than gravity, the standard approach is to consider charges
associated to the energy-momentum tensor of the field theory. As it is already well-known,
there is not such thing in General Relativity. Now, we define a second class of charges
that result from using the rescaled Bel-Robinson tensor. One has to be aware of the
dimensionality of such charges and currents, since they are of tidal nature and do not
carry, in general, units of energy-momentum.
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Consider first a triplet of CKVF ( (i)éo‘, (j)é"‘, (k)éa) of the space-time (M , gaﬁ), which
can contain repeated elements. Assume that in a neighbourhood of # T,; = 0 -note
that this is a more restrictive condition that the one taken in the rest of the work, see
property iv) on page 22. Then, in that neighbourhood of _#

V, D" 5 =0 (7.257)

It is easy to check that the current [85, 87]

o . Au ) Ap a
B* = (i)5 mf (zc)£ D pvp (7.258)
is divergence-free in that region of the space-time (including _#)
VB =0. (7.250)

Then, the quantity defined on any spacelike hypersurface ¥ orthogonal to a timelike ¢,
By, = /Z t,B'e (7.260)

is conserved in a space-time region Aj,; bounded by any two ¥; and ¥, orthogonal to any
two future-pointing timelike £, and with ¥, to the future of ¥,

0= /A VB =By, ~ By, (7.261)

In particular, ¥ can be chosen to be ¢#.

Suppose first that (i)éa are completely tangent to ¢ . Then

Fa &b fe
By = // Qube (§" & W€ (7.262)
where @), is defined for the rescaled Bel-Robinson tensor on _# as in eq. (2.17), and one
can write
_ m D d e f cd
Br= // ( <i>5 <j)§m7)d <k>5 -4 (v:)5 Cec <j)§ D yae” <k>§P> € (7.263)

If the condition in criterion 2 holds on _# and there is no radiation P=0,B 7=0.

é‘

Suppose now that (Z_)Sa . ﬁ n® for some non-vanishing functions . ﬁ ,

By = // o of WPV =Cs, (7.264)
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where W is the asymptotic canonical 1 density —see eq. (5.36). Observe that Cy, vanishes
if and only if W = 0 at 7, ie., d,g,
Ay, Cs = 0 for all ¥ in Ay,. In particular, de Sitter space-time has Cy, = 0 everywhere,

s = 0 there. Because the charge is conserved in

including at _#, and any other space-time having B , = 0 is de Sitter space-time in the
domain of dependence of 7.

Now, let us focus on a strongly equipped ¢ and consider a bitranslation 7¢ = am?®.
Let us define the current

s

R = —D%,, w, e’ e’ 7. (7.265)

Notice that according to the discussion at the end of section 7.4.2, the dimensions of this

quantity are.
R =L"", (7.266)

despite of being constructed with a superenergy tensor —indeed, R has physical units of
MT~2. Its integral over any cut gives a charge with units of energy. If m® is orthogonal to
cuts §;, the divergence of the current R* integrated over the compact region A bounded
by &12 gives a balance law

/A V. R =Rs, — Rs, , (7.267)

where

Rs, i= /S Rom, ¢ = /S % E (W+w)-(z+2)+ gv} ¢ (7.268)

The left-hand side follows by decomposing v/2m,, = 'k, — k, and introducing the defini-
tions of egs. (2.52) to (2.55) and (2.58). This charge contains both radiative and Coulomb
contributions. In order to compute the intrinsic divergence of R®, one has to know the
Lie derivative of D45 along n® at #.

7.5.3 Balance law from the divergence property of the asymptotic supermo-
mentum

The divergence of the asymptotic supermomentum given by eq. (5.43) can be integrated
over a compact region A bounded by S; 5 to give

/A (£aW = N T,,D") = @[S~ S]] . (7.269)
where @ [S] is the asymptotic superenergy density flur on S, defined as

D[S]i=— /8 m, P (7.270)
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where m, is the normal to §. Remarkably, if m, defines a strong orientation, then
®[S]=0 (7.271)

and
OS] =0—=P" 20 (7.272)

A

which follows from lemma 5.4.3. Compare eq. (7.269) with eq. (4.233).
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_®_

This last chapter! collects some examples of application of the main results presented in
this thesis. Important ideas are put to test, such as the determination of gravitational
radiation at _# or the existence of the first component of news V,, when the conditions
are met —see proposition 7.2.1. Thus, the asymptotic super-Poynting vector field P* and
V., are computed, and also the additional symmetries of definition 7.4.2 associated to
the curves selected by strong orientation —see definition 5.4.2. The easy and topology-
independent calculation of P allows to determine if a given metric contains gravitational
radiation at ¢ in a very straightforward manner. The outcome of this calculation for
the metrics considered here agrees with what one would expect in each case.

8.1 The Kerr-de Sitter and Kottler metrics

Let us start with the conformal Kerr-de Sitter metric

1 A A 2 1 A A
ds® = { < ~ 4 —;az sin? 9) de? + P qr? + = [—;@2 sin* 0 + —29(7“2 + a?)? sin? 9] do’+
p =] p

r2 2

p A, p
+ é lﬁ;asinz 0 — ijasuﬁ 0(r* + a2)] (dpdt + dtde) + Zd6’2 } (8.1)
These are Boyer-Lindquist-type coordinates, with
teR, reR, 60el0,7), ¢ecl0,2n] (8.2)
and
A>0, aeR, meR\0 . (8.3)

1Some of the calculations presented in this chapter were performed using the computer algebra system
Maxima —distributed under GNU GPL license.

161
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The metric functions are defined as

p* =1’ +a*cos’f (8.4)
A, = (a® +17) (1 — /;7’2) —2mr | (8.5)
Ag:=1+ /;aQ cos’ | (8.6)

==1+4 gaQ . (8.7)

The particular case with a = 0 gives the Kottler (sometimes called Schwarzschil-de Sitter)
spherically symmetric conformal metric.

Infinity is located at » — oo, and we have chosen

Q= (8.8)

A
r )
with A =constant with dimensions [A] = L, so that [2] = 1. From now on we set A = 1.
This choice of € indeed belongs to the divergence-free family of conformal gauges (3.92).
Hence, the normal to ¢ is

Ny =—5Var . (8.9)
Notice that dr? = r*dQ? and that
A
N2 < 3 (8.10)
2
p s 1
EQ%‘* =Nz (8.11)
2
P~ S 1
—0° = 8.12
Ay 14 NZ2a2cos?26 '’ (8.12)
A o s
Sro2d N2 (8.13)
2
p
A /
S Ly (8.14)
p
A ,
—29 (7"2 + a2)2 2L 14 N2%acos?d . (8.15)
p

Using these formulae, one can write the metric of ¢ as

1 1 -
h = N*dt*+=; (1 + N?a?) sin® 6d¢*— = N?asin® 0 (dgdt + dtdg)+ (1 + Na® cos 0) ' 462
- - (8.16)
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The electric and magnetic parts of the rescaled Weyl tensor at ¢ read respectively

oo (8.17)
2, .=, 2 YV oVt 4+ VAV
Dy = =5 AmV,iVt + ZN*amsin® 0 (V.oVit + V,tV,0) +

- 1 2 -
+m (1 + a?N? cos? 9) ' V.0V,0+ —m sin? 0 (1 + a®Acos®  — 3a2A) V. oV,0
(8.18)

The intrinsic Ricci tensor, scalar curvature and Schouten tensor have the following ex-
pressions:

— . 2 -
R, = 2a>N* cos® OV tV,t — EaN2 sin® @ (1 + 3a*N? cos® 0) VtVyo

+ % {1 — (1 — 3a2N2) cos? ) — 3a2N? cos? 9} (1 + CLQNQ) V.0V

1+ 4a?N?cos?0 — a®?N?_—
oV, 0 8.19
1+ a2N2cos?0 VIV (8.19)
R=2—2a’N?+10N?a?cos*§ |, (8.20)
— 1 - — 1 _
S, = 5N2 (a2N2 —a?N?cos? ) — 1) ViVt — ECLNQ sin? 0 (1 + a®’N? + a* N? cos? Q) VotV

1 -
+ o=z (1 + a2N2) sin? @ (1 + a?N? + a*N? cos® «9) V. oV, 0

1—a?N?+3a°N?cos?—
ov.0 . 21
2(1+ a2N2cos?0) VafVy (8:21)

There are two repeated PND £, and [, which read at ¢

s 1 1 1 .

0z NG (—anr — NV, t+ ZaN sin’ OVaqb) , (8:22)
71 1 1 :

fa= 75 (—anr + NVt — ZalN sin® Wacb) : (8.23)

Accordingly, there are two different strong orientations (see definition 5.4.2 and remark 5.4.4).
We choose one of them by defining

kLol (8.24)

) 1
m, Zn, 2k, =N (Vat — Zasin? evags) , (8.25)

| 1 |
o & natm) = <—anr + NVt = ZaN sin’ Hvagb) -

1%

I

(8.26)

[e% Y

7

where Nn, 22 N, such that %%k, Z —1, m* &, £ —1/v2 and m® 'k, Z 1/v/2. Notice
that both repeated PND are coplanar with the normal N, which makes the two strong
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orientations equivalent from the viewpoint of ¢, in the sense that they define, up to sign,
the same vector field m® there. The pullback to _# of m,, is

m, ZN <Vat — éa sin? GVaqﬁ) : (8.27)

1
m* < 5

N (8.28)

0, being a KVF of (_#, h,,). The non-vanishing intrinsic connection coefficients are

f9t¢ = éaN2 cos 0 sin @ (1 + a*N? cos? 8) : (8.29)

f0¢¢ = —512 (1 + a2N2) cos @ sin 6 (1 + a*N? cos? 6) : (8.30)
2 A2 -

e <w>
= A2

f¢9t ~sind (IZNCL;]:\(;i ios2 0) (8.32)

™, = Zfsz , (8.33)

ft@t _ a’N? cos 0 sin 0 (8.34)

14+ a2N2cos2 6

One does not need them to compute the kinematics of m, (see definitions in appendix A.3)
though; noting the fact that m® is a KVF, &, vanishes?, whereas a, vanishes by sym-
metrising in eq. (A.51) and contracting once with m®, and w,, does not involve the
connection:

=0, (8.35)

fay =0 (8.36)
2 —

Wy = =asinbcos OV, oV, 0 . (8.37)

—
—_—

Equation (8.37) implies that m, is not surface-orthogonal, that is, it does not give a
foliation. The projector to Sy (see appendix A.3) reads

1
P —
T T 4 a2N2cos? 6

- 1 .
V0Vl + = (1 + a*N? cos® 9) sin® 0V, oV, ¢ . (8.38)

The pair (P,,,m,) characterises the congruence of curves given by m® and the projected
surface Sy; we say, according to definition 7.0.1, that ¢ is equipped.

20ne can check that this is the case by doing the explicit calculation using the non-vanishing compo-
=a
nents of I' ;.
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All the quantities corresponding to the decomposition of D, and C,, (see section 2.2
and eqs. (7.4) and (7.5)) vanish except for

D=-DY, = -2m (8.39)

and thus we have

8.1.1 Asymptotic symmetries

It is known that due to the R x S? topology of # [109] the group of CKVF of (_Z, h,,)
is 4-dimensional [61]. This, however, misses the TT-tensor D,,, which must be taken
into account as essential part of the asymptotic structure. Taking the Lie derivative of
(8.40) one easily finds that the definition 7.4.1 requires the solutions to be actually KVF
of (_#Z,hy). In this sense, the generators of the basic symmetries are given by J; and
0Op, which indeed are KVF of (_Z, h,,). Hence, this group is just 2-dimensional —unless
in the Kottler metric case, a = 0, which is 4-dimensional. In addition, we can study the
asymptotic symmetries of (definition 7.4.2). The algebra of biconformal transformations
b is consituted by elements of the form

£ = pm* +x* (8.41)
where 5 and x* satisfy egs. (7.161) to (7.164), that is,
Lax* =0, DB =—2w,X", 2D xy) = 2V B, (8.42)

and one defines ¢ := m°V_f. On the one hand, from egs. (7.165) to (7.167), it follows
that the elements of the subalgebra of bitranslations t have the form

7 =am® with D,a=0 |, (8.43)

and \ := m®V_a. However, according to eq. (A.71), D\, Dy = —w,ymV, . Thus the
only possibility is a =constant. In other words, there is just one element of t and this is
the KVF ;. On the other hand, it is easily seen that the non-vanishing w,, spoils the
existence of a subalgebra of conformal transformations of the projector ¢s —see comments
below eq. (7.171). Finally, a more detailed calculation shows that the remaining general
biconformal symmetries £* € b associated to the orientation given by eq. (8.27) are of the
form:

£ = ad} +bog (8.44)

where b is a constant. Therefore, the basic infinitesimal symmetries are precisely biconfor-
mal infinitesimal symmetries of the pairs (m,, P, ) that define strong orientation, unless
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8.1.2 Strong equipment

different equipments that we are going to consider next.
field

in the particular Kottler metric with a = 0, where the equipped symmetries constitute

an infinite-dimensional algebra. This algebra will be given as a particular case of the

a "

mf =

ma

[1]

(1 + N?a2 cos? (9)

[NIES

acceleration,

There are other equipments on ¢, that is, other choices for m,. Specifically, the vector
m Vit
1

N (1+ N2a? cos? 9)%

(8.45)
a, = CL2N2

cos 6 sin 0
Hence, it is orthogonal to a foliation of umbilical cuts with metric

(8.46)
1+ a2N2cos2f~°
B sin? 6

Qup = =
and Gaussian curvature

0f + aN?53)
is worth attention. All its kinematic quantities of the vector field m® vanish except the
D,0

D4¢Dpo +

1

D.0D,0
14+ a2N2cos2f- 478

Qv

(8.47)

sin?
ab —

—_
—

—

The projector to these cuts is written as

K =1+ 2a’N?cos’0

(8.48)
(aN2Vat — Vaqb) (GNQVbt - vbﬁb) +

Observe that this provides a strongly equipped _# —definition 7.0.3.

(8.49)
L 0V,0 . (8.50)
14+ a2N2cos20 @ "7 '
The tensor p,, can be computed using the general expressions for axially-symmetric
metrics of section 6.2.1. These yield
_ sin®f
Pas = "oz
1

+

(14 @’ N? + a®N? cos*0) D, ¢D 0
2 n72 2 2 n72
ST N 0T ) 14 3a°N? cos® 0 — a>N?| D,6D 0.
using eq. (8.21):

Next, noting that 7,5 = 0 and that this implies U,z = S,5, one can compute V5

VAB :0

(8.51)

(8.52)
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This is the expected result taking into account C, = 0 and eq. (7.71). There is still more
to say on this. The biconformal symmetries acting on the new pairs (m,, P, ) have the
form

' =am”+n" | (8.53)

where the restriction to the cuts 7_7A of n* are CKVF of (gAB, S), m® is given in eq. (8.46)
and

D=

a=v(v) (1 + N%a? cos? 9) : (8.54)

Here v is the parameter of the foliation as in eq. (A.103), in this case given by v = ¢, and
v(v) an arbitrary function depending on v only which makes the dimension of the subal-
gebra t infinite. Indeed, this is the canonical form of a bitranslation, see eq. (7.226), with
F = (N/Z) (1 + N?a? cos? «9)1/2. Now, since S is topologically S?, n** are the infinitesi-
mal symmetries of the Lorentz Group SO(1,3). This agrees with the general results of
section 7.4.2. As a further remark, for going from the round metric to the current one
one has to rescale the metric on the cuts by w = K= (1 + N%a? cos® §) with K =constant,
which shows that the restriction & to the cuts of « is constant in the round gauge (that
is, a constant times the [ = 0 spherical harmonic). This agrees with corollary 7.4.1, since
as we will see later on V,, vanishes for these cuts, hence the subgroup of bitranslations
given by 7 = am® acting on the strong equipment given by these cuts correspond to
infinitesimal asymptotic translations of definition 7.4.3. This structure is also the general
solution for the Kottler metric with a = 0, for which both equipments are actually the
same.

8.1.3 Asymptotic supermomentum

We compute the asymptotic canonical super-Poynting vector field P* and canonical su-
perenergy density VW with the following outcome:

<o | (8.55)
W< 6m? . (8.56)

The vanishing of P indicates that the space-time contains no gravitational radiation at
infinity. This agrees with the fact that the two repeated PND (% and (* are coplanar
with N, —see remarks 5.3.1 and 5.3.4- and that h,, is conformally flat.

There is an interesting feature of the canonical superenergy W: it does not depend on
a at _#, so that it has the same constant value as the one for a = 0.*> We can compute

3That is, the Kottler metric.
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Figure 8.1: Asymptotic superenergy for the Kerr-dS metric around _# for

a =m = A = 1. The dependence on the angular parameter a fades away as approaching
7. The peak in the superenergy, then, occurs at the equator (§ = 7/2).

the superenergy density associated to N outside ¢, its expression is

Ny = AmAY . (8.57)
p* (1 + a?Q2? cos? 0)
and its Taylor expansion around €2 = 0 yields
L 2h2 2 2, 2 27 i 2
N'W = SA°m? — SAm [6+3a°A — 5a”Asin® 0] Q% + ... . (8.58)

Therefore, we see that a enters only at second leading order. This effect can be appreciated
in fig. 8.1.

8.2 The C-metric

The existence of exact solutions of Einstein’s Field Equations containing gravitational
radiation at infinity when A = 0 was demonstrated in [106] by showing that the so called
C-metric has a non-vanishing news tensor at _#. For A > 0, the first proof of an exact
solution having gravitational waves at infinity according to criterion 1 was presented in
[75] using precisely the C-metric but now with A > 0. In the present work, we expand
that analysis in several directions and in particular we suggest that two news tensors on
# exist using the results of chapter 6.

The C-metric with A > 0 describes two accelerating black holes in a de Sitter back-
ground [141]. As such, one expects the presence of gravitational radiation at ¢#. We will
consider this metric in the form of a particular sub-case of the accelerating, charged, ro-
tating Plebanski-Demianski solution [142] —see also [143]. The conformal metric, selecting
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a gauge according to eq. (3.22), reads

ds? = WS”W (-Toh2 + ;dqQ + ;dﬁ + SdaQ) , (8.59)

where
T(q) == (¢* — a®)(1 + 2mq) — A/3 (8.60)
S(p) == (1= p*)(1 = 2amp) (8.61)

n is a conformal-gauge function and f(n) an arbitrary function regular and different from
zero at 1 = 0, both to be specified. The conformal boundary ¢ is defined by ¢ = —ap

the conformal factor being
2

and the normal to _#
s nf(n)

N, =——+=~(V,qg+aV,p). 8.63
75 (Vag p) (8.63)

The gauge function 7 is a first integral of N® and we choose it to be

. a(1—2am)F(q) (1 B p)§
n=e (1 - 2a/mp)2am/(1+2am) (1 + p)(l—Z&m)/2(1+2am) ’ (864)
with ]
F(q) = —/T(q)dq . (8.65)
It is possible to set
2

and for that we take

(14+6am)

) 1
f(n) — efa(172am)F(faP_ (nz)) (1 + P—l(n2)) (1+2am) (1 . 2amP_1(772)> 2(1+2am) (867)

where P! (n?) is the inverse function of P(p) such that P(p) Z n?.

There are four constant parameters, namely the acceleration a, the mass m , A and C.
The metric may present two conical singularities at p = 1 and/or at p = —1. One can fix
C' to cure one of these singularities but never both of them at the same time. Additionally,
this fixing defines the range of the coordinate o € [0, 2w (') [143]. Since both singularities
are not curable at the same time, one has to restrict the range of the coordinate p in order
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to exclude the persisting one. We fix C' to

1
C=—""— 8.68
(1 —2am) (8.68)
so that p = 1 defines a regular axis for the KVF 0, and restricts the range p € (—1,1] in
order to avoid the singular point at p = —1. This, together with the further condition

2am < 1, (8.69)

makes S > 0, only vanishing at p = 1 —thus preserving the signature of the metric.

There are two KVF of g,5: 0; and 0,. The former has R-orbits whereas the latter
has cyclic orbits. Observe that T'(¢) < 0 at ¢ and 94 Decomes negative there, hence the
space-time is non-stationary around the conformal boundary, as one expects. Because
we are interested in studying ¢, we further restrict ourselves to ¢ € (—a,a) —~which
keeps T'(¢q) between two roots and negative. One more feature is that the roots of T'(q)
represent horizons which, by our previous remarks, do not meet ¢ . The Weyl tensor has
two repeated principal null directions (which also become repeated PND of daﬂ,f at 7)

given by:
1 N
1601 = 72? (_TvaT + an) ) (870)
1 N
l,=—== TV, 7+V,q . (8.71)

S

Notice that we have chosen them such that (% ¢, = —1, but this does not hold outside

.

From now on we focus on _¢#. Note that T := —a?S — N? Z T. The metric there
reads
28 + N?)dr? + ol dp* + Sdo® (8.72)
h = T — ) .
(@S + N)A™+ srag Ty + 540

This is positive definite and has a regular limit when A — 0 leading to a degenerate
metric g,,. The intrinsic connection on ¢ is

2
r 7 « = =
ab = —?@DSV(GTV,))p ) (873)

2
_ o A . _ .
L2 ;ASTa?apsvaTvbT + %apsvapvbp + QBATsapsvaavba . (8.74)

|

g
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and the intrinsic Ricci tensor of ¢ reads

— — 1 1 1 - =
2 2 2 2 2 292
Ry = 57 N2T 5328 + (9,9)°| V.7V, 7 + o7 [4°5055 + 50 (0,9)° + SN0} | VpVip
~ 5 (028025 + a® (9,9) + N*925| V,0V,0 (8.75)
D _ 1 292 2 292
R=- 480”925 + 3a” (0,5)* + 2N*8; 8] (8.76)

thus the intrinsic Schouten tensor follows

— 3T = = 1 Y »V
S = 537 [(09)"@® = 2N VorVyr + oo [16%5005 +0® (8,5)" + 2N°0}S| VpVip
S S —
— g L(08)"@* + 2N*05| V,0V,0 (8.77)

One can also obtain the electric and magnetic parts of the rescaled Weyl tensor on _#
whose non-vanishing components are

6 -
Cp = XamS(SSa2 + M)V Vo o, (8.78)
D, = —% <9$2a4 + 5ASa* + §A2) V.V,
mA = = m -
_—— —S (A 2 : :
TSR3 Sa2)vapvbp+ AS( +95a*) V,0V,0 (8.79)

Now we make a choice of strong orientation —see definition 5.4.2. For that, define

AN (8.80)
B4 - N 1 a
Lo ok = NV (D 4 .
m, Zn, -2k, [ V.7 (T + N) V. Nvap} , (8.81)
o1 1 N 92 2%
A N N 2 _2a .
ko & natmy) = 7 { V.7 ( —+ N) V. Nvap} , (8.82)

where, as usual, n, is the unit version of the normal to ¢, in this case given by (8.63).
Notice that k* 'k, = —1, m* k, = —1/v/2, m* 'k, = 1/4/2. This choice of null directions
constitutes an example of the lightlike set up of section 5.4 with m, defining a strong
orientation. The pullback of m, to ¢ is

m, = N (var + 29, ) , (8.83)

N
me = (-50 _ aSa&) . (8.84)
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The projector to the S, and its ‘metric’ read, respectively,

. Nt N2aq — _ _ .
P, = Sa’V,7V,m + ——V pV,p — =1 (VQTpr + VapVbT) +SV,0V,o , (8.85)
RN T
1
q= gdp2 + Sdo® . (8.86)

Recall that egs. (8.83) and (8.85) characterise the projected surface Sy —see definition 7.0.3.
After this, we can study the kinematics of m, namely the acceleration, vorticity and
expansion tensor (see egs. (A.52) to (A.54)):

a, =0, (8.87)
a

Kab —8p5ﬁ9ab ) (8.88)

wy =0 . (8.89)

Equation (8.89) tells us that m, is surface-orthogonal, and thus defines a foliation by cuts;
eq. (8.88) indicates that ¥, = 0, therefore the cuts are umbilical; eq. (8.87) is consistent
with m, defining a foliation and in addition shows that m® is geodesic. From eq. (A.105)
we deduce that the function 1/F = m®V v is constant on the cuts, D, F = 0, where v is
the parameter selecting the leaves (A.103). From eq. (8.83) one deduces

1
— —d 8.90
v T+a/Tp , (8.90)

with F' set to F' = N. Therefore, with this choice of m, the C-metric possesses a strongly
equipped _# —see definition 7.0.3. On each cut one has the following non-vanishing con-
nection symbols

- Sy 1 o S 1 = Sy 1
Fppp = —%aps, P po = %aps, Fpa’o' = —isaps (891)
and the Gaussian curvature
1
K = —5853 =1—6amp (8.92)

The projections of eq. (8.77) to any cut give

Sip = _8]\7128 (9,9)* * + 2N?02S| D,pDyp — |0? (8,5)” + 2N?028| D40 Do
(8.93)

Note that all these quantities defined on each cut of the foliation hold on ¢, thus one can

8N?

underline them as they belong to Sy (see appendix A.3). Another important consequence
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of having 0,5 = 0 = w, 5 is that from eqs. (7.31) to (7.35)

Tape = Sapc =Wape =0 (8.94)
Lan=g5'1,, (8.95)

Uss = Sas + Lan = ;025 (GDapDsp+ SD40Dpo) . (390

A quick check shows that U¢, = —812,8 /2 = K. We are interested in the lightlike projec-

tions of the rescaled Weyl tensor defined in section 2.2 because they are extensively used
in the search of news and very useful for computing the asymptotic radiant superenergy.
The non-vanishing ones, written in our notation for congruences (7.4),(7.5), are:

D=-2m | (8.97)
+ S 3
c,=0C, = NamSDAU : (8.98)
3
Dy= "Dy = —5amDyp (8.99)
b ]_ + 9 2
Cap =75 Cap = —335amDupDpyo (8.100)
. 1 3 3

8.2.1 Asymptotic symmetries

The metric h,, at ¢ inherits as KVF 0, and 0, which, in addition, leave invariant m, and
thus belong to the algebra of biconformal symmetries b —see section 7.4. Apart from those,
we can study more general asymptotic symmetries of definition 7.4.2. Because we are in
the case in which ¢ is strongly equipped (definition 7.0.3), we can use eq. (7.226) and
1/F = /S to write the general form of the elements of the subalgebra of bitranslations t:

T = —=m" | (8.102)

with v(v) an arbitrary function depending on v (8.90). As we have shown in section 7.4,
the general elements of the biconformal symmetries b preserving the strongly equipped
# are the sum of an element of t and an element 7 of the conformal transformations
¢s of the projector, which in this case is given by (8.85). On each cut S, we can project
eq. (7.223) to give

Sy
D(A77B) =20qsp (8.103)
where 7 S E®gn, on each cut. Thus the restriction to each cut of 7, gives locally the

CKVF of the flat metric ¢,5; globally the topology rules out a subset of these vector
fields. If one makes the change of variable p = 1 — 32, the 2-dimensional metric has a
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regular KVF with a fixed point at y = 0. Notice that the topology of the cuts is R?
—since we have to remove the point at p = —1. By following the discussion in appendix
F in [122], the topology and the periodicity of o force the CKVFs that survive to be
constructed with any periodic function f(z) in the complex plane. Thus, there is still an
infinite number of CKVF on each cut.

8.2.2 Asymptotic supermomentum

The asymptotic canonical super-Poynting vector and superenergy are represented in fig. 8.2
and have the following expressions:

—a 7 |3 6 a

Pt = K18am?S (1 + ASa2> o (8.104)
s 54 5 4 18

W £ 6m® (1 + ps% + ASa2> : (8.105)

Observe that the super-Poynting vector field does not vanish anywhere on ¢ . This fact,
according to criterion 1, indicates that there is gravitational radiation at # . This is the
expected result. Note that the canonical asymptotic super-Poynting (8.104) vanishes if
and only if the acceleration parameter a is zero (which implies the absence of radiation
in that case). However, the canonical superenergy density eq. (8.105) is different from
zero even for a = 0. Another feature characterising strong orientation is eq. (5.56), which
can be easily verified for the present example contracting eq. (8.104) with m, given by
eq. (8.83)

54a*m?S

6, o
NI eve <1+ASa ) <0 . (8.106)

NN

a~a
m, P

Now we can take the limit to A = 0 —see section 5.5. For that one has to use the
asymptotic supermomentum (5.34)

(67

p

IS

2m’ Kcﬂs - 2) (A+95a?) 05 + a8 (2A +9Sa?) 5;;] . (8.107)

Then, we set A = 0 in eq. (8.107) which by eq. (5.79) gives the asymptotic radiant
supermomentum,

Qa /;0 18m252a3 (aé‘gé + 63) . (8108)

The manifestly non-vanishing asymptotic radiant supermomentum for A = 0 implies the
presence of a non-vanishing news tensor [76] and, in consequence, that gravitational waves
arrive at infinity.
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Figure 8.2: Canonical asymptotic superenergy W and super-Poynting vector P* for the
C-metric with A > 0. The constant parameters have been set to A =1, a = 1/4,
m=1/4.

8.2.3 Radiant quantities

We turn now to the study of the radiant asymptotic superenergy. Following sections 2.2
and 2.3, we compute the quantities associated to the %* of egs. (8.80) and (8.82). The
procedure is straight-forward using egs. (8.98), (8.99) and (8.101) and recalling eqs. (2.52)
to (2.55) and (2.58). The non-vanishing quantities are:

12
W= fﬁa‘%nzs2 : (8.109)
'z = 1285an2 : (8.110)
+ 336 , 55 3 a*m? —

o= 22 2m2 250 22 2 —548T — 9AS) §°
Q A\/iamTéT—l—\/_AA (—548T — 9AS) 4

+ \/5108\/3@37”2 5250 (8.111)
A AP '
V=dm® | (8.112)

while Q% =0 ~hence W = Z = 0. Another useful check is to note that

w-w-daz_-evZo | (8.113)
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Figure 8.3: Radiant and Coulomb components of the asymptotic superenergy on ¢
together with the canonical supernergy density W for the C-metric with A > 0. The
constant parameters have been set to A =1, a = 1/4, m = 1/4.

which shows that eq. (2.60) is satisfied. Note that criterion 2 is fulfilled too, i.e., there is
no incoming radiation along m®. Then, lemma 7.3.4 tells us that the first component of
news tensor exists.

8.2.4 Radiant news

If we want to find a news tensor as proposed in section 7.2, the first thing to notice is
that due to egs. (8.94), (8.96) and (8.99) one has on each cut

Négp, CE2NE, 2 D VP (8.114)

We know that the solution V,5 to this equation gives the first component of news, see
proposition 6.3.1. To compute it, write eq. (8.114) explicitly in terms of the right-hand
side of eq. (8.99),

1 o o 1o 1.
—3amDp 2 ~SO,V,, — ga(,vA(, +STC 4V, + ST Vou + EFCMVCA + EFCA(,VCU .
(8.115)
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We have to set V5 traceless (V,, + SV, S 0) and symmetric (V,, S V,,) and we

further assume that V5 is left invariant by the axial KVF 9,, that is

8, Vg 0. (8.116)

The solution reads .
Vo s §1 with ¢; = constant (8.117)

s H
Vi = I (8.118)
where
s S 1 g L1 2 .
H = /Badep = 3am <2amp — gp —amp +p> + ¢y with ¢y = constant.

(8.119)

This function H must be positive where S > 0 and because we assume a > 0, m > 0.
Regularity at p = p with © = 41 requires

S S
:O’ 02:

1 m?a® — p2am (8.120)

N W

and cannot be achieved on both poles, p = —1, 1, simultaneously. Because with our gauge
fixing p € (—1, 1], we have to choose = 1. Then,

H
Vap = 3 DapDpp — HDyoDpo (8.121)
Vag| =0 (8.122)
p=1

It is possible now to deduce what p 4 is:

Pa =Uap —Vap
3a’m?2p* — 2amp® — 6a*m?p® + 18amp + 3a*m? — 4am — 2
= - D,pDgp
4(p — 1)(p + 1)(2amp — 1)

1
+ Z(p —1)(p+ 1)(2amp — 1)(3a*m?*p* — 2amp® — 6a*m?*p* — 6amp

+ 3a*m? — 4am + 2)D 0D y0. (8.123)

The radiant news tensor on each leaf of this strong equipment is simply given by n AB =
2V, - Observe that

g 20 Ywes P L0 0o =0 . (8.124)
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8.2.5 The other strong orientation

If we choose k“ aligned with the other repeated PND, that is

[

ko = Ly (8.125)
£ b N1 a
m, =n, —V2k, = [ NV, 7 <T + N) V.4 Nvap} : (8.126)
Lo 1 1 N 2 2a
k, = — = — |-NV,7—([=+ = - = 12
« \/i (na + ma) \/i |: vaT (T + N) vaq Nvap:| ) (8 7)

neither the asymptotic super-Poynting nor the asymptotic superenergy change, as they
do not depend on this choice. The radiant superquantities 'Z and W in general would
be different, nevertheless for the new 'k® they have the same value as for the old k®; one
also finds Q% = 0. There is a change in the direction of the radiant supermomentum +Q°‘
though —compare with eq. (8.111) —

oz [336 5
\/_

f108\/§a/7\” RO (8.128)

‘0

5& +2v2 3 i - (—548T — 9AS) o+

An intuitive interpretation of this difference is that on the first case, with &k, = /(,,

—m, points along the spatial propagation direction of the gravitational radiation coming
from one of the two black holes, while with %k, = [

Lo —m, gives the propagation

direction of the radiation coming from the other one. Notice that in each case the no
incoming radiation condition holds, a fact that is compatible with the existence of two
different propagation directions: with k, = £, criterion 2 tells that there is no radiation
travelling along the spatial direction m,, of eq. (8.83); with k, = [/, criterion 2 tells
that there is no radiation travelling along the spatial direction m,, of eq. (8.126).

8.3 The Robinson-Trautman type N metric

We explore now the Robinson-Trautman family of solutions to vacuum EFE with a posi-
tive cosmological constant and admiting _# —for details, see [143, 144] and also [145]. We
write the conformal metric as

ds? = P2 (dudé +dtdu— (22H) du® + - (dgdg + d¢d¢)> , (8.129)
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where u is a retarded time coordinate, ¢ an inverse radius and ¢, ¢ a couple of complex
stereographic coordinates. The gauge has been chosen such that

v, N*£0. (8.130)
The metric functions are defined as
A

—20*H := 3+ 200, In P — (*K +2m/¢* | (8.131)

K :=2P%0:0;ln P . (8.132)

The function P = P(u,(,¢) and the function m(u) satisfy the so called Robinson-
Trautman equation, which is a fourth-order differential equation. Infinity is located at
() :={ =0, therefore the normal to ¢ is

N, LV (8.133)
and the metric at ¢ reads
h = N?P?du? + d¢d¢ + d¢d¢ (8.134)

where for simplicity we use the same letter u to denote the restriction to _# of the retarded
time. So far, this applies to the general Robinson-Trautman A-vacuum solution. From
now on, we concentrate on the Petrov type-N case and set the conditions that particularise
the metric to that subfamily of space-times:

m=0 , K=K(@u) . (8.135)

For type N, the general solution for P is (see [145])

1

P=——u (1+€¢FF), (8.136)
JOFOF
with e = —1,0,1 and F'(u, () any function analytic on . The non-vanishing components

of the intrinsic connection in these coordinates are

r,=0,nP | (8.137)
¢, = —N?PO;P | (8.138)

uu

I, =—N2Po.P | (8.139)

uw -
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and the curvature and Schouten tensor are given by

_ - < 2 s = =
R,, = —2N?P9;0; PV ,uVyu — 50OV (V)¢

1 — -1 o
= 500 PV LV~ 50:0:PVCV,C (8.140)
_ 4
R=—500:P (8.141)
_ o 1 . 1 o
Su = —~N*PODPV,uVu — S00PV (Vi — 50:0:PV (Vi (8.142)

and the electric and magnetic parts of the rescaled Weyl tensor at _# read

1 _ .
D, = 7]\/2 530k ¢ (P?0u0; In P) V,(V,¢ + N2 P3 5306 (P20,0;mP)V,(V,¢ ,  (8.143)
Cop = i3 PBaC (P20,0:1n P) V,(V,¢ — i P3ac (P?0.0;n P)V,(V,C . (8.144)

There is one quadruple PND of the Weyl tensor (and hence of daﬁ,y ), as it is of Petrov

type-N, which at ¢ reads

N
(¢ = ———=9; . 8.145

We choose strong orientation (definition 5.4.2) by setting

[

k=0 (8.146)
i _
C=pt—V2EkY = —60‘ 8.147
m® =0t = V2R = 0 (8.147)
Yo L N V2
kY = (n® ay 5‘)‘ o 8.148
M) = = et et (8.148)
where as usual Nn® := N®. The pullback of m, to ¢ is

ol oy = NPV (8.149)

mt =50 My = U :

Using the connection coefficients one can compute the kinematic quantities of m,; they
read

Therefore, m, is orthogonal to a foliation of umbilical cuts —see eqs. (A.52) to (A.54). This
was expected, as the conditions in corollary 5.4.1 are met —see remarks 5.4.8 and 5.4.9.
The cuts, in general, contain singularities, this depends on the choice of the function
F(u,() in eq. (8.136). The projector to the cuts is

—Pab = vacvbé_ + vaé-_vbc . (8151)
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With this choice of m,, # is strongly equipped —see definition 7.0.3-, characterised by
(ma7 —Pab )

8.3.1 Asymptotic symmetries

The infinitesimal biconformal symmetries acting on the pair (m,, P,, ) are of the form
& =am*+ x* (8.152)

with
a=v(u)P (8.153)

v(u) an arbitrary function of the coordinate u and the restriction xy* of x® to each cut
a CKVF of the flat metric. This time, the dimension of the algebra of biconformal
infinitesimal symmetries can be ‘doubly infinite’, depending on the topology of the cuts.
For instance, this is the case for R? and R x S! topologies, which also warrants the
existence of CKVFs with fixed points —see remark 6.3.2. In general, there are no CKVF
that are infinitesimal basic symmetries, what is to be expected as there are no KVFs for
Robinson-Trautman type N in the generic case.

8.3.2 Asymptotic supermomentum

Gravitational waves are expected at infinity. Indeed, this is the case according to cri-
terion 1 because the asymptotic canonical super-Poynting vector field and superenergy
read

||\

N4 P7a< (P?0,0 In P) 0 (P*0,0¢ In P) m* (8.154)

d; (P*0,0In P) 0¢ (P*0,0;n P) (8.155)

s

P -
)4%

N4P6

thus P* is non-vanishing everywhere on ¥, pointing along —m?.

8.3.3 Radiant quantities

There is just one radiant quantity different from 0, as corresponds to a daﬁf of Petrov

type-N when strong orientation is chosen —see fig. 5.4:

Wi O; (P*0,0cIn P) 0¢ (P*0,0;n P) . (8.156)

N4 p6
From this expression and eq. (8.155), clearly

+

wW="w | (8.157)



182 8.3 | The Robinson-Trautman type N metric

fulfilling eq. (2.60), and by eq. (8.154)

oz

|

—Wm®, (8.158)

which is fine with the general expression (5.55) of P” for algebraically special d,, 57‘5.

8.3.4 News tensor

It is easy to see what the radiant news tensor is in this case. Since the cuts are umbilical,
the tensor f,5 of eq. (7.15) vanishes. The same argument applies to T4z~ of eq. (7.34).
Furthermore, because k£ = 0, from eq. (7.31) one has

Uap = SaB (8.159)
or, by means of the decomposition of corollary 7.2.3,
Vap +Pap = Sap- (8.160)

As it is pointed out in section 8.3.1, if we assume R? or R x S! topology for the cuts,
the existence a CKVF with a fixed point on each cut is ensured. In that case, by corol-
lary 7.2.3, we now that a flat metric on the cuts, as it is the case, implies p,5 = 0. Hence,
the radiant news tensor of lemma 7.3.4, given by

+7JAB =2Vyp (8.161)

is simply the tangent part of S, eq. (8.142) to the cuts, that is

2 2 S =
+EAB = _Facacp@AC@BC - Fag’@{PDAC@BC : (8.162)
It is possible indeed to write the asymptotic canonical 1 and super-Poynting in terms of
+7JAB’
—a + + a
P" = g [20.P + PO (nee) [=0.P + PO (Tnge) m”. (8.163)
1 + +
W= s [20uP + PO ('nge) [<0uP + PO ('me) (8.164)

From these expressions we find

n,u=0= P =0, W=0. (8.165)



Camino hacia nosotros dos,

regreso

donde todo comienza.

Y ta dices:

—Volver es una forma de llegar al final.
Volver es una forma de que nada termine.

Benjamin Prado, Limite. Todos nosotros, 1998.

9 | Conclusions

_®_

The end of this dissertation consists of a concise set of conclusions and open questions. It
is not intended to be a list of the results put forward in the memoir; a table of contents
with theorems is placed at the beginning to that end. Rather, this last chapter aims at
a comprehensive overview of achievements, a common canvas of ideas to display their
mutual features.

Tidal characterisation of gravitational radiation at infinity

e The novel characterisation of the asymptotic structure with a non-negative cosmo-
logical constant relies on the application of tidal methods. This is a new perspective
and technique in the study of asymptotics, different from traditional methods em-
ployed so far. It naturally suits the tidal nature of gravitational-wave measurements.

« Based on the rescaled Bel-Robinson tensor D, ;.5 at infinity, the asymptotic super-

afy
momentum (which is radiant for A = 0) determines the presence of gravitational
radiation escaping from —or entering into— the space-time. At the same time, it
provides a direct connection between the existence of gravitational radiation and

the algebraic classification of the rescaled Weyl tensor daﬂf at _#.

o The radiation criteria thus defined have a neat correspondence in the two considered
scenarios, A > 0 and A = 0, and share the same geometric and algebraic meaning:
there is no gravitational radiation on _# if and only if N®| ; is a principal vector
of d,5.,
A = 0 explicitly. This feature exceeds the capability of traditional methods, which

9 in the sense of Pirani. In fact, it is possible to take the limit from A > 0 to

either do not have a direct correspondence in A > 0 (e.g. the news tensor for A = 0)
or when they do, they do not tell the presence of radiation (e.g. asymptotic shear).

o The presence of gravitational radiation on the conformal boundary according to the
criteria based on tidal energies does not depend on the choice of gauge nor on the
observer —which is fixed by the geometry— and does not need of a choice of foliation.

183
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The

The

The computational effort in obtaining the asymptotic supermomentum is very low,
in comparison to other characterisations which need of a suitable choice of conformal
frame —e.g., in the A = 0, the computation of the news tensor N, as the time
derivative of the asymptotic shear in a Bondi gauge, or the determination of p,;.

scenario with vanishing cosmological constant

The classical criterion by means of the news tensor field N, has been shown to
give the same answer as the tidal-based criterion. This served as a test of the tidal
techniques.

Indeed, the news tensor is sourced by the asymptotic radiant superenergy quantities.
This fact motivated the search of the radiant news in the A > 0 scenario.

The peeling behaviour has been derived from a robust geometric construction. The
result is an endomorphism L_” —actually, a family of automorphisms— at the tangent
space of any point in _#*. It gives the asymptotic behaviour of physical fields
approaching ¢ * along null geodesics. The endomorphism depends on the selected
curve and is defined at its endpoint at ¢ . In particular, a nice feature emerges:
the alignment of physical supermomenta in the direction of the asymptotic radiant
supermomenta at leading order in their expansion along null geodesics.

The asymptotic group of symmetries BMS emerges from the universal structure on
7, consisting of the conformal class of pairs (g,,, N*).

The determination of the two degrees of freedom of the gravitational field does not

follows alone from (g,,, N®). Another ingredient is needed, "D®|
p

The news tensor N, and p,, and the asymptotic group of symmetries hold an
interplay: p,;, selects a subgroup of translations, which in combination with N,, are
the building blocks of the energy-momentum of the gravitational field at ¢ .

scenario with positive cosmological constant

One of the main ideas emphasised in the thesis is that any dynamics of the gravita-
tional field at ¢ must be encoded in the triplet (_Z, h,,, D,,), in consonance with
the fundamental results by Friedrich [112, 132]. The asymptotic supermomentum
depends on these three elements, and the asymptotic radiation condition shows that
the gravitational radiation is an interplay of the three of them.

A general method has been presented for computing news-like tensors at _#. In
particular, necessary conditions for the existence of a class of such tensors —the
radiant news— has been found. The radiant news contain a first component Vg
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which has a very similar origin as that of the news tensor field in A = 0. More
concretely, its existence relies on a tensor field p 5 that has been found for general
Riemannian two-dimensional manifolds. The tensor V5 is determined by (_#, h,;,)
and a cut (S,q,p5). There is a pair of second components, X ap- Although having
the algebraic properties of V5 , their origin is different. When they exist, they are
determined by D,, and the extrinsic curvature of the cuts where they are defined.

« The radiant news tensors n ap associated to a cut, if they exist, are sourced by the
asymptotic radiant superenergy quantities associated to that cut.

+ The introduction of a congruence of curves on _# serves to define a structure con-
sisting of the conformal class of pairs (P,,, m®), where m® is the unit vector field
tangent to the curves. The structure has three degrees of specialisation —equipped,
strictly equipped, and strongly equipped _#, respectively— and allows for promoting
the radiant news and their components to tensor fields on _#.

o Novel symmetries are introduced as those transformations preserving a given equip-
ment of #. There is an interplay between those symmetries, the first component
of news V,, and p,, associated to that equipment. Remarkably, p,, serves to define
a set of ‘translations’ on ¢.

o The radiant news are determined by (h,,, m®) (first component) together with D,
(second component).

» Conserved quantities can be defined using the equipments of _# and the basic and
new syminetries.

Further research and open questions

The work presented in this thesis opens the window to further research. Some of these
matters and open problems are:

1. A more general class of news-like tensor in space-times with A > 0 can be sought
by means of the general method here presented. Also, a refined study of the ra-
diant news tensor and their connection with the radiation condition is possible.
Particularly, a transport equation for p,, along m® would shed light on these two
issues.

2. The definition of an energy-momentum at ¢ with A > 0 is still an open problem.
The exploration of conserved charges and the study of the A = 0 scenario suggest
that a definition of momentum associated to the symmetries of an equipped ¢ is
plausible.
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3. The exploration of symplectic methods is to be done. In particular, their application
to an equipped _# may help in the search of an energy-momentum.

4. Given an equipped ¢, classes of equivalence of connections on _# emerge. Their
characterisation should be put in connection with the first component of news and
with the associated symmmetries.

5. It is natural to think on applying the geometrical approach to the peeling behaviour
and, in general, to the asymptotic propagation of fields in the A > 0 scenario. Also,
it would be interesting to see if the endomorphism L_” can be derived for general
curves other than null geodesics.

6. The application of the tidal approach to the A < 0 scenario has not been considered
in this thesis and should be addressed. If the outcome is successful, one could then
talk of a universal radiation condition at infinity.

The hope is that this work contributes to the understanding of infinity and to a deeper
comprehension of gravitational radiation.



A | Geometry of spatial hypersurfaces, cuts
and congruences

_®_

We introduce some geometric tools for a general 3-dimensional, spacelike hypersurface Z
embedded in a 4-dimensional space-time (M , gaﬁ). We will also consider the geometrical
objects associated to a single cut S on Z and to a general congruence C given by a vector
field »* on Z.

A.1 Induced connection

Consider a general spacelike hypersurface Z embedded in a 4-dimensional space-time
(M , gaﬁ). Let n, be the timelike normal one-form at each point of Z normalised to
n,n,g" = —1. Also, at each point, consider a set of linearly independent tangent vector
fields {€,}, a = 1,2,3. By definition, n e", = 0 and {€,} constitutes a basis for Xz, the
set of vector fields of Z. Use the inverse space-time metric to define the normal vector
n® = g*n,. This field completes a basis, {1, €}, for the set of vector fields of M, X, at
Z. Analogously, consider a set of linearly independent one-forms orthogonal to 7, {@w®}.
They constitute a basis for the set of one-forms of Z, Az, and {—n,w*}, for the set of
one-forms of M, Ay, at Z.

The hypersurface 7 is endowed with an intrinsic Riemannian metric h,;, given by the
pullback of the space-time metric to Z — the first fundamental form of Z:

7 v
hab = 6‘“(16 bgw/ : (Al)
It is non-degenerate and its inverse is uniquely defined by
he® = wuawybg‘“’ : (A.2)

187
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The second fundamental form of Z is defined by

Kap = euaeybvunu : (AB)
Any space-time vector field v® can be decomposed into parts tangent and normal to Z,
al

()

a

—nn, o +0%, v'n, =0, =" 0", (A.4)

with ¥ € X7. This decomposition and notation can be generalised to any tensor (field).
The tangent part 7 can be obtained by the action of the projector

P i=e"wg’, P%n, =0, =P 0", (A.5)
Its covariant version reads

T u T T
‘P,B ZPuﬁpﬁguy:gaﬁ—i—nanﬁ:Pﬁa . (A6)

«

The intrinsic volume form of (Z, h,,) is determined by

roevel, (A.7)
b

“NaCabe = Napwp€

o abc . ouvp, a
n-e =n wu w,,

w, (A.8)
such that €%“c ;. = 6. This also fixes the orientation® to €53 = 1, and €, is the canonical
volume element defined by h,,.

Given the space-time connection, one can define an intrinsic covariant derivative on Z
as

= T
m a .t a, v m « _ L« o a o a o a .a
V"Vt = w YV k) for utn, = 0%, =0, ut =%t v =e% 0", (A9)

and extend this operator to act on any field on Z. For any tensor field 7% "5 ;  defined
at least on Z, one has

a1 ar V1 Vg _p 1 - _ N7 L--ar
Wy, ew, ey, ey e CVPT 1oy =V.T br...by

q

,

o ai...a;—10Q;41...ar a; ay...ar g
Z T by..by el e Z T by..bi_10biy1...bg by TV
i=1 i=1

a1...ar A v

P al Qr
broby = Wy, MW, e

torsion-less, metric and volume preserving —the underlying connection is the Levi-Civita

where T b€y T . The new derivative operator is

V1..Vqg

! According to the orientation for the unphysical space-time, 75,53 = 1. This coincides with the one
we chose for the physical space-time —see the conventions at the end of chapter 1.
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connection associated to h,

The intrinsic curvature is defined by means of V, as

(V.Y =V, V,) v, = By v, v E Mg (A.12)

m?
" R = Emm. The
relation with the space-time curvature is given by the Gauss equation and its traces:

and the intrinsic Ricci tensor and scalar curvature by R, := R,

Eabcd = eaaeﬁbe'chaﬁvgwad + ’%bc’iad - Hac’ibd ) <A13)
R, = e, R, + nﬂn(se“aechaﬁf + Koyt — Kook (A.14)
R=R+2nn"R,, + Kok — K% (A.15)

with x := r°,, and the space-time curvature and the second fundamental form are related
by the Codazzi equation:
677/5 = 2v[a/'ib}c . <A16)

a B~
€7 4€ € CRaﬁ’y

A.2 Cuts

Let S be any two-dimensional submanifold embedded in Z and assume that it has S*-
topology. Generically, we will refer to these kind of surfaces as ‘cuts’ Let r, be the
(spacelike) normal one-form to the cut within Z —n,, is orthogonal to the cut too, of
course. In a similar fashion as we have done above, we introduce a couple of linearly inde-
pendent vector fields {E%,}, A = 2,3, orthogonal to r, and tangent to Z, such that they
constitute a basis for the set Xs of vector fields of S. Also, rise an index to the normal
one-form using h% and define a dual basis {W, 4} orthogonal to r¢. These sets of vector
fields, being completely tangent to Z, can be written as space-time fields: r¢ Z e, re,
E*, =, E®,e®, and W, 4 =, W, 4w, The triads {7, £} and {r, W4} constitute a basis
for X7 and Az at S, respectively. Pushforwards/pullbacks of intrinsic objects to S can be
written in terms of W, 4 and E<,.

The intrinsic metric of S is given by the pullback of the metric of Z —the first funda-
mental form of S,
8 a
Qap = B4 E’ghy, , (A17)
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which concides with the pullback of the metric of M with E,,
daB = EaAEﬁBga,B : (A.18)
The second fundamental form of S in 7 is defined as
g 2 E“ E',V 1y (A.19)
and the projector to the cut as
pe 2 B W, A s % — 1y . (A.20)

Its covariant version is symmetric

pab é hab - TaTb <A21>

and
P, Zw wtp, S A.22
aB T Wa WB ab — gaﬁ + nanﬁ - Tarﬂ : ( : )

Any U € X7 can be split into a normal and tangent part to Z as before (see eq. (A.4)).
Now, in addition to that, the tangent part to Z is decomposed into its tangent and normal
parts to S:

v = —n, 0" + 0% = —n W0 +r 0 + 0%, with r 0" =0=n0", (A.23)

> S . o oy @
where, P? vt = 0% = ARe,, with © € Xs.

Also, the intrinsic volume two-form of (S, q,z) is determined by

TaEOAB g €amn mAEnB ) <A24>

reghB 2 emry Aw, B (A.25)

such that é4P¢,, = 2 and fixing the orientation to é,; = 1. Notice that using eq. (A.7)
nhrv, €8 s

one can write the space-time version of this two-form as é,; = P7, P 3

Do PR o
PUPpn n,r,.

nuuap

An intrinsic connection on the cut can be defined as

VMD, UA S W, AV"T U™, where U E B, U4, VEE WO VAL (A26)
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Or, equivalently, by
VMD,UA 2 W, AVYY, U, where U® = E*, U4, VO =W, VA (A27)

The intrinsic covariant derivative of a tensor field T, , = defined at least on S is
written as

Ay Ar ma ng T XT Ml..My o AL AR
W, AW, A By By BV, T DAy

1.1

T q
A1...Ai,18Ai+1...Ar o A; A1 An ) S
+>.T By..B,TsH o T > T Bi..Bi_15Bit1..By FOB, T
] i=1

HA7L... Ay ‘i Ay A, i Tq mi...mp : :
where T’ B, = Wy, Wy, S EM g LET g T, - Again, the underlying

connection is the Levi-Civita connection associated to q,p5:

Diépe=0. (A.29)

The Gauss equation and its traces read

RABCD = E*E' CCEabchdD — kpofs” + Facks” (A.30)
]O%AC = E4EGR,. + TbrdEaAECCRabcd — kepha® + Back (A.31)
R=TR+2rr°R,, — isppiP + % | (A.32)

and the Codazzi equation,

a c D d o

A.3 Congruences

Assume Z, or at least an open connected portion? A C Z with the same topology as Z,
and let C be a congruence of curves there locally defined by

= X" (v,¢"), (A.34)
where X® are invertible functions such that
v="V(x, ¢*=27Z%0"). (A.35)

Each curve of C is marked by constant values of (4 and parametrised by v. The unit

2In which case, the results below apply only to that region.
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S=X/c

Figure A.1: The space-like hypersurface Z equipped with a congruence C of curves. The
canonical projection II maps each curve to a point on the projected ‘surface’ S,.

vector field m® tangent to the curves can be written in the local basis (9/0x%),

mim, =1. (A.36)

. ( G axd) 2 9xe
m- = h J a
ov

“d 9y v

It is easily checked that m*V, V # 0 and m*V,Z* = 0. Notice that there is the
following freedom in reparametrising and changing the markers of the curves:

v—v (v,¢4), ?;/ £0, (A.37)
ot (), || #0 (A.39)
- | 20 .

The quotient Sy := Z/C is called the projected ‘surface’. It is a two-dimensional differential
manifold although, in general, it is not Riemannian because it is not endowed with a
natural metric as it will become clear later on. One can define a canonical projection II
that maps all points on a curve of C to the same point on Sy. In this sense, each point
on S, represents a curve of C and ¢# are local coordinates on S, —indeed eq. (A.38) can
be regarded as a local change of coordinates on S,. The one-forms

B 074 (z)
 Oxe

W, (@) = (11" (d¢)) mw, A =0, £LazWA=0, (A.39)
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allow us to write the pullback II* to 7 of any covariant tensor field Ty, on S, as

Ty oy @) =T (O, = Taya, (Z (@) W, ™ (2) W, (2) (A.40)

p

The objects T,
orthogonal to m®. Thus there exists an isomorphism between covariant tensor fields on

.a, are covariant tensor fields on Z with no dependence on v and fully

S and covariant tensor fields on Z that have vanishing Lie derivative along m® and are
orthogonal to m®.

Also, one can take the push-forward II" of any contravariant tensor field 7% at a
point ¢ € Z to a point II(g) on Ss,

TAIWAP (C) — [H/T (x)]Al---Ap _ {Tm...ap (33) W A (x) W pAp (l’)}

11(q) “

(A.41)

Because T% % is defined everywhere on Z and I’ acts pointwise, the quantities 7414»
are well defined at each point on Z and, thus, they can be considered as a set of scalar
fields on Z. However, even though they change tensorially under the transformations
(A.38), they do not constitute tensor fields on S, in the sense that 7% % can give rise
to different tensor fields on S, due to the dependence of T414» on v. Furthermore, as
T % may contain transversal components along m®, multiple tensor fields on Z can

4 In any case, there exists an isomorphism

project to the same family of scalars T
between contravariant tensor fields on Z completely orthogonal to m® and with vanishing

Lie derivative along m® and contravariant tensor fields on S,.

We can define a couple of linearly independent vector fields on Z, (E?,), satisfying
m,E*y =0, E*“,W, P =65 (A.42)

Then, (m®, E%,), (ma,WaA) constitute a pair of dual bases. On the one hand, it is
possible to lift contravariant tensor fields on S, to contravariant tensor fields on ¢ by

Tal...ap ($) - TAl...Ap (Z ([L’)) EalAl (1’) ---E%AP ($) (A43)

which are orthogonal to m, and have, in general, non-vanishing Lie derivative along m?.
On the other hand, given a covariant tensor field on ¢, one can construct pointwise a
set of scalar fields on _Z as

Ty, . a, (z) = [Tal...ap (z) B 4, (2) --'EGPAP (x)} (A.44)

I(q)
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The projector orthogonal to m® is defined as

P = ECW,©, Pym,=0=P.m", P, =2, (A.45)
and in terms of m, its covariant version reads
—Pab - hab - mamb . <A46)

This object gives a scalar product on Z of vectors orthogonal to m®. It is possible to
introduce a family of inverse metric tensor fields on S, as

qAB — WaAWthab 7 <A47>

while the covariant version is given by the condition ¢ , CQBC = 6%. Alternatively, using
E°,

QAB = EaAEthab : (A48)
Although one can use QAB and ¢, to rise and lower indices on Sy, it is not a metric
tensor, since it depends on v. More appropriately, it represents a one-parameter family

of metric tensors. One can induce a ‘volume two-form’ in a simple way,

mn*= mAEnB ’ <A49)
TTLGEAB g €amnWmAWnB 7 <A50)

S
Myap = €,

which is completely antisymmetric and satisfies e*%¢,, = 2. However, this object de-
pends on v too in general and, therefore, it constitutes a one-parameter family of volume
forms. Observe that we have fixed the orientation to é,; = 1.

The covariant derivative on Z of m, is decomposed as

va7nb = Meay + Eap + Wap > <A51)
where
a, :=m°V m, is the acceleration, (A.52)
Ky i= P¢, Edbv(cmd) is the expansion tensor, (A.53)
wy, = P¢ Edbv[cmd} is the vorticity, (A.54)

and the shear of m, is defined as the traceless part of x,

1
Z]ab = Kgp — §Fab K, K= —PCd cd * <A55)

=N
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It is easy to show that

£ﬁf‘LEaA = _maEcAg/c 5 (A56)
Also, defining
Eab = me‘Pca Edb €ecd = WaAWbBEAB ) <A59)
and using eq. (A.57) one derives
Loy = Eeap - (A.60)
Incidentally,
‘£T7l€abc = K€qpe - (A61)

As all the kinematic tensors are orthogonal to m®, they are univocally determined by the
one-parameter family of scalar fields on Z —which can be seen as objects on So—

ay = E%a,, (A.62)

Kap = B4 E'pky, (A.63)

Sap = EUE 5L, (A.64)

Wap = B4 E'pw,, - (A.65)

The scalar fields TAl"'Aqul_. p, associated to an arbitrary tensor field 7%, |~ on Z can

be differentiated along m®:

A1...Aq _ ]7 Al...Aq
LT By..B, — M Vv,T Bi..B,

g g oW A A a1-.q
=E"p BT W, MW, ALy (T bl...bp)

—~ a1 Y

p
Ay A, -
- ZT Bl...Biflo'Bz;Fl...Bpm QBZ ) (A66)
i=1

where we have used the Leibniz property of the Lie derivative together with eqs. (A.39)
and (A.56). Then, the Lie derivative along m® of the one-parameter family of ‘metrics’
q , for fixed A, B can be computed to give

L 5 = Eap- (A.67)
Now, let U be a function such that

(A.68)
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and expand s, in the (ma, WaA> basis,
S, =m, + MW, . (A.69)
Taking the Lie derivative along m® of the functions M, for fixed A one finds
ay=—L£uMy. (A.70)

Instead, if one takes de exterior derivative of s, —~which vanishes by definition— one gets
the relation

[EAa EB}G = —2w, pm?, (A.71)
which allows us to derive
£ WP =0 (A.72)
Also,
Ly m,=—a,m,+ 2w, W, C. (A.73)

So far we have not introduced a connection on Sy, nor a covariant derivative. Note that
in the basis (m?®, E*,) one has

E\V E% = — (k45 +wyp) m* + ’]CABEac ; (A.74)

where 79, are functions such that v“,5 = 7“4, as one can check computing the
commutator and using eq. (A.71). Taking this into account it follows that

mV, E*y = —a,m® + (5AC + c_uAC> E% . (A.75)
In addition, it can be shown that
_CAvCWaB:—(/jAB—i-c_uAB) my — 724 W, . (A.76)
Contracting eq. (A.60) with E%, E®5 and using eq. (A.66) one derives
Lm€ap = KEap- (A.77)
Under the change in eq. (A.38) , jc 4p behaves like a connection. However, due to

the dependence on v, it is not a connection, but a one-parameter family of such objects.
Nevertheless, we can define a ‘covariant derivative’ operator by

DyvP = B 0,07 + 95,0, with o =W, 4, v'm, = 0. (A.78)

a

For the same reasons stated above, this is not a tensor field on S,. The definition can be
extended to arbitrary-rank contravariant and covariant tensor objects. Its relation to the
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covariant derivative on Z acting on a tensor field 7%, , ~is written as

A1 A, Nq T N Mmi..Mmy _ A1 A
W, AW, A By B BTN, T =DMy

— mi ni...n

r q
Al...Ai,18A7H,1...AT AZ A,L Al...A’,» S
+ Z T Bl...Bq ms I—{C + @C + Z T B1...Bi_1sBi+1...Bq /jCBZ + C—")CBz m-.
i=1 i=1

(A.79)

Then, for 7™M completely orthogonal to m® and m, one has

1...Ng

Wml Al-qurAT_Enqu'-'-_E'anq'—ETCv’rTml.“an q = DCTAIATBIBQ : <A80)

1..10

This ‘covariant derivative’ is ‘metric’ and ‘volume-preserving’ in the sense that

,Z—)AEBC = 0 y <A81)
Dagp. =0, (A.82)

and a typical calculation leads to an expression in terms of ¢ AB

1

€ ap = 3077 (B*40ut 5y + E'5000 1y — B0t ) - (A.83)

Define a one-parameter family of tensor fields on Sy by
Rpac” = E*4007"pc — E’3007" ac + 7" 487 0 — 7 887" a0 (A.84)
which by construction has the symmetries
Rapc” = —Rpac”, Bapc” + Bpca” + Boag” =0 (A.85)
A direct calculation gives
(DoDp —DpD4) VP = _BABC'DVC — 2w £V (A.86)
where £V is computed according to eq. (A.66). One can define a covariant version,
Rapep = QEDBABCE- (A.87)

Note that this object does not have the antisymmetry property in the second pair of
indices:

BAB(CD) = 2Wapkcp (A.88)

where we have used egs. (A.81) and (A.86). Hence

Rapep = 2wapkep + Rapiep) - (A.89)
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The second term, since we are in 2 dimensions, can be identically written as

_RAB[CD} - K (gACgBD o gADch> ) (AQO)

for some scalar function K. The relation between the curvature tensor on Z and this one-
parameter family of ‘curvature tensors’ on S, can be determined by typical calculations.
The result is a Gauss-like relation,

Rapc” =E*4E'y EG Ry W, + 2w, (ECD + ('—‘JCD) — (Bpc +wWpe) (EAD + @AD)

+ (Bac +Wac) <EBD + C,UBD> ; (A.91)
which lowering an index can be written also as

Rupiep =B By B0 RypegBp + 2w apwop — (Epo +wpe) (Bap +wap)

+ (K40 +wac) (Egp +Wep) (A.92)
and a Codazzi-like equation

a c D d

A E s B Ry my = 2D, (EB]C + ('—‘}B]C) + 2wypac - (A.93)

Now we are going to give an expression for the intrinsic Schouten tensor on Z. Equa-
tion (5.9) is valid in general for dimension 3, i.e., valid for Z,

Fabcd = 2ha[cgd]b - th[cgd]a . (A94)
Using this expression in eq. (A.93) one arrives at
2401498 = 2Da (EB]C + @B]c) + 2wypac , (A.95)

which is equivalent to its trace,

Sp =Dg (857 +wp®) — Dk + 2wepa’ . (A.96)
Notice also that using the same relations and contracting with gACgBD in eq. (A.90) one
gets
1 1 3
E 2 2 2
=K+ Y — -k — -w". Al
S E K+ 9% 45 2@ ( 97)

A direct calculation together with egs. (A.51) and (A.93) leads to
£:7 45 = 2D(atin)” — 0" Dybiap +akap — 20455 - (A.98)

This last equation provides a condition for the vanishing of meae:yc ap Which appears
below in eq. (A.101). In general S, is endowed with a one-parameter family of geometrical
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objects; only in the cases in which these quantities have vanishing derivative along m®
—i.e., when they do not depend on v— they are a true metric, connection or volume form,
respectively. Summarising, from eqs. (A.67), (A.77) and (A.98),

Lig,, =0 r,5=0, (A.99)
Lreap=0<=r=0, (A.100)
£37ap = 0= Dekiap = ackap - (A.101)

Notice that K = 0 is not a conformally-invariant equation; one can always achieve this
condition by a conformal transformation of h,,*. Observe that, for K = 0, k45 = 0 if and
only if m® is shear-free*, ie., ¥ 5 = 0 —see eq. (A.55). Additionally, in that case, the
condition on the right-hand side of eq. (A.101) is trivially satisfied. Hence, for umbilical
m® there is a conformal class of metrics {hg,} for which £5q, , = £eap = L7745 = 0.

Finally, there is a particular case of interest:
wap = 0 <= m* orthogonal to cuts. (A.102)

This is the case of a foliation, in which each leaf is a surface (a cut). Under this condition,
the normal form can always be written as

m, = FV v (A.103)

for some scalar function F' such that

1
= £ _v. (A.104)
The calculation of the acceleration produces

Let us point out that the geometrical objects induced by m® still depend on v and coincide
on each leaf (v =constant) with the intrinsic geometric quantities of the cuts, but only
there. In general they are fields on Z associated to the particular family of curves.

To end up with this appendix, let us mention that a very similar construction for
congruences as the one above can be developed using the so called Cattaneo operator in

3A conformal transformation h,, — W2h,, implies m, — ¥m, according to eq. (A.36), as well as
Qap \112gAB, with ¥ := II*(0).
4Note that the shear-free property is a conformally-invariant property.
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substitution of the derivative operator D,

DI, 4, =P, “..P, “P", . P", P, T : (A.106)

= mq ni...Ng

which is defined for arbitrary tensor fields 7%, ~on Z.
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_®_

Assume that a general congruence of curves with tangent vector field m® exists, and define
m® = e“,m* at _Z and on a neighbourhood —this allows us to take its derivative along
n®, though no particular extension of m® is required. The plan is to write de components
of eq. (3.84) in terms of the lightlike projections of the rescaled Weyl tensor, i.e., the
quantities appearing in section 2.2. Objects that carry an over-ring will be substituted
by objects carrying an underbar, for the same reason explained in section 5.4. Also,
quantities originally defined with indices A, B, C, etc will be written fully /partially with
space-time indices a, 3,7, etc indicating that they have been contracted with W_4 and
E®, conveniently. The same mixed notation can appear in space-time tensors that have
been contracted in some of their indices. As a couple of examples, one may find C'y
in substitution of ¢ , and C,, in correspondence to C,W_4, or y,4p corresponding to
W Wy Yoy -

Then, recast eq. (3.84) as

T T utT T
“Yapy = 9"V lopyr = (‘ RERT — K RT + PR )V#d

afyT

+ 1.7 .71t A T 5 A
= =WV, (dapyr B7) = dogor B 5y B9V, 8 + dosr PRIV, K
7] .7 Y T 7.4 T ] P
= WV, (dagor K7) = dogor K by B9V, 5N + doyr PT ROV,
+ PV, (dosyr) (B.1)

here 'k are defined as in eq. (5.47), noting that this time they are extended outside #.
Next step is to contract this equation with ke and the basis spanning the space of vectors
orthogonal to m,, {E£%,} —uppercase, Latin indices denote projections with this basis.
This process is a straight-forward calculation. It is very long, though, and we just write
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down here the final outcome evaluated at _#:

— B Wy, £~ KV,D - 2V2'D BV, K
+2v2 Dy k'Y, % + v 2P'V, D, — P"DV, k
= Dy PV, K+ V2 DRV, hy
-+ T .o -+ T 7
+ D, PV, k* =2 Dy PPV, K (B.2)

T

— kR Ky, £ —2v2 D, RV, B + 22D, kY, R + V2PV, D,
DP'"V, 'k, + V2 D"'k°V 'k, + D, P""V, k"
—+ r +.8 -+ - + +
— Dy, PV, K — D PPV, R+ KV,D (B.3)

WKy, £ —V2E®, WV, D, + DRELY, Tk, + Dy kY,

— V2D KIY Ky + 2 Dy KV, K — D, KMV, R

~ PE*N, D, — V2DV, 'k + V2D P'"E,V, k,
PV, ku T, PV, K (B.4)

’y'rA

WKy s, £ V2EC K'Y, D, + D RECY, k, + Dy KV, K
+ A + —+ - + -+ - +
+ V2D, KKV ke +2 Dy KV, = Dy, kYR
 n -+ + T - - T W +
— P"E“,V, D,,+vV2'D,P"V , k, — 2 D .P"E“,V 'k,
- EfyTA‘E#TVﬂ _k’Y + _tAﬁT‘_P“Tv‘u, +k:ﬁ ) (B5>

KKy, £ —V2REY, D, V2D R ey + DRV,
B w A
+2 Dy k'Y, K — DW'E“\V ,k, — Day KV, k

— PE*4V, Dy, =V2DPV k= V2D PELNY R,

— T APV = 0 PR (B.6)

K Ky, £V RELY, D, — V2 Dy RV, ke + Dy RV, R
-+ - -8 7w - - - A
+2 Dy KV, K — D KE*,V, k, — Day KV, 'k
~ PYEANV,, Dy + V2 Dy PV, + V2 D P E,Y, K,
- _EATAPHTV;L_I{/\ - _Z)\AT'—PTNV,LL_I{A ) (B7>
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~ W Yase L —EUAE WV, Doy + V2 DAET RV, g + V2 DBy WV, K,
—2 D KNEY Ty + tane KUV, BN+ topa KUV, K
w g -+ - o + + W 7]

—E AE C kuvu l—)wa—\/§ l—)AEI C kuv,u ka+\/§DC’E A kuv,u kw

1 7] 7] T 7] 4 w o T T
+ tare KV, KN+ toya KV, RN+ ECA BTG PPV L,
— Dy PV, k= DaoP"V, k, + Dy PPEY,E,

-+ T 10 7] -+ T W y
+ l—)Aﬂ'—PIUJEJCvuko'_2 D[TC}—PMEAvukw
+ tora KPYV, ky = D (B) By —q, PY)V, (B.8)

—Kyase = —E°4E°c k'Y, D,y = V2 DB K'Yk, — V2 DB kY,
— 2D KRV + e KUV, RN+ o, KUV, B
— E* E° K'Y, D, + V2 DLE K'Yk, — V2 DB, K'Y K,
+ tare J%Mvu%/\ + EC’)\A+]€“V# 4+ BB ‘PMTV;LEUT(U
~ "DpcP™"V, k, — DoaP*"V 'k, + D,y PPEV, K,
+ D 4P"EY Ky —2 Doy PE,Y, 'k,
+ b KPPV, hy = D (BB, — q, PV, 'k, (B.9)

I

The number of independent components of the (rescaled) Cotton tensor y,4. in four di-
mensions is 16 (see [146]). Here we have written a total of 18 of which two can be expanded
in terms of other ones: it is possible to write the (2, —,2) component of y,5, in terms of
the (3,—,3) and (+,—,—), using y*,, = 0 and y,5, = —Ys,,; the same for (2,+,2) in
terms of (3,4, 3) and (—, +, +).
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C | Conformal-gauge transformations

_®_

We present a collection of formulae giving the gauge behaviour of fields on ¢ (A > 0) and
also of those associated with single cuts S and with the projected space Sy (A > 0) associ-
ated to a general congruence. Recall that the gauge changes are residual transformations

of the conformal factor,
Q- Q=wQ, (C.1)

with w a positive definite function such that N*V w £ 0 —according to our partial gauge
fixing.

C.1 Metric, connection, volume form and curvature

Quantities of (M, gaﬁ) :

gaﬁ = w2ga6 ) (02)
ﬁaﬁ'yé = W477a,375 ) (CB)
o e e e 1 T
[y =17, + 0%, , (%, = agv (297(/3“}&) - gv6w7> (C4)
~ 1 1 1 1
R,s = R.5— QEVaWﬁ - Egaﬁwuw“ - ;gaﬁvuw“ + 4Ewaw5 , (C.5)
- 1 1
R = ER - 673Vuw'u 5 (C 6)
N, =wN, + Quw, , (C.7)
~ 1 1/2
N = " (w2N2 — QPw,w" — QQNMU.J“) (C.8)
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A>0
Quantities of (_Z, hy,) :
Fuy Z w?hy (C.9)
gabc d:g wgeabc ) (ClO)
=a 7 —a —a —a 1
I be d:V I be +C be 7C be — ;hat (th(bwc) - hcbwt) <C11>
= 7= 1— 1 o = 1
R, = R, — ;Vawb - Ehabwmw - ahabvmw + QEwawb : (C.12)
= 7= 1 1— .
Sy = Sap + QEwawb - ;Vawb ~ 5 s Ry - (C.14)
Quantities associated to a cut (S, q4p5):
iag S W’ C.15
dap =W 4B » (C.15)
gAB = Wup (C.16)
: S ¢ : : s 1 . .
FABC = FABC + CABC JCABC = ZQAT <2CIT(BWA) - QABwT> (C.17)
3 1 1 o
Ryp = RAB + QQABwaM QABDMWM ; (C.18)
5 S 1 . 1 .
R= ER +2— oM — 2EDMUJM : (C.19)
E s 1 1. 1 1, 1,
Sap = Sap + 2 SWap — *DAWB % ngw qap — W, <wHAB + MTdeCIAB> ;
(C.20)
s s 1 e e |
SA:; SA—JDA(’F we)—i-QEwAr we—i-;wE/iAE : (C.21)
=s 1[5 1 ,,=_ I . r .
= {S -7 'V @, + 2@ (r‘w,)” — 520 } : (C.22)
Quantities associated to S
. S
Qap = Wy (C.23)
€48 = W2EAB ) (C.24)
= s s, 1
rABC =4 pct o BC 7OABC = EQAT (QQT( A) T qABC_UT> (C.25)
(C.26)



€% | Conformal-gauge transformations 207

. s 1 1 1 e (1 IV
Sap = Sap + QE('—UA@B - JP(A(’—UB) - ﬁ(’—‘)P(’—dPgAB W, (w@AB + MwadQAB) ;
(C.27)
Lo 1 12
S =[50 = —Da (B + Swar B, + —wp (54 +wa”)] (C.28)
=7 1[5 1 ,,=_ 2, . r .
S = 3 [S — T V@, + 2 (r‘w,)? — 5,20 } . (C.29)
A=0
Quantities of (_Z,G,,):
= J a9
Jab = W Gap » (C.30)
éva,bc é wgeabc ’ (031)
Za  J =a —a —a 1 o — _ _a
r be — r be T ¢ be 7C be — ; (25(17(“')0) — GpeW ) (C32)
» Zp e 1 s n, 1
Rab - Rab - avawb - Egabvmw + 2?(&)awb y (033)
- 7 1 - —mp\7 — 2 — —m
R = ER — 259 PV, + —m@" (C.34)
= 7= 1 1= _ r .
Sap = Sap + QEwawb - ;Vawb ~ 52%s% Jab (C.35)
where g**w, = e, w".
Quantities associated to a cut (S, q4p):
~ S 9
4aB = W qaB > (C.36)
gAB = Weap (C.37)
S S o o ° S 1 . .
[Mpe = TMpo + Cpe , Clpe = JQAT (QQT(BWA) - QABWT) (C.38)
58 ¢ 1 o 1 .
Ryp = Ryp+ EQABWMWM - EQABDMWM ; (C.39)
5s 1o L. . 1 .
R= SR+ 2E“M“’M - 2EDMWM : (C.40)
&S ¢ L. . | I . .p
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C.2 Extrinsic geometry and kinematic quantities of cuts for A > 0

For a cut &:
s 1
R C.42
L 2 (C.42)
Fiap £ whiap + qapr’@, | (C.43)
XDJAB = ("JXOJAB ’ (C.44)
s 1, L.
RS~k + 2ET w, (C.45)
For S,:
1
me L Zmt (C.46)
w
Fap = Wh op + qapm‘®, | (C.47)
XA 2 Wligp (C.48)
1 1
k= —k42—5mD, , (C.49)
w w
1
ap = ay——Dyw, (C.50)
w
Wap = WWap (C.51)
C.3 (rescaled) Weyl decomposition
A>0
Let r* be the vector field giving a congruence on ¢, changing as
1
me L ~re, (C.52)
w
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The parts of the rescaled Weyl tensor in the decomposition with respect to this vector
field on ¢ transform as:

~ 7 1 ~ 1
Dab é 7Dab ) Cab é acab s (053)
w
~ 7 1 - 7 1
D,p = ;DAB ) Cap = EQAB ) (C.54)
5 L1 . s 1
DA = EDA > QA = EQA , (C.55)
s 1 - 71
DZ =D, CZ 50, (C.56)
+ . j ]_i + . / 1i
af — ; Daﬁ ) Caﬁ = a Oaﬁ , (C57)
t~ 7 1+ - 71+
DABZEDAB> QABZJQAB, (C.58)
o 7 1+ . 7 1+
DA:EDAa QA:EQA, (C59)
= 7 1+ s f 1+
DL D, cZ 5. (C.60)

A=0

The lightlike projections of the rescaled Weyl tensor on ¢, calculated with respect to
N¢, have the following gauge transformations:

2
?
Q
=
N
—
2
2
!
)
=
IS

1w
ab ab

b L e, (C.61)
N . 7 1 N 1

Dab i 7NDab ) Cab é ;Ncab ) (C62)

w

~ 1 ~ 1

D,Z 5D, ¢, L, (C.63)

€
N
|
€
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D | Lightlike projections of a Weyl-tensor
candidate

_®_

D.1 Properties of the lightlike projections of a Weyl-tensor candi-
date
The following is a list of properties of the quantities defined in section 2.2 :
N — ot ot -t
i) kH c,=—-k0C,, k D, =—kD,,.
ll) O — _éEE — *CEFEF7 D — _ﬁEE — _CEFEF
7+°
i) Dyp = _%DQAB - %CéAB-
_+°
iv) Cyup= %CQAB - %DEAB'
+=
V) Dap=—5Dqap + 3Césp
+-
vi)  Cup=35Caup + 3Dé4p
.\ TaB o B
vii) ¢ =0, D 5=0.
+oAB—+to +oAB—to +, -+, +, -+,
iX) 7{JM+CA!L == _\/§+C°’A7 +k“70A,u, = \/§*C°¢A.
X) 7ku+‘DA,LL - _\/§+bA7 +ku7DA“ - \/§7EA
Xl) CO'A:jLCO’A—'_iéA?bA:JFbA_'—ibA'
Xll) +bA€OAB7bB — %ﬁAC)’A .

xiii) 4D, DA =D,DA - C,C*.
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xiv) D,é48Cy = 'D, DA — D, DA
xv) +éme = OAB - bT(BéA)T'
Xvi) JT?AB = DAB + é’T(BEA)T.
Xvii) _CO’AB = CAB + DT(BéA)T.
xviil) Dy =Dyp — CT 5
xix) Cup = : (+CO'AB + _éAB).
xx) Dyp =3 (+bAB + T)AB)-
xxi) ¢, = : (CO'A —é,FDy).
xxii) Cy =
xxiii) D, =
xxiv) D, =1 (ZO)A —€,505).
xxv) Dy+ Dy =¢é,° (+C°'B — C’B).
xxvi) r* D, , = "D,.
xxviil) "D, = D,
xxviii) 2rort D, = 2rort D, = k# ik:ﬁDW =7r%"D,,.
XXiX) :Fq_k“EO‘AiDW = ﬁif)A.

+,
xxx) F kHE, iCW =2 C,.

N\ 2ABT) A opyu
xxxi) 47 Dp =71, 1,u,W 4 CP*
s\ cABA Avopyu
xxxil) é°Cp = —r, r,u, W, 2C".
o +2 +
xxxiil) é45,°Cy = — Dp.

xxxiv) ¢4, C, = Dp.
xxxv) ‘DAC, =0="DAC,.

xxxvi) ‘CA D, = CA'D,.
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D.2 NP formulation

Writing the lightlike projections of a Weyl candidate tensor (section 2.2) and the superen-
ergy quantities (sections 2.1 and 2.3) in terms of the Weyl candidate scalars allows to
have a first-glance interpretation of their significance. Not only that but having their
components at hand can be helpful to check calculations. Consider a lightlike vierbein

(_k"‘, ¥ a,ma,ma) such that +k:a7€a =—1, m*m, = 1, iko‘ma = 0 = m®m,, with orien-
tation fixed to 75;55 = 7. We use the following definitions for the Weyl candidate scalars:
. . 1
%o = Cgop 1= Chigg ¢2 =5 (Cotoi — Coizs)
¢3 = —Caiis ¢1 1= Cigis (D.1)

Be aware that all the formulae below hold only with these definitions and choice of ori-
entation. In this subsection, hatted Greek and Latin characters &, A represent basis
indices.

The lightlike ‘magnetic’ and ‘electric’ parts associated to k* and k® respectively.

0 0 0 0 0 0 0 0
e |0 —i2D(dy) —¢ 65 traf 0 2R(¢y) —¢ —(/g
048 — 2 3 3 D — 3 3. D.2
o —o e 0| 0 —6 6 0 (D.2)
0 bs 0 —¢ 0 —¢5 0 ¢
—i23(¢y) 0 & —¢y 2R(y) 0 —¢; —¢y
_ A 0 0 O 0 - ad 0 0 O 0
0% = - - DY = - - D.3
Noa 0 -6 0| —6, 0 & 0 09
—¢r 0 0 ¢ —¢p 0 0 &
The two dimensional components,
CAB _ 5, 0 ) HAB _ <¢4 O) . D4
Z ( 0 —6y) 0 6 DY
ap _ (% 0) AR _ ((z_ﬁo 0) | D5
Z( 0 &) 0 9, D9

The traceless, two dimensional magnetic and electric parts,

OAB:Z'<¢4—<50 0 ) DAB:1<¢4+¢_50 0 ) D6
2 0 —(¢s— o) 2 0 @+ (DO
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The two dimensional vectors,

A L (=g i _ L (¢
C_\/§<<b3>’ D \/§<¢3>. (D.7)
*C%A:L <_¢1> ’ °A:1<¢1> . .
le ) P T 08
oA _ K <_(_¢53 + ¢1)> : A S <_¢_53 + ¢1) _ .
G\ are ) P T B a1 (D)
And the traces, A A
C=-CF =23(¢,), D=-D, =2R(¢,) . (D.10)

For any lightlike tetrad <+k°“, k. m®, ma) and a general unit timelike vector field v?,

[0}

B 1
VY = (ak“+b+k“+cma+5mo‘>, v, =—1, Va,b,c,c / ab—cE:§, (D.11)
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it is a matter of direct calculation to get the expression of a basic superenergy tensor

T = 4{¢0¢0 {%a W *k,ﬁ] + 6o, {—2%0“ WMo — 28 mle W] b ee
(D.12)
+ ¢oby |’ KK + kO KPIOm + am e kI mO *kfﬂ + e

+ G5 | —2momPm kY — omPmom(@ +/k;ﬁ)} +c.c. 4 ¢y, {mamﬁrrﬂm‘s} + c.c.

+ 6,0, _7{:‘“ K° (2 EOED 4+ 2mOmD) + am @ KOmO B + R (2% "D + 2mlom?)

+ 4m K m } + ¢, ¢2[ 2o m k) — 2k Km0 kD — 2m @ KD (2K D) + 2mOm?)
= 2mmm @ kD — 2k K k) — omk (2°K KD + 2m<amﬁ>)} +c.c.

+ 6104 {mamﬁ (260 %Y + 2mOm?) + mrm? (26 KD + 2mem?) + 4m @ Km0 k)

+ 4m(7+k5)m(°‘k5)] +c.c. + P, [—Qmamﬁ O — ommlm( e kP } + c.c.

+ ¢yy {k" R + memPmom® + Am @ EOmO kD + am@ EOmO kD) + Kk K %P
+mImmem? 4+ 4m0 kO KD + amO k) m k) 4 (2% %D + 2mlem?) (2 EOED

+ 2m(”m5))] + (g5 [—27& KR — 2momtme kD — 2w kD (2K % 4 2mOm?)

— 2K KD — 2memtm k) — 2m0 kD) (27K R + Qm(o‘mﬁ)ﬂ +c.c. + oo, {k“ KPmom?
+ K kmem” 4 am@ kPm0 kﬁ} + c.c. + ¢3¢3[ kP (2 kO + 2m(7m6)> + 4m @ kP m o)

£ RE (25O + 2mOm?) + 4O Eme kﬁ)] + ¢3¢4{ 2% Km0 kY — 2k5mm<akﬁ>]

+ec + 6.8, [_k“ s ‘kﬂ } ,
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the super-Poynting vector field
P = —4wa“{¢0¢0 {—a?ﬁ a} + oy {—3&207{:" + agmo‘] + c.c. + @y, [—3&02 & + 3a%cm®

—a*k*  (D.13)

+ c.c. + ¢yds {—03 T+ 3aczma} + c.c. + ¢y, [c3m“] +c.c. + ¢,0,
+ (—3a%b — 6ace) k* + 3a2em® + 3a25ma} + ¢105 {—3a207§°‘ + (—6abc — 3¢%¢) k°

+ 3ac®m® + (6acc + 3a2b)ma} + c.c. + ¢y {—3@02 kY = 30k + Eme + (6abe

+ 3026)ma] + c.c. + ¢y, [—03 kY + 3bc2m°‘} + c.C. 4 oy {(—3a2b — 6acc) k®

+ (—3ab? — 6bce) 'k + (6abe + 3¢*€)m® + (6abe + SCEQ)mO‘} + Pyds [(—Gabc — 3c%¢) k°
— 302k + 3bPm® + (3ab® + Gbcé)mo‘] + c.c. + ¢y, [—31902 kY + 3b20ma} + c.c.

643 [(—SabQ — 6bed) K — B + 362em® + 3b2cma] 648, [—3b2c‘ka 4 b%ﬂ +ec.
+ 6,84 [—b?’ k”‘]} ,
and the superenergy density
W = 4{¢0¢0 [aﬂ + Gy {4@30] + c.c. + PPy [6&202] + c.c. + oy [4a03} +cc. (D.14)

+ %@ 64] +c.c. + ¢,0, {4@317 + 12@206] + qﬁl% {12a2bc + 12@025] + c.c.
+ qﬁlag 12abc® + 4035] +c.c. + gbl@ [41)03} +c.c. + ¢2$2 {6@262 + 24abce + 60262}

6oy | 12012 + 12b620} + o + by [Gb%ﬂ Fec + oty {4@3 + 126200}

+ 30, :4b3c] +c.c. + ¢yb, M }
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The radiant and Coulomb superenergy densities read

Z = A4dydy | (D.15)
Z =40, (D.16)
W =4¢,0, , (D.17)
W =d¢d, (D.18)
9t =4 (92544537”14 + ¢3¢§4mA) , (D.19)
Q' = —4(g109m* + Gpdm?) (D.20)
V = d¢yo, (D.21)
From here and egs. (2.48) and (2.49) it is easy to write the radiant supermomenta,
Q" =4 (440 K+ 6303 K — dydym® — Sybym”) (D.22)
0 =4 (e K + 6161 K — Gpoym® — dopym®) . (D.23)

Finally, the vector defined in eq. (2.87) has the expression

d* =2 (¢1<52 + &3%) mt + V2 (¢_51¢2 + ¢3<52) m? (D.24)
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