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Summary
(in Basque)

Grabitate kuantikoaren teoria bateratzailea da Soka-Teoria. Aitzitik, teoriaren tinkotasuna

bermatzeko 10 espazio-denborako dimentsiotan deskribatu behar dugu. Jakina, Soka-

Teoria fenomenologikoki onargarria izan dadin, energia baxuko eremu-teoria eraginkorra

4 dimentsiotan deskribatu beharko dugu. Horretarako, espazio-denboraren gehiegizko

dimentsio horiek nolabait trinkotu behar ditugu; adibidez, IIB motako Soka-Teoriaren

gehiegizko 6 dimentsioen geometriaCalabi-Yau espazioenbidez deskribatu ohi dira. Trinkoketa

horien inguruko zenbait aspektu fenomenologiko aztertzea da tesi honen helburu nagusia.

Barne-geometriaren oinarrizko ezaugarriak erabiliz, zuzenean froga daiteke trinkoketa

horiek hainbat eratara deformatu daitezkeela energia-kosturik gabe. Horrenbestez, barne-

geometria deskribatzen dituzten ehunka parametroak (moduluak) masarik gabeko eremu

bezala joko dira lau dimentsioko ikuspuntu behagarriarengandik, eta hori bateraezina da

gaur egungo behaketekin. Hori dela eta, nahitaezkoa zaigu modulu horiei masa ematea eta

nolabait egonkortzea. Hartara, 1. kapituluan deskribatutakoaren arabera, teorian bertan

ageri diren fluxuak erabili daitezke moduluen potentzial eskalar bat osatzeko. Ehunka

dimentsioko potentzial eskalar horri Paisaia deritzo, horren egitura konplexua dela eta.

Paisaiaren minimoek Soka-Teoriaren barne-geometriaren egoera egonkorrak adierazten

dituzte; hortaz, horien inguruko ezagutza tinkoa izatea ezinbestekoa zaigu Soka-Teoriaren

eredu fenomenologikoki zuzenak eraikitzeko.

Tesiaren I. atalean IIB motako Soka-Teoriaren eta horren energia baxuko eremu-teoria

eraginkorra den IIB Supergrabitatearen oinarriak bildu ditugu. Horiekin, geometria kon-

plexuaren oinarrizko zenbait nozio erabiliz, Paisaia nola eraiki daitekeen laburbildu dugu.

Paisaia bi modulu motez osatuta dago, hots, egitura konplexuaren moduluez eta Kähler

moduluez. Lehenengoek barne-geometriaren itxura adierazten dute intuitiboki; bigarrenek,

aldiz, trinkoketaren tamainarekin dute zerikusia. Guzti horiek egonkortzea ez da batere

erraza, eta sektore bakoitzaren inguruko xehetasunak eman ditugu, tesian zehar behin eta

berriro aplikatu ditugunak.

Arestian esan bezala, Pasaiaren fenomenologia ikertzea ezinbestekoa da teoriaren ondo-

rio behagarriak ondo ulertzeko. Tesi honetan Paisaiaren zenbait aspektu kosmologikoetan

jarri dugu arreta, inflazioan eta sasihutsaren iraungitzean, hain zuzen ere, eta horien inguruko

sarrera eman dugu kapitulu horren bukaeran.

Tesiaren II. zatia barne-geometriaren moduluen egonkortze-prozeduren inguruan datza,

1. kapituluko osagaiak erabiliz. Zehatzago esanda, 2. eta 3. kapituluetan axiodilatoiaren eta

egitura konplexuaren modulu guztien egonkortzea aztertzera jo dugu. Bestalde, 4. kapitu-

luan Kähler sektorearen inguruko eztabaida egingo dugu. Hauxe da zati horretako kapitulu

bakoitzean landu dugunaren laburpena:
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2. kapitulua

Arestian esan bezala, Calabi-Yau geometrien modulu kopurua, orokorrean, O (100) da.

Jakina, guztiz kalkulaezina zaigu dimentsio horretako funtzioen minimoak (edota bestelako

puntu berezien ezaugarriak) aztertzea. Hori dela eta, Paisaiaren hutsen deskribapen anali-

tikoa lortzeko potentzial hori nolabait sinplifikatu beharra dugu. Ondorengo kapituluetan,

sinplifikazio hori trunkamendu supersimetriko tinkoen bidez egin dugu. Horietan, trinkoketen

simetria-taldeak erabiliz modulu-espektroaren zati bat ekintza eraginkorretik baztertu deza-

kegu. Eredu horietan, simetriarekiko inbarianteak diren fluxuak bakarrik pizten baldin

badira, egitura konplexuaren modulu-kopuru handi bat hoztu ahal izango dugu fluxuek sor-

tutako potentzial eskalarraren hutsetan. Beraz, Eremu-Teoria Eraginkorra (ETEa) murriztu

ahal izango dugu, hots, eremu gutxi batzuen bidez deskribatu ahal izango da fisika guztia.

Trunkatze hori literaturan zeharo aztertu den arren, operazio horretan hozten diren

eremuen ezaugarriak nekez ikertu dira inon. Lan honen helburua da trunkatutako modulu-

sektorearen ezaugarriak hobeto ulertzea, simetria handiko ereduetan. Garrantzitsua da

nabarmentzea trunkatutako moduluak ez direla teoria eranginkorretik integratzen; hain

zuzen ere, horrela lortu dezakegun ETEa energia baxuko teoria osoaren trunkamendu super-

simetriko tinkoa da, zuhaitz mailan behintzat.

IIB motako supersoken Calabi-Yau trinkoketen zuhaitz mailako hutsak aztertu ditugu

oraingo honetan, Egitura Konplexu Handiko (EKH) eskualdean. Bestalde, geometria sin-

pleenak erabili ditugu hemen, hots, murriztutako egitura konplexuaren sektorea modulu

bakarrez osatuta dutenak. Horrela, EKH eskualdean zuhaitz mailako masa-espektroa kalku-

latu dugu axiodilatoiarentzat eta egitura konplexuaren modulu-eremu guztientzat, trunk-

atutakoak barne. Horrez gain, hutsen zenbait ezaugarrien estatistikak lortu ahal izan ditugu

Denef-Douglas hurbilketa, alegia, fluxu jarraituen hurbilketa, erabiliz.

Lan honetan proposatu ditugun aurreikuspen analitiko guztiak berrestekoWP
4
[1,1,1,1,4]

Calabi-Yau orientatea (orientifold) erabili dugu trinkoketa gisa, eta horren zenbakizko fluxu-

hutsen ekorketa egin dugu, bertatik lortutako datuen estatistikak kalkulatu ahal izateko.

Hipergainazal-familia horren egitura konplexuaren modulu-espazioa h2,1 = 149 dimentsio-

koa da; aitzitik, EKH eskualdeko geometriaren simetria-maila handia dela eta, moduluen

inguruko fisika osoa eremu bakarrera murriztu dezakegu era tinkoan. Eredu horren teoria

eraginkor murriztua erabiliz, fluxu-huts multzo handia lortu ahal izan dugu, eta horren

bitartez ondorengo kapituluan ere erabiliko ditugun masa-espektroak egiaztatu ahal izan

ditugu. Azpimarratzekoa da horrela aurkitu dugun huts bakoitzaren trunkatutako 148

eremuen masak lor ditzakegula gure emaitzak erabiliz, ETE osora jo beharrik gabe.

Kapitulu hau ondorengo artikuluan oinarritzen da:

J.J. Blanco-Pillado, K. Sousa, M.A. Urkiola & J.M. Wachter

Towards a complete mass spectrum of type-IIB flux vacua at large complex structure

J. High Energ. Phys. 04 (2021) 149

arXiv: 2007.10381 [hep-th]



xiii

3. kapitulua

Kapitulu honetan aurreko eztabaida edonolako Calabi-Yau geometrietara zabaldu dugu,

arestiko analisian egitura konplexuaren modulu bakarra (trunkaketa supersimetrikoa bider-

atu ostean) duten Calabi-Yau orientateen inguruko emaitzak erabiliz.

Kapitulu honetan zera frogatu dugu: EKH eskualdean, fluxu egokiak erabiliz, era tinkoan

trunkatu dezakegula Calabi-Yau trinkoketa orokorren ETEa, egitura konplexuaren modulu

bakar batera. Aurreko kapituluan ez bezala, ez dugu isometria taldeen beharrik izango, EKH

puntuaren inguruko monodromia transformazioak baitira gure emaitzen oinarria.

Bestalde, trunkamendua bizirauten duen eremua monodromia-norabidearen araber-

akoa da. Hartara, aldaezintasun-ezaugarri horiek erabiliz, huts-sorta handia eraiki dugu,

axiodilatoiaren eta egitura konplexuaren moduluen masa-espektroaren gaineko kontrol

analitiko paregabea mantenduz.

Aurreko kapituluko adierazpen analitikoak erabiliz, zuzenean frogatu ahal izango ditugu

kapitulu honetako emaitza nagusiak. Hori ez ezik, guzti horiek WP
4
[1,1,1,6,9] Calabi-Yau

orientatearen fluxu-hutsen zenbakizko ekorketa baten bidez berretsi ahal izan ditugu.

Kapitulu honen oinarria ondorengo artikulua da:

J.J. Blanco-Pillado, K. Sousa, M.A. Urkiola & J.M. Wachter

Universal Class of Type-IIB Flux Vacua with Analytic Mass Spectrum

Phys. Rev. D 103 (2021) 106006

arXiv: 2011.13953 [hep-th]

4. kapitulua

Kapitulu honetan Kähler sektorearen egonkortzea ikertzera jo dugu, de Sitter Zingira-

aieruaren ikuspuntutik. Hain zuzen ere, duela pare bat urte formulatutako Zingira-aieru

horren arabera, grabitate kuantikoarekiko tinkoa den edozein potentzial eskalarretan ezin

daiteke existitu de Sitter motako huts metaegonkorrik. Hori ez ezik, aieruak edonolako de

Sitter puntu kritikoren existentzia ere debekatzen du, zela-puntuak barne.

Gauzak horrela, soka-trinkoketen de Sitter zela-puntuen existentzia aztertu dugu, de

Sitter aierua murriztaileegia den ala ez frogatzeko. Horretarako, Kähler modulu bakarra

duen trinkoketa-eredua erabili dugu. Eremu hori, axiodilatoia eta egitura konplexuaren

moduluak egonkortu ahal izan ditugu aurreko kapituluetako fluxuak erabiliz, eta ekarpen

ez-perturbatiboen eragina ere kontuan hartuz superpotentzialean. Osagai horiekin guztiekin

Racetrackmotako potentziala sortu dugu eredu horren moduluak egonkortzeko.

Eredu horren zenbait soluzio jakin abiapuntutzat hartuz, ekarpen ez-perturbatiboak eta

fluxuak doitu ditugu anti-deSitter huts supersimetrikoak eta de Sitter zela-puntuak dituzten

ereduak sortzeko. Hori ez ezik, huts horiek zenbait tinkotasun baldintza betetzen dituztela

frogatu dugu; hortaz, horrela lortutako soluzioak fenomenologikoki tinkoak dira eta eredu

konplexuagoetako hutsak bilatzeko baliagarriak izan daitezke.

Azkenik, gure soluzioak de Sitter zingira-aieruaren bertsio ahulagoarekin aldaratu ditugu

eta aieru berri horrekin bat datozela nabaritu dugu.
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Kapitulu honen emaitzak ondorengo artikulu zientifikoan jaso ditugu:

J.J. Blanco-Pillado, M.A. Urkiola & J.M. Wachter

Racetrack potentials and the de Sitter swampland conjectures

J. High Energ. Phys. 01 (2019) 187

arXiv: 1811.05463 [hep-th]

Tesiaren III. zatia Paisaiaren aspektu kosmologikoei buruz datza. Lehen esan bezala, Pai-

saiak sasihutsen iraungitzea ahalbidetzen du, eta baita prozesu inflazionarioak gertatzea ere.

Ondorengo bi kapituluetan prozesu fisiko horiek zeharo aztertu ditugu Paisaiaren zenbait

eredu erabiliz.

5. kapitulua

Lehen aipatu dugun bezala, Paisaiaren ohiko eremu-kopurua O (100) da. Horren on-

dorioz, potentzialaren azterketa zehatza erabat ezinezkoa da eta horrek eremu-espazioa

nolabait trunkatzera behartzen gaitu. Bestalde, eredu horiek aztertzeko alternatiba interes-

garria metodo estatistikoak erabiltzean datza, non potentzial eskalarra ausazko eremutzat

hartzen den.

Kapitulu honetan, AusazkoEremuGausstarren (AEGen) bidez deskribatutako potentzialak

izango ditugu aztergai. Horiek erabiltzekomotibazio nagusia da hainbat terminoren gehiketa

bezala jo dezakegula 4 dimentsioko potentziala. Termino horiek jatorri klasikoa edo kuan-

tikoa izan dezakete trinkoketa-mekanismoan, eta horiek guztiak aintzat hartzerakoan sortuko

den potentzial konplexua ausazko eremu gausstartzat jo dezakegu.

Soka-Teoriaren Paisaiaren fenomenologia aztertzea, Kosmologiaren ikuspuntutik, ez-

inbestekoa da. Izan ere, UnibertsoGoiztiarreko energia altuko fisikak Soka-Teoriaren ondorio

behagarrietan izugarrizko eragina izan dezake. Horren inguruko Paisaiaren ikerketek po-

tentzialaren puntu jakin batzuen ezaugarriak ezagutzean oinarritzen dira, adibidez, konstante

kosmologiko jakin bateko minimoetan, edo deribatu jakin batzuk dituen inflexio-puntuetan,

horietan inflazioa gerta litekeelako. Aitzitik, puntu horietan inposatzen ditugun murrizketen

arabera, oso zaila izan daiteke ezaugarri horiek dituen potentziala aurkitzea, ausazko funtzio

horren hainbat iterazio eginda ere. Hain zuzen ere, de Sitter huts metaegonkorrak edota

behaketa fenomenologikoekin bat datozen inflexio-puntu inflazionarioak oso arraroak dira

Paisai orokorretan. Kapitulu honetan potentzial horiek sortzeko estrategia berri bat aurkez-

tuko dugu; horren bitartez, potentzialak forma jakin bat izatera baldintzatuko ditugu lokalki,

ausazko Paisaiaren ezaugarri globalak guztiz errespetatuz. Horiexek dira Slepian ereduak.

Hemen aurkeztu ditugun teknika matematikoak erakusteko, guk doitutako puntu kri-

tikoak (maximo, minimo edo zela-puntuak) edota inflexio-puntuak dituzten baldintzatutako

AEGak eraikiko ditugu eta horien inguruko informazio estatistiko garrantzitsua lortuko

dugu.

Alde batetik, baldintzatutako minimoak dituzten potentzialak erabiliz, horien sasihutsen

iraungitzea aztertu ahal izan dugu AnyBubble Mathematicako paketea erabiliz. Horrekin,

prozesu horien estatistikak kalkulatu ahal izan ditugu bi dimentsioko ausazko potentzialetan.
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Gainera, tuneleatze horiek kalkulatzeko zenbait hurbilketa baieztatu ditugu, iraungitzeen

gertatze-tasa dimentsio altuagoko potentzialetan kalkulatu ahal izateko.

Potentzialen baldintzatze-metodoen bigarren aplikazioa inflexio-puntuen doikuntzan

datza, horien inguruko prozesu inflazioak ikertzeko. Zehatzago esanda, parametro in-

flazionario behagarrien menpekotasuna ikertu dugu eremu eskalarren hasierako bald-

intzekiko eta inflexio-puntuaren egitura lokalarekiko. Hartara, eremuen hasierako baldintza

horiek inguruko sasihuts baten iraungitzearen irteera-puntuen bidez definitu ditugu. Kon-

tuan izan horrelako analisia bideratzeko ezinbestekoa zaigula inflexio-puntuaren inguruko

potentziala ezagutzea eta baita hortik gertu egon daitezkeen minimoen informazioa jakitea.

Horri esker, gure metodoa oso baliagarria izango da ikerketa horretarako, potentzialaren

ezaugarri estatistiko globalen eta lokalen informazio osoa ezagutzea ahalbidetzen baitu.

Azpimarragarria da hauxe dela literaturan lehen aldiz ageri den inflexio-puntuentzako

Slepian eredua.

Kapitulu hau ondorengo artikuluan oinarritzen da:

J.J. Blanco-Pillado, K. Sousa & M.A. Urkiola

Slepian models for Gaussian random landscapes

J. High Energ. Phys. 05 (2020) 142

arXiv: 1911.07618 [hep-th]

6. kapitulua

Aurreko kapituluetan, sasihutsen iraungitzea ohiko eremu eskalarren potentzialen tes-

tuinguruan landu dugu, Coleman-deLuccia iraungitzeak deritzenak. Nahiz eta prozesu

horiek zeharo aztertu diren literaturan, Paisaiaren oinarrizko osagaiak bateratzen dituzten

bestelako iraungitze-mekanismoak aztertzea garrantzitsua da.

Horren harira, Coleman-deLuccia iraungitzeen antzeko prozesuak ditugu Brownek eta

Teitelboimek aztertutakoak. Azken horietan fluxuak eta mintzak dira ekintzaren osagai

nagusiak. Hortaz, energetikoki posiblea izan daiteke espazioaren eskualderen bat 3-formek

sortutako fluxu-huts batetik beste batera tuneleatzea, fluxu horri akoplatutako mintz baten

nukleazioaren bidez.

Aurreko osagai guztiak bateratzen dituzte Soka-Teoriaren trinkoketek, non 3-formen

fluxuak erabiltzen diren teoriaren gehiegizko dimentsioak barietate trinko batean egonko-

rtzeko. Lehenengo kapituluan aipatu dugunaren arabera, fluxuak naturalki akoplatzen

dira, adibidez, IIB Soka-Teorian ageri diren D-branetara. Bestalde, badakigu trinkoketa-

prozesuan ehunka modulu ageri direla, barne-barietatearen geometria parametrizatzen

dutenak. Hortaz, oso esanguratsua izan daiteke osagai guzti horiek barneratzen dituzten

iraungitzeak aztertzea eremu-teoria eraginkorraren ikuspuntutik,N = 1 supergrabitatearen

ikuspuntutik, hain justu, D = 4 dimentsiotan.

Lan honetan, 3-formak eta mintzak teoria supersimetriko batean nola barneratu daitez-

keen pausoz-pauso azaldu dugu lehenbizi (bai grabitatea arbuiatuz, bai grabitatea kontuan

hartuta). Ondoren, fluxuek osatutako hutsen arteko egonkortasun ez-perturbatiboa aztertu

dugu; horretarako, Coleman-deLuccia eta Brown-Teitelboim prozeduren konbinazio jakin
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bat erabiliz. Noski, lehen esan bezala, huts supersimetrikoak guztiz egonkorrak izan be-

har dira sasihutsaren iraungitzeekiko. Hortaz, gure lagrangearretan supersimetria samurki

hausten dituzten terminoak barneratu ditugu. Azken horiek nahi bezain txikiak egin daitezke,

eta sasihutsen iraungitzea horien arabera aztertu dugu. Horrelako teoria emanda, sasihutsa

eremu eskalar isotropo eta eskalar batez eta baita 3-forma baten balio jakin batez osatuta

dagoela suposatu dugu. Bestalde, instantoi soluzioa forma-eremuari akoplatutako mintz

esferiko batez osatuta dagoela suposatu dugu, non mintzaren barnealdea eta kanpoaldea

fluxu-balio ezberdinez osatuta dauden (Brown-Teitelboim instantoian bezala). Ondorioz,

mintzaren alde bakoitza potentzial ezberdin batek deskribatzen du. Horrelako prozesuak

energetikoki bideragarriak direla baieztatuko dugu, eta zenbait adibide eman ditugu, bai

grabitatea kontutan hartuz, bai grabitatea arbuiatuz. Bestalde, supersimetria hausten duten

parametroak txikiagotu ahala, mintz-erradioa handiagotzen dela ikusi dugu, limite su-

persimetrikoaren erradio infinituko soluzioarekin (alegia, domeinu-pareta lauarekin) bat

datorrena.

Kapitulu horretako emaitzak ondorengo artikuluan oinarritzen dira:

I. Bandos, J.J. Blanco-Pillado, K. Sousa & M.A. Urkiola

Brane nucleation in supersymmetric models

Prestatzen

Azkenik, tesiaren IV. zatian lan guzti horien zenbait ondorio orokor bildu ditugu.
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Chapter 1

The String Theory Landscape

In this opening chapter, we will briefly review the most notable features of string theory

and its low energy description, supergravity. After describing the components of type

IIB supergravity, which we will mainly focus on, we will give some details about how it

can be compactified to four spacetime dimensions. The most direct consequence of this

last procedure is the appearance of hundreds of massless scalar fields, the moduli. We

will explore the scheme of flux compactifications, through which we can generate a scalar

potential with which the moduli can be stabilized. The vastness of this potential (both from

the number of fields involved and all the possible minima it involves) has granted it its

most celebrated name: the Landscape. We will explore some physical consequences of this

Landscape, which will be relevant in the following chapters, mostly focusing on its relation to

an early-Universe inflationary epoch and the possibility of semi-classical decaying processes

from local minima of this potential.

1.1 A bird’s eye view of String Theory

String theory1, which started as a theory of the strong interaction in the 60s, [5], is nowadays

one of the leading candidates to a unifying theory of quantum gravity. It describes the

dynamics of a plethora of fields in a completely self-consistent manner, and only in terms

of a single free parameter, the string tension. For future reference, let us denote it by

T = (2πα′)−1, where α′ is known as the Regge slope. This also sets a mass scale for massive

excitations of the string, namely Ms = 1/
p
α′ and a characteristic length scale ℓs = 2π

p
α′.

Quantizing the string vibrational modes leads to bosonic fields, and among the massless

spectrum a graviton is found. However, the bosonic string comes with several problems.

First and foremost, the quantization of the bosonic string only includes bosonic fields and

tachyons are present within the spectrum. Moreover, the theory appears to be anomaly-free

only when the spacetime dimension is D = 26 [6].

All the above issues are solved (or, at least alleviated) by introducing supersymmetry

into the theory. These remove the tachyon and, of course, introduce fermions into the

spectrum, all the while reducing the number of spacetime dimensions to D = 10. There

are several ways to consistently introduce supersymmetry in String Theory, which lead to

1Some standard references which cover a wide range of topics in String Theory are [1–4].
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different Superstring theories, namely: type I, heterotic SO(32) and E8 ×E8, type IIA and

type IIB. All of these are related by dualities and are perturbative limits of an 11-dimensional

M-theory [7,8]. Most interestingly, at low energies (or equivalently, at first order in α′), i.e.

when only the massless spectrum is considered, each Superstring theory is described by a

Supegravity limit in D = 10 or 11 spacetime dimensions.

Of course, if we are ultimately interested in making contact with our four-dimensional

real-world experience, it is vital to deal with the extra dimensions present in the theory. The

most common way to do so is through the compactification of these 6 (or 7) dimensions, and

has become central in the study of phenomenological aspects of string theory.

In this thesis we will be particularly interested in type IIB string theory and its super-

gravity limit. We will be dealing with flux compactifications in this setup, introduced in the

pioneering works of [9–11]. There are, of course, many other schemes to compactify the

extra dimensions present in all Superstring theories, for a broader perspective on the topic

see, e.g., [12–14].

As we mentioned above, the low energy limit of IIB String Theory is described by type

IIB supergravity, whose bosonic action reads, in the conventions of [4] and in Einstein frame,

SIIB =
1

2κ2
10

∫

d 10x
p
−G

[

R − ∂Mτ∂Mτ

2(Im τ)2
− |G3|2

2(Im τ)
− |F5|2

4

]

+ 1

8iκ2
10

∫
C4 ∧G3 ∧G3

Im τ
+Sloc

(1.1)

where 2κ2
10 = (2π)7(α′)4, Sloc denotes the contribution(s) from localalised sources which we

will explain below, and the field content of the theory is the following:

• First of all, we have the 10-dimensionalmetricGM N , along with its corresponding Ricci

scalar R. Splitting our spacetime (as we will shortly do) as M4×X6 where M4 represents

our four-dimensional spacetime and X6 is a compact (and Ricci-flat) manifold will

relate κ10 with the usual four-dimensional Planck mass. More concretely, it can easily

be checked that M 2
Pl = V /(gsκ10)2, where V is the volume of the compact manifold

and gs represents the string coupling in the string frame.

• τ is known as the axiodilaton and it is a complex combination of the 0-formC0 present

in type IIB supergravity and the dilatonΦ, which controls the string coupling; assuming

this field is constant, the coupling can be described as gs = eΦ. We thus define τ =
C0 + i e−Φ. We will generically work in the perturbative limit where gs ≪ 1, which will

in turn imply Im τ≫ 1.

• Apart from C0, type IIB supergravity also includes other form fields, namely the

Neveu-Schwarz-Neveu-Schwarz (NS-NS) two-form B2 (which appears already within

the bosonic string spectrum), and the Ramond-Ramond (RR) 2- and 4-forms, C2 and

C4 respectively. These last ones are usually referred to as Ramond-Ramond p-forms,

as they arise from a specific choice of periodicity conditions in the fermionic sector

of the superstring. All of these forms appear in the action (1.1) as combinations of
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themselves with their field strengths:

F3 = dC2, H3 = dB2, G3 = F3 −τH3, F5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧F3

(1.2)

As we will analyze below, these combinations allow the symmetries of the action

to be reflected more clearly both at the level of the action (1.1) and on the resulting

four-dimensional theory.

Finally, among the localized sources present in type IIB supergravity, D3-branes will play

an important role in our following discussion. These are 3-dimensional extended objects,

on which open strings can end. They are particularly interesting from a phenomenological

point of view, as they can be considered to fill the 3 spatial, non-compact directions of our

spacetime and, since branes carry gauge degrees of freedom on their worldvolume [15, 16],

localised stacks of N of these objects may generate an SU (N ) gauge theory on the non-

compact spacetime.

The action of a D3-brane, at lowest order in α′, reads [4]

SD3 =µ3

∫

W4

C4 −T3

∫

W4

d 4x
p−g (1.3)

whereW4 is the 4-dimensional worldvolume (which, as we said above, will in general coincide

with M4), µ3 represents the brane’s (electric) coupling with the 4-form, while T3 is the brane’s

tension. These last two quantites are related via µ3 = gsT3 = 2πℓ−4
s .

1.2 Compactification with Calabi-Yau geometries

In order to make contact with our four-dimensional universe, we must compactify the 10

dimensions present in the type IIB supergravity theory to 4. The most straightforward

choice seems to be the direct product M4 × X6 where M4 is a maximally symmetric, 4-D

spacetime and X6 is a compact and six-dimensional manifold
2.

Ultimately, we will be interested in arriving to a D = 4, N = 1 supegravity theory

in the non-compact space, as it allows for an unmatched perturbative control over the

resulting field theory and allows for huge simplifications from a mathematical perspective.

Of course, supersymmetry will have to be broken at a later stage in order to make contact

with observations.

1.2.1 Calabi-Yau manifolds

By far, the most studied models of string compactifications involve Calabi-Yau manifolds,

which due to their symmetries preserve a quarter of the ten-dimensional supersymmetry in

the reduced, 4-D spacetime. These geometries were first proposed in [17] in the context of

2This simple ansatz is found to be inconsistent with the backreaction of the fluxes and branes on the
background [11]. Generically the 10-dimensional metric is given as a warp product of the form d s2

10 =
e2A(y)gµνd xµd xν+e−2A(y)gmnd ymd yn where A(y) is a function of the compact dimensions and Greek and
Latin indices denote the coordinates on the non-compact and compact manifold, respectively.
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compactification of Heterotic Superstring theories, where it was noted that they possessed

just the right properties to leave a fraction of the 10-dimensional supercharges in the non-

compact 4-D theory. These constructions gained popularity ever since and have been

thoroughly explored as compactification manifolds in the rest of the Superstring theories.

First of all, Calabi-Yau spaces are complexmanifolds3, meaning that the coordinate charts

map open sets of the manifoldUα ∈ X to C
n , where n is the dimension of the manifold.4

In general, not every real 2n-dimensional manifold can be mapped to an n-dimensional

complex manifold. This depends on the existence of a so-called complex structure. An almost

complex structure is a map J : T X → T X , where T X is the tangent bundle of a real manifold

X , such that J 2 = −1. If every patch Uα of M admits a choice of complex coordinates

zµ1 , . . . , zµn and their conjugates zµ1 , . . . , zµn such that, in component form, J
µ
ν = iδ

µ
ν and

J
µ

ν
=−iδ

µ

ν
then J is known as a complex structure and M is a complex manifold.

From the definitions above, we can now see that when working with complex manifolds

all structures involving vectors and forms will depend on two different variables: those with

holomorphic indices and those with antiholomorphic ones. Of particular importance for

the discussion that will follow are (p,q)-forms, which we define as

ω= 1

p !q !
ωµ1...µpν1...νq

d zµ1 ∧ . . .∧d zµp ∧d zν1 ∧ . . .∧d zνq ∈ Ap,q (1.4)

where Ap,q denotes the space of (p, q)-forms. The usual exterior derivative d on real forms

can be extended to complex forms, via the maps ∂ : Ap,q → Ap+1,q and ∂ : Ap,q → Ap,q+1

which satisfy ∂2 = ∂2 = 0, in analogy with the real case. The real and complex exterior

derivatives are related via

d = ∂+∂ (1.5)

It is then clear to see that, in particular, any ∂-exact form Fp,q = ∂Cp,q−1 will be ∂-closed, i.e.,

∂Fp,q = 0. This leads to the definition of the so-called Dolbeaut cohomology group of a complex

manifold M as the following equivalence class:

H
p,q

∂
(M ,C) = Z p,q (M)

∂Ap,q−1(M)
(1.6)

where Z p,q (M) denotes the space of all ∂-closed (p,q)-forms, while ∂Ap,q−1(M) denotes the

space of ∂-exact (p,q)-forms. Basically, two closed forms are considered equivalent if they

differ by an exact form, in analogy with real cohomologies. The dimension of each Dolbeaut

cohomology group is given by the Hodge numbers:

hp,q = dim H
p,q

∂
(M ,C) (1.7)

These numbers will be closely related to the discussion on the String Theory Landscape

below. Indeed, they will denote the number of massless fields in the low-energy theory

arising from the deformations of the internal geometry.

3See, e.g., [4, 18] for thorough introductions to complex geometry and, particulary, Calabi-Yau manifolds.
4We will be mostly working with n = 3, as it corresponds to the case of 6 real dimensions.
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Having established the basics of complex manifolds and forms, we now turn to discuss

the metric of such spaces. Of special interest will be the concept of a Hermitian metric, that is,

a metric which in local coordinates satisfies

g = gµνd zµ⊗d zν+ gµνd zµ⊗d zν (1.8)

with gµν = gνµ. A complex manifold with such a metric is said to be Hermitean. This metric

allows us to construct a special (1,1)-form, namely the Kähler form associated to the Hermitian

metric:

ω= i gµνd zµ∧d zν (1.9)

which is central to this discussion.

Indeed, a Kähler manifold is a Hermitean manifold whose Kähler form is closed:

dω= 0. (1.10)

A direct consequence of this definition is that the metric gµν of the manifold can be locally

expressed in terms of a Kähler potential K , such that

gµν = ∂µ∂νK . (1.11)

We will encounter this potential quite a number of times in what follows, specially in the

discussion ofN = 1, D = 4 supegravity, since the field space metric of that theory is actually

Kählerian.

With the metric in hand, we can now construct the Ricci curvature tensor and scalar, as

in the real case. The Ricci tensor is given by

Rµν =−∂µ∂ν(log det g ) (1.12)

Particularly, a Ricci-flatmanifold is one which satisfies Rµν = 0 for every coordinate patch.

In the same fashion as we constructed the Kähler form, we now introduce the Ricci form

R = i Rµν d zµ∧d zν =−i∂∂(log det g ). (1.13)

This object is actually a closed form with respect to the ordinary exterior derivative d = ∂+∂,

which can be readily checked from its definition. However, it is not necessarily an exact

form, since det g transforms non-trivially under coordinate transformations. This motivates

the construction of the following equivalence class

c1 =− i

2π
[R] ∈ H 2(X ,R) (1.14)

known as the first Chern class.

We are now prepared to give a definition for a Calabi-Yau manifold. Calabi-Yau spaces

are compact Kähler manifolds with vanishing first Chern class. We will not delve into the

details regarding these interesting spaces, however, let us describe some of the most useful
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properties of these manifolds.

First and foremost, the vanishing first Chern class indicates that this manifold is Ricci-flat

(and thus satisfies the vacuum Einstein equations). Furthermore, as Yau proved [19], there

exists a unique Ricci-flat metric associated to the Kähler form; however, no explicit metric

has been found to date. Thus, while many different Calabi-Yau constructions are known [20],

they are identified through their topological data. In any case, as we will shortly see, we will

be more interested in finding the deformations of this metric, rather than the metric itself.

A Calabi-Yau manifold admits a single (cohomologically unique) and nowhere vanishing

(3,0)-form, which we will denote as Ω. Furthermore, using all the dualities and symmetries

between complex forms (such as Hodge and Poincaré duality), we find that the only non-

vanishing Hodge numbers for any Calabi-Yau 3-form are h0,0 = h3,3 = h3,0 = h0,3 = 1, h1,1 =
h2,2 and h1,2 = h2,1. Therefore, the whole complex cohomology of the manifold is specified

only via two numbers: h1,1 and h2,1.

Calabi-Yau manifolds have SU(3) as holonomy group. This implies the existence of a

covariantly constant spinor in the compact space [9], such that only one quarter of the

10-dimensional supersymmetry is preserved in the non-compact 4-dimensional space.

Therefore, N = 1 supersymmetry in 10 dimensions (which has 16 supercharges) reduces to

N = 1, D = 4 supersymmetry. On the other hand, type IIB supergravity actually has N = 2

supersymmetry in 10 dimensions (i.e., 32 supercharges), so after compactification we will

be left with N = 2, D = 4 supersymmetry. As we will see below, in order to further reduce

supercharges, we will need to use orientifold projections in order to reach the desiredN = 1,

D = 4 supergravity theory.

1.2.2 Moduli space of Calabi-Yau manifolds

As we have seen in the previous section, Ricci-flatness is basically the defining feature of

Calabi-Yau spaces. However, metrics satisfying such conditions are far from unique. Note

that, for example, given any Ricci-flat metric gµν, the rescaling gµν →λgµν defines another

Ricci-flat metric. We could ask ourselves whether, given a Hermitean metric defined with

respect to a certain complex structure, we can deform this metric in such a way that Ricci-

flatness is preserved, i.e.

Rµν(g ) = 0 → Rµν(g +δg ) = 0 (1.15)

where δg represents a linear deformation of the metric:

δg = δgµνd zµd zν+δgµνd zµd zν+c.c. (1.16)

which does not change the topological properties of the complex manifold. The space of all

possible deformations of the metric compatible with the Ricci-flatness condition is called

the moduli space of a Calabi-Yau manifold [21].

It can be shown that the deformations corresponding to δgµν and δgµν are actually

decoupled, and thus they correspond to independent classes of deformations. The former
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are readily found to arise from deformations of the Kähler form

δω= iδgµν d zµ∧d zν. (1.17)

From Yau’s theorem we know that any deformed Kähler form ω+δω still corresponds to a

Ricci-flat Kähler manifold. Therefore, we can expand these deformations in terms of a basis

of (1,1)-forms t I , I = 1, . . . ,h1,1, so that

δgµν = bI (x)t I
µν (1.18)

leading to h1,1 scalar fields (bI (x)) in the four-dimensional spacetime.

On the other hand, we might be tempted to neglect the moduli arising from δgµν, as

they seem incompatible a Hermitian metric. However, recall that the object that allowed

us to write the local complex coordinates in the very first place is the complex structure.

Thus, deformations of the metric with only (anti)holomorphic indices, indicate that the

coordinates we are using do not correspond to our original complex structure. It is then

inferred that δgµν and δgµν are related to deformations of the complex structure. These are

parametrized with complex scalar fields za as

δgµν =
i

||Ω||2
za(χa)µµνΩ

µνν (1.19)

where Ω is the unique (3,0)-form of the Calabi-Yau, ||Ω||2 = 1
3!
ΩµνρΩ

µνρ , and the forms χa

constitute a basis for H 1,2

∂
(X ,C). Therefore, deformations of the complex structure lead to

h2,1 complex scalar fields.

1.2.3 Calabi-Yau orientifolds

Following our previous discussion, Calabi-Yau compactifications preserve a quarter of the

10-dimensional supercharges, which in the case of type IIB supergravity means that the

effective 4-D theory will be described by N = 2 supergravity. For this end, all of the Kaluza-

Klein modes of the bosonic and fermionic fields, plus the Kähler and complex structure

moduli above will need to be arranged into supersymmetricmultiplets (see [22] for a detailed

description of the action and its components).

We will ultimately be interested in an effective N = 1 supersymmetric Lagrangian

in 4 dimensions. In order to achieve this, it is customary to accompany the dimensional

reduction with an additional operation known as orientifolding (see [23] for a review). In

type IIB supergravity, orientifold actions involve the reversal of the string world-sheet

orientation and a geometric involution which reverses the sign of the (3,0)-form Ω of the

compact space, leaving the Kähler form and complex structure invariant. The subsets of

the 10-dimensional spacetime invariant under this symmetry give rise to p-dimensional

orientifold planes, orOp-planes for short. These are non-dinamical objects, negatively charged

with respect to the Ramond-Ramond p-forms, and they will be crucial in the following

discussion. More concretely, in the cases we will be interested in, the orientifold action only

acts on the compact manifold, with its fixed points being either four-cycles or points in X6,
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thus yielding O3/O7-planes.5

As anticipated, compactifications with Calabi-Yau manifolds accompanied by an ori-

entifold symmetry (also known as Calabi-Yau orientifolds) project out half of the D = 4 su-

percharges, leading to N = 1 supergravity in 4 dimensions. Naturally, some of the scalar

fields present in the theory will be projected out due to this symmetry, and the remaining

ones will need to be assembled into chiral supermultiplets. It can be shown that the bosonic

spectrum surviving the orientifolding is composed of the following fields:

• h1,1 complex scalar fields T ρ , ρ = 1, . . . ,h1,1 parametrizing, among other quantities, the

volume of the compactified space, V (T ρ). These are the Kähler moduli we described

above. A fraction of these present axionic properties, with rich phenomenological

applications [24,25].

• h2,1 complex scalar fields6 zi , i = 1, . . . ,h2,1, related to the complex structure moduli.

These will actually be central to the discussion on flux compactifications.

• The axiodilaton τ, introduced in (1.1).

All in all, Calabi-Yau orientifolds will give rise to h1,1+h2,1+1 massless complex scalar fields.

Tipically, this summay be of the order of the hundreds (see, e.g., [26,27]). Of course, current

phenomenological constraints (coming from Big Bang Nucleosynthesis, for example) rule

out the possibility of such light vacua [28]. Thus, these fields must acquire mass somehow;

as we will see below, one of the most researched methods to induce a potential on these

moduli is through flux compactifications [11,29].

1.3 Effective theory and flux compactifications

In this subsection we will summarize the relevant formulae for compactifications of type

IIB superstrings on the orientifold X̃6 of a Calabi-Yau manifold X6 (see [22,30] for a review).

We will work in units of the reduced Planck mass, M−2
p = 8πG = 1.

As we described above, the low-energy spectrum of type IIB string theory compactified

on a Calabi-Yau orientifold X̃6 includes
7 the axio-dilaton τ, h2,1 the complex structure

moduli zi , and h1,1 Kähler moduli T ρ , which are assembled into scalar multiplets in N = 1,

D = 4 supergravity. The bosonic sector of such a theory is built using two ingredients: the

Kähler potential, introduced in eq. (1.11), and the superpotential. The former gives a metric

for the field space, which arises in the kinetic part of the Lagrangian as

Lbos,4D =−K
i j
∂µφi∂µφ

j −V (φ,φ), K
i j
= ∂2K

∂φi∂φ j
(1.20)

5Type IIB string theory may also include O5/O9-planes [22,23]. These are not relevant for the scheme of
flux compactifications we will develop below

6The cohomology group H 2,1(M ,C) decomposes into odd and even subgroups under the orientifold action.
In this case, the complex structure moduli actually arise from the odd part, i.e., H 2,1

− with dimension h2,1
− . We

will omit the subscript in favor of a clearer notation.
7We will ignore further degrees of freedom, such as possible h1,1

− axion multiplets, D3- and D7-brane
moduli, or matter fields.
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On the other hand, the scalar potential is a function of both the Kähler potential and the

superpotential. In the absence of interactions with the gauge sector, it reads8

V (φ,φ) = eK
[

K i j Di W D
j
W −3|W |2

]

(1.21)

where Di = ∂i +Ki are Kähler covariant derivatives and the indices run over all bosonic

scalar fields, i.e., the axiodilaton and the Kähler and complex structure sectors.

To leading order inα′ and gs , the Kähler potential K of the corresponding 4-dimensional

supergravity theory can be read from the effective action once the extra dimensions have

been compactified [21,22]. In this case, the Kähler potential is given by

K =−2logV − log(−i(τ−τ))− log

(

i

∫

X6

Ω∧Ω

)

. (1.22)

Here V (T ρ,T ρ) denotes the Kähler moduli-dependent volume of X̃6, measured in the

Einstein frame and in units of the string length ℓs . In the concrete case of a single Kähler

modulus, i.e., h1,1 = 1, it reads [4]

V = (T +T )3/2. (1.23)

On the other hand, the last term of (1.22) is written it terms of the unique holomorphic form

Ω of the Calabi-Yau which, in turn, depends implicitly on the complex structure moduli, c.f.

equation (1.19). For this Kähler potential to provide a good description of the moduli space

geometry, and in particular for the α′ corrections to remain under control, we will restrict

ourselves to the large volume regime9, V →∞, see [31] for more detail.

The couplings of the theory are conveniently expressed by specifying a symplectic basis10

of 3-cycles of the Calabi-Yau {AI ,BI }, with I = 0, . . . ,h2,1, and a dual basis of three-forms αI

and βI such that

∫

AI
αJ = δI

J

∫

BI

βJ =−δJ
I
,

∫

M3

αI ∧βJ = δJ
I
,

∫

AI
βJ =

∫

BI

αJ = 0. (1.24)

When Ω is expressed in this basis, it reads

Ω= X IαI −FIβ
I , with X I =

∫

AI
Ω, FI =

∫

BI

Ω . (1.25)

The X I are projective coordinates in the complex structure moduli space, and the corre-

sponding moduli fields can be defined to be zi ≡−iX i /X 0, i = 1, . . . ,h2,1. In order to find a

more convenient expression for the Kähler potential, the quantities X I and FI are grouped

in a symplectic period vector ΠT = (X I ,FI ). Then, it is possible to write the Kähler potential

8We denote by K ρσ = (Kρσ)−1, K ττ = (Kττ)−1 and K i j = (K
i j

)−1 the inverses of the field space metrics on
the Kähler, axio-dilaton and complex structure sectors respectively.

9Note that the Kaluza-Klein mass scale arising from the scalar fields in the compact directions will need to
be clearly separated from the mass these fields acquire through fluxes or other mechanisms. As shown in [31],
this separation of scales is under control in the large volume limit.
10The number of n-cycles of a manifold is given by the n-th Betti number bn . For Calabi-Yau manifolds in

particular, the number of 3-cycles is b3 =
∑

p+q=3 hp,q = 2h2,1 +2.
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of the complex structure moduli space Kcs as

e−Kcs = i

∫

M3

Ω∧Ω=−i(X I F I −X I FI ) = iΠ† ·Σ ·Π , (1.26)

where Σ is the symplectic matrix

Σ=
(

0 1

−1 0

)

. (1.27)

The previous expression is invariant under transformations Sp(2h2,1 +2,Z) associated with

different choices for the symplectic basis (1.24). These symplectic transformations act on

the period vector as follows

Π−→ S ·Π where ST ·Σ ·S =Σ. (1.28)

The quantities FI can be expressed as the derivatives of a holomorphic function of the X I ,

the prepotential, so that

FI (X ) = ∂I F (X ). (1.29)

The prepotential is a homogeneous function of degree 2, i.e., F (λX ) =λ2F (X ), and there-

fore it satisfies

X I FI = 2F (X ). (1.30)

Setting the gauge X 0 = 1, and using the homogeneity of the prepotential, the period vector

can be written as

Π(zi ) =








1

izi

2F − z j F j

−iFi








. (1.31)

Thus, the complex structure term of the Kähler potential in N = 1, D = 4 supergravity can

be easily expressed only in terms of the prepotential, which depends on the geometry of

the compact space.

1.3.1 No-scale flux vacua

We now turn to study how the scalar potential can be generated for themoduli, which in turn

means we need to look for a suitable superpotential. It can be shown that the kinetic term

for the composite 3-form G3 in (1.1), when fluxes are turned on only in the compact space,

generates a scalar potential for the moduli. This scheme is known as flux compactification,

introduced in [9]. The scalar potential arising from the fluxes is described in terms of the
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Gukov-Vafa-Witten superpotential [29]:

W = 1

ℓ2
s

p
4π

∫

M3

G(3) ∧Ω , (1.32)

whereG(3) = F(3)−τH(3), denoting by F(3) and H(3) the RR and NS-NS 3-form field strengths

respectively. Note that the presence of the holomorphic 3-form Ω indicates the implicit

dependence on the complex structure moduli of this superpotential.

This potential can be described in terms of flux quanta threading the internal manifold’s

3-cycles. Fluxes are required to satisfy the following quantization conditions11

1

ℓ2
s

∫

AI
F(3) =− f I

A ∈Z ,
1

ℓ2
s

∫

BI

F(3) =− f B
I ∈Z ,

1

ℓ2
s

∫

AI
H(3) =−h I

A ∈Z ,
1

ℓ2
s

∫

BI

H(3) =−hB
I ∈Z . (1.33)

Here minus signs have been introduced in all expressions for convenience. These fluxes can

be decomposed in the symplectic basis as

F(3) =−ℓ2
s ( f I

AαI − f B
I βI ), H(3) =−ℓ2

s (h I
AαI −hB

I β
I ). (1.34)

If we define the symplectic flux vectors f T = ( f I
A , f B

I ), hT = (h I
A,hB

I ), and N = f −τh, we can

write the flux superpotential in a compact way as

W = 1
p

4π

[

( f I
A −τh I

A)FI − ( f B
I −τhB

I )X I
]

= 1
p

4π
N T ·Σ ·Π . (1.35)

Note that the superpotential depends only on the complex structure moduli (through the

period vector Π) and on the axiodilaton (through the flux vector N ).

At tree-level, the Kähler sector satisfies the no-scale property [22] K ρσKρKσ = 3, and

therefore the scalar potential of the effective supergravity action reads

Vtree = eK
[

K i j Di W D
j
W +K ττDτW DτW

]

≥ 0 (1.36)

which does not involve the Kähler moduli. Thus, at tree-level, only the axio-dilaton and

complex structure sector may be stabilized. In order to constrain the Kähler moduli, the

superpotential and the Kähler potential need to take into account α′ perturbative corrections

[32,33] and non-perturbative effects [34,35]. It is important to emphasize that the no-scale

structure leading to the potential (1.36) is broken by these corrections. However, provided

these terms remain under control, they will only induce subleading contributions to the

mass spectra on the axio-dilaton/complex structure sector, which may be computed from

11The following are generalizations of the Dirac quantization condition of electromagnetic charges. In
this case, they required to have a consistent description of the wave function of the D-brane that couples to
these fluxes; see [12], [3, ch.6] and [4, ch.18] for more detail and the correspondence of this quantization with
instantons in string theory.



14 1.3. EFFECTIVE THEORY AND FLUX COMPACTIFICATIONS

the tree-level potential.12.

In part II of this thesis we will mostly consider critical points of the no-scale potential,

denoted by {τc , zi
c }, where the axio-dilaton/complex structure sector configuration preserves

supersymmetry, namely points satisfying

DτW |τc ,zi
c
= 0, and Di W |τc ,zi

c
= 0 for all i = 1. . . ,h2,1 . (1.37)

Note, however, that in general supersymmetry is still broken by the Kähler sector, since

DρW = KρW 6= 0 unless the expectation value of the flux superpotential vanishes,W |τc ,zi
c
= 0.

In what follows, field configurations satisfying (1.37) will be referred to as no-scale vacua.

We comment in passing that the expressions for the flux superpotential (1.35) and the pre-

vious one for theD3-charge are bothmanifestly invariant under the action of the symplectic

group Sp(2h2,1 +2,Z), provided the flux vector also transforms as

N −→ S ·N , S ∈ Sp(2h2,1 +2,Z). (1.38)

Actually, the combined actions (1.28) and (1.38) represent redundancies of the effective

supergravity description, and therefore no-scale solutions related by these transformations

should be regarded as equivalent. In addition, the previous characterisation of flux vacua is

also invariant under SL(2,Z) transformations acting simultaneously on the axio-dilaton τ

and the fluxes as

τ→ aτ+b

cτ+d
,

(

F3

H3

)

→
(

a b

c d

)

·
(

F3

H3

)

, (1.39)

with a,b,c,d ∈Z and ad −bc = 1. As in the case of symplectic transformations, these actions

should also be regarded as redundancies, thus, different no-scale vacua connected by them

represent the same physical state.

1.3.2 Tadpole cancellation

Before closing our discussion on the complex structure moduli, let us comment on a subtlety

regarding the fluxes and the values they may take. From the type IIB supergravity action

(1.1) the equation of motion of the R-R 4-form C4 is found to be a generalization of Gauss’

law. Integrating this over the compact manifold yields the crucial condition that all sources

for C4 must cancel each other [4, 13]. Intuitively, this is simply the general statement that all

electric field lines in a compact manifold must start and end on some charge, lest they cross

each other. From (1.1) we can see that the Chern-Simons term provides a source for C4 if

the fluxes G3 only thread the compact dimensions. D3-branes are also sources of C4, see

the first term of (1.3), as well as O3-planes, whose coupling to the R-R form is opposite to

and half of the one of the D3-brane. Taking all of these into account, we find the following

12Here, following [31,34–36] we assume that no-scale configurations (1.37) represent a good classical back-
ground for the computation of quantum corrections in string theory, including the case when W |τc ,zi

c
6= 0. For

a criticism of this approach see [37] (see also [38]).
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constraint on the fluxes:

Nflux+ND3 −
1

2
NO3 = 0 (1.40)

where ND3 and NO3 are the number of D3-branes and O3-planes respectively present in

our setup, and Nflux is defined as

Nflux ≡
1

8iκ2
10

∫

X6

G3 ∧G3

Im τ
= 1

ℓ4
s

∫

M3

F(3) ∧H(3) =
(

f B
I h I

A −hB
I f I

A

)

= hT ·Σ · f = N † ·Σ ·N

τ−τ
.

(1.41)

Equation (1.40) is usually also expressed in the following convenient way

Nflux ≤ Nflux+ND3 = L , (1.42)

where L denotes the contribution from the orientifold planes. As we will see later on, this

allows us to define the numerical problem of finding proper fluxes for no-scale vacua in a

more convenient way. This expression can also be connected with extremely interesting

properties of F-theory, a particularly useful geometrical generalization of type IIB String

Theory [39].

The requirement of zero net charge is generically known as tadpole cancellation in the

literature [13] since, in an open string language, failure to do so translates into anomalies in

the scattering amplitudes.

1.3.3 Stabilization of Kähler moduli

We saw in subsection 1.3.1 that in the effective theory, fluxes only act on the dilaton and

complex structure sector, thus leaving the Kähler sector massless at this stage. Therefore,

further ingredients are required in order to have complete control over these geometric

moduli. The most prominent approaches to deal with this issue are known as the KKLT

scenario [35] and the Large Volume Scenario (LVS) [34] (see [40, 41] for comprehensive

reviews).

The KKLT approach

In order to generate a contribution for the Kählermoduli, in this scenario one introduces non-

perturbative contributions to the superpotential due to gaugino condensation [42]. Schemati-

cally, we can introduce into our compactification setup a number of D7-branes wrapping

up some 4-cycle Σ4 of the Calabi-Yau. The worldvolume theory of such a stack of branes is

a Yang-Mills action and, provided the compact directions are integrated out, we are left with

anN = 1 super-Yang-Mills (SYM) in four dimensions. This theory is shown to generate a

non-zero vacuum expectation value for gaugino bilinears [42] which, in the language of our

effective field theory, translates into a contribution to the superpotential given by

Wnp = Ae−aT (1.43)
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wherewe have only considered oneKählermodulusT and A and a are numerical constants.13

The appearance of the Kähler modulus in this terms is related to the fact that the effective

gauge coupling of the four-dimensional theory is proportional to the volume of the 4-

cycle the branes are wrapping, which in turn is proportional to the overall volume of the

Calabi-Yau.

With these comments in mind, the full superpotential reads

W =W0 +Wnp (1.44)

where W0 is the Gukov-Vafa-Witten superpotential (1.32) and thus, together with the Kähler

potential (1.22), this theory is now capable of stabiling all moduli. Once again, neglecting

corrections to the Kähler potential requires that the solution has a large volume, i.e., Re(T ) ≫
1, which in this scheme implies W0 ≪ 1 at critical points of the scalar potential.

In practice, in order to be able to generate an extremely small flux superpotential, one

usually first works with the dilaton and axiodilaton sector and tunes the fluxes in order to

have W0 ≪ 1. These fields receive a mass term due to the fluxes and are then fixed to those

values. Finally, Kähler moduli are stabilized through the inclusion of (1.43). Note that in

general, in order to be able to freeze the axio-dilaton and complex structure sector, we

will need to require that the masses of these fields are sufficiently large so the inclusion of

non-perturbative terms does not significantly change their values.

Large Volume Scenario

Let us briefly describe the most prominent alternative to the KKLT approach for Kähler

moduli stabilization, the Large Volume Scenario (LVS), first introduced in [31,34]. The most

relevant feature of this scheme is that it will allow us to stabilize the moduli at exponentially

large volume (thus allowing us to neglect corrections to the theory whichmight be subleading

in V ), without imposing any restriction on the value of W0, thus allowing for consistent

compactifications with W0 ∼O (1−10).

In order to achieve stabilization, not only are non-perturbative corrections included in

the superpotential, as in (1.43), but also perturbative corrections to the Kähler potential of the

Kähler moduli, which read

KK =−2 ln

(

V + ξ

2g 3/2
s

)

, ξ≡−χ(X6)ζ(3)

2(2π)3
(1.45)

In the last expression, ξ is a constant parameter defined in terms of χ(X6), the Euler number

of the compact spaces, and ζ, the Riemann Zeta function. Of course, these corrections will

break the no-scale structure condition of the Kähler potential.

For the purposes of LVS stabilization, the models we are interested in feature, at least,

2 Kähler moduli. Furthermore, in order to generate a competition in the resulting scalar

potential between the non-perturbative terms (1.43) and the perturbative term in (1.45), a

hierarchy between the Kähler moduli is required. One of the most simple examples to study

13This non-perturbative superpotential may be generalized to include many such terms, i.e, Wnp =
∑

i Ai e−ai T . As we will see in chapter 4, this leads to racetrack potentials and are actively researched as candidates
for Kähler moduli stabilization.
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this scenario is theWP
4
[1,1,1,6,9] hypersurface (see chapters 3 and 4), which has h1,1 = 2 Kähler

moduli. The volume of this compactification is given by V ∝ τ3/2
b

−τ3/2
s , with τi = Re(Ti ),

and the subscripts stand for “big” and “small”, respectively. Working through the algebra of

the scalar potential and its critical points, it can be checked (see, e.g., [31] for all details and

derivations) that requiring τb ≫ τs ≫ 1 will allow us to stabilize the volume at

V ∼ |W0|eaτs , (1.46)

where a is the exponential factor of (1.43) and no requirements have been imposed, a

priori, on W0. Thus, exponentially large volumes may be consistently reached in such

compactification schemes.

1.4 The String Theory Landscape

Using the mechanisms described above, we are able (in principle, at least) to stabilize all

moduli for a given compactification. However, the vacua found this way will always be either

Minkowski or anti-de Sitter minima, since supersymmetry remains unbroken at this stage.

In order to make contact with observations, we require some mechanism to uplift a fraction

of these vacua to de Sitter. While we will not discuss them in detail (see, e.g. [35,43]), it is

important to stress that several uplifting mechanisms have been found in String Theory

which are able to generate minima with a positive cosmological constant.

Taking into account all these ingredients, we are thus left with an ensemble of vacua

(with any sign of cosmological constant), arising from the stabilization of moduli from

the compact manifold threaded with fluxes and with corrections taken into account. The

collection of all of these four-dimensional vacua with all moduli stabilized is known as the

String Theory Landscape [44]. Onemay wonder what is the expected amount of vacua thatmay

be found within this Landscape. From our previous analysis alone, it is clear that ranging

from the amount of possible Calabi-Yau geometries to the fluxes they may be threaded

with (in accordance with the tadpole constraint), we should expect an enormous number

of possible vacua, a small fraction of which may be compatible with current constraints on

observable quantities of our Universe (such as the Higgs mass, the cosmological constant

etc.). An estimate may be obtained from the tadpole condition and Hodge numbers of the

Calabi-Yau we want to examine [13,45,46], which typically yields14 a number of vacua of the

order of 10500.

In order to characterise vacua in the Landscape, two main approaches may be followed.

On the one hand, a completely analytical treatment of the effective field theory allows us to

pinpoint exact solutions in themoduli space, along with the properties of such solutions such

as their meta-stability against non-perturbative decays (to be further explored above) or the

couplings that arise between different sectors of the field content of the vacuum solution. On

the other hand, the huge amount of vacua estimated in the Landscape motivates a statistical

study of the ensemble of solutions, initiated by [48]. This approach allows us, assuming some

simplifying assumptions (such as taking the flux variables as continuum parameters), to

obtain approximate distributions ofmany observables for these vacua, which grants a further

14However, recent studies of the estimate of vacua in F-theory have placed it around 10272,000 [47]
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Figure 1.1: A pictorial (and simplified) version of the String Theory flux Landscape, consisting of two scalar

fields.

understanding of the characteristics of realistic solutions in String Theory. Throughout

this thesis, we will tackle both of these directions in our work, and show the interplay

among them, by finding explicit solutions to compactification examples and comparing the

distributions of these vacua with their expected statistical behaviour.

With such a great number of (in principle) attainable vacua in the Landscape, one might

be tempted to think that any possible EFT coupled to gravity may be found as a low energy

limit of some vacuum in the Landscape. However, this might not be possible from what we

know about our particular Universe and, actually, one might be able to discern if such an

EFT can actually be embedded within a high energy theory. In this sense, all the consistent

4D EFTs which cannot be found in the Landscape are said to lie in the Swampland [49–51].

In order to discern which vacua may lie in the Landscape and which may belong to the

Swampland, over the past decades many Swampland conjectures have been formulated. These

generically state properties which may need to be satisfied in order for a certain EFT to

have a UV completion in String Theory. These conjectures arise from observations about

extreme phenomena within our Universe; for example, from the properties of extremal

black holes, one is lead to theWeak Gravity Conjecture [52], stating that gravity should always

be the weakest force present in the EFT, or to the requirement that no global symmetries

may exist in the theory [53]. More recently, the very existence of de Sitter critical points

(either minima, maxima or saddle points) in a scalar potential of the EFT has been put

into question within String Theory in [54]. This conjecture sparkled quite a lot of studies

upon its release (see e.g. [55–65] and chapter 4) and it is still a matter of debate both from a

foundational [66] and phenomenological [59] perspective.
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Figure 1.2: (a) Canonical double well scalar potential with non-degenerate vacua. (b) Euclidean spherical

solution to the previous potential, for a background of false vacuum.

1.5 Non-perturbative stability of vacua

We have seen that the String Theory Landscape is composed of all kinds of vacua, arising

from the compactification geometry, the fluxes we thread it with and all sorts of configura-

tions involving branes and orientifold planes. In order to get a intuitive idea of the potentials

such configurations generate, one may think of the Landscape as a collection of vacua like

the one shown in figure 1.1. Note that while these potentials are clearly simplified versions of

actual EFTs arising from compactifications, they serve as a good case study to tackle more

complicated schemes later on.

Given this huge collection of (generically) non-degenerate vacua, one may wonder about

their stability against quantum non-perturbative effects. Indeed, as noted by Coleman

and collaborators in [67–69], quantum tunneling may be consistently generalized to field

theories, leading to the concept of False Vacuum Decay.

In this section, we will closely follow the seminal papers [69, 70]; for more detail and

examples see [71,72].

1.5.1 False Vacuum Decay

The study of quantum tunneling in the context of field theory can be stated most simply

in terms of a single scalar field φ, with a potential like the one shown in figure 1.2(a). While

this picture may be expanded to include more fields with involved interactions, this simple

example will give us an intuitive idea of what to expect in this kind of decays.

Thus, the problem we are trying to solve can be simply described as follows: given a

configuration where the field rests at the highest local minimum (the false vacuum) of the

potential everywhere in space, what is the probability per unit volume and time that this

field may tunnel through the barrier to reach the lower minimum, i.e., the true vacuum? Of

course, we will also be interested in obtaining the profile of the field in spacetime once the

tunnelling occurs. In order to answer this question, we may proceed by generalizing the

semiclassical, WKB approximation in quantum mechanics to field theory.
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The WKB approximation and the Euclidean approach

Given a system with several generalized degrees of freedom assembled into a vector q and

described by a Lagrangian

L = 1

2

(
∂q

∂t

)2

−V (q), (1.47)

in can be shown [73] that the tunneling amplitude from a certain initial (and classically stable)

point q 0 = q(0) to another configuration q f = q(s f ) is given by

|T | = A e−B/2 (1.48)

at first order in ħ. In this expression A is a theory-dependent, O (1) numerical factor and B

is given by

B [P ] =
∫s f

0
d s

√

2(V (q(s))−E) (1.49)

where s parametrizes the trajectory in configuration space in terms of (d s)2 = (d q)2 and

E =V (q 0). If the emergence point of this tunnelling is not specified in advance, then the

most probable escape path (MPEP) can be obtained by minimizing (1.49).

This problem is most easily understood from the perspective of Lagrangian mechanics.

We know that given a system described by (1.47), its equations of motion are

d 2qi

d t 2
=− ∂V

∂qi
. (1.50)

Furthermore, from the Jacobi-Maupertuis principle [74], we know that the trajectory followed

in configuration space can also be obtained by minimising the following integral:

I =
∫s f

0
d s

√

2(E −V (q(s))). (1.51)

Thus, it seems we might be able to find a minimum of (1.49) working in a similar fashion.

Indeed, noting that (1.49) can be obtained from (1.51) by taking V → −V , the trajectory

corresponding to the from this integral will correspond to the one followed by the equations

of motion

d 2qi

dτ2
= ∂V

∂qi
. (1.52)

where we have introduced Euclidean time τ= i t , which effectively incorporates the reversal

of the potential from the original equations of motion (1.50). These e.o.m.’s can be obtained

by extremizing the Euclidean action

SE =
∫

dτ

[
1

2

(
d q

dτ

)2

+V (q)

]

. (1.53)

For later application, we will be most interested in paths which, in terms of Euclidean time,
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start off from q 0 at τ=−∞, reach q f at some finite Euclidean time and then return to q 0 at

τ=+∞. These are known as bounces. It can be shown that for these trajectories

B = SE [q]−SE [q 0] (1.54)

where the first term corresponds to the evaluation of the Euclidean action (1.53) for a path

satisfying the Euclidean equations of motion (1.52), while the second one simply integrates

the action with q = q 0.

In summary, we have found that the MPEP may be found by extremizing the Euclidean

action associated to the theory under study. The solution to the equations of motion arising

from it follows this tunneling path and can actually be used to obtain the exponential factor

in the tunneling amplitude (1.48).

Generalizing to field theory

The key idea of Coleman is to generalize the above results to a scalar field theory with

equations of motion given by

(

− ∂2

∂t 2
+∇2

)

φ=−∂V

∂φ
(1.55)

whereV (φ) is shown in figure 1.2(a) and the field is initially assumed to sit in the false vacuum

everywhere in space. According to our previous analysis, we may be able to find a bounce of

the Euclidean equations provided we extremize the Euclidean action, which is given by

SE =
∫

dτd 3x

[
1

2
(∂τφ)2 + 1

2
(∇φ)2 +V (φ)

]

. (1.56)

Thus, the Euclidean equation of motion to be solved and its boundary conditions are

�eφ≡
(
∂2

∂τ2
+∇2

)

φ= ∂V

∂φ
, lim

τ→±∞
φ(τ, x) =φfv,

∂φ

∂τ

∣
∣
∣
∣
τ=0

= 0, lim
x→±∞

φ(τ, x) =φfv.

(1.57)

where φfv stands for the value of φ at the false vacuum of V (φ). The first two conditions

arise from requiring that the Euclidean solution is a bounce, while the third one simply

arises from the fact that crossing the potential barrier separating the false and true vacua

requires some amount of energy, and thus only a compact region of space may undergo

this tunnelling.

The equation of motion and boundary conditions hint at a possible O(4) symmetry

of the Euclidean solution. Actually, it can be shown that such a solution minimizes the

Euclidean action for the case of a single field [70], and it may be generalized to multifield

scalar theories [75]. Thus, in terms of a radial coordinate ρ2 = τ2 + x2, we can rewrite the

Euclidean action as

SE = 2π2

∫∞

0
dρ ρ3

[
1

2

(
dφ

dρ

)2

+V (φ)

]

(1.58)
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where we have integrated over the angular variables. This means that the tunneling proba-

bility per unit volume and time is given by

Γ/V ≈ Ae−B , B = 2π2

∫∞

0
dρ ρ3

[

1

2

(

dφ

dρ

)2

+V (φ)−Vfv

]

(1.59)

for a field configuration φ which extremizes (1.58) and where Vfv =V (φfv). Note that while

(1.58) is divergent, the integral (1.59) is actually finite.15 The equation of motion and the

boundary conditions are now given by

d 2φ

dρ2
+ 3

ρ

dφ

dρ
= dV

dφ
, lim

ρ→∞
φ(ρ) =φfv,

dφ

dρ

∣
∣
∣
∣
ρ=0

= 0. (1.60)

This equation may be interpreted as the 1+1 dimensional equation of motion of a particle

with time coordinate ρ and spatial coordinate φ(ρ) moving under the effect of a potential

−V (φ), and subject to a time-dependent friction term. The boundary conditions then simply

state that this "particle" starts moving from rest (from an unknown initial position), only to

end up at rest after an infinite time in the local maximum located at φfv of −V (φ). It can

be shown that, at least in the single-field case, this problem always has a solution due to

an undershoot/overshoot argument. Essentially, we can always find two starting points in this

upside-down potential where the particle either crosses the maximum at φfv with non-zero

velocity (overshoot) or it does not have enough energy to reach it (undershoot); therefore,

there exists a point between these where the particle exactly reaches themaximum at infinite

time.

Figure 1.2(b) shows the solution φ(ρ) associated to the tunneling from the false vacuum

to the true one of V (φ) in fig. 1.2(a). Note that while this solution may be easily obtained in

1-D by, for example, iteratively reducing the undershoot/overshoot field range, this problem

may be extremely difficult to solve for 2 or more scalar fields. The biggest difficulty in these

cases stems from both the lack of knowledge about the initial starting point and the many

possible paths in field space that the Euclidean solution might follow. One usually resorts to

sophisticated numerical software to solve these bounces; in this thesis we have extensively

used AnyBubble [76], thoughmany other diverse programs exist such as CosmoTransitions

[77] or SimpleBounce [78].

On the other hand, there exist many schemes one can take to get an approximate

Euclidean action. Among these, the thin-wall approximation [67, 79] is one of the most

widely used. It assumes a small separation of energies between the false and true vacuum,

i.e., ǫ ≡ V (φfv)−V (φtv) ≪ 1, so that the barrier separating both vacua (c.f. figure 1.2(b)) is

extremely thin andmay be assumed to be infinitesimal in the perpendicular direction. Other

more sophisticated approaches have also been proposed, such as [80], which provide quite

accurate values even when the thin-wall scheme fails. We will consider these approximations

in detail in chapter 5.

15The preexponential factor A will not be relevant for our discussion. For details on its precise value, see [68].
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Figure 1.3: Schematic view of a solution to the Euclidean equations of motion (1.60) and its Lorentzian

continuation. Constant field surfaces are shown as dashed lines in Euclidean space, while their continuation to

the Lorentzian regime is shown with solid curves. The interior of the lightcone emanating from the origin of the

bubble cannot be reached from the Euclidean solution, so it must be obtained by analytic continuation from the

outside.

Properties of the Lorentzian solution

In order to obtain the solution after tunneling, one only needs to Wick-rotate back to real

time, so the initial conditions on the field can be written as

φ(t = 0, x) =φ(τ= 0, x), ∂tφ(t = 0, x) = 0 (1.61)

and the evolution follows according to the classical equation of motion (1.55).

The solution we have found in Euclidean space makes all the following analysis quite

simpler. Equation (1.55) is the Lorentzian counterpart of (1.57), so the solution we found

earlier will still hold once we turn to real time, i.e.

φ(t , x) =φ(ρ =
√

x2 − t 2). (1.62)

and thus the O(4) symmetry of Euclidean space is translated into O(3,1) invariance in

Lorentzian coordinates. From (1.61) we see that the initial profile of the field after its emer-

gence will be

φ(t = 0, x) =φ(ρ0 = (02 +x2)1/2) (1.63)

so the actual profile we show in fig. 1.2(b) will correspond to the initial radial profile of a true

vacuum bubble.

As a final remark, it is easy to check that for any constant-φ hypersurface expanding in
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Minkowski space (see figure 1.3), this wall will follow a hyperbolic curve given by

R(t ) =
√

R2
0 + t 2 (1.64)

which follows from the spherical ansatz in Euclidean space.

Note that these solutions only make sense out of the light-cone located at the origin

of the nucleated bubble. In order to solve the equations of motion for the field inside this

light-cone we can either analytically continue our solution to this region or, equivalently,

solve

d 2φ

du2
+ 3

u

dφ

du
=−dV

dφ
, u =

√

t 2 −x2 (1.65)

with appropriate boundary conditions. Note that in the x− t plane the surfaces of constant φ

are hyperboloidswith timelike normals. Wewill see that this fact has important consequences

when false vacuum decay is analysed from a cosmological perspective.

1.5.2 Cosmological consequences: inflation and the multiverse

Up to this moment we have only discussed the tunneling from two non-degenerate vacua in

a field theory setting, without considering the effect of gravity in this process. Of course,

we are interested in the application of this process in a cosmological setup, gravity is a

fundamental ingredient to take into account. Following [69,72], we will give a brief overview

of this process, known as Coleman-deLuccia instantons.

Coleman-deLuccia instantons

Let us consider a scalar field theory minimally coupled to gravity with action

S =
∫

d 4x
p−g

[

− 1

2κ
R + 1

2
gµν∂µφ∂νφ−V (φ)

]

. (1.66)

where κ = 8πG . In complete analogy with the non-gravitational case, we will obtain the

tunneling ratio in terms of Euclidean coordinates and assume16 an O(4) symmetry on the

system. This implies that the metric is of the form

d s2 = dξ2 +ρ(ξ)2dΩ
2
3 (1.67)

where dΩ
2
3 is the surface element of a 3-sphere. The equations of motion derived from this

action are

φ′′+ 3ρ′

ρ
φ′ = dV

dφ
(1.68)

16Note that this assumption is inherited from the non-gravitational analogue of this process. However, there
is no actual proof stating that bounces with O(4) symmetry maximize their tunneling probability per unit
volume and time.
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(
ρ′

ρ

)2

= 1

ρ2
+ κ

3

(
φ′2

2
−V (φ)

)

(1.69)

where primes denote derivatives with respect to ξ.

A couple of comments about these equations are in order. First of all, note that the

first equation corresponds to the non-gravitational case (1.60) when ρ(ξ) = ξ, which would

correspond to an Euclidean flat Universe in (1.67). Furthermore, for a general case, we will

not be able to assume the second term in (1.68) represents a dampening term, since ρ′ could

very well be negative. Thus, solutions to this problem cannot be justified to exist following

an undershoot/overshoot reasoning.

On the other hand, note that the topology of the Euclidean spacetime will play an

important role in the possible transitions allowed in this system. Particularly interesting are

the de Sitter to de Sitter transitions; since both the true and false vacua in those cases have

the topology of a 4-sphere (in Euclidean coordinates), up-tunnelings from the true to the

false vacuum are allowed [81,82]. More concretely, the closed Euclidean geometry of both

the bubble and its background implies that the integral over the false vacuum background is

finite, even if the true vacuum potential is higher than the false one (and thus the probability

of generating such a bubble is non-zero either way). Quite interestingly, from the viewpoint

of the String Theory Landscape, this “recycling” mechanism may help in populating this

huge potential with bubbles of any kind of vacua, as it allows the exploration of minima

which may not be reachable without the inclusion of gravity.

Properties of the Lorentzian solution

Once a solution to the Euclidean equations has been found, we must Wick-rotate back to

real time to find the evolution of the bubble just formed. The scalar field both inside and

outside the light-cone behaves exactly as in the non-gravitational case, i.e., the constant

field surfaces are hyperboloids with timelike and spacelike normals, respectively, with the

lightcone at the origin as their asymptote (see figure 1.3). This is just a consequence from

the requirement of O(4) symmetry on the Euclidean solution, which must transform into

O(3,1) once we turn to real time.

Let us analyze the physics of the bubble interior in more detail. The symmetries of the

problem generate hyperbolic constant field surfaces; therefore, a very useful foliation of this

space-time can be obtained by respecting this very symmetry. Indeed, once we Wick-rotate

the Euclidean solution to real time and analytically continue to the interior of the light-cone,

the metric is given by [69,72]

d s2 = d t 2 −a(t )2d H 2
3 (1.70)

where d H 2
3 represents the surface element of a hyperboloid with timelike normal vector.

The equations of motion are given by

φ̈+ 3ȧ

a
φ̇=−dV

dφ
(1.71)
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Figure 1.4: An example of a scalar potential where a scalar field initially with value φfv everywhere in space

may tunnel through the barrier, form a true-vacuum bubble, and undergo a slow-roll inflationary epoch inside

it. Such a potential may be found within the Landscape.

(
ȧ

a

)2

= 1

a2
+ κ

3

(
φ̇2

2
+V (φ)

)

(1.72)

where dots represent derivatives with respect to t . We see that (1.70) is an open FRWmetric

and, furthermore, (1.72) is the Friedmann equation for a scalar field with k =−1. If we are to

believe that our Universe is the interior of such a bubble, then homogeneity and isotropy

require that constant field surfaces correspond to constant-time surfaces as well. Thus, the

FRWmetric of an observer within this bubble corresponds to an open one. This statement

is a generic prediction of any Coleman-deLuccia tunneling event.

Inflation and the Multiverse

Equation (1.72) hints at a possible application of False Vacuum Decay for cosmological

purposes. Indeed, this tunneling process has played a central role in the study of cosmological

models, starting with AlanGuth’s proposal [83] for an inflationary epoch in the early universe.

In short, Guth proposed an exponentially expanding stage of our early universe could be

the key to explain why the Universe is found flat (locally, at least) and to give a reason for

its homogeneity. Such an expanding phase may be obtained assuming the existence of

a homogeneous scalar field, sitting in a false vacuum of a potential where V (φfv). This

inflationary phase may then be cut off due to the percolation of true vacuum bubbles whose

scalar potential in the interior corresponds to our actual cosmological constant. However,

such a simple model was found to be inconsistent [83,84] since, among other problems, the

tunneling rate too low for percolation of the bubbles to their new phase. Moreover, even if

our universe were to be the inside of such a bubble, the domination of the curvature term of

the Friedmann equations which is completely inconsistent with observations (at least when

potentials similar to the ones in figure 1.2(a) are considered).

The search for inflationary mechanisms continued to expand over the years (see [40,85,

86] introductions to inflation and extensive reviews on inflationary models). In the last few

decades, the increasing interest on the String Theory Landscape has rekindled the search for
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inflationary universes and possible quantum transitions between vacua from a cosmological

viewpoint [87]. An interesting inflationary potential which combines false vacuum decay

along with a slow-roll inflationary epoch [82] is shown in figure 1.4. A potential such as this

one may be considered to be found within the Landscape, alluding to its vastness. In such a

case, our Universe may again be initially considered to be the product of a vacuum decay, a

true vacuum bubble created due to a quantum tunneling process. In this setup, we could

easily tackle the homogeneity and flatness problems with a slow-roll inflationary potential

lasting for several e-folds occurring after the nucleation of the bubble. In chapter 5, we will

construct many such potentials in two-field models which are capable of inflating in such

a way as to be compatible with current inflationary parameters. Of course, our Universe

may only be the one of a huge fractal-like structure of bubbles within bubbles of different

vacua [82]. Such a structure is known in the literature as the multiverse [88,89].

As we said above, universes generated through false vacuum decay are to be described

by an open FRW geometry, due to the O(3,1) symmetry of the scalar field inside the bubble.

Such a universe has been considered from a phenomenological point of view in the litera-

ture [90–92] leading to interesting prospects of a possible verification17 of the open foliation

of our spacetime through the low ℓmultipoles of the CMB spectrum.

In this chapter we have seen how compatibility of String Theory with our observed

Universe leads to the concept of geometric moduli arising from the compactification of 6

(or 7) dimensions. In order to stabilize these moduli, we have reviewed how the inclusion of

different ingredients of the theory such as fluxes and branes, generates a potential for these

moduli, known as the Landscape. In the first part of this thesis we will describe our recent

progress on the problem of moduli stabilization. More concretely, we will first show novel

analyses to stabilize all the complex structure moduli present in some compactifications and

the consequences of the mass spectra generated following such mechanisms. We will follow

this discussion with a study of the Kähler moduli in a well-studied example (a hypersurface

of the complex projective space WP
4
[1,1,1,6,9]) and compare our results with the de Sitter

swampland conjecture and several phenomenological constraints. In the second part of the

thesis, we will focus on the Landscape from a cosmological perspective, focusing on the

study of False Vacuum Decay and inflation on Gaussian Random Landscapes. While these

may be considered as extremely simplified versions of the original problem, they provide

good working examples to analyze the complexity of higher dimensional potentials. Finally,

we will end up with a discussion on a vacuum decay mechanism involving branes and fluxes,

which offers a new way of undergoing quantum tunneling in a more realistic Landscape,

built from the foundational ingredients described in this chapter.

17If closed spatial curvature were observed through this method (or by any other means), this may offer a
window towards disproving a single-bubble universe originated through Coleman-de Luccia tunneling in the
Landscape. On the other hand, a recent review [93] of the application of WKB methods to field theory has
suggested that, contrary to the results of Coleman and de Luccia [69], the assumption of open universes inside
the bubbles may have to be dropped in favor of closed universes. While this idea is still under development, it
questions the general consensus that the Landscape leads to a open universe.
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Part II

Moduli stabilization





Chapter 2

A complete mass spectrum

in one-parameter models

After discussing the main properties and consequences of the String Theory Landscape,

we now turn to study a particular strategy to compute the low energy effective field theory

which greatly simplifies the task of stabilizing the hundreds of moduli present in the theory.

We will consider Calabi-Yau manifolds with discrete symmetries, which effectively reduce

the number of moduli and make the computation of the truncated effective field theory

possible. In this approach, however, the couplings and masses of the truncated fields are

left undetermined. In this chapter, we will discuss the tree-level mass spectrum of type

IIB flux compactifications at Large Complex Structure, focusing on models with a reduced

one-dimensional complex structure sector. We will compute the tree-level spectrum for the

dilaton and complex structure moduli, including the truncated fields, which can be expressed

entirely in terms of the known couplings of the reduced theory. This will allow us to show

that the masses of this set of fields are naturally heavy at vacua consistent with the KKLT

construction, and we will discuss other phenomenologically interesting scenarios where the

spectrum involves fields much lighter than the gravitino. We will also derive the probability

distribution for the masses on the ensemble of flux vacua, and show that it exhibits universal

features independent of the details of the compactification. Finally, we will check our results

on a large sample of flux vacua constructed in a concrete, one-dimensional example. This

chapter is based on [94].

2.1 Introduction

As we discussed in chapter 1, the need to compactify the 6 or 7 extra dimensions of super-

symmetric string theories leads to significant technical problems, which make the study of

the phenomenological and cosmological implications of the Landscape of 4d Effective Field

Theories (EFTs) exceedingly difficult. One of these problems is the huge number of moduli

describing the geometry of the compact space. This makes the computation of the complete

EFT prohibitively complex, and as a consequence it has only been obtained for simple

compactifications. Another difficulty is the vast number of possible ways to compactify the

extra dimensions, which makes it unfeasible to characterise every possible four dimensional
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vacuum of the theory.

In the last few decades, several complementary strategies have been followed to overcome

these technical problems. On the one hand, many efforts have been dedicated to studying

explicit models where most of the moduli can be truncated or integrated out, leaving

only a few fields (up to ten) for which the EFT can be computed [31, 34–36, 45, 95–101].

In such models the observational implications can be studied in detail, and these explicit

computations have been used as lampposts to guide the analysis of more complex scenarios.

Another possible approach, which we will exhaustively study in chapter 5, is to take a

statistical perspective on the ensemble of vacua and characterize their properties through

particular statistics (for example, via Gaussian Random Fields). This, in the end, alleviates

the need to compute the underlying effective field theories and makes the overall problem

more tractable. For references on this topic, see [102–118].

In this part of the thesis we will take a conservative approach and discuss one of the best

studied domains of the Landscape: the tree-level flux vacua on Calabi-Yau compactifications

of type IIB superstrings at Large Complex Structure (LCS). The construction of the EFTs de-

scribing this corner of the Landscape, and the applicability of these theories, has been widely

discussed in the literature [11,21, 119, 120]. Among this class of models, phenomenologically

interesting compactifications generally involve a large number of complex structure moduli

and only a few Kähler moduli (see, e.g., [101]). However, as we mentioned above, the detailed

construction of the complete Effective Field Theory is prohibitive in general. Consequently,

explicit constructions of flux vacua are often based on Calabi-Yau manifolds invariant under

large groups of discrete symmetries which allow a consistent supersymmetric truncation of a

large fraction of the complex structuremoduli [45,96–99,101]. Provided only fluxes invariant

under these symmetries are turned on, it is possible to freeze a large set of complex structure

moduli at a critical point of the resulting flux scalar potential, leaving a reduced theory for

a few surviving fields [45, 96–98]. The phenomenological and cosmological predictions

of these models are then computed after including the relevant quantum corrections and

supersymmetry breaking effects in the reduced theory. However, the fate of the truncated

fields is rarely discussed in detail [99,101].

The main objective of the following work is to take a first step towards a more precise

understanding of the truncated moduli sector in this class of models. Note that, in the

approach we just described, the truncated moduli are not integrated out; instead, the resulting

EFT is a consistent supersymmetric truncation of the complete low energy theory at tree-level,

and thus there is not necessarily a mass gap between the frozen moduli and those in the

reduced theory [121–123]. Actually, although the truncated sector is guaranteed to be at a

stable configuration at tree-level, the spectrummight contain arbitrarily light fields. Thus, in

principle the quantum corrections and the breaking of supersymmetry could render some

of these light fields tachyonic. Alternatively, the fixed point of the discrete symmetry group

could cease to be a critical point of the corrected scalar potential.

Here wewill focus on the simplest possible class of thesemodels, those where the reduced

theory contains a single complex structure modulus. Although this is a rather restrictive type

of compactification, it contains plenty of examples (see, e.g., [124–128]). Furthermore, the

moduli space geometry is well characterised for many of them [129–132], including the well

known family of quintic hypersurfacesWP
4
[1,1,1,1,1] and its generalisations [119, 124, 125, 133].
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We will prove, using only symmetry arguments and properties of the effective theory on

type IIB compactifications at LCS, that it is possible to compute the tree-level mass spectrum

for the axio-dilaton and the complete set of h2,1 complex structure moduli fields, including

the truncated ones.

In order to illustrate our results, we have compared our analytic formulae with a numer-

ical scan of flux vacua of type IIB compactified on an orientifold ofWP
4
[1,1,1,1,4] [124, 133].

This family of hypersurfaces has a h2,1 = 149 dimensional complex structure moduli space,

which can be consistently reduced to a single field at the fixed locus of a Z2
8 ×Z2 symmetry.

Using the known reduced effective theory, we construct a large ensemble of flux vacua and

verify the validity of the formulae we derived for masses of the axio-dilaton and the complex

structure field on the reduced theory. It is important to stress that, at each of these vacua,

our results allowed us to infer the masses of all of the truncated 148 complex structure fields,

without the need to compute the complete EFT.

For generic vacua, the mass spectrum has a dependence on the fluxes and thus, to have a

characterisation of the perturbative stability independent of the flux choice, we resorted

to statistical methods. More specifically, we used the techniques derived in the seminal

papers [46, 134], whose only assumption is the continuous flux approximation.1 With this at

hand, we were able to analytically compute the probability distribution for the complete

set of masses in the ensemble of flux vacua, and showed that the statistical properties of

the spectrum are independent of the compactification. Then, we compared the “empirical”

mass distributions from the ensemble of vacua in theWP
4
[1,1,1,1,4] model with the predicted

probability distributions, and showed they are in good agreement within the regime of

validity of both the EFT and the continuous flux approximation.

The chapter is organized as follows. In section 2.2 we review the effective theory for the

axio-dilaton and complex structure sector on type IIB compactifications, and collect the

relevant formulae for the computation of the tree-level mass spectrum. In section 2.3 we

revisit the effective reduction of the complex structure moduli space on a Calabi-Yau admit-

ting a discrete group of symmetries. We also derive the restrictions that these symmetries

impose on the structure of the Hessian and the fermion mass matrix. Section 2.4 contains

the main results of this chapter where we analytically derive the tree-level mass spectrum for

the class of models we consider. In section 2.5 we present the EFT for the compactification

of type IIB in theWP
4
[1,1,1,1,4] Calabi-Yau manifold. In section 2.6 we analyze the statistical

properties of the computed spectra in the ensemble of flux vacua, and verify our conclusions

by performing a numerical scan on theWP
4
[1,1,1,1,4] model. We present our conclusions in

section 2.7.

1As the name suggests, this simply means that the fluxes defined in (1.33) are assumed to take continuous
values. We will further develop on this topic in section 2.4 and appendix C.
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2.2 Flux vacua at Large Complex Structure

2.2.1 Effective theory

As wementioned in the introduction, in this chapter we will be focusing on compactifications

in the Large Complex Structure regime [30], whose effective theory can be obtained from

the following prepotential:

F = i

6
κi j k zi z j zk + 1

2
κi j zi z j + iκi zi + 1

2
κ0 +Finst . (2.1)

where zi represent complex structure moduli, defined in sections 1.2.2 and 1.3. On the

other hand, the terms κi j k , κi j and κi are numerical constants which can be computed

from the topological data of the mirror manifold to M3. In particular, for historical reasons

the coefficients κi j k are often referred to as the classical Yukawa couplings. The constant

contribution κ0 is determined by the Euler number χ(M3) = 2(h1,1 −h2,1) of the Calabi-Yau:

κ0 = i
ζ(3)

(2π)3
χ(M3) , (2.2)

where ζ is the Riemann zeta function. Finally,Finst denotes exponentially suppressed string

worldsheet instanton contributions, which can be expressed as [101]

Finst =− i

(2π)3

∑

d

nd Li3[e−2πdi zi

] . (2.3)

Here the integers nd are the genus zero Gopakumar-Vafa invariants, which are labeled by

the vector d i ∈ Z
+, and the function Li3(q) is the polylogarithm Lip (q) = ∑

k>0
qk

kp . In the

LCS regime, the contribution to F from instantons is subleading, and in the following

calculations we will neglect it entirely.2

As we saw in chapter 1, the prepotential defines all the necessary ingredients to build

the effective theory, namely the Kähler potential and the superpotential. Using the results

developed in section 1.3 and provided we discard the instanton contribution, the Kähler

potential reads

Kcs =− log

(
1

6
κi j k (z + z)i (z + z) j (z + z)k −2Im(κ0)

)

. (2.4)

It is straightforward to check that the field space metric derived from the Kähler potential K

in (1.22) is real and block-diagonal in the axio-dilaton and complex structure sectors, namely,

Kττ =
1

2(Im τ)2
,

K
i j
=−κ̊i j k (z + z)k + 1

4
κ̊i lmκ̊ j np (z + z)l (z + z)m(z + z)n(z + z)p , (2.5)

2Note, however, that these corrections will be considered when comparing numerical results with the
expressions that will follow from this prepotential. In general, numerical results will be required to have small
instantonic corrections.
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where subscripts denote the derivatives of the Kähler functions, i.e., Kττ ≡ ∂τ∂τK and K
i j
≡

∂i∂ j
K , and the quantities κ̊i j k ≡ eKcsκi j k are usually called the rescaled Yukawa couplings [119].

2.2.2 Mass spectrum at tree-level vacua

Themain focus of this chapter is the study of the mass spectrum at no-scale supersymmetric

vacua, {τc , zi
c }, satisfying (1.37). In this subsection we will enumerate the relevant properties

of the Hessian of the potential (1.36) at these points and its spectrum of eigenvalues. This

information will in turn determine the tree-level masses of the moduli fields.

At no-scale vacua the scalar potential vanishes identically, regardless of the configuration

of the Kähler moduli, as a consequence, the Kähler moduli remain flat directions of Vtree.

This means that to study the spectrum of excitations of these configurations, it is sufficient to

focus on the axio-dilaton/complex structure sector, since all the Kähler moduli aremassless.3

Additionally, in order to simplify the computations, we will make use of the freedom to

perform a field redefinition to bring the field space metric to a canonical form at the vacuum

{τc , zi
c }. To be more specific, since the Kähler metric (2.5) is real and block-diagonal in the

axio-dilaton and complex structure sectors, we can redefine the complex structure fields as

za = ea
i

zi with ea
i
∈ GL(h2,1,R), so that

(e−1)i
a (e−1)

j

b
K

i j

∣
∣
∣
τc zi

c

= δab (2.6)

with a,b = 1, . . . ,h2,1. Then, the matrices e i
a ≡ (e−1)i

a can be identified with a real vielbein

basis for the metric K
i j
at the point {τc , zi

c }. Note that this does not completely fix the

freedom to choose a matrix e i
a , as we are still allowed to make field redefinitions za →

Λ
a
b

zb (equivalently ea
i
→ Λ

a
b

eb
i
) preserving the canonical form of the metric, that is with

Λ ∈ SO(h2,1). Similarly, we can use the real vielbein eτ
0 = i(τ−τ) to obtain the canonical

normalisation of the axio-dilaton at the vacuum {τc , zi
c }. For convenience we will also use the

index A = 0, . . . ,h2,1 to collectively label the canonically normalized axio-dilaton (A = 0) and

the complex structure fields (A ≥ 1), so that the full Kählermetric in the axio-dilaton/complex

structure sector takes the form K AB = δAB at the no-scale vacuum.

After bringing the field-space metric to a canonical form, it is straightforward to check

that the Hessian of the scalar potential (1.36) at no-scale vacua {τc , zi
c } has the following

structure4

H ≡
(

∇A∇B V ∇A∇B V

∇A∇B V ∇A∇B V

)

=
(

ZAC Z C
B +δAB m2

3/2 2m3/2 ZAB e−iαW

2m3/2 Z AB eiαW Z AC Z C
B +δAB m2

3/2

)

, (2.7)

where m3/2 ≡ eK /2|W | is the gravitino mass, αW = arg(W ) is the phase of the flux superpo-

tential and ZAB ≡ eK /2D ADB W . Equivalently, we can rewrite the Hessian as

H =
(

m3/2 1+M
)2

with M ≡
(

0 ZAB e−iαW

Z AB eiαW 0

)

. (2.8)

3Of course, while this does not constitute a phenomenologically well founded model, we will leave the
details on Kähler moduli stabilization to chapter 4. See also [31,35] and references therein.

4Indices are here raised and lowered with the canonical form of the metric δAB and δAB .
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Since the field space metric is already in a canonical form, the eigenvalues of the matrix

H can be identified with the squared masses of the 2(h2,1 +1) real scalar fields in the axio-

dilaton/complex structure sector at {τc , zi
c }. Therefore to find the spectrum of H it suffices

to diagonalize the matrix M , which can be identified with the fermion mass matrix (see,

e.g., [135]). Moreover, note that the eigenvalues of M come in pairs of opposite signs ±mλ,

and therefore the mass spectrum of the scalar sector at tree-level is simply [123]

µ2
±λ = (m3/2 ±mλ)2 ≥ 0, (2.9)

where λ= 0, . . . ,h2,1. The positivity of themasses squared µ2
±λ ensures that all no-scale vacua

are perturbatively stable, which could have been anticipated by noting that the tree-level

potential (1.36) is always non-negative, and vanishes at no-scale vacua.

In practice, the simplest way to find the fermion masses mλ, and thus also the scalar

mass spectrum, is to consider the (h2,1+1)×(h2,1+1) hermitian matrix (Z Z †)AB ≡ ZAC Z C
B ,

whose h2,1 +1 eigenvalues m2
λ
coincide with those of

M 2 =
(

ZAC Z C
B 0

0 Z A
C ZC B

)

. (2.10)

Regarding the structure of the matrix ZAB , it is straightforward to prove that, at no-scale

vacua, we always have Z00 = eK /2(eτ
0)2 DτDτW = 0. Moreover, when our model is defined in

terms of a prepotential as in (2.1), we can simplify the computations with the identity [21,46]

Zi j =−(τ−τ)eKcs κi j k K kl Z
τl

, (2.11)

which we have written in a form invariant under redefinitions of the zi fields to ease compar-

ison with previous works. If we instead use canonically normalised fields, plus the definition

of the rescaled Yukawa couplings κ̊abc = eKcsκabc , the previous identity takes the simpler

form

Zab = i κ̊abc Z 0c . (2.12)

For later reference we will also collect here the following form of the tadpole constraint

(1.42) which, at no-scale vacua, can be expressed in terms of the expectation value of the

gravitino mass and the quantities Z0a as (see appendix A)

0 ≤ 4πV 2
(

m2
3/2 +|Z0a |2

)

= Nflux ≤ L. (2.13)

To summarise, the scalar mass spectrum µ2
±λ at no-scale vacua (2.9) can be computed

from the gravitino mass m3/2, the quantities Z0a , and the canonically normalised and

rescaled Yukawas κ̊abc , using the formulae (2.12) and diagonalising the matrix Z Z †. In the

next section we will discuss compactifications on Calabi-Yau manifolds invariant under a

group of discrete symmetries. As we shall see, at no-scale vacua preserving those symmetries,

the structure of both the Yukawa couplings and Z0a is severely constrained.
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2.3 Flux vacua with enhanced symmetries

In this section we will consider the special case where the Calabi-Yau geometry is invariant

under a global group of discrete isometries. As discussed in [96], provided that only fluxes

which are invariant under these symmetries are turned on, the low energy action is consistent

with the supersymmetric truncation of a subset of the complex structure fields. Indeed, in this

setting the spacetime isometries act non-trivially on the complex structure fields, while

leaving the low energy supergravity action invariant. Then, the consistent truncation of the

theory is defined by restricting the complex structure moduli space to the fixed locus of this

symmetry, in other words, a subset of the fields is frozen at the fixed locus. The consistency

of the truncation ensures that any solution of the reduced theory obtained after freezing a

subset of the fields is also a solution of the complete theory. In particular, critical points of

the reduced scalar potential are also critical points in the full effective theory. Moreover, if

the fields surviving the truncation are stabilized at a supersymmetric critical point, the full

complex structure sector also preserves supersymmetry [96] (see also discussion in [99]).

In the next paragraphs we will review how the presence of discrete symmetries in the

Calabi-Yau geometry can be used to truncate a sector of the complex structure fields. We will

also discuss the restrictions that these symmetries impose on the couplings of the resulting

reduced theory.

2.3.1 Invariant fluxes and low energy symmetries

As we mentioned in the introduction, in many interesting compactifications the Calabi-Yau

geometry is invariant under the action of a discrete group of transformations, G . These

transformations act on the complex structure fields, zi → ẑi , and thus also induce a change

on the period vector Π(zi ), defined in (1.31). Since the Calabi-Yau geometry is left invariant

under these symmetries, these transformations must also leave the geometry on its moduli

space invariant. Therefore, the action of a transformation g ∈G on the period vector must

be of the form

Π(zi ) −→Π(ẑi ) = eΛg (z) Sg ·Π(zi ) , (2.14)

with Λg (za) a holomorphic function of the complex structure fields and Sg a constant

symplectic matrix in Sp(2h2,1 +2,Z), both determined by the group element g . In addition,

when the three-form fluxes are turned on, the invariance of the effective action under the

group G requires that the flux vector N = f −τh transforms as in (1.38). Then, it is easy to

check that under a transformation g ∈G , the Kähler potential Kcs and the superpotential W

experience a g -dependent Kähler transformation

Kcs(ẑi , ẑ
i
) = Kcs(zi , zi )+Λg (zi )+Λg (zi ) , W f̂ ,ĥ(ẑi ) = e−Λg (z) W f ,h(zi ) . (2.15)

Here we have explicitly indicated for clarity the dependence of the superpotential on the

flux vectors ( f ,h) and their transformed values ( f̂ , ĥ) under (1.38). However, the symmetry

groupsG that we are considering are discrete and of finite order, and thus it is always possible
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to choose a Kähler gauge so that Kcs and W transform as scalars under5 G (see [136]), that is,

Kcs(ẑi , ẑ
i
) = Kcs(zi , zi ) , W f̂ ,ĥ(ẑi ) =W f ,h(zi ) . (2.16)

It is important to note that despite of the behaviour (2.16) of the Kähler potential and the

flux superpotential under the group of transformations G , generically they do not constitute

a proper symmetry of the low energy effective theory for the moduli fields [98]. Indeed,

each choice of fluxes defines an effective theory for the moduli, where the flux integers

( f ,h) appear as coupling constants (see [137]). Therefore, since the group G generally acts

non-trivially on the fluxes, i.e., the couplings of the EFT, in general it will not correspond to

a low energy symmetry for the moduli effective action. On the contrary, if we restrict the

flux configuration N = f −τh to be invariant under the transformations (1.38), then G will

be a symmetry of the low-energy action defined by this choice of fluxes. Indeed, from (2.16)

we have that for an invariant set of fluxes

Kcs(ẑi , ẑ
i
) = Kcs(zi , zi ) , W f ,h(ẑi ) =W f ,h(zi ) , (2.17)

so the low energy supergravity theory of the moduli is properly invariant under the action

of G .

In the following we will assume that the fluxes are invariant under the action ofG , and we

will again omit the subscripts ( f ,h) in the superpotential in order to simplify the notation.

2.3.2 Consistent truncation of the moduli space

We will now discuss how the symmetry group G aids in the task of finding solutions to the

no-scale equations (1.37). In general, for a given group G we can always split the complex

structure fields into two sets, zi = {zα, wα′
}: those invariant under the action of the symmetry

group, zα with α = 1, . . . ,h2,1
red, and those fields which transform non trivially, wα′ → ŵα′

,

where α′ = h2,1
red+1, . . . ,h2,1.

Then, if the symmetry groupG admits a fixed locus on the moduli space, i.e., a configuration

of the fields wα′
∗ satisfying ŵα′

∗ = wα′
∗ , the derivatives of the scalar potential V and the Kähler

potential along the non-invariant fields wα′
must vanish there

∂wα′V = 0, Kwα′ = 0 at zi = (zα, wα′
∗ ) for all τ, zα . (2.18)

To prove this it is sufficient to note that, for an invariant choice of fluxes, both the no-scale

potential V and the Kähler potential transform as scalar fields under the action of G , and

thus ∂zi V and Ki will transform as tensors. Then, in the case of the scalar potential, we have

that a generic point of the moduli space satisfies

∂wα′V (zα, wα′
) = ∂ŵβ′

∂wα′ ∂ŵβ′V (zα, ŵβ′
) . (2.19)

5The invariant Kähler gauge K inv
cs = Kcs +Λ

inv(z)+Λ
inv(z) can be found noting that under a transformation

g : zi → ẑi we must have Λinv(ẑ) =Λ
inv(z)−Λg (z). It is easy to check that this condition is solved by Λ

inv(z) =
1

[G ]

∑

g∈G Λg (z), where [G ] is the order of the group G .
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At the fixed locus, where ŵα′
∗ = wα′

∗ , the previous expression can be seen as a system of

equations for ∂wα′V (zα, wα′
∗ ). But this system only admits the trivial solution (2.18) because,

by assumption, all the fields wα′
transform non-trivially away from the fixed point implying

that all equations are independent. Moreover, in the previous discussion the expectation

values of the dilaton or the G -invariant fields are irrelevant, and therefore the fixed point

will always be a stationary point of the superpotential regardless of the field configuration

(τ, zα). Although our argument has been derived in the particular Kähler gauge where Kcs

and W transform as scalars (2.16), our conclusion is a Kähler invariant statement. Different

derivations can be found in [96,99,101].

The first condition in (2.18) implies that the fixed locus of the symmetry group G is

always a critical point of the scalar potential, while the second one leads to a consistency

condition on the geometry of the moduli space. In particular, this geometric condition

implies that the moduli space metric on the fixed locus is block-diagonal in the truncated

and surviving sectors Kzαwβ′ = 0. Moreover, the reduced moduli space defined by the fixed

locus wα′ = wα′
∗ must be a totally geodesic submanifold of the full moduli space (see [123]). In

other words, any geodesic on the moduli space manifold with at least one point located at

the fixed locus of G , and which is locally tangent to it, should be entirely contained in the

reduced moduli space.

These are very strong requirements which ensure the consistency of freezing the moduli

wα′
at the level of the EFT LagrangianLEF T (τ, zi ), thus defining a reduced theory involving

the surviving fields alone:

L red
EF T (τ, zα) ≡LEF T (τ, zα, wα′

= wα′
∗ ) . (2.20)

Indeed, the conditions (2.18) guarantee that any solution of the reduced theory given by

L red
EF T is also a solution of the complete EFT. Moreover, using (2.17) and a similar argument

to the one given above, it is possible to prove that the flux potential is also extremized at the

fixed locus of G

Dwα′W |w=w∗ = ∂wα′W |w=w∗ = 0 for all τ, zα , (2.21)

whichmeans that the truncated fields wα′
preserve supersymmetry there. If supersymmetry

is preserved in the reduced theory, it is also unbroken in the original EFT. Then, the process

of freezing the non-invariant fields wα′
constitutes a consistent supersymmetric truncation

of the theory (see [122,123,138]).

From (2.21) it follows that compactifications admitting a discrete symmetry group are

particularly convenient for the search of no-scale vacua since at the fixed locus of G , the non-

invariant fields automatically satisfy the no-scale equations (1.37). No-scale vacua located at

the fixed locus of the symmetry group G are often called enhanced symmetry vacua. Moreover,

provided we are interested only in this class of vacua, the consistency of the truncation

ensures that it is sufficient to calculate the couplings, i.e., the period vector, of the reduced

action (see, e.g., [101, 119, 139–142]), which renders the computation of the EFT tractable.
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2.3.3 Mass matrix structure at enhanced symmetry vacua

The high degree of symmetry present in low energy theories withG -invariant fluxes provides

valuable information regarding the structure of the fermion mass matrix and the Hessian at

enhanced symmetry vacua. First, as we saw above, at the fixed locus of G the moduli space

metric is block diagonal in the truncated and surviving sectors, and from (2.18) and (2.21) it

also follows that

DτDwα′W |w∗ = DzαDwβ′W |w∗ = 0, ∇zα∇wβ′V |w∗ =∇zα∇wβ′V |w∗ = 0, (2.22)

regardless of the configuration of the reduced moduli (τ, zα). This, in turn, implies that

the fermion mass matrix M = M{τ,zα} ⊗M{wα′ } and the Hessian of the potential H =
H{τ,zα} ⊗H{wα′ } are block-diagonal in the two sectors at no-scale vacua, which means that it

is consistent to study the perturbative stability of the fields (τ, zα) and wα′
separately. More-

over, the particular structure of the fermion mass matrix on the EFTs we are considering,

i.e., the identity (2.11), leads to an additional simplification. From (2.22) it is easy to see that

the only non-vanishing quantities Zτzi are those with components on the surviving sector,

Zτzα .

Collecting all the previous results, and using (2.12), we can see that the components of

the canonically normalised matrix ZAB which appears in M satisfy the relations

Z0w a′ = Zz ã wb′ = 0, Z
z ã z b̃ = iκãb̃c̃ Z 0z c̃ , Zw a′wb′ = iκa′b′c̃ Z 0z c̃ , (2.23)

where fields z ã correspond to the canonically normalised fields of the reduced theory, ã, b̃ =
1, . . . ,h2,1

red (see eq. (2.6)), and w a′
to those of the truncated sector, a′,b′ = h2,1

red+1, . . . ,h2,1.

Thus, the main result of this section can be summarized as follows: at enhanced sym-

metry vacua the canonically normalized Hessian of the no-scale potential can be entirely

expressed in terms of the derivatives of the flux superpotential of the reduced theory, Z0z ã , plus

k̊ãb̃c̃ and k̊a′b′c̃ of the canonically normalized invariant Yukawa couplings. Furthermore, in

the class of models we are interested in, the sector surviving the truncation is one dimen-

sional, and thus the indices ã, b̃ and c̃ in (2.23) can only take one value, which we choose to

be “1" without loss of generality. The non-vanishing components of the matrix ZAB then

read

Z11 = i κ̊111 Z 01, Za′b′ = i κ̊a′b′1 Z 01. (2.24)

As we shall see in section 2.4, for the class of models we discuss here, the quantities κ̊111 and

κ̊a′b′1 appearing in these expressions can also be completely expressed in terms of the field

expectation values and the known couplings of the reduced theory.

2.4 Complete tree-level mass spectrum

Webegin the present section by deriving certain universal properties of the type IIB couplings

which are valid in a generic Calabi-Yau compactification at LCS.Wewill then restrict ourselves

to Calabi-Yau manifolds admitting a symmetry group which enables a consistent reduction
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of the complex structure moduli space to a single surviving field. Using these results together

with the ones in the previous sections we will show how to compute the tree-level spectrum

for the complete axio-dilaton/complex structure sector at no-scale vacua.

2.4.1 Universal features of the type IIB effective field theory

In this subsection we will obtain general properties satisfied by the canonically normalised

Yukawa couplings in the large complex structure regime. More specifically, we will show

that a subset of the rescaled Yukawas κ̊abc can be expressed in terms of a single parameter

ξ ∈ [0,1/2], which can be defined in terms of known quantities appearing in the reduced

theory as

ξ≡ −2eKcs Im κ0

1+2eKcs Im κ0
. (2.25)

This quantity can be understood as a coordinate parametrising the complex structuremoduli

space, with the LCS point located at ξ= 0. For the models we are interested in, with a few

Kähler moduli and a large complex structure sector h1,1 ≪ h2,1, we have from (2.2) that

Im κ0 < 0. Combined with the definition (2.25), the latter condition also implies that physical

configurations satisfy ξ≥ 0. Then, it is easy to check that field configurations with ξ= 1/2

are those at the boundary of the moduli space, that is, for ξ> 1/2 the Kähler metric has a

negative eigenvalue, leading to unphysical solutions.

The argument belowwill proceed along the lines of [143–145], where analogous properties

for the Yukawas where found strictly at the LCS point (ξ= 0). But here we will only assume

that the exponentially suppressed instanton contributions to the prepotential (2.1) can be

entirely neglected. Therefore, the results presented below generalize those of [143–145], as

the regime of validity of our analysis can be extended to the entire region of the moduli

space where the polynomial approximation of the prepotential (2.1) is under control.

The starting point of the derivation is the Kähler metric (2.5) on the complex structure

moduli space. Following [145] we introduce the following real vector of unit norm

e i
1 ≡

1

x
(z + z)i , K

i j
e i

1e
j
1 = 1, (2.26)

where the parameter x is a normalisation constant which has yet to be determined. Without

loss of generality, and making use of the residual SO(h2,1) freedom to define the canonically

normalised fields, we rotate the vielbein basis e i
a so that the first vector coincides with e i

1.

Since the Kähler metric (2.5) has the canonical form δab when expressed in the basis e i
a , we

find that the rescaled and canonically normalised Yukawa couplings should satisfy

δab =−κ̊ab1x + 1

4
κ̊a11κ̊b11x4 . (2.27)

Note also that from the definition of the Yukawa couplings, κ̊abc = eKcsκabc , and the expres-

sion for the Kälher potential (2.4), we have

e−Kcs = 1

6
κ111x3(1+ξ) =⇒ 1

6
κ̊111x3(1+ξ) = 1. (2.28)
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Solving the two previous conditions for the Yukawas of the form κ̊ab1, it is straightforward

to obtain

κ̊111 =
2(1+ξ)2

√

3(1−2ξ)3
, κ̊a′11 = 0 and κ̊a′b′1 =− 1+ξ

√

3(1−2ξ)
δa′b′ . (2.29)

with a′,b′ = 2, . . .h2,1. The rest of the rescaled Yukawa couplings κa′b′c ′ are not constrained

by the conditions above, and therefore a priori they can be generic. The normalisation

constant x of the vielbein e i
1 is found to be

x2 = 3(1−2ξ)

(1+ξ)2
. (2.30)

To the best of our knowledge these relations have never been presented before in the

literature.

The direction specified by the vielbein e i
1 has a concrete geometrical significance. It

corresponds to the no-scale direction of the complex structure moduli space [146,147]

Ka =−1

2
κ̊a11x2 =−

√

3/(1−2ξ)δ1
a . (2.31)

The previous relation also implies the following generalised no-scale property

Ki K
j
K i j = 3/(1−2ξ) ≥ 3 , (2.32)

which is satisfied by any type IIB compactification with h1,1 ≤ h2,1 at LCS (see appendix A

in [146]).

Note that in the models we are interested in, where only one field survives the truncation,

the v.e.v. of the complex structure field za is necessarily aligned with the vector Z0a , since

both of them point along the unique direction of the reduced complex structure moduli

space. Therefore, the Yukawa couplings κ̊a′b′1 computed above are precisely those also

appearing in the expression (2.24), and thus we already have all the necessary ingredients to

compute the tree-level spectrum at a generic no-scale vacuum.

2.4.2 Fermion and scalar mass spectra at no-scale vacua

We begin by computing the fermion mass spectrum as described in section 2.2.2, that is,

diagonalising the hermitian matrix Z Z †, and using the formula (2.9) to obtain the masses of

the scalar fields. First, the vector

Z0a = δa1Z01 (2.33)

is necessarily aligned with the no scale direction (recall that in these models a can only take

one value, as h2,1
red = 1). From the expressions (2.29) for the rescaled Yukawa couplings, and
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Figure 2.1: Plot of m̂(ξ), as defined in (2.36).

the relations (2.24), we find that matrix ZAB has the following structure

ZAB =







0 Z01 0

Z01 iκ̊(ξ)Z 01 0

0 0 − 1+ξp
3(1−2ξ)

δa′b′ Z 01







, (2.34)

where we used the shorthand κ̊(ξ) ≡ κ̊111(ξ). Then, after factorising an overall scale msusy ≡
|Z01| = |eK /2D0D1W |, and computing the spectrum of eigenvalues m2

λ
of Z Z †, we obtain

mλ/msusy =







m̂(ξ) λ= 0

1/m̂(ξ) λ= 1

1+ξ
√

3(1−2ξ)
λ= 2, . . . ,h2,1

, (2.35)

where we defined

m̂(ξ) ≡ 1
p

2

(

2+ κ̊(ξ)2 − κ̊(ξ)

√

4+ κ̊(ξ)2

)1/2

, (2.36)

which is shown in figure 2.1.

Interestingly, it can be seen that all the fermions on the truncated sector have the same

mass. In particular, at the LCS point (ξ= 0) the fermion mass spectrum reads simply

m0/msusy =
1
p

3
, m1/msusy =

p
3, and mλ′/msusy =

1
p

3
. (2.37)

with λ′ = 2, . . . ,h2,1.

The mass spectrum of the scalar fields can be immediately obtained from equation (2.9).

To write it down, it is convenient to introduce the angular parameter θW (dependent on the
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choice of flux) as

cosθW ≡ V m3/2p
Nflux/4π

, with θW ∈ [0,π/2] , (2.38)

where the range of values of θW follows from the tadpole constraint (2.13). Despite appear-

ances, the parameter θW has no dependence on the Calabi-Yau volume or the Käher moduli,

since the combination V m3/2 = 1p
2

eKcs /2Im(τ)−1/2|W |, often denoted byW0 in the literature,

depends solely on the axio-dilaton and complex structure fields. Furthermore, recalling that

Z0a′ = 0, we find from (2.13) that the total D3-charge induced by fluxes is simply

Nflux = 4πV 2
(

m2
3/2 +m2

susy

)

=⇒ tanθW = msusy/m3/2 , (2.39)

and then it is straightforward to check that the complete set of scalar masses at tree-level in

the axio-dilaton/complex structure sector is given by

µ2
±λ/m2

3/2 =







(1± tanθW m̂(ξ))2 λ= 0
(

1± tanθW

m̂(ξ)

)2

λ= 1

(

1± (1+ξ) tanθW
√

3(1−2ξ)

)2

λ= 2, . . . ,h2,1

. (2.40)

This mass spectrum is the main result of this chapter. All the parameters appearing in the

previous expression can easily be computed in the reduced theory, as ξ is determined by

the configuration of the complex structure fields surviving the truncation, and θW depends

only on the expectation value of the flux superpotential W0 and the total D3-charge Nflux,

induced by the fluxes.

It is worth noticing that this result is independent of both the specific details of the

compactification and the number of moduli fields. Moreover, these masses only depend on

the choice of fluxes via an overall scale given by the gravitino mass m3/2 =W0/V and the

angular parameter θW . We have chosen to present the masses normalised by the gravitino

mass in order to eliminate their dependence on the Calabi-Yau volume V , which appears as

an overall multiplicative factor.

An interesting case to mention is that of the KKLT scenario [35], where the consistency

of the EFT requires that the value of W0 ≪ 1 is very close to zero, or equivalently θW ∼π/2.

In this limit the scalar spectrum simplifies to

KKLT scenario: µ2
±λ/m2

3/2 ≈







tan2θW m̂(ξ)2 λ= 0

tan2θW

m̂(ξ)2
λ= 1

(1+ξ)2 tan2θW

3(1−2ξ)
λ= 2, . . . ,h2,1

. (2.41)

implying that all the masses in the spectrum are very large compared to the gravitino mass,
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Figure 2.2: Scalar mass spectra associated with the critical values for θW (2.42) where the mass spectrum

contains at least a zero mode. (a) Spectrum for θW = θW
0 where µ2

−0 = 0 and µ2
+0 = 4m2

3/2. (b) Spectrum for

θW = θW
1 where µ2

−1 = 0 and µ2
+1 = 4m2

3/2.
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Figure 2.3: Scalar mass spectrum for θW = θW
2 where there are h2,1 −1 massless modes in the truncated sector

µ2
−λ′ = 0 and µ2

+λ′ = 4m2
3/2.

µ2
±λ ≫ m2

3/2. As discussed in detail in [148–150], in generic situations this guarantees the

consistency of neglecting the complete axio-dilaton/complex structure sector in KKLT

constructions, even after including quantum corrections and supersymmetry breaking

effects in the theory. However, very light modes might still appear in the spectrum when

considering no-scale solutions at special points of the moduli space [151, 152].

In the following two subsections we will discuss another two special cases where the value

of the parameter θW is fixed, and thus we can write the entire (normalised) mass spectrum

as a function of the parameter ξ alone.

2.4.3 Flux vacua with massless scalars

An important consequence of (2.40) is that at no-scale vacua we might encounter spectra

with very light or evenmassless scalar fields, since tanθW ∈ [0,∞). In general the presence of

those light fields is not convenient for phenomenological applications, as such vacua might

become tachyonic after including quantum corrections or due to supersymmetry breaking

effects. However, no-scale solutions with light (or massless) modes are still of interest for

certain constructions of dS vacua [153,154], and for implementing inflation. Thus, we will
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now briefly discuss the properties of their mass spectra.

Note that, for any given value of the parameter ξ, there are three values of θW such that

the spectrum contains one, or several massless modes. They are given by

tanθW
0 = m̂(ξ)−1 , tanθW

1 = m̂(ξ) , and tanθW
2 =

√

3(1−2ξ)

1+ξ
, (2.42)

and for each of these values the massless field(s) correspond(s) to µ2
−0, µ

2
−1, and µ2

−λ′ , re-

spectively. The corresponding spectra associated to these branches of vacua are displayed

in figures 2.2 and 2.3. In the case of the critical values θW = θW
0 and θW = θW

1 , away from

the LCS point (ξ> 0) the spectrum contains exactly one vanishing mass, corresponding to

fields in the reduced theory: µ2
−0 = 0 and µ2

−1 = 0, respectively. In those two cases all the

other fields have masses of at least the order of the gravitino mass. These classes of vacua

might be particulary interesting to realise the construction of dS vacua of [153,154], which

required a massless field in the complex structure sector at tree-level. Regarding the last

branch, θW = θW
2 , away from the LCS point the spectrum contains h2,1 −1 massless modes

µ2
−λ′ = 0, that is half of the scalar modes in the truncated sector.

In section 2.6 we will discuss the statistics of this mass spectrum in the ensemble of

no-scale flux vacua. This will help us to estimate how generic these classes of vacua are in

the Landscape.

2.4.4 No-scale vacua with N 0
A = 0

In the present subsection we consider the second class of no-scale vacua for which the

parameter θW is fixed in terms of ξ, namely flux vacua where the flux vector satisfies the

constraint N 0
A = 0. The flux N 0

A is associated to the period (1.31) that grows without bound

in the LCS limit. The main consequence of setting this flux to zero is that the terms of the

superpotential which are cubic in zi are also identically zero.

The main motivation to study this class vacua is the analyses done in [145, 155]. On

the one hand, in [155] it was argued (via a numerical analysis) that for generic choices of

the fluxes, and at points of the moduli space near the LCS point the cubic terms of the

superpotential typically become dominant.6 On the other hand, as proven in [145,155], when

the cubic terms of W dominate no vacua can exist in the region of the moduli space where

ξ≈ 0. As a consequence, no-scale vacua with N 0
A 6= 0 are expected to be very scarce, or even

non-existent, in a small neighbourhood of the LCS point. On the contrary, the conclusions

in [145, 155] cannot be applied to the class of vacua where the flux N 0
A is set to zero, since

the cubic terms of the superpotential are identically zero, and therefore can never become

dominant. Thus, it is expected that the constrained class of vacua with N 0
A = 0 may still be

present, and even become the dominant type of vacua in a small neighbourhood of the LCS

point.

To give further support to this conclusion, in appendix D we have estimated the minimal

values of ξ for which it is possible to find no-scale solutions with both non-vanishing N 0
A

6Actually this is true even for points in field space not associated with a vacuum.
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and when subject to the constraint N 0
A = 0. We find

ξmin|N 0
A
6=0 &

|Imκ0|
4
p

Nflux
(2.43)

forN 0
A 6= 0, while in the caseN 0

A = 0 the parameter ξ remains unbounded below. In agreement

with the analyses in [145,155], we can see that vacua with N 0
A = 0 are expected to be dominant

in a small neighbourhood of the LCS point. As we shall show in section 2.6, the numerical

scan of no-scale vacua in the WP
4
[1,1,1,1,4] model confirms this expectation, and matches

perfectly with the conclusions of [145, 155].

To prove that in this type of vacua the angular parameter θW is determined by the value

of ξ, it is convenient to make use of the Hodge decomposition of the flux vector N [46]. As

we review in appendix A, at any given no-scale vacuum {τc , zi
c } the flux vector can be written

in terms of the period vector Π and its Kähler covariant derivatives DaΠ= (∂a +Ka)Π as

N =
p

4πeKcs

(

iW Π+D0DaW DaΠ

)

. (2.44)

Setting N 0
A = 0 in this expression, we find

W = i D0DaW Ka , (2.45)

where we have used that in the gauge (1.31) the period vector satisfies Π0
A = 1. Finally, taking

into account the result (2.31) and the definition of the angular parameter θW (2.38) together

with (2.13), we arrive at the constraint

tanθW =
√

(1−2ξ)/3 =⇒ θW ∈
[

0,
π

6

]

. (2.46)

Alternatively, this relation can be expressed in the following useful way.

W 2
0 = V 2m2

3/2 =
3Nflux

8π(2−ξ)
≥ Nflux

8π
∼O (10−103), (2.47)

which relates the flux parameter W0 and the total D3-charge Nflux. From here we can see

immediately that these solutions are not compatible with the KKLT construction of dS vacua,

since that scenario requires W0 ≪ 1. On the contrary, this class of no-scale vacua is suitable

for the construction of LVS vacua, where W0 ∼O (1−10).

In order to find the scalar spectrum at these no-scale solutions, we just need to substitute

the relation (2.46) into our main result (2.40), which leads to

N
0

A
= 0 : µ2

±λ/m2
3/2 =







(

1±
√

(1−2ξ)/3 m̂(ξ)
)2

λ= 0
(

1±
√

(1−2ξ)
p

3m̂(ξ)

)2

λ= 1

(

1± 1+ξ

3

)2

λ= 2, . . . ,h2,1

. (2.48)
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Figure 2.4: Spectrum of scalar masses for vacua with the restrictionN 0
A = 0 on the flux configuration. The masses

are plotted as a function of the LCS parameter ξ ∈ [0,1/2] and are normalised by the gravitino mass m3/2. (a)

Branches corresponding to the masses {µ2
±0,µ2

±λ′}, where µ
2
±λ′ are the 2(h2,1−1) masses in the truncated sector.

(b) Scalar mass branches {µ2
+1,µ2

−1}. We can see that in these branches of vacua there are no light truncated

fields µ2
±1 ≪ m2

3/2 in the entire LCS regime.

We have displayed the dependence of these masses on the parameter ξ in figure 2.4. Note

that the previous spectrum is independent of the details of the Calabi-Yau compactification.

With the aid of (2.47), it can be computed entirely from the total D3-charge Nflux, the LCS

parameter ξ, and the Calabi-Yau volume V .

Finally, as we approach the LCS point ξ→ 0, the mass spectrum (2.48) takes the universal

form

N
0

A
= 0, ξ= 0 : µ2

±λ/m2
3/2 =

{ (

1± 1
3

)2
λ= 0,2, . . . ,h2,1

(1±1)2 λ= 1
. (2.49)

This result is reminiscent of the deterministic spectra found in [145,155] at generic moduli

configurations (not necessarily vacua) near the LCS point.

2.5 One-parameter example: theWP
4
[1,1,1,1,4] model

In order to illustrate our results we have analysed a large sample of no-scale vacua of an

orientifold of the Calabi-Yau hypersurfaceWP
4
[1,1,1,1,4] (the octic). We will now briefly review

the effective field theory for the compactification of type IIB superstrings in this Calabi-Yau,

and we will discuss the statistical properties of the resulting ensemble in section 2.6. For a

more detailed description of this compactification see [97, 124].

2.5.1 Effective theory

The Calabi-Yau geometries that we will consider can be defined in terms of the following

family of hypersurfaces

4x2
0 +x8

1 +x8
2 +x8

3 +x8
4 −8ψx0x1x2x3x4 = 0 (2.50)
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in the complex projective space xi ∈WP
4
[1,1,1,1,4].

This family of hypersurfaces is characterised by a single complex deformation parameter

ψ, with argψ ∈ [0, π
4

]. However, this Calabi-Yau three-fold has h1,1 = 1 Kähler moduli and

h2,1 = 149 complex structure fields, and thus there are many other deformations that one

could consider. The Calabi-Yau geometries described by (2.50) are all invariant under a

large group of discrete symmetries, namely G =Z
2
8 ×Z2 with order [G ] = 128, and all the

deformations that we have not included in (2.50) are those transforming non-trivially under

this group [96, 97]. Thus, by retaining only the deformation parametrised by ψ, we are

realizing a consistent truncation of the complex structure moduli space, just as we discussed

in section 2.3.

In the neighbourhood of the large complex structure point,ψ→∞, the truncated action

is characterised by the prepotential [124, 133]

F (z) = i

3
z3 + 3

2
z2 + i

11

6
z − i

37

2π3
ζ(3)+Finst , (2.51)

where z ≈ 4
π

log(4ψ) and Imz ∈ [−1/2,1/2). Here, Finst represents exponentially suppressed

instanton corrections to the prepotential. Its leading term is of the form

Finst ≈− in1

(2π)3
e−2πz + . . . , with n1 = 29504 . (2.52)

The expansion for the prepotential (2.51) around the LCS point is valid in the region |ψ| >
1, or equivalently ξ . ξcnf ≡ 0.39, away from the conifold singularity at ψ = 1 [124, 133].

However, herewewill require in addition that the instanton corrections cause small variations

on themoduli space geometry and the relevant physical quantities (e.g., the Yukawa couplings

κ̊abc , the vielbeins ea
i
, and m3/2). As we discuss in appendix D.3, the most restrictive bound

is found when imposing that the relative corrections to the moduli space vielbein are small.

Although this is checked for each particular vacuum, a simple estimate shows that the

corrections remain moderately small (< 20%) as long as the LCS parameter satisfies

ξ. ξmax = 0.185 < ξcnf , (2.53)

which is a more conservative bound than just requiring the convergence of (2.51).

Following [46,96,97], we will regard this compactification as an orientifold limit of a

compactification of F -theory on the fourfold M4 = WP
5
[1,1,1,1,8,12], where the orientifold

action is defined by the transformations7 x0 →−x0 and ψ→−ψ [156, 157]. The advantage of

considering the embedding in F -theory is that compactifications on a fourfold allow a great

deal of freedom in the choice of fluxes, which is particularly appropriate for performing a

statistical analysis [46]. Indeed, the tadpole constraint L is

L = χ(M4)

24
, (2.54)

where χ(M4) is the Euler number of the fourfold, which typically greatly exceeds the one

7As shown in [96], it is possible to turn on the three-forms F(3) and H(3) on the four periods of the reduced
theory consistently with the orientifold action.
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of the associated Calabi-Yau orientifold M̃3. In the case at hand, the Euler number of the

fourfoldWP
5
[1,1,1,1,1,8,12] is χ(M4) = 23328, and thus the upper bound on theD3-brane charge

induced by the fluxes is Nflux ≤ L = 972.

As a final remark, note that the F-theory embedding also requires including in the theory

additional D7-brane moduli (see [14]). The problem of the stabilisation of those moduli

is however beyond the scope of this thesis, and we refer the reader to [158–162] and the

references therein for works on the subject.

2.5.2 Numerical search for flux vacua

In order to perform a numerical exploration of the flux landscape of the octic, we used

Paramotopy [163]. This software uses a numerical technique known as the Polynomial Ho-

motopy Continuation (PHC) method [164,165], which efficiently finds all roots of non-linear

polynomial systems, such as the no-scale equations (1.37) (see appendix B). Therefore, given

a flux ensemble satisfying the tadpole condition (1.42), the PHC method allows for an ex-

haustive search of all the solutions to the no-scale equations (1.37) [166,167].

As described in detail in appendix B, we have constructed two separate ensembles of

no-scale vacua: one with generic fluxes satisfying the tadpole constraint, and one where

fluxes additionally satisfy the condition N 0
A = 0, as considered in section 2.4.4. We shall refer

to them as the generic and constrained ensembles, respectively. The starting point for the

construction of each of the ensembles is a collection of fluxes f and h randomly selected

from a uniform distribution with support [−50,50]. This starting set consists of 107 choices

of flux for the generic ensemble, and 106 choices for the constrained one.

For each choice of flux, the corresponding set of no-scale vacua were found using the

PHC method. We then selected all solutions which have a small string coupling constant

gs = (Imτ)−1 < 1 and small instanton corrections, i.e., which satisfy (2.53). In addition, when

constructing the ensemble we checked that there was no double-counting of vacua related by

either an SL(2,Z) action (1.39), or the symplectic transformations (1.28) and (1.38). Regarding

the symplectic transformations, as proposed in [98], all no-scale solutions have beenmapped

to the fundamental domain of the axio-dilaton, where the redundant copies have been

identified and discarded.8 As for symplectic transformations, there is the monodromy

around the LCS point [124,133] which we have treated similarly, by mapping all solutions

to a fundamental domain of the complex structure modulus z and eliminating duplicate

solutions.

The ensemble of vacua with unconstrained fluxes that we obtained with this method

contains 119,139 solutions, while the constrained ensemble has 57,487. The results of this

procedure for the generic ensemble are displayed in figure 2.5, where we show the distri-

bution of no-scale vacua in the fundamental domain of the axio-dilaton τ, in the complex

structure field z, and in the (Rez,Imτ). For completeness, let us mention that more conser-

vative constraints could be imposed on the vacua, e.g., gs < 0.1 and instanton corrections

8We avoided imposing conditions on the fluxes to eliminate the redundancies, as done, e.g., in [166,167]. In
particular, our analysis showed that the constraints on the fluxes proposed in [166] to deal with the SL(2,Z)

symmetry lead to spurious correlations arising in the statistical analysis, and which are incompatible with the
predictions derived from the continuous flux approximation [46].



2. TOWARDS A COMPLETE MASS SPECTRUM 51

Figure 2.5: Distribution of the numerically generated set of generic no-scale solutions on the (τ, z) field space.

We have represented in orange vacua with large instanton corrections > 20% (leading term in (2.52)), in blue

when corrections are in the range 1−20%, and in purple when corrections are < 1%. The (Rez,Imτ) plane

exhibits nicely delineated regions, which are nevertheless likely to be blurred by higher order contributions to

(2.52). The generic ensemble of vacua analysed in the text is comprised of those solutions with small instanton

corrections < 20%, and small string coupling gs = (Imτ)−1 < 1 (blue and purple, 119,139 solutions).

below < 1%, leading to a considerably smaller ensemble with 427 vacua. However, in order

to have a sufficiently large sample to perform the statistical analysis, in the following we will

consider all vacua in the weak coupling regime gs < 1 and with moderately small instantons

corrections < 20%.

In order to check the validity of our main result, (2.35), at each of the no-scale solutions,

we computed the eigenvalues of the fermion mass matrix (2.8) for the reduced theory

(involving only τ and z) using two different methods: first via the direct diagonalisation of

the mass matrices obtained numerically, and then using the analytic formula (2.35). We

display the outcome of these computations in figure 2.6, which demonstrates the perfect

the agreement of both methods. Regarding the 148 truncated complex structure moduli,

although the EFT given above has no specific information about them, the expressions (2.35)

allowed us to determine the fermionic masses corresponding to this sector at each no-scale

solution. Finally, the scalar mass spectra in the whole axio-dilaton/complex structure sector

for the ensemble of no-scale solutions were computed via (2.9). We checked that these

masses coincide with those obtained by diagonalizing the Hessian (2.7) at each no-scale
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Figure 2.6: Fermion masses in theWP
4
[1,1,1,1,4] compactification versus the LCS parameter ξ at no-scale vacua.

The fermion masses are normalised by the supersymmetric mass scale, m̃λ ≡ mλ/msusy. The uppermost and

lowermost thick curves represent the analytic result in (2.35) for the two fermions in the reduced theory. The

thin solid curves, composed of (indistinguishable) data points, show masses obtained diagonalising numerically

the fermion mass matrix (2.10) at each vacuum of the ensemble. The middle dashed curve represents the mass of

the 148 fermions in the truncated sector (with a priori unknown EFT couplings), which was computed via the

third equation in (2.35).

vacuum. The statistical properties of these spectra will be analysed in the next section.

2.6 Statistics of vacua

As we discussed in section 2.4, the no-scale mass spectrum will depend in general on the flux

configuration. To determine the properties of the spectra that may arise in the ensemble

of flux vacua, we will adopt the statistical approach of [46], and derive the probability

distributions for the masses and other quantities of interest. We begin by presenting the

relevant formulae for general compactifications before using them to study the particular

models we consider.

Our starting point for this analysis will be the formula for the density of flux vacua

derived in [46] using the continuous flux approximation. This approximation is based on

the assumption that for large tadpoles, L ≫ 1, flux quantisation can be neglected, and thus it

is possible to replace the sums over flux configurations by integrals.

∑

N I
A

,N B
I

−→
∫

d 2n NAd 2n N B , (2.55)

where n = h2,1 +1 and each component of N = f −τh is a complex number parametrized

by the two tuples of integers f and h. Furthermore, as was proven in [46] and reviewed in

appendix A, by using the Hodge decomposition of the flux vector it is possible to establish a

one-to-one correspondence between the 2n continuous flux complex variables {N I
A, N B

I } and

the 2n complex quantities {ZA,FA} (A = 0, . . . ,h2,1) given by

Z0 ≡ V eK /2W , Za ≡ V Z0a , F0 ≡ V eK /2D0W , Fa ≡ V eK /2DaW . (2.56)
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These variables are particularly convenient choices for describing the flux ensemble, as no-

scale vacua can be equivalently characterised as flux configurations satisfying the conditions

FA = 0. Thus, assuming a flat probability distribution on the fluxes, and using a generalisation

of the Kac-Rice formula9 [168,169] (see [170] for a review), the density function for no-scale

vacua follows as [46]

dµvac (ZA,u A) =N · |detH |1/2|det g |e−|Z |2 ·d 2n Z ·d 2nu , (2.57)

where we denote the fields collectively by u A = {τ, za}, g is the moduli space metric, and

H is the canonically normalised Hessian of the no-scale potential given by (2.7) and (2.12)

(see appendix C). Here, and throughout the text, N indicates some normalization constant

which must be computed for each particular distribution.

In the class of models we are interested in, the number of complex structure moduli can

be arbitrarily high but only one survives the truncation. In addition, as explained in section

2.3, the truncation requires that only the components I = 0,1 of the flux vector N = {N I
A, N B

I }

are turned on (8 flux integers). Therefore, the statistics of these models can be described

by (2.57), setting h2,1 = 1 (n = 2). In this case, the determinant of the Hessian H takes the

particularly simple form

|detH |1/2 = ||Z0|4 +|Z1|4 − (2+ κ̊2)|Z0|2|Z1|2| , (2.58)

which will considerably simplify the computation of the mass distributions.

2.6.1 Moduli space distribution of generic no-scale vacua.

Integrating (2.57) over the flux parameters ZA (with h2,1 = 1) one obtains the following

density distribution of no-scale vacua [46]:

dµ(z,τ) =N · |det g | ·
(

2− κ̊2 + 2κ̊3

p
4+ κ̊2

)

d 2τd 2z , (2.59)

where

|det g | = 3

16

(
2κzzz

3|Imκ0|

)2/3 (r 3 −2)r

(r 3 +1)2 s2
(2.60)

is the determinant of the moduli space metric, with κzzz denoting Yukawa coupling for the

(non-canonically normalised) field z . We have also introduced the shorthands

s ≡ Imτ and r ≡ 1/ξ1/3 =
(

2κzzz

3|Imκ0|

)1/3

Re z . (2.61)

Thus the quantity κ̊, defined in (2.29) in terms of ξ, should be understood as a function of

Rez in the expression (2.59) for the no-scale vacua density function. The corresponding

9Essentially, the Kac-Rice formula counts the roots of continuous functions in a certain domain using the
properties of the Dirac delta function. As we will thoroughly see in chapter 5 and appendices C and E, it can
be applied to random functions with known distributions to compute, among many other quantities, their
expected number of vacua in a given volume.
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Figure 2.7: (a) Marginalised density of no-scale vacua on the complex structure sector (2.59) (dashed line), and

numerically obtained histogram of generic no-scale solutions in theWP
4
[1,1,1,1,4] flux ensemble. The quantity

r ≡ (2κzzz /3|Imκ0|)1/3Rez represents the complex structure field at the vacua, with the boundaries of the

moduli space located at r = 21/3 and r →∞ (the LCS point). The orange area represents excluded solutions

with large instanton corrections (> 20%). In dark blue we indicate the subset of the remaining vacua well

described by (2.59) (normalised in r ∈ [1.75,3.42]). (b) Marginalised distribution (2.59) for the imaginary part

of the axio-dilaton, s ≡ Imτ (dashed line), and histogram of solutions in the generic ensemble of no-scale vacua.

marginal probability distributions for Re z and Im τ are displayed in figure 2.7. The plots

show a remarkable agreement with the histograms obtained from the numerical scan of

the octic model. Combining (2.59) and (2.61) it is also straightforward to find the probability

distribution function for the LCS parameter ξ,

dµ(ξ) =N · (1−2ξ)

(1+ξ)2ξ2/3

(

2− κ̊(ξ)2 + 2κ̊(ξ)3

√

4+ κ̊(ξ)2

)

dξ , (2.62)

which we have displayed in figure 2.8, together with the histogram obtained from the direct

computation from the octic flux ensemble data.

It is interesting to note that the density of vacua grows without bound as wemove towards

small values of r (i.e., ξ→ 1/2), where the conifold point is located, rcnf ≈ 1.37 (ξcnf = 0.39).

This is consistent with the expectation that the density of vacua is enhanced in regions

of large moduli space curvature [97, 171, 172]. Actually, the marginalised density functions

for Re z obtained from (2.59) are not normalisable when we define its support to be the

entire range10 r ∈ [21/3,∞). This property of the ensemble has an observable effect: as

the underlying distribution from which we are extracting the vacua is not normalisable,

regardless of the size of the sample, the histograms will always exhibit a deficit of vacua

with respect to the probability distribution (see region ξ& 0.3 in figure 2.8). Nevertheless, in

practice, we have to acknowledge that this distribution cannot be trusted outside the regime

of validity of the EFT. Recall that the EFT for the octic can only be considered in the region

where the instanton corrections can be safely neglected, that is, in the region given by the

bound (2.53), or equivalently with r ∈ [1.75,∞). Thus, as long as the support of (2.59) is

10Recall that we obtained the condition ξ< 1/2, satisfied away from the moduli space boundaries, neglecting
completely the instanton contributions, and thus it gives no information about the position of the conifold
point at ξcnf = 0.39.
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Figure 2.8: Distribution for the LCS parameter ξ (2.62) in the flux ensemble with unconstrained N 0
A (dashed

line), and histogram of solutions obtained from the numerical scan in theWP
4
[1,1,1,1,4] model. The colours are

the same as in figure 2.7.

taken to be the region of validity of the EFT, the probability distribution we will work with

will be finite and normalizable, and thus well defined.

In figure 2.8, it can also be seen that the density of generic no-scale vacua near the LCS

point (ξ≈ 0) is considerably lower that the statistical prediction based on the continuous flux

approximation (dashed line). This to be expected from the analyses in [145, 155], where it

was shown that the statistics of generic no-scale vacua (with unconstrained N 0
A) cannot be

described with the continuous flux approximation in the strict LCS limit, and that actually

in a small neighborhood of the LCS point there are no no-scale solutions with N 0
A 6= 0.

Such behavior was also anticipated in [134], where the authors argued that the techniques

presented there could fail to describe vacua statistics restricted to small regions of themoduli

space. In appendix D.2 we derive an estimate for the region of validity of the continuous flux

approximation (eq. (2.43)) which, in the present ensemble, leads to the additional constraint

on the LCS parameter

ξ≥ ξmin = 0.025. (2.63)

In the following section we will discuss the statistics of the mass spectrum in the regime

where the EFT is under control and, in addition, where the continuous flux approximation

is a good characterisation of the flux ensemble. That is, in the moduli region determined by

the bounds (2.53) and (2.63).

Before we end this subsection let us comment briefly on the distribution of the string

coupling constant gs . Both the analytical result in eq. (2.59), and the numerical histogram

displayed in figure 2.7(b), indicate that the probability density for Im(τ) has the form

ρ(Imτ) ∝ 1/(Imτ)2. Therefore, it is straightforward to check that the string coupling

gs = (Imτ)−1 is uniformly distributed. This conclusion is relevant in the computation

in [173] of the distribution of the supersymmetry breaking scale in the Landscape which

relies on gs having a uniform distribution.
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2.6.2 Mass distributions at generic no-scale vacua

With the joint probability distribution (2.57) at hand it is now straightforward to compute

probability distributions for the masses, both the fermions and the scalar modes, at the

no-scale vacua in our flux ensemble.

In particular, at a given vacuum with LCS parameter ξ and angular parameter θW , the

fermion mass spectrum normalised by the gravitino mass mλ/m3/2 is given by

xλ ≡ mλ/m3/2 =







ζm̂(ξ) λ= 0

ζm̂(ξ)−1 λ= 1

ζ(1+ξ)
√

3(1−2ξ)
λ= 2, . . . ,h2,1

, (2.64)

where we have used (2.35) in combination with (2.39), with ζ≡ tan2θW ∈ [0,∞]. Then, in

order to find the distribution for these masses, we need the joint distribution for {ξ,ζ}. This

distribution can be obtained from (2.57) and (2.58) by integrating over the phases arg(Z0) and

arg(Z1), the total D3-charge induced by fluxes |ZA|2 = Nflux, and the field space directions τ

and Im z . Using the ζ and ξ variables, this yields

dµ(ζ,ξ) =N · (1−2ξ)

ξ2/3(1+ξ)2(1+ζ)4

∣
∣ζ−m̂(ξ)2

∣
∣
∣
∣ζ−m̂(ξ)−2

∣
∣ ·dζdξ . (2.65)

From (2.64) we can see that given a fixed value of ξ, we can establish a one-to-one correspon-

dence between ζ and each of the rescaled fermion masses xλ. Therefore, by performing

a change of random variables {ζ,ξ} → {xλ,ξ} in (2.65), we can derive three separate distri-

bution functions, each involving a different scaled mass xλ. After integrating over the LCS

parameter on the interval ξ ∈ [ξmin,ξmax] given by (2.53) and (2.63), the resulting marginal

distributions for the fermion masses in the reduced theory read

ρ
f
0 (x0) =N

∣
∣x2

0 −1
∣
∣x0

∫ξmax

ξmin

dξ
(1−2ξ)m̂(ξ)2

ξ2/3(1+ξ)2(m̂(ξ)2 +x2
0)4

∣
∣x2

0 −m̂(ξ)4
∣
∣ , (2.66)

and

ρ
f
1 (x1) =N

∣
∣x2

1 −1
∣
∣x1

∫ξmax

ξmin

dξ
(1−2ξ)m̂(ξ)2

ξ2/3(1+ξ)2(1+x2
1 m̂(ξ)2)4

∣
∣x2

1 m̂(ξ)4 −1
∣
∣ . (2.67)

Without further computations, we can already see that the probability of finding vacua

with mλ=0,1 = m3/2 (equivalently xλ=0,1 = 1) is suppressed, i.e., ρ
f

λ=0,1
(1) = 0. This is a direct

consequence of the generalized Kac-Rice formula (2.57). To see this, note that density of

vacua is proportional to the square root of the Hessian determinant |detH |1/2. This means

that the probability of finding no-scale solutions with massless scalar modes in the flux

ensemble should vanish. Since according to (2.9) massless scalar modes occur precisely

whenever one fermion mass equals that of the gravitino, we conclude that no-scale vacua

with mλ = m3/2 are quite rare in the Landscape. It is important to emphasize that this does

not preclude vacua with mλ=0,1 = m3/2 from existing, it just means they represent a very

small fraction of the total number of vacua. Actually, the suppression of critical points
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Figure 2.9: Distribution of the squared scalar masses normalised by the gravitino mass, µ̃2
λ
≡µ2

λ
/m2

3/2, in the

ensemble with unconstrained fluxes. The dashed lines in (a) and (b) correspond to the probability distribution

(2.69) (evaluated with (2.66) and (2.67), resp.) for the masses of the scalars in the reduced theory. We also show

the mass histograms obtained numerically from the flux ensemble of theWP
4
[1,1,1,1,4] model (blue). The inset

in (b) shows the obtained distribution ρ(µ̃1)d µ̃1 near the origin, which presents a suppression for the massless

mode.

with of zero eigenvalues on the Hessian, which also leads to an apparent repulsion between

critical points, is a generic feature of random functions (see, e.g., [170]), and has already been

observed in other characerisations of the Landscape [174, 175].

Regarding the rescaled mass of the truncated fermions xλ′ = mλ′/m3/2, we find the

distribution

ρ
f

λ′(xλ′) =N xλ′

∫ξmax

ξmin

dξ
(1−2ξ) f (ξ)−2

∣
∣x2

λ′ f (ξ)−2 −m̂(ξ)2
∣
∣
∣
∣x2

λ′ f (ξ)−2 −m̂(ξ)−2
∣
∣

ξ2/3(1+ξ)2(1+x2
λ′ f (ξ)−2)4

,

(2.68)

where f (ξ) ≡ 1+ξp
3(1−2ξ)

. Note that for generic values of ξ there appears to be no suppression

on the probability of finding xλ′ = 1 in the truncated sector; in other words, ρ
f

λ′(1) 6= 0.

This in turn shows that massless scalar modes on the truncated sector are not suppressed.

This is a surprising result that is at odds with what would be expected from the analysis

of generic random functions. This reflects the important role that symmetries of the EFT

play in shaping the flux Landscape. In particular, this observation is of importance for the

construction of dS vacua proposed in [153, 154], which relies on the existence of no-scale

solutions with massless modes at tree-level.

A common feature to the three distributions (2.66), (2.67) and (2.68), is that they all vanish

for mλ = 0 (equivalently xλ = 0). That is, the probability of finding no-scale solutions with

massless fermions also appears to be suppressed in the ensemble of flux vacua. This result

can be traced back to the structure of the fermion mass matrix M given in (2.7), whose

eigenvalues come in pairs ±mλ, and the well known eigenvalue repulsion effect [176], which is

characteristic of randommatrix ensembles11 (see [180] for a review).

11The collection of mass matrices M associated with the ensemble no-scale vacua can be regarded as an
statistical ensemble of matrices with random entries [123,134, 177–179].
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Figure 2.10: The theoretical prediction for the probability distribution of the normalised squared masses

µ̃2
λ′ =µ2

λ′/m2
3/2 of the truncated scalar fields (solid line), eqs. (2.69) and (2.68). For comparison we also show

in orange a histogram of scalar masses generated with (2.40).

With the above distributions for mλ/m3/2 at hand, the probability density functions for

the scalar masses can be easily obtained with a simple change of variables. Indeed, for each

λ the probability distribution for the combined two branches of scalar masses µ2
±λ reads

ρs
λ(µ̃2

λ)d µ̃2
λ =N · µ̃−1

λ

[

ρ
f

λ
(1+ µ̃λ)+ρ

f

λ
(|1− µ̃λ|)

]

d µ̃2
λ, (2.69)

where µ̃2
λ
≡µ2

λ
/m2

3/2. These theoretical distributions are plotted in figures 2.9 and 2.10, along

with the scalar mass histograms obtained from the numerical scan. As described in section

2.5, the masses of the scalar modes in the sector surviving the truncation, µ2
λ=0,1

are obtained

via the diagonalisation of the fermion mass matrix (2.10) at each vacuum together with

the formula (2.9), while those associated to the truncated modes µ2
λ′ are computed from

the formula (2.40). The plots show a remarkable agreement of the numerical results and

analytical predictions in the regime where both the low energy EFT and the continuous flux

approximation are expected to provide a good description of the theory.12

It is interesting to note that the spectra in the surviving sector of figure 2.9 show a

suppressed probability of no-scale solutions with scalar masses13 µ2
λ

/m2
3/2 = 0,1,4. This is

consistent with our discussion above, as the first and third cases correspond to vacua with one

or more fermion masses equal to m3/2 (see relation (2.9)), and the second case to vacua with

massless fermions. Therefore, making contact with our discussion in section 2.4.3, we can

see that the branches of solutions corresponding to θW = {θW
0 ,θW

1 } have a low probability to

12The histograms in figs. 2.9 and 2.10 show slight deviations with respect to the theoretical distributions. As
argued in [46], the discrepancies might be due to restricting the vacua to lie in a bounded region of moduli
space, i.e., within the limits (2.53) and (2.63).
13Note that the µ2

1/m2
3/2 = 0 suppression is not evident in the main plot of figure 2.9(b). This is due to the

factor 1/µ̃1 in (2.69), which makes it difficult to resolve the suppression in the numerical histogram. The inset
of this figure shows the histogram for µ̃1, which does present clearly the suppressed probability of the massless
modes.
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occur, since they are respectively the vacua where the masses µ−0 and µ−1 vanish.

By contrast, in the spectra for the truncated sector (figure 2.10) we see a suppression of

vacua with masses µ2
λ

/m2
3/2 = 1 (i.e., with massless fermions), while the distribution function

diverges in the limit µ2
λ

/m2
3/2 → 0, that is, for the branch of solutions with θW = θW

2 discussed

in section 2.4.3. In other words, for a large fraction of no-scale solutions, half of the scalar

modes in the truncated sector havemassesmuch lower than the gravitino. It is precisely these

vacua which are in danger of developing tachyonic instabilities upon including quantum

effects (α′ corrections or instanton effects). In particular we observe that approximately

11% of the vacua contain modes with masses satisfying µ2
λ′ . 10−2 m2

3/2, and about 3%

with masses µ2
λ′ . 10−3 m2

3/2. Moreover, a closer examination of the mass spectra in the

ensemble reveals the presence of vacua with large mass hierarchies, with modes as light as

µ2
λ′ ∼ 10−10 m2

3/2.

Note also that the suppressions seen in figure 2.10 around µ2
λ′ ≈ 0.5m2

3/2 and µ2
λ′ ≈

1.7m2
3/2 are due to modes of the reduced theory becoming massless, i.e., the branches of

vacua with θW = {θW
0 ,θW

1 }. Indeed, recall that due to the form of the spectrum (2.40) the

mass distributions for all the modes arise from the same probability density function (2.65),

and thus the suppression of any particular branch of vacua can also be observed in the

statistics of all the other masses.

As a final remark, let us point out that equation (2.57) and (2.58) imply that the masses

(2.40) and gs are statistically independent from each other. As a consequence, although the

ensemble discussed here involves vacua with a marginally small string coupling gs ≤ 1, the

statistical properties of the spectrum would not be affected by restricting the analysis to

vacua with very small string coupling gs ≪ 1. As a consistency check, we also computed

the numerical histograms represented in figures 2.9 and 2.10 for the subset of vacua in our

ensemble with gs ≤ 0.1 (∼ 5000 vacua), but no significant changes where observed, and thus,

we will not present them here.

2.6.3 Statistical properties of the constrained ensemble

We will now turn to the statistics of the constrained ensemble of vacua, where N 0
A = 0. As we

show in appendix C, the statistical methods in [46] can easily be adapted to describe this

ensemble. In particular, the density of flux vacua with N 0
A = 0 is found to be

dµvac(z,τ)
∣
∣

N 0
A
=0 =N · (1+ξ)ξ2/3

(2−ξ)2(Imτ)2
d 2zd 2τ , (2.70)

where ξ should be understood here as a function of Rez. It is worth noting that, provided

we consider only the weak coupling regime Imτ> 1, the density of no-scale vacua is nor-

malisable within the whole moduli space, even near the conifold point ξ→ ξcnf where the

EFT is known to become inaccurate. Indeed, contrary to the generic case, the density (2.70)

is not enhanced (and remains finite) as we approach the conifold point, and as a result the

distribution is well defined in the whole range of z (i.e., in ξ ∈ [0,1/2]). Furthermore, as we

show in appendix C, for this sub-ensemble, flux quantisation and a finite tadpole do not
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Figure 2.11: Distribution for the LCS parameter for the constrained flux ensemble. The dashed line represents

the theoretical distribution (2.11) normalized for data in the range 5.10−5 ≤ ξ≤ 0.185 (see footnote 14). We

also show the histogram of ξ at no-scale vacua, with colours the same as in figure 2.7.

lead to the breakdown of the statistical description near the LCS point.14 As a consequence,

in contrast with the case of generic no-scale solutions, the continuous flux approximation

provides an excellent characterisation of the ensemble in the strict LCS regime. As we shall

see next, these features of the model will lead to an almost perfect agreement between the

statistical description and the results of the numerical scan in the octic model.

As in the previous section, we begin by computing the probability distribution for the

LCS parameter ξ, which takes the simple form

ρ(ξ)dξ= 21/3(1+ξ)

(2−ξ)2ξ2/3
dξ . (2.71)

This distribution, together with the histogram obtained from the numerical scan, is plotted

in figure 2.11. As is evident, the analytic formula perfectly matches the histogram over the

whole range of ξ. The histogram includes all of the no-scale solutions at points where the

moduli space metric is well defined, ξ ∈ [0,1/2], however only those shaded in light and dark

blue correspond to vacua with small instanton corrections. Excluding solutions with sizeable

corrections (orange) leads to the fall-off (light blue) observed around ξ≈ 0.2. The statistical

description does not incorporate the effects of truncating the ensemble, and therefore it can

only provide a good description in the region of ξ where few vacua (or none) are excluded

from the ensemble. This region of ξ, which we shaded in dark blue, represents the set of

vacua we will use next to characterise the statistics of the mass spectra, both numerically

and using the continuous flux approximation.

As a curiosity, it is worth mentioning the small enhancement15 on the number of vacua

14This observation relies on the fact that when N 0
A = 0, the flux N 0

B is not bounded by the flux tadpole.
However, in practice the flux integers are extracted from a uniform distribution in [−50,50], which results in
deviations from the continuous flux approximation in the range ξ. ξmin = 5 ·10−5.
15This spike in the histogram of ξ induces similar enhancements in themass distributions displayed in figures

2.12 and 2.13, as they all depend on the former.



2. TOWARDS A COMPLETE MASS SPECTRUM 61

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

1

2

3

4

5

(a)

0 0.3 0.6 0.9
0.0

0.5

1.0

1.5

2.0

4 4.5 5 5.5

(b)

Figure 2.12: Distribution for the squared scalar masses with constrained fluxes N 0
A = 0 normalised by the

gravitino mass µ̃2
λ
= µ2

λ
/m2

3/2, with λ= 0,1 in (a) and (b), respectively. The dashed lines correspond to the

theoretical mass distributions of fields in the reduced theory, (2.69) evaluated with (2.72). We compare with the

histograms obtained numerically from the flux ensemble of theWP
4
[1,1,1,1,4] model.
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Figure 2.13: Theoretical prediction (solid line) for the probability distribution of the normalised squared masses of

the truncated scalar fields µ̃2
λ′ =µ2

λ′/m2
3/2, eqs. (2.69) and (2.72), in the constrained ensemble. For comparison

we display the histogram of values obtained by applying (2.40) to the vacua ensemble.

with ξ ≈ 0.12. An examination of these solutions reveals that they all correspond to flux

configurations satisfying the relation N 1
A = N 0

B and Imz = 0. Although we have not made

further inquiries regarding the origin of the enhancement, it seems plausible that this

particular choice of fluxes leads to a new symmetry in the EFT (exact or approximate), which

is known to produce accumulations of no-scale solutions at special points of the moduli

space [98].

In complete analogy with the previous section, the density function (2.71) can be used to

derive the distributions for the rescaled fermion masses mλ/m3/2. Performing a change of

variables from ξ to each of the normalisedmasses, and using (2.64) with tanθW =
√

(1−2ξ)/3

(see section 2.4.4), we obtain

ρ
f

λ
(xλ)d xλ =

21/3(1+ξ)

(2−ξ)2ξ2/3 (d xλ(ξ)/dξ)

∣
∣
∣
ξ(xλ)

d xλ , (2.72)
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where we use the shorthand xλ = mλ/m3/2 which was introduced above. The distributions

for the squared scalar masses can then be found using (2.69), which are displayed along with

the histograms derived from the numerical scan in figures 2.12 and 2.13. As in the case of

the generic ensemble, the mass histograms of the scalar modes in the reduced theory, µ2
±0

and µ2
±1, have been obtained first by computing the eigenvalues of the fermion mass matrix

(2.10), and then via (2.9). The histogram for the masses in the truncated modes µ2
±λ′ were

found using (2.48) instead. Here again we can observe the excellent agreement between

the analytical predictions and the direct numerical computation of the masses in the octic.

It is important to mention that, as in the case of the generic ensemble described above, it

can be checked that the string coupling gs is statistically independent from the masses in

(2.48). Thus, while the numerical histograms presented here correspond to an ensemble of

marginally weakly coupled vacua gs ≤ 1, our conclusions remain valid also for very weakly

coupled vacua with16 gs ≪ 1.

The most important feature of these distributions is the divergence of the probability

density for the masses µ2
±1 ≪ m2

3/2 (see figure 2.12(b)). This implies that in this ensemble the

branch of solutions with θW = θW
1 , defined in (2.42), occurs with relatively high frequency.

This contrasts with the results obtained for the generic ensemble, where the same branch

was shown to have a suppressed probability to appear.

Finally, for completeness we have also studied the dependence of the mass spectrum on

the distance of vacua from the LCS point. For this purpose, we obtained themass histograms

for subsets of no-scale solutions restricted to be in neighbourhoods of the LCS point of

varying sizes. The results are displayed in figure 2.14, where we have plotted the histograms

for four sets of vacua with ξ≤ ξmax, where ξmax = {0.15, 0.1, 0.05,0.01}. As it can be seen in

the plots, the closer the solutions are to the LCS point, the more deterministic the mass

distributions become. Note also that in the case ξ≤ 0.01 the spectrum is already very peaked

at the values given in (2.49), which correspond to the strict limit ξ→ 0. Interestingly, in this

regime the spectrum always contains a (nearly) massless field, µ2
−1 ≈ 0, which belongs to the

reduced moduli space (i.e., θW ≈ θW
1 ).

2.7 Conclusions

No-scale vacua of type IIB flux compactifications are an essential stepping stone in the

construction of dS vacua and inflationary models in KKLT and Large Volume Scenarios.

Guaranteeing the validity of these constructions requires a good understanding of the

perturbative spectrum of the no-scale solutions. Indeed, while the no-scale property ensures

the absence of tachyons in the axio-dilaton/complex structure sector at tree-level, this does

not prevent the existence of arbitrarily light fields, whichmay turn tachyonic upon including

quantum corrections, uplifting terms, or the effect of matter fields [179, 181]. These light

modes might also lead to difficulties when implementing viable inflationary models in

these scenarios, as the backreaction effects caused by the inflaton might also result in their

destabilisation.

16We checked explicitly that this is indeed the case by computing the numerical mass histograms for the
subset of solutions in the constrained ensemble with gs ≤ 0.1 (∼ 2500 vacua).
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Figure 2.14: Histograms for the normalized squared masses µ̃2
λ=0,1

=µ2
λ=0,1

/m2
3/2 of the scalars in the reduced

theory. The plots represent vacua in the constrained ensemble, with varying upper bounds on the LCS parameter

ξ. Note that as the upper bound on ξ decreases the distributions become increasingly deterministic, peaking at

the limiting ξ→ 0 values given in (2.49). The plots also show the presence of a light mode µ−1 ≪ m3/2 in all

vacua, whose mass becomes zero µ−1 → 0 in the limit ξ→ 0.

Despite its importance, a complete analytic understanding of the perturbative spectrum

at no-scale vacua has remained elusive, primarily due to the complexity of the corresponding

EFTs and the large number of fields involved. In this chapter we have considered a particular

class of Calabi-Yau compactifications with an arbitrary number of moduli fields, and com-

puted analytically the complete mass spectrum of the axio-dilaton/complex-structure sector

at no-scale vacua in the LCS regime (see (2.40)). The Calabi-Yau geometries we considered

here are invariant under large discrete isometry groups, which allows for a consistent reduc-

tion of the complex structure sector to a single field. An important feature of this class of

models is that the Calabi-Yau symmetries make the computation of an EFT for the unique

complex structure modulus surviving the truncation feasible [21, 119, 124,133]. Then, using

only symmetry arguments, together with certain universal properties satisfied by the EFT

couplings at LCS, we derived the mass spectrum of the full axio-dilaton/complex structure

sector, including the truncated fields. Remarkably, the full spectrum can be expressed solely

in terms of the couplings of the reduced EFT theory, which can be determined. This result

applies to plenty of interesting compactifications such as: the family of quintic hypersur-

faces in WP[1,1,1,1,1] [119] admitting the discrete symmetry groups discussed in [125]; the

close relatives to the quintic (i.e., the sextic, octic and dectic) with analogous symmetric

configurations [124, 133]; and many more, see [94] and references therein. Moreover, we can

also use these results to describe the LCS regime of the hundreds of one-parameter models

listed in [128]. We should remark that these discrete global symmetries are nevertheless
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expected to be broken upon including all sub-leading α′ and quantum effects [53,182, 183],

what will induce small corrections in the spectrum (2.40), lifting, in particular, the large

degeneracy of the truncated sector.

In the class of models that we consider here, the strict LCS/weak-coupling limit is of

particular interest, as it is the region of moduli space where one has the best perturbative

control of the EFT. However, as shown in [145, 155], generic flux configurations will not yield

any vacua in this region of the moduli space. These conclusions can nevertheless be avoided

by setting to zero the flux associated with the period which grows without bound in this

limit (N 0
A ≡ f 0

A −τh0
A = 0 in (1.35)). Indeed, in this case the higher order terms in the flux

superpotential are identically zero, and thus the above no-go theorem does not apply. In

section 2.4.4 we computed the mass spectrum at this class of no-scale vacua for the models

described above, and proved it to have a universal form in the strict LCS limit. In particular

it can be observed that the spectrum always contains exactly one massless field, while the

rest of the moduli have masses of the order of the gravitino mass m3/2. It is also worth

mentioning that closely related classes of vacua surviving in the strict LCS limit were also

discussed in [184, 185], and in particular those of [152] also present a massless field in the

no-scale spectrum, which is nevertheless lifted by instanton corrections.

The previous results are consistent with [186, 187], where it was argued that obtaining

vacua parametrically close to the LCS point requires turning on unbounded fluxes, that is,

fluxes not contributing to the total D3-charge and therefore unconstrained by the tadpole

condition. Furthermore, as discussed in [187], the contribution to the flux potential due to the

unbounded fluxes must also be asymptotically vanishing in the strict LCS limit. Interestingly,

the class of no-scale solutions (and thus Minkowski vacua) described above satisfies both

of these conditions, and is therefore consistent with the no-go theorems derived in [187]

(see section 2.4.4). On the one hand, setting to zero the flux N 0
A ≡ f 0

A −τh0
A on the diverging

period implies that the flux on the dual B-cycle, i.e., N B
0 ≡ f B

0 −τhB
0 , does not contribute to

the tadpole. On the other hand, as the term in the flux superpotential associated to N B
0 is

just a constant, it also follows that its contribution to the no-scale potential is asymptotically

vanishing at the LCS point. Note that the analyses in [186,187] only refer to the strict LCS

limit, while the results presented here also allow one to characterise the properties of the

no-scale potential away from the LCS point, i.e., over a region of moduli space not captured

in those works.

For generic flux vacua, not necessarily close to the LCS point, the mass spectrum will not

have the deterministic form of (2.49), and thus will in general be dependent on the choice

of fluxes. Therefore, in order to obtain a characterisation of the spectrum independent

of the choice of flux we have studied the statistical properties of the moduli masses in the

ensemble of flux vacua. More specifically, using the continuous flux approximation, we

computed analytically the probability distributions for the density of vacua and the masses,

both for the generic ensemble of vacua and for the constrained ensemble with vanishing

flux N 0
A . Moreover, we verified the validity of the obtained distributions by comparing

them with the result of a numerical scan on the octic modelWP
4
[1,1,1,1,4]. As can be seen in

figures 2.7–2.13, the analytical and empirical distributions show an excellent agreement in

the expected regime of applicability of the continuous flux approximation.

Regarding the density of vacua, for the generic ensemble the result of the numerical
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scan in the octic model shows a suppression on the density of vacua close to the LCS

point with respect to the statistical predictions (see figure 2.8). This discrepancy with the

theoretical distributions was nevertheless already anticipated in [145, 155] (see also [46]),

due to a breakdown of the continuous flux approximation. In the generic ensemble, vacua

with N 0
A = 0 represent only 0.08% of total vacua and, as we mentioned above, the results

of [145, 155] show that only vacua with vanishing flux N 0
A may be found parametrically close

to the LCS point. By contrast, as can be seen in figure 2.11, the constrained ensemble exhibits

no suppression near the LCS point, indicating that this subclass of solutions will dominate

in this region of the moduli space.

Concerning the statistics of vacua in the constrained ensemble, our results show that the

mass spectra change significantly due to the condition imposed on the fluxes. In particular,

contrary to the generic ensemble, in this class of vacua the lightest field is always in the

reduced moduli space (see figure 2.12). In order to understand the dependence of the spectra

on the distance to the LCS point, we considered subsets of vacua constrained to be in

neighbourhoods of this point with varying sizes. This analysis showed that the smaller the

neighbourhood around the LCS point, the more deterministic the mass spectrum becomes,

recovering the limiting form (2.49) in the strict LCS limit. In other words, for the dominant

class of vacua near the LCS point, the spectrum was always observed to contain a very light

(and asymptotically massless) field in the reduced moduli space (see figure 2.14).
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Chapter 3

A universal mass spectrum for

any compactification around

the LCS point

After our in-depth study of effectively one-parameter models in chapter 2, we are now ready

to generalize our results to more general models in the Large Complex Structure regime.

More concretely, we will find that a particular choice of fluxes, along with an ansatz for the

complex structure moduli allows us, to leading order in α′ and gs , to compute the complete

scalar mass spectrum independently of the choice of Calabi-Yau. This will be given by the

scalar mass formula obtained above for one-parameter models (c.f. (2.48)), and thus our

study of this spectrum in chapter 2 will apply to this case as well. We will check our results

by constructing an ensemble of thousands of solutions for the Calabi-Yau hypersurface

WP
4
[1,1,1,6,9], where the masses of the axio-dilaton and the 272 complex structure fields can

be explicitly computed.

This chapter is based on [188].

3.1 Introduction

The main goal of this chapter is to expand our previous discussion on the stabilization of the

complex structure and axiodilaton sector to more general geometries. Our previous analysis

was carried out for compactifications on the orientifold of Calabi-Yau manifolds which allow

the consistent truncation of all the complex structure fields except one. This study assumed

a Calabi-Yau geometry admitting a large discrete isometry group which, provided the flux

configuration is also invariant under these symmetries, allows the effective reduction of the

complex structure sector. In this setting it was shown that the complete mass spectrum of the

axio-dilaton and complex structure sector (including the truncated fields) can be explicitly

computed in the Large Complex Structure (LCS)/weak string coupling regime. For the class

of vacua which can be found parametrically close to the LCS point and up to exponentially

small corrections, the scalar moduli masses was found to be the one in equation (2.48).

In the present chapter we will prove that, in the LCS regime and provided the fluxes
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are conveniently constrained, the EFT of generic Calabi-Yau compactifications always admits

a consistent truncation of all complex structure fields but one. Here, in contrast with the

previous chapter, we do not require the presence of a discrete isometry group, and our

results rely instead on the existence of monodromy transformations around the LCS point.

That is, we will require only the invariance of the EFT under discrete shifts of the complex

structure fields zi

zi → zi − iv i , v i ∈Z
h2,1

, (3.1)

combinedwith an appropriate transformation of the fluxes of the formfields. This invariance

is a common feature of all Calabi-Yau compactifications in the LCS regime. Moreover, the

choice of field surviving the truncation is highly non-unique, with each possibility associated

to a different monodromy direction v i . This simple, and yet powerful, observation allows us

to extend our previous results to generic Calabi-Yau compactifications and, as a consequence,

opens the door to generating a large landscape of vacua with an unprecedented analytic

control over the mass spectrum of the axio-dilaton and complex structure moduli.

This chapter is organized as follows. In section 3.2, we will work out an ansatz for the

fluxes and the moduli in order to yield any compactification in the LCS regime effectively

one-dimensional, so its mass spectrum is given by (2.48). In section 3.3 we will apply and

verify our results in a particular model, namely theWP
4
[1,1,1,6,9] hypersurface, all the while

detailing the vacuum scanning process. Finally, we end up with some comments and

conclusions in section 3.4.

3.2 A universal mass spectrum at Large Complex Structure

3.2.1 Effective Field Theory and monodromies

In this chapter we will once again consider the regime of the Large Complex Structure (LCS),

described by the prepotential

F = i

3!
κi j k zi z j zk + 1

2
κi j zi z j + i κi zi + 1

2
κ0. (3.2)

The terms κi j k , κi j and κi are numerical constants which can be computed from the

topological data of the mirror manifold to M3 (see [120]). In particular, it will be important

to note that the quantities κi j k are integers, and the coefficients κi j and κi are rational. As we

did above, at the level of the analytical calculation we will neglect the instanton corrections

that the prepotential receives, though they will be considered in the numerical results.

The present description of the EFT has an inherent redundancy associated to the choice

of homology basis. More specifically, a change of basis induces a transformation of the

period and flux vectors,

Π→ S ·Π, N → S ·N , (3.3)

with S ∈ Sp(2h2,1
− +2,Z), leading to different descriptions of the same theory. Finally, the
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requirement that the period vector transforms by symplectic transformations under the

monodromies (3.1) leads to the following condition on the couplings [139,189]

κi j v j + 1

2
κi j k v j vk ∈Z. (3.4)

3.2.2 Consistent supersymmetric truncation to one-parameter models

As wementioned in the introduction, we will be interested in generalizing themass spectrum

(2.48) to models with an arbitrary number of complex structure, without relying on any

symmetry group underlying in the solution. From our discussion in chapter 2, this spectrum

relies on two assumptions:

• First and foremost, the matrix ZAB satisfies

Z0a = δa1Z01. (3.5)

This was trivial in the cases studied in the previous chapter (as the index a could only

take a single value). However, in more general compactifications, this property does

not necessarily hold when more than 1 complex structure modulus is present and

we will need to impose it on our solutions. Vacua satisfying (3.5) will be referred to

as no-scale aligned vacua, due to the a = 1 direction being parallel to Ka (c.f. equation

(2.31)).

• The fluxes are required to satisfy N 0
A = 0. From our analysis in the previous chapter,

we know this choice of fluxes allows for vacua extremely close to the LCS point (where

we have complete parametric control over the corrections to the prepotential).

In order to see how (3.5) can be enforced, let us first describe the superpotential and its

covariant derivatives in full detail. Plugging the prepotential (3.2) into the period vector,

we can easily obtain the Gukov-Vafa-Witten superpotential, the Kähler potential and the

covariant derivatives, as explained in chapter 1. Imposing N 0
A = 0 and the no-scale vacuum

conditions, we find

W = 1

2
κi j k N i

A z j zk − i
(

κi j N
j

A
+N B

i

)

zi −N B
0 +κi N i

A (3.6)

D0W =− i

2
κi j k N i

A z j zk −
(

κi j N
j

A
+N B

i

)

zi + iN B
0 − iκi N i

A = 0 (3.7)

Di W = κi j k N
j

A
zk − i

(

κi j N
j

A
+N B

i

)

+Ki W = 0 (3.8)

D0Di W =−iκi j k N
j

A
zk −

(

κi j N
j

A
+N B

i

)

(3.9)

where we have used the frame vector e0
τ = i(τ−τ) and the direction i is not canonically

normalised. Note that (3.5) is tantamount to imposing D0Di W is parallel to Ki , by virtue of

the definition of the no-scale direction.
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Using (3.8), we can rewrite (3.9) as

D0Di W =−2iκi j k N
j

A
Re(zk )− iKi W . (3.10)

Using the canonically normalised basis (2.26), this reads

D0DaW =−iκab1N b
A x − i KaW . (3.11)

Now, since Ka ∝ δ1
a (c.f. (2.31)) and applying the properties of the normalised Yukawa

couplings (2.29), we find that satisfying (3.5) requires N a′
A = 0 (where a′ = 2, . . . ,h2,1 runs over

the canonically normalised directions). This implies that, in non-canonical coordinates, N i
A

must be parallel to the no-scale direction, which in turn is given by Re(zi ). In other words,

N i
A = v i N̂A, Re(zi ) = r v i (3.12)

where r ∈R and N̂A ≡ f̂ A −τĥA , with f̂ A, ĥA ∈Z. Furthermore, flux quantization imposes v i

to have integer (and coprime) components.

This last result suggests the ansatz

zi = ẑv i , ẑ ∈C, (3.13)

for no-scale aligned equations. Indeed, note that the first term in (3.9) is then parallel to Ki ,

since

κi j k N
j

A
zk ∝ κi j k v j vk ∝ κi 11 = ea

i κa11 = e−Kcs ea
i κ̊a11 ∝ Ki , (3.14)

where, in the last step, we have used (2.31). In order to render the second term in (3.9) parallel

to Ki as well, we will impose the following condition on the fluxes:

N B
i = qκi j k v j vk N̂ B −

(

κi j +
1

2
κi j k vk

)

N
j

A
(3.15)

where q−1 ≡ gcd(κi j k v j vk ) and N̂ B ≡ f̂ B −τĥB , with f̂ B , ĥB ∈Z. Note that flux quantization

is automatically satisfied in this ansatz by virtue of κi j k being integers and the constraint

(3.4). With this choice of flux, we find

κi j N
j

A
+N B

i = κi j k v j vk

(

qN̂ B − 1

2
N̂A

)

(3.16)

which is parallel to Ki , as shown in (3.14).

With all of these results in mind, let us collect them into the main result of this chapter:

Let us consider a h2,1-dimensional vector v i of coprime integers, which lies in the Kähler cone

of the mirror Calabi-Yau. Then, the ansatz zi = ẑv i with ẑ ∈C defines a consistent supersymmetric

truncation of the EFT (3.2), when the flux configuration is of the form

N 0
A = 0, N i

A = v i N̂A, N B
i = qκi j k v j vk N̂ B −

(

κi j +
1

2
κi j k vk

)

N
j

A
, (3.17)
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and N B
0 arbitrary. Here N̂A ≡ f̂ A −τĥA , N̂ B ≡ f̂ B −τĥB with { f̂ A, ĥA, f̂ B , ĥB } ∈ Z and q−1 ≡

gcd(κi j k v j vk ). Proof. First, note that the constraint (3.4) ensures that the vectors f and h

defined in (1.33) have integer components, as required by the flux quantization condition.

To prove that the ansatz zi = ẑv i with ẑ ∈C defines a consistent supersymmetric truncation

of the EFT with the fluxes (3.17), we need to check that the F -flatness condition, w i (∂zi +
∂zi K )W |ẑv i = 0, is satisfied along all directions w i orthogonal to the reduced field space

defined by the truncation ansatz, i.e., orthogonal to v i , regardless of the value of ẑ and

τ [122, 123, 138, 190]. Substituting the flux configuration (3.17) into (3.8) we find that the

F -flatness condition reads

κi j k w i v j vk

[(

ẑ + i

2

)

N̂A − iqN̂ B

]

+w i
[

∂zi K W
]

ẑv i = 0. (3.18)

Actually the two terms in this expression vanish independently, as they are both proportional

to κi j k w iRe(z j )Re(zk ) ∝ κi 11w i = 0, where we have noted that w i is orthogonal to the

no-scale direction (c.f. equation (2.29)) in the last step. ■

In the language of the canonically normalised basis, the above statements amount to

showing that Da′W = 0|zi=ẑv i . Indeed, as we showed above, the ansatze zi = ẑv i along with

(3.17) yield all the terms in (3.8) parallel to Ki . Therefore, since Ki = ea
i

Ka and Ka ∝ δ1
a (c.f.

(2.31)), we will automatically satisfy Da′W = 0.

The previous result guarantees that the ansatz zi = ẑv i can be consistently substituted

into the action, obtaining a reduced theory with an effectively 1-dimensional complex

structure moduli space parametrised by ẑ. The couplings of the reduced action are still

characterised by the Kähler potential and superpotential which arise from (3.2), but they me

also be obtained from an effective prepotential given by

F̂ ≡ i

3!
κv v v ẑ3 + 1

2!
κv v ẑ2 + i κv ẑ + 1

2
κ0 (3.19)

and an effective 4-dimensional flux vector

N̂ ≡
(

0, N̂A, N B
0 , qκv v v N̂B

)T
, (3.20)

where we introduced the shorthands κv v v ≡ κi j k v i v j vk and κv ≡ κi v i . Any solution of

this reduced theory is also a solution of the full action in the LCS regime and to leading

order in α′ and gs . Furthermore, if the fields surviving the truncation satisfy the F -flatness

conditions

DτW = ∂τW +KτW = 0, Dzi W = ∂zi W +Kzi W = 0 (3.21)

the axio-dilaton/complex structure sector of the complete theory will satisfy them as well

(c.f. subsection 2.3.2 and [123,191]).

Therefore, given an EFT for some Calabi-Yau compactification, we can immediately

generate large families of flux vacua in the LCS regime (one family for each choice of v i )

where we can compute the mass spectrum of the complete axio-dilaton/complex structure

sector. Indeed, we just need solve the F -flatness conditions (3.21) for the reduced model
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defined by (3.19) and (3.20). Then, the mass spectrum at the resulting vacua can be obtained

using the results in chapter 2, which apply whenever the complex structure sector can

be consistently truncated to a single field. More specifically, the formula (2.48) gives the

squared masses of all the 2h2,1+2 scalar modes in the axio-dilaton/complex structure sector,

including the truncated ones, in terms of a single parameter ξ≡ −3Imκ0

2κv v v Im(ẑ)3 , and normalised

by the gravitino mass,

m2
3/2 ≡ eK |W |2 = 3

π

Nflux

(2−ξ)V 2
, (3.22)

whereQD3 ≡ hT ·Σ · f ≥ 1 is the flux induced D3−charge. In equation (2.48), the masses with
λ= 0,1 are those associated to the fields surviving the truncation, {τ, ẑ}, while those with

λ= 2, . . . ,h2,1 are the masses of the remaining fields in the truncated sector. It is also worth

mentioning that solutions to (3.21) with N 0
A = 0 are of particular interest, as they are the

dominant class of vacua near the LCS point, as we showed in chapter 2, which is where we

have the best perturbative control of the EFT.

3.3 Example: the hypersurfaceWP
4
[1,1,1,6,9]

Wewill now illustrate our results by constructing an ensemble of the class of vacua presented

above. For this purpose we will consider the compactification of type IIB string theory in an

orientifold of the Calabi-Yau hypersurfaceWP
4
[1,1,1,6,9], which has h1,1 = 2 Kähler moduli and

and h2,1 = 272 complex structure fields. For geometries admitting a G =Z18 ×Z6 isometry

group, and provided only G -invariant fluxes are turned on, the complex structure sector

can be consistently truncated, leaving only two surviving complex structure fields which

also transform trivially under G . In the LCS regime, the couplings for the two G -invariant

complex structure fields are determined by a prepotential with coefficients [141]

κ111 = 9, κ112 = 3, κ122 = 1, κ11 =−9

2
, κ22 = 0, κ12 =−3

2
, κ1 =

17

4
, κ2 =

3

2
(3.23)

and κ0 =−540ζ(3)/(2πi)3. Recall that the presence of the group G is not necessary for our

results to apply, however such isometries are often required to make the computation of the

EFT couplings tractable (see [101]). On the other hand, in order to relax the tadpole constraint

on the fluxes, we considered the setting adopted in [45], where the type IIB compactification

onWP
4
[1,1,1,6,9] was regarded as the orientifold limit of F -theory on an elliptically fibered

Calabi-Yau fourfold, M4. In the F -theory framework, the maximum allowed D3 charge

induced by the fluxes is determined by the Euler number of the fourfold, leading in the

present case to1 QD3 ≤χ(M4)/24 = 273 [45].

1The caveat on this approach is that it introduces additional D7-brane moduli fields. For simplicity, here
we will ignore those additional moduli, and we refer the reader to [158–162,192, 193] for discussions on their
stabilisation.
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3.3.1 Vacua scan

The procedure described in the previous section allows us to further reduce the complex

structure sector to a single field. Consider for definiteness the truncation ansatz defined by

the monodromy direction v i = (1,1). The resulting effective prepotential (3.19) is given by

the couplings κv v v = 21 and κv = 23
4
.

In order to construct the vacua ensemble, we first generated 107 tuples { f B
0 ,hB

0 , f̂ A,B , ĥA,B }

with entries in the interval [−25,25] satisfying the tadpole constraint. For each of these, we

numerically solved the F -flatness conditions (3.21) of the reduced model given by (3.19) and

(3.20), employing the software Paramotopy (see [163–165] and Appendix B.1). The resulting

set of 37,156 solutions is displayed in figure 3.1 (blue dots), which shows the distribution

of vacua on a fundamental domain of {τ, ẑ}. This ensemble includes only solutions at the

weak string coupling/LCS regime, i.e., where gs = (Imτ)−1 < 1 and with small instanton

corrections to the prepotential (using similar criteria as in the previous chapter).

As we detailed before, the truncation ansatz zi = ẑv i together with (3.17) allows us to

lift each of these solutions to a vacuum of the completeWP
4
[1,1,1,6,9] model. After the lift,

we computed the scalar mass spectrum at each vacuum for the axio-dilaton and the G -

invariant zi modes (λ= 0,1,2) by direct diagonalisation of the Hessian of the flux potential

of theWP
4
[1,1,1,6,9] model. The result perfectly matched the formula (2.48) in all cases. It is

important to emphasise that, at each of the obtained solutions, equation (2.48) also gives

the masses of the 270 truncated complex fields which transform non-trivially under G , i.e.,

the modes with λ= 3, . . . ,272. This is a remarkable result, given that we only used the EFT

couplings for the G -invariant moduli computed in [141].

In order to have a sufficiently large sample of vacua to perform a statistical analysis we

considered the effective reduction of the complex structure sector along the monodromy

directions v i = {(1,1), (1,2), (1,3)}, and we combined in a single ensemble the solutions to the

F -flatness conditions (3.21) found for each of the three cases. Other families could also have

been considered; however, the study of any of them is very computationally demanding and,

due to the universal features of these vacua, we do not expect to gain any new information

from studying a different family.

The resulting ensemble contains 206,479 vacua in the weak string-coupling regime, i.e.,

with (Imτ)−1 = gs < 1, out of which 95,626 are in the LCS regime. Here we defined the LCS

regime by the condition that the leading instanton contributions to the prepotential (3.2),

given by (see [141])

Finst =−135

2π3
ie−2πz1

− 3

8π3
ie−2πz2

+ . . . , (3.24)

induce small relative corrections (< 5%) to the moduli space geometry (i.e., to the field space

metric and the canonically normalised couplings κi j k ) and to the gravitino mass m3/2. It

is important to mention that our definition of the LCS regime is more restrictive than just

requiring Finst to be small (in absolute value) with respect to the perturbative part of the

prepotential (3.2) (see, e.g., [166]). Indeed, the moduli space metric becomes degenerate

far from the LCS point (ξ→−1 for χ(M3) > 0 and ξ→ 1/2 for χ(M3) < 0) and thus, in that

regime, the metric eigenvalues are small and very sensitive to the instanton corrections,
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Figure 3.1: Numerically generated distribution of flux vacua on the fundamental domain of the reduced field

space, with Reτ ∈ [−1/2,1/2), Imτ> 1 and Reẑ ∈ [−1/2,1/2), for theWP
4
[1,1,1,6,9] model. The plot represents

a total of 69,567 vacua obtained by reducing the EFT along the monodromy direction v i = (1,1). We indicated

in red vacua with large (> 5%) instanton corrections to the Kähler metric and m3/2, and in blue (37,156

solutions) those with corrections < 5%.

even for small ratios |Finst/F | ∼ 0.01.

The method used here for avoiding duplicities in the counting of vacua is essentially the

same as the one used in chapter 2 (see also [98]). However, the case at hand requires certain

specific considerations related to the truncation of the moduli space so, for completeness,

we will briefly summarise this method in the next section.

3.3.2 Redundancies and solution duplicates

The description of the EFT presented above has two inherent redundancies, namely those

associated to the choice of holonomy basis (3.3), and the well known SL(2,Z) modular

transformations acting on τ. Those vacua which can be related to each other by these gauge

transformations should be regarded as physically equivalent, and thus when constructing

the ensemble one must ensure that each distinct solution is only counted once.

Regarding the choice of holonomy basis, the coefficients κi j , κi and κ0 are only defined

modulo integers, with different representatives associated to different choices of this basis.

Therefore, by selecting a particular expression for the prepotential the symplectic gauge is

partially fixed, with the residual gauge given by the monodromy transformations around

the LCS point, i.e., zi → zi − i δi
p with p ∈ 1, . . . ,h2,1. As a result of imposing the truncation

ansatz zi = ẑv i , the gauge freedom is further reduced, leaving as the only source of gauge
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redundancy the monodromy transformations zi → zi − iv i , which amounts to the shift

ẑ → ẑ − i (3.25)

on the field surviving the truncation. The corresponding symplectic transformation S(v) ∈
Sp(2h2,1 +2,Z), acts on the period vector as (see [139])

Π(zi − iv i ) =S(v) ·Π(zi ), with S(v) ≡
(

A 0

B
(

AT
)−1

)

. (3.26)

The matrices A and B are given by

A =
(

1 0

v i
1

)

, B =
(

2κv + 1
6
κv v v −κ j v + 1

2
κ j v v

−κi v − 1
2
κi v v −κi j v

)

. (3.27)

Note that the condition (3.4) is necessary forS(v) to have integer entries, which also requires

the additional constraint 2κv + 1
6
κv v v ∈Z [189].

Finally, to obtain the action of the residual monodromy transformation (3.26) on the

fluxes of the reduced theory, we just need to impose the ansatz (3.17) together with (3.3). We

find the transformation rules

N̂A → NA,

N̂ B → N̂ B −q−1N̂A,

N B
0 → N B

0 − N̂A

(

κv v −
1

2
κv v v

)

−qκv v v N̂ B (3.28)

The condition N 0
A = 0 is preserved.

In addition to these transformations, one must also take into account the modular

transformations SL(2,Z), which act on the axio-dilaton and the fluxes as

τ→ aτ+b

cτ+d
,

(

f

h

)

→
(

a b

c d

)

·
(

f

h

)

, (3.29)

with a,b,c,d ∈Z and ad −bc = 1.

In order to eliminate equivalent solutions related by the transformations (3.26) and

(3.29), all the vacua in the ensemble were transported to a fundamental domain defined

by Re(τ) ∈ [−1/2,1/2), |τ| > 1, and Im(ẑ) ∈ [−1/2,1/2) using (3.25), (3.28) and (3.29). Once

in the fundamental domain duplicate solutions are easily identified and discarded, as they

correspond to those with the same configuration for the fields and the fluxes. The result of

this procedure for the ensemble of vacua discussed above is displayed in figure 3.1.

3.3.3 Analytic formulae and numerical results

We now turn to the analysis of the statistical properties of the ensemble. As we saw in section

2.6, for compactifications with an effectively one-dimensional complex structure sector and
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Figure 3.2: (a) Density of flux vacua in the reduced complex structure space in terms of the parameter ξ. The

plot shows the numerical distribution obtained directly form the ensemble of 206,479 flux vacua. We have

indicated in (dark and light) blue the 95,626 vacua with small (< 5%) instanton corrections, and in orange

those where the instanton contribution is large (> 5%). The dashed line represents the analytic distribution

(3.30) normalised in the range ξ ∈ [0.001,0.12] where most vacua are in the LCS regime and the continuous

flux approximation holds (dark blue). (b) Distribution of the string coupling gs , in terms of g−1
s = Imτ. The

histogram represents the normalised distribution of the data points lying in the interval ξ ∈ [0.001,0.12], while

the dashed curve is the expected result from the continuous flux approximation.

a large D3-charge tadpole, Nflux|max≫ 1, the statistics of the flux ensemble can be accurately

described using the continuous flux approximation of [46]. This approximation consists

in neglecting the quantization of the fluxes, which are then treated as continuous random

variables with a uniform distribution, only subject to the tadpole constraint hT ·Σ · f ≤
Nflux|max. Using this simplification as the starting point, we found in chapter 2 that the
distribution of vacua in the reduced, one-dimenstional complex structure is given by (c.f.

eq. (2.70))

ρ(ξ)dξ=N · (1+ξ)

(2−ξ)2ξ2/3
dξ , ξ≡ −3Im(κ0)

2κv v vRe(ẑ)3
, (3.30)

where, for convenience, we have given the distribution of Re(ẑ) in terms of the parameter ξ.

In the previous expression and the following ones, N represents a normalisation constant

which should be determined for each particular distribution. It is remarkable that this

distribution is independent of the details of the Calabi-Yau orientifold, or the choice of the

surviving field in the reduced theory, i.e., of v i . As a consequence, this expression can be

used to describe mixed ensembles containing vacua from different compactifications and/or

obtained from different truncation ansatze.

The distribution of values for the parameter ξ obtained numerically for our ensemble of

vacua, combining the cases v i = {(1,1), (1,2), (1,3)}, is displayed in figure 3.2(a). The figure

shows a stacked histogram with the 95,626 vacua at the LCS regime indicated in (light and

dark) blue, and in orange those solutions with a large contribution from instantons (> 5%).

Since the formula (3.30) was obtained while completely ignoring the contribution from

instantons, it is expected to work only in the regime of ξ space where few vacua, or none,

are discarded due to having large corrections (that is, for ξ. 0.12). Furthermore, due to the
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limitations of our numerical method, the flux integers in the ensemble range only in the

interval [−25,25], leading to an artificial bound to how close the vacua in the ensemble can

be to the LCS point, ξ& 0.001 (see Appendix D.4). As a consequence, the distribution (3.30)

is expected to describe correctly the statistics of vacua in the range ξ ∈ [0.001,0.12], which

we have indicated in figure 3.2(a) in dark blue.

The distribution (3.30), normalised in its range of validity, is also indicated in the figure

with a dashed line and, as it can be observed, it provides a very good description for the

density of flux vacua. It is also interesting to note that, despite the divergence of the distri-

bution (3.30) at ξ= 0, this function is normalizable in ξ ∈ [0,1/2), and thus it predicts a finite

number of vacua in any neigbourhood of the LCS point.

Regarding the axio-dilaton, it can also be shown that, according to the continuous

flux approximation, the string coupling constant gs = (Imτ)−1 has a uniform probability

distribution in this class of vacua or, equivalently, the probability density function for

the imaginary part of τ is of the form ρ(Imτ) ∝ (Imτ)−2. This is also consistent with the

distribution which we obtained numerically, as it can be seen in figure 3.2(b).

Our analysis of the distribution of scalar masses will closely follow the one we did in

the previous chapter (see subsection 2.6.3). Indeed, we found that the fermion masses at

no-scale vacua, mλ, normalised by the gravitino mass m̃λ ≡ mλ/m3/2, are given by

m̃λ(ξ) =







√

(1−2ξ)/3 m̂(ξ) λ= 0,p
(1−2ξ)p
3m̂(ξ)

λ= 1,
1+ξ

3
λ= 2, . . . ,h2,1.

(3.31)

Then, combining the previous expressions with (3.30) and using that the functions m̃λ(ξ)

are monotonic, it is immediate to obtain h2,1 +1 separate probability distributions, one for

each of the rescaled fermion masses

ρ
f

λ
(m̃λ)dm̃λ =N · (1+ξ)

(2−ξ)2ξ2/3 (dm̃λ(ξ)/dξ)

∣
∣
∣
ξ(m̃λ)

dm̃λ , (3.32)

where λ= 0, . . . ,h2,1. Finally, from the relation

µ2
±λ = (m2

3/2 ±mλ)2 (3.33)

between the scalar and fermion masses, we can obtain h2,1 +1 separate probability distribu-

tions, one for each pair of normalised scalar masses µ̃2
±λ ≡µ2

±λ/m2
3/2

ρs
λ(µ̃2

λ)d µ̃2
λ =N · µ̃−1

λ

[

ρ
f

λ
(1+ µ̃λ)+ρ

f

λ
(|1− µ̃λ|)

]

d µ̃2
λ. (3.34)

In order to generate the numerical mass distributions for our ensemble of vacua, at each

solution to (3.21) we diagonalised the Hessian of the scalar potential induced by the fluxes,

i.e., the potential in the theory defined by (3.2) with the couplings (3.23), which describe the

G -invariant sector of the moduli space in theWP
4
[1,1,1,6,9] model. In all cases, the resulting

masses for the three G -invariant modes (including the axio-dilaton) were in agreement

with equation (2.48) with λ= 0,1,2. The numerical distributions for the scalar µ2
±0, µ

2
±1 and
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Figure 3.3: Numerical distributions for the normalised scalar masses µ̃2
±λ = µ2

±λ/m2
3/2 of the G−invariant

modes, λ = {0,1,2} in the ensemble of 95,626 vacua at LCS. In each figure, the dashed line represents the

analytic formula (2.48) for each value of λ, normalised in the same range ξ ∈ [0.001,0.12]. The darker regions

represent the solutions for which the continuous flux approximation applies.

µ2
±2 are displayed in figure 3.3, along with the theoretical distribution (3.34) normalised in

the range ξ ∈ [0.001,0.12]. As expected from the analysis of the distribution ρ(ξ) (3.30), in

figure 3.3 we can see that the theoretical probability densities for the masses are in good

agreement with the obtained numerical results. The most significant feature of these plots is

that the density distribution for µ2
±1 is peaked around zero, indicating that a large fraction

of vacua involve a light field in the spectrum. This can be understood recalling that, on the

one hand, vacua with N 0
A = 0 (as those discussed here) can be found parametrically close

to the LCS point [145, 186,187], and thus a large fraction is expected to be found near ξ= 0

(see figure 3.2(a)). On the other hand, from (2.48) it follows that the spectrum of these vacua

contains an asymptotically massless mode in the limit ξ→ 0, which explains the peak of

ρs
1(µ2

1) at µ2
1 = 0 observed in figure 3.3(b). This feature is expected to be generic for the

class of vacua discussed here, regardless of the choice of Calabi-Yau compactification or the

truncation ansatz, as both the mass spectrum (2.48) and the probability distributions (3.33)

and (3.34) are completely universal. Note also that half of the masses in the spectrum are

smaller than the gravitino mass m2
3/2.

The sharp edges of the mass sectra shown in figure 3.3 correspond to the cutoffs we

have set on the parameter ξ ∈ [0.001,0.12], with the peaks of the probability distributions

corresponding to the minimum value of ξ. The effect of changing the bounds of ξ can be

seen in figure 3.4. The plot in figure 3.4(a) represents the combined distribution for the

masses of the three G−invariant modes, with ξ ∈ [0.001,0.02]. We see that the distribution
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Figure 3.4: Complete distribution of scalar masses µ̃2
λ
, λ= {0,1,2}, in the ensemble of 95,626 vacua at LCS. In

each histogram, solutions with (a) ξ ∈ [0.001,0.02] and (b) ξ ∈ [0.13,0.5) have been highlighted. The insets in

these plots show the mass distribution near µ̃2 ≈ 0, illustrating the presence of an asymptotically massless mode

at vacua near the LCS point (a), and the absence of light modes in the spectrum when solutions near the LCS

point are excluded (b).

becomes very peaked, with the maxima at the values

µ2
±λ/m2

3/2 =
{

0,
4

9
,

16

9
,4

}

, (3.35)

which is precisely the strict LCS limit (ξ→ 0) of the spectrum (2.48). This result illustrates the

appearance of an asymptotically massless mode at vacua located in a small neigbourhood of

the LCS point. Figure 3.4(b) shows the combined the mass distribution for the G−invariant
modes, with the parameter ξ restricted to ξ ∈ [0.13,0.5), that is, for vacua with small instanton

corrections but well separated from the LCS point. In the inset of figure 3.4(b) we can see that

for all these vacua themass of the lightestmode is nowbounded belowµ2
−1 & 0.11m2

3/2. Then,

as we mentioned above, it can be seen that by excluding solutions from a neighbourhood

of the LCS point we can construct an ensemble of vacua whose spectrum does not contain

light modes, and thus, which are good candidates for considering the stabilisation of the

Kähler moduli.

We note that the peaks shown in fig. 3.4 are in contrast with the general predictions

based on the statistical modelling of a landscape where this distribution is found using

RandomMatrix Theory [123,134,177, 179] and random Landscapes (see chapter 5 for more

detail). The origin of this difference comes from the lack of sufficient complexity in our

ensemble of effective field theories. The reason for this is that the structure of the couplings

in our ensemble of vacua is quite rigid and does not display the sufficient random nature for

the scalar potential induced by the fluxes to be described by a multidimensional Gaussian

random field.

Finally, the 270 truncated complex structure fields transforming non-trivially under the

symmetry group G have the same masses as the G -invariant modes with λ = 2, namely

µ2
±λ =

(

1± 1
3

(1+ξ)
)2
for all λ= 2, . . .h2,1, and thus their probability distributions coincide

with the one displayed in the lower plot of figure 3.3. Let us emphasize again that this is a

rather exceptional result, as the EFT couplings for these fields are not determined by (3.23),

and thus they were unknown a priori.
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3.4 Discussion

In this chapter, we presented a method to construct ensembles of flux vacua for generic

Calabi-Yau compactifications at LCS, where the masses of the axio-dilaton and complex

structure moduli are given by the universal formula (2.48). This result provides full analytic

control, to leading order in α′ and gs , over the masses of those fields, and therefore the

vacua we consider are an excellent stepping-stone towards the complete stabilisation of the

compactification, i.e., including the Kähler moduli. Interestingly, up to an overall scale, the

masses given in (2.48) are completely determined by the vacuum values of the complex

structure fields. As a consequence, knowing the magnitude of the α′ and nonperturbative

corrections which generate the Kähler moduli potential, it is possible to guarantee the

stability of the axio-dilaton and all the complex structure fields by restricting the search of

vacua to appropriate regions of moduli space. In particular, the spectrum (2.48) involves a

single asymptotically massless mode in the neighbourhood of the LCS point, µ2
−1|ξ→0 = 0,

with all the remaining masses being at least of the order of the gravitino mass m3/2. In other

words, in the LCS limit there is only one potentially dangerous mode which might threaten

the stability of the compactification. On the contrary, away from the LCS point the mass of

the lightest mode in (2.48) becomes of the order of m3/2, and thus as long as the perturbative

and nonperturbative contributions to the EFT are under control, the final vacuum with the

Kähler moduli fixed will not develop an instability. Nevertheless, it is expected that such

contributions will induce small corrections in the spectrum (2.48) which, in particular, will

lift the degeneracy of the modes λ= 2, . . . ,h2,1.

Note that the class of vacua we discussed is only appropriate for the construction of

LVS solutions, but not for the KKLT scenario. For the solutions presented here, the flux

superpotential satisfies W0 ≡ V m3/2 ≥ 1/
p
π (see eq. (3.22)), while the KKLT vacua require

W0 to be exponentially small. Therefore, a logical future direction would be to consider

the stabilisation of the Kälher moduli at the class of vacua presented here within the LVS

framework. Another interesting continuation of this work would be to study other truncation

schemes compatible with the more general vacua discussed in the previous chapter, where

the spectrum can also be explicitly computed, and W0 could be arbitrarily small.

To conclude we will briefly comment on the possible extension of our results to other

regimes away from the LCS limit. In general, such an analysis would require a specific

treatment which is beyond the reach of the present analysis, as our derivations depend

crucially on the universal properties satisfied by the couplings of the EFT at LCS. However,

in the specific case of conifold limits of the moduli space, it might be possible to make some

progress following an analogous procedure to the one described in [194, 195] (see also [196]).

In those works, it was explicitly demonstrated that one can stabilise a subset of the complex

structure moduli near a conifold point, while fixing the rest near the LCS point, i.e., at

a conifold-LCS regime. As shown in [194, 195], provided the moduli at LCS are sufficiently

massive, the stabilisation of this sector can be treated independently, ignoring consistently

the presence of moduli near the conifold limit to leading order. Therefore, an interesting

future direction would be to study the application of our results to characterise the spectrum

of those complex structure at LCS for compactifications in a conifold-LCS regime, such as

those described in [194,195].



Chapter 4

Racetrack potentials and the de

Sitter swampland conjecture

After our thorough study of the complex structure and axiodilaton moduli sector, we now

turn to work on same aspects of the stabilization procedure which include the Kähler sector.

We will do this from a perspective of the de Sitter Swampland conjecture, which we will

introduce below. In this chapter, we will be mostly interested in finding exact solutions

which are critical points of the flux superpotential, with non-perturbative corrections taken

into account in order to render the Kähler moduli massive. We will examine these particular

solutions and check for the existence of de Sitter critical points and their validity from the

effective field theory perspective. Moreover, we will also contrast them with the de Sitter

Swampland conjecture and its refined counterpart.

This chapter is based on [197].

4.1 Introduction

It has recently been conjectured [54] that any potential consistent with quantum gravity

should satisfy the bound

Mp
|∇V |

V
≥ c , (4.1)

where c is a dimensionless constant of order unity. One of the obvious implications of this

conjecture will be the impossibility of obtaining a metastable de Sitter vacua. However, the

conjecture is much stronger than that: it also prohibits the existence of any critical point

(saddle points) at positive values of the potential. This aspect of the conjecture is already

under tension from several theoretical considerations that involve well known Standard

Model physics [198–200]. In particular, one would need to introduce some specific couplings

of the Higgs field in order to satisfy Eq. (4.1).

String theory is a consistent theory of quantum gravity, and if the conjecture is correct,

any potential obtained in this theory would have to satisfy Eq. (4.1). This is particularly

restrictive when we take into account the large number of 4-dimensional potentials that

one could generate in the process of compactification from 10d. However, similar bounds
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on the potential have been found earlier in some string theory compactifications [201]. It

is therefore very important to investigate whether or not this general statement about low

energy effective field theory is true in a generic situation. This has been recently discussed

in several papers, e.g., [55–65], mostly in relation to the validity of the approximations to

obtain a 4-dimensional de Sitter space minima.

In this chapter, we will focus our discussion on the existence of de Sitter saddle points

in models of string compactification to demonstrate that the de Sitter conjecture is too

restrictive. In fact, there is already some evidence in the literature for the existence of

unstable de Sitter solutions, found from looking directly at the 10d equations of motion

(see [202] and references therein). This seems to suggest that one could find a 4d dimensional

version of a potential that could bring the spacetime to this form, therefore violating the de

Sitter conjecture given by Eq. (4.1). However, it is not clear if those 10d solutions can be cast

in a low energy effective field theory in 4d [203]. Thus it is still necessary and interesting to

look for some other possible counterexamples to the conjecture.

One can also take a different perspective and think about the purely 4d effective theory

that one obtains from compactication. This approach has been taken in several of the most-

studied examples of de Sitter vacua in string theory, in particular the well known KKLT

model [35] or the Large Volume Scenario [31,34,204], which we described in subsection 1.3.3.

However, some of the ingredients in these constructions have been put into question by

some authors [205] (see also [206]). It is therefore interesting to ask whether one can find de

Sitter critical points in these constructions that violate the de Sitter swampland conjecture

with all of the ingredients well under control. This question has been addressed by Conlon

in [207] in the context of moduli potentials. His argument is based on the realization that in

certain circumstances, the potential approaches zero from above along specific directions in

field space, such as the internal volume or the dilaton. This fact, together with the existence

of supersymmetric AdSminima in the interior of the moduli space, suggests that one should

find a maximum of the potential somewhere between these two regions. This argument

does not require the presence of any uplifting term in the effective potential and therefore

seemsmore generic. In order to make the argument robust, one should show that the critical

point is still there in the presence of several other fields, like the complex structure moduli

and the other Kähler moduli. In this chapter, we will show that this is indeed possible in

constructions of Type IIB with several complex structuremoduli, the dilaton, and one Kähler

moduli. We further find that the presence of de Sitter saddle points is quite generic in these

constructions, which include (but are not limited to) the cases discussed by [207].

Furthermore, it has been argued in Ref. [63] that a form of the Weak Gravity Conjec-

ture [52] will inhibit the possibility of obtaining a viable model of compactication with a

Racetrack Potential. In the following, we will show that the form of the parameters imposed

by the authors in Ref. [63] is in fact too restrictive, and one can easily find a set of coefficients

that would not violate the Weak Gravity Conjecture.

The models we present here pass many requirements that one needs to impose to have

some confidence on the results obtained from them. In particular we require that the

following conditions are satisfied in our model:

• large enough internal volume
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• weak coupling

• large complex structure values

• positivity of all the kinetic terms at the points of interest

• small periodicity of the axionic fields (a version of the Weak Gravity Conjecture)

• sub-Planckian energy densities

• discrete values of the fluxes and the superpotential.

This is quite a long list of demands. It is not completely clear, a priori, that one could

satisfy all of them with the limited number of parameters present in our model. We will

show that it is indeed possible to overcome these difficulties and find examples that respect

all these conditions.

There are, however, some approximations that we have made in order to simplify

the problem. In particular, we have modelled the Kähler moduli sector of the compact-

ification manifold by a single complex field. We have also taken a simple model for the

non-perturbative superpotential whose field dependence is restricted to this single Kähler

moduli. One could in principle perform the same kind of calculations in a more realistic

version of our model with two Kähler moduli and two complex structure fields, as was done

in [99,208], to investigate if the results in this chapter continue to hold in that case.

After themain part of this work was completed, a new version of the de Sitter Swampland

Conjecture appeared in Ref. [66]. This is a much weaker version of this conjecture that allows

for saddle points in de Sitter space, but imposes some restrictions on the curvature of the

potential at those critical points. The arguments behind this new version of the conjecture

are different in nature to the previous one and they are being actively investigated [209].

Given this situation, we feel that it is still important to give concrete examples that can firmly

establish whether any of these conjectures are valid in its current form. Therefore this work

provides evidence that the strong version of the conjecture, as stated in Eq. (4.1), is ruled out

in string theory. We have also checked the form of the de Sitter saddle points we obtained

in this model against the restrictions of the new conjecture, as reported in the final part of

this chapter.

The rest of this chapter is organized as follows. In section 4.2, we construct several

explicit examples of potentials with de Sitter saddle points in this context. In section 4.3, we

discuss the validity of our solutions with respect to several possible constraints. In section

4.4, we investigate the form of the potentials around the de Sitter critical points and study

them in connection to the refined version of the de Sitter Swampland Conjecture [66] . We

conclude in section 4.5.

4.2 Explicit Examples for Type IIB compactification scenar-

ios

In this chapter, we will be working with the well-studied orientifold modelWP
4
[11169], which

we thoroughly described in section 3.3, and has been widely used in the context of Kähler
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moduli stabilization, see e.g. [45, 100]. More concretely, we will apply the formulae concern-

ing its supersymmetric truncation to two complex structure moduli1 (in order to make the

computational problem tractable). On the other hand, as we said in the previous section, the

Kähler sector will be considered to be composed by only the overall volume modulus for

simplicity.

As we discussed in section 1.3, due to the no-scale structure of the potential, supersym-

metric vacua have flat directions along the Kähler fields, so one must go beyond the no-scale

limit in order to stabilize the Kähler moduli. This can be done either by introducing pertur-

bative corrections to the Kähler function [31], or by adding non-perturbative terms to the

superpotential [35]. We will concentrate on non-perturbative terms in the simplest models

of a single Kähler field, which take the form [35]

Wnp =
∑

i

Ai e−ai T . (4.2)

In the following, we will take Ai and ai to be constants.

With the above ingredients in mind, we will study the N = 1 supergravity theory with

the Kähler function

K (z1, z2,τ,T ) =−3log(T +T )− log(−i (τ−τ))+Kcs(z1, z2,τ) (4.3)

and superpotential

W (z1, z2,τ,T ) =Wflux(z1, z2,τ)+ Ae−aT +Be−bT . (4.4)

whereKcs is the Kähler potential for the complex structure at the LCS region, c.f. eq. (2.4), and

the couplings have been described in eq. (3.23). We have denoted as Wflux the contribution

of the fluxes to the superpotential, namely Gukov-Vafa-Witten superpotential described in

(1.35), while the non-perturbative contributions have been explicitly written in (4.4). The

latter give rise to the so-called “racetrack-type superpotential”. This has been argued to arise

from gaugino condensation in a stack of D7 branes wrapped around some internal cycles of

the CY geometry [35].

This concludes the description of our model for this chapter, which is characterized by

several parameters that we will fix in the following examples. It is important to note that even

when one fixes the field space manifold and the D-brane content of our compactification

scenario, we will still have a large number of possible potentials available due to themultitude

of possible fluxes. We will use this fact to show that our conclusions are quite generic.

4.2.1 Supersymmetric Vacua

Let us denote byW0 the value of the superpotential at tree-level no-scale vacua, which satisfy

eqs. (1.37). We start our description of potentials with de Sitter saddle points by studying an

1In this chapter, as opposed to chapters 2 and 3, we will not constrain our complex structure moduli space
to be one-dimensional. Therefore, even though we will be using the same CY orientifold as in the previous
chapter, the region of the moduli space we will explore is quite different, and our previous results need not
apply here.
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example of fluxes that give rise to a vanishing tree-level flux superpotential, W0 = 0. Using

only the complex structure moduli (meaning without introducing any non-perturbative

terms), it has been shown in ref. [45] that such vacua are possible if one chooses the flux

numbers, ( f A| f B ) and (hA|hB ), threading each cycle appropriately. For example, one can

choose

( f A| f B ) = (20,0,0|0,−69,−28) , (hA|hB ) = (0,−4,0|49,18,6) . (4.5)

to get W0 = 0 at the solution of the no-scale vacuum equations (1.37).

Adding the non-pertubative potential with parameters2

A =− 1

100
, B = 1, a = 2π

100
, b = 2π

50
, (4.6)

one can find a supersymmetric minima for all fields. In particular, we obtain Re[T ] = TR =
82.430 and Im[T ] = TI = 0 at an AdS supersymmetric minima. It is important to note that

we have solved the complete set of supersymmetric equations for all fields, so in fact the

superpotential at the true minimum has a tiny component due to the small correction to

the supersymmetric equations introduced by the non-perturbative terms. However, this

correction of the position of the minima in field space in the complex structure and the

dilaton is quite small. This is useful since it allows us to first solve the equations for the

dilaton and the complex structure with Wnp = 0, and then use this solution as our initial

guess for the full solution.

4.2.2 de Sitter Critical Point

Looking at the asymptotic form of this potential at large values of TR , one realizes that it

approaches zero from above. However, the supersymmetric minimum we found before is at

a negative value ofV . This indicates, as figure 4.1 shows, that the potential should have a local

maximum at some intermediate value of TR . This is the same idea described in ref. [207]

for the dilaton potential in a heterotic string compactification.

We have an expression for the scalar potential as a function of all the fields involved,

so we can check that this maximum is indeed a critical point once we take into account all

other directions. The locations of the dilaton and the complex structure moduli at the de

Sitter critical point are slightly shifted from their values at the AdS supersymmetric vacuum.

One can justify this by considering the differences in scales between the complex structure

and dilaton masses and the Kähler fields.

As noted above, the values of the fluxes in this example are such that the solution

respects supersymmetry even before introducing any non-perturbative corrections. In other

words, W0 = 0. This makes this solution free of any of the potential problems described

in [37], where some concern was raised about the introduction of non-perturbative terms

in the superpotential without taking proper account the possibility of other perturbative

corrections due to supersymmetry breaking. See however the discussion in Ref. [38].

2Note that for a specific model of compactification, one may have to consider possible restrictions to the
values of the exponentials of the superpotential due to the specific internal manifold. See for example the
discussion in Ref. [99]. We will not take this into consideration here.
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Figure 4.1: A plot of theW0 = 0 case (Case 0) using the racetrack parameters from eq. (4.6). The nonperturbative

correction results in an anti-de Sitter minimum. Because the potential asymptotically approaches zero from

above, there must then be a maximum in TR between this minimum and infinity. That maximum is in fact very

near to a de Sitter saddle point.

We therefore conclude that it is possible to find true de Sitter saddle points in this type

of scenario with many moduli fields. However, this example is somewhat special, since

the main argument for the existence of the saddle point in the TR direction relies on the

vanishing of the tree level flux superpotential. In the following, we relax this condition to

see how generic de Sitter saddle points are in our models.

4.2.3 More general cases

In the previous section, we gave a particular example of the parameters that lead to the

existence of a de Sitter critical point following the description given by Conlon3 [207]. We

will now show that such critical points exist for a large volume of the parameter space of the

models we are using.

Let us start by describing another way in which one could try to find a de Sitter critical

point in our construction. Consider the situation incorporating the non-perturbative terms

such that they yield a supersymmetric Mikowski vacuum. In other words, we will consider

the case where the total superpotential (not only Wflux) at the vacuum is zero. This sounds

like a good starting point if one wants to find a de Sitter saddle point: the potential around

that minimum would be positive, but at large volume it should go back to zero, so it must

turn around at some point. This, of course, only suggests the possibility of the existence of

these points, and one will have to find explicit examples in the multifield potential. Here, we

again use theWP
4
[11169] CY complex structure moduli to give such examples. This model

has only two complex structure moduli, but it is already rich enough to demonstrate the

generic existence of de Sitter critical points in the landscape.

3In Ref. [207], Conlon argued how one can find other examples where these de Sitter saddle points can
appear by using α′ corrections to the potential. This requires a specific sign of these corrections. Here we will
show that these points appear generically in the racetrack models even ignoring these corrections.
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Case # ( f A | f B ) (hA |hB ) W0

0 (20,0,0|0,−69,−28) (0,−4,0|49,18,6) 0

1 (20,−1,−6|12,−44,−14) (−1,−4,3|43,21,7) −0.025920+ i 0.022994

2 (18,−2,−3|16,−37,−10) (−1,−4,3|46,21,5) −0.025987+ i 0.000443

3 (18,−1,−3|14,−42,−15) (−1,−4,3|43,19,6) −0.020426+ i 0.011213

Table 4.1: The flux integer choices and initialW0 (found from solving D I Wflux = 0 for I ∈ {τ, zi }) for all four

cases we studied. The values of Eq. (4.7) were chosen such that the full potential V (zi ,τ,T ) of Case 1 has a

Minkowski supersymmetric minimum.

Finding a supersymmetric Minkowski vacuum can be achieved with our racetrack po-

tential, as was shown in Ref. [210,211], by adjusting the coefficients of our non-perturbative

superpotential for a given W0. In our case, we select

A = 0.26050− i 0.30090, B =−0.65453+ i 0.75603, a = 2π

300
, b = 2π

150
, (4.7)

which were chosen based on a choice of fluxes

( f A| f B ) = (20,−1,−6|12,−44,−12) , (hA|hB ) = (−1,−4,3|43,21,7) , (4.8)

which has an initial W0 = −0.025920+ i 0.022994. Looking at the full potential for these

parameter values, we indeed find a de Sitter saddle point along the volume direction, as

expected.

It may seem that this scenario is fine-tuned by the specific choice of our superpotential

parameters (A,B , a,b), such that we obtain the Minkowski vacuum. Thus, we shall vary the

flux numbers while keeping the racetrack potential fixed, with the requirement that we only

consider relatively small values of |W0| in our examples. We have scanned a few sets of flux

integer values to identify a few suitable candidates for our purposes. We shall consider four

cases: the one with W0 = 0 from before, the one with fluxes as in Eq. (4.8), and two others.

These cases are detailed in Table 4.1.

We show in Fig. 4.2 the potential along the volume direction for all four cases, using

always the racetrack parameters of Eq. (4.7). We find again a de Sitter critical point close

to the minimum, where the potential is at an extremum in all field directions. There is

another interesting point in this example for Cases 1–3. At large values of the volume, one

finds another supersymmetric AdS critical point, so our de Sitter critical point is located in

between these two supersymmetric points. This is a different asymptotic behavior than the

one obtained Conlon [207] and in our previous section. This fact makes it harder to see how

can one modify the potential to avoid the de Sitter critical point without also destroying the

nearby supersymmetric points. As before, there is typically a small shift in the values of the

moduli between the supersymmetric minima and the de Sitter critical point.

Furthermore, Cases 2 and 3 exhibit the same general behavior as Case 1, and so such

behavior does not seem to be the result of fine-tuning. In a realistic model with many

complex structure moduli, the distribution of vacua in the W0 around the origin is flat [212],

and the model we have chosen already allows for many minima around |W0| ≈ 0 [100]. This

would mean that in reality, there would a very large number of these vacua with de Sitter

critical points. Hence, the examples shown here are very generic in a typical CY.
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Case # τ z1 z2 T

0 −8.712E-4+ i 3.001 −1.000− i 1.108E-4 − 0.9999+ i 9.850E-5 62.22− i 1.044E-3
1 −0.8120+ i 3.752 −1.383− i 0.5176 − 0.1546+ i 1.067 77.09+ i 0

2 −0.5595+ i 3.395 −1.225− i 0.6514 − 0.6160+ i 1.543 66.25+ i 5.737

3 −0.5748+ i 3.485 −1.304− i 0.4232 − 0.4240+ i 1.011 68.82+ i 2.727

(a) Field values at the first (lower TR ) supersymmetric critical points

Case # τ z1 z2 T

0 −8.929E-4+ i 3.001 − 1.000− i 1.136E-4 − 0.9999+ i 1.010E-4 96.53+ i 5.127E-4
1 −0.8118+ i 3.752 − 1.383− i 0.5176 − 0.1546+ i 1.067 96.53+ i 1.178E-3
2 −0.5593+ i 3.395 − 1.225− i 0.6514 − 0.6159+ i 1.543 97.84+ i 3.846

3 −0.5747+ i 3.485 − 1.304− i 0.4232 − 0.4240+ i 1.011 96.85+ i 1.963

(b) Field values at the non-supersymmetric de Sitter saddle points.

Case # τ z1 z2 T

1 −0.8110+ i 3.751 − 1.383− i 0.5175 − 0.1546+ i 1.067 157.6+ i 3.882E-3
2 −0.5584+ i 3.395 − 1.225− i 0.6513 − 0.6158+ i 1.543 189.7− i 43.34

3 −0.5738+ i 3.484 − 1.304− i 0.4231 − 0.4240+ i 1.010 194.9− i 18.37

(c) Field values at the second (higher TR ) supersymmetric anti-de Sitter minima.

Point Case # Masses

1st SUSY

0 5.791 ·10−4 5.790 ·10−4 2.846 ·10−4 2.845 ·10−4 1.510 ·10−4 1.510 ·10−4 9.744 ·10−10 8.462 ·10−10

1 1.015 ·10−2 1.015 ·10−2 3.174 ·10−4 3.174 ·10−4 1.033 ·10−4 1.033 ·10−4 9.125 ·10−11 9.125 ·10−11

2 1.813 ·10−3 1.813 ·10−3 4.155 ·10−4 4.154 ·10−4 1.523 ·10−4 1.523 ·10−4 4.292 ·10−10 3.799 ·10−10

3 1.836 ·10−3 1.836 ·10−3 3.991 ·10−4 3.991 ·10−4 1.316 ·10−4 1.316 ·10−4 2.889 ·10−10 2.636 ·10−10

de Sitter saddle

0 1.551 ·10−4 1.550 ·10−4 7.622 ·10−5 7.614 ·10−5 4.045 ·10−5 4.040 ·10−5 −1.269 ·10
−10 1.178 ·10−10

1 5.169 ·10−3 5.168 ·10−3 1.616 ·10−4 1.616 ·10−4 5.262 ·10−5 5.260 ·10−5 −2.514 ·10
−11 2.427 ·10−11

2 5.630 ·10−4 5.628 ·10−4 1.290 ·10−4 1.289 ·10−4 4.730 ·10−5 4.726 ·10−5 −6.244 ·10
−11 5.866 ·10−11

3 6.590 ·10−4 6.589 ·10−4 1.432 ·10−4 1.432 ·10−4 4.723 ·10−5 4.719 ·10−5 −5.101 ·10
−11 4.795 ·10−11

2nd SUSY
1 1.188 ·10−3 1.188 ·10−3 3.713 ·10−5 3.713 ·10−5 1.209 ·10−5 1.208 ·10−5 1.294 ·10−12 9.632 ·10−13

2 7.720 ·10−5 7.720 ·10−5 1.769 ·10−5 1.769 ·10−5 6.484 ·10−6 6.483 ·10−6 3.801 ·10−13 3.065 ·10−13

3 8.087 ·10−5 8.087 ·10−5 1.757 ·10−5 1.757 ·10−5 5.793 ·10−6 5.792 ·10−6 2.697 ·10−13 2.172 ·10−13

(d) Scalar field mass spectra at the critical points. Eigenvalues corresponding to the TR direction for the
de Sitter critical point have been highlighted in red. The eigenvectors corresponding to the last two
masses of every row are almost aligned with TR and TI , respectively.

Table 4.2: Field values of z1, z2, τ, and T and scalar mass spectra at the various critical points we illustrate in

figs. 4.2-4.4. While we report these values to five significant digits, all calculations were carried out to a precision

of forty digits. While it is not always clear from these tables, owing to the low precision in the presentation, the

τ, z1, and z2 values all change between critical points, and so these data should be taken to give the vicinity of

the critical points.

We plot in Figs. 4.2 & 4.3 the potentials along the volume direction for the values of the

moduli that correspond to the first supersymmetric critical point and the de Sitter .critical

point. Finally, we plot in Fig. 4.4 the other supersymmetric AdS critical points that exist in

all cases except the case with W0 = 0. We give details about the location and mass spectra4 of

these points in table 4.2.

4The kinetic term in the action for the scalar fields is generically not in canonical form. In order to
compute the eigenvalues with respect to the real and imaginary parts of all the moduli,we need to find a

metric gi j in field space such that K I J∂µΦ
I∂µΦJ = 1

2 gi j∂µφ
i∂µφ j where ΦI = {τ, z1, z2,T } and φi stands for

the real or imaginary part of any moduli. Thus, the matrix from which the eigenvalues will be computed is
H i

j
= g i k (∂k∂ j V −Γ

l
k j
∂l V ). Note that the second term will vanish if we are analyzing a critical point.
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Figure 4.2: A plot of the potentials of Cases 0–3 with TR varying and all other fields fixed at their first critical

point values (vid. table 4.2(a)). All of the minima in this potential are anti-de Sitter, with the exception of Case

1, which is a Minkowski minimum.

4.3 Validity of the solutions

The values of the moduli at the minimum are constrained by several requirements so that

one can trust the results given our approximations. The realizations we have studied here

pass all of the following constraints.

One needs to find a minimum at a large value of the real part of T so that the internal

volume is large in string units and one can trust the supergravity approximation. Our

smallest TR is ≈ 62.

The imaginary part of the dilaton should be large enough to be in the weak coupling

regime. Similarly, the complex structure should be found in the region where the calculation

of the periods that enter the Kähler and the superpotential can be trusted, i.e., instanton

corrections should remain under control. Our smallest Im[τ] is ≈ 3, and the z1 all have real

part greater than 1 in absolute units.

We also have to impose the positivity of all the kinetic terms for the moduli fields. This

restricts some of the vacua that we have found numerically, forcing us to exclude them from

consideration.

Another important point that has been discussed in the literature [63] is the possible

trans-Planckian periodicity of the axion fields associated with the Kähler moduli. Models

with that property violate a generalization of the Weak Gravity Conjecture and are therefore

assumed to be part of the Swampland. This means that one should not consider such cases

when looking for viable counterexamples of the de Sitter Swampland conjecture.

This added restriction, together with all the other conditions we would like to satisfy,

puts some tension on the set of possible parameters that one can use. However it is not hard

to find examples where the periodicities for the axions are sub-Planckian. In fact, all the

numerical examples we give in this work avoid any violation of theWeak Gravity Conjecture.

The harmonics of the axion can be directly computed from the scalar potential, and they
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Figure 4.3: A plot of the potentials of Cases 0–3 with TR varying and all other fields fixed at their de Sitter

critical point values (vid. table 4.2(b)). All of the apparent maxima shown here are in fact saddle points once we

account for all fields.
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Figure 4.4: A plot of the potentials of Cases 1–3 with TR varying and all other fields fixed at their second anti-de

Sitter critical point values table 4.2(c). All cases are true minima once we account for all the fields.

should satisfy

aTR > 1, bTR > 1, (b −a)TR > 1 (4.9)

for the TR at all critical points so all the terms in the potential for the axions have a sub-

Planckian periodicity5. Finally, the de Sitter saddle points that we found are all at a sub-

Planckian energy density, so this does not impose a serious restriction.

5Note that the dependence of this condition on TR comes from imposing the periodicity on the canonically
normalized axion fields.
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4.4 de Sitter saddle points and the Refined de Sitter Conjec-

ture

In the previous sections, we have shown that it is quite generic to obtain de Sitter critical

points in constructions of moduli stabilization without much fine tuning. These points rule

out the strong version of the de Sitter Conjecture.

A new version of the conjecture has appeared briefly afterwards that allows de Sitter

saddle points as long as the the curvature of the potential is large along the unstable direc-

tion [66]. It states that at a saddle point, the potential will satisfy the relation

Min
(

Vφφ

)

≤− c ′

M 2
P

V , (4.10)

where c ′ is a positive dimensionless constant of order 1 andVφφ denotes the second derivative

of the potential with respect to the canonically normalized fields, φ. This is directly related

to one of the slow roll parameters in inflationary scenarios, η. This parameter is given by

the ratio of the second derivative of the potential along the canonically normalized field

direction and the potential itself. The new conjecture imposes that η should be large and

negative along the unstable direction at those de Sitter critical points.

Using the form of the potential for all the moduli fields we obtained earlier, one can find

in our model the eigenvalues of the squared masses of the canonically normalized fields

around any critical point, and from there the values of η at those points. This calculation

shows that the unstable directions in all de Sitter saddle points are in fact prettymuch aligned

with the direction that corresponds to the volume modulus. This is in agreement with the

naïve expectation one gets by looking at the plots of the potential along the TR direction.

We show in Table 4.3 the values of η for the four de Sitter critical points found earlier. It

is clear from those results that all these points are in agreement with the weaker version of

the de Sitter conjecture. However, this is to be expected in this simple model. The form of

the kinetic term for this field is universal:

3

4T 2
R

(

∂µTR∂
µTR

)

, (4.11)

and the value of the η parameter for the canonically normalized field along the TR direction

is in this case given by

ηTR = 2

3
T 2

R

(
V ′′

V

)

, (4.12)

where V ′′ = ∂2V /∂T 2
R and the contribution from the non-canonical kinetic term has been

taken into account in the definition of η (see footnote 4). Because we need to have a large

volume for consistency of themodel, we conclude that it would be very difficult to have small

enough values of η. This is not surprising, since ourmodel, at this level, is nothingmore than

a supergravity model and as such is likely to be affected by the so-called eta-problem [213].

In fact one can show that, without introducing new ingredients, the kind of model we have

been discussing would not lead to a region of small η parameter [214,215], no matter what
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Case # 0 1 2 3

η at de Sitter −18.62 −38.58 −22.04 −22.20

Table 4.3: Values of the η-parameter for all cases at the de Sitter saddle points.

numerical parameters we use for the model. However, it is clear that there are a number of

possible extensions of this model that would allow for flat enough de Sitter critical points,

possibly involving some fine tuning of the potentials along the axionic directions.

One example of this is given by the Racetrack Inflation models [208,216] where an uplift-

ing term was included in the discussion. It is quite remarkable that this simple modification

allows for a realistic model of inflation to be implemented. We have not included such terms

here, since our focus in this chapter was to show the generic existence of de Sitter saddle

points in some of the most conservative constructions in Type IIB compactification.

4.5 Discussion

In this chapter, we have given explicit examples of de Sitter critical points in models of

compactification with racetrack potentials. These points violate the de Sitter Swampland

Conjeture given by Eq. (4.1). We argue that in a generic CY with many moduli fields, there

would be large numbers of these de Sitter critical points for generic values of the parameters

of the racetrack superpotential and varying sets of flux numbers. We have shown this

explicitly for a limited case, with only two complex structure moduli, to illustrate our point.

For simplicity we have used a single-Kähler model, but we expect that one would be able to

do the same exercise in the case of two Kähler [208].

The de Sitter critical points found in our model satisfy the weaker version of the de

Sitter Conjecture given by Eq. (4.10). This is to be expected, given the nature of the unstable

field direction and the fact that we only use a purely supergravity Lagrangian. However,

given that the de Sitter Swampland Conjecture seems to be easily violated by these points, it

would not be hard to envision cases where there will be flat enough saddle points once one

introduces more ingredients to the Lagrangian, similar to what happens in models such as

Racetrack Inflation [208,216] .

We have also shown that one can findmodels of flux compactifications withmanymoduli

which are fully compatible with all the constraints that one would normally like to impose

in order to have control of the theory. In particular, we have shown that it is possible to

find viable models of compactification that satisfy a version of the Weak Gravity Conjecture.

This suggests that these types of models may be among the most interesting ones to find a

de Sitter vacua in Type IIB compactifications. This has been studied in several scenarios in

Ref. [217], where de Sitter vacua are found in models with racetrack potentials of the kind

discussed in Ref. [210] and several uplifting mechanisms.

Finally, let us note that a straightforward continuation of this work would be to apply it

to the compactification scheme presented in chapter 3, where the complex structure moduli

space of the WP
4
[11169] orientifold was further reduced to an effectively single direction.

This would allow us to have a model with allmoduli stabilized, which would make for an

extremely interesting setup to test, for example, uplifting mechanisms. This goal, however,
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is far from being easy; among other issues, as we mentioned in the previous chapters, the

stabilization of the Kähler sector is expected to lift the degeneracy of the truncated directions

of the complex structure sector.
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Part III

Cosmological aspects

of the Landscape





Chapter 5

Slepian models for Gaussian

Random Landscapes

Up until this moment, we have worked out the effective field theory of Type IIB String

Theory in a completely analytical fashion, using the machinery described in chapter 1.

However, in order to be able to have some computational control over the huge plethora

of moduli, we have been forced to resort to supersymmetric truncations of this spectrum,

either alluding to symmetries at special points of the Landscape, or to special ansatze of

fluxes and field values.

Clearly, these schemes are too restrictive in order to analyze the Landscape in its full

glory, and some other strategy may be required in order to account for the complexity

which arises from the hundreds of moduli present in the theory. A possible course of action

is to consider the Landscape to be a random function. While this idea may seem to be too

simplistic in comparison with what we examined in the previous part of this thesis, it proves

to be an interesting toy model in which to explore the phenomenological properties of

the Landscape from a cosmological perspective. However, phenomenologically interesting

scalar potentials are highly atypical in generic random landscapes. In this chapter, we will

develop the mathematical techniques to generate constrained random potentials, i.e. Slepian

models, which can globally represent low-probability realizations of the Landscape. We

will give analytical as well as numerical methods to construct these Slepian models for

constrained realizations of a full Gaussian random field around critical as well as inflection

points. We will use these techniques to numerically generate, in an efficient way, a large

number of minima at arbitrary heights of the potential and calculate their non-perturbative

decay rate. Furthermore, we will also illustrate how to use these methods by obtaining

statistical information about the distribution of observables in an inflationary inflection

point constructed within these models.

This chapter is based on [117].

5.1 Introduction

The low energy description of many higher dimensional theories involve a large number of

fields (moduli fields) that need to be stabilized. This is normally achieved by the existence of



98 5.1. INTRODUCTION

a potential that fixes the values of these fields to a local minimum of that potential function.

As we have discussed thoroughly in this thesis, a typical example of such a procedure can

be found in String Theory compactification scenario, where the typical number of moduli

fields in these cases is quite large, reaching often the order of a few hundred. This makes

prohibitively difficult to study these potentials in detail and one is forced to look for simple

models where the field space has been truncated to a small subset of fields. Alternatively,

one can try to study these models by taking a more statistical approach, where the scalar

potential is regarded as a random field whose sample space is the set of 4d low-energy

effective potentials. These ideas have been pursued in relation to the study of the stability of

critical points in these potentials in [46,134,171], as well as the description of cosmological

models for the early universe in [102,103,174].

In many of these studies one is interested in particular points of the landscape such

as, for example, a minimum with some value of its cosmological constant, or an inflection

point with a particular set of conditions in its derivatives necessary for it to sustain inflation.

However, depending on the restrictions imposed, it may be very difficult to obtain an

example of the potential with these characteristics by producing random realizations of the

scalar potential. Indeed, metastable de Sitter vacua and inflationary points compatible with

observations are very rare in generic landscapes, with probabilities scaling as P ∼ exp(−N
p

f
),

where N f is the number of scalar fields in the theory, and p > 0 is a number of order

one [105,108,109,123,177,218]. To obtain realizations with the desired properties, one can

of course use a Taylor expansion around the point in question and take into account the

probability distribution for its coefficients [106,112]. However this becomes quite complicated

as one increases the number of fields and the field range that one is interested in1. Moreover,

with this type of procedures it is not possible to capture correctly the global properties of the

scalar potential, which are essential to study quantum decay processes in the landscape. Here

we present a different strategy to generate these potentials that locally will be constrained

to have a particular form, but that globally will still represent a faithful realization of the

random landscape, the so-called Slepian models [219].

Several different methods have been suggested as a way to represent these random

potentials in the landscape. In this work, we will concentrate on potentials described by

Gaussian Random Fields (GRFs). This is based on the assumption that the 4d potential can

be thought of as a sum of many different terms, of classical and quantum origin, coming

from the compactification mechanism rendering the final result a Gaussian random field.

This type of models have also been studied in connection to the distribution of vacua and its

stability [178,218,220] as well as inflation [106,112–114,116] in the landscape. As an illustration

of the mathematical techniques presented here for the construction of constrained GRFs

we develop Slepian models that are locally described by critical points (maxima, minima

and saddle points) as well as inflection points and use these realizations to extract important

statistical information about them.

In particular, we will first study the quantummechanical stability of localminima in these

landscapes. In order to do so, we will compute numerically the decay rate of these minima

using the quantum tunneling techniques first described in a series of papers in [67,68]. The

result of this quantum instability is the creation of a bubble instanton that interpolates

1For another method of generating a specific class of constrained Gaussian random fields, see [116].
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between the false vacuum and the true vacuum states. Using these Euclidean methods one

can evaluate the probability of this decay channel and therefore estimate the lifetime of any

specific vacuum. The calculation of these tunneling events in a multidimensional potential

is however notoriously difficult. Recently some work on this direction has been done in

relation to the stability of vacua in models with large number of dimensions in field space.

It has been argued that the probability of the decay depends exponentially on the number

of fields although the particular scaling is still uncertain [221–224].

In this chapter we will study these tunneling events in models of Gaussian random

potentials. In particular we are interested in studying the dependence of the tunnelling rate

with the height of the potential at the false vacuum. For large values of the cosmological

constant this calculation would be impossible without constraining methods, since the

number of these minima is negligible compared to the minima at lower values of the field.

Our techniques allowed us to efficiently generate the same number of minima for different

heights and have a good sample of cases from where we can extract statistical information.

Our second application involves the generation of inflection points. These are some of

the most likely points in the landscape where cosmological inflation can happen. However

this does not mean that an arbitrary inflection point would lead to inflation. Obtaining a

successful inflationary period consistent with the current cosmological observations still

requires some amount of fine tuning of the potential around the inflection point. Therefore,

to characterise the distribution of observables for these inflationary models in the landscape

one should again use some sort of constraining method, and look at a particular set of

non-generic inflection points. In the present chapter we will explore the dependence of the

observable parameters of inflation to its initial conditions in the landscape. In particular we

will take the initial conditions for the fields to be the ones determined by the exit point of an

instanton describing the transition from a nearby parent false vacuum. Note that in order

to perform this analysis, one requires not only the knowledge of the potential around the

inflection point but also its relation to nearby minima. Hence our method, which accurately

captures the global statistical properties of the potential, is particularly suitable to carry out

this investigation. It is worth noting that, to the best of our knowledge, this is the first time

that an Slepian model for inflection points is presented in the literature. The effect of the

tunneling in the initial stages of inflation has also been discussed in [87, 100,112,225].

The remaining of this chapter is organized as follows. In section 5.2 we introduce the

notation that we will be using for describing our random potential function as a GRF. In

section 5.3 we will outline the method for generating constrained random potentials as

Slepian models. In section 5.4, we implement these ideas for a 2d field space landscape and

generate a large set of random potentials with a minimum at a specific point in field space.

This allows us to compute the tunneling paths from theseminima and determine the statistics

of the decay rate. In section 5.5, we condition the randompotential to have an inflection point

suitable for inflation, and study the effect of the initial conditions set by the tunneling process

from a nearby minimum. We conclude in section 5.6 with some comments on the results

and some further ideas that can be implemented with these numerical techniques. Some

of the mathematical details and numerical proofs have been left for the appendices. In the

present work, unless otherwise stated, we will use reduced Planck units M−2
pl = 8πG/(ħc) = 1.
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5.2 Preliminaries for Gaussian Random Fields

In this chapter wewill take our randompotential,V (φ), to be aGaussian randomfield defined

over a N-dimensional field space, which we will parametrize with the vector φ= {φi }, with

i = 1, . . . , N . Furthermore, we will consider the probability distribution for the random

potential to be homogeneous and isotropic, so its covariance function will only depend on

the distance between the points at which it is evaluated, in other words, it is of the form

〈V (φ1)V (φ2)〉 =C (|φ1 −φ2|) . (5.1)

We will additionally require the potential to have a null mean:

〈V (φ)〉 = 0 . (5.2)

In the rest of this work we will evaluate our expressions using the following simple

covariance function:

C (φ) =U 2
0 exp

(

− φ2

2Λ2

)

, (5.3)

for the case of N = 2 field space dimensions. The parameterU0 sets the energy scale of the

potential whileΛ represents the correlation length in field space. It is important to realize that

the techniques used in this work are generic and can be applied to other interesting situations

like, for example, non-Gaussian covariance functions so in this sense these constructions

are quite more generic than the ones presented in [116]. We have decided to use the simple

Gaussian covariance function since it considerably simplifies some of the expressions in this

chapter.

In the following we will be interested in the value of the field and its derivatives at a

particular point in field space, which we can take to be φ = 0 without loss of generality,

and we will refer to it as the center of field space. Following [106,112], let us introduce the

following definitions for the value of the potential and its derivatives:

u =V (φ)|φ=0, ηi =
∂V (φ)

∂φi

∣
∣
∣
∣
φ=0

, ζi j =
∂2V (φ)

∂φi∂φ j

∣
∣
∣
∣
φ=0

, ρi j k = ∂3V (φ)

∂φi∂φ j∂φk

∣
∣
∣
∣
φ=0

.

Furthermore, we will denote the eigenvalues of the Hessian matrix by λi with i = 1,2

which will single out the directions 1,2 in our field space. Note that the derivatives of the

scalar potential are also Gaussian random variables, and therefore any collection of the

previous quantities forms a Gaussian random vector. In appendix E.4 we will give the

expressions for the correlators between these different derivatives of the potential as a

function of the derivatives of the covariance function C (φ). These correlations will play an

important role in some parts of our discussions.
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5.3 SlepianModels for constrained Gaussian random fields

A key point in our construction of the GRF rests on the fact that a conditioned GRFmaintains

its Gaussian nature. More specifically, homogeneous and isotropic processes (such as the

GRFs we are dealing with) can be conditioned using the Kac-Rice formula [226] in order

to obtain new mean and covariance functions which generate GRFs with the required con-

straints.2 The models for stochastic processes dealing with conditional events and crossings

were pioneered by David Slepian [219], and have thus been coined in the mathematical

literature as Slepian models.

We can describe these constrained processes in a generic form in the following way.

For simplicity, let us consider first a Gaussian random p-dimensional vector, composed of

jointly Gaussian variables, xT = (x1, . . . , xp ), whose probability distribution function (PDF) is

given by,

f (x) = 1

(2π)p/2
p

detΣ
exp

[

−1

2
(x −µ)T

Σ
−1 (x −µ)

]

(5.4)

where µ= 〈x〉 is the mean vector and Σ is the covariance matrix, whose elements are given by

Σab =
〈

(xa −µa)(xb −µb)
〉

. (5.5)

with a,b = 1, . . . , p .

Let us now consider the following decomposition of the random vector x = (x1, x2),

where x2 are pc components of the vector x that will be constrained by a condition x2 = x̃ ,

and x1 are the remaining p −pc unconstrained elements. One can show [170,226] that the

distribution probability for x1 holding x2 fixed to the desired values is given by,

f̃ (x1|x2 = x̃) = 1

(2π)
p−pc

2

√

det Σ̃
exp

[

−1

2

(

x1 − µ̃
)T

Σ̃
−1

(

x1 − µ̃
)
]

, (5.6)

which shows that the distribution for the variables x1 is indeed a Gaussian distribution but

now with a mean and covariance functions given in terms of the original ones as

µ̃=µ1 +Σ12Σ
−1
22 (x̃ −µ2) , Σ̃=Σ11 −Σ12Σ

−1
22 Σ21 , (5.7)

where µ1 and µ2 are the means of the vectors x1 and x2 respectively, and

Σ11 =
〈

(x1 −µ1)(x1 −µ1)
〉

,

Σ12 = Σ21 =
〈

(x1 −µ1)(x2 −µ2)
〉

,

Σ22 =
〈

(x2 −µ2)(x2 −µ2)
〉

. (5.8)

This is possible because one can always find a new Gaussian random vector x ′ = (x ′
1

, x ′
2

),

connected to the original one with a non-singular linear transformation x ′ = A · x , such that

x ′
2
= x2 is uncorrelated to x ′

1
. We show in appendix E.2 a proof of this statement. In the

rest of the chapter we will use this fact in several different ways, applying this technique for

2See a brief description of the Kac-Rice formula in the current context in appendix E.5.
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Gaussian random vectors made of different quantities of our potential.

5.3.1 Slepian models for critical points

In this section we will use the methods described earlier to generate a Gaussian random field

with a critical point with a specific height at the center, φ= 0. In other words, we will find a

description of the new GRF conditioned so that the point at its center satisfies the following

properties: V (0) = u and V ′
i

(0) = ηi = 0 for i = 1,2. In order to do this we will follow the

prescription used in the mathematical literature for maxima in GRF [227] and adapt it to

our case. Let us start by introducing the following Gaussian random vector:

x = {V (φ1), . . . ,V (φq ),V (0),η1,η2,ζ11,ζ22,ζ12} (5.9)

where we denote by φa , with a = 1, . . . , q , the position in field space of a discrete set of q

points. One can show that the Gaussian random vector x has zero mean, and a probability

distribution that can be readily computed using the form of the covariance function and its

derivatives. This is a somewhat lengthy calculation and we have given the general expression

in appendix E.6. According to the description for constrained Gaussian random vectors

given above this is all we need to obtain the new mean and covariance function for the new

conditioned vector (and thus, also for the constrained GRF).

Using the results in appendix E.6, one can show that the new mean function for the GRF

with the constrained conditions is given by,

µ̃(φ) = e
− φ2

2Λ2

[

u

(

1+ φ2

2Λ2

)

+ 1

2

2∑

i=1

φ2
i λi

]

. (5.10)

This result corresponds to the particular choice of covariance function in eq. (5.3), and is

written in terms of the the value of the field V (0) = u and the eigenvalues of the Hessian

matrix at the center, λi , which are to be drawn from the distribution in eq. (5.12) below. The

new covariance function is

C̃ (φ1,φ2) =U 2
0 exp

[

−|φ1|2 +|φ2|2

2Λ2

](

exp

[
φ1 ·φ2

Λ2

]

−1− φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4

)

, (5.11)

which is no longer homogeneous, but it is still isotropic.

It is important to note that the eigenvalues of the Hessian are not statistically independent

of the height of the potential. This is intuitively clear since, for example, one would expect

the typical minimum at a large height to be quite shallow compared to the minima situated

well bellow the mean value of the potential. This expectation can be translated to the

existence of important correlations between the field and its second derivatives at a point,

and in particular at critical points. In order to take this effect into account one can calculate

the joint probability distributions for the Hessian eigenvalues (λi ) and heights (u) at critical
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points to obtain3

Pu,λ du
∏

i

dλi =N exp

[

− u2

2U 2
0

]

|λ1 −λ2|
2∏

i=1

|λi |exp

[

−
(
Λ

2λi +u

2U0

)2
]

dλi du ,

(5.12)

where N is a normalizing constant. This distribution includes all types of critical points,

namely maxima, minima and saddle points. Depending on the kind we are interested in, we

simply need to impose positivity or negativity conditions on the values of each λi .

Using these results we can generate a Gaussian random field with a critical point with

the desired properties by the following procedure. Let us consider for example a minimum

with fixed height u. Our first step will be to generate a set of eigenvalues drawn from the

distribution (5.12) taking into account the value of u, imposing the non-negativity condition

λi ≥ 0, and fixing the normalization factor accordingly.

Using these values for λi we can then generate realizations of the potential using the

expression

V (φ) = e
− φ2

2Λ2

[

u

(

1+ φ2

2Λ2

)

+ 1

2

2∑

i=1

φ2
i λi

]

+∆(φ) (5.13)

where we have denoted by ∆(φ) an inhomogeneous, zero-mean Gaussian random field

whose covariance function is given by C̃ (φ1,φ2) in eq. (5.11). We show in fig. 5.1 an example

of the different ingredients that make up a Slepian model for a local minimum in a 1d GRF.

We can use a similar procedure to generate other critical points, such as saddle points with

different number of negative eigenvalues, by generating the appropriate samples of λi ’s.

An important conclusion that can be derived from the Slepian model (5.13), first noticed

in [227], is that for highly non-generic extrema |u| ≫ U0 (such as very low maxima or

high minima), the shape of this GRF becomes very deterministic around the critical point,

and it is described very accurately by the first two terms in eq. (5.13). Indeed, one can

see from eq. (5.11) that the standard deviation of the random component ∆(φ) is always

smaller thanU0, and that it approaches zero near the extremum located at φ= 0 (see also

fig. 5.1). Therefore the last contribution in (5.13) can be neglected in a neighbourhood of the

extremum where |∆(φ)|.U0 ≪|V (0)| holds. On the other hand, in the limit |u|≫U0 the

eigenvalue distribution of the Hessian (5.12) is approximately given by4

Pλ dλ1 dλ2 ∼ |λ1 −λ2||λ1||λ2|exp

[

−Λ
2|(λ1 +λ2)u|

2U 2
0

]

dλ1 dλ2 , (5.14)

which indicates that in this limit the magnitude of the eigenvalues is very suppressed |λi |≪
U0/Λ2. Then, as we mentioned above, for highly non-generic extrema the decomposition

(5.13) is dominated by its deterministic part (the first term), what makes these Slepian models

very predictive in those situations. As we shall see bellow, this result is particularly important

when we consider the distribution of non-perturbative decay rates from minima with a

3See the calculation in appendix E.6.
4Note that for very high minima u > 0 and λi > 0, while for very low maxima all signs are reversed.
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Figure 5.1: A 1d example of a Slepian model of a constrained minimum in a GRF. We show, for a particular

realization, the two separate components of the construction on the left, namely, the constrained mean field form

µ(φ) in eq. (5.10) and the inhomogenous new GRF ∆(φ) with covariance function given by eq. (5.11). The total

GRF is shown on the right.

large vacuum energy. For an example of a realization with a high minimum see figure 5.2(a).

This deterministic character of large fluctuations of Gaussian Random Fields plays an

important role in various areas of Cosmology, such as the analysis of the CMB data, and the

study of Large Scale Structure formation in the universe (see e.g. [228–232]).

5.3.2 Slepian models for inflection points

Aswediscussed in the Introduction, we are also interested in inflection points in the landscape.

The reason is that in a cosmological context these points could be one of the regions of

the potential that give rise to a cosmological inflationary period. However, in order to be

compatible with the latest cosmological observations, one needs to restrict the form of these

inflection points. This leads us to consider an inflection point at φ= 0 as a realization of the

GRF with a small gradient of the potential in the φ1 direction, denoted by η1, and the rest of

the coefficients of the Taylor expansion of the field around that point of the form

η2 = 0 , λ1 = 0 , λ2 > 0 , η1 ·ρ111 > 0 . (5.15)

The intuitive picture of these choices is clear, we are looking for a one dimensional

inflection point that allows the slow-roll conditions to be satisfied along the direction φ1

while the perpendicular directions have positive curvature. In other words, we are looking

for a potential where inflation is effectively one dimensional locally. This also explains

the last condition, which is imposed in order to allow for enough slow-roll inflation in the

vicinity of this inflection point.

This is admittedly a very particular form of the potential around the inflection point

and, even though it could be interesting to identify this type of points in a GRF in other

contexts, we have not seen any studies of this class of constrained points on GRFs in the

mathematical literature. However, it is not difficult to follow a similar procedure to the one

for critical points in order to obtain Slepian models in this case. The first thing we should

do is to enlarge the form of our initial Gaussian random vector (5.9), since we now want

to constrain not only first derivatives but second derivatives as well. This suggests that we
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should take the vector of the form,

x = {V (φ1), . . . ,V (φq ),V (0),η1,η2,ζ11,ζ22,ζ12,ρ111,ρ122,ρ222,ρ112} (5.16)

which, similarly to the critical point case, can now be conditioned to have the desired

properties given in eq. (5.15).

Following the computations given in the appendix E.7 one arrives to the result that a

GRF with an inflection point at φ= 0 is described by the expression

V (φ) = exp

[

− φ2

2Λ2

](

(u +φ ·η)

(

1+ φ2

2Λ2

)

+ 1

2

2∑

i=1

λiφi
2 + 1

6

2∑

i , j ,k=1

φiφ jφkρi j k

)

+Γ(φ) ,

(5.17)

where Γ(φ) is an inhomogeneous zero-mean GRF with covariance function

C̃ (φ1,φ2) =U 2
0 exp

[

−|φ1|2 +|φ2|2

2Λ2

](

exp

[
φ1 ·φ2

Λ2

]

−1− φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4
− (φ1 ·φ2)3

6Λ6

)

.

(5.18)

In these expressions u, λi and ρi j k should be drawn from the joint probability distribution

for heights, first, second and third derivatives of the potential at inflection points5

Pinf du dλ2 dη1 dρ =N |λ2|2|ρ111| P (u,λ2 | λ1 = 0 ) P
(

η1,ρi j k

∣
∣ η2 = 0

)

du dλ2 dη1 dρ

(5.19)

where

P (u,λ2 | λ1 = 0) du dλ2 =N |λ2|exp

[

−
4u2 −2Λ2uλ2 −Λ

4λ2
2

2U0

]

du dλ2,

P
(

η1,ρi j k

∣
∣ η2 = 0

)

dη1 dρi j k =

N exp

[

− Λ
2

12U 2
0

(

18η2
1 +6Λ2η1(ρ111 +ρ122)+Λ

4
2∑

i , j ,k=1

ρ2
i j k

)]

dη1 dρi j k .

(5.20)

In the last distribution, the condition η1 ·ρ111 > 0 should also be imposed if one is interested

in ‘inflationary’ inflection points.

We have checked the accuracy of these distributions by numerically computing them

from a large set of generic (unconstrained) GRF examples. We have identified all the inflec-

tion points of our sample, and used this information to compute the distributions of the

parameters of the inflection points we are interested in. See appendix F for the details of

these numerical checks, which are summarised in figure F.2.

5See the computation of these distributions in appendix E.7.
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(a) (b)

Figure 5.2: A pair of realizations of a 2d Gaussian random fields with zero mean, covariance function (5.3), and

conditioned to have a minimum at center of height (in units ofU0) 4 (a) and -4 (b). The higher the minimum is,

the lower its eigenvalues will typically be and vice versa (see text). The location of the minima of each realization

has been marked with a white dot.

5.3.3 2D numerical implementation

All GRFs generated for this work were constructed following the Karhunen-Love expansion

(see e.g. [170]), which is briefly described in appendix F. This algorithm generates values for

a GRF discretized over a lattice which is to be interpolated afterwards.

Based in the criteria developed in [112], we used 5 lattice points per correlation length

(25 per length squared). The resulting grid was then interpolated with fourth-order splines

in order to analyse up to third-order derivatives of the field as faithfully as possible. The

generated GRFs were found to follow successfully the initial mean and covariance function,

as well as other properties such as the distribution of critical points and eigenvalues thereof.

Two examples of (rather extreme) GRFs generated following the steps in this section

have been plotted in figure 5.2.

5.4 Tunneling in a Gaussian random landscape

A Gaussian random landscape possesses a large number of perturbatively stable minima.

However, we know that quantummechanically these vacua are not completely stable and

can decay by the nucleation of a bubble of the new state. This means that a typical vacuum

in our landscape will have many channels to decay into, each of them with a different

probability. Here we would like to study the statistics of these decay channels in a controlled

way by generating a large number of GRF realizations, and analyse their dependence on the

parameters of the central minimum.

In order to do that we will use the instanton techniques described in section 1.5, where it

was shown that for a given minimum of the potential the decay probability per unit time
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and per unit volume is given by

Γ/V ∼ Ae−SE (5.21)

where SE is the Euclidean action for the bounce solution that interpolates between the new

state and the original one.6

In the absence of gravity, we found that themost likely decay channel is given by theO(4)-

symmetric instanton solution in a 4-dimensional Euclidean spacetime; more concretely, the

formalism we studied in the introductory chapter can be generalized to involve an arbitrary

number of scalar fields. The equations of motion are then given by

φ′′
i +

3

r
φ′

i =
∂V (φ)

∂φi
, (5.22)

where the prime denotes a derivative with respect to the radial coordinate in 4-dimensional

Euclidean spacetime, r , and we have assumed that the fields φ(r ) = {φ1(r ), . . . ,φN (r )} are

canonically normalized. Finally the boundary conditions are

φ(∞) =φFV , φ′
i (0) = 0. (5.23)

where φFV is the location of the false vacuum in field space, the minimum of the potential

from which the decay happens. Once the field equations have been solved, the action in the

exponent of (5.21) reads

SE = 2π2

∫∞

0
dr r 3

[
1

2
|φ′|2 +V (φ)−V (φFV )

]

. (5.24)

Computing the coupled system of the instanton equations (5.22) is no easy task; particu-

larly, as the dimensionality of the field space grows, the solutions tend to be increasingly

unstable. There are, however, several publicly available algorithms in the literature to tackle

the problem (see, e.g., [77,233]); additionally, some alternative methods have been recently

proposed to find the action and escape point for the instanton, as in [234,235].

In this work, we use AnyBubble [76] to compute the instanton actions for our realizations.

AnyBubble is a Mathematica Package based on efficient numerical methods for the solution

and optimization of the tunneling equations, see [76] for details.

In order to obtain statistics of the tunneling action in terms of the properties of the

central minimum, we sampled false vacua with heights between -2 and 5 (in units ofU0, see

eq. (5.3)) in uniform intervals. As explained in [112], we can write the Euclidean action as

SE = Λ
4

U0
S (5.25)

so that S corresponds to the Euclidean action of a potential with covariance function (5.3)

withU0 =Λ= 1. Unless otherwise specified, all histograms corresponding to the action are

given in terms of S due to numerical simplicity.

Following the procedure of the Slepian models described the previous sections, for each

6Here we will not be concerned with the prefactor A. See [68] for a detailed description of its computation.
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Figure 5.3: A typical example of the considered tunneling events. After generating a GRF with a minimum at

the center with height 1 (in terms ofU0), we compute possible tunnelings with AnyBubble. The plot shows the

GRF along with its minima (green), saddles (yellow), maxima (red) and inflection points (blue) as well as 3 of

the instanton trajectories in field space for 3 decay channels.

value of the false vacuum height, we generated 2 ·104 Gaussian random field realizations

centered around the minimum. All of these minima have the correct distribution of the

Hessian eigenvalues, and the potentials are quite different from one another as one moves

away from the minimum by one correlation length. This means that each realization has

different vacua situated in different directions and lengths from the false vacuum, although

the typical number of minima below V (φFV ) is quite similar in all cases.

We can readily see the power of the machinery described in the previous section when

constraining the field to have a minimum with a vacuum energy higher than 1.5U0. If we

tried to find a minimum higher than that drawing samples from an unconstrained GRF,

we would need to generate tens (if not hundreds) of random fields before finding a single

minimum satisfying that condition, see figure F.1(a) in appendix F. For example, from

equations (F.5), we can easily check that the probability of any minimum being higher than

5U0 is O (10−16), so finding one by chance happens to be quite remarkable. With the aid of

conditioning methods, we are able to construct very efficiently large samples of random

fields subject to a condition as difficult to meet as this one.

In order to study tunneling processes on each generated example, we identified all

the minima near the center of field space and computed the tunneling rate between the

central minimum (which always acts as a false vacuum, in our analysis) to all lower minima.

An example of this procedure is plotted in figures 5.3 and 5.4, where we show the paths

followed in field space by the different instanton decay channels. We have only considered
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Figure 5.4: Field trajectories for the decays channels shown in fig. (5.3) in terms of the distance r in Euclidean
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Figure 5.5: Obtained distribution of tunneling action (S) in terms of false vacuum height.

tunneling to minima around the center to avoid problematic issues with minima close to

the boundaries of our realizations.

5.4.1 Statistics of the instanton action

Dependence with the height

Figure 5.5 shows the resulting distributions7 for the tunneling action, for different values of

the false vacuum height. There is an interesting correlation between the mean and width of

this distribution and the height of the false vacuum. Namely, we find that the higher the

false vacuum is the lower the action and thus, the higher the probability of tunneling is. This

behaviour is quite intuitive; as we can see from the examples in fig. 5.2, tunneling from a

minimum high up in field space requires crossing a lower barrier to the true vacuum, which

7Unless otherwise specified, all histograms represent the normalized probability distribution function of
the obtained results.
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Figure 5.6: Evolution of the median of the action, with error bars representing data between the first and third

quartiles of each distribution, for the optimal path, the linear (straight-path) and the thin wall approximations,

along with a fitting curve (see (5.26)).

in turn results in a lower action for those transitions. Figure 5.6 (blue dots) shows the median

of each distribution along with the range of actions between the first and third quartiles. We

see, once again, that higher false vacua lead to lower and more deterministic values of the

action.

The obtained data for each potential height was found to be easily fitted to a log-normal

distribution. More specifically, the logarithm of the median of each distribution Smed (which,

in this case, is very similar to the mean of log10 S) can be fitted by the following expression

〈

log10 Smed

〉

≈ 3.29exp

(

−0.18
Vfv

U0

)

(5.26)

where Vfv stands for the height of the false vacuum. As we see from figure 5.6, increasing Vfv

reduces the width of the distribution significantly, thus increasing the predictive power of

(5.26) for the expected value of the action. This enhancement of the predictability of the

Slepian model for large values of Vfv corresponds precisely to what we anticipated in the

previous section. Indeed, there we showed that near high minima the random potential

becomes dominated by the first term in the decomposition (5.13), and therefore the landscape

is very deterministic in a neighbourhood of false vacua with large Vfv. Consistent with this

result, when studying the non-perturbative stability from these vacua we observe a reduction

of the variance of tunneling actions for large heights of the false vacuum. This agreement

also suggests that in the case of minima with a large Vfv the value of the instanton action is

dominated by the local structure of the minimum. We will provide further evidence for this

claim below.

5.4.2 Approximations for the calculation of the action

Due to the inherent instability of the equations to be solved to compute tunneling profiles,

it is clear that as we increase the domain and dimensionality of the potential under study,

the required computational time to solve the system will grow accordingly. Evidently,
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this makes the study of higher-dimensional GRFs and their tunneling properties almost

prohibitive in this sense. Motivated by these limitations, we turn to computing several

different approximations of tunneling actions suggested in the literature, and compare them

with our exact results.

Thin wall approximation

The thin-wall prescription was already discussed in the original papers by Coleman in [67]. In

this approximation the instanton action is given in terms of the difference between potential

at the false vacuum (Vfv) and true vacuum (Vtv) and σ, the tension of the wall interpolating

between them, namely,

Stw = 27π2σ4

2(Vfv−Vtv)3
, σ=

∫φFV

φT V

dφ
√

2(V (φ)−V (φT V )) . (5.27)

This approximation is accurate as long as the difference between Vfv and Vtv is small.

We evaluated (5.27) for each bounce we previously found with AnyBubble in order to

check this expression and its predictive power for GRFs. In the computation we restricted

the field to a straight line in field space connecting the true and false vacua. Figure 5.6 shows

the evolution of the median of Stw as a function of the false-vacuum height. While the width

and median of the distribution in this case follow the same pattern as the optimal action,

the values diverge rapidly from the optimal ones as the false vacuum height increases. This

is not too surprising since, as one increases the height of the false vacuumminimum, the

field can tunnel to a minimum with quite different values of the potential, what violates one

of the premises of the thin wall approximation.

Straight-path approximation

While the thin-wall prescription provides a solid upper bound on the bounce action [236],

it does not provide any useful estimation on the actual value on the bounce in our case.

This fact calls for an alternative way to estimate the action, mostly for higher-dimensional

landscapes.

A straightforward simplification to this problem was introduced in [237], which we will

denote by straight-path approximation. This prescription is based on reducing the field space

to a single straight line connecting the false and true vacua, thus making the problem of

tunneling effectively one-dimensional. As can be seen from figure 5.3, this approximation

may not be too unreasonable. Even though there are some paths which do curve over the

field space, many (if not most) of them follow a straight trajectory in field space. Note,

however, that this restriction in field space may yield effective potentials where the bounce

does not exist or might even correspond to a different bounce in the full theory. For more

details on the properties of this approximation, see [79].

For each optimal path, we considered a straight line in the two-dimensional GRF con-

necting the true and false vacua, and computed the corresponding estimate of the action,

Ssp, in each case. In principle, Ssp represents an upper bound on the optimal action S, as the

former only considers variations of the action in the direction of the straight path [237]. It is
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Figure 5.7: Exit angle distribution with respect to direction of the lowest eigenvalue for the instanton path of the

most probable decay channel in each generated potential.

thus expected (and explicitly shown in [79]) that this approximation will diverge from the

full solution as the dimensionality of the potential is increased.

We found that in this case the distribution of actions in terms of false vacuum height is

identical to the optimal one shown in fig. 5.5, though slightly shifted to higher values. As we

can see from fig. 5.6, the change in the median is minimal when the straight-path approx-

imation is considered. Although, as we just mentioned, the straight-path approximation

is not expected to give precise results for potentials in a higher field space dimension, this

result suggests that it would be interesting to explore the validity of this method with GRFs

in higher dimensions. Indeed, due to the computational complexity of such an analysis, a

rough statistical estimate of the decay rate obtained with this approximation would still be

very valuable.

5.4.3 The lowest action

In many circumstances one will be interested in the lowest action for a particular kind of

minima. This will of course correspond to the path that would dominate the decay for those

minima. In this subsection we will investigate the characteristics of such trajectories in field

space.

Exit angle

An intuitive way to think about the most likely decay process would be to imagine that the

tunneling occurs along the trajectory with the lowest barrier. One can check this idea in

our case by first identifying the angle (in our 2d field space), θ, that the instanton trajectory

makes with respect to the direction of the lowest eigenvalue of the Hessian at the minimum.

A distribution of such angles obtained for different values of the height is plotted in figure 5.7.

We see that there is a clear tendency of the tunnelings to occur around θ ≈ 0 but the

correlation is not very strong.
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Estimating the lowest action

The correlation of the instanton path with the lowest eigenvalue direction at the false vacuum

suggests that one can try to estimate the lowest action by analyzing the potential along the

lowest eigenvalue direction alone. This has been recently proposed in the context of the

landscape in [224]. In the following we will use our large sample of realizations to test this

idea in detail in our 2d GRF model of the landscape.

In order to evaluate the instanton action along the lowest eigenvalue direction we first

take a slice of the potential along that direction and fit it to be of the form,

Vle (φ1) =V0 +
1

2
λ1φ

2
1 +

1

3!
ρ111φ

3
1 +

1

4!
δφ4

1 . (5.28)

Note that this procedure does not guarantee that the resulting one-dimensional potential

is suitable for a tunneling process. In fact, in many cases the potential constructed this way

does not have a lower minimum along this direction and therefore it cannot be used to

estimate the decay rate. In the following we will only compute the instanton action in the

successful cases where this 1d truncation gives an acceptable form.

Considering this simple form of the potential as the most likely exit path for the de-

cay transition we can estimate the instanton action. In order to do that we will use the

parametrization of the Euclidean action for the bounce that was obtained by Sarid in [80].

In our notation this becomes,

SS =







18λ1

ρ1112

(

45.4−46.1+ 2π2

12(1−4κ)3 + 16.5
(1−4κ)2 + 28

1−4κ

)

, κ> 0

18λ1

ρ1112 45.4
(

1+ ( 136.2
2π2 )1.1|κ|1.1

)−1/1.1
, κ≤ 0

(5.29)

where

κ= 3

4
δ

λ1

ρ2
111

. (5.30)

We show in figure 5.8 the distributions of the lowest action from the exact computa-

tion and compare it to this estimate along the lowest barrier direction. We notice that the

agreement between these two results is pretty good, what suggest that one can use this

approximation to estimate the decay rate of vacua in a Gaussian random landscape. More-

over, it is worth noting that this approximation depends only on the local structure of the

minimum, precisely where the Slepian model has a large predictive power for large values

of Vfv. The expression (5.29) becomes increasingly accurate for large values of the false

vacuum energy Vfv, what indicates that in this regime instanton action is mostly determined

by the local form of the minimum. On the other hand, according to the Slepian model, the

scalar potential around all high minima should look very similar in all realizations, with its

shape dominated by the first term in (5.13). This explains why the distribution of instanton

actions becomes more deterministic (fig. 5.5) for larger values of Vfv, and therefore also

the agreement between the Sarid approximation (5.29) for the lowest action and our fit in

eq. (5.26) for the median of the distribution.

It would be interesting to check if this good agreement persists on amuch larger landscape
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Figure 5.8: Distribution of lowest action per potential and Sarid approximation [80] along the lowest barrier

direction, in terms of false vacuum height. The fit in eq. (5.26) is shown for comparison with previous results.

with hundreds of directions in field space,8 andwhether the approximation (5.29) can be used

in combination with our Slepian model make robust predictions regarding the tunneling

rates of high vacua.

5.5 Inflation in a Slepian Random Landscape

Up to now we have been using all the software and mathematical tools described above for

the computation of bounce profiles and actions with Gaussian random fields conditioned

to have a minimum at φ = 0. In this section, we turn to studying constrained GRFs with

inflection points at the origin of field space focusing on their application to cosmological

inflation.

Inflation in random potentials has already been extensively studied [106,110,112–114].

More specifically, inflation around inflection points has received special attention for being

capable of sustaining enough e-folds to make contact with observations, while taking place

in a small region of field space with an effectively one-dimensional potential.

While most of the obtained results and distributions seem promising, they have only

been tested within Taylor expansions around these points, instead of using full GRFs. As we

mentioned before, suchmethods do not capture correctly the global features of the potential,

what is essential for characterising the non-perturbative stability of vacua. Therefore, this

procedure is unsuitable for studying models of inflation where the initial conditions are

determined by the decay of a parent false vacuum.

In this section we will apply Slepian models to constrain Gaussian random fields to have

an inflection point with the desired properties to sustain inflation, and then we will study

the dependence of its cosmological observables on the initial conditions, set by different

8Note that in our calculation we kept the quartic term of the potential while in reference [224] the authors
drop this term arguing that for large number of fields (N) this coefficient becomes irrelevant. We have checked
that in our case this is not the case and in order to obtain a good agreement it is necessary to take this term
into account. This is due to the fact that we have limited our investigation to the N=2 case.
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realizations of the parent vacuum.

5.5.1 1D Inflection point inflation

Let us briefly review the main results for one-dimensional inflection-point inflation (see

appendix G and [114,238] for more detailed explanations). Let us consider a potential of the

form,

V (φ) = u +ηφ+ 1

6
ρφ3 , (5.31)

where, in order to satisfy the slow-roll conditions around the inflection point, we will assume

that η≪ u. Note that we do not need to assume that the third derivative is too small. In fact,

following typical conditions for a GRF we will consider the case where u ≪ ρ. Taking this

into account one can show that slow-roll inflation conditions will be satisfied in the interval

−u

ρ
<φ< u

ρ
, (5.32)

which together with the condition u ≪ ρ implies that we are describing small field inflation.

Using the slow-roll conditions, it is easy to check that the expected number of e-folds, Nexp,

that can be achieved within that region is

Nexp =
∫u/ρ

−u/ρ

dφ
p

2ǫ
≈π

p
2

u
p
ηρ

−4 ≡ Nmax−4. (5.33)

where ǫ= (V ′′(φ)/
p

2V (φ))2 and Nmax is the maximal number of e-folds achievable in the

whole potential. Moreover, defining

x ≡π
NCMB

Nmax
, y ≡ Nmax

2π
, (5.34)

where NCMB is the e-fold number at which the CMB scales leave the horizon, the spectral

index of scalar perturbations can be shown to be given by

ns = 1+ 2

y

(
tan x − y

1+ y tan x

)

. (5.35)

Finally, the amplitude of scalar perturbations can be expressed as

∆
2
R = 1

12π2

V 3(φ)

V ′(φ)2
≈

N 4
CMBρ

2

48π2u
f 2(x, y) (5.36)

where

f (x, y) = cos2(x)(y tan(x)+1)2

x2(y2 +1)
. (5.37)

satisfies f (x, y) ∼ 1 for y ≫ 1 and x ∼ 1.

With these expressions at hand, we can easily obtain a set of parameters for the inflection
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point (u,η and ρ) that are in agreement with the current cosmological observations [239],

namely, Nexp > NCMB ≈ 50, ns ≈ 0.965 and ∆
2
R
≈ 2×10−9 (see eq. (5.38) below).

5.5.2 Numerical inflection points in a 2D Landscape

We now want to embed 1d inflection-point inflation in our 2d GRF landscape. In order to

do that we can follow the procedure explained in section 5.3.2 for Slepian models in the

case of inflection points. In the notation introduced earlier, the 1d parameters η= η1 and

ρ = ρ111, correspond to the derivatives along the flat direction of the multidimensional

inflection point. Note that, in principle, u and ρ111 (when evaluated at the same point) are

uncorrelated, but the same is not true for u and the second derivative along the inflaton

direction λ1; similarly η1 and ρ111 are also correlated, see eq. (5.20). Here we are interested

in studying the global properties of the landscape on the cosmological observables so we

will focus on a particular type of inflection point where we have fixed its 1d parameters.

Following the steps from the previous section, we built two-dimensional GRFs with an

inflection point whose inflating direction has fixed features. In the forthcoming sections we

set

u = 0.5 U0 , η1 = 6.8 ·10−6 U0

Λ
, ρ111 = 2.5

U0

Λ3
(5.38)

whereU0 = 6.0 ·10−16 M 4
Pl and Λ= 0.5 MPl define the energy scale and correlation length

respectively, with the Planck masses written explicitly for clarity.

Once u, η and ρ have been fixed, using the probability distributions listed in (5.19) and

(5.20), we can obtain the remaining parameters of the two-dimensional inflection point set

at the origin of field space φ= 0, and generate in a efficient way a large sample of GRFs with

the listed properties.9

As an example, we show in figure 5.9 a field constructed with the above constraints. We

then used AnyBubble to tunnel from a higher false vacuum to the central inflection point.

We note that even though in every realization the inflection point has the same properties

along the φ1 direction up to third order, the potentials are different away from that point.

This means that the false vacuum, which decays to the region around the inflection point, is

located in a different place and it also has different features in each realization, e.g. vacuum

energy and barrier height. Using AnyBubble we computed the exit points of a large set of

realizations. After that we used these exit points of the instanton decay as the starting points

of a Lorentzian evolution of a FRW universe with this potential.

In order to study the inflationary trajectory we used mTransport [240], a Mathematica

code developed to compute inflationary observables. The cosmological evolution inside of

a bubble universe created from tunneling is described by an open FRW universe [69]. Here,

for simplicity, we used the flat-space approximation for the evolution of the cosmological

interior of the bubble.10

9 Note that following our earlier definition of the inflection point in our 2d landscape, we have set η2 = 0

and λ2 > 0.
10Note that in reality the initial cosmological evolution is dominated by the spatial curvature of the open

FRW slices that describe the bubble interior. This will have some effect on the initial stages of the evolution of
the scalar field in a multidimensional potential. See [100,113] for a discussion of these effects.
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Figure 5.9: A Gaussian random field conditioned to have an inflection point in the middle. The dashed line

represents the tunneling from a minimum to a lower inflection point. The inflationary slow-roll phase starts at

the exit point, inflates for around 124 e-folds following the solid line, and evolves towards the closest minimum.

We only show the inflationary part of the trajectory. Green, yellow and red dots represent minima, saddle points

and maxima of the potential. The inflection point is marked with a blue dot.

In the example from figure 5.9, the dashed line represents the tunneling trajectory, while

the solid one marks the inflationary one. We found this path to sustain a total of 124.1 e-folds

and a spectral index of ns = 0.964 at the observable scale.

5.5.3 Statistics of inflationary parameters

In order to test the method described above to generate inflationary random fields, we

generated 5000 GRFs constrained to have an inflection point with the same properties as the

one in the example of figure 5.9 (see eq. (5.38)). Next, in each of these realizations, we found

all minima lying above the central inflection point and used anyBubble to compute the

tunneling trajectory from the former to the latter in each case. Considering the exit point as

the starting point of an inflationary phase, we usedmTransport to find the number of e-folds,

power spectrum, tensor-to-scalar ratio, spectral index and its running. The distributions of

the e-fold number and the spectral index are shown in figure 5.10, for a pivot scale of 50

e-folds, whereas the action associated to the tunneling to the inflection point is shown in

fig. 5.11. This is a different distribution than the ones we found earlier, since the common

factor in these decays is the final point and we do not impose anything about the initial (false

vacuum) state. It is interesting to see that this distribution is quite peaked around an action

of the order of 103.

We have also obtained the distributions for the amplitude of scalar perturbations, tensor-
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Figure 5.10: (a) Distribution of number of e-folds, with Nexp shown with a dashed line (b) Histogram of the

obtained spectral index, with the analytic prediction marked with a dashed line. Both figures represent 4000

inflationary trajectories (see text).

to-scalar ratio and running of spectral index which turned out the be centered around the

values

∆
2
R = (2.02±0.04) ·10−9, r = (8.0±0.1) ·10−9 and α= (−2.49±0.02) ·10−3, (5.39)

respectively.11 Our results in this section are fully compatible with the 1d studies in [112].

Finally, in fig. 5.12, we show several inflationary trajectories corresponding to tunnelings

in different GRFs with an inflection point in the middle with the same features. Note that all

trajectories, no matter how far they start from, have a similar behavior. After oscillating in

the vertical φ2 direction, they all stabilize around the inflection point and inflate along it.

Most of the e-folds happen in the vicinity of the inflection point, as predicted by the analytic

estimation.

We have obtained successful results from this analysis around 80% of the times. The

rest of the times the procedure did not yield a cosmological solution in agreement with our

universe either because inflation ended too soon or because the exit point was too far from

the central inflection point and the inflaton trajectory went astray. The successful paths show

very good agreement with the 1d results presented in the previous section. We see that even

though some of the trajectories have some substantial deviation from the 1d inflationary

direction, the cosmological observables are still in pretty good agreement with the single

field inflection point inflation. The distributions of the results are quite peaked around their

central values, so we can conclude that the dependence of the observables on the initial

conditions seems to be quite mild.

It is important to remember that all these realizations have the same 1d inflection point

parameters. In order to extract the complete statistical information about the predictions of

a particular GRF we should combine these results with the ones obtained from inflection

points with other parameters with their correct statistical weight. This is a much more

11The cosmological evolution of these Lorentzian trajectories continue after inflation until they reach a lower
minimum. We have not fine-tuned this minimum to be in Minkowski space, so in general the evolution leads
to eternal de Sitter or to an Anti-deSitter crunch. We are only interested in the statistics of the inflationary
period so we have stopped this evolution after the field leaves the slow-roll regime.
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Figure 5.11: Distribution of the tunneling action from a minimum to the central inflection point, right before

inflation begins.

numerically intensive problem and we leave it for a future publication.

5.6 Summary and conclusions

Slepianmodels are a powerfulmathematical technique formodelling the statistics of random

landscapes conditioned to satisfy a certain set of constraints. For this reason they are

particularly useful to characterise phenomenologically interesting corners of the landscape,

e.g. de Sitter vacua or inflationary regions consistent with the cosmological data, which are

known to have highly suppressed probability to occur in generic random potentials. On the

one hand, Slepian models provide a way to generate numerically large samples of a random

landscape containing the region of phenomenological interest to be studied, regardless of

the low probability of the realizations. On the other hand, this technique can also be used

as an analytical description of conditioned random potentials, and thus to obtain valuable

insight about properties of the landscape around these regions of interest. A particularly

attractive feature of Slepian models, as opposed for example to the use of Taylor expansions,

is that they can capture the global features of the random potential, and therefore they

are specially useful for studying quantum mechanical instabilities in the landscape. In this

chapter we have presented the mathematical techniques for studying conditioned Gaussian

random landscapes. We have applied these method to condition a 2d random potential to

have a de Sitter minimum with a specific vacuum energy and also to study 2d landscapes

containing an inflection point capable of sustaining a period of inflation compatible with

the data.

More specifically, regarding our discussion of de Sitter minima, we have considered the

non-perturbative decay of these vacua to lower minima, and characterised the statistical

distribution of their decay rate as a function of the height of the false vacuum. For this

purpose we have used our Slepian model to generate numerically large samples of vacua

with varying values of the vacuum energy, and then computed the corresponding decay rates
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Figure 5.12: Showcase of several inflationary trajectories from different tunnelings to the central inflection point.

Each exit point is marked by a blue dot.

both solving the full instanton equations, and using various approximate methods present

in the literature: the thin-wall approximation [67], the straight-path approximation [237],

and the estimate proposed by Sarid [80] for the lowest instanton action (see eq. (5.29)).

Our analysis shows that the thin-wall approximation is in good qualitative agreement

with the numerical results, but only provides an accurate estimate of the instanton action

for minima with a relatively small vacuum energy. Indeed, consistently with the thin-wall

prediction of the instaton action, we observe that the decay rate increases (on average) for

increasing values false vacuum height. This can be understood noticing that, in a Gaussian

random landscape, the barrier height that needs to be crossed to escape from the vacuum

decreases when the vacuum energy of the minimum increases. However, for minima with a

large vacuum energy the tunneling typically occurs to much lower vacua, what violates the

assumptions of the thin-wall approximation, and thus it cannot provide a good quantitative

estimate of the decay rate.

In the straight-path approximation one assumes the decay is effectively one-dimensional,

so that it occurs along the line connecting the false and true vacua. We have shown that this

simplification agrees remarkably well with the results of our full numerical analysis in all

cases we studied in a 2d Gaussian landscape. It is interesting to check if this simplification

still provides a rough estimate (see [79] for a discussion) for the instanton action in higher

dimensional landscapes where the numerical resolution of the full instanton equations

becomes prohibitively difficult. In the particular case of a Gaussian random landscape this

approach is specially attractive, since the statistics of the random field along the straight

line connecting the false and true vacua can be fully described by simply restricting its

covariance function to that line. Therefore, if this method would prove useful to estimate

the non-perturbative stability of vacua in large-dimensional Gaussian landscapes, it would

not be necessary to produce a sample the full higher dimensional GRF, it would suffice to
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generate one dimensional realizations of the random field with the same covariance.

Regarding the estimate of Sarid [80] for the lowest action (the most likely decay channel),

our numerical analysis shows that this approximation provides an accurate quantitative esti-

mate of the instanton action in the case of minima with a large vacuum energy. Interestingly,

this estimate depends only on the form of the potential in a neighbourhood of the false

vacuum which, according to the predictions of the Slepian model, does not experience large

variations between different realizations. In plain words, all high minima look locally very

similar to each other. Indeed, Gaussian random potentials conditioned to have high minima

exhibit a very deterministic shape in a large region around it, which is dominated by the

first term in equation (5.13). As we argued in the main text, combining the estimate of [80]

for the lowest action, with the Slepian analysis one concludes that the distribution for the

instanton actions should become increasingly peaked and deterministic for higher minima.

Our numerical results, displayed in figures 5.5 and 5.8, match perfectly this expectation.

This suggests that the estimate for the instanton action in eq. (5.29), in combination with the

Slepian techniques, might also provide a very good prediction for the decay rates of high

false vacua in higher dimensional landscapes. For this purpose, the alternative methods

proposed in [116] to generate constrained multidimensional Gaussian random landscapes

might also proof very useful.

With respect to our second application of Slepian models, the analysis of inflection

point inflation in a Gaussian random landscape, we have considered the dependence of the

cosmological observables on the initial conditions for inflation. This initial conditions in

our model are determined by the exit point of a quantum tunnelling process from a parent

false vacuum. This study would have been very difficult without the aid of our conditioning

techniques, since generating numerically a large sample of potentials with an inflection

point with the right properties is exceedingly costly in terms of computation time. With

our methods, however, we were able to generate easily a large number of realizations of the

landscape with an inflection point capable of sustaining more that 60 e-folds of inflation,

and with observables consistent with the current cosmological data. Note also that the

ability of Slepian models to reproduce faithfully the global features of the potential was

also essential in this analysis, in particular for modelling the preinflationary phase of false

vacuum decay. Our results are summarised by figure 5.10 and equation (5.39), which display

the computed values of the cosmological observables. We see that the dependence of the

inflationary parameters on the initial conditions is quite mild. The obtained distributions for

the observables are very peaked around their expected value in the 1d slow roll model where

inflation happens around the inflection point. The typical realizations in our landscape have

some variation on the observable parameters ranging between 1% and 10% depending on

the quantity under consideration. It is important to emphasise that in this study we kept fixed

the local properties of the inflection point. In order to perform a complete characterisation

of inflection point inflation in a Gaussian landscape we would also need to study the effect

of changing the inflection point parameters on the observables. We will leave this analysis

for a later publication.12

12A realistic study of the observable parameters of inflation in this model should also include a prescription to
calculate their probability distribution in the multiverse. This will require the introduction of a measure. Here
we have not discussed this issue any further. (See [241] for a detailed description of the proposed prescriptions.)



122 5.6. SUMMARY AND CONCLUSIONS

Finally, one may also use the techniques presented in this work to analyze the possibility

of a non-Gaussian Landscape. In fact similar methods have already been discussed in the

mathematical literature for various non-gaussian random fields, and in particular were

used to describe constrained extrema in these models [242–244]. One could in principle

use the methods developed in those papers to implement a more accurate description of

the String Theory Landscape potential or some sectors of it. This will allow us to explore

the possibility that the results presented here could be modified by the relaxation of the

Gaussian assumption. However the non-gaussian nature of the statistical description of the

model seems to further complicate the calculations in a significant way in these cases so we

will leave the implementation of these ideas for future work.



Chapter 6

Brane nucleation in

supersymmetric models

In this final chapter we will explore an alternative mechanism to generate non-perturbative

decays between vacua. In the following, we will combine the usual Coleman-deLuccia

mechanism for false vacuum decay together with the Brown-Teitelboim scheme, where

spherical membranes interpolate between vacua generated solely by three-form fluxes. We

will derive an alternative approach for vacuum decay which combines both scalar fields and

membranes, motivated by our previous analysis of flux compactifications. We have checked

that the supersymmetric limit of such a setup leads to a flat membrane (i.e., of infinite radius),

as expected in such transitions. Therefore, by parametrically breaking supersymmetry, we

can generate decays connecting different vacua, generated by different fluxes. We will study

these processes both with and without taking gravity into account, and we will give detailed

examples to understand the physics behind these processes.

6.1 Introduction

As we have seen in chapters 1 and 5, false vacuum decay [67–69] is an essential tool for

the exploration of the Landscape, with rich applications in Cosmology [87]. Using it in

the Gaussian Random Landscapes of the previous chapter, we found that states emerging

from a false vacuum may undergo an inflationary phase, which may well correspond to our

Universe. However, as noted from the very beginning of that chapter, the scalar potentials

we used there are simple models of the actual picture, where several ingredients such as

form fields and membranes come into play to form the scalar potential in the effective field

theory. Therefore, inspired by our previous research on the flux-generated String Theory

Landscape, we aim to generalize false vacuum decay processes to include fluxes and other

ingredients into this procedure, in order to construct more realistic transitions between

vacua.

Regarding the non-perturbative stability of supersymmetric vacua against false vacuum

decays, the non-gravitational case is quite trivial, since these minima must satisfy V =
|∂φW |2 = 0, meaning that they are always degenerate and thus no vacuum decay can happen.

On the other hand, in [245, 246] it was shown that for the case of N = 1 supergravity,
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such a process cannot happen, since it would require a bubble of infinite radius, i.e., a

domain wall. There exists no finite-radius decay which respects supersymmetry. Domain

walls interpolating between supersymmetric vacua were developed in [247], for both the

non-gravitational case and from the perspective of N = 1 supergravity.

All of the processes above, when considered from the perspective of the flux Landscape,

share a common property; namely, they all consider that the fluxes (which basically define

the potential) remain constant in the process. It is therefore worthwhile studying how one

may involve both scalar fields and fluxes in a non-perturbative quantum decay.

Actually, a process similar to the Coleman-deLuccia decay was studied by Brown and

Teitelboim in [248,249], where instead of fields, the authors studied the non-perturbative

stability of a background composed of only 3-form fluxes. This was done as a motivation to

study the neutralization of the cosmological constant, since in a 4-dimensional spacetime

3-forms contribute a constant potential term [250]. Therefore, it may be energetically

favourable to tunnel a compact region of space from some value of a 3-form to another by

the nucleation of a membrane coupled to said form. Most interestingly, such a process can

be generalized to any dimension, and its 2-dimensional counterpart is equivalent to the

Schwinger pair creation process [251] (however, this had been known for some time in the

context of quantum creation of universes [252]).

All of the above ingredients come together when considering flux compactifications of

String Theory, where 3-form fluxes are used to stabilize the extra directions of the theory

into a compact manifold. As we mentioned in the introductory chapter, fluxes couple

naturally to D-branes; on the other hand, in the process of the compactification hundreds of

moduli arise, which parametrize the geometry of the internal manifold. Therefore, it may

be worthwhile to investigate the interplay of all these ingredients from the EFT perspective

of N = 1 supergravity in D = 4 dimensions. In fact, the dynamics of membranes has been

extensively studied in such a setup, see e.g. [253–255].

The inclusion of form fields within supersymmetry and supergravity multiplets has been

around for quite some time [256,257]. On the other hand, recent developments have been

carried out in the connection between flux compactifications and three-form supergravity

multiplets ( [258], see [259] for a review). This has led to the inclusion of flat membranes

in this setup to generate supersymmetric domain walls between flux vacua [260]. Similar

processes involving membranes and axions have been studied [261–263] from the point of

view of the Swampland program and Inflation.

In this work, we will give a pedagogical introduction on the inclusion of 3-form fields and

membranes in supersymmetric setups (both without and with gravity included), and check

the non-perturbative stability of flux-generated vacua. In order to do that, we will employ a

combination of the Coleman-deLuccia and Brown-Teitelboim schemes for non-perturbative

decays. Of course, as we said above, supersymmetric setups should be stable under false

vacuum decay. Thus, we have included soft supersymmetry-breaking terms [264] into our

Lagrangians, which can be made parametrically small, to see how false vacuum decay is

affected by them. In such a setup, we have assumed the false vacuum state to be composed

of a homogeneous and isotropic scalar field and 3-form. On the other hand, the instanton

solution corresponds to a spherical brane coupled to the form, where the inside and the

outside and themembrane are described by different flux values (as in the Brown-Teitelboim
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instanton). This corresponds to a different potential at each side of the membrane, featuring

distinct minima of the scalar field. We will check that it is energetically possible to carry

out such a process and give detailed examples about these, both without and with gravity

considered within the setup. We will also see that as we make the supersymmetry-breaking

parameters go to zero, the expected brane-bubble’s radius increases, which coincides with

the infinite-radius (i.e. flat domain wall) solution of the supersymmetric limit.

This chapter is organized as follows. In section 6.2 we will explain the basics of supersym-

metric domain walls in flat spacetime and how they can be thought of as the limiting cases of

non-supersymmetric instantons. Furthermore, we will also see how flat membranes coupled

to fluxes may generate domain walls, all the while leaving a part of the supersymmetry

unbroken. In section 6.3, we will generalize these results by including soft supersymmetry-

breaking terms. We will describe these instantons, which combine three-forms and scalar

fields coupled to membranes and find that they tend asymptotically to the supersymmet-

ric limit as the supersymmetry-breaking terms are dialled down. In section 6.4, we will

review the existing theory on flat membranes in N = 1, D = 4 Supergravity, and give a

small example to check the main equations. In 6.5, we will follow the same steps as in the

non-gravitational case to construct an instanton involving the scalar and form fields together

with the membrane, given some ansatz for the metric in Euclidean space. We will check the

main expressions with an example and find that we indeed can recover the supersymmetric

setup as a limiting case. Finally, we will give some conclusions in section 6.6.

6.2 Global Supersymmetric Field Theories

As a warm-up exercise, before analysing theories including membranes, we will first check

some basic results involving domain walls in supersymmetric theories, most of which may

be found extensively detailed in [259]. Afterwards, we will see how supersymmetry-breaking

terms affect the outcome of such a theory. This will help us build an intuition on what to

expect once we include membranes.1 In this chapter, we will work with theories involving

a single scalar field; however, all of the results can be easily generalized to include more

complex examples.

6.2.1 A domain wall in anN = 1 chiral superfield model

We will start by considering the Lagrangian for the complex scalar field component of the

chiral superfield, namely,

L =−Kφφ ∂µφ∂
µφ−K φφ|Wφ|2 (6.1)

where we have introduced the two functions that define the model: the Kahler function

K (φ,φ) and the holomorphic superpotential W (φ). We will denote their derivatives as

∂φ∂φK = Kφφ = 1/K φφ and Wφ = ∂φW (φ), following the conventions of [265].

1It should be noted that in this context, domain walls refer to the scalar field profiles which interpolate
between two minima of some potential; on the other hand, membranes are two-dimensional extended objects,
with infinitesimal width. In the following sections we will consider both of them simultaneously.
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The equations of motion for this theory are

Kφφ∂µ∂
µφ−Kφφφ∂µφ∂

µφ+Kφφφ(K φφ)2|Wφ|2 −K φφWφW φφ = 0 (6.2)

and its complex conjugate. These reduce to the usual Klein-Gordon equations for a complex

scalar field if the kinetic term is canonical (which requires K =φφ) and a scalar potential

given by V (φ,φ) = |Wφ|2.
We are looking for a domain wall solution that interpolates between two supersymmetric

minima, in other words, between two points whose superpotential satisfies Wφ(φ±) = 0. Let

us consider a flat domain wall whose transverse direction is given by the coordinate z . One

can then show [247] that the static solution preserving half of the N = 1 supersymmetry

solves the first-order equation

∂zφ(z) =−e iθK φφW φ(φ(z)), (6.3)

known as the BPS equation, where the phase θ is given by

e iθ = ∆W

|∆W |
, where ∆W =W (φ(z =∞))−W (φ(z =−∞)). (6.4)

Of course, given appropriate boundary conditions, both the first-order and second-order

equations should yield the same static solution for the domain wall. The tension of the

domain wall in this model can be computed writing the energy per unit area as follows:

σ=
∫

d z T00 =−
∫∞

−∞
d z Kφφ|∂zφ(z)+e iθK φφW φ(φ(z))|2 +2Re[e−iθ

∆W ] (6.5)

which in the supersymmetric limit, where (6.3) holds, becomes

σBPS = 2|∆W | (6.6)

Example. Double well potential

Let us illustrate all of the above by considering the following model:

K (φ,φ) =φφ, W (φ) =
(

1

3
φ3 −a2φ

)

(6.7)

where we are assuming that a > 0. The bosonic part of the Lagrangian for this supersym-

metric theory is given by

L =−∂µφ∂µφ−|φ2 −a2|2. (6.8)

The potential of the theory has been plotted in figure 6.1(a) (dashed line). The second-order

equations of motion (6.2) read, in this case,

∂2
zφ(z)−2φ(φ2 −a2) = 0. (6.9)
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Alternatively, we can write the first-order equations as

∂zφ(z) =−(φ2 −a2) (6.10)

where we can readily see that φ± =±a are the two supersymmetric minima.

Let us choose2 e iθ =−1. The solution of this equation is given by the real field configu-

ration,

φ(z) = a tanh(az), (6.11)

while the tension of this domain wall is given by

σBPS = 2|∆W | = 8

3
a3 (6.12)

As we mentioned earlier, this solution preserves some supersymmetry, so it is clear that

it cannot represent the decay of the vacua. We can also see this noting that both vacua are

supersymmetric, degenerate in energy and the wall is flat and infinite, so there is no way

these vacua can decay.

On the other hand, the solution we found here is purely real. This is consistent with

the potential we have since its form is such that perturbations around the solution in the

imaginary field directions are stabilized. We can check this by expanding the potential in

the real and imaginary parts of the field, namely

φ(z) =ψ(z)+ i s(z) (6.13)

so the potential reads

V (ψ, s) = (ψ2 −a2)2 +2(ψ2 +a2)s2 + s4 (6.14)

This is why we can concentrate on the solution along the s = 0 line. In all of the examples we

show here, we have checked that this is indeed the case, therefore, in all of our illustrations

we will simply draw the results concerning the real part of the fields.

Breaking Supersymmetry

We will break the supersymmetry of the theory by introducing several “soft supersymmetry-

breaking terms” in the Lagrangian, of the form [264,266]

Ssoft =−
∫

d 4x
p−g

[

µ2φφ+b
(

φ3 +φ3
)]

. (6.15)

In the following, we will consider the coefficients to be small enough so that many of the

properties of the solution found earlier will still hold. This means we will consider the case

where µ2 ≪ a2 as well as b ≪ a, see the coloured curves of 6.1(a).

2On the other hand, e iθ =+1 would yield the mirrored profile, often denoted as the anti-domain wall. This
simply corresponds to flipping the boundary conditions imposed at ±∞.



128 6.2. GLOBAL SUPERSYMMETRIC FIELD THEORIES

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1

1

2

(a)

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

(b)

Figure 6.1: (a) Potential (6.19) with a = 1, for several supersymmetry-breaking parameters. (b) Solutions to

(6.17), centered around the inflection point corresponding to each profile, labeled as ρ∗. The BPS limit is shown

with a dashed line, representing the domain wall solution arising from the dashed potential in (a).

In this regime we can see that the theory still posses two minima given by

φ± =±a +δ±(µ2,b) , (6.16)

where the solutions have only shifted slightly, so |δ±/a|≪ 1. The interesting point now is

that both of these minima break supersymmetry. One can take b < 0 in such a way that

the potential at φ+ becomes slightly higher than the other minimum; this means that this

vacuum will be unstable with respect to the nucleation of bubbles of the true vacuum at φ−.

Furthermore, the form of the supersymmetry-breaking terms allows for the tunneling to

happen along the real direction of the field, see fig. 6.1(a).

In order to compute the probability of the decay and its profile in terms of the scalar

field, we will resort to the usual methods developed by Coleman and collaborators [67,68]

in the context of False Vacuum Decay. Thus, we only have to extremize the Euclidean

action associated to the Lagrangian (6.1) (plus the supersymmetry-breaking terms). Its actual

value at the extremum will quantize the exponentially suppressed decay probability, while

the equations of motion derived from it will give us a profile for the emerging scalar field.

Assuming O(4) symmetry in Euclidean space, the equations of motion for the field are

φ′′+ 3

ρ
φ′ = ∂V

∂φ
(6.17)

where ρ =
p
τ2 +x2, τ being the Euclidean time τ= i t and primes denote derivatives with

respect to ρ. This equation is to be solved considering the boundary conditions

lim
ρ→∞

φ(ρ) =φ+ , φ′(0) = 0. (6.18)

Note that the Euclidean O(4) symmetry will turn to O(1,3) when transporting the solution

back to Lorentzian space. Among other things, this will mean that the profile φ(ρ) obtained

via (6.17) will correspond to the emergent scalar profile at t = 0; furthermore, this symmetry

implies that the radius of the bubble so formed will accelerate towards the speed of light.

Following the example presented in the previous subsection, we will work with the
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following potential

V (φ,φ) = (φ2 −a2)(φ2 −a2)+µ2φφ+b(φ3 +φ3) (6.19)

which already includes a contribution from supersymmetry-breaking terms within its defi-

nition.

In this one-dimensional setup, the profile of the scalar field can be easily found in

Euclidean radial coordinates using an undershoot/overshoot algorithm [67], which we described

in section 1.5. Essentially, since the boundary conditions (6.18) do not specify the initial

starting point φ(0), we can first obtain a couple of points where the field either undershoots

or overshoots the local maximum of −V located at φfv. Iteratively reducing this field range,

we will eventually find a starting point φ(0) which stays sufficiently close to φtv for large

values of ρ. The solutions found this way have been contrasted with ones obtained using

AnyBubble [76] and have been shown to be essentially identical.

Using this numerical algorithm, we can check that indeed the form of the domain wall

forming the bubble does not change qualitatively in comparison to the supersymmetric case

given above, see figure 6.1(b). It is also clear that dialing back the supersymmetric coefficients

b,µ one will recover the supersymmetric vacua and therefore the configurations will be

stable, since both minima will become degenerate.

6.2.2 Supersymmetric membrane solution coupled to a 3-form potential

In the previous subsection, we have seen how domain walls may be generated between

degenerate vacua in supersymmetric theories. Furthermore, when supersymmetry-breaking

terms are present, we have checked that the profiles of true vacuum bubbles tend towards

the planar domain wall profiles as the supersymmetry-breaking terms are made smaller. Of

course, when the vacuum is completely supersymmetric, the bubble radius is infinite and

thus, no instanton exists.

In the following, we will introduce a final ingredient into our setup: a 2-dimensional

membrane. As explained in the introduction, these objects couple naturally to 3-form

fields [248,249] and offer interesting ideas from a cosmological viewpoint. Furthermore,

if their tension and couplings are chosen so that a part of the overall supersymmetry is

conserved (see, e.g. [254]), one may couple this object to a supersymmetric theory which

includes fluxes [258–260]. As we will review below, this allows us to divide our spacetime

into two regions where the potential of a scalar field may be different on each side, allowing

for transitions between vacua of different potentials.

In a non-gravitational setup, a possible global supersymmetric model for a fundamental

membrane coupled to a 3-form potential, using a single real three-form per scalar field, i.e,

Aµνρ , and a complex scalar φ is of the form

S = Sbulk+Smembrane+Sboundary terms. (6.20)

In appendix H, we show that such a theory can be written using chiral multiplets constructed

out of vector ones. In that case, the bosonic content of the multiplet is simply given by

complex scalar fields and auxiliary fields, the real part of which will be related to the field
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strength of the 3-form. Thus, the simplest bulk action of a scalar field coupled to 3-forms,

formed by so-called single 3-form multiplets, is given by

Sbulk =
∫

d 4x

[

−Kφφ ∂µφ∂
µφ− 1

4 ·4!
Kφφ FµνσρFµνσρ+

1

2 ·4!

(

Wφ+W φ

)

ǫµνσρFµνσρ

+1

4
K φφ

(

Wφ−W φ

)2
]

(6.21)

=
∫

d 4x

[

−Kφφ∂µφ∂
µφ+ 1

4
Kφφ (∗F4)2 + 1

2
(∗F4)

(

Wφ+W φ

)

+ 1

4
K φφ

(

Wφ−W φ

)2
]

(6.22)

where we have used3 Fµνρσ = 1
3!
∂[µAνρσ] and its Hodge dual ∗F4 = 1

4!
ǫµνρσFµνρσ. It will also

be useful to define the components of the Hodge-dual to the 3-form, Aµ = 1
3!
ǫµνρσAνρσ,

since it allows us to write ∗F4 = ∂µAµ. As usual, K and W are the Kähler potential and

superpotential, respectively, which define the supersymmetric model for the field φ, with

subscripts denoting partial derivatives with respect to said field.4

As we show in appendix H, the boundary terms required to make the variation of the

action well defined are given by

Sbd =
1

2 ·3!
∂µ

[

Aνρσ
(

KφφFµνρσ+ǫµνρσ

(

Wφ+W φ

))]

(6.23)

=−1

2

∫

d 4x ∂µ
[

Aµ

(

Kφφ (∗F4)−Wφ−W φ

)]

(6.24)

Quite interestingly, as we review in appendix H (see also, for example, [258,260]), when the

3-form is set on-shell the bulk action and the boundary term (which is required to make

the variational problem well posed, see [249,267]) reduce to the usual theory for a complex

scalar field, albeit with a potential given by

V (φ,φ) =
∣
∣Wφ−n

∣
∣2

(6.25)

wheren ∈R is constant, arising from integrating the equation ofmotion corresponding to the

3-form field. Therefore, the fluxes yield a linear contribution to the effective superpotential

of the scalar field. Of course, if these fluxes are assumed to arise from a flux compactification

scheme, then we should expect n ∈Z, c.f. equation (1.33); in the following, we will consider

them as such.

The piece of the action corresponding to the membrane is given by [249,255]

Smemb. =−
∫

M
d 3ξ

p
−h 2|qφ| + q

3!

∫

M
d 3ξAµνρ

∂xµ

∂ξa

∂xν

∂ξb

∂xρ

∂ξc
ǫabc

=
∫

d 4xd 3ξ
p−g

[

−
p
−h

p−g
2|qφ| + q

3!
Aµǫµνρσ

∂xν

∂ξa

∂xρ

∂ξb

∂xσ

∂ξc
ǫabc

]

δ4(x −x(ξ))

3Here we have defined these quantities for a flat spacetime. They can be straightforwardly generalized to
the case of curved space, see appendix H.

4For the sake of simplicity, we have written the theory in terms of a single scalar field, which may not appear
to be explicitly invariant under field diffeomorphisms. This is not the case when the theory is written in terms
of several chiral multiplets, see for example [259] for explicit details.
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=
∫

d 4x
p−g

[

−2|qφ|J (x)+q Aµ Jµ(x)
]

(6.26)

where h is the determinant of the induced metric on the membrane, M represents the

membrane’s worldvolume, ξi are the worldvolume coordinates and xµ(ξi ) represent the

embedding functions of the membrane into the four-dimensional spacetime. Additionally,

we have explicitly included the contribution of the spacetime metric for later use, and all

the information regarding the shape of the membrane and its embedding in the ambient

spacetime is stored in the functions J (x) and Jµ, defined by

J (x) =
∫

d 3ξ

p
−h

p−g
δ4(x −x(ξ)) (6.27)

Jµ(x) = 1

3!

∫

d 3ξ ǫµνρσ
∂xν

∂ξa

∂xρ

∂ξb

∂xσ

∂ξc
ǫabcδ4(x −x(ξ)) (6.28)

For example, for a flat membrane perpendicular to the z axis and located at z = 0, it is easy

to check that J (x) = δ(z) and Jµ(x) = δz
µδ(z).

The first term of (6.26) is generally referred to as the Nambu-Goto term, which involves

the tension of the membrane. In the case at hand, where a single complex scalar field is

considered, the form of this tension is completely determined by requiring the preservation

of supersymmetry [254] and it explicitly involves the value of the scalar field evaluated

at the membrane worldvolume. Therefore, the field will be required to be non-zero at

the membrane, in order to have a positive tension, and will be explicitly coupled to the

membrane. We will see below that the appearance of the scalar field in this term will have

interesting consequences on the emerging profile of the field across the membrane.

On the other hand, the second term, which is referred to as the Wess-Zumino term,

gives a natural coupling between the 3-form and the worldvolume of the membrane, and

is a straightforward generalization of the coupling term between a charged particle and

the electromagnetic potential in electromagnetism. As shown in [248, 249], this term is

responsible for the fluxes taking different values on both sides of the membrane. This will

still be the case when scalar fields are included into the picture, and we will find that it has

far-reaching consequences.

It is interesting to note that without the presence of the scalar field and membrane

sources, the 3-form potential does not have any propagating degrees of freedom. The

solutions of the 3-form field equations in this case are constant values of the field strength,

Fµνσρ = n ǫµνσρ; thus, when gravity is included, this corresponds to a contribution of the

cosmological constant. Including the charged membranes allows the cosmological constant

to change by the nucleation of these branes, which is essentially a higher-dimensional

version of the Schwinger process [249,252].

The equations of motion for the form field obtained by extremizing (6.20) with respect

to Aµ yield

∂µ

(
1

2
Kφφ(∗F4)+ReWφ

)

= q Jµ (6.29)

For later convenience, it will be useful to define Jµ = ∂µH . Of course, in the flat membrane
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case, this is simply H(z) =Θ(z), where Θ(x) is the usual Heavyside step function. With those

definitions, we find the following equation of motion:

∗F4 =−2K φφ
(

ReWφ− (n +q H(x))
)

(6.30)

Therefore, integrating out the form field from the full action and taking into account the

contribution of the boundary term, we arrive to a theory for a complex scalar field of the

form

S =
∫

d 4x
p−g

[

−Kφφ ∂µφ∂
µφ−K φφ|Ŵφ|2 −2

∣
∣qφ

∣
∣ J (x)

]

(6.31)

where Ŵ (φ) is the following effective superpotential:

Ŵ (φ) ≡W (φ)− (n +q H(x))φ. (6.32)

One of the most interesting features of this result is that the membrane can now be thought

to interpolate between to distinct scalar potentials V± =
∣
∣Ŵ±,φ

∣
∣2
where the plus (minus) sign

refers to the space with z > 0 (z < 0). Note that at each side of the membrane, the potential

will be defined in terms of a flux which varies from one side to the other (namely, from n to

n +q).

In the flat membrane case, the equations of motion for this theory follow from extrem-

izing the action with respect to φ and assuming φ=φ(z), we find:

Kφφ∂
2
zφ−Kφφφ|∂zφ|2 +Kφφφ(K φφ)2|Ŵφ|2 −K φφŴφ

ˆ
W φφ−qe iηδ(z) = 0 (6.33)

where e iη = qφ
|qφ| and, in this particular case,

Ŵ (φ) =W (φ)− (n +qΘ(z))φ. (6.34)

A particular solution of this equation of motion is also the solution of the first-order BPS

equations [247,259], obtained by requiring the preservation of part of the supersymmetry

of the system:

∂zφ+e iηK φφ ˆ
W φ = 0 (6.35)

which is simply the generalization of (6.3) and includes the contribution of the membrane

implicitly through the jump in the effective superpotential.

Example: quadratic superpotential

We will now consider a simple example for this model, which may also be found in [259]

explained in full detail. In order to come as close as possible to the situation with the domain

wall of the previous subsection, we will use

K (φ,φ) =φφ, W (φ) = 1

2
aφ2, (6.36)



6. BRANE NUCLEATION IN SUPERSYMMETRIC MODELS 133

0 1 2 3 4

1

2

3

4

5

(a)

-10 -5 0 5 10

1.5

2.0

2.5

3.0

(b)

Figure 6.2: (a) Scalar potential, corresponding to eq. (6.37), with n = 1 and q = 2. The darker line represents

the potential at z < 0, while the clearer one at z > 0. (b) Scalar field profile interpolating between the minima of

the previous potential, with a membrane sitting at z = 0, see eq. (6.39).

where a is a constant with dimensions of energy; in the following, we will take a = 1. We will

also assume the background flux is positive, n > 0, along with a flat membrane with q > 0

(so that e iη = 1), with respect to the 3-form. On each side of the membrane, the theory for

the scalar field is given by a different potential, namely we have

V−(φ) = |φ−n|2, V+(φ) = |φ− (n +q)|2. (6.37)

for z < 0 and z > 0, respectively. This potential is shown in figure 6.2(a). As explained above,

the perturbations of φ around its imaginary part are completely stabilized, and thus we will

only consider the physics of its real part.

The BPS equation (6.35) yields

{
∂zφ(z) =−φ(z)+n z < 0,

∂zφ(z) =−φ(z)+n +q z > 0.
(6.38)

This system is easily solved by considering the field to be real, imposing continuity at

z = 0, and taking the field to asymptotically approach the supersymmetric minimum of the

potential at each side of the membrane. This yields

φ(z) = n +Θ(z)q
(

1−e−z
)

(6.39)

which we have plotted in figure 6.2(b). Indeed, the profile interpolates between the two

different minima φ± of their respective quadratic potentials on both sides of the brane.

Notice the jump in the first derivative of the scalar field across the brane; as we will see below,

this is entirely due to the tension of the membrane involving the scalar field φ.

One can also compute the tension of the membrane dressed with the scalar field, by

integrating the energy of the whole system across the membrane. In the case at hand this
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becomes

σDW+memb = 2

∣
∣
∣
∣

1

2
(n +q)2 − 1

2
n2

∣
∣
∣
∣=

(

2nq +q2
)

. (6.40)

wherewe have noted that the superpotential is actually different at each side of themembrane.

Note that this value is different from the one inferred from the Nambu-Goto contribution of

themembrane which is TNG = 2nq . If we consider the fact that the original flux (n) should be

quantized in units of q and assume the situation where n ≫ q , we notice that the correction

to the tension is therefore small compared to the NG one.

6.3 Tunneling from a supersymmetry-breaking vacuum

Now that we have studied the interplay of scalar fields and fluxes in the presence of a static

membrane, we are ready to take another step forward. In the following, we will analyze how

the Coleman-de Luccia [67,69] and Brown-Teitelboim [248,249] schemes can be combined

to yield a very interesting perspective on membrane nucleation in the presence of scalar

fields.

In order to have a potential with non-degenerate vacua, we will add soft supersymmetry-

breaking terms to the Lagrangian to get some shifted newminima which will expicitly break

supersymmetry. This will allow the false vacuum solution (the highest of the two minima)

to decay to the other vacuum by the formation of a membrane bubble that interpolates

between them. This membrane bubble will have a structure locally similar to the flat

membrane solution found earlier and should approach the supersymmetric profile as the

supersymmetry-breaking terms are dialled down.

In order to study the tunneling from a state with the field in the false vacuum everywhere

in space to a state with a spherical membrane coupled to the field, we will apply Euclidean

methods and assume O(4) symmetry as in the usual false vacuum decay process. In this

setup, the membrane is a static 3-sphere. Using the conventions of [249], the Euclidean

action can be found to be

SE =
∫

d 4xE
p

gE

[

Kφφg
µν

E
∂µφ∂νφ− 1

4
Kφφ (∗F4)2 + 1

2
(∗F4)

(

Wφ+W φ

)

− 1

4
K φφ

(

Wφ−W φ

)2
]

+
∫

d 4x
p

gE

[

2|qφ|J (x)+q Aµ Jµ(x)
]

+Ssoft+Sbd (6.41)

where gE represents themetric of Euclidean space
5 and Ssoft represents the soft supersymmetry-

breaking terms discussed in eq. (6.15).

Assuming spherical symmetry, the Euclidean metric will be given by

d s2 = dρ2 +ρ2dΩ
2
3 (6.42)

5 In the conventions of [249], the fully spatial components of Aµ1µ2µ3 are substituted by i Aµ1µ2µ3 in order to
leave F 0123 invariant under Wick rotations. Using the Hodge duals, this means that ∗F4 = 1

4!

p−gǫµνρσFµνρσ =
−p−g F 0123 should be left invariant as well. Note, however, that in Euclidean space we have ǫ0123 = ǫ0123 = 1,
so ∗F4 picks up a minus sign when described in Euclidean coordinates.
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where dΩ3 represents the surface element of a 3-sphere. Recall, from our previous discus-

sions on false vacuum decays using only scalar fields, that the false vacuum bubbles that we

studied that may be thought of as bubbles of fixed radius (as in the thin-wall approximation).

Therefore, the radius of the membrane in Euclidean space should also be a constant, which

we will denote by R . Of course, once we Wick-rotate back to Lorentzian space, this O(4)

symmetry in Euclidean space will turn to O(1,3) symmetry in Lorentzian space.

On the other hand, from the definition of ∗F4 we easily see that

∗F4 =
1

ρ3
∂ρ(ρ3 Aρ) (6.43)

Integrating out the form fields as in the previous section using their equations of motion

∗F4 = DµAµ = 1

ρ3
∂ρ(ρ3 Aµ) = 2K φφ

(

ReWφ−n −qΘ(ρ−R)
)

, (6.44)

gives the straightforward counterpart of (6.31) for a static and spherical setup in Euclidean

signature:

SE = 2π2

∫

dρ ρ3

[

Kφφ

∣
∣
∣
∣

dφ

dρ

∣
∣
∣
∣

2

+V (φ,φ)+2
∣
∣qφ

∣
∣δ(ρ−R)

]

. (6.45)

In the previous expression, V also includes the contribution from the supersymmetry-

breaking terms in (6.15), namely

V = K φφ
∣
∣Ŵφ

∣
∣2 +µ2φφ+b(φ3 +φ3), Ŵ ≡W − (n +qΘ(r −R))φ. (6.46)

The equation of motion for the complex scalar field is then

1

ρ3
∂ρ

(

ρ3Kφφ

dφ

dρ

)

= Kφφφ

∣
∣
∣
∣

dφ

dρ

∣
∣
∣
∣

2

+ ∂V

∂φ
+qe iηδ(ρ−R) (6.47)

where e iη = qφ
|qφ| . This equation is greatly simplified if the kinetic term of the scalar field is

in canonical form, namely if K =φφ so that Kφφ = 1. In that particular case, the equation of

motion for the scalar field reads

d 2φ

dρ2
+ 3

ρ

dφ

dρ
= ∂V

∂φ
+qe iηδ(ρ−R) , (6.48)

which should be solvedwith the boundary conditions (6.18). This last equation is quite similar

to the one which is generally used for false vacuum decay, see eq. (6.17); the only difference

is that here we have derived it for a complex scalar field and that it has a contribution

proportional to Dirac Delta function, due to the presence of a membrane of radius R .

To find the instanton solution in this case we should proceed with a little bit of care since

the potential for the scalar field will be different on both sides of the wall. Most notably, the

true and false vacuum of the theory now belong to two different potentials, as opposed to

the usual case where they are both local minima of the same function.

We should integrate this equation starting at the true vacuum state at the center of the
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bubble at ρ = 0 up to some distance ρ∗. At that point we should change the potential and

integrate the new equations of motion with the new form of the potential V+(φ) ending up

in the false vacuum state. From our experience with the static flat membrane, we know that

the field undergoes a jump in its first derivative at membrane crossing. We should expect a

similar effect for the spherical membrane as well. In fact, integrating (6.48) between R −ǫ

and R +ǫ, where R is the radius of the Euclidean membrane, and making ǫ→ 0, assuming φ

is everywhere continuous, we find

lim
ǫ→0

[

∂ρφ(R +ǫ)−∂ρφ(R −ǫ)
]

= qe iη (6.49)

across the membrane. Note that this effect is entirely due to the presence of the scalar field

in the Nambu-Goto term of the action (6.45).

This procedure has a free parameter: the radius of the membrane bubble, R . There are

actually three different methods one can use to fix it in this non-gravitational case. First and

foremost, one can evaluate the Euclidean action (6.45) at the solution as a function of this

parameter. More concretely, the correct profile of the instanton that describes the quantum

instability of the vacuum is the one that extremizes the tunneling probability (see eq. (1.59)),

which is given in terms of

B = 2π2

∫∞

0
dρ ρ3

[

Kφφ

∣
∣
∣
∣

dφ

dρ

∣
∣
∣
∣

2

+V (φ,φ)+2
∣
∣qφ

∣
∣δ(ρ−R)−Vfv

]

(6.50)

where Vfv corresponds to the minimum of the potential outside the membrane.

One can also formulate this problem in terms of the energy difference between the false

vacuum state and the state at the moment of emergence of the bubble in Lorentzian space.

Indeed, there should be no energy loss or gain for the instanton solution at its emergence,

and therefore the correct profile corresponds to the roots of the energy density difference,

defined by

∆E =
∫

dV (T00 −Vfv) = 4π

∫∞

0
dr r 2

[

Kφφ

∣
∣
∣
∣

dφ

dr

∣
∣
∣
∣

2

+V (φ,φ)+2
∣
∣qφ

∣
∣δ(r −R)−Vfv

]

t=0

.

(6.51)

This expresion can be easily evaluated from theEuclidean solution since, aswe commented in

chapter 1, the profile obtained in Euclidean space corresponds to the profile of the emerging

bubble in Lorentzian space at t = 0.

Finally, the radius of the membrane may also be fixed using its equation of motion.

Varying the contribution of the spherical membrane to the action (6.41), we find

[
3
∣
∣qφ

∣
∣

R
+∂ρ

∣
∣qφ

∣
∣+ q

2
(∗F4)

]

ρ=R

= 0 (6.52)

where all terms are evaluated at the membrane position. The Heaviside step function is

regularized as Θ(0) = 1/2, so the second and third terms in the equation above should be

evaluated as the mean of each term with respect to its values to the left and right of the

membrane. Note that this criterion is consistent with the one taken in the Brown-Teitelboim
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Figure 6.3: Scalar potential (6.54) for n = 1, q = 2 and some values of the supersymmetry-breaking parameters.

The darker curve shows the potential inside the membrane (ρ < R), while the lighter one represents the potential

outside it (ρ > R).

scheme, where the field strength at the membrane is also taken as the average of both sides.

In our case, this particularly means that, using (H.23),

∗F4|ρ=R = 2K φφ
(

ReWφ−n − q

2

)

ρ=R
. (6.53)

Note, however, that eq. (6.52) does not provide any preliminary information about the value

of the membrane radius, since it depends on the scalar field profile, which is unknown a

priori. Therefore, one must still find the profile for several radii and either extremize B , find

roots of ∆E and check the validity of (6.52).

6.3.1 Example: quadratic superpotential

In order to check the scheme above, we applied it to the supersymmetric model defined

by (6.36), albeit with the inclusion of soft supersymmetry-breaking terms. In this case, the

effective potential of the theory is

V (φ,φ) =
∣
∣φ−

(

n +qΘ(r −R)
)∣
∣2 +µ2φφ+b(φ3 +φ3) (6.54)

which is shown in figure 6.3 along the real part of φ. Once again, we will not consider

the imaginary part of the scalar field, since the system is perturbatively stable along that

direction.

As we said above, the radius of the membrane corresponding to the instanton solution

is unknown, in principle. Therefore, for some supersymmetry-breaking parameter values

b and µ, we computed the scalar field profiles for several R and used all three methods

described above (namely, the radius should extremise the Euclidean action difference B ,

have no energy cost, i.e., ∆E = 0, and the profile should satisfy eq. (6.52)) to find the correct

membrane radius.

For a fixedmembrane of radiusR and for anyparametersb andµ, we used the undershoot-

overshoot algorithm described above to find the numerical profile of the scalar field. Of

course, in so doing, one should take into account the jump on the first derivative of the

profile at ρ = R , see eq. (6.49), and that the potential used for the evolution actually changes
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Figure 6.4: (a) Euclidean action and (b) energy difference with respect to the background, for solutions of the

equation of motion (6.48), with n = 1, q = 2 and several values for R , b and µ. Note that the maxima of the

Euclidean action correspond to the zeroes of ∆E , see figure 6.5.
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Figure 6.5: Energy and euclidean action difference with respect to the false vacuum state for several radii, in the

case where µ= b = 0.03. The maximum of B coincides with the root of ∆E , as expected.

when crossing the membrane. The resulting profiles were then used to corroborate which

membrane radius corresponds to each choice of supersymmetry-breaking parameters.

Our results are shown in figure 6.4. In fig. 6.4(a), we can clearly see that the maximum

Euclidean action B of each branch is reached at an ever higher value of R as we tune down

the supersymmetry-breaking parameters, just as we predicted above. We also checked the

variation in the total energy of the profile with respect to the background at the time of

nucleation, see figure 6.4(b); in all cases, the value of R corresponding to no energy loss or

gain with respect to the background also corresponds to the maximum of the Euclidean

action, see figure 6.5 for an explicit example.

The profiles corresponding to membrane-radii which extremized SE (or satisfied any of

the equivalent conditions) have beenplotted in figure 6.6(a). As expected, as the supersymmetry-

breaking parameters are made smaller, the radius of the emerging membrane increases

and the scalar field profiles progressively tend towards the BPS solution derived above, as

shown in fig. 6.6(b). A curious feature of these profiles is that, when considered as a particle

in the inverted potential −V , they first tend to get away from the false vacuum, only to then

be projected in the r > R potential with enough velocity to asymptotically reach the false

vacuum.
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Figure 6.6: (a) Scalar field profiles corresponding to each maximum Euclidean action for some supersymmetry-

breaking parameters. (b) The same profiles as before, centered around the membrane radius corresponding to

each profile. The dashed line represents the BPS solution from eq. (6.39), with n = 1 and q = 2, which is clearly

the asymptotic behaviour of the profiles as the supersymmetry-breaking parameters b and µ tend to 0.

6.4 Flat membranes and domain walls in Supergravity

We now turn to study the same setup as in the previous section, with gravity taken into

consideration. We will work in the context of N = 1, D = 4 Supergravity coupled to chiral

matter. Wewill be interested in generalizing the false vacuumdecay discussed in the previous

section to include gravity. However, before analysing more generic situations, we will first

study the supersymmetric limit of flat membrane solutions in supergravity. Thus, in this

section, we will start by analizing the action of the system composed by scalar fields, real

three-forms and flat membranes in a spacetime of Lorentzian signature.

The action is once again given by

S = Sbulk+Smembrane+Sboundary terms. (6.55)

As we review in appendix H, the bosonic part of the supersymmetric bulk action of the

system, which includes gravity, scalar fields and 3-forms, is given by6

Sbulk =
∫

d 4x
p−g

[
1

2
R −Kφφ∂µφ∂

µφ− 1

3
e−K (M +KφF ) (M +KφF )−MW −MW

+ e−K KφφFF +FWφ+FW φ

]

(6.56)

where

F = 1

2

(

DµAµ+ i d
)

+ 2

3
φM + 1

3
φM . (6.57)

and we are using natural units with MPl = 1. In the above equations, R is the Ricci scalar, M

is a complex scalar auxiliary field of the minimal supergravity multiplet, d is a real scalar

auxiliary field and Aµ is the Hodge dual of the three-form of this setup. Just as in the non-

6 Once again, the invariance under field redefinitions can be made explicit for more general systems,
see [258,259].
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gravitational case, boundary termsmust be included in the full action to ensure the variation

of the action with respect to the form field is well posed. Note that the boundary terms will

also include the Gibbons-Hawking term [268] in order for the variations with respect to the

metric to be well defined.

The action of the membrane can be fixed by requiring the system to leave a fraction

of the supersymmetry invariant after its inclusion, for the case of a flat membrane. When

gravity is included in the system, it reads

Smemb. =−
∫

M
d 3ξ

p
−h 2eK /2|qφ| + q

3!

∫

M
d 3ξAµνρ

∂xµ

∂ξa

∂xν

∂ξb

∂xρ

∂ξc
ǫabc

=−
∫

d 4x
p−g

[

−2eK /2|qφ|J (x)+q Aµ Jµ(x)
]

(6.58)

where J (x) and Jµ(x) have been defined in (6.28). Notice that the Nambu-Goto term now

includes an exponential contribution in terms of the Kähler potential.7

It is easy to check that setting the form field and auxiliary fields on-shell and taking into

account the contribution of the boundary terms, the action reads [260]

S =
∫

d 4x
p−g

[
R

2
−Kφφ∂µφ∂

µφ−V (φ,φ)−2 eK /2
∣
∣qφ

∣
∣ J (x)

]

+SGH (6.59)

where SGH represents the Gibbons-Hawking boundary term, V (φ,φ) is the usual N = 1,

D = 4 matter-coupled supergravity scalar potential

V (φ,φ) = eK
[

DφŴ K φφDφ
ˆ

W −3|Ŵ |2
]

(6.60)

We have also denoted the usual Kähler-covariant derivative asDφ = ∂φ+Kφ, and the potential

is given in terms of the following effective superpotential:

Ŵ =W − (n +q H(x))φ. (6.61)

where, just as in the non-gravitational case, we have defined Jµ = ∂µH , so that with a flat

membrane we have H(x) =Θ(z), if it stands at z = 0. Therefore, we retrieve the usual matter-

coupled supergravity action, with a slightly modified superpotential due to the presence

of three-form fluxes. The overall scalar potential will be different on both sides of the

membrane and thereforewemight find a profile which interpolates between supersymmetric

minima of different potentials.

Let us begin with the case of a flat membrane interpolating between two supersymmetric

vacua. Let us assume this static membrane sits at z = 0. In order to study the profile across

such a membrane, we will assume the following ansatz for the metric8 [260]:

d s2 = e2D(z)(−d t 2 +d x2 +d y2)+d z2 (6.62)

7The exponential factor eK /2 arises due to the super-Weyl rescaling and field redefinitions required to bring
the action to Einstein frame, see appendix H for more detail.

8Note that with this choice of metric we will have
p
−h =p−g when we evaluate the factors at z = 0.
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so that
p−g = e3D(z). Let us turn to study the equation of motion for the scalar field, which

is

1
p−g

∂µ

(p−g Kφφgµν∂νφ
)

= Kφφφ∂µφ∂
µφ+ ∂V

∂φ
+eK /2

[

Kφ|qφ|+qe iη
]

δ(z). (6.63)

where e iη = qφ
|qφ| . It is natural to assume that scalar field only depends on the transverse

coordinate to the membrane, i.e., φ=φ(z). Hence, the field obeys

∂z(Kφφ∂zφ)+3Kφφ ∂zD ∂zφ= Kφφφ

∣
∣∂zφ

∣
∣2 + ∂V

∂φ
+eK /2

[

Kφ

∣
∣qφ

∣
∣+qe iη

]

δ(z). (6.64)

On the other hand, the Einstein equations for the metric can be combined to give

∂2
zD +3(∂zD)2 =−V −eK /2

∣
∣qφ

∣
∣δ(z) (6.65)

Note that the deltas at z = 0 will yield jumps in the first derivative of both φ, as in the

non-gravitational case, and in the scale factor D .

A supersymmetric and static domain wall may occur between non-degenerate minima,

since essentially the gravitational contribution may compensate the difference in scalar

potential between both vacua [247]. If supersymmetry is partly conserved across the profile

of the domain wall, then the minima are bound to be either Minkowski or AdS vacua (note,

however, that no supersymmetric domain wall may interpolate between two Minkowski

vacua when gravity is included [247]).

With these remarks at hand, the BPS equations acquire the form [247,259,260]

φ′(z) =∓eK /2e i arg(Ŵ )K φφDφŴ (6.66)

D ′(z) =±eK /2|Ŵ | (6.67)

where primes denote derivatives with respect to z, and the second equation is simply a

first integral of (6.65). If we only consider the physics of the real part of φ, then, of course,

e i arg(Ŵ ) → sign(Ŵ ). It is convenient to write these equations in terms of

Z ≡ eK /2Ŵ . (6.68)

Note that the value of the scalar potential at supersymmetric critical points is then given by

Vsusy =−3|Z |2. Indeed, in terms of Z , the equations above read

φ′(z) =∓2K φφ∂φ|Z | (6.69)

D ′(z) =±|Z | (6.70)

The sign choice to be used can be easily identified using these equations. First of all, we

should note that since the membrane we are working with has a positive tension T , we

should expect the second derivative of the scale factor D to be always negative (see, for

example, [269]). It is clear, then, that the behavior of |Z | around the membrane will define
the correct sign to choose in the BPS equations. Furthermore, it can be explicitly checked
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Figure 6.7: Scalar potential for the model described in this section. The blue curve corresponds to a flux integer

of n = 2, while the orange one refers to n = 3.
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Figure 6.8: Solution of the BPS equations to the model defined in (6.71), for (a) the scalar field (b) the scale factor,

for the metric defined in (6.62). The potential at z < 0 corresponds to the case n = 3, while z > 0 corresponds to

n = 2; thus, the membrane is charged with q =−1.

from the definition of Z that, provided it is nowhere vanishing, it will increase or decrease

monotonically along the z axis [260]. This means that if |Z |−∞ < |Z |+∞, we should be using
the lower sign (so D ′ experiences a downward jump at the membrane). Otherwise, we will

need to use the upper sign. In case |Z | does have some root at, say, z = z0, we will need to

switch the sign of the BPS equations after crossing it. For more detail on these equations,

see e.g. [247,260].
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6.4.1 Example: quartic superpotential

The above equations can be used to find the profiles of a scalar field interpolating between

different minima of the model defined by9

K (φ,φ) =φφ− ln(100)M 2
Pl, W (φ) = M−1

Pl φ
4. (6.71)

where we have restored the Planck mass momentarily in order to show explicitly the energy

scales involved in this example. The scalar potential defined by this Kähler potential and

superpotential is shown in figure 6.7, once the 3-formhas been integrated out. Theminimum

featured by each branch can be shown to be supersymmetric, i.e., it satisfies DφW = 0.

Going back to units where MPl = 1, the numerical BPS profile arising from this potential

for both the scalar field and the scale factor D is shown in figure 6.8, where we have placed

the lower minimum to the left (for easier comparison later on). We have also explicitly

checked that the second-order equations (6.64) and (6.65), which explicitly incorporate the

first-derivative jumps as Dirac deltas, yield exactly the same profiles.

6.5 Membrane nucleation in Supergravity

In the following we will generalize the procedure above to spherical membranes, just as in

the previous part of this chapter. Following the usual Coleman-de Luccia scheme, we will

turn to Euclidean space. Assuming O(4) symmetry on our whole setup, the metric reads

d s2 = dχ2 +ρ(χ)2dΩ
2
3, dΩ3 = dϕ2

1 + sin2ϕ1dϕ2
2 + sin2ϕ1 sin2ϕ2dϕ2

3. (6.72)

Of course, we should expect the solutions involving spherical membranes to approach the

ones obtained for a flat membrane as the radius of the bubble increases.

The Euclidean action of our system will be

SE = Sbulk,E+Smemb,E+Ssoft,E+Sbd,E (6.73)

where Sbulk,E, Ssoft,E and Sbd,E represent the straightforward Euclideanization of the bulk,

soft supersymmetry-breaking terms and boundary terms of the action. On the other hand,

the Euclidean membrane action, assuming a spherical setup, will be given by

Smemb,E = 2π2

∫

dχ ρ(χ)3
[

2eK /2|qφ|+q Aρ
]

δ(χ−R) (6.74)

Thus, the membrane radius simply represents a fixed radial coordinate value.

Integrating out the form fields, we will retrieve the gravitational counterpart of (6.45),

9As shown in [260], shifting the Kähler potential by a constant, K → K +K0 rescales the scalar potential as
V → eK0V and the length scales as χ→ e−K0/2χ. Furthermore, the supersymmetric action scales like S → e−K0 S.
In case the supesymmetry-breaking parameter µ, for example, is contained within the action, then we should
also require µ→ eK0/2µ. In order for this rescaling to be as simple as possible, we have chosen the constant
below. This allows us to keep the energy density and the Nambu-Goto tension sub-Planckian.
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namely:

SE =
∫

d 4x
p

g

[

−R

2
+Kφφg ab∂aφ∂bφ+ Ṽ (φ,φ)

]

+2

∫

M
d 3ξ

p
heK /2|qφ|+SGH (6.75)

where10

Ṽ = eK
(

K φφ
∣
∣DφŴ

∣
∣2 −3

∣
∣Ŵ

∣
∣2

)

+µ2φφ, Ŵ ≡W − (n +qΘ(r −R))φ. (6.76)

As we will see afterwards, the Gibbons-Hawking boundary term will become important once

we need to evaluate the actual value of the Euclidean action.

Just as we did above, we will be interested in investigating this decaying process in terms

of soft supersymmetry breaking parameters added to the original scalar potential. That way,

we will be able to see the flat membrane limit as the supersymmetric limit of this process.

We can obtain the equation of motion corresponding to the complex scalar field by

extremizing (6.75) with respect to φ, which yields, assuming φ=φ(χ),

∂χ

(

Kφφ∂χφ
)

+
3 ∂χρ

ρ
Kφφ∂χφ= Kφφφ

∣
∣∂χφ

∣
∣2 + ∂Ṽ

∂φ
+eK /2

[

Kφ|qφ|+qe iη
]

δ(χ−R).

(6.77)

If we consider a canonical kinetic term on the fields, that is, K (φ,φ) =φφ, then this equation

reduces to

φ′′+ 3ρ′

ρ
φ′ = ∂Ṽ

∂φ
+e |φ|2/2

[

φ|qφ|+qe iη
]

δ(χ−R). (6.78)

where primes denote derivatives with respect to the radial coordinate χ. Note that this

equation corresponds to the usual one to be solved in Coleman-deLuccia vacuum transitions

with complex scalar fields, save for the last term.

On the other hand, we can obtain the equations of motion for the scale factor through

the extremization of (6.75) with respect to gµν. Indeed, noting that the Ricci scalar and some

components of the Ricci tensor are given by

R =− 6

ρ2

(

−1+ (ρ′)2 +ρρ′′) , Rχχ =−3ρ′′

ρ
, Rϕ1ϕ1 = 2−2(ρ′)2 −ρρ′′, (6.79)

we find that the χχ-component of the Einstein equation is given by

(ρ′)2 = 1+ ρ2

3

(

Kφφ|φ
′|2 − Ṽ

)

(6.80)

while the ϕ1ϕ1-component yields

2ρρ′′+ (ρ′)2 −1 =−ρ2
(

Ṽ +Kφφ|φ
′|2

)

−2ρ2eK /2|qφ|δ(χ−R). (6.81)

10We have omitted the supersymmetry-breaking cubic term for simplicity, as its effect (in this model, at
least) was identical to turning on the quadratic term.
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Both of these equations can be combined into

ρ′′ =−1

3
ρ

(

2Kφφ|φ
′|2 + Ṽ

)

−ρeK /2|qφ|δ(χ−R), (6.82)

which we found to be numerically more stable than the former ones. Note that the deltas at

χ= R will yield jumps in the first derivative of both φ and ρ, just as with the flat membrane.

Finally, note that the radius of the membrane, R , is still a free parameter of our system.

Therefore, in order to fix it, we can take a similar approach as the one we took in the non-

gravitational case. Namely, we can try solving the equations for several choices of R and find

which one extremizes the Euclidean action (6.75). Another way to find the correct R for the

instanton solution involves extremizing the action of the membrane (6.74) with respect to

the radius. Doing so, we find

[

3eK /2
∣
∣qφ

∣
∣
∂χρ

ρ
+∂ρ

(

eK /2
∣
∣qφ

∣
∣
)

+ q

2
(∗F4)

]

χ=R

= 0 (6.83)

where, as in non-gravitational case, all discontinuous quantities at the membrane’s position

are evaluated through their means taken at each side, and the Lorentzian bulk solution for

∗F4 has been obtained in (H.64), which depends explicitly on φ, and its constant n should

be replaced by n +qΘ(r −R).

6.5.1 Example: quartic superpotential

In this subsection, we will apply the machinery described above to the simple model of

eq. (6.71). In order to analyze the tunneling events in terms of the supersymmetry breaking

parameter µ, we will have to take into account that the geometry of the Euclidean space will

depend on the sign of the potential at the false vacuum, i.e., for Vfv < 0, the background will

be a non-compact space, Vfv = 0 corresponds to the flat, Minkowskian background (which

may be considered as a limiting case from AdS space in Euclidean signature), while Vfv > 0

will yield a compact space for the background [72].

All of the examples below were solved numerically using a simple overshoot-undershoot

algorithm to find the correct initial condition for the scalar field. Note that, as far as the

initial conditions for χ are concerned, the consistency of the equations of motion for the

scale factor ρ will always require ρ(χ) =χ+O (χ3) for χ→ 0, see [72] for further detail.

AdS/Minkowski to AdS transitions

As we mentioned above, this tunneling event occurs within a non-compact space. There-

fore, the integral of the Euclidean action corresponding to the event with a membrane of

coordinate radius R will diverge in general:

SE = 2π2

∫∞

0
dχ

[

ρ3
(

|φ′|2 + Ṽ (φ,φ)
)

+3
(

ρ2ρ′′+ρ(ρ′)2 −ρ
)]

+4π2
[

ρ3eK /2|qφ|
]

χ=R +SGH

= 2π2

∫∞

0
dχ

[

ρ3
(

|φ′|2 + Ṽ (φ,φ)
)

−3
(

ρ(ρ′)2 +ρ
)]

+4π2
[

ρ3eK /2|qφ|
]

χ=R (6.84)
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Figure 6.9: (a) Scalar potential for n = 2 (dashed) and n = 3 (solid). (b) Euclidean action for different fixed

membrane radii R for a list of supersymmetry breaking parameters µ. The color corresponding to each µ is

the same for both figures. Note that the radius R which extremizes the action increases as we diminish the

supersymmetry-breaking parameter µ.

where, in the last step, the term we have integrated out cancels the contribution from the

GH term (see [72,270]). On the other hand, the integral corresponding to the background

will also diverge:

SE ,bg = 2π2

∫∞

0
dχ

[

ρ3
fvVfv−3

(

ρfv(ρ′
fv)2 +ρfv

)]

, (6.85)

where

ρfv(χ) =
√

3

−Vfv
sinh






χ
√

3
−Vfv




 (6.86)

can be easily obtained plugging a constant and negative potential Vfv < 0 in (6.80). If the

false vacuum is Minkowskian, then we will have

ρfv(χ) =χ, (6.87)

which will also give an infinite contribution to the Euclidean action. However, the physically

relevant quantity, which is the difference between these two actions (related to the tunneling

rate from a background corresponding to the false vacuum, to a solution with a membrane

separating two different potentials) is finite.

The key to computing this difference correctly lies in performing the integrations up to a

certain ρmax, such that its corresponding radial coordinate χmax satisfies χmax≫ R , see [270]

for more detail and an explicit proof of the convergence of this difference.

In figure 6.9 we show the result of computing this difference for several membrane

radii and supersymmetry breaking parameter values. We can clearly see that the difference

between actions is finite and reaches amaximumat a certainR, depending onµ. Furthermore,

as the potential tends towards its original and supersymmetric form, the radius of the

membrane interpolating between both branches of the scalar potential gets bigger, consistent

with our expectations.
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Figure 6.10: Evolution of (a) scalar field and (b) scale factor, for different supersymmetry parameters µ. Each

case corresponds to the radius of maximum Euclidean action obtained in figure 6.9.
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Figure 6.11: Evolution of scalar field for different supersymmetry parameters µ and around the membrane (i.e.,

R corresponds to the membrane’s radial coordinate). The BPS case has been singled out with a dashed black line.

The profiles for both the scalar field and the scale factor corresponding to the radii with

maximum Euclidean action difference for each µ are shown in figure 6.10. The scalar field

profiles are all quite similar in shape, with the only differences resting on the positions of

the true and false vacuum, and in the radius where the jump happens. On the other hand,

the scale factor shows very clearly where the jump happens as well, and the exponential

behaviour seems to pick up quite fast once the membrane has been crossed. All the profiles

shown in fig. 6.10 satisfy equation (6.83).

In order to compare all these profiles with the limiting BPS case, we show in figure

6.11 a close-up plot around the membrane for all of them. Essentially, we see that the BPS

profile is actually a limiting case for the scalar field, which concurs with our results in the

non-gravitational case.

Tuning the supersymmetry-breaking parameterµ, we also analyzed an almostMinkowskian

false vacuum (µ = 0.33), see figure 6.12(a). Note that Minkowski false vacua are still non-

compact spaces, and thus they should be analyzed in exactly the same fashion as AdS vacua.

After computing the Euclidean action difference for several radii, we found that the

radius with maximum Euclidean action was R = 5.2 in the Minkowskian case. The profiles

corresponding to a setting with such a membrane are shown in figure 6.13.

Finally, as explicitly shown in [249,270], the requirement of energy conservation can be
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Figure 6.12: Scalar potential featuring (a) a Minkowskian false vacuum (µ= 0.33) (b) Scalar potential with dS

false vacua, for several supersymmetry breaking parameter values µ.
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Figure 6.13: (a) Scalar field profile and (b) scale factor, for the potential shown in figure 6.12(a), corresponding

to the membrane radius which maximized the Euclidean action difference.

generalized to tunnellings where gravitational effects are considered and the false vacuum is

Minkowskian, by requiring the ADMmass vanishes. In our case, identifying the Euclidean

ρ coordinate with the Lorentzial radial one, r , and taking the τ= 0 spacelike surface, this

implies11

∫

dV T00 = 4π

∫

dρρ2T00 = 4π

∫∞

0
dχ ρ′ρ2

[∣
∣φ′∣∣2 + Ṽ +2|qφ|eK /2 δ(ξ−R)

]

= 0.

(6.88)

We have checked that this condition is satisfied for the solution depicted in figure 6.13.

dS to AdS transitions

By making the supersymmetry-breaking parameter µ sufficiently big, we can actually make

the false vacuum lie in a positive potential value, while the true vacuum rests at V < 0. As

opposed to the previous cases, the compact geometry of this kind of instantons imposes

11As we mentioned above, ρ′(R) should be evaluated as the mean between the derivative of the scale factor
right before and after the membrane radius. Recall that this arises from our regularization of the Heaviside
step function.
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Figure 6.14: (a) Scalar field profile and (b) scale factor, for the dS→ AdS decays between the potentials depicted

in fig. 6.12(b). All profiles plotted here satisfy ρ(χmax) = 0 and ρ′(χmax) =−1 simultaneously.

boundary conditions at both the origin and the maximum value of the radial coordinate

(see, e.g., [72]), where ρ(0) = ρ(χmax) = 0. Of course, the Euclidean action (6.84) will be

integrated up to χmax. Indeed, the background consisting of a constant scalar potential

Vfv > 0 is described, in terms of our ansatz (6.72), by the following scale factor:

ρfv =
√

3

Vfv
sin






χ
√

3
Vfv




 , χ ∈ [0,χmax] (6.89)

where χmax represents the first positive and non-zero root of ρfv. Furthermore, the integral

of the background action can be found analytically, and is given by

Sbg =−24π2

Vfv
. (6.90)

Since the whole instanton is compact in dS→ AdS decays, the only boundary conditions

we can impose on the scalar field are12 φ′(0) =φ′(χmax)=0. On the other hand, in order to

find a non-singular instanton, for χ→χmax onemust also require ρ
′(χ) =−1+O ((χ−χmax)3).

We have found these requirements to be so restrictive, that for each potential in terms of

µ shown in figure 6.12(b), only a singlemembrane radius solved the equations of motion

correctly with respect to all of these boundary conditions.

The profiles of the scalar field and scale factor are shown in figure 6.14. The geometries

shown in fig. 6.14(b) have been numerically shown to satisfy ρ′(χmax) =−1. In all cases, the

scale factor clearly shows an Euclidean AdS space starting at χ= 0, which evolves up to the

membrane radius, from where a compact Euclidean dS evolution follows.13

12Note that, in our case where a membrane is present, each of these boundaries is defined with respect to a
different scalar potential (since the flux is different at each side of the membrane). Regardless, both φ(0) and
φ(χmax) should lie close enough to the minimum of their respective potentials.
13Note that these profiles are full numerical solutions to the instanton equations; i.e., no thin-wall approxi-

mation has been used in order to compute either the scalar field or the scale factor.
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6.6 Conclusions

In this chapter, we have studied a combination of the Coleman-deLuccia [67,69] and Brown-

Teitelboim [248,249] formalisms for vacuum decay using both scalar fields andmembranes,

motivated from our study of flux compactifications. We have reviewed the existing theory

on single three-form multiplets [258] which combines scalar fields and real three-form

fields in a supersymmetric fashion, in the context of N = 1,D = 4 supersymmetry and

supergravity. Such a system has been studied with the inclusion of flat supersymmetric

membranes in [260], which allows for interpolations between vacua defined by different

potentials related by flux integers.

We have shown that adding soft supersymmetry-breaking terms to such a theory allows

for rich phenomenological applications. Indeed, these terms enable false vacuum decays to

occur through the nucleation of membranes. We have studied such systems using Euclidean

methods and found the instanton solutions involving the form fields, scalar fields and

membranes, both without and with gravity included. Furthermore, we have checked that

we retrieve the correct supersymmetric limit as the supersymmetry-breaking terms are

made smaller, so the flat membrane case can be taken as the limiting instanton solution

corresponding to a membrane with infinite radius.

Recall from our discussion in chapter 1 that these processes have very interesting appli-

cations from a cosmological viewpoint [87], as they can naturally incorporate an emerging

universe with an inflationary period. In this work we have only investigated transitions

between very simple potentials, however, more phenomenologically interesting results

may be obtained by considering more involved models. The transitions studied in this

work essentially generalize the false vacuum decays we have studied in previous chapters,

as these new ones naturally incorporate the contributions of the three-forms to the flux

potential and the membranes which allow for transitions between them. On another note,

recent proposals [271] have investigated the possibility of embedding the Universe within a

positively curved membrane created due to a false vacuum decay in a higher-dimensional

theory. While we have studied these models in a four-dimensional environment, it could

be interesting to generalize our results to higher dimensions to check the compatibility of

these processes with the ones discussed in [271].

From a numerical perspective, we should note that the models we have solved here were

quite simple, in that they only involved a single (effectively real) scalar field. Such models are

quite easy to solve using an undershoot/overshoot algorithm, even when membranes and

gravity are present in the setup. However, as we know from the previous chapter, solving

non-perturbative decays with two or more scalar fields is no simple matter. Thus, it might be

useful to construct algorithms to compute false vacuum decays which effectively incorporate

the first-derivative jumps on both the scalar fields and the scale factor.

Of course, the examples we have explored here can be generalized in several ways, aside

from using more involved superpotentials. For once, we have broken supersymmetry by

including explicit soft supersymmetry-breaking terms, motivated from phenomenological

considerations [264]. However, recall that the tension of the membrane was chosen so

that when flat branes are considered, the whole system of scalar fields, form fields and the

membrane preserve half of the supersymmetry. Therefore, another interesting direction to
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explore would consist on breaking supersymmetry by somehow detuning the Nambu-Goto

term of the membrane.

Finally, in the models explored here we have considered single three-form multiplets,

which allow for one real three-form field for each complex scalar field in the model (see

appendix H and [258]). However, from our discussion in part II, we know that in a general

flux Landscape of type IIB compactifications, we require 2h1,2 +2 real (and integer) fluxes,

where h1,2 is the number of complex structure moduli. In order to build such a model in the

context of three-form supergravity, we will require so-called double three-form supergravity,

which allows for the inclusion of complex three-forms in the multiplets (i.e., two real fluxes

for each complex scalar field) plus a complex three-form coupled directly to the supergravity

multiplet. Such a system has been considered in [272], where some restrictions have been

pointed on the possible EFTs that may be considered as candidates for generating transitions

between vacua with flat membranes. It may be interesting to re-check this restrictions

when considering false vacuum decay mediated by supersymmetry-breaking spherical

membranes.
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Part IV

Final remarks





Chapter 7

General conclusions and outlook

In this thesis, we have explored several aspects of the String Theory Landscape, focusing

on the properties of its vacuum solutions and their ties to phenomenological aspects of

String Theory and Cosmology. As we have reviewed in chapter 1, the need to compactify the

extra dimensions of String Theory leads us to this collection of potentials determined by

the internal geometry of the compact dimensions and the fluxes required to stabilize them.

Thus, a solid knowledge of the Landscape and its vacuum solutions is vital to construct

phenomenologically acceptable scenarios which might link such a high energy theory with

our observations.

The first block of this work has been devoted to the study of vacua and other points of

interest of the String Theory Landscape, which we have constructed using the ingredients

outlined in the introductory chapter. In chapter 2 we have reviewed how the symmetries of

the flux Landscape can be used in our favour to truncate a subset of the moduli present in

the theory. In those cases where the symmetries reduce all of the physics to a single effective

dimension, we have been able to obtain the scalar mass spectrum of the axiodilaton and

complex structure sector of any vacuum in the Large Complex Structure regime, along with

their statistical properties. This information is of particular interest to construct vacua with

allmoduli stabilized, since systematic stabilization schemes of the Kähler sector may require

the rest of the moduli to be completely stable against α′ or instanton corrections. On the

other hand, we have also been able to explore the properties of vacua with parametrically

small instanton corrections (which allow for the best perturbative control of the EFT) by

setting the flux N 0
A ≡ f 0

A −τh0
A = 0. In that particular case, we have found that all masses are

of the order of the gravitino mass (m3/2) except for a single one, which may be found to be

parametrically massless.

Even though the conclusions of that particular chapter apply only to those models ad-

mitting a supersymmetric truncation to a single field, in chapter 3 we found that a particular

ansatz on the fluxes and the fields actually constitutes such a truncation, without alluding

to any symmetry of the moduli space. More concretely, the ansatz on the fluxes involves

the condition N 0
A = 0, so all the results and conclusions regarding that kind of vacua are

applicable to any Calabi-Yau orientifold compactification of type IIB String Theory, provided

one applies the ansatz described in (3.17). Therefore, we have found a particular region of the

moduli space of any compactification where the complete mass spectrum of the axiodilaton
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and complex structure sector can be found analytically, and it only depends on the vacuum

expectation value of the surviving modulus. Furthermore, we have noted in our statistical

analysis of the spectrum that as long as one stays away from the LCS point, where the above

mentioned massless mode appears, all the masses are guaranteed to be of the order of m3/2.

Thus, as long as all corrections to the EFT are under control, one may safely proceed to the

stabilization of the Kähler sector.

A natural continuation of the works presented in chapters 2 and 3 is then to find a

systematic way of applying the results above to stabilize the Kähler sector of geometries

where the complex structure sector can be reduced by a single field either due to symmetries

or by the imposition of a special ansatz. In any case, as we noted in chapter 3, we expect

the Large Volume Scenario for Kähler moduli stabilization to be an adequate scheme to

perform this task, since our no-scale vacua satisfy, in general, W0 ∼O (1). If this follow-up

study were shown to be successful, it would give us a way to construct vacua with allmoduli

stabilized, and would provide an excellent stepping stone towards a phenomenologically

consistent vacuum of String Theory.

On a related note, regarding the stabilization of the Kähler moduli, in chapter 4 we

simultaneously considered the axiodilaton, complex structure fields and a single Kähler

modulus in a simple compactification with non-perturbative terms included, giving rise to

the so-called Racetrack potential. While this scheme lacks the complexity of the previous

ones (and does not consider the truncated moduli of the complex structure sector), it gave

us a useful arrangement to look for anti-de Sitter minima and de Sitter saddle points in the

flux-induced scalar potential of the theory. This was done in the context of the strong de

Sitter Swampland conjecture, stating that there should be no de Sitter critical points (neither

minima, maxima nor saddle points) with a positive vacuum energy. Starting from some

known solutions in the very model we worked with, we were able to tune the flux integers

and racetrack parameters to generate models which not only featured supersymmetric

minima, but also de Sitter saddle points. The latter, of course, violate the strong de Sitter

conjecture, but are in agreement with the soft version of the statement. In any case, the

model we have used in this chapter may be generalized in many ways, for example, by

considering the complete Kähler structure of the geometry, or using any other truncation

ansatze on the complex structure sector.

The second block of this thesis has been focused on the cosmological aspects of the

String Theory Landscape, focusing on the physical processes and properties of minima and

other interesting points. For that matter, in chapter 5, we have modelled the Landscape

using Gaussian Random Fields, as a motivation to ease the study of higher-dimensional

potentials without having to deal with all the intricacies of the high energy Physics behind

them. In order to perform a more efficient study, we reviewed and developed conditioning

techniques known as Slepian models. These allowed us to ease the analysis of minima and

inflationary inflection points in random Landscapes, which generically become scarcer as

the dimensionality of the potential grows, whichmakes their study quite prohibitive. Thanks

to these conditioned potentials, we were able to fine tune the properties of these relevant

points to suit our needs. As we saw in chapter 5, Slepian models allow for the generation

of models which enable a local and global study of random potentials, thus enabling us

to study false vacuum decay from conditioned minima and inflationary processes around
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conditioned inflection points. Thanks to these conditioning techniques, we have been able

to obtain accurate statistics using numerical software and check the validity of different

approximations.

Of course, Slepian models still have a lot to offer. For once, they might be used as

conditioning techniques to study random and non-gaussian potentials, which might be

more suitable candidates for studying random models of the Landscapes. On the other

hand, the Slepian models used here have been applied to only two-dimensional potentials,

but they are in principle valid for any number of dimensions. We might then apply some of

the most successful approaches to estimate the decay-rate of minima, for example, to those

cases. Furthermore, a more in-depth study of inflation in these random potentials is still in

order, since the cases we studied here only consider extremely fine-tuned inflection-points,

which might yield phenomenologically acceptable observables. Therefore, developing a

more intricate study of inflation which accounts for any kind of inflection point in the

Landscape could provide insightful data about how likely each type of inflection point could

occur in a random potential, as well as their inflationary properties.

Finally, on the topic of tunnelling instabilities, in chapter 6 we have developed a frame-

work to consider instantons which involve scalar fields, membranes and fluxes, which may

point toward a more realistic way of undergoing decays in the Landscape. We have shown

that such instanton solutions exist inmodels where supersymmetry is explicitly broken, both

with and without gravity included in the setup. Quite interestingly, membranes interpolate

between regions described by different flux quanta ( just as in the Brown-Teitelboim scheme),

and scalar fields satisfy the usual boundary conditions of Coleman-deLuccia false vacuum

decay. Furthermore, in all cases, as the supersymmetry-breaking terms are made smaller,

we have found that the membrane radius of the solutions grows ever bigger, so the solutions

have the correct asymptotic behaviour towards a flat supersymmetric domain wall.

Even though the models studied here are quite constrained by the requirement that

bulk supersymmetry be preserved in the flat membrane case, this might prove to be a very

interesting first step towards realistic transitions in the Landscape, where not onlymoduli are

considered to be part of the decay, but also the fluxes threading the compact geometry. On

the other hand, we have only considered very simple examples with a single flux and scalar

field, but there is still room for generalizing these models. We could, for example, detune

the membrane tension to break supersymmetry that way, or we could also use models with

more fluxes and scalar fields, such as the ones we have considered in chapters 2-4, in order

to construct realistic vacuum decays in phenomenologically interesting models of type IIB

String Theory.
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Part V

Appendices





Appendix A

Hodge decomposition of

the flux vector

In this appendix we review the Hodge decomposition of the flux vector N [134]. This

decomposition was used in section 2.4.4 of the main text, and is also the starting point for

the derivations of the probability distributions of the type IIB flux ensemble.

The flux vector N has complex dimension 2h2,1 +2 and transforms non-trivially under

the symplectic group Sp(2h2,1+2,Z), i.e., it is a symplectic section. As we reviewed in section 2.2,

the set of 2h2,1 +2 vectors B = {Π,Π,DaΠ,DaΠ} evaluated at any given point {τ, za} is also

composed of symplectic sections, which can be shown to be linearly independent. In other

words, the set B forms a basis in the space of sections. To prove the linear independence of

the elements of B we introduce the symplectic product 〈A,B〉 of two sections A and B ,

〈A,B〉 = AT ·Σ ·B , (A.1)

where Σ is the symplectic invariant matrix (1.27). Then, it can be checked from the definition

of Π that the elements of B satisfy the orthogonality relations

〈Π,Π〉 = ie−Kcs ,

〈Π,Π〉 = 0,

〈Π,DaΠ〉 = 0,

〈Π,DaΠ〉 = 0,

〈DaΠ,DbΠ〉 = 0,

〈DaΠ,D
b
Π〉 =−ie−Kcsδ

ab
, (A.2)

from which the linear independence of the set B follows. In this setting the Hodge decom-

position of the flux vector can be obtained as the decomposition in the basis of sections

B,

N =
p

4π(a0Π+b0Π+aaDaΠ+baDaΠ ). (A.3)

Using these orthogonality relations it is straightforward to find that the coefficients {a0, aa ,b0,ba}



162

are determined by the values of the superpotential and its derivatives at the point {τ, za}

a0 =−eKcs D0W , b0 = ieKcs W, aa = eKcs D0DaW , ba =−ieKcs DaW. (A.4)

Therefore, the basis elements Π, DaΠ, DaΠ and Π correspond to the (3,0), (1,2), (2,1) and

(0,3) components of the flux G3 = F3 −τH3, respectively. In particular, at no-scale vacua

(1.37), which is the moduli space locus where the parts (3,0) and (1,2) ofG3 vanish (i.e.,G3 is

“imaginary self-dual”), the Hodge decomposition reduces to

N =
p

4πeKcs (iW Π+D0DaW DaΠ) , (A.5)

Substituting this expression into (1.41) we can obtain an expression for theD3-charge induced

by imaginary self-dual fluxes:

Nflux =−i4πe2Kcs+Kd

(

|W |2
〈

Π,Π
〉

+|D0D1W |2
〈

D1Π,D1Π

〉

+2Im
[

W D0D1W 〈Π,D1Π〉
])

= 4πeKcs+Kd
(
|W |2 +|D0D1W |2

)

, (A.6)

where, in the last step, we have applied the identities (A.2). Finally, using the definitions of

the gravitino mass and msusy, we find Nflux to be positive semidefinite, and given by

0 ≤ Nflux = 4πV 2
(

m2
3/2 +m2

susy

)

≤ L . (A.7)



Appendix B

Numerical search of no-scale

solutions in the octic

In this appendix we describe in detail the numerical method used in this work to obtain

the ensemble of no-scale solutions for theWP
4
[1,1,1,1,4] model, also known as the octic. As

discussed in section 2.5, this model features a single complex structure modulus and an

axio-dilaton, which we seek to stabilize at no-scale configurations (1.37).

B.1 Polynomial homotopy continuation and Paramotopy

It can easily be checked, using the machinery described in section 2.2, that the no-scale

conditions can be expressed as a system of non-linear polynomial equations near the LCS

point, where the instanton contributions to the prepotential (2.1) can be neglected [166]. In

the following we will denote this polynomial form of the no-scale conditions (1.37) by

Pi (z, z,τ,τ; f ,h) = 0, i = {1,2}, (B.1)

where f and h are the quantized flux vectors defined in (1.33), and which are subject to the

tadpole condition (1.42). The main numerical difficulty of this problem lies in solving the

polynomial system of equations (B.1) for the huge number of allowed choices of f and h.

In recent years, one of the most outstanding algorithms to solve systems of the form

of (B.1) has been that of polynomial homotopy continuation (PHC), coined within the field of

numerical algebraic geometry [164,165]. Schematically, this method works as follows:

1. Given the set of polynomial equations to be solved, P (x) = 0, the first step is to construct

an auxiliary system of equations, Q(x) = 0, which is easily solvable and that has the

same maximal number of solutions. We then define

H(x, t ) = γ(1− t )Q(x)+ tP (x), (B.2)

which is known as the homotopy function, where t ∈ [0,1] and γ is a random complex
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number.1

Note that the roots of H(x,0) correspond to those ofQ(x), while the roots of H(x,1)

are those of P (x), the ones we are interested in.

2. Once the roots ofQ(x) ∝ H(x,0) are determined, it can be shown that, as t increases,

the roots of H(x, t ) will be continuously deformed from their original values [165].

Thus, we can easily track the path each solution takes as we vary t up to t = 1, where

the solutions correspond to the solutions to our problem.

Many different implementations of the PHC method can be found in the literature,

such as phcpy [273], StringVacua [274], and Bertini [275]. In this work, we have used

Paramotopy2 [163], a highly efficient PHC-based algorithm specially suited for polynomial

systems like (B.1) which depend on parameter tuples.

In short, Paramotopy works in two steps. Given a certain parametrically-dependent

polynomial system P (x; p), it first performs the above PHC algorithm for a random p0.

Once that has been solved, it performs the same algorithm for the homotopy

H(x, t ; p0, p) = γ(1− t )P (x; p0)+ tP (x; p) (B.3)

where p corresponds to one of the parameter choices we are interested in. However, in

this second run, the number of paths that have to be tracked is qualitatively smaller than

in the first step, as only those paths that led to proper solutions of P (x; p0) have to be

followed. In cases where the number of well-behaved paths is orders of magnitude lower

than the maximum number of solutions, this second step proves to be crucial for an efficient

solution [163].

B.2 Search for no-scale solutions in one-parameter models

In order to perform a consistent exploration of the moduli space vacua of the octic, we took

random integer flux values from a uniform distribution, that the components of the flux

vectors satisfy f ,h ∈ [− fmax , fmax]. Only those flux tuples satisfying the tadpole condition

0 < h ·Σ · f ≤ L (B.4)

were kept where, for our purposes, we took L = 972, and chose fmax = 50 to be sufficiently

large for the distribution of the D3-charge Nflux (1.41) to converge to a flat distribution. This

way, we avoid artificially induced boundary effects associated to having set a finite value for

fmax .

For the case of generic flux vacua, we generated 107 flux tuples consistent with the tadpole

condition. On the other hand, for the constrained case, we generated 106 consistent flux

1This parameter ensures no singularities will occur during the deformation ofQ(x) into P (x). For more
detail, see [165].

2Software available at www.paramotopy.com
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tuples3 following the algorithm above, while manually keeping f 0
A = h0

A = 0.

With these parameter choices in hand, we employed Paramotopy to solve the system of

no-scale conditions given by (1.37). Note that (1.37) involves both τ, z and τ, z . One possibility

to deal with this would be to solve for the real and imaginary parts of each variable. However,

here we solved for barred and unbarred variables separately, and then only kept those

solutions which actually satisfied the conjugation relation between the variables. We found

that this second choice was easier to solve by the software, and kept the equations simple.

The whole process took around 5 hours in a 46-core machine for the constrained ensemble

(106 tuples) and 50 hours for the generic ensemble (107 tuples).

From the resulting ensemble of no-scale solutions, we only considered (in section 2.6)

those with moderately small instanton corrections. When performing this cut in our ensem-

ble data, we made sure that the EFT we used to describe the octic model is indeed reliable.

The sizes of these corrections were considered a posteriori, once the tree-level equations

had been solved. More specifically, at each of the obtained solutions, we computed the

Kähler potential and Kähler metric, both neglecting entirely the instanton contributions to

the prepotential and considering the leading correction (2.52). First, we selected only those

solutions for which the Kähler metric was still well defined after including the corrections,

i.e., where it was non-degenerate and positive. Then, with these solutions, we computed

the gravitino mass m3/2, rescaled Yukawa coupling κ̊, and Kähler metric (with and without

considering the leading instanton), and selected those vacua where the relative corrections

were < 20%. The resulting ensemble of solutions is represented in blue in the histograms of

figures 2.7, 2.8 (generic ensemble), and 2.11 (constrained ensemble).

B.3 Redundancies of the EFT and solution duplicates

As discussed in sections 2.2 and 2.5, the low energy supergravity description of type IIB

string compactifications has two inherent redundancies: one associated with the modular

SL(2,Z) transformations (1.39), and one associated with the symplectic transformations

acting as in (1.28) and (1.38). Thus, no-scale solutions which can be related to each other by

any combination of these transformations should be regarded as equivalent.

To avoid double-counting no-scale solutions related by the SL(2,Z) symmetry, we trans-

ported each solution to the fundamental domain of themodular group, given by the complex

upper half-plane with |τ| > 1 and |Re(τ)| < 1/2. This operation can be easily performed by

successively applying the generators of the group, given by

Tb =
(

1 b

0 1

)

τ→ τ+b

,
R =

(

0 −1

1 0

)

τ→−1/τ

. (B.5)

Note that while these transformations change the value of f and h, it can be shown that the

quantity Nflux remains invariant, so the transported solutions will nevertheless satisfy the

3Random fluxes are more prone to high corrections as opposed to those with N 0
A = 0, mostly due to the

difference in the number of solutions near the LCS point. Thus, to keep a considerable amount of solutions in
the former case, we generated more flux tuples.
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tadpole condition.

As for the symplectic transformations, at large complex structure the corresponding

source of redundancy comes from the monodromy around the LCS point, which acts on

the complex structure field z and the fluxes as [98,124, 133,172]

z → z − i n ≡
{

N → An ·N

Π→ An ·Π , (B.6)

where n ∈Z and

A =








1 0 0 0

1 1 0 0

4 −2 1 −1

−4 −2 0 1








(B.7)

for the octic4. This symmetry allows us to define a fundamental domain on the z plane,

which we chose to lie at |Im(z)| ≤ 1/2.

Both sets of transformations, (B.5) together with (B.6) and (B.7) can be used to transport τ

and z to their respective fundamental domains. Vacua with the same flux and moduli values

(up to 10−8, corresponding to the error estimate of Paramotopy) are then removed to avoid

double-counting solutions in the numerical scan.

4See [124] for more detail on this and other one-parameter models.



Appendix C

Density distribution of no-scale

flux vacua

In this appendix we present a derivation of the theoretical probability distributions for the

density of no-scale vacua (2.57) and (2.70), which describe the generic ensemble and the one

constrained by the condition N 0
A = 0, respectively.

The proof below relies only on the continuous flux approximation, and closely follows

the one presented in [46]. We begin by deriving the probability distribution for the variables

(2.56) at no-scale vacua using the Hodge decomposition (A.3). We then combine the result

with a generalised version of the Kac-Rice formula to derive the density of flux vacua. In

each of these two steps, we will present the argument first for the generic ensemble, as

obtained in [46], and then we will adapt the it to the case the constrained ensemble.

C.1 Derivation of the Denef-Douglas distribution

Following [46], our starting point is a flat distribution for the 4m = 4(h2,1 +1) integer flux

parameters

{ f I
A ,h I

A, f B
I ,hB

I }. (C.1)

Note that this distribution also matches the numerical procedure we followed to obtain the

ensemble in theWP
4
[1,1,1,1,4] model, where flux realisations are drawn from a flat distribution.

In addition, we will also consider the situation when the tadpole constraint is large, L ≫ 1.

In this case the typical values of these flux parameters are also large, and can be regarded as

a continuous random variables. The corresponding probability distribution is therefore

dµflux( f ,h) =N (d f dh)4m . (C.2)

Begin by switching variables to the complex flux parameters N = f −τh and their conjugates
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N = f −τh. The associated Jacobian is

J = ∂(NA, N A, N B , N B )

∂( f A,hA, f B ,hB )
=





∂(NA ,N A)
∂( f A ,hA)

0

0 ∂(N B ,N B )
∂( f B ,hB )



 , (C.3)

where

∂(NA, N A)

∂( f A,hA)
= ∂(N B , N B )

∂( f B ,hB )
=

(

1 1

−τ1 −τ1

)

. (C.4)

Then,

det(J ) = det

(

1 1

−τ τ

)2m

= (−2iImτ)2m , (C.5)

implying that the resulting probability distribution for {N , N } reads

dµflux(N , N ) =N (d N d N )4me2mKd . (C.6)

Next, we consider the change of variables between {N , N } and {Z0,Fa ,F0, Za , c.c.}, defined

by1

F0 ≡ eK /2D0W =−ieK /2N † ·Σ ·Π ,

Fa ≡ eK /2DaW = eK /2N T ·Σ ·DaΠ ,

Z0 ≡ eK /2W = eK /2N T ·Σ ·Π ,

Za ≡ eK /2D0DaW =−ieK /2N † ·Σ ·DaΠ , (C.7)

where the components of the vectors have been expressed in a canonically normalised basis.

Note that these definitions coincide with those in the main text, (2.56), up to a volume factor

V . Since the volume is independent of the complex structure moduli or the dilaton, the

effect of the rescaling necessary to make contact with (2.56) amounts to a redefinition of the

normalisation constant, and thus we will ignore the volume prefactor in the following. The

Jacobian J = ∂(Z0,Fa ,F0, Za ,c.c.)/∂(N , N ) of the transformation above reads

J = eK /2

(

Σ ·Π Σ ·DaΠ 0 0 0 0 iΣ ·Π iΣ ·DaΠ

0 0 −iΣ ·Π −iΣ ·DaΠ Σ ·Π Σ ·DaΠ 0 0

)

.

(C.8)

Then,

det(J ) = e2mK |det M |2 . (C.9)

1In the following derivations, in order to simplify the notation, we will ignore the overall 1/
p

4π factor in
the definition of W (1.35), since it plays no role in the final result.
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where

M ≡
(

Σ ·Π, Σ ·DaΠ, iΣ ·Π, iΣ ·DaΠ .
)

(C.10)

To compute the determinant, we use the trick

|det M |2 = |M †M | = |M † ·Σ ·M | , (C.11)

since |Σ| = 1. Then, using the orthogonality properties of the basis {Π,Π,DaΠ,DaΠ} for the

space of symplectic sections under the product defined by Σ, we obtain [46]

M † ·Σ ·M =








e−Kcs 0 0 0

0 −ie−Kcsδ
ab

0 0

0 0 e−Kcs 0

0 0 0 ie−Kcsδ
ab








. (C.12)

The determinant of this matrix is then det(M † ·Σ ·M) = e−2mKcs . Using this result we find

that the determinant of the Jacobian of the change of variables is

det(J ) = e2m(Kd+Kk ) , (C.13)

and therefore, noting that the factor e2mKd cancels with that of (C.6), we find that the

probability distribution on the variables {F0,Fa , Z0, Za} is flat

dµflux(FA, ZA,F A, Z A) =N (dFAdF Ad ZAd Z A)4me−2mKk . (C.14)

In these variables no-scale vacua correspond to those configurations with FA = 0, and the

tadpole constraint requires

Nflux = ZA Z A ≡ |Z |2 ≤ L. (C.15)

The no-scale conditions can be imposed by introducing a delta function δ2m(FA,F A) in

(C.14), which is equivalent to considering simply the distribution

dµflux(ZA, Z A)|no-scale =N (d ZAd Z A)2m . (C.16)

In other words, the variables ZA = {eK /2W,eK /2D0DaW } and their complex conjugates form

a set of 2(h2,1+1) independent complex variables uniformly distributed on the sphere (C.15)

defined by the tadpole constraint. We refer to the previous probability density function as

the Denef-Douglas distribution.

C.2 Constrained flux distribution

We will now repeat the above computation for the constrained ensemble of vacua. We begin

by noting that this constraint can be implemented in the continuous flux approximation
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with Dirac delta functions as

dµflux( f ,h) =N (d f dh)4m δ( f 0
A )δ(h0

A) . (C.17)

After changing to complex flux coordinates, we obtain

dµflux(N , N ) =N (d N d N )4me2mKdδ(N 0
A)δ(N 0

A)|J0| , (C.18)

where

|J0| = det
∂(N 0

A, N 0
A)

∂( f 0
A

,h0
A

)
= det

(

1 1

−τ −τ

)

=−2i Im(τ), (C.19)

and so

dµ f lux(N , N ) =N i(d N d N )4me(2m−1)Kdδ(N 0
A)δ(N 0

A) . (C.20)

Using the Hodge decomposition of the flux vector

N = e
1
2 (−Kk−Kd+Kcs )(−F 0Π+ iZ0Π+Z aDaΠ− iFaDaΠ) , (C.21)

we can obtain the form of the constraint in terms of the variables {ZA,FA, Z A,F A}. It is given

by

N 0
A = e

1
2 (−Kk−Kd+Kcs )(−F 0 + iZ0 −

√

3/(1−2ξ)Z 1 +
√

3/(1−2ξ)iF1) = 0. (C.22)

We can implement this condition as a constraint on the variables

Z0 = Z∗
0 (Za ,FA) , Z 0 = Z∗

0 (Za ,FA) (C.23)

with the aid of Dirac delta functions, so that the final density function, written in terms of

{ZA,FA, Z A,F A}, reads

dµflux =N i(dFAdF Ad ZAd Z A)4me−Kcsδ(Z0 −Z∗
0 )δ(Z 0 −Z∗

0 ) . (C.24)

Here we have absorbed the Calabi-Yau volume factor, which is independent of the axio-

dilaton and complex structure fields, in the normalisation constant.

C.3 Density of generic no-scale vacua

We now turn to the computation of the density of flux vacua in the generic ensemble. The

number of no-scale vacua Cvac(N ) for a given choice of flux N can be obtained using the

generalised Kac-Rice formula [168,169]

Cvac(N ) =
∫

d 2mu δ2m(DW ) |detD2W | , (C.25)
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with u A = {τ, zi } and

δ2m(DW ) = δm(D AW ) δm(D AW ), D2W =
(

D ADB W D ADB W

D ADB W D ADB W

)

. (C.26)

Let us now consider the total number of no-scale vacua in the ensemble of fluxes satisfying

the tadpole constraint Nflux ≤ L, which is given by

Cvac(Nflux ≤ L) =
∑

N

Θ(Nflux−L)

∫

d 2mu δ2m(DW )|detD2W | . (C.27)

Note that here we have chosen to count all choices of flux with equal weight, consistent with

our initial assumption that fluxes are drawn from an underlying uniform distribution.

As discussed in [46], using the integral representation of the Heaviside theta function we

can rewrite the previous formula as

Cvac (Nflux ≤ L) = 1

2πi

∫

C

dα

α
eαL∗

C (α) (C.28)

with

C (α) ≡
∑

N

∫

d 2mu e−αNflux δ2m(DW )|detD2W |

≈
∫

(d N d N )4m

∫

d 2mu e−αNflux δ2m(DW )|detD2W |e2mKd , (C.29)

where in the last line we have approximated the sum over the integer fluxes by an integral

with measure given by (C.6).

Expressing the gradient, DW , and the Hessian of the superpotential, D2W , in a canoni-

cally normalised basis, we find

C (α) =
∫

(d N d N )4m

∫

d 2mu|det g | e−αNflux δ2m(DaW )|detH |1/2e2mKd

=
∫

(d Z dF )4m

∫

d 2mu|det g | e−αV 2|Z |2 δm(FA)δm(F A)|detH |1/2e−2mKk

= V 4m

∫

(d Z d Z )2m

∫

d 2mu|det g | e−αV 2|Z |2 |detH |1/2 . (C.30)

In the second line, the term of the form emK arises as a result of the change of variables (C.7)

in the argument of the delta function, which then is reabsorbed when expressing detD2W in

terms of H .2 Rescaling ZA → ZA/(V
p
α), it is possible to see that C (α) =C (1,V = 1)α−2m

and the overall volume factor disappears, so we can explicitly perform the integral in α to

give

Cvac (Nflux ≤ L) =Λ(L,m) ·
∫

d 2mu|det g |
∫

(d Z d Z )2m e−|Z |2 |detH |1/2 . (C.31)

2Recall that in canonically normalized coordinates we have the relation H = eK (D2W )2 = (m3/21+M )2,
from (2.8).
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where Λ(L,m) is a constant depending on the tadpole parameter L and the moduli space

dimension m. Consistent with the previous equation, the density of flux vacua is then

defined by

dµvac(z,τ) =N ·d 2mu |det g |
[∫

(d Z d Z )2m e−|Z |2 |detH |1/2
]

. (C.32)

C.4 Density of constrained vacua

For the ensemble with constrained fluxes the argument proceeds as before, but when chang-

ing to the variables (C.7) in (C.30), we should use the measure (C.24) rather than (C.16). As a

result, the density of no-scale vacua is given by

dµvac(z,τ) =N ·d 2mu |det g |
[∫

(d Z d Z )2(m−1) e−|Z |2 |detH |1/2e−Kcs

]

, (C.33)

where the integral is over the subspace of {ZA, Z A} defined by the constraints (C.23) with

FA = F A = 0 (no-scale conditions). In the case when the complex structure moduli space is

one dimensional (m = 2), the integral appearing in the previous equation reduces to

∫

d Z1d Z 1e
− 2(2−ξ)

1−2ξ |Z1|2 |Z1|4
∣
∣
∣1+

9

(1−2ξ)2
− 3(2+ κ̊2)

(1−2ξ)

∣
∣
∣
ξ+1

ξ
, (C.34)

where we used the relation |Z0| =
√

3/(1−2ξ)|Z1| (given in (2.46)) and the definition of
the LCS parameter e−Kcs = |2Imκ0|(ξ+1)/ξ. Integrating the previous expression over the

complex variable Z1, and over the directions Imz and Reτ we find

dµvac(z,τ) =N · (1+ξ)

(2−ξ)2

1

r 2s2
dr d s , (C.35)

expressed in terms of the variables (2.61), which agrees with (2.70).



Appendix D

Bounds on the LCS parameter

The theoretical distributions (2.57) and (2.70) were derived in order to have an analytical

description of the ensemble of no-scale vacua, constructed as described in section 2.5 and

appendix B. However, this characterisation is only a faithful representation of the Landscape

in the regime of moduli space where both the EFT and the continuous flux approximation

are valid.

Indeed, vacuawith large instanton corrections should be discarded, since the EFTwe used

cannot be trusted in those cases. As the vacuum density functions (2.57) and (2.70) contain no

information regarding the size of the instanton contributions, they are bound to be inaccurate

in the regime where these corrections are large. Furthermore, from [145, 155], we know

that in the generic ensemble the density of vacua should be suppressed with respect to the

theoretical distribution (2.57), due to the breakdown of the continuous flux approximation.

In this appendix we discuss the parameter space where the statistical description can be

applied, providing an analytic estimate for this region in terms of the LCS parameter ξ for

the octic.

D.1 No-scale equations near the LCS point

We begin by rewriting the no-scale equations (1.37) in the LCS limit in a more convenient

way for the derivations below. In this regime, ξ→ 0, the Kähler potential of the complex

structure sector can be expressed as

Y ≡ e−Kcs ≈ 1

6
κi j k (zi + zi )(z j + z j )(zk + zk ) , (D.1)

and the canonically normalized Yukawa couplings satisfy [145, 155]

κ111 =
2
p

3
Y , κ11ã = 0, κ1ãb̃ =− 1

p
3

Y δãb̃ , (D.2)

where the direction “1” corresponds to the no-scale direction (2.31) and ã, b̃ = 2, . . .h2,1. We

also have

za =
p

3

2
δa

1 + iλa , Ka =−
p

3δa
1 , (D.3)



174 D.1. NO-SCALE EQUATIONS NEAR THE LCS POINT

where za (with a = 1, . . . ,h2,1) are the canonically normalised fields at the vacuum, and

λa = Im(za). After some algebra, it can be shown that the superpotential has the form

W =− i

6
κabc N 0

A za zb zc + 1

2
κabc N a

A zb zc + i
(

κa N 0
A −κab N b

A −N B
a

)

za

+κ0N 0
A +κa N a

A −N B
0 , (D.4)

while the no-scale conditions (1.37) read

D0W =− 1

6
κabc N 0

A za zb zc − i

2
κabc N a

A zb zc +
(

κa N 0
A −κab N b

A −N B
a

)

za

− iκ0N 0
A − iκa N a

A + i N B
0 = 0,

DaW =− i

2
κabc N 0

A zb zc +κabc N b
A zc + iκa N 0

A − iκab N b
A − i N B

a −
p

3W δ1
a = 0. (D.5)

To analyse these equations it is convenient to introduce the flux parameter redefinitions

N̂ B
0 ≡− 1

6
κabc N 0

Aλ
aλbλc − 1

2
κabc N a

Aλ
bλc −

(

κa N 0
A −κab N b

A −N B
a

)

λa

+κ0N 0
A +κa N a

A −N B
0 , (D.6)

N̂ B
a ≡− 1

2
κabc N 0

Aλ
bλc −κabc N b

Aλ
c −κa N 0

A +κab N b
A +N B

a . (D.7)

Note that the flux parameters f̂ B
I and ĥB

I in N̂ = f̂ −τĥ are still real, but are not integers in

general. Using these new parameters, the superpotential now reads

W = N̂ B
0 − i

p
3

2
N̂ B

1 +
[(p

3

4
λ1 − i

8

)

N 0
A +

p
3

4
N 1

A

]

Y (D.8)

and the no-scale conditions are given by

[(
1

2
λ1 + i

4
p

3

)

N 0
A + 1

2
N 1

A

]

Y + i N̂ B
1 =− 2

p
3

N̂ B
0 , (D.9)

[(

1

2
λ1 − i

p
3

4

)

N 0
A + 1

2
N 1

A

]

Y + i N̂ B
1 = 2

p
3N̂ B

0 , (D.10)

[
1

2
λa′

N 0
A + 1

2
N a′

A

]

Y + i N̂ B
a′ = 0. (D.11)

These expressions can be rewritten in a more compact way as

N̂ B
0 =− i

8
Y N 0

A, N̂ B
a = i

2
Y

(

N 0
Aλ

a +N a
A

)

. (D.12)

The second equation can be equivalently written, after contracting it with the vielbein ea
i
, as

N̂ B
i = i

2
Y

(

N 0
Aλ

j +N
j

A

)

g j i , (D.13)
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where we have used that N̂ B
a ea

i
= N̂ B

i
, and N a

Aea
i
= N

j

A
ea

j
ea

i
= N

j

A
g j i , and similarly for the

terms involving λa . The redefined fluxes can also be rewritten as

N̂ B
0 ≡− 1

6
κi j k N 0

Aλ
iλ jλk − 1

2
κi j k N i

Aλ
jλk −

(

κi N 0
A −κi j N

j

A
−N B

i

)

λi

+κ0N 0
A +κi N i

A −N B
0 , (D.14)

N̂ B
i ≡− 1

2
κi j k N 0

Aλ
jλk −κi j k N

j

A
λk −κi N 0

A +κi j N
j

A
+N B

i . (D.15)

D.2 Lower bound on the LCS parameter

We will now determine the regime of applicability of the continuous flux approximation

near the LCS point on the generic flux ensemble, expressed as a lower bound for the LCS

parameter ξ.

Let us first discuss the equation in (D.12) for N̂ B
0 in the ξ→ 0 limit when N 0

A 6= 0. From

the definition of the LCS parameter ξ (2.25), we can rewrite Y as

Y = 2 |Imκ0|
1+ξ

ξ
≈ 2 |Imκ0|ξ−1 (D.16)

in the LCS limit, that is, ξ→ 0. On the other hand, from the definition of N 0
A , we can obtain

the following lower bound:

∣
∣N 0

A

∣
∣
2 = ( f 0

A −Re(τ)h0
A)2 + Im2(τ)(h0

A)2 ≥ 1, (D.17)

where in the last step we used Im(τ) > 1, as required for the vacua to be in the weak string

coupling regime. This implies that at no-scale vacua near the LCS limit, we must have

|N̂ B
0 | ≈

|Imκ0|
∣
∣N 0

A

∣
∣

4ξ
. (D.18)

Note that, since by assumption |N 0
A| 6= 0, the right hand side blows up when ξ→ 0, and so

|N̂ B
0 |&O (ξ−1), which will require some contributions in (D.7) to become large. From (D.17)

we can see that the previous condition will be the least restrictive when |N 0
A| and Imτ are

both O (1), leading to

|N̂ B
0 |&

|Imκ0|
4ξ

. (D.19)

In order to solve this condition, one could try to tune the parameters λi = Imzi to be large,

λi =O (ξ−1/3); however, in that case the cubic terms in (D.7) would dominate, and the first

equation in (D.12) would become

1

6
κi j kλ

iλ jλk !≈ i
|Imκ0|

4ξ
, (D.20)

which cannot be solved, as the left hand side is real and the right hand side purely imaginary.
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This conclusion is in agreement with the results of [145, 155], where it was shown that if the

superpotential is dominated by its cubic term, the no-scale equations (1.37) cannot admit

solutions in a neighbourhood of the LCS point.

As a consequence, we need terms with different powers of λi in (D.7) to be comparable

and, assuming the constant coefficients of the prepotential to be O (1), due to the tadpole

condition (1.41) we will typically have |N̂ B
0 | =O (

p
Nflux). Combining all of this, we arrive at

the bound we were looking for:

ξ& ξmin
∣
∣

N 0
A
6=0 ≡

|Imκ0|
4
p

Nflux
. (D.21)

As an example, for the WP
4
[1,1,1,1,4] model, we have Nflux = 972 and 2|Imκ0| ≈ 2.9, which

implies

ξmin =O (10−2) . (D.22)

In the case of the constrained ensemble, the previous argument does not apply. In the

limit ξ→ 0 with f 0
A = h0

A = hz
A = 0 and

f B
0 = f z

A kz +
hB

0

2(hB
z )2

[

2hB
z ( f B

z + f z
A kzz)− f z

A hB
0 kzzz

]

, (D.23)

the LCS parameter ξ can be used to parametrize no-scale solutions. This leads to a flat

direction along Imτ≈ (ξ0/ξ)1/3 | f z
A /hB

z |, where ξ0 ≡ (3/24)|Imκ0|k2
zzz , which allows solutions

arbitrarily close to the LCS/weak-coupling limit.

D.3 Maximum value consistent with small instanton correc-

tions

In this section, we give an upper bound ξmax, independent of the flux vector N , by requiring

the instanton corrections to the metric of the complex structure moduli space to remain

small. As we mentioned above, the numerical analysis shows that the field space metric is

typically the object where these corrections have the largest effect, and thus it is particularly

suitable for estimating the regime of validity of the EFT. For convenience we will split the

prepotential as

F (z) = F̂ (z)+F∗(z)+ . . . , (D.24)

where F̂ is the perturbative part of the prepotential, andF∗ denotes the leading term of

the instanton contributions Finst. In the case of the octic model, near the LCS point the

prepotential is given by (2.51) and (2.52), which have the form

F̂ (z) = i

6
κ3z3 + 1

2
κ2z2 + iκ1z + 1

2
κ0 , F∗(z) =− i n1

(2π)3
e−2πz , (D.25)
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the latter being perturbatively small when compared to F̂ in the LCS regime. The period

vector (1.31) is then split as

Π=








1

i z

2F − z∂zF

−i∂zF







=








1

i z

2F̂ − z∂zF̂

−i∂zF̂







+








0

0

2F∗− z∂zF∗
−i∂zF∗







≡ Π̂+Π∗ . (D.26)

Keeping only to leading instanton contribution, the Kähler potential (2.4) is then

e−Kcs = i Π
† ·Σ ·Π≈ i Π̂

† ·Σ · Π̂+ i Π̂
† ·Σ ·Π∗+ i Π

†
∗ ·Σ · Π̂

= e−K̂ −2 Im(Π̂† ·Σ ·Π∗) , (D.27)

Defining I ≡ Im(Π̂† ·Σ ·Π∗) we obtain to leading order

Kcs ≈ K̂ +2I eK̂ . (D.28)

Denoting the zeroth order metric and its leading instanton correction as

Gzz ≡ ∂z∂z K̂ , gzz ≡ ∂z∂z(2I eK̂ ) , (D.29)

we find that the field space metric is given by

∂z∂zKcs ≈Gzz + gzz

=Gzz +2eK̂
(

GzzI + K̂z K̂z I + K̂zIz + K̂zIz +Izz

)

, (D.30)

where subindices denote partial derivatives. Letting e1
z be a real vielbein with respect to the

zero-order metric Gzz (so that G11 = 1), we then find

g11 = 2eK̂
((

1+ (K̂1)2
)

I + K̂1

(

I1 +I1

)

+I11

)

, (D.31)

where we used K̂1 = ez
1K̂z = ez

1
K̂z = K̂1. The value of I and its partial derivatives are found

by direct computation. Defining θ = 2πIm(z) and using (2.26), we get

I =− n1

4π3
e−2πRe(z)(1+2πRe(z))cos(θ) , (D.32)

I1 +I1 =
2n1

π
e−2πRe(z)Re

2(z)

x
cos(θ) , (D.33)

I11 =
2n1

π
e−2πRe(z)Re

2(z)

x2
cos(θ) . (D.34)

From the analysis in section 2.4, we know that the relations

eK̂ = 1

2|Im κ0|
ξ

1+ξ
, K̂1 =−

√

3

1−2ξ
, (D.35)
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Figure D.1: P-P plots of the theoretical distribution of ξ, (2.62), versus the data obtained within the generic

ensemble for (a) 0.01 ≤ ξ≤ 0.49 and (b) 0.025 ≤ ξ≤ 0.185. For reference, we plot the curve Fth(ξ) = Femp(ξ)

corresponding to perfect agreement with a dashed line. We find that the distribution only fits the data within the

range plotted in (b).

x2 = 3(1−2ξ)

(1+ξ)2
, Re z =

(
3|Im κ0|

2κ3

)1/3 1

ξ1/3
(D.36)

hold. Thus, substituting (D.32) through (D.36) into (D.31), and defining α≡
(

3|Imk0|
2k3

)1/3
, we

get

g11 =− n1 cosθ

6π3|Im κ0|
(2−ξ)ξ1/3

(1+ξ)(1−2ξ)
e
− 2πα

ξ1/3

(

(2πα)2(1+ξ)+3ξ2/3 +6παξ1/3
)

.

Requiring the relative corrections to the canonically normalised metric to remain below

20% (or equivalently |g11| ≤ 0.2, since G11 = 1), we find

ξ≤ ξmax ≈ 0.2. (D.37)

D.4 Accuracy of the statistical description

The statistical description of the flux ensemble presented in section 2.6 relies on two as-

sumptions: first that the prepotential defining the EFT (2.51) contains only polynomial terms

(we neglect instanton contributions, Finst ≡ 0), and second that the flux vector N can be

regarded as a continuous random variable. These two conditions were imposed to make

the problem analytically tractable, and also to simplify the numerical analysis so that the

homotopy continuation methods could be applied. Thus, it is expected that, in the regimes

of parameter space where the vacua fail to be consistent with these assumptions, we should

observe discrepancies between the theoretical probability distributions and the histograms

obtained from the numerical scan. Here, we present the method we used to identify these

deviations in the data in a systematic way. For definiteness we will focus the discussion on

the distribution of the LCS parameter ξ, whose theoretical distributions for the generic and

constrained ensembles are given by (2.62) and (2.71), respectively.

As we discussed above, the predicted distribution cannot be applied in the whole domain
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of ξ. Vacua near the conifold point ξcnf ≈ 0.39 are prone to big instanton corrections while,

for the generic ensemble, those in the LCS limit ξ → 0 are expected to be suppressed

due to the breakdown of the continuous flux approximation. Thus, we will now establish

empirical bounds where the theoretical distributions for ξ are applicable. A widely used

graphical method to verify how an empirical data distribution performs against a reference

distribution is that of P-P plots (see, e.g., [276]). Themethod consists in plotting the empirical

and theoretical cumulative distributions functions, Fem(ξ) and Fth(ξ), one against the other.

If the agreement is perfect then the resulting plot is a straight line at 45 degrees.

As shown in figure D.1, in the generic ensemble case, the best agreement with the Denef-

Douglas distribution was found for

0.025 ≤ ξ≤ 0.185. (D.38)

The large discrepancy observed in figure D.1(a) is due to the deficit of vacua near the LCS

point in the generic ensemble. Note that these bounds are in very good agreement with the

estimates (D.22) and (D.37) obtained above, which correspond to the limits of applicability

of the continuous flux approximation and of the EFT, respectively.

A similar analysis shows that for the constrained ensemble, the theoretical and empirical

distributions agree in the interval

5 ·10−5 ≤ ξ|N 0
A
=0 ≤ 0.185. (D.39)

As can also be seen in the histograms of section 2.6, the Denef-Douglas distribution (2.57)

provides an accurate description of the LCS parameter and other physical quantities (Yukawa

couplings, scalar and fermion masses...) within the limits established above.
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Appendix E

Construction of Slepian models

Throughout this appendix, we will give a detailed description of the tools and derivations

needed in order to generate conditioned Gaussian random fields, such as the ones we have

been using throughout the main text. We will be mainly following [170,227].

E.1 Introductory remarks and some properties of Gaussian

random variables

A random variable x is said to follow a normal or Gaussian distribution if its probability

distribution function (PDF) is given by

f (x) = 1
p

2πσ2
e
− (x−µ)2

2σ2 (E.1)

where µ= 〈x〉 and σ2 =
〈

(x −µ)2
〉

are the mean and variance of the distribution, respectively.

Likewise, a p-dimensional vector xT = (x1, . . . , xp ) is defined as a Gaussian random vector

(composed of jointly Gaussian variables) if every linear combination satisfies

a ·x =
p∑

i=1

ai xi ∼ N (µ̃, σ̃), (E.2)

that is, it follows a normal distribution. The PDF of the whole vector is

f (x) = 1

(2π)p/2
p

detΣ
exp

[

−1

2
(x −µ)T

Σ
−1(x −µ)

]

(E.3)

where µ = 〈x〉 is the mean vector and Σ is the (non-degenarate) covariance matrix, whose

elements are given by

Σi j =
〈

(xi −µi )(x j −µ j )
〉

. (E.4)
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E.2 Conditioned Gaussian random vectors

Let A be a p×p matrix and xT = (x1, . . . , xp ) a Gaussian random vector. Then, by definition,

y = Ax → y j = Ai j xi (E.5)

is also a Gaussian random vector with mean µ′ and covariance matrix Σ
′. Since (E.5) is a

linear transformation, the new mean is given by

µ′ = Aµ, (E.6)

whereas the new covariance matrix is

Σ
′
i j =

〈

(yi −µ′
i )(y j −µ′

j )
〉

=
〈

(xa Aai −µb Abi )(xc Ac j −µd Ad j )
〉

= 〈xa xc〉Aai Ac j −µd 〈xa〉Aai Ad j −µb〈xc〉Abi Ac j +µbµd Abi Ad j

=
〈

(xa −µa)(xb −µb)
〉

Aai Ab j = (AT )i aΣab Ab j (E.7)

or, more compactly,

Σ
′ = AT

ΣA. (E.8)

In order to introduce conditional probability notions to jointly Gaussian random vari-

ables, let us discuss some interesting properties of grouped random variables. If we split

some Gaussian vector x into two parts, namely,

x = (x1, x2) =
(

(x1, . . . , xd ), (xd+1, . . . , xp )
)

(E.9)

then the mean vector and covariance matrix will also split accordingly:

µ=
(

µ1,µ2

)

=
(

(µ1, . . . ,µd ), (µd+1, . . . ,µp )
)

(E.10)

Σ=
(

Σ11 Σ12

Σ21 Σ22

)

, (E.11)

each block in Σ having the proper dimensions to accommodate the covariances among the

vectors x1 and x2.

With these remarks at hand, let us perform a linear transformation on x , choosing

A =
(

1d −Σ12Σ
−1
22

0 1p−d

)

. (E.12)

After some straightforward algebra, one can show that the new Gaussian vector y is

y T =
(

x1 −Σ12Σ
−1
22 x2, x2

)

= (y 1, x2) (E.13)
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whose associated mean vector and covariance matrix are

µ′T =
(

µ1 −Σ12Σ
−1
22 µ2,µ2

)

(E.14)

Σ
′ =

(

Σ11 −Σ12Σ
−1
22 Σ21 0

0 Σ22

)

, (E.15)

meaning that the new y 1 and x2 are uncorrelated and, therefore, independent.

Given a bivariate joint probability distribution function f (x1, x2), the conditional proba-

bility f ′(x1|x2 = x̃) is defined by [277]

f ′(x1|x2 = x̃) ≡ f (x1, x̃)
∫

d x1 f (x1, x̃)
=

∫

d x2 δ(x2 − x̃) f (x1, x2)
∫

d x1 d x2 δ(x2 − x̃) f (x1, x2)
. (E.16)

Let x be a Gaussian random vector, a subset of which has been set to x2 = x̃ . We could, in

principle, substitute the value of the variables x1 into (E.3) and proceed with the remaining

(and normalized) expression. However, more interesting conclusions can be drawn if the

above results are applied. Instead of working with x = (x1, x2), let us use the PDF associated

to y = Ax , where A is given by (E.12):

f (y) = 1

(2π)p/2
√

detΣ22

√

det(Σ11 −Σ12Σ
−1
22 Σ21)

exp

[

−1

2
(y 1 −µ′

1)T (Σ11 −Σ12Σ
−1
22 Σ21)−1(y 1 −µ′

1)− 1

2
(x2 −µ2)T

Σ
−1
22 (x2 −µ2)

]

= f̃ (x1, x2) (E.17)

Fixing x2 = x̃ and applying (E.16) to the resulting probability distribution function, we

find

f̃ ′(x1|x2 = x̃) = 1

(2π)d/2
√

det Σ̃
exp

[

−1

2

(

x1 − µ̃
)T

Σ̃
−1

(

x1 − µ̃
)
]

(E.18)

where

µ̃=µ1 +Σ12Σ
−1
22 (x̃ −µ2) (E.19)

Σ̃=Σ11 −Σ12Σ
−1
22 Σ21 (E.20)

From the expression above, we can conclude that conditioned Gaussian random vectors

retain their Gaussian nature with mean and covariance matrix given by µ̃ and Σ̃ respectively.

E.3 Gaussian random fields

The idea of Gaussian random vectors can be generalized to random variables dependent on

a certain set of parameters. Instead of having p Gaussian variables, we will have an infinite

amount of them; the mean vector and covariance matrix will thus transform into a mean

and covariance functions.
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A Gaussian random field (GRF) {V (t ), t ∈R
n} is defined as a function satisfying

r∑

i=1

ai V (t i ) ∼ N (µ̃, σ̃) ∀r ∈N, ∀ai ∈R (E.21)

at every point of its domain. The mean function will be given by µ(t ) = 〈V (t )〉 whereas the
covariance function must satisfy C (t , s) = 〈V (t )V (s)〉. If C (t , s) = f (t − s) the GRF is said to

be homogeneous; if, on the other hand, C (t , s) = g (t · s, |t |, |s|) the field is isotropic. GRFs which
are both homogeneous and isotropic are referred to as stationary, and satisfy

C (t , s) =C (|t − s|). (E.22)

In the main text, we will we working with this last type of covariance function.

Finally, note that any GRF V (t ) with mean µ(t ) can always be decomposed as

V (t ) =µ(t )+W (t ) (E.23)

where W (t ) is a mean-zero GRF sharing the same covariance function V (t ). This construc-

tion will be useful to construct GRFs numerically (see appendix F).

E.4 Useful correlations

Since linear combinations of Gaussian variables are Gaussian as well, it is straightforward to

see that the derivatives of Gaussian random fields at any point of their domain are Gaussian

too. Some of the most important covariance functions relating different Gaussian variables

are the following [170, sect. 5.5]:

〈

∂α+βV (φ)

∂αφi∂βφ j

∂γ+δV (φ)

∂γφk∂δφl

〉

= (−1)α+β
∂α+β+γ+δ

∂αφi∂βφ j∂γφk∂δφl

C (φ)

∣
∣
∣
∣
∣
φ=0

. (E.24)

Let us change the notation to ∂φ j
V (0) =V ′

j
(0) and evaluate the previous expression for some

useful cases:

〈V (0)V (0)〉 =U 2
0 (E.25)

〈

V (0)V ′
i (0)

〉

=
〈

V ′
i (0)V ′′

j k (0)
〉

= 0 (E.26)

〈

V ′
i (0)V ′

j (0)
〉

=−
〈

V (0)V ′′
i j (0)

〉

=− ∂2C (0)

∂φi∂φ j
=α2δi j (E.27)

〈

V ′′
i j (0)V ′′

kl (0)
〉

= ∂4C (0)

∂φi∂φ j∂φk∂φl
=







α22 if i = j 6= k = l (and perms.)

α4 if i = j = k = l

0 otherwise.

(E.28)

〈

V (0)V ′′′
j kl (0)

〉

=
〈

V ′′
i j (0)V ′′′

klm(0)
〉

= 0 (E.29)

〈

V ′
i (0)V ′′′

j kl (0)
〉

=−
〈

V ′′
i j (0)V ′′

kl (0)
〉

=







−α22 if i = j 6= k = l (and perms.)

−α4 if i = j = k = l

0 otherwise.

(E.30)
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〈

V ′′′
i j k (0)V ′′′

lmn(0)
〉

=− ∂6C (0)

∂φi∂φ j∂φk∂φl∂φm∂φn
=







α222 if i = j 6= k = l 6= m = n (and perms.)

α24 if i = j 6= k = l = m = n (and perms.)

α6 if i = j = k = l = m = n

0 otherwise.

(E.31)

In the above expressions, αi , αi j and αi j k are numerical constants which depend only on

the covariance function of the (unconstrained) Gaussian random field. Note that in the

two-dimensional case α222 will be absent from all derivations, since the indices appearing

in the correlation function between the third derivatives can only take two different values.

Note also that odd derivatives of the GRF are uncorrelated with even ones when they

are evaluated at the same point in field space. This is due to the isotropy of the covariance

function: if it is written as a power series, only even powers such as φ2
i
,φ2

i
φ2

j
will be involved.

Therefore, only those correlations which end up involving even derivatives of the covariance

function are non-zero.

This however, does not mean the fieldsV (φ) and, say, V ′
i

(φ) are completely uncorrelated.

If we evaluate them at different points in field space, it can be shown [226, theorem 2.3] that

〈

V (φ)V ′
i (0)

〉

=− ∂

∂φi
C (φ) (E.32)

〈

V (φ)V ′′
i j (0)

〉

= ∂2

∂φi∂φ j
C (φ) (E.33)

〈

V (φ)V ′′′
i j k (0)

〉

=− ∂3

∂φi∂φ j∂φk

C (φ) (E.34)

therefore, a GRF and any of its derivatives are correlated as processes.

E.5 TheKac-Rice formula andconditionedGaussian random

fields

Consider a Gaussian random vector field with components V (φ) =
{

V1(φ), . . . ,Vn(φ)
}

. The

multidimensional1 Kac-Rice formula for this field gives us the expected number of times a

certain event, say, V (φ) = u, happens in an interval φ ∈ I of volume V:

E#,I

[

V (φ) = u
]

=
〈∫

I
dφ |detV ′(φ)| δ(V (φ)−u)

〉

(E.35)

where detV ′(φ) stands for the Jacobian determinant of the vector field2, that is,

V ′(φ) =







∂φ1V1(φ) · · · ∂φ1Vn(φ)
...

...

∂φn V1(φ) · · · ∂φn Vn(φ)







. (E.36)

1Note that this formula is only valid for fields mapping Rn →R
n .

2For critical points, the Jacobian is identical to the Hessian of the GRF at the critical point.
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If the field is stationary, that is, homogeneous and isotropic, we can simplify the expression

above. Denoting V0 = V (0) and V ′
0
= V ′(0), we find, assuming ergodicity,

E#,I

[

V (φ) = u
]

= V

∫

dV0 dV0
′ |detV0

′| δ(V0 −u) P (V0,V0
′) (E.37)

where the integral is performed over the whole domain of V0 and V ′
0
and P (V0,V0

′) is the

joint PDF of V0 and its derivatives.

More than one simultaneous event can be considered in the expressions above by en-

larging the vector V and introducing more Dirac deltas representing each event.3

While the above expression can certainly be used to obtain the number of times a certain

event happens in a given interval, it can also be used to obtain distribution functions. More

specifically, applying ergodicity theorems, it can be shown [226] that the probability of an

event A happening, given that B has happened, that is, P (A|B), can be obtained by

P (A|B) =
E#,I [A∩B ]

E#,I [B ]
. (E.38)

If A depends on continuous parameters (such as the position in field space of the GRF), then

the expression above represents a probability distribution function.

E.6 Conditioned Gaussian random field for a critical point

With the tools presented in the sections above, we are now ready to begin conditioning GRFs.

We can begin applying (E.38) and specializing it for critical points. We denote by A the event

describing the field V (φ) taking a particular configuration, while B imposes V (0) ≡V0 = u

andV ′
i

(0) ≡ ηi = 0, that is, a critical point lying in the center of field space at heightu. In order

to proceed more easily, we shall discretize V (φ) as {V (φ1), . . . ,V (φq )} ≡ {V1, . . .Vq } ≡V .

In this case, the conditioning event involves the Gaussian random vector field V =∇V ,

whose Jacobian is the Hessian of the original field V evaluated at φ = 0. Therefore, its

determinant is simply the product of the eigenvalues of the Hessian evaluated at the origin,
∏n

i=1λi .

Applying the Kac-Rice formula (E.37) into (E.38) yields

P
(

V (φ)
∣
∣
∣V0 = u,∇V0 = 0

)

≡ Pcp [V (φ)] =

=

∫ n∏

i=1

(

dηiδ(ηi )dλi |λi |
)

∆(λ) δ(V0 −u)
q∏

j=1

(

dṼ jδ(Ṽ j −V j )
)

P
(

V0,V ,η,λ
)

∫ n∏

i=1

(

dηiδ(ηi )dλi |λi |
)

∆(λ) δ(V0 −u) P
(

V0,η,λ
)

(E.39)

3See, however, [226, ch.8] for a discussion on different types of conditioning events and how to deal with
them. The reason why we consider the V0 = u event simply with a Dirac delta is that it is a vertical window
conditioning event
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=N

∫ n∏

i=1

(dλi |λi |)∆(λ)P
(

V (φ),λ1, . . . ,λn

∣
∣
∣ V0 = u, ∇V0 = 0

)

(E.40)

where the integration domain will depend on the kind of critical point we are working with.

∆(λ) ∝∏

i< j |λi −λ j | is the Jacobian of the variable change from components of the Hessian

matrix to its eigenvalues, the proportionality constant depending on the dimensionality

of the field space. For simplicity, the denominator in (E.39) has been considered as a

normalization factor for the distribution in the numerator.

We can rewrite (E.39) in a more useful way:

Pcp [V (φ)] =
∏

i

∫

dλi qu(λ1, . . . ,λn) P
(

V (t )
∣
∣
∣ V0 = u, ∇V0 = 0, λ1, . . . ,λn

)

(E.41)

where

qu(λ1, . . . ,λn) =
∏

i

|λi | ∆(λ) P
(

λ1, . . . ,λn

∣
∣
∣ V0 = u, ∇V0 = 0

)

(E.42)

represents the distribution of the Hessian eigenvalues at the origin for a critical point of

height u. However, due to the homogeneous and isotropic nature of the original GRF, the

latter distribution is valid for any critical point in the GRF, thus giving us a distribution for

the parameters at critical points in the unconstrained field.

Equations (E.41) and (E.42) are central results in this derivation. Note that the
∏

i |λi |∆(λ)

factor is a direct consequence of the Kac-Rice formula, and as we shall explicitly see in

appendix F, it carries important consequences in the distribution of the eigenvalues at

critical points.

We can now see the power of this method. Assuming we have discretized our field space,

we can readily compute the conditional probability distributions in (E.41) and (E.42) using

the results from section E.2. This leads, together with (E.42), to a distribution from which we

can draw eigenvalues for a minimum of height u. These can be plugged in (E.41) to generate

iterations of GRFs with a minimum (or any other critical point) at their origin.

In order to apply all this machinery, let us introduce the following Gaussian random

vector:

{V (φ1), . . . ,V (φq ),V (0),V ′
1(0), . . . ,V ′

n(0),V ′′
11(0), . . . ,V ′′

nn(0),V ′′
12(0), . . . ,V ′′

(n−1)n(0)
︸ ︷︷ ︸

V ′′
i j

(0) i< j

}

(E.43)

where we denote by φq the position in field space of a discrete set of points whose center is

located at 0, V ′
i

(0) describes the first derivative along φi and V ′′
i j

(0) is the (i , j )-th element

of the Hessian matrix. In order to unclutter the notation, we will compactify the previous

vector as

{V ,V (0),V ′(0),V ′′(0)} (E.44)

which has dimension q+1+n+n+ 1
2

n(n−1). The mean of (E.43) is zero, and the covariance
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matrix of these quantities can be computed from the results in section E.4:

Σ=








SV V SV 0 SV 1 SV 2

S0V U 2
0 0 S02

S1V 0 S11 0

S2V S20 0 S22








(E.45)

where

S02 =
(

−α2 · · · −α2 0 · · · 0
)

= ST
20 (E.46)

S11 =α2 × 1n (E.47)

S22 =

















α4 α22 · · · α22

α22 α4 · · · α22 0
...

...
. . .

...

α22 α22 · · · α4

α22 0

0
. . .

0 α22

















(E.48)

SV V =









C (0) C (φ1 −φ2) · · · C (φ1 −φq )

C (φ2 −φ1) C (0) · · · C (φ2 −φq )
...

...
. . .

...

C (φq −φ1) C (φq −φ2) · · · C (0)









(E.49)

S0V =
(

C (φ1) C (φ2) · · · C (φq )
)

= ST
V 0 (E.50)

S1V =









−C ′
1(φ1) −C ′

1(φ2) · · · −C ′
1(φq )

−C ′
2(φ1) −C ′

2(φ2) · · · −C ′
2(φq )

...
...

. . .
...

−C ′
n(φ1) −C ′

n(φ2) · · · −C ′
n(φq )









= ST
V 1 (E.51)

S2V =














C ′′
11(φ1) · · · C ′′

11(φq )
...

. . .
...

C ′′
nn(φ1) · · · C ′′

nn(φq )

C ′′
12(φ1) · · · C ′′

12(φq )
...

. . .
...

C ′′
(n−1)n(φ1) · · · C ′′

(n−1)n(φq )














= ST
V 2 (E.52)

In order to simplify the notation, since the jointly Gaussian probability distribution in
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the end depends on two-point functions, we can actually write4 (E.45) in the following way:

Σ=











U 2
0 C (φ1 −φ2) C (φ1) SV 1(φ1) SV 2(φ1)

C (φ2 −φ1) U 2
0 C (φ2) SV 1(φ2) SV 2(φ2)

C (φ1) C (φ2) U 2
0 0 S02

S1V (φ1) S1V (φ2) 0 S11 0

S2V (φ1) S2V (φ2) S20 0 S22











(E.53)

where

SV 1(φ) =
(

−C ′
1(φ) · · · −C ′

n(φ)
)

= ST
1V (E.54)

SV 2(φ) =
(

C ′′
11(φ) · · · C ′′

nn(φ) C ′′
12(φ) · · · C ′′

(n−1)n(φ)
)

= ST
2V (E.55)

With these arrangements, the Gaussian random vector corresponding to (E.53) is

{

V (φ1),V (φ2),V (0),V ′(0),V ′′(0)
}

. (E.56)

We have decomposed (E.53) into blocks so it can be plugged into (E.57) and (E.58) to

obtain the mean function and covariance matrix of the conditioned process.5 Using the

results given above, one gets that the expectation value for the GRF around a critical point

where V0 = u and V ′
0
= 0, is given by,

µ̃(φ) =µ(φ)+
(

C (φ) SV 1(φ) SV 2(φ)
)






U 2
0 0 S02

0 S11 0

S20 0 S22






−1 




u

0

h






=
(

C (φ) SV 2(φ)
)
(

U 2
0 S02

S20 S22

)−1 (

u

h

)

(E.57)

where h =
{

h11, . . . ,hnn ,h12, . . . ,h(n−1)n

}

represents a certain configuration of the Hessian

components of the field around the origin.

Furthermore, the covariance function for the conditioned GRF is now

C̃ (φ1,φ2) =C (φ1 −φ2)−
(

C (φ1) SV 1(φ1) SV 2(φ1)
)






U 2
0 0 S02

0 S11 0

S20 0 S22






−1 




C (φ2)

S1V (φ2)

S2V (φ2)






=C (φ1 −φ2)−
(

C (φ1) SV 2(φ1)
)
(

U 2
0 S02

S20 S22

)−1 (

C (s)

S2V (φ2)

)

−SV 1(φ1)S−1
11 S1V (φ2) (E.58)

4We basically have evaluated the first row for a given φ1 and the first column for a given φ2, just as in [227].
Doing so allows us to treat the independent variable as a continuous one, rather than a discrete one.

5Strictly speaking, we should be getting the mean and covariance of the random vector {V (φ1),V (φ2)}. Due
to the isotropy of the GRF, φ1 and φ2 can be any points in field space. Thus, in order to unclutter the notation,
we will only keep track of a single component of the resulting mean vector. Likewise, we will only keep the
〈V (φ1)V (φ2)〉 component of the covariance matrix.
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We can also obtain (E.42), the distribution of eigenvalues at a critical point of a given

height u, following the same steps as above, using as initial covariance matrix the bottom-

right block of (E.53).

E.6.1 Analysis of a conditioned 2D Gaussian field

Let us apply these expressions to a two-dimensional isotropic and homogeneous GRF with

covariance function

C (φ) =U 2
0 exp

(

− φ2

2Λ2

)

. (E.59)

and zero mean. For this case, we obtain the conditioned mean from (E.57), which gives

µ̃(φ) = e
− φ2

2Λ2

[

u

(

1+ φ2

2Λ2

)

+ 1

2

(

φ1 φ2

)
(

h11 h12

h21 h22

)(

φ1

φ2

)]

, (E.60)

where h21 = h12, by definition. Since we are free to choose the basis of φ, in order to

simplify the expression we will employ the eigenvector basis of the Hessianmatrix, therefore

transforming (E.60) to

µ̃(φ) = e
− φ2

2Λ2

[

u

(

1+ φ2

2Λ2

)

+ 1

2

2∑

i=1

λiφ
2
i

]

. (E.61)

where λi denote the two eigenvectors, drawn from (E.42) specialized to this case (see below).

As for the conditioned covariance, from (E.58) we obtain

C̃ (φ1,φ2) =U 2
0 exp

[

−|φ1|2 +|φ2|2

2Λ2

](

exp

[
φ1 ·φ2

Λ2

]

−1− φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4

)

.

(E.62)

Note that the covariance function of the conditioned process is not homogeneous anymore!

This, however, makes complete sense. We have actually made the center of every realization

special, meaning that homogeneity is broken in this sense. In fact, the new covariance is

isotropic with respect toφ= 0, further stating that the center of theGRF is somehowdifferent

from the rest of the points.

All the presented machinery works not only for minima, but also for maxima and saddle

points as well; the only difference among these being the sign of each λi .

E.6.2 Distribution of heights and eigenvalues of the Hessian at a critical point

In order to calculate the probability distribution of the eigenvalues of the Hessian at a certain

height of the potential at critical points we should pay attention to two ingredients. The

first one is the fact that the height and the second derivatives are correlated, so we need to

calculate themultivariate covariance function for these quantities together. Furthermore, we

also want to calculate this at critical points which can be done with the use of the generalized

Kac-Rice formula.
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Assuming a critical point located at φ= 0, the probability distribution to be computed is

P
(

V0,λ1,λ2

∣
∣
∣∇V0 = 0

)

(E.63)

We can easily compute the PDF by conditioning the following random vector:

{V0,h11,h22,h12,η1,η2} (E.64)

of mean zero and covariance matrix






U 2
0 S02 0

S20 S22 0

0 0 S11




 (E.65)

Applying (E.19) and (E.20) to obtain the mean and covariance of the conditioned process

and plugging them into (E.42), we get

Pcp (V0,λ1,λ2) du
2∏

i=1

dλi =N |λ1||λ2| ∆(λ) P
(

V0,λ1,λ2

∣
∣
∣∇V0 = 0

)

(E.66)

=N |λ1 −λ2||λ1||λ2|exp

[

−
V 2

0

2U 2
0

−
(
Λ

2λi +V0

2U0

)2
]

dλi dV0 (E.67)

where N is a normalization factor and, in this two-dimensional example, ∆(λ) = |λ1 −λ2| ·
π/2.

Setting V0 to a constant value, say V0 = u, in (E.67) yields the distribution qu(λ1,λ2),

defined in (E.42). On the other hand, integrating out either V0 or the eigenvalues, gives the

marginal distribution for the remaining variables in critical points (see appendix F for more

detail).

Another interesting application of (E.66) is that it can be used to count the expected

number of critical points in a certain region of field space. For example, to compute the

expected number of minima per correlation volume Λ
2 in the example above, a direct

application of (E.37) yields

E(#mi n)

Λ2
=

∫+∞

−∞
du

∫+∞

0
dλ1

∫+∞

0
dλ2

π

2
λ1λ2 |λ1 −λ2|P

(

V0,λ1,λ2

∣
∣
∣∇V0 = 0

)

= 1

2
p

3
. (E.68)

In this case, the eigenvalues have been assumed to be positive. Setting other integration

limits can give the expected number of maxima and saddle points, for example.

E.7 ConditionedGaussian randomfield for an inflectionpoint

We shall define an inflection point on our GRF as a point where the gradient of the field points in

the direction of a Hessian eigenvector whose corresponding eigenvalue is zero. Furthermore, we will

also demand that the non-zero eigenvalue of the Hessian to be positive at this point.

In order to do this we can expand the discussion of the previous section by taking into
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account the third derivatives of the GRFs along with the lower ones. In order to simplify this

description we will give a detail account of this construction for a 2d GRF only. Extending

this to higher dimensions is straightforward. In particular we will be interested in the

Gaussian random vector

{

V (φ1),V (φ2),V0,V ′
1(0),V ′

2(0),V ′′
11(0),V ′′

22(0),V ′′
12(0),V ′′′

111(0),V ′′′
122(0),V ′′′

222(0),V ′′′
112(0)

}

(E.69)

whose components have zero mean. As for the covariance matrix, it can be expressed as

Σ=













U 2
0 C (φ1 −φ2) C (φ1) SV 1(φ1) SV 2(φ1) SV 3(φ1)

C (φ2 −φ1) U 2
0 C (φ2) SV 1(φ2) SV 2(φ2) SV 3(φ2)

C (φ1) C (φ2) U 2
0 0 S02 0

S1V (φ1) S1V (φ2) 0 S11 0 S13

S2V (φ1) S2V (φ2) S20 0 S22 0

S3V (φ1) S3V (φ2) 0 S31 0 S33













(E.70)

where (for the 2D case)

SV 3(φ) =
(

−C ′
111(φ) −C ′

122(φ) −C ′
222(φ) −C ′

112(φ)
)

= ST
3V (E.71)

S13 =
(

−α4 −α22 0 0

0 0 −α4 −α22

)

= ST
31 (E.72)

S33 =








α6 α24 0 0

α24 α24 0 0

0 0 α6 α24

0 0 α24 α24








(E.73)

and the other matrix blocks have been defined in (E.46 - E.52).

Following the same steps as in the critical point case, we can obtain (for the covariance

function (E.59)) the expression for a GRF once we conditioned everything up to the third

derivative. In order to do this we can first compute the mean value of the GRF in the vicinity

of our inflection point, which is given by

µ̃(φ) = 0+
(

C (φ) SV 1(φ) SV 2(φ) SV 3(φ)
)








U 2
0 0 S02 0

0 S11 0 S13

S20 0 S22 0

0 S31 0 S33








−1 






u

η

h

ρ








(E.74)

=
(

C (φ) SV 2(φ)
)
(

U 2
0 S02

S20 S22

)−1 (

u

h

)

+
(

SV 1(φ) SV 3(φ)
)
(

S11 S13

S31 S33

)−1 (

η

ρ

)

= exp

[

− φ2

2Λ2

](

(u +φ ·η)

(

1+ φ2

2Λ2

)

+ 1

2

2∑

i=1

λiφ
2
i +

1

6

2∑

i , j ,k=1

φiφ jφkρi j k

)

, (E.75)
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where the basis of φ has been chosen to be the eigenbasis of the Hessian matrix (whose

components are described by h and its eigenvalues by λi ) and we have denoted by η and ρ

the components of the first and third derivatives at the origin along the eigenbasis.
The conditioned covariance, on the other hand, reads

C̃ (φ1,φ2) =C (φ1 −φ2)−
(

C (φ1) SV 1(φ1) SV 2(φ1) SV 3(φ1)
)








U 2
0 0 S02 0

0 S11 0 S13

S20 0 S22 0

0 S31 0 S33








−1 






C (φ2)

S1V (φ2)

S2V (φ2)

S3V (φ2)








=U 2
0 exp

[

−|φ1|2 +|φ2|2

2Λ2

](

exp

[
φ1 ·φ2

Λ2

]

−1− φ1 ·φ2

Λ2
− (φ1 ·φ2)2

2Λ4
− (φ1 ·φ2)3

6Λ6

)

(E.76)

which, once again, is isotropic around the origin of the field.

E.7.1 Probability distribution for the inflection point parameters

We can extend the treatment for the eigenvalues of the hessian that we did for the critical

points to inflection points. The difference is that we will now impose that one of the

eigenvalues vanishes while the other one is positive. Furthermore we will also impose that

the gradient in the second eigenvalue direction also vanishes. These conditions have to be

included in the calculation of the PDF of the parameters of the inflection points (V0,η1,λ2,ρ).

Using a generalized version of the Kac-Rice procedure we arrive to,

Pinf dV0 dλ2 dη1 dρ =N |λ2|2|ρ111| P
(

V0, λ2 | λ1 = 0
)

P
(

η1,ρi j k

∣
∣ η2 = 0

)

(E.77)

where

P
(

V0, λ2 | λ1 = 0
)

dV0 dλ2 =N exp

[

−
4V 2

0 −2Λ2V0λ2 −Λ
4λ2

2

2U0

]

dV0 dλ2 (E.78)

P
(

η1,ρi j k

∣
∣ η2 = 0

)

dη1 dρi j k =

N exp

[

− Λ
2

12U 2
0

(

18η2
1 +6Λ2η1(ρ111 +ρ122)+Λ

4
2∑

i , j ,k=1

ρ2
i j k

)]

dη1 dρi j k

(E.79)

In (E.77), one of the |λ2| factors comes from the Jacobian of the variable change to the

eigenbasis of the Hessian (though with λ1 = 0); the remaining |λ2||ρ111| factor is just the
determinant appearing in Kac-Rice’s expression.

These last expressions can be used as in (E.68) to compute the expected number of

inflection point per correlation volume Λ
2, which yields, for our choice of covariance

function,

E(#i p )

Λ2
=

p
5−

p
3

3π
. (E.80)



194 E.7. CONDITIONED GAUSSIAN RANDOM FIELD FOR AN INFLECTION POINT



Appendix F

Numerical implementation and

tests of Slepian models

F.1 Generation of Gaussian random fields:

Karhunen-Loève expansion

In order to generate realizations of two-dimensional Gaussian random fields, we resorted

to the so-called spectral or Karhunen-Loève decomposition, due to its mathematical and

computational simplicity.

Given a certain mean function µ(t ), covariance function C (t , s) and a discretized space

{t a} (where a runs over all n points in the lattice space) of a GRF, we can build the matrix

Cab =C (t a , t b), which by construction is symmetric and positive definite; therefore, we can

always decompose Cab as

C =UΛU T (F.1)

where Λ = diag(λ1, . . . ,λn) is the diagonal eigenvalue matrix, consisting of non-negative

entries, andU is constructed by inserting all eigenvectors along its rows. Since Λ> 0, we can

further decompose C as

C =U
p
Λ

p
ΛU T =

(

U
p
Λ

)(

U
p
Λ

)T
= L LT . (F.2)

This procedure is tantamount to performing a Cholesky decomposition [278] on C ; which is

by far the most expensive step in this algorithm, in terms of computational cost.

Once we have computed L, constructing the GRF on the discretized space is straightfor-

ward. We only need to construct a randomvector ξ of lengthn whose entries are independently

distributed as Gaussian variables of zeromean and unit variance, and introduce the following

variables:

Va =µa +Labξb , (F.3)

where µa =µ(t a). It can be easily shown that this gives the correct correlations among the
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values of the GRF evaluated at different points t a ,

〈(Va −µa)(Vb −µb)〉 = 〈Lacξc Lbdξd 〉 = Lac Lbd 〈ξcξd 〉
= Lac Lbdδcd = Lac Lbc = Lac LT

cb = (LLT )ab =Cab =C (t a , t b).

(F.4)

The main advantage of using this procedure to generate GRFs is that the main computa-

tionally costly step, constructing the L matrix, needs to be performed only once. The rest of

the algorithm is highly trivial from this perspective and allows for further simplification, as

we have seen.

F.2 Numerical evaluations of Critical points

Using the expressions above we can compute the normalized distribution of heights of

minima, maxima and saddle points for a 2d GRF,

Pu,mi n du =
p

3

4πU0
e−u2/U 2

0

(

−2u

U0
+2

p
π eu2/4U 2

0 erfc

[
u

2U0

]

+
p

2π

(

u2

U 2
0

−1

)

eu2/2U 2
0 erfc

[
u

p
2U0

])

du

Pu,max du =
p

3

4πU0
e−u2/U 2

0

(

2u

U0
+2

p
π eu2/4U 2

0 erfc

[

− u

2U0

]

+
p

2π

(

u2

U 2
0

−1

)

eu2/2U 2
0 erfc

[

− u
p

2U0

])

du

Pu,sp du =
p

3

2
p
πU0

exp

[

− 3u2

4U 2
0

]

. (F.5)

Furthermore, we can also compute the marginal distribution for the Hessian eigenvalues at

critical points regardless of their height. This distribution is given by,

Psp,λi
dλ1 dλ2 =

√

3

π

Λ
10

32U 5
0

2∏

i=1

(

|λi |exp

[

− Λ
4

8U 2
0

λ2
i

])

|λ1 −λ2|exp

[

− Λ
4

16U 2
0

(λ1 −λ2)2

]

dλ1 dλ2

= 1

2
Pmi n,max,λi

dλ1 dλ2. (F.6)

We have checked the distributions above with numerical realizations of unconstrained Gaus-

sian random fields in Mathematica. Regarding the heights of critical points, the numerical

results fit the analytical prediction perfectly, as shown in figure F.1(a).

As for the eigenvalue distribution, fig. F.1(b)-(d) shows that the histograms fit the analytical

predictions perfectly once again. An important feature of these distributions is the fact that

critical points with one of the eigenvalues close to zero or both eigenvalues close to each

other are very rare; this effect (referred to as eigenvalue repulsion) is a direct consequence of

the presence of the Vandermonde determinant in the distributions, as well as the Jacobian

of the gradient field in the Kac-Rice formula.
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Figure F.1: Histograms of (a) heights and (b-d) eigenvalues for critical points, normalized to expected values,

from a 105
Λ

2 GRF. Distributions (F.5) and (F.6) are plotted along with their respective histograms, normalized

with respect to (E.68).

F.3 Numerical evaluations of Inflection points

Using the results given above, we can obtain the following distributions for the parameters

of the inflection points in a typical GRF:

Pu du = 3
p

3

16πU 3
0

exp

[

− u2

U 2
0

] (

−2U0u +
p
π(u2 +2U 2

0 )exp

[

u2

4U 2
0

]

erfc

[
u

2U0

])

du (F.7)

Pλ2
dλ2 =

√

3

π

3

16

Λ
6

U 3
0

λ2
2 exp

[

− 3Λ4

16U 2
0

λ2
2

]

dλ2 (F.8)

Pη1
dη1 = (3+

p
15)Λ

12U 2
0

exp

[

− 5Λ2

4U 2
0

η2
1

](√

12

π
U0 −3Λ |η1| exp

[

3Λ2

4U 2
0

η2
1

]

erfc

[p
3Λ

2U0
|η1|

])

dη1

(F.9)

Pρ111
dρ111 =

(5+
p

15)Λ6

60U 2
0

|ρ111| exp

[

− Λ
6

30U 2
0

ρ2
111

]

erfc

[
Λ

3

2
p

5U0

|ρ111|
]

dρ111 (F.10)

where the complementary error function is defined as

erfc(x) = 2
p
π

∫∞

x
d t e−t 2

.
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Figure F.2: Normalized histograms of (a) height (b) η1 (c) λ2 (d) ρ111 for inflection points and their expected

PDFs (F.7)-(F.10), constrained by the condition λ2/η1 > 4.

Once again, we found these expressions to be fully consistent with the numerical results,

as shown in figure F.2.

In order to find inflection points in our numerically generated potentials, we looked for

roots of the system

{

ηT H η

ηT H η⊥
(F.11)

whereH is the Hessian matrix, ηT = (η1,η2) represents the gradient at any point of the field

and ηT
⊥ = (−η2,η1). It can be easily shown that simultaneous roots of eq. (F.11) are either

critical or inflection points.

Finding inflection points numerically is quite tricky and the algorithm sometimes incor-

porates spurious points that, upon further study, are proven to be fictitious inflection points.

In order to make a proper comparison to the general expressions we have found analyti-

cally and avoid the inclusion of those spurious inflection points, we only considered those

points which satisfied λ2/η1 > 4 . This cut removes around 30% of the potential inflection

points. Note that even though we might be removing a portion of real inflection points, the

distributions above are still in perfect agreement with the analytic computations.



Appendix G

Inflection point inflation

In the following appendix, we will give a short summary of some important derivations

and results concerning inflationary processes along inflection points. To this effect, we

shall consider a cubic potential and perform several approximations in order to obtain

closed-form results of some important parameters. We will be mainly following [114,238].

Given the cubic potential

V (φ) =U +ηφ+ ρ

6
φ3, (G.1)

its slow-roll parameters are given by

ǫv ≡ 1

2

(
V ′(φ)

V (φ)

)2

≈ 1

2

(

η+ ρ
2
φ2

U

)2

(G.2)

ηv ≡ V ′′(φ)

V (φ)
≈ ρ

U
φ (G.3)

where we have assumed the denominator to be approximately constant in both cases.

The maximum number of e-folds sustainable in this potential is

Nmax =
∫+∞

−∞

dφ
p

2ǫv

≈
∫+∞

−∞
dφ

U

η+ ρ
2
φ2

=π
p

2
U

ηρ
. (G.4)

Slow-roll happens in the region

−U /ρ <φ<U /ρ (G.5)

so the number of e-folds that can be attained in that interval is

Nsr =
∫U /ρ

−U /ρ

dφ
p

2ǫv

≈ 2
p

2
U

p
ηρ

arctan

(

U
√

2ηρ

)

≈ Nmax−4. (G.6)

Let us now consider the number of e-folds between the value of the field when the CMB
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scale leaves the horizon, φ∗, and φend ≡−U /ρ:

NCMB =
∫φ∗

φend

dφ
p

2ǫv

≈ Nmax

π
· arctan

(√

ρ

2η
φ

) ∣
∣
∣
∣
∣

φ∗

φend

(G.7)

In order to ease the notation, let us define

x ≡π
NCMB

Nmax
(G.8)

y ≡ Nmax

2π
= U

√
2ηρ

(G.9)

With these parameters, we can rewrite (G.7) as

π
NCMB

Nmax
= x = arctan

(√

ρ

2η
φ∗

)

−arctan

(

−U

ρ

√

ρ

2η

)

= arctan

(√

ρ

2η
φ∗

)

−arctan(−y)

(G.10)

We can now use the identity

tan[arctan(a)−arctan(b)] =
a −b

1+ab
(G.11)

so (G.10) can be recast as

tan x =

√

ρ

2η
φ∗+ y

1−
√

ρ

2η
φ∗ y

−→
√

ρ

2η
φ∗ =

tan(x)− y

1+ y tan(x)
(G.12)

In order to compute the spectral index, we will use

ns −1 =
(

2ηv −6ǫv

)∣
∣
φ∗

. (G.13)

During slow-roll, however, ǫv is negligible when compared with ηv so we can simplify the

expression to

ns ≈ 1+2ηv (φ∗) = 1+ 2ρ

U
φ∗ = 1+2

√
2ηρ

U

√

ρ

2η
φ∗ = 1+ 2

y

(
tan(x)− y

1+ y tan(x)

)

(G.14)

Following a similar reasoning, we can give an estimate of the magnitude of scalar perturba-

tions

∆
2
R = 1

24π2

V (φ)

ǫv

∣
∣
∣
∣
φ∗

≈ U 3

12π2

(

η+ ρ

2
φ2
∗

)2
= U 3

12π2η2

(

1+
[√

ρ

2η
φ∗

]2)
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= U 3

12π2η2

(1+ y tan(x))4

[

(1+ y tan(x))2 + (tan(x)− y)2
]2

(G.15)

This last result can be rewritten in a more convenient form as

∆
2
R ≈ U 3

12π2η2

cos4(x) (1+ y tan(x))4

(1+ y2)2
=

N 4
CMBρ

2

48π2U
f 2(x, y) (G.16)

where

f (x, y) = cos2(x) (1+ y tan(x))2

x2(1+ y2)
(G.17)

satisfies f (x, y) ∼ 1 for y ≫ 1 and x ∼ 1.
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Appendix H

Single three-formmultiplets

In this appendix, we will briefly derive the simplest way to construct the supersymmetric

Lagrangians used throughout chapter 6 which include 3-forms among their components.

More specifically, we will work out the expressions for single 3-form multiplets, i.e., chiral

superfields whose auxiliary field’s real component is substituted by a 3-form (as opposed to

double 3-formmultiplets, where the auxiliary field’s real and imaginary parts are replaced by

2 3-form fields). Most of the following formalism may be found in [254,258,259], and we

will try to stick to the conventions of [265] unless otherwise stated.

H.1 Three-formmultiplets in supersymmetry

In the superspace formalism, supersymmetric covariant derivatives are given by

Dα = ∂α+ iσ
µ
αα̇θ

α̇∂µ, D α̇ =−∂α̇− iθασ
µ
αα̇∂µ. (H.1)

A chiral supefield is defined by the constraint D α̇Φ= 0, and has the following component

expansion in terms of the Grassmanian variables θα:

Φ=φ+
p

2θψ+θθF + iθσµθ∂µφ− i
p

2
θθ∂µψσµθ+ 1

4
θθθθäφ (H.2)

where φ(x) and F (x) are complex scalar fields and ψ(x) is a Weyl spinor. It is convenient to

introduce ways to project out the components of the superfield, to keep track of its terms.

The principal terms of the superfield expansion can thus be projected as follows:

Φ| =φ (H.3)

1
p

2
DαΦ| =ψα (H.4)

−1

4
D2

Φ
∣
∣= F, (H.5)

where the vertical line means that we are taking the superfield with θ = θ = 0.

Given some chiral superfieldsΦ=
{

Φ
1, . . . ,Φn

}

, the most general interacting supersym-
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metric theory involving those can be written as

L =
∫

d 2θd 2θ K (Φ,Φ)+
[∫

d 2θ W (Φ)+h.c.
]

(H.6)

=−K
ab
∂µφ

a∂µφb +K
ab

F aF b +F aWa +F aW a + . . . (H.7)

where a,b ∈ {1, . . . ,n}, K (Φ,Φ) is the Kähler potential,W (Φ) is the holomorphic superpotential

and subscripts denote derivatives with respect to the scalar fields as inK
ab

= ∂φa∂φb K . In (H.7)

we have omitted the terms involving the fermionic fields for simplicity; unless otherwise

stated, we will not consider them in the following computations.

It can be easily shown that, when the auxiliary fields are set on-shell with their respective

equations of motion, the above Lagrangian reads

L |bos., on-sh. =−K
ab
∂µφ

a∂µφb −K abWaW
b

. (H.8)

where K ab is the inverse of K
ab
.

H.1.1 Including 3-forms into the chiral multiplet

Chiral superfields are the most fundamental ingredients to construct supersymmetric theo-

ries, so we will be interested in finding ways to plug three-forms into them. As we will see

shortly, the key idea in this respect will be to introduce those three-forms through their

Hodge-dual one-form fields [256,258]. Thus, we only need to find chiral superfields which

include vector fields in their component expansion.

The easiest way to do this is through the inclusion of real scalar superfields (which are

also used to describe vector multiplets). These are defined by the constraint V =V and have

the following expansion in θ:

V (x,θ,θ) =C + iθχ− iθχ+ iθθφ− iθθφ−θσµθvµ

+ iθθθ

[

λ+ i

2
σµ∂µχ

]

− iθθθ

[

λ+ i

2
σµ∂µχ

]

+ 1

2
θθθθ

[

D − 1

2
äC

]

. (H.9)

Here u(x) and D(x) are real scalar fields, φ(x) is a complex scalar field, vµ(x) is a real vector

field and χ(x) and λ(x) are Weyl spinors.

A special chiral superfield can easily be built out of this multiplet by defining1

Y :=− i

4
D2V (H.10)

(the prefactor is chosen for later convenience). It is easy to check that it fulfils the condition

1Note that this definition allows for some freedom in choosing V , since we can always redefine V →V +U ,
whereU satisfies D2U = 0. This redefinitions correspond to the gauge symmetries associated to the vector
fields of V . Furthermore, the definition of Y may be generalized to involve holomorphic functions of the
scalar field, which allows for more complex models. See [258–260] for further detail.
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D α̇Y = 0 from its definition. Its components can be projected using

Y | = − i

4
D2V

∣
∣
∣=φ (H.11)

DαY | = − i

4
DαD2V

∣
∣
∣=λα (H.12)

−1

4
D2Y

∣
∣= i

16
D2D2V

∣
∣
∣=

1

2

(

∂µvµ+ i D
)

(H.13)

Note that, component-wise, Y is almost identical to the original chiral field Φ in that it

contains a complex scalar field, a complexWeyl fermion and a complex auxiliary field, albeit

in this case we are only interested in the real part of the latter.

For our purposes, it will be convenient to consider vµ as the one-form associated through

Hodge duality to a three-form. Indeed, the Hodge dual of the three-form is given by the

following vector field2

(∗A3)µ ≡ Aµ =
1

3!
ǫµνρσAνρσ (H.14)

where the indices have been raised using the flat spacetime metric. The divergence of this

vector field is related to the Hodge dual of the 4-form field strength F4, associated to Aνρσ

through3

∗F4 =
1

4!
ǫµνρσFµνρσ = ∂µAµ (H.15)

With these expressions in hand, we find that if vµ is identified with Aµ, i.e, with the Hodge

dual of the 3-form field, the auxiliary field of the special chiral superfield Y reads

FY =−1

4
D2Y

∣
∣= 1

2
(∗F4 + i D) . (H.16)

Since D does not enter the membrane part of the full action, we will be able to remove it

from the action by solving its algebraic equations early on, leaving ∗F4 untouched for its

interplay with the scalar field and the membrane.

We can easily apply these expressions to a single three-form multiplet Y , with a certain

Kähler potential K (Y ,Y ) and superpotentialW (Y ). Plugging the component fields of Y into

the bosonic Lagrangian (H.7), we find

L |bos. =−Kφφ∂µφ∂
µφ+ 1

4
Kφφ (∗F4 + i D) (∗F4 − i D)+

1

2
(∗F4 + i D)Wφ+

1

2
(∗F4 − i D)W φ

=−Kφφ∂µφ∂
µφ+ 1

4
Kφφ (∗F4)2 + 1

2
(∗F4)

(

Wφ+W φ

)

+ 1

4
KφφD2 + i

2
D

(

Wφ−W φ

)

(H.17)

2In our conventions, ǫ0123 = −ǫ0123 = 1 for Lorentzian coordinates (which we will use throughout this
appendix), while ǫ0123 = ǫ0123 = 1 for Euclidean ones.

3We have omitted the contribution of the metric determinant in these expressions to clarify the def-
initions. In the case of a curved spacetime, these expressions are (∗A3)µ ≡ Aµ = 1

3!

p−gǫµνρσAνρσ and

∗F4 = 1p−g
∂µ(

p−g Aµ).
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The equation of motion for the auxiliary field D reads

D =−i K φφ
(

Wφ−W φ

)

(H.18)

which is completely algebraic, as expected. Plugging this into (H.17) yields

L |bos. =−Kφφ∂µφ∂
µφ+ 1

4
Kφφ (∗F4)2 + 1

2
(∗F4)

(

Wφ+W φ

)

+ 1

4
K φφ

(

Wφ−W φ

)2
(H.19)

=−Kφφ ∂µφ∂
µφ− 1

4 ·4!
Kφφ FµνσρFµνσρ+

1

2 ·4!

(

Wφ+W φ

)

ǫµνσρFµνσρ+
1

4
K φφ

(

Wφ−W φ

)2

(H.20)

where, in the second step, we have rewritten the Hodge duals in terms of their original

form-fields for clarity.

In order to proceed, recall that the physical field we wish to extremise in the action is

not the field strength, but rather the three-form components Aµνρ . In the following, it will

be more convenient to work with the Hodge-duals Aµ since they appear directly in the

definition of ∗F4, i.e., eq. (H.15). The variation of (H.20) with respect to Aµ is

1

2
Kφφ (∗F4)

(

∂µδAµ

)

+ 1

2

(

∂µδAµ

)(

Wφ+W φ

)

= δAµ

[
1

2
∂µ

(

−Kφφ (∗F4)+Wφ+W φ

)]

+∂µ
[

δAµ
1

2

(

Kφφ (∗F4)−Wφ−W φ

)]

= 0

(H.21)

We can clearly see that the first term in the r.h.s. will give us a new equation of motion,

while the second one will produce a boundary term. As originally discussed in [249], in

order to deal with the second term in (H.21) we will need to add a boundary term to our

original Lagrangian to cancel this contribution. This not only ensures the consistency of the

variational problem but, as we will see shortly, it will have a noticeable effect on the final,

on-shell result. More concretely, the required boundary term is given by

Lbd =−1

2
∂µ

[

Aµ

(

Kφφ (∗F4)−Wφ−W φ

)]

= 1

2 ·3!
∂µ

[

Aνρσ
(

KφφFµνρσ+ǫµνρσ

(

Wφ+W φ

))]

(H.22)

while the equation of motion for the form field is

∂µ

(
1

2
Kφφ(∗F4)+ReWφ

)

= 0 → ∗F4 =−2K φφ
(

ReWφ−n
)

(H.23)

where n ∈R is a real constant.

Plugging this result into (H.20) and taking into account the non-vanishing contribution

of the boundary term yields

L |bos.,on-sh. =−Kφφ∂µφ∂
µφ−K φφ

(

Wφ−n
)(

W φ−n
)

. (H.24)
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From this final Lagrangian we can conclude that the contribution of 3-forms in a supersym-

metric setup, results in a linear contribution to our original superpotential. Thus, setting

the 3-forms on shell reduces the original theory to amodel of a scalar field described by the

original Kähler potential and an effective superpotential given by

Ŵ (φ) ≡W (φ)−nφ. (H.25)

H.2 Three-formmultiplets in supergravity

In this section we will follow a similar reasoning as the one above, with gravity included.

We will first present the action for scalar multiplets described by generic chiral superfields,

which we will later on generalize to include special chiral superfields which have vector or

3-form components among their bosonic ingredients. All of the results we present here have

also been derived in [258,259] using a super-Weyl invariant approach to matter-coupled

supergravity, reaching the same conclusions.

We recall that supergravity can be described in terms of the superspace supervielbein

E A
M (z) subject to a set of torsion constraints. After fixing the so-called Wess-Zumino gauge,

its field content reduces to

• e
µ
a , the vielbein,

• ψ
µ
α, the gravitino,

• bµ, a real vector auxiliary field,

• M , a complex scalar auxiliary field.

We construct a conveniently defined action in superspace in terms of E A
M (z) and generic

chiral superfields (defined in curved supergravity superspace). The spacetime action for the

component fields is then obtained upon finxing the Wess-Zumino gauge and integrating

over the fermionic coordinates of superspace. In the conventions of [265], the spacetime

Lagrangian of the bosonic sector of such an action reads

1
p−g

L = 1

2
Re− 1

3 K +Ω
ab
∂µφ

a∂µφb − 1

3
e− 1

3 K M̃
˜

M − M̃W − ˜
MW

+e− 1
3 K K

ab
F aF b +F a(Wa +KaW )+F b(W

b
+K

b
W )

−1

9
Ωbµbµ− i

3
bµ(∂µφ

a
Ωa −∂µφ

b
Ω

b
) , (H.26)

where

Ω(Φ,Φ) =−3e− 1
3 K (Φ,Φ), M̃ = M +KaF a ,

˜
M = M +KaF a . (H.27)

This actionis not written in Einstein frame. Therefore, it is customary to rescale the vielbein

as follows:

ea
µ 7→ ea

µ e
1
6 K , (H.28)
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and to supplement this with a suitable transformation of the spin connection. Furthermore,

rescaling the auxiliary fields as

F i 7→ F i e− 1
6 K , M 7→ M e− 1

6 K , (H.29)

we arrive at the following action in Einstein frame

1
p−g

L =1

2
R −K

ab
∂µφ

a∂µφb − 1

3
M̃

˜
M −e

1
2 K M̃W −e

1
2 K ˜

MW

+K
ab

F aF b +e
1
2 K F a(Wa +KaW )+e

1
2 K F b(W

b
+K

b
W ) . (H.30)

Notice that in this last expression the auxiliary fields bµ have been integrated out using their

equations of motion. If we are dealing with minimal supergravity and scalar multiplets, M̃

and all F i are independent, and the auxiliary field equations read

M̃ =−3e
1
2 K W , F aK

ab
=−e

1
2 K (W

b
+K

b
W ) . (H.31)

Substituting this into (H.30) we find the well known matter-coupled N = 1, D = 4 super-

gravity Lagrangian

1
p−g

L = 1

2
R−K

ab
∂µφ

a∂µφb −V (φ,φ) (H.32)

where the potential is given by

V (φ,φ) = eK
(

DaW K abD
b

W −3|W |2
)

, (H.33)

and Da = ∂a +Ka are the usual Kähler-covariant derivatives.

H.2.1 Supergravity interacting with 3-form multiplets

Just as in the non-gravitational case, we will implicitly introduce three-forms by passing

from generic to special chiral superfields. In this case, special chiral superfields describing

single three-form multiplets are given by

S =− i

4
(D2 −8R)P , P = (P )∗ (H.34)

where R is the main chiral superfield of minimal supergravity and P is an unconstrained

real superfield defined up to a real linear superfield

P 7→P +L, (D2 −8R)L = 0 = (D2 −8R)L. (H.35)

This freedom can be used to fix the Wess-Zumino gauge, where

P | = 0 , DαP | = 0 , D α̇P | = 0 , (H.36)
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and the remaining part of the L symmetry, preserving this gauge, coincides with the 2-form

gauge symmetry for the 3-form dual to vector component of the prepotential superfield,

σa
αα̇[Dα,D α̇]P | = 4Aa , Aa =∗(A3)a . (H.37)

Using the gauge above, we find that the highest component of the special chiral superfield

of S is given by (in the notation of [265])

F ≡ FS =−1

4
D2S| = i

16
D2D2P |− i

2
RD2P | = 1

2

(

DµAµ+ i d
)

+ 1

3
(sM +2sM) .

(H.38)

where s = S|, M and M are the scalar auxiliary fields of minimal supergravity, d is a real

auxiliary scalar field, ∗F4 = DµAµ = 1
e
∂µ(e Aµ) and e = detea

µ.

Fixing the WZ gauge and integrating over the fermionic coordinates of superspace, in

complete analogy with the case of generic scalar matter multiplets, we find from our original

Lagrangian for bosonic fields of scalar multiplets interacting with supergravity (H.30):

1
p−g

L = 1

2
Re− 1

3 K +Ωss∂µs∂µs − 1

3
e− 1

3 K (M +KsF ) (M +KsF )−MW −MW

+e− 1
3 K KssFF +FWs +FW s −

1

9
Ωbµbµ− i

3
bµ(∂µsΩs −∂µsΩs)+ 1

p−g
Lbd .

(H.39)

Here we have explicitly written the corresponding boundary term needed to have a well-

posed variational problem. Before substituting the expression for the F-components of

the special chiral superfields, (H.38), we have to perform a Weyl rescaling of the fields with

(H.28), which we need to consider carefully.

Super-Weyl transformations

In the previous section, when considering non-gravitational chiral superfields, we have

assumed that Φ and its components φ and F are inert under Weyl transformations. This

is a consistent assumption in the case of a generic chiral superfield.4 However, since the

chiral superfield S has been written in terms of a real superfield P , it is important to check

how rescalings of the supervielbein, i.e., super-Weyl transformations, act on them. These are

defined via [265,279]

E a 7→ Ẽ a = eΥ+ΥE a , (H.40)

Eα 7→ Ẽα = e2Υ−Υ
(

Eα− i

4
E aDα̇Υσ̃α̇α

a

)

, (H.41)

E α̇ 7→ ˜
E α̇ = e2Υ−Υ

(

E α̇+ i

4
E aσ̃α̇α

a DαΥ

)

, (H.42)

4This can be checked by writing the chiral field in terms of an unconstrained complex superfield (with a
similar definition as (H.34)). Choosing the Weyl weights of the transformation accordingly, it can be shown
that a general chiral superfield Φ is invariant under these rescalings.
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where Υ is a chiral superfield:

D α̇Υ= 0 , DαΥ= 0. (H.43)

Those rescalings have to be supplemented with a shift of spin connection, the explicit form

of which is not needed for our purposes (but see [265,279] for more detail). On the other

hand, it can be shown that supergravity chiral projector transforms in an inhomogeneous

way as

(DD −8R) 7→ e−4Υ(DD −R)e2Υ, (DD −8R) 7→ e−4Υ(DD −8R)e2Υ. (H.44)

Note that since the definition of S involves this operator, it is guaranteed to transform

non-trivially under super-Weyl transformations.

Indeed, in the light of (H.44), the only way to obtain a covariant super-Weyl transfor-

mation of the special chiral superfields (H.34) is to attribute to its real prepotential the

transformation rule

P 7→P e−2Υ−2Υ, (H.45)

which results in

S 7→ S e−6Υ. (H.46)

We see that in this case the bosonic component of S will transform as5

s 7→ s e−6Υ| . (H.47)

We will be interested in purely bosonic transformations with

Υ| = 1

12
K =Υ| , DαΥ| = 0 , D2

Υ| = 0 , (H.48)

since, in that case,

ea
µ 7→ ea

µ e
1
6 K (H.49)

as needed to write the Lagrangian in Einstein frame, just as in the case of supergravity inter-

acting with chiral multiplets. However,F and M will also be affected by this transformation.

We can easily derive the rescalings by studying

(D2 −8R)S| = −4F −8RS| = −4F + 4

3
sM . (H.50)

Considering all of the above transformation laws, we can easily check that for the purely

bosonic super-Weyl transformation, we find

s 7→ e− 1
2 K s (H.51)

5We do not write the transformation of P | because we use the Wess-Zumino like gauge with P | = 0.
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F 7→ e− 2
3 K F (H.52)

M 7→ e− 1
6 K M . (H.53)

As far as the scalar field is concerned, it is convenient to combine the Weyl rescaling with

the field redefinition

φ≡ e− 1
2 K s (H.54)

so that the kinetic term of φ field remains simple.

Taking all of the above into account and integrating out the auxiliary field bµ using its

algebraic equations of motion, we find that

1
p−g

L =1

2
R −Kφφ∂µφ∂

µφJ − 1

3
(M +e− 1

2 K KφF ) (M +e− 1
2 K KφF )

−e
1
2 K MW −e

1
2 K MW +e−K KφφFF +FWφ+FW φ+

1
p−g

Lbd . (H.55)

It is convenient to further redefine the supergravity auxiliary field M as

M̌ ≡ Me
1
2 K (H.56)

which, taking into account the redefinition of the scalar field (H.54), allows us to write the

auxiliary field of S as

F = 1

2

(

DµAµ+ i d
)

+ 2

3
φM̌ + 1

3
φ

ˇ
M . (H.57)

In the end, the rescaled Lagrangian reads

1
p−g

L =1

2
R −Kφφ∂µφ∂

µφ− 1

3
e−K (M̌ +KφF ) (

ˇ
M +KφF )− M̌W − ˇ

MW

+e−K KφφFF +FWφ+FW φ+
1

p−g
Lbd . (H.58)

The boundary term can be obtained in the same fashion as in the previous section.

Noting that the 3-form enters the action only through DµAµ, varying the action for that

field gives the following

δS =
∫

d 4x e
∂L

∂(DµAµ)

(
1

e
∂µ(e δAµ)

)

=−
∫

d 4x e δAµ ∂µ

(
∂L

∂(DµAµ)

)

+
∫

d 4x ∂µ

(

e δAµ ∂L

∂(DµAµ)

)

. (H.59)

Therefore, we conclude that the boundary term, which makes the variational problem well

posed, reads

Lbd =−
∫

d 4x ∂µ

(

e Aµ ∂L

∂(DµAµ)

)

. (H.60)
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The equations of motion to solve are then

∂L

∂d
= 0,

∂L

∂M̌
= 0,

∂L

∂(DµAµ)
= n, (H.61)

where n ∈R. These algebraic equations are solved by

d =−i K φφeK
[

Dφ(W −nφ)−c.c.
]

(H.62)

M̌ = eK
[

Dφ(W −nφ)K φφKφ−3(W −nφ)
]

(H.63)

DµAµ = eK
[

3(W −nφ)φ− (1+φKφ)K φφDφ(W −nφ)+c.c.
]

(H.64)

where Dφ = ∂φ+Kφ is the usual Kähler-covariant derivative. Plugging all these equations

into (H.58) and taking into account the contribution of the boundary term yields

1
p−g

L = 1

2
R −Kφφ∂µφ∂

µφ−eK
(

DφŴ K φφDφ
ˆ

W −3
∣
∣Ŵ

∣
∣

)

(H.65)

where, exactly as in the non-gravitational case,

Ŵ ≡W −nφ. (H.66)

Therefore, after all the auxiliary fields’ equations of motion have been applied, the contribu-

tion of the 3-form fields reduce to a simple linear term on the superpotential. The effective

action for the scalar fields and gravity coincides with the usualN = 1, D = 4 matter-coupled

supergravity, albeit with a potential constructed from the new effective superpotential (H.66).
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