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Abstract: Heusler Ni-Mn-Sn-based alloys are good candidates for magnetic refrigeration. This
application is based on cycling processes. In this work, thermal cycles (100) have been performed in
three ribbons produced by melt-spinning to check the thermal stability and the magnetic response.
After cycling, the temperatures were slowly shifted and the thermodynamic properties were reduced,
the entropy changed at about 3–5%. Likewise, the thermomagnetic response remains similar. Thus,
these candidates maintain enough thermal stability and magnetic response after cycling. Likewise, Cu
addition shifts the structural transformation to higher temperatures, whereas the Curie temperature
is always near 310 K. Regarding magnetic shape memory applications, the best candidate is the
Ni49Mn36 Sn14Cu1 alloy.

Keywords: Heusler; thermal cycling; thermal analysis; magnetic behavior

1. Introduction

Ni-Mn-Sn-based Heusler ferromagnetic alloys are multifunctional materials due to
the coupling of a reversible solid-state first order transformation (austenite to martensite)
and a second order magnetic transformation (ferromagnetic to paramagnetic). In these
alloys, the transformations can be induced by mechanical stress, temperature and/or
external magnetic field. Functional effects of these materials are: magnetic shape mem-
ory [1], magnetocaloric [2], magneto-resistance [3], exchange-bias [4], barocaloric [5] or
elastocaloric [6].

Addition of small quantities of a fourth element in the ternary off-stoichiometry
Heusler alloys has been proposed as a way to improve the functional response and to
tailor the transition temperatures [7]. The shift of the transition temperatures is due to the
sensitivity to interatomic distances and hybridization [8]. This trend opens the possibility
of deliberate changes in the transition temperatures and benefits while forcing phase
transitions by a temperature and magnetic field [9]. The improvement of the magnetic
response could be favored by the addition of a magnetic element as Fe [10] or Co [11].
Gd-based and Ni-Mn-In alloys are good candidates for magnetic refrigeration devices.
Thus, Gd [12] or In [13] addition has been also analyzed. A minor amount of other metallic
elements, such as Zn [14], Al [15] or Pd [16], or metalloids, such as B [17] have been also
checked. In these compounds, the main effect is the shift of the transition temperatures.
Obviously, the addition of two elements to combine their effect has been done, such as Pt
and Co [18]. In our work, Cu addition has been performed.

Likewise, for the magnetic refrigeration or shape memory applications it is necessary
to check the stability of the functional response after cycling. The mechanical cycling from
Ni-Mn-based alloys shows that the mechanical stability is linked to the good geometrical
compatibility at the interphase between austenite and martensite [19].
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In our study, we produce three Ni-Mn-Sn-(Cu) Heusler alloys. In a previous work [20],
we analyzed the microstructure of the as produced ribbons as well as the thermal and
magnetic behavior. These ribbon flakes have been now subjected to controlled thermal
cycling (100 cycles). The main objective is to analyze the thermal and magnetic response to
check its thermal and magnetic stability after cycling.

2. Materials and Methods

Three alloys with nominal composition (at.%) Ni50−xMn36Sn14Cux (x = 0, 1, and 2) were
produced by melt-spinning (melt-spinner MSP 10, Edmund Bühler GmbH, Bodelshausen,
Germany) as ribbon flakes (1 mm thick, 2–3 cm long, 20 µm width). The X-ray diffrac-
tion (XRD, D500 S equipment, Bruker, Billerica, MA, USA) patterns at room temperature
were made to verify the crystallographic structure of the spun-ribbons. The refinement
of crystalline structures were made by applying the Maud software, which is founded
on the Rietveld method [11]. Austenite to martensite direct and inverse temperatures
were determined by differential scanning calorimetry (DSC) in a DSC822 Mettler-Toledo
calorimeter, at a heating/cooling rate of 10 K/min. Thermal cycling (100 cycles) experi-
ments were performed with liquid nitrogen between nitrogen liquidus temperature and
room temperature. Thermomagnetic measurements were done on a PPMS 6000 device
(Quantum Design, San Diego, CA, USA). Zero-field-cooling (ZFC), field-cooling (FC) and
field-heating (FH) protocols, in a temperature range from low temperature up to 400 K and
an applied magnetic field up to 50 kOe; whereas magnetic hysteresis loops were recorded
at 50 K and 300 K.

3. Results and Discussion

The results include the crystallographic analysis of the as-quenched ribbon flakes
and the analysis of the thermal and magnetic behavior after cycling. These results were
discussed by comparison with those of ribbons before thermal cycling.

3.1. Crystallographic Analysis

The analysis of the three diffraction patters collected by XRD of the ribbons shows
that at room temperature all the samples have a cubic L21 Heusler structure. This crystal-
lographic structure is found in ternary alloys and the stoichiometry is 2:1:1 (X2YZ). Thus,
we produce of stoichiometry alloys, and the excess od Mn atoms will be in Z sites. The
Rietveld analysis has been performed, as shown in the Figure 1.

The L21 orders have been determined by taking into account Equation (1):

(I111/I220) exp = [ SL21 (3 − SB2/2)]2 (I111/I220) th, (1)

where the I (hkl) refers to the Bragg peak’s intensity, Miller indices (hkl) and the suffixes
‘exp’ represent experimentally obtained intensity values and “th” represents theoretically
simulated and “S” represents the order parameter. This order parameter before cycling
ranged between 85–88% [20], whereas between 73–75% after cycling. The produced alloys
were off-stoichiometry. Thus, this reduction indicates that the alloys evolve to the lower
expected L21 order.

The crystallographic parameters derived from Rietveld analysis of the specimens
before and after thermal cycling are given in Table 1.
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Figure 1. X-ray diffraction patterns of the Ni-Mn-Sn-(Cu) ribbons. 
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Ni48 Mn36 Sn14 Cu2 (before) a = 0.5982 0.928 82 
Ni48 Mn36 Sn14 Cu2 (after) a = 0.5992 0.853 94 

The lattice parameters change slightly with the thermal cycling and/or the Cu addi-
tion. Meanwhile, the microstrain decreases after cycling and the crystalline size increases. 
Probably the local atomic displacements during cycling and the accommodation of the 
martensite favors this behavior. 

Figure 1. X-ray diffraction patterns of the Ni-Mn-Sn-(Cu) ribbons.

Table 1. Crystallographic parameters obtained from XRD analysis of specimens before and after
thermal cycling.

Alloy Lattice
Parameter/nm Microstrain/% Crystallite Size/nm

Ni50 Mn36 Sn14 (before) a = 0.5983 0.650 114
Ni50 Mn36 Sn14 (after) a = 0.5981 0.583 127

Ni49 Mn36 Sn14 Cu1 (before) a = 0.5980 0.643 103
Ni49 Mn36 Sn14 Cu1 (after) a = 0.5987 0.536 125

Ni48 Mn36 Sn14 Cu2 (before) a = 0.5982 0.928 82
Ni48 Mn36 Sn14 Cu2 (after) a = 0.5992 0.853 94

The lattice parameters change slightly with the thermal cycling and/or the Cu addi-
tion. Meanwhile, the microstrain decreases after cycling and the crystalline size increases.
Probably the local atomic displacements during cycling and the accommodation of the
martensite favors this behavior.

3.2. Thermal Analysis

As the crystallographic phase is cubic at room temperature, in all samples only the
austenite phase is detected. In order to determine the temperatures of the reversible austen-
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ite to martensite structural transformation continuous cooling-heating was performed.
Figures 2–4 show the DSC scans before and after thermal cycling of alloys Ni50−x Mn36
Sn14 Cux (x = 0, 1, and 2), respectively.
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The scans show that the addition of a minor amount of Cu shifts the transition
temperatures to higher values. Thus, by controlling composition it is possible to design
the production of alloys with transformation temperatures close to room temperature. A
characteristic temperature is the equilibrium Gibbs temperature of the martensite structural
transformation, To, that is calculated from DSC scan analysis following the procedure
described in reference [21]. The To values obtained before and after thermal cycling are
provided in Table 2. Thermal cycling slightly increases the transformation temperatures.
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Table 2. Equilibrium Gibbs temperature, To, and thermodynamic parameters (enthalpy ∆H, entropy,
∆S) of the structural transformation before and after thermal cycling (before values are calculated
following the procedure and data provided in reference [21]). To is one half of Ms + Af.

Alloy To/K ∆H/J g−1 ∆S/J g−1 K−1

Ni50 Mn36 Sn14 (before) 203.2 1.54 0.0077
Ni50 Mn36 Sn14 (after) 204.4 1.44 0.0073

Ni49 Mn36 Sn14 Cu1 (before) 211.5 1.61 0.0079
Ni49 Mn36 Sn14 Cu1 (after) 212.4 1.60 0.0077

Ni48 Mn36 Sn14 Cu2 (before) 237.0 2.53 0.0100
Ni48 Mn36 Sn14 Cu2 (after) 238.2 2.27 0.0096

The enthalpy and entropy values of the structural transformation (∆H and ∆S respec-
tively) are also given in Table 1. The enthalpy decreases with thermal cycling, the same
effect is found in the entropy. These trends need to be confirmed for long term cycles and
should be taken into account in the design of magnetocaloric devices.

3.3. Magnetic Analysis

Further, we will consider the magnetic properties of the alloys. Zero-field-cooling
(ZFC), field-heating (FH), and field-cooling (FC) experiments have been performed at two
different external magnetic fields to check the magnetic response at low (50 Oe) and high
(50 KOe) magnetic fields. The thermomagnetic curves are represented in Figures 5–7 for
thermally cycled alloys Ni50−x Mn36 Sn14 Cux (x = 0, 1, and 2), respectively.

As expected, through the process of the structural transition at 50 Oe, both FC and
ZFC curves exhibit an irreversible behavior due to the obvious hysteresis between FC
and ZFC curves, leading to the direct and inverse martensite transformation. It is known
that this transformation requires overheating (martensite to austenite) and undercooling
(austenite to martensite). This behavior was presented in such a thermal hysteresis between
the FH and FC curves. Furthermore, the separation between the ZFC and FC scans below
this ferromagnetic transition usually caused by spin glass state and/or the coexistence of
antiferromagnetic and ferromagnetic states [22,23].
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Figure 5. ZFC, FH, and FC thermomagnetic measurements of alloy Ni50Mn36Sn14. (a) 50 Oe and (b)
50 KOe.

Regarding the influence of the Cu addition, it is clear that the Cu favors the increase of
the temperatures of the structural transformation, confirming DSC data, whereas the Curie
temperature remains early constant at around 310 K. Thus, this temperature was slightly
increased (3–5 K) after thermal cycling [20]. The first effect was also detected in the samples
before thermal cycling, whereas a slight decrease (up to 13 K) was found in the Curie
temperature. From the results after cycling, we can remark that Cu addition could be a way
to shift the structural transformation close to the magnetic transformation in order to favor
the interplay between both transformations at low magnetic fields. It is well known that the
total entropy change, ∆S, linked to the martensite transformation represents a limit to the
attainable magnetic entropy change, and it has been phenomenologically established that
it decreases exponentially with the increment of the generalized order parameter defined
as the temperature interval between the Curie temperature of the austenite and the Gibbs
equilibrium temperature of the structural transformation, TC − To [10]. From such relation,
it can be deduced that the closest the Curie temperature of the austenite to the equilibrium
temperature, the largest the magnetic entropy change values can be achieved. Likewise, at
50 Oe the magnetization has a minor growth as Cu content increases. This tendency is not
followed at 50 kOe, 1 at.% Cu addition increases magnetization, but 2 at.% Cu addition
does not.
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(b) 50 KOe.

Furthermore, one can note that the martensite is more stable when increasing the
applied magnetic field because in the alloy without Cu, it takes more energy to transform
the austenite into martensite. The important shift in the temperatures of the structural
transformation by the Cu addition detected in DSC scans is reduced in the thermomagnetic
scans at 50 kOe. Thus, for the possible applications of these alloys it is important to analyse
their magnetic response at the expected working magnetic field.

It is known that the increase of the magnetization shift between the martensitic and
the austenite phases benefits the field induced phase transformation, especially close
to temperatures close the austenite start formation [7]. In our study, an increase of the
magnetization change was found as increasing Cu content, it is a signal that the energy
difference between the austenite L21 structure and the martensite structure increases by
Cu doping [24]. Likewise, the calculated values of the temperature change due to an
applied magnetic field of 1 T were 1.10, 1.30 and 1.16 K/T for the alloys with x = 0, 1,
and 2 at.% of Cu, respectively. These values are slightly different than the calculated for
the same specimens before thermal cycling: 1.28, 1.29, and 1.11 K/T. As there are close
compositions, it is expected that the martensite phase was modulated 10M, as previously
found in reference [20].
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(b) 50 KOe.

It can be concluded that the best alloy for applications linked to the magnetic shape
memory and magnetocaloric effects is Ni49Mn36Sn14Cu1, as the elastocaloric behavior [25].
The non-continuous variation (as a function of Cu content) may be caused by hybridization
or the non-entirely ferromagnetic band splitting [24].

Complementary magnetic analysis has been performed by performing magnetic
hysteresis loops (50 K and 300 K). The results are shown in the Figure 8.

All the hysteresis loops at 50 K are clearly ferromagnetic. The measurements at 300 K
show the decrease of the magnetization of saturation and the coercivity. The Cu addition
provokes an increase in the coercivity and minor changes in the magnetization of saturation.
The results are given in Table 3 and are similar to those obtained before thermal cycling.
The increase on the coercivity with the increase of the Cu content can be provoked by the
higher microstrain (Table 1 data).

Table 3. Magnetic parameters derived from Figure 8 hysteresis loops.

Alloy
Saturation

Magnetization
(emu/g) at 50 K

Saturation
Magnetization

(emu/g) at 300 K

Coercivity
(Oe) at 50 K

Coercivity (Oe)
at 300 K

Ni50 Mn36 Sn14 38.5 19.5 266 10.2
Ni49Mn36Sn14Cu1 40.0 21.5 275 10.0
Ni48Mn36Sn14Cu2 38.6 18.8 400 11.6
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and (c) Ni48Mn36 Sn14Cu2.

4. Conclusions

Three alloys with nominal composition (at.%) Ni50−xMn36Sn14Cux (x = 0, 1, and 2)
were produced by melt-pinning as ribbon flakes. At room temperature all the samples
have the austenite L21 cubic Heusler structure. The L21 order parameter decreases af-
ter cycling to values ranged between 73–75%. Thermal analysis detects the reversible
structural transformation, Cu addition shifts this transformation to higher temperature.
After thermal cycling (100 cycles) it was found a slight increase of the Gibbs equilibrium
temperature of the structural transformation, this shift is reduced in the thermomagnetic
scans at 50 kOe. Whereas the Curie temperature remains close to 310 K. The calculated
magnetization/entropy change ratios were 1.10, 1.30 and 1.16 K/T for the alloys with x = 0,
1, and 2 at.% of Cu, respectively. Results show the interest to check the thermal stability
and the magnetic response of these alloys due to the cycling working conditions linked to
some of their specific applications and also the interest of Cu addition to shift the transition
temperatures.
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