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Abstract

Background: Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune
response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of
aluminium adjuvants as vaccine components is neither not fully understood.

Results: We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and
analysed their expression patterns along protein coding genes. We found 2284 novel lncRNAs and assessed their
conservation in terms of sequence and synteny. Differential expression analysis performed between animals
inoculated with commercial vaccines or aluminium adjuvant alone and the co-expression analysis revealed lncRNAs
related to the immune response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine
signalling and production highlighted the differences between different treatments. A number of differentially
expressed lncRNAs were correlated with a divergently located protein-coding gene, such as the OSM cytokine.
Other lncRNAs were predicted to act as sponges of miRNAs involved in immune response regulation.

Conclusions: This work enlarges the lncRNA catalogue in sheep and puts an accent on their involvement in the
immune response to repetitive vaccination, providing a basis for further characterisation of the non-coding sheep
transcriptome within different immune cells.

Keywords: LncRNAs, Ovis aries, Vaccine, Adjuvants, Aluminium, Systems biology, Immune response, Co-expression,
RNA-seq

Background
Aluminium-containing adjuvants have been used for
nearly a century now both in livestock and in humans
since their discovery in the early 20th century [1]. Alu-
minium salts such as aluminium hydroxide or alumin-
ium phosphate are the most common compounds used
as adjuvants to increase the immunogenicity of vaccines.
Despite their good safety record, the mechanism of

action of these adjuvants has not been fully characterised
[2]. Current hypotheses include the activation of the
NLRP3 inflammasome, release of DNA and uric acid
danger signals, activation of the Syk-PI3K pathway and
others [3], but aluminium adjuvants will most likely
exert their function by multiple of these and more fac-
tors. An analysis of gene expression and proteome of
Al(OH)3 treated monocytes revealed two new pathways
activated by the adjuvant – IFNβ signalling and HLA
class I antigen processing and presentation – and signa-
tures of both Th1 and Th2 immune response [4].
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Systems vaccinology approaches, thus application of
systems biology during the development of vaccines, can
be used to study the mechanism of action of adjuvants,
the immune responses induced by them or, more
practically, to improve the quality of vaccines [5]. Tran-
scriptional profiles of tissues in vivo provide valuable in-
formation on the behaviour of genes after exposure to
vaccines or adjuvants, including the study of non-coding
transcripts, which are becoming more relevant in immun-
ology. Recent studies have shown that lncRNAs in blood
cells participate in the immune response to vaccines since
the expression of several long non coding RNAs (lncRNAs)
change after vaccination and correlate to antibody produc-
tion [6]. In the context of sheep research, studies profiling
the transcriptomic response to vaccines are scarce [7, 8],
with almost none of them focusing on lncRNAs or vaccine
adjuvants [9]. In human, transcriptomic studies have been
used for the dissection of adjuvant mechanism of action
[10, 11], and only one murine study analysed the lncRNAs
induced by aluminium salts [12].
Long non-coding RNAs, defined as transcripts longer

than 200 nucleotides that lack protein-coding capability
and are consistently transcribed, show spatiotemporal-
specific expression patterns that highlight the diverse
processes in which they are involved [13]. In immune
cells lncRNAs are expressed in a very cell-specific and
dynamic way, even within lineages of the same cell types
[14–16] and this cell-type specificity seems to be con-
served among species [17]. Because of this, it is becom-
ing apparent that lncRNAs are involved in immune
system cell gene expression regulation, which should be
finely regulated for the generation of a correct immunity
and to avoid autoimmune responses.
Thousands of lncRNAs that may have important roles

in immune processes are being described every year, but
most of them remain functionally uncharacterised, espe-
cially in particular in non-human species. Many of them
might simply be transcriptional noise, but several other
seem to be functional [18]. In a recent collaborative pro-
ject, more than the 25 % of studied lncRNAs were found
to affect the molecular phenotype of human fibroblasts
[19]. LncRNAs do not have a single molecular mechan-
ism. Many of the described lncRNAs function by acting
as scaffolds via interactions with DNA, RNA and pro-
teins [20]. Sometimes the act of transcription itself has a
local functional output [21], which could explain the low
sequence conservation of some lncRNAs. The functions
of lncRNAs are generally classified as cis or trans, de-
pending if the effect happens in a local or distant gen-
omic region [22].
In this work, we analysed RNA sequencing data from

a previous study carried out in our lab, in which it was
characterised the effect of Al hydroxide adjuvant on the
immune response to vaccination was characterised in a

long-term experiment using sheep as a model [23] for
the profiling of novel lncRNAs. We identified novel
lncRNAs in sheep peripheral blood mononuclear cells
(PBMCs), a subset of blood cells consisting of multiple
immune cells including lymphocytes, monocytes and
dendritic cells that is broadly used in infectious disease
and vaccine research to get a global view of molecular
and cellular events during the development of an im-
mune response [24]. We assessed their expression kinet-
ics along with protein coding genes (PCGs) and miRNAs
by differential expression analysis and detection of co-
expressed gene modules.

Results
Identification and classification of lncRNAs
Unknown intergenic, intronic and antisense transcripts
were filtered by length and exon count, reducing the list
of potential lncRNAs from 10,340 to 4899. Transcripts
were further assessed for protein coding potential,
reducing the list to 2284 transcripts. These 2284 lncRNA
transcripts were defined as the novel set of lncRNAs
(Additional file 1). Despite their different approaches,
CPAT, CPC2 and HMMER filtered the transcripts with
high overlap, with 72 %, 56 % and 68 % of the predictions,
respectively, included in the final set. Candidate lncRNAs
were evenly distributed across chromosomes, with larger
ones containing more transcripts (Fig. 1a). Due to the
2000 nucleotide length threshold for monoexonic tran-
scripts, 2-exon transcripts were the most numerous
(Fig. 1c) and showed a wider range of lengths than anno-
tated genes (Fig. 1d). Single-exon transcripts were mostly
shorter than 5000 nucleotides while transcripts with more
than 2 exons had diverse lengths. As for the classification
of lncRNAs based on their relative location to their closest
genes, the intergenic class was the most numerous (38 %),
followed by antisense (20 %) and intronic (18 %) tran-
scripts (Fig. 1b). Among those intergenic transcripts very
close to an annotated gene (distance < 5 kb), we found 112
(5 %) divergent lncRNAs, which are interesting because
they could share the promoter with its flanking gene.
PCGs were more highly expressed than lncRNAs, and
mean expression levels of novel lncRNAs and annotated
lncRNAs were similar (Fig. 1e). These results are in con-
cordance with some previous studies, even if due to a lack
of a standardised workflow different results are obtained
depending on the analyses done and applied thresholds.
We compared our shortlisted lncRNAs in PBMCs with

other works in sheep that also identify novel lncRNAs
by searching for transcripts that share a TSS, defined as
the first transcribed nucleotide, and that are transcribed
in the same direction. In brain tissue of animals from
the same experiment [9] 315 transcripts (14 %) shared a
TSS. However, examining other works with available an-
notation of new lncRNA, small numbers of transcripts
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present in other tissues were found. Just 33 transcripts
(1.44 %) shared a TSS with a lncRNA from a multi-
tissue catalogue [25] and 56 (2.45 %) with lncRNAs from
pituitary gland [26].

Conservation in terms of sequence and synteny
Evolutionary conservation of lncRNAs can be an indica-
tor of function. In this way, having orthologues
strengthens the evidence on sequenced transcripts, even
more if the lncRNA has already been characterised in
other species. As expected because of the nature of

lncRNAs, few sequences had matches with other species
(Fig. 1f, Additional file 2). The highest number of con-
served sequences were in goat (6.67 %), then cattle
(4.28 %), human (2.09 %) and pig (1.07 %). The human
conserved lncRNAs included several functionally charac-
terised lncRNAs such as CHASERR, CYTOR, CCDC26
or FTX. Just eight transcripts (0.35 %) had confident
matches with cattle NONCODE sequences. Note that
185 annotated sheep lncRNAs (9.96 % of all annotated
lncRNAs) were also detected above the minimum ex-
pression threshold in PBMCs.

Fig. 1 General characteristics of the novel lncRNAs. a LncRNA density per chromosome. b Classification of detected candidate lncRNAs by relative
location to the closest annotated gene. c Exon number distribution in novel lncRNAs and annotated genes. d Transcript length distribution in
novel and annotated genes. e Mean expression of protein coding genes, annotated lncRNAs and novel lncRNAs. f Novel lncRNAs conserved at
sequence level comparing with selected Ensembl annotations. g Novel lncRNAs with conserved synteny in selected Ensembl annotations
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In terms of gene order, more transcripts appeared to
be located in conserved regions (Fig. 1g, Additional file
2), some even showing short alignments with annotated
lncRNAs in the same region. We could perform the syn-
teny analysis with roughly half of the novel lncRNAs,
those surrounded with PCGs no more than 500 kb away.
The 2.55 % of novel sheep lncRNAs shared the same
syntenic location with an annotated cattle lncRNA, and
2.19 % with goat lncRNAs, a number that was higher in
human (11.36 %). Both sequence and conservation ana-
lyses are biased due to the vast quantity of lncRNAs an-
notated in the human genome (17,959) comparing with
other livestock species, whose lncRNA repertoire is not
fully annotated and also diverge in the quantity of
lncRNA genes (1858 in sheep, 2705 in goat, 1480 in cat-
tle and 6790 in pig). Because of this, when performing
the same analysis with the 22,227 cattle NONCODE
lncRNAs 9.93 % of novel lncRNAs show syntenic conser-
vation. Few of these lncRNAs with shared syntenic loca-
tion showed short highly conserved alignments.

Expression analysis
In order to profile the expression of lncRNAs in the
presence of aluminium adjuvants, differential expression
was tested between treatment groups. The analysis was
made with all annotated genes plus the newly identified
candidate lncRNAs. In the same fashion as annotated
genes [23], there were less DE lncRNAs in the
comparison between both treatments at the end of the
experiment than between each treatment at the start
and end of the experiment (Fig. 2, Additional file 3). 170
lncRNAs were differentially expressed in the Adj-t0 vs.
Adj-tf comparison (19 annotated and 151 candidate
lncRNAs). 159 lncRNAs were differentially expressed in
the Vac-t0 vs. Vac-tf comparison (11 annotated and 148
candidate lncRNAs). 65 lncRNAs were differentially
expressed in the Adj-tf vs. Vac-tf comparison (4 anno-
tated and 61 candidate lncRNAs). The expression

divergence is clear when comparing time-points, while
treatment-wise changes are more subtle. We found that
five of the DE novel lncRNAs are conserved between
sheep and human. The divergent MSTRG.24,028
lncRNA is downregulated in the Adj-t0 vs. Adj-tf com-
parison and is homologous to the human OTUD6B-AS1
lncRNA, which has been recently linked to regulation of
apoptosis [27].
A gene co-expression network was constructed with

the same genes used for differential expression. This
analysis provides valuable information about along
which genes are the candidate lncRNAs expressed, and
in this way, predicting their putative functions by guilt-
by-association. Genes with similar expression patterns
were clustered in 32 modules ranging from 39 to 1956
genes (Fig. 3a, Additional file 4). We searched for signifi-
cant correlations among module eigengenes, the princi-
pal component of the genes in the module that depicts
its dominant trend, and treatment parameters. 15 mod-
ules were correlated with at least one treatment: 5 mod-
ules with the adjuvant treatment, 5 modules with the
vaccine treatment and 7 modules with both treatments
taken together as a single group (Fig. 3b).
As for the module membership of candidate lncRNAs,

most modules were made of both PCGs and lncRNAs,
although in differing proportions. The five modules with
more than 1000 genes had many co-expressed lncRNAs,
while some small modules were only composed of PCGs.
Integrating DE and co-expression analysis, 17 modules
had DE genes within them, most of them belonging to
the comparisons between time points.
Modules were characterized by gene enrichment

analysis and showed involvement in distinct biological
processes (Additional file 4). Some modules were not
enriched in any term, mainly the smaller ones, and
others were enriched in cell cycle functions or general
metabolic functions. Two modules (coral1 and light-
pink4) were clearly linked to the immune response with

Fig. 2 Venn diagrams of differential expression of coding and lncRNA genes. a Total differentially expressed genes. b Differentially expressed
novel lncRNA genes. Comparisons were made between time points in vaccinated animals (Vac-tf vs. Vac-t0), between time points in adjuvant-
only animals (Adj-tf vs. Adj-t0) and between the treatments at the end of the experiment (Adj-tf vs. Vac-tf)
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functions related to cytokines, immune cell differenti-
ation and response to stress and external stimuli.

Treatment-correlated co-expression modules
Modules with significant correlations with a treatment
variable were selected for further analysis, since lncRNAs
in those modules are probably responding to the vaccine
or adjuvants and many of them are differentially
expressed. Modules whose eigengene is correlated with
the treatment variable should reveal information about
the general effect of aluminium on the immune response
and modules whose eigengene is correlated with one of
the treatments should highlight the differences between
them. The expression profiles of the hub genes within
each significantly correlated module show the trend of
those modules across treatment groups (Fig. 3c).
Among the modules correlated with both treatments

at the same time, the pink module had the strongest
correlation (9e-0.5 p value) and was enriched in DNA
repair, methylation and general metabolic processes.

Coral1 module was enriched in diverse processes such
as immune response, T-helper cell functions (Th17 spe-
cifically), inflammation, cell motility or proliferation; all
of these in concordance with a general response of the
immune system. The yellowgreen module included
genes related to the respiratory chain and cell cycle.
Lavenderblush3 is highly correlated with the treatment
variable, independent of its composition, and it is
enriched in immune response activation, lymphocyte ac-
tivation, cell cycle and metabolic processes (Fig. 4).
The most prominent module correlated with a specific

treatment variable was lightpink4, negatively correlated
with the adjuvant treatment, suggesting a tendency for
lower expression in the adjuvant group (Fig. 3c). It is
enriched in responses to external stimuli, cytokines and
differentiation of various immune cells (Fig. 4); and its
expression seems to be driven by many DE genes in the
Adjuvant tf vs. Vaccine tf comparison. Besides, this
module includes marker genes of classical monocytes
(CD14, S100A12, S100A8) and non-classical monocytes

Fig. 3 WGCNA co-expression analysis results. a Gene dendrogram obtained by average linkage hierarchical clustering. The colour bars show the
module assignment before and after modules with similar expression profiles were merged. b Module-trait associations. Each row corresponds to a
module eigengene, while columns correspond to a trait (both treatments together, vaccine and adjuvant-only). Only modules associated with at least
one trait are shown. c Expression profiles of hub genes of modules correlated with at least one trait and that are enriched in some GO terms
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(FCGR3A) [28], possibly indicating a reduction in the
monocyte lineage fraction of PBMCs in the Adjuvant tf
group. S100A12 and S100A8 are known to be highly
expressed in bone marrow-derived macrophages of
sheep and other mammals [29]. Other abundant genes
in this module are those involved in cytokine production
and reception (e.g. IL6R, IL1R1, IL1R2, IRF1, PTGER4,
MYD88, IL17RC, OSM, IL15RA, IL4R, CXCR1, CSF2RB,
CSF3R). The genes CXCR1, CSF2RB and CSF3R are hub
genes of this module.

Expression of nearby PCGs and lncRNAs
Correlated lncRNA-PCG pairs were identified as a way
of inferring potential cis regulation. In the RNA-seq
dataset, 348 lncRNAs-PCG pairs showed correlations
above the applied threshold. Most of the involved
lncRNAs were sense intronic, sense upstream or sense
downstream of their correlated gene, but there were 24
antisense lncRNAs, 9 divergent lncRNAs and 34 inter-
genic lncRNAs.
Relative expression levels of 10 pairs of correlated

lncRNAs and PCGs were measured by RT-qPCR in
order to validate their coordinated expression. Six

differentially expressed lncRNAs and 4 non-differentially
expressed lncRNAs were selected. Half of the selected
lncRNAs were classified as divergent (MSTRG.9006,
ENSOARG00000025373, MSTRG.17,627, MSTRG.23,098,
ENSOARG00000025919), and there were two sense
(ENSOARG00000026290, MSTRG.16,981), two intergenic
(ENSOARG00000025821, ENASOARG00000026567) and
one antisense (ENSOARG00000026120) lncRNAs. All ex-
cept for the antisense one were amplified, including those
that are unannotated in Ensembl and are predicted in this
study. 7 out of 9 amplified lncRNAs (78 %) showed signifi-
cant correlations with their corresponding PCG (Fig. 5).
Among the studied pairs, some are interesting due to

their relationship with the immune system: The gene
ENSOARG00000006353, an orthologue of human and
murine OSM gene, encodes for a cytokine secreted by
monocytes/macrophages and T-lymphocytes, and is in-
volved in haematopoiesis and inflammation [30]. It is di-
vergently located to the novel monoexonic MSTRG.9006
lncRNA and both of them are differentially expressed in
the vaccinated group. Another immune related gene, the
transcription factor FOXN2, is correlated with the
lncRNA MSTRG.16,981 located sense upstream of it

Fig. 4 Networks of enriched GO biological process functions in two trait-correlated modules: Lavenderblush3 and Lightpink4. Nodes represent
GO biological process terms. Nodes are coloured by false discovery rate (FDR) and their size represents the number of genes in the module
belonging to the term. Edge width represents the number of shared genes between two terms
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and is differentially expressed in the adjuvant group. Be-
sides, three novel lncRNAs, which were not differentially
expressed in the RNA-seq dataset, showed robust corre-
lations with coding genes ARID2, AKIRIN2 and DNAA
F5 in a divergent position.

Novel lncRNAs as miRNA sponges
Some lncRNAs could be acting as miRNA sponges due
to their high quantity of predicted miRNA binding sites.
One hundred lncRNAs, 2 annotated lncRNAs and 69

PCGs had more than 20 predicted target sites for at least
one expressed miRNA. 22 miRNAs were involved in
those interactions. Assuming that miRNAs downregulate
the expression of their targets, we calculated the expres-
sion correlations between them. 16 novel lncRNAs and
26 PCGs showed significant negative correlations with a
miRNA (Fig. 6). The miRNAs that target most lncRNAs
are oar-let-7b and oar-miR-150. The highly expressed
let-7b was upregulated in the Adj-t0 vs. Adj-tf compari-
son [23]. The other miRNA, oar-miR-150, was also one

Fig. 5 Expression correlations between selected lncRNA and protein coding gene (PCG) pairs assessed by RT-qPCR. Gene expression correlations
were performed with efficiency corrected ΔCt values and Spearman’s rank correlation

Fig. 6 Network of miRNA sponge candidates. Significant negative Pearson correlations between miRNAs and target genes are depicted as edges.
Size of target genes reflects the amount of target sites for a miRNA. Inner colours represent TPM expression and edge colours Pearson correlation
strength (r)
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of the most expressed in the miRNA dataset of the same
experiment [23].

Discussion
Mining lncRNAs from RNA-seq data allows the
detection of large amounts of transcripts that could be
classified as candidate lncRNAs. Although there was an
overlap between a priori transcriptionally different tis-
sues such as brain [9] and PBMCs of the same experi-
mental animals, the identified lncRNAs were mostly
tissue-specific, as few of them were present in other
studies in sheep The newly identified lncRNAs shared
similar features with those previously found in other
mammal studies: lower expression than PCGs, fewer
exons, limited sequence conservation and a majority of
intergenic transcripts. For instance, using a multi-tissue
expression dataset, 12,296 and 2657 lncRNAs with inter-
genic location mainly were identified in sheep and goat
[25]. In a developmental tissue dataset from seven spe-
cies, mostly species-specific lncRNAs were found [31].
Other sheep works analysed lncRNAs within a specific
functional RNA-seq dataset and identify lncRNAs with
similar characteristics [26, 32–34].
Apart from a set of highly conserved and functionally

characterised lncRNAs [35], lncRNAs show low se-
quence conservation. Hence, some may be functionless,
function by the act of transcription itself [21, 36, 37], like
the bidirectionally transcribed class of eRNAs [38], or
have short functional elements that escape common
conservation analyses. Some of the highly conserved
lncRNAs identified in this work have been experimentally
tested in humans. For instance, Chaserr (LINC01578), that
negatively regulates its adjacent gene CHD2, to tune
its expression [39], and lnc-sox5, that promotes the
expression of IDO1, which modulates T-cell behav-
iour [40].
A large fraction of annotated lncRNAs are divergent

lncRNAs, originated upstream of an specific gene and
regulated by a bidirectional promoterso they often show
expression correlations with their adjacent gene, which
can imply a regulatory relationship [41, 42]. Based on
this statement, the function of unknown lncRNAs may
be inferred from their relationship with adjacent genes
[43]. We found 112 lncRNAs which could be classified
as divergent. in the RNA-seq dataset. Five divergent
lncRNA-PCG pairs with significant correlations were
tested also by RT-qPCR. Among those pairs, the gene
coding for the OSM cytokine was correlated with a 3 kb
long monoexonic lncRNA not annotated in sheep. Both
genes were upregulated in the vaccinated group of
animals. Although pending of functional studies, this
could be an example of a bidirectional promoter, known
to be stronger than regular promoters [44], that
increases transcription of a PCG.

To predict functions of lncRNAs, prioritise
candidates and discern their transcriptional regulatory
programmes a coexpression analysis network was
performed, assuming that lncRNAs related to known
genes are involved in the same processes or pathways.
Thus, we hypothesise that differentially expressed
lncRNAs co-expressed with known immune genes are
more likely to be involved in immune response func-
tions,. The gene set enrichments of co-expression
modules responding to both treatments pointed to
aluminium-induced inflammation, while the modules
responding only to vaccines or aluminium adjuvants
alone highlighted the effect of adding antigens to the
adjuvant preparation, as illustrated by an immune
gene-rich module with several genes involved in
cytokine production and reception, and monocyte
markers. This module included many novel lncRNAs,
including the one divergently located to the OSM
cytokine gene.
Lastly, the data sets were analyzed to investigate the

interaction between two regulatory elements, lncRNAs
and miRNAs. The miRNAs that target most lncRNAs
were oar-let-7b and oar-miR-150. The highly expressed
let-7b, being a regulator of innate immune response
genes and inflammation activation [45, 46] was upregu-
lated in the adjuvant inoculated animals [23].The second
miRNA, oar-miR-150, was also one of the most
expressed in the dataset [23]. It is thought to be import-
ant in the adaptive immune response due to its high
expression in lymphocytes and its upregulation after
vaccination [47, 48]. Thus, these lncRNAs could act as
sponges by sequestrating miRNAs involved both in the
innate and adaptive immune responses.
Future work should focus on annotating non-coding

genes in specific immune cell types combining with
functional experiments.

Conclusions
The lncRNA transcriptome of sheep PBMCs after mul-
tiple vaccination or adjuvant-only inoculations was ana-
lysed. More than 2000 novel lncRNAs were found, a
small proportion of them being conserved across close
species. Some of those lncRNAs could be involved in the
immune response to vaccination and could regulate
nearby immune genes although experimental work
should be performed to confirm their potential regula-
tory functions. Moreover, both treatments induced
lncRNA-containing co-expression modules, highlighting
their immune response signature. At last, some lncRNAs
seem to act as sponges for 2 miRNAs involved in innate
and adaptive immune responses. In this case, advances
in systems vaccinology can shed light on the mechanism
of action of aluminium salt adjuvants, and help to
understand the overall immune response to vaccines.
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Methods
Experiment design and sequencing data
Raw data from a previous RNA-seq experiment per-

formed by our group was analysed [23] for the detection
of novel lncRNAs. All the animals used in this study
were neutered male lambs of the same age without any
vaccination before the experiment. The information re-
garding experimental design was included in [23]. In
short, 14 Rasa Aragonesa lambs were divided in two
treatment groups, one receiving commercial vaccines
(Vac group) and the other only Alhydrogel aluminium
hydroxide (Adj group), and were kept under controlled
conditions for 475 days. During that time animals
followed an inoculation schedule with commercial vac-
cines or Alhydrogel® only.
RNA was extracted from peripheral blood mono-

nuclear cells (PBMCs) of three animals of each group at
the beginning (t0) and at the end (tf) of the treatment.
Ribosomal RNA-depleted total RNA was sequenced in a
HiSeq2000 platform with a mean sequencing depth of
70 million and 2 × 75 nucleotide paired-end reads at
CNAG (Centro Nacional de Análisis Genómico, Barce-
lona, Spain).

Alignment, mapping and transcriptome assembly
Quality filtering, alignment and count estimates of anno-
tated genes was made as previously [23] and using the
same parameters. In short, adaptor sequence removal
and quality filtering was performed with Trimmomatic
v0.36 [49], reads were mapped to the sheep genome as-
sembly Oar_v3.1 with STAR v2.5.2b [50] and quantifica-
tion of the reference transcriptome was performed with
featureCounts v1.5.0-p1 [43]. For the detection of non-
annotated transcripts, like most lncRNAs, it is necessary
to reconstruct the transcriptome. StringTie [51] assem-
bler was run on each sample with the reference annota-
tion from Ensembl 95 (Oar_v3.1) and, in order to obtain
a non-redundant set of transcripts, the –merge option
was applied afterwards. Then, StringTie was once again
applied on each sample, but with the new GTF tran-
script file obtained in the previous step in order to
estimate transcript abundances.

Identification of candidate lncRNAs
GffCompare [52] software was used to classify all tran-
scripts based on their location relative to the reference
annotation. Potential lncRNAs were selected among
those transcripts classified as unknown intergenic (u),
fully contained within a reference intron (i) and in the
opposite strand of a reference gene (x), since there is not
enough evidence for other overlapping transcripts, which
could arise due to errors or background noise. Potential
lncRNAs were filtered by length and coding potential.
First, multiexonic transcripts of less than 200 nucleotides

and single-exon transcripts of less than 2000 nucleotides
were filtered out. Secondly, three approaches were
followed to assess the capability of the transcripts to code
for proteins: Coding Potential Calculator 2 (CPC2) is a
machine learning based program with a species-neutral
model able to classify coding and non-coding sequences
[53]. Coding-Potential Assessment Tool (CPAT) is an-
other machine learning based program that we trained
and selected the classification threshold following authors’
instructions using available bovine coding and non-coding
sequences [54]. HMMER 3.1b2 [55] was used to detect
Pfam protein domains in our potential lncRNAs, which
were translated into the three possible frames. Transcripts
classified as non-coding by CPC2 and CPAT and without
protein domains detected by HMMER in any frame were
selected as lncRNAs.
Each of the novel lncRNAs was classified based on its

position relative to its closest gene. For parsing and clas-
sification we used custom Python scripts, including the
BEDTools python implementation to get the closest
genes (https://github.com/daler/pybedtools). Transcrip-
tion start sites (TSSs) were defined as the start or stop
nucleotides, depending on strandness. Seven categories
or classes were defined: (1) antisense, for those tran-
scripts overlapping a gene in the opposite strand; (2) in-
tronic, for transcripts fully contained within an intron;
(3) intergenic, for lncRNAs at least 5 kb away from any
known gene; (4) divergent, with TSSs within 5 kb and in
the opposite strand; (5) convergent, with transcription
stops within 5 kb and in the opposite strand; (6) sense
upstream, located less than 5 kb upstream of a gene and
in the same strand; and (7) sense downstream, located
less than 5 kb downstream of a gene and in the same
strand.

Sequence and synteny conservation
In order to find sequence level conservation of candi-
date lncRNAs, standalone Blast searches against the
lncRNAs annotated in Ensembl Release 101 of four
species: goat, cattle, pig and human. We libraries with
lncRNA cDNA sequences for each species. We also
downloaded cattle transcript sequences from NON-
CODE. Accounting for the low sequence conservation
expected in lncRNAs, the threshold for identity was
set to 50, the minimum length of the query sequence
to half of the target’s length, E-value of 1 × 10 − 3 and
query coverage of 50 %.
Synteny conservation, that is, the preservation of co-

localisation of genes between different species, has been
proposed as a way to deal with the low sequence conser-
vation in lncRNAs. We downloaded from Ensembl Bio-
Mart (release 101) a custom dataset of all sheep (Oar
v3.1) PCGs and their Ensembl-defined orthologues for
goat (ARS1), cattle (ARS-UCD1.2), pig (Sscrofa11.1) and
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human (GRCh38). LncRNA annotations and cDNA se-
quences were also downloaded from Ensembl. Then,
using a custom python script, we got the two upstream
and downstream flanking orthologues for each lncRNA
in the three species, which had to be located no more
than 500 kb apart from it. Each sheep lncRNA was com-
pared with all other lncRNAs. The minimum number of
shared orthologues was set to two, these being the first
flanking genes, and each pair of lncRNAs was scored as
in the Ensembl Gene Order Conservation score. If the
lncRNA was conserved in terms of synteny, an align-
ment was done between the novel sheep lncRNA tran-
script and the longest transcript of the other species’
gene with the Needleman-Wunsch global pairwise
alignment from EMBOSS and the longest stretch of con-
secutive identical nucleotides in the alignment was cal-
culated. It is thought that even if complete sequence
conservation is not the most common in lncRNAs, small
functional sequences could be conserved. The analysis
was also performed with the set of cattle lncRNAs in
NONCODE.

Differential expression
The gene level expression matrix was built by keeping
only the raw counts of novel lncRNAs obtained from
StringTie and the count estimates of annotated genes.
Before differential expression, SVA package [v3.26.0]
[56] was applied to account for a known batch effect
observed in the PCA analysis. After normalisation and
removing of lowly expressed genes, three packages
were used for differential expression: DESeq2 [57],
limma [58] and edgeR [59]. Testing design included
treatment, time, animal and SVA covariates, and dif-
ferences were tested for the interaction of time and
treatment. Thus, comparisons were made between the
time points in both treatments (Vac tf vs. Vac t0 and
Adj Tf vs. Adj t0) and between the treatments at the
end of the experiment (Adj Tf vs. Vac Tf). The differ-
entially expressed genes (DEGs) were selected from
the intersection of the three tools of those genes with
an adjusted p-value (using the Benjamini-Hochberg
method) of < 0.05 and a log2 fold change (log2FC)
value of > 1.

Gene co-expression analysis
A weighted gene co-expression network analysis was
performed using the WGCNA [v1.63] R package [60].
The similarity matrix was constructed from normalised
expression data using the biweight midcorrelation, a cor-
relation more robust against outliers. Next, the adja-
cency matrix was defined by raising the similarity matrix
to a power β = 18, the minimum value required to get a
scale-free topology network in our data. Modules, clus-
ters of interconnected genes, were defined by performing

a hierarchical clustering on the topological overlap
measure. The minimum module size was set to 30 and
modules with similar expression profiles were merged.
Once modules were defined, we looked for correla-

tions with the treatment groups by dichotomising the
groups in different combinations: samples at the begin-
ning against samples at the end of the experiment (Treat
variable), vaccine samples at the end against all other
samples (TreatVac) and adjuvant samples at the end
against all other samples (TreatAdj). For that purpose,
Pearson correlations were generated for all pairwise
comparisons of the module eigengene expression values
and the treatment parameter. The eigengene is used to
summarise each module with its first principal compo-
nent. p-values were corrected by FDR (q-value) esti-
mates and modules related to a variable were selected as
those with a q-value < 0.05.
Every module that exhibited high correlation with a

treatment or harboured many candidate lncRNAs was
tested for enrichment of GO terms and KEGG path-
ways with gProfiler [61]. The list of all expressed
genes was used as the statistical domain scope for the
test and the significance threshold was set to 0.05
Benjamini-Hochberg FDR. Gene ontology term net-
works were created with the EnrichmentMap plugin
workflow [62] for Cytoscape v3.7.1 [63] using enrich-
ment results from gProfiler, and clusters of terms
were formed by semantic similarity. Apart from en-
richment analysis, the hub genes of each module were
obtained by calculating the module membership
(MM) and gene significance (GS) values according to
WGCNA. We defined hub genes as those belonging
to the ≥ 85th percentile for both MM and GS in each
module. Those genes, including lncRNAs, are likely
key drivers of expression and can give an idea about
the functions or pathways of candidate lncRNAs in
those modules.

Correlations of nearby lncRNA-PCG pairs
Candidate lncRNA-PCG pairs for cis-regulation were
obtained from expression correlations between closely
located pairs. Candidate lncRNAs whose TSSs were lo-
cated less than 100 kb apart from the TSS of another an-
notated gene were selected, and the Spearman
correlation was calculated between the expression pro-
files of both genes. Pairs with an absolute correlation R
higher than 0.8 and a FDR-corrected p-value lower than
0.05 were kept.

Identification of potential miRNA sponges
MicroRNA expression data from the same experiment
was downloaded from GEO (series GSE113897).
RIsearch2.1 [64], a large-scale RNA–RNA interaction
prediction tool suitable for full genome or
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transcriptome screening, was used to predict miRNA
target sites in all the expressed transcripts. The mini-
mum seed size was set to 6, the seed had to be
within the first 8 bases of the miRNA and G-U wob-
bles were allowed, as proposed by the authors.
Hybridization threshold was set to -15 kcal/mol. For
a transcript to be classified as a potential miRNA
sponge we set the minimum of 20 target sites of a
single miRNA and the quantity of target sites in each
transcript was averaged for visualisation at gene level.
PCG, lncRNA and miRNA expression levels were nor-
malised by TPM and Pearson correlations were per-
formed between miRNAs and their putative sponge
genes. Significant negative correlations were visualized
with Cytoscape v3.7.1 [63].

RT-qPCR experiments
The relative quantification of 10 lncRNAs and 10 PCGs
was performed by RT-qPCR using 16 different animals,
4 from each treatment group. We chose a heterogeneous
set of lncRNA-PCG pairs regarding DE status and rela-
tive position of the lncRNA. They were required to be
correlated at gene expression level and less than 5 kb
apart. Primers were designed using PrimerQuest and
OligoAnalyzer tools of Integrated DNA Technologies
(IDT) (Additional file 5). GAPDH, ATPase, ACTB and
G6PD were used as putative reference genes. RT-qPCR
experiment was carried out using BioMark HD Nano-
fluidic qPCR System technology (Fluidigm) combined
with a GE 48.48 Dynamic Array integrated fluidic circuit
(IFC) and the Master Mix SsoFast EvaGreen Supermix
with Low ROX (Bio-Rad). RT-qPCR experiment was
performed at the Gene Expression Unit of the Genomics
Facility, in the General Research Services (SGIKER) of
the UPV/EHU.
Analysis of amplification data was carried out

using the Fludigm Real-Time PCR Analysis Software
[4.1.3]. Amplification curves and melting curves were
analysed to discard low quality amplifications and Ct
values were corrected for efficiency differences with
GenEx software of MultiD [5.4]. The stability of
candidate reference genes was analysed with Norm-
Finder and GeNorm, implemented in GenEx. G6PD
and ACTB were the most stable reference genes.
Relative quantification for the correlations between
lncRNAs and PCGs were determined by the ΔCt
method and log2 fold changes for the validation of
differential expression of lncRNAs were calculated
with the ΔΔCt method. Normal distribution was
checked using the Shapiro-Wilk test, and because
the null hypothesis was rejected, Spearman’s rank
correlation coefficient was used to assess the pres-
ence of significant correlation and non-parametric
tests for pairwise comparisons.
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