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Abstract

Task-oriented Spoken Dialogue Systems (SDSs), also known as Conversational

Assistants, have been generating a great deal of interest in recent years, as they

can be used to automate repetitive and low-value tasks and processes which use a

natural communication channel. One basic component of every task-oriented SDS is

the Dialogue Manager (DM), which is responsible for tracking the current state of

the conversation and for deciding the next action of the system.

This dissertation intends to improve a data-driven framework based in stochastic

finite-state transducers for DM modelling in task-oriented SDSs: the Attributed Prob-

abilistic Finite State Bi-Automata (A-PFSBA). Several contributions are presented

that enhance the A-PFSBA based DM in different aspects. First, its model gener-

alisation mechanism is improved to better employ context, the semantic relation

between dialogue states and the spatial relations of the dialogue state space. Second,

the A-PFSBA theoretical framework is extended for policy-making. In the same way,

multiple policies with different degrees of complexity are implemented following

this formulation. Third, a simple-yet-effective algorithm is proposed to incrementally

learn an initial DM, which can be adjusted to work under uncertainty. Finally, the

potential of the A-PFSBA framework to be deployed in data scarcity and zero-data

scenarios and its capability to bridge the gap between data-driven and rule-based

paradigms for DM development is tested.

The presented contributions have been validated using two well-known corpora:

the Let’s Go corpus and the Dialogue State Tracking Challenge 2 corpus. In order

to validate the viability of the A-PFSBA framework in industrial scenarios, three

applications that employ the A-PFSBA formulation and which have been validated

by real users are also presented.
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1Introduction

1.1 Motivation

Technological advances and the digitalisation of society have drastically changed the

way we interact with people, companies and almost everything around us. Apart

from the telephone and electronic messages, many new digital communication

channels (e.g. WhatsApp, Telegram, VoIP, etc.) have emerged in recent years. The

democratisation of the Internet, together with the advent of web platforms, smart-

phones and hardware with enhanced computation capacity, have given companies

and institutions a golden opportunity to communicate with their customers through

novel interfaces.

The new digital communication landscape has also brought opportunities to the

field of Artificial Intelligence and, more specifically, to the field of Dialogue Systems

(DSs) – also known as Conversational Assistants. In this context, the long sought-

after endeavour to make natural language-based Human-Machine Interaction (HMI)

possible is attracting a great deal of interest. In addition, this goal is far more

reachable thanks to improvements in hardware and software, which allow powerful

Deep Learning (DL) architectures to be deployed for online use of speech and natural

language processing technology.

DS can be used to automate repetitive and low-value tasks and processes in multiple

domains using a natural communication channel. In addition, as DS can be easily

distributed and escalated to handle several simultaneous users, its commercial

interest has grown over the last few years.

1.2 Overview and Limitations of Dialogue Systems

The aim of DSs is to interact with their users by using natural language. They are

generally grouped into two categories: Task-Oriented systems, which are intended

to assist the user to solve and automate certain tasks within a particular application

context (e.g. checking bus timetables, finding and booking restaurants); and Open

Domain systems, which are designed to provide reasonable responses and entertain-

ment to the users (H. Chen et al., 2017). The industrial interest in Task-Oriented DS
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is nowadays far superior to Open Domain systems, since they offer the possibility of

automating repetitive, low value-added and frequent tasks helping reduce costs, opti-

mise processes, manage knowledge, distribute expertise and dedicate employee time

to higher value-added chores (Bohus and Rudnicky, 2005b; Serras, Garcıa-Sardiña,

et al., 2020b; Reidsma et al., 2016; Crook, Keizer, et al., 2014; Raux, Bohus, et al.,

2006; Pineau, Montemerlo, et al., 2003; Garcıa-Sardiña et al., 2020; Lubold et al.,

2016; Reidsma et al., 2016; Graesser et al., 2001; Serras, Garcıa-Sardiña, et al.,

2020a).

Fig. 1.1.: Illustrative example of the traditional DS pipeline

Traditionally, a DS consists of a pipeline of various technological modules, as shown

in Figure 1.1, each having a clearly defined purpose:

• Speech to Text (STT): this module transcribes the utterances of the users,

returning a set of transcription hypotheses.

• Natural Language Understanding (NLU): this component encodes text tran-

scriptions into semantic representations (e.g. "I want pizza" into "inform(food=pizza)").

This way, input text variability is highly reduced in order to be handled by the

system.

• Dialogue Manager (DM): this module determines the state of the current di-

alogue, commonly known as dialogue state. It is also responsible for consulting

external knowledge sources (e.g. databases, profiling systems, and recommen-

dation systems) and for defining the dialogue strategy to follow, commonly

known as dialogue policy. The dialogue policy determines the response to be

given to the user, usually employing a semantic representation.
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• Natural Language Generation (NLG): this module converts the semantic

representation of the response given by the DM into human-interpretable form,

usually a text.

• Text to Speech (TTS): this module synthesises the text generated by the NLG

into audio. This audio response is sent back to the user, then closing the loop.

The layer made up of the STT and TTS modules is characteristic of Spoken Dialogue

Systems (SDSs), in which interactions with users are carried out orally. Those DSs

without this voice layer are commonly denominated Chatbots and perform written

interaction. This dissertation will focus primarily on SDSs. Generally, the inclusion

of a STT module in a DS increases the complexity, as the noise channel can have a

negative impact on the speech transcription, and this error is propagated to the rest

of the modules.

The main topic of this dissertation is related to the DM, the central component

responsible for controlling the DS interaction. As mentioned above, its principal

tasks involve determining the dialogue state of the current interaction, exploiting

external information sources and deciding the response the system should give next

in order to meet the users’ needs.

Several paradigms have been proposed in the literature for DM development. How-

ever, still there is not a mainstream approach capable of solving all the challenges

related to dialogue management. This, together with the immediate demand of DSs

from the market for process automation, has fostered a clear divergence between

industry and academia.

On the one hand, academia proposes data-driven solutions to build technological

modules capable of managing dialogue interactions. Despite their adequateness,

these techniques require high amounts of tagged data in order to define dialogue

policies. As manual dialogue compilation is highly resource demanding, a usual

approach is to develop an artificial user or User Model (UM) from a small dataset ca-

pable of generating synthetic dialogue samples for training and evaluation purposes

(Schatzmann, Weilhammer, et al., 2006).

On the other hand, industrial DSs generally employ handcrafted decision rules for

dialogue management due to the lack of annotated data. These methods are hard to

escalate to complex scenarios. Also, they have difficulty in handling uncertainty (e.g.

when there are multiple transcription hypotheses given by the STT).

1.2 Overview and Limitations of Dialogue Systems 3



Within the technological context above, this dissertation aims to improve a data-

driven framework based in stochastic finite-state transducers for dialogue manage-

ment. Contributions are made in different aspects, such as the model generalisation

mechanisms, policy-making and incremental learning. In addition, the potential of

the dialogue management framework to bridge the gap between data-driven and

rule-based paradigms for DM development is also explored. Note that the presented

work targets only Task-Oriented DSs.

1.3 Summary of Contributions

The contributions of this thesis focus on improving and testing the Attributed Proba-

bilistic Finite State Bi-Automata (A-PFSBA) framework proposed to model dialogue

interaction in (M Inés Torres, 2013) for DM development in several scenarios. In

particular, the following contributions are presented:

• The A-PFSBA framework is tested on two well-known scenarios to determine

its validity: Let’s Go, a bus information retrieval system; and the Dialogue

State Tracking Challenge 2 (DSTC2), a restaurant finder application. The first

one provides a challenging corpus collected with real users. The second one

provides an statistical NLU which enables to test the capability of the A-PFSBA

framework to handle uncertainty and provides user-related goals for better

user modelling.

– An A-PFSBA DM is implemented for the first time on the Let’s Go domain

and a mirroring UM is built for evaluation purposes.

– In the DSTC2 domain, the implemented A-PFSBA DM includes a speech

recognition error simulation model to test the robustness of the frame-

work against channel noise. In addition, two goal-conditioned UMs are

implemented to emulate the behaviour of the users: one based on the

A-PFSBA framework and the other one based on a DL architecture that

improved the state of the art at that time.

• Three novel methods are proposed to improve the A-PSFBA framework’s

model smoothing strategy, which allows the DM to transparently recover when

unknown situations appear in the dialogue and generalise to new interactions.

– K-nearest State Smoothing: exploits the nearest dialogue states to better

contextualize the recovery strategy.

– State Pruning: prunes non-useful dialogue states for dialogue recovery.
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– Spatial Relation Learning: learns spatial relations (i.e. similarities, dis-

tances and metrics) to better represent the dialogue state space

• The theoretical definition of the A-PFSBA framework is extended to exploitation

policies.

• A method is proposed to incrementally improve the A-PFSBA DM model as

new dialogues are carried out with the users. It is adapted to interactions

under uncertainty.

• A methodology capable of integrating expert rule based DMs and A-PFSBA

based DMs is presented, which has the potential to incrementally learn a

data-driven DM in zero-data domains.

• Finally, the A-PFSBA framework has been used to build three different DS

applications.

– An Industrial Maintenance prototype, whose goal is to guide the operator

in performing a monthly maintenance task over a Universal Robot’s

gripper combining spoken interaction and Augmented Reality.

– A Gerontological Data Registration system, which interacts with a Knowl-

edge Base in order to register information related to the tasks carried out

by personnel in a nursing home.

– A Citizen Support application, which aims to help citizens consult the most

frequent administrative procedures, subsidies/grants and information

concerning the different departments of the Public Administration.

All the presented contributions are experimentally validated in the Let’s Go and/or

the Dialogue State Tracking Challenge 2 dataset.

1.4 Outline

The remainder of the thesis is organised as follows:

Chapter 2 describes the background on DMs where the A-PFSBA framework is

described in detail.

Chapter 3 introduces the corpora used during this dissertation and the baseline

systems.
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Chapter 4 introduces the A-PFSBA model smoothing and the contributions to im-

prove it.

Chapter 5 details the policy formulation over the A-PFSBA framework and imple-

ments and tests different policies using this formulation.

Chapter 6 introduces the incremental learning mechanisms and presents an hy-

bridization mechanism to combine rule-based DMs and A-PFSBA-based DMs to

incrementally learn a data-driven A-PFSBA DM.

In order to validate the potential of the A-PFSBA framework, three different applica-

tions that employ this formulation are presented in Chapter 7.

Chapter 8 summarizes the conclusions of this dissertation and sets the guidelines

for future research and open topics.

The experimentation and validation of the presented contributions are included in

the corresponding Chapters.
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2Background on Dialogue Systems

This chapter briefly reviews the principal methods that have been used to build

Dialogue Managers (DMs) through the history of Dialogue Systems (DSs). Rule-

based approaches, where experts encode the knowledge and business rules of the

systems are described first. Stochastic techniques capable of exploiting the patterns

found in annotated data for dialogue planning are then introduced, including the

most popular statistical and deep learning approaches. In addition, the statistical

Attributed Probabilistic Finite State Bi-Automata (A-PFSBA) framework employed

in this thesis is also presented in detail. Then, the most widely used techniques

to simulate User Models (UMs) are described. Finally, a summary of the existing

commercial DSs and their technological approaches is made and important DM

properties that need to be considered in real application scenarios are presented.

2.1 Rule-based systems

Dialogue Systems have been around for a long time. Initial DMs were built by

designing and implementing a set of expert rules (Weizenbaum, 1966; Colby et al.,

1971; Bohus and Rudnicky, 2009), since dialogue data were not available at the time.

Because data scarcity is a frequent issue, rule-based DMs are quite common and have

been employed in several systems (Lemon et al., 2002; Serras, Garcıa-Sardiña, et al.,

2020a; Bohus and Rudnicky, 2005b; Ward, 1994; Gupta et al., 2005). Multiple rule-

based frameworks have been developed to build conversational systems. VoiceXML

(Lucas, 2000) implemented one of the first standards. The Let’s Go system (Raux,

Langner, et al., 2005; Raux, Bohus, et al., 2006) was based on RavenClaw, a plan-

based framework with domain-independent error handling (Bohus and Rudnicky,

2003; Bohus and Rudnicky, 2005a; Bohus and Rudnicky, 2009). And more recently,

the probabilistic rule based OpenDial (Lison and Kennington, 2016; Lison, 2015)

framework has been implemented.

In recent years, several frameworks have arisen to build DSs, such as DialogFlow,

Watson, RASA, Xenioo etc. (Janarthanam, 2017; Khatri et al., 2018; Bocklisch

et al., 2017; Cañas and Griol, 2020). Most of these frameworks employ rule-

based or deterministic automata-based DMs allowing different mechanisms to build

them. Thanks to these frameworks, the popularity and adoption of Chatbots in

industrial environments have risen dramatically. Early experiments have been done
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to adapt statistical managers onto industry-level frameworks (Cañas and Griol, 2020),

but, for now and to our knowledge, these functionalities only exist in beta/early

implementations of DialogFlow X and RASA.

Apart from these early works, the rule-based DMs are the predominant ones on

industrial Chatbots and DSs. The rules are usually easier to implement, audit,

understand and do not require to have a statistical/artificial intelligence background

as the data-driven DMs requires. These factors might explain the predominance of

rule-based DM.

Despite their popularity and usefulness, rule-based systems have some drawbacks.

First, they are hard to escalate. In addition, they lack flexibility to adapt to unforeseen

situations and uncertainty, such as Speech To Text errors (STT) and/or Natural

Language Understanding (NLU) incertitude. Bridging rule-based and data-driven

paradigms to build DMs if really interesting in order to solve these issues.

2.2 Dialogue as a Probabilistic Interaction

Dialogue can also be modelled as a probabilistic interaction between a user and the

system. Any two-party dialogue z can be viewed as a sequence of system and user

responses z = (u0, a0,u1, a1, · · · ) where u are the user inputs and and a the system

actions. A turn can be seen as a tuple of user input a system action t = (ut, at) Then,

the probability of a user giving a response at turn t can be roughly explained as:

P (ut|at−1,ut−1, · · ·u0,Gu) (2.1)

Where Gu is the goal the user wants to fulfill during the interaction (e.g. making an

appointment with the doctor, retrieving a bus route, etc.). Also, the probability of

the system giving a determined response at time t+ 1 can be modelled as:

P (at+1|ut, at,ut−1, · · ·u0,Gs) (2.2)

Where Gs is the goal of the system, which most often is to satisfy the goal of the user

Gu through the dialogue. Usually, and to avoid maintaining all the previous actions

to estimate the probabilities of the next user and system actions, a dialogue state is

maintained at each turn qt, which usually summarizes the dialogue history so far

(Griol et al., 2008; Paek and Pieraccini, 2008; Gašić, Jurčıček, Keizer, et al., 2010;

Ghigi and M Inés Torres, 2015; Levin et al., 1998).
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In practice, multiple probabilities need to be combined in order to estimate the next

action of the system at+1. This is because the pipeline of a Spoken Dialogue System

(SDS) consists of multiple technological modules, as described in Chapter 1, all of

which need to be taken into account in order to generate a system response.

Fig. 2.1.: Items to be taken into account to estimate the next system action

Figure 2.1 depicts the items that need to be taken into account in order to estimate

the next system action at+1 in a SDS. The whole interaction works as follows:

1. In the current dialogue state qt, the user sends a spoken signal ut with an

associated channel noise nt to the STT module.

2. The STT component converts such speech signal into text hypotheses, ũt =

ũt
1, ũt

2, · · ·. The received speech signal is perturbed according to the received

noise nt.

3. The NLU module then decodes the received transcription hypotheses ũt into

semantic labels that denote the communicative intention of the user dt. Note

that the goal of the NLU is to reduce the variability of the text-representations,

so the system is able to understand different user expressions encoding the

same communicative intention.

4. Using the current dialogue state qt and the semantic decoding of the user input

dt, the DM, decides on the next system action at+1 to carry out and updates

the dialogue state qt+1 to be used in the next turn. This response is usually

returned at the semantic level.

5. Finally, the Natural Language Generation (NLG) and Text to Speech (TTS)

modules convert the next system action at+1 into text and speech form, respec-
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tively. These processes are deterministic, i.e. there is no uncertainty as the

system response is fully determined by the DM.

In this scenario, the SDS needs to estimate the following joint probability:

P (qt+1, at+1,ut, dt|qt, ũt) (2.3)

Given the modular architecture of the SDS, it can be assumed that some of the items

are independent and so, the joint probability can be split into:

• User Response Model: P (ut|at, qt) represents the response of the user to a

specific system action in a given dialogue state. Note that since the user goal

Gu is hidden for the SDS, it cannot be used for this estimation.

• Speech to Text: P (ũt|at, qt,ut,nt), which needs to estimate the transcription

of the user’s speech signal conditioned by the last system response, the current

dialogue-state, the user’s utterance and the channel noise.

• Language Understanding: P (dt|ũt, qt, at) decodes the semantic meaning dt

of the transcription of the user’s spoken input, by using semantic tags.

• Response Selection: P (at+1|dt, qt,Gs) where the system decides the next

response according to some system-goal Gs, which is defined by the task to be

fulfilled. In order to select this response, the decoded semantic tags and the

current dialogue state are used.

• Dialogue State Iteration: P (qt+1|qt, dt, at+1) where the dialogue state is up-

dated using the current dialogue state qt, the decoded semantic actions of the

user dt and the latest system response at+1. The updated dialogue state qt+1 is

then stored in the dialogue manager, for the next interaction turn.

Finally, the next system action at+1, generally represented using semantic tags, is

converted into a text representation and then synthesised into speech. As these two

steps are deterministic, once the system action is defined they are not part of the

probabilistic formulation.

The above notation has introduced the decoding of users and system responses

as semantic tags dt, at. In the context of user-system interactions in DS, these

semantic tags are commonly known as Dialogue Acts (DAs) (Hancher, 1979; Asher

and Lascarides, 2001; Core and Allen, 1997). DA are denoted by intention tags (e.g.

inform, request, confirm) which can contain information objects known as slots (food,

address), with their corresponding atomic values (e.g. [Chinese, Japanese, Italian,
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...], [fake street 123, ...])1. The main objective of the DA-based representation is

to convert the textual user input, which has a high variability, into a small set of

DA without losing explainability – i.e. semantic tags describe the communicative

intention of users’ text without ambiguities within the domain of the DS. For

example, the DA tag ’request|price’ describes the following user query texts in a

restaurant-finder domain:

• How much does it cost?

• And the price?

• How many dollars?

• How affordable is it?

Then, when performing the conversion from text to DAs (ũt → dt), the variability

of user inputs is highly reduced, so the DM can handle it. Figure 2.3 in Section 2.3

shows a dialogue where each utterance is encoded with the intention tags Hello,

Inform, Request, Offer that contain the slots food-type, neighbourhood, venue, where

each information object has its associated value.

The dialogue state concept qt is also introduced in the notation above. The dialogue

state represents where the dialogue is at a given turn t of the interaction. As

the dialogue becomes larger, it is computationally expensive to maintain all the

information of previous turns and to estimate the probability of the system response

of the current turn at. A common practice to avoid this problem and keep the core

information in each dialogue is to encode the transitive content (e.g. bus departure,

desired food, selected flight etc.) of the dialogue in a summary space (Gašić, Jurčıček,

Keizer, et al., 2010; Serras, Marıa Inés Torres, et al., 2017; Iñigo Casanueva et al.,

2017; Griol et al., 2008) that serves as the dialogue state. This dialogue state is then

updated turn by turn according to the user inputs dt and the system responses at.

2.2.1 Markov Decision Processes

In the late 90’s the Markov Decision Process (MDP) theoretical framework was pro-

posed for building stochastic DMs (Levin et al., 1997; Levin et al., 1998). MDPs are

discrete-time stochastic directed graphs (Bellman, 1957) which are often employed

in control processes (White III and White, 1989; Sezer, 2018; Gocgun et al., 2011).

Following the Markovian property, they only use the current time state for decision

1System nowadays refer to these concepts as Intents, Entities and Entity-values.
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making, with no information regarding previous states. A MDP is fully represented

by the following 4-Tuple (S,A,T ,R) (Levin et al., 1997; Levin et al., 1998; Roy

et al., 2000):

• A set of states S = {s0, · · · , s1}

• A set of actions a ∈ A

• A transition function which describes the probability of transitioning from one

state s to another s′ by means of a system action a: T : S ×A → S where

T (s, a, s′) = P (st+1 = s′|at = a, st = s)

• A set of immediate rewards R(s, s′, a) which are gained after transitioning

from s to s′ by using action a.

In the context of a DS, a state s is the dialogue state which encodes the known

information in the ongoing interaction by using discrete variables. The set of actions

A are the possible system responses and the transition function T (s, a, s′) are the

probabilities of transitioning from one state to another, through the user’s responses

to the selected system action a.

MDP-based DS make the following assumptions (White III and White, 1989; Levin

et al., 1998):

• Markovian property: when an action at is taken at time t while in state st

and the MDP dialogue state changes to st+1, the Markovian property, i.e. that

the stochastic process is memoryless, is satisfied:

P (st+1|st, st−1, · · · , s0, at, at−1, · · · , a0) = P (st+1|st, at)

• Session Reward: the second assumption defines the reward of the entire

stochastic process as the session reward R. The session reward is the sum of all

the individual rewards gathered throughout a dialogue: R =
∑T

t=0R(st+1, st, at)

2.2.1.1 Policy learning in Markov Decision Processes

Based on the two assumptions above, an optimal policy Π can be achieved by

maximizing the expected cumulative rewards E when faced with a known dialogue

state st for an infinite time horizon:
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E[
inf
∑

t=0

γtR(st+1, st, at)]

Where at is the action chosen by the policy Π(st) at the current dialogue state.

The expectation E is sampled from the distribution st+1 ∼ T (st, at, st+1). γ is the

discount factor, which ensures that short-term rewards are preferred to long-term

ones.

This expected reward E can be used to search for an optimal policy Π(s) to map

between dialogue states and system actions, in ideal situations where the transition

probability matrix is fully known. Given the Markovian property, only the last

dialogue state is taken into account for decision making, so the policy-matrix can be

written as Π(s, a) = P (at = a|st = s). In order to maximize the expected reward

E, an optimization problem is defined over some functions. The value function

V pi(s) is a recursive function that calculates the expected reward from an starting

dialogue-state s, given some policy π:

V π(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′)[R(s, s′, a) + V π(s′)]

Then, we can define the Q-function as:

Qπ(s, a) =
′

∑

s

T (s, a, s′)[R(s, s′, a) + V π(s′)]

Which returns the expected reward if action a is taken from state s′. Then, V π(s)

can be re-written as:

V π(s) =
∑

a

π(s, a)Qπ(s, a)

Then, the optimal dialogue policy π∗(s) is the deterministic policy which gives the

maximum value function V ∗(s):

V ∗(s) = maxπV
π(s) ∀s ∈ S
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Where S is the set of all dialogue states. The optimal value function can be found by

solving:

V ∗(s) = maxa

∑

s′

T (s, a, s′)[R(s, s′, a) + V ∗(s′)]

Similarly, the optimal Q function can be found by solving:

Q∗(s, a) =
∑

s′

T (s, a, s′)[R(s, s′, a) +maxaQ(s
′, a′)]

and then the required optimal dialogue policy is given by:

π∗(s) = argmaxsQ∗ (s, a)

In practice, as the state space S can be very large, the transition probability matrix

T (s, a, s′) is not fully observed. In addition, due to user behaviour uncertainty and/or

because of the small amount of available data samples Z (usually |S|2 >> |Z|),

the transition probabilities can be difficult to estimate. In this situation, a common

methodology involves developing a simulated User Model which will serve as a

training environment, optimizing the policy π by using Reinforcement Learning

(RL) or dynamic programming (Sutton and Barto, 1998; Schatzmann, Thomson,

Weilhammer, et al., 2007; Schatzmann, Thomson, and S. Young, 2007a; S. J. Young,

2000).

MDP-based dialogue systems have been used in the literature due to their inter-

pretable theoretical framework and usability (Eshghi et al., 2017; Levin et al., 1998;

S. J. Young, 2000; Levin et al., 2000; Singh et al., 2000). Nevertheless, one of their

main drawbacks is that for a full control of the process it needs to be fully observed,

which, in practice, does not happen in DSs – where either channel noise corrupts

the output of the STT with errors or the NLU outputs multiple hypotheses at the

same time. In order to solve this limitation, Partially Observable Markov Decision

Processes (POMDPs) (Parr and Russell, 1995; Russell et al., 1995) were introduced

within the PARADISE framework (Walker et al., 1997), as an enhanced approach for

statistical DS modelling (Fromer, 1998).

2.2.2 Partially Observable Markov Decision Processes

As stated previously, DSs need to handle uncertainty due to diverse factors such as

STT induced-errors and/or NLU uncertainty. POMDPs were proposed (Roy et al.,

2000) as a variant of the well-established MDP theoretical framework and were

established as a popular statistical framework for DM modelling (Roy et al., 2000;
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Gašić, Jurčıček, Keizer, et al., 2010; Schatzmann, Thomson, and S. Young, 2007b;

Gašić, Breslin, et al., 2013; Paek and Pieraccini, 2008; Williams and S. Young, 2007;

Zhang et al., 2001; Lei et al., 2019; S. Young et al., 2010).

In order to enhance the initial MDP framework, the POMDP framework adds the

following elements:

• A set of observations O = {o1, o2, · · · , o|O|} that the system can receive from

the environment. For the DS, these observations are estimations of the user

dialogue acts.

• An observation probability O(o, s, a) = P (o|s, a), which encodes the probabil-

ity distribution of a given observation when the state s and the action a are

known.

• The belief state bi, which is a probability distribution that encodes the prob-

ability of being at a given dialogue-state si ∈ S, since it is assumed that the

current state is not fully observable.

Then, the POMDP works as follows. At each time-step the system is at some

unobservable state st ∈ S, whose belief state is denoted as bt. Based on the belief

state, the machine selects an action at ∈ A, receives a reward r(st, at) and transitions

to a new, also unobserved, dialogue state st+1 which depends only on st and at.

Then, the machine receives an uncertain observation ot+1 which is dependant on

st+1 and at. Finally, the belief state distribution is updated:

bt+1(st+1) =
P (ot+1|st+1, at, bt)P (st+1|at, bt)

P (ot+1|at, bt)

The estimation of the probability P (st+1|at, bt) requires to compute the probability

P (st+1|at, bt, st) for each dialogue state s ∈ S:

bt+1(st+1) =
P (ot+1|st+1, at)

∑

st∈S P (st+1|at, st, bt)P (st|at, bt)

P (ot+1|at, bt)

Due to the computational cost of this operation when the state-space Q increases,

which makes it intractable for the online consumption required by DSs, initial

approaches for dialogue management using POMDPs were employed in proof of

concepts (S. Young et al., 2010; Paek and Pieraccini, 2008; S. Young, 2006). In order

to allow POMDPs to be deployed into more realistic production environments, the

compression of the belief state has been widely researched (S. Young et al., 2010;
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Pineau and Thrun, 2001; Williams and S. Young, 2007; Williams and S. Young,

2005; Thomson, Schatzmann, et al., 2007). Often, these compression methods

require a domain ontology or a handcrafted partition/clustering of the dialogue

states (S. Young et al., 2010). The need of tracking the dialogue state employing

real-time mechanisms motivated the Dialogue State Tracking Challenges (Williams,

Henderson, et al., 2014; Henderson, Thomson, and Williams, 2014; Kim, D’Haro,

et al., 2016; Kim, D’Haro, et al., 2017). These challenges focused on tracking

the current dialogue state st by using supervised models such as Recurrent Neural

Networks, Conditional Random Fields, Decision Trees and so on (Williams, Raux,

et al., 2016; Henderson, Thomson, and S. Young, 2014). These methods are faster

when performing the dialogue state inference, but they require tagged data to learn

from.

2.2.3 Deep Learning for Dialogue Management

In recent years, Deep Learning (DL) approaches have been used in several fields

of Natural Language Processing such as named entity recognition, translation, text

classification, speech translation and others (Arzelus et al., 2018; Etchegoyhen et al.,

2020; Azpeitia et al., 2020; Perez et al., 2019; Pablos et al., 2020). Such models

have been used for open-domain DS (Adiwardana et al., 2020; Roller et al., 2020).

These models are trained over a large dialogue corpora and usually consist of models

with billions of parameters, which makes their efficient training a challenging task.

Some transfer learning mechanisms were successfully implemented to turn language

models intro chatbots (Wolf et al., 2019), where language representation models

such as BERT and GPT can be used (Radford, Narasimhan, et al., 2018; Radford,

J. Wu, et al., 2019; Devlin et al., 2018). Note that these open-domain systems do

not aim at completing a task.

When facing task-oriented scenarios other challenges arise, such as the need to take

into account the user goal and the state of the task to be performed, so the DM

can plan accordingly. To this end, several proposals can be found which employs

Neural Networks or DL. The RL paradigm, widely used in POMDPs, is used for

DL models (Cuayáhuitl, S. Yu, et al., 2016; Cuayáhuitl, 2017; Z. Lipton et al.,

2018; Inigo Casanueva et al., 2018; Budzianowski et al., 2017). In addition, the

dialogue management problem is handled as a sequence generation, where the

network receives the sequence of the turns of the dialogue and it needs to predict

the next system response (Crook and Marin, 2017; Layla et al., 2016; Serban et

al., 2015; Wen et al., 2016). Other approaches employ generative-discriminative

training mechanisms to model the DM as a generative network (Li et al., 2017).

The challenge of modelling a DM can also be interpreted as a response retrieval
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mechanism, where the next system response needs to be selected from a set of

possible answers (Serras, Marıa Inés Torres, et al., 2019b; Zhu et al., 2017; Bordes

et al., 2016).

Recent advancements in DL methods and architectures have allowed to reduce the

components of the traditional DS architecture into a single module. These end-to-

end DSs employ one DL module to understand the user, plan the next system action

and create a surface form of the given system response (Zhu et al., 2017; Zhao and

Eskenazi, 2016; L. Xu et al., 2019; Liang et al., 2020; B. Liu and Lane, 2018).

Despite the promising results, several bottlenecks still limit the deployment of task-

oriented DL architectures in industrial environments. One of the main limitations is

the lack of available data and corpora to train this type of systems. So as to overcome

this issue, some research has been carried out on transferring knowledge from DL

models trained on existing DS datasets to a target domain with low resources by

using only a few samples (Shalyminov et al., 2019b; Shalyminov et al., 2019a).

Nevertheless, for under-resourced languages, where such kind of datasets do not

exist, these approaches are still unfeasible. In addition, their black-box nature and

their lack of transparency and auditability are also limiting factors. Due to these

reasons, the DL-based DSs still require further research to be considered a suitable

method to build industrial-level solutions.

2.3 Modelling Dialogues using Attributed Probabilistic
Finite State Bi-Automata

As explained before, a dialogue can be seen as an stochastic exchange of user

and system responses. As Figure 2.2 shows, two parallel sequences are generated

throughout the dialogue: the responses given by the user ut with their associated

decoding dt and the responses given by the system at.

Fig. 2.2.: Dialogue interaction as an exchange of responses dt and at between a user and a
system
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Then, the dialogue can be represented as a bi-string and stochastic regular bi-

language (M Inés Torres and Casacuberta, 2011). Let Σ and ∆ be two finite alphabets

and Σ
≤m and ∆

≤n, the finite sets of sequences of symbols in Σ and ∆ of length up to

m and n. Then, let Γ be an extended alphabet Γ ⊆ (Σ≤m × ∆
≤n) consisting of pair

of strings of the sequences Σ
≤m and ∆

≤n. Then, a bi-language is a set of strings over

the extended alphabet Γ (M Inés Torres and Casacuberta, 2011).

The transitive content (e.g. bus departure, desired food and selected flight) of the

dialogue is encoded in the attribute alphabet ω ∈ Ω. These attributes are inferred

from the bi-string representation of the dialogue z at each turn.

The A-PFSBA formulation aims at maximizing the probability of modelM to generate

a given sample of dialogues Z, being z each of the dialogues that compose sample

Z.

M̂ = arg maxM PM (Z) = arg maxM

∏

z∈Z

PM (z)

As the model learns its structure by maximizing the likelihood to fit the samples,

it can also generate dialogue samples, thus resulting in a generative model that

encompasses both user and system interactions simultaneously.

Fig. 2.3.: A-PFSBA model example of a simple dialogue example
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The original A-PSFBA model presented in (M Inés Torres, 2013), is defined as

M̂ = (Σ, ∆, Ω, Γ,Q, δ, q0,Pf ,Pt) where:

• Σ is the alphabet of user decoded actions, d ∈ Σ.

• ∆ is the alphabet of system actions, a ∈ ∆.

• Ω is the alphabet of dialogue attributes ωi ∈ Ω.

• Γ is an extended alphabet Γ ⊆ (Σ≤m × ∆
≤n) that contains the combination of

the user decoded and the system actions.

• Q = QS ∪QU is the set of system and user states labelled by bi-strings and

attributes: [(di : ai),ωi] ∈ Γ×Ω.

• q0 ∈ QS is the unique initial state: [(ǫ : ǫ), ǫ] where ǫ is the empty symbol.

• δ ⊆ Q× Γ×Q is the union of two sets of transitions δ = δS ∪ δU as follows:

– δS ⊆ QS × Γ×QU is the set of system transitions of the form (q, (ǫ :

ai), q′) where q ∈ QS , q′ ∈ QU and (ǫ : ai) ∈ Γ.

– δU ⊆ QU × Γ×QS is the set of user transitions of the form (q, (di : ǫ), q′)

where q ∈ QU , q′ ∈ QS and (di : ǫ) ∈ Γ.

• Pf : Q→ [0, 1] is the final-state probability distribution.

• Pt : δ → [0, 1] defines the transition probability distributions Pt(q, b, q′) ≡

Pt(q′, b | q) ∀b ∈ Γ and q, q′ ∈ Q such that:

Pf (q) +
∑

b∈Γ,q′∈Q

Pt(q, b, q
′) = 1 ∀q ∈ Q

where transition (q, b, q′) is completely defined by the initial state q and the

transition action b. Thus, ∀q ∈ Q, ∀b ∈ Γ, |{q′ : {(q, b, q′)}| ≤ 1

Then, over this bi-language notation, any two-party dialogue z can be viewed as a

sequence of user and system actions (M Inés Torres, 2013). Let d ∈ Σ be the finite

alphabet of user actions decoded by a NLU component and a ∈ ∆ the finite alphabet

of system actions. Then, d̃i = d1, · · · , d|d̃i|
∈ Σ

≤m represents the decoding of a

user input utterance, where each item of the alphabet di can be a user dialogue act.

Similarly, ãi = a1, · · · , a|ãi| ∈ ∆
≤n represents the system response. Then, a dialogue
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z can be represented as a bi-string over the extended alphabet Γ ⊆ (Σ≤m × ∆
≤n)

where the turn t, zt is of the form (d̃t : ǫ) for the user turns and of the form (ǫ : ãt)

for the system turns, being ǫ the empty symbol. Finally, every dialogue bi-string z is

modelled as a sequence of dialogue states (q0, q1, ..., q|z|) ∈ Q where q0 is the initial

empty state. Figure 2.3 shows the A-PFSBA model of a simple dialogue example.

2.3.1 Smoothing the model

As the A-PFSBA model M̂ is fit to the training data, it may happen that the dialogue

state leads to an unseen dialogue-state q′ 6∈ Q when used to model interactions. In

this situation, depicted in Figure 2.4, the model is unable to find a possible transition

and the dialogue is broken. In order to ensure the generalisation of the model, a

smoothing strategy must be defined to rectify the dialogue, avoiding the interaction

breakdown and continuing with it.

  
∉ ��

′

Unknown State!!

Fig. 2.4.: Dialogue interaction reaching an unknown state q′.

Under the assumption that "similar dialogue states will trigger similar responses",

smoothing can be done in different ways. The most common method is to redirect

the current dialogue state to a similar one seen in the training set q ∈ Q and use

this state to select the next dialogue action. Model smoothing is a cornerstone of

the A-PFSBA formulation and the contributions made in this area are presented in

Chapter 4.
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2.3.2 Integrating external knowledge

A common need when deploying DSs in production environments is to communicate

with already existing knowledge bases and services (e.g. databases, recommender

systems, and user profiling systems) and inject information of these external services

to the DM (Paek and Pieraccini, 2008). It is common for DS-building frameworks to

provide mechanisms to communicate with external services and allow data-injection

(Janarthanam, 2017; Khatri et al., 2018; Bocklisch et al., 2017; Cañas and Griol,

2020)

Within the A-PFSBA framework, the attribute alphabet Ω is used to integrate external

knowledge. In this way, external information can be taken into account for decision

making. Formally, external knowledge sources can inject data into a subset of the

attributes Ωe ⊆ Ω.

The communication mechanism is simple: the DM sends information to the services

and the services return an updated response that is embedded in the attributes of

the dialogue state. This method can be carried out at three different stages:

• Upon initialisation: when the first user decoded utterance d0 is reached. This

stage is commonly used to load user-related information such as profiles.

• At turn start: every time a user decoded utterance di is reached. This stage is

commonly used when the information to consume changes according to user

input.

• At turn end: every time a system response aj is returned to the user. This

stage can be used when DM responses trigger external actions. For example,

in multimodal DSs where the DM controls augmented reality animations.

The DS applications implemented and presented in Chapter 7 employ this mechanism

in order to integrate external knowledge and adjust decision-making.

2.3.3 A-PFSBA Framework Differences with Other

Approaches

In comparison with the previously presented theoretical frameworks, the A-PFSBA

formulation has some differences:
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User decoding dt is explicitly encoded: the transition edges of the A-PFSBA

employ the hypothesis decoded by the NLU module dt in order to perform a transition

to the next state. Every composition of the items of the user alphabet d ∈ Σ are

thus a valid item for the bi-language. As a result, the dialogue state encodes both

decoded user actions and system responses jointly, which has both beneficial and

negative effects. On the one hand, the user journey can be used to estimate its

behavior observing the system responses for policy making. Also, there is no need to

maintain a computationally expensive belief state, since STT uncertainty is encoded

directly. On the other hand, small perturbations on user input lead the system to

different states, augmenting the scarcity of the model. And scarce models lead to

situations where the interaction reaches unknown states q′ 6∈ Q, so robust model

smoothing strategies are needed.

Unknown state handling: As the A-PFSBA states are implicitly defined once the

∆, Σ, Ω alphabets are set and the user decoding is explicitly encoded, it is common

to face new states that are not explicitly modelled during the training phase. In

(PO)MDP structures these unknown states are usually handled by employing a

fallback action (Milhorat et al., 2019; Paek and Pieraccini, 2008). In DL/end-to-end

approaches, every dialogue sequence is approximated by the internal weights of the

network so the model will give a response to any situation, correct or not. Within the

A-PFSBA framework, dialogue breakdown is easily detected when some unknown

state q′ 6∈ Q is met. Then, the dialogue smoothing strategy used to select the next

response can be tailored by employing spatial relations over the A-PFSBA structural

model as explained in Chapter 4, without interfering with the regular dialogue policy

Π.

Task-oriented policy learning: usually in (PO)MDP the transition probability

matrix encodes the probability distribution of transitioning from one state to another

observing the action. This leads to the theoretical options of: (a) all states can be

connected with each other; and (b) for each state, every action can be a potential

candidate. The associated complexity negatively impacts scalability, performance

and optimal policy learning and reward strategies usually need to be employed

leading to exploration/exploitation issues. To solve this problem, simulated UMs

are usually employed in order to generate synthetic dialogue samples to learn the

optimal policy by means RL / Dynamic Programming (Schatzmann, Weilhammer,

et al., 2006; Eshghi et al., 2017; Gašić, Jurčıček, Keizer, et al., 2010; Shah et al.,

2018; H. Chen et al., 2017). The Q-learning RL method has also been extrapolated

to DL/end-to-end architectures for proper dialogue policy learning (Cuayáhuitl, S.

Yu, et al., 2016; Cuayáhuitl, 2017; Z. Lipton et al., 2018; Inigo Casanueva et al.,

2018; Budzianowski et al., 2017). The main issues with this approach are: (1) the

need to build an environment to generate the dialogue samples for RL (i.e., a UM);
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(2) that the policy is adjusted to the simulated UM and, therefore, might not be

extrapolated to real users.

In the A-PFSBA formulation, both the transitions between states and the possible

output actions are set during the structural learning-phase of the model. Then, model

exploitation or policy Π definition is completely separated from structural learning.

Consequently, applicable exploitation policies range from simple decision-making

strategies (e.g., randomly sampling the next system action from the transitions) to

more complex approaches (e.g., reinforcement-learning, response compositions).

In addition, separating structural model learning from policy exploitation allows

the A-PFSBA framework to employ hybrid policies that combine rule-based and

data-driven methods as shown in Chapter 6. This can help reduce the complexity

of the policies to be employed, allowing the A-PFSBA framework to be used in

low-resource scenarios (e.g., industry, under-resourced languages, highly-technical

domains, etc.).

Incremental learning: adjusting the initial DM model to new information without

having to fully retrain the model (i.e., using all the training samples again) is a

desirable property. Rule-based DMs require manual adjustments each time a new

response/management rule needs to be integrated. On the other hand, (PO)MDP-

based DMs that employ RL to define their policies require large amounts of data

derived from UMs (Gasic et al., 2008; Jurčıček et al., 2011). This approach makes it

intractable to incrementally learn the dialogue policy as several samples are needed

to adjust it to new dialogue states and actions (Gašić, Breslin, et al., 2013). To

overcome this problem, the combination of a Gaussian Processes-based RL and a

dynamic Bayesian network update method was proposed to mitigate the require-

ments of previous policy-adaptation approaches (Gašić, Breslin, et al., 2013; Gašić,

Jurčıček, Thomson, et al., 2011). Nevertheless, this online policy adaptation method

still requires a few hundred dialogue samples (400-600) to achieve the consistency

of a policy trained using a UM and RL and conditions the policy to be employed by

the DM.

In DL/end-to-end architectures, either when the DM model is trained as a sequence-

to-sequence/discriminative network or using Deep RL, incremental learning poses

several challenges related to updating the initial model while maintaining represen-

tation spaces, learning the new representations and avoiding catastrophic forgetting

(Goodfellow et al., 2014; Kirkpatrick et al., 2017; Lee et al., 2017; W. Wang et al.,

2019; Greco et al., 2019).

Within the A-PFSBA framework, dialogue states are defined as a composition of

user, system and attribute alphabets Σ, ∆, Ω and, thus, new states can be added

incrementally to the initial structure without the loss of the previous states. In

2.3 Modelling Dialogues using Attributed Probabilistic Finite State Bi-Automata 23



addition, these new states do not necessarily have an impact on the A-PFSBA

exploitation policy due to the disassociation between structural model and policy

learning. This disassociation allows to incrementally learn an A-PFSBA model for

DM following a simple and effective method that does not condition the exploitation

policy as described in Chapter 6.

Low-resource settings: due to the high demand of DSs, it is common to face low-

resource scenarios, specially at industrial level and for under-resourced languages.

In these situations, rule-based DSs have thrived due to the considerable effort

that generating dialogue training data requires (Bohus and Rudnicky, 2005b; Paek

and Pieraccini, 2008; Rieser, 2008). To overcome this limitation, UMs have been

widely used to bootstrap initial data-driven DSs (Eckert et al., 1997; W. Wang et al.,

2019; Schatzmann, Weilhammer, et al., 2006). The latest trends on end-to-end DS

consist in transferring knowledge from DL models trained on wide datasets involving

several tasks to a target domain containing just a few available training samples

(Shalyminov et al., 2019b; Shalyminov et al., 2019a). Despite their promising results,

these approaches are still in their initial stages.

All these data-driven methods still require either a UM (that needs to be handcrafted

per task and/or trained over annotated dialogue samples) or an existing dataset

from which to transfer knowledge to the target domain, which can be difficult to

obtain in industrial settings and for under-resourced languages.

Thanks to the disassociation between the structural and policy learning of the A-

PFSBA, its model structure can be trained over just a few dialogue samples and then

simple policies can be applied to exploit it. In addition, if necessary, the A-PFSBA

structure can also be combined with rule-based policies to overcome limitations

related to the lack of initial training data. These properties make the A-PFSBA

framework applicable in industrial and low-resource scenarios.

2.4 Simulated User Models

Developing task-oriented DSs using data-driven approaches usually requires high

amounts of dialogue samples from which DM can learn optimal strategies. To avoid

manual compilation and labelling of dialogue samples, a common approach is to

develop a simulated UM that mimics the behavior of real users from a small amount

of annotated dialogue corpora. UMs are also used to evaluate DM performance

and/or for policy optimisation using RL (Schatzmann, Weilhammer, et al., 2006;

Eshghi et al., 2017; Gašić, Jurčıček, Keizer, et al., 2010; Serras, Marıa Inés Torres,

et al., 2017; Shah et al., 2018; H. Chen et al., 2017). UMs are expected to maintain

coherence throughout the dialogue and to imitate the behavior of real users. In

24 Chapter 2 Background on Dialogue Systems



addition, they must also have some degree of variability in order to generate unseen

or unlikely interactions.

Multiple methodologies to build UMs have been proposed in the literature. Initial

approaches (Eckert et al., 1997; Levin et al., 2000; Pietquin, 2005) used N-grams,

but the resulting models were not capable of capturing the dialogue history and,

thus, lacked coherence. With the aim of generating more coherent dialogues, several

stochastic approaches such as Bayesian Networks (Pietquin and Dutoit, 2006) and

networks of Hidden Markov Models (Cuayáhuitl, Renals, et al., 2005) have been

explored. Similar to these graph-based models, the A-PFSBA formulation is also

suitable for building UMs, as it encodes both system and user transitions over the

dialogue interaction (Orozko and M Inés Torres, 2015; Ghigi and M Inés Torres,

2015; Serras, Marıa Inés Torres, et al., 2017; Serras, Marıa Inés Torres, et al.,

2020).

Another popular statistical UM is the Hidden Agenda model (Schatzmann, Thomson,

Weilhammer, et al., 2007), in which the user goal is predefined as an agenda of

constraints and pieces of information to be requested to the system and updated at

each dialogue turn. Other approaches have exploited the analogies between user

simulation and imitation learning using inverse reinforcement learning (Chandramo-

han et al., 2011). Recently, neural network approaches have been proposed for user

simulation (Layla et al., 2016; Crook and Marin, 2017; Serras, Marıa Inés Torres,

et al., 2019b), which have shown the ability to account for both dialogue history

and user goal.

The A-PFSBA formulation has also been used to build UMs. The User Models built

previous to this thesis were mirroring systems of a DM (Orozko and M Inés Torres,

2015; Ghigi and M Inés Torres, 2015), which employ user dialogue states and

transitions to emulate the user. Throughout this thesis the capability of the A-PFSBA

to build UMs is further tested and evaluated.

2.5 Dialogue Systems for Industrial Applications

When it comes to deploying DS into production environments, there are several

known commercial solutions such as Siri, Cortana, Google Now, Alexa and others

already exist 2. Although the inner functionality of most commercial systems is

unknown due to industrial secrecy, they are usually based on expert rules, ontologies

and custom backends in order to manage dialogue interaction (Wessel et al., 2019;

Janarthanam, 2017; Paek and Pieraccini, 2008).

2one may refer to https://botlist.co/ to find a wide variety of chatbots for different use cases
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In recent years, several Alexa Challenges have been organised (Ram et al., 2018;

Khatri et al., 2018) in order to bridge the gap between the technological development

of DS and industrial-scale applications. The systems proposed in the challenges

employ a mixture of rule-based dialogue management with an ensemble of task-

specific modules or skills (Curry et al., 2018; Papaioannou et al., 2017; Khatri et al.,

2018). In addition, some systems are enhanced with failsafe approaches such as

response filtering mechanisms, given their public exposure (Curry et al., 2018).

Nevertheless, the lack of data and the difficulties posed by the specific business rules,

back-end integrations and dynamics of each application domain make of data-driven

pipelines a distant milestone. As a result, the most popular commercial frameworks

still ask developers to build rules, define dialogue flows, generate annotated data

and/or handle dialogue management as an external module (Cañas and Griol, 2020;

Janarthanam, 2017; Bocklisch et al., 2017).

Other desirable properties of industrial and production DS setups include the ability

to handle unknown situations and bootstrap initial systems for maintenance and

improvement. The next sections overview how existing frameworks address these

problems, are both common and relevant in industrial applications.

2.5.1 Handling unknown situations

Once DSs are deployed and face new interactions, it is common to come across

circumstances where dialogues lead to unexpected scenarios. In these situations,

the main objective of every DM is to provide an appropriate response that does

not induce a dialogue breakdown (Higashinaka et al., 2016; Bohus and Rudnicky,

2005a).

The usual strategy to deal with dialogue breakdowns is to employ error handling

techniques such as predefined fallback actions (e.g. "Sorry, could you rephrase that?")

(Milhorat et al., 2019; Paek and Pieraccini, 2008) or error recovery strategies that

narrow down user responses to expected options (Bohus and Rudnicky, 2005a).

Rule-based systems and MDPs usually employ this technique. On the other hand,

POMDPs require the use of external means to identify unknown situations or the

definition of specific fallback dialogue-states, since their belief state will always have

a candidate state with higher probability. In DL approaches, every dialogue sequence

is approximated by the internal weights of the network so the model is able to give

response to any situation, correct or not. In order to avoid dialogue interruptions

due to inappropriate system responses, different methods such as Bi-LSTM (Xie and

Ling, 2017) and SVM (Lopes, 2017) have been explored.
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Within the A-PFSBA framework, a dialogue smoothing strategy (Orozko and M Inés

Torres, 2015; Ghigi and M Inés Torres, 2015) similar to the back-off smoothing

strategy used in machine translation and speech recognition (Pérez et al., 2008;

I. Torres and Varona, 2001) has been employed. Such dialogue smoothing strategy is

triggered when an unknown dialogue state q′ 6∈ Q is reached. Then, a similar known

state is used to continue the interaction. This is done in two steps:

1. The state most similar to the unknown dialogue state is sampled.

2. The actions that depart from the sampled state are used to continue the

interaction.

Using this technique, the DM tries to recover from breakdowns in a subtle way.

2.5.2 Hybrid approaches and incremental learning

When facing real-world scenarios, the task-oriented DSs need to model a set of

business-rules (e.g. buying a cinema ticket) according to some knowledge (fares,

available movies, offers) and so on. These business rules tend to change over time,

thus, the DS should change accordingly, i.e. the maintenance and improvement

over an initial DS should be continuous. This is usually done manually, with its

associated cost. In this scenario, exploiting data-driven approaches to leverage an

initial rule-based DS is a desired property which could help to reduce the manual

effort required to maintain and update DSs.

Efforts have been made to hybridise rule-based and data-driven paradigms. The

work presented in (Williams, 2008) combines a POMDP-based DM with a rule-based

DM running in parallel. In this setup, the rule-based system samples a set of possible

actions, limiting the decision space of the POMDP, which selects the corresponding

system response from this set of actions. Other works (Lison, 2015; Lison and

Kennington, 2016) present hybridization techniques using probabilistic rules which

encode dialogue states by using a Bayesian Network. In order to encode the dialogue

state transitions of the network, a set of probabilistic rules is used to encode expert

knowledge in the dialogue graph structure. A similar graph-based approach is

presented in (Yoshino et al., 2013), where a graph-based model of a rule-based DM

is extracted and combined with a POMDP-based optimization by using a simulated

UM.

Learning to incrementally adjust the DM online to new interactions is also a desir-

able property of DSs, although it may be unfeasible depending on the framework
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employed. While rule-based systems require manual adjustments, POMDP based

architectures can adjust their policy online by using Gaussian Processes and Bayesian

policies (Gašić, Breslin, et al., 2013; Gašić, Jurčıček, Thomson, et al., 2011). DL

approaches have explored incremental DS learning by using human-in-the-loop

architectures and uncertainty-detection techniques in order to filter-out responses

which may cause a dialogue breakdown (W. Wang et al., 2019). In these situations,

human operators would intervene and select the correct system answer, that is used

to update the model. However, incrementally updating DL model weights while

maintaining representation spaces and catastrophic forgetting (Goodfellow et al.,

2014) pose serious challenges that still don’t have clear solutions (Kirkpatrick et al.,

2017; Lee et al., 2017; W. Wang et al., 2019; Greco et al., 2019). Finally, initial

work on A-PFSBA demonstrated that the model is capable of performing structural

updates in a turn-by-turn basis (Orozko and M Inés Torres, 2015). This approach is

further explored in this thesis in Chapter 6.
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3Tasks and Model Building

In this chapter, the corpora and models used throughout this thesis are presented.

Fig. 3.1.: Chapter 3 structural map

As depicted in the map of Figure 3.1, the current chapter presents two different

use case scenarios: Let’s Go and Dialogue State Tracking Challenge 2 (DSTC2). For

each use case, the main characteristics of the corpus and the evaluation metrics

are described. In terms of the models built, for the Let’s Go use case an Attributed

Probabilistic Finite State Bi-Automata (A-PFSBA) based User Model (UM) and

Dialogue Manager (DM) are presented. For the DSTC2 use case, a delexicalisation

method is presented adjusted to each system type (UM and DM respectively). In

terms of UMs over the DSTC2, two are presented: one based on Deep Learning

(DL) and another one based on A-PFSBA. The Bi-Automata User Model (BAUM), is

enhanced into BAUM2 to allow for more complex interactions. Then, an A-PFSBA
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based DM is introduced, with a custom Natural Language Understanding (NLU)

error simulation module.

These models will be used at the experimental sections of Chapters 4, 5 and 6.

3.1 Use Case: Let’s Go!

The Let’s Go corpus was used in previous works to build un-attributed PFSBA DM,

develop preliminary path-based exploitation policies and explore initial versions of

structural incremental learning methodologies (Orozko and M Inés Torres, 2015;

Ghigi and M Inés Torres, 2015). In this dissertation, it has also been used to build

and evaluate an attributed version of the PFSBA DM, implement multiple A-PFSBA

exploitation policies and build an incremental learning mechanism to improve the

A-PFSBA structure.

3.1.1 Corpus Description

The Let’s Go Spoken Dialogue System (SDS) developed by Carnegie Mellon University

(CMU) exploits the Olympus architecture using RavenClaw (Bohus and Rudnicky,

2003; Bohus and Rudnicky, 2005a; Bohus and Rudnicky, 2009) as DM to provide

schedule and route information about the city of Pittsburgh bus service to the general

public. The corpus linked to this SDS was collected from real user interactions in

2005, so events like unexpected dialogue closing, spontaneous talking, sudden noise

etc. are observed. Some of the corpus statistics are shown in Table 3.1.

In the corpus, the decoding of user utterance transcriptions is carried out using the

CMU Phoenix Parser (Ward, 1990), a context-free grammar parser similar to other

parsing methods used for NLU (Kaiser, 1999; Y.-Y. Wang, 1999). Using the Phoenix

representation, each user action d ∈ Σ is represented by a string. System actions

a ∈ ∆ are also represented as strings. Attributes are discrete values related to bus

schedule information, which need to be maintained throughout the dialogue. Table

3.2 shows some dialogue formatting examples.

Tab. 3.1.: Main features of the Let’s Go Corpus

Let’s Go Corpus Statistics
Dialogues 1840 System Turns 28141 System Dialogue Acts |∆| 49
Attributes 14 User Turns 28071 User Dialogue Acts |Σ| 138
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Tab. 3.2.: Let’s Go Dialogue Formatting Example

q = [(d̃i : ãi), ω̃i] System Actions and User Decodings

q0 = [(ǫ : ǫ), ǫ] ∈ QS
S: Welcome to the CMU Let’s Go bus information system. To get help...
ã1 =inform_welcome,inform_get_help,request_query_departure_place

q1 = [(ã1 : ǫ), ǫ] ∈ QU

U: I’m leaving from CMU.
d̃1 =inform_departure_place, PlaceInformation_registered_stop
ω0 = {}

q2 = [(ã1 : d̃1),ω0] ∈ QS

S: Departing from <query.departureplace CMU>. Did I get that right?
ã2 =Explicit_confirm, request_query_departure_place
ω0 = {}

q3 = [(ã2 : d̃1),ω0] ∈ QU

U: Yes.
d̃2 = Generic_yes
ω1 = {departure.place : known}

3.1.2 A-PFSBA Dialogue Manager and User Model

The main objective of the interaction carried out between the user and the system in

the Let’s Go use case scenario is to obtain information about bus schedules. So, the

main goal of the DM in this corpus is to make a coherent query to the database, in

order to retrieve the bus schedule information requested by the users. Aligned with

the DM goal and in order to maintain the memory of the dialogue, the attributes

shared by the DM and the UM are defined in Table 3.3:

Tab. 3.3.: Attributes for the Let’s Go A-PFSBA structural model

Attribute Name Attribute Value

Departure place 1 if the departure place name is known, else 0
Arrival place 1 if the arrival place name is known, else 0
Leaving travel 1 if the travel time for leaving is known, else 0
Route number 1 if the route number is known, else 0
Departure stop name 1 if the departure stop name is known, else 0
Departure time 1 if the departure time is known, else 0
Arrival stop name 1 if the arrival stop name is known, else 0

Travel departure by
1 if the approximated departure time is known, else 0

(e.g. user says "I want to travel by 4 p.m.").

Travel arrival by
1 if the approximated arrival time is known, else 0.

(e.g. user says "I want to arrive at downtown by 4 p.m.")
Neighbourhood 1 if the leaving neighbourhood is known, else 0
Neighbourhood covered 1 if the neighbourhood is covered by the system, else 0
Route covered 1 if the route is covered by the system, else 0

Note that the defined attributes have binary 1/0 values, because the NLU module is

grammar-based so the users’ decoding d̃ does not have a probability score.
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Attribute iteration rules have been crafted manually: when the user communicates

any of the slot values associated with an attribute (e.g. the name of a departure

place), the corresponding attribute is activated. In order to make dialogue interaction

faster, explicit confirmation is not required from the user.

Since every defined attribute has a related slot, attributes can be inferred directly

from ongoing dialogue. As a result, the A-PFSBA structure trained on this corpus

can and has been used both as DM and as UM.

3.1.3 Evaluation Metrics

When evaluating the performance of task-oriented Dialogue Systems (DSs) one of

the most common metric is the Task Completion (TC) metric (Walker et al., 1997;

Raux, Langner, et al., 2005; Iñigo Casanueva et al., 2017). Informally, the TC is an

automated proxy that checks that the DS is correctly fulfilling the task it is designed

for. These metrics can be Boolean (True if satisfied False if not) or continuous ones,

which may return a score or reward. Usually the TC metrics are evaluated over a

whole dialogue session.

Previous works on the Let’s Go use case scenario employed Task Completion (TC)

and Average Dialogue Length (ADL) in order to evaluate dialogue success (Orozko

and M Inés Torres, 2015; Ghigi and M Inés Torres, 2015). The constraints of the

used TC metric were:

1. The dialogue needed to last 3 turns at least.

2. A query to the database had to be done.

Unlike in (Raux, Bohus, et al., 2006), for the current experimentation there was

no access available to the back-end system. Therefore, it was not possible to

explicitly check if the query performed to the back end was complete. Instead, in the

experiments performed over the Let’s Go in this dissertation a TC metric that satisfies

not only that there is a back-end lookup, but also that there is enough information

to actually carry out such lookup is implemented. The implementation of such TC

metric is described in Algorithm 6.
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Algorithm 1 Task Completion

dialogue← Dialogue to evaluate
if dialogue.length < 3 then

return False

end if

Arrival_info = check_arrival(dialogue)
When_info = check_when_time(dialogue)
Request_Next_Bus = check_next(dialogue)
Is_query_to_db = check_query(dialogue)
Is_Info = Departure_info and Arrival_info and When_info
if Is_query_to_db is False then

return False

end if

if (Is_Info or Request_Next_Bus) is True then

return True

end if

return False

As it can be inferred from Algorithm 6, the TC evaluation metric employed in our

Let’s Go experiments checks that: (1) the dialogue lasts at least 3 turns; (2) a query

is performed to the back-end database; and (3) the departure, destination and time

information necessary to assert that the query to the back end is valid.

3.2 Use Case: Dialogue State Tracking Challenge 2

The DSTC2 corpus has not been used previously to build A-PFSBA based DMs. The

main benefit of this corpus for experimental purposes is that the used NLU module

is statistical and returns N-hypotheses, so the DM have to deal with the associated

uncertainty. Also, user goals are explicitly annotated because paid volunteers were

used to generate the corpus instead of real users, which allows the development

of a more coherent UM and a more exhaustive evaluations in terms of TC. In this

dissertation, the DSTC2 corpus has been used to build goal-oriented UMs and to test

the behavior of the A-PFSBA based DM under uncertainty, simulating the impact of

the Speech To Text (STT) module at NLU level.

3.2.1 Corpus Description

The second edition of the Dialogue State Tracking Challenge series (Henderson,

Thomson, and Williams, 2014) focused on tracking the dialogue state of a SDS in
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the Cambridge restaurant domain. For such purpose, a corpus1 with a total of 3235

dialogues was released by the Cambridge Dialogue Systems group.

3.2.1.1 Dialogue Goal Representation

The DSTC2 corpus was gathered using paid Mechanical Turk volunteers in a semi-

controlled environment, where interactions with the system were conditioned ac-

cording to predefined scenarios.

At the beginning of each dialogue, a goal was given to each volunteer in order to

guide their interaction with the system. This goal defined the user’s preferences

regarding the restaurant of interest (e.g. food type and price range) and the infor-

mation to retrieve from the system (e.g. phone number and address), once a valid

restaurant is found. The given goal was annotated in two ways: 1) in human read-

able text generated by using templates as instructions for the Mechanical Turkers;

and 2) in a machine-readable JSON representing the goal. This goal representation

used the corpus-dependant Agenda format (Schatzmann, Thomson, Weilhammer,

et al., 2007). Goals were annotated using constraints to find a suitable venue and

items to be requested from the system once a suitable venue was found, as shown in

Figure 3.2.

Fig. 3.2.: Simple goal given to a participant, with its textual description and JSON annota-
tion using the Agenda schema

Different characteristics were combined by the developers of the DSTC2 corpus

when defining the goals to test different scenarios of their DS:

1http://camdial.org/∼ mh521/dstc/
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1. Goal with achievable constraints: where the constraints given are viable, i.e.

there exists at least a venue in the knowledge base that satisfies the constraints.

This is intended to test the most basic aspects of the dialogue system.

2. Different information to request: where the user is also given some explicit

information to request to the system about the offered venues. The goal is to

test if the system can respond to the information requested by the user, such

as addresses, phone numbers and so on.

3. Goal with impossible constraints: where there is no venue that satisfies the

given constraints. If this happens, the user is also given an additional set

of achievable constraints. This is intended to test the system’s capability of

informing the user that those combinations of constraints cannot be satisfied.

4. Request alternatives for the given venue: sometimes the user is told that

they must ask for alternative venues instead of accepting just the first venue

that is offered by the system. This goal feature is included so the system can

handle situations where multiple restaurants are available.

When using this corpus in this dissertation, the main issue has been that only

conditions (1) and (2) were explicitly annotated by the corpus developers in machine

readable JSON format, as it can be seen in Figures 3.2 and 3.3. On the contrary, the

information about the goal of points (3) and (4) needs to be inferred from the given

text. Two examples are presented below that depict this issue:

Fig. 3.3.: Double goal given to a participant, both in textual description and JSON annota-
tion of the Agenda schema.

As it can be seen in Figure 3.3, the first constraint ( a restaurant serving fusion food)

is impossible to satisfy in the city centre, so an additional food constraint ( European

food) is given to the volunteer. This will condition they behaviour when interacting

with the system, but there is no explicit annotation as machine-readable JSON.
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Fig. 3.4.: Single goal with request alternatives given to a participant, both in textual de-
scription and JSON annotation of the Agenda schema.

As shown in the Figure 3.4, the user is asked to look for a moderately priced

restaurant in the west part of town, but is also required to ask for alternative venues

to the one offered by the system, and again, this is not represented in the annotated

JSON schema. In addition, this requirement is never met jointly with the double

goal requirement.

As it will be described in more detail in Section 3.2.2.2, the discrepancies between

the JSON annotated goal and the text given to the participants will have an impact

when building UMs in our experiments, resulting in two different ones: one that only

takes into account the JSON annotation; and a more complex one, which extracts

information from the given texts by using regular expressions.

3.2.1.2 Taxonomy Description

The hierarchy associated with the Dialogue Act (DA) representation (e.g. the Inform

intent has associated the Food slot that can have [Chinese, Japanese, ...] values) is

often referred to as the taxonomy, which describes the semantic space of the user

and the system in DSs.

Table 3.4 summarizes the user DAs of the DSTC2 corpus, together with their related

slots. Note that many intents do not have related slots and that the slots of the

Request intent have no value. Table 3.6 includes all the informable slots in the

DSTC2 corpus and some examples of their possible values. In addition to those

specific values, every slot has the special value dontcare. On the other hand, Table

3.5 summarizes the system intents and the related slots per intent. Finally, Table

3.7 includes a dialogue of the DSTC2 corpus represented using this annotation

schema.
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Tab. 3.4.: Dialogue Acts that the user can trigger in the DSTC2 corpus

User Intents Related Slots

Acknolwedge Null
Affirm Null
Bye Null
Confirm Area, Food, Price Range, Restaurant
Deny Area, Food, Price Range, Restaurant
Hello Null
Help Null
Inform Area, Food, Price Range, Restaurant
Negate Null
Repeat Null
Request Alternatives Null
Request More Null

Request
Area, Food, Price Range, Restaurant,
Phone, Address, Signature, Postcode

Restart Null
Silence Null
Thankyou Null

Tab. 3.5.: Intents of the system in the DSTC2 corpus

System Intents Related Slots

Affirm Null
Bye Null
Confirm-domain Null
Negate Area, Food, Price Range, Restaurant
Repeat Area, Food, Price Range, Restaurant
Request-more Null
Welcomemsg Null
Canthelp Area, Food, Price Range
Canthelp-exception Restaurant
Explicit-confirm Area, Food, Price Range
Implicit-confirm Area, Food, Price Range

Inform
Area, Food, Price Range, Restaurant,
Phone, Address, Signature, Postcode

Request Area, Food, Price Range, Restaurant
Offer Restaurant
Select Area, Food, Price Range

Tab. 3.6.: Possible slot values for the Inform, Confirm and Deny intents

Informable Slots Possible Values Examples

Restaurant Name 113 Nandos, Pizza Hut, ...
Food Type 91 Basque, Italian, European, ...
Price Range 3 Cheap, Moderate, Expensive
Area 5 North, West, South, East, Centre
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This corpus is already split into Train, Development and Test sets of 1612/506/1117

dialogues respectively and these partitions are used throughout the experimentation

phases.

Tab. 3.7.: Dialogue example tagged with the DSTC2 Taxonomy

Who Is Text Representation Dialogue Act Representation

System Hello , welcome to the Cambridge restaurant system... How may I help you? welcomemsg

User moderately priced north part of town
inform(pricerange=moderate),
inform(area=north)

System golden wok is a nice restaurant in the north of town in the moderate price range
offer(venue=Golden Wok),
inform(area=north),
inform(pricerange=moderate)

User what is the address and phone number
request(address),
request(phone)

System The phone number of golden wok is 01223 350688 and it is on 191 Histon Road Chesterton
offer(venue=Golden Wok),
inform(address=191 Histon ...),
inform(phone=01223 350688)

User thank you good bye
thankyou,
bye

3.2.2 User Models

Two methodologies have been developed to build UMs in the DSTC2 domain, based

on A-PFSBA and DL technologies respectively. Both models employ the same user and

system taxonomy. In order to reduce the dimension of the DA space in the original

taxonomy without losing the information required for dialogue management, a

delexicalisation approach has been employed across UMs. The next sections describe

the proposed delexicalisation method and the developed A-PFSBA and Deep Learning

UM.

3.2.2.1 Goal-oriented delexicalisation for DSTC2

As described previously in Section 3.2.1.2, the DA representation that is used to

represent the input and output space of the DM is structured in a hierarchical

taxonomy. A common issue when some slots have several values is that such DA

representation is highly sparse. As a result, it is difficult to capture useful patterns

for dialogue management and the computational effort required by the DM models

increases, which results in a negative impact on system usability.

As explained in Section 3.2.1.1, in the DSTC2 corpus each goal is represented

as a set of constraints C and values to request R that the user needs to fulfill

through the interaction, following the Agenda schema (Schatzmann, Thomson,

Weilhammer, et al., 2007). Figure 3.2 shows a clear example of this representation

where Goal = (C,R) follows this tuple schema: {food : european, pricerange :

expensive} are the constraints to find the venue and [phone] is the information to be

obtained regarding the venue. The constraints and requests of the goal have a direct
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correlation with the user taxonomy, conditioning the dialogue interaction logic of

the user.

The proposed goal-conditioned delexicalisation of the DSTC2 corpus assumes that the

user will be collaborative and will try to satisfy the given goal . Under this constraint,

it is assumed that the specific slot values are relevant to the interaction logic if they

correlate with the constraints and requests set in the initial goal. Then, every slot

value is delexicalised with a goal or other tokens, depending on whether they match

the given constraint values or not. Following this assumption, the possible values

of the slots that are part of the set goal constraint C are highly reduced. Table 3.8

shows how the slot values of an interaction represented at dialogue act level are

compressed using the proposed technique, according to the given goal.

Tab. 3.8.: DSTC2 interaction example, delexicalised according to the user goal

Text Representation of the Goal Goal Agenda Representation

Goal
Task 01875: You are looking for a moderately priced restaurant
and it should be in the north part of town.
Make sure you get the address and phone number of the venue.

Constraints:
area=north
pricerange=moderate
To request
phone, addr

Who Is Original Text Goal-delexicalised Dialogue Acts

System
Hello , welcome to the Cambridge restaurant system.
How may I help you?

welcomemsg

User moderately priced north part of town
inform(pricerange=<price-goal-1>),
inform(area=<area-goal-1>)

System
golden wok is a nice restaurant in the north of town in the
moderate price range

offer(venue=<venue>),
inform(area=<area-goal-1>),
inform(pricerange=<price-goal-1>)

User what is the address and phone number
request(address),
request(phone)

System
The phone number of golden wok is 01223 350688 and
it is on 191 Histon Road Chesterton

offer(venue=<venue>),
inform(address=<venue-address>),
inform(phone=<venue-phone>)

User thank you good bye
thankyou,
bye

As it can be seen, goal-oriented delexicalisation has a direct impact on the DA

representation, narrowing down each possible slot value. As a result, slot value level

information can be included in the DA representations for user modelling purposes,

avoiding excessive sparsity and with small information loss. This delexicalisation

technique is used in both, the A-PFSBA based UM and Deep Learning based UM

presented in the next two sections.

3.2.2.2 Bi-Automata User Model

This section describes the Bi-Automata User Model built using the DSTC2 corpus in

detail. In addition to applying goal-oriented delexicalisation to reduce the sparsity of

3.2 Use Case: Dialogue State Tracking Challenge 2 39



the DA space, the A-PFSBA model is also explicitly conditioned to the user goal in

order to guide the interaction according to a predetermined set of constraints.

Goal-conditioning the A-PFSBA

In the DSTC2 corpus, goal constraints C specify requirements of the user to achieve

(e.g. restaurant type) while requests R specify desired pieces of information to

retrieve (e.g. address and phone number), following the Hidden Agenda notation of

(Schatzmann, Thomson, Weilhammer, et al., 2007). Both C and R are represented

as slot-value pairs. In order to condition the behavior of the BAUM to a given

dialogue goal, C and R are encoded as A-PFSBA attributes Ω before starting the

conversation as depicted in Figure 3.5

Fig. 3.5.: Goal-conditioning the interaction at dialogue initialisation

As a result, ΩG ⊂ Ω can be defined as the union of two sets of attributes ΩC ∪ΩR =

ΩG, where ΩC corresponds to the slots given as constraints and ΩR corresponds

to the slots the user has to request about. A dialogue interaction including this

conditioning can be found in Table 3.9

As explained in the corpus Section 3.2.1.1, two goal representations can be found

in the DSTC2 corpus: (1) an explicit one annotated in JSON format; and (2) the

text given to the paid volunteers of Mechanical Turk. Based on these two different

representations, two different UMs have been trained using the A-PFSBA framework.

While the first UM denoted BAUM uses the JSON representation of the goal, the

second one referred to as BAUM2 extracts the goal by using regular expressions

from the text given to the volunteers. This BAUM2 is more complex and can handle

the multi-goal scenarios 3 and 4 described in Section 3.2.1.1, such as requesting

alternative venues once an appropriate one is found or changing the goal if there

isn’t any restaurant that matches the initial constraints of the given goal.
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BAUM Attributes The dialogue attributes defined to model the BAUM are split

into three categories; (1) goal related attributes, which are responsible for encoding

the users’ goal as shown in Table 3.10; (2) constraint communication attributes,

which keep track of which user constraints are successfully communicated to the

system as shown in Table 3.11; and (3) venue information retrieval attributes, which

control the information the system has given regarding the offered venues as shown

in Table 3.12.

Tab. 3.10.: Goal related attributes of BAUM and their values

Goal related Attributes Values Description

Constraint food 1,0 Food slot is set as constraint
Contraint area 1,0 Area slot is set as constraint
Constraint pricerange 1,0 Pricerange slot is set as constraint
Constraint name 1,0 Venue name is set as constraint
Request food 1,0 Food value needs to be requested
Request area 1,0 Area value needs to be requested
Request pricerange 1,0 Price value needs to be requested
Request address 1,0 Address value needs to be requested
Request phone 1,0 Phone value needs to be requested
Request signature 1,0 Signature value needs to be requested
Request postcode 1,0 Postcode value needs to be requested

Tab. 3.11.: Constraint communication related attributes of BAUM and their values

Constraint Communication

Attributes
Values Description

User informed food goal 1,0
The user informed about the given food
constraint in the goal

User informed food other 1,0
The user informed about a food value different
from the one given as goal

User informed area goal 1,0
The user informed about the given area
constraint in the goal

User informed area other 1,0
The user informed about an area value different
from the one given as goal

User informed price goal 1,0
The user informed about the given pricerange
constraint in the goal

User informed price other 1,0
The user informed about a price value different
from the one given as goal

User informed name goal 1,0
The user informed about the given venue name
constraint in the goal

User informed name other 1,0
The user informed about a venue name value different
from the one given as goal

System understood food goal 1,0 The system has understood the user food goal value
System understood food other 1,0 The system has understood the user food other value
System understood area goal 1,0 The system has understood the user area goal value
System understood area other 1,0 The system has understood the user area other value
System understood price goal 1,0 The system has understood the user price goal value
System understood price other 1,0 The system has understood the user price other value
System understood name goal 1,0 The system has understood the user venue name goal value
System understood name other 1,0 The system has understood the user venue name other value
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Tab. 3.12.: Venue information retrieval related attributes of BAUM and their values

Information Retrieval

Attributes
Values Description

Received venue address 1,0 The system has informed about the current venue’s address
Received venue phone 1,0 The system has informed about the current venue’s addres
Received venue postcode 1,0 The system has informed about the current venue’s addres
Received venue name 1,0 The system has informed about the current venue’s name
Received venue food 1,0 The system has informed about the current venue’s food type
Received venue pricerange 1,0 The system has informed about the current venue’s price value
Received venue signature 1,0 The system has informed about the current venue’s signature
Offered new venue 1,0 The system offered a new, different venue

The values of these attributes are inferred from the dialogue interaction with simple

handcrafted rules that follow an if-this-then-that logic. These rules are described in

Appendix A.1.

BAUM2 Attributes BAUM2 extends the capabilities of BAUM to explicitly capture

scenarios 3 and 4 of Section 3.2.1.1, employs different goals and performs more

realistic and complex interactions such as requesting for alternative venues and

changing the goal if there isn’t any restaurant that matches the initial one.

In order to achieve this, additional attributes are added to the BAUM attribute set.

To this end, goal constraints and requests are inferred from the text templates that

were received by the Mechanical Turkers by using regular expressions.

The new BAUM2 attributes, which are used to extend the BAUM ones, are shown in

Tables 3.13 and 3.14.

Tab. 3.13.: Goal attributes of BAUM2 and their values

Enhanced Goal

Attributes
Values Description

Secondary food goal 1,0 There is a secondary constraint for the food goal
Secondary area goal 1,0 There is a secondary constraint for the area goal
Secondary price goal 1,0 There is a secondary constraint for the price goal
Secondary name goal 1,0 There is a secondary constraint for the name goal
Request Venue Alternative 1,0 The user has to ask for an alternative venue
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Tab. 3.14.: Constraint communication related attributes of BAUM2 and their values

Enhanced Constraint

Communication Attributes

Values Description

User informed secondary goal
food

1,0
The user has informed about the secondary
goal of the slot food

User informed secondary goal
area

1,0
The user has informed about the secondary
goal of the slot area

User informed secondary goal
price

1,0
The user has informed about the secondary
goal of the slot pricerange

User informed secondary goal
name

1,0
The user has informed about the secondary
goal of the slot name

System understood food secondary
goal

1,0
The system has understood the secondary goal value
of the area slot

System understood area secondary
goal

1,0
The system has understood the secondary goal value
of the food slot

System understood price secondary
goal

1,0
The system has understood the secondary goal value
of the pricerange slot

System understood name secondary
goal

1,0
The system has understood the secondary goal value
of the name slot

Note that now, the "other" slot value refers to any slot value that is different from

the first or second constraint set for that slot. The specific attribute-iteration rules

are described at Appendix A.

3.2.2.3 Deep Learning based User Model

A generative concatenative DL model has been proposed to build a User Model

(Serras, Marıa Inés Torres, et al., 2019b) over the DSTC2 corpus in order to set a

hard baseline for the initial BAUM described in the previous section.

In order to be able to compare this DL-based UM against another sequence-to-

sequence DL model published in (Layla et al., 2016) was used. This UM also employs

the DSTC2 corpus and the goal representation given in the JSON annotations. To

perform a proper comparison, the DL-based UM described in this section was only

trained over the JSON encoded goal, leaving the more complex scenarios encoded

in the Mechanical Turk descriptions out.

The proposed neural network architecture consists of a generative concatenative

model (Z. C. Lipton et al., 2015) with a regularization layer. It encodes the dialogue

history in a sequence both forward and backward and exploits a regularization

mechanism to improve generalization.
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Fig. 3.6.: Neural network architecture proposed for user modeling

As shown in Fig 3.6, the input to the network is a concatenation of the user goal

representationG as used in the BAUM attributes and the sequence of system dialogue

acts until the current turn t:

At
0 = (a0, a1, ..., at)

Where at is the system action of turn t. The user-given goal G is represented as a

1-hot encoding of the slots given as constraints C and requests R in the dialogue

scenario. The output of the network is a prediction of the user dialogue act at the

next turn dt by using the sigmoid activation, so it is equivalent to a multi-regressor

system. Note that under this notation, turns are made up of both system and

user, so turn t is represented as (at, dt). Also note that while system dialogue acts

change turn by turn, the initial goal representation remains the same throughout

the dialogue.

The encoding layer is made up of a bidirectional Long Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997), whose output is the dialogue history encoded
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as h
f forward and as h

b backward. The applied regularization mechanism requires

to learn the weight vectors α for each row of the encoding matrix: (α0, · · · ,αt)

H = [hf , h
b]

.

Being Hi ∀ 1, · · · , t the i-th row of the encoding matrix, the vector αi is calculated

as αi = σ(WaHi)

Where Wa are the parameters of the Regularization Layer and σ the sigmoid function.

Once H and α are known, the encoded sequence is regularized by the element-wise

product as follows:

Reg = α⊙H

The motivation of this operation is to override the non-relevant values of the encoded

sequence.

Decoding is then applied to Reg through another bidirectional LSTM, which outputs

forward and backward decoding vectors decg
t and decb

t at turn t. These vectors are

finally concatenated and processed by the output layer with a sigmoid activation

function, from which the user dialogue act at the current turn dt is predicted.

The proposed model uses an expert network for every possible user intent, its slots

and values as shown in Table 3.4, so the architecture in Fig 3.6 is replicated and

each network learns to predict just one intent, with its slots and values. As a result,

the final UM is an ensemble of models, each of which predicts the slots of a specific

user intent as shown in Fig 3.7. As the sigmoid function is used in the output layer,

a threshold needs to be set to decide whether a user intent needs to be applied to

the UM response. To this end, an individual threshold is set for each network (e.g.

θinform for the network that predicts the inform intent, slots and its values). These

thresholds are set by performing a grid-search in the validation set to maximise the

F1 score.

The final DA output dt is the combination of all user acts given by each specialised

network of the ensemble.
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Fig. 3.7.: Ensemble of Dialogue Act networks from which dt is predicted

3.2.3 A-PFSBA Dialogue Manager

This section describes how a DM has been built over the DSTC2 corpus using the

A-PFSBA framework. The goal of this DM is to find the users’ preferences regarding

a venue type (i.e. food, area, price range), to offer a venue that satisfies those needs

and to return venue-related information (e.g. address, phone, postcode, etc.). To

put it simply, the goals the DM needs to satisfy through dialogue are:

1. Find the user preferences for a venue.

2. If the user’s preferences can be met, offer a suitable venue.

3. If there is no venue that matches the user’s preferences, inform about the

mismatch.

4. Once a venue is identified, respond adequately to user questions regarding

that venue’s properties.

To that end, in addition to managing the dialogue, the DM must communicate with

a Search Engine (SE) that exploits a Data Base (DB) which stores the information of

available venues and their characteristics. The motivation for these modules is the

dynamic nature of the domain, where the available venues can change on a daily

basis, so the search logic needs to be handled by an external service. This enables to

modify the information stored in the DB without rebuilding or updating the DM. As

a result, the DM can employ features extracted from this external service to handle

the interaction (e.g. if no venue satisfies the user’s constraint, inform about that to

the user).
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3.2.3.1 Index Delexicalisation

As the BAUMs, the A-PFSBA DM also uses the DA representation for user decodings

d ∈ Σ and system actions a ∈ ∆. Given the large amount of possible slot values in

the DSTC2 corpus, data sparsity is also an obstacle that must be overcome to achieve

a good modelling. In the case of the DM, sparsity is even higher than for UM, since

STT-induced errors corrupt user input d ∈ Σ, which increases the possible slot-values

that need to be handled for proper dialogue management. In order to reduce the

amount of items that the A-PFSBA model needs to handle, a delexicalisation method

is defined to reduce the amount of items of the alphabets ∆, Σ, which, in practice, is

a transformation of the user and system dialogue acts.

Unfortunately, the goal-oriented delexicalisation method employed for the devel-

opment of the DSTC2 User Models in Section 3.2.2.1 cannot be applied for DM

development because the dialogue goal G is hidden from the system. Instead, delex-

icalisation is carried out by replacing slot values with an indexed generic token and

by storing the specific slot value in a Mapping Blackboard (MB) as shown in Figure

3.8.

Fig. 3.8.: Example of the delexicalisation of a user-act with an indexed token by using a
Mapping Blackboard

Similar to the method used at (S. Young et al., 2010; S. Young, 2006), the assumption

behind this delexicalisation approach is that the specific slot-value is irrelevant for

the dialogue management logic, as decision-making is carried out depending on the

results of the queries to the Search Engine in the DB. In other words, the most

relevant information for the interaction to carry on is not that the user has asked

specifically about a Chinese restaurant, but whether the user has asked about a venue
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characteristic that exists in the DB or not. This conditioning of the dialogue logic is

depicted in Figure 3.9.

Fig. 3.9.: Example interaction where the exact slot-value is irrelevant for the dialogue logic

Note that this assumption is valid for the DSTC2 use case, because the restaurant

finding domain is an information retrieval task where the interaction logic is subject

to the SE and the DB status and properties.

Simple Delexicalisation has been used during the dialogue generation experiments

carried out in Chapter 4 and in Section 6.5.1.

3.2.3.2 Value Ranking Delexicalisation

The Simple Delexicalisation approach employs the appearance-order of the slot val-

ues in order to turn them into generic tokens. This results in a static delexicalisation

(e.g. the token food-1 in Figure 3.8 will always be set to Chinese).

In order to better capture the interaction logic, a more dynamic delexicalisation

technique referred to as Value Ranking Delexicalisation has also been implemented.

Within this approach, the 5 best values of each slot that are stored in the blackboard

are used for delexicalisation. These values are ranked by their score, so, the tokens

<food-rank-0>, <food-rank-1>, ..., <area-rank-0> etc. are used to delexicalise

specific values of the slots. Note that these tokens are static (i.e. <food-rank-0>

will always refer to the food slot value with highest score or confidence) but the slot

value that these tokens are replacing may change during the interaction, as the user

can negate the current foot slot value and suggest another one.
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Value Ranking Delexicalisation has been used when using handcrafted and proba-

bilistic rules for DM policy in Chapter 6, Section 6.5.3.

3.2.3.3 Using External Services to Infer DM Attributes

As mentioned before, the dialogue interaction logic of the DSTC2 corpus is subject

to the SE status. This SE is responsible for finding appropriate venues and making

queries to a DB. Then, according to the information retrieved by this SE, the DM

needs to adjust its strategy.

The SE performs read/write/update operations over the the MB throughout the

interaction, according to a set of rules. In addition, each time the MB status changes,

venue-finding queries are performed. Finally, both the information of the MB and

the results received from the SE queries are used to update the attributes of the

DM.

The following simple handcrafted rules are employed to modify the MB informa-

tion:

• Inform Rule: each time the user informs about a slot value, this value is

written in the memory together with its associated probability. If it is already

in the MB, the probability is added up to a maximum of 1.

• Canthelp Rule: if the system triggers a canthelp action over a concrete slot

(i.e. it is not possible to combine a specific slot and value such as food=Basque),

this value is removed from the MB.

• Deny Rule: if the user denies a slot value, the probability of the deny act is

subtracted from the score of the MB. If the resulting score is 0 or less, the slot

value is removed.

• Explicit confirmations: if the user acknowledges or affirms a concrete slot

and value after an explicit request or confirmation of the system, the score of

the user act is added up to the one in the MB. If, conversely, the user negates,

the score is subtracted.

• Log Offered Venues: the memory logs the different offered venues and their

characteristics, so it keeps track of the available venues when the user asks

about alternatives.
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• Request Alternative Venues: when the user asks for an alternative, the

current venue is flagged as offered and loses priority over the venues that have

the same score.

When searching for venues, the combinatorial over the available food, area and

pricerange slot values is used because multiple values may be active in the MB for

the same slot. At least, information about two different slots is required to perform

a search query by the SE.

Each search query returns a matching venue-cluster (i.e. the group of venues that

satisfy the search constraints). Being s(foodi), s(areaj), s(pricek) the scores of

the MB of certain food, area and price slot-values to make some query Query =

{foodi, areaj , pricek}. Then, the score given to the venue-cluster that is returned by

the SE over that query is:

s(foodi) + s(areaj) + s(pricek)

|Query|

Note that if any score is 0 and/or the slot value is "dontcare" the item is not used to

perform the query. The score of each venue is normalized by the amount of possible

constraints to search for.

3.2.3.4 Inferring the Attributes

The DM attributes are updated at each turn by using the Memory Blackboard and

the scored venue-clusters received from the queries performed to the Search Engine.

The list of inferred attributes is the following:

• Food maximum score: the maximum score for the food slot-value in the MB.

• Area maximum score: the maximum score for the area slot-value in the MB.

• Price range maximum score: the maximum score for the price range slot-

value in the MB.

• Top venue score: the maximum score of all the venue clusters.

• Next venue-cluster score: the second maximum score of all venue clusters.

• Top 2 clusters score difference: the score difference between the first and

the second venue clusters.
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• Amount of clusters: number of available venue-clusters, up to 2.

To avoid unnecessary sparsity, all attribute values are rounded to the first decimal.

3.2.3.5 NLU Error Simulation

As mentioned in Chapter 2, channel noise nt induces errors in STT transcriptions

(Schatzmann, Thomson, and S. Young, 2007a) which cause uncertainty in NLU when

decoding user transcriptions ũt into the DA d ∈ Σ that compose d̃t ∈ Σ
≤m. As a

result, the DM needs to handle these perturbations.

To simulate this type of error for the DSTC2 scenario, a statistical approach has

been followed. The proposed method models the error distributions observed in the

corpus for each possible user DA d ∈ Σ. Note that although noise is induced at STT

level, the DM uses the user-language decoded by the NLU as input and, thus, the

error is modelled at NLU level. In particular, the NLU error corrupts the correct user

decoding d̃t ∈ Σ
≤m at two levels :

1. Intent-slot level: at this level, the error is modelled at a coarser granularity, by

storing the probability of misunderstanding the user’s intent and its associated

slot in a confusion matrix. For example, the confusion matrix captures the

probability of misunderstanding Inform(food=*) with Inform(area=*), the

exact values of the slots food and area are ignored. A special <empty> value is

used to depict when the correct hypothesis or dialogue act is not detected due

to an STT error.

2. Slot-value level: here the error is modelled at a finer granularity, pinpointing

cases when a specific slot value is misunderstood with another. Since there is

not enough data to derive a complete confusion matrix for all the possible slot

and value combinations, this confusion matrix is built using a delexicalised

form of the slot-value pairs by capturing the frequency of corrupting the

correct slot-value with an incorrect one (e.g. "food|<correct-value>" with

"food|<incorrect-value>").

In addition, the NLU score-distribution calculated as the output NLU probability

assigned to each error type is also sampled for each of the above confusion-matrices.

Then, using the confusion matrices and the sampled NLU-score distributions, Algo-

rithm 2 describes the process of perturbing the user decoding elements di ∈ d̃t given

a correct user action.

3.2 Use Case: Dialogue State Tracking Challenge 2 51



Algorithm 2 NLU error simulation to corrupt the DA user decoding d̃t

IScm ← Intent + Slot name confusion matrix
SVcm ← Slot + Value delexicalized confusion matrix
αcorrupt ← Corruption parameter
n_rounds← Number of corruption rounds
d̃← Uncorrupted user decoding
d̃

′

← d̃ Corrupted user decoding
for i in range(n_rounds) do ⊲ Corrupt for N rounds

for d ∈ d̃t do

dis, dsv ← split(di) ⊲ Split into intent-slot and slot-value.
d̃is, pis ← corrupt_IS(dis, IScm,αcorrupt)

if dsv has slot value then

d
′

sv, psv ← corrupt_slot_value(dsv,SVcm)
end if

d
′

← concatenate(d
′

is, d
′

sv)
p = (pis + psv)/2

d̃
′

+ = d
′

with probability p ⊲ Add the alphabet item d to d̃
′

end for

end for

Return normalize_probabilities(d̃
′

) ⊲ Normalise d̃ probabilities by using the
maximum p score.

Where αcorrupt is a normalisation coefficient of a discrete probability distribution

X = [x1,x2, · · · ,xN ] such that it re-converts each probability into:

x
αcorrupt

i =
x

αcorrupt

i
∑N

j=1 x
αcorrupt

j

Thus, the lower the alpha parameter, the more likely the system will corrupt the

original user action. In addition, as the number of perturbation rounds n_rounds is

higher, there are more chances of corrupting the initial user action.

An example of the d̃t = d1, d2 where the DAs are d1 = request(address) and

d2 = request(phone) can be found below. Then, the perturbed version of the user

input d̃
′

t is displayed.

Original user decoding:

-----------------------

{'request(addr)': 1, 'request(phone)': 1}

Perturbed user decoding:

------------------------
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{'request(addr)': 0.96, 'request(phone)': 0.48}

A valid method to measure the perturbation at NLU level is to compare the original

d̃t and its perturbed version d̃
′

t by means of the L1 distance. The example above has

L1(d̃t, d̃
′

t) = 0.56. This measure can give us some hints on the NLU error distribution

of the corpora.

Table 3.15 shows the mean L1 differences between the correct NLU input and the

perturbed version for the different corpus partitions. In addition, figure 3.10 depicts

the distribution of the normalised frequencies according to the L1 difference of the

correct NLU input and its corrupted version.

Tab. 3.15.: Mean L1 difference between correct user inputs and NLU perturbed outputs

Partition L1 difference

DSTC2 - Train 0.6899
DSTC2-Dev 0.7893
DSTC2-Test 0.7198
All 0.7168

Fig. 3.10.: NLU perturbation L1 differences for the train, development and test corpus
partitions of the DSTC2

As it can be seen, most of the differences happen on the [0-1] span, which means

that the difference between the original NLU input and the corrupted one is usually
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small. In addition, all histograms have significant overlapping, thus, the NLU error

distribution is quite similar across data partitions.

In order to analyse how the proposed NLU corruption algorithm works, the effect

of parameters αcorrupt and n_rounds over the initial user input has been measured

by performing a grid search for αcorrupt ∈ [0, 4] and n_rounds ∈ [0, 20]. Figure 3.11

shows the three dimensional graph of the L1 difference between the received user

action and the corrupted one with respect to these two variables for the DSTC2

corpus. Each point was computed 5 times and the mean is used to build the graph

surface.

Fig. 3.11.: Surface of the L1 difference between the correct user action and the corrupted
one by the NLU error model

As it can be seen, the lower αcorrupt is and the higher n_rounds is, the higher is

the L1 difference between the original NLU decoding and the corrupted one. Once

αcorrupt is set higher than 1 and the number of perturbation rounds is increased, the

L1 difference reaches a plateau.
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In order to evaluate the performance of the A-PFSBA DM over the DSTC2 corpus and

the proposed NLU error model, αcorrupt was set to 1. Then, the n_rounds parameter

was increased simulating different levels of channel noise. The set of histograms

shown in Figure 3.12 depict the error distribution obtained over the complete DSTC2

corpus by using αcorrupt = 1 and n_rounds 3, 5 and 10, respectively.

Fig. 3.12.: Histograms of L1 differences with αcorrupt = 1 and different number of rounds

As it can be seen, an increase in the number of rounds directly increases uncertainty,

rendering a smoothed distribution over the NLU error. The induced error is capable

of achieving lower to higher L1 differences according to the experiment needs. Note

that the error distribution of the proposed model is less spiked than the one observed

in the DSTC2 corpus.

This NLU perturbation model is used in the DSTC2 dialogue generation experiments

of Chapter 4 and in the incremental learning experiments of Chapter 6 in order to

determine the robustness of the A-PFSBA framework against channel noise.

3.2.4 Evaluation Metrics

The following tests are applied to the system and are used to evaluate dialogue

generation and incremental learning experiments between an UM and a DM in

Chapters 4 and 6.
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3.2.4.1 User Model Evaluation Metrics

In order to evaluate the DSTC2 UM, two different evaluation scenarios are used:

direct comparison against real-user responses and Task Completion (TC) over gener-

ated dialogues.

Direct comparison contrasts the responses of the UM and the responses of real

users in terms of Precision, Recall and F1-score as in (Layla et al., 2016; Schatz-

mann, Weilhammer, et al., 2006; Cuayáhuitl, Renals, et al., 2005; Quarteroni et al.,

2010).

Precision (P):
Num. of correctly predicted dialogue acts

Num. of predicted dialogue acts

Recall (R):
Num. of correctly predicted dialogue acts

Num. of dialogue acts in the corpus

F1-score:
2 · Precision ·Recall

Precision+Recall

These metrics allow comparing the dialogue acts of real and simulated users, mea-

suring the behavior and consistency of the model. They have been used to compare

the proposed Deep Learning UM and the BAUM models.

Also the BAUM models have been evaluated in terms of TC: the dialogues generated

between the UM and the DM have been evaluated using different tests. These tests

check if the UM satisfies the following criteria during the conversation:

1. Has the user given the constraints of the goal? This test evaluates the

percentage of constraints given in the initial goal that have been informed to

the DM.

2. Has the user requested the information of the goal? This test evaluates the

percentage of request slots that have been asked to the DM once a venue has

been offered.

3. Has the user asked about alternatives? When the dialogue goal asks the

user to request alternative restaurants, this test checks if the user has done so.

4. Has the user said goodbye? Checks if the user has said goodbye to close the

interaction.

These TC sub-goal tests are used to measure and check the consistency of the

proposed BAUMs.
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3.2.4.2 Dialogue Manager Evaluation Metrics

When implementing the TC metric over the DSTC2 domain, a specific metric has

been implemented to test each functionality of the DM. Each TC metric is correlated

with a sub-task that the DM has to satisfy (K. Lu et al., 2019), which is tested

individually. A sub-task is any partition that can be made to the original goal of the

dialogue. For example, when the user requests the address of a venue, the system

completes a sub-task or sub-goal of the dialogue by correctly answering with the

current venue address, even if it may fail in other sub-goals (e.g. the system may

misunderstand the given food type). In order to check all the functionalities, the TC

rate is split into the following smaller and more granular tests.

1. Has the system offered a restaurant that satisfies the user-given con-

straints?: This test checks if the system has offered a restaurant that satisfies

the constraints given by the user.

2. Has the system given adequate responses to the user requests? This test

checks if the system has given an adequate response to the requests of the

user in the immediate next turn. For example, when the user asks about

the telephone number of an offered restaurant, this test checks if the system

provides the corresponding phone number in the following turn.

3. Has the system informed correctly about impossible combinations? This

test checks if the system lets the user know when the requested combination

of user constraints cannot be found in the Database.

All the models presented in this Chapter will be used to evaluate the contributions

made in this dissertation in terms of A-PFSBA model smoothing, policy-making and

incremental learning.
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Tab. 3.9.: Attribute update example for the User Model

Goal Agenda Representation User Model Attributes

Goal

Constraints:
area=north
pricerange=moderate
To request
phone, addr

ωg

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1

Who Is Goal-delexicalised Dialogue Acts

System welcomemsg ω0

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1

User
inform(pricerange=<price-goal-1>),
inform(area=<area-goal-1>)

ω1

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1
informed-price-goal: 1
informed-area-goal: 1

System
offer(venue=<venue>),
inform(area=<area-goal-1>),
inform(pricerange=<price-goal-1>)

ω2

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1
informed-price-goal: 1
informed-area-goal: 1
system-unders-price-goal: 1
system-unders-area-goal: 1

User
request(address),
request(phone)

ω3

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1
informed-price-goal: 1
informed-area-goal: 1
system-unders-price-goal: 1
system-unders-area-goal: 1

System
offer(venue=<venue>),
inform(address=<venue-address>),
inform(phone=<venue-phone>)

ω4

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1
informed-price-goal: 1
informed-area-goal: 1
system-unders-price-goal: 1
system-unders-area-goal: 1
offered-new-venue: 1
received-venue-address:1
received-venue-phone:1

User
thankyou,
bye

ω5

constraint-food: 0
constraint-area: 1
constraint-price:1
request-address: 1
request-phone: 1
informed-price-goal: 1
informed-area-goal: 1
system-unders-price-goal: 1
system-unders-area-goal: 1
offered-new-venue: 1
received-venue-address:1
received-venue-phone:1
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4
Model Smoothing

Model smoothing is a key feature to avoid dialogue-breakdowns and improving such

mechanism is one of the main contributions of this thesis.

Fig. 4.1.: Model Smoothing chapter map.

In this chapter, the model smoothing approach employed in previous works (Orozko

and M Inés Torres, 2015; Ghigi and M Inés Torres, 2015) is described first. Next,

three new methods are proposed to improve the traditional Attributed Probabilistic

Finite State Bi-Automata (A-PFSBA) model smoothing strategy, based on custom

smoothing policies and spatial semantization methods. Two experimental setups are

tested. First, the User Models (UMs) presented in Chapter 3 are directly evaluated

against the output given by real users, evaluating their behaviour according to the

presented contributions. Then, the Bi Automata User Model 2 (BAUM2) of Section

3.2.2.2 and the A-PFSBA Dialogue Manager (DM) of Section 3.2.3 are indirectly

evaluated by measuring the Task Completion (TC) rate over the dialogues that they

generate when talking to each other. The impact of the different smoothing strategies

over the TC rate is measured using these generated dialogues.
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4.1 Model Smoothing Strategy

As introduced in Chapter 2, A-PFSBA model learning also requires to define a model

smoothing strategy. This strategy is used to generalise to unseen situations, routing

unknown dialogue states to some known state. In practice, this means that the

A-PFSBA model should give a response to any situation, known or not.

When dealing with stochastic structural models, smoothed models are usually

learned at the training phase, rendering models capable of handling any state.

Unfortunately, as the DM has to model a decision-making problem, there is no

guarantee to ensure a proper decision outcome for every smoothed dialogue state.

Due to this, the smoothing strategies described in this chapter are used at decoding

time, ensuring a response for every dialogue state but without learning a smoothed

model. Ways to improve the initial A-PFSBA model by using the smoothed dialogue

states in the decision-making context are further detailed in Chapter 6.

  
∉ ��

′

Unknown State!!

Fig. 4.2.: Dialogue interaction reaching an unknown state q′.

When the dialogue leads to an unseen dialogue state q 6∈ Q in the A-PFSBA

framework, the A-PFSBA model M̂ is unable to execute its exploitation policy

ΠA−P F SBA(q′) and the dialogue is broken. In this situation, a strategy to rectify the

interaction must be defined. Under the assumption that "Similar dialogue states will

trigger similar responses", model smoothing can be performed as a two-step task:

first, the most similar known dialogue states with respect to q′ 6∈ Q are found and

then, the next action is selected using the transitions from these states. In its simplest

form, this is equivalent to finding the nearest neighbour states of the unknown state

q′ and to use their candidate actions to select the next system response (Orozko and

M Inés Torres, 2015; Ghigi and M Inés Torres, 2015; Serras, Marıa Inés Torres, et al.,

2017; Serras, Marıa Inés Torres, et al., 2019c).
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In order to employ this smoothing strategy, a state similarity function Sim must be

defined first. This spatial relation will determine the similarity between two dialogue

states (qi, qj) : qi, qj ∈ Q.
Sim : Q×Q→ R

Sim(qi, qj)→ R

(4.1)

This similarity function needs to hold the following properties:

• Identity of indescernibles: Sim(qi, qj) = max∀q′,q′′∈QSim(q′, q′′) ←→ qi =

qj

• Symmetry: Sim(qi, qj) = Sim(qj , qi)

Other properties, such as a bounded image Sim(Q,Q) ∈ [0, 1] or a positive image

Sim(Q,Q) ∈ R
+, are desirable but optional. Note that Sim can also be a dissimi-

larity or distance function, by inverting the selection criteria (e.g. using the closest

dialogue state instead of the most similar).

4.1.1 Nearest State Smoothing

Early DM works on A-PFSBA employed the Nearest State Smoothing (NSS) mecha-

nism, where the unknown state q′ is redirected to the closest state qj ∈ Q (Orozko

and M Inés Torres, 2015; Ghigi and M Inés Torres, 2015; Serras, Marıa Inés Torres,

et al., 2017; Serras, Marıa Inés Torres, et al., 2019c). Then, this state is used to

sample the next action according to the defined policy ãt+1 = ΠA−P F SBA(qj). The

first step of this approach is represented in Figure 4.3.

4.1.2 Ambiguity of the State Representation

The way in which states q ∈ Q are represented is crucial to define or select the

spatial relation function Sim. Preliminary work represented dialogue states as

strings (Orozko and M Inés Torres, 2015; Ghigi and M Inés Torres, 2015) and

calculated their similarity by using edit distances. The limitation of this approach

was shown in (Serras, Marıa Inés Torres, et al., 2017), where introducing attributes

and representing states as a binary vector make it possible to employ a combination

of edit distances and the L1 norm.

The vectorial form of a dialogue state ~q can be defined as the concatenation of

the vectorial form of the user action, system action and attributes of the state:
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Fig. 4.3.: Smoothing of q′ to its nearest and known dialogue state qj .

~q = [ ~̃dq, ~̃aq, ~ωq]], where |~q| = |Σ|+ |∆|+ |Ω| = L. The notation q[i] is used to

determine the i− th element of the vector. Along this chapter all the dialogue states

are used in their vectorial form and q = ~q applies unless the contrary is said.

When the A-PFSBA dialogue states are represented in vectorial they can fully operate

in the R
L space. This enables the use of spatial relations different from the edit

distance in order to calculate state (dis)similarity Also, it makes possible to craft

particular representations or training Machine Learning (ML) algorithms to be used

as similarity or distance function.

Nevertheless, representing the A-PFSBA dialogue states as vectors has some draw-

backs. The main one is that the semantic meaning of the user, system and/or

attribute alphabets encoded in different dimensions of the vector can be ignored

when classical spatial relations such as the euclidean distance or the cosine similarity

are used. For example, given the following three user-decoded actions d̃i and their

text representations:

1. Inform(food=chinese) "I would like Chinese food"

2. Deny(restaurant=Nandos) "I just don’t feel like eating at Nandos’"

3. Inform(area=city center) "I would like a restaurant in the city center"
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A binarized vector representation of these user actions could be [1, 0, 0], [0, 1, 0]

and [0, 0, 1]. In this scenario, the euclidean distance between representations 1 and

2 would be the same as the one between 1 and 3, although their semantic meaning

is completely different. This drawback must be taken into account during smoothing,

because depending on how the similarity function is determined semantically dif-

ferent states may be encountered under the same similarity radius. The smoothing

strategies proposed in the next three sections aim to tackle this issue.

4.2 K-Nearest State Smoothing

In order to augment the context of the smoothed state q′, a voting mechanism can

be defined using the K nearest states instead of just the nearest one. Formally, being

q′ 6∈ Q the unknown state, let QK = {q1, ..., qj , ..., qK : qi ∈ Q ∀i = 1, · · · ,K} be

the set of closest known K dialogue states according to Sim.

Fig. 4.4.: System actions a
′

and a
′′

departing from the closest 2 dialogue states q1, q2

Using QK as departing states, the policy ΠA−P F SBA needs to be able to exploit all

the system actions that depart from QK :

δ(QK) = {ãk ∈ ∆
≤n : ∃(qi, ãk, ∗) ∈ δS ∀qi ∈ QK}

Where ∗ is used to denote any dialogue state q ∈ Q. Figure 4.4 depicts the departing

actions of the set QK , where δ(QK) = {a
′

, a
′′

}.

To this end, two policies are defined: Maximum Scoring Action (MSA) and Thresh-

olded Scoring Action (TSA), which are a variant of the same voting mechanism.
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Let ∆QK
= ∪ã′∈δ(QK ){ai ∀ai ∈ ã′} ⊆ ∆ be the candidates from which the next

system action ãt+1 ∈ ∆
≤n will be composed. In order to perform this composition, a

weighted-voting method is defined that assigns a score to each item ai ∈ ∆QK
:

Ssmoothing(ai) =
1

K

∑

qj∈QK

Sim(q′, qj)P (ai| qj) (4.2)

Where Sim(q′, qj) is the similarity between the unknown state q′ and the known

dialogue state qj and P (ai| qj) is the probability of using ai as an element to make a

transition action from qj .

Then, the MSA policy selects the next user action ãt+1 as the composition of those

system actions ai ∈ ∆QK
with maximum score:

ãt+1 = {ak : ak = arg maxai∈∆QK
Ssmoothing(ai)} (4.3)

On the other hand, in the TSA policy the maximum constraint is relaxed by using a

threshold θT SA. If the score of an action a ∈ ∆QK
is higher than or equal to θT SA, it

is used in the next action ãt+1:

ãt+1 = {ai : Ssmoothing(ai) ≥ θT SA ∀ai ∈ ∆QK
} (4.4)

These policies are specific to K-Nearest State Smoothing (KNSS) model smoothing

and are only used when this smoothing strategy is triggered. Note that these

mechanisms could also be implemented for UM, just by swapping the ∆ alphabet

with the user-alphabet Σ.

4.3 State Pruning

The larger the state-space |Q|, the higher the computation time required to calculate

the similarity between the K dialogue states closest to unknown state q′ with every

other dialogue state in the system Sim(q′, qj) ∀qj ∈ QS . Unfortunately, this affects

response time, which needs to be quick enough to handle real-time interactions.

Maintaining the assumption that similar states will trigger similar actions and

knowing that |Σ| << |Q| and |∆| << Q will be satisfied for DMs and UMs trained

with enough data to model the interactions, a dialogue state pruning methodology

has been defined.
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The dialogue state pruning methodology aims to establish a semantic relation

between the representation of dialogue states and their output action. Then, this

relation is used to exclude and filter dialogue states that are not related to the

unknown state q′ 6∈ Q.

Fig. 4.5.: Illustration of state pruning previous to searching for the most similar states to
the unknown state q′

To that end, a Pruning Model (PM) that learns the relation between the vectorial

representations of the dialogue state q ∈ Q and the actions that are triggered from

those states δ(q) is determined. Then, the PM is a function that provides a score for

each item of the system action alphabet a ∈ ∆ for a DM. The objective is to prune

those states that trigger low scoring actions as shown in Figure 4.5.

PM (q)→ {(ai, scorei)| ∀ai ∈ ∆}

This function can be easily achieved using conventional ML algorithms, such as

Multinomial Naive Bayes (MNB) or Support Vector Machines (SVM). The only

requirement is that the chosen algorithm needs to perform decoding fast enough

to ensure the real-time performance of the DM or the UM. The selection of the best

model also needs to take into account other relevant factors for each application

scenario such as training time, performance or memory consumption. Algorithm 3

details how to train a ML model to be used as a PM and Algorithm 4 describes how

to use a PM during decoding.
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Algorithm 3 How to train a ML model to be used as a PM

Mod← Model to train as PM
M̂ ← A-PFSBA structure that models the interactions
X, y = [], []
HT = {} ⊲ Hash table that relates dialogue actions with state indexes.
for qi ∈ QS do

for ãj ∈ δ(qj) do

for ak
j ∈ ãj do

X.append(qi)
y.append(ak

j )
HT[ak

j ].append(qi.index)
end for

end for

end for

PM← Mod.fit(X, y) ⊲ Train the model with the state and action data
Return Mod, HT

Note that in order to train a PM for UM purposes, it is enough to change dialogue

states for user states QU and system actions for user actions d ∈ Σ.

Algorithm 4 How to prune dialogue states by using a PM

PM ← PM trained model
q′ ← Unknown dialogue state
θprune Pruning threshold
HT ← Hash table that relates actions to state indexes.
Qinvalid = {}Set of invalid states.
action_score_dict← PM .predict_action_score(q′)
for aj ∈ ∆ do

if action_score_dict[aj ] < θprune then

for state_index ∈ HT [aj ] do

qinvalid ← Q.get_state_by_index(state_index)
Qinvalid.add(state_index)

end for

end if

end for

Qvalid ← QS/Qinvalid ⊲ i.e. the states of QS that are valid
Return Qvalid

As the proposed state pruning mechanism is triggered before nearest dialogue-state

sampling for model smoothing, these two advantages are obtained:

1. The amount of dialogue states needed to compute Sim(q′, qj) ∀qj ∈ Qvalid

is reduced, thus shortening the time required for finding the most similar

dialogue states when smoothing .
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2. Semantically unrelated dialogue states are removed so that similar-yet-unrelated

dialogue states according to Sim(q′, qj) are not taken into account for model

smoothing.

The proposed state pruning method is used to define a semantic model in the

dialogue state space defined over R
L where L = |q|, thus, it can be used with the

previously defined KNSS policies. Also, this algorithm can also be used for UM

purposes, changing only dialogue states by user states QU and system actions by

user actions d ∈ Σ.

4.3.0.1 Predictive Smoothing

Instead of using a ML model just to prune states, a predictive algorithm trained on

the A-PFSBA model M̂ as done with the PM in Algorithm 3 can be used to predict

the next action. So the next action from an unknown state q′ can be sampled as:

ãt+1 = {ak : ak = arg maxai∈∆PM (q′)}

Note that similar to K-NSS smoothing, this method does not guarantee that an

existing transition of the A-PFSBA model M̂ is used.

4.4 Spatial Relation Learning

Another approach to improve model smoothing is to learn a similarity function that

takes into account the semantics of the states over the vectorial space defined by

dialogue state vectors q ∈ QS of the A-PFSBA model M̂ .

To build a similarity or distance function that takes into account the inter-dimensional

relation, and being W a similarity matrix of dimension L×L where L = |q|, the soft

cosine similarity between two states q′, q′′ can be defined as:

soft_cos(q′, q′′) =

∑L
i,j wijq

′[i]q′′[j]
√

∑L
i,j wijq′[i]q′[j]

√

∑L
i,j wijq′′[i]q′′[j]
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Where wij ∈ W . Note that if W = IL, the resulting formula is the conventional

cosine similarity. Additionally, and using the same matrix W a weighted version of

the Euclidean distance can be defined:

weighted_euclidean(q′, q′′) =

√

√

√

√

L
∑

i,j

wij · (q′[i]− q′′[j])2 (4.5)

The weights wij of the similarity matrix establish a relation between the i− th

element of q′ and the j − th element of q′′, so learning these weights is equivalent to

learning the first order relation between the dialogue state dimensions.

The symmetry of the weight matrixW is set as a constraint, so the symmetry property

is met. In addition, if the range of the weights of W is positively defined, the image

of the soft cosine or weighted euclidean will also be positively defined.

4.4.1 Chi Square Test

The method proposed to learn the weight matrix W is to compute the χ2 test over

the vectorized dialogue state q and its transition actions δ(q). The χ2 test is widely

used for feature selection to discard uninformative features, i.e. those features that

are independent of the class or element to be predicted. When a χ2 test is performed

over a set of features X and a possible set of outcomes Y , a high score over a feature

x ∈ X means that the null-hypothesis H0 (i.e. the statistical independence between

x and Y ) can be discarded and, therefore, that feature x ∈ X correlates with the

possible outcomes of Y .

When it comes to the A-PFSBA structure, this is equivalent to testing if the joint-

occurrence of all the combinations of the different alphabets ∆, Σ, Ω have statistical

dependence when predicting the next action ãt+1. As an illustrative example, let

us suppose that the χ2 is performed over certain elements of the user and system

alphabet (di, aj) ∈ Σ× ∆. Then, the co-occurrence of both items can be written as

cc(di, aj). In order to measure if the co-occurrence of these two elements is relevant,

the χ2(cc(di, aj)) test poses the following null hypothesis:

H0 : P (ãt+1, cc(di, aj)) = P (ãt+1) · P (cc(di, aj))
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Informally, the null hypothesis is that the joint probability of a next action ãt+1 (any

next action) and the co-occurrence of di and aj is equal to the multiplication of both

probabilities, this is, that they are independent.

Then, if the result of the χ2(cc(di, aj)) test is high, the null hypothesis can be

discarded. This means that the co-occurrence of the alphabet elements di and aj is

relevant to determine the next system action ãt+1.

As a result, the χ2 test can be used to set the weights wij of the spatial relation

matrix W for the weighted Euclidean distance of Equation 4.5. Each weight wij will

determine the importance of the co-occurrence of the features of the i-th and j-th

dimension of the dialogue state vector, where higher scores (co-occurrences that are

non-independent to determine the next action) will have a higher impact on the

spatial relation.

Denoting χ2(cc(q[i], q[j])) as the chi square test result over the joint-feature that

captures the co-occurrence of features q[i], q[j] with the next system action ãt+1, the

spatial relation matrix W can be determined as:

W =

















χ2(cc(q[1], q[1])) · · · · · · χ2(cc(q[1], q[L]))
... · · · · · ·

...
... · · ·

. . .
...

χ2(cc(q[L], q[1])) · · · · · · χ2(cc(q[1], q[L]))

















Note that for the DM only system states Qs ⊂ Q are taken into account and for UM

only user states Qu ⊂ Q.

4.5 Direct Evaluation over User Models

In the first experimental section, the impact of the different model smoothing

strategies is evaluated using the UMs. Following the evaluation procedure used

by (Layla et al., 2016; Serras, Marıa Inés Torres, et al., 2019b; Serras, Marıa Inés

Torres, et al., 2019a; Cuayáhuitl, Renals, et al., 2005), UMs (BAUM, BAUM2 and

Reg. Bi-LSTM) are evaluated in direct comparison by contransting the output of the

UM with the real users’ output in terms of precision, recall and F1 score.
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4.5.1 Baseline Evaluation

In order to set a starting point, both for the single-goal BAUM and for the double-

goal BAUM2 introduced in Chapter 3, a baseline is built which has the following

configuration:

Tab. 4.1.: Parameter configuration for both baselines

Parameter Description

Regular A-PFSBA Policy Maximum Probability Transition
Spatial Relation Cosine Similarity
Dialogue Smoothing - K States Smooth to the closest one (K=1)
Dialogue Smoothing - Policy Maximum Probability Transition
Dialogues used for training Training set

As it can be seen, this is the simplest configuration, which is later enhanced by using

the model smoothing techniques proposed in this chapter.

As a hard-baseline for the first BAUM, the Regularized Bi-LSTM User Model (Reg.

Bi-LSTM) presented in Chapter 3 was employed to test the performance of the first

BAUM. The Reg. Bi-LSTM UM outperformed previous DL UM approaches and set

the stat-of-the-art results of that time (Layla et al., 2016). The results of these

baselines in direct comparison are shown in Table 4.2, where Seq-to-one was the

previous SotA using DL techniques (Layla et al., 2016). Note that the BAUM and

Reg. Bi-LSTM baselines are trained in a single-goal setup, so they can be compared

to each other. Also, as BAUM2 is trained in a double-goal scenario, it cannot be

directly compared to either BAUM or Reg. Bi-LSTM.

The proposed models are evaluated using different granularity, at intent (inform,

request, ...) level and delexicalised slot value level (e.g. inform(food=goal)). All the

models use the maximum likelihood to select the next action and for the A-PFSBA

models (BAUM, BAUM2) the nearest state is used for smoothing. The Seq-to-one

model is used for comparative purposes against the Reg. Bi-LSTM and BAUM

models.

Tab. 4.2.: Baseline performance over the DSTC2 Corpus

Development set Test set

Baseline Precision Recall F1 Score Precision Recall F1 Score
BAUM* 0.690/0.566 0.731/0.591 0.710/0.578 0.699/0.556 0.728/0.577 0.712/0.566
Seq-to-one (Layla et al., 2016) – – 0.37/– – – 0.29/–
Reg. Bi-LSTM 0.70/0.60 0.72/0.63 0.71/0.62 0.71/0.60 0.73/0.64 0.72/0.62
BAUM2 0.699/0.563 0.752/0.619 0.725/0.590 0.713/0.568 0.752/0.609 0.732/0.587
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As we can see, for the first scenario, BAUM and Reg. Bi-LSTM both outperform the

Seq-to-one, and, the Reg. Bi-LSTM improves the F1 score, where the difference

regarding BAUM increases when evaluating at slot-value level. The BAUM2, despite

not being comparable to the previous models, slightly improves the F1 scores in

both development and test dataset although it BAUM2 has a larger feature-space.

This can be explained as the goal now encodes information about more complex

scenarios as explained in Section 3.2.1.1.

4.5.2 K-Nearest State Smoothing Evaluation

In this section the KNSS policies from Section 4.2 are tested. These policies employ

the K-closest dialogue states to the unknown one q′ and employ an specific policy

Πsmoothing to decide which action to take next. This policy is only used when model

smoothing is activated. In the rest of the situations the regular A-PFSBA policy is

used ΠA−P F SBA.

These policies are tested over the A-PFSBA based UMs BAUM and BAUM2. These UMs

are explained in Sections 3.2.2.2 and 3.2.2.2, where the BAUM2 is an enhancement of

the BAUM model, which employs more attributes to encode more complex dialogue

goals.

4.5.2.1 Maximum Scoring Action Policy

For the MSA smoothing policy, the following parameters are evaluated. The achieved

results for the BAUM and BAUM2 are shown below:

Parameter Description

Regular Policy Maximum Probability Transition
Spatial Relation Cosine Similarity
Dialogue Smoothing - K States K in [1, ... , 20]
Dialogue Smoothing - Policy MSA

The achieved results, both for BAUM and BAUM2 for the test sets are shown in

Figure 4.6.
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Fig. 4.6.: BAUM and BAUM2 MSA Precision/Recall/F1 score evolution according to the K
states in the Test set

On the whole, for both BAUM and BAUM2 cases the MSA achieves a high precision

when comparing their output with the responses given by real users. Yet, as the

policy samples only those user actions di ∈ Σ which obtain the maximum score

in Equation 4.3, the recall worsens, indicating that the real users tend to be more

verbose when giving answers in the DSTC2 scenario.

4.5.2.2 Thresholded Scoring Action Policy

For the thresholded action policy, the following configurations are tested:

Parameter Description

Regular Policy Maximum Probability Transition
Spatial Relation Cosine Similarity
Dialogue Smoothing - K States K in [1, ..., 20]
Dialogue Smoothing - Policy TSA

Threshold Relax µrel [0.7,0.8, 0.9]

For the threshold used in Equation 4.4, a relaxed-maximum score is used as a

threshold, according to a relaxing coefficient µrel, so the final threshold θtsa can be

calculated:

θT SA = µrel · [maxdi∈∆QK
Ssmoothing(di)]

This dynamic threshold-setting mechanism has some advantages over the ad-hoc

threshold fine-tuning presented at (Serras, Marıa Inés Torres, et al., 2019a), such

as avoiding empty responses due to an overly constraining threshold, and a more

generic implementation of the TSA smoothing policy.
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Figure 4.7 describes the achieved slot-level F1 metric with different µrel parameters

over the DSTC2 test set. The x-axis describes the amount of neighbour dialogue-

states K used in the TSA.

Fig. 4.7.: BAUM an BAUM2 TSA slot-level F1 score evolution according to the K states in
the test set and different µrel coefficients

For both UMs, the best performing setup is the TSA with a relaxing coefficient of

µrel = 0.8, where 10 < K < 15 obtains the best results in terms of slot-f1. It is

interesting to note that these smoothing policies, as they weigh the most similar

states to draw the next action, require a few states to ensure its robustness, and

using K < 5 may even worsen the baseline results. This can be explained due to

the use of spatial relations such as the cosine similarity over the the dialogue state

vectors ~q, which do not capture the semantics of the dialogue-state, so the spatial

similarity does not guarantee the semantic similarity (i.e. that both states will yield

a similar result).

In the Figure 4.8, all the scores of the TSA smoothing policy with a relaxing parameter

of 0.8 are depicted for the DSTC2 development and test set.

Fig. 4.8.: BAUM and BAUM2 TSA slot-level metric evolution according to the K states in
the test set with µrel = 0.8

As it can be seen, both for BAUM and BAUM2 the TSA dialogue smoothing policy

clearly favours the Recall of the system, rendering a more verbose UM. For the

DSTC2 case, this strategy considerably improves the achieved results. Yet, if we want
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to modify the behaviour of our UM to a more precise and less verbose user profile,

the MSA smoothing policy could be used.

Regarding the number of neighbour states to take into account, both for MSA and

TSA setups, 5 < K < 15 is advised (at least when simple spatial relations are used,

such as the cosine similarity). Augmenting the number of states to draw the next

action provides an easy way to improve the robustness of the dialogue smoothing

strategy. Note, however, the bigger K is, the bigger the amount of calculations to

be performed will be. And as a diminishing effect can be perceived when K > 15,

to keep increasing the amount of neighbours will have a negative impact on the

smoothing policy.

4.5.3 State Pruning Evaluation

The BAUM/BAUM2 used as a baseline selects just the nearest dialogue state when

performing the dialogue smoothing strategy by using the cosine similarity. Once this

state is fixed, the next action is chosen using the transition edge with the highest

probability. This initial baseline is enhanced with the dialogue state pruning method

presented at 4.3 with five well-known off-the-shelf ML algorithms. The PM is trained

using the A-PFSBA model M̂ inferred from the DSTC2 training set. The θprune

threshold is selected using the development set and performing a grid search with

step size of 0.1 to optimize the F1 score.

The ML algorithms employed in this section are the Multinomial Naive Bayes (MNB)

(Schütze et al., 2008), Support Vector Machines with linear kernel function (SVM)

(Platt, 1999), Passive Aggressive Classifier (PA) (Crammer et al., 2006), Multi-Layer

Perceptron (Hinton, 1990) (MLP) and Random Forest Classifier (RF) (Breiman,

2001). All these algorithms were implemented using scikit-learn (Pedregosa et al.,

2011) and for the sake of simplicity, given that the goal is to prove the ease of use

of the state pruning, no hiperparameter tuning was performed. As a hard baseline

for the BAUM method, one of the latest DL user-modelling approach based on an

ensemble of regularized Bi-LSTM (Serras, Marıa Inés Torres, et al., 2019b) is also

included (Reg. Bi-LSTM).
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Tab. 4.3.: Act/Slot level global evaluation metrics over the DSTC2 corpus for different
pruning methods. The BAUM model with no dialogue-state pruning is used as a
baseline and the DL Bi-LSTM ensemble as a hard baseline.

Development set Test set

Pruning Model Best θoverride Precision Recall F1 Score Precision Recall F1 Score
baseline: BAUM – 0.690/0.566 0.731/0.591 0.710/0.578 0.699/0.556 0.728/0.577 0.712/0.566

BAUM - MNB 0.1 0.717/0.590 0.746/0.605 0.731/0.598 0.747/0.594 0.744/0.586 0.746/0.590
BAUM - SVM 0.2 0.766/0.654 0.750/0.630 0.758/0.642 0.790/0.662 0.756/0.625 0.772/0.643

BAUM - PA -1.6 0.733/0.610 0.739/0.605 0.736/0.607 0.749/0.607 0.742/0.595 0.745/0.600
BAUM - MLP 0.2 0.752/0.638 0.753/0.626 0.752/0.631 0.774/0.638 0.761/0.618 0.768/0.628
BAUM - RF 0.3 0.757/0.630 0.705/0.579 0.730/0.603 0.770/0.630 0.703/0.570 0.735/0.599

Reg. Bi-LSTM – 0.70/0.60 0.72/0.63 0.71/0.62 0.71/0.60 0.73/0.64 0.72/0.62

Tab. 4.4.: Act/Slot level global evaluation metrics over the DSTC2 corpus for different
pruning methods. The BAUM2 model with no dialogue-state pruning is used as a
baseline.

Development set Test set

Pruning Model Best θoverride Precision Recall F1 Score Precision Recall F1 Score
baseline: BAUM2 – 0.699/0.563 0.699/0.563 0.752/0.619 0.713/0.568 0.752/0.609 0.732/0.587

BAUM2 - MNB 0.1 0.724/0.592 0.757/0.628 0.740/0.609 0.761/0.607 0.755/0.609 0.758/0.608
BAUM2 - SVM 0.2 0.768/0.649 0.768/0.656 0.768/0.652 0.801/0.678 0.776/0.662 0.789/0.670

BAUM2 - PA -1.1 0.738/0.614 0.753/0.635 0.746/0.624 0.749/0.620 0.742/0.621 0.746/0.620
BAUM2 - MLP 0.2 0.766/0.641 0.773/0.656 0.769/0.648 0.791/0.660 0.784/0.659 0.787/0.659
BAUM2 - RF 0.3 0.783/0.655 0.724/0.618 0.753/0.636 0.805/0.678 0.728/0.623 0.765/0.650

As it is clearly seen in Table 4.4, the inclusion of a dialogue state pruning mechanism

improves the BAUM and BAUM2 baselines regardless of the ML algorithm used to

build the PM. The best suited ML algorithms for the DSTC2 case happened to be the

SVM and the MLP, both geometric classifiers. It is interesting to note that the results

obtained with the BAUM - SVM/MLP achieved higher scores than the Deep Learning

Bi-LSTM ensemble in most of the metrics.

4.5.3.1 Using the Dialogue State to Predict the Next Action

One of the question that arises when using ML classification algorithms to prune

the non-equivalent dialogue states is "Why not use the ML classifier to select the next

action?". This experiment is carried out for both presented A-PFSBA UMs in direct

comparison.

Tab. 4.5.: Results achieved by selecting the next action with the ML algorithm instead of
using the pruned back-off smoothing method for the BAUM model

Predicting the Next Action Development set Test set

Prediction Algorithm Precision Recall F1 Score Precision Recall F1 Score
MNB 0.649/0.515 0.706/0.556 0.676/0.535 0.700/0.489 0.730/0.500 0.715/0.490
SVM 0.732/0.609 0.711/0.582 0.721/0.595 0.767/0.631 0.721/0.586 0.743/0.607

PA 0.698/0.546 0.689/0.527 0.694/0.537 0.725/0.531 0.701/0.502 0.713/0.516
MLP 0.730/0.611 0.732/0.604 0.731/0.607 0.770/0.613 0.752/0.590 0.760/0.60
RF 0.703/0.570 0.701/0.562 0.702/0.566 0.704/0.551 0.693/0.542 0.699/0.547
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Tab. 4.6.: Results achieved by selecting the next action with the ML algorithm instead of
using the pruned back-off smoothing method for the BAUM2 model

Predicting the Next Action Development set Test set

Prediction Algorithm Precision Recall F1 Score Precision Recall F1 Score
MNB 0.655/0.502 0.744/0.594 0.697/0.544 0.691/0.493 0.739/0.549 0.715/0.520
SVM 0.738/0.605 0.766/0.638 0.751/0.621 0.774/0.634 0.774/0.642 0.774/0.638
PA 0.694/0.550 0.682/0.547 0.688/0.549 0.697/0.535 0.672/0.517 0.684/0.526
MLP 0.741/0.617 0.804/0.678 0.771/0.646 0.777/0.632 0.826/0.681 0.801/0.655

RF 0.708/0.568 0.748/0.619 0.727/0.592 0.718/0.561 0.753/0.611 0.735/0.585

Both for BAUM and BAUM2, Tables 4.5 and 4.6 show that this method can achieve

very good results, sometimes even better than the dialogue state pruning method

as for the BAUM2 - MLP scenario, although it lacks robustness. The obtained

results vary greatly depending on the used ML algorithm. For this particular case,

geometric and linear models (SVM, PA, MLP) achieve the best results, even though

the difference between one approach and the other is significant. Also, simpler

statistical predictors such as the MNB achieve worse results than the BAUM/BAUM2

baseline, whereas in the state pruning setup all mechanisms improved the initial

baseline.

4.5.4 Chi-square Distance Evaluation

This section introduces and explains the experiments performed with the proposed

χ2 similarity W matrix and the weighted Euclidean distance presented at Equation

4.5 for UM direct comparison. The two BAUMs are enhanced with the χ2-based W

spatial relation matrix, and its impact is evaluated against the BAUM and BAUM2

baselines.

Tab. 4.7.: Direct evaluation impact of using Chi square score in BAUM

Development Set Test Set

BAUM Model Precision Recall F1 Precision Recall F1

Baseline 0.690/0.566 0.731/0.560 0.710/0.578 0.699/0.556 0.728/0.577 0.712/0.566
Baseline + χ2 0.703/0.576 0.740/0.591 0.721/0.587 0.730/0.589 0.754/0.602 0.741/0.595

Tab. 4.8.: Direct evaluation impact of using Chi square score in BAUM2

Development Set Test Set

BAUM2 Model Precision Recall F1 Precision Recall F1

Baseline 0.700/0.566 0.753/0.618 0.726/0.590 0.703/0.563 0.743/0.605 0.73/0.583
Baseline + χ2 0.72/0.583 0.756/0.626 0.737/0.604 0.739/0.592 0.765/0.621 0.752/0.606

When evaluating under the direct comparison, the use of the χ2 scores of the

extended features as the weights wi,j of the spatial relation W , and the use of the

weighted Euclidean distance, improve the achieved results in direct comparison. The

improvement keeps being consistent for both versions of BAUM as shown in Tables
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4.7, 4.8. The score-distribution for both BAUMs, i.e. the value of the χ2 test for

each feature of the expanded vector dialogue-state, is depicted in Figure 4.9. The

behaviour of both distributions is similar, where most of the features are packed near

zero.

Fig. 4.9.: Chi square score distribution

According to the achieved results, the χ2-importance scoring proved to be a easy-to-

use statistical method in order to improve the spatial relation by taking into account

the independence of the dialogue-state features with respect to the output action.

This allows us to define W for the spatial-relations in a matter of minutes, without

having to use costly genetic algorithms or methods which may be more constrained

for industrial and/or rapid-prototyping environments.

On the whole, all the presented model smoothing methods improved the initial

BAUM and BAUM2 (nearest state smoothing with Euclidean distance) at direct

evaluation. The highest improvements were achieved when including the dialogue

state pruning with SVMs, where hard baselines such as the Reg. Bi-LSTM were

improved in terms of F1 score. One of the main advantage of the presented methods

(K-Nearest State Smoothing, State Pruning and Spatial Learning with χ2) is that they

can be combined. These combinations are tested in a dialogue-generation setup in

the next section.

4.6 DSTC2 - Indirect Evaluation

In addition to the direct evaluation methodology described in the previous section,

where UM outputs were compared against the responses given by real users, an

indirect evaluation has also been performed in order to measure the impact of the

different smoothing strategies. Indirect evaluation aims to evaluate the behaviour

of a UM and a DM by using dialogue-level metrics such as the Task Completion

rate. To this end, an A-PFSBA UM and DM are set up talking to each other to

generate dialogue samples. In this scenario, the smoothing strategy has been
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changed from one experimental setup to another and its impact has been evaluated

on the generated conversations.

The generated dialogues have been evaluated using the TC metrics introduced in

Section 3.2.4.2. The TC metrics defined for the DM are:

• Requested Informed: The DM has informed about the items requested by the

user, such as the venue address, phone and so on.

• Canthelp Informed: The DM has correctly informed about those constrains

that are impossible to meet with the venues available in the database.

• Valid Venue Offered: The DM has offered a venue according to the constraints

given by the user.

The TC metrics for the UM are:

• Constraints Informed: The UM has informed about the constraints that were

given in the goal.

• Request Information: The UM has requested all the information slots (phone,

address, etc.) set in the initial goal.

• Request Alternatives (Reqalts): The UM has asked for alternatives when a

suitable venue has been offered by the system.

• Bye: The UM says goodbye when their goal is satisfied.

Note that some of these TC metrics may not be binary, i.e. if two constraints are given

to the UM and only one of them is informed, the Constraints informed score will

be 0.5. During dialogue generation, BAUM2 is used as the UM as it provides more

complex interactions. The A-PFSBA DM introduced in Section 3.2.3 is used. Using

these models, the impact of the different smoothing strategies over the generated

dialogues are explored in the next section.

4.6.1 Corpus Reference

The DSTC2 corpus consists of a Human-Machine Interaction corpus where Mechan-

ical Turkers had conversations with a system in order to find a suitable venue in

Cambridge.
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Table 4.9 and Table 4.10 show the TC rates achieved by the DM employed for

the compilation of the DSTC2 corpus and the Mechanical Turkers in the differ-

ent train/development/test partitions of the corpus.These numbers are taken as a

baseline for the rest of the indirect evaluation experiments.

Tab. 4.9.: Task Completions scores achieved by the DSTC2 DM on the different partitions
of the corpus

DSTC2 Dialogue Manager Task Completion over the DSTC2 corpus

Task Completion Requested Informed Canthelp Inform Valid Venue Offer
Train 0.92 ± 0.012 0.89±0.025 0.97±0.006
Dev 0.92 ± 0.022 0.78±0.06 0.96±0.014
Test 0.91 ± 0.016 0.89±0.029 0.97±0.008

Tab. 4.10.: Task Completion achieved by Mechanical Turkers on the DSTC2 corpus

Mechanical Turkers Task Completion

Task Completion Constraint Inform Request Information Request Alternatives Goodbye Score
Train 0.92±0.19 0.92 ± 0.24 0.88±0.06 0.99±0.1
Dev 0.9±0.21 0.93 ± 0.24 0.93±0.25 0.98±0.15
Test 0.91 ± 0.26 0.91 ± 0.26 0.89±0.31 0.99±0.09

As it can be seen, scores are consistent on the training and the test sets both for the

DSTC2 DM and the real users. On the other hand, the DSTC2 DM performs slightly

worse on the development set overall, whereas real users perform slightly better in

terms of task completion.

4.6.2 BAUM2 - Indirect Evaluation

With the corpus TC metrics set as a baseline for comparative purposes, an A-PFSBA

UM and DM are evaluated using the same TC metrics for different model smoothing

configurations. BAUM2 is evaluated first and fine-tuned according to the different

smoothing strategies. The resulting UM is then further used to test the A-PFSBA

DM.

The parameters of the baseline configuration for the dialogue generation task are

shown in Table 4.11 both for the BAUM2 and the A-PFSBA DM. The A-PFSBA DM

is trained using the Training dialogue set and the BAUM2 is trained on the Test

to ensure that no dialogue sample is shared by the models. Dialogue filtering is

not performed, i.e. all the dialogues of those sets are used to train the A-PFBSA

models instead of using only those dialogues that complete all the TC metrics of

the UM. In order to test the BAUM2 at functionality-level, no Speech To Text (STT)

error is induced in the Natural Language Understanding (NLU) module during the
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initial experiments. Random Sampling policy is used both as A-PFSBA policy and for

smoothing. In practice, these parameters set a baseline configuration where none of

the presented model smoothing contributions are used.

In order to generate the dialogue goals G of the BAUM2 during these experiments,

the probabilities of the goal constraints and requests of the original corpus are

sampled. Then, the new goals of the BAUM2 for each dialogue are set by sampling

these probabilities.

Tab. 4.11.: Baseline Configuration BAUM2 Dialogue Generation Parameter Setting

Parameter User Model - BAUM2 Dialogue Manager

Regular Policy Random Sampling Random Sampling
Spatial Relation Cosine Similarity Cosine Similarity
Dialogue Smoothing - Policy Random Sampling Random Sampling
Dialogue Smoothing - States 1 1
Chi-square spatial No No
Pruning Method None None
Train Partition Test Train
Filter Dialogues No No
NLU error - n_rounds – –
NLU error - αcorrupt – –

Dialogue Generation - BAUM2 Baseline Smoothing Configuration

Fig. 4.10.: User TC metrics over the dialogues generated with the BAUM2 and A-PFSBA
DM using the Baseline Configuration (blue) compared to the results of the TC
achieved by the Mechanical Turkers in the DSTC2 test set (red)
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Figure 4.10 shows the results achieved by the BAUM2 in a dialogue generation setup

with the A-PFSBA DM without using the proposed model smoothing techniques. To

obtain these metrics, a total of 1000 dialogues were simulated and evaluated accord-

ing to the defined TC tests. On the whole, the BAUM2 without model smoothing

performs slightly worse than Mechanical Turkers informing constraints, requesting

info and saying goodbye to the system. The worst performing metric is the Request

Alternatives metric, i.e. the BAUM2 does not ask for alternative venues and tends to

go with the first offered venue.

Tab. 4.12.: BAUM2/ A-PFSBA DM Smoothing parameters for grid-search optimization

Parameter Values

Regular Policy Random Sampling
Spatial Relation Cosine Similarity
Dialogue Smoothing - Policy Nearest State / TSA - 0.8
Dialogue Smoothing - States [1, 5, 10, 15, 20]
Chi-square spatial Yes, No
Pruning Method None, SVM

Pruning Thresholds 0.05, 0.075, 0.1, 0.15, 0.2, 0.25
Train Partition Test
Filter Dialogues Yes, No
NLU error - n_rounds –
NLU error - αcorrupt –

Tab. 4.13.: BAUM2 Optimized Smoothing Configuration parameters

Parameter Best Value

Regular Policy Random Sampling
Spatial Relation Cosine Similarity
Dialogue Smoothing - Policy TSA - µprune = 0.8

Dialogue Smoothing - States 10
Chi-square spatial No
Pruning Method SVM

Override Thresholds 0.2
Train Partition Test
Filter Dialogues Yes
NLU error - n_rounds –
NLU error - αcorrupt –

Table 4.13 shows the BAUM2 smoothing strategy parameter configuration optimized

to achieve the best TC score on the grid-search. Best-performing parameters are

coherent with the results achieved in previous model smoothing experiments in

Section 4.5. The combination of the TSA smoothing policy and SVM-based state

pruning rendered best results and dialogue filtering was also useful. Figure 4.11

shows the best results achieved. Although every score increases when the model

smoothing strategies are improved, the UM-Reqalts TC rate shows the highest

improvement. This can be explained by the inclusion of both the SVM and the TSA

mechanisms in the model smoothing strategy. The first one takes the explicit goal
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Dialogue Generation - BAUM2 Optimized Smoothing Configuration

Fig. 4.11.: User TC metrics over the dialogues generated with the BAUM2 and A-PFSBA DM
by using the Optimized Smoothing Configuration for BAUM2 (blue) compared
to the results of the TC achieved by the Mechanical Turkers in the DSTC2 test
set (red)

representation into account in order to sample semantically-related dialogue states.

The second one makes it more likely to trigger a request alternative action once a

valid venue is offered to the user, because it increases the verbosity of the UM.

This configuration is used for further model smoothing experiments with the DM, as it

provides a suitable UM for the dialogue generation setup of the indirect evaluation.

4.6.3 A-PFSBA DM - Indirect Evaluation

Once the best smoothing configuration is found for the BAUM2, the same process is

carried out for the A-PFSBA DM.

With zero STT error induced over the NLU, and using the Optimized Smoothing

Configuration (OSC) BAUM2 of Table 4.13 and the A-PFSBA DM with the Baseline

Smoothing Configuration (BSC) of Table 4.11, the following results are achieved:
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Dialogue Generation - OSC BAUM2 / BSC A-PFSBA DM

Fig. 4.12.: System TC metrics over the dialogues generated with the BAUM2 by using the
Optimized Smoothing Configuration and the A-PFSBA DM using the Baseline
Smoothing Configuration (blue) compared to the results of the TC achieved by
the DSTC2 DM in the train set (red)

The DM with baseline smoothing parameters achieved almost perfect results when

there is no STT-induced error.

4.6.3.1 DM - STT Noise Robustness

STT-induced NLU error is a phenomenon that almost every SDS needs to handle.

To test if the presented smoothing techniques help the DSTC2 DM to overcome

uncertainty, the smoothing configuration has been optimized for mild-level STT error

scenario. To do so, nrounds = 10 and αcorrupt = 1 has been set in the NLU error

module described in Section 3.2.3.5. Then, a grid-search has been performed on the

different model smoothing configurations for the A-PFSBA DM, using the parameters

of Table 4.12 rendering the optimal combination of Table 4.14.

Similar patterns arise when comparing the best configuration of the BAUM2 and the

DM, where the TSA smoothing policy and the SVM-based state-pruning are present

in both cases. This pattern can be justified as the SVM-based state pruning removes

unrelated dialogue-states and the TSA policy contextualizes the selection of the next

action by using several nearest dialogue states.

Then, to visualize the impact of the smoothing techniques over the A-PFSBA DM

when different levels of STT-induced NLU error, the baseline A-PFSBA DM (the
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Tab. 4.14.: Optimized Smoothing Configuration for the A-PFSBA DM for Dialogue Genera-
tion

Parameter Best Value

Regular Policy Random Sampling
Spatial Relation Cosine Similarity
Dialogue Smoothing - Policy TSA - 0.7
Dialogue Smoothing - States 10
Chi-square spatial No
Pruning Method SVM

Override Threshold 0.075
Train Partition Train
Filtered Dialogues Yes
NLU error - n_rounds 10
NLU error - αcorrupt 1

DM with Baseline Smoothing Configuration of Table 4.11) and the fine-tuned A-

PFSBA DM (the DM with the Optimized Smoothing Configuration of Table 4.14) are

compared. This comparison can be viewed in Figures 4.13, 4.14 and 4.15, where

the three established TC metrics are presented (y axis) depending on the αcorrupt

parameter (x axis). Remember that the lower αcorrupt is, the higher the induced

NLU error will be. The amount of times that the original NLU is corrupted is the

same for every point: n_rounds = 10.

Fig. 4.13.: TC rate of the Valid Venue Offered metric for both the baseline and the fine-tuned
A-PFSBA DMs

In order to ensure statistical significance, the 95% error interval is shaded. As it

can be seen, for the Request and the Invalid Constraints task completions there is

no statistical difference at all, but the fine-tuned smoothing configuration renders

better TC when it comes to offer a valid venue according to the user’s informed
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constraints. In addition, the error intervals of the fine-tuned smoothing configuration

are narrower than the baseline ones for the Valid Venue Offer TC metric, which is

one of the main goals of the SDS.

Fig. 4.14.: TC rate of the Request Informed metric for both the baseline and the fine-tuned
A-PFSBA DMs

Fig. 4.15.: TC rate of the Canthelp Informed metric for both the baseline and the fine-tuned
A-PFSBA DMs

As a concluding remark, the presented model smoothing methods improved the

initial models (nearest state smoothing with Euclidean distance) at indirect evalua-

tion, improving the behavior of the models when performing an holistic evaluation

with TCs. The improvements were consistent even when STT induced error was

present in the dialogues. Similar to the results achieved in the direct evaluation,

both optimized smoothing configurations for the BAUM2 and A-PFSBA DM include

4.6 DSTC2 - Indirect Evaluation 85



contextualising the smoothing strategy with K nearest states and pruning the states

that were not relevant.
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5Exploitation Policies

Fig. 5.1.: Exploitation Policies chapter map.

As depicted in Figure 5.1, this chapter introduces a theoretical framework based

on the Attributed Probabilistic Finite State Bi-Automata (A-PFSBA) formulation for

policy making. These policies define how the A-PFSBA structural model can be

employed in order to build decision strategies that take into account both user and

system. Then, different local and path-based policies are implemented both for User

Model (UM) and Dialogue Manager (DM) on the Let’s Go corpus using the proposed

formulation. Finally, their behaviour is analysed and their results are compared

against local policies.

5.1 Policy Definition

In a decision process model Sutton & Barto defined (Sutton and Barto, 1998) the

policy as:

A policy defines the learning agent’s way of behaving at a given time.

Roughly speaking, a policy is a mapping from perceived states of the

environment to action to be taken when in those states.
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When it comes to spoken dialogue interaction, the agent would be the DM, which

is a decisional process. In the A-PFSBA framework the perceived states are the

dialogue states qj ∈ Q since they encode the user decoded actions at the current

turn d̃t ∈ Σ
≤m, the previous system actions ãt−1 ∈ ∆

≤n and the attributes ωt ∈ Ω

that define the dialogue memory. The actions to be mapped are the system actions

ã ∈ ∆
≤n. Then, the policy Π corresponds to a mapping from each system dialogue

state qj ∈ QS to the set of system actions ∆.

The policy Π can be represented in multiple forms, either deterministically from the

current state (Bohus and Rudnicky, 2003; Bohus and Rudnicky, 2009) or stochasti-

cally over the set of the possible actions (Griol et al., 2008; S. Young, 2006; Thomson,

K. Yu, et al., 2010). More generally, it can also be seen as a ranking problem, where

the policy Π associates a score to each system action given the current dialogue state,

in a way similar to reinforcement-learning methodologies (Schütze et al., 2008).

In the A-PFSBA framework, the policy corresponds to a function ΠA−P F SBA that

maps the current system dialogue state qj ∈ QS and the set of possible actions that

label each transitions of δ(qj)

δ(qj) = {∃ (qj , (ǫ : ãk), q
′)} ⊆ QS × Γ×QU

Figure 5.2 shows a situation where four possible actions {ã1, ã2, ã3, ã4} that label

the transitions of δ(qj) can be chosen to continue with the interaction from state qj .

The objective of a policy Π is to choose the best action to complete the task of the

DM.

As the A-PFSBA formulation captures the transitions of both system and user actions,

user information can be easily exploited in order to determine path-based policies

when defining decision strategies. Note that this formulation is symmetrical for UMs,

by swapping the associated alphabets.

5.1.1 Path-Based Policies

Path-based policies can be defined as a scoring function over an A-PFSBA path of

states ξ = (qstart, q1, · · · , qend) with depth D = |ξ| − 1 where qi ∈ Q. In this path ξ,

qstart denotes the departing state and qend is the last state of the path.

The score associated with a given path or path-value V (ξ) needs to take into account

every taken step, the differences between the departure and the final states (qstart

and qend), and the length of the path (since more distant actions should have lesser
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Fig. 5.2.: Dialogue representation of a state qj ∈ QS where four possible actions may be
chosen to keep on with the interaction.

impact). These properties can be summarized in the following path-value function:

V (ξ) = ψ(qstart, qend) ·
λ

|ξ|

D
∏

i=0

γi · φ(qi, qi+1) (5.1)

where the function ψ(qstart, qend) is the endpoint-value function that evaluates the

differences between the departure state qstart and the final state qend of path ξ:

ψ : Q×Q→ R (5.2)

In practice, the ψ function can be any scorer that weighs the difference between the

departing and ending dialogue states according to the task the DM needs to fulfill.

Then, λ is the length normalization factor that determines the penalisation of the

dialogue length and γ < 1 is the discount factor that controls the temporal decay. φ

is the step-value function that associates the score of transitioning from state qi to

qi+1. The step-value function can be defined separately for user-taken steps φU and

system-taken steps φS:

φ(qi, qi+1) =







φU (qi, qi+1), if qi ∈ QU and qi+1 ∈ QS

φS(qi, qi+1), if qi ∈ QS and qi+1 ∈ QU
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(5.3)

Then, the system action ãt+1 to select as next response from a departure system state

qs is the one that maximizes the expected path-value of all the possible paths ξ that

depart from qs by means of system action ãt+1.

ãt+1 = argmaxãk∈δ(qs)
1

|Ξqs,ãk
|

∑

ξ∈Ξqs,ãk

V (ξ)

(5.4)

where Ξqstart,ãk
is the set of paths ξ that start in state qstart and perform system

action ãk as the first action.

Under this formulation, local policies can be represented as a subset of path based

policies, i.e. those paths ξ that contain only the departure and final states |D| =

1. This type of policies are suitable for simple domains and/or when faster and

computationally less expensive policies are sought after.

5.2 Let’s Go Experimentation Framework

Results on the Let’s Go corpus have been evaluated using the Task Completion (TC)

metric described in Chapter 3. This metric measures if there is enough information

to perform a query to the bus route searching backend and whether the query

information is returned to the user. Additionally, the Average Dialogue Length (ADL)

is used to measure the number of turns it takes to end a conversation1.

5.2.1 A-PFSBA Policies

In this section, the DM and UM exploitation policies implemented on the A-PFSBA

model trained on the Let’s Go corpus are described in more detail.

1The ADL metric considers each user or system intervention as a turn.
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5.2.1.1 Dialogue Management Policies

Four DM policies have been defined following the presented A-PFSBA policy notation.

All of them use the step-value function described in Equation 5.5 next:

φ(qi, qi+1) =







φU (qi, qi+1) =
P ((qi,(ǫ: ãk), qi+1) )

P ((qi,(ǫ: ãk), qi+1) )1−β

φS(qi, qi+1) = P ((qi, (ǫ : ãk), qi+1) )
(5.5)

This is, the transition probability is used to score system-steps and a β-normalized

transition probability for user-steps.

The user awareness parameter β ∈ [0, 1] weighs the user transition probability in

the scoring function φ(qi, qi+1). When β = 0, the a-priori probability is ignored:

every transition probability has the same weight, so, φU (qi, qi+1) = 1 . On the other

hand, when β = 1 the user transition probability is taken into account in the scoring

function and more probable user-actions achieve a higher score.

Using this step-value function, the following policies have been defined, where the

main change is the endpoint-value function of Equation 5.2:

• Maximum Probability Path (MPP): chooses the path of system actions with

maximum probability. Its endpoint-value function is:

ψ(qstart, qend) = 1

• Maximum Probability (MP): It is a local version of the MPP policy, i.e.

D = 1.

• Attributed Path (AP): It chooses the path with highest probability and also

searches to complete as many dialogue attributes as possible. The endpoint-

value function of Equation 5.2 is changed to:

ψ(qstart, qend) =
1

1 + (|ωqend
| − |ωqstart |)

where ωqstart and ωqend
are the attributes of the initial and the final states,

respectively.

• Task Completion Path (TCP): It chooses the path with highest score accord-

ing to the Task Completion rate, i.e. the path that satisfies most constraints
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in order to consider a dialogue successful. The endpoint-value function is

modified to:

ψ(qstart, qend) =
1

1 + (TCS(qstart, qend))

where TCS(qstart, qend) is a scoring version of the TC metric shown in Al-

gorithm 6. For this scorer, a simple mechanism is used, per each condition

satisfied of the TC, 0.25 is added to the score. As an exapmle, if from qstart

to qend three conditions are satisfied (departure place known, arrival place

known and departing time known), then TCS(qstart, qend) = 0.75.

In this policy, instead of guiding the dialogue to simply fulfill attributes, the

dialogue manager selects those actions that guide the interaction to satisfy the

constraints needed to complete the task.

In order to estimate the best action â for each system state, every possible path over

the A-PFSBA structure that starts in state qs and performs ã as the first action Ξqs, ãk

would need to be calculated. As this is computationally intractable, randomized

sampling is used to generate multiple paths by using their transition probabilities.

To better measure the impact of user uncertainty in the structure of the A-PFSBA

model, each path-based policy is evaluated performing a grid search over the user-

awareness rate β ∈ [0, 1] and the depth D parameters.

5.2.1.2 User Modelling Policy

For the UM, a Random Sampling (RS) policy has been implemented. The objective

of this policy is to be non-deterministic in order to account for the variability of the

user. The user action to perform d̃t+1 is randomly sampled from the distribution

of user actions seen in the current state. So as to control the score-distribution,

an αum parameter is used. Being P ((qi, (d̃ : ǫ), qj)) the probability of transition

(qi, (d̃ : ǫ), qj) ∈ δU , this probability can be re-scored by αum as follows:

αum(P ((qi, (d̃ : ǫ), qj))) =
P ((qi, (d̃ : ǫ), qj))αum

∑

k P ((qi, (d̃ : ǫ), qj))αum

Thus, if αum is 1, the next UM action is sampled using the original probability

distribution. On the other hand, if αum = 0, all the transition probabilities will

be the same and, consequently, the next action sampling will ignore the prior

probabilities of the A-PFSBA model. This parameter can be adjusted to test the

dialogue generation behavior depending on the degree of randomness of the user.
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5.2.2 Results

Exploitation policy evaluation has been carried out on a dialogue-generation setup.

A DM and a UM are deployed in order to generate dialogues by talking to each other.

Then, such dialogues are evaluated in terms of TC and ADL. In order to train the

A-PFSBA DM and UM, the corpus has been split into two, so there is no dialogue

sample overlap when building the corresponding DM and UM A-PFSBA models.

Table 5.1 shows the achieved results.

Tab. 5.1.: Results achieved by the different policies on the Let’s Go Corpus. The same
metrics on the corpus are also depicted with the previous baselines.

DM Model Policy DM Policy UM
Task Completion

(%)

Average Dialogue

Length

Corpus CMU RavenClaw Rules – 54 32.33 ± 1.2
Baseline(Orozko and M Inés Torres, 2015) PFSBA MP Random Choice 20.08 29.23 ± 0.28

A-PFSBA MP Random Choice 31.53 ± 1.54 31.39 ± 0.722
A-PFSBA MP Random Sampling 60.02 ± 1.36 30.98 ± 0.94
A-PFSBA MPP Random Sampling 59.3 ± 0.6 32.2 ± 0.3
A-PFSBA ADL Random Sampling 59.5 ± 0.6 32.8 ± 0.3
A-PFSBA TCP Random Sampling 61.2 ± 0.6 32.5 ± 0.3

For illustrative purposes, the first row shows results achieved by the RavenClaw DM,

which is the rule-based DM used in the Let’s Go Corpus. This row can be seen as

the initial evaluation of the corpus. In the second row, the PFSBA DM model shows

results achieved by previous unattributed bi-automata works (Orozko and M Inés

Torres, 2015). Note that the policy used by the UM in this first setup is Random

Choice, which is equivalent to the Random Sampling policy with αum = 0, i.e. all

the possible transitions of the UM have the same probability of being chosen as the

next action.

As it can be seen, the inclusion of attributes in the PFSBA formulation clearly

improves the results of the DM, which improved more than 10 points compared to

the un-attributed PFSBA model. In addition, swapping the UM policy from Random

Choice to Random Sampling (i.e. changing αum = 0 → αum = 1) improves the

TC rate in almost 30 points. When it comes to path-based policies, in general the

differences in TC rate are not significant, with TCP performing slightly better than

MPP and AP, but without statistical significance regarding the local MP policy, as

there is an overlap in their confidence intervals (95% confidence interval). The slight

improvement over the TC rate of TCP can be put down to the inclusion of external

information in the dialogue policy. Nevertheless, there is no statistical significance

between the TCP and MP policies.

5.2 Let’s Go Experimentation Framework 93



Regarding the ADL metric, the local MP policy tends to generate slightly shorter

dialogues. This is usually better than long dialogues2 in task-oriented dialogue

systems as it is the case for the Let’s Go scenario. Nevertheless, a difference of 1 turn

can be considered negligible from the point of view of the end users.

For better evaluation of the path-based policies, a grid-search evaluation has also

been performed on the two parameters that need to be fine-tuned in these policies:

the path-depth D and the user-awareness rate β ∈ [0, 1]. As explained before, the

path-depth D determines how much future steps the policies take into account

and the user-awareness rate β represents the relevance given to the user transition

probabilities in the scoring function of the policy. β = 0 means that this probability is

not taken into account. Instead, if β = 1, the transition probabilities of the A-PFSBA

model are used in the step-value function of Equation 5.5. These parameters have a

direct impact on the performance of path-based policies.

The following figure shows the TC score achieved by the three path-based policies

for different combinations of D ∈ [1, 35] and β ∈ [0, 1]:

2In social dialogue systems the longer the dialogue the better, as their goal is to maximize the user
engagement with the system.
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Fig. 5.3.: Spline-smoothed plots of the TC rate of the path-based policies with different
perspectives of the same plot. The left-axis indicates the depth of the path D, the
right axis indicates the value of the user awareness parameter β and the z-axis
indicates the TC rate. Left: front view, right: top view

The left-axis indicates the depth of the path D, the right axis indicates the value of

the user awareness parameter β and the z-axis indicates the TC rate. These graphs

are spline-smoothed for a better visualisation of the trends. Each point of the graph

is calculated 5 times, and the mean is used as value.
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Policies that perform worse when β is set to 1 than when β = 0 indicate that the

user transition probabilities of the A-PFSBA model are not correctly estimated. Also,

the variability of the TC rate conditioned over the path-depth D indicates how well

the A-PFSBA model is fitted to the user. Long paths performing worse than short

paths signal that the model is not taking into account paths that the user commonly

employs.

For all the implemented policies, the relation between path length and user-awareness

rate is clear: long and user-aware paths perform worse. This conclusion validates

the hypothesis of (Ghigi and M Inés Torres, 2015) that path-based policies perform

worse than local policies in general due to user uncertainty. In addition, it is clear

that the initial models are not fitted to the user, as the TC rate gets worse when

the path length is increased. Also, it is interesting to note that the TCP policy has

a higher low-boundary at the TC rate. This can be attributed to the inclusion of

external information such as the Task Completion score, which reduces the amount

of decay introduced by path length and user uncertainty.
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6Incremental Learning

Fig. 6.1.: Incremental Learning Chapter Map

Incremental Learning (IL) or the ability to continuously improve initial models is

a desired property of Machine Learning (ML) frameworks. Under the Attributed

Probabilistic Finite State Bi-Automata (A-PFSBA) formulation, this can be done by

exploiting the new dialogue states and transitions created during model smooth-

ing.
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Fig. 6.2.: New dialogue states and transitions generated when performing the model
smoothing over the unknown state q3 6∈ Q

In this Chapter, as depicted in Figure 6.1, the Online Learning (OL) algorithm is

proposed to ensure proper decision-making when learning incrementally under the

A-PFSBA formulation. In addition, a Hybrid Online Learning (HOL) method is also

presented. This method hybridizes a rule-based Dialogue Manager (DM) and an

A-PFSBA based DM, which is incrementally learned using the OL algorithm. This

method makes it possible to initialise a rule-based DM in zero data scenarios and to

improve the corresponding A-PFSBA model by exploiting the generated dialogues

through OL.

Using the presented OL and HOL methods, three hypotheses are formulated and

tested in different dialogue generation settings:

1. The DM can be improved using OL on a dialogue-by-dialogue basis.

2. OL is suitable even when the amount of initial dialogue samples is relatively small.

3. Hybrid Online Learning makes it possible to build a data-driven DM by using a

rule-based DM initialisation.

The first hypothesis is tested over the Let’s Go corpus. The second and the third ones

are tested over the Dialogue State Tracking Challenge 2 (DSTC2) corpus.

6.1 Incremental Learning over the A-PFSBA

Under the A-PFSBA formulation, incremental learning of the DM can be done by

exploiting the new dialogue states and transitions created during model smoothing.

As an illustrative example, Figure 6.2 shows the new states and transitions when

applying the smoothing strategy to the unknown state q3 ∈ Q. Previous work to

this dissertation showed that the A-PFSBA model was able to learn new dialogue

states and transitions on the fly on a turn-by-turn basis (Orozko and M Inés Torres,

2015). Such learning was performed each time the model smoothing was carried out,

leading to a smoothed version of the initial DM. Unfortunately, this approach was

unable to ensure the learning of a proper decision-making strategy on a turn-by-turn
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Fig. 6.3.: Online Learning from an initial A-PFSBA model M̂ and a new dialogue z
′

basis. Thus, the resulting smoothed DM was unable to improve the Task Completion

(TC) rate. In order to avoid learning non-beneficial patterns, and as described in

Chapter 4, the A-PFSBA formulation employed in this dissertation does not perform

this learning each time the model smoothing is triggered.

In this chapter, instead of performing the model learning on a turn-by-turn basis, a

dialogue-level method is presented, called Online Learning algorithm. This algorithm

ensures that a proper decision making has been done at dialogue-level before

updating the initial A-PFSBA model.

6.2 Online Learning

Being a generative model, the A-PFSBA formulation enables to transform its struc-

tural modelling and properties as shown in (Orozko and M Inés Torres, 2015). In

practice, this means that new dialogue states and transitions can be added to the

initial A-PFSBA model M̂ .

When interacting with real users, unseen situations arise, which lead the interaction

to states that are not in the initial A-PFSBA model M̂ . As described in Chapter 4, a

smoothing strategy is defined over the initial model M̂ in order to continue with the

interaction. However, these new dialogue states and transitions are not learnt during

smoothing, as proper decision making cannot be ensured (Orozko and M Inés Torres,

2015). To overcome the problem of learning dialogue states and transitions which

render bad decision-making, the presented OL algorithm employs a Quality Metric

(QM) to determine whether a dialogue is suitable for learning or not. Using this

metric, the A-PFSBA model learns only from those dialogues rendered successful

by the QM . In practice, this QM can be based on automatic metrics such as TC or

assessed by soft human supervision.
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A formal description of the OL algorithm; let M̂ be the initial A-PFSBA model inferred

from Z dialogue samples, let z
′ 6∈ Z be an unseen dialogue sample and M̂z′ the

A-PFSBA model inferred from the single sample z
′. If the QM renders z

′ valid for

the learning process, M̂ is expanded by merging it with M̂z′ . By doing so, the states

qj and the corresponding set of transitions δ(qj) = {(qj , (d̃i : ãi), q′)} of M̂z′ are

added to M̂ . The online learning pseudo-algorithm is defined as follows:

Algorithm 5 Online Learning

1: M̂ ← A-PFSBA from samples Z
2: M̂z′ ← A-PFSBA from new sample z

′

3: if QM(z′) is True then

4: for qj ∈ Qz′ do:
5: M̂ ← merge(M̂ , qj , δ(qj))
6: M̂ ← update_edge_count(M̂ )
7: end for

8: end if

9: return M̂

Figure 6.3 shows an unseen dialogue z
′ rendered valid by a QM. As a result, the

initial A-PFSBA DM model is augmented with the new dialogue states and transitions

seen in the dialogue sample z′ 6∈ Z.

In practice, this OL algorithm adds the unseen states and transitions generated during

the model smoothing (See Figure 6.2) and updates the transition probabilities of the

already existing transitions.

6.2.0.1 Online Learning Under Uncertainty

As described in Chapter 4, the model smoothing strategy is applied every time an

unknown dialogue state q′ 6∈ Q is reached. In this situation, a distance (or similarity)

function is used to find the closest known dialogue state qj ∈ Q. In scenarios where

channel noise nt is present, any small perturbation of a known state qj renders an

unknown state: q̃j 6∈ Q, even when q̃j ≈ qj . This effect increases the sparsity of an

updated A-PFSBA model when OL algorithm is used.

In order to overcome this effect, a radius rǫ is defined so that, before adding a new

unseen dialogue state q′ 6∈ Q to the A-PFSBA model M̂ , the following decision is

made:







swap q′ = qj ∈ Q, if dist(q′, qj) ≤ rǫ ∀qj ∈ Q

use q′, otherwise
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Where dist is a distance function used at the model smoothing strategy to find the

nearest dialogue states. This mechanism avoids adding new dialogue states q′ if they

are too close to any already existing dialogue state of the initial model. Note that

this comparison is only made with system dialogue states qj ∈ QS for DMs and with

user dialogue states qj ∈ QU for UMs.

6.3 Hybrid Online Learning

In order to learn a DM incrementally using the OL algorithm, an initial A-PFSBA

DM is required. Unfortunately, the reality between the scientific community and the

industrial environments highly differs in the amount of available data to build an

initial DM, which for industrial environments is usually zero.

Fig. 6.4.: Classic DM iteration from rule-based DM to a data-driven DM diagram (A) and
the proposed Hybrid Online Learning methodology diagram (B)

In this zero-data scenario, a common approach is to initialise a first version of the

DM by using expert rules to define the policy. This DM gathers new dialogues

through interaction with real users. Then, these dialogue samples are used to build

a new data-driven DM. This approach requires the use of two different paradigms

(rule-based and data-driven DMs), as depicted in Figure 6.4 Section A.
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For these situations, a Hybrid Online Learning method is presented in this section.

The HOL method, shown in Figure 6.4 Section B, has three main components:

• Double DM initialisation: two separate DM are built, one based on expert

rules in order to allow decision-making when data is not available and another

one as an empty A-PFSBA model M̂ǫ where Q = {q0}, where q0 is the empty

state.

• Hybrid Decision Making (HDM): a decision making mechanism which hy-

bridizes both the expert-rule and A-PFSBA based DM to generate dialogue

samples z′ ∈ Z ′ when interacting with real users or with a UM.

• Online Learning: the OL algorithm is used over the empty A-PFSBA DM M̂ǫ

in order to populate and augment it using the generated dialogue samples

z′ ∈ Z ′.

Note that this methodology is intended for zero-data scenarios, where a rule-based

DM has to be built anyway. HOL proposes a simple methodology to refine the

rules and learn a data-driven A-PFSBA DM by using the TC metrics or soft human

supervision as QM for OL. To successfully employ the HOL, the alphabets of the

A-PFSBA (∆, Σ, Ω) need to be defined beforehand, i.e. the user actions, the system

actions and the attributes. Predefining these alphabets enables to define dialogue

management rules that are compatible with the A-PFSBA formulation.

6.3.1 Hybrid Decision Making

The proposed Hybrid Decision Making methodology makes it possible the joint

coexistence of a rule-based DM with policy Πrules and an A-PFSBA based DM with

policy ΠA−P F SBA. The method is shown in Figure 6.5.

The HDM approach works under the assumption that the dialogue samples used

to learn the A-PFSBA model via OL are correct and validated. As a result, if the

A-PFSBA can correctly track the current dialogue state q′ ∈ Q, the A-PFSBA-based

DM is used to continue with the dialogue. Otherwise, the DM based on expert rules

is used.

Let Πrule be the handcrafted rule-based policy and ΠA−P F SBA the exploitation

policy employed by the A-PFSBA model. Then, the hybridization technique works as

follows:
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Fig. 6.5.: Flowchart of the Hybrid Decision Making algorithm

1. Dialogue state q′ is reached during interaction. Two options arise: the dialogue

state q′ is either known and dist(q′, qj) ≤ rǫ ∀qj ∈ Q, or not.

2. If q′ is closer than repsilon to a known state qj ∈ Q, this dialogue state is

used, and the next action is selected by the A-PFSBA based DM: ãt+1 =

ΠA−P F SBA(qj).

3. If dist(q′, qj) > rǫ ∀qj ∈ Q, the rule-based DM is used, so the next action

ãt+1 = Πrule(q
′). If any rule is satisfied and ãt+1 6= ǫ, ãt+1 is returned.

4. If no rule is satisfied and the A-PFSBA DM is empty (i.e. Q = {q0}), a

predefined fallback action (e.g. "Sorry, could you rephrase that") is used as

ãt+1.

6.3 Hybrid Online Learning 103



5. If the A-PFSBA model is not empty, the model smoothing strategy is triggered

in order to route the interaction to a known dialogue state qj ∈ Q.

6. Finally, the A-PFSBA policy is used over the known dialogue state qj ∈ Q.

Then, ãt+1 = ΠA−P F SBA(qj) is returned as the next system action.

This hybridization mechanism can be used to interact with the users and generate

new dialogue samples z′ ∈ Z ′. Then, OL can be employed to learn and update an

A-PFSBA based DM. The only requirement for the rule-based policy Πrules in this

context is that it should use the A-PFSBA alphabets ∆, Σ, Ω as input in order to

output a valid system language item ãt+1 ∈ ∆
≤m.

6.3.2 Rules over the A-PFSBA Model

A rule-based policy Πrules can be defined as a tuple (ER,Sel) where:

• ER is a set of expert rules (er1, · · · , er|ER|) to be evaluated over a given

dialogue state q.

• Sel is a selection mechanism that decides which rules are selected in order

to compose the next system action ãt+1. This selection criterion is employed

when several rules may activate at the same time.

Then, an er over the A-PFSBA model can be defined as:

er : Q×Ω→ (∆≤m, R
+)

er(qi)→ ã, score
(6.1)

Which is a function that receives a dialogue state qi, composition of the ∆, Σ and Ω

alphabets, and returns a system response and a score. Each expert rule er has several

conditions {c1, · · · , cn} which are evaluated upon single elements of the A-PFSBA

alphabets.

For illustrative purposes, let us define the following rule: If the system has offered

a venue and the user asks about the address, inform about the address. The

conditions of this rule are the following ones:

c1 = offer(venue) ∈ ãt−1 //The system has offered a venue to the user

c2 = request(address) ∈ d̃t //User asks for the address
(6.2)
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And the response to be given is ãt+1 = inform(address). In practice, the conditions

that are evaluated over the user-alphabet Σ use different thresholds to account for

uncertainty, e.g the score of "request(address)" is higher than 0.75. Then, let us

define the score of an expert rule erscore(qj) as the product of the score of all the

conditions {c1, · · · , cn} of the rule:

erscore(qj) =
n

∏

i=1

ci(qj)

If deterministic conditions are employed on the expert rules, the score given by an

er is either 0 or 1 (all the conditions are satisfied or not).

Let ER+(qj) = {eri ∈ ER : erscore(qj) > 0} be the set of those expert rules which

give a positive score over the dialogue state qj . Then, the expert-rule based policy

can be described as:

ãt+1 = Πrule(qj) = Sel(ER+(qj)) (6.3)

Where the selection method Sel composes the next action from the expert rules that

were activated in the dialogue state qj . A simple selection method is to randomly

choose one erj ∈ ER
+(qj) and to use its response as the next system action.

6.3.2.1 Probabilistic Rules

A common and easy way to define expert rules is by using cause-effect relations.

Despite their effectiveness in industrial environments, it is not trivial how to handle

the uncertainty induced by the Speech To Text (STT) in the Natural Language

Understanding (NLU) module. Usually, the user decodings d̃t have a degree of

uncertainty, i.e. a confidence score between 0 and 1, which requires to set thresholds

on the rule conditions.

More generally, considering P (x|qj) the probability of some item x ∈ {Σ, ∆, Ω} (i.e.

an user act, system response or attribute) in a dialogue state qj , a common practice

when building expert rules is to define a set of thresholds that need to be satisfied

θlower < P (x|qj) < θupper to consider the condition satisfied. The definition of these

boundaries has to be made for each rule, which increases the complexity of the

rule-based policy as these boundaries may be hard to define.

In order to handle this uncertainty, the deterministic conditions of the expert rules

can be converted into probabilistic ones. This allows the conversion of the following

conditions into probabilistic ones by using simple transformations:
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• Exists x: P (x | qj)

• Not Exists x: 1− P (x | qj)

• x And y: P (x | qj) · P (y | qj)

• x Or y: max(P (x | qj),P (y | qj)))

• x Greater than y: P (x > y | qj)

• x Lower than y: P (x < y | qj)

Using this schema, the deterministic conditions can be re-implemented into proba-

bilistic ones, rendering probabilistic rules.

6.4 Continuous Learning Experimentation

As explained previously, different experimentation setups are employed to test

different hypotheses. The first scenario corresponds to a Continuous Learning, i.e.

when a first DM is deployed with enough data, and, then, the OL method is used

with the data samples generated with users/UM to improve the DM. In this setup, the

Let’s Go corpus is used, where after each UM-generated dialogue the OL is applied

to update the DM. The goal is to demonstrate that the OL algorithm is capable of

improving an initial DM on a dialogue-by-dialogue basis.

The Quality Metric QM used for the OL in this scenario is the same as the TC metric

of the Let’s Go corpus depicted at Algorithm 6 of Chapter 3. This metric checks that

a suitable query has been performed into the bus schedule database and that the

result is informed to the user.

In order to test the performance of the algorithm, 400000 dialogues are generated

using the Random Sampling policy for both UM and DM explained in Section 5.2.1.2.

This policy randomly samples the next action from the available transitions of the

departing dialogue state. Remember that the DM is trained over half of the Let’s Go

Corpus and the UM using the other half.

Previous results using the different local and path-based policies introduced in

Chapter 5, Section 5.2 rendered the results depicted in Table 6.1 in the Before Online

Learning section. Briefly explained, the employed policies are the following:

106 Chapter 6 Incremental Learning



• MP Local: Local Maximum Probability policy, which employs the transition

with highest probability.

• MPP: Maximum Probability Path policy, which employs the path that has the

highest probability.

• AP: Attribute Path policy, which chooses the path with the highest probability

and which completes as many dialogue attributes as possible.

• TCP: Task Completion Path, which chooses the path with the highest score ac-

cording to the Task Completion rate, i.e. the path that satisfies most constraints

to consider a dialogue successful.

After the continuous learning with the OL algorithm is performed, the After Online

Learning section of Table 6.1 depicts the results achieved by each policy.

Tab. 6.1.: Results achieved by the different policies over the Let’s Go Corpus before and
after the Online Learning

DM Policy Task Completion (%) Average Dialogue Length

Before Online Learning

MP Local 60.02 ± 1.36 30.98 ± 0.94
MPP 59.3 ± 0.6 32.2 ± 0.3
AP 59.5 ± 0.6 32.8 ± 0.3

TCP 61.2 ± 0.6 32.5 ± 0.3
After Online Learning

MP Local 69.4 ± 1.4 31.5 ± 1.0
MPP 73.8 ± 0.5 30.5 ± 0.3
AP 74.9 ± 0.5 29.9 ± 0.3

TCP 75.0 ± 0.5 31.6 ± 0.3

The results clearly show the effectiveness of the OL method for incrementally learn a

DM, where an improvement of 9% to 14% over the TC rate is achieved for different

policies. Also, in this new scenario, and compared to pre-OL results, the path-based

policies are the ones that perform the best, where the AP and TCP policies achieve

statistically similar results. This result indicates that prior to adjusting the DM for

the users, it is preferred to employ local policies, but, after the parameters of the

model are adjusted, it is sensible to exploit this information by means of path-based

policies.

To better inspect the behaviour of path-based policies after the OL is performed,

Figure 6.6 shows the spline-smoothed TC rate for each policy. To depict the impact

of the path depth D, i.e. how many steps into the future are used for the policy esti-

mation and the user-awareness β, a grid search evaluation is performed. Remember
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that user-awareness parameter assesses how the user-related transition probabilities

are taken into account in the step-value function of Equation 5.5. The higher β is,

the more importance is given to the user-estimated transition probabilities, and, if

β = 0, all user-transitions have the same score or importance.

Fig. 6.6.: Spline-smoothed plots of the TC rate of the path-based policies after the OL with
different perspectives of the same plot. The left-axis indicates the depth of the
path D, the right axis indicates the value of the user-awareness parameter β and
the z-axis indicates the TC rate. Left: front view, right: top view
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Note that previous results depicted in Figure 5.3 concluded that lower user-awareness

and depths were better for policy-making due to uncertain estimations of the tran-

sition probabilities. Also, shorter paths indicate that the A-PFSBA model is not

correctly estimating the actions of the user. Once the OL is performed, these con-

clusions drastically change: a good combination of user-awareness (β ∼ 0.5) and

path depth (D ∼ 15) achieve the best results for almost any path-based policy.

This indicates that the OL correctly updates the A-PFSBA model M̂ creating new

dialogue-states and transitions that capture user behavior, improving the estimated

transition probabilities and fine-tuning the initial DM to the user.

6.5 Low Data Experimentation

Using the DSTC2 corpus, two low-data experimental setups have been designed to

test the potential of the OL algorithm and the HOL methodology in these scenarios.

Note that these scenarios are common when facing a first development of a Dialogue

System for a new domain. To this end, two scenarios are set up:

• Data scarcity: the initial DM is trained using less than 5% of the corpus. This

DM is then improved using the OL algorithm which employs batches of 200

dialogues generated with the BAUM2 User Model for the update step. The goal

is to prove the adequateness of the combination of the A-PFSBA framework

and the OL algorithm for building DMs in low-resource scenarios.

• Zero-data: in this setup an A-PFSBA DM is built without initial data. In this

situation, a rule-based DM is built as initialisation, and by means of the HOL

methodology, an A-PFSBA DM is built using the dialogues generated with the

BAUM2. The goal is to demonstrate the potential of the HOL methodology

when no data is available.

For both setups, Table 6.2 shows the parameters shared by all the A-PFSBA UMs and

DMs. Three Task Completion metrics are employed to evaluate the performance of

the DM:

• Valid Venue Offer: if the DM offers a venue that satisfies the user’s constraints.

• Request Informed: if the DM correctly answers to the items requested by the

user.

• Canthelp Inform: if the DM correctly informs about impossible constraint

combinations.

6.5 Low Data Experimentation 109



Each TC metric evaluates a specific functionality that the A-PFSBA DM has to satisfy

over the DSTC2 corpus. This approach differs from the Let’s Go TC, which performs

an holistic evaluation of the dialogue.

To evaluate the incremental learning process according to these TCs, two BAUM2

are employed, one trained using the development set and the other using the test

set. The UM trained over the development set is used to generate the dialogues

from which the A-PFSBA DM will learn using the OL algorithm. Then, this DM

will generate dialogues with the BAUM2 trained with the test set to obtain the TC

rates.

Tab. 6.2.: Parameters shared by all the models of the DSTC2 low-data experiments

A-PFSBA DM Dev - BAUM2 Test - BAUM2

Delexicalisation method Value Ranking Goal-based Goal-based
Spatial Relation Euclidean dist. Euclidean dist. Euclidean dist.
Dialogue Smoothing - Policy Nearest State Nearest State Nearest State
Chi-square spatial relation No No No
State Pruning Method None SVM - 0.2 SVM - 0.2
Data Partition Used Train Development Test
Override threshold – 0.2 0.2
NLU Error- αcorrupt 1 1 1
NLU Error n_rounds 10 10 10

6.5.1 Data scarcity scenario

In this second scenario, a data scarcity scenario is simulated. Instead of employing

the 1612 dialogues of the DSTC2 training set, one dialogue per goal-type is selected.

This is, one dialogue is selected per each different combination of constraint and

request slots at the corpus. This renders an initial sampling of 76 dialogues, less

than 5% of the corpus. Then, this minimal A-PFSBA model M̂ is enhanced with the

dialogues generated interacting with BAUM2.

In this setup, a total of 24 dialogue-generation batches b = 1, · · · , 24 are performed

using the A-PFSBA DM and Dev-BAUM2, each batch consisting of 200 dialogues.

After a batch is finished, the dialogue samples z′ ∈ Zb that satisfy all the TC metrics

are used to update the A-PFSBA model of the DM via Online Learning. Once the

update is completed, the Test-BAUM2 is used to generate a total of 1000 dialogues

which are used to evaluate the updated model. To add some channel noise to the

interactions, the NLU error simulation is used with αcorrupt=1 and nrounds = 10. To

deal with sparsity added by NLU error with, rǫ = 0.3 is set. Note that the first batch

b = 0 corresponds to the evaluation of the A-PFSBA DM without any learning, i.e.

the A-PFSBA DM trained with 76 dialogue samples.
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6.5.2 Results

The TC metrics evaluated over these 1,000 dialogues are the ones shown in the

graphs below. In addition to the metrics, the percentage of the dialogues added

at each batch is depicted using the green shaded area. Note that the % of added

dialogues might be lower than the TC rate, as it requires to fully satisfy all the TC

rates. Also, note that as the TC rates are not binary (i.e. if the user has requested 4

items and the system has correctly answered 3 of them, the Request Informed TC

will have a value of 0.75) the percentage of added dialogues might be lower than

the overall TC rate.

Baseline

Fig. 6.7.: Task Completion metric evolution during the incremental learning for the Baseline
configuration

Tab. 6.3.: Initial and ending Task Completion scores learning setup and results for the data
scarcity scenario

Configuration Metric Initial Score (b = 0) Final Score (b = 24)
Valid venue offered 0.84±0.023 0.95±0.013
Canthelp Informed 0.78±0.053 0.9±0.039Baseline
Request Score 0.98±0.008 0.99±0.006

The initial and final results are described in Table 6.3. Results are shown in green

if there is a statistically significant improvement, yellow if there is no statistically

significant improvement and red if the results worsens. The results achieved indicate

6.5 Low Data Experimentation 111



that the OL strategy works fine for data scarcity scenario, even with uncertainty,

where the saturation point is reached within just 5 batches. This demonstrates the

simplicity and the validity of the OL algorithm for incrementally learning an A-PFSBA

DM in low-data scenarios.

6.5.3 Zero data scenario

In this third scenario, the common zero-data setup is simulated over the DSTC2

corpus. To this end, a rule-based DM is built using the expert rule notation of the

previous section. These rules can be seen in Appendix B, both the deterministic

rules and the probabilistic ones. If no rule is satisfied, the fallback action is used.

As an illustrative example, an algorithmic version of the rule "If the food slot value

confidence is below 0.25, request the user for the desired food type" is shown below:

Listing 1 Rule for Requesting the food slot value

1 def request_food(*args, **kwargs):

2 attributes = get_dialogue_attributes(kwargs)

3 score = attributes.get('food-max-score', 0)

4 if 0 <= score < 0.25:

5 return True

6 return False

7

8 HC_POLICY.add_rule(DialogueRule(request_food,

'request(food)'))→֒

For both rule types, deterministic and probabilistic, the same selection mechanism

Sel is used.

Algorithm 6 Rule selection mechanism

Krules ← random_choice([1, 2, 3, 4]) ⊲ Number of of rules to sample
ER+(qj) ⊲ Rules activated over the current dialogue-state qj

Scores = [erscore(qj)∀ er ∈ ER+]
Normalize(Scores) so |Scores| = 1

SER+(qj) = sample(ER+(qj),Krules) ⊲ Selected rules
at+1 = erã ∀ er ∈ SER+(qj) ⊲ Composition of rule-activated system actions
return at+1

As explained in the Pseudo-algorithm 6 a K_rules parameter is randomly chosen

from 1 to 4. Then, using the retrieved scores of each expert rule er activated at the
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dialogue state qj , the scores are normalized to a multivariate distribution. Then,

using this distribution, a total of K_rules are sampled. The system’s responses

of the sampled expert rules are used to produce the next system action ãt+1. If

ER+(qj) = ∅, i.e. no rules are activated, a fallback action is defined, which for the

DSTC2 domain is the confirm-domain action i.e. "Are you looking for a restaurant?".

6.5.3.1 Results

The HOL method is tested with both deterministic and probabilistic rules. Similar

to the data scarcity scenario, for the zero-data scenario, a total of 24 dialogue-

generation batches b = 1, · · · , 24 are performed using the A-PFSBA DM and Dev-

BAUM2, each batch consisting of 200 dialogues. After a batch is finished, the

dialogue samples z′ ∈ Zb that satisfy all the TC metrics are used to update the

A-PFSBA model of the DM via Online Learning. Once the update is done, the

test Test-BAUM2 is used to generate a total of 1,000 dialogues, which are used to

evaluate the updated model. In order to add some channel-noise to the interactions,

the NLU error simulation is used with αcorrupt=1 and nrounds = 10. To deal with

sparsity added by NLU error, the rǫ = 0.3 is set. Note that the first batch b = 0

corresponds to the evaluation of the A-PFSBA DM without any learning. In this

zero-data scenario this means that the rule-based DM is being evaluated, as the

A-PFSBA DM consists only of the empty state qǫ. Note that in this HOL setup, the

more dialogue samples z′ ∈ Zb are learned with the OL, the more relevant the

A-PFSBA based DM becomes, relegating the rule-based DM to the background.

The TC metrics evaluated over these 1,000 dialogues are the ones shown in the

graphs below. Apart from the metrics, the percentage of the dialogues added in each

batch is depicted using the green shaded area. Note that the % of added dialogues

might be lower than the TC rate, as it requires to fully satisfy all the TC rates. Also

note that as the TC rates are not binary (i.e. if the user has requested 4 items and

the system has correctly answered 3 of them, the Request Informed TC will have a

value of 0.75) the percentage of added dialogues might be lower than the overall TC

rate.
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Deterministic Rules

Fig. 6.8.: Task Completion metric evolution during the incremental learning for the Deter-
ministic Rules configuration. The x axis denotes the Batch b ∈ [0 · · · , 24] and the y
axis the achieved score for different TC metrics.

Probabilistic Rules

Fig. 6.9.: Task Completion metric evolution during the incremental learning for the Proba-
bilistic Rules configuration. The x axis denotes the Batch b ∈ [0 · · · , 24] and the y
axis the achieved score for different TC metrics.
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Tab. 6.4.: Summary of the incremental learning results for the Zero Data Scenario

Initial DM Metric Initial Score (b = 0) Final Score (b = 24)
Valid venue offered 0.81±0.024 0.86±0.021
Canthelp Informed 0.88±0.043 0.9±0.034Det. Rules
Request Score 0.95±0.013 0.94±0.014
Valid venue offered 0.92±0.016 0.91±0.017
Canthelp Informed 0.92±0.037 0.92±0.037Prob. Rules
Request Score 0.87±0.013 0.89±0.017

Table 6.4 compares the initial batch scores and final batch scores when performing

the HOL experiment. The deterministic rules demonstrated to have a higher learning

potential than the probabilistic rules. However, the probabilistic ones yield better

results when offering a suitable restaurant for the user, which is the main goal of

the system, as the valid venue offer TC metric demonstrates. As the probabilistic

rules produce a higher variability in the system responses, they can explore multiple

strategies which are more likely to satisfy an automatic TC metric. Nevertheless,

this same variability may make it harder to capture a consistent pattern to learn DM

strategies.

From and industrial point of view, deterministic rules, despite their lower TC rate,

are easier to interpret and explain. Therefore, they improve the auditability of

the DM and produce more consistent interactions with the user. Nevertheless, the

achieved results indicate the potential of the A-PFSBA structure to bridge rule-based

and data-driven DMs in a smooth way.
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8Conclusions and Future Work

During this thesis the Attributed Probabilistic Finite State Bi-Automata (A-PFSBA)

framework has been used for Dialogue Management and User Modelling in different

corpora and applications. On the whole, the main contributions can be summarized

in these points:

• Two use cases have been used to carry out the experimental validation of

the proposed contributions: Let’s Go and Dialogue State Tracking Challenge

2 (DSTC2) Corpus. The first one provides a challenging corpus collected

from real users. The second one provides a statistical Natural Language

Understanding (NLU) which allows to test the capability of the A-PFSBA

framework to handle uncertainty and provides user-related goals for better

user modelling.

• Several new A-PFSBA model smoothing techniques have been proposed in

order to improve generalisation for new interactions and unseen situations.

• The A-PFSBA theoretical framework has been extended by defining the policy-

making notation over this framework. Different policies following this notation

have been implemented.

• In order to enable Incremental Learning of the initial Dialogue Manager (DM),

an Online Learning (OL) algorithm and a DM hybridisation mechanism have

been presented.

• Three different real-word applications which use the A-PFSBA structure for DM

have been presented. These applications cover a wide range of domains, such

as industrial maintenance, gerontological data registration and eGoverment.

All contributions have been experimentally validated over the Let’s Go corpus and/or

the DSTC2 corpus. Segmented by main contributions, the following bullet points

summarize the conclusions:

• Model Smoothing: The capability of adapting and generalising to unseen

situations at decoding time is a key feature for any DM. As demonstrated in this
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thesis, the A-PFSBA framework can employ several mechanisms to achieve this

generalisation, such as using simple spatial relations, K-Nearest dialogue state

voting mechanisms, Machine Learning algorithms trained over the A-PFSBA

structure for state pruning and crafting task-dependant distance or similarities.

The flexibility and variety of mechanisms to achieve a generalisation to unseen

dialogues gives the A-PFSBA DMs the potentiality of successfully covering a

wide range of tasks and scenarios as showed in the experiments carried out. As

a demonstration of the success when modifying the model smoothing strategy,

it must be remembered that when using the state pruning with SVMs in the

Bi-Automata User Model (BAUM), the A-PFSBA based model outperformed

the Deep Learning (DL) based UM.

• Exploitation Policies: One of the main benefits of the A-PFSBA framework

is the separation between structural learning and its exploitation. This sep-

aration grants freedom to adjust the decision-making policy to the current

application/task of the DM, in which the policy can be a rule-based one, a

maximum probability one or any other complex policy which employs external

information such as the Task Completion (TC). During this dissertation, the

proposed theoretical framework has been tested by implementing multiple

exploitation policies with different degrees of complexity.

• Incremental Learning: As the A-PFSBA is a generative structure, it allows to

incrementally learn new states and transitions by using unseen interactions.

The proposed Online Learning algorithm proved to be a simple and effective

method to improve an initial A-PFSBA DM in terms of TC. The OL algorithm,

combined with the presented hybridization methodology, which initializes

jointly a rule-based and A-PFSBA based DMs, can be potentially used to

incrementally learn a data-driven A-PFSBA DM even in zero-data domains.

• Industrial Applications: The experimental validations and the developed

applications, which were tested by real users and were backed up by different

projects and companies, demonstrate that the A-PFSBA framework is a suitable

methodology for building DMs in industrial applications and that it has the

potential of bridging rule-based and data-driven systems.

On the whole, the contributions presented in this thesis demonstrate the potential

of the A-PFSBA framework for Dialogue Management at Dialogue Systems. This

statistical framework can handle the intent/entity/value structure of the NLU even

in presence of uncertainty. The A-PFSBA structure is suitable to model the task

to perform by the system and extract relevant patterns from the data, using a

computationally-light model.
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Although the demonstrated potentiality of the A-PFSBA framework to model DMs

in different environments through this dissertation is proven, some limitations still

remain, such as the need of crafting the ∆, Σ and Ω alphabets and the delexicalisation

mechanisms to avoid excessive data-sparsity. As this process is highly-domain

dependant, the transferability of the model to other domains remains a challenge to

be solved.

Under this scenario, multiple research lines are open to further improve and validate

this framework.

As future work, and for better generalisation, methods and heuristics to include

path-information in the model smoothing strategy will be further researched.

As the A-PFSBA structure can be combined with DL methods, the use of pre-trained

language models such as BERT/GPT and their variants to infer the user decoding

alphabet Σ will be researched. In addition, the composition of the A-PFSBA frame-

work with other automata employed for grammar inference would also be feasible

due to the generative nature of the framework.

In terms of DM policy, the harmonisation of the A-PFSBA policies with other policy-

inference methodologies such as the Reinforcement Learning will be researched. In

addition, the multi-modal information handling is also of special relevance due to

the increasing interest in these interactive systems.

Also, in order to handle multi-task scenarios, the composition of several A-PFSBA

DMs to handle multi-task systems needs to be investigated, in which the automata

and transducer literature already provides theoretical mechanisms for this composi-

tion.

Finally, and to fully explore the potential of the A-PFSBA of bridging rule-based and

data-driven DM, further research will be performed on building robust A-PFSBA

DMs incrementally in data scarcity and/or zero-data scenarios.
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9Related Publications

The development and writing of this thesis has resulted in several peer-reviewed

articles.

Online learning of attributed bi-automata for dialogue management in

spoken dialogue systems

Serras, M., Torres, M. I., Del Pozo, A. (2017, June). Online learning of attributed bi-automata

for dialogue management in spoken dialogue systems. In Iberian Conference on Pattern Recogni-

tion and Image Analysis (pp. 22-31). Springer, Cham.

• DOI: https://doi.org/10.1007/978-3-319-58838-4_3

Abstract: Online learning of dialogue managers is a desirable but often costly property to
obtain. Probabilistic Finite State Bi-Automata (PFSBA) have shown to provide a flexible and
adaptive framework to achieve this goal. In this paper, an Attributed PFSBA (A-PSFBA) is
implemented and experimentally compared with previous non-attributed PFSBA proposals.
Then, a simple yet effective online learning algorithm that adapts the probabilistic structure
of the Bi-Automata on the run is presented and evaluated. To this end, the User Model is
also represented by an A-PFSBA and the impact of different user behaviors is tested. The
proposed approaches are evaluated on the Let’s Go corpus, showing significant improvements
on the dialogue success rates reported in previous works.

Regularized Neural User Model for Goal-oriented Spoken Dialogue Sys-
tems

Serras, M., Torres, M. I., Del Pozo, A. (2019). Regularized neural user model for goal-oriented
spoken dialogue systems. In Advanced Social Interaction with Agents (pp. 235-245). Springer,
Cham.

• DOI: https://doi.org/10.1007/978-3-319-92108-2_24

Abstract: User simulation is widely used to generate artificial dialogues in order to
train statistical spoken dialogue systems and perform evaluations. This paper presents a
neural network approach for user modeling that exploits an encoder-decoder bidirectional
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architecture with a regularization layer for each dialogue act. In order to minimize the impact
of data sparsity, the dialogue act space is compressed according to the user goal. Experiments
on the Dialogue State Tracking Challenge 2 (DSTC2) dataset provide significant results
at dialogue act and slot level predictions, outperforming previous neural user modeling
approaches in terms of F1 score.

User-aware dialogue management policies over attributed bi-automata

Serras, M., Torres, M. I., Del Pozo, A. (2019). User-aware dialogue management policies over
attributed bi-automata. Pattern Analysis and Applications, 22(4), 1319-1330.

• DOI: https://doi.org/10.1007/s10044-018-0743-y

Abstract: Designing dialogue policies that take user behavior into account is complicated
due to user variability and behavioral uncertainty. Attributed probabilistic finite-state bi-
automata (A-PFSBA) have proven to be a promising framework to develop dialogue managers
that capture the users’ actions in its structure and adapt to them online, yet developing
policies robust to high user uncertainty is still challenging. In this paper, the theoretical
A-PFSBA dialogue management framework is augmented by formally defining the notation
of exploitation policies over its structure. Under such definition, multiple path-based policies
are implemented, those that take into account external information and those which do
not. These policies are evaluated on the Let’s Go corpus, before and after an online learning
process whose goal is to update the initial model through the interaction with end users.
In these experiments the impact of user uncertainty and the model structural learning is
thoroughly analyzed.

Goal-conditioned User Modeling for Dialogue Systems using Stochas-
tic Bi-Automata

Serras, M., Torres, M. I., del Pozo, A. (2019, February). Goal-conditioned User Modeling for
Dialogue Systems using Stochastic Bi-Automata. In ICPRAM (pp. 128-134).

• DOI: https://doi.org/10.5220/0007359401280134

Abstract: User Models (UM) are commonly employed to train and evaluate dialogue
systems as they generate dialogue samples that simulate end-user behavior. This paper
presents a stochastic approach for user modeling based in Attributed Probabilistic Finite
State Bi-Automata (A-PFSBA). This framework allows the user model to be conditioned
by the dialogue goal in task-oriented dialogue scenarios. In addition, the work proposes
two novel smoothing policies that employ the K-nearest A-PFSBA states to infer the next
UM action in unseen interactions. Experiments on the Dialogue State Tracking Challenge 2
(DSTC2) corpus provide results similar to the ones obtained through deep learning based
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user modeling approaches in terms of F1 measure. However the proposed Bi-Automata User
Model (BAUM) requires less resources both of memory and computing time.

Improving Dialogue Smoothing with A-priori State Pruning

Serras, M., Torres, M. I., del Pozo, A. (2020). Improving Dialogue Smoothing with A-priori
State Pruning. In ICPRAM (pp. 607-614)

• DOI: https://doi.org/10.5220/0009184206070614

Abstract: When Dialogue Systems (DS) face real usage, a challenge to solve is managing
unforeseen situations without breaking the coherence of the dialogue. One way to achieve
this is by redirecting the interaction to known dialogue states in a transparent way. This work
proposes a simple a-priori pruning method to rule out invalid candidates when searching
for similar dialogue states in unexpected scenarios. The proposed method is evaluated on
a User Model (UM) based on Attributed Probabilistic Finite State Bi-Automata (A-PFSBA),
trained on the Dialogue State Tracking Challenge 2 (DSTC2) corpus. Results show that the
proposed technique improves response times and achieves higher F1 scores than previous
A-PFSBA implementations and deep learning models.

Dialogue enhanced extended reality: Interactive system for the opera-
tor 4.0

Serras, M., García-Sardiña, L., Simões, B., Álvarez, H., Arambarri, J. (2020). Dialogue
enhanced extended reality: Interactive system for the operator 4.0. Applied Sciences, 10(11),
3960.

• DOI: https://doi.org/10.3390/app10113960

Abstract: The nature of industrial manufacturing processes and the continuous need to
adapt production systems to new demands require tools to support workers during transitions
to new processes. At the early stage of transitions, human error rate is often high and the
impact in quality and production loss can be significant. Over the past years, eXtended
Reality (XR) technologies (such as virtual, augmented, immersive, and mixed reality) have
become a popular approach to enhance operators’ capabilities in the Industry 4.0 paradigm.
The purpose of this research is to explore the usability of dialogue-based XR enhancement to
ease the cognitive burden associated with manufacturing tasks, through the augmentation
of linked multi-modal information available to support operators. The proposed Interactive
XR architecture, using the Spoken Dialogue Systems’ modular and user-centred architecture
as a basis, was tested in two use case scenarios: the maintenance of a robotic gripper and as
a shop-floor assistant for electric panel assembly. In both cases, we have confirmed a high
user acceptance rate with an efficient knowledge communication and distribution even for
operators without prior experience or with cognitive impairments, therefore demonstrating
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the suitability of the solution for assisting human workers in industrial manufacturing
processes. The results endorse an initial validation of the Interactive XR architecture to
achieve a multi-device and user-friendly experience to solve industrial processes, which is
flexible enough to encompass multiple tasks

AREVA: Augmented Reality Voice Assistant for Industrial Maintenance

Serras, M., García-Sardiña, L., Sim, B., Ávarez, H., Arambarri, J. (2020). AREVA: Augmented
Reality Voice Assistant for Industrial Maintenance. Procesamiento del Lenguaje Natural, 65,
135-138.

• DOI: https://doi.org/10.26342/2020-65-21

Abstract: Within the context of Industry 4.0, AREVA is presented: a Voice Assistant with
Augmented Reality visualisations for the support and guidance of operators when carrying
out tasks and processes in industrial environments. With the aim of validating its use for the
training of new operators, first evaluations were performed by a group of non-expert users
who were asked to carry out a maintenance task on a Universal Robot.

RESIVOZ: Dialogue System for Voice-based Information Registration
in Eldercare

García-Sardiña, L., Serras, M., del Pozo, A., Fernández-Bhogal, M. D. (2020). RESIVOZ:
Dialogue System for Voice-based Information Registration in Eldercare. Procesamiento del
Lenguaje Natural, 65, 123-126.

• DOI: https://doi.org/10.26342/2020-65-18

Abstract: RESIVOZ is a spoken dialogue system aimed at helping geriatric nurses easily
register resident caring information. Compared to the traditional use of computers installed
at specific control points for information recording, RESIVOZ’s hands-free and mobile nature
allows nurses to enter their activities in a natural way, when and where needed. Besides
the core spoken dialogue component, the presented prototype system also includes an
administration panel and a mobile phone App designed to visualise and edit resident caring
information.
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ADSTC2 Attribute Iteration Rules

This appendix describes the attribute iteration rules for the Bi-Automata User Model de-
scribed at Section 3.2.2.2. As previously said, these rules follow an if-this-then-that schema.

Note that the activation of an attribute means to set its value to 1 and the deactivation to set
its value to 0.

A.1 BAUM Attribute Iteration Rules

This section describes the attribute iteration rules used for the first BAUM model, i.e. the one
which only uses the information explicitly labelled in the JSON of the DSTC2 samples.

Write Goal Constraints Attributes

This rule is used at the beginning of the dialogue, before the first turn, so the user goal
related constraints are taken into account throughout the dialogue.

1. IF: <slot-name> is in the given dialogue goal constraint set. THEN:

• ACTIVATE the attribute "constraint-<slot-name>"

As example, if the food=chinese is given as a constraint to the Mechanikal Turker, then the
attribute "constraint-food" receives the value 1.

Write Goal Request Attributes

This rule is used at the beginning of the dialogue, so the user goal related requests are taken
into account throughout the dialogue.

1. IF: <slot-name> is in the given goal’s requests. THEN:

• ACTIVATE the attribute "request-<slot-name>"

Write Received Venue Information Rule

This attribute iteration rule is evaluated every time that the system gives a response. Writes
the information that the user has received from a venue.
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1. IF: system has offered a venue AND informed <slot-name> at the same time. THEN:

• ACTIVATE the attribute "received-venue-<slot-name>"

For example, if the system offers a venue and informs about the venue’s address, the
"received-venue-address" attribute is set to 1.

System Understood Constraints Goal Rule

This attribute iteration rule is evaluated every time that the system gives a response. It is ac-
tivated when the system demonstrates that it understood the user-given goal information.

1. IF: system <intent> in [’expl-conf ’, ’impl-conf ’, ’inform’, ’canthelp’] AND NOT informed
<slot-name> in [’count’, ’addr’,’phone’, ’postcode’, ’signature’] AND <slot-value> is
part of the given goal constraints. THEN:

• ACTIVATE the attribute "system-understood-<slot-name>-goal"

• DEACTIVATE the attribute "system-understood-<slot-name>-other"

System Understood Constraints Other Rule

This attribute iteration rule is evaluated every time that the system gives a response. It is
activated when the system demonstrates that it misunderstood the user-given goal informa-
tion.

1. IF: system <intent> in [’expl-conf ’, ’impl-conf ’, ’inform’, ’canthelp’] AND NOT informed
<slot-name> in [’count’, ’addr’,’phone’, ’postcode’, ’signature’] AND <slot-value> is not
in the given goal constraints. THEN:

• DEACTIVATE the attribute "system-understood-<slot-name>-goal"

• ACTIVATE the attribute "system-understood-<slot-name>-other"

System Understood Constraints Don’t care Rule

This attribute iteration rule is evaluated every time that the system gives a response. It is
activated when the system demonstrates that it understood the user doesn’t care about a
particular slot’s value.

1. IF: system <intent> in [’expl-conf ’, ’impl-conf ’, ’inform’, ’canthelp’] AND NOT informed
<slot-name> in [’count’, ’addr’,’phone’, ’postcode’, ’signature’] AND <slot-value> is
"dontcare". THEN:
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• ACTIVATE the attribute system-understood-<slot-name>-goal

• ACTIVATE the attribute system-understood-<slot-name>-other

User Informed Constraints Goal Rule

This attribute iteration rule is evaluated every time that the user gives a response. It is
activated when the user informs about a particular slot’s value to the system that matches
the given goal constraint.

1. IF: user <intent> in [’confirm’, ’inform’] AND <slot-value> is "goal". THEN:

• ACTIVATE the attribute user-informed-<slot-name>-goal

• DEACTIVATE the attribute system-understood-<slot-name>-other

User Informed Constraints Other Rule This attribute iteration rule is evaluated
every time that the user gives a response. It is activated when the user informs about a
particular slot’s value to the system that is different than the given goal constraint.

1. IF: user <intent> in [’confirm’, ’inform’] AND <slot-value> is "other". THEN:

• ACTIVATE the attribute user-informed-<slot-name>-other

• DEACTIVATE the attribute system-understood-<slot-name>-goal

User Informed Constraints Don’t care Rule

This attribute iteration rule is evaluated every time that the user gives a response. It is
activated when the user informs that he/she doesn’t care about a particular slot’s value to
the system.

1. IF: user <intent> in [’confirm’, ’inform’] AND <slot-value> is "dontcare". THEN:

• ACTIVATE the attribute user-informed-<slot-name>-other

• ACTIVATE the attribute system-understood-<slot-name>-goal

The dontcare slot-value is treated in a special way, so both goal and non-goal attribute values
are activated.

Restaurant Change Rule
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This attribute iteration rule is evaluated every time that the system gives a response. It is
activated when the restaurant from the current response differs from the previous one.

1. IF: system <intent> is ’offer’ AND <restaurant-name> is different than <previous-
restaurant-name>. THEN:

• ACTIVATE the attribute offered-new-venue

ELSE:

• DEACTIVATE the attribute offered-new-venue

User Requested Alternatives Rule

This attribute iteration rule is evaluated every time that the user gives a response. It is
activated when the user requested a different restaurant.

1. IF: user <intent> is ’reqalts’. THEN:

• DEACTIVATE the attribute offered-new-venue

A.1.1 BAUM2 Attribute Iteration Rules

This section briefly describes the differences in the attribute iteration rules used for the
BAUM2 model, i.e. the one which infers the user goal using the text given to the par-
ticipants/mechanical turkers. This goal also encodes information to handle unfeasible
constraints and the requesting of alternative venues.

The attribute iteration rules’ logic is practically the same, but they now include the secondary-
goal’ concept in their ’if-this-then-that’ schema to take into account two different constraint
sets given to the user in one dialogue. In addition, now the "request-alternatives" attribute
can be activated, when the Mechanical Turker is asked explicitly to ask for an alternative
venue rather than the first one offered by the system.

As an example, the goal-constraint writing rule is modified in this way:

Write Goal Constraints Attributes - BAUM2

1. IF: <slot-name> is in the given dialogue goal constraint set as first option. THEN:

• ACTIVATE the attribute constraint-<slot-name>

2. IF: <slot-name> is in the given dialogue goal constraint set as second option. THEN:
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• ACTIVATE the attribute constraint-secondary-<slot-name>

The same schema is followed in all the other rules, for example, the attribute iteration
rule which takes into account if the user has given information about some slot is also
transformed:

User Informed Constraints Goal Rule - BAUM2

1. IF: user <intent> in [’confirm’, ’inform’] AND <slot-value> is "goal-primary". THEN:

• ACTIVATE the attribute user-informed-<slot-name>-goal

• DEACTIVATE the attribute system-understood-<slot-name>-other

2. IF: user <intent> in [’confirm’, ’inform’] AND <slot-value> is "goal-secondary". THEN:

• ACTIVATE the attribute user-informed-<slot-name>-goal-secondary

• DEACTIVATE the attribute system-understood-<slot-name>-other

Note that now, the "other" slot value refers to any slot value that is different from the first or
second constraint set for that slot.
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B
Dialogue Management Rules for

the DSTC2

In this section the logic of the deterministic and probabilistic rules used at Chapter 6 are
described in terms of pseudo-algorithms. Note that the code has been polished for illustrative
purposes and there might be small divergences to the final implementation.

If two rules with overlapping system responses are activated, both system actions are
combined, without repetitions. As an example, if the rule with the outcome:

"offer(venue=<best-venue>)&inform(phone=<venue-phone)"

and the one with:

"offer(venue=<best-venue>)&inform(address=<venue-address)"

are activated, the union of both actions is used:

"offer(venue=<best-venue>)&inform(address=<venue-address>)&inform(phone=<venue-phone>)".

The delexicalised slot values, such as <best-venue>, <venue-address> and <venue-phone>
are retrieved from the mapping blackboard detailed in Chapter 3 at Section 3.8.

As notation, during this Appendix the HC_POLICY refers to the deterministic hand-crafted
policy and P_HC_POLICY to the probabilistic hand-crafted policy.

B.1 Helper Functions

Different helper functions have been defined for both probabilistic and deterministic rule
policy . The one below calculates the maximum score achievable by a venue according to
the user-informed constraints. I.e. if the constraints of food and area are known each one
with 0.5 probability, the maximum score achievable by a venue is 0.5+0.5

2
= 0.5
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Listing 2 Helper Functions that extracts the maximum score that a venue can get

1 def get_venue_score(attributes, blackboard):

2 """Get the current venue best score"""

3 food_score = f_s = attributes.get('food-max-score', 0)

4 area_score = a_s = attributes.get('area-max-score', 0)

5 price_score = p_s = attributes.get('pricerange-max-score',

0)→֒

6 # Logic behind: if the venue score is low and the slot

scores are high, we have an issue.→֒

7 max_list = []

8 if blackboard.get('<best-area-0>', 'dontcare') !=

'dontcare':→֒

9 if a_s != 0:

10 max_list.append(a_s)

11 if blackboard.get('<best-food-0>', 'dontcare') !=

'dontcare':→֒

12 if f_s != 0:

13 max_list.append(f_s)

14 if blackboard.get('<best-pricerange-0>', 'dontcare') !=

'dontcare':→֒

15 if p_s != 0:

16 max_list.append(p_s)

17 total_score = sum(max_list)

18 if total_score == 0:

19 return 0

20 max_possible_score = total_score/len(max_list)

21 return max_possible_score

The next helper function retrives the user action d̃, system action ã and the attributes ω from
the current dialogue state q.

Listing 3 Helper function that extracts the items of the dialogue state from the input
information **kwargs

1 def get_dialogue_state(kwargs):

2 user = kwargs['user-dict']

3 system = kwargs['system-dict']

4 attributes = kwargs['attribute-dict']

5 return user, system, attributes
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The next helper function calculates the score relative to offer the current best venue. To that
end, the maximum score and the difference with the next restaurant cluster are multiplied
together. It supposes that the higher score the best venue has, and the higher is the difference
with respect to the other venue types (venues with other characteristics), the higher is the
chance to do a proper offering.

Listing 4 Helper function that calculates the score of offering some venue to the
user

1 def _offer_score(attributes):

2 venue_max_score = attributes.get('venue-max-score', 0)

3 cluster_difference = attributes.get('score-difference', 0)

4 # The score difference between the first cluster of venues

an the second one→֒

5 return venue_max_score*venue_max_score

B.2 Deterministic Rules

In this section the pseudo-code of the implemented deterministic rules is described. Note
that these rules are deterministic in terms that the outcome of their score can only be 1
(True) or 0 (False).

The first rule is used to greet the user, it simply checks that the current state is empty.

Listing 5 Rule for Giving the Welcome Message

1 def welcomemsg(*args, **kwargs):

2 # First action

3 u, s, a = get_dialogue_state(kwargs)

4 if not (u or s or a):

5 return True

6 return False

7

8 HC_POLICY.add_rule(DialogueRule(welcomemsg, 'welcomemsg'))

The second set of rules determines when to request the user for particular slots:
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Listing 6 Rule for Requesting the food slot value

1 def request_food(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if _offer_score(a) > 0.5:

4 return False

5 score = a.get('food-max-score', 0)

6 if 0 <= score < 0.25:

7 return True

8 return False

9

10 HC_POLICY.add_rule(DialogueRule(request_food,

'request(food)'))→֒

Note that this same rule schema is repeated with the slots area and pricerange

The request/information retrieval logic is conditioned according to the confidence of the
slot. If the confidence is low, an explicit confirmation is asked:

Listing 7 Rule for Explicitly Confirming the food slot value

1 def explicit_conf_food(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if _offer_score(a) > 0.5:

4 return False

5 score = a.get('food-max-score', 0)

6 if 0.25 <= score < 0.5:

7 return True

8 return False

9

10

11 HC_POLICY.add_rule(DialogueRule(explicit_conf_food,

'expl-conf(food=<best-food-0>)'))→֒

Note that this same rule schema is repeated with the slots area and pricerange

If the confidence is medium, an implicit confirmation is made.
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Listing 8 Rule for Implicitly Confirming the food slot value

1 def implicit_conf_food(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if _offer_score(a) > 0.5:

4 return False

5 score = a.get('food-max-score', 0)

6 if 0.5 <= score < 0.75:

7 return True

8 return False

9

10

11 HC_POLICY.add_rule(DialogueRule(implicit_conf_food,

'impl-conf(food=<best-food-0>)'))→֒

Note that this same rule schema is repeated with the slots area and pricerange

The next rule handles the offering of a suitable venue when it gets has score to do so. In
addition, three additional rules are added that are used to jointly offer the venue and inform
about the registered constraint values of the venue.

Listing 9 Rule for offering a suitable venue to the user

1 def offer(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if _offer_score(a) > 0.75:

4 return True

5 return False

6

7

8 HC_POLICY.add_rule(DialogueRule(offer,

'offer(name=<best-venue>)'))→֒
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Listing 10 Rule for offering a suitable venue and informing its food value to the user

1 def inform_venue_food(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if _offer_score(a) > 0.75 and a.get('food-max-score', 0)

>= 0.75:→֒

4 return True

5 return False

6

7

8 HC_POLICY.add_rule(DialogueRule(inform_food_request,

['offer(name=<best-venue>)',

'inform(food=<venue-food>)']))

→֒

→֒

Note that this same rule schema is repeated with the slots area and pricerange.

The next set of rules handles the requests made by the user once a venue has enough score
to get offered.

Listing 11 Rule for responding to the requests made by the user for the slot address

1 def inform_address_request(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 score = u.get('request(addr'), 0)

4 if _offer_score(a) < 0.5:

5 return False

6 if score > 0.5:

7 return True

8 return False

9

10

11 HC_POLICY.add_rule(DialogueRule(inform_address_request,

['offer(name=<best-venue>)',

'inform(addr=<venue-addr>)']))

→֒

→֒

Note that this same rule schema is repeated with the slots area, food, pricerange, phone,
postcode and signature.

Finally, the next rules handle the scenario where some constraint cannot be met with the
venues of the current database.
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Listing 12 Rule for informing the user that the food constraint given cannot be
satisfied

1 def canthelp_food(*args, **kwargs):

2 # See attributes

3 u, s, a = get_dialogue_state(kwargs)

4 # The blackboard stores the specific values of the slots

5 blackboard_dict = kwargs.get('blackboard', {})

6

7 if a.get('venue-max-score', 0) < get_venue_score(a,

blackboard) and a.get('food-max-score', 0) >= 0.5:→֒

8 return True

9 return False

10

11 HC_POLICY.add_rule(DialogueRule(canthelp_food,

'canthelp(food=<best-food-0>)'))→֒

Note that this same rule schema is repeated with the slots area and pricerange.

The next rule is activated when there are no more alternative restaurants to be offered from
the current cluster.

Listing 13 Rule for when there are no more alternative venues to offer

1 def canthelp_exception(*args, **kwargs):

2 u, s, a = get_dialogue_state(kwargs)

3 if (a.get('pricerange-max-score', 0) +

a.get('area-max-score', 0) + a.get('food-max-score',

0)) > 0:

→֒

→֒

4 if a.get('venue-max-score', 0) > 0.5 and

a.get('score-difference', 0) < 0.4:→֒

5 return True, {}

6 return False, {}

7

8 HC_POLICY.add_rule(DialogueRule(canthelp_exception,

'canthelp.exception(name=<best-venue>')))→֒

Finally, the request-for-more rule is added which handles if the user wants something else at
the end of the dialogue:
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Listing 14 Rule for requesting the user if he/she wants something more

1 def reqmore(*args, **kwargs):

2 # After an offer if the user says nothing or affirms

3 u, s, a = get_dialogue_state(kwargs)

4 if 'offer(venue=<best-venue>)' in s:

5 if 'thankyou' u and 'bye' not in u:

6 return True

7 if u.get('affirm',0) > 0.25:

8 return True

9 if not u: # Is empty

10 return True

11 return False

12

13 HC_POLICY.add_rule(DialogueRule(reqmore, 'reqmore'))

B.2.1 Conversion to Probabilistic Rules

The probabilistic rules follow the same logic as the deterministic ones, but instead of return-
ing 1 or 0 as score, their score is calculated according to the probabilities and confidences of
the user actions and the attributes of the current dialogue state.

To transform the deterministic rules into probabilistic, as explained in Chapter 6, the
following conversions are applied:

• Exists x: P (x | qj)

• Not Exists x: 1− P (x | qj)

• x And y: P (x | qj) · P (y | qj)

• x Or y: max(P (x | qj),P (y | qj)))

• x Greater than y: P (x > y | qj)

• x Lower than y: P (x < y | qj)

Then, for example, the rule for giving information about a venue slot (food in this case) after
a user request is converted to:

156 Chapter B Dialogue Management Rules for the DSTC2



Listing 15 Probabilistic Rule for informing the food type of the venue after the user
request.

1 def inform_food_request_p(*args, **kwargs):

2 u, s, a = get_items(kwargs)

3 score = u.get('request|food', 0)*_offer_score(a)

4 return score

5

6 P_HC_POLICY.add_rule(ProbaDialogueRule(inform_food_request_p,

['offer(name=<best-venue>'),

'inform(food=<venue-food>')]))

→֒

→֒

The same changes are applied to all the rules defined in the Deterministic Rules section of
this appendix.
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