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Summary

In the last decade, deep neural networks have risen as powerful computing systems
which, when properly trained, have shown impressive performances in vastly differ-
ent problems and domains: from classification to optimization, from health to logis-
tics. However, the performance of these models is largely dependent on its structure
(the architecture, training hyperparameters, etc.). Currently, in most cases, the pro-
cess for improving the performance of a neural model in a given task involves the
development of another, more complex deep neural network. Multiple repetitions of
this process have established why manually devising the structure of a neural model
is becoming an increasingly complex assignment.

In this context, researchers and practitioners have recently shown interest in
methods which automatically search for structures of neural models. Due to the
costly nature of deep neural network training, enormous amounts of computation
time are spent on automatic development of neural structures in order to obtain model
configurations which are capable of outperforming the previous best proposal.

In a framework in which the evaluation of every structure counts, developing
efficient methods for automated neural structure design would bring two benefits: i)
save huge amounts of computational time and resources (greener computing), and ii)
provide better architectures.

That is precisely the final aim of this dissertation. To that end, we embrace two
different problems with very different characteristics. First, we focus on the gener-
ative adversarial network, which has produced impressive results in, among others,
the area of realistic image generation. Despite this, the automated optimization of
its structure has not gathered as much interest as other popular deep neural mod-
els, although the results reported in this dissertation suggest that the performance of
these models is also strongly dependent on their structure. Secondly, we focus on the
heterogeneous multi-task learning problem, a framework with an ample potential,
but an equally high complexity level. In this case, not only the efficiency of struc-
tural search methods is investigated, but a new model with the capacity to answer to
heterogeneous problems and an optimizable structure is also proposed.

In both cases, different types of approaches to the automated search of struc-
tures are undertaken, to cover as many types of optimization algorithms as possi-
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ble, always with the same mindset: efficiently finding strong performing structures.
Extensive analyses have been carried out in all cases in order to understand the re-
sults provided by each approach in each search type. These studies have shown that
efficiency gains in structural searches can be achieved by investigating the charac-
teristics of the model and the mechanics of the search algorithms; and that strong
relationships between the components of neural structures exists, in the sense that
for one component of a network to work properly, it needs to be surrounded by the
right components.
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1

Preliminaries

1.1 Introduction

The usage of machine learning (ML) techniques has increased dramatically in the last
few decades. While the improvement of the hardware required to run ML models is
a fundamental factor, the main facilitator to this change is probably the vicious circle
of society discovering new applications of these methods, which leads to further
research in the area, ultimately conquering new frontiers and discovering even newer
applications. Several iterations of this loop have resulted in an extensive growth of
the ML field in both the accuracy of the developed models, and also in the types of
tasks that they can cover.

Until relatively recently, improving the performance of ML algorithms consisted
of designing increasingly domain-specific methods, which fitted certain problems
exceptionally well; e.g., ARIMA models conceived for time series analysis, com-
plex Markov models used for speech recognition, or models that explicitly extracted
predefined features from data, used for analyzing images. This trend has, however,
experienced a significant shift since the potential of deep neural networks (DNN)
came to light.

Discovering the possibilities of DNNs has resulted in a large amount of ML re-
search gradually gravitating towards deep learning (DL), a subfield which is based on
DNNs. DNNs are models composed of sequences of basic operations, such as matrix
operations (multiplication and addition) and simple non-linear function applications
(e.g., sigmoid function), but it has been proven that they possess the necessary mod-
eling power to accurately represent any arbitrary function. This capacity is a conse-
quence of the layer-stacking structure of these models, which, in order to show all
their potential, must be carefully designed and tuned. Particularly, the optimization
of the parameters of the model (in this work referred to as weights), and finding an
adequate neural architecture (the distribution of the basic operations or layers) for
the problem at hand. Regarding the first issue, the optimization of the weights, it is
usually dealt with by means of the backpropagation technique, which has become
the standard way of optimizing the weights of a DNN (although other methods have
provided interesting results too). The second one is still a work in progress, as DNNs
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of arbitrary complexity can be defined, regarding the number, size, and type of the
layers (which ultimately determines the amount of parameters in the model). Ade-
quately defining a complex architecture is not a trivial task, and empirical evidence
shows that, in general, more complex architectures have a higher chance of providing
a better result than simpler ones.

Over the last decade, increasingly complex structures (which comprise the neural
architecture and other required hyperparameter choices) have been proposed in the
literature, each outperforming their simpler predecessors. The area in which DNNs
have arguably had their largest success to date, image classification, serves as a clear
indicator of this trend. Taking into account one of the most popular benchmarks
of this area, the ImageNet benchmark [28], the top eight performing DNNs have
no less than 390M parameters, whereas the rest of DNNs with near state-of-the-art
results rarely reach that amount [100]. This trend is not only observable in image-
related tasks. The top performing DNN for language modeling reports a large margin
over the previous best in the Penn Treebank benchmark [85], both in number of
parameters (175,000M over 395M), and perplexity, the standard metric for word
prediction (20.5 over 31.3. For context, the 29th model obtained 58.6) [101].

Whereas the application areas in which DNNs found the greatest improvements
over other methods were related to target value prediction, generative modeling is
a clear example of new horizons recently conquered by neural models. Generative
adversarial networks (GAN) [49], and, to a lesser extent, variational autoencoders
(VAE) [65], spearhead a large collection of models and methodologies that can be
used for generating data from a distribution described by a known set of observa-
tions. Boltzmann machines and their variations, back-drive (or network inversion),
and the recent, prominently emerging, adversarial learning are other examples of
neural generative models. The application domains of these models are multiple and
largely different, as they can serve the purpose of, among others, generating realistic
images, creating releasable data which follows the same distribution as certain con-
fidential items of data, or driving evolutionary searches by providing new individuals
for the upcoming generation.

The time consumption of manual structure design increases as so does model
complexity, and considering the rate at which DNN complexity is escalating in state-
of-the-art neural architectures, this trend could eventually lead to the point in which
manually defining DNN models is no longer a feasible task. This fact, when paired
with the recent advances in hardware technology which exponentially accelerate the
speed of DNN weight optimization procedures, has garnered a lot of attention in the
research field of automated search of the DNN structure space. Methods aiming at
this goal are commonly referred to as neural architecture search (NAS) algorithms
[33].

The problem of automatically devising DNN structures has been tackled from
very different perspectives: from those based on evolutionary algorithms (EA) [91],
to reinforcement learning [38], differentiable methods [36], or local searches [33].
Due to their capacity to globally explore search spaces, EAs have attracted a larger
portion of the researcher attention, hoarding to some extent the research production
volume. The synergy level between these two fields led to coining the Neuroevolu-
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tion (NE) term, which encompasses all the evolution-inspired algorithms. Recently,
however, local-oriented search algorithms have arisen as a competitive alternative
[34, 129]. Although they successfully achieve the goal of finding good architectures
with minimal human intervention, NAS methods are not flawless. One particular as-
pect that is commonly held against them is the computational effort they require,
and thus any efficiency gains that can be made in that field are welcome. This as-
pect is especially important in DNN models that are inherently complex, of which
multi-network models (such as GANs and VAEs) are a particularly clear example.

1.2 Outlook of the dissertation

Despite the elevated computational cost requisites of NAS algorithms, the quality
of the results they produce totally justifies the required investment, hence a lot of
computational resources are spent on them. While the different NAS methods reach
their goal, an abundance of information which describes the progress of the NAS
procedure is also generated, and more often than not, not included in any kind of
report. In this dissertation, part of the effort is devoted to addressing the efficiency
issues of NAS algorithms by exploiting the residual information of preceding NAS
runs. Due to the elevated number of structures that are commonly evaluated in NE
runs, we focus on this particular set of NAS algorithms.

To achieve the goal of making the NAS runs more efficient, we investigate two
different approaches with the same goal: smart searches in which selections of the
most appropriate structural variation operators or models are made, thus avoiding
costly evaluations of potentially underachieving DNN structures. Initially, the efforts
are directed exclusively towards GAN models, which serve as a useful use case, as
these models are complex and highly used by the generative modeling community.
The acquired knowledge is then extrapolated to a more general domain: the VALP.
The VALP is a multi-network model, oriented to multiple heterogeneous tasks, which
has very few restrictions in terms of the architecture. Because of this characteristic,
the search space of VALP structures includes current state-of-the-art DNN models.
This implies that any methodological proposal which is able to operate as expected
in this complex search space (the final contribution of this work) is likely to perform
well in any other (limited to a specific problem) search domain.

This dissertation is organized in two parts: Analysis and contributions to NE for
GANs, and contributions to the NAS field.

The first part of the dissertation is divided into Chapters 3 and 4. The first one pro-
poses a NE procedure in which GANs are evolved for accurately generating Pareto
set approximations. After that, an advanced analysis of the introduced NE proce-
dure is performed, demonstrating the validity and transferability of the approach and
showing the potential of the information generated during the procedure. In Chap-
ter 4, two different approaches for exploiting that information are presented. They
are used for improving the efficiency of totally different NAS searches for GANs.

The second part of the dissertation also consists of two chapters, Chapter 5 and 6.
The first one introduces the VALP, a model without a defined architecture, formed by
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multiple DNNs which can be interconnected in different ways. These characteristics
make them suitable for solving multiple tasks of different types simultaneously, as
the sub-DNNs within the VALP can provide outputs of different kinds. In the second
one, the contributions to the NAS field are presented. These are achieved by applying
the conclusions drawn in the previous part to a more general search space, that of
the VALP. The VALP search space is considerably larger than those of other DNN
models, as each sub-DNN can be arbitrarily complex.

Finally, Chapter 7 draws the general conclusions of the dissertation and points
out potential future research lines, and Chapter 8 compiles the publications and sub-
missions derived from the research carried out in this dissertation.



2

Background

2.1 Deep Neural Networks

Artificial Neural Networks are computing systems whose structure and behavior tries
to mimic the brains of animals. It can be seen as a collection of nodes (called neu-
rons), and a set of connections between these nodes. Each node processes a signal (a
vector of real numbers) and sends this signal towards other nodes across the connec-
tions.

Neural models have seen their popularity rise and fall since they were proposed
in the mid-20th century. The perceptron is usually considered as the earliest prede-
cessor of the modern definition of DNNs [107]. As the modeling capacity of a single
perceptron did not exceed the limits of a linear estimator, the potential of ANN mod-
els remained latent. However, by combining the linear separator properties of several
perceptrons, it is possible to model any function by defining one perceptron for each
of the bounds of the target function.

The employment of multiple perceptrons to represent a complex function still
requires the intervention of a human to combine and interpret the decisions made
by the set of perceptrons (from this point on, called layers of neurons). By placing
another layer of neurons which receive the outputs of the previous ones, this second
layer can automatize this task. This model starts to resemble current DNNs, and
it is able to represent any arbitrary function by itself [26]. This potential, however,
probably would not have been fulfilled without the definition of an efficient technique
for weight optimization, i.e., the backpropagation algorithm [128].

Current DNNs are commonly devised as multiple layers of neurons, each of
which can be activated by a non-linear function. In each layer, simple matrix op-
erations (which vary depending on the DNN architecture type) are performed to the
incoming features. It is theorized that the deeper the layer is located in a DNN, the
higher the abstraction of the representation of the data expressed by the neurons of
that layer. By adding the non-linearity to each layer, the DNN is provided with the
modeling power necessary to represent any arbitrary function. This posed an addi-
tional obstacle to the realization of the potential of DNNs. Because depth is one
of the main sources of modeling power of neural models, it was not until the last
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decade, in which the evolution of computational capacity allowed increasingly com-
plex models, that the popularity of DNNs reached its current state.

A visual representation of a two-hidden layer classification DNN can be seen in
Figure 2.1. The raw features (x1, x2, x3, x4) of an observation are transformed in
each layer, becoming more and more abstract and rich. The values in the final layer
can be interpreted as the probabilities of the input belonging to each class.

x1

x2

x3

x4

n1,1

n1,2

n1,3

n1,4

n1,5

n2,1

n2,2

n2,3

n2,4

o1 p(Class #1)

o2 p(Class #2)

o3 p(Class #3)

Fig. 2.1: Schematic representation of a DNN for a three-class classification problem.
An observation (represented by its features) is placed in the input of the network
and is subjected to a list of matrix transformations as well as a possible application
of a non-linear activation function. Each arrow represents one scalar multiplication.
The first index in the neurons is the layer they belong to. Each neuron n performs a
summation of all the incoming values. The output layer (in the general case) consists
of one neuron per possible class, each being interpreted as the probability of the ob-
servation placed in the input belonging to a certain class (if activated with a softmax
function).

2.1.1 Architecture types

The rise to prominence of DNNs came when it was discovered that the performance
of neural models was heavily dependent on the architecture of the model. If the
adequate neural architecture is chosen to deal with a given problem, the capabilities
of the DNN to cope with that challenge have proven to be competitive with different
models in different areas [118, 19].

Broadly speaking, DNNs can be categorized in one of three classes according to
their architecture. Firstly, the simplest layout for a DNN, the multi-layer perceptron
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(MLP) [26]. These DNNs make no assumption about the data they model. They are
commonly organized in sequential dense layers of neurons, which means that every
neuron in layer l receives a value from every neuron in layer l − 1, and the value
they compute is provided to every neuron in layer l+1. This sequential arrangement
is known as feedforward DNN, as information only flows in a forward direction.
The DNN displayed in Figure 2.1 corresponds with an MLP. The transformations
performed in these DNNs correspond with straightforward matrix multiplication and
addition, and the application of a simple, non linear function. In mathematical nota-
tion, an MLP layer can be expressed as li+1 = fi(liw

i + bi). li represents the i-th
layer, wi the i-th matrix of weights, and bi the vector of biases. Finally, fi stands
for the activation function of the i-th layer. wi and bi are the optimizable param-
eters of the model (commonly optimized using backpropagation, and in this work
referred to as weights), and fi is a hyperparameter of the model. The layers li are
composed of the neurons in that layer, li =< ni,1, ni,2, ...ni,h >, where h is the
number of neurons in the corresponding layer. As an example, following the archi-
tecture described in Figure 2.1, l2 =< n2,1, n2,2, n2,3, n2,4 >, and, for example,
n2,1 = f(

∑
n1,i×w2

i,1+ b
2
i ). f could be any simple, non-linear activation function,

ReLU = max(0, x) being a popular choice. The design of an MLP architecture can
be commonly viewed as a hyperparameter setting scenario, since it simply consists of
defining the number of layers and neurons within them, and the activation functions.

Although not making any assumption about the problem structure makes them
suitable for a wide range of applications, their structure must be carefully designed
for each problem if competitive results are expected. The other two architecture
types, specially defined to fit data with certain characteristics, have been the sub-
ject of extensive research, as they are able to provide top end results when applied in
the right circumstances.

Convolutional DNNs (CNN) [68], the type that, to a great extent, brought DNNs
back into prominence, are based on layers specialized in extracting abstract features
from spatial data, e.g., images. This special type of DNNs, instead of dense layers
as in the MLP, are composed of convolutional and pooling layers, which consist
of kernels that analyze sets of contiguous data positions. These kernels act as sliding
windows over the data, and, by producing similar results when analyzing similar con-
tiguous positions, are able to detect patterns described by the pixels in the input (or
neurons in the previous layer, in the case of the hidden layers). The different transfor-
mations of the data flowing through a sequence of convolutional layers is commonly
referred to as blob. Multiple types of kernels exist, each of which is defined by a dif-
ferent operation over the blob in the previous layer. A standard convolutional layer
consists of several filters which perform a scalar multiplication of the matrices and
also have a bias term, similar to the MLP. The pooling layer consists of simpler ker-
nels, which just select the maximum (or mean, depending on the pooling type) value
of the values covered by the kernel. This way, what in the first layer was a set of pix-
els showing a sudden color change, can be represented as the direction of an edge in
the following one. A representation of how a convolutional filter works can be seen
in Figure 2.2.
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Input blob

Filter

Output blob

Fig. 2.2: Example of a single filter performing over a 2D blob.

Creating specialized kernels, on top of simplifying the decision process when it
comes to performing the final task (e.g., classification), results in a reduced num-
ber of parameters when compared to MLPs, which would need enormous amounts
of parameters to address the spatial relation between pixels in a similar manner to
CNNs. Technically, CNNs can also be seen as regularized MLPs. The architectures
of state-of-the-art CNNs have experienced a recent spike in terms of complexity,
when compared to the traditional sequential design. Components such as skip con-
nections [52] or performing the same prediction multiple times with the same model
[118], have made the architecture design a non-trivial matter.

Recurrent DNNs (RNN) [57] are specially designed to deal with sequential data.
They can be composed of layers similar to those in an MLP, only that, in this case,
they are not arranged in a sequential manner. The main characteristic of these DNNs
is that they include recurrent connections, this is, the information does not only go in
the forward direction, as in an MLP or a common CNN. The information in certain
layers is fed to a previous state, so that the final prediction made by the network is
done within the context of a sequence of observations it has been fed. A schematic
representation of an RNN is shown in Figure 2.3.

Similarly, the complexity of effective recurrent architectures [57] makes their
manual design a complex job to carry out.

2.1.2 DNN weight optimization procedure

The primary source of the modeling power of DNNs, their depth, makes the appli-
cation of traditional weight optimization techniques, such as linear least squares,
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Fig. 2.3: Schematic representation of a minimalist RNN of a single layer, in which
the output of the network is redirected to the neurons in the hidden layer.

unfeasible. Because of this, and despite the development of other strategies with the
same goal providing competitive results, DNN weight optimization is commonly
achieved using backpropagation [73]. As can be seen in the explanation of the MLP
in the previous section, the operations performed by each layer of the MLP can be
formulated as a function, and all of them are derivable. Measuring the quality of a
DNN at a given task is commonly achieved by employing a loss function over the
final product of the DNN (the sequential application of the functions described by
the layers in the network), which is also derivable.

Basically, the backpropagation algorithm consists of applying the derivative
chain rule multiple times, once per layer in a DNN. This way, the gradients of all
the weights in the DNN with respect to its input can be computed, and employed
in multiple ways, a common choice being the gradient descent (GD) algorithm, and
variations of it.

The case for CNNs and RNNs is similar to that of the MLP. The kernels in a
CNN are also basic derivable operations, and therefore, capable of being trained (i.e.,
getting its weights optimized) using the backpropagation technique. RNNs can also
be trained via backpropagation, although the methodology varies slightly. The RNN
has to be unfolded several times, simulating a set of identical DNNs, where the previ-
ously recurrent connection now connects two adjacent DNNs. This way, a RNN can
be interpreted as a feedforward DNN, a requirement for applying backpropagation.

Taking into account the large number of parameters that DNNs usually have, the
more examples (in the data) available to train them, the better their performance is.
This, in turn, poses the problem of a high computational demand when computing
the gradients for the predictions of a DNN to the examples of a database. Because of
this, instead of using a standard version of the GD algorithm, stochastic GD (SGD)
is commonly used. This technique consists of sampling subsets of examples from the
database, and performing a GD step exclusively taking into account the gradients for
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these examples. This process is repeated, iterating over the whole dataset so that all
examples are shown to the model at some point. Several variants of SGD have been
developed with multiple inspirations, such as adaptive estimation of first-order and
second-order moments (Adam) [64], or weight-exclusive regularization (Adagrad)
[29].

2.1.3 Muti-network models and areas of application

Although the main source of popularity for DNNs comes from the usage of CNNs for
image-related prediction tasks -primarily classification and segmentation-, they also
have excelled in other areas. A great example of a research field recently conquered
by DNNs is that of generative modeling. Although restricted Boltzmann machines
were invented back in the last century, it was not until recently that DNN-based
models, VAEs [65] and especially GANs [49], proved to be a significant improve-
ment over previous generative models. Both of these models are composed of two
sub-DNNs which fulfill different complementary roles in their corresponding frame-
works. Not only have DNNs been able to provide excellent results when it comes
to data generation, but they can also serve as a basis for a state-of-the-art evaluation
metric for generative models: the Fréchet inception distance (FID) [54].

Another area to which DNNs have been applied is that of multi-task learning
(MTL) [13]. Taking advantage of the capacity of DNNs to work with large pieces of
data, several approaches that attempt to use the same DNN to solve multiple separate
problems have been presented recently [134]. When these problems are related in
some way, e.g., classifying images of characters from two separate alphabets, it is
argued that the initial layers of the DNN can perform the same task of extracting the
low-level features (i.e., edges) indistinctively for both tasks. Next, the inner layers are
assigned the task of recognizing the characters starting from the prebuilt features. The
advantages of using a single DNN to model different databases are twofold. Firstly,
the reduction of computational effort, as a single model is faster to train than multiple
models. Secondly, it is argued that the tasks regularize each other, as a model cannot
overfit a single of the multiple problems it is modeling, thus making it stronger in
terms of generalization capabilities.

Moreover, the moldability of DNNs allows them to create different branches of
layers, where each branch can be seen as a subnetwork fitted within a larger model,
giving each of them the capability to make a prediction for separate tasks, simul-
taneously. This way, not only can a DNN perform similar tasks (as in the previous
example, classifying images from DBs with similar characteristics), but it also can
perform different types of predictions about them (e.g., classifying images of cars
according to their brand and, at the same time, predicting their horsepower).

In the case of these more complex models, apart from the architecture itself,
there are more components (which will be covered in due course throughout the
dissertation) that need to be fixed before starting the learning phase. We refer to all
the necessary model design choices as the structure of the model.
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2.1.4 Neural architecture search

Most of the extensions to DNNs that make them so powerful in any domain they
perform come at the cost of increasingly complex architectures. Simple models de-
signed for performing a single prediction task are becoming increasingly complex.
This effect is more sharply suffered by models which are inherently complex, such as
MTL or GANs. While automatically devising DNN architectures has been an interest
of the DNN community for a very long time [114], it has currently become a norm
when it comes to achieving improvements over the best known architectures. The
fact that in the last decade significant advances have been made on computer hard-
ware, particularly in graphic processing units, has meant that the interest in these
neural architecture search (NAS) algorithms has increased. Despite these improve-
ments, computational complexity is still one of the main concerns of practitioners, as
the improvements in hardware are usually followed by increases in the complexity
of the newly proposed models.

The approaches at the NAS problem have been multiple and diverse. Local
searches, methods which can keep the number of evaluations within reasonable mar-
gins, have served as a basis for different techniques. Differentiable approaches, such
as reinforcement learning-based [138], or straight-up gradient descent [36] have also
been successful. Recently, other kinds of local searches have also reported compet-
itive results. Hill climbing (HC) approaches, which rely on the application of oper-
ators that modify the architecture, have also resulted in state-of-the-art outcomes in
image classification tasks [129]. By adequately defining the search space, and be-
cause of the existence of multiple architectures which can provide top results, and
how these are distributed within the search space, these methods can be effective
while keeping the number of evaluations low.

However, it has been another operator-based search type which has attracted the
most research volume, evolutionary algorithms (EA).

2.1.5 Optimization and evolutionary algorithms

EAs [32] are based on the natural evolution of species. The first phase of a common
EA consists of a set of random individuals, called a population, being evaluated.
Each individual, x, represents a solution to a given problem, f , and its fitness is es-
timated according to how good that solution is to the problem, f(x). As in natural
evolution, the fittest ones survive, and are eligible for the next population. Mimicking
the mechanisms of nature to advance the evolution of species, an EA makes use of
different kinds of methods to alter the individuals (or generate new ones altogether)
strong enough for advancing to the following population. These modifications, of
which a popular example are mutation operators in genetic algorithms, affect the fit-
ness of the individual towards the problem. A positively modified individual is likely
to continue to the next population, while one that received a negative modification is
not. This way, the population advances by having increasingly stronger individuals,
the best of which is considered the outcome of the whole process.
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2.1.5.1 Multi-objective optimization

A multi-objective problem can be defined as the optimization of a vector of func-
tions f(x) = (f1(x), ..., fm(x)), where x = (x1, ..., xn), m is the number of
objective functions and n is the number of decision variables. Assuming a mini-
mization problem, an objective vector f(x) dominates a vector f(y), if and only if
∀i ∈ {1, ...,m}, fi(x) ≤ fi(y) ∧ ∃i ∈ {1, ...,m} : fi(x) < fi(y). A vector f(x) is
non-dominated if there is no f(y) that dominates f(x). If f(x) is non-dominated, x
is Pareto optimal. The set of Pareto optimal solutions is the Pareto set (PS), and the
projection of these solutions in the objective space is the Pareto front (PF) [22].

2.1.6 Neuroevolution

The search space for DNN architectures has been explored by different variations of
EAs a significant amount of times, to the point that these approaches have been cate-
gorized in a research subfield of their own, neuroevolution (NE) [91]. Moreover, EAs
have been automating the structural search of neural networks for over two decades,
which has produced a wide range of approaches, each with their own particularities.

One key aspect of NE algorithms is the codification of the individuals. In neu-
roevolution, codification can be one of direct or indirect [129]. A direct codification
implies that the individual in the EA contains the DNN itself, that it needs no process
before being evaluated. Indirectly encoding DNNs in an individual consists of evolv-
ing a more abstract representation of the DNN, a representation which needs some
kind of preprocess before it can be evaluated. For example, an individual limited
to specifying the weight initialization function would need a decoding phase before
being evaluated. In this example, this phase would consist of using the function to
initialize the weights and training them (e.g., by using backpropagation).

Initially, with the more simple neural networks, direct encoding was the easier
and more effective method to design individuals. However, as complexity increases,
this strategy has become more and more difficult to carry out, and indirect encoding
has become the preferred choice. One key aspect that is commonly left out when
indirectly encoding individuals are the weights of the network, which are required to
be computed before evaluating the DNN. One way to do so, is to randomly initialize
and train them using backpropagation, which is the main reason for the costly nature
of NE algorithms.

The traditional approach to NE commonly considers relatively low-parametrized
networks both regarding the number of layers and the amount of neurons in them.
However, as the hardware supporting DNNs has advanced, these methods have
shifted from performing low level modifications, e.g., the addition of one neuron
or connection [115], to more complex operations, such as the concatenation of full
neural cells to the DNN [84]. This second kind of evolution has proven competitive
against hand-crafted structures, and is the most popular approach considering the
amount of recent work devoted to it. Currently, these two scopes of variation oper-
ators are known as macro (altering the general structure of the neural model) and
micro (modifications limited to the small cells) searches [129].
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Analysis of the transferability and robustness of
evolved GANs

3.1 Introduction

Learning how to generate data samples that resemble real ones can be convenient for
many real-world scenarios; for example, to avoid violating privacy and confidential-
ity of certain data when this is released [117], or when there are not enough training
instances for a ML procedure [5]. In this context, DNN based generative models
[48, 72] have shown good results, and proved their usefulness. As it has been stated
in the previous chapter, among other aspects, the number of hidden layers (or depth
of the DNNs) has proved to be key in enhancing the performance of DNN models in
different domains, such as complex image analysis problems [52, 68], or generative
modeling [49].

In the last few years, several efforts for automatically designing the structure of
DNNs have been devoted, particularly using EAs [78, 82, 91, 116]. Most of these
works focused on evolving CNNs [68]. In most of these approaches, the object of
evolution is the set of hyperparameters of the network, e.g., the activation functions,
or the layer/kernel size. Sometimes, the weights themselves are included in the evo-
lutionary procedure, whereas the loss functions, generally used to train the model, are
hardly ever included. Despite the success EAs have had in this area, they are a costly
approach, as they manage populations of DNNs. Each of these DNNs has to be eval-
uated, and this commonly involves training networks. Therefore, agility and transfer-
ability are two key aspects to take into account when designing NE algorithms. This
is especially true for multi-network models, as the size of the search space increases
with each DNN added to the model. GANs [49] are one popular instance of multi-
network models which have arisen as one of the top performing DNN-based gener-
ative models. Their impressive results have garnered them great popularity, mainly
in the area of realistic image generation [105]. Despite being highly regarded be-
cause of the quality of their generations, GANs are not flawless. The first issue to
address when using GANs is to design an adequate structure for the model. This
design implies making a number of architectural choices similar to those present in
other DNNs (e.g., the number of hidden layers for the networks composing a GAN:
the discriminator (D) and the generator (G), the activation functions, etc.).
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Other aspects of the model structure, such as the training methodology, also need
to be properly designed. For a training procedure that suits a given model structure,
D and G may need having their respective parameters updated with a different fre-
quency [124]. This synchronization parameter must also be optimized. Furthermore,
as it has been shown in recent works [6, 98], loss function alternatives that optimize
different criteria can be more effective than the traditional GAN training loss func-
tion. In domains where this choice is not clear, the selection of the loss function is
another aspect to be optimized.

An inharmonious relation between the model structure, the synchronization pol-
icy, and the loss function could lead to poor results, such as a non-converging sce-
nario, or a generator with some sort of malfunction (e.g., being unable to reproduce
the whole original distribution; an effect known as mode collapsing [15]). We com-
prise all the mentioned components which affect the performance of a GAN (from
the architecture of the network to the loss function and the update frequency) into
the GAN structure term.

Designing GAN structures is not a trivial task because of the many choices to be
made. In consequence, we resort to a NE algorithm to avoid the necessity of manually
designing GAN structures capable of generating realistic samples while evading the
mode collapsing problem. As it has been stated before, the success achieved by NE
algorithms comes at the expense of expensive hardware being busy for long periods
of time, due to the high computational demands of this kind of algorithms. In order
to palliate this drawback, we propose a multi-objective approach, looking for a good
trade-off between performance and complexity. Additionally, evolving GANs which
can be trained and tested faster also results in a more agile NE process.

We recognize that the problem of designing an adequate structure for generating
data with certain characteristics can be considerably eased by reducing the number
of choices to be made; those being any of the activation or initialization functions,
number of neurons in a hidden layer, etc. We theorize that the decisions made for
GAN design in this problem can be extrapolated to others. This would ease future
GAN designs in any problem domain.

With this premise in mind, we perform an a posteriori analysis of the GANs
evolved by the NE algorithm with two main goals. First, to test to what extent the
results obtained are transferable between problems. Secondly, assuming that the first
hypothesis is fulfilled, to detect characteristics frequently found in the best perform-
ing GANs. This would reduce the difficulty of the GAN design problem, regardless
of whether it is manual or automatic, by reducing the number of choices to those
chosen by the NE algorithm.

In our genetic algorithm (GA) based NE approach, GANs are indirectly encoded
by means of lists that describe the parameters that define the generator, the discrim-
inator, and the training procedure. This allows an easier application of the genetic
operators, at the expense of not taking advantage of previously learned weights.
Most importantly, this approach does not include the number of inputs and outputs
of the GAN, which depends on the data. Therefore, a network structure that has been
evolved for a specific data distribution can be tested on a different problem. This
allows the evaluation of the transferability of the evolved structures across problems
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and dimensions, determining the level of generalization of the described methodol-
ogy.

We use the problem of approximating the Pareto set (PS) of bi-objective functions
as a testbed to investigate a number of issues relevant to GANs. First, this enables
us to evaluate the quality of a GAN, unbiased and automatically, at generating data
points. This is achieved by computing a distance in the objective space between the
approximated and the original points known to be in the PS, i.e., a distance between
the Pareto front (PF) [22] and the approximation made by the GAN. This results in a
computing resource-saving move, as usually the number of objectives is significantly
lower than the number of decision variables. Secondly, we link the GAN problem of
mode collapsing with the question of producing a homogeneous covering of the PF.
In this chapter, we initially make the assumption that a high quality covering of a
PF implies a GAN generator capable of generating an accurate and well-distributed
PS approximation. We test the veracity of this assumption later in the experimental
section.

In summary, it can be said that, in this chapter, a two-level PS approximation
is made. First, in order to assess the quality of a GAN, the PS approximation pro-
vided by the model is compared to the real PS. Secondly, the EA which optimizes
the GANs also takes advantage of PS approximations balancing complexity and ac-
curacy of the GANs.

Finally, the level of transferability of the evolved GANs is tested in three different
levels, the last of which consists of a completely different problem domain to the first
two. For the first level, GANs evolved for certain PS approximation problems are
tested with different problems from the same suite, whereas the second level does
so for problems with a larger number of decision variables. For the third level, the
generalization capabilities of the structures are tested in another problem domain, the
Gaussian mixture approximation problem [89, 123].

This chapter presents the following contributions: 1) We introduce a NE algo-
rithm for the fast evolution of highly-flexible GAN structures. 2) We propose the
usage of the PS approximation problem as a testbed for evaluating the approxima-
tion capacity of GAN structures. To that end, a metric applied to the projection in the
objective space of the approximation made by the GANs is employed. 3) We show
that the proposed NE method is scalable, and leads to the fast evolution of robust and
accurate generators. 4) We show that the evolved structures exhibit some level of
transferability between both PS approximation problem scales and domains, and to
a different domain; in this case, the Gaussian mixture approximation problem. 5) We
analyze the results of the NE algorithm and assemble a collection of good practices
to be followed when designing GANs.

The chapter is organized as follows: We introduce the GAN model and its main
components in Section 3.2. The elements of a GAN that can be subject to modifica-
tion are detailed in Section 3.3, where the representation and the evolutionary oper-
ators used to evolve GANs are also introduced. Pareto front approximations and the
metrics used to evaluate GANs are presented in Section 3.4. Section 3.5 describes the
Gaussian mixture approximation problem. Work related to ours is described in Sec-
tion 3.6. The experiments and analysis that validate the NE approach are described
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in Section 3.7. The conclusions extracted from the experiments, and some topics for
future research are presented in Section 3.8.

3.2 Generative adversarial networks

A GAN [49] model, as following its original description, is composed of two net-
works; a generator G and a discriminator D. The goal of the generator is to create
samples that look as similar as possible to examples from the available data, in an
effort to fool the discriminator. At the same time, the discriminator tries to correctly
discern the examples found in the original data from the samples produced by the
generator. A schematic representation of the GAN structure is shown in Figure 3.1.

z

G
Fake

Sample

Data
Real

Sample

D

p(x = Real)

Loss + SGD +
Backpropagation

Fig. 3.1: Schematic representation of GAN. The generator network G receives a
random noise input for transforming it into a sample as similar as possible to the
real ones. The discriminator receives samples both from the original dataset and the
generator and attempts to distinguish them apart. Finally, the weights are updated
in both networks depending on the ability of the discriminator. Examples correctly
classified affect the weights in the generator, whereas the misclassified ones serve
for improving the discriminator.

The domain in which the GAN is going to be applied can determine the choice of
the DNN architecture type. For example, when used for generating realistic images,
convolutional and transposed convolutional layers are applied in the discriminator
and the generator respectively. For general domains, MLP architectures can be used.

The weights of the generator are denoted by θg , and the generator’s distribution
over data X as pg . z stands for the input random noise sampled from a latent variable
that G receives. This leads to the generated samples, x̂. Formally, G(z, θg)→ x̂.
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Similarly, the discriminator parameters are represented with θd. The discrimina-
tor can receive as input true x or fake samples x̂ and it outputs probability values
indicating how likely the samples are to be observations of the original data.

Equation 3.1 captures these two opposing goals:

argmin
θG

max
θD

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))]
(3.1)

where Ex∼pdata(x) and Ez∼pz(z) represent, respectively, the expectations with re-
spect to the original data distribution pdata and the latent variable distribution pz(z)
[49].

A successful training of the model would result in the fake samples created by
the generator resembling real ones.

This generative adversarial approach is just one example of how a GAN can be
trained, but it could be a sub-optimal approach. The authors of [98] show that the
principle on which GANs are based can be generalized to arbitrary f-divergences
[95]. Statistical divergences are functions used to estimate how dissimilar two distri-
butions are, of which one of the most widely known instances is the Kullback-Leibler
divergence measure (KL).

The original GAN loss function, presented in Equation 3.1, corresponds, in fact,
to the approximation of the Jensen-Shannon divergence [49]. However, it is possi-
ble to make other choices in terms of divergence functions within the general GAN
scheme, each one determining one particular way to estimate the dissimilarity be-
tween fake and true samples. In [98], the authors derive different divergence metrics
for GANs, each having its own properties, which could make them more appropriate
for different domains. The authors show that, when the generative scheme is mis-
specified and does not contain the true distribution, the divergence function used for
estimation has a strong influence on the model being learned. Therefore, we consider
the divergence metric itself to be an optimizable element of the NE algorithm.

3.2.1 GAN drawbacks

The distribution of real-world data is usually within a multimodal space, where re-
gions with a higher probability than others exist. An ideal generator should perfectly
reproduce this distribution, avoiding the omission of areas with lower probability.
However, GANs tend to be unsuccessful in this matter [108]. One of the main goals
of our method for GAN evolution is to guide the NE search towards models which
evade this issue, known as mode-collapsing.

A simplistic example of mode collapsing can be visualized in Figure 3.2. In it,
we can observe a true distribution with two prominent modes, represented with a
continuous blue line, and two approximations. The first approximation, the one rep-
resented with an dashed orange line, would represent an approximation collapsed
to a mode. Mode collapsing affects particularly to GANs because the discriminator
cannot afford to classify as fake all observations in the primary mode (x = 0), as it
would discard many original observations. Generators realize this circumstance, and
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take the shortcut of learning the most prominent mode of the whole distribution. The
dotted green line represents a more accurate approximation compared to the orange
one, as it captures both modes of the data.
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Fig. 3.2: Mode collapsing example.

Depending on several factors (e.g., network structures, problem domain, com-
plexity of the variable distribution to be captured, etc.), the GAN could benefit from
training one of the two networks more often than the other. However, setting the
frequency in which θD and θG should be updated in advance is not trivial. In this
chapter, we add one loop parameter to G and D which indicates the number of times
that θD and θG are updated in each training iteration. If the loop parameter is 2 for
D and 3 for G, θD will be updated twice in each iteration, whereas θG will be up-
dated three times. This extra parameterization allows the exploration of more flexible
training schemes.

In this chapter, both networks in the GAN are based on the MLP architecture,
because of its great flexibility in terms of modeling capabilities. In contrast to other
types of neural networks (e.g., CNNs), the common MLP has a single type of layer
(fully connected layers), and the model does not make assumptions about particular
dependencies between the variables. In other networks like CNNs, convolutional op-
erations are commonly applied under the assumption of spatial dependency between
variables. The employment of the MLP architecture results in two main advantages.
First, it is able to deal with the PF and Gaussian mixture approximation problems
without constraints or assumptions about the dependencies between their variables.
Secondly, it results an easy GAN codification scheme, which helps the NE algorithm
when exploring a large variety of GAN structures. Nevertheless, the methodology
developed in this chapter can also be adapted and applied to other architectures, such
as CNNs, when the problem so requires.

GAN training is performed with the common approach of using a combination of
backpropagation and stochastic gradient descent, which makes use of a loss function.
All the experimental parts of this dissertation make use of the Adam gradient descent
algorithm [64] with an initial step size of 10−4.
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3.3 Evolving GANs

In this section we introduce the approach designed for evolving GANs and provide
details on its implementation. Among the GAN components, we consider:

1. Structures of the generator (G) and the discriminator (D). This includes, for each
of them:
a) Number and size (amount of neurons) of the hidden layers.
b) Activation function to be applied after each layer.
c) Weight initialization function for each layer.

2. The probability distribution the latent variable follows.
3. G and D update frequencies.
4. Divergence measures used to train the model.

The NE approach is able to vary these four components. The gradient optimiza-
tion scheme and the global parameters (e.g., batch size, or learning rate) of the learn-
ing process were not included in the evolutionary procedure to maintain fairness
across the different combinations. For example, given the relatively reduced training
(1, 000 epochs) the models receive in our method, a model trained with a smaller
initial step size (or batch size, for that matter) would be at a clear disadvantage.

The maximum values for layer size, number of hidden layers and loop are param-
eters of the algorithm (in this case, 50 and 10, and 5, respectively). We allow layers
of the same network to be activated by different functions (7 possibilities in total), as
well as to be randomly initialized by three different distributions. Eight different di-
vergence measures [7, 49, 98] were used as possible loss functions. Table 3.1 shows
the assignment possibilities for the evolvable components of GANs.

Latent-var Activation function Loss function Weights-init
Uniform Identity Standard Divergence Xavier
Normal ReLU Forward KL Normal

Elu Reverse KL Uniform
Softplus Pearson χ2

Softsign Squared Hellinger
Sigmoid Least squares
Tanh Modified standard

Wasserstein

Table 3.1: Assignments options for the GAN components modifiable by the NE al-
gorithm.

As we can see, there are several decisions to be made before training the model,
and for each of these decisions, several options are available. An exhaustive search is
not feasible for this problem, given its large dimensionality. Even though intelligent
searches pose themselves as a great candidate to deal with this issue, the problem
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would be alleviated by bounding the search to certain promising areas known to
contain good GAN configurations.

The GA proposed in this chapter for evolving GANs uses a list-based encoding
and employs genetic operators that operate over these lists. Each network included
in a GAN is encoded by one list of parameters, which contains the description of the
layers and loop parameter. Each GAN requires, in addition, a set of model param-
eters MGAN

1, which comprises the loss function and the prior distribution. When
an individual is evaluated, the GAN is constructed from scratch according to the
description, and trained from weights randomly initialized depending on the initial-
ization function of each layer as the starting point. Finally, using a certain fitness
function, its quality is estimated.

3.3.1 Operators and algorithm design

The GA designed for evolving GAN structures uses a crossover and a mutation op-
erator. Given two parents P 1 = (G1, D1,M1

GAN ) and P 2 = (G2, D2,M2
GAN ),

the crossover operator creates two offspring O1 = (G1, D2,M1
GAN ), and O2 =

(G2, D1,M2
GAN ). This operator preserves the integrity of M1

GAN , M2
GAN , G1, G2,

D1, and D2.
The mutation operator consists of the application of one randomly chosen func-

tion among these eight possibilities:

• layer change: randomly change the amount of neurons in a random layer of one
random network (G or D) of a GAN.

• del layer: delete a random hidden layer from a random network of a GAN (in
case it has more than one).

• activ change: reassign the activation function applied after a random layer from a
random network of a GAN.

• weight change: reassign the function used to initialize the weights in a random
layer of a random network of a GAN.

• add layer: add a layer (with random size, activation and initialization function) in
a random location of a random network of a GAN.

• latent change: change the distribution from which the noise for G is sampled.
• loss change: randomly reassign the divergence measure used as the loss function

for training the GAN.
• D-G loops: randomly reassign the amount of updates a random network of a

GAN receives in one training iteration.

Algorithm 3.1 displays the NE method employed in pseudocode form.
The network structures were constructed using the tensorflow library [1].

The DEAP library [37] was used to develop the NE strategy that operates over the
developed GAN code.

1 Aquı́ antes estaba θGAN , pero para no mezclar pesos de discriminador o generador θd, θg ,
le he puesto M.
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1 Set t⇐ 0. Create a population D0 by generating N random GAN configurations.
2 do
3 Evaluate Dt using the fitness function.

4 From Dt, select a population DS
t of K ≤ N solutions according to a selection

method.
5 Create the offspring set Ot by applying genetic crossover to DS

t with probability
px or apply mutation to Ot with probability pm = 1− px.

6 Create Dt+1 by selecting the best N solutions in {Dt, Ot}.
7 t⇐ t+ 1
8 until Termination criteria are met.

Alg. 3.1: GAN evolving GA

3.4 Pareto Set approximation

In addition to the issues a designer has to face when composing a GAN, we have to
add the often difficult task of evaluating the data generated by these models. As an
example, in the image generation domain (an area in which GANs thrive), deciding
how realistic and diverse the generated images are is not straightforward. Thus, we
propose a benchmark problem for which we can automatically and unbiasedly eval-
uate whether generated samples are realistic and diverse: multi-objective problems.

3.4.1 Multi-objective approach

The benchmark of multi-objective problems introduced in [76] consists of a set of
continuous optimization test problems with prescribed PSs (nine total problems, F1-
F9). Each problem is composed of a set of objective functions, which evaluate deci-
sion variables, and another function from which points known to be in the PS can be
sampled.

In Figure 3.3, an example of the main attributes of a given problem (in this
case F5) is shown. Figure 3.3a displays values of the three first decision variables
(x1, x2, x3) of points known to be in the PS, whereas Figure 3.3b shows the pro-
jection of these points in the objective space (in blue), along with other randomly
generated points (in orange).

From the 9 multi-objective functions introduced in [76], 8 were used for our
experiments. We excluded F6 to avoid introducing noise into our analysis, as it has
three objectives, while the rest of the functions have only two.

GANs are trained to sample PS approximations using data points uniformly sam-
pled from the PS functions. After training has been completed, the PS samples pro-
duced by the GAN generator are evaluated using the bi-objective function. These
evaluations, which are the projections of the decision vectors to the objective space,
are considered a PF approximation. The proximity of the real PF and the approxima-
tions provided by the GANs is used as a metric for measuring the quality of a given
GAN.
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Fig. 3.3: First three decision variables of points known to be in the PS of F5 (left).
Comparison of these variables in the objective space, i.e., the PF, to random gener-
ated decision variables (right).

3.4.2 Quality measure

The inverted generational distance (IGD) [23], which measures the distance between
each point r in the reference PF (R) and the closest point a in the PF approxima-
tion (A), is the chosen metric. IGD measures how close A is from R, while it also
measures how dispersedly distributed A is. Its formal definition follows:

IGD =
1

|R|

(∑
r∈R

mina∈Ad(r, a)
p

) 1
p

(3.2)

As can be observed, for a PF approximation A to obtain a low IGD value when
contrasted with a reference PF R, each point in R should have a similar point in
A. Thus, using the IGD as a metric for the EA makes the algorithm penalize GANs
which fall into the two categories that we wish to avoid, that is, those models whose
approximations are not similar enough to real data, and those which produce col-
lapsed approximations.

The ability to objectively and automatically measure the dispersity of the samples
generated by a GAN is one of the keys of this approach. To implement a similar
approach in, say, the picture generation field, one would need to rely on indirect
metrics which do not necessarily reflect reality, such as the Inception Distance [108]
or Fréchet Inception Distance [54].

The IGD is a variation of another metric, the generational distance (GD). GD
computes the summation of the distances between every point in the approximation
and the closest point in the real PF. It is formally defined as:
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GD =
1

|A|

(∑
a∈A

minr∈Rd(a, r)
p

) 1
p

(3.3)

For both cases, we use p = 2 and

d(x, y) =

(
m∑
k=1

(xk − yk)2
) 1

2

(3.4)

While the IGD can be exploited to determine how well distributed the PF ap-
proximation is, it does not take into account the generated points that lie far from the
PF, as it only considers the points closest to the real PF. GD covers this deficiency,
as it takes into account each and every generated point, although it does not consider
how distributed the generation is. This makes the two distances complementary.

GANs are trained to generate points in the decision space, while the models are
evaluated by the projection of their samples in the objective space. On the one hand,
this simplifies the computation of the fitness function for a given GAN, as the number
of decision variables is commonly much larger than the number of objectives in a
multi-objective problem (MOP). On the other hand, we have to assume that a good
covering of the reference PF by the projection on the objective space of the points
generated by a GAN implies high quality and specially diversity in the generated
points. This is not, however, guaranteed, as several points close to each other in the
decision space could potentially produce distributed PFs. This issue is analyzed in
the experiments section.

3.5 Gaussian Mixture approximation

The Gaussian mixture approximation problem [89] consists of generating a set of
points x from a mixture of Gaussian distributions x ∼ N (µ, σ), where µ =
{µ0, µ1, ...µm−1} is a vector of means and σ is the unique variance parameter.
This problem is especially designed to detect mode collapsing GANs, as mod-
els suffering from this deficiency easily learn to generate points from a subset of
the m modes. In this case, the chosen specification is the 2D 8-mode variant; in
which m = 8, and µi = (µ0

i , µ
1
i ). The two components of each µn can be in-

terpreted as coordinates in a 2D grid. A visualization of the distribution of x is
found in Figure 3.4a. It shows the 8 distribution centers (with σ = 0.05) describ-
ing a circle: µ0 = (0,−1), µ1 = (−

√
2,−
√
2), µ2 = (−1, 0), µ3 = (−

√
2,
√
2),

µ4 = (
√
2,−
√
2), µ5 = (1, 0), µ6 = (

√
2,
√
2), µ7 = (0, 1).

After being trained, a generative model is sampled aiming to reproduce the target
distribution. However, not all models are able to do so, producing results as shown
in Figure 3.4b. In this example, a very reduced number of points have been gener-
ated where two distribution modes were placed, and some other points far from the
original means have also been sampled.
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Fig. 3.4: 8-mode, 2D Gaussian mixture problem target and approximation examples.

In order to numerically test the quality of a set of samples (and thus, the quality
of the generative model), the Maximum Mean Discrepancy2 [50] (MMD) has been
chosen. This metric gives a numeric value representing the difference between two
distributions.

3.6 Related work

Even though the application of NE algorithms in multiple areas has already been
extensively researched [9, 79, 87, 91, 92, 115, 116], GANs have not particularly
benefited from these methods until very recently. Additionally, these techniques have
been near-exclusive to CNNs. We cover this recent literature (along with some other
work related to ours) of approaches which could benefit from the study performed in
this chapter. Some work carried out on knowledge transferability are also included.

3.6.1 GAN development

In [123], an evolutionary approach, E-GAN, is proposed, in which the antagonistic
nature of the GANs is exploited in a different and interesting way. It does not con-
sider the discriminator network as part of the evolutionary process (e.g., an evolvable
component within each individual), but it contemplates a single discriminator dur-
ing the whole evolutionary procedure (against which all generators are tested) as the
environment the generators need to adapt to.
2 Available in https://github.com/tensorflow/models/blob/master/
research/domain_adaptation/domain_separation/losses.py

https://github.com/tensorflow/models/blob/master/research/domain_adaptation/domain_separation/losses.py
https://github.com/tensorflow/models/blob/master/research/domain_adaptation/domain_separation/losses.py
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The mentioned work addresses two relevant questions. The first one is the con-
sideration of different loss functions for training the networks as a part of the evolu-
tionary algorithm. The second one is related to the mode collapsing issue; the authors
add a regularization term, proportional to the confidence with which the discrimina-
tor rejects fake samples. This term is reflected in the fitness value of the generators,
which are penalized when the samples they generate are limited to a small region of
the data.

Even though both the work presented in [123] and ours pursue similar objectives
(obtaining generators that avoid the mode collapsing issue), the two approaches dif-
fer from the very core of the methodology. Developing a single discriminator over
the whole evolutionary process allows all efforts (genetic operators and selection)
to be focused on generators, which produces a more in-depth search in this aspect.
However, this approach lacks exploitation of the mutual dependency of the gener-
ator and the discriminator, which is key in the GAN framework. Additionally, the
structures of the networks are fixed beforehand. Genetic mutation consists of weight
training iterations applied according to one of three different loss functions. In con-
trast, our approach evolves GAN networks by pairs, boosting different learning dy-
namics. Furthermore, our proposal integrates a second objective during evolution,
which benefits shorter elapsed times of training and inference, indirectly penalizing
structural complexity.

In [2], the authors propose Lipizzaner, an approach based on the diversity en-
hancing method of spatial evolution [93]. In this case, two separate populations of
generators and discriminators are evolved on a grid structure. For evaluation, each el-
ement is tested against its counterpart in the other grid, as well as its neighbors. This
results in an efficient manner of implementing a co-evolutionary approach. This par-
ticular method relies exclusively on the Wasserstein loss function, and describes two
different mutation operators; a gradient based one (applying an iteration of learning
using a minibatch), and a gradient-free option (modifying the learning rate). The fact
that the genetic operators cannot modify the structure of the networks prevents the
algorithm from exploiting this key feature of the GANs.

The two mentioned works, E-GAN and Lipizzaner, are combined in [121] to
form Mustangs, adding the three different mutation operators used in E-GAN to Lip-
izzaner. In this case, MLP networks are also considered (for evolving GANs that deal
with the MNIST [75] problem). This enhances the latter by adding the loss function
component to the evolutionary process. However, the structures remain fixed during
the whole procedure.

A co-evolution framework in which generators and discriminators are evolved in
isolated populations is proposed in [24]. They are, however, combined when eval-
uating the different individuals of both populations; the generators in the current
population are tested against the two best performing discriminators of the previous
generation, and vice-versa. This work also fails to take full advantage of the depen-
dencies between G and D during evolution.

The authors of [88] develop a variation of the genetic algorithm presented in [42],
where a very unbalanced problem is tackled. The best found GANs are maintained
to take part in the crossover step (thus keeping elite components which are always
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present in all populations), and GAN generations belonging to the less represented
class of training data are added for future generations.

A completely different approach to the one introduced above is presented in [18],
where the samples themselves are evolved in order to maximize the learning of the
GAN model in each step.

Some works that rely on populations of discriminators [31, 97], generators [56]
or both [59, 120, 126] have also been developed, although these do not follow an
evolutionary approach to the design of GANs.

Another interesting approach implemented in [47]. The proposed concept is, in
some manner, similar to E-GAN, as the algorithm focuses on the generator. However,
in this case, discriminator structures are also developed, although these developments
to the discriminator are fixed beforehand and are not part of the automatic design.

Finally, the authors of [63] propose initializing the search for GAN design with
shallow GANs, which are trained with very-low resolution version of the original
images. As the networks within the GAN are gradually deepened, the resolution of
the images is increased, demanding the improved models to solve a more complex
task. The authors claim that the increase in performance compared to regular GAN
training comes as a result of the healthier competition between G and D.

All the evolutionary proposals mentioned in this section start from randomly
initialized individuals which, although it allows a wide exploration of the search
space, results in several very costly evaluations until an acceptable convergence point
is reached. By adjusting the initial individuals to patterns known to be beneficial in
the design of GANs, the authors of [63] could be largely more efficient. Furthermore,
it is theorized that constraining the NE exploration to reduced areas can produce
results as good (if not better) than not doing so [129]. Additionally, all GANs are
evaluated, which not only includes the training of the structures, but also computation
of the fitness function. This can also significantly increase in the total elapsed time.

3

3.6.2 Transferability

Recent work [25, 66, 94, 138] on DNNs has increasingly emphasized the importance
of model transferability across problem domains as an efficient way to reduce the
time-consuming problem of network design.

The authors of [138] use NAS for developing CNN cells (small groups of oper-
ations common in CNNs) employing the CIFAR-10 [67] database. These cells are
then applied to more complex structures in order to learn a deeper CNN intended for
a considerably larger database, ImageNet [28]. This proposal provided in state-of-
the-art results for both problems.

In [25], the inverse version of the transferability problem is studied, as the au-
thors employ a DNN model with high performance in a large-scale domain, in a
simpler problem with weight fine-tuning as adjustment. The authors, as expected,

3 Aquı́ habı́a una referencia (larga) a network morphism, pero la he quitado para que no salga
hasta el capı́tulo 6, que es donde se usa
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found high correlation between domain similarity and transferability levels. A sim-
ilar conclusion was reached in [66]. In this study, the hypothesis that assumes high
generalization of DNN models which offer good performance in ImageNet is tested.
Despite the fact that fine-tuned models were able to generalize, the authors comple-
mented their findings stating that the features learned by the models, specifically for
ImageNet, did not show a high level of transferability.

The research presented by [94] shows that lottery ticket initializations, an ap-
proach that searches and identifies small sparsified networks with appropriate initial-
izations, can generalize across a variety of datasets in the image domain. This is a
promising approach which could eventually be applied to the GAN search performed
in this chapter.

3.7 Experiments

A set of experiments has been designed in order to answer the following questions:

1. Determine the ability of the proposed NE algorithm to evolve GANs whose ap-
proximation accuracy improves as generations advance.

2. Study the scalability of the algorithm when increasing the number of decision
variables.

3. Ascertain whether the evolved GANs are robust enough to consistently outper-
form non-evolved ones.

4. Determine whether optimizing the IGD between PFs is an adequate choice
for obtaining generators that accurately generate diverse samples in the feature
space.

5. Investigate the transferability of the structures in different directions: problem
dimensions, across bi-objective functions, and across problem domains.

6. Identify and discuss frequent patterns in the GAN configurations that provided
the best results in the different GAN evolution procedures.

Gradually improving structures that are able to consistently produce accurate
approximations is the baseline challenge that the evolutionary process has to fulfill.
We consider the scalability and the transferability of the algorithm to be relevant.
First, because MOPs with a large number of variables are hardly ever addressed
in the literature. Second, because being able to obtain GAN structures evolved in
a domain under certain characteristics, which can offer consistent performances in
other domain specifications or areas would result in large computational resource
savings. Finally, by analyzing patterns in evolved GANs, we can identify structure
choices that result in strong-performing GANs, which can be used for simplifying
structural designs, regardless of this being manual or automatic.

3.7.1 Experimental framework

The functions used in the experimental framework have their own particularities [76].
The formulas for generating PS points and evaluation functions for F1 contain ex-
ponential functions. F2, F3, F4, F5, and F9 contain sinusoidal functions in both
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formulas (additionally, the PS point generation formulas for F3, F4 and F5 are
piecewise continuous functions). Finally, the formulas for generating PS points for
F7 and F8 contain exponential functions, whereas the objective function formulas
are defined by sinusoidal functions.

Thirty executions of Algorithm 3.1 are run for each function, in a bi-objective op-
timization variant. One of the objectives of the NE algorithm is to minimize the IGD
metric between the samples generated by the GAN and a test set of PF points. The
other objective pursues minimizing the time required for both training and sampling,
aiming at reducing structural complexity in the GANs and accelerating the conver-
gence of the algorithm. The GA is run for problem sizes n = 10 and n = 7844.

The population size is set to N = 100 and the number of generations to ngen =
100. These hyperparameters are the same for n = 10 and n = 784, as the parameter
range of the GANs does not vary between different problem sizes, thereby keeping
the search space equal. The Pareto-dominance based selection scheme of NSGA-II
[27] was used.

Once the NE process has concluded, we extract the best performing structures in
terms of IGD (thus ignoring the secondary objective of elapsed time reduction) and
examine the performance of these best GANs using different metrics. Additionally,
we analyze the characteristics of fully evolved GANs searching for patterns that
could ease the design of future structures.

In all train-sample routines for a given GAN, 1.000 points are sampled from the
known PS to train the GAN, and another 1.000 points are sampled from the model.
From the latter, the non-dominated points are selected to compute the IGD metric
against a new set of points sampled from the known PS.

3.7.2 GAN evolution

Figure 3.5 shows the objective values for the best GANs found in terms of IGD value,
for each run of the algorithm, in different generations: 0, 20, 40, 60, 80, and 100. The
two boxplots on the top show the IGD values (in logarithmic scale) of the mentioned
GANs, whereas the two figures on the bottom display the time spent for training and
running those same GANs. The two figures on the left present data for GANs trained
with n = 10, whereas the two figures on the right are relative to n = 784.

As can be seen in the top figures, those showing the IGD values, the proposed
approach is able to effectively evolve network structures that gradually improve the
approximation of the known PF. This reduction achieves near-zero values for func-
tion F1. In some cases, convergence was reached considerably early in the evolution.
The functions in which GANs obtained the lowest IGD values (F1, F3, F4, and F5,
those that contain exponential, or sinusoidal and piecewise functions) only experi-
enced minor improvements once the 20th generation was surpassed. On the other
hand, functions that seem to be harder to approximate (those with sinusoidal and
exponential components in the formulas; F2, F7, F8, and F9) appear to continue

4 This choice n = 784 was motivated by the MNIST classification problem, as the images
have 28× 28 = 784 pixels.
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Fig. 3.5: Objective values for the best GANs (regarding IGD in logarithmic scale) in
different generations: 0, 20, 40, 60, 80, 100, for n = 10 and n = 784.
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improving until, at least, the 80th generation, and show a larger variance. Regarding
the IGD values obtained, we can clearly perceive different approximation difficulty
tiers for the approach presented, corresponding to the function characteristics men-
tioned earlier. F1 is clearly the simplest one, as GANs reach near-zero IGD values.
Next, for F3, F4, and F5, the models are able to capture the PS distribution quite
accurately. F2 and F9 PS formulas are slightly more difficult to approximate by the
GANs, whereas F7 and F8 describe significantly more complex distributions.

Considering the differences between the runs for n = 10 and n = 784, we ob-
serve that, as expected, both IGD values and elapsed time increase with the problem
dimension.

Specifically, F7 appears to lie on the verge between difficulty tiers. With n = 10,
the IGD values reached by the initial GANs seem close to those achieved with F8,
whereas the evolved GANs are able to produce IGD values in a similar range to F2
or F9. With n = 784, however, F7 clearly falls into the hardest tier.

Regarding the time consumption objective, we observe a significant decrease in
the elapsed time, which facilitates a rapid evolution. The increased number of pa-
rameters (n = 784) results in slower GANs, which gives the NE algorithm more
room for improvement in that aspect. This shows that the NE algorithm learns to
adapt to different scenarios and seizes potential gains wherever it finds them. We
observe some instability in the execution times required by the GANs producing
the best IGDs, especially with n = 784. This reflects the increase in the difficulty
of the problem as the trade-off between simplicity and quality causes the best IGD
generating GANs to become more complex as generations elapse. The considerable
reduction in the time consumption by the GANs further validates the bi-objective ap-
proach. Especially when facing complex problems, such as with n = 784, it achieves
time consumption reductions ranging from moderate (e.g., for functions F1 or F2,
were the average time found in the last generation ranged between 38% and 10% of
that found in the first generation) to astounding (e.g., F7, F8, F9, where the elapsed
times were reduced to a range between 7% and 23% in the last generation compared
to the first one). Anyway, in general, the generated structures result in faster models
that are able to generate more accurate samples with lower variance in the metric
used for fitness evaluation during evolution.

To present a graphical representation of the PS approximation problem, we pro-
vide Figure 3.6. We have selected two functions, F7 and F8 (n = 10). From the
30 runs performed for each one, we selected one run from each, randomly. Sam-
ples from the GAN which produced the best approximation in terms of IGD score
at the end of the execution of the chosen run are displayed in the figure. The line in
blue represents the original PF, while the red points are the samples produced by the
GAN. The first number in the lower part of the figure is the IGD value obtained when
comparing the samples obtained from the GAN to the original PF, while the second
one shows the number of non-dominated points in the set of sampled solutions. One
can clearly observe that the approximation for F7 is better, as most of the points
lie closer to the PF, compared to its F8 counterpart. More specifically, the number
of points in the PF defined from the F7 approximation triples the amount of solu-
tions in the PF generated from the F8 approximation (145 to 45). Furthermore, the
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F7 approximation describes a full covering of the PF, whereas the F8 one does not
cover the PF section with low values for f1. This is where the IGD value increases
the most. The fact that the approximation for F8 contains many points which are far
from the optimal section does not directly impact the metric.
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Fig. 3.6: Two PF approximation examples with n = 10 in both cases. The line
formed by the blue points shows the true PF, and the approximation made by the
GAN is represented in red. The x and y axis represent the values achieved in each
objective functions by the best approximation found in two random runs for F7 (left)
and F8 (right).

3.7.3 Robustness of the IGD-based approach

In the evolutionary process analyzed in the preceding section we made the choice of
evaluating GANs only once, so as to keep our procedure agile. We now test whether
the apparent success of the algorithm is a result of a random weight initialization
that conveniently suits the loss function and the network structure, or if the structural
evolution is indeed effective and consistent. With that goal, we select the best GANs
found during each of the 30 runs (in terms of achieved IGD) and use them to generate
solutions 15 times. Next, the generated samples are evaluated with the correspond-
ing bi-objective functions, and used to compute the IGD metric. We follow the same
strategy with a GAN structure randomly chosen from the first population of each
run. The results can be observed in Figure 3.7, which shows, for each function (in
the y axis) and each problem dimension, a histogram displaying the frequency of the
generated IGD values (x axis, in logarithmic scale). IGD values computed from the
solutions generated by the evolved GANs are represented with orange lines, whereas
the results of the random GANs are shown in solid blue blocks. At a quick glance,
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one can see significant differences between the fully evolved GANs and the random
ones for all functions, as IGD values resulted from samples by evolved GANs mainly
stack near values that random GANs cannot produce at all. For F8 and n = 784, re-
sults are closer than for other instances, showing the difficulty of this particular con-
figuration of the problem. These results are corroborated in all cases by the Wilcoxon
signed-rank test [130], which tests the difference of the population mean ranks, by
producing near-zero p-values for each of the comparisons. This fact further confirms
the proposed algorithm as well as it increases the validity of the analysis performed
later, as the evolved GANs are significantly better and more stable than random ones.
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Fig. 3.7: Histograms showing the 30 GANs × 15 runs = 450 IGD values (in log-
arithmic scale, the lower, the better) computed for each function (y axis), for the
two problem dimensions (x axis). Solid orange lines describe results obtained by a
random GAN, whereas the blue contour display the results obtained by the evolved
GANs.

3.7.4 IGD metric in the objective space

Intuitively, the usage of the IGD metric as a fitness function for the NE algorithm
prevents evolved GANs from indirectly falling for one of their main flaws, mode
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collapsing. However, this metric might not be the optimal one to evolve GANs using
the PS approximation problem. That is, a sparse distribution of the solutions in the
objective space does not guarantee the same sparsity in the feature space, which is
where GANs operate, and vice-versa. Therefore, using the IGD in the objective space
(as used until now, and referred to as IGDo from now on) could be masking a possible
issue of GANs generating solutions from a reduced area in the feature space. Even
though we regard this scenario as unlikely, we consider two other metrics that could
help determining whether the IGDo is an appropriate choice for this problem: The
GD metric in the objective space (GDo), and the IGD metric in the feature space
(IGDx) [109].

We select the best GAN found in each run for each function in terms of IGDo,
and a random GAN structure from the initial population, and train and sample each
one 15 times. These samples are measured using the three metrics proposed. From
all 8 functions employed in this experiment, we choose two representative ones (con-
sidering their characteristics and the results discussed earlier) to be displayed in this
section, in order to avoid excessively extensive content: F7 and F8 with n = 10.
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Fig. 3.8: Scatter plots showing the IGDo, IGDx and GDo obtained by the best GANs
for F7 and F8.

The two plots in Figure 3.8 show one point for each run of each GAN. The best
GANs found in the different evolutionary processes are represented with blue dots,
while orange ones stand for runs of random GANs. All three metrics denote better
performances the closer they are to zero. As can be seen in both figures, by optimiz-
ing IGDo, the algorithm also optimizes the other two metrics to a large degree.

Because the increased difficulty at approximating PS solutions, the points dis-
played in the figure related to F8 are considerably more informative in terms of
possible weaknesses of the approach. The approximation difficulty makes it harder
for the samples of GANs to reach low IGDo values, and therefore the benefits of
evolving structures are much more apparent. In general, a random GAN hardly ever
produces solutions in the area where most of the results of the evolved ones collapse
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(points near 0 values for all metrics, in the lower left corners). Additionally, random
GANs produce many poor quality results (sparse points across the whole subfigures),
whereas evolved models are able to refrain themselves from doing so. Results for the
rest of the functions can be found in Annex A. With this information, we can label
the usage of the IGDo as an effective fitness function for GAN evolution in our
particular approach.

3.7.5 Transferability of the evolved GANs in the PF approximation problem

One of the main questions regarding the proposed algorithm is its capacity of gener-
alization, i.e., how much of the performance of an evolved structure (and, in general,
of the knowledge generated in the process) can be transferred to another problem ver-
sion, or a different problem altogether. Ideally, a transferable GAN structure should
successfully learn to generate diverse distributions by learning different combina-
tions of its weights. Here, we test to what extent this hypothesis holds.

This transferability study of the structures evolved by the NE algorithm consists
of: i) GAN structures evolved using data points from Fi are trained for sampling
points from Fj , ∀j 6= i, and ii) GAN structures evolved using problems of dimension
n = 10 are used to learn the distribution of other problems of size n = 784.

For each function, the 30 structures that obtained the lowest IGDo values in each
execution of the GA were selected and used for learning PS approximations for all
the functions and the different n. We measure the quality of the approximations using
the IGDo metric. To take into consideration the variability introduced by the random
weight initialization, 5 different repetitions of the learning step were performed.

The two plots included in Figure 3.9 show the transferability of GANs evolved
using a certain function (x axis) to a target function (y axis). These figures show a
circumference for each combination. The size of the circle and the number written
inside them represent the mean IGDo value for all the 30 GANs× 5 repetitions =
150 IGDo values generated, while the color represents the logarithm of the variance.
Additionally, those functions for which a GAN trained on a different function out-
performs the GAN specifically trained for that function are highlighted with a black
circle. For example, the GANs evolved with F1 (exponential functions) obtained
better results than the GANs evolved with F3 (sinusoidal functions), when tested on
F3. We determine a set of IGDo values to be better than another one if the Wilcoxon
signed-rank test produces a p-value lower than 0.05.

Regarding the transferability between two functions for n = 10 (top figure), we
observe that highly transferable structures have been evolved. For example, struc-
tures evolved for F1, F2, F3, and F9 have significantly outperformed structures
evolved for other functions in those same functions at least three times. At the same
time, these same structures have been outperformed three times by other structures
in approximating their own functions. This instability comes as a product of the great
performance of GANs in functions they have not seen during evolution. Additionally,
F4 stands out as a very solid evolving function, as its structures have outperformed
five other sets of structures at approximating their own functions while matching
results in the other three, and not being outperformed even once.
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Fig. 3.9: Transferability of the best GANs over different problem dimensions and
functions. Origin function refers to the function (n = 10 for both figures) with which
GANs were evolved. Target function displays the function (n = 10 in the top figure,
and n = 784 in the bottom one) on which the GAN is used to learn an approximation
of the PS. The printed number and the circle sizes represent the IGDo mean of all
the runs, while the color represents the variance. If an ellipse is displayed around a
circle, the difference between IGDo values achieved by the GAN evolved with the
origin F, in the target function were significantly lower than the ones achieved by the
GAN evolved with the target function.
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With respect to the comparisons between structures evolved using different prob-
lem sizes, we observe a varied scenario. Different GANs obtained mean IGDo values
lower than 0.32 for F1, F3, F4, and F5, which shows a remarkable generalization
capacity. For F2 and F9, and especially F7 and F8, however, this was not the case.
Results regarding transferability of GANs evolved with n = 784 can be found in
the Annex A. As could have been expected, transferability between problems which
present a similar challenge to the GANs is more fluid than between problems of vary-
ing difficulty. However, the amount of times that GANs evolved with one function
Fi performed better than other GANs evolved for Fj (i 6= j) when tested with Fj,
allows us to safely state that transferability is fairly high in this case.

3.7.6 Transferability across problems

After having observed the transferability between problems of the same suite, where
the formulas generating the points have some components in common, we test the
evolved structures on another problem which has no relation at all, the 8-mode 2D
Gaussian mixture approximation problem. To this end, we again select the structures
which generated the lowest IGDo values in all 30 runs for all 8 problems. Next,
similarly to the previous transferability test, all GANs are trained (with 1,000 points
and during 10,000 epochs instead of 1,000) and sampled to generate a new set of
1,000 points. Finally, the MMD between the newly generated set and a test set of
the target distribution is computed. This process is run five times for each evolved
structure. This same procedure is also applied to random structures of the initial
populations, in order to put the results of the effect of evolution into perspective.

Figure 3.10a shows the cumulative histogram of the MMD values obtained by
the best structures for each function and their random counterpart, in logarithmic
scale. Each line represents 30 runs×5 repetitions = 150 learning procedures. The
profound differences between the solid lines (those representing the evolved net-
works) and the dashed ones (the random structures) demonstrate the transferability
of the evolved GANs, as they obtained significantly lower MMD values compared
to the random structures. Figure 3.10b shows the best approximation observed from
all GANs (a network evolved with the F5 function), which obtained a MMD value
of 0.025. Excluding a reduced number of samples generated between modes (small
densities shown in Figure 3.10b between the eight Gaussian distributions), the rep-
resentation is fairly accurate and, most importantly, balanced.

Additionally, to test the consistency of both the random and the evolved struc-
tures, we have computed the means and the variances of the 5-repetition sets of all
combinations. In this case, all functions are grouped together. Results are displayed
in Figure 3.11.

This figure shows, in this case for all functions combined and for GANs evolved
with variable sizes of n = 10, the relation between the mean and the variances
generated by the 5-repetition sets, in logarithmic scale (some random points which
produced very large variance values were reduced to 2 in order to improve the ex-
pressiveness of the figure). As can be clearly seen, the top performing structures are
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Fig. 3.10: Results of the transferability between problems experiments.
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Fig. 3.11: Plot showing the distribution of the variances and the means of the 5-
repetition sets. Marginal distributions are also shown.

the evolved ones, both in quality and consistency, while several random GANs pro-
duced significantly worse results. However, it is true that certain overlap between
the evolved and random GANs can be observed. This comes as no surprise, as the
evolved networks have never been exposed to the problem being treated in this sce-
nario. As a summary, the results from this experiment not only further endorses the
previous claim of high transferability, but it takes it to the next level, as now the
transferability between problems has also been tested.

Results regarding these two aspects (the frequency of the MMD values and the
relation between the mean and the variance) of the structures evolved with variables
of size n = 784 are available in Annex A.

3.7.7 Good practices when designing GANs

By making the assumption that the GANs present in the last generation of the evolu-
tionary process are composed of some of the best components available in the search
space, and knowing about the high transferability of these, we can extract patterns
that can be used as guidelines when manually designing GANs, or guiding a fu-
ture intelligent search. With that goal in mind, we have computed the frequency in
which each component is present in the top-performing GANs. This information is
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displayed in Figure 3.12, which is composed of four different heatmaps. It contains
information related to the two aforementioned representative functions (F7 and F8),
for five specific components: Figure 3.12a shows the prior probability distribution
and the loss functions employed to train the GANs. Figure 3.12b shows the number
of networks with a certain number of hidden layers (the number of neurons in each
layer and the loop parameter, the other parameters with the strongest effect in the
runtime of the model, follow a similar pattern and are therefore omitted), whereas
Figure 3.12c contains the frequency of the functions used to initialize the neuron
weights. Finally, Figure 3.12d is related to activation functions. More detailed infor-
mation about the frequency of the different components in the evolved GANs can be
found in the Annex A.

Observing the information on the left-hand side of Figure 3.12a, it is indisputable
that the best GANs make use of the random uniform distribution for the latent rep-
resentation of the data. Even though that distribution can, at least intuitively, be less
expressive, one possible reason for this highly balanced result is that the random uni-
form distribution helps to provide diversity to the GAN generations. The right-hand
side of the figure displays the frequency of appearance of the different loss functions
used in the GANs. In this regard, we can establish the KL loss functions as the top
performing one overall, as they are remarkably present in any function and problem
size. Other functions, such as Squared Hellinger and Pearson’s χ2 appear to be viable
alternatives as well.

Judging by Figure 3.12b, we observe that most networks are relatively shallow.
In most cases, less than three hidden layers have been enough to approximate the
data. The number of neurons in the hidden layer (to a lesser extent) and the loop
parameter describe a similar pattern towards reduced values. Interestingly, the results
with n = 784 are considerably similar for F7 and F8, whereas F8 required deeper
networks with n = 10 as opposed to F7. We hypothesize that the time-reduction
objective had a strong impact on the evolutionary process and favored networks with
fewer parameters, which are faster to train.

Regarding the figure representing the initialization functions, Figure 3.12c shows
clear differences between the difficulty tiers we defined in the IGDo evolution anal-
ysis. For F7, initializing the networks using the uniform random distribution can,
in most cases, be the correct alternative. For F8, Xavier initialization is consistently
present for any network, especially for the discriminator with n = 10, and can be
seen as the conservative choice.

Focusing on the activation functions (Figure 3.12d), we first perceive the notable
number of identity functions present. This is probably due to the time reduction ob-
jective, as a network without activation functions is faster to sample, and especially
to train. Therefore, we hypothesize that the NE algorithm converges to networks with
one single layer with an activation function, accompanied by more linear transfor-
mations. This leads up to the interesting theory that a single activation function is
enough to capture non-linear features of the data. Softsign, and Tanh functions are
included in both networks for both functions, while ReLU and eLU are also frequent
choices for F7 and F8 respectively.
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(a) Latent and loss functions.
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(d) Activation functions.
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4855 156 543 65 691 127 847
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Fig. 3.12: Different characteristics present in the GANs evolved in the last popula-
tions of all 30 runs. The x axis represents the different choices for each component,
and the numbers and colors represent the appearance frequency on the GANs (the
lighter, the more frequent). Colors maintain consistency within subfigures, with the
exception of Figure 3.12a, where the color palette is independent for the left and
right-hand sides of the subplot.
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Overall, we can conclude that, a good starting point for designing a GAN would
include the following considerations:

• Uniform random distribution as the prior distribution.
• KL loss functions are generally good choices to train the models.
• Shallow networks provide enough modeling power in most cases, however,

depth can be a solution when the given problem is too difficult.
• Weight initialization is highly dependent on the problem, but random uniform or

Xavier functions offer better performance.
• For any network, one single non-linearly activated layer is able to capture the

non-linearities of the data. The rest of the layers can have an identity activation
function.

• Softsign and tanh functions are generally a good choice.

3.8 Conclusions

In this chapter we have performed an extensive analysis of an evolutionary approach
for optimizing GAN structures. The problem of PS approximation has been proposed
as a convenient benchmark for evaluating the quality, in terms of accuracy and di-
versity, of the generative capacity of GANs. Furthermore, the evolutionary algorithm
also pursued a secondary objective, reducing the computational time. This results in
an effective and rapid procedure that is able to produce flexible and fast structures.
Additionally, this feature have produced interesting insights about the (lack of) ne-
cessity of depth and non-linear activation functions in each layer in GAN networks,
at least for the considered problems.

We have shown that the fast method for evaluating the GAN candidates in the
different generations is enough to determine whether a candidate is promising or not,
as the evolved structures were able to consistently outperform random structures.

We have also confirmed that using IGD, a metric that only takes into account the
quality of the approximation in the objective space, is capable of developing other
interesting characteristics: such as the lack of the generation of poor solutions and
the diversity in the feature space.

Moreover, with the aim of testing the robustness and generalization ability of
the evolved GANs, we have made rigorous insights into the study of transferability,
showing promising levels of generalization at three different degrees: Different con-
figurations for the same problem, different problems from the same suite, and most
notably, between entirely different problems. This suggests that the usage of the PF
approximation problem is a good starting point for evolving GANs despite the mod-
els having an entirely different ultimate purpose. In addition, we have observed a set
of regularities among the fully evolved GANs, which implies that some of the GAN
components work well with each other. This knowledge can be exploited in different
manners to improve future GAN structures. For example, one could simply initialize
a GAN with the components appearing more frequently within the mature GANs of
the NE procedure proposed in this chapter. Crucially, the fact that the evolved GANs
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have been able to show strong performances in different problems makes the evolu-
tionary information of these NE runs applicable to potentially any other domain.

Although useful for understanding what makes a GAN structure effective, the
methodology presented in this chapter exploits a key domain specific characteristic
of the PS approximation benchmark: The IGD metric. This kind of metric is not
available for the wide series of tasks GANs are used for, which causes the transition
from this domain to others to be non-trivial. Any field that includes an automatically
computable evaluation metric, is susceptible of benefiting from the GAN evolution
method proposed in this chapter.

The generalization capacity, combined with the algorithm agility, displays the
potential of application of this framework in different areas. For example, designing
models used to guide population-based optimization algorithms. This is covered in
the following chapter.

Once the application of NAS techniques to the GAN domain has been studied,
the next step consists of extending the methods to make NAS more efficient to a more
general search space. One in which models with different goals (and even multiple
goals at the same time) can be developed. In this sense, the efforts of the Part II of
this dissertation are devoted to define and explore a search space with these charac-
teristics.



4

Exploitation of Neuroevolutionary Information for
NAS efficiency gains

4.1 Introduction

In the previous chapter, we introduced a successful NE approach to evolve GANs
for generating Pareto set (PS) approximations. After that, the evolved GANs then
proved to be able to generalize to other problems of similar and even different do-
mains, which suggests that the evolved structures are highly transferable. Addition-
ally, it has also been observed that some GAN defining components (e.g., the weight
initialization function or number of neurons in a layer) are more frequent than others
in fully evolved GANs, which could mean that these components are more adequate
for GANs than others. However, we regard dependencies between these components
being the real reason behind strong performances of GANs as the more likely sce-
nario. Based on this hypothesis, this chapter presents a step forward in the analysis
of these patterns.

More specifically, we first record the characteristics of the best GANs found dur-
ing the evolutionary searches described and analyzed in the previous chapter. By
modeling the best found configurations, it is possible to determine the attributes
desired in top performing GANs, which would be useful at the time of creating
new DNNs (e.g., when initializing individuals for NE algorithms or when aiming
for structures with a component combination which could lead to efficient learning
without any structural optimization). Additionally, if the metamodel were able to
recognize GAN specifications which are unlikely to deliver good results after being
trained, multiple unproductive training iterations could be avoided in future GAN
NAS runs. This would lessen the computationally costly nature of NE algorithms
(at least) when used to evolve GANs, which is one of the main drawbacks of these
algorithms [129].

We consider probabilistic graphical models (PGM) [103] an appropriate tool to
model the patterns described by the dependencies within the components of the top
performing GAN structures.

The chapter is organized as follows: In Section 4.2, we introduce the proposed
approach. Once the proposal is presented, its validity and generalization capacities
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are tested in Section 4.3. Finally, the most relevant conclusions are summarized in
Section 4.4.

4.2 BN-assisted NAS

For a correct operation of a DNN, the dependencies between the different compo-
nents composing the model need to be addressed. This is especially applicable to
GANs, since they are commonly composed of two DNNs, which increases the num-
ber of choices to be made when designing them. In this chapter, as in the previous
one, the DNNs in a GAN are characterized by the number of layers of each DNN
and the specification of these (e.g., their activation and weight initialization func-
tions, their number of neurons in MLPs, the number of filters and their sizes and
strides for CNNs, etc.), as well as the frequency the two networks are trained with.
Other global parameters, such as the distribution followed by the noise fed to the
discriminator or the loss function used to train the model are also considered com-
ponents of a GAN. In this work we have chosen PGMs, and particularly Bayesian
networks [14] to model the dependencies between the GAN components described
in the patterns, because three main characteristics. First, they are naturally modular
so that complex dependency structures can be described and handled by a careful
combination of simple elements. Secondly, they are visually representative, which
can help to understand the decision making process [71]. Finally, there are different
ways of introducing expert knowledge into the model.

4.2.1 Bayesian networks

Bayesian networks are probabilistic graphical models that are used to represent
sets of variables, together with their (in)dependencies, by means of directed acyclic
graphs (DAG) [103, 104]. In addition to the graphical structure, a set of parameters
represents the values of the marginal and conditional probabilities represented by the
graph. Each node of the DAG represents a variable, and the (non) existence of an arc
between two nodes represents the (in)dependency between them. When the graph
structure of a BN is given by an expert, only the parameters are learned from the
data. If that is not the case, the structure can be learned using the available data.

Therefore, the automatic learning of a BN consists of two phases: i) devising the
topology of the network, i.e., which connections should and should not exist, and ii)
learning the conditional or marginal probabilities of each variable [70].

In this chapter, we use BNs to codify the probabilistic relationship between the
components used to construct the GAN, e.g., activation functions, size of the layers,
or weight initialization procedures. Once the BN has been learned from the data
gathered during the evolution of different DNNs, we will perform inference, looking
for the most probable (promising) configurations, or calculating the probability given
by the BN to a particular set of DNN characteristics.
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Fig. 4.1: Graphical representation of the metamodel. This visualization assumes that
the generator and the discriminator are codified within a single individual. If the
DNNs were evolved separately, a single submodel per DNN per depth would be
required. The example BN graphs do not represent a realistic scenario in terms of
number of nodes. An example of a BN submodel learned for the metamodel can be
seen in Figure 4.2. l and m represents the maximum number of hidden layers in the
discriminator and generator, respectively. The cn represent the different components
in a GAN.

4.2.2 Metamodel choice

Most current NAS algorithms allow the architectural optimization of DNNs of vary-
ing depth, and the more layers in a DNN, the longer the list of components required
to characterize it. This leads to DNN characteristic vectors being of variable size.
Unfortunately, dealing with a variable number of features is not straightforward for
a BN model. Because of this, we have chosen to design a two-level metamodel. The
first level, the supermodel, represents the number of layers of the generator and the
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Fig. 4.2: Submodel example. In this case, for the sake of simplicity, only one network
of two layers is represented (composed of the number of neurons, the activation
function, and the weight initialization function). Two other key components of a
GAN, the distribution of the latent variable and the loss function used to train the
model are also included.

discriminator. Next, in the second level, one BN is learned for each DNN depth. In
cases where the GAN is considered as a sole entity, one submodel is learned per
each depth combination of the two networks. If, conversely, the structure of the gen-
erators and discriminators are optimized independently, a single BN per depth per
network is required. Figure 4.1 shows a graphical representation of the metamodel,
while Figure 4.2 represents an example of the learned submodels.

In this work, after a preliminary experimentation, we decided to employ the
ARACNE [86] algorithm -an extension to the Chow-Liu algorithm [20]- to learn the
structure of the BN, as it provides a good trade-off between complexity and efficacy.1

4.3 Experiments

The experiments carried out in this chapter are divided into three parts. In the first
one, isolated from any structural search method, the capacities of the approach to
sample and discriminate GAN structures by their quality are tested. After that prelim-
inary experiment, the ability of the metamodel to sample high quality GAN structures
that can, among other things, serve as a starting point for other structural searches
-one of its main goals- is also tested. In the third and final one, the second main goal
of the approach is tested: its capacity to guide a future structural search. Two differ-
ent problems have been used for the experiments in order to show the applicability
of the approach.
1 The BN related implementation is based on the bnlearn R library [110].



4.3 Experiments 51

4.3.1 GAN choice

In all cases, the metamodel is nurtured with sets of GAN structures extracted from
previous NE runs. We now define three sets which are used throughout this experi-
mental section. The first set, First, consists of the n best performing individuals
(GAN structures) of each run in the ranking ordered by the chosen quality metric,
e.g., the fitness value. The second one, Second, is composed of the n second best
individuals, that is, from the n+1− th to the 2n− th. Finally, the Random set con-
tains n randomly generated individuals, e.g., from the initial population. The First
set will be used to learn the metamodel in all cases, the Second set will help test its
generalization capacity, and the Random set acts as a control set.

4.3.2 Preliminary experiments

First, we aim at demonstrating the capability of the metamodel to perform the fol-
lowing two tasks:

• Discriminate structures by their potential at describing effective GANs.
• Sample GAN structures poised to be used as efficient GAN definitions.

To that end, we base this set of preliminary experiments on the information
saved from the NE runs in the previous chapter. Overall, for this part, there are
8 functions × 2 problem sizes × 30 runs = 480 runs. The functions from the
suite defined in [76] being used in this work are F1, F2, F3, F4, F5, F7, F8, and
F92. To select the GANs forming the three sets, only the IGD objective was taken
into account. The time reduction objective was ignored.

4.3.2.1 Structure and representation choices

The GAN components represented in the metamodel consist of those described in
Section 3.3 of the previous chapter.

Whereas the cardinality of the sets of possible values that most components can
take is relatively reduced -the largest number of choices belonging to the loss func-
tion component with a total of eight-, the number of neurons in a layer varies between
one and fifty. This results in a large metamodel complexity increase, as different
probability tables might have to be computed for each of these values. We consider
that this would not add much value to the metamodel, and therefore decided to dis-
cretize these values in such a way that intervals of 10 values are represented by the
first value of that interval (e.g., the “30” symbol represents layers with [30,40) neu-
rons). This way, instead of having 50 possible values, only 5 have to be modeled. Of
course, other decision could be taken without loss of generality. When sampling a
new GAN, the obtained value will have a random number between 0 and 10 added
to compensate the “loss of value precission”.

2 Remember that F6 was not used in the previous chapter because of it having three objec-
tives rather than two, as the rest of functions.
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Additionally, in order to avoid mixing continuous and discrete values, we have
also chosen to contemplate as discrete the other two values which could be consid-
ered continuous: the number of hidden layers, and the training frequency.

In this particular case, we use the best five (n = 5) individuals from each run.
Because 480 runs are available, the metamodel is learned using a total of 480× 5 =
2, 400 GAN specifications.

The DNNs within the GANs available in the NE runs are evolved together and
they have a maximum of 11 hidden layers and a minimum of one, resulting in 121
possible combinations. A preliminary analysis of these structures showed that more
than 75% of the MLP-GANs in First were combinations of generators of a depth
up to 3 layers, and discriminators with no more hidden layers than 4. Therefore, in
order to reduce the complexity of the model built, we decided to limit the GANs to
these 3 × 4 = 12 of the total 11 × 11 = 121 depth variants and rebuild the three
previously described GAN sets.

4.3.2.2 GAN Likelihood

First, the capacity of the metamodel to distinguish between GAN structures with a
higher chance of providing good quality results is tested.
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Fig. 4.3: Probabilities (in logarithmic scale) provided by the metamodel to GANs
present in the three defined sets.

After training the metamodel using the GAN structures in First, we compare
the probability assigned by the metamodel to GANs from that same set, and the
Second, and Random sets. If the probability values provided by the metamodel
to GANs from the First and Second set are similar, and the values between
Second and Random are different, we can determine that the model is good at both
generalizing to unseen high performing structures and discerning structures likely to
result in poor sampling GANs.

Figure 4.3 shows three boxplots (one per generator depth) in which the probabil-
ities (in the y axis in logarithmic scale) assigned by the metamodel to the GANs of
each set are displayed. The x axis represents the depth of the Discriminator. As can
be seen, the metamodel assigns similar probability values to GANs in First and
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Second, although slightly higher ones to the GANs in First. At the same time, it
is able to discern GANs from Random by assigning them considerably lower prob-
abilities.

The apparent differences between the probability sets are confirmed by the
Kruskal-Wallis statistical test [69], which provided a maximum p-value of ∼ 10−27

for the 3gen. × 4disc. depths = 12 different combinations tested. The Dunn sta-
tistical test [30] confirmed that all pair-wise comparisons (including those involving
probabilities assigned to First and Second) were different, as the maximum p-
value found for the 12comb. × 3pairs = 36pairs tested was ∼ 0.04. However,
the differences on the p-values provided by the Dunn test varied greatly depending
on the pairs being compared. Between the First and Second sets, the p-values
ranged from ∼ 0.04 to ∼ 3 × 10−26, whereas comparing any of these two sets to
Random yields p-values between ∼ 10−16 and ∼ 10−161. This shows that the gap
between the probabilities of the First and Second set GANs is much narrower
than that between any of these sets to the Random set.

4.3.2.3 Sample generation capacities

Secondly, to assess the sampling capacities of the proposed metamodel, we first de-
fine two variations of the First and Random sets. Firsttrain is a restricted version
of First which, instead of including structures from all 480 runs, only those runs
involving 5 of the 8 total functions (F1, F2, F3, F4, and F7) were considered, totaling
300 runs. Randomtrain is populated similarly, but with n random GANs instead of
the best found ones. The selection of the functions in each set has been performed
according to the function similarity criterion deduced in [40], also observable in the
formulas available in the original work [76]. This way, we simulate a scenario in
which the metamodel is learned from data coming from problems similar to those
which are going to be dealt with later, while these last ones remain unseen to the
model. We regard this scenario as the typical application of the methodology, since,
considering the amount of NE procedures carried out in the literature, it is highly
likely to find problems which have been dealt with using NE and that are close to the
target. Further inclusion of problem characterization into the metamodel to achieve
even greater results is left as future work.

A new metamodel is learned using Firsttrain, before being sampled 100 times.
The sampling is achieved by using probabilistic logic sampling [53], a method that
samples variables following their ancestral order. These samples conform the Sam-
pled set. Another 100 GANs are randomly chosen from Firsttrain and Randomtrain. All
these structures are trained to reproduce Pareto set approximations of the functions
that have remained isolated from this procedure (F5, F8, and F9), for both variable
sizes. The obtained IGD values between the solutions sampled from all these GAN
structures and the real PF in the different problems are displayed in Figure 4.4.

As can be observed in the figure, the results vary depending on the function on
which the test is performed, and are consistent through problem size. Regarding F5,
the functions for which the lower IGD values were recorded, the sampled GANs
performed surprisingly well, clearly outperforming the random GANs, and arguably
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Fig. 4.4: IGD values obtained by GANs in the Firsttrain set, GANs sampled from the
metamodel, and GANs from the Randomtrain set.

performing better than the GANs chosen from Firsttrain. This is not the case for the
more difficult function F8, for which the best GANs yielded the best results, and
the random GANs offered similar results to the sampled ones. The experiment per-
formed using F9 was not able to discern which one was the best approach between
the best and the sampled GANs, while both of these sets clearly outperformed the
random GANs. The Kruskal-Wallis test reported significant differences in all 6 trios
of IGDs. The Dunn test produced p-values under 3 × 10−7 for all pairwise com-
parisons for F5 except when comparing the First and Sampled GANs with 10
variables, where the p-value was 0.12. This means that, in the worst cases, the sam-
pled GANs performed as well as the best ones, if not better. The random ones did not
offer competitive results. For F8, comparisons between random and sampled GANs
yielded p-values of 0.36 and 0.96 for 10 and 784 variables respectively, whereas all
other comparisons resulted in p-values smaller than 0.002. In this case, the sampled
GANs did not offer better results than random ones, and both sets of GANs were one
step below the best GANs. Finally, for F9, the comparison between best and sampled
GANs showed no clear differences (p-values of ∼ 0.2), while the other comparisons
resulted in p-values below 5× 10−8. Similar conclusions to the ones extracted from
F5 can be deduced in this case.

As a general conclusion of this analysis, we could say that, in terms of the IGD,
(the metric that was minimized during the evolution of the GANs in First) the sam-
pled GANs sometimes offer worse results than random GANs would (F8 with 784
variables). However, in most cases, the sampled GANs offer a similar performance
to GANs in First (F9, or F8 with 10 variables), if not better (F5). Interestingly, a
small selection of random structures was able to provide a similar performance to the
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more sophisticated ones, which indicates that efficient learning procedures can also
be carried out even when the GAN structure is randomly constructed.

4.3.3 Metamodel for improving GAN structural searches

In the previous section, the ability of generating good-performing GANs from the
proposed metamodel has been shown, away from a NAS environment. Now, that ca-
pacity is tested in a NE setting, one of the two main goals of the proposed approach.
With that goal in mind, we propose different ways of initializing individuals in other
NE algorithms applied to a completely different problem. For this purpose, we de-
sign a GAN structural search for the 2D 8 and 25-Gaussian approximation problems
[89], which is specifically formulated to expose mode collapsing GANs. Thus, we
set a reduced version of the evolutionary process proposed in the previous chapter,
consisting of populations of 20 individuals and 20 generations. Three versions of the
NE algorithm are run, the difference between them being the way the initial popula-
tion is created. As in the previous section, the First, Sampled, and Random sets
are defined, although this time no runs are left out when learning the metamodel (pre-
viously the runs corresponding to three functions were excluded in order to test its
generalization capabilities). 30 runs of each evolutionary run were performed. Fig-
ure 4.5 shows the per generation evolution of the best GAN in terms of Maximum
Mean Discrepancy (MMD) [50], the fitness function used to evaluate the quality of
the generations of a GAN (the second objective of the bi-objective evolutionary pro-
cess being the minimization of the elapsed time during training and sampling the
GANs). The MMD improvements for 2 dimensions × 3 initializations = 6 run
types are shown.

As can be seen in the figure, the evolutionary runs with the non-random initial-
ization have a large advantage in the initial stages of the evolution, as could have
been expected. Even though it is true that the randomly initialized runs experience
larger gains over the course of the procedure compared to the other two algorithms,
it cannot outperform them. Something similar can be said about the runs initialized
by the GANs in First and Sampled, as the best GANs found in each step of
the runs initialized with the Sampled set are not outperformed by any of the found
architectures in the runs initialized with GANs in First. Additionally, the runs
employing the Sampled set require much fewer steps to reach the top performing
models, ∼ 12, resulting in large savings in terms of computational time.

This figure clearly shows the advantages of using the metamodel for initializing
the first population of a NE procedure. Instead of using GANs which were specif-
ically evolved for diverse tasks, learning the more general characteristics of GANs
evolved across different runs for different problems provides the metamodel-aided
approach with the necessary generalization capacities. This could be due to the struc-
tures in First overfitting the problem they were evolved for. Because the meta-
model cannot learn to generate GANs from First exactly as they are, and it has to
focus on only capturing the dependencies within the structures that make them per-
form as they do, the GANs that it posteriorly produces are able to generalize better.
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Fig. 4.5: Best MMD value (y axis) corresponding to the samples generated by GANs
at different generations (x axis) during the evolutionary procedures. The solid lines
represent the mean of the 20 individuals×generation×30 runs = 600 computed
MMDs at each generation, whereas the translucent bands show the 95% confidence
interval of all these runs. Runs for the 2 variations of the problem and three NE
initialization methods are displayed.

This generalization capacity is a desired characteristic in many scenarios, including
the one described in this experimentation.

4.3.4 Application to CNN-GANs

In the previous Section 4.3.2.2, the metamodel has shown its capacity to identify
GAN structures according to how likely they are to offer a strong performance. NAS
algorithms would greatly benefit by the usage of a model that could indicate the
structures that are likely to perform poorly, avoiding unnecessary evaluations, and
thus speeding up the whole process. GANs composed of CNNs are especially costly
to be evaluated, and we therefore consider this special case of NE as a suitable field
to test the capacity of the model to make processes more agile, the second main goal
of the metamodel.

First, COEGAN (See Section 3.6 for a short introduction or [24] for a more
detailed description) is run 20 times to evolve GANs for a single database, Fashion
MNIST [131]. Because the two DNNs are evolved separately, and they are formed of
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no more than 6 layers, only 12 BN submodels have to be learned 3. Next, a First
set of GANs was created, and a metamodel similar to that introduced in Section 4.2.2
was learned. Because of the reduced number of runs, we use n = 20 for a total of
400 structures, so that the metamodel has enough examples to learn from.

To test the validity of the model, 30 different runs of two variants of a hill climb-
ing (HC) algorithm are executed looking for GAN structures which can accurately
reproduce images similar to the digits available in the MNIST dataset [75]. Each HC
run is awarded a limit of 100 evaluations, and the difference between the two variants
resides in the usage of the metamodel to guide the direction in which the algorithm
will move. While the first variant will simply randomly generate a neighbor of the
current GAN, the second variant generates all the possible neighbors(in both cases
generated using the mutation operators defined for COEGAN), checks which one is
the most likely to make the largest immediate improvement based on the probabili-
ties assigned by the metamodel, and chooses it as a candidate.

0 20 40 60 80 100
Step

100

200

300

FI
D

Algorithm
Informed HC
Random HC

Fig. 4.6: Evolution of the FID (in the y axis) of the best CNN-GAN structure found at
each step (x axis). The solid line represents the median of all 30 runs. The translucent
bands represent the 95% confidence interval. The broken orange line represents runs
performed with the random hill climbing, whereas the blue continuous line does so
for the hill climbing guided by the metamodel.

Figure 4.6 displays, for each step in the HC procedure (x axis), the best found FID
value (y axis). Similarly to Figure 4.5, the solid lines show the median run, and the
translucent bands represent the 95% confidence interval. The figure shows that, dur-
ing the first 40 steps of the search, both HC procedures behave similarly, with a slight
advantage for the random search. In the second part of the search, however, only the
guided greedy algorithm is capable of showing steady improvement, whereas most
of the random HC runs become stagnant from the 40-th step onward. This displays
the benefit of a smart guidance during this search, as apparently its usefulness is at
its peak when the algorithm is near convergence, a critical phase of any search. Some

3 All the DNNs of this section have been implemented using the PyTorch library [102] by
the authors of [24].
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samples extracted from the best GAN (in terms of Frechét inception distance [54])
are shown in Figure 4.7.

Fig. 4.7: Examples of digits generated by the best structure found by the informed
hill climbing runs.

4.4 Conclusions

In this chapter, we have proposed a methodology that makes the most out of the
computational effort performed during a neural architecture search. We tested the
methodology on two neuroevolutionary algorithms that search for GAN structures
whose success has previously been reported in the literature. This proposal consists
of modeling the best architectures found in optimization procedures with a meta-
model based on Bayesian networks, with two main goals.

First, by training the metamodel with the best individuals found during previ-
ous evolutionary procedures, the model has been able to recognize networks which
belong to the distribution of GANs likely to deliver a top performance. This way,
posterior neural architecture searches, by ignoring individuals unlikely to offer a top
performance, could lighten the computational effort required to be carried out. Sec-
ondly, the metamodel has been able to sample GAN specifications which are likely
to produce a good performance without any structural optimization being performed
on them.

We first successfully tested these two capacities of the proposed metamodel with-
out having them participate in a structural optimization process, and posteriorly
put them into practice using two successful neural architecture search procedures.
Whereas in the first successful test, the metamodel was employed on the same (or
similar) problem, the following two tests were carried out in more diverse scenarios,
resulting in a strong validation of the proposed methodology.

In the first case, the metamodel learned with GANs evolved for the PS approx-
imation was used to initialize a population. This population was used to conduct a
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secondary neuroevolutionary process which seeks GANs for the 2-D Gaussian mix-
ture approximation problem. The NE searches conducted with the sampled GANs
as a starting point clearly outperformed equivalent searches starting from the best
found GANs in previous searches. Secondly, we also tested the capacity of the model
to speed up a neural architecture optimization algorithm. This time, a metamodel
learned from GANs evolved for reproducing samples from the Fashion-MNIST
dataset was used to guide a local search for GANs whose goal is to reproduce MNIST
data. The results showed how the extra information provided by the metamodel helps
the search algorithm to keep finding increasingly better structures, where a random
version of the same algorithm could not. Overall, it can be said that the employment
of this kind of metamodels can positively affect future NAS runs in multiple ways,
as well as provide decent results in scenarios in which no structure searches can be
conducted.

As a general conclusion, the results reported in this work suggest a large potential
for these metamodels, as a version learned from a rather modest variety of data was
able to produce all these interesting findings. In some way, the potential for making
NAS runs more efficient is explored in Chapter 6, in which a set of rules that guides
a structural search is defined.
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Efficient search of complex DNN structure spaces





5

Definition of a multi-DNN model for heterogeneous
multi-task learning

5.1 Introduction

As it has been clearly demonstrated (both within and beyond the context of this
dissertation), the performance of DNNs is highly dependent on its structure. While
easier tasks can be solved with relative success using simple structures, as the prob-
lem complexity grows, so does the necessity of more sophisticated structures. Be-
cause of this, multi-network models that can cope with these complex tasks have
been designed. One such complex area of study is that which has been investigated
in the previous chapters: generative modeling [49, 55, 65]. Even though single DNN
models have been proposed for this type of task, the two most popular DNN-based
generative models are multi-network models: GANs [49] and VAEs [65] (the origi-
nal definition of both being composed of two DNNs each). These two models share
similarities in terms of structural composition, as they both are composed of two in-
dividual - albeit connected - DNNs. The structural design of these two models was
originally hand-made according to a predefined goal: the encoder-decoder structure
in the VAE, and the generator-discriminator routine in the GAN. Even though ex-
tensions of these models have already been proposed [4, 43], these approaches were
developed in restrictive frameworks that only permitted relatively small, structure-
wise modifications. These extensions of multi-network models consist of enhancing
the structure using additional sub-networks that can serve different purposes to those
already existing in the model.

In addition to multi-network proposals designed for high complexity tasks, other
approaches attempt to combine more than one functionality to a single network. This
problem is known as multi-task learning (MTL) [13], and consists of using one single
model to learn to solve several tasks of similar domains [78, 90, 134], such as classi-
fication, regression or reinforcement learning (e.g., learning the inverse dynamics of
a Robot [135], or news classification [133]). The usage of DNNs to manage this kind
of problems has produced interesting approaches in a very wide range of domains,
e.g., using a single supernetwork to automatically play different Atari games with
reinforcement learning [35], or classifying characters from different alphabets [78]
employing combinations of convolutional cells.
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Furthermore, employing the MTL approach has proven beneficial in different
aspects. By sharing parameters the training algorithm has to optimize fewer param-
eters, saving time and computational resources. What is more, the usage of the same
parameters for multiple tasks makes each task act as a regularizer for the others, as
the same parameters have to generalize to two (or more) problems, which lowers the
risk of overfitting. Finally, it has been theoretically proven that the value of the loss
function of a task within an MTL framework tends to the same value that it would
have obtained had it been learned separately, as the number of training observations
increase [81].

In this chapter, we address another, more general class of MTL, in which the dif-
ferent tasks not necessarily have to belong to the same domain (e.g., class prediction
and data generation) and are solved simultaneously, rather than sequentially. Some
works have already made some insights in this matter by employing variations of ex-
isting models, coining the Joint Learning term [77, 136]. In this conjuncture, we take
a step forward, introducing a model that can be composed of several interconnected
DNNs of different types, capable of handling the heterogeneity in the set of tasks of
the heterogeneous MTL (HMTL). We understand that such complex combinations
of tasks require an advancement in the multi-network model design; a step forward
in the automated generation of this kind of models.

With the goal of extracting the positive aspects of all the ideas and research fields
introduced above, we focus our efforts on providing a modeling scheme consisting
of DNN building blocks placed in an interconnected structure, flexible and scalable,
so that the model structure could easily be optimized; the VALP.

The main contribution of this chapter is twofold: (i) We provide a formal defini-
tion of the VALP as a general neural-network-based model to deal with HMTL. This
high-abstraction definition aims at setting as few constraints as possible in terms of
structural flexibility when designing a VALP implementation. (ii) From the abstract
formalization, we present a functional framework to illustrate the potential of the
model. It is accompanied by an example of how a model instantiation which has
to deal with three tasks of different characteristics can be created using the VALP
definition. Optimizing the structure of a model that can cope with such an extensive
variety of problems is not a trivial task, and it will not be discussed in this chapter,
but in the next one.

The rest of the chapter is organized as follows: We introduce the VALP defini-
tion in Section 5.2. We then identify a set of components that can be included into
any VALP implementation in Section 5.3. In Section 5.4, we provide an illustrative
example of a VALP instantiation. This is followed by the experimentation part that
shows the viability of the VALP for the HMTL problem in Section 5.5. Regarding
these results, we continue with a detailed future work part, in Section 5.6. Finally,
conclusions drawn from this experimentation part can be found in Section 5.7.
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5.2 VALP definition

Although traditional DNN models can be represented with rather simple notation,
this notation shows various shortcomings when trying to describe sub-DNNs which
are part of more complex models, particularly those that target different tasks simul-
taneously. Therefore, we present an enhanced notation, which will help to define and
describe each and all the possible component and parameters of any VALP.

Definition 1. A data unit is a pair d = (vd, td). vd = 〈v0d, v1d, ..., vkd〉 represents k
data variables, which share the td type.

Definition 2. A model input is a data unit ij = (vij , tij ) provided to the VALP.
I is the set of all the inputs of the model: I = {i0, i1, ...ip}.

Definition 3. A primary network nw is a a 5-tuple, nw = (inw , fw, aw, pw, onw)
which defines a DNN and its context within the VALP. inw = {i0nw , i1nw , ...ixnw} is a
set containing the inputs of the network, where each ijnw is a data unit. fw is a func-
tion representing how all ijnw are combined to form another data unit, the definitive
input of nw (e.g., concatenation). The value of ijnw can vary over the different phases
of the model life cycle. aw contains the type (e.g., Decoder) of the primary network,
and pw, its parametrization (hidden layer specification, e.g., number of neurons in
each layer for MLPs, number of filters and their size, and the stride for CNNs). onw is
a data unit, and represents the output of nw. It can be also considered an intra-model
output.

N = {n0, n1, ..., ny} is the set containing all the primary networks in the model.

Definition 4. A model output is a pair oj = (ψj , foj ). ψj = {ψ0
j , ψ

1
j , ..., ψ

d
j } is the

set of data units that oj receives from the networks in N . foj represents how all ψij
are combined to form the final j-th output of the model (a data unit), a functionality
similar to fw.

O is the set of all model outputs; O = {o0, o1, ..., or}.

Definition 5. A VALP is a 4-tuple M = (V,A,L, P ). V = I ∪ N ∪ O, represents
the model components. A is a set of connections that determine how the model com-
ponents are interconnected. L = {L0, L1, ..., Lq} is a set of triples that defines how
the model performance is assessed. Lj = (lj , plj , gj), where lj represents a loss
function, plj ∈

⋃
nw∈N

{onw} ∪
⋃

0<j<|O|
{foj (ψj)} is a prediction (a data unit) made

by the model (note that it can be either an intra-model or a model output), and gj is
the ground truth that lj uses to measure and improve the performance of the model
with respect to a particular task.

P represents the model hyperparametrization. It contains, at least, the parame-
ters that specify how the different Lj are combined to form a single loss function that
can be used to optimize all the tasks of the model in a single step.

Definition 6. A model connection is defined as cj = (icj , ocj ,ψcj ), where icj ∈⋃
nw∈N

{onw} ∪ I represents the data unit providing the information, and ocj ∈
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N ∪ O represents the model component the information is delivered to. ψcj =
〈ψ0
cj , ψ

1
cj , ..., ψ

z
cj 〉, ψbcj ∈ Z | 0 ≤ ψbcj < |vicj | represents indices of the variables

transported from the connection input icj to the connection output ocj .
We define A = {c0, c1, ..., cz} as the set of all the connections of the model.

Taking into account how DNNs have been traditionally defined (their architecture
type and the number of neurons, filters, etc.), the pw and aw components from the
proposed notation would have been enough to fulfill these needs. However, when
these networks are supposed to be parts of a larger model which has to manage as
many connections and data types as the VALP, the rest of the components of the
proposed notation are also required.

The V and A sets of the V ALP can be used to form a directed graph (digraph)
G = (V,A). In a digraph, the number of arcs (connections) ending in a vertex is
called the indegree of that vertex (or node), whereas the number of arcs starting in
a node is called the outdegree. Regarding these two characteristics, we differentiate
three types of nodes in this digraph: (i) source nodes; those having an indegree value
of 0, (ii) sink nodes; those with an outdegree value of 0, and (iii) internal nodes,
which have both indegree and outdegree values strictly larger than 0.

In the VALP, the model connections are represented with arcs and there is a
source node for each element in I , a sink node for each element in O, and an internal
node for each element in N .

5.3 VALP instantiation

Once the VALP has been formally defined, we identify a collection of elements that
can be part of an instance of a VALP model. More specifically, we enumerate two key
components indispensable for the correct operation of a VALP instance: data types
and primary networks. We would like to make clear that the following list neither
intend to encompass all the items a VALP can be composed of, nor limit future
additions to the pool of VALP components. In this regard, we expect the VALP to be
able to embrace an extensive set of data types and a variety of primary networks.

5.3.1 Data types

The data type component in the data unit defined in the previous section presents an
elegant manner to handle the heterogeneity required to the model in terms of data
outputs. We therefore define four data types to which data units of a VALP could
adhere to:

• Discrete : This data type consists of a vector codifying discrete values.
• Numeric : This data type consists of a vector of numeric values.
• Samples: Similarly to Numeric, this data type consists of a vector of numeric

values.
• Blob: This data type consists of a matrix of d dimensions of numeric values.
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Despite technically containing the same type of information, we choose to de-
fine Numeric, Samples, and Blob as different types to improve the expresiveness of
the model. For example, at the time of setting restrictions when creating a VALP in-
stance (e.g., guaranteeing that samples are provided where samples are supposed to
be produced, and idem for other types, such as regression or classification), the data
types will turn out useful. They will improve the simplicity of the restrictions as well
as the understandability of the model.

5.3.2 Primary networks

Once we have identified a subset of data types that can be used within a VALP, we
can similarly characterize a set of primary DNNs (or sub-DNNs) that can be included
in the N component of a VALP.

• Generic MLP, g: A regular MLP that maps the provided input to an output.
It can take any type of data unit as input. The data unit it produces can have
different interpretations: numeric values (in any case) or samples (exclusively if
it received samples). The activation function in the output layer is the identity
function.
• Discretizer, δ: Similar to a regular MLP, this network takes data units of any
type as input, and produces data units of the Discrete values type. Its goal is to
discretize values, mainly for classification purposes. It has a softmax activation
function in the last layer.
• Decoder, d: The decoder receives Numeric or Blob data units, interprets them
as means and variances of a N (µ, I × σ), and uses samples generated from that
distribution to produce Samples data units. Its internal structure is also an MLP.
This concept is borrowed from the VAE, on which the generative capabilities of
a VALP can be based.
• Convolutional network, c: This primary network exclusively consists of op-
erations commonly found in Convolutional neural networks (CNNs): convolu-
tional and pooling layers. It can only take and produce data of the type Blob.
Its goal is to maximize the performance of a VALP instance when working with
certain data structures (e.g., image or sequential data).
• Transposed-convolutional decoder, t: This primary network can be seen as
a combination of c and d. It can only be composed of transposed-convolutional
operations, and it can take Blob, Numeric (guaranteed), or Discrete (optional)
values. It produces Samples.

Although CNN layers can be implemented as a combination of MLPs with shared
weights [48], in order to bestow future uses of the VALP with the necessary tools to
implement and describe models as easily as possible, we have decided to add the
CNN networks, in their classical formulation comprising convolutional and pooling
layers, as a possible component of VALPs, aiming at the best balance possible in the
formality-usability trade-off.
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5.3.3 Model loss function

A straightforward approach for training the model is to use the regular backpropa-
gation algorithm combined with a variant of the stochastic gradient descent (SGD)
algorithm. These techniques optimize a loss function defined on the parameters of a
model, so that the performance of the model can be as close to perfection as possible.
The VALP performs many approximations at a time, which means that various loss
functions (with respect to both the model and intra-model outputs) need to be opti-
mized in parallel. For a model that needs to optimize, for example, three different
tasks (regression, classification, and data sampling), the following four kinds of loss
functions have been identified as necessary.

• Regarding the sample-generation outputs of a model (tod0 =Samples), we need
a loss function l0 that can measure the likelihood of the model generating data
with respect to the distribution we are interested in.

• Related to the regression output of the model (tod1 =Numeric), we need a metric
l1 that can compute the difference between two vectors of numeric values.

• For the classification outputs of a model (tod2 =Discrete), we need a loss function
l2 that can compare discrete outputs with predictions of the same type.

• Regarding the primary networks whose outputs are used in a t or d, we need a
metric l3 that forces that output to approximate a distribution that we can repro-
duce.

It is important to note that some of these loss functions could have larger magni-
tudes than others, thus hoarding the effectiveness of the SGD algorithm. This could
lead to some loss functions being ignored by the algorithm, producing a defective
model. To address this issue, the VALP model includes one hyperparameter β, which
scales the different sub-loss functions. This approach is inspired by the β-VAE [12].
It contemplates a β parameter that scales the two sub-loss functions present in a
common VAE.

5.3.3.1 Data unit combination

We also define example functions that can be used for the fn and foi presented in
the VALP networks and outputs, respectively:

Example 1. Being di = {di0, di1} a set of data units, we define the concatenation
function as a function that receives a set of data units, and produces another one:

ζ(di, dj) =
(
〈v0di , v1di , ..., vndi , v0dj , v1dj , ..., vmdj 〉, tdi,j

)
And, similarly, the addition function:
Λ(di, dj) =

(
〈v0di + v0dj , v

1
di + v1dj , ..., v

n
di + vndj 〉, tdi,j ), n = min(|vdi |, |vdj |

)
.

In both cases, (tdi,j = Sam.)↔ ((tdj = Sam.) ∨ (tdi = Sam.)),
(tdi,j = Num.)↔ ((tdj = Num. ∨ tdi = Num.) ∧ (tdj 6= Sam. ∧ tdi 6= Sam.)),
(tdi,j = Discrete)↔ (tdj = Discrete ∧ tdi = Discrete),
(tdi,j = Blob)↔ (tdj = Blob ∧ tdi = Blob).
When di = {di0} consists of a single element, f(di) = di0,∀f .
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5.4 VALP implementation

The study performed in this chapter considers an implementation1 that consists of
a reduced version of the general VALP defined in Section 5.2. It does not cover
all its possibilities, but rather is an initial exploration with the aim of displaying its
potential, and has therefore many extension possibilities. The reduced VALP version
considered in this chapter contemplates only three of the data types introduced in
the preceding section. We restrict all data types td of all the data units in a VALP
to the following values td ∈ {Numeric, Discrete, Samples}, ∀d ∈ I ∪ ⋃

oj∈O
{odj} ∪⋃

nw∈N
(inw ∪ {onw}).

Accordingly, only a subset of networks can be part of the VALP model definition
of this work: aw ∈ {g, d, δ},∀w ∈ Z, 0 ≤ w < |N |. All DNNs in this version of the
VALP are based on multi-layer perceptron (MLP) architectures.

The Generic MLP essentially transforms information into a different encoding,
therefore, it can serve as an encoder that complements a Decoder as in a VAE struc-
ture. To avoid defining a primary network with the sole functionality of encoding
data, we allow the interpretation of the output of any Generic MLP (a vector of nu-
meric values) as the µ and σ parameters a decoder needs.

Fig. 5.1 describes these primary networks and the way they are related to the
different data types.

VALP primary networks

MLP

Generic MLP:

Possible encoder

Discrete Numeric Samples

Numeric Samples

Decoder:
New input when sampling

Numeric
N (0, I)

Discrete Samples

Samples

+ Softmax

Discretizer:

Used for classification

Discrete Numeric Samples

Discrete

Fig. 5.1: Primary networks and their functionality inside VALP. The decoder must
take (at least) numeric values when training. When running the model, these values
are replaced with samples from aN (0, I) distribution to ensure that the Decoder can
create new data.

Because we prime structural flexibility in the general VALP (and thus, in this
example), the primary networks introduced in the previous section should be free to

1 The code developed to perform the initial exploration in this chapter can be found in
https://github.com/unaigarciarena/VALP

https://github.com/unaigarciarena/VALP
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interact with each other in any possible way. However, in order to maintain type con-
sistency (both in the output and throughout the model), a set of rules that restrict the
model structure need to be imposed. In this regard, we force the decoders in a VALP
configuration to have at least one Generic MLP primary network providing input to a
decoder. This requirement is introduced due to the necessity of the decoders to have
a numeric, optimizable input that can be trained to follow a certain distribution and
can later be changed by new samples that follow that same distribution.

In Fig. 5.2 an example of a VALP model designed for solving three different tasks
(sampling, regression, and classification) is shown. It is composed of five primary
DNNs, it receives a single input i0 (Data), and it provides three outputs, o0, o1, and
o2, where tod0 = Samples, tod1 = Numeric, and tod2 = Discrete. In this figure, circle
nodes represent source nodes, triangular nodes represent internal nodes (networks),
and square nodes are sink nodes.

Primary networks

i0

Data

Model
inputs

n0

n1

n3

n2

n4 o0

Samp.

o1

Reg.

o2

Class.

Model
outputs

c0

c1
c2

c3

c4 c5

c6

c7

c8

Fig. 5.2: Schematic representation of a VALP.

5.4.1 Formal definition of a VALP instance

We formally define the model instance M = (V,A,L, P ) shown in Fig. 5.2. This
VALP example is required to produce numeric and discrete predictions, as well as a
sampling output. We assume that we are working with a single dataset “Data”, that
is composed of 10 features, and where each example is labeled. The vector of these
labels forms C. Analogously, we have an R vector with a numeric value associated
to each entry in the dataset. Finally, we have 5 extra features that we would like
to reproduce (generate new samples), grouped in a vector S (one attached to each
example in the Data, similarly toR and C).

We define I = {i0}. i0 = (vi0 , ti0), where vi0 are the 10 features of the database,
and ti0 = “Numeric”.

We define N = {n0, n1, n2, n3, n4}.
Because all the network types aw can take are based on MLPs, any pw is com-

posed of three vectors: init = 〈init0, init1, ..., initl〉, which specifies the function
used to randomly initialize the weights of a nw, act = 〈act0, act1, ..., actl〉, referring
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to the activation functions in each layer, and ns = 〈ns0, ns1, ..., nsl〉, the number
of neurons in each layer. l is the number of layers in the primary network, excluding
the input layer, which needs no parametrization, and including the output layer.

We do not define every aspect of each component in this VALP example for the
sake of keeping this illustrative definition compact. We avoid definitions of elements
that are repetitive or redundant and do not contribute to the further understanding of
the model concept. For example, we do not define pw for each nw.

n0 = (in0
, f0, a0, p0, on0

), where a0 = Generic MLP, in0
= {i0n0

}, vi0n0
=

〈v0i0n0

, v2i0n0

, v5i0n0

, v6i0n0

, v7i0n0

〉 (Note the correspondence later, when defining the con-

nections), ti0n0
= Numeric, and f0 = ζ. on0 = (von0

, tn0), where von0
=

〈v0on0
, v1on0

, ..., v6on0
〉, ton0

= Numeric.
n1 = (in1

, f1, a1, p1, on1
), where a1 = Generic MLP, in1

= {i0n1
, i1n1
}, ti0n1

=

Numeric, ti1n1
= Numeric, and f1 = ζ. on1

= (von1
, ton1

), ton1
= Numeric.

n2 = (in2 , f2, a2, p2, on2), a2 = Discretizer, ton2
= Discrete, f2 = ∅

n3 = (in3
, f3, a3, p3, on3

), where a3 = Generic MLP, f3 = ζ
n4 = (in4

, f4, a4, p4, on4
), where a4 = Decoder, ton4

= Samples. Note that,
when training the model, in4

= {i0n4
= on0

}, but that would change to in4
={

i0n4
= (x ∼ N (I, 0),Numeric)

}
at the time of running the model.

We define O = {o0, o1, o2}.
o0 = (ψ0, fo0), where ψ0 = {ψ0

0 = on4
}, and fo0 = Λ

o1 = (ψ1, fo1), where ψ1 = {ψ0
1 = on3}, and fo1 = Λ

o2 = (ψ2, fo2), where ψ2 = {ψ0
2 = on2}, and fo2 = Λ

L = {L0, L1, L2, L3}, where L0 = (l0, pl0 , g0). l0 is the log-likelihood func-
tion, g0 is the S data provided in the beginning of the problem definition, and
pl0 = ζ(ψ0) = ψ0

0 = on4
. L1 = (l1, pl1 , g1). l1 is the mean squared error (MSE)

function, g1 is the R data provided in the beginning of the problem definition, and
pl1 = on3 . L2 = (l2, pl2 , g2). l2 is the cross entropy function, g2 is the C data pro-
vided in the beginning of the problem definition, and pl2 = on2

. L3 = (l3, pl3 , g3).
l3 is the Kullback-Leibler divergence (KL), g3 ∼ N (0, I), and pl3 = on0

.
The hyperparameter of the model is a tuple of a single element P = (β), which

parametrizes L. β is a set of tuples β = {(l3, 0.5), (l0, 0.8), (l1, 0.9), (l2, 1)}, where
each tuple contains model components and a scalar. The loss functions defined in
the model components and the scalar in the tuples are multiplied together, and then
added up to form 0.5× l3 +0.8× l0 +0.9× l1 + l2, the definitive loss function used
to train the model.

We define A = 〈c0, c1, ..., c8〉.
c0 = (ic0 , oc0 , sc0), where ic0 = i0, oc0 = n0, sc0 = 〈0, 2, 5, 6, 7〉 (note the

correspondence between this connection and the previously defined vi0n0
).

c1 = (ic1 , oc1 , sc1), where ic1 = i0, oc1 = n1. c2 = (ic2 , oc2 , sc2), where
ic2 = on0

, oc2 = n1. c3 = (ic3 , oc3 , sc3), where ic3 = on0
, oc3 = n4. c4 =

(ic4 , oc4 , sc4), where ic4 = on1 , oc4 = n3. c5 = (ic5 , oc5 , sc5), where ic5 = on3 ,
oc5 = n2. c6 = (ic6 , oc6 , sc6), where ic6 = on4 , oc6 = o0. c7 = (ic7 , oc7 , sc7),
where ic7 = on3

, oc7 = o1. c8 = (ic8 , oc8 , sc8), where ic8 = on2
, oc8 = o2.
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Although the introduced VALP model assumes fixed I and O, we can think of
a scenario where this is not the case. In this regard, the VALP is not a static model
structure-wise, as I and O can be expanded once the model has been constructed
(and even learned), which would trigger additions in at least one of A or N , or both.
For example, if we added a new oj toO, we could update the model by adding a new
nw to N and two connections, one from nj , j 6= w to nw and another one from nw
to oj . Such a scenario could be particularly useful for incrementally learning VALP
instances.

5.5 Testing the potential of a VALP

We designed an artificial problem to illustrate the potential of the VALP. We have
selected the widely known Fashion-MNIST [131] dataset, which is more complex
than MNIST, and has been extensively used for research on DNNs [21, 61]. This
dataset consists of 60,000 train and 10,000 test images, which are 28 × 28 pixel,
gray-scale images of clothing, each belonging to a certain class. There are 10 items
of clothing overall; T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot. The usual supervised task associated to this dataset is to predict
the class each example belongs to. The number of instances of each class falls near
10% of the total instances, which indicates that this is a balanced problem.

To illustrate the model instantiation at its fullest potential, we define the multitask
fashion-MNIST problem as composed of three different tasks:

1. Classification: 10-class classification as usually defined in the fashion-MNIST
problem.

2. Regression: Firstly, we have computed a histogram for each of the images re-
garding the gray-scale values, with 32 bins. Then, these histograms were scaled
between 0 and 1. This way, we have a 32-value regression problem to solve.

3. Generation: The generation of samples similar to those given to the model in the
input.

In Fig. 5.3, we show three examples of the data available in the fashion-MNIST
dataset, with the values desired to be obtained for each one, in each task.

5.5.1 Model parameters

To initialize the model structure, the only information required is the number and
types of inputs and outputs together with their corresponding dimensions. In our
case, we can define I = {i0} and O = {o0, o1, o2}, where i0 = (vi0 , tio), |vi0 | =
28 × 28 = 784 and ti0 = Numeric. o0 = (ψ0, fo0) where |ψ0

0 | = 32, and tψ0
0
=

Numeric, o1 = (ψ1, fo1) where |ψ0
1 | = 10, and tψ0

1
= Discrete, and o2 = (ψ2, fo2),

where |ψ0
2 | = 28× 28 = 784 and tψ0

2
= Samples. fo0 = fo1 = fo2 = Λ.
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Fig. 5.3: This figure displays three gray-scale images that correspond to three differ-
ent examples in the fashion-MNIST database. Their respective titles show what class
they belong to (those used for the classification task), whereas the bar plots show
the 32-bin-histograms representing the frequency (y axis) of pixel values (x axis) in
the image (used for the regression task). The clothing image itself is used for the
sampling task.

The next concern is to design a model i.e., the primary networks and connections
in the model (as well as the loss functions and other hyperparameters), that can pro-
vide predictions for all required outputs, while matching the appropriate data type
(Section 5.3.1).

The choice of the loss functions is a relevant decision to be made in this frame-
work. As mentioned in Section 5.3.3, four loss function types have been identified:

• For the regression output, L0 = (l0, pl0 , g0), where l0 is the mean squared error
between pl0 and g0:

argmin
θVALP

1

|pl0 |
∑

(pl0 − g0)2 (5.1)

• For the classification output, L1 = (l1, pl1 , g1), where l1 is the cross entropy
between pl1 and g1:

argmin
θVALP

−
∑
x

pl1 log g1 (5.2)

• For the sampling output, L2 = (l2, pl2 , g2), where l2 is the log-likelihood of pl2
being g2:
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argmin
θVALP

Ex∼g2 [Eqθ(z|x)[−log(pl2)]] (5.3)

where qθ(z|x) represents the probability distribution (predicted by a Generic
MLP) inside the model, before any Decoder in a VALP.

• For each output of the generic MLPs whose output (pl3 ) feeds a decoder, L3 =
(l3, pl3 , g3), where l3 is the KL:

argmin
θVALP

Ex∼pdata(x)[KL(pl3 ||g3)] (5.4)

As commonly, g3 ∼ N (0, I).

This model also considers different optimization pressures [12] on each of the
terms of the global loss function. We add a scaling vector parameter (β), so that the
optimization of the combined loss function is correctly performed.

5.5.2 VALP structure designing algorithm

For this example, we have designed a procedure for creating the VALP structure.
As it will be later discussed in Chapter 6, the conception of efficient algorithms for
designing VALP structures is an interesting open challenge.

The structure initialization algorithm employed in this work, which follows a
back-to-front building approach, ensures that the adequate data type is provided to
each model output. The strategy is based on an updated set of model components
that have not had an input assigned; act out ⊂ N ∪O. The algorithm is a recursive
function that incrementally and randomly develops the model until the maximum
number of primary networks for the model (a parameter given at initialization) is
met. It produces a configuration in which each component is guaranteed to have an
input (except the model inputs), and the output types match the requirements. The
model outputs can receive their predictions from a network that produces the required
data type, while the networks can receive inputs from either another network, or a
model input, i.e., the data. The only restriction applied to this algorithm is that a
decoder must have at least one Generic MLP providing input. The reason behind
this constraint is that the input of a decoder must be numeric and optimizable, as we
require it to follow a certain continuous distribution (N (0, I)).

The pseudo-code of this strategy is shown in Algorithm 5.1. It considers two pa-
rameters; max n= 11, which handles the maximum number of primary networks in
a VALP, and α = 0.5, which regulates the reutilization of existing primary networks.
More specifically, the α parameter is used to decide whether a source of data e1 (if
available) is used as an input for another component e2 (e1 ∈ I ∪N , e2 ∈ N ∪O).

In addition to these parameters, this algorithm uses a set of auxiliary functions,
which are explained below:

• complete model(model): If |N |==max n, then |act out|==0, and the function
does nothing. If |N | < max n, it searches for components that can serve the el-
ements in act out (in terms of data typing) and establishes connections between
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1 Function initialize(A, I , N , O, act out)
2 if (max n− |N |) == |act out ∩O|
3 return complete model(model)
4 con out = random(O ∪N )
5 found, con in = random(I ∪N , con out)
6 if random numb(0, 1)< α ∨ ¬found
7 con in = create rand network(con out)
8 N = N ∪ {con in}
9 act out = act out ∪ {con in}

10 A = A ∪ (con in, con out)
11 act out = act out− {con out}
12 return initialize(A, I , N , O, act out)

Alg. 5.1: GAN evolving GA

them. If no such components exist, this function creates new primary networks,
and uses them as bridges between the available components and those in act out.

• random numb(a, b): It returns a random number in [a, b).
• random(set[, out]): If only the set parameter is provided, this function returns a

random element from the set. If both parameters are given, it returns a random
component from the set, such that it can serve as input to the out component
ex|ex ∈ N ∪O (in terms of typing, and not allowing recurrent connections) and
found=True. If no such element exists, found=False.

• create rand network(con out): This function creates a new network to be added
to the model. The data type produced by that network must be compatible with
the data type accepted by the con out component.

The initial call to the recursive algorithm is initialize({}, I, O, {}, act out),
where act out is a copy of O, which represents the model components in need for an
input.

The first if statement is the exit condition. In case it is not met, the algorithm
selects a random component (con out) that can take an input, i.e., a model output
or a primary network. con out will have a new input once the current recursion is
finished. The algorithm searches for another component (con in) that can provide a
data unit which could serve as an input for the first component.

If no such element is found, or if a random number is lower than the α parameter,
a new primary network (con in) that can serve as input to the first component is
created and added to N and act out. Finally, con out and con in are connected.
Because con out now has an input, it cannot be part of act out. This algorithm avoids
recurrent connections.

For example, when using this algorithm to create the example displayed in
Fig. 5.2, the first step would consist of N = {} and act out={o0, o1, o2}. In the first
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recursion, n3 could be added, a generic MLP, since it needs to provide a regression
prediction. In the following recursion, act out={o0, n3, o2}, because o1 already has
n3 giving it an input, and n3 would be added. This recursion would end up with at
least three primary networks providing information to the outputs, and no component
without a data input, act out= {}.

Once the model structure is defined, the parameters of the primary networks
(weights and biases) are randomly initialized and trained with regular backpropaga-
tion, taking as the global loss function a combination of the elements in L (according
to the β parameter).

5.5.3 Experimental design

For the multitask fashion-MNIST problem, we performed a preliminary experiment
and found that optimizing L0, L1, L2 with β0, β1, β2 = 1 simultaneously produced
no undesirable effects. L3, however, did present an obstacle when being optimized
simultaneously with L0, L1, and L2. Many local optima for the KL divergence con-
sisted of loss values higher than poor cost values for the other three loss functions.
Therefore, L3 tended to oscillate over those values once one of these local optima
was reached. Because the optimizer often found larger potential improvement mod-
ifying the weights that alter the cost of L3, it used to ignore the rest of the loss
functions and weights. Therefore, we set β3 = 10−4. This way, we prevent the oscil-
lating effect of the KL loss function rendering the optimizer futile once L0, L1, L2

reach a value below that local optimum of L3.
The max n was arbitrarily set to 11. The mini-batch size for training the model

was 50, and the model was trained for 40,000 batches (33 iterations of the whole
database). Therefore, P = (β = (β0 = 1, β1 = 1, β2 = 1, β3 = 10−4), α =
0.5,max n = 11). The DNNs can have as much as 10 layers, each of which can be
composed of 100 neurons at most.

In order to have a glimpse of the performance of this VALP instantiation, the
structural generation and learning procedures were randomly initialized and per-
formed 500 times. This way, we perform a random search using Algorithm 5.1 to
generate and train 500 different structures.

5.5.4 Experiments results

After training the 500 random VALP configurations with the train set, we employed
each model to perform the described tasks considering the test set of the Fashion-
MNIST dataset, and recorded different metric values to get a measurement of their
performance.

5.5.4.1 Classification and regression

In Fig. 5.4, we can observe how the 500 models performed on the regression (MSE
represented on the y axis in a logaritmic scale) and the classification problem (accu-
racy, on the x axis). Each point in the grid represents a random VALP configuration.
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Analyzing the quality of such a complex model definition is not straightforward.
To put these results in perspective, we also performed a more traditional search in
the HMTL model architecture space in order to have a baseline to which the re-
sults obtained by the VALP can be compared. Assuming that one cannot have expert
knowledge for any given problem, and that there is not a consensus on how to design
DNNs, a generic way of designing a DNN is required so that the results obtained by
the VALP can be contrasted. Facing this difficulty, we resort to a grid search for the
structural design of a DNN as the baseline to which the VALP can be compared, as
the grid search is a common choice in this kind of scenarios [41, 99, 119]. This search
consists of testing several different hyper-parameter combinations to design a single
DNN model which firstly has to deal with the Fashion-MNIST classification prob-
lem before being extended by adding another output for the regression problem. The
grid search extends over the following options: The number of layers and neurons on
them, the weight initialization functions used for giving initial values to the neurons,
the activation functions applied after each layer, and whether that network employs
batch-normalization and/or dropout. A description of the set of values considered for
each of the hyper-parameters follows:

• Layer configuration: 2, 3, 4, or 5 hidden layers with gradually descending num-
ber of neurons (between each two consecutive layers in a DNN, the same number
of neurons is reduced), starting from 784 (the input size) to 10 (the number of
classes).

• Weight initialization functions: The weights of the DNN can be initialized using
random uniform, random normal, xavier [46] uniform, or xavier normal distri-
butions.

• Activation functions: eLU, ReLU, sigmoid, softmax, softplus, softsign, tanh, or
linear activation functions can be applied after each layer in the DNN, with the
exception of the last one, which mandatorily has to be softmax, due to the prob-
lem being dealt with is a classification one.

• Batch normalization: Whether batch normalization is applied before the output
layer.

• Dropout: Whether dropout is applied before the output layer.

This results in 4× 4× 8× 2× 2 = 512 combinations, which is very close to the
500 VALPs generated on the other part of the experiment.

From all the models tested, the one with the best accuracy is selected, and re-
trained now with a new additional loss function in a new output, so that it can also
deal with the regression problem. The best found model consists of a four-hidden-
layer MLP, whose weights are initialized using xavier normal initialization, and with
softplus activation functions after each layer, and batch normalization and dropout
before the last layer. Once found, the model was run 30 times with different weight
initializations (obtained with different seeds and xavier initializations) obtained a
mean accuracy value of 0.79 for the classification problem, and a 0.0032 mean MSE
for the regression problem. These two values are visualized too in Figure 5.4, as a
vertical red line (classification accuracy) and horizontal green line (regression MSE).
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Also, their corresponding confidence interval of 95% is shown as a more translucent
area.
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Fig. 5.4: Performances of the models plotted in terms of both classification accu-
racy and MSE reached on the regression problem. The vertical red line represents
the performance of the MLP specifically learned for the classification problem. The
horizontal green line represents the performance of that same MLP extended for
addressing the regression problem. Blue points represent VALP configurations that
performed worse than both baselines, yellow points are models that improved only
the regression problem results, and models represented in green did so in the classi-
fication problem. The red ones offered better results than both baselines.

Regarding the classification problem, 280 VALPs (those represented as red and
green points in Figure 5.4) improve the averaged accuracy achieved by the MLPs
optimized with the grid search (79%, represented by the vertical red line). The su-
periority of VALPs is more remarkable when considering the regression problem,
where 486 models (points in yellow and red) produced better results that the mean
result obtained by the MLP configurations produced by the grid search (0.0032, rep-
resented by the horizontal green line).

While in general the VALP approach outperforms the baselines, the fact that
VALPs architectures have been randomly generated can also be noticed in the clas-
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sification and regression results. It is possible to observe that 158 VALP configura-
tions produced a classification accuracy of nearly 10%. Considering that there are 10
classes and that the problem is balanced, this resembles random classification. The
architectures producing these results probably have a decoder that deletes the path
between i0 and o1 after training. The other weak outcomes are probably a result of
similar structures, or models whose optimizing algorithm has focused on the other
loss functions involved. With respect to the regression problem, we can observe that
only 14 configurations performed poorly compared to the vast majority of the mod-
els; MSE superior to the baseline.

As a general remark on joint performance, and perhaps the main take-away mes-
sage of this analysis, we can observe that 274 models performed better than both
baselines (in classification and regression). The fact that a random search has a larger
than 50% of probability of finding VALP configurations that have stronger perfor-
mances in both objectives, while optimizing the sampling loss functions at the same
time, shows, in our opinion, the validity of the proposal at tackling HMTL problems.

5.5.4.2 Generation

Once it has been shown that the VALP can perform the tasks classically attached
to the simple DNNs, it is time to investigate the sampling capabilities of the model.
Specifically, we want to extract information of two different aspects from the gener-
ative power of the model, which are related to the mode collapsing problem. Mode
collapsing is an issue that concerns the generative modeling community, specially
that part focused on GANs [112]. In the experimentation carried out in this chapter,
we identify two types of mode collapsing. The global case, the worst one, is that in
which all the generated samples look very similar to each other. In the local mode
collapsing scenario, not as serious as the previous one, the model would learn to
generate samples from the different classes of the dataset, yet those belonging to a
certain class are still too similar to each other.

To test whether the model configurations suffered from global mode collapsing,
an auxiliary DNN that classifies samples of the fashion-MNIST was trained. This
DNN was used to classify the generated samples, giving a metric of how distributed
the generations are class-wise. This DNN was based on the MobileNet model [58,
62], followed by a single dense layer. This model reached a 99.5% accuracy on the
training set and 94.5% on the test set of the Fashion-MNIST dataset, and it was
used to classify the samples generated by each VALP configuration. Given that the
classification problem being addressed is balanced, one could expect that the perfect
model generated the same number of instances of each class. Because this is a 10-
class problem, a perfect generator would generate an example of a certain class with
0.1 probability. Once the labels from the classifier were obtained, the capacity of the
model for generating samples from different classes was measured as the entropy of
the set of predicted labels. The higher the entropy value (which ranges between 0
and 1), the better the model is considered.

The class distribution can be visualized in Fig. 5.5. The histogram chart in the
top represents the distribution of the entropy values of the 500 VALP configurations.
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We have chosen 7 representative examples from the whole set (pictured as vertical
lines in the chart). The probability distributions of these examples are represented in
the general parallel coordinates. In this example, we can observe how several VALP
configurations (low entropy values) are poor data samplers, as they tend to generate
images that MobileNet classifies as Pullover (class 2). This category usually consists
of a set of pixels with high values in the middle of the image. The usual result of
poor generators is producing images that consist of means of all the images which
results in blurry images that posteriorly MobileNet classifies as Pullover. A similar
effect happens with class 6 (Shirt). In contrast, the VALP configurations with higher
entropy values (equal to or larger than 0.8) show much more distributed generation
probabilities.
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Fig. 5.5: The box in the top shows the distribution of entropy values of the 500 VALP
configurations, and the seven representative VALP examples (the vertical lines). Each
representative example is displayed by a vertical line. The probabilities of generating
a sample of a certain class by each representative example are shown in the general
parallel coordinates.

5.5.4.3 Conditioned sampling

Regarding the sampling capabilities of the VALP, we recognize that some problem
domains could benefit by being able to force the model to create data that meets
certain criteria. This is, rather than creating it from the whole known space, data
is created from a specific sub-region of the distribution. By designing the VALP as
highly flexible as it is, we have made the VALP instances in this work capable of
carrying out this specific kind of sampling. This is an interesting characteristic that
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can be exploited for multiple tasks, such as generating images with certain attributes
[132] or reconstructing corrupted images [60].

To address this issue, we have generated 100 VALP configurations with at least
one decoder which receives input from multiple sources. After the training phase,
when using the VALP to create new samples, the common procedure (borrowed from
the decoder) would be to remove all the information inputs to the decoder, and replace
them with random values from a N (0, I) distribution. However, by guaranteeing
that one decoder has multiple data sources, we can delete one of them, and maintain
another one. This way, the decoder would have to generate new samples (because it
is receiving random noise from one input), while also receiving some information
about the data that is placed in the input. If a decoder had three or more inputs, a
parameter φ that regulates the probability of a decoder not having an input deleted
is added, and set to 0.5.

These 100 models have been trained as the previous 500 ones, and then used to
generate samples conditioned by the examples in the test set.

To test how conditioned the samples can be towards the input of data given to
the VALP, we computed a precision metric that evaluates the agreement (measured
as an accuracy) between MobileNet’s prediction for the test image used to condition
the generation and the prediction for the corresponding VALP generated sample.

The results of this metric along with the entropy can be observed in Fig. 5.6.
Each VALP configuration is represented by a point, and they are located in the grid
regarding the class entropy and the conditioning accuracy defined in the previous
paragraph. It can be observed that most models have a high entropy value, which
means that there is not a strong global mode collapsing problem. Part of the figure
has been cut out, as there were no models that generated conditioning values be-
tween ∼ 0.1 and ∼ 0.35. Additionally, this figure shows a heatmap representing the
confusion matrix comparing the class that MobileNet predicted to the conditioning
examples, and the class the Mobilenet predicted for the produced samples by the
VALP represented with the red star (the one with the highest conditioning accuracy).

Firstly, we observe that only 16 models generated a class entropy value lower
than 0.8, therefore, in that aspect, the models offered a good behavior. Fig. 5.6 also
shows that only a small proportion of models (a total of 27) produced a conditioned
accuracy value near 0.1. This means that, to some degree, almost three fourths of the
models were able to condition the generated samples towards the image they were
shown in the input. The configurations in the lower part of the left-hand side of the
figure are the poor quality generators.

Regarding the heatmap, we can observe that this particular VALP found difficul-
ties at generating samples of some classes, from which the 9-th and 4-th ones are the
worst case. The VALP was unable to generate any sample from this category accord-
ing to MobileNet. The next worst case is class 6, with 315 generations, and the rest
have at least 824 representatives out of 10.000 generations (A perfect model would
have produced 1.000 from each category).

Fig. 5.7 contains a schematic representation of the configuration of the VALP
represented with the red star in Fig. 5.6, which, it is worth noting, achieved 85% and
0.00053 in classification accuracy and in regression MSE, respectively.



82 5 Definition of a multi-DNN model for heterogeneous multi-task learning

0.1 0.35 0.45 0.55 0.65 0.75
Conditioning Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ge
ne

ra
tio

n 
En

tro
py

200

400

50

100

0 1 2 3 4 5 6 7 8 9
Original Class

0
1

2
3

4
5

6
7

8
9

Sa
m

pl
e 

Cl
as

s
0

200

400

600

800

Fig. 5.6: Sampling performance of the 100 VALPs according to conditioning capa-
bility and distribution over the possible classes. The red star represents the VALP
configuration with the largest conditioned accuracy. The small heatmap represents a
confusion matrix, comparing the class of the conditioning examples and the gener-
ated sample images by the VALP represented with the red star.

In this figure, we can observe that there are two decoders in the model, d2 and d8.
The samples produced by d8 only suffered one transformation before being used for
o2. The conditioning part happens with d2, as it receives two inputs while training,
and only one of them is deleted in the feed-forward phase (represented as a dotted
blue line). This enables the VALP to recycle a piece of information introduced in i0
using the path represented in dashed red arrows, to generate the samples, ultimately
producing conditioned examples.

Determining whether a model suffers from local mode collapsing is harder than
the global type. In Fig. 5.8, we have displayed 10 random generations of the model
represented with the red star in Fig. 5.6 from each class they were conditioned to-
wards.

From this figure, three different patterns can be identified. The first pattern con-
sists of particularly weak samples. We can observe some blurry examples of Dresses.
However, in most cases, it is possible to identify what class each image belongs to.
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Fig. 5.7: Schematic representation of the VALP configuration that showed the max-
imum conditioning from the input example in the produced sample. The arrow tags
represent the size of the data; how many variables there are, “val.” stands for nu-
meric values, “disc.” are discrete values, and “sam.” stands for samples. The dashed
red lines denote the conditioning path. The dotted blue lines denote connections that
are removed and replaced with N (0, I) when running the model.

Then, it is possible to appreciate a second pattern, which are those classes for
which the generated samples are easily identifiable, even though they look very sim-
ilar to each other. A good example of this is the Trouser class, which generated
characteristic trouser images, but which are very similar to each other.

Finally, there is the third pattern, which are those classes that had identifiable
generated samples, while keeping differences between them. Examples of this good
generation are the Sandal, Ankle Boot, and, in some cases, Bag classes.

Additionally, we can observe in this figure that, even though MobileNet failed to
classify any generation as an Ankle Boot (classifying them as Sandal or Sneaker),
the Ankle Boots were present among the generations of the model.

5.6 Open Challenges

After having empirically shown that the VALP is a viable approach to give a solution
to the HMTL problem, the next step in the path is to identify the directions towards
which the research over the VALP could be developed. In this section, we enumerate
some of these research lines.
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T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boot

Fig. 5.8: Randomly chosen samples generated by the model represented with the red
star in Fig. 5.6. The column names show the class the MobileNet assigned to them.

5.6.1 Structure search

We regard this extension of the study presented in this chapter as the most interesting
one, and, accordingly, it is addressed in the following chapter. In that study, struc-
tural variation operator-based methods are considered. However, the investigation of
several other NAS techniques can also be implemented or adapted to fit the VALP.
We enumerate some of them.

The authors of [35] design a sizable DNN and collect sets of related and ho-
mogenous problems such as image recognition (MNIST [74], CIFAR [67], SVHN
[96]) and reinforcement learning (several Atari games). The EA consists of a popula-
tion of agents that determine a path of neurons across the randomly initialized DNN.
Each individual is evaluated by training the parameters in the path of the network
using the standard procedure -backpropagation- for the first task. Then, the next task
is selected, and the weights of the connections that have been trained are frozen.
Subsequently, the network is trained with the second task using another agent. This
process is iteratively repeated until all tasks have been learned by the super network.

One of the most recent novelties in the area of automatically generating optimal
DNN structures is the usage of reinforcement learning. The authors of [137] imple-
ment a RNN that predicts the parameters of an already fixed DNN structure. Each of
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the predictions of the RNN is fed to it in the next time-stamp, so that the hyperpa-
rameter setting is kept coherent across the whole design. The RNN is updated using
the REINFORCE reinforcement learning technique over the error committed by the
automatically designed DNNs. This approach is tested generating both CNNs and
RNNs. The CIFAR10 dataset is used as a test to determine the quality of the CNN
model, while the Penn Treebank (language modeling) dataset is chosen for the RNN.
In both cases, the approach improved state-of-the-art results in the same conditions.
The developed RNN cell is also proven to be transferable, as it also reached state-
of-the-art results in character modeling in the same dataset. Using the same NAS
technique, in [137], convolutional cells are evolved. The main contribution relies
on the idea of evolving CNNs for simpler DBs and assuming that they can provide
equally good performance when transplanted to a more difficult domain.

A research with a similar focus was carried out later in [138], based on [137].
In this case, convolutional cells were evolved using the same NAS technique, using
as a reference point a simple DB; CIFAR10. Then, assuming the cell is optimal for
the image recognition problem, and given the repeated motifs in hand-made state-of-
the-art DNNs, a new superstructure that organizes repetitions of the optimal cells is
developed. The authors compared the results to a random search (instead of the RNN
that dictated the hyperparameters for each layer in the CNN), which also produced
considerably good results comparing to other approaches to this problem. They con-
clude that the great performance by the random search was due to the optimal design
of the search space.

5.6.2 New components

In the VALP architectures considered in this work, all the primary networks were
fully connected layers sequentially placed. Future VALP variants could implement
other architectures (some of which have already been identified in this work) that of-
fer an excelling performance in different areas. One clear example would be adding
recurrence to the VALP for an improved addressing of problems with sequential data.
One way to incorporate this concept to a VALP instance would be to allow recurrent
connections within the primary networks, which was not contemplated in the random
structure search used in our example. A more straightforward (and even complemen-
tary) way would consist of designing new primary networks that contained recurrent
connections within themselves, e.g., primary networks consisting of LSTM [45] or
GRU [19] cells.

CNNs would also play an important role in VALP, as they would allow the model
to maximize its performance in problems with image (or similar) data. These type
of networks have already been defined in this work as primary networks of a VALP.
However, they are yet to be evaluated in this context.

5.6.3 Loss functions

We selected one single loss function per task type, namely, cross-entropy for clas-
sification, mean squared error for regression, and the log-likelihood and KL for the
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sampling problem. However, more options exist for each of these tasks, and these
could be included in the optimization process of the model as performed in Chap-
ter 3, since some loss functions could have positive contributions towards the optimal
training of the model [40] (for example, any of the GAN loss functions for the gener-
ative task [49]). The incorporation of the GAN concept would remove the necessity
for a Generic MLP-Decoder structure in a sampling VALP. Not having a Decoder in
a VALP configuration would mean not having to change the model structure (con-
nection deletion) once it has been trained. This would be an upgrade in terms of
flexibility.

Linked to the loss function selection topic, the weights applied to each of the
sub-loss functions in the overall loss function have also been manually selected, after
observing that the KL component could neutralize the effectiveness of the gradient
descent algorithm. These parameter selection issues could be taken care of in the
aforementioned optimization procedure, as a parameter tuning. Moreover, the multi-
loss-function issue could also be addressed as a multi-objective problem of different
VALP configurations that offer performances of varying quality over the different
loss functions. A deeper insight in this matter is described in the next chapter.

Finally, this work has expanded MTL to the combination of different types of
tasks: prediction (regression and classification), and data generation. Other popular
problems, such as reinforcement learning, have not been included. Combining so
many loss functions of different natures and training them all in the same model
presents itself as a very challenging task.

5.7 Conclusions

In this chapter, we have addressed the heterogeneous variant of the multi-task learn-
ing problem; the HMTL. This problem consists of training a single model to perform
several tasks simultaneously, these tasks being of different natures (e.g., regression,
classification, and data sampling). To deal with this problem, we have proposed the
innovative VALP model, a DNN-based approach. We have firstly provided a for-
mal definition of the approach to lay the groundwork over which several different
work directions can be developed. The main strength of the VALP is its capacity to
manage different kinds of sub-DNNs and loss functions, which enables the model to
produce different types of data that accurately approximate any distribution, using
an optimization procedure over the different loss functions.

In this work, we have defined and focused on the fashion-MNIST HMTL prob-
lem, which consists of three different tasks (classification, regression, data gener-
ation). A particular VALP implementation has been designed to fit the particulari-
ties of this problem. A random search over the many-dimensional search space has
showed that the VALP can effectively and simultaneously carry out various tasks of
different types, which also involve loss functions of completely different nature.

More specifically, we have found VALP configurations that were able to optimize
the classical prediction tasks (classification and regression), while still producing
reasonably good results at data sampling. Some configurations were even able to
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partially avoid one of the most concerning issues in the generative community, mode
collapsing.

We have also enumerated a collection of detailed future research lines that the
newly created VALP model can benefit from. Applying techniques that have pro-
duced high-quality results in other models to the VALP will help to determine where
the strengths and limitations of the model lie.

However, the random search performed over the VALP structures is a mere
demonstration of the potential of this model. Several more sophisticated options ex-
ist for this purpose. In the following chapter, we treat the question of efficient NAS,
specifically applied to the VALP model.





6

Efficient exploration of a complex DNN structural
search space

6.1 Introduction

As it has been mentioned in the previous chapters, the lack of efficiency is a flaw
often held against NAS algorithms, as, commonly, assessing the quality of a DNN
structure involves weight optimization procedures, which tend to be rather costly [10,
11, 84, 129]. The efficiency of operator-based NAS algorithms is largely dependent
on the effectiveness of the operators they employ. However, that effectiveness could
fluctuate depending on when or where they are applied. In other words, the most
productive operator can end up being useless if applied in the wrong circumstances.

In this chapter we aim at opening a new research line in the direction of making
variation operator-based NAS more efficient. In this context, we identify a large po-
tential for improvement in these NAS methods, as most of them apply modification
operators randomly, hoping for an improvement in the resulting model. Developing
criteria to select the most suitable choice from a pool of operators, and the part of
the model to be the target of that modification during the search would improve the
efficiency of this kind of NAS algorithms.

More specifically, we attempt to illustrate the effectiveness of an intelligent NAS
approach by reducing the random component that characterizes current structural
search algorithms. With that goal in mind, we define a set of guidelines which can
help a NAS algorithm to make an informed choice between all the variation operators
at its disposal. These guidelines rely on a first step in which the model status is
diagnosed using a set of metrics, which dictate the variation operator to be applied
in order to improve the model in the second step.

Because our final goal is to propose an approach which can influence as many
operator-based NAS algorithms as possible, we aim at improving NAS methods
within a framework generic enough to encompass different types of neural models.
The model described in the previous Chapter 5, the VALP, fits that characteristic, and
we therefore base the study carried out in this chapter on that model. By proving the
proposal of this chapter in such a complex environment as the HMTL, its application
to other simpler scenarios -such as single task ones- is, in our opinion, guaranteed.



90 6 Efficient exploration of a complex DNN structural search space

This chapter is organized as follows. Next section introduces the literature on
which the proposal of this chapter is based. In Section 6.3, the ideas which are the
main contribution of this chapter are described. These ideas are materialized into
mechanisms for improving NAS runs, which are described in Section 6.4. The ex-
periments designed for showing the potential of the proposal are presented in Sec-
tion 6.5, and the obtained results are summarized and discussed in Section 6.6. Fi-
nally, Section 6.7 contains the conclusions drawn from this work, as well as some
future research lines.

6.2 Background
1

As stated in the introduction, the approach presented in this chapter consists of
the smart application of variation operators in order to increase the efficiency level of
NAS algorithms, particularly -but not only- when applied to HMTL. In this section,
we first introduce relevant work on the NAS area, classified by the type of search and
operators they employ, so that the beneficial aspects of each type are identified. By
integrating multiple perspectives on the NAS problem, an algorithm with access to
multiple options from which to choose when making decisions can be designed. We
next discuss some work performed on DNN model diagnosis, as the metrics proposed
in these works will be useful to make an estimation of the role played by each sub-
network (in the context of the experimentation of this chapter, a primary network
of a VALP). This estimation can ultimately lead to informed decisions about the
application of the correct operator to the correct location within the model, among
all the possibilities imported from the different NAS approaches.

6.2.1 Neural architecture search

We limit this review to the approaches that have the largest influence in the proposed
set of guidelines: neuroevolution (evolutionary algorithms, which usually rely on
neural variation or mutation operators) and network morphism (NM).

6.2.1.1 Neuroevolution

The traditional approach to NE commonly considers relatively low-parametrized net-
works, both regarding the number of layers and the amount of neurons in them. How-
ever, as the hardware supporting DNNs has improved, these methods have shifted
from performing low level modifications, e.g., the addition of one neuron or con-
nection [113, 115], to more complex operations, like the concatenation of full neural
1 Al final esta sección son como las piezas con las que construimos el método. Hablamos

de cambiar el nombre del related work del 3.36, pero yo creo que Background aquı́ queda
bien. NAS y diagnosis son los ladrillos sobre los que se construye el método, más que
trabajo relacionado. Ası́ también queda sólo una seccion de RW, en toda la tesis, y es en el
primer capı́tulo de aportación, el 3. Creo que encaja todo bastante bien.
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cells (which can be considered sub-networks) to the DNN [78, 84]. This second kind
of evolution has proven competitive against hand-crafted structures, and is the most
popular approach considering the amount of recent work devoted to it. Currently,
these two scopes of variation operators are known as micro (modifications limited
to the small cells or sub-networks within the model) and macro search (altering the
general structure of the neural model) [129].

The work in [106] presents an NE approach which adopts the NASNet search
space (initially designed for a reinforcement learning based NAS) [138]. The authors
propose the incorporation of an age property for all individuals in an NE procedure
carried out in the NASNet space, in order to favor individuals of recent creation at
the time of performing the tournament selection.

Some other approaches, while still being framed in the image treatment scheme,
have variations especially relevant to the approach presented in this chapter. For ex-
ample, in [84], NSGA-Net is proposed. This population-based algorithm permits the
inclusion of (potentially conflicting) objectives other than the classic single error
metric-minimization. This way, the authors address the problem of low efficiency
on state-of-the-art NE algorithms by introducing a second objective which seeks the
minimization of the computational complexity of the models.

The work presented in [17] introduces ModuleNet. This NE algorithm is largely
inspired by [84], although new mutation operators are introduced. This NE algorithm
is based on connecting sub-networks found in top-performing DNNs proposed in the
literature.

These works, as well as many others not included in this review, mostly follow
the same pattern: They introduce a framework different from those that have already
been proposed, and design ad-hoc operators for it. In this chapter, we aim at form-
ing a set of guidelines which are able to operate in different schemes in terms of
model structure and problem domain by encompassing different types of operators
and applying them when their positive impact towards the search can be maximized.
2

6.2.1.2 Network Morphism

Another research subfield which has grown separately, but is strongly related to NE
(due to being it based on neural structure variation operators), is network morphism.
It consists of a special set of operations for extending DNN structures in such a way
that the performance of the network is not altered.

The work described in [16] proposes two operators for expanding DNN archi-
tectures, Net2Net, applicable to both MLP and CNN architectures. Their effective-
ness is tested in a framework in which, initially, a relatively shallow and narrow
teacher network is trained for the objective task. Next, one of the two operators;
Net2WiderNet (enlarging the size of a layer) or Net2DeeperNet (introducing
a new layer to the DNN), are applied to increment the number of parameters of the

2 Igual que en el capı́tulo anterior, si pensáis que hay poco review aquı́, en el artı́culo de
Cádiz hay bastante que se puede copiar.
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model. By conveniently initializing the added weights and/or the activation func-
tions, the newly created student network is able to produce the same result as the
teacher network. However, because its modeling power has increased, better results
can be expected with further training.

These operators are first employed to gradually transform a shallow teacher into
an inception network. Results show higher accuracy and faster convergence than
training the same structure from scratch.

The authors of [127] then extended that work by resolving some of its inher-
ent limitations: e.g., the inclusion of non-idempotent activation functions in the net-
work modifications. Besides, the subnet adding operator was also presented, which
is equivalent to adding several layers at once. The authors finally used the network
morphism term to name the framework containing these kinds of operators. This ex-
tension of Net2Net is able to outperform the original proposal both in learning speed
and final accuracy.

The work in [33] takes full advantage of the framework defined in [127] and uses
it as a tool for a Neural Architecture Search by Hillclimbing (NASH), using a simple
structure as the starting point.

To the authors’ knowledge, the research carried out using these operators is rather
limited, considering the complementary role they can play for the more common
operators usually employed for NAS. Because of this, we integrate them into the
NAS framework which is governed by the guidelines proposed in this chapter, along
with more traditional operators for NAS algorithms.

6.2.2 Model internal diagnosis

Studies attempting to understand the way DNNs operate have yielded many interest-
ing approaches [3, 8, 111].

The authors of [111] propose the diagnosis of a neural model by computing the
mutual information between the representations of the information found in the dif-
ferent layers of a DNN and the input and the output of the network during the train-
ing of the model. They concluded that, when trained with the common combination
of stochastic gradient descent (SGD) and backpropagation, the weight optimization
procedure of a DNN consists of two different phases, the information compression
phase and the error minimization period.

In [3], a similar approach is presented. The information representation in each
layer of a classification DNN is extracted for a set of observations, and a linear clas-
sifier is fitted between each of these representations and the original classes of the
observations, independently. The errors reported by the classifiers from the different
layers can serve as a measure of the quality of the information representation at each
level of depth in a DNN. Because linear classifiers are rather limited and require rich
representations of the data to perform well, it can be expected that, the deeper the
layer -and therefore, the richer the representation-, the better a linear classifier will
perform.
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In the both previous approaches, [3, 111], comparing the values given by the
metrics (the mutual information and the classification error) between layers can help
to understand the role played by each layer within the general model context.

In an attempt to identify the origin of an issue in the DARTS [80] search space,
the authors of [125] propose the deletion of different parts of a DNN, and using the
observed performance decrease of the DNN as an estimation of the relevance of that
part to the general model.

Although the explainability of the decisions made by DNN models is not among
the objectives of the approach presented in this chapter, trying to estimate the role of
a sub-network (named sub-DNNs indistinctly) within a neural model composed of
multiple sub-networks is. In this chapter, we propose the exploitation of this kind of
metrics so as to assess the role played by each sub-DNN to the general model in order
to determine the structural variations which have more potential for improvement in
terms of model performance.

6.3 Intelligent search

Due to the costly nature of some NAS algorithms caused by the magnitude of the
search space and the computational complexity of the weight optimization proce-
dures, an efficient structural search of neural models based on sub-networks is cru-
cial, especially when dealing with HMTL problems. This efficiency is mainly de-
pendent on the operators integrated on the search algorithm, and, most importantly,
how they are employed. In this section, critical aspects of different search methods
are identified, before reflecting on how to exploit these characteristics in order to im-
prove the efficiency of the search algorithms. First, we categorize the search methods
by the number of neural models being taken into account in any given moment.

• Single model search: In this instance, the search algorithm consists of improving
a single model at a time, as in a local search (e.g., hill climbing).

• Population based search: This second formulation considers several models at
each time during the search.

6.3.1 Model internal diagnosis

The first key question in the proposed intelligent structural search is identifying
which component or part of the structure (in our case, a sub-network) should be
improved at a given point. To that end, we identify diverse sources of information
depending on the type of search, which could help to make the right decision in this
matter.

In a single model scenario, the main sources of information consist of:

1. Comparisons with the performance of models evaluated in previous iterations of
the algorithm.

2. The relevance of the different components within the model to the final predic-
tions made by the model.
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3. The effectiveness of the training procedure to improve the prediction.

In the population-based search, along with these three information sources, other
information sources are also available. These can be used to gauge the performance
of a given model with respect to its peers, which can provide a more accurate idea of
which component of the model, when modified, can provide a better gain in terms of
model performance or loss function optimization.

6.3.2 Metrics

With the information sources identified, the second step is to determine how the
knowledge is going to be captured. Focusing on the single model scenario, we for-
malize four different metrics:

1. Historic sub-loss information: Performance metrics extracted from the loss func-
tions associated to the sub-network. The performance of a sub-DNN (or a subset
of them) along time can be estimated comparing and combining metrics -e.g.,
the loss function- at each iteration.

2. Module intervention: Inspired by neural architecture selection methods [125],
here we modify some element of a sub-network (e.g., setting the weights to
random values) to estimate its importance as the loss in performance as a result
of the intervention.

3. Input intervention: Similarly, it is possible to intentionally modify input values
(i.e., a subset of the features of the data) and estimate their relevance with respect
to the predictions.

4. Dependency measures: Metrics (such as the mutual information or a classifica-
tion algorithm error [3]) between the output of each sub-network and the model
output(s) it contributes to, would ideally improve the closer we get to the model
output in the path followed by the information within the model [111]. If this is
not the case, it could be interpreted that the component is not helpful.

For population-based approaches, we define an additional metric based on com-
parisons between models (although it could also be applied to the isolated model
search by comparing the current model with other models in previous stages of the
search).

5. Relative performance: several rankings -at least one per model output- can be
arranged, according to the performance of the model in each output, relative to
the rest of models. The position of a model in the ranking of a given output can
determine the quality of the sub-networks related to that output.

6.3.3 Variation operator types

The third step is to define variation operators that cover the different needs that the
models can present at different points during their development.
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In this chapter, we categorize the variation operators according to two attributes:
their aggressiveness, and the effect they have on the complexity of the model. Re-
garding aggressiveness, we distinguish two types of operators:

1. We consider an operator to be aggressive when it performs drastic alterations
to the model structure, in such a way that the performance of the model can be
severely changed in at least one of the objectives (e.g., operators commoly used
in NAS).

2. On the contrary, an operator is considered as gentle if the performance of the
model does not vary after its application (i.e., morphism operators).

When discriminating operators by the effect they have on the complexity of the
model, we also divide the set of mutators into two subsets;

1. An operator is considered a reducer when its application decreases the number
of weights in the model, and thus, theoretically, the modeling capacity.

2. Alternatively, an operator is an extender in case the model sees its number of
weights increased.

Because we have two categories for each characteristic, we can define four type
combinations. First, an aggressive extender operator would increase the number of
weights of a model at the same time as the performance of the model is altered.
For example, integrating a new random sub-network to the model and connecting
it to other sub-DNNs which are ultimately connected to an output could alter the
performance of the model in that output.

Secondly, a gentle extender operator would increase the modeling capacity of
the model without modifying the performance of the model, e.g., by modifying other
components already present in the model and cautiously designing and placing the
new component.

Thirdly, an aggressive reducer would decrease the modeling capacity and have
the collateral effect of altering the model performance, e.g., by deleting a sub-DNN
or a connection which was relevant to the overall model.

Finally, a gentle reducer would delete certain parts of a model, without affecting
the performance of the model. The deleted parts would need to be irrelevant to the
model.

6.3.4 Donation operator

In population-based searches, mutation operators are not the only method to per-
form alterations to models. In this case, although they have been widely omitted by
the NE community [39, 122], we define a special version of crossover, traditionally
referenced as the conjugation operator [51]. In this method, one model, the donor,
donates a part of itself (e.g., the output exclusive subgraph) to another model, the
host.
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6.3.5 Principles for using the metric information

In this section, we propose a set of criteria aiming at optimizing NAS procedures
for HMTL models (although their application is not limited to that kind of models),
exploiting the metrics defined in Section 6.3.2 to guide the selection of the variation
and donation operators, as defined in Section 6.3.3 and Section 6.3.4.

6.3.5.1 Historic sub-loss information

This metric can be used to observe the behavior of one or more model outputs by
fitting a linear regression model which attempts to predict the sub-loss value of an
output, given the training step. This way, the slope of the loss function can be approx-
imated with a line and, depending on that value, different approaches can be taken.
For example:

• If the slope is close to 0 or positive, it can be concluded that the output has
converged. In that case, an aggressive operator could take the model away from
that local optima

• When the slope is slightly smaller than 0, it can be interpreted that the output
is still improving, although a major improvement is unlikely. In this case, an
extender gentle operator could add more modeling power, helping the model
perform another significant gain without losing the current performance.

• In the final case, in which the slope is considerably smaller than 0, the output
is still in the early phase of accuracy gaining, and should be left as it is until a
certain level of convergence is reached, i.e., the previous two scenarios.

6.3.5.2 Module intervention

This metric can be used to determine the relevance of a given sub-network to the
overall model by measuring the performance loss after resetting the weights of that
sub-DNN.

• If the performance loss is not great for any output, the importance of the sub-
DNN to the model is low, and a reducing operator is advised.

• On the contrary, if the drop off is significant, the component is assumed to be
working as intended, and should either remain intact or be expanded using a
gentle operator.

• Finally, if the sub-network is connected to an output which was not affected, a
connection deletion would reduce the model complexity without deteriorating
the overall model performance.

6.3.5.3 Input intervention

Similarly to Module intervention, this metric would estimate the importance of a
given input to the final prediction of the model. This could be done by observing the
performance change in the different outputs when randomly setting a subset of the
features of the data:
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• If the performance loss is not great, then the input is not very relevant to the
output, and deleting a connection that connects the path between the input and
the prediction would be advisable, so that the model graphically represents that
independence.

• If a significant percentage of performance is lost, then the input is relevant to the
output, and no connection should be deleted.

6.3.5.4 Dependency measures

As was the case for the module intervention, this metric serves the purpose of mea-
suring the importance of a component for the model. In this case, a metric (e.g.,
the mutual information or the error of a linear estimator) is computed between a
model output and the outputs of the components on its subgraph. Next, for each
sub-network, the obtained value is compared to the values of its predecessor in the
model.

• When the measure indicates a larger dependency between the values, it can be
assumed that the component is performing satisfactorily, and could be either
gently expanded or left unchanged.

• If the value does not improve, the component is not performing as expected, and
a reducer operator can be applied without losing much potential.

6.3.5.5 Relative performance

By constructing rankings of models according to their performance in the different
outputs, it would be possible to estimate the relative performance of a model in that
output. A model with all but one output in the higher part of their corresponding
rankings could become the host of a subset of sub-networks related to an output
from a model with a high rank in that specific output ranking. This vision is closely
related to multi-objective optimization, as one model can be viewed as valuable or
useless depending on different factors, like the output being evaluated, or the current
state of the search algorithm.

6.4 Searching for optimal VALP structures using variation
operators

The previous section presented a general approach and guidelines towards an in-
telligent structural search. In order to show its utility, this theoretical framework is
implemented into the VALP NAS context. In what follows, we introduce variation
operators which can be applied to the VALP, but could, generally, be applied to any
other neural model based on sub-DNNs. We decided that the defined operators must
comply with the characteristic of having to produce structurally valid VALPs as those
defined in the previous chapter. The operators are classified according to the charac-
teristics described in Section 6.4.2 (aggressiveness and effect over the complexity of
the model) and the scopes of application:
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1. Sub-networks, operators used in micro searches.
2. General model structure, macro search operators used for modifying the connec-

tions between sub-DNNs.
3. Hyperparameters
4. Crossover operator

We understand that a scenario in which a set of weights is irrelevant to all the out-
puts of a model is highly unlikely in the context of the VALP, and therefore assume
that a model losing some of its weights cannot maintain its performance. Conse-
quently, we do not define any gentle reducer operator.

6.4.1 Sub-networks

We start with the operators with the most reduced performance scope (micro search):
layer-wise modifications of the sub-networks in a VALP. Three different mutation
operators have this scope:

• add layer: This extender operator adds a layer in the network. Depending
on how the weights are initialized and where it is added, this operator can be
aggressive (e.g., by randomly initializing the weights) or gentle (e.g., by using
the morphism approach).

• remove layer: This operator deletes a layer from the network. The rest of the
layers remain the same. As a reducer, this operator is aggressive.

• extend layer: This operator adds neurons to a layer from the network. The
remaining layers stay the same. This extender operator can be aggressive or gen-
tle.

6.4.2 General model structure

The next set of operators is capable of affecting the VALP structure in its higher
level (macro search), i.e., the interconnections between the different sub-DNNs in a
VALP. We define five modifiers with this capacity:

• add connection: Given two currently unlinked sub-networks of a VALP, this
operator links them by creating a new connection. In other words, the second
sub-DNN receives the output of the first sub-network as additional input. This
extender operator can be both gentle or aggressive.

• delete connection: Given a connection of a VALP, this operator deletes it.
This operator is aggressive and reducer.

• insert network: Given a connection of a VALP, this operator inserts a net-
work in the middle of the connection. For example, if a connection c0 that links
n0 to n1 is chosen, a connection c1 between n0 and the newly created nm, and a
connection c2 between nm and n1 are created, and c0 is deleted. This expander
operator can be both aggressive or gentle.



6.4 Searching for optimal VALP structures using variation operators 99

• delete network: Given a network nm of a VALP, this operator deletes it.
Each sub-network providing data to nm switches to supplying data to each and
every sub-DNN nm provided data to. This operator is reducer (and thus, aggres-
sive).

• clone network: Given a network of a VALP, this operator duplicates that
network and all the connections related to it. This operator is an expander and
can be both gentle or aggressive.

These last five methods will be applied only if structural correctness (as de-
fined in the previous chapter, i.e., complying with data type restrictions, guaran-
teeing that all DNNs receive and provide information, etc.) is guaranteed. For exam-
ple, delete connection will not, under any circumstances, delete a connection
when it is the only source of data of a sub-network, or delete networkwill never
suppress a sub-network when it is the only one between a model input and a model
output.

The gentle operators defined in this chapter depend entirely on reusing and ade-
quately modifying the weights optimized in the previous training epochs. We reuse
the weights learned by a model before being altered, i.e., we apply weight inheri-
tance, whenever it is viable (when a random sub-DNN is added to a VALP, no weight
inheritance is possible).

Graphical examples of how these operators work are shown in Fig. 6.1.

6.4.3 Hyperparameters

Searching for the optimal model architecture (the sub-networks and how they are
interconnected within the model) would only raise the model up to a certain point,
as the rest of model components need to be synchronized to obtain an optimal per-
formance. This is the case of the loss functions used to optimize the weights of the
neural model, and other hyperparameters, such as the SGD algorithm. Other aspects
related to training, such as the learning rate and batch size, also have to be properly
set. With this in mind, we define the following variation operators, all of which are
gentle:

• change lr changes the learning rate of a model output. For example, if con-
vergence is detected in the Historic sub-loss function information, the learning
rate of the loss function of that output can be decreased, aiming at improving the
effectiveness of the training procedure over that specific objective.

• change sgd changes the SGD algorithm used to optimize the weights of the
model with respect to a model output.

• change bs changes the size of the batch used at each training epoch.

6.4.4 Crossover operator

In this multi-objective scenario, each objective is independent of each other to some
degree, as normally each output will have some exclusive sub-DNNs (and therefore,
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Fig. 6.1: Examples of the different operators. In all cases, the variation is performed
relative to the VALP component in the middle of the figure (in red). For Figures 6.1a,
6.1b, and 6.1c, a connection. For Figures 6.1d, and 6.1e, a network (n2).

weights). Employing crossover-like operators enables parts to be cherry picked of
models for constructing other models with the best parts of each one. We define a
crossover operator based on the donation between models:

• Exclusive subgraph crossover: This aggressive operator can be applied when,
based on the Relative Performance measure, a model which behaves adequately
in multiple tasks fails at another one. A model with a top performance in that
last task is selected as the donor of the exclusive subgraph of that output for the
first model, the host, which has its exclusive subgraph replaced by the donation.

We define the output subgraph and output exclusive subgraph of the set of ver-
tices G as follows.

The output subgraph of an output ol consists of all the components that, upon
modification, alter the prediction in ol. The output exclusive subgraph consists of a
similar subgraph, although in this case, the components that affect multiple outputs
are not included in neither output subgraph.

Figure 6.2 shows two examples of subgraphs. The first one, colored in blue, is the
exclusive subgraph correspondent to o1. It contains three networks (n1, n3, n5), all
of them only ultimately connected to o1. n2, and n6 cannot be part of that exclusive
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Fig. 6.2: Example of a VALP, with its different subgraphs. The n1, n3, and n5 sub-
DNNs would be part of the exclusive subset of o1, as they are exclusively connected
to o1. Idem for the n4 sub-network and o2. Adding the n2 and n6 sub-DNNs to either
subset would result in o1 and o2 subsets respectively, as these would contain all the
sub-networks involved in these outputs, including sub-DNNs which are involved in
other outputs.

subgraph because they also provide data to o2. The exclusive subgraph correspondent
to o2, in red, is composed of just n4, as it is the only network exclusively connected to
that output. The output subgraph of o1 is composed of all the components ultimately
connected to o1, i.e., n1, n2, n3, n5, and n6. Finally, n4, n6, and n2 would form the
output subgraph of o2.

6.5 Experiments

We have designed a set of experiments in order to validate some of the general guide-
lines for the NAS framework proposed in this chapter.

Several works have reported that starting from simple neural models with rel-
atively few weights and allowing them to evolve towards more complex structures
yields positive results [83]. The experiments described in this section report results
of the employment of the proposed search guidelines with this same mindset. We
consider a model with a number of components close to the minimum (roughly one
sub-network per model output) to provide the required output to be on its initial
stages, whereas a mature model would consist of a more complex structure with
more sub-networks and connections.
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6.5.1 Test Benchmark

For the different parts of the experimentation, we use the multi-objective Fashion-
MNIST problem described in the previous chapter, and also define the analogous
MNIST [75] multi-objective problem. This way, we can test the performance of the
operators when acting in an environment where the outputs are related to a single
data input. Additionally, we simulate the scenario in which the rules are inferred
from one set of experiments, and are then applied to another, more complex prob-
lem. The two problems having very similar characteristics in terms of number of
examples and features as well as data type and number of classes is purely coinci-
dental, as this approach could be tested in problems of varying data inputs, outputs,
and characteristics of both.

6.5.2 Initial experimentation

The first step consists of testing the proposed metrics and operators isolated from the
NAS framework. This way, we will be able to extract valuable information about the
operators, and how to use the information given by the metrics with the final goal of
deciding which operator and where it should be applied in a NAS process.

In order to assess the impact that each operator can have in different model sce-
narios (these scenarios being described by the values obtained from the different
metrics), we perform an exploratory search over the space of medium-sized VALPs
(i.e., twice as many sub-networks as model outputs). In this experimentation, we will
be able to observe the difference between applying gentle mutation operators over
their aggressive counterparts.

Additionally, and this is the main goal of this experimental section, we aim at
setting the grounds of the set of rules which will be helpful to improve the efficiency
of future NAS runs. To that end, we attempt to identify which operators offer the
largest improvement potential. Because the rules we are looking for should not be
tied to the particular problem used in this instance, we are relying on the metrics
defined in Section 6.3.2 instead of the common metrics for assessing the performance
of a prediction model (e.g., accuracy for a classification model).

Choosing the MNIST problem, we test the effect of the mutation operators de-
fined in Section 6.4.2. To that end

1. 100 VALPs are randomly created and trained during∼67 epochs (20,000 batches
of size 200).

2. Every operator is applied to different clones of each VALP. The operators are
applied to each component of the VALPs if and only if structural correctness is
guaranteed.

3. Every VALP is retrained to adjust the weights of the model to the variation for
∼17 additional epochs (5,000 more batches).

To determine the quality of the VALPs at each point, we have evaluated them
before the modification and after the secondary training.



6.5 Experiments 103

6.5.3 Main experimentation

In this second step, we want to employ the knowledge obtained in the first step on
a NAS procedure. With that goal in mind, we propose a common HC algorithm
(Figure 6.1 contains a pseudo-code form of the method) with two different imple-
mentations: the common approach, in which operators are chosen randomly, and the
smart approach, in which the most promising operator is chosen. The pseudo-code
makes use of the following hyperparameter and functions:

• step limit: This parameter sets the number of evaluations awarded to the algo-
rithm. In this case, it is fixed to 60.

• random VALP(): This function randomly initializes a VALP as described in the
previous chapter, with a limited number of components.

• evaluate(model): Given a VALP, this function evaluates the model and returns
one value per model output. In this chapter, it consists of a triple, since the prob-
lem has three objectives. The chosen metrics are the classification accuracy, the
MSE for the regression problem, and the FID [54] for the sampling output.

• select operator(model): Given a VALP, this function selects the operator to be
applied and the target of that operator. The difference between the random and
the smart approach resides in the implementation of this function. The applica-
tion of the operator guarantees structural correctness.

• variation(model, op): Given a VALP and an operator, this function generates a
neighbor of the VALP by applying the operator.

• <: This operator compares two tuples of values. In this case, if at least two of the
three values of the operand on the left are lower than their corresponding values
of the operand on the right, it returns True. Otherwise, False is returned.

1 current← random VALP()
2 curr fitness← evaluate(current)
3 step← 0

4 while step < step limit

5 op← select operator(current)
6 candidate← variation(current, op)
7 cand fitness← evaluate(candidate)
8 if cand fitness < curr fitness

9 current← candidate
10 curr fitness← cand fitness

11 step← step+ 1

12 return current, curr fitness

Alg. 6.1: HC approach used in the experiments.
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The two variants of the algorithm are tested on the (more difficult) Fashion-
MNIST multiobjective problem. Using the start-simple-and-sophisticate approach,
a random solution is initialized containing between one and two times as many sub-
networks as model outputs. Then, both variations of the algorithm are applied to
search for more complex VALP structures.

The initial VALP configurations used as the starting point is trained for 5.000
batches. At each step of the HC algorithm, the modified model is retrained for 1.000
additional batches. Each HC variation is run 30 times with different random seeds
in order to avoid biased conclusions, product of the stochastic component of the
method.

As in the initial experiment, we constrain the set of variation operators to be
investigated to those defined in Section 6.4.2.

6.6 Results

6.6.1 Initial experimentation

First, we want to investigate whether the gentle operators consistently perform better
than their aggressive counterparts. To that end, we have computed the improvement
observed in the VALPs between the end of the first training step and after it has been
modified and retrained. With the improvement measured -general loss function value
after second training divided by performance after first training, both measurements
in logarithmic scale- we subtract the improvement observed due to the application of
gentle operators to the improvement caused by their corresponding aggressive coun-
terparts. This metric G serves as a measure of the gain or advantage of using one
class of operator over the other. Figure 6.3 shows the frequency (y axis, in logarith-
mic scale) of the G difference values (x axis). The more positive they are, the bigger
the difference in favor of the gentle operator. Any difference superior to one is cut to
that value to improve the visualization of the figure.

As can be observed in Figure 6.3, the gentle operators have outperformed the
aggressive ones considerably more frequently than the other way around, especially
taking into account extreme differences (values over 1 and below -1). Gentle opera-
tors are, in general, conservative variations when it comes to increasing or decreasing
the performance of the model. In closer comparisons, the gentle operators also tend
to produce the bigger improvement in model quality. However, although less fre-
quent, there are many cases in which the aggressive operator had a more positive
impact than their gentle counterparts. The noise these operators introduce into the
model in the form of random weights, appears to be able to shake the model from
a local optima, from which the gentle operator could not make it escape. This is es-
pecially visible in the cases in which extreme improvements were achieved by the
aggressive operators (values under -1).

The presence of these last cases suggests that the employment of aggressive op-
erators is not only viable, but advisable in some scenarios. This theory is also backed
up by statistical testing. After the null hypothesis of all mutations producing the same
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Fig. 6.3: Frequency (y axis, in logarithmic scale) of the G difference values (x axis)
observed when comparing the improvements obtained by VALPs after being mod-
ified by gentle operators, and their aggressive versions. Positive values indicate a
better performance of the gentle operator, whereas negative ones do the exact oppo-
site. Larger numbers represent larger differences between operators.

effects being rejected by the Kruskal-Wallis statistical test [69], the Dunn post-hoc
test [30] found significant differences between all pairwise comparisons between
mutations -p-value < 0.0007- except for one, the comparison between the aggres-
sive and gentle version of the connection adding operator. This is probably due to
the high number of extreme differences in improvements. We now address the ques-
tion of how to create the set of rules which helps NAS algorithms to correctly identify
the best operator given one model.

Regarding the second part of this experimentation, we attempt to define the met-
rics that will eventually guide future NAS runs. With that goal in mind, we aim at
observing, given the metric values (from those defined in Section 6.3.2), which op-
erator(s) produced the largest gains. The two metrics which have produced the most
significant differences among the analyzed mutation operators were the historic sub-
loss information and the module intervention.

Regarding the loss function slope, Figure 6.4 shows the percentage of improve-
ment observed in a VALP after it was modified by the gentle operators and their
aggressive counterpart (in the y axis, in logarithmic scale), regarding the estimated
slope of the loss function of the regression output of the VALP (x axis). The improve-
ment percentages (the lower, the more improvement) have been cut to the [−0.5, 0.5]
range. The loss slope also only considers a minimum value of −0.00015. As can be
seen in the figure, most improvements are marginal, just below the 0 mark. However,
some interesting insights can be extracted.

For example, because of the lack of existence of large performance decline when
applying the clone net operator (Figure 6.4a) if the loss function is still decreasing
(left-hand side of the figures), we can conclude that this is usually a beneficial mu-
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(a) Clone Net mutation operator.
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(b) Add Connection mutation operator.

-1.5e-4 -9.e-5 -3.e-51.e-5
Loss slope

0.4
0.3
0.2
0.1

-0.0
-0.1
-0.2
-0.3
-0.4
-0.5

Im
pr

ov
em

en
t

Divide Con., Aggressive

-1.5e-4 -9.e-5 -3.e-51.e-5
Loss slope

Divide Con., Gentle

0

100

200

300

400

(c) Insert Network mutation operator.

Fig. 6.4: Percentage improvement observed over the regression output of the VALP
(in the y axis, the lower the value, the more improvement) in logarithmic scale, by
different mutation operators, with respect to the slope of the loss function evolution
(x axis). The color darkness represents the number of mutations that registered the
improvement in the y axis. The subfigures on the left-hand side represent data relative
to the aggressive version of the operators, whereas the ones in the right-hand side
show information about the gentle ones.

tation. The connection adding operator (Figure 6.4b) was also able to produce large
performance gains when the loss function of an output is still steeply decreasing.
This means that these kinds of changes are beneficial, especially the gentle form,
when the loss function is still decreasing.

The mutation that places a network in the middle of a connection (Figure 6.4c)
was able to produce significant changes (both improvement and deterioration) when
the slope of the loss function is smaller, i.e., it is close to converging. This means
that applying it on an output which has saddled in a poor local optima, the model can
dramatically improve, while an abrupt performance loss would not hurt the model,
as the local optima was not desirable anyway.

A similar set of figures has been generated for the network relevance metric. Rel-
evance consists of the change observed between the two stages of the model, before
and after being affected by the module intervention approach, and it is also measured
in percentage points obtained by dividing the original metric value by the one ob-
tained after the module intervention. This way, if no change was observed in a model



6.6 Results 107

output after being affected, a 1 is recorded. If the performance was halved (e.g., only
half of the observations previously correctly classified are correctly classified after
modifying the model), a 2 is recorded.
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(a) Clone Net mutation operator.
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(b) Add Connection mutation operator.
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(c) Insert Network mutation operator.

Fig. 6.5: Percentage improvement observed over the regression output of the VALP
in logarithmic scale (in the y axis), by different mutation operators, with respect to
the relevance of the network affected by the operator, also in logarithmic scale (x
axis, the larger, the more relevant a network to the output).

In the case of Figure 6.5, because the performance of a regression output can
decrease indefinitely, the relevance has been cut to 0.4 (in logarithmic scale). As
can be observed in the top right corner of the figures, when modifying a network
relevant to an output, the result, as expected, can be very bad if the mutation is an
aggressive one. The gentle network cloning appears to be a conservative choice when
it comes to a relevant net, given the few cases in which performance declines have
been observed. A similar effect can be observed with the insert network operator,
the latter producing more improvements when applied to relevant networks. The
connection adding operator in this case is not advisable with relevant networks.

6.6.2 Operator per network characterization

With the insights made in the previous section, we have defined the following set of
rules to display the potential of this kind of guided searches.
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• When a network involved in a loss function registers a steep descent, the gentle
version of the network cloning mutation can be applied.

• In case a network is part of an output which is moderately descending, the add
connection operator can be applied.

• When a network is part of an output in a local optimum, the insert network can
be applied.

• If a network is not relevant for some outputs it is connected to, but is for other
ones, the delete connection, the insert network, or the aggressive version of the
clone network can be applied.

• If a network is not relevant for any output, the network deletion operator can be
applied.

These rules have been compiled into the mutation selection guidelines, which are
going to be used in the HC algorithm.

6.6.3 Main experimentation

The threshold values for determining whether a loss function is descending or not,
or how relevant a sub-network is, are parameters of the NAS algorithm. In this case,
they are estimated from the initial experimentation. A loss slope larger than −10−10
is considered to be stuck, and if smaller than−2×10−5, it is determined to be steeply
descending. Anything in between these two values is considered to be moderately
descending.

A network is considered to be relevant to an output if the performance of the
VALP in that output decreases by 20% or less.

Although these values have been estimated using only this experimental section,
as similar loss functions have similar behaviors, we consider them to be transferable
to other problems.

6.6.4 Operator selection

With these defined criteria, all sub-networks within a VALP can be modified by sev-
eral operators at each stage. Therefore, we define a hierarchy in which the operators
are organized according to the priority they are given to modify the models.

1. Reducers: Because we pursue efficient models, any network or connection which
is not valuable for the overall performance should be deleted.

2. Aggressive expanders: Any network which, according to the rules defined in the
previous section, can be affected by an aggressive expander operator, is assumed
not to be working properly, and this is the second priority.

3. Gentle expanders: Giving more modeling power to a model only makes sense
when all its resources are being used, and therefore this is the last type of opera-
tors to be taken into account.
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In the smart approach, when selecting the operator to be applied, within the set
of operators with the highest priority, one is chosen at random. If a selected operator
is not able to improve the current model, in the next step, it is not included among
the candidate operators to generate a neighbor of the model. When no operator from
those selected by the described method is able to create a candidate model which
could replace the current solution (taking into account all three preference level sets),
a random gentle operator is applied to a random network in the model.
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Fig. 6.6: Boxplot showing the number of points (y axis) in the PFs generated from
combining the pairwise HC runs (blue for random, orange for guided), per step (x
axis).

Since we deal with multi-task problems where multiple objectives have to be
simultaneously optimized, the question of deciding what model is the better one
is not trivial, and, therefore, neither is when comparing search algorithms. We thus
resort to using two Pareto front-based approaches to compare the quality of the VALP
structures found.

For the first comparison, we take each of the 30 pairs of runs separately, consid-
ering as pairs those runs which start from the same random VALP structure and use
the random and guided HC approaches. At each step, all the structures found (across
the whole search) by a pair of runs are compiled into a single set, and a Pareto front is
computed, considering the three outputs of the model. This way, in, for example, the
fourth step, we have 30 different PFs, each being composed of at most eight points,
four from each of the corresponding runs (one per completed step). Next, the num-
ber of points in the PF from each HC approach are counted. In Figure 6.6, boxplots
which display the number of points in the PFs (y axis) by each approach (orange for
the guided HC and blue for the random version), in each step (x axis) are shown.

As can be seen in Figure 6.6, in the initial 20 steps, both versions of the algorithm
work similarly, with a slight advantage for the random HC. This trend changes after
the 20-th step, where, although the median remains similar, the top results are clearly
produced by the guided version of the algorithm.
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Interestingly, both the random and the guided versions have produced one run
each which generate a number of points in their corresponding PFs far superior to
the rest. These outliers are also higher in the guided version.
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Fig. 6.7: Barplot showing the number of points (y axis) in the combined PF from
each approach (blue for random, orange for guided), per step (x axis).

Secondly, we consider all 30 runs together, in order to know what algorithm is
able to obtain the best results, overall. In this case, instead of constructing one PF
per step and pair of runs, we simply construct a single PF from all the points found
across the 30 runs limited only by the step. Again, all the found structures until a step
are considered in each step. The results are shown in Figure 6.7.

Although Figures 6.6 and 6.7 look dissimilar, the information shown coincides.
During the initial stages of the search (the initial 16-17 steps), the algorithms are
searching for the best area to exploit, at which the random HC seems to outperform
the guided version. This comes as no surprise, as the randomized approach does not
focus on a search path to follow. Because it can perform modifications in any place
within the model structure, the model can improve or lose performance continuously
in different outputs. This helps a larger presence of points generated by the random
HC in the PFs shown in Figure 6.7, as opposed to the guided version, which focuses
on improving certain aspects of the model -the efficiency of the sub-networks- before
starting to seek performance improvements. That first phase ends near the 18th step,
as one of the guided runs achieves one VALP configuration capable of dominating
all the ones found during all searches. Slowly, other points start to form the PF, most
of which belong to the guided runs. This shows the benefit of the guided search over
the randomized one in the long term when performing intelligently chosen moves.

Figure 6.6 displays the gains obtainable from using the smart approach in
medium term, as it shows how the guided search gains an advantage early in the
search, and the randomized HC spends several steps trying to catch up, until it even-
tually does, after ∼ 40 steps. On the contrary, Figure 6.7 shows the benefits of the
proposed algorithm in the longer term, as it is able to produce more top results than
the simpler HC version as steps are taken.
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6.7 Conclusions

Our efforts in this chapter are focused on compiling a set of guidelines which aims at
maximizing the effectiveness of the application of variation operators to model struc-
tures during a structural search procedure, illustrated using a complex scenario, that
of HMTL. More specifically, we have first identified several metrics which can be
used to determine the role that different sub-DNNs play on the overall performance.
Secondly, we have compiled a set of variation operators previously used in NAS pro-
cedures described in the literature and classify them according to the effect they have
on the complexity and performance of the model. Next, we have conducted an exten-
sive exploratory search on how a subset of the operators affects the performance of a
medium-sized model, in order to identify patterns that relate the defined metrics and
the largest improvements in the models. These patterns have later been transformed
into a set of guidelines for enhancing the efficiency of future NAS searches. These
guidelines add one level of sophistication to current NAS algorithms, as, opposed
to the common practice of randomly selecting a variation operator, a more informed
choice is made, which can save the need to evaluate DNN structures affected by
the wrong operator. Finally, a comparison of the performance of the two variants of
NAS search -blind versus guided by the introduced rules- has been presented as an
illustration of the gains that could be obtained in NAS efficiency.

The main contribution found in this chapter is the methodology for diagnosing
the state of an VALP model and identifying the role fulfilled by its different compo-
nents, and the application of these metrics for more efficient NAS algorithms. One
key for this goal is the set of metrics defined with this purpose, although others which
complement those introduced in this chapter could result in more valuable informa-
tion about the model, ultimately making the processes more efficient.

The experiments conducted in this chapter serve as a blueprint for implementing
the presented ideas to other problems and domains, as they have already served the
purpose of exploring a complex search space using a rather simple algorithm more
efficiently than the common, random-based approach, both in the medium and long
term. The architecture searches conducted in this chapter have been limited to simple
local searches. However, the defined methodology is not restrained to be applied in
such scenarios, and its effectiveness on other search algorithm types is left as future
work.





7

Conclusions and future work

This chapter summarizes the main contributions drawn from this dissertation, as well
as a compilation of general directions for future research.

7.1 Contributions

In the last decade, DNNs have been applied to solve multiple and diverse problems,
having to deal with increasingly complex challenges. For this purpose, NAS methods
have emerged as a very suitable proposal to automatically design strong-performing
DNN architectures. The ever-increasing complexity of the search spaces needed to
be explored by these methods, however, is reducing the feasibility of the efficient
performance of NAS algorithms. In this conjuncture, we set the focal point of this
dissertation on reducing the high computational workload that NAS algorithms en-
tail in their current definition. In order to achieve this goal, the first step is to deeply
understand the inner mechanics behind these algorithms. In order to accomplish that
understanding level, we have tackled the problem of NAS efficiency in two different
scenarios, both in complexity level and the detail in which they have been studied
by the research community: generative modeling and multi-task learning. In both
cases, our approach to the problem has consisted of a first step in which an exten-
sive study of different NAS searches has been carried out, aiming at validating and
understanding different characteristics of the processes. Once the transferability of
the methodology was validated, the approach is studied in detail in order to extract
valuable knowledge which can benefit the efficiency future structural optimization
procedures.

The main contributions of this dissertation consist of: i) We have investigated
the behavior and transferability of GANs obtained by means of structural optimiza-
tion using genetic algorithms. ii) We have defined a model capable of capturing and
exploiting the information resulting from the investigation performed in the previ-
ous point, which can positively impact future NAS searches. iii) We have defined a
novel model for heterogeneous multi-task learning, whose main goal is to be flexi-
ble enough to deal with multiple tasks and data inputs and outputs simultaneously,
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while being defined by a structure which can be continuously optimized. iv) We have
defined a framework capable of characterizing both models and variation operators
(which are ubiquitous in many NAS algorithms) in order to discover synergies be-
tween both of them.

In the following paragraphs, we further elaborate on the four subjects mentioned.
In chapter 3, we have presented the initial foundations of this work. It consists

of an exhaustive study carried out over a NE procedure used to optimize the struc-
ture of a vastly recognized model, the GAN. For conducting NAS over GANs, two
main challenges have to be addressed: i) it is not a trivial task to assess how realis-
tic the outcome of a generative model is, and ii) mode collapsing, that is, the GAN
limiting all its generations to one of the modes of the original data. In the Pareto set
approximation problem, we found the perfect environment to evolve GANs, as met-
rics such as the IGD allow the automated and objective measurement of the quality
and diversity of a set of points with respect to the reference Pareto set. Thus, we
set a neuroevolutionary framework for evolving GANs using the PS approximation
problem aiming for efficient structures by simultaneously optimizing the capacity
to sample good quality PS approximations -according to the IGD-, as well as the
time spent on training and sampling the model. The first key finding of this chap-
ter is the high transferability and robustness levels of the learned structures between
problems, which suggests that the residual information generated from a set of NAS
runs can positively and consistently impact future searches. This way, we designed a
methodology capable of automatically evolving efficient GANs, which can be later
transferred to other problems where the unbiased and automatic evaluation of struc-
tures is not trivial. With that finding in mind, the characteristics of the top structures
found by the algorithms were analyzed, seeking patterns which could confirm that
mature structures share multiple commonalities, as some GAN components were
present substantially more often than others in these developed structures.

In Chapter 4, we have made an initial attempt to capitalize on the study per-
formed in the previous chapter. Under the assumption that the GAN components
which are more frequently found on fully evolved GANs cannot work properly if the
rest of the configuration of the structure does not fit these components, we aimed at
defining a model which can capture and represent these dependencies. We identified
two manners in which future structural searches can benefit by such a metamodel:
generating and discriminating GAN structures. We chose to base the metamodel
on Bayesian networks, as they can fulfill both tasks successfully. From the exper-
iments conducted, two main conclusions were drawn. First, the learned structures
were transferable between problems, as seen in the previous work. Secondly, the
metainformation generated by the evolutionary process itself was also transferable,
as the metamodel had been able to produce efficient GAN structures for problems
different to those from which it was learned, as well as distinguishing between GANs
which were highly likely to perform strongly from those which were not. This sec-
ond capacity enabled the metamodel to be used as a discriminator of GAN structures
not worthy of being evaluated during a search, considering the low chance of them
adding positive value to the search.
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After the initial, in-depth study on the extensively applied framework of GANs,
in Chapter 5, we have extended our scope towards a more challenging research area,
that of heterogeneous multi-task learning. The complexity of having to deal with
multiple tasks of potentially diverse types simultaneously has oriented research to-
wards hand-made model definitions in which different submodules of a larger model
play predefined roles. These models, being tailored to fit certain specifications, are
forbidden from exploring performance improvements by architectural optimization.
In this chapter, we have defined a new model, the VALP, capable of supporting het-
erogeneous DNN structures for solving tasks of the previously defined character-
istics, and without a predefined structure, which enables structural optimization. A
simple random search over the space of VALP structures showed significant differ-
ences between the VALPs generated during the search in all three objectives involved
in the framework. These differences clearly show the importance of structural opti-
mization of VALPs.

Taking the VALP model as a generalization of the common single-task models
(e.g., generative modeling with a GAN, or classification using a CNN), in Chap-
ter 6, we have defined a set of rules which can improve the efficiency in future VALP
structural searches. Because any single-task model can be defined using a VALP,
these rules can also be applied to any of these neural structural searches. To achieve
this goal, we first defined a set of metrics which helps to identify the weak and strong
parts of a model, thus marking some of the parts of the model as more susceptible
of being optimized than others. Along with that model part identification, we also
characterized a set of variation operators by how they affect a model, both in terms
of the effect on the current performance, and the number of weights of the model.
Pairing these metrics and the identified variation operators, we performed an ex-
ploratory search over the application of the classified variation operators on multiple
VALPs characterized by the metrics, and we defined a set of rules which indicate the
most adequate operator to be applied to which part of the model when optimizing the
structure of that model. The proposed rules were able to guide a NAS algorithm to-
wards better quality VALPs compared to those found by the same algorithm without
the guidance of the rules.

The code developed for the work reported in Chapter 3 was later generalized to
form EvoFlow [44], a library which encompasses the evolution of a far wider set of
models than the initial GAN. Besides the MLP-based GANs, it supports the evolution
of CNN-based models, including convolutional layers, different pooling operations,
and skip connections. Moreover, different levels of customization are available for
the user. These levels range from single-DNN classification or regression models
to fully customized ones, in which the user can choose the number of DNNs, the
interaction between them, the problem they are covering, their loss function, etc.
The concept of weight inheritance is also included in the framework. Although on its
conception it was limited to Tensorflow as the backend for the DNN implementation,
it is currently being extended by different authors to support PyTorch and Tensorflow
2.0.
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7.2 Future work

As neural models get increasingly more complex, the attention that the efficiency of
NAS algorithms will receive will intensify accordingly. In the following paragraphs,
we enumerate a list of topics which research could be extended towards. First, one
aspect applicable to all the work developed in this dissertation is mentioned. Next,
elements worth considering for each specific chapter are specified.

• One of the main goals of all the methodology developed during this dissertation
was to achieve maximum transferability between the structures found employing
NAS searches, and therefore, all research was conducted using generic MLP
architectures. The framework developed in this dissertation could be extended
to include other, more purpose-specific DNN architecture types, such as CNNs.

The methodology proposed in Chapter 3 can be extended and applied to other
different fields:

• This kind of analysis could be adapted and applied to the area of DNN explain-
ability. We have found that it is unnecessary to non-linearly activate each and
every layer of a DNN. Similar insights in this direction can be found with this
kind of analysis.

• After the success of the development of the efficient GANs through the sec-
ondary objective of elapsed time reduction, the approach could be applied to
evolve DNNs intended to operate in restricted environments in terms of hard-
ware, such as cell phones or small single-board computers.

• Because the evolved GANs are fast to train and effective when sampling solu-
tions for optimization problems, using the found GANs as solution generators for
other evolutionary algorithms, e.g., estimation of distribution algorithms, could
also lead to interesting research paths.

The work developed in Chapter 4, because it belongs in a relatively unexplored
field, offers a wide variety of potential research lines.

• The barely restricted scheme in which DNN architectures are defined (e.g., un-
limited number of layers, neurons, filters, skip connections) makes their repre-
sentation as a simple set of hyperparameters a complex task, thus describing a
DNN using a list of variables is nearly unfeasible. Vanilla Bayesian networks
are not prepared for capturing information from examples consisting of different
numbers of variables and value ranges, for which reason the metamodel had to
be designed in two parts. This could limit the ability of a metamodel to correctly
capture the dependencies. Employing other model families could lead to better
results.

• In the same manner as with the previous chapter, the learned metamodel (in the
GAN framework or in any other), because it is based on Bayesian networks, can
be examined in search of interesting patterns between the key components of a
GAN, aiming at the DNN explainability goal.
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Because of the recentness of the VALP, and for that matter, of the heterogeneous
multi-task learning problem itself, various options for future work can be proposed
along with those already proposed as open challenges in Chapter 5.

• The application of the VALP to a real-world problem which could benefit from
the structure of this model is an interesting future research line. Problems with
many variables and tasks to be performed simultaneously, such as self driving
cars. These problems receive information from cameras, GPS location, proxim-
ity sensors, etc., and have to make several decisions at each moment, such as the
speed at which the car should advance, the direction in which the steering wheel
should rotate, etc.

• One shortcoming of the VALP instantiation was the restriction of recursive con-
nections. Allowing this kind of connections would help assess the potential of
the model in other areas.

• The possibility of presenting the data input in different partitions has not been ex-
plored. This possibility could open the door to different sub-networks within the
VALP specialized in dealing with certain parts of the data, which could be a bet-
ter approach than presenting all the information to all the components connected
to the data input. It would also result in the model graphically representing the
dependencies between data variables and the tasks performed by the model.

• Considering sequential introduction of outputs in a VALP has also been left un-
explored. While training random, fully formed VALPs, it was observed that opti-
mizing weights considering multiple objectives at a time could lead to conflicts.
By sequentially introducing them into the model, the training phase could in-
tensify its focus in different parts of the model at each time (without losing its
simultaneity characteristic).

The model and operator characterization proposal for NAS efficiency is also a
new approach, which is why several directions can be followed when researching
deeper into this topic. Some of which consist of:

• The deduced rules are static, in the sense that they are learned before the archi-
tecture optimization process is begun, and are not altered throughout the whole
procedure. It is possible that the performance of the rules as a guide for searches
decreases as the search intensifies in certain areas of the structural space. In this
case, an on-line approach in which the rules can be updated as the search pro-
gresses can result in significant performance improvements.

• The addition of more characterization criteria to the proposed framework would
probably result in larger efficiency gains for NAS algorithms.

• The adequacy of the methodology has not been tested in other search types, such
as evolutionary algorithms. This could add further insights into the utility of the
proposal.
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Annex for Chapter 3

As a complement to Figure 3.8, we present Figure A.1; consisting of scatter plots
showing information related to the remaining 6 functions: F1, F2, F3, F4, F5, and
F9.

In these figures it can observed how evolution has been able to produce much
more robust GANs. This is exceptionally clear in F1, F3, F4, where only the
evolved GANs are able to reach the lower values in all three metrics. For F2, F5,
and F9, some random GANs have been able to sparsely produce low results too.
The evolved models, however, are much more consistent, as they hardly ever pro-
duce high values in any metric, unlike random GANs.

Figure A.2 shows the results regarding transferability of GANs evolved with
n = 784 to other functions with the same problem dimension, as a complement
to Figure 3.9. This way, the relative performance of the dimension transferability
problem can be compared. We observe how, in some cases, the GANs evolved with
n = 10 produce better outcomes when transferred to n = 784 and other functions,
compared to those directly evolved with n = 784: F7, and F8. In the rest of the
cases, the GANs evolved with n = 784 performed better, which could have been ex-
pected. Finally, F4 again stands out as the best function for evolving GANs, as these
models outperform other 4 sets of GANs when sampling for a function they were
evolved with. Additionally, GANs evolved for F4 were never outperformed when
generating points for F4.

Figure A.3 is provided to complement the information shown in Figure 3.11.
The obtainable conclusions do not differ from those extracted from Figure 3.11, as a
similar overlap can be visualized, yet the evolved GANs produce considerably lower
values in both mean MMD and variance. It is remarkable, however, the isolated point
with low values in both mean and variance, a top consistency not found with n = 10.

Figs. A.4-A.9 are presented as complementary to Figure 3.12. This set of barplots
show the same data as Figure 3.12; the appearance frequency of different network
components for all functions.

Observing Figure A.4 (which shows the appearance frequency of the different
initialization functions), we can notice that for n = 10, weights are hardly ever ini-
tialized with a normal distribution. In this aspect, the presence of Xavier and uniform
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Fig. A.1: Relation of IGDo, IGDx, and GDo for functions F1, F2, F3, F4, F5,
and F9.

initialization is much more prominent. For n = 784, Xavier initialization is the more
prominent one in most cases.

Figure A.5 (showing data related to activation functions), confirms that the NE
algorithm chose to keep most layers in all networks linearly activated. Beyond that,
we again perceive much more pronounced differences with n = 10 as opposed to
n = 784. For n = 10, Softsign, and Tanh (and Elu, to a lesser extent) are the most
present functions. For n = 784, the pattern is not that clear, but suggests the usage
of the same activation functions.
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Fig. A.2: Transferability of the best GANs evolved with n = 784 across different
functions.

In terms of network depth, very reduced networks are used in all cases, judging
by Figure A.6, which shows the number of layers in the different networks. This can
be seen for all function and problem sizes.

Figure A.7 (showing the appearance frequency of prior distributions and loss
functions) shows that the random uniform is the preferred distribution as the prior
in all cases (upper part of the figure). Regarding the loss functions (lower part of
the figure), it is ratified that the KL and Wasserstein loss functions are the preferred
choices, especially for n = 10. For n = 784, the Pearson’s χ2 loss function is also
commonly found, but the Wasserstein function can again be found in most functions.

Regarding the layer size distribution displayed in Figure A.8, we can observe
how generators tend to be narrower than discriminators, except for F8. Again, the
effect of the complexity-penalizing objective becomes apparent in the evolved net-
work structures. This effect is also visible in Figure A.9, where the loop parameter
for generators and discriminators is shown. Apparently, in most cases, updating the
networks once with each batch is enough in most cases.
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both problem dimensions.
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