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Abstract: The big rip, the little rip and the little sibling of the big rip are cosmological doomsdays
predicted by some phantom dark-energy models that could describe the future evolution of our
universe. When the universe evolves towards either of these future cosmic events, all bounded
structures and, ultimately, space–time itself are ripped apart. Nevertheless, it is commonly believed
that quantum gravity effects may smooth or even avoid these classically predicted singularities. In
this review, we discuss the classical and quantum occurrence of these riplike events in the scheme
of metric f (R) theories of gravity. The quantum analysis is performed in the framework of f (R)
quantum geometrodynamics. In this context, we analyze the fulfilment of the DeWitt criterion for the
avoidance of these singular fates. This review contains as well new unpublished work (the analysis
of the equation of state for the phantom fluid and a new quantum treatment of the big rip and the
little sibling of the big rip events).

Keywords: quantum cosmology; quantum geometrodynamics; Wheeler-DeWitt equation; extended
theories of gravity; dark energy singularities

1. Introduction

The discovery that our universe is currently undergoing an accelerated expansion
phase has supposed an inflexion point in our understanding of the physics of the cosmos.
Even though this acceleration was first noticed more than 20 years ago [1,2], its mysteries
are still not yet fully unraveled. On the contrary, understanding the mechanism involved
in this phase represents one of the greatest milestones in modern cosmology. This behavior
is so challenging because no form of matter we know from our ordinary experience can
actually produce this phenomenon. In general relativity (GR), this phase is attributed
to the existence of an exotic form of energy with a negative pressure that causes the
repulsion of the matter content and, thus, pushes the universe into expansion. This exotic
content is dubbed “dark energy” (DE). The simplest DE model, and still the one which
best fits the observational data, is the standard ΛCDM theory, where DE plays the role
of a cosmological constant. Nevertheless, this model contains various theoretical and
observational unresolved puzzles. To mention some of them: the nature of dark matter
(DM) and DE [3–7], the coincidence problem [8], the cosmological constant problem [9]
and the new tensions in certain cosmological parameters. (For a review of the topic see,
for instances, references [10,11] and references therein.) Therefore, one may expect the
ΛCMD paradigm to be just a useful effective model. Hence, a great number of alternative
models for DE describing the acceleration phase have been proposed. Some models are
phantom DE [12,13], tachyonic matter [14,15], Chaplygin gas [16,17], holographic DE [18]
and scalar fields in the form of quintessence [19,20] and k-essence [21], among other
examples. Alternatively, the current cosmological expansion could be described not by
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the inclusion of new exotic content but with suitable modifications to the underlying
theories of gravity. In that sense, modified theories of gravity provide an interesting
framework for cosmologists. Some examples of this approach are Horndeski theories [22]
(see also, e.g., reference [23]), Gauss-Bonnet gravity [24,25], f (R) theories of gravity [26]
(see also references [27–29]), f (R, T ) gravity [30], where T stands for the trace of the energy
momentum tensor, f (T) modified teleparallel gravity [31], being T the torsion scalar, and
modified symmetric teleparallel f (Q) theories of gravity [32], where Q denotes the non-
metricity scalar. (See, for example, references [33–36] and references therein for a review of
the state of the art.)

From a practical perspective, whatever the origin of DE may be, it can be described
effectively by its equation of state (EoS) parameter. That is the ratio w between the pressure
and energy density of the DE, or the effective pressure and energy density in the case of
modified theories of gravity. Hence, observational constraints on w are crucial to unveil
possible hints on the true nature of this exotic content. In this fashion, the cosmologi-
cal data currently available constrain w to a very narrow band around −1 [37,38], see
also [39–45]. Accordingly, the possibility of the expansion of the universe being fueled
by phantom-type DE (w < −1) is not observationally excluded. Furthermore, it is even
suggested by some data [46] and could help to alleviate the H0 tension (see, for instance,
references [47,48]). Nevertheless, considering phantom DE may entail some future cosmo-
logical singularities. (See reference [49] for counterexample.) All bounded structures in the
universe and, ultimately, the fabric of space–time itself might be torn apart at a final big rip
(BR) singularity [50]. Moreover, the universe could reach this singularity in a finite time
from present epoch, resulting in a moment at which the size of the observable universe,
the Hubble rate and its cosmic time derivative would diverge. On the other hand, for a
phantom DE model with a w parameter converging sufficiently rapidly to the cosmological
constant value (w = −1), the occurrence of a future singularity may be infinitely delayed
in time [51]. In that case, the singularity is called an abrupt cosmic event. This is precisely
the case of the little rip (LR) abrupt event [52,53] (see also [51,54]), where the scale factor,
the Hubble rate and its cosmic time derivative explode at the infinite asymptotic future.
Therefore, this abrupt event can be understood as a BR singularity that has been postponed
indefinitely. Another characteristic abrupt event of phantom DE models is the little sibling
of the big rip (LSBR). In this scenario, the size of the observable universe and the expansion
rate grow infinitely but the cosmic time derivative of the Hubble parameter converges to a
constant value [55]. It should be noted, however, that even though these abrupt events take
place at the infinite distant future, bounded structures are destroyed in a finite time [51,55].
See a brief summary of the phenomenology of these riplike doomsdays in Table 1. (See
also references [56,57] for observational constraints on some phantom DE models leading
the expansion towards these events.)

The BR singularity, and the LR and the LSBR abrupt events are, in fact, intrinsic to
phantom DE models. Nevertheless, a dark fluid could also induce the appearance of other
cosmic singularities. For example, a phantom-dominated universe could also reach a big
freeze singularity (BF) [58,59], where the scale factor reaches a maximum size at which the
Hubble rate and its cosmic time derivative diverge. (See also references [60–62] for other
examples of cosmological singularities and references [63–65] for a detailed classification
of DE singularities in cosmology.) However, it is commonly believed that a consistent
quantum description of the universe may prevent the appearance of classical singularities,
see references [66,67] (see also [64,65,68–71]).

The quantum fate of classical singularities can be addressed in the setup of quantum
cosmology: the application of quantum theory to the universe as a whole. Previous works
in this framework have shown that the aforementioned phantom riplike cosmological
doomsdays, among other singularities such as the big bang, can be avoided as a result of
quantum effects emerging as the universe approaches the classical singularity [66,72,73].
However, since the same classical background evolution can be equivalently described
in the context of GR or by alternative theories of gravity, it is natural to wonder whether
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these singularities are still avoided in the quantum realm for a different underlying theory
of gravity. In this work, we gather and review the so far published results about the
classical and quantum occurrence of these three riplike events when the description of
gravity is that provided by f (R) metric theories of gravity. For that purpose, we shall focus
on the quantum cosmology scheme given by the Wheeler-DeWitt (WDW) equation [74]
being adapted for the case of f (R) gravity [75], namely f (R) quantum geometrodynamics.
Consequently, we explore here the possibility of avoiding the BR singularity, and the LR
and the LSBR abrupt events in f (R) quantum cosmology.

This manuscript is organized as follows. In Section 2, we review some phantom DE
models predicting the classical appearance of future singularities and/or abrupt events. We
also provide a new classification of the cosmic singularities and abrupt events found there.
Moreover, we discuss the viability of those models from the point of view of cosmological
observations. In Section 3, we consider that the classical background evolution found in the
previous section can be equivalently described in the framework of metric f (R) theories of
gravity, where in the latter case the expansion of the universe will have a purely geometrical
origin. For that aim, we briefly discuss a reconstruction method for metric f (R) theories of
gravity. Thereafter, in Sections 3.1–3.3, we apply this background reconstruction technique
to the specific phantom DE models reviewed in Section 2. Thus, we present the group of
metric f (R) theories of gravity predicting a classical fate à la BR, LR or LSBR. Section 4
is entirely devoted to the revision of the fate of classical singularities in f (R) quantum
cosmology. Therefore, we summarize the f (R) quantum geometrodynamics approach in
Section 4.1. Then, the resolution of the modified Wheeler-DeWitt equation corresponding
to the BR, LR and LSBR doomsdays is addressed in Sections 4.2–4.4, respectively. We also
discuss there the avoidance of these cosmological catastrophes by means of the DeWitt
criterion. Finally, we check the validity of the approximations performed to solve the
modified Wheeler–DeWitt equations in Appendices A and B.

Table 1. Classification of the riplike cosmic events by means of the time of occurrence of the rip trip,
the scale factor a, the Hubble parameter H and its cosmic time derivative Ḣ. Please note that the
pseudorip has been included for the sake of completeness, as this corresponds to a mild event (before
which all bounded structures are disintegrated) rather than to a curvature singularity.

trip a H Ḣ

Big rip Finite ∞ ∞ ∞
Little rip ∞ ∞ ∞ ∞
LSBR ∞ ∞ ∞ Finite
Pseudorip ∞ ∞ Finite Finite

2. A Phantom Dark-Energy Universe

Throughout this review we consider homogeneous and isotropic cosmological sce-
narios, which are described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric
given by

ds2 = −dt2 + a(t)2ds2
3, (1)

where t stands for the cosmic time, a represents the scale factor, ds2
3 denotes the three-

dimensional spatial metric and we have used the geometric unit system 8πG = c = 1.
Assuming the content of the universe to be described by a perfect fluid with energy density
ρ and pressure p, the Friedmann and Raychaudhuri equations are

H2 =
1
3

ρ− k
a2 , (2)

Ḣ + H2 =− 1
2

(
p +

ρ

3

)
, (3)
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respectively, where the dot denotes the derivative with respect to the cosmic time t, H
stands for the Hubble rate and k represents the spatial curvature (not fixed at this point).
Within the standard interpretation of the observational data, the cosmic fluid at present
is constituted by three species: radiation, matter (baryonic and dark) and dark energy.
The present concentrations of matter and dark energy are roughly ΩM,0 = 0.315 and
ΩDE,0 = 0.685, respectively, whereas the contribution of radiation to the total content of the
universe is negligible at the present time [37,38]. Therefore, DE is the dominant ingredient
today. Moreover, because we aim to study the asymptotic future expansion of the universe,
we assume that the DE density increases, remains constant or decreases more slowly than
the non-relativistic matter energy density and the spatial curvature term k/a2. Thus, from
a practical point of view, we can neglect the contribution of the other cosmic ingredients
when studying the future asymptotic behavior of these models. Consequently, hereafter p
and ρ denote the pressure and the energy density of the dark fluid. Then, the DE density
evolves as

ρ̇ + 3H(p + ρ) = 0. (4)

To evaluate the future fate of a DE dominated universe in the perfect fluid repre-
sentation, an equation of state (EoS) for the dark fluid must be provided. We emphasize
that presently observational data are compatible with the w = −1 value, though there is
a significantly overlap with both possibilities w < −1 and w > −1. On the other hand,
from a theoretical point of view, the value −1 in the w-axis represents a qualitative change
in the properties of DE, as well as in the future evolution of the universe. Therefore, the
cosmological constant case (w = −1) seems to play a special role from both theoretical and
observational perspectives. Then, let us begin with a brief review of the phenomenology
of the following EoS for the DE content, which is reminiscent of an expansion around a
cosmological constant,

p = −ρ− Aρα, (5)

being A a positive constant1. This equation of state was first introduced in references [64,68]
and thoroughly discussed in terms of singularity occurrence in reference [52]. In this
section, of the manuscript, we review the analysis performed in reference [52] and present
a novel alternative classification of the singularities there found by means of the behavior
of the scale factor a, the Hubble rate H and its cosmic time derivative Ḣ. That is a metric
classification such as the one presented in [65]. (See also the characterization given in [64]
and the study on cosmic singularities presented in references [76,77].) We argue for the
need for such a classification, instead of only addressing the evolution of the scale factor
a and the DE density ρ, since different cosmic events such as the LR and LSBR cannot be
differentiated in the latter picture.

From the continuity Equation (4) it follows that the DE density evolves as

ρ = ρ0

[
1 +

3(1− α)A
ρ1−α

0

ln
(

a
a0

)] 1
1−α

, (6)

for α 6= 1, and

ρ = ρ0

(
a
a0

)3A
, (7)

for the case of α = 1, where the subscript “0” denotes the current value of the corresponding
quantity. In either case, the EoS parameter w reads

w = −1− A

ρ1−α
0 + 3(1− α)A ln

(
a
a0

) . (8)
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Note that for a non-negative parameter A, the denominator in the r.h.s. in Equation (8) is
always positive2, whatever the value of α. Thus, the DE content modelled by the EoS (5)
exhibits a phantom-like behavior when the parameter A is positive. Please note that this
can be also seen directly from Equation (4) for an expanding (H > 0) universe.

On the other hand, note that α = 1 and α = 1
2 are special values on the α-line that

delimited qualitatively alike cosmological behaviors [52]. This can be deduced from the
time dependence of the scale factor obtained from Equations (2) and (6). This is [52]

ln
(

a
a0

)
=

2
√

ρ0

3A

{[
1 +

3A
2
√

ρ0
ln
(

a?
a0

)]
exp

(√
3A
2

(t− t?)

)
− 1

}
, (9)

for the case of α = 1
2 , and [52]

ln
(

a
a0

)
=

1
3(α− 1)ρα−1

0 A

1−
[

B−
√

3
2

(2α− 1)ρα− 1
2

0 A(t− t?)

] 2(α−1)
2α−1

, (10)

for α 6= 1
2 and α 6= 1, and

a
a0

=

[(
a?
a0

)− 3A
2
−
√

3ρ0

2
A(t− t?)

]− 2
3A

, (11)

for α = 1. B is a constant defined as

B :=
[

1 + 3(1− α)ρα−1
0 A ln

(
a?
a0

)] 2α−1
2(α−1)

, (12)

where we have denoted by t? some arbitrary (future) moment in the expansion history
of the universe from which we can safely neglect the contribution of matter fields and,
therefore, assume that DE is the only content of the cosmos. In addition, a? represents
the corresponding scale factor. Therefore, when α = 1

2 the scale factor asymptotically
approaches a double exponential growth on the cosmic time. However, for α > 1

2 , it
evolves as some function of ts − t, being ts the time of occurrence of the corresponding
singularity. Moreover, the expression for ts depends on the value of α. Hence, for the sake
of the discussion, we proceed to summarize the main results found in [52] for each case.
Those are: α > 1, α = 1, 1

2 < α < 1, α = 1
2 and α < 1

2 . Additionally, to the conclusion
presented in [52], we also compute the corresponding H and Ḣ variables in each case. This
allows us to provide a complementary classification of the cosmic events found in [52]
similar to that introduced in reference [65], see Table 2.

For the case of α > 1, the universe reaches a maximum size given by

amax := a0 exp

(
1

3(α− 1)ρα−1
0 A

)
. (13)

Furthermore, this size is reached in a finite time into the future

ts := t? +
2B

√
3(2α− 1)ρα− 1

2
0 A

. (14)

At that moment, the Hubble rate and its comics time derivative diverge, since
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H =

√
ρ0

3

[√
3

2
(2α− 1)ρα− 1

2
0 A(ts − t)

]− 1
2α−1

, (15)

Ḣ =
ρα

0 A
2

[√
3

2
(2α− 1)ρα− 1

2
0 A(ts − t)

]− 2α
2α−1

. (16)

This asymptotic behavior corresponds to the occurrence of a BF singularity [58,59] (see also
reference [76]). That is a type III singularity in the notation of [64].

The case of α = 1 corresponds to a constant EoS parameter w = −1− A. Accordingly,
the size of the observable universe becomes infinite at a finite time from present epoch,
namely trip. This is

trip := t? +
2√

3ρ0 A

(
a?
a0

)− 3A
2

, (17)

see Equation (11). Furthermore, given that

H =
2

3A
(
trip − t

) , (18)

Ḣ =
2

3A
(
trip − t

)2 , (19)

the Hubble rate and its cosmic time derivative also diverge at t = trip. Therefore, for
this value of α, the universe evolves towards a classical BR singularity, alike to that first
introduced in [12,13,50]. This corresponds to a type I singularity according to the notation
in reference [64].

On the other hand, for 1
2 < α < 1, the scale factor diverge at finite cosmic time,

see Equation (10) where the ratio 2(α− 1)/(2α− 1) is now negative. This makes the ln a
proportional to some power of 1/(trip − t). The time at which the observable universe
becomes infinite is

trip := t? +
2B

√
3(2α− 1)ρα− 1

2
0 A

. (20)

The Hubble rate and its time derivative follows the same relations given in Equations (15)
and (16), respectively. Hence, these quantities also diverge along with the scale factor.
Therefore, in a finite time into the future, the scale factor, the Hubble rate and Ḣ explode,
whereas the EoS parameter w converges to −1 from below. Of course, this implies that
the DE density and pressure blow up, as was found in [52]. This event is qualitatively
equivalent to a BR singularity (see the singularities classified as type I in, for example,
references [63–65]). Please note that this behavior was also found in reference [76], where it
was dubbed “grand rip” (see type −1 singularities in reference [77]).

Another possible choice for α corresponds to the interesting case of α = 1
2 . In this sce-

nario, the scale factor asymptotically evolves as an exponential function of an exponential
function on the cosmic time, i.e., a ≈ eet

, see Equation (9). Accordingly, the Hubble rate
and its cosmic time derivative are

H(t) =
√

ρ0

3

(
1 +

3A
2
√

ρ0
ln

a?
a0

)
exp

[√
3

2
A(t− t?)

]
, (21)

Ḣ(t) =
A
2
√

ρ0

(
1 +

3A
2
√

ρ0
ln

a?
a0

)
exp

[√
3

2
A(t− t?)

]
. (22)
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Thus, the scale factor, H, and Ḣ diverge at the infinite asymptotic future. This drives the
universe towards a LR abrupt event, see classification in [63,65]. (See also reference [53].)
In fact, the EoS (5) with α = 1

2 corresponds to the DE model for which the name ”little
rip” was first given [51], even though this cosmological behavior was already known from
before [52] (see also [53] where the LR was found in brane cosmology and before that in
some modified theories of gravity [78]).

Finally, for the case of α < 1
2 , the scale factor obeys the relation given in Equation (10).

However, since now the ratio 2(α − 1)/(2α − 1) is positive, then the equation for ln a
reduces to a certain polynomial on the cosmic time. This makes the expansion of the
observable universe to last indefinitely. Hence, no finite time singularities are present in
this case. The Hubble rate and its cosmic time derivative read

H =

√
ρ0

3

B +

√
3(1− 2α)A

2ρ
1
2−α
0

(t− t?)

 1
1−2α

, (23)

Ḣ =
A
2

ρα
0

B +

√
3(1− 2α)A

2ρ
1
2−α
0

(t− t?)

 2α
1−2α

. (24)

For 0 < α < 1
2 , both quantities tend to infinity at the infinite asymptotic future, thus,

leading to the occurrence of a LR abrupt event. On the contrary, Ḣ remains constant for
α = 0, or shrinks to zero when α < 0. This behavior corresponds to a final fate à la LSBR,
see reference [55]. Please note that since the DE density grows unbounded in both abrupt
events, the LR and the LSBR, see Equation (6), this distinction could not be done analyzing
only the asymptotic behavior of a and ρ. Additionally note that given some entire number
n, all the higher order derivatives of H up to the n-th order diverge when α = (n− 1)/2n.

Therefore, we conclude that the phantom DE model described by the EoS (5) with a
positive parameter A entails a great variety of cosmological singularities and abrupt events.
We summarized the results from reference [52] and our new findings here in Table 2. We
will present a more detailed analysis in another work.

Table 2. Classification of the singularities and abrupt events found for the phantom DE model given
by the general EoS (5), see reference [52], accordingly to the value of the parameter α, the time of
occurrence of the singular behavior ts, the Hubble rate H and its cosmic time derivative Ḣ. Please
note that since the BR and grand rip [76] singularities have qualitatively the same behavior in terms
of those quantities, we do not address the possible differences between both events in the following
classification. Hence, we keep the term “big rip” for both of them.

α ts a H Ḣ Event

1 < α Finite Finite ∞ ∞ Big freeze
1
2 < α ≤ 1 Finite ∞ ∞ ∞ Big rip
0 < α ≤ 1

2 ∞ ∞ ∞ ∞ Little rip
α ≤ 0 ∞ ∞ ∞ Finite LSBR

Cosmological Constraints

Since this review is mainly devoted to the analysis of the classical and quantum
fate of the BR, the LR and the LSBR events in metric f (R) theories of gravity, we should
now restrict our attention to some particular phantom DE models on which to apply the
reconstruction techniques in the next sections. Therefore, hereafter we shall consider only
the following phantom DE models when addressing the occurrence of these cosmic events:

• For the BR singularity we consider the phantom DE model with a constant EoS
parameter w < −1 [50]. This model corresponds to the choice of α = 1 in the more
general EoS (5) studied in the previous section.
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• For a DE model with a future LR abrupt event, we select the EoS for DE described in
reference [51], which corresponds to the case α = 1

2 in (5).
• For a universe doomed to evolve towards a LSBR abrupt event, we consider the DE

content to be described by the EoS (5) with α = 0. This LSBR was first introduced in
reference [55].

Note that the BR model here considered is just a subcase of the more general wCDM
scenario, which has been thoroughly analyzed in the literature (see, for example,
references [37–45], among others). More importantly, these specific phantom DE mod-
els have been shown to be compatible with the current observational data; see, for
instance, references [37–39,51,56,57,79]. Therefore, our own universe may evolve towards
some of these singular fates.

In the following, for the sake of concreteness, we shall consider the cosmological
constraints obtained in reference [57] when binding those DE models with observational
data. Thus, the results presented in the incoming sections are subjected to the observational
constraints on the parameter A presented in reference [57]. These constraints are summa-
rized in Table 3. Please note that the small values for A there obtained suggest that tiny
deviations from the ΛCDM scenario are, in fact, the observationally preferred situation
today [57]. Nevertheless, we recall that the asymptotic evolution of these DE models is not
that of a de Sitter universe, since the corresponding DE pressure and energy density do not
converge to a constant value but diverge. In the next section, we will obtain the group of
metric f (R) theories of gravity able to reproduce the same asymptotic expansion history,
which in GR corresponds to these particular phantom DE models.

Table 3. Best fit found in reference [57] for the phantom DE models discussed in Section 2, where A
is dimensionless for the case of the BR, and has units of inverse of meter and inverse of square meter
for the LR and LSBR models, respectively.

α A

BR 1 0.0276± 0.0240
LR 1

2 (2.75± 1.30)× 10−28

LSBR 0 (2.83± 4.17)× 10−54

3. Phantom Dark-Energy Models in f (R) Cosmology

For a given cosmological background evolution it is possible to find a family of alter-
native theories of gravity that leads to the same expansion history. The group of techniques
used to perform such a background “reconstruction” task are dubbed as “reconstruction
methods” (for a review of the topic see, for instance, reference [80] and references therein).
In this part of the review, we shall focus our attention on reconstruction methods within
the scheme of metric f (R) theories of gravity. Hence, we look for a metric f (R) theory of
gravity able to reproduce the same superaccelerated expansion profile to that of the general
relativistic model filled with phantom DE with the EoS (5), for the values of α selected in
Section 2. It is worth noting that whereas in GR the accelerated phase is attributed to the
existence of an exotic form of energy with a negative pressure (DE), in the setup of f (R)
theories of gravity the same expansion has a rather geometrical origin. Furthermore, as
the general relativistic model with the EoS (5) expands the cosmos towards some future
doomsdays, then the resulting metric f (R) theory of gravity will lead to the same classical
fate. For previous works on reconstruction techniques in f (R) gravity see, for instance,
references [80–86]. See also references [87–91] for successful reconstruction of phantom
DE-driven riplike events in metric f (R) theories of gravity.

Henceforth, we shall refer to two cosmological evolutions as equivalent at the back-
ground level if the corresponding geometrical variables H, Ḣ, R and Ṙ are identical [87]. In
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GR, the expansion of a homogeneous and isotropic universe is ruled by the Friedmann and
Raychaudhuri Equations (2) and (3), respectively. Accordingly, the scalar curvature reads

R = 6
(

Ḣ + 2H2 +
k
a2

)
= ρ− 3p, (25)

where ρ and p denotes the total energy density and pressure, respectively, these are
ρ = ρDE + ρM and p = pDE + pM. Later we will assume that they just correspond to
the DE component when the cosmic matter is diluted. Additionally, from the continuity
equation for the perfect fluid (4) and the Friedmann Equation (2), it follows

ρ̇ = −3(p + ρ)

(
1
3

ρ− k
a2

) 1
2
, (26)

ṗ = −3(p + ρ)

(
1
3

ρ− k
a2

) 1
2 dp

dρ
, (27)

where we have assumed p = p(ρ). Consequently, the cosmic time derivative of the scalar
curvature R reads

Ṙ = −3 (p + ρ)

(
1
3

ρ− k
a2

) 1
2
(

1− 3
dp
dρ

)
. (28)

On the other hand, for the gravitational interaction being that provided by metric
f (R) theories of gravity, the evolution of the universe is described by the action

S =
1
2

∫
d4x
√
−g f (R) + Sm, (29)

where Sm stands for the minimally coupled matter fields. In this framework, the field equa-
tions no longer coincide with (2) and (3). In fact, the modified Friedmann equation reads

3H2 d f
dR

=
1
2

(
R

d f
dR
− f

)
− 3HṘ

d2 f
dR2 − 3

k
a2 + ρm, (30)

being ρm the energy density of the minimally coupled matter fields. Since we are interested
in a metric f (R) theory able to reproduce the same background cosmological expansion as
a certain general relativistic model, then the preceding expression can be considered to be
a differential equation for some, a priori unknown, function f (R), where the coefficients
are already fixed, i.e., when the geometrical quantities involved in Equation (30) are set
to be equal to those of the GR model that we want to reproduce. Thus, the background
cosmological expansion of the resulting metric f (R) theory of gravity will be equivalent
to that provided by the general relativistic model. Furthermore, as we are interested on
the asymptotic future behavior of the universe, we can neglect the matter and spatial
curvature contribution in Equations (25) and (30), which will be (more) quickly redshifted
with the superaccelerated expansion. Therefore, we drop again the subindex DE for
the energy density and pressure. Hence, in the following sections we present the most
general solution to this reconstruction procedure when considering the EoS (5) for the
different values of α discussed in Section 2. Nevertheless, the obtained f (R) theories
must be understood as useful asymptotic models for the study of the behavior of the
universe near classical singularities, since a more realistic background reconstruction
would imply the non-cancellation of the matter and spatial curvature contribution in
Equations (25) and (30).
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3.1. BR Singularity in f (R) Gravity

For the BR singularity we considered the case of α = 1 in the DE general EoS (5).
This is

p = −(1 + A)ρ. (31)

For that specific value of α, the cosmic time derivative of the Hubble rate can be re-
expressed as

Ḣ =
3
2

AH2, (32)

compare Equations (18) and (19). Consequently, the scalar curvature and its cosmic time
derivative reduces to

R =3(4 + 3A)H2, (33)

Ṙ =9(4 + 3A)AH3. (34)

Therefore, the modified Friedmann Equation (30) reads

R2 fRR −
2 + 3A

6A
R fR +

4 + 3A
6A

f = 0, (35)

where we have used the notation fR := d f /dR and fRR := d2 f /dR2. The most general
solution for the function f (R) was already obtained in reference [87]. That is

f (R) = c+Rγ+ + c−Rγ− , (36)

being c+ and c− arbitrary integration constants and

γ± :=
1
2

1 +
2 + 3A

6A
±

√[
1 +

2 + 3A
6A

]2
− 2(4 + 3A)

3A

. (37)

In general, the parameter γ± may take complex values. However, for
{

A ≤ (10− 4
√

6)/3
}

∪
{

A ≥ (10 + 4
√

6)/3
}

, both branches are real valued. Please note that this is precisely the
case for the values of A showed in Table 3. Hence, when the observational constraints [57]
on the model are taken into account, both branches of the parameter γ± are real valued.

3.2. The LR in f (R) Gravity

For the LR abrupt event, we consider here the EoS (5) for DE with α = 1
2 in (5). This is

p = −ρ− A
√

ρ. (38)

Please note that for this choice of α, the Hubble rate in Equation (21) is an exponential
function on the cosmic time. Subsequently, its cosmic time derivative is proportional to
itself. Thus, for the sake of simplicity, we denoted by β that proportionality constant.
That is

Ḣ = βH, (39)

where we have defined

β :=

√
3

2
A. (40)
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The curvature scalar and its cosmic time derivative in terms of the Hubble rate are

R = 6H(β + 2H), (41)

Ṙ = 6βH(β + 4H). (42)

As noted in reference [88] (se also [91]), the modified Friedmann Equation (30) simplifies
when rewritten in terms of H. Thus, we need to solve

βH2(β + 4H) fHH −
[
4βH2 + H(β + H)(β + 4H)

]
fH + (β + 4H)2 f = 0, (43)

where fH := d f /dH, fHH := d2 f /dH2, and ρm and k has been neglected, as discussed
before. The most general solution to the above differential equation is [88]

f (H) =C1

(
H4 − 5βH3 + 2β2H2 + 2β3H

)
+ C2

[
βH
(

β2 + 4βH − H2
)

e
H
β

+
(

H4 − 5βH3 + 2β2H2 + 2β3H
)

Ei
(

H
β

)]
, (44)

being C1 and C2 integration constants and Ei the exponential integral function (see defini-
tion, e.g., in 5.1.2 of reference [92]). To obtain the final f (R) expression, the relation (41)
must be inverted. This is

H =
1

12

(
−3β±

√
9β2 + 12R

)
. (45)

At a first sight, it seems that this transformation may be non-univocally defined. However,
since the phantom DE density (6) increases with the expansion of the universe towards the
LR abrupt event, whereas the matter content is quickly diluted, then the corresponding
Hubble rate (21) and scalar curvature (41) also grow. Hence, only the positive branch in the
preceding expression applies. Therefore,

f (R) =c1

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]
+ c2

{
β

(
−3β2 − 2R + 9β

√
9β2 + 12R

)

×
(
−3β +

√
9β + 12R

)
exp

(
−1

4
+

1
4

√
1 +

4R
3β

)

+

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]
Ei

(
−1

4
+

1
4

√
1 +

4R
3β

)}
(46)

represents the most general family of metric f (R) theories of gravity predicting the occur-
rence of that specific LR abrupt event [88] (see also [91]). We recall that β, which depends
on the parameter A, is observationally constrained in Table 3.

3.3. The LSBR in f (R) Gravity

The selected DE model in this case corresponds to α = 0 in the EoS (5). That is

p = −ρ− A, (47)

where A takes the value showed in Table 3. In this scenario, see Equation (24), the cosmic
time derivative of the Hubble rate remains constant. Its value is given by

Ḣ =
A
2

. (48)
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Hence, the scalar curvature and its cosmic time derivative read

R = 12H2 + 3A, (49)

Ṙ = 12AH. (50)

Consequently, the modified Friedmann Equation (30) becomes

3A(R− 3A) fRR −
1
4
(R + 3A) fR +

1
2

f = 0, (51)

whose most general solution reads [90]

f (R) = c1

(
9A2 − 18AR + R2

)
+ c2

(
R− 3A

12A

) 3
2

1F1

(
−1

2
;

5
2

;
R− 3A

12A

)
, (52)

where c1 and c2 are integration constants and 1F1 is the confluent hypergeometric functions
or Kummer’s function, see definition in chapter 13 of reference [92]. See Table 3 for the
possible values of A we shall consider here.

3.4. Viability and Local System Tests

It is a well-known fact that local tests pose rather tight constraints on the metric
formulation of f (R) theories of gravity (see, for example, references [93–99]). Thus, any
candidate for a reliable alternative to GR should pass or, somehow, evade these low-
curvature-regime tests (see also [100–105] for an interesting discussion). However, the
metric f (R) models presented here were expressly built to reproduce a high curvature
regime very different from that of (an effective) ΛCDM. Please note that the contributions
of the matter (dark and baryonic) and the spatial curvature k to Equations (25) and (30)
have been de facto ignored. Therefore, the resulting f (R) theories obtained here must
be seen as useful asymptotic models for the theoretical evaluation of the quantum fate
of classical singularities rather than complete proposals for viable alternatives to GR at
all scales.

4. f (R) Quantum Geometrodynamics

Even though there is a lack of consensus on what is the correct quantum theory of
gravity, the application of ordinary quantum mechanics to the universe as a whole leads to
an interesting framework, known as quantum cosmology (for a review of the topic see, e.g.,
references [106,107]). Currently there are multiple proposals to quantize the cosmological
background. A non-exhaustive listing of different approaches to quantum cosmology is
string theory, loop quantum cosmology [108,109], causal dynamical triangulation [110–112]
and quantum geometrodynamics [74], among other examples (see also reference [106]).
Nonetheless, in this review we shall focus only on the latter approach, which corresponds,
in fact, to one of the first attempts to quantize cosmological backgrounds [74]. In the De-
Witt’s pioneering work [74], a quantization procedure for a closed Friedmann universe was
provided, leading to the first minisuperspace model in quantum cosmology. This quantum
cosmology is based on a canonical quantization with the Wheeler-DeWitt equation for
the wave function Ψ of the universe playing a central role [74,113,114]. The expression
minisuperspace stands for a cosmological model truncated to a finite number of degrees
of freedom. This nomenclature is derived from the usage of “superspace” to denote the
full infinite-dimensional configuration space of GR and the prefix “mini” for the truncated
versions. Moreover, DeWitt also proposed a criterion for the avoidance of classical singular-
ities within the quantum regime, namely the DW criterion. This is, the classical singularity
is potentially avoided if the wave function of the universe vanishes in the nearby configu-
ration space. This criterion is based on a generalization of the interpretation of the wave
function in ordinary quantum theory, where the wave function is the fundamental building
block for any observable. Consequently, regions of the configuration space that lay outside



Universe 2021, 7, 288 13 of 30

of the support of Ψ are, therefore, irrelevant in practice3. It should be noted, however, that
the non-vanishing of the wave function does not necessary entail a singularity. Therefore,
the DW criterion can only be a sufficient but not necessary criterion for the avoidance of
singularities. This criterion has been successfully applied in several cosmological scenarios,
see, e.g., references [65,66,71–73,89,90,115–117] among others.

4.1. Modified Wheeler-DeWitt

Following the ideas presented in reference [75], the Wheeler-DeWitt equation must
be adapted to the framework of f (R) theories of gravity. It is worthy to note that when
investigating the canonical quantization of an f (R) theory we are interpreting that theory
as a fundamental theory of gravity, rather than an effective framework coming from a
quantum gravity proposal. As this classical theory of gravity implies the occurrence of
singularities, one concludes that it must be quantized. In this section, we shall show how
the formalism of quantum geometrodynamics can be adopted to perform such quantization.
The resulting scheme is known as f (R) quantum geometrodynamics.

For the gravitational interaction being that provided by metric f (R) theories of gravity,
cosmological models can be described by the action

S =
1
2

∫
d4x
√
−g f (R), (53)

in the so-called Jordan frame. For a FLRW background metric, the above action reduces to

S =
1
2

∫
dt L(a, ȧ, ä), (54)

where the point-like Lagrangian reads

L(a, ȧ, ä) = V(3) a3 f (R), (55)

denoting by V(3) the spatial three-dimensional volume. Please note that metric f (R)
theories of gravity have an additional degree of freedom when compared with GR (see
Einstein’s and Jordan’s frame formulation in [118–121] and references therein). Conse-
quently, a new variable can be introduced for the canonical quantization of these alternative
theories of gravity. Furthermore, this new variable can be selected in such a way to remove
the dependence of the action (54) on the second derivatives of the scale factor. Hence,
following the line of reasoning presented in reference [75], we select the scalar curvature,
R, to be the new variable. Then, the action (54) becomes

S =
1
2

∫
dt L(a, ȧ, R, Ṙ). (56)

However, since the scalar curvature and the scale factor are not independent (at the classical
level), their relation needs to be properly introduced in the theory via a Lagrange multiplier,
µ, for the classical constraint R = R(a, ȧ, ä) given in Equation (25). Thence,

L = V(3)a3
{

f (R)− µ

[
R− 6

(
ä
a
+

ȧ2

a2 +
k
a2

)]}
. (57)

The Lagrange multiplier can be determined by varying the action with respect to the scalar
curvature. This leads to

µ = fR(R). (58)
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Accordingly, the point-like Lagrangian (57) can be reformulated as

L(a, ȧ, R, Ṙ) = V(3)
{

a3
[

f (R)− R fR(R)
]
− 6a2 fRR(R)ȧṘ + 6a fR(R)(k− ȧ2)

}
. (59)

For the sake of the quantization procedure, the derivative part of the above point-like
Lagrangian can be diagonalized by the introduction of a new set of variables [75]. These are

q := a
√

R?

(
fR
fR?

) 1
2
, (60a)

x :=
1
2

ln
(

fR
fR?

)
, (60b)

being R? a constant needed for the change of variables to be well-defined. There are differ-
ent proposals among the existing literature for the value of this constant, see, for instance,
references [75,89–91]. In this work we adopt the convention discussed in reference [91],
where R? is defined as the value of the curvature scalar evaluated at some future scale
factor a = a? on which the description of the universe by means of DE only becomes
appropriate. That is

R? := R(a, ȧ, ä)
∣∣∣
a=a?

, (61)

where R(a, ȧ, ä) obeys the classical relation (25). Furthermore, for the sake of concreteness,
we can safely assume a? = 100a0 hereafter. Since at that moment in the expansion the
matter content will be diluted by a factor of 10−6 with respect to the present concentration
and, therefore, ΩDE ≈ 1. Please note that from this definition it follows R > R?, since the
scalar curvature asymptotically approaches an increasing function with the expansion of
the universe. For different definitions of R? see references [75,89,90]. In these new variables,
Equation (59) transforms into

L(q, q̇, x, ẋ) = V(3)
(

R? fR
fR?

)− 3
2
q3

[
f − 6 fR

q̇2

q2 − R fR + 6 fR ẋ2 + 6k
R?

fR?

f 2
R

q2

]
, (62)

where f and fR are now understood as functions of x. This form of the Lagrangian is
already suitable for the quantization procedure.

Since the kinetic part of the point-like Lagrangian has been diagonalized, the deriva-
tion of the corresponding Hamiltonian is straightforward. The conjugate momenta are

Pq =
∂L
∂q̇

= −12V(3)R
− 3

2
? f

3
2

R?
f−

1
2

R qq̇, (63)

Px =
∂L
∂ẋ

= 12V(3)R
− 3

2
? f

3
2

R?
f−

1
2

R q3 ẋ. (64)

Then, the corresponding Hamiltonian reads

H = −V(3)q3
(

R? fR
fR?

)−3/2
{

f + 6k
R?

fR?

f 2
R

q2 − R fR +
6R3

?

(12)2V2
(3) f 3

R?

f 2
R

q4

[
P2

q −
P2

x
q2

]}
. (65)

For the quantization of the theory, we assume the procedure

Pq →− ih̄
∂

∂q
, (66)

Px →− ih̄
∂

∂x
. (67)
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Therefore, the Hamiltonian (65) of the classical system is promoted to a quantum operator.
Consequently, the classical Hamiltonian constraint becomes the modified Wheeler-DeWitt
(mWDW) equation for the wave function Ψ of the universe [74,75,106]. That is

ĤΨ = 0. (68)

After simple manipulations, the preceding expression can be cast in the form of the hyper-
bolic differential equation [75][

h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 −V(q, x)
]

Ψ(q, x) = 0, (69)

where the factor-ordering parameter has been set equal to zero. The effective potential
entering the preceding equation is given by

V(q, x) =
q4

λ2

(
k +

q2

6R? fR?

( f − R fR)e−4x
)

, (70)

being λ := R?/(12V(3) fR?). Please note that for a given f (R) expression, the variables q
and x are univocally fixed. Then, the relation in (60b) must be reversed to express f and
R fR in terms of x. However, this may not always be possible analytically, limiting the
non-numerical evaluation of the mWDW equation (69) to some suitable group of f (R)
theories. In the next sections, we will review the results for the wave function Ψ presented
in the literature when considering the f (R) expressions previously found by means of
the reconstruction techniques (see Sections 3.1–3.3). We recall that those metric f (R)
theories of gravity lead to the same asymptotic background expansion as their respective
general relativistic phantom DE models and, therefore, they predict (at the classical level)
singular cosmological behaviors. Accordingly, we will neglect the contribution of the
spatial curvature k in the effective potential (70) when studying the asymptotic fate of those
models, since it will be quickly redshifted with the superacceletared expansion.

Before proceeding further, we want to address some comments on the structure of
the mWDW equation (69). First, we want to emphasize the well-known ambiguity in the
factor ordering in Equation (69), i.e., we could have chosen a different factor ordering when
applying the quantization procedure on the Hamiltonian of the classical theory, which
could have led to a different wave function of the universe. According to reference [75], a
variation of the factor ordering affects only the pre-exponential factor of the semiclassical
wave function. Thus, the actual value of this parameter can be considered to be unimportant
for the evaluation of the DW criterion, which is the main goal of this review. In fact, the
DW criterion was found to be satisfied independently of the chosen factor ordering for
some particular models related to the topic of this review, see references [72,73,122,123].
On the other hand, note that the mWDW equation (69) is a globally hyperbolic differential
equation, i.e., the signature of the minisuperspace DeWitt metric,

GAB =

(
q2 0
0 −1

)
, (71)

is (+,−). This is quite different to what happens in GR when the DE content is described
by a minimally coupled phantom scalar field. In that case, the DeWitt metric has a positive
signature and, therefore, the WDW equation is of an elliptic type. Examples of these models
can be found, for instance, in references [66,71–73]. Additionally, a change of signature
in the WDW equation has also been noticed in the presence of non-minimally coupled
scalar fields [124]. Moreover, the change in the signature has implications in the imposition
of boundary conditions. Whereas the hyperbolic equation has a wave-like solution and,
therefore, a well-posed initial value problem, a perturbation in the initial or boundary
condition for an elliptic (or parabolic) equation will spread instantly over all the point in
that domain.



Universe 2021, 7, 288 16 of 30

4.2. The BR in f (R) Quantum Cosmology

In sight of the form of expression (37), only the negative branch gives the expected
limit to a de Sitter universe when the parameter A shrinks to zero. (On the contrary,
the exponent γ+ diverge when A vanishes) Since small deviations from the EoS of a
cosmological constant are the observationally preferred situation today [57] (see also
references [37–45], among others), hereafter we consider only the negative branch of the
solution presented in Equation (36). This is, we assume c+ = 0 in expression (36). Therefore,
in this section, we quantize a subclass of the more general family of metric f (R) theories of
gravity predicting the classical occurrence of a BR singularity. That is

f (R) = c−Rγ− . (72)

In the following of this section, we drop the subindex “-” for the sake of the notation
but keeping in mind that the preceding expression corresponds only to one of the two
independent solutions obtained from the reconstruction procedure. Additionally, note that
cosmological constraints on the model [57] (see also references [37,38]) satisfy the condition
A ≤ (10− 4

√
6)/3 ≈ 0.067. Therefore, those constraints favor a real valued exponent in

Equation (72) [see discussion below Equation (37)]. Hence, hereafter we shall consider that
the aforementioned exponent is real for values of A of physical interest. Additionally, note
that the quantum fate of the BR singularity in f (R) gravity has already been studied in the
literature for some particular values for A, finding that the DW criterion can be satisfied,
see reference [89].

For the choice of the f (R) gravity in (72), the change of variables in Equation (60) reads

q =a
√

R?

(
R
R?

) γ−1
2

, (73a)

x =
1
2

ln
(

R
R?

)γ−1
. (73b)

Moreover, from the evolution equations for the Hubble rate and its cosmic time derivative,
and the definition adopted in expression (61), it follows that the constant R? is

R? = (4 + 3A)1003Aρ0. (74)

Accordingly, the effective potential (70) entering the mWDW equation (69) becomes

V(q, x) = −γ− 1
6λ2γ

e−Cxq6, (75)

where, for the sake of the calculation, we have adopted the notation

C := 2
γ− 2
γ− 1

. (76)

Thus, the mWDW equation (69) reads[
h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 +
γ− 1
6λ2γ

e−Cxq6
]

Ψ(q, x) = 0. (77)

However, the dependence of the effective potential on the minisuperspace variables can be
simplified when considering the following change of variables [89] (see also reference [73])

q = r(z)θ, (78a)

x = z. (78b)
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Please note that this implies [73]

∂2

∂q2 =r−2 ∂2

∂θ2 , (79)

∂2

∂x2 =

(
r′

r

)2[
θ2 ∂2

∂θ2 + θ
∂

∂θ

]
− 2

r′

r
θ

∂

∂θ

∂

∂z
+

[(
r′

r

)2

− r′′

r

]
θ

∂

∂θ
+

∂2

∂z2 , (80)

Then, for the choice of r(z) = eCz/6, the potential term will only depend on θ [89]. Accord-
ingly, the mWdW equation (77) simplifies to[(

1− C2

36

)
h̄2θ2 ∂2

∂θ2 − h̄2 ∂2

∂z2 +
C
3

h̄2θ
∂

∂θ

∂

∂z
− C2

36
h̄2θ

∂

∂θ
+

γ− 1
6λ2γ

θ6
]

Ψ(θ, z) = 0, (81)

where the factor 1− C2/36 is different from zero at least for the range of values for A of
our interest, i.e., A ≤ 0.067 [see discussion below Equation (72)]. Therefore, to analyze
whether the BR singularity is avoided in the quantum realm by means of the DW criterion,
we focus on solving the preceding equation for the wave function Ψ in the configuration
space near the singularity. As we do not expect the wave function to be peaked along
the classical trajectory in this regime, R and a may take completely independent values.
Therefore, to consider a region close to the BR singularity, we should assume either a→ ∞
or R → ∞. Both choices imply θ → ∞, but in the former case z is arbitrary whereas
in the latter one z → ∞. Please note that the divergence of the scalar curvature can be
argued to be the dominant condition, from a geometric point of view, for the occurrence
of the BR singularity. Thence, we shall consider both θ and z going to infinity as the main
parametrization of the BR singularity in the configuration space. Nevertheless, the results
and conclusions presented in this section are independent of this choice and still hold for
θ → ∞ and z arbitrary.

Additionally, further simplifications can be made when solving (81) close to the BR.
By considering the third term containing the cross partial derivatives to be unimportant
when θ → ∞, the above equation can be solved via the separation ansatz

Ψ(θ, z) = ∑̃
k

bk̃χk̃(θ)ϕk̃(z), (82)

where bk̃ gives the amplitude of each solution and k̃ is related to the associated energy.
Please do not confuse k̃ with the spatial curvature k, which has been set to zero. (The
validity of this approximation is analyzed in Appendix A.) Under these approximations,
Equation (81) reduces to the following system of equations4

h̄2 ∂2 ϕk̃
∂z2 − k̃2 ϕk̃ = 0, (83)(

1− C2

36

)
h̄2θ2 ∂2χk̃

∂θ2 −
C2

36
h̄2θ

∂χk̃
∂θ

+

(
γ− 1
6λ2γ

θ6 − k̃2
)

χk̃ = 0. (84)

The former equation can be straightforwardly worked out. The solutions are

ϕk̃(z) = d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)
, (85)

being d1 and d2 arbitrary constants. This corresponds to either exponential or trigonometric
functions on z, depending whether k̃2 is positive or negative, respectively . On the other
hand, Equation (84) can be solved in an exact way by means of Bessel functions, cf. 9.1.53
of reference [92]. This solution can be expressed as

χk̃(θ) = θ
18

36−C2

[
u1Jν

(
λ̃

3h̄
θ3
)
+ u2Yν

(
λ̃

3h̄
θ3
)]

, (86)
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where u1 and u2 are integration constants, Jν and Yν are the Bessel functions of first and
second order, respectively, and

ν2 :=
36

(36− C2)
2

[
1 + 4

k̃2

h̄2

(
1− C2

36

)]
, (87)

λ̃2 :=
6(γ− 1)

λ2γ(36− C2)
. (88)

When near the BR singularity, i.e., for large θ, the χk̃ part of the wave function Ψ behaves
asymptotically as

χk̃(θ) ≈
√

6h̄
πλ̃

θ
−

3(24−C2)
2(36−C2)

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)
+ ũ2 exp

(
−i

λ̃

3h̄
θ3
)]

, (89)

where ũ1 and ũ2 now depend on k̃, cf. 9.2.1-2 in reference [92]. Thence, the total wave
function of the universe asymptotically reads

Ψ(θ, z) ≈
√

6h̄
πλ̃

θ
−

3(24−C2)
2(36−C2) ∑̃

k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)
+ ũ2 exp

(
−i

λ̃

3h̄
θ3
)]

×
[

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
. (90)

As a result, for the condition of d1 = 0 when k̃2 positive, the wave function vanishes at the
BR singularity. Therefore, for this boundary condition, the DW criterion is satisfied. This
result points towards the avoidance of this cosmological singularity in the quantum real of
f (R) cosmology. Nevertheless, it should be noted that by setting d1 = 0 we have dismissed
a subgroup of solutions to the mWDW equation as unphysical. If future investigations
show the importance of these ignored solutions, then it would be concluded that the DW
criterion may not always be satisfied.

4.3. The LR in f (R) Quantum Cosmology

In this section, we address the quantum fate of the LR abrupt event in the framework
of f (R) quantum geometrodynamics. Previously, in Section 3.2, it was shown that the
alternative theory of gravity given by the function (46) is the most general expression for a
metric f (R) theory of gravity which gives the same asymptotic expansion history as GR
filled with phantom DE governed by Equation (38). Moreover, since the presence of the Ei
function in the term multiplying c2 spoils the analytical inversion of x(R) in Equation (60b),
which is crucial for the exact derivation of the mWDW equation (69), hereafter we consider
c2 = 0 [91]. Thus, we focus on the simple, still general, group of alternative metric f (R)
theories of gravity predicting the classical occurrence of a LR abrupt event given by [91]

f (R) = c1

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]
, (91)

where we recall that β =
√

3A/2 and the parameter A is observationally constrained to
approximately 2.75× 10−28 m−1, see Table 3. Given the expression for f (R), the change of
variables (60) reads

q = a

√
2c1R?

fR?

(
75β2 − 9β

√
9β2 + 12R + 2R

) 1
2
, (92a)

x =
1
2

ln
[

2c1

fR?

(
75β2 − 9β

√
9β2 + 12R + 2R

)]
, (92b)
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being fR? = 2c1

(
75β2 − 9β

√
9β2 + 12R? + 2R?

)
. The definition of the constant R? needed

for the above change of variables to be well-defined was previously discussed for the most
general case, see Equation (61). Consequently, from Equations (21) and (41) it follows [91]

R? = 4ρ0

(
1 + β

√
3
ρ0

ln 100

)2

+ 6β

√
ρ0

3

(
1 + β

√
3
ρ0

ln 100

)
. (93)

On the other hand, for the purpose of computing the effective potential entering the
mWDW equation, the inverse of the relation (92b) applies. This is

R(x) = 84β2 +
1

4c1
fR? e2x ± 54β

√
1

48c1
fR? e2x + 2β2. (94)

However, only the positive branch is compatible with R being an increasing function of x
and R > R?. Thus, we choose the positive sign in the preceding expression. Thereafter, the
effective potential in the mWDW equation becomes [91]

V(q, x) = −U(x)q6, (95)

where

U(x) =Ũ

{
1 + 1644

c1β2

fR?

e−2x + 205992
c2

1β4

f 2
R?

e−4x

+ 36βe−x
(

1 + 336
c1β2

fR?

e−2x
)√

3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)

− 12β

√
3c1

fR?

e−x

[
1 + 330

c1β2

fR?

e−2x + 18βe−x

√
3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)]

×
[

1 + 339
c1β2

fR?

e−2x + 18βe−x

√
3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)] 1

2
}

, (96)

being Ũ := fR?/(48c1λ2R?) a constant. Contrary to the previous section, a change of vari-
ables such as (78) will no longer be able to make the potential one-variable-dependent and,
therefore, a separation ansatz such as (82) is not appropriate in this case. Instead, note that
the U(x) part of the effective potential converges very quickly to a constant value when the
model is observationally constrained. This feature suggests an adiabatic semiseparability
type ansatz for the wave function of the universe. This is based on the so-called Born-
Oppenheimer (BO) ansatz originally formulated in the context of molecular physics [125]
and first introduced in the framework of quantum cosmology in references [126–128]. Fur-
thermore, in reference [91] we have argued that the scalar curvature can be considered
more fundamental from a geometrical point of view than the scale factor, justifying that
the following ansatz à la Born-Oppenheimer should apply

Ψ(q, x) = ∑̃
k

bk̃χk̃(q, x)ϕk̃(x), (97)

where we recall that x depends only on R, whereas q contains both R and a, see the
definitions in (60). Additionally, bk̃ represents the amplitude of each solution and k̃ is
related to the associated energy. (Please do not confuse k̃ with the spatial curvature k which
has been set to zero). As a result of this ansatz, the mWDW equation (69) becomes

h̄2q2 ϕk̃
∂2χk̃
∂q2 − h̄2 ϕk̃

∂2χk̃
∂x2 − 2h̄2 ∂χk̃

∂x
dϕk̃
dx
− h̄2χk̃

d2 ϕk̃
dx2 + U(x)q6χk̃ ϕk̃ = 0. (98)
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The contribution of the second and third terms in the above expression can be neglected by
virtue of the adiabatic assumption5. Therefore, Equation (98) implies

h̄2 d2 ϕk̃
dx2 − k̃2 ϕk̃ = 0, (99)

h̄2q2 ∂2χk̃
∂q2 +

[
U(x)q6 − k̃2

]
χk̃ = 0. (100)

The former equation can be directly solved. The solutions are exponential and trigonometric
functions on x, depending on the sign of k̃2. These are [91]

ϕk̃(x) = d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)
, (101)

where d1 and d2 are integration constants. The solutions for χk̃, on the other hand, are
obtained assuming that the potential U(x) behaves as a quasiconstant. Please note that this
approximation is based on the fact that U(x) converges very quickly to a constant value
when observational constraints on the parameter A are taken into account. Hence, the
solutions are [91]

χk̃(q, x) =
√

q

u1J
1
6

√
1+ 4k̃2

h̄2

(√
U(x)
3h̄

q3

)
+ u2Y

1
6

√
1+ 4k̃2

h̄2

(√
U(x)
3h̄

q3

), (102)

being u1 and u2 integration constants, cf. 9.1.53 of [92]. Thus, near the LR abrupt event,
when both q and x diverge6, the resulting wave function of the universe becomes

Ψ(q, x) ≈
√

6h̄
π

1

U(x)
1
4 q

∑̃
k

bk̃

[
ũ1 exp

(
i
√

U(x)
3h̄

q3

)
+ ũ2 exp

(
−i
√

U(x)
3h̄

q3

)]

×
[

d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)]
, (103)

where the integration constants ũ1 and ũ2 now depend on k̃2, see discussion in reference [91].
Since U(x) > 0 and tends to a constant value when x grows, the wave function cancels at
the LR abrupt event when one of the integrations constants is set to zero. This is d1 = 0
when k̃2 is positive. Hence, the DeWitt criterion can be, indeed, satisfied. This points
towards the avoidance of the LR abrupt event in the quantum realm of metric f (R) theories
of gravity. Nevertheless, as discussed for the case of the BR in the previous section, the
fulfilment of the DW criterion is conditioned to the cancellation of one of the integration
constants in Ψ. Accordingly, if future investigations claim for the physical importance of
the dismissed solution, then it would have to be concluded that the DW criterion may not
always be satisfied.

4.4. The LSBR in f (R) Quantum Cosmology

Finally, we present the quantum fate of the LSBR abrupt event predicted in the metric
f (R) theories of gravity (52) obtained in Section 3.3. Moreover, following a line of reasoning
similar to that presented in the previous sections, we consider c2 = 0 in (52) as a necessary
assumption to analytically obtain the corresponding mWDW equation. Therefore, we focus
on the simple, still general, f (R) cosmological model exhibiting a future LSBR abrupt event
given by

f (R) = c1

(
9A2 − 18AR + R2

)
. (104)

This model has been already studied in the f (R) quantum geometrodynamics approach,
see reference [90]. In the next part of this section, we not only review the conclusion there
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presented but also provide a different, less restrictive and more general, approximation
when solving for the wave function.

For the f (R) gravity model (104), the change of variables (60) reads

q =a

√
2c1R?

fR?

(R− 9A)
1
2 , (105a)

x =
1
2

ln
[

2c1

fR?

(R− 9A)

]
, (105b)

being fR? = 2c1(R? − 9A). Following the spirit for a physically meaningful definition of
the constant R? given in Equation (61), and in view of Equations (23) and (49), we use

R? = 4ρ0 + 3A[1 + 4 ln(100)], (106)

where we recall that a? = 100a0 has been set, for the sake of concreteness, as the moment
in the expansion history from which we can safely assume that DE is the only relevant
component of the universe [see discussion below Equation (61)].

Subsequently, the mWDW equation for the particular f (R) expression considered in
Equation (104) reads [

h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 + W(x)q6
]

Ψ(q, x) = 0, (107)

where W(x) is

W(x) = W̃

(
1 + 36

c1 A
fR?

e−2x + 288
c2

1 A2

f 2
R?

e−4x

)
, (108)

with W̃ := fR?/(24c1λ2R?) a constant. It should be noted that (107) resembles the form
of the corresponding mWDW equation for the LR case presented in the previous section.
In fact, the W(x) part of the effective potential also converges quickly to a constant value
when A is observationally constrained. Therefore, we consider here the very same BO
approximation discussed in the previous section7. That is ansatz (97),

Ψ(q, x) = ∑̃
k

bk̃χk̃(q, x)ϕk̃(x), (109)

where bk̃ represents the amplitude of each solution and k̃ is related to the associated energy,
do not confuse it with the spatial curvature k which has been neglected.

Accordingly to the results presented in the previous section, mutatis mutandis, the total
wave function of the universe near the LSBR abrupt event reads

Ψ(q, x) ≈
√

6h̄
π

1

W(x)
1
4 q

∑̃
k

bk̃

[
ũ1 exp

(
i
√

W(x)
3h̄

q3

)
+ ũ2 exp

(
−i
√

W(x)
3h̄

q3

)]

×
[

d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)]
, (110)

where ũ1 and ũ2 now depend on k̃2. The validity of the BO approximation in this case is
verified in Appendix B. Since W(x) > 0 and tends to a positive constant value when x
grows, the wave function cancels at the LSBR abrupt event when one of the integrations
constants is set to zero. This is d1 = 0 when k̃2 is positive. Hence, the fulfilment of the De-
Witt criterion points towards the avoidance of the LSBR abrupt event in the quantum realm
of metric f (R) theories of gravity. Nevertheless, as stated before, if future investigations
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find out the importance of the dismissed solutions, then it would be concluded that the
DW criterion may not always be satisfied.

5. Conclusions

The BR, LR and LSBR are cosmic curvature doomsdays predicted in some cosmologi-
cal models where the superaccelerated expansion of the universe leads to the disintegration
of all bounded structures and, ultimately, to the tear down of space–time itself. Within
the context of GR, these cosmological catastrophes are intrinsic to phantom DE models,
although a phantom fluid may also induce other cosmic singularities. For a FLRW back-
ground, these events can be characterized by the behavior of the scale factor a, the Hubble
rate H and its cosmic time derivative Ḣ near the singular fate, see Table 1. More importantly,
some of these models have been shown to be compatible with the current observational
data, see, for instance, reference [57]. Therefore, our own universe may evolve towards
some of these (classical) doomsdays. Nevertheless, quantum gravity effects can ultimately
become significant and smooth out, or even avoid, the occurrence of these classically
predicted singularities. In that sense, quantum cosmology is the natural framework for
addressing the quantum fate of cosmological singularities. Among the different approaches
to quantum cosmology, we have focused on the canonical quantization of cosmological
background due to DeWitt’s pioneering paper [74]. In this scheme, the DW criterion can
be understood as a sufficient but not necessary condition for the avoidance of a classical
singularity. Thus, the classical singularity is potentially avoided if the wave function of the
universe vanishes in the nearby configuration space. This criterion has been successfully
applied in GR for the phantom DE models considered in Section 2, which predict a classical
fate à la BR, LR and LSBR, see references [66,72,73]. Consequently, this hints towards the
avoidance of these cosmological doomsdays for those specific phantom DE models.

On the other hand, since the background late-time classical evolution can be equiv-
alently described in the context of GR or within the framework of alternative theories of
gravity, it is interesting to wonder whether the DW criterion is still fulfilled in the quantum
realm of a different underlying theory of gravity. To find that out, reconstruction meth-
ods can be applied to obtain the general group of alternative theories of gravity able to
reproduce the same expansion history as that of a given general relativistic model. Thus,
in Section 3, we have collected the different f (R) theories of gravity found among the
literature that produce the same asymptotic background expansion as the phantom DE
models summarized in the preceding Section 2. Consequently, these f (R) models predict
the classical occurrence of a BR, LR or a LSBR abrupt event. For the evaluation of the quan-
tum fate of these classical models, we have followed the f (R) quantum geometrodynamics
approach introduced by Vilenkin [75], where the Wheeler-DeWitt equation is adapted for
the case of f (R) theories of gravity. Within this framework, the application of the DW
criterion has been discussed, showing that it is possible to find solutions to the mWDW
equation with a vanishing wave function for the aforementioned cosmic events. Therefore,
as it happens when the gravitational interaction is that provided by GR, this result hints
towards the avoidance of these cosmological doomsdays within the scheme of metric f (R)
theories of gravity [89–91].

It should be noted, however, that the validity of the wave functions obtained in this
review is subject to the fulfilment of the conditions discussed in the appendices. Thus, for
the avoidance of the BR singularity, for instance, we found our approximations to the wave
function of the universe to be legit only for very tiny values of the parameter A, indeed
smaller even than those found in reference [57] where a strong ansatz was imposed on the
possible values of w. Of course, by relaxing such an ansatz tinier values of A are compatible
with cosmological observations; see, for example, references [37–39] among others. On
the other hand, it should be also noted that we have applied the quantization procedure
only to some particular solutions to the reconstruction method, i.e., we have quantized just
some specific f (R) functions from the more general family of metric f (R) gravity found
to classically predict a future fate à la BR, LR or LSBR. Furthermore, certain boundary
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conditions have also been imposed when solving for Ψ to obtain vanishing solutions at the
singular points. These conditions typically involve the cancellation of one of the integration
constants. Therefore, a whole subgroup of solutions to the mWDW equation has been
disregarded as unphysical. If future investigations show the importance of the dismissed
solutions, then it would be concluded that the DW criterion may not always be fulfilled for
solutions of physical interest.

The pioneering investigations presented in this paper have raised additional questions
that should be addressed. From a classical point of view, the metric f (R) theories under
consideration should be further analyzed, investigating their compatibility with different
observational constraints, as those coming from Solar System tests. On the other hand, it
would be also interesting to consider whether semiclassical effects may be important when
approaching the quantum realm and, in that case, how they will affect the disintegration
of bounded structures. Furthermore, we should highlight that strictly speaking, the DW
criterion is not a sufficient condition to guarantee the avoidance of classical singularities. To
have a complete analysis, one should obtain the expectation values of the relevant operators.
Nonetheless, the calculation of expectation values and probability distributions is related
to various open questions in quantum cosmology that still must be properly addressed
in the framework of quantum geometrodynamics. Specifically, the correct boundary or
initial conditions, the Hilbert space structure and the classical-quantum correspondence,
see reference [106]. Finally, we hope that the topics summarized in this work and the
presented open questions will motivated further investigations.
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Appendix A. Validity of the Wave Function Used to Describe the BR

When solving the mWDW equation for the BR singularity, we have neglected the
contribution of the third term in (81). This approach is valid as long as the corresponding
solutions satisfy

C
3

h̄2θ
∂χk̃
∂θ

∂ϕk̃
∂z
�
(

1− C2

36

)
h̄2θ2 ϕk̃

∂2χk̃
∂θ2 , h̄2χk̃

∂2 ϕk̃
∂z2 ,

C2

36
h̄2θϕk̃

∂χk̃
∂θ

,
γ− 1
6λ2γ

θ6χk̃ ϕk̃. (A1)

According to that approximation, the solutions for χk̃ and ϕk̃ are presented in Equations (85)
and (86). Therefore, the terms we kept in Equation (81) are

(
1− C2

36

)
h̄2θ2 ϕk̃

∂2χk̃
∂θ2 ≈ −

√
6λ̃3h̄

π

(
1− C2

36

)
θ

6− 3(24−C2)
2(36−C2) ∑̃

k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)

+ ũ2 exp
(
−i

λ̃

3h̄
θ3
)][

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
, (A2)

h̄2χk̃
∂2 ϕk̃
∂z2 ≈

√
6h̄
πλ̃

k̃2θ
− 3(24−C2)

2(36−C2) ∑̃
k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)

+ ũ2 exp
(
−i

λ̃

3h̄
θ3
)][

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
, (A3)

C2

36
h̄2θϕk̃

∂χk̃
∂θ
≈ C2

36

√
6λ̃h̄3

π
θ

3− 3(24−C2)
2(36−C2) ∑̃

k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)

− ũ2 exp
(
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λ̃

3h̄
θ3
)][

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
, (A4)

γ− 1
6λ2γ

θ6χk̃ ϕk̃ ≈
γ− 1
6λ2γ

√
6h̄
πλ̃

θ
6− 3(24−C2)

2(36−C2) ∑̃
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bk̃
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ũ1 exp

(
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3h̄
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)

+ ũ2 exp
(
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)][

d1 exp

(√
k̃2
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)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
. (A5)

However, the terms that we have neglected behave asymptotically as

C
3

h̄2θ
∂χk̃
∂θ

∂ϕk̃
∂z
≈i

√
6λ̃k̃2

πh̄
Ch̄
3

θ
3− 3(24−C2)

2(36−C2) ∑̃
k

bk̃

[
ũ1 exp

(
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λ̃

3h̄
θ3
)
− ũ2 exp

(
−i

λ̃

3h̄
θ3
)]

×
[

d1 exp

(√
k̃2

h̄
z

)
− d2 exp

(
−
√

k̃2

h̄
z

)]
. (A6)

We recall that the integration constants d1 must be set to zero to fulfil the DW criterion
at the BR when k̃2 positive. Thus, to obtain the compliance region of the performed
approximation we compare the largest of the neglected terms with the smallest of the saved
ones. This is the ratio

ε =

∣∣∣∣∣ B
3 h̄2θ∂θχk̃∂z ϕk̃

h̄2χk̃∂2
z ϕk̃

∣∣∣∣∣ ≈ 2
3k̃

γ− 2
γ− 1

λ̃θ3. (A7)

This ratio keeps below one if γ− 2 is sufficiently small to compensate the increase of the
variable θ towards the BR singularity. Therefore, for γ ≈ 2, this approximation is valid
throughout the semiclassical regime towards the BR singularity, where θ increases but
not sufficiently rapidly to compensate the small value of γ− 2. In the expression (36) for
the metric f (R) theory of gravity predicting the BR singularity, this would correspond
to having a small parameter A and c+ = 0, since γ+ diverge at A → 0. Consequently,
this argument would favor small deviations from the ΛCDM model. It is worth noting
that the values estimated for A in reference [57] are not small enough to ensure ε � 1;
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however smaller values for A are compatible with the fits claimed in other references (see,
for example, references [37–39]). Thus, we consider this approximation to Ψ valid for the
appropriate γ value.

Additionally note that in this section, we have enhanced the discussion on the viability
of the performed approximations for Ψ originally presented in reference [89], where the
authors have focused only on the particular case of k̃ = 0 when addressing the validity of
the wave function there found.

Appendix B. Validity of the BO Approximation for Ψ

During the application of the BO-type ansatz (97) performed in Sections 4.3 and 4.4,
we have considered that χk̃(q, x) depends adiabatically on x. Therefore, we have neglected
the contribution of some parts in their corresponding mWDW equations. This approach is
valid as long as the corresponding solutions satisfy

h̄2 ϕk̃
∂2χk̃
∂x2 , 2h̄2 ∂χk̃

∂x
dϕk̃
dx
� h̄2q2 ϕk̃

∂2χk̃
∂q2 , h̄2χk̃

d2 ϕk̃
dx2 , U(x)q6χk̃ ϕk̃. (A8)

As a result of this approximation, the solutions for ϕk̃ and χk̃ obtained for the case of the LR
abrupt event are presented in Equations (99) and (100), respectively (see also reference [91]).
Then, the terms we keep in (98) read

h̄2q2 ϕk̃
∂2χk̃
∂q2 ≈−U(x)q6χk̃ ϕk̃ ≈ −

√
6h̄
π
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3
4 q5

[
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√
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3h̄
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−i
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3h̄

q3

)][
d1 exp

(√
k̃2

h̄
x

)
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(
−
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k̃2

h̄
x

)]
, (A9)
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d2 ϕk̃
dx2 ≈

√
6h̄
π

k̃2

U(x)
1
4 q

[
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However, the neglected terms behave asymptotically as

h̄2 ϕk̃
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, (A11)
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≈ i
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ũ1 exp

(
i
√

U(x)
3h̄

q3

)
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x

)]
. (A12)

Please note that for k̃2 positive, the constants d1 must be zero to have a vanishing wave
function at the LR. Thus, the validity of the BO approximation can be verified comparing
the largest of the neglected terms with the smallest of the saved ones. This is the ratio ε,

ε =

∣∣∣∣∣ h̄2 ϕk̃∂2
xχk̃

h̄2χk̃∂2
x ϕk̃

∣∣∣∣∣. (A13)

For the case of the LR abrupt event analyzed in Section 4.3 that ratio reads
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ε ≈ U′(x)2

U(x)
q6

36|k̃2|
. (A14)

Consequently, the approximation is valid as long as ε � 1. To evaluate this condition,
note that

U′(x)2

U(x)
≈ 36

β2

λ2R?
e−2x

[
1 +

40
3

√
3c1

fR?

βe−x +
832
3

c1β2

fR?

e−2x +O
(

e−3x
)]

, (A15)

when β is observationally constrained, see Table 3. Thus, in the configuration space near
the LR cosmic event, we have

ε ≈ β2

λ2R?|k̃2|
e−2xq6, (A16)

where both q and x diverge. Finally, ε � 1 near the LR if β is sufficiently small, i.e., for
small value of A. Please note that this corresponds, in fact, to the observationally preferred
situation [57]. (We recall that A is of order 10−28 m−1 when observationally constrained,
see Table 3). Therefore, when the parameters of the theory are observationally constrained,
the approximation is valid throughout the semiclassical regime towards the LR abrupt
event; where the variables q and x increase but not sufficiently rapidly to compensate the
small value of β2. Hence, for the purpose of the present work, i.e., to analyze the fulfilment
of the DW criterion in the configuration space close to the LR, this approximation is valid.

On the other hand, for the verification of the validity of the BO approximation per-
formed in Section 4.4, U(x) must be exchanged for W(x) in the preceding formulas. There-
fore, considering the expression for W(x) given in (108), the ratio ε becomes

ε ≈ W ′(x)2

W(x)
q6

36|k̃2|
≈ 6c1 A2

λ2R? fR? |k̃2|
e−4xq6. (A17)

Following the same line of reasoning as that presented before, this ratio keeps below 1
since the parameter A for the LSBR is of order 10−54 m−2, see Table 3. Therefore, the BO
approximation applied in Section 4.4 is valid throughout the semiclassical regime towards
the LSBR abrupt event.

Notes
1 Since the BR, the LR and the LSBR doomsdays are intrinsic to phantom-like DE models, we limit our discussions to a positive

parameter A, which leads to w < −1. For an analysis of the most general case, we refer the reader to the reference [52].
2 This is trivial to check when α ≤ 1. For the case of α > 1, on the other hand, the expansion of the universe stops at a finite value

of the scale factor, namely amax, such as the denominator in Equation (8) never becomes negative [see Equation (13)].
3 Alternatively to this interpretation, the wave function Ψ can be linked in a heuristic way with the probability distribution. In

that sense, having a vanishing wave function could be interpreted as having zero probability of reaching that point in the
configuration space. Nevertheless, this interpretation is based on the existence of squared integral functions and a consistent
probability interpretation of the wave function. The problem is that these assumptions would require a minisuperspace with a
proper Hilbert space nature, and that is not obvious to be always doable for a quantum cosmology based on the WDW equation.

4 For a different approach to the asymptotic form of the wave function Ψ see reference [89].
5 The validity of this approximation is checked in Appendix B.
6 This corresponds to R → ∞ and a arbitrary, which was argued to be the main condition for the appearance of a curvature

singularity. Nevertheless, the results in this section would not change if we had considered both a, R→ ∞ instead.
7 Please note that in reference [90] we have used a different ansatz for solving the mWDW equation (107). Since the exponential

terms appearing in (108) are strongly suppressed not only by the observational value of the parameter A, but also by the
divergence of x, we have considered only the asymptotic value of the function W(x), i.e., we have approached the effective
potential in (107) to asymptotically depend only on the variable q. However, as argued in [91], subdominant contributions to
W(x) have imprints in the shape of Ψ near the abrupt event. Those subdominant contributions are, in fact, important when
comparing different wave functions that share a common asymptotic regime.
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