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Resumen
(In Spanish)

Esta memoria recoge los resultados del proyecto de investigación de tesis doctoral que
lleva por título “Asymptotic structure of space-time and gravitational radiation with a
non-negative cosmological constant” , supervisada y tutelada por el prof. José María
Martín Senovilla y llevada a cabo en el departamento de Física Teórica e Historia de
la Ciencia, dentro del grupo de Gravitación y Cosmología, con el apoyo económico de
las ayudas n. FIS2017-85076-P (MINECO/AEI/FEDER, EU) y n. IT956-16 (Gobierno
Vasco).

La investigación se centra en el estudio de la radiación gravitatoria desde un punto
de vista formal, así como de la estructura de las regiones asintóticas del espacio-tiempo
en presencia de una constante cosmólogica no negativa. A continuación, se presenta
un resumen que incluye antecedentes, estado actual de las líneas de investigación y una
breve compilación de los resultados obtenidos durante el periodo de desarrollo de la tesis
doctoral.

Antecedentes
La tesis se enmarca dentro de la teoría de la Relatividad General fundada por Einstein
[1]. A día de hoy, esta es la mejor teoría que tenemos para describir la gravedad a bajas
energías (no se espera que sea así a altas energías, veáse por ejemplo la introducción de
[2]). El estudio llevado a cabo se centra en la estructura asintótica del espacio-tiempo y
en la radiación gravitatoria (véase [3] para una revisión histórica sobre este tema).

La constante cosmológica
En 1917 Einstein [4] introdujo la constante cosmológica Λ en sus ecuaciones de campo.
Su motivación original era la de conseguir una solución homogénea y estática, para lo
cual era necesario ajustar de manera precisa el valor de la constante cosmológica. Sin em-
bargo, esta idea resulta poco acertada desde el punto de vista físico, mientras que, desde
el punto de vista matemático, el término de constante cosmológica en las ecuaciones las
hace más generales. Ese mismo año, de Sitter [5] encontró una solución a las ecuaciones
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de campo con constante cosmológica positiva que, de hecho, incluía un régimen dinámico.
El descubrimiento observacional de Hubble [6] mostraba un universo en expansión, lo que
estaba en sintonía con los modelos de Fridman [7] y Lemaître [8]. Setenta años después,
mediciones de Λ usando supernovas [9, 10] evidenciaron que habitamos un universo con
constante cosmológica positiva, con un valor cercano a cero. El efecto de una Λ positiva
(sin importar cómo de grande es su valor) en nuestro universo es que este se encuentre en
una fase de expansión acelerada.

El pequeño valor de la constante cosmológica aún carece de una explicación ultrerior.
Ya en 1987, Weinberg usó un argumento antrópico basado en la formación de sistemas
gravitatorios ligados para predecir una cota superior en el valor de Λ [11]. Sin embargo,
los argumentos antrópicos aportan pistas para la búsqueda de una explicación subyacente
pero no constituyen por sí mismos una teoría. Desde el punto de vista de física de partícu-
las, se puede interpretar Λ como efectiva –en oposición a pura– identificándola con una
densidad de energía de vacío. No obstante, el valor de Λ calculado en teoría de partículas
difiere en muchos órdenes de magnitud del valor observado [12]. Desde cierto punto de
vista, este es el llamado problema de la constante cosmológica. Todo ello motiva el estu-
dio de las consecuencias físicas que tiene una constante cosmológica en las ecuaciones de
campo de Einstein.

Para revisiones en esta materia véase [13, 14].

Estructura asintótica
Nociones físicas de importancia, como la energía del campo gravitatorio, se entienden
mejor si se consideran sistemas gravitatorios aislados [15–19]. Intuitivamente, tal sistema
puede representar una estrella después de haber «vaciado» el universo de todo lo demás.
Una idea complementaria es que hay que alejarse muy lejos para poder considerar un
sistema como un todo. En esta descripción pictórica, «muy lejos» significa en el infinito,
que matemáticamente está bien defino. Es allí donde ciertas cantidades físicas, e incluso
nociones como la de onda gravitatoria, cobran más sentido [20, 21]. Una descripción
formal del infinito fue presentada por Penrose en 1963 [22]. Uno de los aspectos de su
idea es traer el infinito a una distancia coordenada finita o, en otras palabras, hacer
del infinito una región local. Técnicamente, se le adhiere una frontera al espacio-tiempo
representando el infinito, tal que los campos físicos puedan ser evaluados allí [23]. Es por
ello que la frontera codifica la física del las regiones asintóticas del espacio-tiempo. De
manera notable, la naturaleza de dicha frontera depende de si la constante cosmológica
es cero, positiva o negativa (pasando su carácter causal de ser luminoso a espacial o
temporal). Por la misma razón, la física del infinito se ve afectada por Λ. Es por ello
que el pequeño valor de Λ es suficiente para cambiar el escenario asintótico de manera
abrupta con respecto a Λ = 0 [24].
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Radiación gravitatoria

La naturaleza dinámica de la geometría espacio-temporal permite que se produzcan cam-
bios en el campo gravitatorio que afectan de manera causal distintos puntos del espacio-
tiempo. Este fenómeno de propagación se denomina comúnmente ondas gravitatorias (o
más genéricamente radiación gravitatoria) y es un efecto completamente no lineal. En las
primeras etapas de la teoría de la Relatividad General, el concepto de onda no estaba bien
definido, ni si quiera en 1918, cuando Einstein publicó su famosa fórmula del cuadrupolo
[25] en el límite de campo débil, estableciendo así el primer paso hacia una teoría de
radiación gravitatoria. Su construcción estaba guiada por las soluciones de tiempo retar-
dado de la electrodinámica clásica. El hecho de que su fórmula solo fuera válida en el
régimen lineal de la teoría sembraba dudas sobre la veracidad de las ondas gravitatorias
en la teoría completa. De hecho, Einstein mismo y Rosen llegaron a la conclusión de
que las ondas no existían, después de encontrar una solución de onda plana que contenía,
según ellos, singularidades (estas no eran verdaderas singularidades, sino problemas en la
elección de coordenadas) [26, 27].

En los años 50 y 60 llegaron nuevos avances. Un papel fundamental lo desempeñó
Pirani, quien buscó una caracterización algebraica de la radiación gravitatoria habiéndose
inspirado en el libro de electrodinámica de Synge [28]. Su caracterización se basó en un
problema de valores propios del tensor de curvatura [29, 30], adecuándose de forma natu-
ral a la clasificación previa de Petrov [31]. Obsérvese que, a falta de un tensor de energía
momento para el campo gravitatorio, Pirani hizo uso de la curvatura. Sin embargo, quien
llevó a su extremo este paralelismo fueron Bel [32, 33] y Robinson. Dieron la defini-
ción de un tensor, cuadrático en la curvatura, que compartía una cantidad asombrosa
de propiedades con el tensor energía-momento del campo electromagnético, a excepción
de las unidades físicas. Paralelamente, Trautman trató la cuestión de la radiación estu-
diando condiciones de frontera en el infinito [34, 35], una manera de abordar el problema
reminiscente de la condición de radiación de Sommerfeld (véase [36]). La colaboración
entre Trautman, Robinson [37, 38], Pirani y Bondi [39] culminó con una serie de artículos
[21, 40, 41] (véase también [42]) en los que los distintos enfoques convergían. Ejemplos de
ello son el postulado de una condición de radiación en el infinito en los trabajos de Bondi
y su equipo o la caracterización algebraica del tensor de Weyl en el denominado compor-
tamiento de pelado. Además, el tratamiento geométrico del infinito de Penrose llevó a
resultados similares [15, 43, 44], y en la década siguiente todo fue condensado de manera
geométrica y robusta por Geroch [17]. Algunos de estos hitos incluyen el llamado tensor
de Bondi y la energía-momento de Bondi-Trautman, así como el descubrimiento del grupo
de simetrías asintótico BMS (Bondi, Metzner y Sachs). Así fue como se demostró que
la radiación gravitatoria es un elemento intrínseco de la teoría completa y se despejaron
las dudas sobre su existencia desde el punto de vista teórico (véase [45] para una revisión
histórica).
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Más progresos llegaron en la década de 1970 y 1980. Ha de mencionarse la introduc-
ción de métodos simplécticos [46, 47] y la identificación y caracterización de los grados de
libertad radiativos del campo gravitatorio en términos de clases de equivalencia de conex-
iones en el infinito [48]. También hubo avances hacia la definición de momento angular
[49–51], y un estudio más profundo de la frontera asintótica y del grupo de simetría BMS
[52–55]. Todo esto acompañado del descumbrimiento del pulsar binario PSR B1913+16
[56] cuyo análisis brindó la primera prueba observacional (indirecta) de la existencia de
ondas gravitatorias (véase, por ejemplo, [57]).

Salvo la geometrización conforme de Penrose, los avances teóricos fundamentales arriba
citados solo son válidos cuando la constante cosmológica es cero.

Otros avances recientes
Actualmente, tenemos certeza de que hay objetos astrofísicos que pierden energía por
emisión de ondas gravitatorias. Con el anuncio de la primera detección directa en 2016
[58], estas ondas se convirtieron en un hecho observacional robusto. Además, la constante
cosmológica (pura o efectiva) está determinada con precisión y es positiva [59]. Por tanto,
el escenario es un tanto paradójico: hay grandes logros teóricos en el campo de la radiación
gravitatoria en el infinito que no son directamente aplicables al universo que habitamos.

En [60] se puso de nuevo la atención en esta cuestión y más tarde se expuso la prob-
lemática de manera detallada en [61] desde el punto de vista de restricciones geométricas
y topológicas de la frontera conforme. Durante los últimos años se ha alcanzado cierta
comprensión del problema por distintas vías que incluyen una fórmula de cuadrupolo en el
régimen lineal [62, 63], una definición espinorial de masa [64], caracterizaciones basadas en
coordenadas o coeficientes de spin [65, 66], métodos Hamiltonianos [67] y otros enfoques
[68–73] (véase [74] como revisión de algunos de estos trabajos). En [75] se propuso una
condición de radiación covariante en el infinito en presencia de una constante cosmológica
positiva; la idea se puso a prueba en el caso asintóticamente plano en [76]. Aún así, la
ausencia de una estructura universal, un grupo asintótico de simetrías y el problema de la
dependencia direccional cuando uno se aproxima al infinito [77] muestra la incompletitud
existente en la caracterización de la radiación gravitatoria en el infinito con constante
cosmológica positiva.

Resultados
Esta tesis trata de resolver algunos de estos problemas abiertos. Se estudia tanto el caso
con constante cosmológica positiva como el caso asintóticamente plano. En este último,
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se consigue un refinamiento de propiedades ya conocidas (tales como la energía-momento
del campo gravitatorio y el comportamiento de pelado) y también resultados nuevos (una
condición de radiación geométrica o el comportamiento de pelado para el denominado
tensor de Bel-Robinson). De gran relevancia es el análisis de la estructura asintótica con
constante cosmológica positiva, que se estudia desde su base, revisitando conceptos bási-
cos y dando las expresiones relevantes de los campos físicos en la frontera conforme. Se
emplean objetos definidos con el tensor de Bel-Robinson (lo que comúnmente se conoce
bajo el nombre de cantidades de ‘superenergía’), ya que se adaptan de forma natural a las
propiedades de marea del campo gravitatorio. La condición de radiación encontrada es
válida en los dos escenarios (con constante cosmológica positiva y sin ella), se construye
en el infinito y también tiene en cuenta las energías de marea. Además, se demuestra
una relación geométrica entre las cantidades a nivel superenergético (o de marea) y otras
cantidades a nivel energético, siendo las primeras ‘fuente’ de las segundas. Esta relación
sirve para formular una clase de tensores de tipo ‘news’, usando un resultado geométrico
hallado que generaliza un teorema de Geroch [17]. Además, la condición de radiación y
los tensores de tipo news y la estructura direccional del campo gravitatorio se ponen en
conexión con la formulación de un criterio de ‘no radiación entrante’, equipando la frontera
conforme con una congruencia de curvas. Esto lleva a la definición de un grupo asintótico
de simetrías que preserva las nuevas estructuras, y al estudio de cantidades conservadas.
Además, la correspondencia entre el caso con constante cosmológica positiva y el caso cero
es nítida, pudiéndose tomar el límite de la primera a la segunda situación. Finalmente, se
aplican los resultados a varios ejemplos de soluciones exactas a las ecuaciones de campo
de Einstein, obteniéndose la respuesta esperada y demostrando así la validez de de los
resultados.

Más allá de lo especificado arriba, tres de las principales ideas que se destacan en la
tesis son las siguientes:

1. Las cantidades de superenergía están naturalmente adaptadas al problema de la
caracterización de la radación gravitatoria.

2. En el caso con constante cosmológica positiva, cualquier dinámica del campo gravi-
tatorio en la frontera conforme tiene que estar codificada en la tríada (J , hab, Dab),
donde J es una variedad Riemanniana en tres dimensiones (la frontera conforme),
hab es la métrica sobre dicha variedad y Dab es un tensor simétrico y sin traza.

3. Los tensores de tipo news están asociados, al menos parcialmente, a variedades de
dimensión 2 en el infinito.

Mientras que futuras líneas de investigación incluyen:

• Definición de una energía-momento en el caso con constante cosmológica positiva
asociado a la estructura introducida en el infinito.
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• Empleo de métodos simplécticos.

• Generalización de la construcción del teorema de pelado a curvas generales.

• Aplicación de los métodos de marea propuestos al caso con constante cosmológica
negativa.
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Preface

Lee, mira y manipula este libro interactivo que te irá desvelando las mar-
avillas del universo. Coloca las pegatinas en el lugar apropiado para transfor-
mar las ilustraciones. Gira el disco para conocer la posición de las constela-
ciones en cada época del año y aprender a identificarlas. Usa el astrolabio,
como los navegantes del pasado, para saber la hora por la posición de las es-
trellas. Despliega las páginas para admirar el Sol y sus planetas. Ponte las
gafas para ver el firmamento en relieve. Descubre las dimensiones del espa-
cio leyendo el librito desplegable. Averigua cómo son las galaxias, qué es una
enana blanca, un agujero negro, un púlsar y otros muchos datos interesantes
acerca de nuestro mundo maravilloso.∗

∗Viaja por el universo. SM saber. Biblioteca interactiva. SM, 1993. isbn: 8434841088.
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1 | Introduction
_

Gravity affects everything and everything is a source of gravity. This would be a very
condensed way1 to convey one of the main ideas behind General Relativity, a theory that
was born with Einstein field equations [1]. The understanding of gravity as geometry of
the space-time is the best description of the gravitational interaction we have nowadays
–at least at the low-energy regime, since quantum effects are expected to appear at the
Planck scale, see e. g. the introduction of [2]. In a general situation, the gravitational
field is dynamical, and this is the same phenomenon by which the curvature of the space-
time can be altered. This thesis is a study of two particular features of the theory that
were formally immature or conceptually misleading until the renaissance2 –to put it in
the words of C. M. Will– of General Relativity: infinity and gravitational radiation. Both
objects of study are closely related, as an adequate treatment of infinity allows to consider
isolated systems whose emission of gravitational waves can be characterised precisely in
the asymptotic regions of the space-time. Basic physical concepts for the gravitational
field, as energy-momentum, are defined at infinity when the cosmological constant Λ van-
ishes. In contrast, the presence a positive Λ alters the situation drastically.

The cosmological constant: observational fact and conundrum
In 1917, the cosmological constant was introduced by Einstein [4] who pursued a homoge-
neous static universe that could fit Mach’s philosophy. Although his original motivation,
which required the value of Λ to be fine-tuned, was not fortunate from the physical point
of view, the presence of Λ in the field equations makes them more general, and hence
one has to consider it. That very same year, de Sitter [5] found a solution to the field
equations for a positive cosmological constant –which indeed included dynamical features.

1This introduction aims at simplicity and non-technical descriptions; more detailed preambles are
found at the beginning of each chapter.

2Where to put the historic limits of this bright epoch of developments and achievements can be
ambiguous, although fundamental progress was made in the 1950s and 1960s. For a historical review
focusing on gravitational radiation see [3].

1
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The observational discovery of Hubble [6] pictures an expanding universe, in agreement
with the previous models of Fridman [7] and Lemaître [8]. In spite of this, the actual value
of the cosmological constant (if present) could not be inferred at the time. It was not after
70 years later that measurements of Λ using supernovae [9, 10] evinced that we inhabit
a universe with a positive cosmological constant. Its value, although only slightly above
zero, served to establish that the universe undergoes an accelerated expansion –with a
striking impact on the physics at infinity.

The tiny value of the cosmological constant has no ulterior explanation yet. As soon
as in 1987, Weinberg used an anthropic argument based on the formation of gravitational
bound systems in order to predict an upper limit for the value of the cosmological con-
stant [11]. However, anthropic arguments drop hints for the search of an explanation
but do not provide us with a fundamental description or theory by themselves. From
the point of view of particle physics, one can think of the cosmological constant as an
effective –in contrast to bare– term by identifying it with a vacuum energy. The particle
theory calculations give an outcome that differs from the observed value of Λ by several
orders of magnitude though –see [12]. This is, in a way, the cosmological constant problem.

Hence, even though we know that Λ has to enter Einstein field equations, its role in
cosmological dynamics and its value in our universe, truth is that the underlying nature
of this constant is still a conundrum. For reviews on the matter, see e.g. [13, 14].

Infinity is reachable

Important physical notions, such a gravitational mass, are better understood if one consid-
ers isolated (gravitational) systems [15–19]. Intuitively, such a system can represent a star
of the universe after removing everything else. A complementary idea is the requirement
of going far away from a system to see it as a ‘whole’. In this pictorical description, ‘far
away’ means at infinity. There, physical quantities, and even notions such as gravitational
waves, become clearer [20, 21]. Hence, a formal description of infinity is needed and was
put forward in 1963 by Penrose [22]. One aspect of his idea is to bring infinity to a finite
coordinate distance or, in other words, to make infinity a local place. Penrose’s elegant
treatment of infinity allows to attach a boundary to the space-time, so that physical fields
are actually evaluated there [23]. The boundary encodes the physics of the asymptotic
regions of the space-time. Remarkably, it is affected by the sign of the cosmological con-
stant in a profound way, and thus the same can be said of the asymptotic physics. From
the geometric point of view, the direct consequence of a negative, positive or vanishing
Λ makes infinity a timelike, spacelike or lightlike hypersurface, independently of how big
(small) Λ is. Hence, the tiny value of the cosmological constant in our universe is enough
to change the asymptotic arena abruptly from that with Λ = 0 [24].



_ | Introduction 3

More than ripples of space-time
The dynamical nature of the space-time geometry allows for changes of the gravitational
field that affect causally different points of the space-time. This propagation phenomena,
commonly denominated gravitational waves –or more generically gravitational radiation–,
is a fully non-linear effect. The concept itself was fuzzy in the early stages of the theory.
In 1918, Einstein published his quadrupole formula [25] in the weak-field limit establishing
the first step towards a theory of gravitational radiation. His approach was guided by the
way one constructs retarded-time solutions in classical electrodynamics. Nevertheless, the
fact that his formula applies only to the linearised theory cast doubts upon the feature of
gravitational radiation in the non-linear regime. Indeed, Einstein himself and Rosen came
to the conclusion that gravitational waves did not exist, after finding a gravitational plane
wave solution [26, 27] which contained ‘singularities’ –these were not true singularities,
but a coordinate illness of the solution. Hence, the concept of gravitational wave was not
clear at all at the time.

Advances came in the 1950-60’s. A key role was played by Pirani, who searched for
an algebraic characterisation of gravitational radiation, inspired by Synge’s book [28] for
the case of the electromagnetic interaction. He based his characterisation in a problem of
eigenvalues of the curvature tensor [29, 30] in harmony with previous Petrov’s classifica-
tion [31]. Observe that, in lack of an ‘energy momentum-tensor’ for the gravitational field,
Pirani made use of the curvature tensor. However, the parallelism with electromagnetism
of the algebraic method ran deeper with the work of Bel [32, 33] and Robinson. They
gave the definition of a tensor field, cuadratic in the curvature, and sharing an astonishing
number of properties with the energy-momentum tensor of the electromagnetism –except
the physical units. Parallelly, Trautman treated the problem of gravitational radiation
by studying boundary conditions at infinity [34, 35], an approach that is reminiscent of
Sommeferld’s radiation condition –see [36]–. The common collaboration of Trautman ,
Robinson [37, 38], Pirani and Bondi [39] ended up with a series of papers [21, 40, 41]
(see also [42]) in which the different approaches converged – e. g., the postulation of a
radiation condition at infinity in Bondi’s metric-based approach or the algebraic charac-
terisation of the curvature tensor and its interpretation in the so called peeling behaviour.
Moreover, Penrose’s geometrical treatment of infinity led to similar outcomes [15, 43, 44],
and in the next decade all the results were condensed in a solid geometrical description
by Geroch [17]. Some of those landmarks include the so called Bondi news tensor and
Bondi-Trautman momentum and the discovery of the asymptotic group of symmetries
BMS (named after Bondi, Metzner and Sachs). Gravitational radiation was shown to
be an intrinsic feature of the full theory and cleared up foregoing uncertainties on the
theoretical side –for a brief historical review see [45].

More progress was made in the late 1970s and 1980s. One has to mention the intro-
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duction of simplectic methods [46, 47] and the identification and characterisation of the
radiative degrees of freedom of the gravitational field in terms of classes of equivalence
of connections at infinity [48]. Advances towards the definition of angular momentum
[49–51], and further study of the asymptotic boundary symmetries and momentum [52–
55] were made. All this was accompanied with the discovery of the binary pulsar PSR
B1913+16 [56] whose analysis provided the first observational evidence of the existence
of such waves –see e.g. [57].

Among these theoretical successful developments, the fundamental ones but the con-
formal geometrisation of Penrose are valid only when the cosmological constant vanishes.

The scenario
At the present time, we know certainly that astrophysical objects can loose energy by the
emission of gravitational waves. With the announce of the first direct detection in 2016
[58], these waves became a robust observational fact. Also, the cosmological constant
(bare or effective) is accurately determined as positive [59]. Thus, the scenario is a bit
of paradoxical: we have a lot of great theoretical achievements in the understanding of
gravitational radiation at infinity which cannot be applied to the universe we inhabit.

Attention to the problem of asymptotic characterisation of gravitational radiation was
revived in [60] and later the problematic was exposed accurately in [61] from the point of
view of restricting the topology and geometry of the conformal boundary: if one does not
restrict the asymptotic structure, it is not possible to identify an asymptotic symmetry
group but if the constraints are too strong one may loose too much information –asking for
conformal flatness, for instance, removes half the components of the gravitational field–.
During the last years some understanding has been achieved and different approaches
explored, which include a quadrupole formula and the study of the linear regime [62, 63],
a spinorial definition of mass [64], spin-coefficient/coordinate-based approaches [65, 66],
Hamiltonian methods [67] and others [68–73] – see [74] for a review of some of the works.
A geometric and covariant radiation condition at infinity in the presence of a positive
cosmological constant was proposed [75] and tested in the asymptotically flat case [76].
Still, the absence of a universal structure together with a general group of asymptotic
symmetries and the problem of the directional-dependence as one approaches infinity [77]
makes the whole picture incomplete.

This thesis aims at solving some of the open problems in the characterisation of radi-
ation at infinity with a positive cosmological constant. The task involves the study of the
vanishing-Λ case; refinement of old features –such as energy-momentum of the gravita-
tional field and the peeling behaviour– and new results –a geometric radiation condition
or the peeling behaviour of the Bel-Robinson tensor– are given. Of greatest relevance
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is the analysis of the asymptotic structure with a positive cosmological constant, which
is studied from its ground, reviewing some basic ideas and giving the expressions of the
relevant fields on the conformal boundary. Objects defined upon the Bel-Robinson tensor
are used (commonly called ‘superenergy’ quantities), which suit the tidal nature of the
gravitational field. The radiation condition –valid in both scenarios– at infinity is of a
tidal nature too and ruled by the asymptotic geometry itself, and a detailed analysis of it
is carried out. Moreover, a geometric relation between quantities at the superenergy level
(MT−2L−3) and others at the energy level is established, being the latter ‘the source’
of the former. This relation serves to formulate a news-like class of tensor fields using a
general geometric result –which generalises a theorem by Geroch. In addition to that, the
radiation condition and the news-like tensors and the directional structure of the grav-
itational field at infinity are put in connection, formulating a criterion of no-incoming
radiation at infinity and equipping the conformal boundary with a selected congruence of
curves. This led to the definition of a group of asymptotic symmetries preserving the new
structures and to the study of conserved charges. Also, the limit of the cosmological con-
stant to zero shows that the main ideas in both scenarios exhibit a clear correspondence.
Finally, application of the results to exact solutions of Einstein Field Equations are given
to illustrate their validity.

Conventions and notation
Throughout the memoir, 4 space-time dimensions are considered and quantities in physi-
cal space-time M̂ are distinguished from those in conformal space-time M by using hats.
Frequently used abbreviations include: KVF (Killing vector field), CKVF (conformal
Killing vector field), EFE (Einstein field equations) and PND (principal null direction).
Part of the notation is summarised in table 1.1.

The following conventions are used:

• Space-time metric signature: (−,+,+,+).

• Space-time indices: α, β, γ, etc; three dimensional space-like hypersurfaces indices:
a, b, c, etc; surfaces indices: A,B,C, etc.

• Riemann tensor, Ricci tensor and scalar curvature: R δ
αβγ vδ :=

(
∇α∇β −∇β∇α

)
vγ ,

Rαβ := R µ
αµβ , R := Rµνg

µν .

• Choice of orientation: η0123 = 1, ε123 = 1, ε̊23 = 1.

• Symmetrisation and antisymmetrisation: 2T[αβ] :=
(
Tαβ − Tβα

)
, 2T(αβ) :=

(
Tαβ + Tβα

)
.

• Commutator of two vector fields: [v, w]α := vµ∇µw
α − wµ∇µv

α.
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• Commutator of two endomorphisms or two (1, 1)-tensors: [A,B] β
α :=

(
A µ
α B β

µ −B µ
α A β

µ

)
.

• Hodge dual operation on space-time two-forms: 2 ω∗ αβ := ηµναβωµν .

• D’Alambert operator: � := gµν∇µ∇ν .

Physical
space-time M̂

Conformal
space-time M

Spacelike
hypersurfaces I Surfaces S

Metric ĝαβ gαβ hab qAB

Volume
form η̂αβγδ ηαβγδ εabc ε̊AB

Covariant
deriva-
tive

∇̂α ∇α ∇a DA

Curvature
tensor R̂ δ

αβγ R δ
αβγ R

d

abc R̊ D
ABC

Projector – – Pα
β P̊ a

b

Bases – – {eαa} {ω a
α }

{
Ea

A

} {
W A
a

}

Table 1.1: General notation. The first two columns corresponds to the physical and
conformal space-time M̂ and M , the third one to any 3-dimensional hypersurface (in
particular this notation is used for J ) and the last one to any 2-dimensional surface S
(like codimension-1 manifolds on J ).



2 | Superenergy
_

The impossibility of defining a local energy-momentum tensor for the gravitational field
does not rule out the possibility of describing the field’s strength. Apart from the asymp-
totic definitions of energy mentioned in chapter 1, a local notion of energy density divided
by area exists. This particular weighting of the energy is naturally associated to tidal
forces and is described by a rank-four tensor, quadratic in the Weyl curvature, called
the Bel-Robinson tensor [32]. Importantly, this object is defined locally and shows lots
of analogies with the energy-momentum tensor of the electromagnetic field [78]. As a
matter of fact, it can not have physical units of energy density and this led to assign the
name supernergy quantities to objects defined with this tensor. Since its formulation, the
superenergy turned out to be a useful tool in a variety of studies of gravity, such as the
causal propagation of gravity [79], the algebraic characterisation of the Weyl tensor [80],
the formation of black holes [81] or the global non-linear stability of Minkowski space-
time [82]. In addition, it emerges in the quasilocal formulations of energy [83] and can
be formulated for fields other than gravity [84] exhibiting interchanges of superenergy
quantities and conserved mixed currents of different fields [85–87].

Superenergy is an indispensable tool in this thesis. Particularly inspiring for us is
Bel’s definition of ‘intrinsic radiative states’[33] –in agreement with Pirani’s ideas [30];
also there is a more recent definition of intrinsic radiative states and an analogue to the
Poynting theorem in electromagnetism [88]. The tidal nature of actual gravitational-wave
detections makes the Bel-Robinson an appealing candidate for grounding the study of
gravitational radiation –for other recent studies in which the tidal nature of gravitational
waves plays an important role see e.g. [89, 90]. As it becomes manifest in chapters 4, 5
and 8, one advantage of our superenergy-based methods is their easy and straightforward
application.

There exists a general definition of superenergy tensor [85] and, within that broader
class, the Bel-Robinson tensor is the basic superenergy tensor constructed with the Weyl
tensor. Next subsections apply to any basic superenergy tensor built with a Weyl-tensor

7
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candidate, i. e., a traceless tensor W δ
αβγ sharing all the algebraic symmetries of the Weyl

tensor.

2.1 Basic superenergy tensors
The basic superenergy tensor Tαβγδ {W } constructed with a Weyl-tensor candidateWαβγδ

is defined in 4 dimensions as

Tαβγδ := W ν
αµγ W µ

δνβ +W
∗ ν

αµγ W
∗ µ

δνβ = WαµγνW
µ ν

β δ +WαµδνW
µ ν

β γ −
1
8gαβgγδWµνρσW

µνρσ.

(2.1)
Observe that, being quadratic in the Weyl-tensor candidate, its geometrised dimensions
are L−4. However, the physical dimensions are energy-density per area, ML−3T−2 [83–
85, 91, 92], and yet another simple proof was presented in [76] —see section 7.5. The
properties of this tensor include:

i) it is completely symmetric T(αβγδ) = Tαβγδ ,

ii) it is traceless T µβγµ = 0,

iii) obeys a dominant superenergy property, Tµνρσ vµwνuρqσ ≥ 0, where the four vectors
are causal and future oriented. In particular,

iv) T ανρσ kν`ρzσ is future pointing and lightlike, if kν , `ρ, zσ are lightlike and future
oriented. [93, 94].

In addition to these algebraic properties, let us include a differential one,

∇µT
µ

αβγ = 2Wµγνα Y
νµ

β + 2Wµγνβ Y
νµ

α + gαβW
µνρ

γ Yµνρ , (2.2)

where
Yαβγ := −∇µW

µ
αβγ , (2.3)

and point out the following case:

Yαβγ = 0 =⇒ ∇µT
µ

αβγ = 0 . (2.4)

At this point, it is worth mentioning that for the particular case with Tαβγδ constructed
with the Weyl tensor, Yαβγ is the Cotton tensor and, if Einstein’s field equations hold,
the absence of matter fields implies Yαβγ = 0 and Tαβγδ is divergence-free.

Later, we will be interested in relating the algebraic classification ofWαβγδ with Tαβγδ
in a precise way. A characterisation of the Petrov type of W δ

αβγ and its repeated (or
degenerated) principal null directions (PND) is [80, 95]
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• Tαβγµ kµ = 0 and Tαβγδ 6= 0 ⇐⇒ Petrov type N and kα is a quadruple PND.

• Tαβνµ kνkµ = 0 and Tαβγµ kµ 6= 0 ⇐⇒ Petrov type III and kα is a triple PND.

• Tαρνµ kρkνkµ = 0 and Tαβνµ kνkµ 6= 0 ⇐⇒ Petrov type II or D and kα is a double
PND.

• Tσρνµ kσkρkνkµ = 0 and Tαρνµ `ρ`ν`µ 6= 0 ∀ lightlike `α ⇐⇒ Petrov type I and kα
is a non-degenerate PND.

• Tαρνµ kρkνkµ = 0, Tαρνµ `ρ`ν`µ = 0 and Tαβγδ 6= 0 ⇐⇒ Petrov type D and kα, `α
are double PND.

For a detailed description of these and more general properties, see [80, 85] and references
therein.

2.1.1 Orthogonal decomposition

Choose a unit timelike future-pointing vector field uα. At each point, introduce a basis
{eαa} spanning the vector space whose elements are all the vectors orthogonal to uα at
that point. Also, define a basis {ω a

α } for the dual space of one-forms such that they are
orthogonal to uα. We call these objects orthogonal to uα ‘spatial with respect to uα’ or,
for simplicity, spatial —Latin indices denote spatial components and run from 1 to 3. Let
qα = eαaq

a be any spatial vector, qαuα = 0. A projector1 can be defined,

Pα
β = eαiω

i
β = δαβ + uαuβ, Pα

µ u
µ = 0, Pα

µ q
µ = qα . (2.5)

In this way, any space-time vector wα can be decomposed as a spatial part with respect
to uα together with another one tangent to uα,

wα = −uαuµwµ + wα, with wα = wpeαp , (2.6)

such that
Pα

µw
µ = wα . (2.7)

This is generalised to higher-rank tensors in an obvious way. Latin indices are raised and
lowered with

hab := eαae
β
bgαβ , hab := ω a

α ω
b

β g
αβ . (2.8)

With these tools, it is possible to decompose the Weyl-tensor candidate and T αβγδ into
tangent and spatial parts with respect to uα. The former is fully determined by its electric

1Throughout the text, projectors are denoted by a (decorated or not) Pαβ and defined according to
the context.
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and magnetic parts with respect to uα

Dαβ := uµuνWµανβ , (2.9)
Cαβ := uµuν W

∗

µανβ . (2.10)

which are symmetric, traceless, spatial fields,

Dαβ = Dabω
a

α ω
b

β , (2.11)
Cαβ = Cabω

a
α ω

b
β . (2.12)

The full splitting of Tαβγδ is

Tαβγδ =Wuαuβuγuδ + 4P(αuβuγuδ) + 4u(αQβγδ) + 6t(αβuγuδ) + tαβγδ . (2.13)

We are interested in the first three terms on the right-hand side. They have obvious
definitions in terms of the projector and uα. In particular, Pα and Qαβγ are spatial, i. e.,
Pα = eαaP

a, Qαβγ = ω a
α ω

b
β ω

c
γ Qabc. The first two are called the superenergy density and

super-Poynting vector field, and have the following expressions in terms of the electric
and magnetic parts of the Weyl-tensor candidate ([33, 78]):

W = DabD
ab + CabC

ab , (2.14)
Pa = [C,D]rs ε

rsa = 2C t
r Dtsε

rsa , (2.15)

where we have defined an alternating 3-dimensional tensor.

− uαεabc := ηαβγδe
α
ae
α
be
α
c (2.16)

Also, the third one can be expressed as [88]

Qαβγ = Pαβ Pγ − 2
(
DαµCβν +DβµCαν

)
uρη νµ

ργ , Qµ
µγ = Pα . (2.17)

The superenergy density and the super-Poynting vector field inherit their name from the
analogy with the electromagnetism when W δ

αβγ is the Weyl tensor: the former represents
energy density per unit area and the latter, the spatial direction of propagation of supern-
ergy with respect to uα. Following this analogy, one can also define a supermomentum

Pα := −uµuνuρT αµνρ =Wuα + Pα , (2.18)

which is non-spacelike and future pointing. One important feature is that

W δ
αβγ = 0⇐⇒ Tαβγδ = 0⇐⇒W = 0 . (2.19)
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Particularly inspiring for us is the following definition by Bel [33]:

Definition 2.1.1. There is a state of intrinsic gravitational radiation at a point p when
Pα|p 6= 0 for all unit timelike uα.

This classical definition agrees with the discussion by Pirani [30] and is based on the
analogy with null electromagnetic fields which are precisely the fields with a non-zero
Poynting vector for all possible observers. More recently, another similar characterization
was put forward in [88] in the following terms

Definition 2.1.2. There is a superenergy state of intrinsic gravitational radiation at a
point p when Qαβγ|p 6= 0 for all unit timelike uα.

Using (2.17) it is easy to check that every state of intrinsic gravitational radiation is
also a superenergy such state, but there are more cases of the latter in general.

2.2 Lightlike projections
Let uα be the unit timelike vector field, as defined in previous subsection, and rα a
unit, vector (field) –non necessarily defined everywhere– spatial with respect to uα, i. e.,
rαu

α = 0, rα = raeαa. There are two (up to a boost) independent lightlike directions
coplanar with uα and rα:

k
+ α := 1√

2
(uα + rα) , (2.20)

k
− α := 1√

2
(uα − rα) (2.21)

such that k
+ α k

−
α = −1. At each point, introduce a basis for the vector space constituted

by all vectors orthogonal to k
+
α, { e

+ α
â} = { k+ α, Eα

A}, and do the same with respect to
k
−
α, { e

− α
ã} = { k− α, Eα

A}. Notice that, as these vector fields are lightlike, k
− α = k

− 1̃ e
− α

1̃
and k

+ α = k
+ 1̂ e

+ α
1̂. One can introduce dual bases { ω+ â

α } = {− k
−
α,W

A
α }, { ω

− ã
α } =

{− k
+
α,W

A
α }, such that k

+ α ω
− ã
α = 0, k

− α ω
+ â
α = 0, k

− α ω
− ã
α = k

− ã, k
+ α ω

+ â
α = k

+ â. Here,
{Eα

A}, {W A
α } are bases spanning the two-dimensional vector space orthogonal to rα and

uα –equivalently, orthogonal to k
± α. Any space-time vector wα decomposes into a part

tangent to uα and a spatial part, wα, which splits into a component tangent to rα and
another one that is orthogonal to both vector fields uα and rα, ẘα = ẘAEα

A ,

wα = −wµuµuα + wα = −wµuµuα + wµr
µrα + ẘα . (2.22)

The object
P̊α

β = δαβ + uαuβ − rαrβ = δαβ + k
− α k

+

β + k
+ α k

−

β (2.23)
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is the projector orthogonal to nα and rα

P̊α
β w

β = ẘβ, P̊α
β rα = P̊α

β uα = 0 . (2.24)

Again, all this is generalised to higher-rank tensors in a natural way.

There are some useful lightlike projections of the Weyl-tensor candidate we are in-
terested in. Some of them are expressed in terms of { e+ α

â} and { ω+ â
α } only, and are

orthogonal to k
+
α in their contravariant indices and to k

− α in the covariant ones:

D
+ αβ := k

+ µ k
+ νW α β

µ ν = D
+ âb̂ e

+ α
â e

+ β

b̂
, (2.25)

C
+ αβ := k

+ µ k
+ ν W

∗ α β
µ ν = C

+ âb̂ e
+ α

â e
+ β

b̂
, (2.26)

D
−+ β

α := k
− µ k

+ νW β
µαν = D

−+ b̂
â ω

+ â
α e

+ β

b̂
, (2.27)

C
−+ β

α := k
− µ k

+ ν W
∗ β

µαν = C
−+ b̂

â ω
+ â
α e

+ β

b̂
, (2.28)

whereas others are written in terms of { e− α
ã} and { ω− ã

α }, and are orthogonal to k
−
α in

their contravariant indices and to k
+ α in the convariant ones:

D
− αβ := k

− µ k
− νW α β

µ ν = D
− k̃l̃ e

− α
k̃ e
− β

l̃
, (2.29)

C
− αβ := k

− µ k
− ν W

∗ α β
µ ν = C

− k̃l̃ e
− α

k̃ e
− β

l̃
, (2.30)

D
+− β

α := k
+ µ k

− νW β
µαν = D

+− l̃
k̃ ω
− k̃
α e
− β

l̃
, (2.31)

C
+− β

α := k
+ µ k

− ν W
∗ β

µαν = C
+− l̃

k̃ ω
− k̃
α e
− β

l̃
. (2.32)

Notice that these quantities are not completely independent from each other but all the
information of W δ

αβγ is contained in the first pair of the upper set plus the first pair of
the lower one. In terms of the Weyl scalars, the first set of equations contains φ2,3,4; the
second, φ2,0,1 — see appendix D.2.

It will turn out to be very practical to introduce the following notation for any sym-
metric tensor Bµν :

Bαβ = uµuνBµνuαuβ + uµP̊ ν
(α uβ)Bµν + 2Bµu

µr(αuβ) + rαrβB + 2B̊(αrβ) + B̊αβ , (2.33)

and
B̀αβ := B̊αβ −

1
2 P̊αβ P̊

µνB̊µν , B̀ µ
µ = 0 , (2.34)

where

B̊αβ := P̊ µ
α P̊

ν
βBµν , Bα := rµBµα , B̊α := P̊ ν

α r
µBµν , B := rµrνBµν . (2.35)
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Obviously, B̊αβ and B̊α are orthogonal to rα and uα. The same notation will be used with
uppercase indices. Define

qAB := Eα
AE

β
B P̊αβ = Eα

AE
β
B g̊αβ , (2.36)

qAB := W A
α W B

β P̊αβ = W A
α W B

β P̊αβ (2.37)

to lower and raise capital Latin indices. Then,

B̊AB := Eα
AE

β
B B̊αβ , B̀AB := B̊AB −

1
2qABB̊

C
C , B̊A := EA

αr
µBµα , B̀ A

A = 0
(2.38)

An alternating two-dimensional tensor can be defined by

rm ε̊AB = εmabE
a
AE

b
B . (2.39)

A list of properties of these quantities has been placed in appendix D.
The electric and magnetic parts of the Weyl-tensor candidate read:

Dab =D
(
rarb −

1
2 P̊ab

)
+ 2r(aW

B
b) D̊B +W A

a W B
b D̀AB , (2.40)

Cab =C
(
rarb −

1
2 P̊ab

)
+ 2r(aW

B
b) C̊B +W A

a W B
b C̀AB (2.41)

and equivalently, in terms of the lightlike components that we have just presented,

Dab = k
∓ µ k

∓ ν D
±

µν
rarb + 2r(aW

B
b)

(
D̊

+

B + D̊
−

B

)
+

1
2W

A
a W B

b

(
D̊

+

AB + D̊
−

AB

)
− 1

2 k
∓ µ k

∓ ν D
±

µν P̊ab , (2.42)

Cab = k
∓ µ k

∓ ν C
±

µν
rarb + 2r(aW

B
b)

(
C̊

+

B + C̊
−

B

)
+

1
2W

A
a W B

b

(
C̊

+

AB + C̊
−

AB

)
− 1

2 k
∓ µ k

∓ ν C
±

µν P̊ab . (2.43)

Another quantity that will appear later on is:

t̊
±

ABC := Eα
AE

β
BE

γ
C k
± µWαβγµ = ±2

√
2qC[A D̊

±

B] , (2.44)

where
qAB := Eα

AE
β
Bgαβ . (2.45)

2.3 Radiant superenergy
Now, we introduce a new kind of superenergy quantities associated to lightlike directions.
The use of these objects helps in identifying the radiative sectors of the superenergy
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tensor. For such reason, we refer to them as radiant superenergy quantities. Given a
future-oriented lightlike vector field `α we define its associated radiant supermomentum,

Q` α := −`µ`ν`σT αµνσ . (2.46)

Given any lightlike vector field kα such that kα`α = −1, Qα decomposes as2

Q` α = W` kα + Q` α = W` kα + Z` `α +
(
δαµ + `αkµ + kα`µ

)
Q` µ , (2.47)

where Q` α is the radiant super-Poynting vector and W` and Z` the corresponding trans-
verse and longitudinal3 radiant superenergy densities. Note that Z` and (δαµ + `αkµ
+kα`µ)Q` µ depend on the choice of kα. In particular, for the previously defined k

± α,
the supermomenta read

Q+ α := − k
+ µ k

+ ν k
+ ρT αµνρ = W+ k

− α + Q+ α = W+ k
− α + Q+ a e

+ α
a , (2.48)

Q− α := − k
− µ k

− ν k
− ρT αµνρ = W− k

+ α + Q− α = W− k
+ α + Q− k e

− α
k . (2.49)

where

Q+ a = Z+ k
+ a + Q+ AEa

A , (2.50)
Q− k = Z− k

− k + Q− AEk
A , (2.51)

Also, the following formulae hold4

W+ = − k
+

µ Q
+ µ = 2 C+ µν C

+ µν = 2 D+ µν D
+ µν = 2 C̊+ AB C̊

+ AB = 2 D̊+ AB D̊
+ AB ≥ 0, (2.52)

W− = − k
−

µ Q
− µ = 2 C− µν C

− µν = 2 D− µν D
− µν = 2 C̊− AB C̊

− AB = 2 D̊− AB D̊
− AB ≥ 0, (2.53)

Z+ = − k
−

µ Q
+ µ = 2 C

−+

µν C
+ µν = 2 D

−+

µν D
+ µν = 4 C̊+ A C̊

+ A ≥ 0, (2.54)
Z− = − k

+

µ Q
− µ = 2 C

+−

µν C
− µν = 2 D

+−

µν D
− µν = 4 C̊− A C̊

− A ≥ 0, (2.55)
Q+ A = 4

√
2 C̊+ P C̊

+ AP , (2.56)
Q− A = −4

√
2 C̊− P C̊

− AP . (2.57)

The expressions on the right-hand side can be derived by direct computation, using
properties i), viii), ix), xv), xxxi) and xxxii) on page 211 . In addition, we define the

2The underlining used here should not be confused with the short bar placed under quantities associ-
ated to a congruence (compare to the notation of appendix A.3).

3For the Bel-Robinson tensor, the ‘transverse’ and ‘longitudinal’ modes of the gravitational radiation
determine completely W` and Z` , respectively. This can be easily inferred from the expressions of these
quantities in terms of the Weyl-tensor candidate scalars in appendix D.2.

4This can be done for any lightlike vector fields `α and kα as defined above. Just for convenience, we
present them for k

± α .
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Coulomb superenergy density as5:

V := k
+ µ k

− ν k
+ ρ k

− σDµνρσ = C
+− AB C

+−

AB + D
+− AB D

+−

AB = C2 +D2 ≥ 0. (2.58)

Obser fove the non-negativity of eqs. (2.52) to (2.55) and (2.58). Contracting eq. (2.13)
four times with uα in the form

uα = 1√
2
(
k

+ α + k
− α

)
, (2.59)

one gets the relation

W = 1
4
[
W+ + 4 Z+ + 6V + 4 Z− + W−

]
. (2.60)

Indeed, it is easy to generalise this formula for any kind of coplanarity and to obtain the
following lemma

Lemma 2.3.1. Let W be the superenergy density associated to a unit timelike vector
field uα, and W± , Z± , V , the superenergy densities associated to a couple of lightlike
vector fields k

± α such that

uα =
(
a k
− α + b k

+ α
)
, with ab = 1

2 . (2.61)

Then,
W =

[
b4 W+ + 4b3a Z+ + 6a2b2V + 4ba3 Z− + a4 W−

]
, (2.62)

W = 0⇐⇒
{
V = 0, W± = 0, Z± = 0

}
. (2.63)

Any radiant supermomentum Q` α constructed with a future-pointing lightlike vector
field as in eq. (2.46) has some basic properties,

i) Q` α is lightlike, Q` µQ` µ = 0, and future pointing. This follows by the dominant
superenergy condition in the version of property iv) on page 8.

ii)
(
δνµ + `νkµ + kν`µ

)
Q` µQ` ν = 2Z` W` , which can be shown applying property i) to

Q` α and using eq. (2.47). From these same equations, it follows that

iii) Q` α = 0⇐⇒ Z` = 0. And, also, Q` α = 0⇐⇒ W` = 0 = Z` .

If we contract the radiant supermomenta with Pα
β , we obtain their parts orthogonal to

5For the Bel-Robinson tensor, this is completely determined by the Coulomb part of the gravitational
field –see the expressions in terms of the Weyl scalars in appendix D.2.
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uα,

Pα
µ Q

+ µ = 1√
2
(
Z+ − W+

)
rα + Q+ AEα

A = Q+ α , (2.64)

Pα
µ Q
− µ = − 1√

2
(
Z− − W−

)
rα + Q− AEα

A = Q− α . (2.65)

Using properties xv), xvii), xxi) and xxii) on page 212, we can write the radiant decom-
position in terms of the electric and magnetic parts of the Weyl-tensor candidate

Z+ =
(
D̊A + ε̊ E

A C̊E
) (
D̊A + ε̊ADC̊D

)
, (2.66)

Z− =
(
D̊A − ε̊ E

A C̊E
) (
D̊A − ε̊ADC̊D

)
, (2.67)

W+ = 2
(
C̀AB − D̀T

(B ε̊A)T

) (
C̀AB − D̀ (B

M ε̊A)M
)

, (2.68)

W− = 2
(
C̀AB + D̀T

(B ε̊A)T

) (
C̀AB + D̀

(B
M ε̊A)M

)
, (2.69)

Q+ A = 2
√

2
(
C̀AB − D̀ (B

M ε̊A)M
) (
C̊B − ε̊ E

B D̊E

)
, (2.70)

Q− A = −2
√

2
(
C̀AB + D̀

(B
M ε̊A)M

) (
C̊B + ε̊ E

B D̊E

)
. (2.71)

And with these relations it is straightforward to compute

Z+ − Z− = 4D̊Aε̊ABC̊
B , (2.72)

Z+ + Z− = 2
(
C̊A C̊

A + D̊AD̊
A
)

, (2.73)

W+ − W− = 8D̀TB ε̊TAC̀
A
B , (2.74)

W+ + W− = 4
(
D̀ABD̀

AB + C̀AB C̀
AB
)
, (2.75)

√
2
(
Q+ A − Q− A

)
= 8

(
C̊P C̀

PA + D̊ED̀
EA
)
, (2.76)

√
2
(
Q+ A + Q− A

)
= −8̊ε A

T

(
D̊P C̀

PT − C̊E D̀ET
)
. (2.77)

We would like to have a complete relation between the radiant and the standard super-
momentum, and we already have the relation between superenergy densitites eq. (2.60).
Thus, it only remains to find an expression for the super-Poynting vector in terms of the
new quantities. For that purpose, substitute k

± α in terms of uα and rα in eqs. (2.48)
and (2.49),

Q+ α = 1
2
√

2
(
Qα − 3Dαµνρuµrνrρ − 3Dαµνρrµuνuρ −Dαµνρrµrνrρ

)
, (2.78)

Q− α = 1
2
√

2
(
Qα − 3Dαµνρuµrνrρ + 3Dαµνρrµuνuρ +Dαµνρrµrνrρ

)
. (2.79)

Thus,
Q+ α + Q− α = 1√

2
(
Qα − 3Dαµνρuµrνrρ

)
. (2.80)
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If we contract this equation with Pα
β , the right-hand side is determined by eq. (2.17),

Pα
βDαµνρuµrνrρ = −Qβνρr

νrρ = −Pβ + 4rβ ε̊ABCADB + 4W E
β ε̊EA

(
C̊AD − D̊AC

)
,

(2.81)
which, after inserting eq. (2.72), becomes

Pα
βDαµνρuµrνrρ = −Pβ −

(
Z+ − Z−

)
rβ + 4W E

β ε̊EA
(
C̊AD − D̊AC

)
. (2.82)

The left-hand side is known by eqs. (2.64) and (2.65), therefore

1√
2
(
Z+ − Z− − W+ + W−

)
rα +

(
Q+ A + Q− A

)
Eα

A

= 1√
2
[
4Pα + 3

(
Z+ − Z−

)
rα − 12Eα

E ε̊
E
A

(
C̊AD − D̊AC

)]
. (2.83)

After recombining the terms, one finds the following relation:

4Pa =
(
2 Z− − 2 Z+ − W+ + W−

)
ra +

[√
2
(
Q+ A + Q− A

)
+ 12̊εAE

(
C̊ED − D̊EC

)]
Ea

A .

(2.84)
The whole supermomentum is determined by eqs. (2.60) and (2.84),

4Qα =
[
W+ + 4 Z+ + 6V + 4 Z− + W−

]
uα +

(
2 Z− − 2 Z+ − W+ + W−

)
rα+ (2.85)

+
[√

2
(
Q+ A + Q− A

)
+ 12̊εAE

(
C̊ED − D̊EC

)]
Eα

A . (2.86)

The radiant components contain no information about the tracesDA
A and CA

A , whose
squares determine the Coulomb superenergy density V . Besides, the longitudinal radiant
superenergy densities Z± are controlled by C̊A , D̊A. Note that Equations (2.84) and (2.85)
contain a ‘mixed’ term

dA := ε̊AE
(
C̊ED − D̊EC

)
. (2.87)

Let us finish this section with some results. The first one follows from the Petrov
classification on page 8

Lemma 2.3.2. A radiant supermomentum, Q` α, constructed with a lightlike vector `α
vanishes if and only if `α is a repeated PND of the corresponding Weyl-tensor candidate.

Lemma 2.3.3. Consider the lightlike projections of the Weyl-tensor candidate tensor
for a couple of lighlike vectors k

± α as in eq. (2.59). Let one of the associated radiant
supermomenta vanish, Q± α = 0. Then,

i) D̊
±

A = 0 = C̊
±

A (⇐⇒ D̊A ε̊
AB = ∓C̊B) and then C̊A = C̊

∓

A, D̊A = D̊
∓

A,

ii) D̀T (B ε̊
T

A) = ±C̀AB ,
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iii)

Z∓ = 4C̊A C̊A = 4D̊AD̊
A , (2.88)

W∓ = ∓16D̀TB ε̊TAC̀
A
B = 16C̀AB C̀AB = 16D̀ABD̀

AB , (2.89)
Q∓ A = 8

√
2C̀ABCB = ±8

√
2D̀ (B

T ε̊A)TCB , (2.90)
dA = ε̊ E

A

(
δ B
E D ± Cε̊ B

E

)
C̊B . (2.91)

Proof. All the points above follow directly from eqs. (2.66) to (2.77), using property iii)
on page 15.

The next result follows by inspection of eq. (2.84),

Lemma 2.3.4. Consider the super-Poynting Pa associated to a timelike, unit vector uα
and a couple of independent lightlike vectors as in eq. (2.59). Let Q± α be their associated
radiant supermomenta. Then, the necessary and sufficient conditions on the radiant
quantities that make the super-Poynting vanish are

2
(
Z− − Z+

)
− W+ + W− = 0

√
2
(
Q+ A + Q− A

)
+ 12dA = 0

⇐⇒ Pa = 0 . (2.92)

Corollary 2.3.1. If one of the radiant supermomenta considered in lemma 2.3.4 vanishes,
say Q− α = 0, then

Q+ α = 0⇐⇒ Pa = 0 . (2.93)

The same holds true by interchanging the + with the − sign.

Proof. By property iii) on page 15, Q− α = 0 ⇐⇒ Z− = W− = 0. Now, by that same
property and lemma 2.3.3, Q+ α = 0 ⇐⇒ Z+ = W+ = 0 =⇒ dA = 0. Then, eq. (2.92)
is trivially satisfied and Pa = 0. For the converse, if Pa = 0, by eq. (2.92) we get
Z+ = − W+ , but the only possibility is Z+ = W+ = 0 because both quantities are non
negative (eqs. (2.52) and (2.54)). By property iii) on page 15, Q+ α = 0.

Proposition 2.3.1. Consider the super-Poynting Pa associated to a timelike, unit vector
uα and a couple of independent lightlike vectors as in eqs. (2.20) and (2.21). Let Q± α be
the two associated radiant supermomenta. The following conditions are all equivalent:

1. Q− α = Q+ α = 0.

2. Q− α = 0 and Pa = 0.

3. Q− α = 0 and Pαrα = 0.

4. D̀AB = C̀AB = 0 and D̊A = C̊A = 0.
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5. In the basis {ra, Ea
A},

(Dab) = D


1 0 0
0 −1/2 0
0 0 −1/2

 , (Cab) = C


1 0 0
0 −1/2 0
0 0 −1/2

 . (2.94)

Remark 2.3.1. This case corresponds to the situation where the Weyl-tensor candidate
tensor has Petrov type D at those points where the above conditions hold and k

± α are the
two double principal null directions.

Proof.

• 1 ⇐⇒ 2: it follows from corollary 2.3.1.

• 2⇐⇒ 3: point 2 implies 3 trivially; by eq. (2.84), point 3 implies that the first line of
eq. (2.92) in lemma 2.3.4 holds and, noting property iii) on page 15, W+ = 0 = Z+ .
But, then, lemma 2.3.3 tells us that dA = 0 = Q+ A. Altogether, by lemma 2.3.4, we
have Pa = 0.

• 1⇐⇒ 4: point 1 implies 4 by property iii) on page 15 and lemma 2.3.3. The converse
is shown noting that 4 implies W± = 0 = Z± by eqs. (2.72), (2.73) and (2.75) which,
by property iii) on page 15, implies 1.

• 4 ⇐⇒ 5: point 4 is saying explicitly that in the basis of point 5, the tensors Cab ,
Dab have precisely the form displayed in eq. (2.94).



20 2.3 | Radiant superenergy



Desde el final.
Al borde
de mí mismo.
Tan lejos.
En donde las ventanas
encendidas, son sólo otra pieza de la noche.

Benjamín Prado, Límite. Todos nosotros, 1998.

3 | Conformal geometry and infinity
_

Studying isolated systems, among other aspects of gravity, requires investigating the
asymptotic properties of the space-time. The first strong theoretical evidences for the
existence of gravitational waves in full General Relativity with vanishing cosmological
constant were grounded on metric-based methods [21, 34, 40] or on the –now usually
referred to as– Newman-Penrose (NP) formalism [96] –for reviews see [97–99]. Typically,
one defines a suitable radial coordinate –either an ‘areal coordinate’ or an affine param-
eter along outgoing null geodesics– and then make expansions of the metric or curvature
coefficients towards infinity (as described by asymptotic values of such radial coordinate).
Some of the results achieved on those works include: formulations of energy-momentum
of the gravitational field at null infinity in full General Relativity, an energy-loss formula
of a system emitting gravitational radiation or the discovery of an asymptotic group of
symmetries and the peeling behaviour of the Weyl tensor. Little time after, Penrose had
the innovative idea of describing infinity as a hypersurface avoiding the use of limits and
facilitating the employment of covariant methods [15, 22]. Schematically, one associates
to a given space-time an unphysical –or conformal– space-time with a boundary J –the
precise idea is presented in the upcoming section. Indeed, this boundary ‘attached’ to
the space-time is the suitable arena for describing the gravitational radiation escaping
from –or entering into– the space-time. For a vanishing cosmological constant, Geroch
[17] studied the geometry of the conformal boundary setting the bases for the covariant
asymptotic characterisation of gravitational radiation and Ashtekar used it as the ‘kine-
matical arena’ of the radiative degrees of freedom of the gravitational field [48]. In view
of the mathematical elegance and rich physics that arise at the conformal boundary, our
approach to the problem of the characterisation of gravitational radiation in chapters 4
to 7 is based on fields on J .

Most of the ideas introduced in this chapter are well known and can be found in
the literature –see e.g. [100, 101]. Nevertheless, we derive them from scratch with two
purposes:

1. Set the basic material of conformal structure in our conventions and present all the

21
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needed formulae in one place,

2. Derive the relations between physical geometric quantities and matter fields at in-
finity with our assumptions on the energy-momentum tensor.

3.1 Conformal completion

The physical space-times
(
M̂, ĝαβ

)
that we consider admit a conformal completion (un-

physical space-time)
(
M, gαβ

)
à la Penrose with boundary J [100, 101]:

i) There exists an embedding φ : M̂ →M such that φ(M̂) = M \J , and the physical
metric is related to the conformal one as

gαβ = Ω2ĝαβ , (3.1)

where, abusing notation, we refer to the pullback of the conformal metric to the
physical space-time, (φ∗g)αβ, by gαβ .

ii) Ω > 0 inM \J , Ω = 0 on J and Nα := ∇αΩ (the normal to J ) is non-vanishing
there.

iii) ĝαβ is a solution to EFE (3.12) with Λ ≥ 0.

iv) The energy-momentum tensor, T̂αβ , vanishes at J and Tαβ := Ω−1T̂αβ is smooth
there.

Depending on the specific matter content, property iv) can be strengthen. Indeed for many
relevant matter fields, Ω−2T̂αβ is smooth at J . Notice that T := T µµ = Ω−3T̂ µµ := Ω−3T̂ .
Also, J is not connected, in general; it is divided into ‘future’ and ‘past’ components,
denoted by J ± respectively. In this section, we use J generically to refer to any of them.
In some of the subsequent sections we will work with J +, though. The connection of
the unphysical space-time can be written as

Γαβγ = Γ̂αβγ + γαβγ , (3.2)

where Γ̂αβγ is the connection of the physical space-time and

γαβγ = Ω−1
(
2δα(β∇γ)Ω− gγβ∇αΩ

)
. (3.3)

Accordingly, the Ricci tensor and the scalar curvature are given by

Rαβ = R̂αβ − 2Ω−1∇αNβ + 3Ω−2gαβNµN
µ − Ω−1gαβ∇µN

µ , (3.4)
R = Ω−2R̂− 6Ω−1∇µN

µ + 12Ω−2NµN
µ . (3.5)



_ | Conformal geometry and infinity 23

The conformal completion is not unique: given
(
M̂, ĝαβ

)
there is a conformal class of

completions related by

Ω→ Ω̃ = ωΩ with ω > 0 on M . (3.6)

This rescaling of the conformal factor is a gauge freedom and, as such, can be used to sim-
plify matters. In the upcoming subsection we will fix it partially. A gauge transformation
changes the unphysical space-time geometry as

g̃αβ = ω2gαβ , (3.7)
Γ̃αβγ = Γαβγ + Cα

βγ , Cα
βγ = ω−1gατ

(
2gτ(βωγ) − gγβωτ

)
, (3.8)

R̃αβ = Rαβ − 2ω−1∇αωβ − ω−2gαβωµω
µ − ω−1gαβ∇µω

µ + 4ω−2ωαωβ , (3.9)
R̃ = ω−2R− 6ω−3∇µω

µ , (3.10)
Ñα = ωNα + Ωωα (3.11)

where ωα := ∇αω. Here we have written the equations in terms of the original connection
and metric. Further gauge changes can be found in appendix C.

3.2 Fields at infinity

Einstein field equations in the presence of a cosmological constant (here assumed to be
non-negative) read

R̂αβ −
1
2R̂ĝαβ + Λĝαβ = κT̂αβ , (3.12)

with κ := 8πGc−4, where G is the gravitational constant and c the speed of light. Thus,
the left-hand side extends smoothly to infinity. Using eqs. (3.4) and (3.5) we get

Rαβ −
1
2Rgαβ + 3Ω−2gαβNµN

µ + 2Ω−1
(
∇αNβ − gαβ∇µN

µ
)

+ Ω−2Λgαβ = κT̂αβ . (3.13)

If we multiply by Ω2 and evaluate at J –i.e. set Ω = 0–, we obtain

3gαβNµN
µ + Λgαβ

J= 0 , (3.14)

from where
NµN

µ J= −Λ
3 . (3.15)
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This formula indicates the causal character of the conformal boundary; in this thesis,
either spacelike (Λ > 0) or lightlike (Λ = 0). Now, multiply eq. (3.13) by Ω to get

ΩRαβ −
1
2ΩRgαβ + 2

(
∇αNβ − gαβ∇µN

µ
)

= ΩκT̂αβ − Ω−1
(
3NµN

µ + Λ
)
gαβ (3.16)

and observe that this equation is regular at J , see eq. (3.14). Take its trace and evaluate
at Ω = 0:

6∇µN
µ J= Ω−14

(
3NµN

µ + Λ
)
. (3.17)

Then, insert this back into the previous equation. After evaluation at J , we derive

∇αNβ

J= 1
4gαβ∇µN

µ . (3.18)

Sometimes eq. (3.18) is referred to as ‘asymptotic Einstein condition’ [102]. It is well
known [17, 102–104] that the gauge can be chosen such that

∇µN
µ J= 0. (3.19)

To show this, compute the gauge change using eqs. (3.8) and (3.11)

∇̃µÑ
µ = 2ω−2Nµ∇µω+ ω−1∇µN

µ− ω−1gαβCµ
αβ

(
Nµ + ω−1Ω∇µω

)
+ Ωω−2�ω , (3.20)

evaluate at J and multiply by ω2

ω2∇̃µÑ
µ J= 2Nµ∇µω + ω∇µN

µ − ωgαβNµC
µ
αβ

J= ω∇µN
µ + 4Nµ∇µω . (3.21)

Equating ∇̃µÑ
µ to zero gives a differential equation for the possible gauge factors

4Nµ∂µω + ω�Ω J= 0 (3.22)

which always has non-trivial solutions. From now on, we adopt this gauge fixing that we
call divergence-free gauge. Nevertheless, note that the freedom is still large and one can
change from one conformal gauge to another by keeping eq. (3.19) with the additional
restriction (given a solution ὼ of eq. (3.22), ω̃ := ωὼ is a new solution)

£ ~Nω
J= 0 . (3.23)

From eq. (3.18), this gauge implies

∇αNβ

J= 0 . (3.24)
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Consider the combination1

Sαβ := Rαβ −
1
6Rgαβ , (3.25)

and eq. (3.13) as an equation for ∇αNβ . Substitute κT̂ = −R̂ + 4Λ together with
T̂ = Ω−3T and eq. (3.5),

∇αNβ = −1
2ΩRαβ + 1

8ΩRgαβ + 1
4gαβ∇µN

µ + 1
2κΩ2

(
Tαβ −

1
4Tgαβ

)
, (3.26)

and replace Rαβ with Sαβ ,

∇αNβ = −1
2ΩSαβ + 1

24ΩRgαβ + 1
4gαβ∇µN

µ + 1
2κΩ2

(
Tαβ −

1
4Tgαβ

)
. (3.27)

It is convenient to define
Tαβ := Tαβ −

1
4Tgαβ (3.28)

and introduce the scalar [105]

f := 1
4∇µN

µ + Ω
24R , (3.29)

which in our gauge vanishes at J

f
J= 0 . (3.30)

In terms of f , eq. (3.27) becomes

∇αNβ = −1
2ΩSαβ + fgαβ + 1

2Ω2κTαβ . (3.31)

Or course, from this equation one deduces directly eq. (3.18). Once again, consider
eq. (3.13), this time as an equation for ∇µN

µ. Take its trace and multiply by Ω:

NµN
µ = Ω3

12κT −
Λ
3 + Ω2

12R + Ω
2∇µN

µ . (3.32)

As a check, one recovers eq. (3.15) after evaluating at J . Introducing f in eq. (3.32), we
get

NµN
µ = Ω3

12κT −
Λ
3 + 2Ωf . (3.33)

If we contract eq. (3.31) with Nβ,

Nµ∇αNµ = 1
2∇α

(
NµN

µ
)

= −1
2ΩSαµNµ + fNα + 1

2κΩ2NµTαµ , (3.34)

1Note that this is twice the Schouten tensor, whose standard definition in 4 dimensions is
1
2

(
Rαβ − 1

6Rgαβ

)
.
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and take the covariant derivative of eq. (3.33),

1
2∇α

(
NµN

µ
)

= 1
24Ω3κ∇αT + 1

8Ω2κNαT + Ω∇αf + fNα (3.35)

we arrive, equating both expressions, at

∇αf = −1
2SαµN

µ + 1
2ΩκNµTαµ −

1
24Ω2κ∇αT −

1
8ΩκNαT . (3.36)

If we want to extract information about the complete orthogonal component of Sαβ at
J , we have to contract eq. (3.31) with Nα and substitute SαµNµ in terms of eq. (3.36)

Nµ∇µNα = −1
2ΩNµSµα + fNα + 1

2Ω2κNµT µα

= Ω∇αf −
1
2Ω2κNµTαµ + 1

24Ω3κ∇αT + 1
8Ω2κTNα

+ fNα + 1
2Ω2κNµTαµ

= Ω∇αf + fNα + 1
8Ω2κTNα + 1

24Ω3κ∇αT . (3.37)

After this, contract eq. (3.36) with Nµ to find

Nµ∇µf = NµNρ
(
−1

2Sµρ + 1
2ΩκT µρ

)
−Nµ

( 1
24κΩ2∇µT + 1

8ΩκTNµ

)
(3.38)

then take the covariant derivative of eq. (3.31) along Nρ taking into account the last two
equations

Nρ∇ρ

(
∇αNβ

)
= −1

2ΩNρ∇ρSαβ + 1
2N

2Sαβ + gαβN
ρ∇ρf + 1

2κΩ2Nρ∇ρTαβ + ΩκN2Tαβ ,

(3.39)

= −1
2ΩNρ∇ρSαβ + 1

2N
2Sαβ −

1
2SµνN

µNνgαβ + 1
2ΩκNµN νT µνgαβ

− 1
24Ω2κNµ∇µTgαβ + 1

8ΩκN2κTgαβ + 1
2Ω2κNρ∇ρTαβ + ΩκN2Tαβ .

(3.40)

Therefore, at J

Nρ∇ρ

(
∇αNβ

) J= Λ
6 Sαβ −

1
2N

µN νSµν gαβ . (3.41)

According to eqs. (3.4), (3.5) and (3.25),

Ŝαβ = Sαβ + 2Ω−1∇αNβ − Ω−2gαβNµN
µ . (3.42)
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Take the covariant derivative and antisymmetrise the first pair of indices,

∇[αŜβ]γ = ∇[αSβ]γ − 2Ω−2N[α∇β]Nγ + 2Ω−1∇[α∇β]Nγ + 2Ω−3N[α gβ]γN
µNµ

− 2Ω−2Nµgγ[β∇α]Nµ , (3.43)

multiply by Ω,

∇[α

(
ΩŜβ]γ

)
−N[α Ŝβ]γ = Ω∇[αSβ]γ − 2Ω−1N[α∇β]Nγ + 2∇[α∇β]Nγ + 2Ω−2N[α gβ]γN

µNµ

− 2Ω−1Nµgγ[β∇α]Nµ , (3.44)

and replace the third term on the right-hand side using the Ricci identity and the Riemann
tensor decomposition,

Rαβγµ = Cαβγµ + gα[γSµ]β − gβ[γSµ]α , (3.45)

to obtain

∇[α

(
ΩŜβ]γ

)
−N[α Ŝβ]γ = Ω∇[αSβ]γ − 2Ω−1N[α∇β]Nγ + C µ

αβγ Nµ + gα[γSµ]βN
µ

− gβ[γSµ]αN
µ + 2Ω−2N[α gβ]γN

µNµ − 2Ω−1Nµgγ[β∇α]Nµ .

(3.46)

Notice that

gα[γSµ]βN
µ − gβ[γSµ]αN

µ = gγ[αSβ]µN
µ −N[αSβ]γ

= gγ[αŜβ]µN
µ − 2Ω−1Nµgγ[α∇β]Nµ + Ω−2gγ[αNβ]NµN

µ

+ 2Ω−1N[α∇β]Nγ − Ω−2N[α gβ]γNµN
µ , (3.47)

which substituted in eq. (3.46) produces

∇[α

(
ΩŜβ]γ

)
= Ω∇[αSβ]γ + C µ

αβγ Nµ + gγ[αŜβ]µN
µ. (3.48)

To see how the energy-momentum tensor enters into this equation, plug

Ŝαβ = R̂αβ−
1
6R̂ĝαβ = κT̂αβ + 1

3
(
Λ− κT̂

)
ĝαβ = κΩTαβ + 1

3
(
Ω−2Λ− ΩκT̂

)
gαβ (3.49)

into eq. (3.48),

1
3Ω−2ΛN[β gα]γ + κ∇[α

(
Ω2Tβ]γ

)
− 1

3κ∇[α

(
Ω2T

)
gβ]γ = Ω∇[αSβ]γ + C µ

αβγ Nµ

+Ωκgγ[αTβ]µN
µ − 1

3κN
µgγ[αgβ]µΩT + 1

3ΛΩ−2gγ[αNβ] , (3.50)
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and rearrange the terms to get

2ΩκN[α

(
Tβ]γ

)
+ Ω2κ∇[αTβ]γ − ΩκN[α gβ]γT −

1
3Ω2κ∇[α (T ) gβ]γ

= Ω∇[αSβ]γ + C µ
αβγ Nµ + Ωκgγ[αTβ]µN

µ , (3.51)

where we have taken into account property iv) on page 222.

The Cotton tensor, both of the physical and conformal space-time, is defined3 as

Ŷαβγ := ∇̂[αŜβ]γ , (3.52)
Yαβγ := ∇[αSβ]γ . (3.53)

At the end of this chapter, we are going to show that both the physical Cotton tensor
Ŷαβγ and the Weyl tensor C δ

αβγ vanish at J . Thus, it is natural to introduce a couple
of tensor fields regular at J ; the rescaled Cotton tensor

yαβγ := Ω−1Ŷαβγ , (3.54)

–notice that it is defined in terms of the physical Cotton tensor, which is not a conformal-
invariant object– and the rescaled Weyl tensor

d δ
αβγ := Ω−1C δ

αβγ . (3.55)

This last tensor field features the algebraic symmetries of the Weyl tensor and plays a
major role in the asymptotic study of the gravitational field and the properties of space-
times from the point of view of their conformal extensions — [17, 48, 106–109] are just
a few examples. The rescaled Weyl tensor (3.55) at J is completely determined by its
electric and magnetic parts –see section 2.1.1 and note that the notation used there for a
Weyl-tensor candidate is used now for the rescaled Weyl tensor–,

Dαβ

J
:= nµnνdµανβ , (3.56)

Cαβ
J
:= nµnν d

∗

µανβ . (3.57)

2The vanishing of C δ
αβγ at J can be derived from this equation, depending on the matter content.

At the end of the chapter, we will give the proof under certain assumptions on the physical Cotton-York
tensor at J , instead.

3Keep in mind the extra factor 2 with respect to the standard definition due to our definition of Sαβ .
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From the contracted Bianchi identity one can show that

∇µ

(
C µ
αβγ

)
+ Yαβγ = 0 , (3.58)

∇̂µ

(
Ĉ µ
αβγ

)
+ Ŷαβγ = 0 . (3.59)

The first of these two equations can be rewritten in terms of the rescaled Weyl tensor,

Ω∇µd
µ

αβγ + d µ
αβγ Nµ + Yαβγ = 0, (3.60)

and evaluated at J ,
d µ
αβγ Nµ + Yαβγ

J= 0 . (3.61)

We can multiply now eq. (3.51) by Ω−1,

2κN[αTβ]γ − κN[α gβ]γT + Ωκ∇[αTβ]γ −
1
3Ωκgγ[β∇α]T

= ∇[αSβ]γ + d µ
αβγ Nµ + κgγ[αTβ]µN

µ (3.62)

and evaluate it at J using eq. (3.61),

2κN[αTβ]γ − κN[α gβ]γT − κgγ[αTβ]µN
µ J= 0 . (3.63)

The energy-momentum tensor determines, through the field equations, the Cotton tensor.
This appears explicitly from definition eq. (3.52) and eq. (3.49),

Ŷαβγ = κ∇̂[αT̂β]γ −
1
3κĝγ[β∇α]T̂ . (3.64)

In order to write this formula in terms of quantities in M , note that

∇̂[αT̂β]γ = Ω∇[αTβ]γ −NλTλ[β gα]γ + 2N[αTβ]γ , (3.65)

ĝγ[β∇α]T = 3N[α gβ]γT + Ωgγ[β∇α]T . (3.66)

Then,

1
κ
Ŷαβγ = Ω∇[αTβ]γ −NλTλ[β gα]γ + 2N[αTβ]γ −N[α gβ]γT −

1
3Ωgγ[β∇α]T (3.67)

The relation between the conformal and physical connections gives

∇[µC
δ

αβ]γ = ∇̂[µC
δ

αβ]γ + Ω−1
(
gγ[µCαβ]ρ

δNρ − δδ[µCαβ]ργN
ρ
)

(3.68)
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which, after taking the trace, yields the relation

∇µ

(
Ω−1C µ

αβγ

)
= Ω−1∇̂µC

µ
αβγ . (3.69)

which allows us to write equation eq. (3.59) as

yαβγ +∇µd
µ

αβγ = 0 . (3.70)

To see which conditions on the matter content make the rescaled Weyl tensor divergence-
free at J , multiply eq. (3.67) by Ω−1

1
κ
yαβγ = ∇[αTβ]γ −Ω−1NλTλ[β gα]γ +2Ω−1N[αTβ]γ −Ω−1N[α gβ]γT −

1
3gγ[β∇α]T (3.71)

so that the following implication holds:

T̂αβ |J∼ O (Ωp) with p > 2 =⇒ yαβγ
J= 0 J= ∇µd

µ
αβγ = 0 . (3.72)

Substitution of eq. (3.70) into eq. (3.60) produces

d µ
αβγ Nµ + Yαβγ − Ωyαβγ = 0 . (3.73)

To end this section, we summarise the relevant equations which are eqs. (3.31), (3.33),
(3.36), (3.70) and (3.73),

∇αNβ = −1
2ΩSαβ + fgαβ + 1

2Ω2κTαβ , (3.74)

NµN
µ = Ω3

12κT −
Λ
3 + 2Ωf , (3.75)

∇αf = −1
2SαµN

µ + 1
2ΩκNµTαµ −

1
24Ω2κ∇αT −

1
8ΩκNαT , (3.76)

d µ
αβγ Nµ +∇[α

(
Sβ]γ

)
− Ωyαβγ = 0 , (3.77)

yαβγ +∇µd
µ

αβγ = 0 , (3.78)
Rαβγδ = Ωdαβγδ + gα[γSδ]β − gβ[γSδ]α . (3.79)
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whose evaluation at J is

∇αNβ

J= 0 , (3.80)

NµN
µ J= −Λ

3 , (3.81)

∇αf
J= −1

2SαµN
µ , (3.82)

d µ
αβγ Nµ +∇[α

(
Sβ]γ

) J= 0 , (3.83)

yαβγ +∇µd
µ

αβγ

J= 0 , (3.84)

Rαβγδ

J= gα[γSδ]β − gβ[γSδ]α . (3.85)

Equations (3.74) to (3.79) [110–112] in vacuum – Tαβ = 0 = yαβγ – constitute the so
called Metric Conformal Field Equations (MCFE) [107] which, when considered as a sys-
tem of differential equations for the variables

(
Ω, d µ

αβγ , f, gαβ , Sαβ
)
, are equivalent to the

physical vacuum EFE —the Riemann components Rαβγδ are considered as functions of
the metric components gαβ .

Observe that the PND of d δ
αβγ and C δ

αβγ coincide on a neighbourhood U outside J

and thus, the number and multiplicity of PND of d δ
αβγ at the boundary of U , given by

J , will be equal or greater than that number for C δ
αβγ on U . For instance, the Weyl

tensor may be algebraically general in a neighbourhood of J and the rescaled Weyl ten-
sor, algebraically special at J . This follows by a simple argument: in an expansion of
C δ
αβγ around Ω = 0 the first-order term is given by d δ

αβγ at Ω = 0. Since kα is a PND of
C δ
αβγ around Ω = 0 if and only if it is a PND at every order in the expansion, it has to

be a PND of d δ
αβγ at Ω = 0, and with (at least) the same multiplicity.

Finally, let us introduce the rescaled Bel-Robinson tensor :

Dαβγδ := d ν
αµγ d

µ
δνβ + d

∗ ν
αµγ d

∗ µ
δνβ , (3.86)

which is the basic superenergy tensor of the rescaled Weyl tensor. It is regular and, in
general, non-vanishing at J , and plays a central role in our study of the asymptotic
structure of space-time. Its divergence is easily computed using eqs. (2.2) and (3.78) and
reads

∇µD
µ

αβγ = 2dµγναy
νµ

β + 2dµγνβy νµ
α + gαβd

µνρ
γyµνρ , (3.87)

3.2.1 Matter content and the vanishing of the Weyl tensor at infinity

The components of the energy-momentum tensor of the matter fields at infinity and the
proof of the vanishing of the Weyl tensor at J are presented more clearly if the Λ > 0
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and Λ = 0 cases are treated separately.

Positive Λ

Let us introduced the normalised version of Nα

nα := 1
N
Nα , (3.88)

with N :=
√
−NµNµ . In general, this definition is valid only on a neighbourhood of J ,

where Nα is timelike. In that neighbourhood we can introduce the projector to J (see
appendix A):

Pα
β := δαβ − nαnβ . (3.89)

Note that the explicit form of nα reads

nα = Nα√
Λ
3 −

Ω3

12 κT − 2Ωf
J=
√

3
ΛNα (3.90)

and contracting with Nα eq. (3.80) one gets

∇αN
J= 0 , (3.91)

which implies that the normalised nα is covariantly constant at J as well

∇αnβ
J= 0 . (3.92)

Before showing the vanishing of the Weyl tensor, we give the components of the tensor
Sαβ at J . Using eq. (3.30) and comparing with eq. (3.76)

∇αf
J= −NαN

ρ∇ρf
J= 3

2ΛNαN
ρNµSµρ , (3.93)

from where we also deduce that

Pα
βN

µSαµ
J= 0 . (3.94)

The contraction of this equation with NαNβ shows that

nµnνSµν
J= NµN νNρ∇ρ

(
∇µNν

)
. (3.95)
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Observe that contracting eq. (3.63) with NαNγP β
δ gives

nµP ρ
α Tµρ

J= 0 . (3.96)

Furthermore, if one contracts with NαP γ
χP

β
δ ,

NµNµP
γ
χP

β
δ Tβγ + 1

2PχδN
µNρTµρ + 1

2N
µNµThχδ

J= 0 , (3.97)

and uses here eq. (3.89),

NµNµP
γ
χP

β
δ Tβγ + 1

2N
τNτ Pχδ P

ρµTµρ
J= 0 . (3.98)

Then, contract one more time with P χδ to get

P µρTµρ
J= 0 . (3.99)

Inserting this last line into eq. (3.98) the result is

P µ
αP

ν
β Tµν

J= 0 . (3.100)

Finally, apply NαP βγ to eq. (3.63) to derive

3
2N

αNµTαµ
J= 3

2NνN
νT −NρN

ρP βγTβγ , (3.101)

or, equivalently,
nρnµTµρ

J= −T . (3.102)

We have just shown that, at J , the tensor Tαβ has only one non-vanishing component
in general:

Tαβ
J= −Tnαnβ . (3.103)

Equation (3.67), evaluated on J and using eq. (3.103), reduces to

Ŷαβγ
J= 0 . (3.104)

Recall that J is spacelike, which implies that the Weyl tensor is completely determined
by the electric and magnetic parts in the standard 3+1 decomposition —as generally
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described for a Weyl-tensor candidate tensor in section 2.1.1,

Eαβ
J
:= nµnνCµανβ , (3.105)

Bαβ

J
:= nµnν C

∗

µανβ . (3.106)

Lemma 3.2.1 (Vanishing of the Weyl tensor at J with a positive cosmological constant).
Assume that

1. ΩŶαβγ
J= 0,

2. C δ
αβγ is regular at J and Ω∇µC

δ
αβγ

J= 0.

Then,
C δ
αβγ

J= 0 . (3.107)

Proof. We will use the lightlike decomposition of a Weyl-tensor candidate presented in
section 2.2. First, from eqs. (3.59) and (3.69) one has

Ω∇µC
µ

αβγ −NµC
µ

αβγ + ΩŶαβγ = 0. (3.108)

This equation evaluated at J gives

NµC
µ

αβγ = 0. (3.109)

But eq. (3.109) clearly implies Eab
J= 0 J= Bab , i. e.,

C δ
αβγ

J= 0 . (3.110)

Remark 3.2.1. Since all the terms in eq. (3.51) are regular at J , including C δ
αβγ which

by construction is regular there,
C µ
αβγ Nµ

J= 0 , (3.111)

from where eq. (3.110) is derived. Equation (3.51) depends on property iv) of page 22,
which by means of EFEs implies the vanishing of the Cotton-York tensor Ŷαβγ , as it has
been shown previously.

Continuing the analysis, take equation eq. (3.62), apply Ω−1P β
δN

αNγ and evaluate
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at J using eqs. (3.71) and (3.73):

1
6κP

β
δN

αNγ∇βTgαγ + κP β
δN

αNγ∇[αTβ]γ

J= −P β
δN

αNγ∇µd
µ

αβγ −
1
2κNµN

µP β
δN

ρΩ−1Tβρ . (3.112)

(We know, by eq. (3.96), that P β
δN

ρΩ−1Tβρ is regular at J ). Dividing by N2,

− 1
6κP

β
δ∇βT + κP β

δ n
αnγ∇[αTβ]γ

J= −P β
δ n

αnγ∇µd
µ

αβγ + 1
2κP

β
δN

ρΩ−1Tβρ . (3.113)

Using our choice of gauge, the second term on the left-hand side can be rewritten as

2P β
δ n

αnγ∇[αTβ]γ
J= P β

δ n
αnγ∇αTβγ − P

β
δ n

αnγ∇βTαγ
J= nα∇α

(
P β

δ n
γTβγ

)
− nα∇α

(
P β

δ n
γ
)

︸ ︷︷ ︸
J
= 0

+P β
δ∇βT

J= nα∇α

Ω Ω−1P β
δ n

γTβγ︸ ︷︷ ︸
Regular at J

+ P β
δ∇βT

J= Ω−1P β
δ n

γTβγ n
αNα + P β

δ∇βT. (3.114)

Then, eq. (3.113) reads

1
3κP

β
δ∇βT − κΩ−1P β

δN
γTβγ

J= −P β
δ n

γnα∇µd
µ

αβγ . (3.115)

Now, contract eq. (3.62) with Ω−1ηαβρσN
γNρ and evaluate at J

κηαβρσNρNγ∇[αTβ]γ
J= −ηαβρσNρNγ∇µd

µ
αβγ , (3.116)

where the rest of the terms vanish because ηαβρσNρNσ = 0. Notice, also, that

ηαβρσN
ρNγ∇[αTβ]γ

J= ηνµρσN
ρNγP µβP να∇[αTβ]γ

J= 1
2ηνµρσ

NρP να∇α

(
NγP µβTβγ

)
︸ ︷︷ ︸

∝Nα

−TβγNρP να∇α

(
NγP µβ

)
︸ ︷︷ ︸

J
= 0

−(β ↔ α)

 J= 0. (3.117)

Then,
nαnγ∇µ d

∗ µ
αβγ

J= 0 . (3.118)
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Equations (3.115) and (3.118) give us information about the divergence of Dab and Cab
at J . From the first it is easy to see that4

ω d
δ ∇mD

m
d

J= κΩ−1P β
δN

γTβγ −
1
3κP

β
δ∇βT (3.119)

and from the latter,
∇mC

m
a

J= 0 . (3.120)

In particular, D m
d is divergence free too in vacuum.

Vanishing Λ
Similarly to the Λ > 0 case, from eq. (3.62) one can deduce that at J

Tαβ
J= µNαNβ , (3.121)

for some function µ. Using eq. (3.121) into eq. (3.67), the physical Cotton tensor vanishes
at J

Ŷαβγ
J= 0 . (3.122)

In fact, eq. (3.122) is one of the conditions involved in the vanishing of the Weyl tensor
at J (see [100])

Lemma 3.2.2 (Vanishing of the Weyl tensor at J with vanishing cosmological constant).
Assume that J has R× S2 topology and that

1. Ŷαβγ
J= 0 and Ω∇σŶαβγ

J= 0,

2. C δ
αβγ and ∇µC

δ
αβγ are regular at J .

Then,
C δ
αβγ

J= 0 . (3.123)

Proof. We will use the lightlike decomposition of a Weyl-tensor candidate presented in
section 2.2. First, from eqs. (3.59) and (3.69) one has

Ω∇µC
µ

αβγ −NµC
µ

αβγ + ΩŶαβγ = 0. (3.124)

This equation evaluated at J gives

NµC
µ

αβγ

J= 0, (3.125)
4The intrinsic covariant derivative on J is denoted by ∇a, while (ω a

α ) is a basis of linearly indepen-
dent one-forms on J orthogonal to nα. For further details, see appendix A.1, where we introduce this
notation for a general 3-dimensional hypersurface.
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immediately implying that C µ
αβγ has Petrov type N at J with Nα the repeated principal

null direction. But this condition shows that the only components that survive at J are
those of the symmetric traceless rank-2 tensor field

¯
E
`

αβ := `
µ
`
ν

¯
P ρ

α ¯
P σ

β Cρµσν , (3.126)

where `α is any lightlike vector field on J , which we choose to be orthogonal to cuts, such
that `µNµ

J= −1 and

¯
Pα

β := δαβ +Nα`β + `
α
Nβ (3.127)

is the projector to the two dimensional space orthogonal to Nα and `
β. Now, take the

derivative of eq. (3.124) and evaluate it at J

Nσ∇µC
µ

αβγ −Nµ∇σC
µ

αβγ

J= 0. (3.128)

Contract this equation with `σ`α`γ to obtain

¯
P µρ∇µ

(
`
σ
`
ν
Cσβνρ

)
− Cαβγρ¯

P ρµ
(
¯
Pα

τ `
γ∇µ`

τ +
¯
P γ

τ `
α∇µ`

τ
) J= 0, (3.129)

where we have used eqs. (3.125) and (3.127). If we contract now with
¯
P β

δ , we find

¯
P µρ∇µ

(
¯
E
`

βρ

)
+
(

¯
s
` µ
γδ +

¯
s
` µ
γ δ

)
∇µ`

α J= 0, (3.130)

where
¯
s
`

αβγ := `
µ

¯
P ρ

α ¯
P σ

β ¯
P ν

γ Cρσνµ . But by the properties in appendix D and eq. (3.125)
this tensor field vanishes at J , and therefore

¯
P µρ∇µ

(
¯
E
`

βρ

) J= 0 . (3.131)

This equation is equivalently written by means of the intrinsic connection on each cut S
defined by `α as

DM
(

¯
E
` M
A

) S= 0 . (3.132)

By assumption, the topology of the cuts is S2, and then
¯
E
`

AB is a traceless divergence-free
symmetric tensor on S2 and must vanish [113],

¯
E
`

AB
S= 0 . (3.133)

Since this happens on any S ⊂J for all cuts transversal to Nα –and J can be foliated
by these cuts, it holds everywhere on J , implying

C δ
αβγ

J= 0 . (3.134)
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Remark 3.2.2. Instead of assuming Ŷαβγ
J= 0 in the proof, we could have started from

eq. (3.51), which makes use of property iv) on page 22. Both paths are equivalent since,
as have been shown above, the assumption iv) on the energy-momentum tensor implies
the vanishing of the physical Cotton-York tensor.
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igual que dentro
de un sólo hombre suena
el bosque entero.

Benjamín Prado, Límite. Todos nosotros, 1998.

4 | Asymptotic structure with vanishing
cosmological constant

_

The geometry and physics present at infinity with a vanishing cosmological constant dif-
fer notably from the ones with a positive Λ. Those differences are discussed thoroughly
in chapters 5 to 7. Let us just mention here that the fundamental distinctions emerge
as a consequence of the change in the causal character of J , no matter how tiny the
cosmological constant is [24]. This chapter is devoted to the Λ = 0 scenario, in which the
unphysical space-time has a lightlike conformal boundary according to eq. (3.75). In this
context, J is endowed with a conformal class of degenerate metrics and null generators
which constitute a universal structure. This structure underlies many of the favourable
features in the asymptotically flat situation.

Asymptotics with Λ = 0 can be tackled in the old metric-based approach [21, 40, 41]
–see also [114]–, in the NP formalism [15, 96] or by employing covariant methods and
studying the intrinsic structure of J [17, 48] in a gauge and coordinate-independent way.
For instance, one can derive the asymptotic symmetry group by first writing in coordinate
form the degenerate metric on J and fixing the conformal gauge (3.6) such that the de-
generate metric is that of a round two-sphere –resulting in ‘Bondi gauge or system’[115]1–;
then, restricting the allowed coordinate transformations to those preserving the form of
the round metric. Alternatively, one can define it by determining those transformations
which leave invariant the universal sctructure of J . As another example, the classical
criterion that determines the presence of gravitational radiation arriving at J is based on
the so called news tensor, which is a rank-2 symmetric traceless tensor field on J orthog-
onal to the generators; this tensor field can be treated as what it is, or instead consider a
complex function –i.e., the news function– which after gauge fixing is determined by the
shear of a conveniently selected lighlike vector field on J . However that is not the most
general picture. In contrast, the covariant approach does not fix the conformal gauge,
neither it needs of the introduction of coordinates. We incorporate this philosophy to our

1For the study of asymptotics in alternative coordinate systems, see [116].

39
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new method for characterising gravitational radiation. They are the kind of techniques
that we find more appropriate; partly because they are geometrically meaningful and also
because they can be compared more easily to the Λ > 0 scenario to show why one can
not simply adapt the known Λ = 0 results as shortcuts to the new scenario. All these
ideas are made explicit in the course of the next sections and in chapter 5. For a review
of previously known results see e.g. [117, 118].

Although the main aim in this chapter is the characterisation of gravitational radiation,
there are other results that are worth remarking. After giving the grounds and deriving
the basic intrinsic geometry of J based on Geroch’s ideas [17], an endomorphism at the
tangent space of any point in J is found which provides the asymptotic behaviour of
physical fields approaching J along null geodesics. Its application to the physical Weyl
tensor provides the so called peeling behaviour [40, 96], which is presented in form of a
theorem –see theorem 1. Not only that but we also use it to obtain the peeling behaviour of
the physical Bel-Robinson tensor –theorem 4– and, as a consequence of this, an alignment
of physical supermomenta towards infinity occurs. The second part of the chapter is
devoted to the characterisation of gravitational radiation at infinity, putting forward the
new –superenergy-based– criterion for determining the presence of gravitational radiation
at infinity and comparing it with the classical condition. Beautifully, the criterion is in
correspondence with the asymptotic alignment of supermomenta and the superenergy at
infinity can be understood as sourcing the so called news tensor field. All these features
provide a test of our approach towards the characterisation of gravitational radiation by
means of the rescaled Bel-Robinson tensor (3.86). The core of these ideas is applied to
the Λ > 0 scenario in chapters 5 and 6.

4.1 Asymptotic geometry and fields
Let us begin by studying the intrinsic geometry of J and its relation to the physical
fields at infinity.

4.1.1 Some basic geometry of J

Let {eαa} be a basis of the set of vector fields tangent to J , i.e., orthogonal to Nα , with
a = 1, 2, 3, and let {ω a

α } be a dual basis. In particular, Nα = Naeαa is collinear with the
generators of J and Na is the degeneration vector field of the induced first fundamental
form

gab := eαae
β
bgαβ , Nagab = 0 . (4.1)

Equation (3.80) implies that the second fundamental form of J vanishes

Kab := eµae
ν
b∇µNν = 0 , (4.2)
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hence the intrinsic Lie derivative on J of gab along Na is zero

£ ~Ngab = 0 (4.3)

and the induced connection

∀ Xα = Xaeαa , ∀ Y α = Y aeαa , Xa∇aY
b := ω b

β X
α∇αY

β (4.4)

is torsion-free and ‘metric’,
∇agbc = 0. (4.5)

The induced connection coefficients Γcab are thus given by

eµa∇µe
γ
b = Γcabeγc . (4.6)

One can introduce a volume three-form εabc on J by means of the space-time volume
four-form ηαβγδ ,

−Nα εabc
J= ηαµνσe

µ
ae
ν
be
σ
c , (4.7)

and a contravariant version determined by εabcεabc = 6. We fix the corresponding orienta-
tions to ε123 = η0123 = 1. The choice of gauge also implies that the induced connection is
volume preserving,

∇aεbcd = 0 . (4.8)

Although the metric is degenerate, one can define a contravariant object that ‘raises
indices’ by

geag
edgdb := gab. (4.9)

There is a freedom in adding to gab any term of the form Navb +N bva. One can make a
choice, however, by picking out a dual basis {ω a

α } and instead defining gab as

gab := ω a
α ω

b
β g

αβ , gefgef = 2 , (4.10)

from where eq. (4.9) follows. Due to its topology, J admits a natural definition of cuts
S, i. e., any closed spacelike surface transversal to the generators everywhere. Every S
is a topological two-sphere S2 with a positive-definite metric inherited from –and which
essentially is– gab,

qAB
S:= Ea

AE
b
Bgab , (4.11)

where {Ea
A} is a basis of the set XS of tangent vector fields on S, with A = 1, 2. A

basis of tangent vector fields to S considered within M is {Eα
A} where Eα

A = eαaE
a
A .

Similarly, we introduce bases
{
W A
a

}
and

{
W A
α

}
of the dual space ΛS . At each cut S,
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there is a unique lightlike vector field `α other than Nα such that

`µ`µ
S= 0 , `α

S= `aω
a

α , `αω a
α
S= 0 , `aE

a
A
S= 0, `αNα

S= −1 . (4.12)

This set of vector fields can be used to complete the bases on J at S,
{
−`a,W A

a

}
,{

Na, Ea
A

}
, and to write the projector to S:

P̊α
β = Eα

MW
M

β
S= δαβ + `βN

α +Nβ `
α . (4.13)

Also, one has
gmbeµmgµα

S= ω b
α + `αN

b, `mg
am S= 0 (4.14)

and the projector to a given cut within J takes the form

P̊ a
b = δab +Na`b = gacgbc . (4.15)

The intrinsic volume two-form of (S, qAB) reads

−`åεAB
S= εamnE

m
AE

n
B , (4.16)

Naε̊AB
S= εamnW A

m W B
n , (4.17)

where the orientation is chosen such that ε̊23 = ε123 = 1, and the inherited connection

∀ Ua S= Ea
AU

A , ∀ V a S= Ea
AV

A , V MDMUA S:= W A
m V n∇nU

m (4.18)

is metric and volume preserving –ergo this is the intrinsic Levi-Civita connection on
(S, qAB)–

DAqAB = 0 , DA ε̊BC = 0 . (4.19)

Equation (3.80) implies that
∇aN

b = 0 . (4.20)

The relation between the space-time covariant derivative and the induced derivative on
J for any tensor field Tα1...αr

β1...βq defined at least on J is

ω a1
µ1 ...ω ar

µr eν1
bq
...e

νq
bq
eρc∇ρT

µ1...µr
ν1...νq

J= ∇cT
a1...ar

b1...bq

−
r∑
i=1

T
a1...ai−1σai+1...ar

b1...bq NσΨai
c (4.21)

where we have defined

T
a1...ar

b1...bq

J
:= ω a1

µ1 ...ω ar
µr eν1

bq
...e

νq
bq
T µ1...µr

ν1...νq , Ψa
c := ωaµe

ν
c∇ν`

µ
, (4.22)
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with `α any vector field on J satisfying `αNα = −1 and `αω a
α = 0. We also have used

that Kab = 0 –for general formulae see [119]–, whereas the relation between the induced
covariant derivative on J and the intrinsic covariant derivative on S for a tensor field
T a1...ar

b1...bq defined at least on S reads

W A1
m1 ...W Ar

mr En1
Bq ...E

nq
BqE

r
C∇rT

m1...mr
n1...nq

S= DC T̊A1...Ar
B1...Bq

−
q∑
i=1

TA1...Ar
B1...Bi−1sBi+1...Bq

N sHCBi
(4.23)

with

T̊A1...Ar
B1...Bq

S:= W A1
m1 ...W Ar

mr En1
Bq ...E

nq
BqT

m1...mr
n1...nq , HAB

S:= Ea
AE

b
B∇a`b .

(4.24)
Observe that under conformal gauge transformations, the following changes apply

g̃ab = ω2gab , (4.25)

q̃AB
S= ω2qAB . (4.26)

The curvature tensor associated to the induced connection satisfies(
∇a∇b −∇b∇a

)
vd = −R d

abc v
c ∀vc ∈ TJ , (4.27)

it is related to the space-time curvature through the ‘Gauss equation’

eαae
β
be
γ
cω

d
δ R

δ
αβγ

J= R
d

abc (4.28)

and has the properties

R
d

abc = −R d
bac , R

d
[abc] = 0 , R

c
abc = 0 , ∇[eR

d
ab]c = 0 . (4.29)

Its non-vanishing trace constitutes a symmetric tensor field

Rab := R
d

adb = Rba . (4.30)

The curvature tensor can be expressed as

R
d

abc = 2gc[aS
d

b] − 2δd[aSb]c , (4.31)

where the tensor fields S b
a and Sab := gamS

m
b = Sba will be shown to coincide with

pullbacks of the space-time Schouten tensor to J –see section 4.1.2. Of course, one can
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lower the contravariant index of the curvature tensor with the degenerate metric gab,

Rabcd := gedR
e

abc , (4.32)

however, information is lost in this process and one has to treat the fully covariant version
as a different tensor. Using the ‘metricity’ of the induced connection, it follows that Rabcd

has all the symmetries of a Riemann tensor, including

Rabcd = Rcdab = −Rabdc . (4.33)

In considering the action of R d

abc on Na, via eq. (4.27) and using eq. (4.20), one finds

R
d

abc N
c = 0 . (4.34)

This implies that
NaRabcd = 0 , (4.35)

hence the lower-index version of the curvature tensor is orthogonal to Na in all its indices.
This property makes it effectively a two-dimensional tensor field with the symmetries of
a Riemann tensor, thus we can write it as

Rabcd = 1
2R (gacgdb − gbcgda) (4.36)

for some scalar field R. Using the properties presented so far, it follows that

£ ~NRabcd = N e∇eRabcd = 0 , N e∇eR = 0 . (4.37)

Using eq. (4.31), Rab can be expressed as

Rab = Sab + gabS
m

m , (4.38)

and Rabcd as
Rabcd = 2gc[aSb]d − 2gd[aSb]c . (4.39)

Because of eq. (4.35), one can take the traces of this tensor field with gab. In doing so, if
one compares eqs. (4.36), (4.38) and (4.39), it follows that

Smng
mn = R

2 , (4.40)

2S m

m + 1
2R = grsRrs . (4.41)
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Hence, the following expression holds

Sab = Rab −
1
2gab

(
gmnRmn −

1
2R

)
. (4.42)

From eq. (4.23) it is easily deduced the ‘Gauss relation’ between the intrinsic curvature
R̊ D
ABC of any cut S and the curvature of J ,

Ea
AE

b
BE

c
CR

d
abc W

D
d vD

S= (DADB −DBDA) vC
S:= R̊ D

ABC vD , ∀vA ∈ ΛS . (4.43)

One can readily show that

R̊AB := R̊ M
AMB

S= qABSmng
mn S= 1

2RqAB , (4.44)

R̊ := R̊ M
M

S= R
S= 2K , (4.45)

where K is the Gaussian curvature of (S, qAB). Instead of single cuts S, one can consider
a generic foliation where each leaf SC is defined by a different constant value C of a
function F such that

Ḟ := Nm∇mF 6= 0 . (4.46)

Each leaf is a cut, by definition transversal to Na. Then, associated to a given foliation
there is a one-form

`a := − 1
Ḟ
∇aF, Nm`m = −1 . (4.47)

We set univocally `α := ω a
α `a and require `µ`

µ = 0, which implies that `a
S= `a on each

cut S. The restriction of `a to each cut SC of the foliation defines a `a there, as the
field uniquely defined by eq. (4.12). One can introduce couples of vector fields

{
¯
Ea

A

}
and

{
¯
W A
a

}
–with A = 2, 3– serving as bases for the set of vector fields and forms on J

orthogonal to `a and Na. Also, on each leaf SC they constitute bases for the vector fields
and forms that are orthogonal to Na and `a there. Let us introduce the projector

¯
P a

b := δab +Na`b , ¯
Pm

b `m = 0 =
¯
P a

mN
m ,

¯
P a

b
SC= P̊ a

b . (4.48)

We will distinguish quantities projected to a single cut SC from those projected with
¯
P a

b

by using the following notation

¯
vb :=

¯
Pm

b vm , (4.49)

v̊b
SC:= P̊m

b vm , (4.50)
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and similarly

¯
vB :=

¯
Em

Bvm , (4.51)

v̊B
SC:= Em

Bvm . (4.52)

Of course, given any one-form field va on J ,

¯
va
SC= v̊a . (4.53)

A simple calculation leads to

£ ~N`a = N e∇e`a = −
¯
Pm

a∇m ln Ḟ (4.54)

and the next relations hold

¯
Pm

a∇mF = 0
(
⇐⇒

¯
Em

A`m = 0
)
, (4.55)

£ ~N ¯
Ea

A = −Na

¯
Em

A∇m ln Ḟ , £ ~N ¯
W A
a = 0 . (4.56)

In addition, one can define

¯
q
AB

:=
¯
Ea

A ¯
Eb

Bgab , ¯
qAB :=

¯
W A
a ¯
W B
b gab , (4.57)

where
¯
q
AB

is such that it coincides with the metric qAB of each leaf SC . All cuts are
isometric, though, as a quick calculation taking into account the above relations and
eq. (4.3) yields

£N
¯
q
AB

= 0 , (4.58)

hence
¯
q
AB

and qAB are essentially the same object. Hence, the curvature (4.44) is basi-
cally the same for every cut of the foliation, in agreement with eq. (4.37) and, indeed, all
cuts are isometric, even if they do not belong to the same foliation.

There is a special sort of foliations that we call adapted to Na. These are defined by
functions F fulfilling

£ ~N Ḟ = 0 . (4.59)

Given any adapted foliation, an appropriate gauge fixing (ω = Ḟ ) allows, via the trans-
formations of appendix C, to set

`a = −∇aF , ∇[a`b] = 0 , £ ~N`a = 0 , £ ~N ¯
Ea

A = 0 . (4.60)

We refer to this kind of foliations as canonically adapted to Na.
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Finally, let us introduce the kinematical quantities

¯
Θab :=

¯
P r

(a ¯
P s

b)∇r`s , (4.61)

¯
σab :=

¯
Θab −

1
2gabg

rs

¯
Θrs . (4.62)

Observe that on every cut SC of the foliation –see definition (4.24)–

¯
Ea

A ¯
Eb

B ¯
Θab

SC= HAB . (4.63)

Also, definition (4.62) is nothing but the shear of the one-form `a orthogonal to each cut
SC of the foliation.

A deeper characterisation of the curvature and the interplay between the induced
connection, the choice of foliation and the space-time fields is given in section 4.1.2.

4.1.2 Curvature on J and its relation to space-time fields

If one considers the Gauss relation (4.28) and uses eq. (3.85), eq. (4.31) is obtained with

Sab
J
:= 1

2e
α
ae
β
bSαβ , (4.64)

S
b
a

J
:= 1

2e
α
aω

b
β S

β
α . (4.65)

For simplicity, consider a foliation given by F with `a as in eq. (4.47) and `α := ω a
α `a

determined by `µ`
µ = 0 –see section 4.1.1–. Now, since f J= 0, eq. (3.82) gives

N rS
a
r = Na£~̀f , (4.66)

N rSra = 0 . (4.67)

Provided eq. (3.80), a general formula [120] gives

£ ~NΓabc = R
a

cdb N
d (4.68)

which in conjunction with eqs. (4.31), (4.40) and (4.41) and eqs. (4.66) and (4.67) provides
us with

£ ~NΓabc = NaSbc + gbcN
mS

a
m = Na

(
Sbc + gbc£~̀f

)
, (4.69)

£~̀f = S
m

m − Smngmn = S
m

m − R

2 . (4.70)
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In a middle step in deriving the second formula, we have contracted the second and fourth
indices of eq. (4.31) with δab = −Na`b +

¯
P a

b . Also, a direct calculation using eqs. (4.39)
and (4.66) yields

N cR
d

cab `d = gab£~̀f + Sab , (4.71)

whereas application of the ‘Ricci identity’ leads to

N c∇c¯
Θab −£ ~N`a£ ~N`b − ¯

Pm
(a ¯
P n

b)∇m£ ~N`n = gab£~̀f + Sab , (4.72)

where we have symmetrised the free indices, introduced (4.61) and taken into account
that

Nd∇d¯
P a

b = NaNd∇d`b . (4.73)

One can take the trace-free part of eq. (4.72),

N c∇c¯
σab = Sab −

1
2gabg

mnSmn + £ ~N`a£ ~N`b +
¯
Pm

(a ¯
P n

b)∇m£ ~N`n

− 1
2gabg

mn
(
£ ~N`m£ ~N`n +

¯
P e

n ¯
P f

m∇f£ ~N`e
)
, (4.74)

which in terms of the function F giving the foliation –see eqs. (4.47) and (4.54)– reads

N c∇c¯
σab = Sab −

1
2gabg

mnSmn +
¯
Pm

a∇m

(
ln Ḟ

)
¯
P n

b∇n

(
ln Ḟ

)
−

¯
Pm

(a ¯
P n

b)∇n

(
¯
P r

m∇r ln Ḟ
)

− 1
2gabg

ef
[
¯
Pm

e∇m

(
ln Ḟ

)
¯
P n

f ∇n

(
ln Ḟ

)
−

¯
Pm

e ¯
P n

f ∇n

(
¯
P r

m∇r ln Ḟ
)]

. (4.75)

On each cut, one can take the pullback with {Ea
A} to find

N c∇c¯
σAB

S= S̊AB −
1
2qAB S̊

M
M +DA

(
ln Ḟ

)
DB

(
ln Ḟ

)
+DADB ln Ḟ

− 1
2qAB

[
DMDM ln Ḟ +DM

(
ln Ḟ

)
DM

(
ln Ḟ

)]
, (4.76)

where eq. (4.56) has been used and we have introduced

S̊AB
S:= Ea

AE
b
BSab, S̊

M
M

S= Smng
mn S= R

2
S= R̊

2 . (4.77)

Now, let us consider the following lightlike projections –see section 2.2– of the rescaled
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Weyl tensor2,

D
N αβ J

:= NµN νd α β
µ ν = D

N abeαae
β
b , (4.78)

C
N αβ J

:= NµN ν d
∗ α β
µ ν

J= C
N abeαae

β
b , (4.79)

where
d
∗ δ
αβγ := 1

2η
µν

αβ d δ
µνγ . (4.80)

see section 2.2 for this kind of decomposition in general; some of the properties listed
therein will be used too. Contract eq. (3.83) with Nβ, raise the index γ and contract with
eαaω

b
γ to get

D
N b

a := gma D
N mb = Nm∇mS

b

a −N b∇a (£ ~Nf) . (4.81)

One may lower the contravariant index with gab so that

D
N

ab := gmb D
N m

a = Nm∇mSab . (4.82)

Notice that D
N

ab is symmetric and effectively two-dimensional Nm D
N

am = 0. In addition,
if firstly one takes the Hodge dual of eq. (3.83) with ηαβγδ and contract once with Nα and
the remaining two free indices with ω a

α , then

C
N ab = εrsa∇rS

b
s (4.83)

follows. Also, lowering an index,

C
N a

b := gmb C
N am = εrsa∇rSsb . (4.84)

It will become useful to consider the component

−
√

2
¯
C
N

a

J
:= `r C

N r
a = `rε

mpr∇mSpa . (4.85)

On each cut, projecting with Ea
A , one has

−
√

2
¯
C
N

A
S= ε̊MPDM S̊PA . (4.86)

By general properties presented in appendix D, one has
¯
D
N

A = ε̊AB ¯
C
N B, hence

−
√

2
¯
D
N

A

S:= Ea
A`m D

N m
a
S= 2D[M S̊

M
A] . (4.87)

2Notation used in section 2.2 for lightlike projections associated to k
+ α applies here to Nα simply by

changing a ‘+’ by an ‘N’ in the upper-right indices .
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From eq. (3.84), contracting twice with Nα, one arrives at

∇m ¯
D
N bm = −y b

m fN
mN f , (4.88)

which by means of the rescaled energy momentum tensor Tαβ reads –see eq. (3.67)–

∇m ¯
D
N bm J= κNµN ν T0 µνN

b , (4.89)

where
NµN ν T0 µν

J
:= Ω−1κNµN νTµν (4.90)

is regular at J because TµνNµN ν J= 0 due to eq. (3.121). Equation (4.88) may be
expanded and contracted with `b to get on any cut

`m`nN
p∇p ¯

D
N nm S= −

√
2DM ¯

D
N M −

¯
σABN

m∇mS̊
AB + y b

m fN
m`bN

f . (4.91)

4.2 News, BMS and asymptotic energy-momentum
This section is devoted to the study of the asymptotic group of symmetries at J , the
isolation of the radiative degrees of freedom of the gravitational field and the definition
of an asymptotic energy-momentum, which are closely related tasks.

4.2.1 Geroch’s tensor rho and news tensor
A result by Geroch [17] gives the existence and uniqueness of a symmetric tensor field ρab
on J whose gauge behaviour and differential properties play a fundamental role in finding
the so called ‘news’ tensor, Nab – in the classical characterisation, the tensor field which
determines the presence of outgoing gravitation radiation at J . In section 6.2, related
general results for two dimensional Riemannian manifolds are proven –see corollaries 6.2.2
and 6.2.3. Those results can be particularised for the present case, leading to Geroch’s
tensor. However, we take a different approach here due to the particular structure of the
three-dimensional manifold J .

Lemma 4.2.1. Let tab be any symmetric tensor field on J , orthogonal to Na, whose
behaviour under conformal rescalings (4.25) is

t̃ab = tab − a
1
ω
∇aωb + 2a

ω2ωaωb −
a

2ω2ωcω
cgab (4.92)

for some fixed constant a ∈ R, where ωa
S:= ∇aω. Then,

∇̃[ct̃a]b = ∇[cta]b + 1
ω

(
a
R

2 − g
edted

)
ω[cga]b , (4.93)
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In particular, for any symmetric gauge-invariant tensor field Bab on J orthogonal to Na,

∇̃[cB̃a]b = ∇[cBa]b −
1
ω
Bedg

edω[cga]b . (4.94)

Proof. A direct calculations yields

∇̃[ct̃a]b = ∇[cta]b + 1
ω
tb[cωa] + 1

ω
gb[cta]eg

deωd + 1
ω

aR

2 ω[cga]b . (4.95)

Observe that the term 1
ω
tb[cωa] + 1

ω
gb[cta]eg

deωd (4.96)

is effectively two-dimensional (it is orthogonal to Na). Hence, one can use the two-
dimensional identity [121]

ACAE = 2qE[AAC]DMq
DM , for any tensor such that ACAE = −AACE (4.97)

in order to write 1
ω
tb[cωa] + 1

ω
gb[cta]eg

deωd = − 1
ω
tedg

edω[cqa]b , (4.98)

arriving at the final result. For a gauge invariant tensor a = 0 in eq. (4.92), therefore one
only has to set this value in eq. (4.93) to obtain eq. (4.94).

Corollary 4.2.1. A symmetric gauge-invariant tensor field mab on J , orthogonal to Na,
satisfies

∇[cm̃b]a = ∇[cmb]a (4.99)

if and only if medg
ed = 0.

Corollary 4.2.2 (The tensor ρ). There is a unique symmetric tensor field ρab on J

orthogonal to Na whose behaviour under conformal rescalings (4.25) is as in (4.92) and
satisfies the equation

∇[cρa]b = 0 (4.100)

in any conformal frame. This tensor field must have a trace ρedged = aR/2 and is given
in the gauge where the cuts of J are endowed with the round metric by ρab = gabaR/4.

Proof. Existence is proved by noticing that ρab = gabaR/4 fulfils ∇aρbc = 0 in the round
metric sphere. Concerning uniqueness, notice that lemma 4.2.1 fixes the trace of ρab to
ρedg

ed = aR/2, and recall the assumption that eq. (4.100) holds in any gauge. Then, if
two different solutions ρ1 ab and ρ2 ab exist, ∇[c

(
ρ

1 a]b − ρ
2 a]b

)
= 0. However, in that case

and since ρadNd = 0, the difference ρ1 ab − ρ2 ab is traceless, Codazzi tensor on S2 and, as
a consequence of the uniqueness of this kind of tensors [113], ρ1 ab − ρ2 ab = 0.

Remark 4.2.1. Geroch’s original tensor corresponds to a = 1.



52 4.2 | News, BMS and asymptotic energy-momentum

Remark 4.2.2. Since these results are in essence two-dimensional, one could have taken
a different path for the proof. Namely, use the general results for tensors ρ on two-
dimensional Riemannian manifolds presented in [122] that will be studied in section 6.2.

Remark 4.2.3. Applying the results of [122], one also finds that the Lie derivative on a
cut of the projection to that cut of ρab along any conformal Killing vector field (CKVF)
χA is proportional to DADBDCχC , and in particular vanishes for Killing vector fields
(KVF).

Remark 4.2.4. Contraction of eq. (4.100) with Na gives

£ ~Nρab = N e∇eρab = 0 . (4.101)

Therefore, ρab is ‘constant’ along the generators of J . In particular, this feature makes
ρab invariant under the so called supertranslations –see section 4.2.

A direct calculation for determining the gauge behaviour of Sab shows that

S̃ab = Sab −
1
ω
∇aωb + 2

ω2ωaωb −
1

2ω2ωcω
cgab , (4.102)

with ωa
J
:= ∇aω. Also, this can be projected to any cut S

˜̊
SAB

S= S̊AB −
1
ω
DAω̊B + 2

ω2 ω̊Aω̊B −
1

2ω2 ω̊C ω̊
CqAB , (4.103)

where we have used that in our gauge N eωe = 0. That is, Sab has the adequate gauge
behaviour and trace (4.77) that imply by lemma 4.2.1

∇[c
˜̊
Sa]b = ∇[cS̊a]b (4.104)

and allows to write the following result

Proposition 4.2.1 (News tensor). The tensor field on J

Nab := Sab − ρab , (4.105)

is symmetric, traceless, gauge invariant, orthogonal to Na and satisfies the gauge-invariant
equation

∇[aSb]c = ∇[aNb]c , (4.106)

where ρab is the tensor field of corollary 4.2.2 (for a = 1). Besides, Nab is unique with
these properties.

Proof. The tensor field Nab is symmetric, traceless, gauge invariant and orthogonal to
Na as a consequence of eqs. (4.67) and (4.102) and corollary 4.2.2. That eq. (4.106) is
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gauge invariant follows from corollary 4.2.1. The uniqueness of Nab is a consequence of
corollary 4.2.2 too and eq. (4.106).

The tensor field Nab is the news tensor, and can be projected on any cut S

NAB :=
¯
Ea

A ¯
Eb

BNab , qMNNMN = 0 , (4.107)

and the same can be done with ρab

ρAB :=
¯
Ea

A ¯
Eb

Bρab (4.108)

Note that contraction of eq. (4.106) with N c and Ec
CE

a
AE

b
B , respectively, yields

£ ~NSab = N c∇cSab = N c∇cNab = £ ~NNab , D[C S̊A]B
S= D[CNA]B (4.109)

and also observe that in general, one has

£ ~NNab 6= 0 (4.110)

and the notation
ṄAB :=

¯
Ea

A ¯
Eb

B£ ~NNab (4.111)

will be used. From eqs. (4.82) and (4.83) and eq. (4.109), one gets

C
N a

b = εrsa∇rNsb , (4.112)
D
N

ab = Nm∇mNab (4.113)

and from eq. (4.85)
−
√

2
¯
C
N

a = `rε
mpr∇mNpa . (4.114)

On each cut

¯
C
N A

B

S:= W A
a Eb

B C
N a

b
S= ṄBM ε̊

AM , (4.115)

¯
C
N

A

S:= Ea
A ¯
C
N

a = − 1√
2
ε̊RPDRNPA , (4.116)

¯
D
N

AB

S:= Ea
AE

b
B D
N

ab
S= ṄAB, (4.117)

¯
D
N

A
S= − 1√

2
DM N̊ M

A , (4.118)

where we have used eq. (4.17), eq. (4.56). Some of these formulae will be used in sec-
tion 4.4.
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Looking back to eq. (4.75), inserting decomposition (4.105), it follows that

σ̇ab := N c∇c¯
σab = Nab + ρab −

R

4 gab +
¯
Pm

a∇m

(
ln Ḟ

)
¯
P n

b∇n

(
ln Ḟ

)
−

¯
Pm

(a ¯
P n

b)∇n

(
¯
P r

m∇r ln Ḟ
)

− 1
2gabg

ef
[
¯
Pm

e∇m

(
ln Ḟ

)
¯
P n

f ∇n

(
ln Ḟ

)
−

¯
Pm

e ¯
P n

f ∇n

(
¯
P r

m∇r ln Ḟ
)]

,

(4.119)

or on each cut

σ̇AB := N c∇c¯
σAB

S= NAB + ρAB −
R

4 qAB +DA
(
ln Ḟ

)
DB

(
ln Ḟ

)
−DA

(
DB ln Ḟ

)
− 1

2qABq
EF
[
DE

(
ln Ḟ

)
DF

(
ln Ḟ

)
−DE

(
DF ln Ḟ

)]
. (4.120)

This equation relates the news tensor to the ‘time’ derivative of the shear tensor
¯
σab.

Observe that in general only for canonically adapted foliations –eq. (4.60)– in which the
gauge fixing3 gives the round metric on the cuts one obtains

σ̇ab = Nab . (4.121)

4.2.2 Symmetries and universal structure
The conformal boundary for vanishing cosmological constant presents a universal struc-
ture [17] which gives rise to an asymptotic symmetry group know as the BMS group
–named after Bondi, Metzner and Sachs [21, 40, 43]–, which has been widely studied
[16, 17, 48, 123] –see also [103, 115]– and recently has attracted renewed attention with
proposals of generalisations and extensions [124–128]. The BMS group admits different
characterisations, from coordinate-based methods, to covariant ones. We focus on the lat-
ter and, particularly, in Geroch’s approach –see also [2] for more details. The asymptotic
infinitesimal symmetries are those vector fields preserving the universal structure

Definition 4.2.1 (Universal structure). Let Na be the tangent vector field to the gener-
ators of J and gab its degenerate metric. Then, the universal structure of J consists of
the conformal family of pairs

(gab, Na) .

Two pairs belong to the same conformal family if and only if
(
g′ab, N

′a
)

= (Ψ2gab,Ψ−1Na),
where Ψ is a positive function on J .

Remark 4.2.5. An equivalent formulation is to consider the gauge-invariant object [17]

gabN
cNd . (4.122)

3The so called ‘Bondi gauge’ usually refers to this kind of gauge-fixing.
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and the infinitesimal symmetries are those that leave it invariant, that is

£~ξ

(
gabN

cNd
)

= 0 . (4.123)

The alegbra bms is characterised by the infinitesimal symmetries ξa defined by

£~ξN
a = −ψNa , (4.124)

£~ξgab = 2ψgab. (4.125)

The infinitesimal symmetries τa proportional to Na,

τa = αξa (4.126)

are called supertranslations. They form an infinite-dimensional subalgebra t of bms and
the group of supertranslations T is a Lie ideal of BMS. One has

£~τN
a = 0 , (4.127)

£~τgab = 0 (4.128)

and
£ ~Nα = 0 . (4.129)

The resulting symmetry group BMS consists of the semidirect product [129] of the Lorentz
group SO(1, 3) with the normal subgroup of supertranslations T,

BMS = T n SO(1, 3) . (4.130)

Geroch identified a 4-dimensional subspace of infinitesimal translations, given by those
elements of t satisfying

∇a∇bα + αρab = 1
2

(
gmn∇m∇nα + α

R

4

)
gab . (4.131)

An interpretation of this equation is given in section 6.2. These infinitesimal symmetries
enter into the definition of the Bondi-Trautman energy-momentum.

4.2.3 Asymptotic energy-momentum of the gravitational field

Any weakly asymptotically simple Λ = 0 space-time features the existence of a total
energy-momentum at J –the so called Bondi-Trautman momentum [21, 34, 115]. This
four-vector field includes the energy of the gravitational field and yields the notion of
energy-loss due to the presence of gravitational waves. Geroch [17] presented it as a
particular case of a generalised momentum built upon a vector field associated to any
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supertranslation τa = αNa and given by –see [51] for the spin-coefficient version–

Ma
τ

:= α D
N am`m − 2

(
α∇m`n + `m∇nα

)
gnpNpq g

q[mNa] , (4.132)

where `a is any one-form satisfying `mN
m = −1. It is possible to include Geroch’s

approach into our formalism of foliations –section 4.1.1. Let `′a be any field associated to a
foliation, as in eq. (4.47), with the defining function F giving the cuts SC at constant values
F = C = constant and lightlike extension `′α. The two-form M

τ
:= Ma

τ
εabcdxb ∧ dxc

integrated over any cut SC gives a charge associated to that cut and the supertranslation
τa

E
τ

[SC ] := − 1
8π

∫
SC

M
τ

= − 1
8π

∫
SC
Ma
τ

`′åε
′ (4.133)

This formula can be shown to be independent of the choice of `a in eq. (4.132), thus without
loss of generality, let us write `′a = `a. Using eq. (4.132) and introducing eq. (4.62), the
charge can be rewritten as

E
τ

[SC ] = − 1
8π

∫
SC

(
α D
N rs`r`s + α

¯
σrsN

rs
)
ε̊ . (4.134)

The first term contains essentially a Coulomb contribution from the gravitational field –
see eq. (D.10) where D

N rs`r`s corresponds to D. The difference of the quantity (4.134) for
any two cuts S2 and S1, with the former to the future of the latter, is derived by computing
the divergence of eq. (4.132) and integrating over the three-dimensional portion ∆ ⊂J

bounded by the two cuts:

E
τ

[S2]− E
τ

[S1] = − 1
8π

∫
∆

(
αy f

m pN
m`fN

p + αSrsN
rs +N rs∇r∇sα

)
ε . (4.135)

Indeed, it is possible to differentiate along the foliation to obtain the infinitesimal change
in the charge (4.134) on a cut SC ,

d E
τ

[SC ]
dC =− 1

8π

∫
SC

α

Ḟ

[
NPQS̊PQ +NPQDPDQ ln Ḟ − 2DP

(
NQP

)
DQ ln Ḟ

+DQDPNQP + y f
m pN

m`fN
p +NABDA

(
ln Ḟ

)
DB

(
ln Ḟ

) ]̊
ε (4.136)

where eqs. (4.91), (4.117), (4.118) and (4.120) have been used. Since the cuts are topo-
logical spheres, total divergences integrate out and one can simplify the expression above
to reach the nice formula

d E
τ

[SC ]
dC = − 1

8π

∫
SC

1
Ḟ

[
αNABS̊AB +NABDADBα + ακNµN ν T0 µν

]
ε̊ , (4.137)
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where the matter fields enter the integral through (see eqs. (3.67) and (4.90))

y f
m pN

m`fN
p J= κNµN ν T0 µν . (4.138)

If one chooses τa as an infinitesimal translation –i.e., α satisfying eq. (4.131)–, (4.134)
gives the Bondi-Trautman energy-momentum. In that case, eq. (4.135) and eq. (4.137)
yield

E
τ

[S2]− E
τ

[S1] = − 1
8π

∫
∆
α
(
N qpNqp + κNµN ν T0 µν

)
ε . (4.139)

d E
τ

[SC ]
dC = − 1

8π

∫
SC

α

Ḟ

(
NPQNPQ + κNµN ν T0 µν

)
ε̊ . (4.140)

The second one is the Bondi-Trautman energy-momentum-loss formula. Both eq. (4.135)
and eq. (4.140) feature the same property: in the absence of the matter-field contribution
NµN ν T0 µν , a non-vanishing news tensor diminishes the total energy-momentum. To our
knowledge, it is the first time eq. (4.140) is presented including the matter term and
the factors associated to the choice of foliation Ḟ and translation α; in the literature,
either just eq. (4.139) is given [17], even without the matter contribution (see [130] for
a recent derivation), or just eq. (4.140) is considered, typically without the matter term
and the factor Ḟ corresponding to the choice of foliation [16, 22, 44, 100]. Moreover,
when α is set to a constant –equivalently, a ‘time’ translation is selected– to get the total
energy-loss, the dimensional analysis of eq. (4.140) becomes obscure –see section 4.4.2 for
the discussion of the units including α and Ḟ . For later convenience, let us define the
energy-momentum loss associated to gravitational waves only (i.e., excluding the matter
term)

d G

τ
E [SC ]
dC = − 1

8π

∫
SC

α

Ḟ
NPQNPQ ε̊ . (4.141)

Observe that eq. (4.140) is the general energy-momentum loss, whereas the commonly
presented energy-loss formulae involving the square of the Lie derivative along Na (4.120)
of the shear tensor (4.62) arise by making all or some of the following elections: α = 1, a
canonical foliation (4.60), a round-metric gauge and the absence of the asymptotic matter
term (4.90).

4.3 Asymptotic propagation of physical fields and the peeling prop-
erty revisited

We deal now with the behaviour of physical fields when they are parallelly transported
along null geodesics. The outcome of this process when applied to the physical Weyl
tensor, typically receives the name of peeling property or behaviour [17, 40, 100, 103,
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115]. We adopt Geroch’s approach and refine it to define an endomorphism at the tan-
gent space of every point of J +, represented by the endpoint in

(
M, gαβ

)
of the chosen

future-pointing null geodesic.

Let γ (λ) be a curve parametrised by λ ∈ [−1, 0], with one endpoint at p0 ∈ J +

(corresponding to λ0 := λ
∣∣∣∣
p0

= 0) and the past endpoint at p1 ∈ M̂ (with λ1 := λ

∣∣∣∣
p1

= −1).
Points belonging to γ corresponding to fixed values λ = λi will be labelled by pi,

γ (λ) : [−1, 0] −→ M

λ −→ p .
Denote the tangent vector field to the curve by `α and choose the parametrisation such
that

`µNµ = dΩ
dλ

J=
+
−1 . (4.142)

At first order around λ0 = 0, Ω ≈ −λ. Observe that we do not require at this stage `α to
be lightlike, though we have chosen it to be future-pointing. Next, denote by

t β
α (λi, λj) , the parallel propagator w.r.t. Γabc ,
t̂ β
α (λi, λj) , the parallel propagator w.r.t. Γ̂abc ,

such that given any one-form vα defined at pj, the result of parallel-transporting it along
`α from pj to pi results on the new one-form ∗vα (λi) at pi given by

∗vα (λi) = t µ
α (λi, λj) vµ (λj) , (4.143)

and introduce the notation

∗v
α (λi) = gαµ (λi) ∗vµ (λi) . (4.144)

Observe that indices α and µ in this relation belong to different tangent spaces. The
propagator t β

α is a ‘bi-tensor’ [131] which is defined by the differential equation

dt β
α (λ, λj)
dλ = `ρΓµαρ (λ) t β

µ (λ, λj) , (4.145)

dt̂ β
α (λ, λj)
dλ = `ρΓ̂µαρ (λ) t̂ β

µ (λ, λj) , (4.146)

with ‘initial’ condition

t β
α (λj, λj) = δαβ , t̂ β

α (λj, λj) = δαβ , (4.147)

and satisfies
t µ
α (λ, λi) t β

µ (λi, λ) = δβα , t µ
α (λj, λi) = tµα (λi, λj) (4.148)
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where
tµα (λi, λj) := gµσ (λi, λi) gνα (λj, λj) t ν

σ (λi, λj) . (4.149)

The main idea [17] is to perform 3 different parallel transports of any covariant tensor
field:

1. From p0 to p (λ) with t β
α (λ, λ0),

2. From p(λ) to p1 with t̂ β
α (λ1, λ),

3. From p1 to p0 with t β
α (λ0, λ1).

That is, a transport along γ back and forth, departing from J + and interchanging the
conformal connection by the physical one for a stretch of γ. If one chains one operation
after another, the result is an endomorphism on the co-tangent space at p0:

γ

λ
L β
α := t µ

α (λ0, λ1) t̂ ρ
µ (λ1, λ) t βρ (λ, λ0) . (4.150)

The upper and lower indices on the left-hand side of γ

λ
L α
β indicate its dependence on the

curve γ and the point p(λ). Since the notation may become cumbersome, we drop this
two labels in most of the calculations and recover them only when doing so happens to
be convenient. Since L α

β is a tensor at p0, acting on covariant objects, we introduce the
notation

←
Tα1...αr

:= L µ1
α1 ...L µr

αr Tµ1...µr . (4.151)

The action on the metric at p0 gives

←
gαβ = Ξ

λ

2gαβ , (4.152)

where one uses that the connections are metric-compatible with respect to gαβ and ĝαβ ,
respectively, and introduces the definition

Ξ
λ

:= Ω(λ)
Ω(λ1) (4.153)

–we will drop the label on the left-hand side. Equation (4.152) implies that the endomor-
phism L β

α preserves the null cone (and obviously also the future orientation) and therefore
it is proportional to a Lorentz transformation at p0. Recalling the first of eq. (4.148), it
is easy to verify that

L
−1 α

β := t µ
β (λ0, λ) t̂ ρ

µ (λ, λ1) t αρ (λ1, λ0) (4.154)

is the inverse operator, that is,
L ρ
α L
−1 β

ρ = δβα . (4.155)
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The version of L α
β that acts on contravariant fields is defined as

γ

λ
L̃βα := t µ

α (λ0, λ) t̂ ρ
µ (λ, λ1) t βρ (λ1, λ0) , (4.156)

and a simple calculation using the second of eq. (4.148) shows that

L
−1 β

α = L̃
β

α = 1
Ξ2L

β
α , (4.157)

where Lβα = gβµL ν
µ gνα. Therefore, taking into account eq. (4.157) one can work only

with L α
β . Some useful relations are

←
ηαβγδ = Ξ4ηαβγδ , (4.158)

L
−1 α

ρ L
−1 β

σ g
ρσ = 1

Ξ2 g
αβ , (4.159)

←
vµ
←
wµ = Ξ2vµw

µ ∀ vα, wα , (4.160)

where
←
wα := gαµ

←
wµ . (4.161)

The next task to be addressed is to find the explicit form of the operator L β
α . We

believe that this could be done for arbitrary curves, however the most relevant case – and
easiest to deal with– is when `α is geodesic and lightlike with λ an affine parameter,

`µ`
µ = 0 , `ρ∇ρ`α = 0. (4.162)

We assume this restriction from now on. Observe that for null geodesics (e.g. [103]) one
can always write

ˆ̀
α = `α (4.163)

where ˆ̀
α is lightlike and geodesic with respect to the physical metric. This fact allows to

deduce the action of L β
α on `α at p0,

←
`α = `α . (4.164)

Observe that L β
α has at most 16 independent components. It can be expressed in the

bases {−Nα ,−`α, qα, rα} and {`α, Nα, qα, rα}, with qα and rα arbitrary unit one-forms
orthogonal to Nα and `α at p0, as
γ

λ
L α
β = γ

λAN
αNβ + γ

λBN
α`β + γ

λC`
α`β + γ

λD`
αNβ + γ

λFq
αrβ + γ

λGr
αqβ + γ

λHq
αqβ + γ

λIr
αrβ

+Nα γ

λ̊
vβ + `α

γ

λ
ẘβ + γ

λ̊
xαNβ + γ

λ̊
yα`β . (4.165)

The dependence on the curve γ and the point λ is contained in the 8 scalars and 4 2-
dimensional vector fields correspondingly labelled in the formula above. By eqs. (4.157)
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and (4.163) direct simplifications take place:

A = 0 , B = −1 , D = −Ξ2 , v̊β = 0 , x̊α = 0 . (4.166)

Projecting eq. (4.152) with the elements of the bases, one arrives at the expression

L α
β = −Nα`β + C`α`β − Ξ2`αNβ + F

(
qαrβ − rαqβ

)
+HP̊α

β + `αẘβ + ẙα˚̀β, (4.167)

with
2Ξ2C = −Ξ2ẙµ ẙ

µ = −ẘµẘµ , F 2 +H2 = Ξ2 (4.168)

and

0 = −ẘr − F ẙq −Hẙr , (4.169)
0 = −ẘq + F ẙr −Hẙq , (4.170)
0 = −Ξ2ẙq − Fẘr −Hẘq , (4.171)
0 = −Ξ2ẙr + Fẘq −Hẘr . (4.172)

By construction, one has
L α

λ1 β = δβα, (4.173)

which implies

C
λ1

= F
λ1

= 0 , H
λ1

= 1 , ẘ
λ1 β = 0 , ẙ

λ1 β = 0 . (4.174)

Since L β
α depends on λ, it makes sense to search for a differential equation for it. To that

purpose, notice that another version of eq. (4.145) can be written for t β
α (λ, λj) by using

eq. (4.148),
dt β
α (λj, λ)
dλ = −kρΓβρµt µ

α (λj, λ) . (4.175)

The final differential formula for L β
α reads

dL α
β

dλ = 1
Ω (λ)L

µ
β Λ α

µ (4.176)

where

Λ α
β = Λ α

λ β := Ω (λ) `σ (λ) γνµσ (λ) t α
ν (λ, λ0) t µ

β (λ0, λ) (4.177)

= dΩ
dλ δ

α
β + `α ∗Nβ − `β ∗N

α , (4.178)

with
∗Nβ = ∗Nλ β := t µ

β (λ0, λ)Nµ (λ) , ∗Nλ0 α = Nα , (4.179)
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and γαβγ giving the difference between the unphysical and physical connection –see the
formulae of conformal transformations in appendix C. Observe that Λ α

β is a tensor at p0

that depends on λ. Equation (4.176) is a Fuchsian system with a regular singular point at
λ = λ0 –recall that Ω(λ0) = 0. In components, one has the following non-trivial equations

dF
dλ = F

Ω (λ)
dΩ
dλ , (4.180)

dH
dλ = H

Ω (λ)
dΩ
dλ , (4.181)

dC
dλ = 1

Ω (λ)

[
2C dΩ

dλ + ∗Nρ ẙ
ρ

]
, (4.182)

dẙr
dλ = 1

Ω (λ)

[
ẙr

dΩ
dλ − r̊ρ ∗N

ρ

]
, (4.183)

dẙq
dλ = 1

Ω (λ)

[
ẙq

dΩ
dλ − q̊ρ ∗N

ρ

]
, (4.184)

dẘr
dλ = 1

Ω (λ)

[
F ∗Nµ q

µ +H ∗Nµ r
µ + 2ẘr

dΩ
dλ

]
, (4.185)

dẘq
dλ = 1

Ω (λ)

[
H ∗Nµ q

µ − F ∗Nµ r
µ + 2ẘq

dΩ
dλ

]
. (4.186)

Using eq. (4.173) as initial condition, eqs. (4.180) and (4.181) yield

γ

λF = 0 , γ

λH = Ξ
λ
, (4.187)

and then, from eqs. (4.169) and (4.170),

ẘα = −Ξẙα . (4.188)

Since C is determined by ẙα through eq. (4.168), it only remains to solve for ẙα. Equa-
tions (4.183) and (4.184) are two uncoupled linear ODEs, whose solution with the initial
condition (4.174) reads

ẙα = −Ω (λ)
∫ λ

λ1

1
Ω2 (λ′) ∗N

α

λ′
dλ′ . (4.189)

This solution is smooth in the limit λ = λ0. Taking this into account, if one multiplies
eq. (4.182) by Ω and evaluates at λ0, it follows that

− 2 C
λ0

= ẙ
λ0 µ ẙµ

λ0
= 0 . (4.190)

All in all, the final expression of L α
β is

L α
β = −Nα`β −

1
2 ẙ

2`α`β − Ξ2`αNβ + ΞP̊α
β − Ξ`αẙβ + ẙα˚̀β, (4.191)
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with ẙ2 = ẙµ ẙ
µ and ẙα determined by eq. (4.189), depending on the choice of curve

through ∗N
α –given in eq. (4.179)– and on λ. Consider the decomposition

γ

λ
L α
β =

γ

λ
p µ
β

γ

λ
K α
µ , (4.192)

γ

λ
p µ
β := −Nµ`β −

γ

λΞ2`µNβ + γ

λΞP̊
µ
β , (4.193)

γ

λ
K α
µ := δαµ −

1
2 ẙ

2`α`µ − `αẙµ + ẙα`µ . (4.194)

The interest of this decomposition is that γ

λ
K α
µ carries mostly details of the curve γ,

whereas
γ

λ
p µ
β contains essentially powers of Ω and no information about the curve γ: just

the value of Ω at the chosen point p1 –see (4.153).
We are mainly interested in the asymptotic behaviour of L α

β , i.e. when λ → λ0. It is

Weyl-tensor
candidate

Non-vanishing
Ψ(a)
i

ψ
(a)

i when
λ = λ0

PND

C
(4)

αβγδ ψ
(4)

4 Ω(λ1)−2φ4 (`α, `α, `α, `α)

C
(3)

αβγδ ψ
(3)

3 Ω(λ1)−3φ3 (`α, `α, `α, Nα)

C
(2)

αβγδ ψ
(2)

2 Ω(λ1)−4φ2 (`α, `α, Nα, Nα)

C
(1)

αβγδ ψ
(1)

1 Ω(λ1)−5φ1 (`α, Nα, Nα, Nα)

C
(0)

αβγδ ψ
(0)

0 Ω(λ1)−6φ0 (Nα, Nα, Nα, Nα)

Table 4.1: The asymptotic propagation of the physical Weyl tensor (4.198) is composed
by the five terms listed above. Each one has the symmetries of a Weyl tensor and one
non-vanishing Weyl scalar which in the limit λ→ λ0 = 0 coincides up to a multiplicative
constant with one of the scalars of the rescaled Weyl tensor d δ

αβγ . The repeated
principal null directions are listed in the last column.

very interesting the fact that details on the choice of γ become irrelevant at zeroth order
in this regime because

γ

λ0
K α
β = δαβ . (4.195)

In other words, the asymptotic behaviour is ruled by
γ

λ
p µ
β which we come to call the

asymptotic propagator. In order to derive this behaviour for any physical field, one has
to follow the next steps:
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1) Propagate the physical field from p (λ) to p0 using t α
β (λ0, λ) –hence defining a new

tensor of the same type at p0 on J +.

2) Apply to the covariant version of the new tensor at p0 as many copies of L α
β as free

indices has the field.

3) Expand the expression obtained previously in terms of λ near λ0 = 0.

Note that this program ‘compares’ the parallel propagation of the physical tensor field in
M̂ from the point p1 to p(λ), with the propagation in M between the two points. Ex-
panding λ around the limit value λ0 = 0, one takes this comparison towards infinity of M̂ .

The canonical example is the application to the physical Weyl tensor. Consider
Ĉαβγδ (λ), i.e. the physical Weyl tensor at p(λ). Now, take step 1) to define a tensor
at p0

∗̂Cαβγδ = 1
Ω2 (λ) ∗Cαβγδ = 1

Ω (λ) ∗dαβγδ . (4.196)

Notice that
∗dαβγδ

∣∣∣∣
λ=λ0=0

= dαβγδ

∣∣∣∣
p0

, (4.197)

thus ∗̂Cαβγδ contains a pole of order 1 in the limit λ→ λ0 = 0. Nevertheless, this divergence
is overcome in step 2),

←

∗̂Cαβγδ = Ω C
(4)

αβγδ + Ω2 C
(3)

αβγδ + Ω3 C
(2)

αβγδ + Ω4 C
(1)

αβγδ + Ω5 C
(0)

αβγδ , (4.198)

where C
(a)

αβγδ with a = 0, 1, 2, 3, 4 are Weyl-tensor candidates, regular in the limit to
λ0 = 0 and with algebraic properties listed in table 4.1. They depend on λ and, assuming
that Ω admits a Taylor expansion around λ0 = 0, we write them near λ0 = 0 as

C
(a)

αβγδ = C
(a,0)

αβγδ +
∞∑
i=1

C
(a,i)

αβγδλ
i . (4.199)
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Their explicit expressions are expressed as

C
(4)

αβγδ = 4
Ω2 (λ1) ∗dτωχηK

τ
µ K ω

ν K χ
ρ K η

σ NνNσP̊ µ
[α `β]P̊

ρ
[γ `δ] , (4.200)

C
(3)

αβγδ = 1
Ω3 (λ1) ∗dτωχηK

τ
µ K ω

ν K χ
ρ K η

σ

[
− 4P̊ µ

[αN
ν`β]N

ρ`[γNδ] `
σ − 4Nµ`ν`[αNβ] P̊

ρ
[γ `ρ]N

σ

− 4P̊ µ
[α P̊

ν
β]N

σ`[δP̊
ρ
γ] − 4Nµ`[αP̊

ν
β] P̊

ρ
[γ P̊

σ
δ]

]
, (4.201)

C
(2)

αβγδ = 1
Ω4 (λ1) ∗dτωχηK

τ
µ K ω

ν K χ
ρ K η

σ

[
P̊ µ

α P̊
ν
β P̊

ρ
γ P̊

σ
δ − P̊ µ

α P̊
ν
β

(
P̊ ρ

γNδ + P̊ σ
δNγ

)
−

− P̊ ρ
γ P̊

σ
δ

(
P̊ µ

α `
νN̊β + P̊ ν

βN
µ`α

)
+ 4`µN ν`ρNσN[α `β]N[γ `δ] + 4P̊ µ

[αNβ] P̊
ρ
[γ `δ]N

σ`ν

+ 4P̊ µ
[α `β]P̊

ρ
[γNρ] `

σN ν + 4P̊ µ
[α P̊

ν
β]N[γ `δ]`

ρNσ + 4P̊ ρ
[γ P̊

σ
δ]N[α `β]`

µN ν
]
,

(4.202)

C
(1)

αβγδ = 1
Ω5 (λ1) ∗dτωχηK

τ
µ K ω

ν K χ
ρ K η

σ

[
− 4P̊ µ

[α `
νNβ] `

ρN[γ `δ]N
σ − 4`µN νN[α `β]P̊

ρ
[γNρ] `

σ

− 4P̊ µ
[α P̊

ν
β] `

σN[δ P̊
ρ
γ] − 4`νN[β P̊

µ
α] P̊

ρ
[γ P̊

σ
δ]

]
, (4.203)

C
(0)

αβγδ = 4
Ω6 (λ1) ∗dτωχηK

τ
µ K ω

ν K χ
ρ K η

σ `ν`σP̊ µ
[α Nβ] P̊

ρ
[γ Nδ] . (4.204)

Observe that the leading-order term of eq. (4.200) reads

C
(4,0)

αβγδ = 4
Ω2 (λ1)dµνρσN

νNσP̊ µ
[α `β]P̊

ρ
[γ `δ] (4.205)

and is determined by the rescaled Weyl tensor d δ
αβγ projected to a Petrov-type N Weyl-

candidate tensor. Now one can perform step 3), finally arriving at the next result:

Theorem 1 (Peeling of the Weyl tensor). Let
(
M, gαβ

)
be a conformal completion of a

physical space-time with Λ = 0 as presented on page 22 and let γ be a lightlike geodesic
with affine parameter λ and tangent vector field `α as in eq. (4.142). Also, let one end
point p0 (λ = λ0 = 0) of γ be at J + and the other one, p1 (λ = λ1 = −1), in M̂ . Then,
the asymptotic behaviour of the physical Weyl tensor Ĉαβγδ along γ follows by application
of steps 1) to 3) on page 64 and reads
←

∗̂Cαβγδ = λ d
(N)

αβγδ + λ2 e
(III)

αβγδ + λ3 f
(II/D)

αβγδ + λ4 g
(I)

αβγδ + λ5 h
(I)

αβγδ +O
(
λ6
)
, (4.206)

near λ = λ0 = 0, where the tensors

d
(N)

αβγδ := − C
(4,0)

αβγδ , (4.207)
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e
(III)

αβγδ := C
(3,0)

αβγδ + Ω2

2 C
(4,0)

αβγδ − C
(4,1)

αβγδ , (4.208)

f
(II/D)

αβγδ :=− C
(2,0)

αβγδ − Ω2 C
(3,0)

αβγδ + Ω3

6 C
(4,0)

αβγδ + C
(3,1)

αβγδ − C
(4,2)

αβγδ

+ Ω2

2 C
(4,1)

αβγδ , (4.209)

g
(I)

αβγδ := C
(1,0)

αβγδ + 3Ω2

2 C
(2,0)

αβγδ +
(

Ω2
2

4 −
Ω3

3

)
C

(3,0)

αβγδ + Ω4

4! C
(4,0)

αβγδ

− C
(2,1)

αβγδ + C
(3,2)

αβγδ − C
(4,3)

αβγδ + Ω2

2 C
(4,2)

αβγδ − Ω2 C
(3,1)

αβγδ

+ Ω3

6 C
(4,1)

αβγδ , (4.210)

h
(I)

αβγδ :=− C
(0,0)

αβγδ − 2Ω2 C
(1,0)

αβγδ +
(

Ω3

2 −
3
4Ω2

2

)
C

(2,0)

αβγδ +
(

1
6Ω2Ω3 −

Ω4

12

)
C

(3,0)

αβγδ

+ Ω5

5! C
(4,0)

αβγδ + C
(1,1)

αβγδ − C
(2,2)

αβγδ + C
(3,3)

αβγδ − C
(4,4)

αβγδ

+ 3
2Ω2 C

(2,1)

αβγδ − Ω2 C
(3,2)

αβγδ + Ω2

2 C
(4,3)

αβγδ + Ω2
2

4 C
(3,1)

αβγδ

− Ω3

3 C
(3,1)

αβγδ + Ω3

6 C
(4,2)

αβγδ + Ω4

4! C
(4,1)

αβγδ . (4.211)

are Weyl-tensor candidates labelled with their Petrov type, respectively; Ωi, with i =
1, 2, 3, 4, 5, is the i-th derivative of Ω w.r.t. λ evaluated at λ = λ0 = 0, and C

(a)
αβγδ ,

with a = 0, 1, 2, 3, 4, are the Weyl-tensor candidates of table 4.1 each one having one
non-vanishing Weyl scalar Ψ(a)

a in the tetrad containing `α and Nα.

Proof. The asymptotic propagation along γ of the physical Weyl tensor is given in eq. (4.198).
Then, one expands around λ0 = 0 and rearranges the terms by powers of λ. The algebraic
structure of the first 5 terms of eqs. (4.207) to (4.211) follows from the properties listed
in table 4.1.

Remark 4.3.1. The Weyl-tensor candidates of eqs. (4.207) to (4.211) have the algebraic
structure specified in table 4.2. Notice that though this constitutes the so called peeling
property, the present derivation is purely geometric, showing neatly that we derive the
behaviour of the physical field (the Weyl tensor in this case) as it approaches J along
null geodesics, thereby providing a solid foundation for the so-called peeling behaviour.
Notice, further, that once this construction has been performed, it can be applied to any
physical field whatsoever by just following the steps 1) to 3) on page 64 and using the
explicit form of L α

β eq. (4.191).

Remark 4.3.2. The Weyl scalars of the first three elements in eq. (4.206) have the
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following expressions:

η4 = − 1
Ω2(λ1)φ4 , τ4 = − Ω3

6Ω2 (λ1)φ4 − ψ
(4,2)

4 + Ω2

2 ψ
(4,1)

4 , (4.212)

χ4 = Ω2

2Ω2(λ1)φ4 − ψ
(4,1)

4 , τ3 = − Ω2

Ω3 (λ1)φ3 + ψ
(3,1)

3 , (4.213)

χ3 = 1
Ω3 (λ1)φ3 , τ2 = − 1

Ω4 (λ1)φ2 , (4.214)

where φi with i = 2, 3, 4 are the scalars of the rescaled Weyl tensor d δ
αβγ and ψ

(a,i)
i are

the scalars corresponding to the tensors C
(a,i)

αβγδ of eq. (4.199).

Weyl-tensor
candidate

Non-vanishing
scalars

degeneracy of `α
as PND

d
(N)

αβγδ η4 4

e
(III)

αβγδ χ3 χ4 3

f
(II/D)

αβγδ τ4 τ3 τ2 2

g
(I)

αβγδ ν4 ν3 ν2 ν1 1

h
(I)

αβγδ µ4 µ3 µ2 µ1 µ0 0

Table 4.2: The vector `α, tangent to γ, is a principal null direction of the first four terms
in the asymptotic propagation of the physical Weyl tensor. The degree of degeneracy
decreases towards higher order terms; this effect is commonly referred to as the peeling
property of the Weyl tensor.

4.4 Asymptotic radiant supermomentum
As it has been exposed in the introduction, we give a characterisation of the gravita-
tional radiation grounded on the rescaled version (3.86) of the Bel-Robinson tensor. One
constructs the asymptotic radiant supermomentum as

Qα := −NµN νNρDαµνρ . (4.215)
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The definition and description of general radiant supermomenta are studied in section 2.3;
the following fundamental properties were presented in [76]

i) Qµ is lightlike QµQµ
J= 0 and future pointing at J , which follows from the causal

character of Nα and known properties of superenergy tensors [85, 93].

ii) Under gauge transformations it changes as

Qα → ω−7
(
Qα − 3Ω

ω
DαβρτNβNρ∇τω

)
+O(Ω2). (4.216)

iii) It is divergence-free at J , independently of the matter content,

∇µQµ
J= 0 . (4.217)

The last property is easily verified by noting (3.87), so that, recalling eq. (3.80), one can
write

∇µQµ
J= 4Nα D

N βγyαβγ
J=

¯
D
N BC

¯
Eβ

B ¯
Eγ

CN
αyαβγ +

√
2

¯
D
N B

¯
Eβ

BN
αNγyαβγ , (4.218)

where in the last equality we have exploited the fact that D
N αβ = D

N abeαae
β
b and expanded

in the bases {Na,
¯
Eα

A},
{
−`α, ¯

Wα
A
}
. From eq. (3.67), taking into account eq. (3.121), it

follows that

¯
Eβ

B ¯
Eγ

CN
αyαβγ

J= 1
2κΩ−1

¯
q
BC
NµN νTµν , (4.219)

¯
Eβ

BN
αNγyαβγ

J= 0 . (4.220)

By properties listed in appendix D ,
¯
D
N BC

¯
q
BC

= 0 and then property iii) follows4.

The asymptotic radiant supermomentum Qα is geometrically well defined, as it is built
only with the generators of J and the rescaled Weyl tensor d δ

αβγ . Moreover, it has a
good gauge behaviour at J , Q̃α = ω−7Qα. These facts, together with the close relation
with the intrinsic fields on J exhibited by the rescaled Weyl tensor –see section 4.1.2–,
suggests a link between Qα and the news tensor Nab of eq. (4.107). To show that this is
the case, first decompose the asymptotic radiant supermomentum as

Qα J= W`
α +Qα =W`

α +Qaeαa , (4.221)

where `α = ω a
α `a is a lightlike field at J associated to a foliation as in eq. (4.47) whose

4In [76], property iii) was presented in a less general situation. As we have shown, Qα is divergence-free
at J independently of the matter content.
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restriction on each cut gives the `α of eq. (4.12). The quantity

W := −NµQµ ≥ 0 (4.222)

is the asymptotic radiant superenergy and the vector field

Qa := ZNa +
¯
QA

¯
Ea

A with Z := −`µQµ ≥ 0 (4.223)

is the asymptotic radiant super-Poynting [76]. Observe that W is invariant under the
choice of `α, whereas Z and

¯
QA depend on the choice of foliation –one can consider this

decomposition on a single cut S only, and then these quantities depend on the choice of
that cut. From the general formulae of section 2.3, the relation between these quantities
and the lightlike projections of d δ

αβγ is

W = 2
¯
C
N

AB ¯
C
N AB = 2

¯
D
N

AB ¯
D
N AB ≥ 0, (4.224)

Z = 4
¯
C
N

A ¯
C
N A = 4

¯
D
N

A ¯
D
N A ≥ 0, (4.225)

¯
QA = 4

√
2

¯
C
N

P ¯
C
N AP . (4.226)

Then, eqs. (4.115) to (4.118) bring forth the connection between the asymptotic radiant
supermomentum and the news tensor

W = 2ṄRT
ṄRT ≥ 0 , (4.227)

Z S= 2DRNR
T DMNMT ≥ 0 , (4.228)

¯
QA S= −4ṄMADENE

M . (4.229)

4.4.1 Radiation condition
In [76] a new criterion to determine the presence of radiation at J escaping from the
space-time was presented. The criterion holds in the Λ > 0 case [75] too and is analysed
in chapter 5. It translates into the following results

Theorem 2 (Radiation condition on a cut). There is no gravitational radiation on a
given cut S ⊂J if and only if the radiant super-Poynting Qa vanishes on that cut:

NAB = 0 ⇐⇒ Qa S= 0 (⇐⇒ Z = 0).

Proof. Consider equation (4.228). Since the right-hand side is a square, it follows that
Z = 0 ⇐⇒ D[ANB]C = 0. Using now property iii) on page 15 this happens if and only
if QN a = 0. But D[ANB]C = 0 —which is equivalent to DAN

A
B = 0— states that NAB

is a symmetric and traceless Codazzi tensor on the compact 2-dimensional S, and then it
necessarily vanishes (e.g. [113] and references therein). Equivalently, NAB is a traceless
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symmetric divergence-free tensor on the closed S, which implies that NAB = 0. Hence
NAB = 0⇐⇒ QN a = 0 on S .

Remark 4.4.1. Equivalently: there is no gravitational radiation on a given cut S ⊂J

if and only if the radiant supermomentum is orthogonal to S everywhere and not collinear
with Nα, i. e.,

Qα S=W`
α ⇐⇒ NAB

S= 0 (4.230)

Remark 4.4.2. The topology of J plays a key role in the proof. If the cuts do not have
S2-topology,

DMN M
B

S= 0 =⇒ Qa S= 0 ,

even if NAB 6= 0. In any case, this does not pose a problem when considering portions of
J , instead of single cuts –see remark 4.4.4.

Theorem 3 (No radiation on ∆). There is no gravitational radiation on the open portion
∆ ⊂ J with the same topology of J if and only if the radiant supermomentum Qα
vanishes on ∆:

Nab
∆= 0 ⇐⇒ Qα ∆= 0.

Proof. According to remark 4.4.1 of theorem 2, absence of radiation on ∆ requires that
Qα S= W`α on every possible S included in ∆. But this is only possible if Qα ∆= 0.
Another route to derive this result is to note that NAB = 0 on every cut within ∆, and
thus Nab

∆= 0. In particular £~nNab
∆= 0 so that ṄAB vanishes too at any cut within ∆.

Remark 4.4.3. The two following re-statements are equivalent to that of theorem 3:

• No gravitational radiation on ∆ ⊂J ⇐⇒ Qα is orthogonal to all surfaces within
∆.

• No gravitational radiation on ∆ ⊂J ⇐⇒ Nα

∣∣∣∣
∆
is a principal null vector of d δ

αβγ

∣∣∣∣
∆
.

The first point follows by remark 4.4.1, particularising to any possible cut within ∆ –
hence, implying that Qα ∆= 0. The second statement follows by lemma 2.3.2.

Remark 4.4.4. Regarding remark 4.4.2, it may be the case that even if one foliates ∆
by topological non-spheres, a different choice of foliation gives topological-S2 cuts. Hence,
theorem 2 applies to those new cuts within ∆. It may be also the case that a foliation
by topological-S2 cuts of a given ∆ is not possible –as it happens in the C-metric [106]–,
hence the situation described in remark 4.4.2 has to be considered. However, if that is
the case, theorem 3 requires the whole supermomentum Qα, and not just Qa, to vanish,
which involves ṄAB as well –see eq. (4.227). Therefore, even if DCN C

A
S= 0 on every

cut S ⊂ ∆ of a given foliation, the criterion still detects gravitational radiation whenever
ṄAB

∆
6= 0. In principle, one could also choose a different interval ∆′ that can be foliated

by topological spheres and such that ∆′∩∆ 6= ∅, and then apply theorem 2 and theorem 3
to the region ∆′ ∩∆ ⊂J to determine the presence of radiation there.
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4.4.2 Balance law

It is possible to write a balance law describing the outgoing superenergy flux and the news
tensor. Begin by considering a connected portion ∆ ⊂ J , with R × S2 topology. Let
it be bounded by two (non-intersecting) cuts, S1 and S2, the latter to the future of the
former, and orthogonal lightlike vector fields (other than Nα) `α1 and `α2 as in eq. (4.12),
respectively. Consider any lightlike field `α = ω a

α `a in ∆ with the properties of eq. (4.47),
such that

`α
S1= 1̀ α , `α

S2= 2̀ α . (4.231)

Equation (4.217) decomposes as

`
µ∇µW +WΨm

m
∆= −∇mQ

m
, (4.232)

where eqs. (4.21) and (4.22) were used. Using the quantities and notation introduced in
section 4.1.1, integration of eq. (4.232) leads to a Gauss-law formula∫

∆

(
`
µ∇µW +Wψmm

)
ε = Φ [S2]− Φ [S1] , (4.233)

where Φ [S] is the radiant superenergy density flux, defined as

Φ [S] :=
∫
S
Z ε̊ ≥ 0 , Φ [S] = 0⇐⇒ NAB

S= 0 . (4.234)

Equation (4.233) shows that the change of the asymptotic radiant superenergy density
W along any outgoing lightlike direction `

α in a volume ∆ is balanced by the flux of
radiant superenergy density on the boundary of ∆ –constituted by the two cuts S1,2.
Let us remark that this formula is valid in the presence of arbitrary matter fields –
with the general assumption iv) on page 22. In other words, eq. (4.233) contains purely
geometric terms. The choice of `α does not change eq. (4.233), as the difference between
one choice and another can be checked to be a total divergence that integrates out [76].
Moreover, eq. (4.232) is gauge invariant. After some manipulation of the integrand and
using eq. (4.228), the radiant superenergy density flux reads

Φ [S] =
∫
S
NRS

(
2KNRS −DMDMNRS

)
ε̊ , (4.235)

where K denotes the Gaussian curvature of the cuts. Observe that, although it does not
manifest itself explicitly so, the integral on the right-hand side of eq. (4.235) is positive.
It shows that the flux of radiant superenergy is indeed associated to the presence of
gravitational waves and sourced, ultimately, by the news tensor –as one could already
expect from eq. (4.227). The first term on the right-hand side of eq. (4.235) reminds
us of the energy-momentum loss due to gravitational waves of eq. (4.141). Without loss
of generality , one can consider a foliation containing S and select the function F that
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appears in eq. (4.141) such that it fulfills eq. (4.59) at least on S. If one does so, it is
always possible to choose the conformal gauge in order to set

K
Ḟ

α
= constant , at S1,2 . (4.236)

Under such gauge choice, eq. (4.235) reads

Φ [S] = −
16πK Ḟ

α

d G

τ
E [SC ]
dC +

∫
S
NRSDMDMNRS ε̊

 , (4.237)

and eq. (4.233) can be rewritten as

∫
∆

(
`
µ∇µW +Wψmm

)
ε = −

16πK Ḟ

α

d G

τ
E [SC ]
dC +

∫
S
NRSDMDMNRS ε̊

 ∣∣∣∣∣∣
S2

S1

. (4.238)

The interpretation of this formulae is essentially the same as eq. (4.233). Even so, let
us point out that for fixed S1,2, the change in the radiant superenergy density in the
volume ∆ depends only on the initial and final evaluation of the news tensor Nab , i.e., on
Nab

∣∣∣∣
S1,2

. In a way, the integral on the left-hand side of eqs. (4.233) and (4.238) measures
the failure of the system to recover its initial state. From another point of view, consider
a gravitational system that is initially in equilibrium in the sense of having

NAB

∣∣∣∣
S1

= 0 . (4.239)

Then, the rate of change in the Bondi-Trautman energy at a later retarded time, i.e., on
S2, can be expressed as the change of W in the volume ∆ plus an additional term whose
interpretation is not clear to us and that vanishes if and only if5 so does NAB

d G

τ
E [S2]
dC = − α

KḞ16π

[∫
∆

(
`
µ∇µW +Wψmm

)
ε+

∫
S2
NRSDMDMNRS ε̊

]
. (4.240)

As a final remark, notice that when eq. (4.239) holds, eq. (4.234) implies∫
∆

(
`
µ∇µW +Wψmm

)
ε = 0 ⇐⇒ NAB

∣∣∣∣
S2

= 0 , (4.241)

and that NAB

∣∣∣∣
S1,2

= 0 is a reasonable initial and final condition for any physical system
that at first is in equilibrium, then undergoes a change that takes it out of equilibrium
and finally settles down.

5Double implication holds true whenever S has S2-topology.
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As a last remark, observe that eq. (4.238) allows us to perform a quick check of
the physical units6: [G

τ
E [SC ] = ML2T−2 so that [d G

τ
E [SC ] /dC] = ML2T−2[C]−1. As

[ϕ] = [C]L−2 and taking into account [α] = L the right-hand side of (4.238) has dimensions
of [Kϕ/α]ML2T−2[C]−1 = ML−3T−2. Concerning the left-hand side, using that [Lµ] = L

and that [W ] =
[
Tαβγδ

]
L−4, we need to know the units of the volume integral on J

but, according to (4.7), these are [ε] = L4. Hence,
[
Dαβγδ

]
= MT−2L−3 and the physical

units of the Bel-Robinson tensor are[
Tαβγδ

]
= MT−2L−3 . (4.242)

4.4.3 Alignment of supermomenta and the peeling property of the BR-tensor

The tools presented in section 4.3, namely the asymptotic propagation of fields along null
geodesics, can be applied to the physical Bel-Robinson tensor

T̂αβγδ := Ĉ ν
αµγ Ĉ

µ
δνβ + Ĉ

∗ ν
αµγ Ĉ

∗ µ
δνβ . (4.243)

Consider this tensor field at point p(λ) and parallel propagate it along the curve γ defined
as in section 4.3 to p0. This process defines a new tensor at p0 which we denote by ∗̂Tαβγδ .
Application of L α

β gives
←

∗̂Tαβγδ := Ω4 (λ1)
(←
∗̂C

ν
αµγ

←

∗̂C
µ

δνβ +
←

∗
ˆ∗C ν
αµγ

←

∗
ˆ∗C µ
δνβ

)
, (4.244)

where
←

∗̂C
ν

αµγ and
←

∗
ˆ∗C µ
δνβ are the asymptotic propagated physical Weyl tensor (4.198) and

its Hodge dual, respectively. In order to arrive at eq. (4.244) one has to use eqs. (4.148),
(4.158) and (4.160). Then, it is possible to derive the peeling property of the Bel-Robinson
tensor,

Theorem 4 (Peeling of the Bel-Robinson tensor). Let
(
M, gαβ

)
be a conformal completion

of a physical space-time with Λ = 0 as presented on page 22 and let γ be a lightlike geodesic
with affine parameter λ and tangent vector field `α as in eq. (4.142). Also, let one end
point p0 (λ = λ0 = 0) of γ be at J and the other one, p1 (λ = λ1 = −1), in M̂ . Then,
the asymptotic behaviour of the physical Bel-Robinson tensor T̂αβγδ along γ follows by

6We use the notation [P ] to denote the physical units of any object P ; our choice is that the conformal
factors Ω and ω are dimensionless.
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application of steps 1) to 3) on page 64 and reads

1
Ω4 (λ1)

←

∗̂Tαβγδ = λ2 D(N)

αβγδ + λ3 X(1)

αβγδ + λ4 X(2)

αβγδ + λ4 E(III)

αβγδ + λ5 X(3)

αβγδ

+ λ6 X(4)

αβγδ + λ6 F(II/D)

αβγδ + λ7 X(5)

αβγδ + λ8 X(6)

αβγδ + λ8 G(I)

αβγδ

+ λ9 X(7)

αβγδ + λ10 X(8)

αβγδ + λ10 H(I)

αβγδ +O
(
λ11

)
, (4.245)

near λ = λ0, where

D(N)

αβγδ := d
(N) ν

αµγ d
(N) µ

δνβ + d
(N)∗ ν

αµγ d
(N)∗ µ

δνβ , (4.246)

E(III)

αβγδ := e
(III) ν

αµγ e
(III) µ

δνβ + e
(III)∗ ν

αµγ e
(III)∗ µ

δνβ , (4.247)

F(II/D)

αβγδ := f
(II/D) ν

αµγ f
(II/D) µ

δνβ + f
(II/D)∗ ν

αµγ f
(II/D)∗ µ

δνβ , (4.248)

G(I)

αβγδ := g
(I) ν

αµγ g
(I) µ

δνβ + g
(I)∗ ν

αµγ g
(I)∗ µ

δνβ , (4.249)

are basic superenergy tensors labelled with the Petrov type of the Weyl-tensor candidate
they are built with, respectively; the Weyl-tensor candidates are the ones of theorem 1
described in table 4.2. The tensor fields X(a)

αβγδ with a = 1, 2, 3, 4, 5, 6 are symmetric and
traceless, and contain cross terms:

X(1)

αβγδ := d
(N) ν

αµγ e
(III) µ

δνβ + d
(N)∗ ν

αµγ e
(N)∗ µ

δνβ + e
(III) ν

αµγ d
(N) µ

δνβ + e
(III)∗ ν

αµγ d
(N)∗ µ

δνβ ,

(4.250)
X(2)

αβγδ := d
(N) ν

αµγ f
(II/D) µ

δνβ + d
(N)∗ ν

αµγ f
(II/D)∗ µ

δνβ + f
(II/D) ν

αµγ d
(N) µ

δνβ + f
(II/D)∗ ν

αµγ d
(N)∗ µ

δνβ ,

(4.251)

X(3)

αβγδ := d
(N) ν

αµγ g
(I) µ

δνβ + d
(N)∗ ν

αµγ g
(I)∗ µ

δνβ + g
(I) ν

αµγ d
(N) µ

δνβ + g
(I)∗ ν

αµγ d
(N)∗ µ

δνβ

+ f
(II/D) ν

αµγ e
(III) µ

δνβ + f
(II/D)∗ ν

αµγ e
(N)∗ µ

δνβ + e
(III) ν

αµγ f
(II/D) µ

δνβ + e
(III)∗ ν

αµγ f
(II/D)∗ µ

δνβ ,

(4.252)

X(4)

αβγδ := d
(N) ν

αµγ h
(I) µ

δνβ + d
(N)∗ ν

αµγ h
(I)∗ µ

δνβ + h
(I) ν

αµγ d
(N) µ

δνβ + h
(I)∗ ν

αµγ d
(N)∗ µ

δνβ

+ g
(I) ν

αµγ e
(III) µ

δνβ + g
(I)∗ ν

αµγ e
(N)∗ µ

δνβ + e
(III) ν

αµγ g
(I) µ

δνβ + e
(III)∗ ν

αµγ g
(I)∗ µ

δνβ .

(4.253)

Proof. Application of steps 1) and 2) leads to eq. (4.244). Then, a direct calculation of
the Taylor series around λ0 yields eq. (4.245).

The interest of the above result lies in the following remarkable property of supermo-
menta:

Corollary 4.4.1. Let conditions of theorem 4 hold and P̂α be the supermomentum as-
sociated with a causal vector field ûα, constructed with the physical Bel-Robinson tensor



_ | Asymptotic structure with vanishing cosmological constant 75

T̂αβγδ . Then, the asymptotic behaviour of the supermomentum along γ follows by appli-
cation of steps 1) to 3) on page 64 and reads

←

∗̂Pα = Ω6 (λ1)
(
`µ
←

∗̂u
µ
)3
Wλ2`α +O

(
λ3
)
, (4.254)

where W is the asymptotic radiant superenergy (4.222) and
←

∗̂u
µ := gνµL ρ

ν ∗̂uρ (λ0).

Proof. Step 1) together with eq. (4.148) provides us with

∗̂Pα = Ω6 (λ) ∗̂u
β
∗̂u
γ
∗̂u
δ
∗̂Tαβγδ . (4.255)

Next, one applies step 2) and uses eq. (4.160),

←

∗̂Pα = Ω6 (λ)
Ξ6 (λ)

←

∗̂u
β
←

∗̂u
γ
←

∗̂u
δ
←

∗̂Tαβγδ . (4.256)

This last expression has a Taylor expansion around λ0 that reads
←

∗̂Pα = Ω10 (λ1)
←

∗̂u
β
←

∗̂u
γ
←

∗̂u
δ D(N)

αβγδλ
2 +O

(
λ3
)
. (4.257)

where eq. (4.245) was used. Finally, using eqs. (4.205) and (4.207) together with eq. (4.222),
the result follows.

Remark 4.4.5. Observe that eq. (4.254) is well behaved at λ = λ0 if and only if `µ
←

∗̂u
µ

does not diverge there. The equation, when regular, shows that at leading order only
the Nα component of ûα contributes to the physical supermomentum transported along
a null geodesic reaching J . This is in natural agreement with (3), which bases the
determination of outgoing gravitational radiation precisely on the asymptotic radiant
supermomentum eq. (4.215), i.e., a radiant supermomentum for the ‘observer’ Nα.

Remark 4.4.6. Notice that ûα has to be causal, and in particular can be lightlike. Hence
the result applies to physical radiant supermomenta too.
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La tarde forma pájaros sobre las azoteas.
Del color rojo sale una manzana.
En el perro que ladra
se van acumulando los tablones.
Salta un delfín
y es, durante un segundo,
parte del cielo.

Benjamín Prado, Límite. Todos nosotros, 1998.

5 | Asymptotic structure with a positive
cosmological constant

_

Observational data [9, 10] reveal that we inhabit an accelerated-expanding universe. This
empirical fact evince the presence of a positive (bare or effective) cosmological constant.
This scenario differs drastically from the asymptotically flat case, for J is a spatial hy-
persurface –see eq. (3.81)– and its topology is not determined by universal constraints
[61]. Not only that, but an intrinsic notion of evolution is lacking, as the natural geomet-
ric observer nα (3.88) which is timelike at infinity is also normal to J . Hence, there is
no notion of a privileged congruence of curves –as in the case of the lightlike generators
for Λ = 0. This last feature is studied in section 5.4 and chapter 7 too.

As a consequence, while the conformal completion –see section 3.1– can be built for any
value of the cosmological constant Λ, its relationship with the news tensor and Bondi-
Trautman energy-momentum has only been established in the asymptotically flat case
with Λ = 0 –see chapter 4. Thus, a rigorous theoretical description of radiation escaping
to infinity in the presence of a positive Λ, no matter how tiny Λ may be, is necessary.
Signs of attention to this situation date back to [60], and were amplified in [61] where the
predicament was clearly presented. Some advances have been made [62, 64–66, 68–71]
(see [24, 74] for reviews), usually trying to adapt techniques from the Λ = 0 case to the
new scenario. One of the challenging difficulties is to understand and describe unambigu-
ously the directional dependence that emerges when one approaches infinity in different
lightlike directions [77]. Not to mention the absence of an asymptotic universal structure
of infinity. In summary, until recently [122] the next question had remained open: How to
tell when a space-time with positive cosmological constant contains gravitational radiation
arriving at infinity? This fundamental question underlies any other hypothetical deeper
characterisation, such as a formula for the energy carried away by the waves from an iso-
lated source or the definition of a mass-energy. We answered the question taking a fully
new perspective of the problem [75], different from the methods used previously in the
literature. As it has been emphasised in previous chapters, our investigation is grounded

77
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in studying tidal effects, motivated by the nature of the gravitational field and of actual
gravitational-wave measurements. Our approach is already supported by its successful
application to the well-established asymptotically flat case [76] –see chapter 4.

Summarising, this chapter contains the study of the intrinsic asymptotic structure
and its relation to the space-time fields. The approach followed is to treat J as a
hypersurface and apply the formulae of appendix A –also, the notation for 3-dimensional
hypersurfaces introduced there is used for J here–. The intrinsic curvature is connected
to the kinematics of the congruence of timelike curves tangent to the vector field nα.
Afterwards, a new satisfactory radiation condition at infinity in the presence of a positive
cosmological constant is presented and compared with the Λ = 0-limiting case. To our
knowledge, it is the first such criterion.

5.1 Infinity and its intrinsic geometry

In the present scenario, J is a space-like three-dimensional hypersurface –see fig. 5.1.
Its topology is not fixed in general and typical cases include S3, S2 × R or R3 –for some
examples see [61, 109]. Hence, one can always think of J as S3 or S3 after removing a
set of points. Also, an important element in chapters 6 and 7 is the introduction of cuts;
a cut (S, qAB) on J is a two-dimensional Riemannian manifold S ⊂J equipped with a
metric qAB .

Begin by noting that, in view of eq. (3.92), the second fundamental form of (J , hab)
–eq. (A.3)– vanishes,

κab = 0 . (5.1)

This can be used to simplify the Gauss equation relating the space-time Riemann tensor
R δ
αβγ and the intrinsic curvature R d

abc – eqs. (A.13) to (A.15)–, yielding

R
d

abc

J= eαae
β
be
γ
cR

δ
αβγ ω

d
δ , (5.2)

Rac

J= eαae
γ
cRαγ + nβnδe

α
ae
γ
cR

δ
αβγ , (5.3)

R
J= R + 2nαnγRαγ , (5.4)

The intrinsic Schouten tensor in three dimensions is defined as

Sab := Rab −
1
4Rhab , (5.5)

and we can use the equations above in order to write it in terms of the space-time curvature

Sab
J= eµae

ν
bSµν + nρnσeµae

ν
bRρµσν −

1
12Rhab −

1
2n

µnνRµνhab . (5.6)
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Figure 5.1: In the presence of a positive cosmological constant, J usually has
S3-topology or S3 without a set of points. Also, one can consider Riemannian surfaces, or
cuts, denoted by S. The figure shows –with one dimension suppressed– the stereographic
projection of J to the plane, including a couple of cuts labelled by S1 and S2. Thus,
one can picture J as R3, which is how it is represented in the rest of the figures.

On J the space-time curvature is determined by Sαβ completely, see eq. (3.85), and it
is possible to write

nρnσeµae
ν
bRρµσν

J= −1
2e

µ
ae
ν
bSµν + 1

2habn
ρnσRρσ + 1

12Rhab, (5.7)

and use this to arrive at
Sab

J= 1
2e

µ
ae
ν
bSµν . (5.8)

Indeed, by eqs. (3.85), (5.2) and (5.8) one can write

Rabcd = 2ha[cSd]b − 2hb[cSd]a , (5.9)

which is valid in general for dimension 3. Note that on a neighbourhood of J where nα
is well defined, since Pα

β is defined there too, we can consider

Sαβ = 1
2P

µ
αP

µ
β Sαβ . (5.10)

Also, we introduce the intrinsic Cotton tensor:

Y abc := 2∇[aSb]c , (5.11)
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together with the Cotton-York tensor,

Y ab := −1
2ε

pq
a Y pqb . (5.12)

The electric and magnetic parts of the rescaled Weyl tensor can be written explicitly in
terms of Sαβ,

Cab
J= 1

2e
α
ae
β
bη
ρσ
ανn

λnνdρσβλ
J= −1

2e
α
ae
β
bε
ρσ
αn

λdρσβλ

J= − 1
2N eαae

β
be
ρ
pe
σ
qε
pq
αN

λdρσβλ
J= 1

2N eαae
β
be
ρ
pe
σ
qε
pq
α∇[ρSσ]β . (5.13)

In the second line we have used eq. (3.73). A similar computation can be performed to
write an equation for Dab, and we end up with two important formulae:

Cab =
√

3
Λε

pq
a∇[pSq]b , (5.14)

Dab

J= −
√

3
Λe

α
ae
β
bn

µ∇[αSµ]β
J=
√

3
Λe

α
ae
β
bn

µ∇µSαβ . (5.15)

where in the last line we have used eq. (3.94). Remarkably, eq. (5.14) tell us that the
magnetic part of the rescaled Weyl tensor is completely determined by the geometry of J .
In contrast, eq. (5.15) shows that the electric part is unknown from the intrinsic point
of view1. These two conclusions have direct implications in the search of the asymptotic
radiative degrees of freedom with a positive cosmological constant and must be taken fully
into account.

To see what implication a vanishing Cab would have on the geometry of J , use
eq. (5.11) to write it as

Cab
J= 1

2

√
3
Λε

pq
aY pqb

J= −
√

3
ΛY ab . (5.16)

It is well known (see [100], for instance) that the Cotton-York tensor of the metric of a
three dimensional manifold vanishes if and only if the metric is locally conformally flat.
Thus, the vanishing of the magnetic part of the rescaled Weyl tensor strongly constraints
the intrinsic geometry and the would-be degrees of freedom of the gravitational field —for
a discussion on this matter, see [62].

1Note that we are able to write Dab in terms of Sαβ because it is defined on a neighbourhood of J
and we can compute its derivative along nα.
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5.2 Kinematics of the normal to J

It can be elucidatory to connect the kinematic quantities –shear, acceleration and ex-
pansion2– of nα to the Schouten tensor and with the electric and magnetic parts of the
rescaled Weyl tensor through eqs. (5.14) and (5.15). The relationship gives us an intuitive
idea of the impact that Cαβ and Dαβ have on the congruence of curves that an asymptotic
observer would follow.

To start with, we have to compute the covariant derivative of nα using eqs. (3.31),
(3.35) and (3.36),

∇αnβ = 1
N
∇αNβ −

1
N2Nβ∇αN = − Ω

2NSαβ + f

N
gαβ + 1

2Ω2 κ
N
Tαβ

− 1
2N3Nβ

(
−2Nα f − 2Ω∇αf −

1
4Ω2κTNα −

1
12Ω3κ∇αT

)
= − 1

2NΩSαµP
µ
β + 1

N
Pαβ f + 1

2NΩ2κP µ
β Tαµ . (5.17)

It is easy to see that this vanishes at J , as it must, given our choice of gauge. In other
words, the kinematic quantities vanish at J . Nevertheless, their ‘time derivatives’ –along
nα– may be non-vanishing at J . To begin with, consider the acceleration,

aα = nµ∇µnα = − 1
2NΩP ν

α n
µSµν + 1

2NΩ2κP ν
α n

µT νµ
J= 0 , (5.18)

ȧα := nµ∇µaα = 1
2NP ν

α n
µSνµ − Ωnρ∇ρ

( 1
2NP ν

α n
µSνµ

)
− ΩκP ν

α n
µT νµ + 1

2Ω2κnρ∇ρ

( 1
N
P ν

α n
µT νµ

)
, (5.19)

and from eq. (3.94) we deduce that ȧα
J= 0. Next, consider the expansion

θ := ∇ρn
ρ = − 1

2NΩhµρSµρ + 3
N
f + 1

2NΩ2κhµρT µρ
J= 0 . (5.20)

2By definition, nα is proportional to an exact differential and, therefore, has vanishing rotation
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θ̇ := nρ∇ρθ = 1
2h

µρSµρ − Ωnρ∇ρ

( 1
2N hµρSµρ

)
+ 3
N
nρ∇ρf −

3
N2fn

ρ∇ρN

− ΩκhµρT µρ + 1
2κΩ2nρ∇ρ

( 1
N
hµρT µρ

)
= 1

2P
µνSµρ+ (5.21)

+Ω
[
−nρ∇ρ

( 1
2NP µνSµν

)
+ κP µνT µν + 3

2n
µnνT µν + 3

8κT
]

+ 3fnρ∇ρ

(
N−1

)
− 3

2Sµνn
µnν + Ω2

[1
2κn

ρ∇ρ

( 1
N
P µνT µν

)
− 1

8N κnµ∇µT
]

J= 1
2S

µ
µ − Sρµnρnµ . (5.22)

Finally, the shear,

σαβ :=
(
P µ

αP
ν
β −

1
3Pαβ h

νµ
)
∇µnν = − 1

2NΩP µ
αP

ν
β Sµν + 1

N
Pαβ f

+ 1
2NΩ2P µ

αP
ν
β T µν +

( 1
6NΩP µνSµν −

1
N
f − 1

6NΩ2κP µνT µν

)
Pαβ =

= − 1
2NΩP µ

αP
ν
β Sµν + 1

2NΩ2P µ
αP

ν
β T µν +

( 1
6NΩP µνSµν −

1
6NΩ2κP µνT µν

)
Pαβ

J= 0 . (5.23)

σ̇αβ := nρ∇ρσαβ = 1
2P

µ
αP

ν
β Sµν −

1
6Pαβ P

µνSµν

+ Ω
[
−nρ∇ρ

( 1
2NP µ

αP
ν
β Sµν

)
+ 1

6n
ρ∇ρ

( 1
N
Pαβ P

µνSµν

)
− κP µ

β P
ν
α T µν + 1

3κP
µνT µν

]
+ Ω2nρ∇ρ

( 1
2N κP µ

β P
ν
α T µν −

1
6N κP µνT µνPαβ

)
J= 1

2P
µ
αP

ν
β Sµν −

1
6Pαβ P

µνSµν . (5.24)

Note that this quantity is different from zero (in general), completely tangent to J and
coincides with the traceless part of the intrinsic Schouten tensor

σ̇ab
J
:= Sab −

1
3habS

c
c . (5.25)

It will be necessary, as we will see shortly, to have the second derivative too,

σ̈αβ := nρ∇ρσ̇αβ = 1
2n

ρ∇ρsαβ −
1
6Pαβ n

µ∇µs
ν
ν

−N
(
− 1

2Nnρ∇ρsαβ + 1
6NPαβ n

ρ∇ρs
µ
µ + 1

2N2n
ρ∇ρNsαβ −

1
6N2n

ρ∇ρ (N) sαβPαβ

− κP µ
β P

ν
α T µν + 1

3κn
µnνT µνPαβ

)
+ ΩAαβ + Ω2Bαβ , (5.26)

where A and B are regular (non-vanishing in general) symmetric tensors. Notice that
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contracting with nαP βγ eq. (3.61) and using eq. (3.94)

nµ∇µS
ν

ν

J= 0. (5.27)

Observe, also, that by eqs. (3.100) and (3.102) we have

P µ
β P

ν
α T µν

J= −1
4TPαβ , (5.28)

nµnνT µν
J= −3

4T . (5.29)

Taking into account these last equations we arrive at

σ̈ab
J= eαae

β
bσ̈αβ

J= 2eαae
β
bn

ρ∇ρSαβ . (5.30)

From eqs. (5.14), (5.15), (5.25) and (5.30), we get the desired relations:

Cab =
√

3
Λ

[
εpqa∇[pσ̇q]b + 1

2ε
p
ba∇cσ̇

c
p

]
, (5.31)

Dab = 1
2

√
3
Λ σ̈ab . (5.32)

For the first equation, we have used another interesting relation that can be obtained if
one considers eq. (5.25) and takes the trace in eq. (3.61),

∇cS
c

a

J= ∇aS
c

c

J= 3
2∇cσ̇

c
a . (5.33)

5.3 Characterisation of gravitational radiation at J

At this stage, we have presented the basic asymptotic structure with a positive cosmolog-
ical constant (section 5.1) and the superenergy formalism (chapter 2). Thus, we are ready
to tackle the problem of gravitational radiation at infinity. In this section we formulate a
radiation condition, and expand the contents originally presented in [75]. Let us remark
that to our knowledge, it is the first covariant, gauge-invariant criterion formulated in the
presence of a positive cosmological constant.

The obvious choice of superenergy tensor at infinity is the rescaled Bel-Robinson tensor
(3.86) which is regular and, in general, non-vanishing at J . In order to define a supermo-
mentum, one needs to select an observer. Since we aim at an observer-independent charac-
terisation of radiation, the optimal way would be to have a natural privileged ‘asymptotic
observer’. But this is indeed given by the asymptotic geometry itself: the normal Nα |J
is the suitable vector field. Hence, a natural definition of asymptotic supermomentum is
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–see eq. (2.18) for the general definition–

pα := −NµNνNρDαµνρ , (5.34)

or its canonical version
Pα := −nµnνnρDαµνρ . (5.35)

In a neighbourhood of J , where nα is well defined, these two vector fields are collinear,
Pα = N−3pα, and have the same causal orientation. The reason why we introduce them
both is that eq. (5.34) has a good behaviour in the limit Λ → 0 – if the limit exists– in
contrast to eq. (5.35). This issue will be analysed in section 5.5. Apart from this, the
properties that will be listed next apply to both versions of the asymptotic supermomen-
tum, unless explicitly said otherwise.

The orthogonal splitting of Pα at J is given by

Pα = −Wnα + eαaP
a
. (5.36)

which defines

• the asymptotic canonical superenergy density, W := −nµPµ ≥ 0,

• and the asymptotic canonical super-Poynting vector, Pα := Pα
µPµ = eαaP

a —see
eq. (2.18)—, which is a vector field tangent to J .

From the general properties presented in section 2.1, it follows that

i) Pα is causal and future pointing at and around J , –see property iii) on page 8.

ii) Using eqs. (3.71), (3.87) and (3.103), the divergence of Pα at J reads

∇µPµ
J= Nκ T1 abD

ab , (5.37)

where T1 ab

J
:= Ω−1Tµν e

µ
ae
ν
b. In particular, if the energy-momentum tensor of the

physical space-time (M̂, ĝµν) behaves near J as T̂αβ |J ∼ O(Ω3) (which includes
the vacuum case T̂αβ = 0), then

∇µPµ
J= 0. (5.38)

This follows from eq. (3.84), recalling eq. (3.92) and eq. (3.72).
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iii) Under gauge transformations, they change as

Pα → ω−7

(1− 2ΩN−2N τωτ − Ω2ω−2N−2ωτω
τ )3/2

[
Pα

−
(
3ω−1ΩN−1nρnνωµ + 3ω−2Ω2N−2nρωνωµ + ω−3N−3Ω3ωρωµων

)
Dαµνρ

]
.

(5.39)

pα →ω−7
[
pα −

(
3ω−1ΩNρNνωµ + 3ω−2Ω2Nρωνωµ + ω−3Ω3ωρωµων

)
Dαµνρ

]
.

(5.40)

This behaviour is deduced using eqs. (3.11), (3.55) and (C.8), and the fact that the
Weyl tensor is conformally invariant. At J , the asymptotic supermomentum has
good gauge-behaviour

Pα J→ ω−7Pα , (5.41)

pα
J→ ω−7pα . (5.42)

The divergence property of the canonical supermomentum can be expressed as

∇eP
e + nµ∇µ (W) J= Nκ T1 abD

ab . (5.43)

Under appropriate conditions, this expression leads to an integral balance-law —see sec-
tion 7.5. Typically, kinematic terms associated to nα enter this kind of equation [88],
however, due to our partial gauge-fixing they vanish at J . Nevertheless, it is possible to
write Pα in terms of the derivatives of the shear by using eqs. (5.31) and (5.32),

Pa J= − 6
Λ∇

[a (
σ̇s]t

)
σ̈ts + 3

2Λ σ̈
a
s∇c (σ̇cs) . (5.44)

Or, using eqs. (5.14) and (5.15), in terms of the Schouten tensor,

Pa J= 12
Λ eαte

β
s∇

[s
(
S
a]t
)
nµ∇µSαβ . (5.45)

Our asymptotic gravitational-radiation condition is built upon this object. In order to
characterise the presence of gravitational radiation at infinity, we aim at a criterion with
the following features:

i) Gauge-invariant, as any physical statement should not depend on the choice of the
representative within the conformal class of metrics.

ii) Observer-independent.
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iii) Strictly asymptotic, i. e., defined at J .

iv) With the necessary and sufficient information encoded in (J , hab, Dab). This is
justified from the point of view of a fundamental result by Friedrich [112, 132] which
states that a solution of the Λ-vacuum Einstein field equations is fully determined by
initial/final data consisting of the conformal class of a 3-dimensional Riemmanian
manifold plus a traceless and divergence-free tensor Dab.

According to the justification of point iv), one cannot aspire to describe gravitational ra-
diation at J without taking Dab into account.

Our proposal, presented in [75], reads

Criterion 1 (Asymptotic gravitational-radiation condition with Λ > 0). Consider a 3-
dimensional open connected subset ∆ ⊂ J . There is no radiation on ∆ if and only if
the asymptotic super-Poynting vanishes there

Pα ∆= 0⇐⇒ No gravitational radiation on ∆.

Remark 5.3.1. An equivalent statement is that in absence of gravitational radiation,
and only in that case, the supermomentum3 points along the normal Nα at J , or:

• No gravitational radiation on ∆ ⊂ J ⇐⇒ pα is orthogonal to all surfaces within
∆ .

• No gravitational radiation on ∆ ⊂J ⇐⇒ Nα|∆ is a principal vector (in the sense
of Pirani, i. e., those lying in the intersection of two principal planes, see [30, 33,
133]) of d δ

αβγ |∆ .

Remark 5.3.2. The criterion fulfils property i) as follows from eq. (5.41); property ii),
according to the discussion on the geometric nature of Nα at the beginning of this section;
property iii), by definition; property iv), since by eq. (2.15) the presence of radiation is
completely given by the interplay of Dab and Cab , the latter being fully determined by
the intrinsic geometry – see eq. (5.14).

Remark 5.3.3. According to the previous remark, the presence/absence of radiation
cannot be determined by the intrinsic geometry of J exclusively in general —with the
exception of the trivial cases of a conformally flat metric hab or a vanishing Dab.

Remark 5.3.4. From eq. (2.15), the radiation condition is equivalent to the vanishing
of the commutator of Dab and Cab , and this is only possible if dαβγδ|J has Petrov-type I
or D [33, 88]. In accordance with remark 5.3.1, the Petrov type-D situation arises when
nα|J is coplanar with the two multiple PND.

3The same applies to the canonical supermomentum. However, the characterisation in terms of pα
can be compared with the Λ = 0 case, as we will see.
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Remark 5.3.5. Our criterion 1 is different, but gained some influence, from definition
2.1.1. Had we chosen to inspire our criterion on definition 2.1.2, we would have had to use
Qabc|J constructed with nµ|J instead of the asymptotic super-Poynting. The vanishing
of Qabc|J is equivalent to the electric and magnetic parts being proportional [88], that is

ACab +BDab

J= 0 (5.46)

for some A and B. This is always the case for Petrov type D. Thus, the small difference
between both possibilities is that using Qabc|J there will be more radiative situations:
those with the electric and magnetic parts commuting but not proportional to each other.

Figure 5.2: Gravitational radiation arrives at an open region ∆ on J + but does not at
the open region ∆′. Our criterion states that the asymptotic super-Poynting is different
from zero on ∆ and vanishes on ∆′.

Examples illustrating the soundness of this criterion were presented in [75] and some
of them will be expanded in chapter 8, as well as new ones presented. Furthermore, the
criterion has an equivalent formulation in the asymptotically flat scenario, see chapter 4.
In that case, it has been proved to be successful and equivalent to the traditional one in
terms of the so called news tensor. More details on the limit to Λ = 0 will be given in
section 5.5 but, before that, we investigate the relation between the radiation condition
and the radiant quantities.
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5.4 Lightlike approach and the directional-dependence problem
We have presented a reliable condition that tells if gravitational waves arrive at infinity
or not. Not only it is of special relevance by itself, but it constitutes a crucial first step
towards a deeper characterisation of gravitational radiation at J . One of the biggest
challenges is the directional dependence that emerges when one approaches infinity in
different lightlike directions [77]. Our criterion 1 already bypasses this difficulty. Even
more, it states that the presence of radiation cannot be determined by the rescaled Weyl
scalar φ4 only, as it is sometimes assumed in the literature –we are going to show this
presently. A better understanding of this directional dependence in the presence/absence
of radiation is needed. In our formalism, the logical way to proceed is to understand
the role of the lightlike projections of the rescaled Bel-Robinson tensor, by defining –see
eqs. (2.20) and (2.21)–

k
+ α := 1√

2
(nα +mα) (5.47)

k
− α := 1√

2
(nα −mα) ,

for some unit spacelike vector field tangent to J , mα J= eαam
a. In these definitions

Figure 5.3: The lightlike decomposition (5.47) on J . Given a unit spacelike vector field
mα tangent to J and the unit normal nα, two coplanar lightlike directions are
determined.

nα plays the role of uα in section 2.2 and we denote by {
¯
Eα

A} the basis spanning the
two dimensional space of vectors orthogonal to mα and nα –see appendix A.3 for more
details on that. The algebraic, lightlike decomposition of section 2.2 applies the same
now, though we substitute the over ring by an underbar in quantities projected with

¯
Eα

A
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in order to distinguish them from objects projected with Eα
A

4–e.g., given any one-form
vα on J ,

¯
vA :=

¯
Eα

Avα whereas v̊A := Eα
Avα. Also, we define the radiant supermomenta

–see eq. (2.46)– associated to the vector fields of eq. (5.47) using the rescaled Bel-Robinson
tensor:

Q+ α := − k
+ µ k

+ ν k
+ ρDαµνρ = W+ k

− α + Q+ α = W+ k
− α + Q+ a e

+ α
a , (5.48)

Q− α := − k
− µ k

− ν k
− ρDαµνρ = W− k

+ α + Q− α = W− k
+ α + Q− k e

− α
k . (5.49)

Thus, the first step is to write criterion 1 in terms of the radiant quantities.

Lemma 5.4.1 (Radiant formulation of the asymptotic gravitational-radiation condition).
Consider a three-dimensional open connected subset ∆ ⊂J , then

2
(
Z− − Z+

)
− W+ + W− ∆= 0

√
2
(
Q+ A + Q− A

)
+ 12dA ∆= 0

⇐⇒ No gravitational radiation on ∆ . (5.50)

Proof. It follows directly by application of lemma 2.3.4.

Remark 5.4.1. In terms of Weyl scalars, the no-radiation condition in eq. (5.50) reads:

8φ1φ̄1 − 8φ3φ̄3 − 4φ4φ̄4 + 4φ0φ̄0 = 0 , (5.51)
φ3φ̄4 + φ0φ̄1 − 3φ1φ2 − 3φ2φ3 = 0 . (5.52)

This is easily deduced using the formulae of appendix D.2.

The directional freedom translates into the choice of ma, which then automatically
gives k

± α by eq. (5.47). Indeed, this vector field may serve to define an intrinsic ‘evolution’
direction on J , if selected properly. Thus, one needs some physical criteria underlying
one choice or another. We propose two choices of increasing specialisation that we call
orientations,

Definition 5.4.1 (Weak orientation). We say that ma defines a weak orientation when
k
− α is aligned with a PND of the rescaled Weyl tensor.

Remark 5.4.2. For Petrov-type I d δ
αβγ there are four possible, non-equivalent, weak

orientations; one for each PND. For type II, there are 3; for type D and III, 2; for type
N, just 1.

4The point of making this change of notation is to distinguish the quantities associated to ra of
section 2.2, which is not in general a field on J , from those associated with mα, which is a vector field
on J .
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Remark 5.4.3. The vector ma defines a weak orientation if and only if W− = 0. See
eq. (2.53) and the Petrov characterisation on page 8.

Definition 5.4.2 (Strong orientation). We say that ma defines a strong orientation when
k
− α is aligned with a PND of highest multiplicity of the rescaled Weyl tensor J .

Remark 5.4.4. The strong orientation is a particular case of weak orientation. If d δ
αβγ

has Petrov type I, any strong orientation is a weak orientation too, hence there are four
non-equivalent possibilities; for type II, III and N, there is one single strong orientation;
for type D, there are two.

Remark 5.4.5. The vector ma defines a strong orientation if and only if W− = 0 = Z− .
This follows by lemma 2.3.2 recalling property iii) on page 15.

An immediate result that follows by applying these definitions is the characterisation
of the Petrov type of dαβγδ in the absence of radiation at infinity by means of the radiant
superenergy quantities:

Lemma 5.4.2 (Radiation condition and Petrov types). Consider a three-dimensional
open connected subset ∆ ⊂ J . Choose ma defining a weak orientation according to
definition 5.4.1 and define k

± α as in eq. (5.47). Let Pa and Q± α be the canonical asymp-
totic super-Poynting vector and the radiant supermomenta associated to k

± α, respectively.
Then,

2
(
Z− − Z+

)
− W+ ∆= 0

√
2 Q+ A + 12dA ∆= 0

Q+ α
∆
6= 0

∆
6= Q− α

 ⇐⇒
{
Pa ∆= 0 and dαβγδ Petrov type I on ∆

}
,

(5.53)

{
Q+ α ∆= 0 ∆= Q− α

}
⇐⇒

{
Pa ∆= 0 and dαβγδ Petrov type D on ∆

}
.

(5.54)

Proof. For d δ
αβγ of Petrov type I, set W− = 0 in eq. (5.50) which, by property ii) on page

15, gives the first two lines in eq. (5.53). If Z
− = 0, then k

− α is a repeated principal null
direction of d δ

αβγ , which is incompatible with Petrov-type I. The same occurs if Q+ α = 0.
Thus, the third line in eq. (5.53) follows. The case of Petrov type-D d δ

αβγ is a consequence
of weak orientation, together with what it is said at the end of remark 5.3.4.

More can be said on the direction of propagation of the superenergy, in this case
applying strong orientation,
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Coplanarity
and strong
orientation
( W− = 0)

Algebraically
general
Q− α 6= 0
Q+ α 6= 0

Algebraically
special
Q− α = 0

Z− = 0Z− 6= 0

Pa 6= 0
(I)

Pa = 0
(I)

Z+ 6= Z− Z+ = Z−

Pa 6= 0
(I)

Pa = 0
(I)

2( Z+ − Z− ) 6= W+

and/or√
2 Q+ A 6= −12dA 2( Z+ − Z− ) = W+

√
2 Q+ A = −12dA

W+ = 0

W+ 6= 0

Pa = 0
(D or 0)

Pa 6= 0
(II or N)

Pa 6= 0
(II,D or III)

Pa 6= 0
(II or III)

Q+ α = 0

Z+ = 0 Z+ 6= 0

Z+ 6= 0

W+ = 0

W+ 6= 0

Figure 5.4: Flow of the asymptotic superenergy quantities. One starts from the
above middle node: strong orientation is chosen (−ma points along the spatial
projection to J of a PND of the rescaled Weyl tensor with highest multiplicity). Then,
either the rescaled Weyl tensor is algebraically general (left-hand side of the diagram) or
it is special (right-hand side of the diagram). Moving to the left, either the radiant
superenergy W+ vanishes (above left-hand side) or not (below left-hand side). Thus, for
an algebraically general rescaled Weyl tensor on J , there are four configurations of
asymptotic radiant superenergy: in two of them, there is gravitational radiation (one
with W+ 6= 0, the other one with W+ = 0); in the other two there is no gravitational
radiation (the shaded nodes). Moving to the right, one finds the algebraically special
cases. There are four possibilities, from which just one corresponds to no radiation (the
shaded node, for Petrov type D or 0, the only case in which both radiant supermomenta
vanish).

Lemma 5.4.3. Choose ma defining a strong orientation according to definition 5.4.2, and
define k

± α as in eq. (5.47). Let Pa and Q± α be the canonical asymptotic super-Poynting
vector and the radiant supermomenta associated to k

± α, respectively. Then, the canonical
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asymptotic super-Poynting vector takes the form

Pa J= −
(1

2 Z
+ + 1

4 W
+

)
ma +

(
1

2
√

2
Q+ A + 3dA

)
¯
Ea

A , (5.55)

hence, the superenergy flux cannot propagate in directions orthogonal to ma on J .
Furthermore,

msP
s ≤ 0 , (5.56)

equality holding if and only if P a = 0.

Proof. For the first part, one only has to plug W− = 0 = Z− in eq. (2.84). For the
second part, on the one hand, if msP

s = 0, then W+ = 0 = Z+ and, by property ii) on
page 15 and eq. (2.48), Q+ α = 0. But then, since strong orientation requires Q− α = 0
(remark 5.4.5) using lemma 2.3.4 Pa = 0 follows. In that case there is no radiation
according to criterion 1. On the other hand, if msP

s 6= 0, by the positivity of Z+ and
W+ , msP

s
< 0 necessarily.

Remark 5.4.6. Equation (5.56) supports the idea of considering anyma defining a strong
orientation as a good candidate for intrinsic ‘evolution’ direction. The reason is that
directions orthogonal to ma are transversal to the flux of superenergy, which can be
thought to be associated with ‘changes in the gravitational system’.

Remark 5.4.7. For d δ
αβγ of Petrov type I, the sign of msP

s is not defined because this
case is not strongly orientable and, by positivity of the radiant superenergy quantities, it
is not determined in the general expression of eq. (2.84).

The Petrov characterisation of the rescaled Weyl tensor at J in terms of the asymp-
totic superenergy quantities is summarised in fig. 5.4.

The idea of having a preferred, intrinsic, ‘evolution’ direction,ma, at J is conceptually
important. Indeed, the existence of a congruence of curves intrinsic to J will serve to
define further structure related to absence of incoming radiation and to the novel definition
of symmetries in chapter 7. Write the decomposition of the covariant derivative of this
vector field as –see appendix A.3 for details–

∇amb = ma¯
ab +

¯
κab +

¯
ωab , (5.57)

where the shear of ma is defined as the traceless part of
¯
κab,

¯
Σab :=

¯
κab −

1
2¯
Pab ¯

P cd

¯
κcd . (5.58)



_ | Asymptotic structure with a positive cosmological constant 93

Also, define the symmetric, traceless part of the symmetrised, projected derivative of k
−
α,

¯
σ
−

αβ

J
:=

¯
P µ

α ¯
P µ

β∇(µ k
−

ν) −
1
2¯
Pαβ ¯

P µν∇µ k
−

ν . (5.59)

This is, of course, the shear associated to k
− α. It coincides up to a factor with the shear

of ma, √
2

¯
σ
−

αβ

J= −
¯
P µ

α ¯
P µ

β∇(µmν) + 1
2¯
Pαβ ¯

P µν∇µmν

J= −
¯
Σαβ, (5.60)

where we have used eqs. (3.31) and (5.1) and
¯
Σαβ := ω a

α ω
b

β ¯
Σab. In addition, let us

introduce the expansion of k
− α,

θ
− :=

¯
P µν∇µ k

−

ν . (5.61)

It is possible to formulate an asymptotic ‘Goldberg-Sachs’-like theorem:

Lemma 5.4.4. On the neighbourhood of J where nα is well defined choose an extension

of mα such that nαmα = 0 and mαm
α = 1 there. Assume that d δ

αβγ

J

6= 0 and k
+ βyAβC

J=
k
− βyAβC

J= 0 J= k
− β k

+ γyAβγ . Then,

£~n ¯
D
−

αβ

J=
¯
D
−

αβ

J= 0, £~n ¯
D
−

α

J=
¯
D
−

α

J= 0 =⇒
¯
σ
−

αβ

J= 0.

Remark 5.4.8. The condition
¯
D
−

αβ

J=
¯
D
−

α

J= 0 is equivalent to Q− α = 0 and, therefore,
to saying that mα defines a strong orientation on J and k

− α is a repeated principal null
direction of d δ

αβγ .

Remark 5.4.9. The assumption on the components of the Cotton-York tensor, k+ βyAβC
J=

k
− βyAβC

J= 0 J= k
− β k

+ γyAβγ , is satisfied if the rescaled energy momentum tensor Tαβ fulfils
the corresponding equations coming form eq. (3.71). In particular, given eq. (3.72), the
assumption is satisfied in vacuum or if the physical energy-momentum tensor T̂αβ decays
towards infinity as T̂αβ |J∼ O (Ωp) with p > 2.

Proof. We will need the Bianchi identities written in terms of the lightlike components
of the rescaled Weyl tensor, which can be found in appendix B –recall that one has to
substitute the over ring by an underbar in quantities carrying uppercase Latin indices
A,B,C, etc. Under the assumptions above

¯
t
−
ABC

J= 0 and, using eq. (2.44), eq. (B.8)
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reads

0 J= −
¯
Eω

A ¯
Eσ

C k
− µ∇µ ¯

D
−+

ωσ +
√

2
¯
D

+

C ¯
Eω

A k
− µ∇µ k

−

ω

+ 2
√

2
¯
q
A[C ¯

Eσ
M ] ¯

D
+ M k

− µ∇µ k
−

σ − ¯
D

−+

AC¯
P µτ∇µ k

−

τ

+
¯
D

−+

Aτ¯
P µτ

¯
Eσ

C∇µ k
−

σ − 2
¯
D

−+

[τC]¯
P µτ

¯
Eω

A∇µ k
−

ω

−D
(

¯
Eλ

C ¯
Eµ

A −¯
q
AC¯
P λµ

)
∇µ k

−

λ . (5.62)

Taking the symmetric traceless part of this equation and noting property iii) on page 211,
after some manipulation, eq. (5.62) is expressed as

0 J= −3
2D ¯

σ
−

AC + C
3
2 ¯
Eµ

D¯
εE(A¯

Eσ
C)¯
qED∇µ k

−

σ −
3
4qAC¯

εMN

¯
ω
−

MN , (5.63)

where we have split
¯
Eµ

A ¯
Eν

B∇µ k
−
ν into its symmetric and antisymmetric parts, introduced

(5.59) and defined
¯
ω
−
AB :=

¯
Eµ

[A ¯
Eν

B]∇µ k
−
ν . Note that in two dimensions we have

¯
ω
−

AB = 1
2¯
εAB¯

εCD
¯
ω
−

CD , (5.64)

which after substitution into eq. (5.63) leads to

0 J= −3
2
(
D

¯
σ
−

AC + C
¯
σ
−

E(C ε̊
E

A)

)
. (5.65)

Equation (5.65) requires either
¯
σ
−
AB

J= 0 or

¯
σ
−

AB

J

6= 0, C
J= D

J= 0. (5.66)

If condition (5.66) holds, then
¯
D

−+

αβ = 0 by property iii) on page 211, and we have to
consider eq. (B.4) –taking into account eq. (5.66) and using eq. (2.44)–,

0 J= 2
√

2
¯
D

+ M

¯
Eµ

(M ¯
Eω

A)∇µ k
−

ω −
√

2
¯
D

+

A¯
P µσ∇µ k

−

σ , (5.67)

and in terms of
¯
σ
−
AB ,

0 J=
¯
σ
−

AM ¯
D

+ M . (5.68)

Because we are working in 2 dimensions and
¯
σ
−
AB is traceless, it cannot have eigenvectors

with zero eigenvalue and, thus, eq. (5.68) implies, if
¯
σ
−
AB

J

6= 0, that

¯
σ
−

AB

J

6= 0,
¯
D

+

A

J= 0 . (5.69)

If condition (5.69) holds, eq. (B.2) reads ( k− µgαβyµαβ
J= − k

− µ k
+ α k

− βyµαβ + k
− µ

¯
P λνyµλν

J=
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− k
− µ k

+ α k
− βyµαβ

J= 0)
0 J= k

− µ∇µD , (5.70)

which, recalling eq. (5.66), tells us that £~nD
J= 0 J= k

+ µ∇µD. Considering eqs. (5.66),
(5.68) and (5.69), eq. (B.3) gives

0 J=
¯
D

+

ατ ¯
P τµ∇µ k

− α , (5.71)

or by means of
¯
σ
−
AB , recalling property vii) on page 211 and

¯
D

+
AB =

¯
D

+
BA,

0 J=
¯
D

+ CM

¯
σ
−

CM . (5.72)

Next, taking into account all the quantities that vanish so far, it can be shown that the
trace of eq. (B.9) gives eq. (5.72) again, while contracting it with

¯
εAC gives ( k+ µgαβyαµβ

J=
− k

+ µ k
− α k

− βyαµβ + k
+ µ

¯
P λνyλµν

J= − k
+ µ k

+ α k
− βyαµβ

J= 0)

0 J= − k
+ µ∇µC +

¯
εAC D̊

+ E
A

(
¯
ω
−

EC +
¯
σ
−

EC

)
, (5.73)

where we have taken into account
¯
D

+
AB =

¯
D

+
BA. Equation (5.64) and property vii) on

page 211 simplify eq. (5.73) to

0 J= − k
+ µ∇µ (C) +

¯
εAC D̊

+ E
A ¯

σ
−

EC . (5.74)

Back to eq. (5.62), using eqs. (5.66), (5.69) and (5.70), we arrive at

nµ∇µC
J= 0 . (5.75)

Then, eq. (5.73) reads simply
0 J=

¯
εAC D̊

+ E
A ¯

σ
−

EC . (5.76)

It is easily shown, given that
¯
σ
−
AB and

¯
D

+
AB are both symmetric and traceless, that

eqs. (5.72) and (5.76) imply –e.g., by writing these equations in components A = 2, 3–

¯
σ
−

AB

J

6= 0 =⇒
¯
D

+

AB

J= 0. (5.77)

But
¯
D

+
AB

J= 0 together with eqs. (5.66) and (5.69) and the assumptions
¯
D
−

AB

J= 0 J=
¯
D
−

A

leads to d δ
αβγ

J= 0. This follows from the fact that in this case W∓ J= Z∓ J= V J= 0 –see
eqs. (2.52) to (2.55) and (2.58)– which, by lemma 2.3.1 and eq. (2.19) implies d δ

αβγ

J= 0.
Alternatively, use eqs. (2.42) and (2.43) to show that Dab

J= Cab
J= 0(⇐⇒ d δ

αβγ

J= 0).
However, this contradicts one of the assumptions of the theorem. Therefore, the only
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possibility is

¯
σ
−

AB

J= 0 . (5.78)

Lemma 5.4.4 is in fact a result on ma as well, noting eq. (5.60):
Corollary 5.4.1. Under the same assumptions of Lemma 5.4.4, its conclusion can be
equivalently stated as

¯
Σab

J= 0.

5.5 The Λ = 0 limit
In the preceding sections, we have discussed some differences and analogies of the Λ > 0
and Λ = 0 scenarios. Concerning the characterisation of gravitational radiation, one can
study the limit to Λ = 0 of criterion 1. In this subsection we will assume that limΛ→0 gαβ
exists and defines a good Lorentzian metric.

The limit of the normal to J , Nα

∣∣∣∣
Λ=0

, coincides with the normal to J0, the conformal
boundary for Λ = 0. Also, we have already mentioned in section 5.3 that the asymptotic
supermomentum pα (5.34) has a good limit to Λ = 0,

lim
Λ→0

pα
J0= Qα , (5.79)

where Qα is the asymptotic radiant supermomentum at J0 –see chapter 4–

Qα J0= −
(
NµNνNρDαµνρ

) ∣∣∣∣
Λ=0

. (5.80)

Therefore, the absence of gravitational radiation in the Λ > 0 case according to crite-
rion 1 implies that the asymptotic radiant supermomentum Qα vanishes in the Λ = 0
counterpart and, in consequence, that the news tensor vanishes there so that there is no
radiation –see theorem 3. This limit reinforces the validity of criterion 1.

Apart from pα, it is possible to study the limit of the radiant supermomenta of
eqs. (5.48) and (5.49). The first thing to do is to define a couple of lightlike vector
fields on J in a way that their limit to Λ = 0 is well-behaved. This can be achieved by
multiplying the expressions on the right-hand side of eqs. (7.6) and (7.7) by N ,

K
+ α := 1√

2
(Nα +Mα) , (5.81)

K
− α := 1√

2
(Nα −Mα) , (5.82)
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where Mα := Nmα with the following normalisations:

gµν K
− µ K

+ ν = N2, gµνM
µMν = N2, gµνN

µMν = 0. (5.83)

Vector fields on J of the kind of Mα obey:

Lemma 5.5.1. Assume that limΛ→0 gαβ exists and let Mα be any vector field on J

whose norm is proportional to a positive power of the cosmological constant Λ. Then,

lim
Λ→0

Mα J0= BNα

∣∣∣∣
Λ=0

, (5.84)

for some function B which may have zeros.

Proof. We know that the limit Nα

∣∣∣∣
Λ=0

does not vanish and is lightlike at J0. Then, we
have

lim
Λ→0

(
gµνM

µMν
)

= lim
Λ→0

fΛp = 0 , (5.85)

lim
Λ→0

(
gµνM

µN ν
)

= lim
Λ→0

0 = 0 J0= lim
Λ→0

(
gµνM

µ
)
N ν

∣∣∣∣
Λ=0

, (5.86)

where f is a function and p ∈ R, p > 0. The first of this formulae implies that the limit
of Mα is either lightlike or zero at J0. Taking this into account, the second formula
indicates that, if different from zero, the limit of Mα has to be proportional to Nα –as
the scalar product of two non-vanishing lightlike vector fields is zero if and only if they
are collinear.

Then, by lemma 5.5.1, the limit of K
± α reads

lim
Λ→0

K
± α J0= 1√

2
(1±B)Nα

∣∣∣∣
Λ=0

. (5.87)

After this, define the radiant supermomenta associated to K
± α,

q
+ α := − K

+ µ K
+ ν K

+ ρDαµνρ , (5.88)
q
− α := − K

− µ K
− ν K

− ρDαµνρ . (5.89)

these are nothing else than the radiant supermomenta given in eqs. (5.48) and (5.49)
appropriately rescaled by a factor N3.

Lemma 5.5.2. Assume that limΛ→0 gαβ exists. The radiant supermomenta (5.88, 5.89)
have, respectively, the regular limit

lim
Λ→0

q
± α J0= 1

2
√

2
(1±B)3Qα (5.90)
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Figure 5.5: In the Λ = 0 limit vector fields of the class described in lemma 5.5.1 become
collinear with Nα

∣∣∣∣
Λ=0

, the vector field tangent to the null generators of J0.

where Qα is the asymptotic radiant supermomentum (5.80) on J0 for a vanishing cos-
mological constant and B is a function which may have zeros. Moreover,

lim
Λ→0

q
+ α = 0 = lim

Λ→0
q
− α ⇐⇒ Qα J0= 0⇐⇒ No gravitational radiation at J0.

Proof. The limit of q
± α is computed using eq. (5.87). Then, one notices that for non-

vanishing q
± α, it is not possible that both radiant supermomenta vanish simultaneously

in the limit unless Qα J0= 0. The reason is that

B =1 =⇒ lim
Λ→0

q
− α = 0, lim

Λ→0
q

+ α J0= 1
2
√

2
(1 +B)3Qα , (5.91)

B =− 1 =⇒ lim
Λ→0

q
− α J0= 1

2
√

2
(1−B)3Qα, lim

Λ→0
q

+ α = 0 , (5.92)

B 6=± 1 =⇒ lim
Λ→0

q
− α J0= 1

2
√

2
(1−B)3Qα, lim

Λ→0
q

+ α J0= 1
2
√

2
(1 +B)3Qα . (5.93)

Hence, if we assume B = 1, limΛ→0 q
+ α = 0 ⇐⇒ Qα J0= 0. But if B = −1, then

limΛ→0 q
− α = 0⇐⇒ Qα J0= 0. Finally, if B 6= ±1 the only possibility is limΛ→0 q

− α = 0 =
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limΛ→0 q
+ α ⇐⇒ Qα J0= 0.

Corollary 5.5.1. If one (and only one) of the asymptotic radiant supermomenta q
± α of

eqs. (5.88) and (5.89) vanishes, then B = ∓1 and

lim
Λ→0

M
± α J0= ±Nα

∣∣∣∣
Λ=0

, (5.94)

lim
Λ→0

K
± α J0= 0 , (5.95)

lim
Λ→0

K
∓ α J0=

√
2Nα

∣∣∣∣
Λ=0

. (5.96)

Proof. From the proof in lemma 5.5.2, if q
± α = 0, one has B = ∓1. Setting the corre-

sponding value of B in eqs. (5.84) and (5.87) gives eqs. (5.94) to (5.96).

These results have a particularly interesting interpretation regarding incoming versus
outgoing radiation and intrinsic evolution directions that will be presented in section 7.3.
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Allí.
En el fondo.
Al filo.
Donde Nietzsche escribía:
“Di tu palabra y rómpete”.
Donde nadie te espera.

Benjamín Prado, Límite. Todos nosotros, 1998.

6 | In the search for news
_

In sections 5.3 and 5.4, we presented a gravitational radiation condition at infinity and
a characterisation of the asymptotic Petrov type of the rescaled Weyl tensor. The latter
was related to the directional-dependence problem and with the definition of an intrinsic
‘evolution direction’ within J . A further step forward in the characterisation of grav-
itational radiation would be to find a news tensor, i.e., an object describing in the full,
covariant theory the two radiative degrees of freedom of the gravitational field like in in
the Λ = 0 case –see chapter 5. We wonder if a similar tensor may exist in the presence of
a positive cosmological constant and, if so, under which conditions.

It is worth recalling that historically the news tensor for Λ = 0 has been under-
stood from different perspectives: a term in the asymptotic expansion of the metric, the
derivative along Na of the shear tensor of outgoing null geodesics or, the most robust rep-
resentation, a rank-2 symmetric tensor field intrinsic to J , orthogonal to Na everywhere
and depending on the geometry of (J , hab) only. However, none of these approaches can
be completely successful if Λ > 0, since such a tensor, if it exists, must contain informa-
tion related to the electric part of the rescaled Weyl tensor; this is studied in sections 6.3
and 6.4 and also in section 7.2.

For the rest of the chapter, we will work with an arbitrary cut, as introduced in
section 5.1. We denote by {Eα

A} any basis of vector fields on S and by ra the unit normal
to the cut within J . Let us emphasise that ra is defined at least on S but not necessarily
everywhere on J , neither it is tangent to a congruence of curves on J in general. The
metric qAB is inherited from the ambient metric hab and we denote the second fundamental
form, its trace and the shear by κ̊AB, κ̊ and Σ̊AB, respectively. Also, ε̊AB is the intrinsic,
canonical, volume two-form of the metric qAB . For more details, see appendix A.2. In
the same fashion as eq. (5.47), we introduce a pair of vector fields k

± α, defined at least on
S. Notice that k

±
αE

α
A = 0. Let us present some useful relations involving the intrinsic

Schouten tensor Sab and the extrinsic curvature of S. First, define the tangent and

101
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orthogonal components to S –according to the general notation (2.35, 2.38)– as

Sab
S= Srarb + 2S̊B r(aW

B
b) + S̊ABW

A
a W B

b . (6.1)

After this, project eq. (3.85) thrice with Ea
A and once with ra and use eq. (5.8) to obtain

qA[C S̊B] = D[C κ̊B]A , (6.2)

whose trace reads
S̊B = DC κ̊ C

B −DB κ̊ . (6.3)

Also, by eq. (5.8) and eqs. (A.31) and (A.32), it can be seen that

S
S= −1

2K +Rabr
arb

S= 1
2K − S̊

E
E , (6.4)

S̊EE = K + 1
2Σ̊2 − 1

4 κ̊
2 . (6.5)

Here, K is the Gaussian curvature of the cut, which is related to its scalar curvature as
K = R̊/2 —see appendix A.2 for more details.

6.1 General considerations

The news tensor in asymptotically flat space-times vanishes if and only if the radiant
asymptotic super-Poynting does so –see chapter 4; indeed, the asymptotic superenergy
acts as source for the news tensor. In the presence of a positive cosmological constant,
however, the asymptotic supermomentum is not radiant. Thus, a question arises: do we
look for a news tensor which can be associated to a radiant supermomentum in a similar
fashion as in the Λ = 0 case or, alternatively, one that vanishes if and only if the asymp-
totic super-Poynting vanishes? In section 6.3 we will present a general programme valid
for both possibilities, while in section 6.4 we will explore thoroughly the first one.

Generically, we expect any news-like object to have some basic properties. First of
all, the would-be news tensor must appear at the energy-density level. From this point of
view, it is reasonable to think that the gravitational radiative degrees of freedom cannot
be extracted by local methods alone — for a discussion in the asymptotically flat case,
see [102]. For Λ = 0, J is naturally foliated by two dimensional cuts; this is not the
case for Λ > 0 in general, and for that reason we are just considering a single cut S.
Another important difference is that in the Λ = 0 case any cut has a unique, lightlike,
orthogonal (outgoing for J +) direction that escapes from the space-time and is linearly
independent of the (incoming for J +) lightlike direction given by the generators of J .
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For Λ > 0, there are always two independent, future lightlike directions orthogonal to any
cut S on J pointing out of (or into) the space-time, k

± α. Therefore, a priori there is no
reason why there should be only one news-like tensor for each cut instead of two, one for
each radiant supermomentum associated to k

± α. Secondly, to describe the radiative sec-
tor the would-be news tensor(s) should have two degrees of freedom. The most plausible
object is a symmetric, traceless, rank-2 tensor. Thirdly, it has to be gauge invariant to
have physical significance. Finally, a key feature that will guide us is that we want it to
vanish if and only if some meaningful superenergy quantity vanishes, such as the radiant
super-Poynting Q± α or the canonical asymptotic super-Poynting Pa. Thus, according to
eqs. (2.15), (2.54) and (2.55), the news tensor has to carry information from both the
magnetic Cab and the electric Dab parts of the rescaled Weyl tensor.

More concisely, the properties that the would-be news tensor is expected to have are:

i) Rank-2 tensor field on S.

ii) Symmetric.

iii) Traceless.

iv) Gauge invariant.

v) Contain information related to Cab and Dab.

vi) Vanish if and only if some meaningful superenergy quantity does (e.g., Z+ = 0
or/and Z− = 0, or Pa = 0).

6.2 A geometric result: the counterpart of Geroch’s tensor ρ
Here we present an intermediate and crucial step in our search. It begins with the following
lemma, where ω̊A

S:= DAω:

Lemma 6.2.1. Let tAB be any symmetric tensor field on S whose behaviour under
conformal rescalings (C.15) is

t̃AB = tAB − a
1
ω
DAω̊B + 2a

ω2 ω̊Aω̊B −
a

2ω2 ω̊C ω̊
CqAB (6.6)

for some fixed constant a ∈ R. Then,

D̃[C t̃A]B = D[C tA]B + 1
ω

(
aK − tEE

)
ω̊[CqA]B , (6.7)
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where K is the Gaussian curvature of (S, qAB). In particular, for any symmetric gauge-
invariant tensor field BAB on S,

D̃[C B̃A]B = D[CBA]B −
1
ω
BE

E ω̊[CqA]B (6.8)

Remark 6.2.1. This results applies locally and it is valid for any Riemannian surface,
independently of the topology.

Proof. Using the formulae in appendix C for cuts, a direct calculations yields

D̃[C t̃A]B = D[C tA]B + 1
ω
tB[Cω̊A] + 1

ω
qB[C t

D
A] ω̊D + 1

ω
aKω̊[CqA]B . (6.9)

Then, one uses the two-dimensional identity [121]

A E
CA = 2δE[AA D

C]D , for any tensor such that A E
CA = −A E

AC (6.10)

in order to write 1
ω
tB[Cω̊A] + 1

ω
qB[C t

D
A] ω̊D = − 1

ω
tEEω̊[CqA]B , (6.11)

arriving at the final result. For a gauge invariant tensor a = 0 in eq. (6.6), therefore one
only has to set this value in eq. (6.7) to obtain eq. (6.8).

Corollary 6.2.1. A symmetric gauge-invariant tensor field mAB on S satisfies

D̃[Cm̃B]A = D[CmB]A (6.12)

if and only if mE
E = 0.

Corollary 6.2.2 (The tensor ρ). If S has S2-topology, there is a unique symmetric tensor
field ρAB whose behaviour under conformal rescalingseq. (C.15) is as in (6.6) and satisfies
the equation

D[CρA]B = 0 (6.13)

in any conformal frame. This tensor field must have a trace ρEE = aK and obeys

£~χρAB = −aDADBφ (6.14)

independently of the conformal frame, where χA is any CKVF of (S, qAB) and φ :=
DMχM/2. Specifically, it is invariant under transformations generated by KVF (and
homothetic Killing vectors) of (S, qAB). Furthermore, it is given for round spheres by
ρAB = qABaK/2.

Proof. Existence is proved by using the (trivial) L2-orthogonality of the right-hand side
of eq. (6.13) with all conformal Killing vectors on S (see for instance [134], appendix
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H) or, more directly, by noticing that ρAB = qABaK/2 fulfils DAρBC = 0 in the round
metric sphere. Concerning uniqueness, notice that lemma 6.2.1 fixes the trace of ρAB to
ρEE = aK, and recall the assumption that eq. (6.13) holds in any gauge. Then, if two
different solutions ρ1 AB and ρ2 AB exist, D[C

(
ρ

1 A]B − ρ
2 A]B

)
= 0. However, in that case,

the difference ρ1 AB − ρ2 AB is a traceless, Codazzi tensor on S2 and, as a consequence
of the uniqueness of this kind of tensors [113], ρ1 AB − ρ2 AB = 0. To show eq. (6.14),
first define MAB := £~χρAB + aDADBφ. This tensor field is gauge invariant and using
DMDMφ = −£~χK − 2φK (this formulae can be found in appendix F of [122]) and
ρCC = aK one derives MC

C = 0. Also, write the formula for the commutator [£~χ,DA]
(see e.g. [120]) acting on ρAB

(£~χDC −DC£~χ) ρAB = −ρEA£~χΓ̊ECB − ρEB£~χΓ̊ECA, (6.15)

which, noting that

£~χγ̊
E
CB = δECDBφ+ δEBDCφ− qBCqFEDEφ , (6.16)

can be antisymetrised to get(
£~χD[C −D[C£~χ

)
ρA]B = −ρB[ADC]φ+ qB[Cρ

E
A] DEφ . (6.17)

Making use of eq. (6.13) one arrives at

D[CMA]B = ρB[ADC]φ− qB[Cρ
E

A] DEφ+ a
1
2K

(
δE[AqC]B − qB[Aδ

E
C]

)
= 0 (6.18)

where the first equality follows by 2D[CDA]DBφ = R̊ E
CAB DEφ, and the second using

the identity (6.10) together with ρCC = aK. Because MAB is symmetric, traceless and
divergence free (a ‘TT-tensor’) on the compact two-dimensional S2 necessarily MAB = 0.
For (homothetic) KVF, φ = constant and eq. (6.14) reads £~χρAB = 0, i.e., ρAB is left
invariant by (homothetic) KVF.

Remark 6.2.2. Let ~χ be a CKVF on (S, qAB),

£~χqAB = 2φqAB , (6.19)

generating a one-parameter group of local conformal transformations
{

Ψ
ε

}
on S (

(
Ψ
ε

∗q
)
AB

=

Φ
ε

2qAB) with φ := d Φ
ε
/dε

∣∣∣∣
ε=0

and Φ
ε

∣∣∣∣
ε=0

= 1. Then, the finite change of ρAB under these
conformal transformations is

ρ̃AB = ρAB − a
1
Φ
ε

DA Φ
ε B

+ 2a
Φ
ε

2 Φ
ε A

Φ
ε B
− a

2 Φ
ε

2 Φ
ε C

Φ
ε

CqAB (6.20)



106 6.2 | A geometric result: the counterpart of Geroch’s tensor ρ

with Φ
ε A

:= DA Φ
ε
. Expression (6.20) follows from eq. (6.14) and the exponential map

from the Lie algebra to the finite group of conformal transformations.

Corollary 6.2.3 (The tensor ρ for non-S2 manifolds). Let (S, qAB) be a 2-dimensional
Riemannian manifold, no necessarily with S2 topology, and such that there exists a CKVF
χA with a fixed point. Then, there is a unique symmetric tensor field ρAB on S whose
behaviour under conformal rescalings (C.15) is as in (6.6) and satisfies the equations

D[CρA]B = 0 , (6.21)
£~χρAB = −aDADBφ , (6.22)

in any conformal frame, where φ := DMχM/2. Furthermore, this tensor field must have
a trace ρEE = aK, is given for the metric with constant positive Gaussian curvature by
ρAB = qABaK/2, vanishes for the flat Euclidean metric and is invariant under transfor-
mations generated by χA when this is a KVF (that is, when φ = 0).

Remark 6.2.3. In two dimensions the CKVF χA with a fixed point generates an axial
symmetry locally around the fixed point (see [135]). The existence of such vector field is
ensured for S = S2, S = S2 \ {p1} = R2 and S = S1 × R –see appendix F in [122].

Remark 6.2.4. The further requirement of eq. (6.22) with respect to corollary 6.2.2
provides the uniqueness of ρAB. Note that this is a natural condition to be imposed.
Actually, the validity of (6.22) for any CKVF would be motivated on physical arguments
as well, for it makes the tensor ρAB respect the symmetries of the cut. This also would
fix the behaviour under finite conformal transformations to be of type (6.20).

Proof. Existence is proved by noticing that ρAB = qABaK/2 fulfils DAρBC = 0 in the
metric with constant positive Gaussian curvature, and one can check using the gauge
change (6.6) and eq. (6.22) that this gives the vanishing tensor for the flat metric. Con-
cerning uniqueness, the proof follows along the same lines of corollary 6.2.4 and we also
arrive at D[C

(
ρ

1 A]B − ρ
2 A]B

)
= 0, if two different solutions ρ1 AB and ρ2 AB exist. Then,

choose the conformal frame such that χA becomes a KVF (which necessarily keeps the
fixed point). To see that ρAB is left invariant by χA in this conformal frame, one only has
to set φ = 0 in eq. (6.22). Now, the difference ρ1 AB − ρ2 AB is trace- and divergence-free,
i.e., a TT-tensor which also fulfils the so called KID equations [136] for χA because of its
invariance by this KVF and we are working in 2 dimensions. Now, a result in [137] states
that the only solution to this problem if the KVF has fixed points –as it is the case of
χA– is the trivial one. Hence, ρ1 AB − ρ2 AB = 0. To see that uniqueness holds in any
conformal frame, recall that if two solutions exist, they have to coincide in the particular
frame(-family) in which χA is a KVF. Since the change of any two solutions to that frame
is the same (given by eq. (6.6)), the only possibility is ρ1 AB = ρ2 AB in any conformal
frame. The proof that ρAB vanishes for the flat metric will be completed below.
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By these means we can recover, in a direct manner, a non-trivial result on the sphere
S2 (with any metric) —first proven in [138],

Corollary 6.2.4. Let, as before, (S, qAB) be any Riemannian manifold, topologically S2,
with metric qAB . Then, for every conformal Killing vector field χA∫

S
£~χKε̊ = 0 . (6.23)

Proof. Equation (6.13) is equivalent to its trace,

DC
(
ρ C
A − aδCAK

) S= 0, (6.24)

which is a gauge invariant equation too. Contracting with χA and integrating over S one
obtains the desired result, noting that 2D(AχB) = q̊ABDCχC .

From now on, we will use ρAB to denote this tensor field in the case a = 1. We
will later need the gauge change of the tensor ρAB but using the covariant derivative D̃A
instead of DA. To that end, we can use (6.6) with a = 1 but applied to the conformal
change qAB = ω−2q̃AB, so that

ρAB = ρ̃AB − ωD̃AD̃Bω−1 + 2ω2D̃Aω−1D̃Bω−1 − ω2

2 q̃CDD̃Cω−1D̃Dω−1q̃AB (6.25)

and expand the righthand side to get

ρAB = ρ̃AB + 1
ω
D̃Aω̊B −

1
2ω2 q̃

CDω̊C ω̊D q̃AB . (6.26)

Interestingly, ρAB is closely related to the ρ tensor field defined by Geroch in the
asymptotically flat case [17] –see corollary 4.2.2. Indeed, they are the same objects when
the latter is restricted to a cut. Its role in the existence of a news tensor will be made
clear in section 6.3.

6.2.1 The tensor ρ for axially symmetric 2-dimensional cuts
One can give the explicit form of ρAB for any 2-dimensional metric with axial symmetry
qAB . Lets choose coordinates xA = {p, ϕ} such that

q = F (p) dp2 +G (p) dϕ2 (6.27)

and ∂ϕ is the axial KVF. This metric is locally conformal to the round metric with constant
positive Gaussian curvature K

q̊ = 1
K

(
dθ2 + sin2 θdϕ2

)
. (6.28)
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Assume that the conformal factor ω relating both metrics (qAB = ω2q̊AB) respects the
axial symmetry. Then,

G (p) = ω2

K
sin2 θ, F (p) = ω2

K
θ′

2
, θ′ = dθ

dp, (6.29)

yields

tan θ2 = Ceε
∫ √

F/Gdp, sin θ = 2Ceε
∫ √

F/Gdp

1 + C2e2ε
∫ √

F/Gdp
, cos θ = 1− tan2 (θ/2)

1 + tan2 (θ/2) , (6.30)

where C has to be fixed (making the value of p at the fixed point of ∂φ correspond to
θ = 0 or θ = π) and ε2 = 1. With this, the conformal factor reads

ω =
√
K

√
G

sin θ . (6.31)

Its first and second derivatives (using the connection of qAB) read

1
ω
ωA = δpAψ, with ψ :=

G′
2G − ε

√
F

G
cos θ(p)

 , G′ := dG
dp , (6.32)

1
ω
DAωBdxAdxB =

(
ψ′ − F ′

2F ψ + ψ2
)
dp2 + G′

2F ψdϕ
2, with F ′ := dF

dp , ψ′ := dψ
dp ,

(6.33)

Setting ρ̃AB = 1
2Kq̊AB and using the inverse conformal behaviour (6.26) one gets

ρAB = 1
2ω2

(
K + ω2

F
ψ2
)
qAB −

1
ω
DAωB . (6.34)

Now, inserting eq. (6.31) in this last expression gives the explicit form of ρAB for any
axially symmetric qAB (6.27):

ρABdxAdxB =
(
F

2G sin2 θ − ψ′ + F ′

2F ψ −
1
2ψ

2
)
dp2 +

(
1
2 sin2 θ + ψ

2F (Gψ −G′)
)
dϕ2,

(6.35)
where sin2 θ must be understood as the function of p given in eq. (6.30).

We can apply the formula above to compute ρAB for the flat Euclidean metric written
in polar coordinates. This is simply eq. (6.27) with F (p) = 1 and G(p) = p2, while it can
be checked that the conformal factor is ω = 1 + (K/4)p2. Application of eq. (6.35), where
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one must fix ε = −1 and C = 2/
√
K, then leads readily to

ρAB|flat = 0.

This finishes the proof of corollary 6.2.3

6.3 General approach to gauge-invariant traceless symmetric tensor
fields on J

We present a way of constructing equations for tensor fields fulfilling properties i) to iv)
on page 103. To that end, we take as starting point eq. (5.14) and contract it with raEb

B

to obtain
NC̊A = ε̊CD

(
D[C S̊

A
D] + κ̊ A

[C S̊D]

)
. (6.36)

By eq. (6.3), the right-hand side of eq. (6.36) can be rearranged as

ε̊CD
(
D[C Ů

A
D] − T A

CD

)
, (6.37)

with

UAB := SAB + 1
2 κ̊Σ̊AB +

(1
8 κ̊

2 − 1
4Σ̊2

)
qAB = U(AB) , (6.38)

T C
AB := 1

2
[
δC[ADB]Σ̊2 −DC

(
Σ̊D

[B

)
Σ̊A]D

]
= T C

[AB] , (6.39)

and we can write eq. (6.36) in the equivalent form

1
2Nε̊CAC̊B = D[CUA]B − TCAB . (6.40)

Observe that since T C
AB is antisymmetric on its two covariant indices, by the identity

(6.10) it is completely determined by its trace

TB := T C
CB = 1

4
[
DBΣ̊2 − Σ̊CDDC

(
Σ̊DB

)
+ Σ̊ D

B DC
(
Σ̊ C
D

)]
. (6.41)

The point of this decomposition is that TABC is gauge invariant

T̃ABC = TABC (6.42)

and that UAB transforms as

ŨAB = UAB + 2
ω2 ω̊Aω̊B −

1
ω
DAω̊B −

1
2ω2 ω̊P ω̊

P qAB , (6.43)
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where we have used the formulae of appendix C. In addition to that, taking eq. (6.5) into
account, the trace of UAB reads

UE
E = R̊

2 = K . (6.44)

Remarkably, these are the gauge behaviour and the trace of the tensor required to prove
the following:

Lemma 6.3.1. The tensor field D[CUD]A is gauge invariant,

D̃[C ŨD]A = D[CUD]A . (6.45)

Proof. It follows from lemma 6.2.1, noting the gauge behaviour of UAB –eq. (6.43)– and
its trace –eq. (6.44).

Remark 6.3.1. In particular, the combination D[CUD]A +TDCA is gauge invariant too, as
follows from the gauge invariance of TABC . This can also be proven looking at eq. (6.36)
and noting the gauge behaviour of C̊A (see appendix C).

We write now an important result:

Proposition 6.3.1 (First component of news). Let (S, qAB) be a 2-dimensional Rieman-
nian manifold endowed with the metric qAB . If qAB has a CKVF with a fixed point, the
tensor field

VAB := UAB − ρAB , (6.46)

is symmetric, traceless, gauge invariant and satisfies the gauge-invariant equation

D[AUB]C = D[AVB]C , (6.47)

where ρAB is the tensor field of corollary 6.2.3 (for a = 1). Besides, VAB is unique with
these properties.

Proof. The tensor field VAB is symmetric, traceless and gauge invariant as a consequence
of Equations (6.38), (6.43) and (6.44) and corollary 6.2.3. The uniqueness of VAB follows
from corollary 6.2.3 too and Equation (6.47).

Remark 6.3.2. The existence of a CKVF with a fixed point is warranted for the topolo-
gies S = S2, S = R× S1 and S = R2 –see appendix F in [122].

In passing, notice the identity that follows taking the trace of eq. (6.40) and applying
proposition 6.3.1:∫

S
χB

(
Nε̊BEC̊

E − 2TB
)

= 0 ∀ CKVF χB on a topological-S2 S. (6.48)
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We consider VAB an essential component of any news-like tensor as will be justified in
section 6.4. In general, one has

Proposition 6.3.2. Let (S, qAB) be a 2-dimensional Riemannian manifold with S2-
topology endowed with the metric qAB . If the equation

D[CZA]B = YCAB (6.49)

for a given gauge-invariant tensor field YCAB = Y[CA]B has a solution for ZAB = Z(AB)
whose gauge behaviour is given by (6.6) with a = 1, then this solution is unique and given
by

ZAB = UAB +XAB (6.50)

where XAB is the unique traceless gauge invariant symmetric tensor field solution of

D[CXA]B = YCAB −
1
2Nε̊CAC̊B − TCAB . (6.51)

Proof. Lemma 6.3.1 ensures the gauge-invariance of D[CZA]B , provided XAB is gauge
invariant and traceless and applying corollary 6.2.1. For the second part, note that by
eq. (6.40)

D[CZA]B = D[CXA]B + 1
2Nε̊CAC̊B + TCAB , (6.52)

from where eq. (6.51) follows immediately. If two different solutions Z1 AB and Z2 AB

exist, one has D[C

(
Z

1 A]B − Z
2 A]B

)
= 0. Then, because their difference is a traceless

Codazzi tensor on S2, the only possibility [113] is Z1 AB − Z2 AB = 0.

Remark 6.3.3. The S2 topology can be dropped from the assumptions if (S, qAB) is a
2-dimensional Riemannian manifold such that there exists a CKVF χA with a fixed point
and ZAB fulfils the KID equations [136]. For proving this, one applies the result of [137]
which was used in the proof of corollary 6.2.3 to show that D[C

(
Z

1 A]B − Z
2 A]B

)
= 0

implies Z
1 A]B − Z

2 A]B = 0 .

Remark 6.3.4. By proposition 6.3.1 (or with different appropriate assumptions, corol-
lary 6.2.3) and eq. (6.50), the general eq. (6.49) is written as

D[CNA]B = YCAB , (6.53)

where we have defined the gauge-invariant traceless symmetric tensor field

NAB := VAB +XAB . (6.54)

Equation (6.53) is equivalent to its trace,

DCN C
A = 2YA , (6.55)
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with
YA := Y A

CA . (6.56)

Remark 6.3.5. For S topologically S2, solutions to eq. (6.53) exist if and only if∫
S
χBYB ε̊ = 0 , (6.57)

for any CKVF on (S, qAB) (see [134], appendix H). In general, one can always prescribe
YCAB (equivalently, YA ) such that solutions exist, one plausible option is

YB := ∆yDBy, ∀y ∈ C2 (S) (6.58)

which follows from a result proven in [138]: if assumptions in corollary 6.2.4 hold, then∫
S

∆y£χẙε = 0, ∀y ∈ C2 (S) (6.59)

and this statement is conformally invariant.

NAB as defined in (6.54) is our candidate for the news-like object we are seeking. It
has two ‘components’, one given by VAB which is fully determined on each cut (see next
parapgraph), and another component, yet to be uncovered, which depends on the choice
of YA . Note that NAB fulfils properties i) to iv) on page 103. According to remark 6.3.5,
prescriptions of YABC are always possible such that these kind of tensor fields exist as
solutions to eq. (6.53). Nevertheless, the great difficulty stems in fixing YABC such that
NAB makes a reasonable news tensor that satisfies all the requirements on page 103, in-
cluding properties v) and vi) too.

At this stage, there is no reason to ensure that there exists some function y such that
the choice (6.58) meets all these points in general. Observe, in this sense, that eq. (6.40)
in terms of VAB reads

1
2Nε̊CAC̊B = D[CVA]B − TCAB (6.60)

and, therefore, VAB is completely determined by C̊A and the intrinsic geometry of J .
Hence, in order to achieve a NAB satisfying property v) in addition to the other ones
on page 103, the choice of YABC has to incorporate the dependence on Dab. Not only
that, but it has to vanish in accordance with some meaningful superenergy quantity. As
mentioned earlier, there are several options for this quantity, such as the asymptotic super-
Poynting, or radiant 1. The problem of in- and out-going radiative sectors seems to make
it difficult to find a second component of NAB associated to the former, as it contains
information from both sectors. This last difficulty can be connected to the freedom in
choosing a radiant 1 at J . Next section deals with these issues by proposing a particular
fixing of YABC .
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6.4 Second component of news

Now we take as a guide property vi) on page 103; throughout this section, in particular
we choose to focus on the vanishing of Z± . In the light of eqs. (2.54) and (2.55), it is
clear that it is convenient to work with the quantities C̊

±

A. Observe that eq. (6.60) can
be rewritten using properties xxi) and xxii) on page 212 as

NC̊A = ε̊CD
(
D[CV

A
D] + T A

DC

)
, (6.61)

2N C̊
+ A +Nε̊ACD̊C = ε̊CD

(
D[CV

A
D] + T A

DC

)
, (6.62)

2N C̊
− A −Nε̊ACD̊C = ε̊CD

(
D[CV

A
D] + T A

DC

)
, (6.63)

or equivalently

Nε̊BEC̊
E = −DEV E

B + 2TB , (6.64)
2Nε̊BE C̊

+ E −ND̊B = −DEV E
B + 2TB , (6.65)

2Nε̊BE C̊
− E +ND̊B = −DEV E

B + 2TB . (6.66)

Recall that eqs. (6.62), (6.63), (6.65) and (6.66) are nothing more than eqs. (6.61)
and (6.64) expressed in terms of C̊

±

A. It is useful to have them at hand, though.

One approach is to look for the necessary and sufficient conditions such that

−2Nε̊ E
B C

+

E = DC n
+ C
B , (6.67)

−2Nε̊ E
B C

−

E = DC n
− C
B , (6.68)

for n
±
AB symmetric traceless gauge invariant tensor fields on S. These are the particular

versions of the general NAB for the choices (6.67) and (6.68), as we prefer to keep the
generic name NAB for the general method. The left-hand side of these equations corre-
spond to two different –compatible– choices of YA in eq. (6.55), respectively. Hence, we
define

Y
+

B := Nε̊ E
B C

+

E , Y
−

B := Nε̊ E
B C

−

E . (6.69)

Let us emphasise once more that VAB fulfils properties i) to iv) on page 103. According
to eq. (6.61), it does not satisfy property v) because it carries no information about Dab.
Thus, intuitively one would expect the second component of n

±
AB, X

±
AB , to come from

an equation for Dab, such that the generic expression (6.54) becomes now

n
+

AB := VAB + X
+

AB , (6.70)
n
−

AB := VAB + X
−

AB , (6.71)
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where X
±

AB are unknown symmetric traceless gauge invariant tensor fields on S. Each
of them corresponds to a solution XAB in eq. (6.54) of the general approach . It can be
checked by direct computation that the necessary and sufficient conditions for eqs. (6.67)
and (6.68) to hold are

−1
2ND̊B = TB + 1

2DC X
+ C

B , (6.72)
1
2ND̊B = TB + 1

2DC X
− C

B , (6.73)

which are satisfied if and only if for any CKVF χB on S∫
S
χB Y

+

B ε̊ = 0 , (6.74)∫
S
χB Y

−

B ε̊ = 0 , (6.75)

which of course fits the general construction –see remark 6.3.5. Summarising, if eqs. (6.72)
and (6.73) hold, eqs. (6.67) and (6.68) are satisfied for n

±
AB as in eqs. (6.70) and (6.71)

and their square produces the following formulae:

N2 Z+ = DC
(
n

+ C
B

)
DD

(
n

+ BD
)
, (6.76)

N2 Z− = DC
(
n
− C
B

)
DD

(
n
− BD

)
. (6.77)

Let us remark that the tensor fields X
±

AB satisfying eqs. (6.72) and (6.73) do not nec-
essarily exist in general. They are the two second components of n

±
AB according to the

next result:

Proposition 6.4.1 (Radiant news). If the condition of eq. (6.72) (eq. (6.73)) holds on a
cut S with S2-topology, then

n
+

AB = 0⇐⇒ Z+ = 0 . (6.78)(
n
−

AB = 0⇐⇒ Z− = 0
)
. (6.79)

Hence, n
+
AB ( n− AB) fulfills properties i) to vi) on page 103. Therefore, n

+
AB ( n− AB) can

be seen as a news-like tensor for Q+ a ( Q− k) and we call them radiant news.

Proof. Properties i) to iv) are fulfilled by the definition of n
+
AB ( n− AB), see eq. (6.70)

(eq. (6.71)) where VAB is the piece of news of proposition 6.3.1. From eqs. (6.62) and (6.72)
(eqs. (6.63) and (6.73)), property v) is fulfilled, as well. Since n

+
AB ( n− AB) is a symmetric

traceless tensor field on the sphere, n+ AB = 0⇐⇒ DC n
+ C
B = 0 ( n− AB = 0⇐⇒ DC n

− C
B =

0), and that, by eq. (6.67) (eq. (6.68)), this holds if and only if C̊
+

A = 0 ( C̊− A = 0) —
which by eq. (2.54) (eq. (2.55)) and property iii) on page 15, holds if and only if Z+ = 0
( Z− = 0).
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Proposition 6.4.2 (Radiant pseudo-news tensors for non-S2 cuts). Assume that the
condition of eq. (6.72) (eq. (6.73)) holds on a 2-dimensional Riemannian manifold (S, qAB)
whose topology is non-necessarily S2 and that the metric qAB possesses a CKVF χA with
a fixed point. Then,

n
+

AB = 0 =⇒ Z+ = 0 . (6.80)(
n
−

AB = 0 =⇒ Z− = 0
)
. (6.81)

And n
+
AB ( n− AB) has all the properties i) to v) on page 103 but not property vi). There-

fore, we say that n
+
AB ( n− AB) is a pseudo-news tensor for Q+ a ( Q− k).

Proof. The first part of the proof follows the same lines as in proposition 6.4.1, where
now the tensor VAB is the one of corollary 6.2.3. Then, by eq. (6.67) (eq. (6.68)), n̊+ AB =
0 =⇒ C̊

+
A = 0 ( n− AB = 0 =⇒ C̊

−
A = 0) —which by eq. (2.54) (eq. (2.55)) and

property iii) on page 15, holds if and only if Z+ = 0 ( Z− = 0). The converse is not true
in general, as the topology of S can be other than S2.

Remark 6.4.1. Given any cut S with S2-topology on J , there always exists a unique
(intrinsic) first component of news, VAB , which is determined by the intrinsic geometry of
(J , hab) and the cut. The existence of the entire news-like tensor depends on information
extrinsic to J and, concretely in this section’s approach, on D̊A, from where two different
second components, X± AB , can emerge. Note that these tensor fields are extrinsic to J , in
the sense of not being determined by (J , hab). Eventually, one ends up with none, one or
two different radiant news tensors, n± AB, which are each one the sum of the corresponding
first and second component — see eqs. (6.70) and (6.71).

There are simple cases in which the conditions for the existence of news, eqs. (6.72)
and (6.73) (equivalently, eqs. (6.74) and (6.75)) are fulfilled. The following result shows
this:

Lemma 6.4.1. Consider any umbilical cut S with S2-topology on J such that ra defines
a strong orientation on S, i. e., Z− S= 0. Then, there always exists the radiant news given
by

n
+

AB = 2VAB . (6.82)

Proof. On the one hand, the umbilical property (Σ̊AB = 0) implies that TA = 0 (see
eq. (6.41)). On the other hand, Z− = 0 ⇐⇒ D̊A = 0 ⇐⇒ C̊A = C̊

+
A . These two

conditions together make eqs. (6.61) and (6.64) read

N C̊
+ A = ε̊CDD[CV

A
D] , (6.83)

Nε̊BE C̊
+ E = −DEV E

B . (6.84)
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Thus, eq. (6.67) reads
2DEV E

B = DC n
+ C
B . (6.85)

Then, one finds DE
(
n̊

+ E
B − 2V E

B

)
= 0, which holds if and only if n

+
AB = 2VAB —the

divergence of a traceless, symmetric, two-dimensional tensor field on the sphere vanishes
if and only if the tensor itself vanishes.

In chapter 7, we will study how to extend these objects to tensor fields on J by
introducing additional structure on J . The relation between the radiant news and the
radiation condition of criterion 1 will be analysed in section 7.2.

6.4.1 Possible generalisation

There is a generalisation of the approach we have presented. Since each cut S is two-
dimensional1, the vanishing of C̊

±

A is trivially equivalent to the vanishing of any linear
combination

β
±

C̊
±

B + λ
±
ε̊ E
B C̊

±

E , (6.86)

where the coefficients λ
± and β

± are such that they do not vanish simultaneously, i. e.,

λ
± = 0 =⇒ β

± 6= 0 , (6.87)
β
± = 0 =⇒ λ

± 6= 0 . (6.88)

In other respects, λ
± and β

± are arbitrary real functions. One can ask these coefficients
to fulfil

−2N
(
β

+
δEB + λ

+
ε̊ E
B

)
C

+

E = DC n
+ C
B , (6.89)

−2N
(
β
−
δEB + λ

−
ε̊ E
B

)
C
−

E = 1
2DC n

− C
B , (6.90)

for n
±
AB symmetric traceless gauge invariant tensor fields on S. Notice that for λ

± = 1
and β

± = 0 we are in the situation described above for eqs. (6.67) and (6.68). Now, one
has to define

Y
+

B := N
(
β

+
δEB + λ

+
ε̊ E
B

)
C

+

E , Y
−

B := N
(
β
−
δEB + λ

−
ε̊ E
B

)
C
−

E . (6.91)

1For higher dimensions the proposed generalisation would not work. Nevertheless, in that other case,
one can always define a matrix Aab such that Aapxp = 0 iff xp = 0, where xp represents a hypothetical
vector field playing the role of C

+

A for dimension greater than 2.
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Again, one expects the second components X
±

AB coming from an equation for D̊ab to be
part of n

±
AB, together with VAB :

n
+

AB := VAB + X
+

AB , (6.92)
n
−

AB := VAB + X
−

AB . (6.93)

It can be checked by direct computation that the necessary and sufficient conditions on
λ
± and β

± for eqs. (6.89) and (6.90) to hold are

−1
2ND̊B = TB +

(
λ

+ − 1
)
Nε̊BC C̊

+ C + β
+
N C̊

+

B + 1
2DC X

+ C
B , (6.94)

1
2ND̊B = TB +

(
λ
− − 1

)
Nε̊BC C̊

− C + β
−
N C̊
−

B + 1
2DC X

− C
B , (6.95)

which are satisfied if and only if for any CKVF χB on S∫
S
χB Y

+

B = 0 , (6.96)∫
S
χB Y

−

B = 0 , (6.97)

which again meets the general construction of section 6.3 –in particular, see remark 6.3.5.
Notice that equivalent expressions to eqs. (6.94) and (6.95) in terms of C̊A are

−N 1
2
(
λ

+
δDB − β

+
ε̊ D
B

)
D̊D = TB +N

1
2
[
β

+
δDB +

(
λ

+ − 1
)
ε̊ D
B

]
C̊D + 1

2DC X
+ C

B ,

(6.98)

N
1
2
(
λ
−
δDB − β

−
ε̊ D
B

)
D̊D = TB +N

1
2
[
β
−
δDB +

(
λ
− − 1

)
ε̊ D
B

]
C̊D + 1

2DC X
− C

B .

(6.99)

This time, the conclusion is that if eqs. (6.94) and (6.95) hold, eqs. (6.89) and (6.90)
are satisfied for the symmetric traceless gauge-invariant tensor fields n

±
AB of eqs. (6.92)

and (6.93). In that case, one has:

N2
(
β

+ 2 + λ
+ 2
)
Z+ = DC

(
n

+ C
B

)
DD

(
n

+ BD
)
, (6.100)

N2
(
β
− 2 + λ

− 2
)
Z− = DC

(
n
− C
B

)
DD

(
n
− BD

)
. (6.101)

Proposition 6.4.1 can be generalised straightforwardly:

Proposition 6.4.3 (Generalised radiant news). If the condition of eq. (6.94) (eq. (6.95))
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holds on a cut S with S2-topology, then

n
+

AB = 0⇐⇒ Z+ = 0 . (6.102)(
n
−

AB = 0⇐⇒ Z− = 0
)

(6.103)

and n
+
AB ( n− AB) fulfils properties i) to vi) on page 103.

Proof. The proof is very much the same as the one of proposition 6.4.1, only that now one
uses eqs. (6.89), (6.92) and (6.94) (eqs. (6.90), (6.93) and (6.95)) instead of eqs. (6.67),
(6.70) and (6.72) (eqs. (6.68), (6.71) and (6.73)).

One can generalise lemma 6.4.1 too. In fact, the following result serves to exemplify
the role of the coefficients λ

± and β
± :

Lemma 6.4.2. Consider any umbilical cut S with S2-topology on J such that ra defines
a strong orientation on S, i. e., Z− S= 0. Then, there always exists the radiant news n

+
AB

for λ
+ = constant and β

+ = 0 given by

n
+

AB = 2 λ+ VAB . (6.104)

Proof. One follows the same steps as in the proof of lemma 6.4.1, this time using eq. (6.89)
instead of eq. (6.67), arriving at:

− λ
+ DEV E

B + β
+
ε̊CDD[C

(
VD]B

)
= −1

2DC n
+ C
B . (6.105)

Setting λ
+ = constant and β

+ = 0, one finds DE
(
n̊

+ E
B − 2 λ+ V E

B

)
= 0, which holds true

if and only if n
+
AB = 2 λ+ VAB .

Remark 6.4.2. Given the assumptions of lemma 6.4.2, other solutions exist, for instance
β

+ = constant and λ
+ = 0. The role of β

± and λ
± is nothing more but to find solutions,

i.e., X
±

AB tensors, to eqs. (6.94) and (6.95). However, for particular cases –as the one
described in lemma 6.4.2– they are pure gauge, in the sense that setting them to one
constant value or another provides a combination of the same gauge-invariant symmetric
traceless tensor field’s divergence and its dual, as it is the case of eq. (6.105) where the
(two) fundamental degrees of freedom are encoded in VAB . Still in that case, if one
considers λ

± and β
± as functions it does not affect the fact that the vanishing of Z± is

equivalent to the vanishing of VAB . This gauge freedom arises as a consequence of asking
Z± , a scalar function, to vanish if and only if the divergence of some radiant news tensor
does, which allows one to construct combinations of C̊

±

A and its dual, as in eqs. (6.89)
and (6.90).
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As it has been commented in the introduction to chapter 5, the positivity of Λ spoils any
universal structure. For Λ = 0, such structure consists on the conformal family of degen-
erate metrics on J together with a privileged set of curves: the generators. For Λ > 0,
if one wishes to generalise the concept of radiant news tensor presented in chapter 6 for
arbitrary cuts of J to a tensor field on J , study some sort of evolution of the physical
fields intrinsically to J or carry out a close analogy with the Λ = 0 scenario, one needs
to endow J with further structure.

In particular, a selected family of curves is introduced, trying to keep it as general
as possible. In section 7.3 it is seen that such kind of additional structures can be well
motivated by physical conditions. Hence, in this section the formalism presented in ap-
pendix A.3 is used, where the necessary notation and definitions for the congruences of
curves associated to a unit vector field ma on J can be found. Also, the same notation
as in chapter 6 for objects associated to the decomposition of fields with respect to ma is
followed, only that now underbars will be used instead of over-rings so that they become
distinguishable from quantities resulting from the decomposition with respect to ra. For
instance, for the intrinsic Schouten tensor one writes

Sab
S=

¯
Smamb + 2

¯
SBm(a ¯

W B
b) +

¯
SAB ¯

W A
a ¯
W B
b (7.1)

and, in general, for any symmetric tensor Bµν ,

Bαβ

J= nµnνBµνnαnβ+nµ
¯
P ν

(α nβ)Bµν +2Bµn
µm(αnβ) +mαmβB+2

¯
B(αmβ) +

¯
Bαβ , (7.2)

and
B̀αβ :=

¯
Bαβ −

1
2¯
Pαβ ¯

P µν

¯
Bµν , (7.3)

with

¯
Bαβ :=

¯
P µ

α ¯
P ν

βBµν , Bα := mµBµα , ¯
Bα :=

¯
P ν

αm
µBµν , B := mµmνBµν , (7.4)
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and with capital indices too,

¯
BAB :=

¯
Eα

A ¯
Eβ

B ¯
Bαβ , `

¯
BAB :=

¯
BAB −

1
2¯
q
AB ¯
BC

C , ¯
BA :=

¯
EA

αm
µBµα . (7.5)

Also, define a couple of lightlike vector fields on J as

k
+ α := 1√

2
(nα +mα) , (7.6)

k
− α := 1√

2
(nα −mα) . (7.7)

This notation applies to all the objects coming from the orthogonal and lightlike decom-
position of the rescaled-Weyl tensor (see section 2.2).

Let us start by stating what is meant by additional structure on J .

Definition 7.0.1 (Equipped J ). We say that an open, connected, subset ∆ ⊂J with
the same topology than J is equipped when it is endowed with a congruence C of curves
characterised by a unit vector field ma. The projected surface S2 := ∆/C and C are
characterised by the conformal family of pairs

(
¯
Pab ,ma) , (7.8)

where
¯
Pab is the projector to S2. Two members belong to the same family if and only if

(
¯
P ′ab,m

′
a) = (Ψ2

¯
Pab ,Ψma), where Ψ is a positive function on J .

We will usually assume that ∆ is actually one entire connected component of J . The
curves of C are parametrised by any scalar function v such that £~mv 6= 0, and thus it is
only defined up to the following changes:

v → v′
(
v, ζA

)
,

∂v′

∂v
6= 0 , (7.9)

where ζA label each curve –see appendix A.3 for further details. One can always choose
adapted coordinates such that

ma = Aδav (7.10)

for some function A. This form is preserved by (7.9) as long as (A.38) is enforced for the
ζA.

The orthogonal decomposition with respect to ma of Sab and Cab gives among other
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quantities

¯
SB =

¯
DC

(
¯
κ C
B +

¯
ω C
B

)
−

¯
DB¯

κ− 2
¯
aC

¯
ωBC , (7.11)

¯
SEE

S=
¯
K + 1

2 ¯
Σ2 − 1

4¯
κ2 − 3

2¯
ω2 , (7.12)

N
¯
CA =

¯
εCD

(
¯
D[C¯

S A
D] +

¯
κ A

[C ¯
SD] + 3

2¯
SA

¯
ωCD

)
. (7.13)

Observe that
¯
DA, ¯

q
AB

and
¯
εAB represent a one-parameter family of connections, metrics

and volume forms on S2, because they also ‘depend on v ’ —see appendix A.3. Here,
¯
K

is the function appearing in eq. (A.90). Taking these remarks into account, the formulae
look aesthetically the same as for any single cut S if C is a foliation (⇐⇒

¯
ωAB = 0) in

which case we use a different name according to the following definition

Definition 7.0.2 (Strictly equipped J ). We say that J is strictly equipped when it is
equipped and the unit vector field ma is surface-orthogonal, providing a foliation by cuts
Sv for v = constant, that is

ma = F∇av

for some scalar function F .

Indeed, many of the forthcoming results are considered if this happens, however one
has to notice that even when the equations resemble the ones for cuts, they are different.
Some insights into the case of general C will be given in sections 7.2 and 7.4 as well. There
is a third level of equipment, the highest one, given by

Definition 7.0.3 (Strongly equipped J ). We say that J is strongly equipped when it
is strictly equipped and ma is shear-free, so that it defines a foliation by umbilical cuts.

Remark 7.0.1. This definition is the particular case of definition 7.0.1 with
¯
ωab = 0 (i.e.,

ma orthogonal to cuts) and
¯
Σab = 0 (i.e., umbilical cuts).

7.1 Decomposition of the Schouten tensor: kinematic expression
We are going to deduce an expression for

¯
Sab in terms of the kinematic quantities of ma.

To begin with, note that the combination

− fab = £~m¯
Σab − 2

¯
Σad¯

Σ d
b −

1
2κ¯

Σab (7.14)

satisfies properties i) to iv) on page 103. Consider its pullback to S2 –and use the identity
2

¯
ΣAD¯

Σ D
B =

¯
q
AB¯

Σ2:

− fAB
S2:=

¯
Σ′AB −¯

q
AB¯

Σ2 − 1
2κ¯

ΣAB , (7.15)
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with

¯
Σ′AB :=

¯
Ea

A ¯
Eb

B£~m¯
Σab = £~m¯

ΣAB , (7.16)

where the right-hand side follows from eq. (A.56). This term can be replaced using the
projection of the Schouten tensor noticing that

¯
P b

f ¯
P c

dm
emdR

d

ebc =
¯
P b

f ¯
P c

dm
e
(
∇e∇bmc −∇b∇emc

)
= £~m¯

Σfd − 2
¯
Σe(d∇d)m

e −
¯
κm(f¯

ad) + 2m(d¯
Σ e
f) ¯
ae +

¯
af¯
ad − ¯

P b
f ¯
P c

d∇b¯
ac

+
¯
κm(d¯

af) +
¯
κ

¯
Σdf +

¯
Σ e
d ¯

Σfe +
(1

4¯
κ2 + 1

2m
e∇e¯

κ
)

¯
q
df
, (7.17)

or equivalently

¯
Ea

A ¯
Eb

Bm
dmeRdabe =

¯
Σ′AB +

¯
aA¯
aB − ¯

DA¯
aB +

¯
qAB

(1
2£~m¯

κ− 1
2 ¯

Σ2 + 1
4¯
κ2
)
. (7.18)

Next, use eq. (5.9) to get

¯
P b

f ¯
P c

dm
emdR

d
ebc = −

¯
Pdf ¯

S −
¯
Sdf . (7.19)

Then, take the trace of eq. (7.18) and replace eq. (7.12) in the resulting expression,

−
¯
S = 1

2 ¯
Σ′CC + 1

2 ¯
K − 1

4 ¯
Σ2 + 1

8¯
κ2 + 1

2
(
¯
aE

¯
aE − ¯

DE¯
aE + £~m¯

κ
)
. (7.20)

After that, use eqs. (7.18) to (7.20) to derive a formula for the projection of the intrinsic
Schouten tensor

¯
SAB = −

¯
Σ′AB +

¯
DA¯

aB − ¯
aA¯
aB −¯

q
AB

[1
2
(

¯
DE¯

aE −
¯
aE¯
aE
)
− 5

4 ¯
Σ2 − 1

2 ¯
K + 1

8¯
κ2
]
, (7.21)

or more compactly,

¯
SAB = −

¯
Σ′AB +

¯
DA¯

aB − ¯
aA¯
aB −¯

q
AB

[1
2
(

¯
DE¯

aE −
¯
aE¯
aE
)
− 1

2 ¯
Σ′CC −

1
2¯
SCC

]
. (7.22)

These formulae are interesting on their own and valid for a general foliation on J . It is
clear that they have the correct trace and, using the formulae in appendix C, they give
the right gauge behaviour —compare with eq. (C.20) in that same appendix. In terms of
the gauge invariant quantity fAB , we have

¯
SAB = fAB +

¯
DA¯

aB − ¯
aA¯
aB −

1
2¯
κ

¯
ΣAB −¯

q
AB

[1
2
(

¯
DE¯

aE −
¯
aE¯
aE
)
− 1

4 ¯
Σ2 − 1

2 ¯
K + 1

8¯
κ2
]
.

(7.23)
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7.2 Radiant news tensor field on equipped J

In chapter 6 we have shown that a gauge invariant traceless symmetric tensor field VAB
on any two-dimensional surface (with S2-topology or, with further assumptions, non-S2)
exists. This applies to cuts with S2-topology on J where it represents a first component
of news-like tensors and actually defines, under suitable conditions –proposition 6.4.1–,
radiant news for a radiant supermomentum. However, the question of a news-like tensor
field on J is still open. To address it, first we present some geometrical results:

Lemma 7.2.1. Let (I, hab) be any spacelike hypersurface I with metric hab and define
P̊ c

a := δca − mcma for any unit vector field ma on I. Then, there are no tensor fields
Mab on I such that M̊ab := P̊ c

a P̊
d
bMcd is symmetric and traceless (P̊ cdM̊cd = 0) for all

possible ma, {
@Mab

/
M̊ab = M̊ba , P̊ abM̊ab = 0 ∀ma

}
. (7.24)

Proof. Given Mab , assume that two different vector fields ma, m′a exist such that

0 = M̊ ′c
c = M c

c −m′
c
m′

d
Mcd , (7.25)

0 = M̊ c
c = M c

c −mcmdMcd , (7.26)

Then, the only possibility for this to happen ∀ma is

mcmdMcd = m′
c
m′

d
Mcd ∀m′a 6= ma. (7.27)

Thus, either Mab = −Mba (which cannot give rise to a symmetric tensor M̊ab ) or Mab =
0.

This is in contrast with what happens at the conformal boundary for a vanishing cos-
mological constant, where any symmetric and traceless tensor field orthogonal to Nα

∣∣∣∣
Λ=0

on J 1 is a symmetric and traceless tensor field on any cut. Precisely, this applies to the
news tensor Nab on J for Λ = 0; its pullback NAB to any cut is symmetric and traceless
there –see section 4.2. In any case, in general one has

Lemma 7.2.2. Let (I, hab) be any spacelike hypersurface I with metric hab andMab and
M ′

ab any couple of symmetric tensor fields on I, each one orthogonal to a unit vector
field ma and m′a, respectively. Assume that P̊ cdMcd = 0 and P̊ ′cdMcd = 0, where P̊ c

a

and P̊ ′ca are the orthogonal projectors associated to ma and m′a. Then, the tensor field
Bab := λMab + δM ′

ab, for arbitrary coefficients λ and β, is symmetric and traceless,
hcdBcd = 0.

1Recall that J is lightlike for Λ = 0, and Nα is the vector field tangent to the generators.
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Proof. The tensor field Bab is symmetric and notice that

hcdMcd = mcmdMcd + P̊ cdMcd = 0 , (7.28)

hcdM ′
cd = m′

c
m′

d
M ′

cd + P̊ ′
cd
M ′

cd = 0 . (7.29)

Therefore, hcdBcd = 0.

From lemma 7.2.1 it follows that a unique tensor field on J cannot generate a would-
be news tensor field assigned to every possible cut S on J . Also, lemma 7.2.2 shows
that a linear combination of would-be news tensor fields, associated each one to a differ-
ent family of cuts, gives rise to a gauge-invariant traceless symmetric tensor field on J .
Such a combination will have in general more than two degrees of freedom. All in all, we
are led to search for a tensor field on J associated to the congruence C of definition 7.0.1.

Having presented the above general results, let us come back to the asymptotic geom-
etry. First, consider the case of a general C (

¯
ωAB 6= 0). Equation (7.13) can be written

using eq. (7.11) as

N
¯
CA =

¯
εCD

(
¯
D[C ¯

U A
D] +W A

CD − S A
CD

)
, (7.30)

where

¯
UAB :=

¯
SAB + 1

2¯
κ

¯
ΣAB + LAB , (7.31)

LAB :=
(1

8¯
κ2 − 1

4 ¯
Σ2 + 3

4¯
ω2
)

¯
q
AB

, (7.32)

SCAB :=
¯
TCAB + 3

[
¯
DD

(
¯
ω D
B

)
−

¯
aD

¯
ωBD¯

ωCA
]
, (7.33)

¯
TCAB := 1

2

[
¯
q
B[C ¯
DA] ¯

Σ2 −
¯
DB

(
¯
ΣD

[A

)
¯
ΣC]D

]
, (7.34)

WCAB := −1
2¯
κDB ¯
DD¯

ωCA +
¯
aD

¯
κDB¯

ωCA + 3
2¯
ωCA ¯
DD¯

κ D
B − 3

2¯
ωCA ¯
DB¯

κ , (7.35)

and it will be convenient to define

¯
TA :=

¯
T C
CA . (7.36)

The gauge behaviour of these fields follows by direct computation, using the formulae of
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appendix C,

˜
¯
UAB =

¯
UAB −

1
ω ¯
D(A¯

ωB) + 2
ω2 ¯
ωA¯
ωB −

1
2ω2 ¯

ωC¯
ωCqAB , (7.37)

˜
¯
SCAB =

¯
SCAB , (7.38)

˜
¯
TCAB =

¯
TCAB , (7.39)

˜
¯
WCAB =

¯
WCAB −

1
2ω£~mω¯

DB¯
ωCA + 1

ω¯
ωCA

[
¯
κDB¯

ωD −
1
2 ¯
DB£~mω −£~m¯

ωB + 5
2ω£~mω¯

ωB

]
,

(7.40)

where
¯
ωA :=

¯
DAω. Precisely, the interest of these definitions is that the combination

¯
D[C ¯

UD]A +WCDA is gauge invariant,

¯
D̃[CŨD]A + W̃CDA =

¯
D[C ¯

UD]A +WCDA (7.41)

and

¯
UE

E =
¯
K . (7.42)

In order to recover a result of the kind of proposition 6.3.1, it is reasonable to consider
the splitting

¯
VAB :=

¯
UAB − ¯

ρAB , (7.43)

for some
¯
ρAB fulfilling the gauge-invariant equation

¯
D[AρB]C +WABC = 0 , (7.44)

and VAB a two-dimensional gauge-invariant symmetric traceless tensor field on J . This
would constitute the first component of news-like objects when J is equipped. However,
while existence of general solutions to eq. (7.44) may be provable, uniqueness is in prin-
ciple a non-trivial task. Indeed, this is an open problem which should be studied carefully.

Now we focus on the case of a strictly equipped J , so that C defines also a foliation
(
¯
ωab = 0). In this case, it is always possible to write eq. (A.103), using the freedom (7.9)
if needed, as

ma = F∇av with 1
F

= £
~m
v, (7.45)

and each leaf of the foliation C is a cut Sv, labelled by a constant value of the parameter
along the curves, v = v̂ = constant, and with basis {Ea

A}v,
{
W A
a

}
v
. Therefore, on each

leaf we are in the situation described in chapter 6 for any single cut. In other words,
proposition 6.3.1 and corollaries 6.2.2 and 6.2.3 apply on each leaf. Hence, one has on
each cut

NC̊A Sv= ε̊CD
(
D[CV

A
D] − T A

CD

)
, (7.46)
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or, by means of
¯
C
±

A,

2N C̊
+ A +Nε̊ACD̊C

Sv= ε̊CD
(

¯
D[CV

A
D] − T A

CD

)
, (7.47)

2N C̊
− A −Nε̊ACD̊C

Sv= ε̊CD
(

¯
D[CV

A
D] − T A

CD

)
, (7.48)

Moreover, because
¯
ωAB = 0,

SABC =
¯
TABC , WABC = 0 , (7.49)

which makes eq. (7.30) read

N
¯
CA =

¯
εCD

(
¯
D[C ¯

U A
D] − ¯

T A
CD

)
. (7.50)

Inserting
¯
ωAB = 0 in eq. (7.37) too, noting eq. (A.71), it turns out that

¯
UAB has a

recognisable gauge behaviour,

ŨAB = UAB − a
1
ω ¯
DA¯

ωB + 2a
ω2 ¯
ωA¯
ωB −

a

2ω2 ¯
ωC¯
ωC

¯
q
AB

. (7.51)

Then, one can show some important results for strictly equipped J (the first two are gen-
eral i.e., not only for J but for any Riemannian 3-dimensional hypersurface I equipped
with a foliation),

Lemma 7.2.3. Let J be strictly equipped and tAB be any symmetric tensor field on S2

whose behaviour under conformal rescalings (C.23) is

t̃AB = tAB − a
1
ω ¯
DA¯

ωB + 2a
ω2 ¯
ωA¯
ωB −

a

2ω2 ¯
ωC¯
ωC

¯
q
AB

(7.52)

for some fixed constant a ∈ R. Then,

¯
D̃[C t̃A]B =

¯
D[C tA]B + 1

ω

(
a

¯
K − tEE

)
¯
ω[C¯

q
A]B , (7.53)

where now
¯
K coincides with the Gaussian curvature K of each cut at v =constant. In

particular, for any symmetric gauge-invariant tensor field BAB on S,

¯
D̃[CB̃A]B =

¯
D[CBA]B −

1
ω
BE

E¯
ω[C¯

q
A]B (7.54)

Proof. One proceeds as in the proof of lemma 6.2.1.

Corollary 7.2.1. Under the same assumptions of lemma 7.2.3, a symmetric gauge-
invariant tensor field BAB on S2 satisfies

¯
D̃[CB̃B]A =

¯
D[CBB]A (7.55)
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if and only if BE
E = 0.

Now one can prove the following two results:

Corollary 7.2.2 (The tensor field ρ for strictly equipped J with S2 leaves). Assume J

is strictly equipped with v the parameter along the curves (7.10) and such that eq. (7.45)
holds. If the leaves have S2-topology, there is a unique tensor field

¯
ρab on J orthogonal to

ma (equivalently, a one-parameter family of symmetric tensor fields
¯
ρAB (v) :=

¯
Ea

A ¯
Eb

B¯
ρab

on the projected surface S2) whose behaviour under conformal rescalings (C.23) is as in
eq. (7.52) and satisfies the equation

¯
P d

a ¯
P e

b ¯
P f

c∇[f¯
ρd]e = 0 (7.56)

in any conformal frame. This tensor field must have a trace
¯
ρee :=

¯
P ae

¯
ρae = a

¯
K and

reduces, at each leaf, to the corresponding tensor of corollary 6.2.2 with all its properties.
In particular, it is given for the round-sphere one-parameter family of metrics by

¯
ρab =

¯
Pab a¯

K/2.

Proof. Let Sv̂ represent a leaf of the foliation for constant v = v̂. If we evaluate eq. (7.56)
at v = v̂, i.e., on the leaf Sv̂ and contract all the indices with the basis on Sv̂, {Ea

A}, we
obtain the following equation there

D[C

(
¯
ρA]B

) Sv̂= 0 , (7.57)

where DA is the canonical covariant derivative on Sv̂. But the solution to this equation
exists and is unique

¯
ρAB

Sv̂= ρ̂
v AB , (7.58)

with ρ̂
v AB the tensor field of corollary 6.2.2 corresponding to Sv̂. Then, one can define

¯
ρab at any leaf simply by

¯
ρab

Sv̂= W A
a W B

b ρ̂
v AB (7.59)

and this holds on each leaf –i.e., at any value of v. Since J = ∪
v
Sv and Sv̂1 ∩ Sv̂2 = ∅ for

v̂1 6= v̂2, at every point on J eq. (7.56) has a unique solution given by

¯
ρab =

¯
W A
a ¯
W B
b ρ

v AB, ma

¯
ρab = 0 . (7.60)

Note that contraction of eq. (7.56) with {
¯
Ea

A} gives the equivalent equation on S2

¯
D[C¯

ρA]B = 0. (7.61)

According to lemma 7.2.3, eq. (7.61) is satisfied in any conformal frame if and only
if

¯
ρEE = a

¯
K, which using the definition (A.45) of the projector

¯
P a

b can be recast as

¯
ρee :=

¯
P ae

¯
ρae = a

¯
K. Finally, notice that by (7.60) and according to corollary 6.2.2, the
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solution
¯
ρAB on each leaf is given by

¯
ρAB

Sv= qABaK/2 for every cut with a round metric
and Gaussian constant curvature K. But

¯
K coincides on each cut with K, and then

contraction with
{

¯
W A
a

}
gives

¯
ρab =

¯
Pab a¯

K/2.

Corollary 7.2.3 (The tensor ρ for strictly equipped J with non-S2 leaves). Assume J

is strictly equipped with v the parameter along the curves (7.10) and such that eq. (7.45)
holds. Assume that the leaves (Sv, qAB) are non-necessarily topological-S2 and that there
is a vector field χa such that

¯
χA :=

¯
W A
a χa is a CKVF, and has a fixed point, on each

leaf. Then, there is a unique tensor field
¯
ρab on J orthogonal to ma (equivalently, a

one-parameter family of symmetric tensor fields
¯
ρAB (v) :=

¯
Ea

A ¯
Eb

B¯
ρab on the projected

surface S2) whose behaviour under conformal rescalings (C.23) is as in eq. (7.52) and
satisfies the equations

¯
P d

a ¯
P e

b ¯
P f

c∇[f¯
ρd]e = 0 , (7.62)

£~
¯
χ
¯
ρAB + a

¯
DA ¯
DBφ = 0 , (7.63)

in any conformal frame, where φ :=
¯
DC¯

χC/2. Furthermore, this tensor field must have
a trace

¯
ρee :=

¯
P ae

¯
ρae = a

¯
K and coincides, at each leaf, with the corresponding tensor of

corollary 6.2.3 with all its properties.

Remark 7.2.1. An outstanding case for the existence of the vector field χa is when this
is an axial CKVF of hab orthogonal to ma, that is, tangent to the leaves, and such that it
leaves the equipping congruence conformally invariant (£~χma ∝ ma). Actually, this could
be generalized to symmetries of the type we will introduce later on in definition 7.4.2.

Proof. One follows the same reasoning as in the proof of corollary 7.2.2, this time using
corollary 6.2.3 instead of corollary 6.2.2. After the first steps, one finds

D[C

(
¯
ρA]B

) Sv̂= 0 , (7.64)

on each cut. Taking into account that
¯
χA has a fixed point on every Sv and eq. (7.63),

the solution to this equation exists and is unique on each cut

¯
ρAB

Sv̂= ρ̂
v AB , (7.65)

given by the tensor ρAB of corollary 6.2.3. The rest of the proof follows the same steps as
in corollary 7.2.2.

Lemma 7.2.4 (No traceless Codazzi tensor fields on S2 for foliations). Let
¯
MAB be

any one-parameter family of traceless and symmetric tensor fields on S2 associated to
a congruence of curves C orthogonal to a family of surfaces foliating a 3-dimensional
space-like hypersurface I with topological-S2 leaves. Then

¯
MAB = 0⇐⇒

¯
D[C ¯

MA]B = 0. (7.66)
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Proof. Defining on I
¯
Mab :=

¯
W A
a ¯
W B
b ¯
MAB , it vanishes if and only if

¯
MAB so does, and

satisfies
¯
P c

d ¯
P a

e ¯
P b

f ∇[c ¯
Ma]b = 0 if and only if

¯
D[C ¯

MA]B = 0. Evaluating on each leaf Sv
and contracting the equation

¯
P c

d ¯
P a

e ¯
P b

f ∇[c ¯
Ma]b = 0 with {Ea

A}, one finds ¯
D[C

(
¯
MA]B

) Sv=
0 ∀v which using (6.10) is equivalent to its trace and holds if and only if

¯
MAB

Sv= 0
∀v because

¯
MAB is a symmetric and traceless Codazzi tensor on each compact, two-

dimensional cut Sv (see e.g. [113] and references therein). This is equivalent to the
vanishing of

¯
Mab on each Sv and, since I = ∪

v
Sv and Sv̂1 ∩ Sv̂2 = ∅ for v̂1 6= v̂2, to the

vanishing of
¯
Mab at every point on I too.

Let us continue by showing the existence and uniqueness of a first component of news
on strictly equipped J with topological S2 leaves:

Proposition 7.2.1 (The first component of news on strictly equipped J with S2 leaves).
Assume J is strictly equipped with v the parameter along the curves (7.10) and such
that eq. (7.45) holds. If the leaves have S2-topology, there is a one-parameter family of
symmetric traceless gauge-invariant tensor fields

¯
VAB :=

¯
UAB − ¯

ρAB , (7.67)

that satisfies the gauge-invariant equation

¯
D[A¯

UB]C =
¯
D[A¯

VB]C , (7.68)

where
¯
ρAB is the family of tensor fields of corollary 7.2.2 (for a = 1). Besides,

¯
VAB is

unique with these properties.

Proof. The one-parameter family of tensor fields
¯
VAB is symmetric, traceless and gauge

invariant as a consequence of eqs. (7.31), (7.37) and (7.42), recalling
¯
ωAB = 0, and

corollary 7.2.2. The uniqueness of
¯
VAB follows from corollary 7.2.2 too and Equa-

tion (7.68).

Corollary 7.2.4 (The first component of news on strictly equipped J with non-S2

leaves). Assume J is strictly equipped with v the parameter along the curves (7.10)
and such that eq. (7.45) holds. Assume that the leaves (Sv, qAB) are non-necessarily
topological-S2 and that there is a vector field χa such that

¯
χA :=

¯
W A
a χa is a CKVF of

the metric qAB and has a fixed point on each leaf. Then, there is a one-parameter family
of symmetric traceless gauge invariant tensor fields

¯
VAB :=

¯
UAB − ¯

ρAB , (7.69)

that satisfies the gauge-invariant equation

¯
D[A¯

UB]C =
¯
D[A¯

VB]C , (7.70)
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where
¯
ρAB is the tensor field of corollary 7.2.3 (for a = 1). Besides,

¯
VAB is unique with

these properties.

Proof. The proof proceeds as the one of proposition 7.2.1, only that this time one uses
corollary 7.2.3 instead of corollary 7.2.2.

Then, under assumptions of proposition 7.2.1 or corollary 7.2.4, one has on S2 (equiv-
alently on J by taking the pullback)

N
¯
CA S2=

¯
εCD

(
¯
D[C¯

V A
D] − ¯

T A
CD

)
, (7.71)

Corollary 7.2.5. The tensor field on J

¯
Vab (v) :=

¯
W A
a ¯
W B
b ¯
VAB (7.72)

satisfies

¯
Vab =

¯
W A
a ¯
W B
b V

v AB , ma

¯
Vab = 0 , (7.73)

where V
v AB is the first component of news associated to each leaf Sv defined in proposi-

tion 6.3.1, respectively.

Proof. One can take the pullback to J with
{

¯
W A
a

}
of eq. (7.69),

¯
Vab =

¯
Uab − ¯

ρab , (7.74)

and see that

¯
Uab =

¯
W A
a ¯
W B
b U

v AB , ma

¯
Uab = 0 (7.75)

where U
v AB is (6.38) for each leaf Sv –using that ma and

¯
P a

b are the normal and the
projector to each cut for constant v, respectively. Now, we have already shown that
(see corollary 7.2.2 and eq. (7.60)) Ea

AE
b
B¯
ρab

Sv= ρ
v AB where ρ

v AB is the tensor of
corollary 6.2.2 or corollary 6.2.3 for each leaf Sv. Hence, one deduces that Ea

AE
b
B¯
Vab

Sv=
V

v AB with V
v AB the first component of news of proposition 6.3.1 for each leaf Sv.

By means of eq. (7.23), a formula for
¯
VAB in terms of the acceleration

¯
aA, ¯

K,
¯
ρAB

and the gauge invariant tensor field fAB is obtained for a general foliation:

¯
VAB = fAB − ¯

ρAB +
¯
DA¯

aB − ¯
aA¯
aB −

1
2¯
q
AB

(
¯
DE¯

aE −
¯
aE¯
aE −

¯
K
)
. (7.76)

It is convenient to define the one-parameter family of tensor fields on S2

τAB :=
¯
DA¯

aB − ¯
aA¯
aB −

1
2¯
q
AB

(
¯
DE¯

aE −
¯
aE¯
aE −

¯
K
)
. (7.77)
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Interestingly, its gauge change is the same as the one of
¯
UAB and

¯
ρAB –see eq. (7.52)–

and its trace coincides with the trace of
¯
ρAB, i.e., τEE =

¯
K. Furthermore, taking the

covariant derivative of eq. (7.76), antisymmetrising and using eq. (7.56) one has

¯
D[CτA]B =

¯
D[C

(
¯
VA]B − fA]B

)
, (7.78)

which can be checked to be gauge-invariant, noting that
¯
VAB − fAB is a symmetric,

traceless and gauge-invariant tensor that fulfils corollary 7.2.1, and that
¯
τAB satisfies

lemma 7.2.3 for a = 1.

Lemma 7.2.5. The vanishing of the first component of news
¯
VAB of proposition 7.2.1 on

J can be written as a relation between the kinematical quantities ofma (shear, expansion
and acceleration) and the curvature

¯
K,

¯
VAB = 0⇐⇒

¯
D[CfA]B =

¯
D[C

(
¯
DA]¯

aB − ¯
aA]¯

aB
)
− 1

2¯
qB[A ¯
DC]

(
¯
DE¯

aE −
¯
aE¯
aE −

¯
K
)
.

(7.79)
Equivalently,

¯
VAB = 0⇐⇒

¯
D[C

(
τA]B − fA]B

)
= 0 . (7.80)

Corollary 7.2.6. If J is strongly equipped, ergo the leaves of the foliation are umbilical
(
¯
ΣAB vanishes on J ) then

¯
VAB = 0⇐⇒

¯
D[C

(
¯
DA]¯

aB − ¯
aA]¯

aB
)
− 1

2¯
qB[A ¯
DC]

(
¯
DE¯

aE −
¯
aE¯
aE − 1

2 ¯
K
)

= 0. (7.81)

Equivalently,

¯
VAB = 0⇐⇒

¯
D[CτA]B = 0 . (7.82)

Remark 7.2.2. The dependence on
¯
κ and

¯
ΣAB is encoded in fAB , see eq. (7.15).

Proof. Firstly, take the derivative of eq. (7.76) with
¯
DC and then antisymmetrise. Sec-

ondly, apply lemma 7.2.4.

Following the programme developed in chapter 6, we look now for the second com-
ponents of news and construct a couple of traceless gauge invariant symmetric families
of tensor fields

¯
X
±

AB on S2, such that the pullback to J ,
¯
X
±

ab(v) :=
¯
W A
a ¯
W B
b ¯

X
±

AB,
satisfies

Ea
AE

b
B ¯
X
±

ab
Sv= X

±

v AB , (7.83)

where X
±

v AB are the (undetermined) second components of news defined in chapter 6
fulfilling eqs. (6.72) and (6.73) on each cut Sv. The pullback of this pair of equations to
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J , taken with respect to
{
W B
b

}
v
, reads

−1
2N¯

P e
bDe

Sv=
¯
Tb + 1

2¯
P d

c∇d ¯
X

+ c
b , (7.84)

1
2N¯

P e
bDe

Sv=
¯
Tb + 1

2¯
P d

c∇d ¯
X
− c

b . (7.85)

Because ma is orthogonal to each cut, observe that
¯
P a

b
Sv= P̊ a

b , ¯
εab = W A

a W B
b ε̊AB and

¯
Tb :=

¯
W B
b ¯
TB = W B

b TB . Thus, remarking that J = ∪
v
Sv and Sv̂1 ∩ Sv̂2 = ∅ for v̂1 6= v̂2,

eqs. (7.84) and (7.85) hold everywhere on J and one can take the push-forward to S2

using {
¯
Ea

A},

−1
2N ¯

DB =
¯
TB + 1

2 ¯
DC ¯

X
+ C

B , (7.86)
1
2N ¯

DB =
¯
TB + 1

2 ¯
DC ¯

X
− C

B , (7.87)

Then, one has on S2 (equivalently, on J after taking the pull-back)

N2 Z+ =
¯
DC

(
¯
n

+ C
B

)
¯
DD

(
¯
n

+ BD
)
, (7.88)

N2 Z− =
¯
DC

(
¯
n
− C
B

)
¯
DD

(
¯
n
− BD

)
, (7.89)

with

¯
n

+

AB := VAB +
¯
X

+

AB , (7.90)

¯
n
−

AB := VAB +
¯
X
−

AB , (7.91)

such that
¯
n
±
ab :=

¯
W A
a ¯
W B
b ¯

n
±
AB fulfils

Ea
AE

b
B ¯
n
±

ab
Sv= n
±

AB ∀v . (7.92)

A generalisation of proposition 6.4.1 can be written for strictly equipped J :

Proposition 7.2.2 (Radiant news on strictly equipped J with S2 leaves). Assume that
J is strictly equipped with v the parameter along the curves (7.10) and that the leaves
have S2-topology. Then, if the condition of eq. (7.86) (eq. (7.87)) holds,

¯
n

+

AB = 0⇐⇒ Z+ = 0 , (7.93)(
¯
n
−

AB = 0⇐⇒ Z− = 0
)

(7.94)

where
¯
n

+
AB (

¯
n
−
AB) is the one-parameter family of tensor fields on S2 given by eq. (7.90)
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(eq. (7.91)) that fulfils properties i) to vi) on page 103. Its pullback to J as

¯
n

+

ab :=
¯
W A
a ¯
W B
b ¯

n
+

AB, ma

¯
n

+

ab = 0 (7.95)

(analogously for
¯
n
−
ab) is a v-dependent tensor field on J fulfilling eq. (7.92). Hence, we

call it radiant news on J for the radiant Q+ a ( Q− k).

Proof. By definition eq. (7.90) (eq. (7.91)) the one-parameter family of tensor fields
¯
n

+
AB

(
¯
n
−
AB) satisfies properties i) to iv) on page 103. Property v) is fulfilled as well, which can

be checked by inspection of eqs. (7.71) and (7.86) (eqs. (7.71) and (7.87)). Now,
¯
n

+
AB

(
¯
n
−
AB) is symmetric and traceless on S2 and by lemma 7.2.4

¯
n

+
AB = 0⇐⇒

¯
DC ¯

n
+ C
B = 0

(
¯
n
−
AB = 0⇐⇒

¯
DC ¯

n
− C
B = 0). But this vanish if and only if Z+ = 0 ( Z− = 0) because of

eq. (7.88) (eq. (7.89)).

Proposition 7.2.3 (Radiant pseudo-news on strictly equipped J with non-S2 leaves).
Assume J is strictly equipped with v the parameter along the curves (7.10) and assume
the conditions of corollary 7.2.4. Then, if the condition of eq. (7.86) (eq. (7.87)) holds,

¯
n

+

AB = 0 =⇒ Z+ = 0 , (7.96)
(

¯
n
−

AB = 0 =⇒ Z− = 0) , (7.97)

where
¯
n

+
AB (

¯
n
−
AB) is the one-parameter family of tensor fields on S2 given by eq. (7.90)

(eq. (7.91)) that has the properties properties i) to v) on page 103, but in general it does
not fulfils property vi). One defines its pullback to J as

¯
n

+

ab :=
¯
W A
a ¯
W B
b ¯

n
+

AB, ma

¯
n

+

ab = 0 (7.98)

and analogously for
¯
n
−
ab. The tensor field

¯
n

+
ab ( ¯

n
−
ab) is a v-dependent tensor field on J

fulfilling eq. (7.92).

Proof. The proof is very much as the one in proposition 7.2.2, except for that now the
tensor

¯
VAB in eq. (7.71) corresponds to the one of corollary 7.2.4. Then, by eq. (7.88)

one has Z+ = 0 =⇒
¯
n

+
AB = 0. Due to the non-S2 topology of the cuts, lemma 7.2.4

does not apply and the inverse implications does not follow.

7.2.1 Relation to the radiation condition

We have shown that under appropriate conditions radiant news
¯
n
±
ab for Q

± α exist as ten-
sor fields on strictly equipped J . Next task of our programme is to find equations for
the derivatives along ma of these objects. In principle, guiding ourselves by the Λ = 0
case, the derivative along the ‘evolution’ direction of a radiant news-like object should be
related to W± . The approach that we will follow is similar to the one in section 6.4.
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Begin contracting eq. (5.14) with
¯
Ea

A ¯
Eb

B and symmetrising

N
¯
ε E
A C̀BE

S=
¯
S ′AB − ¯

κ D
(A ¯

SB)D − ¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) , (7.99)

where we have defined

¯
S ′AB :=

¯
Ea

A ¯
Eb

B£~mSab . (7.100)

Note that
¯
ε E

(A ¯
CB)E =

¯
ε E

(A C̀B)E =
¯
ε E
A C̀BE and also that

¯
S ′AB = £~m¯

SAB –see eq. (A.56).
Equation (7.99) can be expressed in terms of

¯
C
±

AB using properties xv) and xvi) on page
212 of appendix D as

N
¯
ε E
B ¯

C
±

AE =
¯
S ′AB − ¯

κ D
(A ¯

SB)D − ¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) ±ND̀AB . (7.101)

We can write this equation in terms of
¯
VAB ,

¯
ρAB, LAB,

N
¯
ε E
B ¯

C
±

AE = V ′AB +
¯
ρ′AB − ¯

L′AB − ¯
Σ D

(A

(
VB)D +

¯
ρB)D − ¯

LB)D

)
−1

2¯
κ
(
VAB +

¯
ρAB − ¯

LAB
)
−

¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) ±ND̀AB , (7.102)

where, in addition, we have expanded
¯
κAB in terms of

¯
ΣAB and

¯
κ and defined

¯
ρ′AB := £~m

¯
ρAB , (7.103)

¯
n′
±

AB := £~m ¯
n
±

AB . (7.104)

A similar expression follows for
¯
C
±

AB,

N
¯
C
±

AB =
¯
ε E
B

[
¯
V ′AE +

¯
ρ′AE − ¯

L′AE − ¯
Σ D

(A

(
¯
VE)D +

¯
ρE)D − ¯

LE)D

)
−1

2¯
κ
(
¯
VAE +

¯
ρAE − ¯

LAE
)
−

¯
D(A¯

SE) − ¯
S

¯
κAE + 2

¯
S(E¯

aA) ±ND̀AE

]
. (7.105)

Now, we propose the following ‘transport’ equations for
¯
n
±
AB:

N
¯
ε E
B C

+

AE = n′
+

AB − ¯
Σ C

(A n
+

B)C , (7.106)

N
¯
ε E
B C

−

AE = n′
−

AB − ¯
Σ C

(A n
−

B)C , (7.107)

with n
±
AB defined as in eqs. (6.70) and (6.71). The square of this expressions reads

N2 W+ =
(
n′

+

AB − ¯
Σ C

(A n
+

B)C

) (
n′

+ AB −
¯
Σ(A

C n
+ B)C

)
, (7.108)

N2 W− =
(
n′
−

AB − ¯
Σ C

(A n
−

B)C

) (
n′
− AB −

¯
Σ(A

C n
− B)C

)
. (7.109)

Let us remark that eqs. (7.106) and (7.107) are gauge invariant, which follows from the
gauge transformations presented in appendix C, from where the next result is derived as
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well:

Lemma 7.2.6. Let jab be any symmetric gauge invariant tensor field on equipped J

orthogonal to ma, i.e., majab = 0. Then,

j̃′ab = 1
ω
j′ab , (7.110)

where
¯
j′ab := £~m

¯
jab .

The sufficient and necessary conditions for eqs. (7.106) and (7.107) to hold are, re-
spectively:

−ND̀AB = − X ′
+

AB + X
+

C(B ¯
Σ C
A) − ¯

κ D
(A

(
¯
ρB)D − ¯

LB)D

)
− 1

2¯
κ (VAB )− L′AB

+ ρ′AB − ¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) , (7.111)

ND̀AB = − X ′
−

AB + X
−

C(B ¯
Σ C
A) − ¯

κ D
(A

(
¯
ρB)D − ¯

LB)D

)
− 1

2¯
κ (VAB )− L′AB

+ ρ′AB − ¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) . (7.112)

Therefore, by eqs. (7.108) and (7.109), one has

Lemma 7.2.7. Assume J is strictly equipped with v the parameter along the curves
(7.10) and such that eq. (7.45) holds. Assume that the leaves have S2-topology and
eqs. (7.86) and (7.111) (eqs. (7.87) and (7.112)) hold there. Then,

¯
n

+

ab = 0 =⇒ W+ = 0 . (7.113)(
¯
n
−

ab = 0 =⇒ W− = 0
)

(7.114)

To see the effects of a vanishing
¯
n

+−
ab on the presence of radiation at J , it is easier

if one studies the relation with the radiant supermomenta first

Proposition 7.2.4 (Radiant news and radiant supermomenta). Under the same assump-
tions of lemma 7.2.7,

¯
n

+

ab = 0⇐⇒ Q+ α = 0 . (7.115)(
¯
n
−

ab = 0⇐⇒ Q− α = 0
)
. (7.116)

Proof. We give the proof for Q+ α. By proposition 7.2.2, one has that Z+ = 0⇐⇒
¯
n

+
AB = 0

and, by lemma 7.2.7, that
¯
n

+
AB = 0 =⇒ W+ = 0, therefore n

+
AB = 0 =⇒ Q+ α = 0

–see property iii) on page 15. For the converse, Q+ α = 0 =⇒ W+ = 0 = Z+ and, by
proposition 7.2.2 again, Z+ = 0 =⇒

¯
n

+
AB = 0.

With this intermediate result, we are able to write a theorem for the asymptotic
canonical super-Poynting vector field
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Theorem 5 (Asymptotic super-Poynting vector and news). Assume J strictly equipped,
such that the leaves have S2-topology and eqs. (7.86), (7.87), (7.111) and (7.112) hold there.
Then,

¯
n

+

ab = 0 =
¯
n
−

ab =⇒ Pa = 0 . (7.117)

Remark 7.2.3. According to criterion 1, the result states that
¯
n

+
ab = 0 =

¯
n
−
ab =⇒ no

radiation at J .

Proof. The proof follows directly by proposition 7.2.4 and corollary 2.3.1.

7.2.2 Possible generalisation

We proceed to generalise the above results using the same technique of section 6.4.1. As
before, we ask for a couple of families of traceless gauge invariant symmetric tensor fields

¯
X
±

AB on S2 satisfying eq. (7.83) where this time X
±

v AB is the unknown tensor field of
chapter 6 appearing in eqs. (6.94) and (6.95) (instead of eqs. (6.72) and (6.73)). The
pullback of these equations to J reads

−1
2N¯

P e
bDe

Sv=
¯
Tb +

(
λ

+ − 1
)
N

¯
εbc¯
P c

d C
+ d + β

+
N

¯
P e

b C
+

e + 1
2¯
P d

c∇d ¯
X

+ c
b , (7.118)

1
2N¯

P e
bDe

Sv=
¯
Tb +

(
λ
− − 1

)
N

¯
εbc¯
P c

d C
− d + β

−
N

¯
P e

b C
−

e + 1
2¯
P d

c∇d ¯
X
− c

b . (7.119)

On S2, contracting with {
¯
Ea

A},

−1
2N ¯

DB =
¯
TB +

(
¯
λ

+ − 1
)
N

¯
εBC ¯

C
+ C +

¯
β

+
N

¯
C

+

B + 1
2 ¯
DC ¯

X
+ C

B , (7.120)
1
2N ¯

DB =
¯
TB +

(
¯
λ
− − 1

)
N

¯
εBC ¯

C
− C +

¯
β
−
N

¯
C
−

B + 1
2 ¯
DC ¯

X
− C

B , (7.121)

where {
¯
λ
±

/
¯
λ
± Sv= λ

± ∀v
}
,

{
¯
β
±

/
¯
β
± Sv= β

± ∀v
}

(7.122)

and we assume
¯
λ
± and

¯
β
± differentiable enough. A direct calculation provides on S2

(equivalently, on J after taking the pull-back)

N2
(

¯
β

+ 2 +
¯
λ

+ 2
)
Z+ =

¯
DC

(
¯
n

+ C
B

)
¯
DD

(
¯
n

+ BD
)
, (7.123)

N2
(

¯
β
− 2 +

¯
λ
− 2
)
Z− =

¯
DC

(
¯
n
− C
B

)
¯
DD

(
¯
n
− BD

)
, (7.124)

where the definitions

¯
n

+

AB := VAB +
¯
X

+

AB , (7.125)

¯
n
−

AB := VAB +
¯
X
−

AB , (7.126)



_ | Equipped infinity and symmetries 137

were introduced. In a similar fashion, recalling that W± vanishes if and only if
¯
C
±

AB does
so, we consider combinations of the form

δ
±

¯
C
±

AB + γ
±

¯
ε C
B ¯

C
±

AC , (7.127)

with δ, γ gauge-invariant, dimensionless, scalar functions obeying

δ
± = 0 =⇒ γ

± 6= 0 , (7.128)
γ
± = 0 =⇒ δ

± 6= 0 . (7.129)

Now, we propose the following ‘transport’ equations for
¯
n
±
AB:

N
(
δ

+
C

+

AB + γ
+

¯
ε E
B C

+

AE

)
=

¯
n′

+

AB − ¯
Σ C

(A ¯
n

+

B)C , (7.130)

N
(
δ
−
C
−

AB + γ
−

¯
ε E
B C

−

AE

)
=

¯
n′
−

AB − ¯
Σ C

(A ¯
n
−

B)C , (7.131)

The square of this expressions reads

N2 W+
(
δ

+ 2 + γ
+ 2
)

=
(

¯
n′

+

AB − ¯
Σ C

(A ¯
n

+

B)C

) (
¯
n′

+ AB −
¯
Σ(A

C ¯
n

+ B)C
)
, (7.132)

N2 W−
(
δ
− 2 + γ

− 2
)

=
(

¯
n′
−

AB − ¯
Σ C

(A ¯
n
−

B)C

) (
¯
n′
− AB −

¯
Σ(A

C ¯
n
− B)C

)
. (7.133)

This time, the sufficient and necessary conditions for eqs. (7.130) and (7.131) to hold are,
respectively:

−ND̀AB = − X ′
+

AB + X
+

C(B ¯
Σ C
A) − ¯

κ D
(A

(
¯
ρB)D − ¯

LB)D

)
− 1

2¯
κ (VAB )− L′AB + ρ′AB

−
¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) +N
(
γ

+ − 1
)

¯
ε E
B C

+

AE +N δ
+
C

+

AB , (7.134)

ND̀AB = − X ′
−

AB + X
−

C(B ¯
Σ C
A) − ¯

κ D
(A

(
¯
ρB)D − ¯

LB)D

)
− 1

2¯
κ (VAB )− L′AB + ρ′AB

−
¯
D(A¯

SB) − ¯
S

¯
κAB + 2

¯
S(B¯

aA) +N
(
γ
− − 1

)
¯
ε E
B C

−

AE +N δ
−
C
−

AB . (7.135)

Finally, one can write a generalised version of lemma 7.2.7, theorem 5, proposition 7.2.2
and proposition 7.2.4 by means of eqs. (7.120), (7.121), (7.134) and (7.135) instead of
eqs. (7.86), (7.87), (7.111) and (7.112).

7.3 Incoming radiation
We turn now to investigate possible ways of isolating outgoing radiation from incoming
components. This issue is relevant for characterising isolated sources which on physical
grounds one expects to contain no incoming contributions but only to emit gravitational
radiation that constitutes the outgoing component. In this section we will consider ra-
diation arriving at the future component of the conformal boundary, J +. The case of
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J − can be treated similarly. Let us point out that the asymptotically flat scenario auto-
matically has a structure adapted to the outgoing radiation due to the lightlike character
of J +. In simple words, when Λ = 0 the radiation arriving at infinity and escaping
from the space-time necessarily follows lightlike directions transversal to the conformal
boundary. Therefore, the generators of J + can be considered to point along the direction
of propagation of incoming radiation or, from another point of view, incoming radiation
never propagates transversally to J +. In contrast, the Λ > 0 case presents the follow-
ing difficulty: every radiation component, incoming or outgoing, crosses J + and escapes
from the space-time. Hence, one is left with the problem of specifying physically reason-
able conditions capable of ruling out one of the radiative components –in our setting the
incoming one, by definition. This sort of constraints sometimes receives the name of no
incoming radiation conditions. There is already a proposal [72] in the literature which
requires information from the physical space-time. Since according to criterion 1 the pres-
ence of radiation at J + is determined by the information encoded in (J +, hab, Dab) –see
property iv) on page 86 and remark 5.3.2–, we believe that absence of incoming radiation
should be encoded upon this same data.

Motivated by the Λ = 0 case (chapter 4), it is reasonable to think that the vanish-
ing of a radiant supermomentum Q` α is related to the absence of radiation propagating
transversally to the null direction `α. This suggests that in our setup the vanishing of one
radiant supermomenta, say Q− α, could suppress the radiation travelling along transversal
directions, in particular along k

+ α. Looking at the definition in eq. (7.6), this restriction
automatically turns ma into an intrinsic incoming direction field which in particular de-
fines a selected congruence of curves, hence equipping J + –or the open portion ∆ ⊂J +

with the same topology where Q− α vanishes. In view of these properties, it makes sense
to consider ma as an intrinsic ‘evolution direction’ on J +: if we compare with the Λ = 0
case, the incoming direction given by the generators of J + defines the evolution direc-
tion; the analogy goes further if we notice that the vector field ma points towards the
region where the worldlines of the isolated sources meet J + –see fig. 7.1. As a further
positive property, the restriction Q− α = 0 can be expressed entirely with the information
available in (J +, hab, Dab):

Lemma 7.3.1. Let J (or an open portion thereof) be equipped as in definition 7.0.1
and define Q− α according to definitions of eqs. (2.49) and (7.7). Then

Q− α = 0⇐⇒ Dab −
1
2Defm

emf (3mamb − hab) = mdεed(a

(
C e
b) +mb)m

fC e
f

)
. (7.136)

Proof. By eqs. (2.53) and (2.55) and property iii) on page 15, Q− α = 0 ⇐⇒
¯
D
−

AB =

¯
C
−

AB = 0 =
¯
D
−

A =
¯
C
−

A . The result is obtained setting these values into eq. (2.42) and
using property xxviii) on page 212.
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Figure 7.1: On the left: the asymptotically flat case, where the generators of J rule the
natural evolution direction and outgoing radiation crosses J + transversally. On the
right: the Λ > 0 scenario, where any direction of propagation of gravitational radiation
is transversal to J + and criterion 2 selects an intrinsic ‘evolution’ direction given by
ma, which points towards the region where the source meets J +.

Then, our proposal to describe absence of incoming radiation reads as follows:

Criterion 2 (No incoming radiation on J +). We say that there is no incoming radiation
at J + (or on an open portion ∆ ⊂ J + with the same topology) propagating along a
vector field ma on J +, if ma is such that, according to definitions (2.49, 7.7),

Q− α = 0 (7.137)

or equivalently

Dab −
1
2Defm

emf (3mamb − hab) = mdεed(a

(
C e
b) +mb)m

fC e
f

)
. (7.138)

Remark 7.3.1. Equivalently, there is no incoming radiation propagating along ma on
(∆ ⊂)J + when ma defines a strong orientation there –see definition 5.4.2.

Remark 7.3.2. If criterion 2 holds, all the components of Dab except mambDab are
determined by Cab . This is in close analogy to what happens at the conformal boundary
for Λ = 0 where the ‘electric’ part of the rescaled Weyl tensor defined with respect to the
null normal Nα (which algebraically is of the kind (2.25)), is determined by the ‘magnetic’
part (which is of the sort (2.26)) except for the NαNβ component. In both scenarios, this
free component carries the information related to the Coulomb part of the gravitational
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field (see eq. (D.10)). This evinces that criterion 2 is a constraint that affects the radiative
degrees of freedom.

In other words, criterion 2 identifies a class of space-times which can be safely con-
sidered to describe situations with only outgoing gravitational radiation arriving at J +:
those where the free data Dab are determined by the intrinsic geometry of (J +, hab) ac-
cording to (7.138) (for unit ma) except for the one component mambDab which remains
as the only extra free data independent of (J +, hab). It seems interesting to study in
deep this class of space-times.

As a consequence of corollary 2.3.1 one has

Corollary 7.3.1. Assume that the no incoming radiation condition of criterion 2 holds.
Then,

Q+ α = 0⇐⇒ Pa = 0. (7.139)

Remark 7.3.3. This provides further support to criterion 2 because if condition (7.137)
holds, the presence of gravitational waves at J + (or on an open portion ∆ ⊂ J +) is
completely determined, according to our criterion 1, by the outgoing components of the
radiation —which are associated to Q+ α.

Of especial interest is the case of a strictly equipped J +, so thatma defines a foliation
(⇐⇒

¯
ωab = 0). In particular,

Lemma 7.3.2. Let J + by strictly equipped such that ma satisfies condition (7.137)
of criterion 2. Assume that conditions in proposition 7.2.2 and eq. (7.87) hold on J +.
Then,

¯
n
−

AB = 0 (7.140)

with
¯
n
−
AB one of the news tensor fields of proposition 7.2.2.

Proof. On the one hand, condition in criterion 2 is saying that Q− α = 0, which implies
Z− = 0. On the other hand, because of eq. (7.87), proposition 7.2.2 tells us Z− = 0⇐⇒

¯
n
−
AB = 0.

And for the particular case with J + strongly equipped,

Lemma 7.3.3. If J + is strongly equipped (
¯
Σab = 0) with S2 leaves and the condi-

tion (7.137) of criterion 2 is satisfied, then there always exists the radiant news
¯
n

+
AB of

proposition 7.2.2 and is given by

¯
n

+

AB = 2
¯
VAB , (7.141)

where
¯
VAB is the first component of news of proposition 7.2.1.
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Proof. Note that eq. (7.137) imposes
¯
C

+ A =
¯
CA (and

¯
DA¯

εAB = −
¯
CB, see lemma 2.3.3)

and umbilicity implies
¯
TA = 0 (see (7.36)). It is easy to see that eq. (7.86) is satisfied

with
¯
X

+
AB =

¯
VAB . The result follows then by proposition 7.2.2.

Lemma 7.3.4. Assume J + is strongly equipped with leaves that are non-necessarily
topological-S2 and such that condition (7.137) of criterion 2 is satisfied. Assume also that
there is a vector field χa such that

¯
χA :=

¯
W A
a χa is a CKVF with a fixed point on each

leaf. Then, there always exists the radiant pseudo-news
¯
n

+
AB of proposition 7.2.3 and is

given by

¯
n

+

AB = 2
¯
VAB , (7.142)

where
¯
VAB is the first component of news of corollary 7.2.4.

Proof. The proof follows as in lemma 7.3.3, but now one uses proposition 7.2.3 instead of
proposition 7.2.2.

Remark 7.3.4. If instead one uses the generalised approach of section 7.2.2, it is possible
to show in a similar fashion that solutions

¯
n

+

AB = 2 λ+
¯
VAB (7.143)

always exist, where the values λ
+ = constant and β

+ = 0 are fixed. It may be the case
that the value of λ

+ can be fixed by physical arguments.

If we use eqs. (7.86) and (7.111), we end up with a theorem on the presence of radiation,

Theorem 6 (Asymptotic super-Poynting and radiant news under Criterion 2). Assume
that J + is strictly equipped with S2 leaves and that condition (7.137) of criterion 2 holds.
Assume also that eqs. (7.86) and (7.111) hold on J +. Then, radiant news

¯
n

+
AB exists

such that

¯
n

+

AB = 0⇐⇒ Pa = 0⇐⇒ There is no radiation at J + . (7.144)

Proof. Criterion 2 implies that Q− α = 0, and from corollary 7.3.1 we have Q+ α = 0 ⇐⇒
Pa = 0 (which according to criterion 1 occurs if and only if there is no radiation at J +).
Then, proposition 7.2.4 shows that Q+ α = 0⇐⇒

¯
n

+
AB = 0 –the existence of

¯
n

+
AB follows

from proposition 7.2.2.

Corollary 7.3.2. Let the assumptions of theorem 6 hold but now with a strongly equipped
J +. Then

¯
VAB = 0⇐⇒ Pa = 0⇐⇒ There is no radiation at J . (7.145)

Proof. By lemma 7.3.3
¯
n

+
AB exists such that

¯
VAB = 0⇐⇒

¯
n

+
AB = 0. The result follows

then by theorem 6.
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7.4 Symmetries

Another field of study is that of symmetries at infinity. Although the asymptotically
flat scenario is well understood in this respect, such is not the case for the Λ > 0 case.
For a vanishing cosmological constant, a universal group of symmetries at J –the so
called BMS group– emerges following different approaches. One possibility is to work in
the physical space-time and define the symmetries as those transformations preserving
some coordinate boundary condition, as in the original work of Bondi, Metzner and Sachs
[21, 40, 43]–after whom the symmetry group inherits its name– or by defining ‘approx-
imate asymptotic symmetries’ [103, 139]. Alternatively one can work in the conformal
space-time and define the asymptotic symmetry group as those mappings that leave in-
variant a particular conformal-gauge fixing, sometimes called ‘Bondi systems’ [115], or as
those transformations which leave invariant certain structure consisting on the degener-
ate metric and the generators of J [17, 48]. Moreover, there is an alternative definition
of asymptotic symmetries as those which leave unchanged some gauge-invariant tensorial
quantity constructed with the elementary objects on J –an ‘asymptotic geometry’, to put
it in Geroch’s words [17]. Indeed, this is the first approach we will consider for Λ > 0 and,
as we will see, it does not lead to the type of enhanced group of symmetries –analogous
to the BMS in a broad sense– that one may wish; for this reason we will explore other
different paths too, eventually arriving at a proposal providing an infinite-dimensional Lie
algebra.

Consider the gauge invariant object

Υabcdef := habDcdDef (7.146)

and define the generators of infinitesimal symmetries ξa as

£~ξΥabcde = 0 . (7.147)

Expanding this equation we find

2∇(aξb)DcdDef = −hab
[
Dcd£~ξDef +Def£~ξDcd

]
, (7.148)

from where
£~ξhab = 2∇(aξb) = 2ψhab with ψ := 1

3∇cξ
c . (7.149)

Using this back into eq. (7.148) one gets

£~ξDcd = −ψDcd . (7.150)

Equation (7.149) implies that ξa is a CKVF of the metric hab. A result in [136] states
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that a Killing vector field of a Λ > 0-vacuum space-time induces a vector field on J that
satisfies precisely eqs. (7.148) and (7.150) and, conversely, a vector field on J satisfying
eqs. (7.148) and (7.150) gives rise, via an initial value problem, to a KVF of the physical
space-time. From this point of view, the proposal of preserving (7.146) is fully justified.
Importantly, this definition does not require fixing the topology of J nor requires the
metric to be conformally flat –with the high-restrictive aftermath this implies [61]. Also, it
includes Dab as a fundamental ingredient, in accordance with our repeated claim that one
has to bring Dab into the picture. Nevertheless, it is not completely satisfactory as there
may be cases in which no asymptotic symmetries exist. These are the basic asymptotic
symmetries

Definition 7.4.1 (Basic infinitesimal asymptotic symmetries). We define the basic in-
finitesimal asymptotic symmetries as those CKVF ξa of (hab,J ) which satisfy

£~ξDcd = −1
3∇mξ

mDcd . (7.151)

Nevertheless, definition 7.4.1 is not completely satisfactory as there may be cases in
which no such basic asymptotic symmetries exist. Alternatively, we can define other
asymptotic symmetries as those which preserve the structure of definition 7.0.1 in the
following sense:

Definition 7.4.2 (Equipped J symmetries.). Consider J equipped according to def-
inition 7.0.1. The extended asymptotic symmetries are those preserving the conformal
class of the one-parameter family of projectors to S2, and the direction of the congruence
C on J . In other words, these symmetries are the transformations acting on the pairs
(
¯
Pab ,ma) as

(
¯
Pab ,ma) −→

(
Ψ2

¯
Pab ,Φma

)
.

Remark 7.4.1. The infinitesimal version ξa of these transformations is

£~ξ¯
Pab = 2ψ

¯
Pab , (7.152)

£~ξma = φma , (7.153)

where ξa generates a one-parameter (ε) family of transformations of the type defini-
tion 7.4.2, with φ := ∂εΦ (ε) |ε=0, ψ := ∂εΨ (ε) |ε=0. Note that from these equations it
also follows

£~ξm
a = −φma (7.154)

and
£~ξhab = 2φmamb + 2ψ

¯
Pab . (7.155)
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The following gauge-changes follow from eqs. (7.152) and (7.153):

ψ̃ = ψ + £~ξ (lnω) , (7.156)
φ̃ = φ+ £~ξ (lnω) . (7.157)

Observe also that ψ̃ − φ̃ = ψ − φ is gauge invariant.

The group of symmetries of definition 7.4.2 will be denoted by B and it constitutes a
case of the so called biconformal transformations [140]. Taking into account that the Lie
derivative acts linearly and using the property £[ ~ξ1, ~ξ2] = £~ξ1

£~ξ2
−£~ξ2

£~ξ1
, it can be easily

shown that these infinitesimal transformations form a Lie algebra which we denote by b

and that for ξa3 =
[
ξ1 , ξ2

]a
one has

ψ3 = £ ~ξ1
ψ2 −£ ~ξ2

ψ1 , (7.158)

φ3 = £ ~ξ1
φ2 −£ ~ξ2

φ1 . (7.159)

Consider the general decomposition

ξa = βma + χa , χama = 0. (7.160)

We can obtain the necessary and sufficient conditions that β and χa have to satisfy so
that ξa ∈ b by decomposing into tangent and orthogonal parts eqs. (7.152) to (7.154),

£~ξPab = 2ψ
¯
Pab ,

£~ξma = φma ,
⇐⇒



£~mβ − ¯
aeχe = φ ,

β
¯
ab +

¯
Dbβ + 2

¯
ωebχ

e = 0 ,
£~mχ

a + χe
¯
aem

a = 0 ,
2

¯
D(dχc) + 2β

¯
κcb − 2ψ

¯
Pcd = 0 .

(7.161)
(7.162)
(7.163)
(7.164)

In order to identify some sort of translational subgroup, it seems natural to ask for the
existence of a particular class of generators τa

J
:= αma completely tangent to ~m,

£~τPab = 2θ
¯
Pab ,

£~τma = λma ,
⇐⇒


£~mα = λ ,

α
¯
ab +

¯
Dbα = 0 ,

θ
¯
Pcd − α¯

κcd = 0 .

(7.165)
(7.166)
(7.167)

Notice that eq. (7.167) requires ma to be shear-free. However, this is not an assumption
in definition 7.0.1 and in general one has

¯
Σab 6= 0.

Furthermore, asking for ηa to be a symmetry orthogonal to ma (ηeme = 0) produces
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the following set of conditions:

£~ηPab = 2ϕ
¯
Pab ,

£~ηma = µma ,
⇐⇒


¯
aeηe = −µ ,
ηe

¯
ωeb = 0 ,

£~mη
a + ηe

¯
aem

a = 0 ,

¯
D(aηb) − ϕ¯

Pab = 0 .

(7.168)
(7.169)
(7.170)
(7.171)

In this case, eq. (7.169) requires
¯
ωab = 0 —to prove this, note that 2

¯
ωab =

¯
ωcd¯

εcd
¯
εab.

However, according to definition 7.0.1, the vector field ~m has non-vanishing vorticity, in
general. Importantly, to account for the existence of symmetries one has to study inte-
grability conditions too. Then, (multiple) solutions to the above equations may exist or
not. The general form of such conditions are out of the scope of this work, but one can
study them for each particular metric.

What we have seen is that, in general, definition 7.0.1 is too weak in order to get a
notion of translations within J and along ma. We will explore the particular case in
which this kind of symmetries are present in section 7.4.2. Before that, we present a
derivation of the transformations of definition 7.4.2 without further constraints using a
different approach which also partly justifies the definition.

7.4.1 Derivation from approximate space-time symmetries

We are about to show that a particular sort of approximate space-time symmetries can
lead at infinity to the equipped-J symmetries of definition 7.0.1. For simplicity, in this
subsection we set Tαβ = 0 –this does not affect the final result.

Begin by considering a vector field ξ̂α on the physical space-time
(
M̂, ĝαβ

)
with a

smooth extension to J on the unphysical space-time
(
M, gαβ

)
, which in this subsection

we consider foliated by Ω =constant-hypersurfaces near J . On M̂ one has

£~̂
ξ
gαβ = Ω2£~̂

ξ
ĝαβ + 2

Ω£~̂
ξ

(Ω) ĝαβ . (7.172)

We will require that
Ω2£~̂

ξ
ĝαβ = Hαβ (7.173)

for some symmetric tensor field Hαβ regular at J . Then, the idea is to ask Hαβ to
fulfil certain conditions such that ξ̂α ‘approximates’ a symmetry near J . Some obvious
examples are:

• If ξ̂α is a KVF for ĝαβ , then Hαβ = 0.
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• If ξ̂α is a CKVF for ĝαβ , then Hαβ ∝ gαβ .
Observe that assumption (7.173) and regularity of eq. (7.172) at J require

£~̂
ξ

(Ω) = ΩJ (7.174)

for some scalar function J regular at J . Of course, this implies that

ξ̂αNα

J= 0 . (7.175)

Hence, ξ̂α has to be tangent to J . For later convenience let us define

ξα
J
:= ξ̂α

J= eαaξ
a, (7.176)

where {eaα} is a basis on J . Then, eq. (7.172) reads

£~̂
ξ
gαβ = 2Jgαβ +Hαβ . (7.177)

It is easy to obtain
£~̂
ξ
Nα = NαJ + Ω∇αJ, (7.178)

from where at J (recall that Pα
β is the projector to J (3.89))

£~̂
ξ
Pαβ

J= 2JPαβ +Hαβ . (7.179)

Next, we are going to see whether this equation contains components along Nα or not.
Contraction of eq. (7.177) with Nα gives

£~̂
ξ
Nα = −JNα −Hα + Ω∇αJ (7.180)

with
Hα := NµH α

µ , (7.181)

from where,

Nα£~̂
ξ
Pαβ = Hβ + Ω

[
−∇βJ + nβn

α∇αJ −
2
N
nβ

(
£~̂
ξ
f + fJ

)]
, (7.182)

where f is the scalar (3.29). Then, contraction of eq. (7.179) with Nα gives

Nα£~ξPαβ
J= Hβ (7.183)

and contraction of eq. (7.182) with Nβ,

NαNβHαβ = NβHβ

J= 0. (7.184)



_ | Equipped infinity and symmetries 147

Hence, Hα J= eαaH
a and by eq. (7.180)

Hα J= −
(

£~̂
ξ
Nα + JNα

)
. (7.185)

To see if there is any consistency condition for Hαβ compute the following:

£~̂
ξ
£ ~Ngαβ = 2£~̂

ξ
fgαβ + 2f

(
2Jgαβ +Hαβ

)
− ΩJSαβ − Ω£~̂

ξ
Sαβ , (7.186)

£ ~N£~̂
ξ
gαβ = 2£ ~NJgαβ + 2J

(
2fgαβ − ΩSαβ

)
+ £ ~NHαβ , (7.187)

£[~̂
ξ, ~N

]gαβ = £(−J ~N− ~H−Ω ~∇J)gαβ = −J
(
2fgαβ − ΩSαβ

)
−∇αHβ −∇βHα + 2Ω∇α∇βJ

(7.188)

and then, use the identity £[~̂
ξ, ~N

] = £~̂
ξ
£ ~N −£ ~N£~̂

ξ
to get

0 = 2
(

£~̂
ξ
f −£ ~NJ + fJ

)
gαβ+2fHαβ−£ ~NHαβ+∇αHβ+∇βHα−Ω

(
2∇α∇βJ + £~̂

ξ
Sαβ

)
.

(7.189)
After some computation, it can be checked that the right-hand side of eq. (7.189) does not
have components along Nα, therefore this equation contains no information orthogonal
to the Ω =constant hypersurfaces. Expanding the Lie derivative of Hαβ , eq. (7.189) turns
into an expression for the derivative of this tensor along Nα, Ḣαβ := Nµ∇µHαβ ,

Ḣαβ = ∇αHβ +∇βHα +
(

£~̂
ξ
f −£ ~NJ + fJ

)
gαβ + Ω

(
Hµ(αS

µ
β) − 2∇α∇βJ −£~̂

ξ
Sαβ

)
.

(7.190)
If one projects this equation to J with {eαa} and uses eq. (7.184), it reads

NḢab

J= 2∇(aHb) −£ ~NJhab , (7.191)

where J J= J and we have used f J= 0 (see eq. (3.30)) and

ξα∇αf
J= 0 . (7.192)

Next, take the pullback of eq. (7.179) to J ,

£~ξhab
J= 2Jhab +Hab , (7.193)

where it is evident that only the tangent part of Hαβ intervenes. Equation (7.193) is
important, as the meaning of Hab on J it is clear here: how we choose Hab defines how
we define ξa as an asymptotic-symmetry. Our goal is to choose Hab such that one can say
that eq. (7.193) comes from an approximate space-time symmetry –as much as possible.
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Before entering into this task, let us remark that ξa is in one-to-one correspondence with
the equivalence class { `̂

ξα ∈
[
ξ̂
α]

⇐⇒ `̂
ξα − ξ̂

α = Ωvα
}
, (7.194)

where vα is any vector field on M . However, if we want any element of the equivalence
class to generate an asymptotic symmetry of the kind (7.193), Ωvα itself has to satisfy all
the equations so far. Calling H0 αβ and J0 the Hαβ and J associated to Ωvα, respectively,
from eqs. (7.174) and (7.177) we have

£Ω~vΩ = ΩvµNµ = Ω J0 , (7.195)
£Ω~vgαβ = 2Ω∇(αvβ) + 2v(αNβ) = 2 J0 gαβ + H0 αβ . (7.196)

Then, putting together these two equations we get a formula for H0 αβ :

H0 αβ = 2Ω∇(αvβ) + 2v(αNβ) − 2vµNµ gαβ . (7.197)

It can also be shown that H0 α := Nµ H0 αµ is tangent at J and satisfies

H0 α

J= −vµNµ −N2vα
J= −P µ

α vµ ,

= −
(
£Ω~vNα + J0 Nα

)
(7.198)

—compare with eq. (7.185). The combination H0 αβ for arbitrary vα has no relevance for
ξa, then, it can be considered as a gauge part in Hαβ . Hence, for any

`̂
ξα ∈

[
ξ̂α
]
one uses

H̀αβ = Hαβ + 2N(α vβ) − 2vµNµPαβ + 2Ω∇(αvβ) , (7.199)

where we have defined vα := P µ
α vµ. Note that any term of type Nα vβ + Nβ vα is pure

gauge in Hαβ , and the term in Pαβ is the one that makes the definition of ξa unambiguous.
This is clearly seen projecting to J ,

H̀ab = Hab − 2
(
vµNµ

) ∣∣∣∣
J
hab . (7.200)

Therefore, within J one gets

£~̀
ξ
hab = 2J̀hab + H̀ab = 2Jhab +Hab = £~ξhab , (7.201)

where we have used eqs. (7.193), (7.195) and (7.200) together with J̀ = J+ J0 . By typical
calculations, it can be proven that the set of such vector fields ξ̂α on

(
M̂, ĝαβ

)
form a Lie

algebra, as well as their equivalence classes. One should not forget the conformal gauge
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freedom (3.6). Under such rescalings,

J̃ = J + 1
ω

£~̂
ξ
ω , (7.202)

H̃αβ = ω2Hαβ , (7.203)
H̃α = ωHα + ΩωβHαβ , (7.204)

which follow form eqs. (7.174) and (7.177) and the gauge transformations of appendix C.

Now we have to make a choice for Hαβ . Should we follow Geroch and Winicour [139],
we would have to set Hαβ

J= 0. This fixing makes ξa a CKVF of hab, hence one probably,
at the best, recovers the basic symmetries preserving (7.146) of definition 7.4.1. However,
as we have argued, these kind of symmetries are not satisfactory. Thus, one is left with
the problem of specifying a different kind of Hαβ . It makes sense to think that Hαβ should
be a rank-1 matrix –at least on J – up to redundancy-correction terms, that is

Amαmβ + Ωxαβ (7.205)

for some scalar function A and tensor field xαβ. Moreover, the one-form mα has to be
tangent to J , i.e. mαN

α J= 0, so that it fulfils eq. (7.184). Still, in order to use (7.205)
as Hαβ , one has to add the redundancy-correction terms (7.197); the resulting expression
reads

Hαβ = Amαmβ + 2N(α vβ) + CPαβ + Ωxαβ, (7.206)

where we have set C := −2vµNµ. The parameters A and C are general and should not
be fixed beforehand, as doing so would restrict the available ξa. The pullback to J is

Hab = Amamb + Chab , (7.207)

by means of which we can write eq. (7.193) as

£~ξhab =
(
2J + C

)
hab + Amamb . (7.208)

Observe that eqs. (7.204), (C.23) and (C.46) impose

C̃
J= C, Ã

J= A . (7.209)

Let us define
¯
Pab := hab −mamb, as in eq. (A.46), to write the last formula as

£~ξhab =
(
2J + C

)
¯
Pab +

(
A+ 2J + C

)
mamb . (7.210)

From this expression it becomes manifest that the resulting ξa are biconformal vector fields
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on J . The Lie-algebra structure of these infinitesimal transformations and eq. (7.210)
require

£~ξ¯
Pab = 2ψ

¯
Pab with ψ := 2J + C, (7.211)

£~ξma = φma with φ := A+ 2J + C, (7.212)

which are actually eqs. (7.152) and (7.153) for ma the vector field of definition 7.0.1.
Observe that from eqs. (7.202) and (7.209) one can deduce the gauge transformation of
ψ and φ:

ψ̃ = ψ + 2
ω

£~ξω, φ̃ = φ+ 2
ω

£~ξω . (7.213)

As a matter of fact, the space-time KVF (Hαβ = 0) and CKVF (Hαβ ∝ ĝαβ) only gen-
erate part of the asymptotic symmetries of definition 7.4.2 –if they also satisfy eq. (7.153).

7.4.2 Strongly equipped J

We consider now the asymptotic symmetries of definition 7.4.2 for strongly equipped J

of definition 7.0.3. Let us keep the notation that was used for denoting general (ξa),
ma-orthogonal (ηa) and ma-tangent (τa) symmetries, respectively.

Then, for ξa := βma + χa:

£~ξ¯
Pab = 2ψ

¯
Pab ,

£~ξma = φma ,
⇐⇒



£~mβ − ¯
aeχe = φ ,

β
¯
ab +

¯
Dbβ = 0 ,

£~mχ
a + χe

¯
aem

a = 0 ,
2

¯
D(dχc) + (

¯
κβ − 2ψ)

¯
Pcd = 0 .

(7.214)
(7.215)
(7.216)
(7.217)

For τa := αma:
£~τ¯

Pab = 2θ
¯
Pab ,

£~τma = λma ,
⇐⇒


£~mα = λ ,

α
¯
ab +

¯
Dbα = 0 ,

θ − 1
2α¯
κ = 0 .

(7.218)
(7.219)

(7.220)

Finally, for ηa (ηeme = 0):

£~η¯
Pab = 2ϕ

¯
Pab ,

£~ηma = µma ,
⇐⇒


¯
aeηe = −µ ,
£~mη

a + ηe
¯
aem

a = 0 ,

¯
D(aηb) − ϕ¯

Pab = 0 .

(7.221)
(7.222)
(7.223)
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It can be shown that all the vector fields τa satisfying eqs. (7.218) to (7.220) form a
subalgebra t which we call ‘bitranslations’. Moreover, for any ξa ∈ b and any τa ∈ t

£~τξ
a = (αφ− βλ+ αχe

¯
ae)ma . (7.224)

Thus, the subalgebra t is a Lie ideal of b. For any two ~τ 1, ~τ 2 ∈ t,

[~τ 1, ~τ 2]a = (α1£~mα2 − α2£~mα1)ma , (7.225)

therefore, t is non-Abelian. Note that t has a subalgebra, ct, of ‘conformal translations’
defined by those elements of t for which θ = λ, and that this is Abelian2. Furthermore,
given one element of t, multiplying it by a function ν such that

¯
Daν = 0 produces a new

element of t; the subalgebra t is infinite dimensional and by eqs. (7.219) and (A.105) the
general form of an element τa ∈ t is

τa = ν (v)Fma, with 1
F

= £~mv , (7.226)

where ν is an arbitrary function of v and one has (using obvious notation)

[~τ 1, ~τ 2]a = (ν1£~mν2 − ν2£~mν1)Fma . (7.227)

In the same way, it is easily proven that the vector fields ηa form a subalgebra cs and
are CKVF of the metric on each cut Sv.

Importantly, wee see that any ξa ∈ b is a composition of a τa ∈ t, with λ = φ+
¯
aeξe and

2θ =
¯
Ddξd +

¯
κβ − 2ψ (from eqs. (7.214) to (7.216) and (7.218) to (7.220)), and a ηa ∈ cs,

with µ = φ−£~m (β) and 2ϕ = 2ψ−
¯
κβ (from eqs. (7.214) to (7.216) and (7.221) to (7.223)

). Let us denote the groups associated to these algebras by B,T,CS, respectively. Then,
we have that T is a normal subgroup of B and that it makes sense to define the quotient
group B/T whose Lie algebra we denote by b/t. But the elements of b/t are precisely the
elements of cs: any symmetry ηa modulo a bitranslation is in cs. Furthermore, since these
are the conformal transformations of Sv, if this has S2-topology, CS is isomorphic to the
Lorentz Group SO(1, 3). Another easily verifiable property is that any τa ∈ t commutes
with any ηa ∈ cs,

[~τ, ~η]a = 0 , (7.228)

as one simply has to set β = 0, χa = ηa and φ = µ = −ηeae in eq. (7.224). Note that
solutions α to eq. (7.219) always exist because ma defines a foliation – see eq. (A.105).

2And an ideal of the Lie subalgebra of b consisting on CKVF (φ = ψ).
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Then, given α, one can take eqs. (7.218) and (7.220) as definitions for λ and θ. Also, if
we assume S2-topology for the cuts, there always exist (up to 6) conformal Killing vector
fields satisfying eq. (7.223). Equation (7.221) can be taken as the definition for µ and
eq. (7.222) is equivalent to

mc£~η¯
P a
c = 0, (7.229)

which using
¯
ωab = 0 can be expressed as

ηe
¯
κ a
e − ¯

P a
dm

e∇eη
d = 0 (7.230)

and does not hold in general. Then, given definition 7.0.3, solutions ξ ∈ b to eqs. (7.214)
to (7.217) not necessarily exist3. In summary:

The asymptotic group of symmetries B that preserve the strong structure of
definition 7.0.3 is the (semidirect) product of the (normal) subgroup of bitrans-
lations T and the subgroup of conformal transformations in two dimensions
CS

B = T n CS . (7.231)

The subalgebra of bitranslations t is a non-Abelian Lie ideal and its elements
commute with the ones of the algebra cs of the group of conformal transfor-
mations on Sv, CS.

Let us conclude this section by briefly commenting on the units of α. If eventually one
wished to take the limit of the symmetries to Λ = 0, assuming the limit exists and α

∣∣∣∣
Λ=0

is regular, one has to rescale any infinitesimal symmetry as –see eq. (5.79)–

Nξa = αMa +Nχa, (7.232)

where Nξa should be dimensionless to fit with the asymptotic symmetries of the Λ = 0
case. Therefore, one has to assign α the dimensions of length, [α] = L. Another way of
seeing this is that by a conformal rescaling

m̃a = 1
ω
ma , (7.233)

and as any infinitesimal symmetry ξa must be conformally invariant

α̃ = ωα. (7.234)

Because ω is dimensionless and lengths rescale with ω, we arrive at the same conclusion,
i.e., [α] = L.

3One has not only to study the solutions ηa to eq. (7.230) but also the integrability conditions.
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7.4.3 Relation between the tensor ρ and asymptotic translations
It is possible to relate the asymptotic symmetries to

¯
ρab and the vanishing of

¯
Vab . For a

general foliation, using eq. (7.76), one has that
¯
Vab = 0 if and only if

¯
ρAB = fAB +

¯
DA¯

aB − ¯
aA¯
aB −

1
2¯
q
AB

(
¯
DE¯

aE −
¯
aE¯
aE −

¯
K
)
. (7.235)

Hence, using the function F of eq. (A.105)

Lemma 7.4.1. Assume J is strictly equipped. Then

¯
VAB = 0⇐⇒

¯
ρAB = fAB −

1
F ¯
DA ¯
DBF + 1

2¯
q
AB

[ 1
F ¯
DC ¯
DCF +

¯
K
]
. (7.236)

As an immediate consequence,

Corollary 7.4.1. If J is strongly equipped and τa = αma is a bitranslation, then

¯
VAB = 0⇐⇒

¯
ρAB = − 1

α ¯
DA ¯
DBα + 1

2¯
q
AB

[ 1
α ¯
DC ¯
DCα +

¯
K
]
. (7.237)

The last result follows by noting that if τa ∈ t then α satisfies eq. (7.219) and that for
umbilical cuts fAB = 0 (see eq. (7.15)). Indeed, the equation

0 = 1
α ¯
DA ¯
DBα +

¯
ρAB −

1
2¯
q
AB

[ 1
α ¯
DC ¯
DCα +

¯
K
]
. (7.238)

provides us with a neat interpretation for α,

Remark 7.4.2. If the leaves Sv have topology S2 then the solutions α correspond to
the l = 0, 1 spherical harmonics; in fact, they are exactly a linear combination of the
l = 0, 1 spherical harmonics in the round gauge with 2ρAB = KqAB , and one obtains for
eq. (7.238)

DADB α̊−
1
2qABDCD

Cα̊
Sv= 0 . (7.239)

In other words, if J is strongly equipped and τa = αma is a bitranslation, the function
F appearing in eq. (7.226) is, on every leaf, a solution of (7.238) if and only if VAB

Sv= 0
there.

In view of this remark, we are induced to distinguish a class of asymptotic translations,

Definition 7.4.3 (Asymptotic translations). Let J be strongly equipped. We say that a
bitranslation τa = αma ∈ t is an asymptotic translation if and only α satisfies eq. (7.238).
In particular, if the leaves have topology S2, in a round gauge the restriction α̊ of α is a
linear combination of the l = 0, 1 spherical harmonics.
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Observe that this results provide us with a notion of translations intrinsic to J which,
as far as we know, have not been characterised before for Λ > 04. Although we have
required a strongly equipped J –that is, the existence of a foliation by umbilical cuts–
important examples have this structure, as the Kottler, Kerr-de Sitter and Robinson-
Trautman metrics or the C-metric. Definition 7.4.3 is supported by the fact that the
restriction of the four- dimensional group of translational KVF in de Sitter space-time are
asymptotic translations. All the KVF are tangent to J , giving rise to the 10 CKVF of
S3, with a four-dimensional subgroup corresponding to translation in the 4-dimensional
cartesian embedding of S3. The latter are of the form

τa = hfa∇fF , (7.240)

with F satisfying
∇a∇bF = −F

a2hab , (7.241)

where a is the constant ‘radius’ of the round 3-sphere. It is evident that τa are surface-
orthogonal and that their shear vanishes. Contraction of eq. (7.241) with

¯
Ea

Am
b yields

¯
DAα = 0 , (7.242)

where α :=
√
ξaξa and ma := τa/α. Hence, the restriction α̊ of α to each cut is a constant

–α is not a first integral of ma though. Also, for the cuts associated to each translation,
VAB = 0 –this follows from eq. (7.71) and Cab = 0, noting that the cuts are umbilical,
thus implying ΣAB = 0 on each of them.

Proposition 7.4.1. Let ξ̂α be a CKVF of
(
M, gαβ

)
with non-vanishing restriction to J

and define
ξa

J
:= ω a

α ξ̂
α (7.243)

and
ma := 1

α
ξa with α :=

√
ξaξ

a. (7.244)

Assume that ξa is orthogonal to cuts with S2-topology. Then

1. ξa is a CKVF of (J , hab) and a BCKVF of (ma, ¯
Pab ) that belongs to t.

2. ma is shear-less (
¯
Σab = 0).

3. The restriction to the the leaves α̊ of the function α is a solution of (7.238) (and
thus proportional to a combination of the first four spherical harmonics in a round
gauge) if and only if

¯
Vab = 0 and if and only if

¯
CA :=

¯
Ea

Am
bCab = 0 (equivalently

¯
C

+
A = −

¯
C
−

A).
4For Λ = 0, see [17].
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Proof. Point 1 is trivial. Point 2 follows by noting that bitranslations satisfy eq. (7.167).
Hence,

¯
Σab = 0, which together with the assumption that ma is surface-orthogonal make

J strongly equipped. Then, by corollary 7.4.1 and its remark it follows that the restric-
tion α̊ of α to the leaves is a solution of (7.238) if and only if Vab = 0. Now, the fact
that T C

AB = 0 (which follows from
¯
Σab = 0) eqs. (7.47) and (7.48), together with the

S2-topology of the cuts gives

¯
Vab = 0⇐⇒

¯
CA = 0. (7.245)

7.5 Conserved charges and balance laws
We treat two type of charges and conserved currents associated with symmetries. The first
class is defined using symmetric tensor fields and symmetries intrinsic to J ; the second,
employs the rescaled Bel-Robinson tensor D δ

αβγ together with conformal symmetries of(
M, gαβ

)
and/or asymptotic symmetries. We comment on why the first or second class

currents presented below cannot give the right answer for a gravitational energy on J .
The use of this charges can be fruitful in other investigations though.

7.5.1 First class charges
Let tab be any rank-two, symmetric tensor field on J and ηa a CKVF of (J , hab). Define
the current

ja := tabηb. (7.246)

The divergence of this current reads

∇aj
a = ηb∇at

ab + λhabt
ab , (7.247)

where 3λ := ∇aη
a. If instead one uses a biconformal infinitesimal symmetry of defini-

tion 7.4.2 and defines the current
ya := tabξb , (7.248)

its divergence gives
∇ay

a = ξb∇at
ab + ψ

¯
Pab t

ab + φmambt
ab. (7.249)

Particular cases of conserved ja-currents include those constructed with any TT-tensor
(symmetric traceless divergence-free tensor), and for them the charge

J :=
∫
S
jara ε̊ (7.250)

is conserved, where S is any cut with normal ra and volume form ε. This follows from
Stokes theorem, assuming a region ∆ bounded by two such cuts . An example of conserved
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ya-currents is obtained using TT-tensors satisfying mambt
ab = 0. For any such current,

Y :=
∫
S
yara ε̊ (7.251)

is a conserved charge. Observe that in this particular case Y is trivial for cuts orthogonal
to ma -if they exist-, that is, when ma = ra because of the requirement ydrd = 0.
Another case, is a ya-current constructed with a TT-tensor and a BCKVF with φ = 0.
Despite being obvious, it is necessary to remark that charges defined with ya or ja may
be conserved even when the current itself is not divergence-free – it is enough that the
integral over the region ∆ of the divergence of the current vanishes. In that sense, one
may also obtain conserved charges only for a particular family of regions ∆, as it is the
trivial case of ∆ bounded with cuts such that the normal ra is orthogonal to the current.

It is tempting to define charges using Dab or Cab –or a linear combination thereof, or
D
±

ab, etc– for the tensor tab, as it has been already proposed in the literature for Dab [61].
The balance law associated to these charges that results from the application of Stokes
theorem is not affected by the presence of gravitational radiation, and to illustrate this
with our formalism consider the specific case of a strongly equipped J (definition 7.0.3).
Let ξa be a member of the algebra of biconformal transformations b. We know that, in
general, it will be composed by a member τa of the bitranslations t and an element χa
of the CKVF cs of the projector

¯
Pab –see the end part of section 7.4. For tab = Dab in

eq. (7.248),
Y =

∫
S
yama¯

ε =
∫
S
{α

¯
D + χa ¯

Da}
¯
ε . (7.252)

Let ∆ be a region bounded by two cuts S1,2 of the foliation given by ma, then

Y
∣∣∣∣
S2

− Y
∣∣∣∣
S1

=
∫

∆
∇ay

aε =
∫

∆

[(
ξa∇dD

da
)

+ (φ− ψ)
¯
D
]
ε , (7.253)

The divergence ∇dD
da is sourced by the matter fields (see eq. (3.119)), whereas the second

term only contains Coulomb contributions and vanishes identically for conformal symme-
tries of (J , hab), in particular for the asymptotic basic symmetries of definition 7.4.1.
Unfortunately, there is no contribution by gravitational radiation even when gravita-
tional waves can be arriving at J according to criterion 1. The same formula holds
interchanging Dab by Cab , only that now the first term in the integrand vanishes identi-
cally due to eq. (3.120). And similar results can be found for linear combinations of Dab

and Cab , and for D
+

ab. This is surprising, as the charge (7.252), or the analogous ones
using linear combinations of Dab and Cab or D

±
ab etcetera, include terms of type χa ¯

Da

which are associated to the radiative sector of the gravitational field. This opens the door
for modifications of these currents associated to Dab and Cab by adding extra terms that
may lead to a more satisfactory balance law. This is work in progress. Next, assume
that criterion 2 holds, and thus −ma points in the spatial projection of the propagation
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direction of radiation, as discussed in sections 5.4 and 7.3. Then, charges defined on the
‘natural’ cuts orthogonal to ma might be sensible to radiative contributions. But now

¯
Da

is the divergence of the symmetric traceless tensor field
¯
Vab , the first component of news,

N
¯
Db = −

¯
Dc¯
V c
b , (7.254)

which on any cut of the foliation is written by means of the intrinsic connection as

N
¯
DB = −DC¯

V C
B . (7.255)

Then, for topological spheres, and in general for compact cuts, the term χa ¯
Da integrates

out on using (7.217) and the charge reads

Y =
∫
S
yama¯

ε =
∫
S
α

¯
D

¯
ε , (7.256)

which only contains the Coulomb contribution
¯
D. A very similar cancellation occurs if

one uses a CKVF of J because the tangent part to an umbilical cut of the conformal
symmetry is a CKVF of the metric on that cut too. Hence, neither these charges nor
their difference, given by the general eq. (7.253), contain explicit radiative terms. Of
course, the discussion of sections 5.4 and 7.3 on the interpretation of the Coulomb and
radiative terms as such depends on the choice of ma. Still, the fact that a general firs-class
current ya is identically conserved in the absence of matter fields and for any conformal
transformation shows that the associated charges Y for any choice of cut are insensible
to gravitational radiation. Indeed, for J = S3 or J = R3 the radius of the topological
2-spheres can be shrunk to 0, hence making these charges to vanish identically. This is
not the case for R × S2 and thus one could consider the vanishing of these charges as a
topological feature.

Of course, the interest of having conserved charges is not only related to the existence
of gravitational radiation, and in that sense the above charges may be very useful in
different contexts.

7.5.2 Second class charges

When dealing with fields other than gravity, the standard approach is to consider charges
associated to the energy-momentum tensor of the field theory. As it is already well-known,
there is not such thing in General Relativity. Now, we define a second class of charges
that result from using the rescaled Bel-Robinson tensor. One has to be aware of the
dimensionality of such charges and currents, since they are of tidal nature and do not
carry, in general, units of energy-momentum.
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Consider first a triplet of CKVF
(

ξ̂α
(i)

, ξ̂α
(j)

, ξ̂α
(k)

)
of the space-time

(
M, gαβ

)
, which

can contain repeated elements. Assume that in a neighbourhood of J Tαβ = 0 –note
that this is a more restrictive condition that the one taken in the rest of the work, see
property iv) on page 22. Then, in that neighbourhood of J

∇µD
µ
αβγ = 0 . (7.257)

It is easy to check that the current [85, 87]

Bα := ξ̂µ
(i)

ξ̂ν
(j)

ξ̂ρ
(k)
Dαµνρ (7.258)

is divergence-free in that region of the space-time (including J )

∇µBµ = 0 . (7.259)

Then, the quantity defined on any spacelike hypersurface Σ orthogonal to a timelike tα

BΣ :=
∫

Σ
tµBµε (7.260)

is conserved in a space-time region ∆M bounded by any two Σ1 and Σ2 orthogonal to any
two future-pointing timelike t1,2 α and with Σ2 to the future of Σ1,

0 =
∫

∆M

∇µBµη = BΣ2 − BΣ1 . (7.261)

In particular, Σ can be chosen to be J .

Suppose first that ξ̂α
(i)

are completely tangent to J . Then

BJ =
∫

J
Qabc ξ̂a

(i)
ξ̂b

(j)
ξ̂c

(k)
ε , (7.262)

where Qabc is defined for the rescaled Bel-Robinson tensor on J as in eq. (2.17), and one
can write

BJ =
∫

J

(
ξm

(i)
ξ

(j) mPd ξd
(k)
− 4 ξe

(i)
Cec ξf

(j)
Dfdε

pcd ξ
(k) p

)
ε . (7.263)

If the condition in criterion 2 holds on J and there is no radiation Pa = 0, BJ = 0.

Suppose now that ξ̂α
(i)

J= β
(i)
nα for some non-vanishing functions β

(i)
,

BJ =
∫

J
β

(i)
β

(j)
β

(k)
W := CΣ , (7.264)
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where W is the asymptotic canonical 1 density –see eq. (5.36). Observe that CΣ vanishes
if and only if W = 0 at J , i.e., dαβγδ = 0 there. Because the charge is conserved in
∆M , CΣ = 0 for all Σ in ∆M . In particular, de Sitter space-time has CΣ = 0 everywhere,
including at J , and any other space-time having BJ = 0 is de Sitter space-time in the
domain of dependence of J .

Now, let us focus on a strongly equipped J and consider a bitranslation τa = αma.
Let us define the current

Ra J
:= −Dαµνρω a

α e
µ
be
ν
ce
ρ
dτ

bτ cτ d. (7.265)

Notice that according to the discussion at the end of section 7.4.2, the dimensions of this
quantity are.

[Ra] = L−1 , (7.266)

despite of being constructed with a superenergy tensor –indeed, Ra has physical units of
MT−2. Its integral over any cut gives a charge with units of energy. If ma is orthogonal to
cuts Si, the divergence of the current Ra integrated over the compact region ∆ bounded
by S1,2 gives a balance law ∫

∆
∇aRaε = RS2 −RS1 , (7.267)

where

RSi :=
∫
Si
Ramåε =

∫
Si
α3
[1
4
(
W+ + W−

)
−
(
Z+ + Z−

)
+ 3

2V
]
ε̊ . (7.268)

The left-hand side follows by decomposing
√

2mα = k
+
α − k

−
α and introducing the defini-

tions of eqs. (2.52) to (2.55) and (2.58). This charge contains both radiative and Coulomb
contributions. In order to compute the intrinsic divergence of Ra, one has to know the
Lie derivative of Dαβγδ along nα at J .

7.5.3 Balance law from the divergence property of the asymptotic supermo-
mentum

The divergence of the asymptotic supermomentum given by eq. (5.43) can be integrated
over a compact region ∆ bounded by S1,2 to give∫

∆

(
£~nW −Nκ T1 abD

ab
)
ε = Φ

Λ
[S2]− Φ

Λ
[S1] , (7.269)

where Φ
Λ

[S] is the asymptotic superenergy density flux on S, defined as

Φ
Λ

[S] := −
∫
S
maP

a
ε̊ (7.270)
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where ma is the normal to S. Remarkably, if ma defines a strong orientation, then

Φ
Λ

[S] ≥ 0 (7.271)

and
Φ

Λ
[S] = 0⇐⇒ Pa S= 0 (7.272)

which follows from lemma 5.4.3. Compare eq. (7.269) with eq. (4.233).
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This last chapter1 collects some examples of application of the main results presented in
this thesis. Important ideas are put to test, such as the determination of gravitational
radiation at J or the existence of the first component of news Vab when the conditions
are met –see proposition 7.2.1. Thus, the asymptotic super-Poynting vector field Pa and
Vab are computed, and also the additional symmetries of definition 7.4.2 associated to
the curves selected by strong orientation –see definition 5.4.2. The easy and topology-
independent calculation of Pa allows to determine if a given metric contains gravitational
radiation at J in a very straightforward manner. The outcome of this calculation for
the metrics considered here agrees with what one would expect in each case.

8.1 The Kerr-de Sitter and Kottler metrics

Let us start with the conformal Kerr-de Sitter metric

ds2 = 1
r2


(
−∆r

ρ2 + ∆θ

ρ2 a
2 sin2 θ

)
dt2 + ρ2

∆r

dr2 + 1
Ξ2

[
−∆r

ρ2 a
2 sin4 θ + ∆θ

ρ2 (r2 + a2)2 sin2 θ

]
dφ2+

+ 1
Ξ

[
∆r

ρ2 a sin2 θ − ∆θ

ρ2 a sin2 θ(r2 + a2)
]

(dφdt+ dtdφ) + ρ2

∆θ

dθ2

. (8.1)

These are Boyer-Lindquist-type coordinates, with

t ∈ R, r ∈ R, θ ∈ [0, π), φ ∈ [0, 2π] (8.2)

and
Λ > 0, a ∈ R, m ∈ R \ 0 . (8.3)

1Some of the calculations presented in this chapter were performed using the computer algebra system
Maxima –distributed under GNU GPL license.
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The metric functions are defined as

ρ2 := r2 + a2 cos2 θ , (8.4)

∆r := (a2 + r2)
(

1− Λ
3 r

2
)
− 2mr , (8.5)

∆θ := 1 + Λ
3 a

2 cos2 θ , (8.6)

Ξ := 1 + Λ
3 a

2 . (8.7)

The particular case with a = 0 gives the Kottler (sometimes called Schwarzschil-de Sitter)
spherically symmetric conformal metric.

Infinity is located at r →∞, and we have chosen

Ω := A

r
, (8.8)

with A =constant with dimensions [A] = L, so that [Ω] = 1. From now on we set A = 1.
This choice of Ω indeed belongs to the divergence-free family of conformal gauges (3.92).
Hence, the normal to J is

Nα = − 1
r2∇αr . (8.9)

Notice that dr2 = r4dΩ2 and that

N2 J= Λ
3 , (8.10)

ρ2

∆r

Ω2r4 J= − 1
N2 , (8.11)

ρ2

∆θ

Ω2 J= 1
1 +N2a2 cos2 θ

, (8.12)

∆r

ρ2 Ω2 J= −N2 , (8.13)

∆θ

ρ2 Ω2 J= 0 , (8.14)

∆θ

ρ2

(
r2 + a2

)2
Ω2 J= 1 +N2a2 cos2 θ . (8.15)

Using these formulae, one can write the metric of J as

h = N2dt2+ 1
Ξ2

(
1 +N2a2

)
sin2 θdφ2− 1

ΞN
2a sin2 θ (dφdt+ dtdφ)+

(
1 +N2a2 cos2 θ

)−1
dθ2 .

(8.16)
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The electric and magnetic parts of the rescaled Weyl tensor at J read respectively

Cab = 0 , (8.17)

Dab = −2
3Λm∇at∇bt+ 2

ΞN
2am sin2 θ

(
∇aφ∇bt+∇at∇bφ

)
+

+m
(
1 + a2N2 cos2 θ

)−1
∇aθ∇bθ + 1

Ξ2m sin2 θ
(

1 + a2Λ cos2 θ − 2
3a

2Λ
)
∇aφ∇bφ .

(8.18)

The intrinsic Ricci tensor, scalar curvature and Schouten tensor have the following ex-
pressions:

Rab = 2a2N4 cos2 θ∇at∇bt−
2
ΞaN

2 sin2 θ
(
1 + 3a2N2 cos2 θ

)
∇(at∇b)φ

+ 1
Ξ2

[
1−

(
1− 3a2N2

)
cos2 θ − 3a2N2 cos4 θ

] (
1 + a2N2

)
∇aφ∇bφ

+ 1 + 4a2N2 cos2 θ − a2N2

1 + a2N2 cos2 θ
∇aθ∇bθ , (8.19)

R = 2− 2a2N2 + 10N2a2 cos2 θ , (8.20)

Sab = 1
2N

2
(
a2N2 − a2N2 cos2 θ − 1

)
∇at∇bt−

1
ΞaN

2 sin2 θ
(
1 + a2N2 + a2N2 cos2 θ

)
∇(at∇b)φ

+ 1
2Ξ2

(
1 + a2N2

)
sin2 θ

(
1 + a2N2 + a2N2 cos2 θ

)
∇aφ∇bφ

+ 1− a2N2 + 3a2N2 cos2 θ

2 (1 + a2N2 cos2 θ) ∇aθ∇bθ . (8.21)

There are two repeated PND 1̀ α and 2̀ α which read at J

1̀ α

J= 1√
2

(
− 1
Nr2∇αr −N∇αt+ 1

ΞaN sin2 θ∇αφ
)

, (8.22)

2̀ α

J= 1√
2

(
− 1
Nr2∇αr +N∇αt−

1
ΞaN sin2 θ∇αφ

)
. (8.23)

Accordingly, there are two different strong orientations (see definition 5.4.2 and remark 5.4.4).
We choose one of them by defining

k
−

α

J
:= 1̀ α , (8.24)

mα

J
:= nα −

√
2 k− α = N

(
∇αt−

1
Ξa sin2 θ∇αφ

)
, (8.25)

k
+

α

J
:= 1√

2
(nα +mα) = 1√

2

(
− 1
Nr2∇αr +N∇αt−

1
ΞaN sin2 θ∇αφ

)
= 2̀ α , (8.26)

where Nnα
J
:= Nα , such that k

− α k
+
α

J= −1, mα k
−
α

J= −1/
√

2 and mα k
+
α

J= 1/
√

2. Notice
that both repeated PND are coplanar with the normal Nα which makes the two strong
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orientations equivalent from the viewpoint of J , in the sense that they define, up to sign,
the same vector field ma there. The pullback to J of mα is

ma

J= N
(
∇at−

1
Ξa sin2 θ∇aφ

)
, (8.27)

ma J= 1
N
δat , (8.28)

∂t being a KVF of (J , hab). The non-vanishing intrinsic connection coefficients are

Γθtφ = 1
ΞaN

2 cos θ sin θ
(
1 + a2N2 cos2 θ

)
, (8.29)

Γθφφ = − 1
Ξ2

(
1 + a2N2

)
cos θ sin θ

(
1 + a2N2 cos2 θ

)
, (8.30)

Γθθθ = a2N2 cos θ sin θ
1 + a2N2 cos2 θ

, (8.31)

Γφθt = − ΞaN2 cos θ
sin θ (1 + a2N2 cos2 θ) , (8.32)

Γφφθ = cos θ
sin θ , (8.33)

Γtθt = −a
2N2 cos θ sin θ

1 + a2N2 cos2 θ
. (8.34)

One does not need them to compute the kinematics ofma (see definitions in appendix A.3)
though; noting the fact that ma is a KVF,

¯
κab vanishes2, whereas

¯
ab vanishes by sym-

metrising in eq. (A.51) and contracting once with ma, and
¯
ωab does not involve the

connection:

¯
ab = 0 , (8.35)

¯
κab = 0 , (8.36)

¯
ωab = 2

Ξa sin θ cos θ∇[aφ∇b]θ . (8.37)

Equation (8.37) implies that ma is not surface-orthogonal, that is, it does not give a
foliation. The projector to S2 (see appendix A.3) reads

¯
Pab = 1

1 + a2N2 cos2 θ
∇aθ∇bθ + 1

Ξ2

(
1 + a2N2 cos2 θ

)
sin2 θ∇aφ∇bφ . (8.38)

The pair (
¯
Pab ,ma) characterises the congruence of curves given by ma and the projected

surface S2; we say, according to definition 7.0.1, that J is equipped.

2One can check that this is the case by doing the explicit calculation using the non-vanishing compo-
nents of Γacb.
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All the quantities corresponding to the decomposition of Dab and Cab (see section 2.2
and eqs. (7.4) and (7.5)) vanish except for

D = −
¯
DM

M = −2m (8.39)

and thus we have
Dab = −m (3mamb − hab) . (8.40)

8.1.1 Asymptotic symmetries

It is known that due to the R× S2 topology of J [109] the group of CKVF of (J , hab)
is 4-dimensional [61]. This, however, misses the TT-tensor Dab, which must be taken
into account as essential part of the asymptotic structure. Taking the Lie derivative of
(8.40) one easily finds that the definition 7.4.1 requires the solutions to be actually KVF
of (J , hab). In this sense, the generators of the basic symmetries are given by ∂t and
∂φ, which indeed are KVF of (J , hab). Hence, this group is just 2-dimensional —unless
in the Kottler metric case, a = 0, which is 4-dimensional. In addition, we can study the
asymptotic symmetries of (definition 7.4.2). The algebra of biconformal transformations
b is consituted by elements of the form

ξa = βma + χa , (8.41)

where β and χa satisfy eqs. (7.161) to (7.164), that is,

£~mχ
a = 0,

¯
Dbβ = −2

¯
ωebχ

e, 2
¯
D(aχb) = 2ψ

¯
Pab (8.42)

and one defines φ := me∇eβ. On the one hand, from eqs. (7.165) to (7.167), it follows
that the elements of the subalgebra of bitranslations t have the form

τa = αma with Daα = 0 , (8.43)

and λ := me∇eα. However, according to eq. (A.71),
¯
D[a ¯
Db]α = −

¯
ωabm

e∇eα. Thus the
only possibility is α =constant. In other words, there is just one element of t and this is
the KVF ∂t. On the other hand, it is easily seen that the non-vanishing

¯
ωab spoils the

existence of a subalgebra of conformal transformations of the projector cs –see comments
below eq. (7.171). Finally, a more detailed calculation shows that the remaining general
biconformal symmetries ξa ∈ b associated to the orientation given by eq. (8.27) are of the
form:

ξa = αδat + bδaφ , (8.44)

where b is a constant. Therefore, the basic infinitesimal symmetries are precisely biconfor-
mal infinitesimal symmetries of the pairs (ma, ¯

Pab ) that define strong orientation, unless
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in the particular Kottler metric with a = 0, where the equipped symmetries constitute
an infinite-dimensional algebra. This algebra will be given as a particular case of the
different equipments that we are going to consider next.

8.1.2 Strong equipment

There are other equipments on J , that is, other choices for ma. Specifically, the vector
field

ma := N

Ξ
(
1 +N2a2 cos2 θ

) 1
2 ∇at , (8.45)

ma = Ξ 1
N (1 +N2a2 cos2 θ)

1
2

(
δat + aN2δaφ

)
(8.46)

is worth attention. All its kinematic quantities of the vector field ma vanish except the
acceleration,

¯
ab = a2N2 cos θ sin θ

1 + a2N2 cos2 θ ¯
Dbθ . (8.47)

Hence, it is orthogonal to a foliation of umbilical cuts with metric

¯
q
AB

= sin2 θ

Ξ ¯
DAφ¯
DBφ+ 1

1 + a2N2 cos2 θ ¯
DAθ¯
DBθ (8.48)

and Gaussian curvature

¯
K = 1 + 2a2N2 cos2 θ . (8.49)

The projector to these cuts is written as

¯
Pab = sin2 θ

Ξ
(
aN2∇at−∇aφ

) (
aN2∇bt−∇bφ

)
+ 1

1 + a2N2 cos2 θ
∇aθ∇bθ . (8.50)

Observe that this provides a strongly equipped J –definition 7.0.3.

The tensor
¯
ρab can be computed using the general expressions for axially-symmetric

metrics of section 6.2.1. These yield

¯
ρAB = sin2 θ

2Ξ
(
1 + a2N2 + a2N2 cos2 θ

)
¯
DAφ¯
DBφ

+ 1
2 (1 + a2N2 cos2 θ)

[
1 + 3a2N2 cos2 θ − a2N2

]
¯
DAθ¯
DBθ. (8.51)

Next, noting that
¯
T C
AB = 0 and that this implies

¯
UAB =

¯
SAB , one can compute

¯
VAB

using eq. (8.21):

¯
VAB = 0 . (8.52)
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This is the expected result taking into account Cab = 0 and eq. (7.71). There is still more
to say on this. The biconformal symmetries acting on the new pairs (ma, ¯

Pab ) have the
form

ξa = αma + ηa , (8.53)

where the restriction to the cuts
¯
ηA of ηa are CKVF of

(
¯
q
AB
,S
)
, ma is given in eq. (8.46)

and
α = ν(v)

(
1 +N2a2 cos2 θ

) 1
2 . (8.54)

Here v is the parameter of the foliation as in eq. (A.103), in this case given by v = t, and
ν(v) an arbitrary function depending on v only which makes the dimension of the subal-
gebra t infinite. Indeed, this is the canonical form of a bitranslation, see eq. (7.226), with
F = (N/Ξ) (1 +N2a2 cos2 θ)1/2. Now, since S is topologically S2,

¯
ηA are the infinitesi-

mal symmetries of the Lorentz Group SO(1, 3). This agrees with the general results of
section 7.4.2. As a further remark, for going from the round metric to the current one
one has to rescale the metric on the cuts by ω = KΞ (1 +N2a2 cos2 θ) with K =constant,
which shows that the restriction α̊ to the cuts of α is constant in the round gauge (that
is, a constant times the l = 0 spherical harmonic). This agrees with corollary 7.4.1, since
as we will see later on

¯
Vab vanishes for these cuts, hence the subgroup of bitranslations

given by τa = αma acting on the strong equipment given by these cuts correspond to
infinitesimal asymptotic translations of definition 7.4.3. This structure is also the general
solution for the Kottler metric with a = 0, for which both equipments are actually the
same.

8.1.3 Asymptotic supermomentum

We compute the asymptotic canonical super-Poynting vector field P a and canonical su-
perenergy density W with the following outcome:

Pa J= 0 , (8.55)

W J= 6m2 . (8.56)

The vanishing of Pa indicates that the space-time contains no gravitational radiation at
infinity. This agrees with the fact that the two repeated PND `α1 and `α2 are coplanar
with Nα –see remarks 5.3.1 and 5.3.4– and that hab is conformally flat.

There is an interesting feature of the canonical superenergyW : it does not depend on
a at J , so that it has the same constant value as the one for a = 0.3 We can compute

3That is, the Kottler metric.
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Figure 8.1: Asymptotic superenergy for the Kerr-dS metric around J for
a = m = Λ = 1. The dependence on the angular parameter a fades away as approaching
J . The peak in the superenergy, then, occurs at the equator (θ = π/2).

the superenergy density associated to Nα outside J , its expression is

N4W = 6∆2
rm

2Ω4

ρ4 (1 + a2Ω2 cos2 θ)3 , (8.57)

and its Taylor expansion around Ω = 0 yields

N4W J= 2
3Λ2m2 − 2

3Λm2
[
6 + 3a2Λ− 5a2Λ sin2 θ

]
Ω2 + ... . (8.58)

Therefore, we see that a enters only at second leading order. This effect can be appreciated
in fig. 8.1.

8.2 The C-metric
The existence of exact solutions of Einstein’s Field Equations containing gravitational
radiation at infinity when Λ = 0 was demonstrated in [106] by showing that the so called
C-metric has a non-vanishing news tensor at J . For Λ > 0, the first proof of an exact
solution having gravitational waves at infinity according to criterion 1 was presented in
[75] using precisely the C-metric but now with Λ > 0. In the present work, we expand
that analysis in several directions and in particular we suggest that two news tensors on
J exist using the results of chapter 6.

The C-metric with Λ > 0 describes two accelerating black holes in a de Sitter back-
ground [141]. As such, one expects the presence of gravitational radiation at J . We will
consider this metric in the form of a particular sub-case of the accelerating, charged, ro-
tating Plebański-Demiański solution [142] –see also [143]. The conformal metric, selecting
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a gauge according to eq. (3.22), reads

ds2 = (ηf(η))2

S

(
−Tdτ 2 + 1

T
dq2 + 1

S
dp2 + Sdσ2

)
, (8.59)

where

T (q) := (q2 − a2)(1 + 2mq)− Λ/3 , (8.60)
S(p) := (1− p2)(1− 2amp) , (8.61)

η is a conformal-gauge function and f(η) an arbitrary function regular and different from
zero at η = 0, both to be specified. The conformal boundary J is defined by q = −ap
the conformal factor being

Ω2 := (ηf(η))2

S
(q + ap)2 (8.62)

and the normal to J

Nα

J= −ηf(η)√
S

(∇αq + a∇αp) . (8.63)

The gauge function η is a first integral of Nα and we choose it to be

η := ea(1−2am)F (q) (1− p)
1
2

(1− 2amp)2am/(1+2am) (1 + p)(1−2am)/2(1+2am) , (8.64)

with
F (q) = −

∫ 1
T (q)dq . (8.65)

It is possible to set
(ηf(η))2

S

J= 1, (8.66)

and for that we take

f(η) := e−a(1−2am)F(−aP−1(η2)) (1 + P−1(η2)
) 1

(1+2am)
(
1− 2amP−1(η2)

) (1+6am)
2(1+2am) (8.67)

where P−1 (η2) is the inverse function of P (p) such that P (p) J= η2.

There are four constant parameters, namely the acceleration a, the mass m , Λ and C.
The metric may present two conical singularities at p = 1 and/or at p = −1. One can fix
C to cure one of these singularities but never both of them at the same time. Additionally,
this fixing defines the range of the coordinate σ ∈ [0, 2πC) [143]. Since both singularities
are not curable at the same time, one has to restrict the range of the coordinate p in order



170 8.2 | The C-metric

to exclude the persisting one. We fix C to

C = 1
(1− 2am) (8.68)

so that p = 1 defines a regular axis for the KVF ∂σ and restricts the range p ∈ (−1, 1] in
order to avoid the singular point at p = −1. This, together with the further condition

2am < 1, (8.69)

makes S ≥ 0, only vanishing at p = 1 –thus preserving the signature of the metric.

There are two KVF of gαβ : ∂τ and ∂σ. The former has R-orbits whereas the latter
has cyclic orbits. Observe that T (q) < 0 at J and gqq becomes negative there, hence the
space-time is non-stationary around the conformal boundary, as one expects. Because
we are interested in studying J , we further restrict ourselves to q ∈ (−a, a) –which
keeps T (q) between two roots and negative. One more feature is that the roots of T (q)
represent horizons which, by our previous remarks, do not meet J . The Weyl tensor has
two repeated principal null directions (which also become repeated PND of d δ

αβγ at J )
given by:

1̀ α = 1√
2
N

T
(−T∇ατ +∇αq) , (8.70)

2̀ α = 1√
2
N

T
(T∇ατ +∇αq) . (8.71)

Notice that we have chosen them such that `α1 2̀ α

J= −1, but this does not hold outside
J .

From now on we focus on J . Note that T := −a2S − N2 J= T . The metric there
reads

h = (a2S +N2)dτ 2 + N2

S(a2S +N2)dp
2 + Sdσ2 . (8.72)

This is positive definite and has a regular limit when Λ → 0 leading to a degenerate
metric gab. The intrinsic connection on J is

Γτab
J= −α

2

T̄
∂pS∇(aτ∇b)p , (8.73)

Γpab
J= 3

2ΛST̄α
2∂pS∇aτ∇bτ + 6Sα2 + Λ

6ST̄
∂pS∇ap∇bp+ 3

2Λ T̄ S∂pS∇aσ∇bσ . (8.74)
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and the intrinsic Ricci tensor of J reads

Rab = a2

2N2T
[
S∂2

pS + (∂pS)2
]
∇aτ∇bτ + 1

ST

[
a2S∂2

pS + 1
2a

2 (∂pS)2 + 1
2N

2∂2
pS
]
∇ap∇bp

− S

2N2

[
a2S∂2

p
S + a2 (∂pS)2 +N2∂2

pS
]
∇aσ∇bσ , (8.75)

R = − 1
2N2

[
4Sa2∂2

pS + 3a2 (∂pS)2 + 2N2∂2
pS
]

, (8.76)

thus the intrinsic Schouten tensor follows

Sab
J= 3T

8N2

[
(∂pS)2 a2 − 2N2∂2

pS
]
∇aτ∇bτ + 1

8ST
[
4a2S∂2

pS + a2 (∂pS)2 + 2N2∂2
pS
]
∇ap∇bp

− S

8N2

[
(∂pS)2 a2 + 2N2∂2

pS
]
∇aσ∇bσ . (8.77)

One can also obtain the electric and magnetic parts of the rescaled Weyl tensor on J

whose non-vanishing components are

Cab = 6
ΛamS(3Sa2 + Λ)∇(aτ∇b)σ , (8.78)

Dab = −mΛ

(
9S2a4 + 5ΛSa2 + 2

3Λ2
)
∇aτ∇bτ

+ mΛ
S (Λ + 3Sa2)∇ap∇bp+ m

Λ S
(
Λ + 9Sa2

)
∇aσ∇bσ . (8.79)

Now we make a choice of strong orientation –see definition 5.4.2. For that, define

k
−

α

J
:= 1̀ α , (8.80)

mα

J
:= nα −

√
2 k− α =

[
N∇ατ −

(
N

T
+ 1
N

)
∇αq −

a

N
∇αp

]
, (8.81)

k
+

α

J
:= 1√

2
(nα +mα) = 1√

2

[
N∇ατ −

(
N

T
+ 2
N

)
∇αq −

2a
N
∇αp

]
, (8.82)

where, as usual, nα is the unit version of the normal to J , in this case given by (8.63).
Notice that k

− α k
+
α = −1, mα k

−
α = −1/

√
2, mα k

+
α = 1/

√
2. This choice of null directions

constitutes an example of the lightlike set up of section 5.4 with mα defining a strong
orientation. The pullback of mα to J is

ma = N
(
∇aτ + a

T
∇ap

)
, (8.83)

ma =
(
−N
T
δaτ −

aS

N
δap

)
. (8.84)
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The projector to the S2 and its ‘metric’ read, respectively,

¯
Pab = Sa2∇aτ∇bτ + N4

T̊ 2S
∇ap∇bp−

N2a

T̊

(
∇aτ∇bp+∇ap∇bτ

)
+ S∇aσ∇bσ , (8.85)

¯
q = 1

S
dp2 + Sdσ2 . (8.86)

Recall that eqs. (8.83) and (8.85) characterise the projected surface S2 –see definition 7.0.3.
After this, we can study the kinematics of ma namely the acceleration, vorticity and
expansion tensor (see eqs. (A.52) to (A.54)):

¯
ab = 0 , (8.87)

¯
κab = −∂pS

a

2N¯
q
ab

, (8.88)

¯
ωab = 0 . (8.89)

Equation (8.89) tells us that ma is surface-orthogonal, and thus defines a foliation by cuts;
eq. (8.88) indicates that

¯
Σab = 0, therefore the cuts are umbilical; eq. (8.87) is consistent

with ma defining a foliation and in addition shows that ma is geodesic. From eq. (A.105)
we deduce that the function 1/F = ma∇av is constant on the cuts,

¯
DAF = 0, where v is

the parameter selecting the leaves (A.103). From eq. (8.83) one deduces

v = τ + a
∫ 1
T
dp , (8.90)

with F set to F = N . Therefore, with this choice of ma the C-metric possesses a strongly
equipped J –see definition 7.0.3. On each cut one has the following non-vanishing con-
nection symbols

Γ̊ppp
Sv= − 1

2S∂pS, Γ̊σpσ
Sv= 1

2S∂pS, Γ̊pσσ
Sv= −1

2S∂pS. (8.91)

and the Gaussian curvature

¯
K = −1

2∂
2
pS = 1− 6amp , (8.92)

The projections of eq. (8.77) to any cut give

¯
SAB

Sv= − 1
8N2S

[
(∂pS)2 α2 + 2N2∂2

pS
]

¯
DAp¯
DBp−

S

8N2

[
a2 (∂pS)2 + 2N2∂2

pS
]

¯
DAσ¯
DBσ.
(8.93)

Note that all these quantities defined on each cut of the foliation hold on J , thus one can
underline them as they belong to S2 (see appendix A.3). Another important consequence
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of having
¯
σAB = 0 =

¯
ωAB is that from eqs. (7.31) to (7.35)

¯
TABC =

¯
SABC =

¯
WABC = 0 , (8.94)

¯
LAB = 1

8¯
κ2

¯
q
AB

, (8.95)

¯
UAB =

¯
SAB +

¯
LAB = −1

4∂
2
pS
( 1
S ¯
DAp¯
DBp+ S

¯
DAσ¯
DBσ

)
. (8.96)

A quick check shows that
¯
UC

C = −∂2
pS/2 =

¯
K. We are interested in the lightlike projec-

tions of the rescaled Weyl tensor defined in section 2.2 because they are extensively used
in the search of news and very useful for computing the asymptotic radiant superenergy.
The non-vanishing ones, written in our notation for congruences (7.4),(7.5), are:

D = −2m , (8.97)

¯
CA =

¯
C

+

A
S= 3
N
amS

¯
DAσ , (8.98)

¯
DA =

¯
D

+

A
S= − 3

N
am

¯
DAp , (8.99)

`
¯
CAB = 1

2 ¯
C

+

AB = − 9
N2Sa

2m
¯
D(Ap¯

DB)σ , (8.100)

`
¯
DAB = 1

2 ¯
D

+

AB = − 3
N2ma

2

¯
DAp¯
DBp+ 3

N2S
2a2m

¯
DAσ¯
DBσ . (8.101)

8.2.1 Asymptotic symmetries
The metric hab at J inherits as KVF ∂τ and ∂σ which, in addition, leave invariantma and
thus belong to the algebra of biconformal symmetries b –see section 7.4. Apart from those,
we can study more general asymptotic symmetries of definition 7.4.2. Because we are in
the case in which J is strongly equipped (definition 7.0.3), we can use eq. (7.226) and
1/F =

√
S to write the general form of the elements of the subalgebra of bitranslations t:

τa = ν√
S
ma , (8.102)

with ν(v) an arbitrary function depending on v (8.90). As we have shown in section 7.4,
the general elements of the biconformal symmetries b preserving the strongly equipped
J are the sum of an element of t and an element ηa of the conformal transformations
cs of the projector, which in this case is given by (8.85). On each cut Sv we can project
eq. (7.223) to give

D(AηB)
Sv= 2ϕqAB , (8.103)

where ηB
Sv= Eb

Bηb on each cut. Thus the restriction to each cut of ηb gives locally the
CKVF of the flat metric qAB ; globally the topology rules out a subset of these vector
fields. If one makes the change of variable p = 1 − y2, the 2-dimensional metric has a
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regular KVF with a fixed point at y = 0. Notice that the topology of the cuts is R2

—since we have to remove the point at p = −1. By following the discussion in appendix
F in [122], the topology and the periodicity of σ force the CKVFs that survive to be
constructed with any periodic function f(z) in the complex plane. Thus, there is still an
infinite number of CKVF on each cut.

8.2.2 Asymptotic supermomentum

The asymptotic canonical super-Poynting vector and superenergy are represented in fig. 8.2
and have the following expressions:

Pa J=
√

3
Λ18am2S

(
1 + 6

ΛSa
2
)
δap , (8.104)

W J= 6m2
(

1 + 54
Λ2S

2a4 + 18
Λ Sa2

)
. (8.105)

Observe that the super-Poynting vector field does not vanish anywhere on J . This fact,
according to criterion 1, indicates that there is gravitational radiation at J . This is the
expected result. Note that the canonical asymptotic super-Poynting (8.104) vanishes if
and only if the acceleration parameter a is zero (which implies the absence of radiation
in that case). However, the canonical superenergy density eq. (8.105) is different from
zero even for a = 0. Another feature characterising strong orientation is eq. (5.56), which
can be easily verified for the present example contracting eq. (8.104) with ma given by
eq. (8.83)

maP
a J= − 54a2m2S

Λ (a2S + Λ/3)

(
1 + 6

ΛSa
2
)
≤ 0 . (8.106)

Now we can take the limit to Λ = 0 –see section 5.5. For that one has to use the
asymptotic supermomentum (5.34)

pα
J= 2m2

[(
a2S + Λ

3

)(
Λ + 9Sa2

)
δαq + aS

(
2Λ + 9Sa2

)
δαp

]
. (8.107)

Then, we set Λ = 0 in eq. (8.107) which by eq. (5.79) gives the asymptotic radiant
supermomentum,

Qα J0= 18m2S2a3
(
aδαq + δαp

)
. (8.108)

The manifestly non-vanishing asymptotic radiant supermomentum for Λ = 0 implies the
presence of a non-vanishing news tensor [76] and, in consequence, that gravitational waves
arrive at infinity.
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Figure 8.2: Canonical asymptotic superenergy W and super-Poynting vector Pa for the
C-metric with Λ > 0. The constant parameters have been set to Λ = 1, a = 1/4,
m = 1/4.

8.2.3 Radiant quantities

We turn now to the study of the radiant asymptotic superenergy. Following sections 2.2
and 2.3, we compute the quantities associated to the k

± α of eqs. (8.80) and (8.82). The
procedure is straight-forward using eqs. (8.98), (8.99) and (8.101) and recalling eqs. (2.52)
to (2.55) and (2.58). The non-vanishing quantities are:

W+ = 1296
Λ a4m2S2 , (8.109)

Z+ = 108
Λ Sa2m2 , (8.110)

Q+ α = −
√

3
Λ

36√
2
a2m2S

T
δατ + 2

√
2
√

3
Λ
a2m2

Λ
(
−54ST − 9ΛS

)
δαq

+
√

2108
√

3
Λ
a3m2

Λ S2δαp , (8.111)

V = 4m2 , (8.112)

while Q− α = 0 –hence W− = Z− = 0. Another useful check is to note that

4W − W+ − 4 Z+ − 6V J= 0 , (8.113)
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Figure 8.3: Radiant and Coulomb components of the asymptotic superenergy on J
together with the canonical supernergy density W for the C-metric with Λ > 0. The
constant parameters have been set to Λ = 1, a = 1/4, m = 1/4.

which shows that eq. (2.60) is satisfied. Note that criterion 2 is fulfilled too, i.e., there is
no incoming radiation along ma. Then, lemma 7.3.4 tells us that the first component of
news tensor exists.

8.2.4 Radiant news

If we want to find a news tensor as proposed in section 7.2, the first thing to notice is
that due to eqs. (8.94), (8.96) and (8.99) one has on each cut

Nε̊BE C
+ E Sv= NF̊B

Sv= −DEV E
B . (8.114)

We know that the solution VAB to this equation gives the first component of news, see
proposition 6.3.1. To compute it, write eq. (8.114) explicitly in terms of the right-hand
side of eq. (8.99),

−3amDAp
S= −S∂pVAp −

1
S
∂σVAσ +SΓ̊CpAVCp +SΓ̊CppVCA + 1

S
Γ̊CσσVCA + 1

S
Γ̊CAσVCσ .

(8.115)
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We have to set VAB traceless (Vσσ + S2Vpp
S= 0) and symmetric (Vpσ

S= Vσp ) and we
further assume that VAB is left invariant by the axial KVF ∂σ, that is

∂σVAB
S= 0. (8.116)

The solution reads
Vpσ

S= c1

S
with c1 = constant , (8.117)

Vpp
S= H

S2 , (8.118)

where

H
S:=
∫

3amSdp S= 3am
(1

2amp
4 − 1

3p
3 − amp2 + p

)
+ c2 with c2 = constant.

(8.119)
This function H must be positive where S > 0 and because we assume a > 0, m > 0.
Regularity at p = µ with µ = ±1 requires

c1
S= 0, c2

S= 3
2m

2a2 − µ2am , (8.120)

and cannot be achieved on both poles, p = −1, 1, simultaneously. Because with our gauge
fixing p ∈ (−1, 1], we have to choose µ = 1. Then,

¯
VAB = H

S2 ¯
DAp¯
DBp−H ¯

DAσ¯
DBσ , (8.121)

¯
VAB

∣∣∣∣
p=1

= 0. (8.122)

It is possible now to deduce what
¯
ρAB is:

¯
ρAB = UAB − VAB

= −3a2m2p4 − 2amp3 − 6a2m2p2 + 18amp+ 3a2m2 − 4am− 2
4(p− 1)(p+ 1)(2amp− 1) ¯

DAp¯
DBp

+ 1
4(p− 1)(p+ 1)(2amp− 1)(3a2m2p4 − 2amp3 − 6a2m2p2 − 6amp

+ 3a2m2 − 4am+ 2)
¯
DAσ¯
DBσ. (8.123)

The radiant news tensor on each leaf of this strong equipment is simply given by
¯
n

+
AB =

2
¯
VAB . Observe that

n
+

AB
Sv= 0 ∀v ⇐⇒ Pa J= 0⇐⇒ Q+ α = 0 . (8.124)
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8.2.5 The other strong orientation

If we choose k
− α aligned with the other repeated PND, that is

k
−

α

J
:= 2̀ α , (8.125)

mα

J
:= nα −

√
2 k− α =

[
−N∇ατ −

(
N

T
+ 1
N

)
∇αq −

a

N
∇αp

]
, (8.126)

k
+

α

J
:= 1√

2
(nα +mα) = 1√

2

[
−N∇ατ −

(
N

T
+ 2
N

)
∇αq −

2a
N
∇αp

]
, (8.127)

neither the asymptotic super-Poynting nor the asymptotic superenergy change, as they
do not depend on this choice. The radiant superquantities Z+ and W+ in general would
be different, nevertheless for the new k

+ α they have the same value as for the old k
+ α; one

also finds Q− α = 0. There is a change in the direction of the radiant supermomentum Q+ α

though –compare with eq. (8.111) –

Q+ α J=
√

3
Λ

36√
2
a2m2S

T
δατ + 2

√
2
√

3
Λ
a2m2

Λ
(
−54ST − 9ΛS

)
δαq +

+
√

2108
√

3
Λ
a3m2

Λ S2δαp . (8.128)

An intuitive interpretation of this difference is that on the first case, with k
−
α = 1̀ α,

−ma points along the spatial propagation direction of the gravitational radiation coming
from one of the two black holes, while with k

−
α = 2̀ α, −ma gives the propagation

direction of the radiation coming from the other one. Notice that in each case the no
incoming radiation condition holds, a fact that is compatible with the existence of two
different propagation directions: with k

−
α = 1̀ α, criterion 2 tells that there is no radiation

travelling along the spatial direction mα of eq. (8.83); with k
−
α = 2̀ α, criterion 2 tells

that there is no radiation travelling along the spatial direction mα of eq. (8.126).

8.3 The Robinson-Trautman type N metric

We explore now the Robinson-Trautman family of solutions to vacuum EFE with a posi-
tive cosmological constant and admiting J –for details, see [143, 144] and also [145]. We
write the conformal metric as

ds2 = P 2
(
dud`+ d`du−

(
2`2H

)
du2 + 1

P 2

(
dζdζ̄ + dζ̄dζ

))
, (8.129)
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where u is a retarded time coordinate, ` an inverse radius and ζ, ζ̄ a couple of complex
stereographic coordinates. The gauge has been chosen such that

∇µN
µ J= 0. (8.130)

The metric functions are defined as

−2`2H := Λ
3 + 2`∂u lnP − `2K + 2m`3 , (8.131)

K := 2P 2∂ζ∂ζ̄ lnP . (8.132)

The function P = P (u, ζ, ζ̄) and the function m(u) satisfy the so called Robinson-
Trautman equation, which is a fourth-order differential equation. Infinity is located at
Ω := ` = 0, therefore the normal to J is

Nα

J
:= ∇α` (8.133)

and the metric at J reads

h = N2P 2du2 + dζdζ̄ + dζ̄dζ , (8.134)

where for simplicity we use the same letter u to denote the restriction to J of the retarded
time. So far, this applies to the general Robinson-Trautman Λ-vacuum solution. From
now on, we concentrate on the Petrov type-N case and set the conditions that particularise
the metric to that subfamily of space-times:

m = 0 , K = K(u) . (8.135)

For type N, the general solution for P is (see [145])

P = 1√
∂ζ̄F̄ ∂ζF

(
1 + εF F̄

)
, (8.136)

with ε = −1, 0, 1 and F (u, ζ) any function analytic on ζ. The non-vanishing components
of the intrinsic connection in these coordinates are

Γuau = ∂a lnP , (8.137)

Γζuu = −N2P∂ζ̄P , (8.138)

Γζ̄uu = −N2P∂ζP , (8.139)
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and the curvature and Schouten tensor are given by

Rab = −2N2P∂ζ∂ζ̄P∇au∇bu−
2
P
∂ζ∂ζ̄P∇(aζ∇b)ζ̄

− 1
P
∂ζ∂ζP∇aζ∇bζ −

1
P
∂ζ̄∂ζ̄P∇aζ̄∇bζ̄ , (8.140)

R = − 4
P
∂ζ∂ζ̄P , (8.141)

Sab = −N2P∂ζ∂ζ̄P∇au∇bu−
1
P
∂ζ∂ζP∇aζ∇bζ −

1
P
∂ζ̄∂ζ̄P∇aζ̄∇bζ̄ . (8.142)

and the electric and magnetic parts of the rescaled Weyl tensor at J read

Dab = 1
N2P 3∂ζ

(
P 2∂u∂ζ lnP

)
∇aζ∇bζ + 1

N2P 3∂ζ̄
(
P 2∂u∂ζ̄ lnP

)
∇aζ̄∇bζ̄ , (8.143)

Cab = i
1

N2P 3∂ζ
(
P 2∂u∂ζ lnP

)
∇aζ∇bζ − i

1
N2P 3∂ζ̄

(
P 2∂u∂ζ̄ lnP

)
∇aζ̄∇bζ̄ . (8.144)

There is one quadruple PND of the Weyl tensor (and hence of d δ
αβγ ), as it is of Petrov

type-N, which at J reads
`α1 = − N

P
√

2
δα` . (8.145)

We choose strong orientation (definition 5.4.2) by setting

k
− α J

:= `α1 , (8.146)

mα J
:= nα −

√
2 k− α = 1

NP
δαu , (8.147)

k
+ α J

:= 1√
2

(nα +mα) = − N√
2P

δα` +
√

2
NP

δαu , (8.148)

where as usual Nnα := Nα. The pullback of mα to J is

ma = 1
NP

δau ,ma = NP∇au . (8.149)

Using the connection coefficients one can compute the kinematic quantities of ma; they
read

¯
ωab = 0,

¯
κab = 0,

¯
ab = −

¯
Db lnP . (8.150)

Therefore, ma is orthogonal to a foliation of umbilical cuts –see eqs. (A.52) to (A.54). This
was expected, as the conditions in corollary 5.4.1 are met –see remarks 5.4.8 and 5.4.9.
The cuts, in general, contain singularities, this depends on the choice of the function
F (u, ζ) in eq. (8.136). The projector to the cuts is

¯
Pab = ∇aζ∇bζ̄ +∇aζ̄∇bζ . (8.151)
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With this choice of ma, J is strongly equipped –see definition 7.0.3–, characterised by
(ma, ¯

Pab ).

8.3.1 Asymptotic symmetries
The infinitesimal biconformal symmetries acting on the pair (ma, ¯

Pab ) are of the form

ξa = αma + χa , (8.152)

with
α = ν(u)P , (8.153)

ν(u) an arbitrary function of the coordinate u and the restriction χA of χa to each cut
a CKVF of the flat metric. This time, the dimension of the algebra of biconformal
infinitesimal symmetries can be ‘doubly infinite’, depending on the topology of the cuts.
For instance, this is the case for R2 and R × S1 topologies, which also warrants the
existence of CKVFs with fixed points –see remark 6.3.2. In general, there are no CKVF
that are infinitesimal basic symmetries, what is to be expected as there are no KVFs for
Robinson-Trautman type N in the generic case.

8.3.2 Asymptotic supermomentum
Gravitational waves are expected at infinity. Indeed, this is the case according to cri-
terion 1 because the asymptotic canonical super-Poynting vector field and superenergy
read

Pa J= − 4
N4P 7∂ζ

(
P 2∂u∂ζ lnP

)
∂ζ̄
(
P 2∂u∂ζ̄ lnP

)
ma , (8.154)

W J= 4
N4P 6∂ζ

(
P 2∂u∂ζ lnP

)
∂ζ̄
(
P 2∂u∂ζ̄ lnP

)
, (8.155)

thus Pa is non-vanishing everywhere on J , pointing along −ma.

8.3.3 Radiant quantities
There is just one radiant quantity different from 0, as corresponds to a d δ

αβγ of Petrov
type-N when strong orientation is chosen –see fig. 5.4:

W+ J= 16
N4P 6∂ζ

(
P 2∂u∂ζ lnP

)
∂ζ̄
(
P 2∂u∂ζ̄ lnP

)
. (8.156)

From this expression and eq. (8.155), clearly

4W = W+ , (8.157)
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fulfilling eq. (2.60), and by eq. (8.154)

P
a J= −Wma, (8.158)

which is fine with the general expression (5.55) of Pa for algebraically special d δ
αβγ .

8.3.4 News tensor
It is easy to see what the radiant news tensor is in this case. Since the cuts are umbilical,
the tensor fAB of eq. (7.15) vanishes. The same argument applies to

¯
TABC of eq. (7.34).

Furthermore, because
¯
κ = 0, from eq. (7.31) one has

¯
UAB =

¯
SAB , (8.159)

or, by means of the decomposition of corollary 7.2.3,

¯
VAB +

¯
ρAB =

¯
SAB . (8.160)

As it is pointed out in section 8.3.1, if we assume R2 or R × S1 topology for the cuts,
the existence a CKVF with a fixed point on each cut is ensured. In that case, by corol-
lary 7.2.3, we now that a flat metric on the cuts, as it is the case, implies

¯
ρAB = 0. Hence,

the radiant news tensor of lemma 7.3.4, given by

¯
n

+

AB = 2
¯
VAB (8.161)

is simply the tangent part of Sab eq. (8.142) to the cuts, that is

¯
n

+

AB = − 2
P
∂ζ∂ζP ¯

DAζ ¯
DBζ −

2
P
∂ζ̄∂ζ̄P ¯

DA ζ̄ ¯
DB ζ̄ . (8.162)

It is possible indeed to write the asymptotic canonical 1 and super-Poynting in terms of

¯
n

+
AB,

Pa = − 1
N4P 6 [−∂uP + P∂u]

(
¯
n

+

ζζ

)
[−∂uP + P∂u]

(
¯
n

+

ζ̄ζ̄

)
ma. (8.163)

W = 1
N4P 6 [−∂uP + P∂u]

(
¯
n

+

ζζ

)
[−∂uP + P∂u]

(
¯
n

+

ζ̄ζ̄

)
. (8.164)

From these expressions we find

¯
n

+

AB = 0 =⇒ Pa = 0, W = 0. (8.165)



Camino hacia nosotros dos,
regreso
donde todo comienza.
Y tú dices:
–Volver es una forma de llegar al final.
Volver es una forma de que nada termine.

Benjamín Prado, Límite. Todos nosotros, 1998.

9 | Conclusions
_

The end of this dissertation consists of a concise set of conclusions and open questions. It
is not intended to be a list of the results put forward in the memoir; a table of contents
with theorems is placed at the beginning to that end. Rather, this last chapter aims at
a comprehensive overview of achievements, a common canvas of ideas to display their
mutual features.

Tidal characterisation of gravitational radiation at infinity
• The novel characterisation of the asymptotic structure with a non-negative cosmo-

logical constant relies on the application of tidal methods. This is a new perspective
and technique in the study of asymptotics, different from traditional methods em-
ployed so far. It naturally suits the tidal nature of gravitational-wave measurements.

• Based on the rescaled Bel-Robinson tensor Dαβγδ at infinity, the asymptotic super-
momentum (which is radiant for Λ = 0) determines the presence of gravitational
radiation escaping from –or entering into– the space-time. At the same time, it
provides a direct connection between the existence of gravitational radiation and
the algebraic classification of the rescaled Weyl tensor d δ

αβγ at J .

• The radiation criteria thus defined have a neat correspondence in the two considered
scenarios, Λ > 0 and Λ = 0, and share the same geometric and algebraic meaning:
there is no gravitational radiation on J if and only if Nα|J is a principal vector
of d δ

αβγ in the sense of Pirani. In fact, it is possible to take the limit from Λ > 0 to
Λ = 0 explicitly. This feature exceeds the capability of traditional methods, which
either do not have a direct correspondence in Λ > 0 (e.g. the news tensor for Λ = 0)
or when they do, they do not tell the presence of radiation (e.g. asymptotic shear).

• The presence of gravitational radiation on the conformal boundary according to the
criteria based on tidal energies does not depend on the choice of gauge nor on the
observer –which is fixed by the geometry– and does not need of a choice of foliation.

183
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• The computational effort in obtaining the asymptotic supermomentum is very low,
in comparison to other characterisations which need of a suitable choice of conformal
frame –e.g., in the Λ = 0, the computation of the news tensor Nab as the time
derivative of the asymptotic shear in a Bondi gauge, or the determination of ρab.

The scenario with vanishing cosmological constant
• The classical criterion by means of the news tensor field Nab has been shown to

give the same answer as the tidal-based criterion. This served as a test of the tidal
techniques.

• Indeed, the news tensor is sourced by the asymptotic radiant superenergy quantities.
This fact motivated the search of the radiant news in the Λ > 0 scenario.

• The peeling behaviour has been derived from a robust geometric construction. The
result is an endomorphism L β

α –actually, a family of automorphisms– at the tangent
space of any point in J +. It gives the asymptotic behaviour of physical fields
approaching J + along null geodesics. The endomorphism depends on the selected
curve and is defined at its endpoint at J . In particular, a nice feature emerges:
the alignment of physical supermomenta in the direction of the asymptotic radiant
supermomenta at leading order in their expansion along null geodesics.

• The asymptotic group of symmetries BMS emerges from the universal structure on
J , consisting of the conformal class of pairs (gab, Na).

• The determination of the two degrees of freedom of the gravitational field does not
follows alone from (gab, Na). Another ingredient is needed, D

N ab

∣∣∣∣
J
.

• The news tensor Nab and ρab and the asymptotic group of symmetries hold an
interplay: ρab selects a subgroup of translations, which in combination with Nab are
the building blocks of the energy-momentum of the gravitational field at J .

The scenario with positive cosmological constant
• One of the main ideas emphasised in the thesis is that any dynamics of the gravita-

tional field at J must be encoded in the triplet (J , hab, Dab), in consonance with
the fundamental results by Friedrich [112, 132]. The asymptotic supermomentum
depends on these three elements, and the asymptotic radiation condition shows that
the gravitational radiation is an interplay of the three of them.

• A general method has been presented for computing news-like tensors at J . In
particular, necessary conditions for the existence of a class of such tensors –the
radiant news– has been found. The radiant news contain a first component VAB
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which has a very similar origin as that of the news tensor field in Λ = 0. More
concretely, its existence relies on a tensor field ρAB that has been found for general
Riemannian two-dimensional manifolds. The tensor VAB is determined by (J , hab)
and a cut (S, qAB). There is a pair of second components, X

±
AB . Although having

the algebraic properties of VAB , their origin is different. When they exist, they are
determined by Dab and the extrinsic curvature of the cuts where they are defined.

• The radiant news tensors n
±
AB associated to a cut, if they exist, are sourced by the

asymptotic radiant superenergy quantities associated to that cut.

• The introduction of a congruence of curves on J serves to define a structure con-
sisting of the conformal class of pairs (

¯
Pab ,m

a), where ma is the unit vector field
tangent to the curves. The structure has three degrees of specialisation –equipped,
strictly equipped, and strongly equipped J , respectively– and allows for promoting
the radiant news and their components to tensor fields on J .

• Novel symmetries are introduced as those transformations preserving a given equip-
ment of J . There is an interplay between those symmetries, the first component
of news Vab and ρab associated to that equipment. Remarkably, ρab serves to define
a set of ‘translations’ on J .

• The radiant news are determined by (hab,ma) (first component) together with Dab

(second component).

• Conserved quantities can be defined using the equipments of J and the basic and
new symmetries.

Further research and open questions
The work presented in this thesis opens the window to further research. Some of these
matters and open problems are:

1. A more general class of news-like tensor in space-times with Λ > 0 can be sought
by means of the general method here presented. Also, a refined study of the ra-
diant news tensor and their connection with the radiation condition is possible.
Particularly, a transport equation for ρab along ma would shed light on these two
issues.

2. The definition of an energy-momentum at J with Λ > 0 is still an open problem.
The exploration of conserved charges and the study of the Λ = 0 scenario suggest
that a definition of momentum associated to the symmetries of an equipped J is
plausible.
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3. The exploration of symplectic methods is to be done. In particular, their application
to an equipped J may help in the search of an energy-momentum.

4. Given an equipped J , classes of equivalence of connections on J emerge. Their
characterisation should be put in connection with the first component of news and
with the associated symmmetries.

5. It is natural to think on applying the geometrical approach to the peeling behaviour
and, in general, to the asymptotic propagation of fields in the Λ > 0 scenario. Also,
it would be interesting to see if the endomorphism L β

α can be derived for general
curves other than null geodesics.

6. The application of the tidal approach to the Λ < 0 scenario has not been considered
in this thesis and should be addressed. If the outcome is successful, one could then
talk of a universal radiation condition at infinity.

The hope is that this work contributes to the understanding of infinity and to a deeper
comprehension of gravitational radiation.



A | Geometry of spatial hypersurfaces, cuts
and congruences

_

We introduce some geometric tools for a general 3-dimensional, spacelike hypersurface I
embedded in a 4-dimensional space-time

(
M, gαβ

)
. We will also consider the geometrical

objects associated to a single cut S on I and to a general congruence C given by a vector
field ra on I.

A.1 Induced connection

Consider a general spacelike hypersurface I embedded in a 4-dimensional space-time(
M, gαβ

)
. Let nα be the timelike normal one-form at each point of I normalised to

nµnνg
µν = −1. Also, at each point, consider a set of linearly independent tangent vector

fields {~ea}, a = 1, 2, 3. By definition, nµeµa = 0 and {~ea} constitutes a basis for XI , the
set of vector fields of I. Use the inverse space-time metric to define the normal vector
nα := gαµnµ. This field completes a basis, {~n, ~ea}, for the set of vector fields ofM , XM , at
I. Analogously, consider a set of linearly independent one-forms orthogonal to ~n, {ωa}.
They constitute a basis for the set of one-forms of I, ΛI , and {−n,ωa}, for the set of
one-forms of M , ΛM , at I.

The hypersurface I is endowed with an intrinsic Riemannian metric hab, given by the
pullback of the space-time metric to I — the first fundamental form of I:

hab
I= eµae

ν
bgµν . (A.1)

It is non-degenerate and its inverse is uniquely defined by

hab = ω a
µ ω

b
ν g

µν . (A.2)
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The second fundamental form of I is defined by

κab = eµae
ν
b∇µnν . (A.3)

Any space-time vector field vα can be decomposed into parts tangent and normal to I,

vα
I= −nαnµvµ + vα, vµnµ = 0, vα = eαav

a , (A.4)

with ~v ∈ XI . This decomposition and notation can be generalised to any tensor (field).
The tangent part vα can be obtained by the action of the projector

Pα
β := eαpω

p
β , Pα

β nα = 0, vα = Pα
µ v

µ . (A.5)

Its covariant version reads

Pαβ
I= P µ

β P
ν
β gµν

I= gαβ + nαnβ
I= Pβα . (A.6)

The intrinsic volume form of (I, hab) is determined by

−nαεabc = ηαµνρe
µ
ae
ν
be
ρ
c , (A.7)

−nαεabc = ηαµνρω a
µ ω

b
ν ω

c
ρ , (A.8)

such that εabcεabc = 6. This also fixes the orientation1 to ε123 = 1, and εabc is the canonical
volume element defined by hab.

Given the space-time connection, one can define an intrinsic covariant derivative on I
as

vm∇mu
a I:= ω a

µ v
ν∇νu

µ, for uαnα = vαnα = 0, uα = eαau
a, vα = eαav

a , (A.9)

and extend this operator to act on any field on I. For any tensor field Tα1...αr
β1...βq defined

at least on I, one has

ω a1
µ1 ...ω ar

µr eν1
bq
...e

νq
bq
eρc∇ρT

µ1...µr
ν1...νq = ∇cT

a1...ar
b1...bq

−
r∑
i=1

T
a1...ai−1σai+1...ar

b1...bq nσκ
ai
c −

q∑
i=1

T a1...ar
b1...bi−1σbi+1...bq

κcbin
σ

where T a1...ar
b1...bq

I:= ω a1
µ1 ...ω ar

µr eν1
bq
...e

νq
bq
T µ1...µr

ν1...νq . The new derivative operator is
torsion-less, metric and volume preserving —the underlying connection is the Levi-Civita

1According to the orientation for the unphysical space-time, η0123 = 1. This coincides with the one
we chose for the physical space-time —see the conventions at the end of chapter 1.
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connection associated to hab,

∇ahbc = 0, (A.10)
∇aεbcd = 0 . (A.11)

The intrinsic curvature is defined by means of ∇a as(
∇a∇b −∇b∇a

)
vc = R

m

abc vm, v ∈ ΛI (A.12)

and the intrinsic Ricci tensor and scalar curvature by Rab := R
m

amb , R := R
m

m. The
relation with the space-time curvature is given by the Gauss equation and its traces:

R
d

abc = eαae
β
be
γ
cR

δ
αβγ ω

d
δ + κbcκ

d
a − κacκ d

b , (A.13)
Rac = eαae

γ
cRαγ + nβnδe

α
ae
γ
cR

δ
αβγ + κcdκ

d
a − κacκ , (A.14)

R = R + 2nαnγRαγ + κcdκ
cd − κ2 , (A.15)

with κ := κcc, and the space-time curvature and the second fundamental form are related
by the Codazzi equation:

eαae
β
be
γ
cR

δ
αβγ nδ = 2∇[aκb]c . (A.16)

A.2 Cuts

Let S be any two-dimensional submanifold embedded in I and assume that it has S2-
topology. Generically, we will refer to these kind of surfaces as ‘cuts’. Let ra be the
(spacelike) normal one-form to the cut within I —nα is orthogonal to the cut too, of
course. In a similar fashion as we have done above, we introduce a couple of linearly inde-
pendent vector fields {Ea

A}, A = 2, 3, orthogonal to ra and tangent to I, such that they
constitute a basis for the set XS of vector fields of S. Also, rise an index to the normal
one-form using hab and define a dual basis {W A

a } orthogonal to ra. These sets of vector
fields, being completely tangent to I, can be written as space-time fields: rα I:= eαar

a,
Eα

A

S:= Ea
Ae

α
a andW A

α

S:= W A
a ω a

α . The triads {~r, ~EA} and {r,W A} constitute a basis
for XI and ΛI at S, respectively. Pushforwards/pullbacks of intrinsic objects to S can be
written in terms of W A

α and Eα
A .

The intrinsic metric of S is given by the pullback of the metric of I —the first funda-
mental form of S,

qAB
S:= Ea

AE
b
Bhab , (A.17)
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which concides with the pullback of the metric of M with Eα
A ,

qAB
S= Eα

AE
β
Bgαβ . (A.18)

The second fundamental form of S in I is defined as

κ̊AB
S:= Ea

AE
b
B∇arb , (A.19)

and the projector to the cut as

P̊ a
b

S:= Ea
AW

A
b

S= δab − rarb . (A.20)

Its covariant version is symmetric

P̊ab
S= hab − rarb (A.21)

and
P̊αβ

S:= ω a
α ω

b
β P̊ab

S= gαβ + nαnβ − rαrβ . (A.22)

Any ~v ∈ XI can be split into a normal and tangent part to I as before (see eq. (A.4)).
Now, in addition to that, the tangent part to I is decomposed into its tangent and normal
parts to S:

vα = −nµvµnα + vα = −nµvµnα + rµv
µrα + v̊α, with rµv̊

µ = 0 = nµv̊
µ , (A.23)

where, P̊α
µ v

µ S= v̊α = v̊AEα
A , with ~̊v ∈ XS .

Also, the intrinsic volume two-form of (S, qAB) is determined by

ra ε̊AB
S= εamnE

m
AE

n
B , (A.24)

raε̊AB
S= εamnW A

m W B
n , (A.25)

such that ε̊AB ε̊AB = 2 and fixing the orientation to ε̊23 = 1. Notice that using eq. (A.7)
one can write the space-time version of this two-form as ε̊αβ

S= P̊ σ
α P̊

ρ
β ηµνσρn

µrν , ε̊αβ S=
P̊α

σ P̊
β
ρ η

µνσρnµrν .

An intrinsic connection on the cut can be defined as

V MDMUA S:= W A
m V n∇nU

m, where Ua S= Ea
AU

A, V a S= W a
A V

A . (A.26)
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Or, equivalently, by

V MDMUA S:= W A
µ V ν∇νU

µ, where Uα = Eα
AU

A, V α = Wα
A V

A . (A.27)

The intrinsic covariant derivative of a tensor field T a1...ar
b1...bq defined at least on S is

written as

W A1
m1 ...W Ar

mr En1
Bq ...E

nq
BqE

r
C∇rT

m1...mr
n1...nq = DC T̊A1...Ar

B1...Bq

+
r∑
i=1

T
A1...Ai−1sAi+1...Ar

B1...Bq rsκ̊
Ai
C +

q∑
i=1

TA1...Ar
B1...Bi−1sBi+1...Bq

κ̊CBir
s ,

where T̊A1...Ar
B1...Bq

S:= W A1
m1 ...W Ar

mr En1
Bq ...E

nq
BqT

m1...mr
n1...nq . Again, the underlying

connection is the Levi-Civita connection associated to qAB :

DAqBC = 0 , (A.28)
DA ε̊BC = 0 . (A.29)

The Gauss equation and its traces read

R̊ D
ABC = Ea

AE
b
BE

c
CR

d
abc W

D
d − κ̊BC κ̊ D

A + κ̊AC κ̊
D

B , (A.30)

R̊AC = Ea
AE

c
CRac + rbrdE

a
AE

c
CR

d
abc − κ̊CDκ̊ D

A + κ̊AC κ̊ , (A.31)
R̊ = R + 2rarcRac − κ̊CDκ̊CD + κ̊2 , (A.32)

and the Codazzi equation,

Ea
AE

b
BE

c
CR

d

abc rd = 2D[Aκ̊B]C . (A.33)

A.3 Congruences

Assume I, or at least an open connected portion2 ∆ ⊂ I with the same topology as I,
and let C be a congruence of curves there locally defined by

xa = Xa
(
v, ζA

)
, (A.34)

where Xa are invertible functions such that

v = V (xa), ζA = ZA(xa) . (A.35)

Each curve of C is marked by constant values of ζA and parametrised by v. The unit

2In which case, the results below apply only to that region.
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Figure A.1: The space-like hypersurface I equipped with a congruence C of curves. The
canonical projection Π maps each curve to a point on the projected ‘surface’ S2.

vector field ma tangent to the curves can be written in the local basis (∂/∂xa),

ma =
(
hcd

∂Xc

∂v

∂Xd

∂v

)− 1
2 ∂Xa

∂v
, mama = 1 . (A.36)

It is easily checked that ma∇aV 6= 0 and ma∇aZ
A = 0. Notice that there is the

following freedom in reparametrising and changing the markers of the curves:

v → v′
(
v, ζA

)
,

∂v′

∂v
6= 0 , (A.37)

ζA → ζ ′A
(
ζA
)
,

∣∣∣∣∣∂ζA∂ζB

∣∣∣∣∣ 6= 0 . (A.38)

The quotient S2 := I/C is called the projected ‘surface’. It is a two-dimensional differential
manifold although, in general, it is not Riemannian because it is not endowed with a
natural metric as it will become clear later on. One can define a canonical projection Π
that maps all points on a curve of C to the same point on S2. In this sense, each point
on S2 represents a curve of C and ζA are local coordinates on S2 –indeed eq. (A.38) can
be regarded as a local change of coordinates on S2. The one-forms

¯
W A
a (x) :=

(
Π∗
(
dζA

))
a

= ∂ZA (x)
∂xa

, ma

¯
W A
a = 0, £~m ¯

W A = 0 , (A.39)
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allow us to write the pullback Π∗ to I of any covariant tensor field TA1...Ap on S2 as

¯
Ta1...ap (x) := [Π∗T (ζ)]a1...ap

= TA1...Ap (Z (x))
¯
W A1
a1 (x) ...

¯
W Ap
ap (x) . (A.40)

The objects
¯
Ta1...ap are covariant tensor fields on I with no dependence on v and fully

orthogonal to ma. Thus there exists an isomorphism between covariant tensor fields on
S and covariant tensor fields on I that have vanishing Lie derivative along ma and are
orthogonal to ma.

Also, one can take the push-forward Π′ of any contravariant tensor field T a1...ap at a
point q ∈ I to a point Π(q) on S2,

¯
TA1...Ap (ζ)

∣∣∣∣
Π(q)

:= [Π′T (x)]A1...Ap =
[
T a1...ap (x)

¯
W A1
a1 (x) ...

¯
W Ap
ap (x)

] ∣∣∣∣
q
. (A.41)

Because T a1...ap is defined everywhere on I and Π′ acts pointwise, the quantities
¯
TA1...Ap

are well defined at each point on I and, thus, they can be considered as a set of scalar
fields on I. However, even though they change tensorially under the transformations
(A.38), they do not constitute tensor fields on S2, in the sense that T a1...ap can give rise
to different tensor fields on S2 due to the dependence of

¯
TA1...Ap on v. Furthermore, as

T a1...ap may contain transversal components along ma, multiple tensor fields on I can
project to the same family of scalars

¯
TA1...Ap . In any case, there exists an isomorphism

between contravariant tensor fields on I completely orthogonal to ma and with vanishing
Lie derivative along ma and contravariant tensor fields on S2.

We can define a couple of linearly independent vector fields on I, (
¯
Ea

A), satisfying

ma¯
Ea

A = 0,
¯
Ea

A ¯
W B
a = δBA . (A.42)

Then, (ma,
¯
Ea

A),
(
ma, ¯

W A
a

)
constitute a pair of dual bases. On the one hand, it is

possible to lift contravariant tensor fields on S2 to contravariant tensor fields on J by

¯
T a1...ap (x) := TA1...Ap (Z (x))

¯
Ea1

A1 (x) ...
¯
E
ap
Ap (x) (A.43)

which are orthogonal to ma and have, in general, non-vanishing Lie derivative along ma.
On the other hand, given a covariant tensor field on J , one can construct pointwise a
set of scalar fields on J as

¯
TA1...Ap (x)

∣∣∣∣
Π(q)

:=
[
Ta1...ap (x)

¯
Ea1

A1 (x) ...
¯
E
ap
Ap (x)

] ∣∣∣∣
q
. (A.44)
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The projector orthogonal to ma is defined as

¯
P a

b :=
¯
Ea

C ¯
W C
b ,

¯
P c

bmc = 0 =
¯
P a

cm
c,

¯
P c

c = 2 , (A.45)

and in terms of ma its covariant version reads

¯
Pab = hab −mamb . (A.46)

This object gives a scalar product on I of vectors orthogonal to ma. It is possible to
introduce a family of inverse metric tensor fields on S2 as

¯
qAB :=

¯
W A
a ¯
W B
b hab , (A.47)

while the covariant version is given by the condition
¯
q
AC¯
qBC = δBA . Alternatively, using

¯
Ea

A

¯
q
AB

=
¯
Ea

A ¯
Eb

Bhab . (A.48)

Although one can use
¯
qAB and

¯
q
AB

to rise and lower indices on S2, it is not a metric
tensor, since it depends on v. More appropriately, it represents a one-parameter family
of metric tensors. One can induce a ‘volume two-form’ in a simple way,

ma¯
εAB

S= εamn¯
Em

A ¯
En

B , (A.49)

ma

¯
εAB

S= εamn
¯
W A
m ¯

W B
n , (A.50)

which is completely antisymmetric and satisfies
¯
εAB

¯
εAB = 2. However, this object de-

pends on v too in general and, therefore, it constitutes a one-parameter family of volume
forms. Observe that we have fixed the orientation to ε̊23 = 1.

The covariant derivative on I of ma is decomposed as

∇amb = ma¯
ab +

¯
κab +

¯
ωab , (A.51)

where

¯
ab := mc∇cmb is the acceleration, (A.52)

¯
κab :=

¯
P c

a ¯
P d

b∇(cmd) is the expansion tensor, (A.53)

¯
ωab :=

¯
P c

a ¯
P d

b∇[cmd] is the vorticity, (A.54)

and the shear of ma is defined as the traceless part of
¯
κab,

¯
Σab :=

¯
κab −

1
2¯
Pab ¯

κ,
¯
κ :=

¯
P cd

¯
κcd . (A.55)



_ | Geometry of spatial hypersurfaces, cuts and congruences 195

It is easy to show that

£~m¯
Ea

A = −ma

¯
Ec

A¯
ac , (A.56)

£~m¯
P a

b = −
¯
abm

a , (A.57)
£~m¯

Pab = 2
¯
κab . (A.58)

Also, defining

¯
εab := me

¯
P c

a ¯
P d

b εecd =
¯
W A
a ¯
W B
b ¯
εAB , (A.59)

and using eq. (A.57) one derives
£~m¯

εab =
¯
κ
¯
εab . (A.60)

Incidentally,
£~mεabc =

¯
κεabc . (A.61)

As all the kinematic tensors are orthogonal to ma, they are univocally determined by the
one-parameter family of scalar fields on I –which can be seen as objects on S2–

¯
aA :=

¯
Ea

A¯
aa , (A.62)

¯
κAB :=

¯
Ea

A ¯
Eb

B¯
κab , (A.63)

¯
ΣAB :=

¯
Ea

A ¯
Eb

B ¯
Σab , (A.64)

¯
ωAB :=

¯
Ea

A ¯
Eb

B¯
ωab . (A.65)

The scalar fields TA1...Aq
B1...Bp associated to an arbitrary tensor field T a1...aq

b1...bp on I can
be differentiated along ma:

£~mT
A1...Aq

B1...Bp = mj∇jT
A1...Aq

B1...Bp

=
¯
Eb1

B1 ...¯
E
bp
Bp ¯
W A1
a1 ...

¯
W Aq
aq £~m

(
T
a1...aq

b1...bp

)
−

p∑
i=1

T
A1...Aq

B1...Bi−1σBi+1...Bp
mσ

¯
aBi , (A.66)

where we have used the Leibniz property of the Lie derivative together with eqs. (A.39)
and (A.56). Then, the Lie derivative along ma of the one-parameter family of ‘metrics’

¯
q
AB

for fixed A,B can be computed to give

£~m
¯
q
AB

=
¯
κAB. (A.67)

Now, let U be a function such that

mcsc = 1, sa := (dU)a (A.68)
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and expand sa in the
(
ma, ¯

W A
a

)
basis,

sa = ma +MA ¯
W A
a . (A.69)

Taking the Lie derivative along ma of the functions
¯
MA for fixed A one finds

¯
aA = −£~mMA . (A.70)

Instead, if one takes de exterior derivative of sa –which vanishes by definition– one gets
the relation [

¯
~EA, ¯

~EB

]a
= −2

¯
ωABm

a, (A.71)

which allows us to derive
£

¯
~EA ¯
WB = 0. (A.72)

Also,
£

¯
~EA
ma = −

¯
aAma + 2

¯
ωAC ¯

W C
a . (A.73)

So far we have not introduced a connection on S2, nor a covariant derivative. Note that
in the basis (ma,

¯
Ea

A) one has

¯
Ec

A∇c¯
Ea

B = − (
¯
κAB +

¯
ωAB)ma +

¯
γCAB ¯

Ea
C , (A.74)

where
¯
γCAB are functions such that

¯
γCAB =

¯
γCBA , as one can check computing the

commutator and using eq. (A.71). Taking this into account it follows that

mc∇c¯
Ea

A = −
¯
aAm

a +
(
¯
κ C
A +

¯
ω C
A

)
¯
Ea

C . (A.75)

In addition, it can be shown that

¯
Ec

A∇c ¯
W B
a = −

(
¯
κ B
A +

¯
ω B
A

)
ma − ¯

γBAC ¯
W C
a . (A.76)

Contracting eq. (A.60) with
¯
Ea

A ¯
Eb

B and using eq. (A.66) one derives

£~m¯
εAB =

¯
κ
¯
εAB. (A.77)

Under the change in eq. (A.38) ,
¯
γCAB behaves like a connection. However, due to

the dependence on v, it is not a connection, but a one-parameter family of such objects.
Nevertheless, we can define a ‘covariant derivative’ operator by

¯
DAvB :=

¯
Ea

A∂av
B +

¯
γBAC v

C , with vA = va
¯
W A
a , vama = 0. (A.78)

For the same reasons stated above, this is not a tensor field on S2. The definition can be
extended to arbitrary-rank contravariant and covariant tensor objects. Its relation to the
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covariant derivative on I acting on a tensor field T a1...ar
b1...bq is written as

¯
W A1
m1 ...

¯
W Ar
mr ¯

En1
Bq ...¯

E
nq
Bq ¯
Er

C∇rT
m1...mr

n1...nq =
¯
DC¯

TA1...Ar
B1...Bq

+
r∑
i=1

T
A1...Ai−1sAi+1...Ar

B1...Bqms

(
¯
κ Ai
C +

¯
ω Ai
C

)
+

q∑
i=1

TA1...Ar
B1...Bi−1sBi+1...Bq

(
¯
κCBi +

¯
ωCBi

)
ms.

(A.79)

Then, for Tm1...mr
n1...nq completely orthogonal to ma and ma one has

¯
W A1
m1 ...

¯
W Ar
mr ¯

En1
Bq ...¯

E
nq
Bq ¯
Er

C∇rT
m1...mr

n1...nq =
¯
DC¯

TA1...Ar
B1...Bq . (A.80)

This ‘covariant derivative’ is ‘metric’ and ‘volume-preserving’ in the sense that

¯
DA¯

εBC = 0 , (A.81)

¯
DA¯

q
BC

= 0 , (A.82)

and a typical calculation leads to an expression in terms of
¯
q
AB

¯
γCAB = 1

2¯
qCD

(
¯
Ea

A∂a¯
q
BD

+
¯
Eb

B∂b¯
q
AD
−

¯
Ed

D∂d¯
q
AB

)
. (A.83)

Define a one-parameter family of tensor fields on S2 by

¯
R D
BAC :=

¯
Ea

A∂a¯
γDBC − ¯

Eb
B∂b¯

γDAC +
¯
γDAE¯

γEBC − ¯
γDBE¯

γEAC , (A.84)

which by construction has the symmetries

¯
R D
ABC = −

¯
R D
BAC ,

¯
R D
ABC +

¯
R D
BCA +

¯
R D
CAB = 0 . (A.85)

A direct calculation gives

(
¯
DA ¯
DB − ¯

DB ¯
DA)V D = −

¯
R D
ABC V C − 2

¯
ωAB£~mV

D , (A.86)

where £~mV
C is computed according to eq. (A.66). One can define a covariant version,

¯
RABCD :=

¯
q
ED¯
R E
ABC . (A.87)

Note that this object does not have the antisymmetry property in the second pair of
indices:

¯
RAB(CD) = 2

¯
ωAB¯

κCD , (A.88)

where we have used eqs. (A.81) and (A.86). Hence

¯
RABCD = 2

¯
ωAB¯

κCD +
¯
RAB[CD] . (A.89)
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The second term, since we are in 2 dimensions, can be identically written as

¯
RAB[CD] =

¯
K
(
¯
q
AC¯
q
BD
−

¯
q
AD¯
q
BC

)
, (A.90)

for some scalar function
¯
K. The relation between the curvature tensor on I and this one-

parameter family of ‘curvature tensors’ on S2 can be determined by typical calculations.
The result is a Gauss-like relation,

¯
R D
ABC =Ea

AE
b
BE

c
CR

d
abc W

D
d + 2

¯
ωAB

(
¯
κ D
C +

¯
ω D
C

)
− (

¯
κBC +

¯
ωBC )

(
¯
κ D
A +

¯
ω D
A

)
+ (

¯
κAC +

¯
ωAC )

(
¯
κ D
B +

¯
ω D
B

)
, (A.91)

which lowering an index can be written also as

¯
RAB[CD] =Ea

AE
b
BE

c
CRabcdE

d
D + 2

¯
ωAB¯

ωCD − (
¯
κBC +

¯
ωBC ) (

¯
κAD +

¯
ωAD)

+ (
¯
κAC +

¯
ωAC ) (

¯
κBD +

¯
ωBD) , (A.92)

and a Codazzi-like equation

¯
Ea

A ¯
Eb

B ¯
Ec

CR
d

abc md = 2
¯
D[A

(
¯
κB]C +

¯
ωB]C

)
+ 2

¯
ωAB¯

aC . (A.93)

Now we are going to give an expression for the intrinsic Schouten tensor on I. Equa-
tion (5.9) is valid in general for dimension 3, i.e., valid for I,

Rabcd = 2ha[cSd]b − 2hb[cSd]a . (A.94)

Using this expression in eq. (A.93) one arrives at

2
¯
q
C[A¯

SB] = 2
¯
D[A

(
¯
κB]C +

¯
ωB]C

)
+ 2

¯
ωAB¯

aC , (A.95)

which is equivalent to its trace,

¯
SB = DC

(
¯
κ C
B +

¯
ω C
B

)
−

¯
DB¯

κ+ 2
¯
ωCB¯

aC . (A.96)

Notice also that using the same relations and contracting with
¯
qAC

¯
qBD in eq. (A.90) one

gets

¯
SEE =

¯
K + 1

2 ¯
Σ2 − 1

4¯
κ2 − 3

2¯
ω2 . (A.97)

A direct calculation together with eqs. (A.51) and (A.93) leads to

£~m
¯
γCAB = 2

¯
D(A¯

κ C
B) −¯

qEC
¯
DE¯

κAB +
¯
aC

¯
κAB − 2

¯
a(A¯

κ C
B) . (A.98)

This last equation provides a condition for the vanishing of me∂e
¯
γCAB which appears

below in eq. (A.101). In general S2 is endowed with a one-parameter family of geometrical



_ | Geometry of spatial hypersurfaces, cuts and congruences 199

objects; only in the cases in which these quantities have vanishing derivative along ma

–i.e., when they do not depend on v– they are a true metric, connection or volume form,
respectively. Summarising, from eqs. (A.67), (A.77) and (A.98),

£~m
¯
q
AB

= 0⇐⇒
¯
κAB = 0 , (A.99)

£~m¯
εAB = 0⇐⇒

¯
κ = 0 , (A.100)

£~m
¯
γCAB = 0⇐⇒

¯
DC¯

κAB =
¯
aC¯
κAB . (A.101)

Notice that
¯
κ = 0 is not a conformally-invariant equation; one can always achieve this

condition by a conformal transformation of hab3. Observe that, for
¯
κ = 0,

¯
κAB = 0 if and

only if ma is shear-free4, i.e.,
¯
ΣAB = 0 –see eq. (A.55). Additionally, in that case, the

condition on the right-hand side of eq. (A.101) is trivially satisfied. Hence, for umbilical
ma there is a conformal class of metrics {hab} for which £~m

¯
q
AB

= £~m¯
εAB = £~m

¯
γCAB = 0.

Finally, there is a particular case of interest:

¯
ωAB = 0⇐⇒

¯
ma orthogonal to cuts. (A.102)

This is the case of a foliation, in which each leaf is a surface (a cut). Under this condition,
the normal form can always be written as

ma = F∇av (A.103)

for some scalar function F such that
1
F

= £
~m
v. (A.104)

The calculation of the acceleration produces

¯
ab = −

¯
P c

b∇c lnF . (A.105)

Let us point out that the geometrical objects induced byma still depend on v and coincide
on each leaf (v =constant) with the intrinsic geometric quantities of the cuts, but only
there. In general they are fields on I associated to the particular family of curves.

To end up with this appendix, let us mention that a very similar construction for
congruences as the one above can be developed using the so called Cattaneo operator in

3A conformal transformation hab → Ψ2hab implies ma → Ψma according to eq. (A.36), as well as

¯
q
AB
→

¯
Ψ2

¯
q
AB

, with
¯
Ψ := Π∗(Ψ).

4Note that the shear-free property is a conformally-invariant property.
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substitution of the derivative operator
¯
DA,

¯
Dc¯
T a1...ar

b1...bq
:=

¯
P a1
m1 ...

¯
P ar
mr ¯

P n1
bq
...

¯
P
nq
bq ¯
P r

c∇rT
m1...mr

n1...nq , (A.106)

which is defined for arbitrary tensor fields T a1...ar
b1...bq on I.
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_

Assume that a general congruence of curves with tangent vector fieldma exists, and define
mα := eαam

a at J and on a neighbourhood —this allows us to take its derivative along
nα, though no particular extension of mα is required. The plan is to write de components
of eq. (3.84) in terms of the lightlike projections of the rescaled Weyl tensor, i.e., the
quantities appearing in section 2.2. Objects that carry an over-ring will be substituted
by objects carrying an underbar, for the same reason explained in section 5.4. Also,
quantities originally defined with indices A,B,C, etc will be written fully/partially with
space-time indices α, β, γ, etc indicating that they have been contracted with W A

α and
Eα

A conveniently. The same mixed notation can appear in space-time tensors that have
been contracted in some of their indices. As a couple of examples, one may find

¯
CA

in substitution of C̊A and
¯
Cα in correspondence to

¯
CAW

A
α , or yαAB corresponding to

¯
W µ

A ¯
W ν

B yαµν .

Then, recast eq. (3.84) as

−yαβγ = gµτ∇µdαβγτ =
(
− k

+ µ k
− τ − k

− µ k
+ τ +

¯
P µτ

)
∇µdαβγτ

= − k
+ µ∇µ

(
dαβγτ k

− τ
)
− dαβγτ k

− τ k
+

λ k
+ µ∇µ k

− λ + dαβγτ¯
P τ

λ k
+ µ∇µ k

− λ

− k
− µ∇µ

(
dαβγτ k

+ τ
)
− dαβγτ k

+ τ k
−

λ k
− µ∇µ k

+ λ + dαβγτ¯
P τ

λ k
− µ∇µ k

+ λ

+
¯
P µτ∇µ

(
dαβγτ

)
(B.1)

here k
± α are defined as in eq. (5.47), noting that this time they are extended outside J .

Next step is to contract this equation with k
± α and the basis spanning the space of vectors

orthogonal to ma, {¯
Eα

A} —uppercase, Latin indices denote projections with this basis.
This process is a straight-forward calculation. It is very long, though, and we just write
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down here the final outcome evaluated at J :

− k
− α k

+ β k
− γyαβγ

J= − k
− µ∇µD − 2

√
2

¯
D

+

γ k
− µ∇µ k

− γ

+ 2
√

2
¯
D
−

β k
− µ∇µ k

+ β +
√

2
¯
P µτ∇µ ¯

D
−

τ − ¯
P µτD∇µ k

−

τ

−
¯
D
−

βτ ¯
P µτ∇µ k

+ β +
√

2
¯
D
− µ k

− β∇µ k
+

β

+
¯
D

−+

τα¯
P τµ∇µ k

− α − 2
¯
D

−+

[γτ ]¯
P µτ∇µ k

− γ , (B.2)

− k
− α k

+ β k
+ γyαβγ

J= −2
√

2
¯
D
−

γ k
+ µ∇µ k

+ γ + 2
√

2
¯
D

+

α k
+ µ∇µ k

− α +
√

2
¯
P µτ∇µ ¯

D
+

τ

D
¯
P µτ∇µ k

+

τ +
√

2
¯
D

+ µ k
+ α∇µ k

−

α +
¯
D

+

ατ ¯
P µτ∇µ k

− α

−
¯
D

−+

βτ¯
P µτ∇µ k

+ β −
¯
D

−+

[γτ ]¯
P µτ∇µ k

+ γ + k
+ µ∇µD , (B.3)

− k
− β k

+ γ

¯
yAβγ

J= −
√

2
¯
Eω

A k
+ µ∇µ ¯

D
−

ω +D k
+ µ

¯
Eω

A∇µ k
−

ω +
¯
D
−

Aγ k
+ µ∇µ k

+ γ

−
√

2
¯
D
−

A k
+ λ k

+ µ∇µ k
−

λ + 2
¯
D

−+

[βA] k
+ µ∇µ k

− β −
¯
D

−+

Aλ k
+ µ∇µ k

− λ

−
¯
P µτ

¯
Eω

A∇µ ¯
D

−+

ωτ −
√

2
¯
D
−

A¯
P µτ∇µ k

+

τ +
√

2
¯
D

+

τ ¯
P µτ

¯
Eω

A∇µ k
−

ω

−
¯
t
−

γτA¯
P µτ∇µ k

+ γ +
¯
t

+

Aβτ¯
P µτ∇µ k

− β , (B.4)

− k
+ β k

− γ

¯
yAβγ

J=
√

2
¯
Eω

A k
− µ∇µ ¯

D
+

ω +D k
− µ

¯
Eω

A∇µ k
+

ω +
¯
D

+

Aγ k
− µ∇µ k

− γ

+
√

2
¯
D

+

A k
− λ k

− µ∇µ k
+

λ + 2
¯
D

−+

[Aβ] k
− µ∇µ k

+ β −
¯
D

−+

λA k
− µ∇µ k

+ λ

−
¯
P µτ

¯
Eω

A∇µ ¯
D

−+

τω +
√

2
¯
D

+

A¯
P µτ∇µ k

−

τ −
√

2
¯
D
−

τ ¯
P µτ

¯
Eω

A∇µ k
+

ω

−
¯
t

+

γτA¯
P µτ∇µ k

− γ +
¯
t
−

Aβτ¯
P µτ∇µ k

+ β , (B.5)

− k
+ β k

+ γ

¯
yAβγ

J= −
√

2 k+ µ

¯
Eω

A∇µ ¯
D

+

ω +
√

2 D+ A k
+ µ k

+ λ∇µ k
−

λ +
¯
D

−+

γA k
+ µ∇µ k

+ γ

+ 2
¯
D

−+

[βA] k
+ µ∇µ k

+ β −D k
+ µ

¯
Eω

A∇µ k
+

ω − ¯
D

+

Aλ k
+ µ∇µ k

− λ

−
¯
P µτ

¯
Eω

A∇µ ¯
D

+

ωτ −
√

2
¯
D

+

A¯
P µτ∇µ k

+

τ −
√

2
¯
D

+

τ ¯
P τµ

¯
Eω

A∇µ k
+

ω

−
¯
t

+

λτA¯
P µτ∇µ k

+ λ −
¯
t

+

λAτ¯
P τµ∇µ k

+ λ , (B.6)

− k
− β k

− γ

¯
yAβγ

J=
√

2 k− µ

¯
Eω

A∇µ ¯
D
−

ω −
√

2 D− A k
− µ k

− λ∇µ k
+

λ +
¯
D

−+

Aγ k
− µ∇µ k

− γ

+ 2
¯
D

−+

[Aβ] k
− µ∇µ k

− β −D k
− µ

¯
Eω

A∇µ k
−

ω − ¯
D
−

Aλ k
− µ∇µ k

+ λ

−
¯
P µτ

¯
Eω

A∇µ ¯
D
−

ωτ +
√

2
¯
D
−

A¯
P µτ∇µ k

−

τ +
√

2
¯
D
−

τ ¯
P τµ

¯
Eω

A∇µ k
−

ω

−
¯
t
−

λτA¯
P µτ∇µ k

− λ −
¯
t
−

λAτ¯
P τµ∇µ k

− λ , (B.7)
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− k
− β

¯
yAβC

J= −
¯
Eω

A ¯
Eσ

C k
+ µ∇µ D

−

ωσ +
√

2
¯
D
−

A¯
Eσ

C k
+ µ∇µ k

−

σ +
√

2
¯
D
−

C ¯
Eω

A k
+ µ∇µ k

−

ω

− 2
¯
D
−

AC k
+ λ k

+ µ∇µ k
−

λ +
¯
t
−

AλC k
+ µ∇µ k

− λ +
¯
t
−

CλA k
+ µ∇µ k

− λ

−
¯
Eω

A ¯
Eσ

C k
− µ∇µ ¯

D
−+

ωσ −
√

2
¯
D
−

A¯
Eσ

C k
− µ∇µ k

+

σ +
√

2
¯
D

+

C ¯
Eω

A k
− µ∇µ k

−

ω

+
¯
t

+

AλC k
− µ∇µ k

− λ +
¯
t
−

CλA k
− µ∇µ k

+ λ +
¯
Eω

A ¯
Eσ

C ¯
P µτ∇µ ¯

t
−

στω

−
¯
D
−

AC¯
P τµ∇µ k

+

τ − ¯
D

−+

AC¯
P µτ∇µ k

−

τ +
¯
D
−

Aτ ¯
P τµ

¯
Eσ

C∇µ k
+

σ

+
¯
D

−+

Aτ¯
P µτ

¯
Eσ

C∇µ k
−

σ − 2
¯
D

−+

[τC]¯
P µτ

¯
Eω

A∇µ k
−

ω

+
¯
t
−

CτA k
+ λ

¯
P µτ∇µ k

−

λ −D
(

¯
Eλ

C ¯
Eµ

A −¯
q
AC¯
P λµ

)
∇µ k

−

λ , (B.8)

− k
+ β

¯
yAβC

J= −
¯
Eω

A ¯
Eσ

C k
− µ∇µ ¯

D
+

ωσ −
√

2
¯
D

+

A¯
Eσ

C k
− µ∇µ k

+

σ −
√

2
¯
D

+

C ¯
Eω

A k
− µ∇µ k

+

ω

− 2
¯
D

+

AC k
− λ k

− µ∇µ k
+

λ +
¯
t

+

AλC k
− µ∇µ k

+ λ +
¯
t

+

CλA k
− µ∇µ k

+ λ

−
¯
Eω

A ¯
Eσ

C k
+ µ∇µ ¯

D
−+

σω +
√

2
¯
D

+

A¯
Eσ

C k
+ µ∇µ k

−

σ −
√

2
¯
D
−

C ¯
Eω

A k
+ µ∇µ k

+

ω

+
¯
t
−

AλC k
+ µ∇µ k

+ λ +
¯
t

+

CλA k
+ µ∇µ k

− λ +
¯
Eω

A ¯
Eσ

C ¯
P µτ∇µ ¯

t
+

στω

−
¯
D

+

AC¯
P τµ∇µ k

−

τ − ¯
D

−+

CA¯
P µτ∇µ k

+

τ +
¯
D

+

Aτ ¯
P τµ

¯
Eσ

C∇µ k
−

σ

+
¯
D

−+

τA¯
P µτ

¯
Eσ

C∇µ k
+

σ − 2
¯
D

−+

[Cτ ]¯
P µτ

¯
Eω

A∇µ k
+

ω

+
¯
t

+

CτA k
− λ

¯
P µτ∇µ k

+

λ −D
(

¯
Eλ

C ¯
Eµ

A −¯
q
AC¯
P λµ

)
∇µ k

+

λ . (B.9)

The number of independent components of the (rescaled) Cotton tensor yαβγ in four di-
mensions is 16 (see [146]). Here we have written a total of 18 of which two can be expanded
in terms of other ones: it is possible to write the (2,−, 2) component of yαβγ in terms of
the (3,−, 3) and (+,−,−), using yµαµ = 0 and yαβγ = −yβαγ ; the same for (2,+, 2) in
terms of (3,+, 3) and (−,+,+).
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C | Conformal-gauge transformations
_

We present a collection of formulae giving the gauge behaviour of fields on J (Λ ≥ 0) and
also of those associated with single cuts S and with the projected space S2 (Λ > 0) associ-
ated to a general congruence. Recall that the gauge changes are residual transformations
of the conformal factor,

Ω→ Ω̃ = ωΩ , (C.1)

with ω a positive definite function such that Nµ∇µω
J= 0 —according to our partial gauge

fixing.

C.1 Metric, connection, volume form and curvature

Quantities of
(
M, gαβ

)
:

g̃αβ = ω2gαβ , (C.2)
η̃αβγδ = ω4ηαβγδ , (C.3)

Γ̃αβγ = Γαβγ + Cα
βγ , C

α
βγ = 1

ω
gγτ

(
2gτ(βωα) − gγβωτ

)
(C.4)

R̃αβ = Rαβ − 2 1
ω
∇αωβ −

1
ω2 gαβωµω

µ − 1
ω
gαβ∇µω

µ + 4 1
ω2ωαωβ , (C.5)

R̃ = 1
ω2R− 6 1

ω3∇µω
µ , (C.6)

Ñα = ωNα + Ωωα , (C.7)

Ñ = 1
ω

(
ω2N2 − Ω2ωµω

µ − 2ΩNµω
µ
)1/2

. (C.8)
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Λ > 0

Quantities of (J , hab) :

h̃ab
J= ω2hab , (C.9)

ε̃abc
J= ω3εabc , (C.10)

Γ̃abc
J= Γabc + C

a
bc , C

a
bc = 1

ω
hat

(
2ht(bωc) − hcbωt

)
(C.11)

R̃ab

J= Rab −
1
ω
∇aωb −

1
ω2habωmω

m − 1
ω
hab∇mω

m + 2 1
ω2ωaωb , (C.12)

R̃
J= 1
ω2R − 4 1

ω3∇mω
m − 2 1

ω4ωmω
m , (C.13)

S̃ab
J= Sab + 2 1

ω2ωaωb −
1
ω
∇aωb −

1
2ω2ωsω

shab . (C.14)

Quantities associated to a cut (S, qAB):

q̃AB
S= ω2qAB , (C.15)

˜̊εAB
S= ω2̊εAB , (C.16)

˜̊ΓABC
S= Γ̊ABC + C̊A

BC , C̊A
BC

S= 1
ω
qAT

(
2qT (B ω̊A) − qAB ω̊T

)
(C.17)

˜̊
RAB

S= R̊AB + 1
ω2 qAB ω̊M ω̊

M − 1
ω
qABDM ω̊M , (C.18)

˜̊
R
S= 1
ω2 R̊ + 2 1

ω4 ω̊M ω̊
M − 2 1

ω3DM ω̊
M , (C.19)

˜̊
SAB

S= S̊AB + 2 1
ω2 ω̊Aω̊B −

1
ω
DAω̊B −

1
2ω2 ω̊P ω̊

P qAB − reωe
( 1
ω
κ̊AB + 1

2ω2 r
dωdqAB

)
,

(C.20)

S̊A
S= 1
ω

[
S̊A −

1
ω
D̊A (reωe) + 2 1

ω2 ω̊Ar
eωe + 1

ω
ω̊E κ̊

E
A

]
, (C.21)

S̃
S= 1
ω2

[
S − 1

ω
rarb∇aωb + 2 1

ω2 (reωe)
2 − 1

2ω2ωeω
e
]
. (C.22)

Quantities associated to S2:

¯
q̃
AB

S2= ω2

¯
q
AB

, (C.23)

˜
¯
εAB

S2= ω2˜
¯
εAB , (C.24)

˜
¯
ΓABC

S2=
¯
ΓABC +

¯
CA

BC ,
¯
CA

BC
S2= 1
ω¯
qAT

(
2
¯
q
T (B¯

ωA) −¯
q
AB¯
ωT

)
(C.25)

(C.26)
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˜
¯
SAB

S2=
¯
SAB + 2 1

ω2 ¯
ωA¯
ωB −

1
ω ¯
D(A¯

ωB) −
1

2ω2 ¯
ωP ¯
ωP

¯
q
AB
− reωe

( 1
ω¯
κAB + 1

2ω2 r
dωd¯

q
AB

)
,

(C.27)

˜
¯
SA

S2= 1
ω

[
¯
SA −

1
ω ¯
DA (reωe) + 2

ω2 ¯
ωAr

eωe + 1
ω¯
ωE

(
¯
κ E
A +

¯
ω E
A

)]
, (C.28)

S̃
J= 1
ω2

[
S − 1

ω
rarb∇aωb + 2

ω2 (reωe)
2 − 1

2ω2ωeω
e
]
. (C.29)

Λ = 0

Quantities of (J , gab):

g̃ab
J= ω2gab , (C.30)

ε̃abc
J= ω3εabc , (C.31)

Γ̃abc
J= Γabc + C

a
bc , C

a
bc = 1

ω

(
2δa(bωc) − gbcωa

)
(C.32)

R̃ab

J= Rab −
1
ω
∇aωb −

1
ω
gab∇mω

m + 2 1
ω2ωaωb , (C.33)

R̃
J= 1
ω2R− 2 1

ω3 g
mp∇mωp + 2

ω4ωmω
m , (C.34)

S̃ab
J= Sab + 2 1

ω2ωaωb −
1
ω
∇aωb −

1
2ω2ωsω

sgab , (C.35)

where gαµωµ = eαaω
a.

Quantities associated to a cut (S, qAB):

q̃AB
S= ω2qAB , (C.36)

˜̊εAB
S= ω2̊εAB , (C.37)

˜̊ΓABC
S= Γ̊ABC + C̊A

BC , C̊A
BC

S= 1
ω
qAT

(
2qT (B ω̊A) − qAB ω̊T

)
(C.38)

˜̊
RAB

S= R̊AB + 1
ω2 qAB ω̊M ω̊

M − 1
ω
qABDM ω̊M , (C.39)

˜̊
R
S= 1
ω2 R̊ + 2 1

ω4 ω̊M ω̊
M − 2 1

ω3DM ω̊
M , (C.40)

˜̊
SAB

S= S̊AB + 2 1
ω2 ω̊Aω̊B −

1
ω
DAω̊B −

1
2ω2 ω̊P ω̊

P qAB , (C.41)
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C.2 Extrinsic geometry and kinematic quantities of cuts for Λ > 0

For a cut S:

r̃a
S= 1
ω
ra , (C.42)

˜̊κAB
S= ωκ̊AB + qABr

eωe , (C.43)
˜̊ΣAB

S= ωΣ̊AB , (C.44)

˜̊κ S= 1
ω
κ̊+ 2 1

ω2 r
eωe . (C.45)

For S2:

m̃a J= 1
ω
ma , (C.46)

˜
¯
κAB

S2= ω
¯
κAB + qABm

eωe , (C.47)
˜
¯
ΣAB

S2= ω
¯
ΣAB , (C.48)

˜̊κ S2= 1
ω
κ̊+ 2 1

ω2m
eωe , (C.49)

˜
¯
aA

S2=
¯
aA −

1
ω ¯
DAω , (C.50)

˜
¯
ωAB

S2= ω
¯
ωAB . (C.51)

C.3 (rescaled) Weyl decomposition

Λ > 0

Let ra be the vector field giving a congruence on J , changing as

m̃a J= 1
ω
ra. (C.52)
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The parts of the rescaled Weyl tensor in the decomposition with respect to this vector
field on J transform as:

D̃ab

J= 1
ω
Dab , C̃ab

J= 1
ω
Cab , (C.53)

˜
¯
DAB

J= 1
ω ¯
DAB , ˜

¯
CAB

J= 1
ω ¯
CAB , (C.54)

˜
¯
DA

J= 1
ω2 ¯
DA , ˜

¯
CA

J= 1
ω2 ¯
CA , (C.55)

D̃
J= 1
ω3D , C̃

J= 1
ω3C , (C.56)

D̃
±

αβ

J= 1
ω
D
±

αβ , C̃
±

αβ

J= 1
ω
C
±

αβ , (C.57)

¯
D̃
±

AB

J= 1
ω ¯
D
±

AB ,
¯
C̃
±

AB

J= 1
ω ¯
C
±

AB , (C.58)

¯
D̃
±

A

J= 1
ω2 ¯

D
±

A , ¯
C̃
±

A

J= 1
ω2 ¯

C
±

A , (C.59)

D̃
± J= 1

ω3 D
±

, C̃
± J= 1

ω3 C
±

. (C.60)

Λ = 0
The lightlike projections of the rescaled Weyl tensor on J , calculated with respect to
Na, have the following gauge transformations:

D̃
N ab J= 1

ω5 D
N ab , C̃

N ab J= 1
ω5 C

N ab , (C.61)

D̃
N

ab

J= 1
ω
D
N

ab , C̃
N

ab

J= 1
ω
C
N

ab , (C.62)

¯
D̃
N

A

J= 1
ω2 ¯

D
N

A ,
¯
C̃
N

A

J= 1
ω2 ¯

C
N

A . (C.63)
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D | Lightlike projections of a Weyl-tensor
candidate

_

D.1 Properties of the lightlike projections of a Weyl-tensor candi-
date

The following is a list of properties of the quantities defined in section 2.2 :

i) k
+ µ C

−+
µν = − k

− µ C
+

µν , k
+ µ D

−+
µν = − k

− µ D
+

µν .

ii) C = −C̊E
E = C

∗ EF
EF , D = −D̊E

E = −CEF
EF .

iii) D̊
−+

AB = −1
2DqAB −

1
2Cε̊AB.

iv) C̊
−+

AB = 1
2CqAB −

1
2Dε̊AB.

v) D̊
+−

AB = −1
2DqAB + 1

2Cε̊AB.

vi) C̊
+−

AB = 1
2CqAB + 1

2Dε̊AB.

vii) C̊
+ B

B = 0, D̊
+ B

B = 0.

viii) C̊
+ AB

C̊
−+

AB = 0 = C̊
+ AB

D̊
−+

AB, D̊
+ AB

D̊
−+

AB = 0 = D̊
+ AB

C̊
−+

AB.

ix) k
− µ C

+
Aµ = −

√
2 C̊+ A , k

+ µ C
−

Aµ =
√

2 C̊− A .

x) k
− µ D

+
Aµ = −

√
2 D̊+ A, k

+ µ D
−

Aµ =
√

2 D̊− A.

xi) C̊A = C̊
+

A + C̊
−

A , D̊A = D̊
+

A + D̊
−

A.

xii) D̊
+

A ε̊
AB D̊
−

B = 1
2D̊AC̊

A .

xiii) 4 D̊+ A D̊
− A = D̊AD̊

A − C̊A C̊A .
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xiv) D̊A ε̊
ABC̊B = D

+
A D

+ A − D
−

A D
− A.

xv) C̊
+

AB = C̀AB − D̊T
(B ε̊A)T .

xvi) D̊
+

AB = D̀AB + C̊T
(B ε̊A)T .

xvii) C̊
−

AB = C̀AB + D̀T
(B ε̊A)T .

xviii) D̊
−

AB = D̀AB − C̀T
(B ε̊A)T .

xix) C̀AB = 1
2

(
C̊

+
AB + C̊

−
AB

)
.

xx) D̀AB = 1
2

(
D̊

+
AB + D̊

−
AB

)
.

xxi) C̊
+

A = 1
2

(
C̊A − ε̊ E

A D̊E

)
.

xxii) C̊
−

A = 1
2

(
C̊A + ε̊ E

A D̊E

)
.

xxiii) D̊
+

A = 1
2

(
D̊A + ε̊ E

A C̊E
)
.

xxiv) D̊
−

A = 1
2

(
D̊A − ε̊ E

A C̊E
)
.

xxv) D̊
+

A + D̊
−

A = ε̊ B
A

(
C̊

+
B − C̊

−
B

)
.

xxvi) ra D
−+

aA = D̊
+

A.

xxvii) ra D
+−

aA = D̊
−

A.

xxviii) 2rarb D
+−

ab = 2rarb D
−+

ab = k
± µ k

± ν D
∓

µν = rarbDab.

xxix) ∓ k
∓ µEα

A D
±

µα =
√

2 D̊
±

A.

xxx) ∓ k
∓ µEα

A C
±

µα =
√

2 C̊
±

A.

xxxi) ε̊ABD̊B = rµrρuσW
A

γ C
∗ σργµ.

xxxii) ε̊ABC̊B = −rµrρuσW A
γ Cσργµ.

xxxiii) ε̊AB C̊
+

A = − D̊
+

B .

xxxiv) ε̊AB C̊
−

A = D̊
−

B .

xxxv) D̊
+ A C̊

+
A = 0 = D̊

− A C̊
−

A .

xxxvi) C̊
+ A D̊

−
A = C̊

− A D̊
+

A.
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D.2 NP formulation

Writing the lightlike projections of a Weyl candidate tensor (section 2.2) and the superen-
ergy quantities (sections 2.1 and 2.3) in terms of the Weyl candidate scalars allows to
have a first-glance interpretation of their significance. Not only that but having their
components at hand can be helpful to check calculations. Consider a lightlike vierbein(
k
− α, k

+ α,mα, m̄α
)
such that k

+ α k
−
α = −1, mαm̄α = 1, k

± αmα = 0 = mαmα, with orien-
tation fixed to η0̂1̂2̂3̂ = i. We use the following definitions for the Weyl candidate scalars:

φ0 := C0̂2̂0̂2̂ φ1 := C0̂1̂0̂2̂ φ2 = 1
2
(
C0̂1̂0̂1̂ − C0̂1̂2̂3̂

)
φ3 := −C0̂1̂1̂3̂ φ4 := C1̂3̂1̂3̂ (D.1)

Be aware that all the formulae below hold only with these definitions and choice of ori-
entation. In this subsection, hatted Greek and Latin characters α̂, Â represent basis
indices.

The lightlike ‘magnetic’ and ‘electric’ parts associated to k
+ α and k

− α respectively.

C
+ α̂β̂ = i


0 0 0 0
0 −i2=(φ2) −φ3 φ̄3
0 −φ3 φ4 0
0 φ̄3 0 −φ̄4

 , D
+ α̂β̂ =


0 0 0 0
0 2<(φ2) −φ3 −φ̄3
0 −φ3 φ4 0
0 −φ̄3 0 φ̄4

 . (D.2)

C
− α̂β̂ = i


−i2=(φ2) 0 φ̄1 −φ1

0 0 0 0
φ̄1 0 −φ̄0 0
−φ1 0 0 φ0

 , D
− α̂β̂ =


2<(φ2) 0 −φ̄1 −φ1

0 0 0 0
−φ̄1 0 φ̄0 0
−φ1 0 0 φ0

 . (D.3)

The two dimensional components,

C̊
+ ÂB̂ = i

(
sφ4 0
0 −φ̄4

)
, D̊

+ ÂB̂ =
(
φ4 0
0 φ̄4

)
. (D.4)

C̊
− ÂB̂ = i

(
−φ̄0 0

0 φ0

)
, D̊

− ÂB̂ =
(
φ̄0 0
0 φ0

)
. (D.5)

The traceless, two dimensional magnetic and electric parts,

C̀ÂB̂ = i

2

(
φ4 − φ̄0 0

0 −(φ̄4 − φ0)

)
, D̀ÂB̂ = 1

2

(
φ4 + φ̄0 0

0 φ̄4 + φ0

)
. (D.6)
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The two dimensional vectors,

C̊
+ Â = i√

2

(
−φ3
φ̄3

)
, D̊

+ Â = − 1√
2

(
φ3
φ̄3

)
. (D.7)

C̊
− Â = i√

2

(
−φ̄1
φ1

)
, D̊

− Â = 1√
2

(
φ̄1
φ1

)
. (D.8)

C̊Â = i√
2

(
−(φ3 + φ̄1)
φ̄3 + φ1

)
, D̊Â = 1√

2

(
−φ3 + φ̄1
−φ̄3 + φ1

)
. (D.9)

And the traces,
C = −C̊Ê

Ê
= 2=(φ2) , D = −D̊Ê

Ê
= 2<(φ2) . (D.10)

For any lightlike tetrad
(
k

+ α, k
− α,mα, m̄α

)
and a general unit timelike vector field vα,

vα :=
(
a k
− α + b k

+ α + cmα + c̄mα
)
, vαvα = −1, ∀a, b, c, c̄ / ab− cc̄ = 1

2 , (D.11)
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it is a matter of direct calculation to get the expression of a basic superenergy tensor

T αβγδ = 4
φ0φ0

[
k

+ α k
+ β k

+ γ k
+ δ
]

+ φ0φ1

[
−2 k+ α k

+ βm(γ k
+ δ) − 2 k+ δ k

+ γm(α k
+ β)

]
+ c.c.

(D.12)

+ φ0φ2

[
mαmβ k

+ γ k
+ δ + k

+ α k
+ βmγmδ + 4m(α k

+ β)m(γ k
+ δ)

]
+ c.c.

+ φ0φ3

[
−2mαmβm(γ k

+ δ) − 2mδmγm(α k
+ β)

]
+ c.c. + φ0φ4

[
mαmβmγmδ

]
+ c.c.

+ φ1φ1

[
k

+ α k
+ β

(
2 k+ (γ k

− δ) + 2m(γmδ)
)

+ 4m(α k
+ β)m(γ k

+ δ) + k
+ γ k

+ δ
(
2 k+ (α k

− β) + 2m(αmβ)
)

+ 4m(γ k
+ δ)m(α k

+ β)
]

+ φ1φ2

[
−2mαmβm(γ k

+ δ) − 2 k+ α k
+ βm(γ k

− δ) − 2m(α k
+ β)

(
2 k+ (γ k

− δ) + 2m(γmδ)
)

− 2mγmδm(α k
+ β) − 2 k+ γ k

+ δm(α k
− β) − 2m(γ k

+ δ)
(
2 k+ (α k

− β) + 2m(αmβ)
)]

+ c.c.

+ φ1φ3

[
mαmβ

(
2 k+ (γ k

− δ) + 2m(γmδ)
)

+mγmδ
(
2 k+ (α k

− β) + 2m(αmβ)
)

+ 4m(α k
+ β)m(γ k

− δ)

+ 4m(γ k
+ δ)m(α k

− β)
]

+ c.c. + φ1φ4

[
−2mαmβm(γ k

− δ) − 2mγmδm(α k
− β)

]
+ c.c.

+ φ2φ2

[
k
− α k

− β k
+ γ k

+ δ +mαmβmγmδ + 4m(α k
− β)m(γ k

+ δ) + 4m(α k
− β)m(γ k

+ δ) + k
− γ k

− δ k
+ α k

+ β

+mγmδmαmβ + 4m(γ k
− δ)m(α k

+ β) + 4m(γ k
− δ)m(α k

+ β) +
(
2 k+ (α k

− β) + 2m(αmβ)
)(

2 k+ (γ k
− δ)

+ 2m(γmδ)
)]

+ φ2φ3

[
−2 k− α k

− βm(γ k
+ δ) − 2mγmδm(α k

− β) − 2m(α k
− β)

(
2 k+ (γ k

− δ) + 2m(γmδ)
)

− 2 k− γ k
− δm(α k

+ β) − 2mαmβm(γ k
− δ) − 2m(γ k

− δ)
(
2 k+ (α k

− β) + 2m(αmβ)
)]

+ c.c. + φ2φ4

[
k
− α k

− βmγmδ

+ k
− γ k

− δmαmβ + 4m(α k
− β)m(γ k

− δ)
]

+ c.c. + φ3φ3

[
k
− α k

− β
(
2 k+ (γ k

− δ) + 2m(γmδ)
)

+ 4m(α k
− β)m(γ k

− δ)

+ k
− γ k

− δ
(
2 k+ (α k

− β) + 2m(αmβ)
)

+ 4m(γ k
− δ)m(α k

− β)
]

+ φ3φ4

[
−2 k− α k

− βm(γ k
− δ) − 2 k− δ k

− γm(α k
− β)

]

+ c.c. + φ4φ4

[
k
− α k

− β k
− γ k

− δ
] ,
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the super-Poynting vector field

Pa = −4ω a
α

φ0φ0

[
−a3 k

+ α
]

+ φ0φ1

[
−3a2c k

+ α + a3mα
]

+ c.c. + φ0φ2

[
−3ac2 k

+ α + 3a2cmα
]

+ c.c. + φ0φ3

[
−c3 k

+ α + 3ac2mα
]

+ c.c. + φ0φ4

[
c3mα

]
+ c.c. + φ1φ1

[
−a3 k

− α (D.13)

+ (−3a2b− 6acc) k+ α + 3a2cmα + 3a2c̄mα
]

+ φ1φ2

[
−3a2c k

− α + (−6abc− 3c2c̄) k+ α

+ 3ac2mα + (6acc̄+ 3a2b)mα
]

+ c.c. + φ1φ3

[
−3ac2 k

− α − 3bc2 k
+ α + c3m(α + (6abc

+ 3c2c̄)mα
]

+ c.c. + φ1φ4

[
−c3 k

− α + 3bc2mα
]

+ c.c. + φ2φ2

[
(−3a2b− 6acc̄) k− α

+ (−3ab2 − 6bcc̄) k+ α + (6abc+ 3c2c̄)mα + (6abc̄+ 3cc̄2)mα
]

+ φ2φ3

[
(−6abc− 3c2c̄) k− α

− 3b2c k
+ α + 3bc2mα + (3ab2 + 6bcc̄)mα

]
+ c.c. + φ2φ4

[
−3bc2 k

− α + 3b2cmα
]

+ c.c.

+ φ3φ3

[
(−3ab2 − 6bcc̄) k− α − b3 k

+ α + 3b2cmα + 3b2c̄mα
]

+ φ3φ4

[
−3b2c k

− α + b3mα
]

+ c.c.

+ φ4φ4

[
−b3 k

− α
] ,

and the superenergy density

W = 4
φ0φ0

[
a4
]

+ φ0φ1

[
4a3c

]
+ c.c. + φ0φ2

[
6a2c2

]
+ c.c. + φ0φ3

[
4ac3

]
+ c.c. (D.14)

+ φ0φ4

[
c4
]

+ c.c. + φ1φ1

[
4a3b+ 12a2cc̄

]
+ φ1φ2

[
12a2bc+ 12ac2c̄

]
+ c.c.

+ φ1φ3

[
12abc2 + 4c3c̄

]
+ c.c. + φ1φ4

[
4bc3

]
+ c.c. + φ2φ2

[
6a2b2 + 24abcc̄+ 6c2c̄2

]
+ φ2φ3

[
12ab2c+ 12bc2c̄

]
+ c.c. + φ2φ4

[
6b2c2

]
+ c.c. + φ3φ3

[
4ab3 + 12b2cc̄

]

+ φ3φ4

[
4b3c

]
+ c.c. + φ4φ4

[
b4
].
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The radiant and Coulomb superenergy densities read

Z+ = 4φ3φ̄3 , (D.15)
Z− = 4φ1φ̄1 , (D.16)
W+ = 4φ4φ̄4 , (D.17)
W− = 4φ0φ̄0 , (D.18)
Q+ A = −4

(
φ4φ̄3m

A + φ3φ̄4m̄
A
)

, (D.19)

Q− A = −4
(
φ1φ̄0m

A + φ0φ̄1m̄
A
)

, (D.20)

V = 4φ2φ̄2 . (D.21)

From here and eqs. (2.48) and (2.49) it is easy to write the radiant supermomenta,

Q+ α = 4
(
φ4φ̄4 k

− α + φ3φ̄3 k
+ α − φ4φ̄3m

α − φ̄4φ3m̄
α
)
, (D.22)

Q− α = 4
(
φ0φ̄0 k

+ α + φ1φ̄1 k
− α − φ̄0φ1m

α − φ0φ̄1m̄
α
)
. (D.23)

Finally, the vector defined in eq. (2.87) has the expression

dA =
√

2
(
φ1φ̄2 + φ̄3φ2

)
m̄A +

√
2
(
φ̄1φ2 + φ3φ̄2

)
mA . (D.24)
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