
eman ta zabal zazu

Euskal Herriko
Unibertsitatea

Universidad
del País Vasco

PhD Thesis in Mathematics & Statistics

Contributions to Time Series Classification:
Meta-Learning and Explainability

by

Amaia Abanda

Supervised by Usue Mori and Jose A. Lozano

Donostia - San Sebastián, November 2021



PhD Thesis in Mathematics & Statistics

Contributions to Time Series Classification:
Meta-Learning and Explainability

by

Amaia Abanda

Supervised by Usue Mori and Jose A. Lozano

Dissertation submitted to the University of the Basque Country (UPV/EHU) as par-
tial fulfillment of the requirements for the PhD degree in Mathematics and Statistics

Donostia - San Sebastián, November 2021

(cc) 2022 Amaia Abanda Elustondo (cc by-sa 4.0) 





To my family





This research was carried out at the Basque Center for Applied Mathe-
matics (BCAM) within the Data Science - Machine Learning group and was
supported by by the Basque Government through the BERC 2018-2021 pro-
gram and by Spanish Ministry of Economy and Competitiveness MINECO
through BCAM Severo Ochoa excellence accreditation SEV-2017-0718, as
well as through project TIN2017-82626-R funded by (AEI/FEDER, UE)
and acronym GECECPAST. In addition, by the Research Group IT1244-
19 programs (Basque Government), PID2019-104966GB-I00 (Spanish Min-
istry of Economy, Industry and Competitiveness) and Elkartek project 3KIA
(KK2020/00049). A. Abanda is also supported by the Grant BES-2016-
076890. The support of MINECO Grants is acknowledged for the three months
visit at University of Rennes, Rennes, France.





iii

Acknowledgments

I would like to express my appreciation to my supervisors, Usue Mori and Jose
A. Lozano, for their patient and guidance during my Ph.D. My thesis would
not have been done without their great support. I also would like to specially
thank Simon Malinowski for giving me the opportunity to collaborate as a
visiting researcher at INRIA, University of Rennes. I have learn a lot and I
spent there a great time. I wish to thank all the members of the research
group for their hospitality, the lunch time talks and after-work beers.

I feel also very grateful for the lab-mates with whom I have spent so much
time both from the ISG group and from BCAM. Thanks for all the eternal
coffee breaks, for rising me up in the hard moments and making my Ph.D.
period easier. I do not want to forget the inspiring and empowering women I
have met during my Ph.D. and, in particular, the R-Ladies group we founded
at BCAM. The world is a bit better place thanks to women like you.

Lastly, I would like to express my deepest gratitude to my family and
friends, which have always been my support and greatest treasure. I am very
proud of you.





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Time series classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Supervised classification with time series data . . . . . . . . . 3
1.1.2 Time series classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Meta-learning for classifier recommendation . . . . . . . . . . . 11
1.2.2 Meta-learning for time series . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Explanation methods for time series . . . . . . . . . . . . . . . . . 15

1.4 Data and software sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A Review on Distance based Time Series Classification . . . . . . . . 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 A taxonomy of distance based time series classification . . . . . . . 22

2.2.1 k-Nearest Neighbour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Distance features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Distance kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Time Series Classifier Recommendation by a Meta-Learning
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Time Series Classifier Recommendation . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Meta-Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Meta-target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Hierarchical inference of meta-targets . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Analysis of the landmarkers . . . . . . . . . . . . . . . . . . . . . . . . 64



3.4.3 TSCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.4 Hierarchical inference of meta-targets . . . . . . . . . . . . . . . . 71

3.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Ad-Hoc Explanation for Time Series Classification . . . . . . . . . . . . . 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Time series Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.4 Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Time Series Classification Explanation Method . . . . . . . . . . . . . . 81
4.3.1 High-level explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Low-level explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2 Qualitative evaluation: case of study . . . . . . . . . . . . . . . . . 86
4.4.3 Quantitative evaluation on UCR . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

General Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Main Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.1 Landmarkers: computation time of subsample landmarkers in

the largest datasets from the UCR repository . . . . . . . . . . . . . . . 101
A.2 Landmarkers: computation times . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3 Landmarkers: Correlation between the landmarkers and the

corresponding original classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4 Landmarkers: Accuracies of classifiers and landmarkers by

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108





1

Introduction

In this dissertation, we present three contributions to the field of Time Se-
ries Classification (TSC). With the aim of providing the background needed
to understand the presented works, this chapter includes an introduction to
several topics. The first contribution consists of reviewing and proposing a
taxonomy of distance based time series classifiers, so, an introduction to TSC
is provided in Section 1.1. In the second contribution, a time series classifier
recommendation system is presented, for which we follow a meta-learning ap-
proach. As a background for this, the basics of meta-learning are introduced
in Section 1.2. In the third contribution, we propose a method for explaining
the predictions of time series classifiers. In order to provide the fundamental
notions on classifier explanations to the reader, an introduction to the field of
explainability is presented in Section 1.3. In Section 1.4, we briefly present the
data and software sources employed throughout the dissertation and, lastly,
we present an overview that summarizes the dissertation in Section 1.5.

1.1 Time series classification

Time series data are being generated every day in a wide range of application
domains, such as bioinformatics, financial fields, engineering, etc [1]. They
are a particular type of data due to their temporal nature; a time series is
an ordered sequence of observations which are usually taken through time,
but may also be ordered with respect to another aspect, such as space. More
formally, a time series can be defined as follows:

Definition 1. A time series T = (t1, . . . , tl) of length l is a ordered sequence
of pairs (i, ti), where i = 1, . . . , l refers to the timestamp and ti represents the
value of the time series at timestamp i.

The timestamps i = 1, . . . , l conform a sequence of positive and ascending
discrete values, which, in most of the cases, are equally spaced, but may be



2 1 Introduction

also irregularly spaced. The time series can be univariate, when ti is a single
value, or multivariate, when ti is a vector. At the same time, depending on the
problem, the values ti can be either discrete or continuous. In this dissertation,
we will focus on univariate equally spaced and continuous time series.

One of the main advantages of time series is that, even if they are high
dimensional data, we are able to easily visualize them. For instance, Figure 1.1
shows two time series that belong to the ECG200 dataset [2]. The time series in
this dataset represent the electrical activity recorded during one heartbeat and
they are divided into two classes: normal heartbeat and myocardial infarction.
One time series from each class is shown in the figure and, as it can be seen,
their shapes are visually different.

Fig. 1.1: Two time series that belong to the ECG200 dataset [2].

With the growing amount of recorded data, the interest in researching
this particular type of data has also increased, giving rise to a vast amount of
new methods for forecasting, representing, indexing, clustering, and classify-
ing time series, among other tasks [3, 4]. Most of these tasks arise naturally
from real world problems or challenges; in a time series that represents the
evolution of the price of a product, for example, predicting future prices is a
time series forecasting problem [5]. In another scenario, a problem may com-
prise several time series that represent, for instance, the daily temperature
in different locations. In this case, the goal may be to group the different
locations depending on the temperature pattern [6], which is a time series
clustering task.

In another scenario, a problem may consist of a set of time series that
represent the daily variation in brightness of different astronomical objects,
such as stars or meteors, captured by a telescope [7]. In this context, the goal
may be to predict whether a new time series corresponds to a star, a meteor



1.1 Time series classification 3

or other type of astronomical object. In this case, the problem is conformed by
supervised (labeled) time series and the task is called supervised classification
of time series. This dissertation focuses on this learning problem, which we
introduce in more detail in the following section.

1.1.1 Supervised classification with time series data

Supervised classification can be defined as the task of finding a mapping
f : X → y between the space of input and the space of output, based on
some example input-output pairs. In standard supervised classification, the
instances are described by feature vectors, i.e., order-free vectors that con-
tain the values of a set of qualitative or quantitative variables. Due to the
popularity and usefulness of this task, in the past years, many variants of su-
pervised classification have been proposed, TSC among them. Since standard
classifiers do not take the order of the variables that conform the instances
into account, the main challenge of TSC consists of dealing with this order
[8]. With the purpose of formally defining the task of TSC, we first define a
dataset of supervised time series:

Definition 2. A dataset of supervised time series is a collection of n instance-
label pairs D = {(T1, y1), . . . , (Tn, yn)}, where yi is the label associated to the
time series Ti. The labels yi can take k possible values, where k is the number
of classes.

Supervised time series datasets may contain time series that have the same
length but also time series of varying lengths. In this way, if T is the space
of possible time series (input) and y is the space of possible labels (output),
TSC can be defined as follows [4, 9]:

Definition 3. TSC is the task of finding a function f : T→ y that maps the
space of time series to the the space of labels, based on the example pairs in a
training set D.

As can be seen in Figure 1.2, a classifier is learned by applying a learning
algorithm in the supervised time series dataset. Then, the trained classifier is
used to classify (predict the class of) new unlabeled time series.

In standard classification problems, in general, the class membership of
an instance is related to (possibly complex) combinations of the features.
In TSC, on the contrary, the class membership of a time series is generally
related to specific characteristics of the time series, such as shapes, locations
of patterns or the scale of a pattern, among others. Hereafter, we will refer
to these aspects that allow to distinguish between the time series of different
classes as the discriminatory characteristics of a TSC problem.

With the aim of illustrating the concept of discriminatory characteristics,
some example datasets are presented in the following. As a first example, Fig-
ure 1.3 shows some synthetic time series extracted from the CBF dataset [2].



4 1 Introduction

LEARNING

ALGORITHM

CLASSIFIER?

DATASET

NEW TIME SERIES PREDICTED CLASS

Fig. 1.2: Scheme of TSC.

This dataset contains three classes: Cylinder, Bell and Funnel. As it can be
seen, there are three shapes or patterns and each pattern determines a class.
This problem may seem simple since the classes are visually distinguishable.
However, making a classifier understand our visual perception is not straight-
forward. For example, the time series that belong to the Cylinder class share
the same pattern, but it can be seen that the width and location of the pat-
tern are not the same in the two time series. More specifically, these patterns
have two types of time distortions: warp, which modifies the width of a pat-
tern, and shift, which modifies the position of a pattern [4]. In this case, the
discriminatory characteristic is the shape of a time series, regardless of the
width and position of this shape.

The discriminatory characteristics of a problem, however, may not be so
evident in many cases. As a second example, we introduce the GunPoint
dataset [2], which is a human activity recognition problem set up in a simu-
lated controlled environment. In this dataset, the time series represents the
x-axis of a movement made by a person doing a certain exercise, captured by
a sensor. This movement consists of rising a gun from the hip, pointing it at
a target, and bringing the gun back to the hip. Some of the people raise a
real gun, while others are asked to replicate the movement without a gun, i.e.,
rising and pointing at a target with a finger. As such, this dataset contains
two classes, Gun and Point, and the goal is to discriminate between these
two types of movements. Figure 1.4 shows three example time series from
each class. In this case, the main pattern of the time series is very similar in
both classes, so it is not straightforward to visually discriminate between the



1.1 Time series classification 5

Fig. 1.3: Time series that belong to CBF dataset from the UCR repository
[2].

classes. It can be seen that the height or scale of the time series could be a
possible characteristic to discriminate between the classes, since, in the exam-
ples displayed in Figure 1.4, the time series from the Gun class are slightly
lower than those in the Point class. At the same time, the part in which the
person rises the gun (the interval from t = 10 to t = 50, approximately) seems
to have a little step in the time series from the Gun class, which could also
be used to identify the time series that belong to this class.

Fig. 1.4: Time series that belong to GunPoint dataset from the UCR
repository [2].

In TSC, since these discriminatory characteristics enable to differenti-
ate between the classes, time series classifiers focus on obtaining information
about them from the training set [8]. In the next section, a background on
time series classifiers is provided, in which two taxonomies of the different
methods are presented.



6 1 Introduction

1.1.2 Time series classifiers

The first attempts to deal with TSC focused on proposing specific distance
measures for time series and exploiting them within basic distance based clas-
sification methods, such as the k-Nearest Neighbor (k-NN) classifier. The Dy-
namic Time Warping (DTW) [10] distance is one of the first distance measures
of this sort. The DTW is an elastic measure that makes non-linear alignments
between series in order to deal with distortions in the time axis, such as time
warping and shifting.

Given two time series T1 and T2, the underlying idea of the DTW distance
is to find the optimal alignment between them by allowing flexible alignments
in the time axis. For this, as shown in Figure 1.5a, the point-wise (usually
Euclidean) distance matrix between T1 and T2 is computed, and the optimal
alignment is defined as the path within this matrix that minimizes the cumu-
lative distance under certain conditions [10]. The optimal path is found by
using a recursive dynamic programming formulation. The optimal alignment
between the two time series is shown the example in Figure 1.5b.

(a) The optimal path in the distance
matrix.

(b) The optimal alignment between
the two time series.

Fig. 1.5: Visualization of the DTW alignment between two time series from
the GunPoint dataset. These plots have been computed employing the dtw

package [11].

For a long time, the k-NN classifier together with the DTW was an un-
beatable classifier in the TSC community [12]. Given the success of the DTW,
several new distance measures were proposed afterward, which are computa-
tionally faster or handle other characteristics of the time series. Some popular
examples of these distance measures include the Longest Common Subse-
quence (LCSS) [13], Time Warp Edit (TWE) [14] or Move-Split-Merge (MSM)
[15] measures, but the list of existing distance measures nowadays is extremely
long [8].

These distance measures are used within a distance based classification
method, which, in the TSC community, is the most popular approach. Initially,



1.1 Time series classification 7

those distance measures were employed exclusively with the k-NN method,
but new distance based classification methods have also been arisen to exploit
their strengths. Kate et al. [16], for instance, propose a highly competitive
method in which the time series are represented by their DTW distances with
respect to the time series in the training set. Another example consists of using
the distance measures to construct kernels for time series [17], and employing
them within kernel based methods, such as the well known Support Vector
Machine (SVM) [18].

In addition to distance based methods, new approaches for classifying time
series have also been proposed in the past few years. As such, the heterogeneity
of classifiers has considerably increased, and this has led to many different
ways to categorize the existing methods. In a first attempt to organize the
existing methods, Xing et al. proposed to divide the time series classifiers
into three groups, depending on how the time series are treated within the
classifier:

• Feature based classifiers: in these methods, the time series are trans-
formed into feature vectors and then classified by a conventional classifier
such as a neural network or a decision tree. Some methods for feature ex-
traction include spectral methods such as the Discrete Fourier Transform
(DFT) [19] or the Discrete Wavelet Transform (DWT) [20].

• Model based classifiers: these classifiers assume that all the time series
in a class are generated by the same underlying model, and thus a new
series is assigned with the class of the model that fits the best. Some
model based approaches are formed using auto-regressive models [21, 22]
or hidden Markov models [23], among others.

• Distance based classifiers: distance based methods are those in which
a (dis)similarity measure between series is defined, and then these dis-
tances are introduced in some manner within distance based classification
methods such as the k-NN or SVMs. Some examples of these methods
include the already mentioned 1-NN-DTW or 1-NN-LCSS.

Recently, Bagnall et al. [8] proposed a categorization that groups the ex-
isting classifiers depending on the type of discriminatory characteristics each
approach focuses on. They divide the existing classifiers into five main cate-
gories: whole series classifiers, interval classifiers, shapelet based, dictionary
based classifiers, and combinations. In the following, a brief description of the
classifiers in each category is provided, including an overview of the discrimi-
natory characteristics each type of classifier focuses on.

• Whole series: the classifiers in this group employ specific distance mea-
sures to compare whole time series. They are especially suitable for prob-
lems in which the discriminatory characteristic of the series is the shape
of the time series, that appear over the whole series. For example, in the



8 1 Introduction

dataset shown in Figure 1.6, this type of classifier should perform espe-
cially well because the discriminatory characteristic is the shape of the
time series, even if it is warped and shifted. Some popular examples of
these classifiers are the already mentioned 1-NN-DTW or 1-NN-MSM [15].

Class 1 Class 2

Fig. 1.6: An illustrative example of a dataset type in which the classifiers in
the whole series category should perform specially well. The discriminatory
characteristic is the shape of whole the time series, regardless the width and

location of the pattern.

• Interval classifier: these methods extract features from different inter-
vals of the series and build a tree on this representation. As such, instead
of employing the whole series, the classifiers in this category focus lo-
cal characteristics. In particular, they focus on some intervals in specific
timestamps (location-dependent) of the series. They are appropriate for
problems in which a particular subsequence of the series situated in a
specific location is discriminatory. As shown in the example of Figure 1.7,
this pattern can be the same in different classes, but the location of the
pattern is a key aspect to distinguish between the classes. Some example
classifiers in this category are the Time Series Forest (TSF) [24] or the
Learned Pattern Similarity (LPS) [25].

• Shapelet based classifiers: the shapelets [26] are discriminatory subse-
quences that are representatives of the classes. In this type of methods,
shapelets are extracted or learned from the training dataset and the pre-
diction is made based on the minimum distances between the series and
the shapelets. As shown in the example in Figure 1.8, shapelet based
classifiers focus on location-independent subsequences of the series, i.e.,
discriminatory patterns that may appear in different locations in the time
series within a given class. The most popular shapelet based classifiers are
the Fast Shapelets (FS) [27] and the ST [28].



1.1 Time series classification 9

Class 1 Class 2

Fig. 1.7: An illustrative example of a dataset type in which interval based
classifiers should perform specially well. The discriminatory characteristic is

the highlighted pattern and the position in which it is located in all the
series from the same class.

Class 1 Class 2

Fig. 1.8: An illustrative example of a dataset type in which shapelet based
classifiers should perform specially well. The discriminatory characteristic is

a local shape that is representative of the class membership, and the
location of this pattern in the series from one class is not relevant.

• Dictionary based classifiers: These methods convert the intervals of
the time series into words using a discretization technique and represent
the time series by the histogram of the frequencies of these words. This
type of classifier focus on global discriminatory characteristics. As such,
as shown in Figure 1.9, rather than focusing only on the presence or
absence of a particular pattern, the classifiers in this category focus on
the frequency or repetitions in which a pattern appears within a series.
Some examples of this type of classifier are the Bag of Patterns (BOP)
[29] and BOSS [30].



10 1 Introduction

Class 1 Class 2

Fig. 1.9: An illustrative example of a dataset type in which dictionary based
classifiers should perform specially well. The discriminatory characteristic in
this dataset is the number of repetitions of a given pattern, regardless of the

location. Note that, in this example the patterns are identical in both
classes, which is not necessary.

• Combinations: Some classifiers combine two or more of the above men-
tioned approaches in ensemble methods. Given the hybrid nature of the
ensembles, this type of methods usually perform very well in many types
of problems but require extreme computational costs. Some examples of
this type of classifiers are the Dynamic Time Warping Features (DTW F)
[16] or the COTE ensemble [31].

In the original taxonomy presented by Bagnall et al. [8], the authors in-
cluded another category called model based classifiers. However, they stated
that this type of classifiers are not included in their review and experimen-
tation due to several reasons, such as the lack of available code and the low
performance compared with other state-of-the-art classifiers.

Note that the distance based (in the first taxonomy) and the whole series
(in the second taxonomy) categories share many classifiers but are not exactly
the same. The classifiers in the whole series category are those that employ the
1-NN with different distance measures [8], while distance based methods in-
clude more classifiers that take advantage of the existing distance measures in
different ways. For example, some of the classifiers that are based on shapelets
[28], employ distances between the time series and the shapelets to classify
new series, and, thus, can be considered as distance based approaches.

1.2 Meta-learning

Meta-learning is usually described as the task of learning to learn. The main
goal of meta-learning systems is to provide automatic recommendation on



1.2 Meta-learning 11

model selection to a non-expert user. It is commonly used for classifier rec-
ommendation [32] or clustering method recommendation [33] , but it has also
been employed for hyperparameter optimization [34]. Since this dissertation is
focused on TSC, in the following section an introduction on how meta-learning
is used in a classification framework is provided.

1.2.1 Meta-learning for classifier recommendation

Meta-learning systems aim at giving advice about model selection by exploit-
ing meta-knowledge, i.e., knowledge about the learning process of a model in a
given problem [35]. A meta-learning system for classifier recommendation has
two main elements: a set of datasets and a set of classifiers. Additionally, the
accuracy obtained by the classifiers in the considered datasets is known. With
this information, the main objective is to learn a mapping between the datasets
and the performances (expressed in different manners) of the classifiers. The
general methodology of meta-learning systems for classifier recommendation
is shown in Figure 1.10.

Set of
datasets

Meta-attributes Meta-target

Simple, statistical and 
information-theoretic 

Model based 

Landmarkers

Accuracy of classi ers 

Ranking of classi ers 

Best classi er

 ...

Meta-learner

Set of
classi ers

Fig. 1.10: A schema of the general methodology of meta-learning.

Given a set of datasets, meta-knowledge (also known as meta-attributes)
is extracted from them and is used to characterize the datasets. Then, these
meta-attributes are used as input of the recommendation system. From the
accuracies of the classifiers in the datasets, a meta-target is constructed, which
is the output of the recommendation system. This meta-target can take several
forms, such as the accuracy of the classifiers in the given datasets or the index



12 1 Introduction

of the best performing classifier. If the output of the meta-learning system is
the best classifier, for instance, the user is “constrained” to use this classifier
and has no information about the rest of the classifiers. If the meta-target is
a complete ranking of all the classifiers, contrarily, the user has much more
information but, from a learning point of view, the problem becomes more
complex.

Lastly, a mapping between the datasets (characterized by the meta-
attributes) and the performance of the classifiers (described by the meta-
target) is learned by a meta-learner. This algorithm will depend on the type
of output (meta-target) that we choose: a regression model if the outputs are
classifier accuracies, a ranking-based classifier if the output is a ranking of
classifiers, etc.

The meta-attributes extracted from the datasets need to accomplish two
requirements: on the one hand, they need to be good predictors of the per-
formance of the classifiers. On the other, they need to be fast to compute,
significantly faster than applying all the classifiers to a dataset. In the liter-
ature, there are three main ways in which meta-attributes can be extracted
[35]: by employing simple, statistical and information-theoretic meta-features,
model-based meta-features, and landmarkers.

• Simple, statistical and information-theoretic [36]: this type of meta-
attributes employ descriptive statistics or information-theoretic measures
extracted from the datasets, such as class entropy, to describe the datasets.
As pointed out in [35], this characterization type has been widely employed
in the literature, with highly competitive results. However, a major draw-
back is that these meta-attributes are designed for a standard classification
framework in which the instances are feature vectors. Hence, do not take
the temporal information contained in time series into account.

• Model based [37]: this type of meta-attributes are defined by parame-
ters or characteristics found when applying a given classifier to a dataset.
For instance, if a decision tree is used to classify the instances of a given
dataset, some characteristics of the learned tree, such as the depth, can
be used to describe the dataset. Model based meta-attributes generalize
better to different types of data, since specific models (time series clas-
sifiers, in our case) can be used in each situation. However, this type of
meta-attributes require to train a model and (in some cases) to tune the
hyper-parameters, which can be computationally very expensive [38].

• Landmarkers [39, 40]: landmarkers are based on the idea that the ac-
curacy obtained by fast and simple classifiers can be used to predict the
performance of other computationally more expensive classifiers. As such,
for each of the classifiers considered in the meta-learning problem, the cor-
responding landmarker is a quick estimator of the accuracy obtained by
the classifier in a given dataset. These estimators are generally obtained
in two manners [35]:



1.3 Explainability 13

– Algorithm reduction [41]: this technique consists of running simplified
versions of the candidate classifiers. This can be done, for example,
by reducing the range of search of the hyper-parameters.

– Dataset reduction [42]: this procedure consists of estimating the per-
formance of a candidate classifier by running the original classifier in
a subsample of the data. The landmarkers obtained by this technique
are also known as subsampling landmarkers.

The advantage of this meta-attribute type is that it can be designed to
characterize any type of data and can be used for any type of classifier.

1.2.2 Meta-learning for time series

Despite its potential, the relationship between meta-learning and time series is
almost non-existent in the literature. As far as we know, the few methods that
exploit meta-learning for time series data are focused on forecasting method
recommendation [43, 44, 45, 46]. Note that the meta-attributes introduced in
the previous section are meta-attributes to characterize classification prob-
lems, i.e., problems that contain many instances. In forecasting, by contrast,
a problem consists of a single time series, so the characterization can be more
easily addressed. In the mentioned works, specific characteristics of time se-
ries are employed as meta-attributes, such as the trend, the seasonality or the
kurtosis.

In [47], instead, a characterization for unsupervised time series datasets is
proposed for automatic similarity measure selection for time series clustering.
For this, the authors propose a set of specific meta-attributes for unsupervised
time series datasets, such as the mean cross-correlation or the mean shift
between each pair of time series.

Regarding the scope of this work, TSC, to the best of our knowledge, no
recommendation system has been proposed. In particular, there is no specific
characterization in the literature for supervised time series datasets.

1.3 Explainability

Over the years, the main trend in data mining research has focused on propos-
ing novel, more accurate, and usually more complex models. The first models
were transparent and interpretable (the decision making process was under-
standable for humans), but in the past few years, with the advent of deep
learning models, most of the state-of-the-art methods are often opaque. Even
if a model obtains a good performance in a given problem, being able to un-
derstand and interpret the decision making process is a key aspect to trust
the model.

In order to deal with this issue, a new field of research, called Explainable
Artificial Intelligence (XAI) [48], has emerged in recent years. Explainability



14 1 Introduction

can be defined as the task of finding a relation between the input data and the
prediction of a model, in such a way that a human can understand or visualize
this relation. For image data, for instance, the explanation of a model for a
given instance is usually shown as a saliency map [49], where each pixel is
colored depending on its relevance in the output of the model (as shown in
the example in Figure 1.11). The explanations displayed in the figure show
that the most relevant regions for dog breed classification are the faces. This
reasoning agrees with the human perception and gives confidence to the model.

Airedale Schnauzer Boston bull

Fig. 1.11: Examples of explanations obtained for dog breed classification
with the ResNet-CAM model [49]1. Each pixel is coloured depending on the

relevance in the prediction of the classifier (the red color indicates high
relevance, while the blue color indicates low relevance.)

Explainability has become one of the main challenges in the data mining
research community due to two main reasons: firstly, it can help experts to
better understand the relationship between the input and output data of their
problem. For example, in a medical scenario in which a model predicts that a
patient will suffer from flu, an explanation method can reveal which are the
symptoms that led to the prediction [50, 51]. Secondly, it has been shown that
explanations can help the researchers or experts to detect wrong reasoning in
classification problems [52].

With the aim of organizing the existing explanation methods, Du et al.
[53] propose to categorize the approaches following two main criteria: model-



1.3 Explainability 15

dependence and scope. Regarding the model-dependence, a method can be
model-dependent (also known as intrinsic) or model-independent (also called
agnostic). Intrinsic explanations are obtained directly from the model and, as
can be seen in several surveys [53, 54, 55, 56], most of the existing explanation
methods are of this type. Some examples of intrinsic explanations include the
Grad-CAM explainer for image classification with Neural Networks [57] or the
ExplainD method for Support Vector Machines with tabular data [58].

Note that intrinsic methods are limited to the particular model they are
designed for. As such, agnostic methods, i.e., methods that separate the expla-
nation from the model and can be used to explain any model, have powerfully
emerged in the past few years. Some examples of agnostic methods are the
Anchors [59] or the LIME method [51].

Regarding the scope of the explanation methods, the methods can provide
global or local explanations. Global explanations provide an understanding of
the whole logic of a classifier, such as the importance of each feature for the
prediction. An example of a global explanation method is presented in [60],
in which a model agnostic iterative algorithm is used to find the relevance
of each attribute in the prediction of a given classifier. Local explanations,
instead, focus on individual instances and provide a specific explanation for
each instance. All the examples of intrinsic and agnostic methods provided in
the previous paragraphs [51, 57, 58, 59] are local explanation methods.

Since this dissertation is focused on TSC, a brief overview of the existing
explanation methods for time series classifiers is introduced in the next section.

1.3.1 Explanation methods for time series

In the field of TSC, the growing interest in explainability has been materialized
in several ways. As pointed out in the recent review [56], several intrinsic
methods for explaining time series classifiers [61, 62, 63, 64, 65, 66, 67] have
been proposed, some of them focused on explaining deep learning models
[64, 65, 66, 67].

Concerning the intrinsic methods for explaining non-deep learning models,
two main approaches can be distinguished. On the one hand, in [61, 63], the
time series are represented in other symbolic spaces, for example by using a
discretization based on bag of words, and a classifier that reports the relevance
of each dimension is learned in those spaces. This information is then trans-
lated to the original temporal space, and an explanation that quantifies the
relevance of each region of the series in the prediction is obtained. An example
of the explanation provided by [63] is shown in Figure 1.12. On the other hand,
in [62], shapelets are used to obtain an explanation of the Random Shapelet
Forest (RSF) [68] classifier. In this method, small modifications are applied
to the original time series until the classifier changes its decision. In this way,
the explanation is not given in the form of the relevance of each region of the

1 Images obtained from https://github.com/alexisbcook/ResNetCAM-keras.

https://github.com/alexisbcook/ResNetCAM-keras


16 1 Introduction

series in the prediction, but in the form of a minimum transformation that
changes the prediction.

In the case of intrinsic methods for explaining deep learning models, these
methods generally employ a specific layer of the architecture, called the Class
Activation Map (CAM), to induce the explanations. In [65], a review of this
type of explanations is carried out. The explanation obtained by those meth-
ods is similar to that shown in Figure 1.12, in which the relevance of each
region of the series in the prediction is visualized.

Fig. 1.12: An explanation obtained for two time series from the Coffee
dataset by the method proposed in [63].

Even if most of the effort in TSC explanation has been focused on intrinsic
methods, the weakness of this type of explanation is that it is limited to
provide explanations of a specific classifier. As mentioned previously, agnostic
explanations overcome this limitation. To the best of our knowledge, two
agnostic methods have been proposed for TSC [69, 70].

In [69, 70], an agnostic local explanation method is presented by adapting
one of the most popular perturbation-based approaches, Local Interpretable
Model-agnostic Explanations (LIME) [51], to time series. The LIME method
consists of locally approximating the classifier in the neighbourhood of the
time series whose prediction will be explained. To this end, a synthetic neigh-
bourhood is generated around the instance subject to explanation by per-
turbing it, i.e., by applying small modifications. The original method was de-
signed for a standard classification framework and, hence, the perturbations
are applied to the different dimensions or variables of the instance. Then, the
explanation is obtained by measuring, for each feature, how the perturbation
influences the prediction. In this sense, the main idea is that a feature is con-
sidered relevant for the prediction if a small modification of the value of this
variable changes the prediction.

The adaptation to time series is carried out by, instead of applying pertur-
bations to variables, applying perturbations to intervals [69, 70] of the time
series. In both works, these modifications consist of replacing the given in-



1.5 Overview of the dissertation 17

terval(s) with another subsequence, such as an interval of random noise, the
linear interpolation, or other subsequences extracted from the time series of
the training set.

1.4 Data and software sources

In order to carry out high quality contributions in any field of research, it
is important to have a unified and publicly available framework for 1) re-
producibility and 2) fair evaluation and comparison of methods. For this, in
our field, the first required resource is a public data repository that allows
the different proposed methods to be fairly compared under the same condi-
tions (same data, in this case). In TSC, many efforts have been made in this
regard and Bagnall et al. [2] created a public repository of supervised time
series datasets called “The UEA & UCR Time Series Classification Reposi-
tory”. This archive includes 128 univariate and 30 multivariate datasets, with
a great variety of application domains, time series lengths, and number of
classes.

Another aspect to be considered when performing a fair evaluation and
comparison of different methods is the computational cost of a given method,
which highly depends on the implementation itself and, in particular, on the
programming language. In TSC, Bagnall et al. [8] made the first attempt
in the direction of unifying implementations of time series classifiers, and
implemented several benchmark methods in a Weka-compatible Java toolbox,
called tsml [71]. Recently, a unified framework for machine learning with time
series was implemented in Python, sktime (and the extension for deep learning
sktime-dl) [72], that is a scikit-learn compatible tool that includes many time
series classifiers.

In this dissertation, we will perform the corresponding evaluations em-
ploying the time series datasets from the UCR repository and the classi-
fiers implemented in the tsml, sktime and sktime-dl toolboxes. In addition,
with the aim of supporting open access research, all the code developed
for the contributions presented in this dissertation is publicly available in
https://gitlab.bcamath.org/aabanda.

1.5 Overview of the dissertation

In this dissertation, we present three contributions to the area of TSC. As in-
troduced in Section 1.1, the main trend in TSC has been to propose novel and
more accurate classifiers, and nowadays the number of available competitive
classifiers is considerably large .

However, less effort has been made to study the similarities and differ-
ences of the state-of-the-art methods and it is difficult to have a global idea
of the current outlook of the field. Moreover, in most cases, there is a lack

https://gitlab.bcamath.org/aabanda


18 1 Introduction

of understanding of the behavior of the classifiers. With this in mind, the
three contributions presented in this dissertation are focused on providing
knowledge about the current state-of-the-art time series classifiers.

Firstly, note that, even if there are many ways to classify time series,
distance based approaches are among the most popular methods. Together
with the growing number of distance measures for time series, new manners
(apart from the k-NN method) to exploit these distances within a classification
framework have been proposed. The existing literature about distance based
methods is unorganized and it is hard to draw a general idea of the current
state-of-the-art distance based methods. As such, the first objective of this
dissertation, addressed in Chapter 2, is:

Objective 1:

To provide a general taxonomy and review of distance based TSC
methods.

We propose to categorize the existing approaches into three categories:
those that use the distance together with k-NN, those that transform the
series into feature vectors using distances, and those in which the distances
are employed to obtain kernels for time series. We will see that converting the
time series into feature vectors by a distance based representation can be seen
as a preprocessing step, which bridges the gap between standard classifiers and
time series data. Regarding the approaches that convert distances into kernels,
we will see that a kernel, by definition, need to be a positive semi-definite
function, and we will organize the proposed methods for TSC depending on
how each approach handles this condition. We will comprehensively analyze
each method, stressing its advantages, drawbacks and computational cost.

With the aim of overcoming the limitations of distance based classifiers,
other approaches that focus on different characteristics of the series have been
proposed (see Section 1.1.2). Bagnall et al. [8] stated that the methods in each
of the proposed categories should be especially suitable to a particular type
of problem or dataset. However, even if some studies have been carried out
in this direction [73], this correlation has never been proved. Hence, given the
heterogeneous and growing set of available classifiers, from a pragmatic user’s
point of view, choosing a suitable classifier for a given problem is a difficult
task. Moreover, due to the computational cost of the process, applying all the
classifiers to a given problem and choosing the most suitable method based
on the obtained performances becomes an unrealistic approach. In this way,
in Chapter 3, we will address the second objective of this dissertation:

Objective 2:

To propose a time series classifier recommendation system.



1.5 Overview of the dissertation 19

Our proposal is the first recommendation system for TSC in the literature,
and we will follow a meta-learning approach for this. In our framework, 24
state-of-the-art time series classifiers will be considered, and the time series
datasets will be characterized by employing landmarkers, based both on al-
gorithm reduction and dataset reduction. In preliminary experiments, we will
show how the accuracies obtained by the proposed landmarkers are highly
correlated with the accuracies obtained by the original corresponding classi-
fiers, while the landmarkers are much faster to compute. For the output of the
recommendation system, five meta-targets will be considered: classifier accu-
racies, complete ranking, top-M ranking, best set, and best classifier. For each
meta-target type, two specific meta-learners are considered, depending on the
output data type. Given that this is the first time a time series classifier rec-
ommender is proposed, these meta-learners are compared with two baseline
methods we propose, which our method outperforms significantly. Moreover,
since some meta-targets are more fine-grained than others, we will exploit this
relation.

Even if the second contribution helps us select a classifier for a given
problem, many of the considered classifiers are complex in nature and difficult
to explain. Indeed, understanding the relationship between the characteristics
of a time series and the decision of a classifier is still an open question for
many state-of-the-art classifiers. As mentioned in Section 1.3.1, some agnostic
explanation methods for TSC [69, 70] have already been proposed. However,
the main drawback of these methods is that the perturbations considered for
creating the neighborhood of an instance are not realistic. For instance, if
a time series represents the electricity consumption of a country (as in the
ItalyPowerDemand dataset from the UCR repository [2]), replacing a given
interval of the series by random noise does not produce a realistic time series.
In particular, the generated neighbour does not have a semantic meaning,
since an interval of random noise can not be interpreted from a point of view
of electricity consumption. As such, the third objective of this dissertation,
presented in Chapter 4, is:

Objective 3:

To propose an ad-hoc model-agnostic explanation method for time
series classifiers, in which the perturbations considered are realistic
for time series.

For this, we will follow the perturbation based approach employed in [69,
70], but the four perturbations (or transformations) considered are specific for
time series: warp, scale, noise, and slice. Our method provides explanations at
two levels: in the higher-level, the robustness of a classifier’s prediction with
respect to a given transformation is measured, while in the lower-level, the
relevance of each region of the series in the prediction is computed.



For this, given a time series and a perturbation, we will create a synthetic
neighbourhood of the time series by applying these transformations to random
intervals of the series. We will define the robustness of a classifier with respect
to a transformation by quantifying the percentage of neighbours for which
the classifier changes the prediction. Then, we will identify the regions of
the time series in which performing a perturbation will result in a change of
prediction. In this way, we will consider that a region of the series is relevant
for the prediction (with respect to a transformation) if a perturbation in
this region changes the classifier’s prediction. Our explanation method will be
evaluated both qualitatively and quantitatively. For the qualitative evaluation,
we will take advantage of the semantic meaning of the time series to visually
validate our proposal in 2 benchmark datasets. The quantitative evaluation,
instead, consists of an adaptation of the evaluation methodology proposed
in [74] to our framework. The experimentation, carried out in 4 datasets and
employing 3 benchmark classifiers, clearly shows that our explanation method
is informative in almost all the considered combinations of dataset-classifier-
transformation.

Lastly, the main conclusions drawn within this dissertation are presented
in Chapter 5. We will also review the possible future directions of research,
together with the main achievements of this dissertation, including journal
and congress publications.





2

A Review on Distance based Time Series
Classification

2.1 Introduction

In the field of TSC, as mentioned in Section 1.1, most of the research has
been focused on distance based approaches. Given the popularity and com-
petitiveness of the 1-NN-DTW method, distance based classification has been
oriented to defining different types of distance measures and then exploiting
them within k-NN classifiers. Due to the temporal (ordered) nature of the
series, the high dimensionality, the noise, and the possible different lengths of
the series in the database, the definition of a suitable distance measure is a
key issue in distance based TSC.

One of the ways to categorize time series distance measures is shown in
Figure 2.1; Lock-step measures refer to those distances that compare the ith
point of one series to the ith point of another (e.g., Euclidean distance), while
elastic measures aim to create a non-linear mapping in order to align the
series and allow comparison of one-to-many points (e.g., DTW [10]). These
two types of measures consider the important aspect to define the distance
is the shape of the series, but there are also structure based or edit based
measures, among others [4]. In this sense, different distance measures are able
to capture different types of dissimilarities, and, even if in theory there is a
best distance for each case [75], in practice it is hard to find it. Nevertheless,
the experimentation in [4, 9, 12, 76, 77, 78, 79] has shown that, on average,
the DTW distance seems to be particularly difficult to beat.

One of the simplest ways to exploit a distance measure within a classi-
fication process is by employing k-NN classifiers. One could expect that a
more complex classifier would outperform the performance of the 1-NN and,
as such, the bad performance of these complex classifiers may be attributed
to the inability of the classifiers to deal with the temporal nature of the series
using the default settings. On the other hand, it is known that the under-
lying distance is crucial to the performance of the 1-NN classifier [80] and,
hence, the high accuracy of 1-NN classifiers may arise from the efficiency of
the time series distance measures -which take into consideration the temporal



22 2 A Review on Distance based Time Series Classification

Fig. 2.1: Mapping of Euclidean distance (lock-step measure) vs. mapping of
DTW distance (elastic measure) [76].

nature- for classification. In this way, methods that exploit the potential of
these distances within more complex classifiers have emerged in the past few
years [16, 81, 82], achieving performances that are competitive or outperform
the classic 1-NN.

These new approaches aim to take advantage of the existing time series
distances to exploit them within more complex classifiers. We have differenti-
ated between two new ways of using distance measures in the literature: the
first employs the distance to obtain a new feature representation of the series
[16, 28, 83], i.e., a representation of the series as an order-free vector, while
the second uses the distance to obtain a kernel [17, 82, 84], i.e., a similarity
between the series that will then be used within a kernel method. Both ap-
proaches have achieved competitive classification results and, thus, different
variants have arisen [85, 86, 87]. The purpose of this review is to present a
taxonomy of all those methods which are based on time series distances for
classification. At the same time, the strengths and shortcomings of each ap-
proach are discussed in order to give a general overview of the current research
directions in distance based TSC.

The rest of the Chapter is organized as follows: in Section 2.2 the taxonomy
of the reviewed methods is presented, as well as a brief description of the
methods in each category. In Section 2.4 a discussion on the approaches in
the taxonomy is presented, where we draw our conclusions and specify some
future directions.

2.2 A taxonomy of distance based time series
classification

As mentioned previously, the taxonomy we propose intends to include and
categorize all the distance based approaches for TSC. A visual representation
of the taxonomy can be seen in Figure 2.2. From the most general point
of view, the methods can be divided into three main categories: in the first
one, the distances are used directly in conjunction with k-NN classifiers; in
the second one, the distances are used to obtain a new representation of the



2.2 A taxonomy of distance based time series classification 23

series by transforming them into features vectors, while in the third one, the
distances are used to obtain kernels for time series.

Distance 

kernels

Global

distance features

Inde�nite

distance kernels

Embedded

 features

Distance based 

TSC 

k-NN

De�nite

distance kernels

Distance  

features

Local 

distance features

Distances are used to obtain 

a new feature representation 

of the time series

Distances to other (global) 

series are used as features

Distances are used to embed the 

series into a vector space and 

obtain new features

Distances to local patterns of 

the series are used as features

Distances are used to obtain 

a kernel

Distances are used to obtain 

inde�nite kernels for time series

Distances are used to obtain PSD 

kernels for time series

Distances are used combined 

with k-NN classi�ers

Fig. 2.2: A visual representation of the proposed taxonomy of distance based
time series classification methods.

2.2.1 k-Nearest Neighbour

This approach employs the existing time series distances within k-NN classi-
fiers. In particular, the 1-NN classifier has mostly been used in TSC due to
its simplicity and competitive performance [78, 88]. Given a distance measure
and a time series, the 1-NN classifier predicts the class of this series as the
class of the object closest to it from the training set. Despite the simplicity of



24 2 A Review on Distance based Time Series Classification

this rule, a strength of the 1-NN is that as the size of the training set increases,
the 1-NN classifier guarantees an error lower than two times the Bayes error
[89]. Nevertheless, it is worth mentioning that it is very sensitive to noise in
the training set, which is a common characteristic of time series datasets. This
approach has been widely applied in TSC, as it achieves, in conjunction with
the DTW distance, the best accuracies achieved on many benchmark datasets.
As such, quite a few studies and reviews include the 1-NN in the time series
literature [8, 76, 79, 90], and hence, it is not going to be further detailed in
this review.

2.2.2 Distance features

In this group, we include the methods that employ a time series distance mea-
sure to obtain a new representation of the series in the form of feature vectors.
In this manner, the series are transformed into feature vectors (order-free vec-
tors in RN ), overcoming many specific requirements that are encountered in
TSC, such as dealing with ordered sequences or handling instances of dif-
ferent lengths. The main advantage of this approach is that it bridges the
gap between TSC and conventional classification, enabling the use of general
classification algorithms designed for vectors, while taking advantage of the
potential time series distances. In this manner, calculating the distance fea-
tures can be seen as a preprocessing step, thus, the transformation can be
used in combination with any classifier. Note that even if these methods also
obtain some features from the series, they are not considered within feature
based TSC, but within distance based TSC. The reason is that the methods
in feature based TSC obtain features that contain information about the se-
ries themselves, while distance features contain information relative to their
relation with the other series. Three main approaches are distinguished within
this category: those that directly employ the vector made up of the distances
to other series as a feature vector, those that define the features using the
distances to some local patterns, and those that use the distances after em-
bedding the series into some vector space.

2.2.2.1 Global distance features

The main idea behind the methods in this category is to convert the time
series into feature vectors by employing the vector of distances to other series
as the new representation. Firstly, the distance matrix is built by calculating
the distances between each pair of samples in the training set, as shown in
Figure 2.3. The number of time series in the training set is ntr. Then, each
row of the distance matrix is used as a feature vector describing a time series,
i.e., as input for the classifier. It is worth mentioning that this is a general
approach (not specific for time series) but becomes specific when a time series



2.2 A taxonomy of distance based time series classification 25

distance measure is used. Learning with the distance features is also known as
learning in the so-called dissimilarity space [91]. For more details on learning
with global distance features in a general context, see [91, 92, 93, 94].

D

Training set Distance matrix

Classi

Fig. 2.3: A visual representation of the global distance features method.

Even if learning with distance features is a general solution, it is particu-
larly advantageous for time series; the distance to each series is understood as
an independent dimension and the series can be seen as vectors in a Euclidean
space. This new representation enables the use of conventional classifiers that
are designed for feature vectors, while it takes advantage of the existing time
series distances. However, learning from the distance matrix has some impor-
tant drawbacks; first, the distance matrix must be calculated, which may be
costly depending on the complexity of the distance measure. Then, once the
distance matrix has been calculated, learning a classifier may also incur large
computational cost, due to the possible large size of the training set. Note
that in the prediction stage, the consistent treatment of a new time series is
straightforward -just the distances from the new series to the series in the
training set have to be computed- but it can also become computationally
expensive depending on the distance measure. Henceforth, given a distance
measure D, we will refer to the methods employing the corresponding distance
features as DFd .

After this brief introduction of the distance based features, a summary
of the methods employing them is now presented. In [84], the authors made
the first attempt at investigating the feasibility of using a time series dis-
tance measure within a more complex classifier than the k-NN. In particular,
they aimed at taking advantage of the potential of SVMs on the one hand,
and of DTW on the other. First, they converted the DTW distance mea-
sure into two DTW based similarity measures, shown in equation (2.1). Then,
they employed the distance features obtained from these similarity measures,
DFGDTW and DFNDTW , in combination with SVMs for classification.



26 2 A Review on Distance based Time Series Classification

GDTW (Ti, Tj) = exp
(
−DTW (Ti, Tj)2

σ2

)
(2.1)

NDTW (Ti, Tj) = −DTW (Ti, Tj)

where σ > 0 is a free parameter and Ti, Tj are two time series. They concluded
the new representation in conjunction with SVMs is competitive with the
benchmark 1-NN with DTW.

In [81], the authors introduced a Two-step DTW-SVM classifier where the
DFDTW are used in order to solve a multi-class classification problem. In the
prediction stage, the new time series is represented by the distance to all the
series in the training set and a voting scheme is employed to classify the series
using all the trained SVMs in a one-vs-all schema. They concluded that even
if DFDTW achieves acceptable accuracy values, the prediction of new time
series is too slow for real world applications when the training set is relatively
big.

Additionally, based on the potential of using distances as features for TSC,
Kate et al. [16] carried out a comprehensive experimentation in which different
distance measures are used as features within SVMs. In particular, they tested
not only DFDTW but also a constrained version DFDTW−R (a window-size
constrained version of DTW which is computationally faster [95]), features
obtained from the Euclidean distance DFED and also concatenations of these
distance features with other feature based representations. In their experimen-
tation, they showed that even the DFED, when used as features with SVMs,
outperforms the accuracy of 1-NN classifier based on the same Euclidean dis-
tance. An extension of [16] was presented in [96], who argued that not all
relevant features can be described in the time domain (frequency domain can
be more discriminative, for example) and added new representations to the set
of features. Specifically, they generalized the concept of distance features to
other domains and employed four different representations of the series with
six different distance measures, giving rise to 24 distance features. For each
representation of the series Ri, i = 1, . . . , 4, they computed six different dis-
tance features DFRid1

, . . . ,DFRid6
. In their experimentation on 85 datasets from

UCR, they showed that using representation diversity improves the classifi-
cation accuracy. Finally, in their work about early classification of time series,
[97] benefit from Euclidean distance features DFED in order to classify the
series with SVMs and Gaussian Processes [98].

Recently, Wu et al. proposed another distance feature approach for TSC
[99] which is based on Random Features [100] approximation. Following the
methodology of the D2KE kernel [101] discussed in Section 2.2.3, the authors
exploit the idea of randomly sampled time series and employ the distances
from the original series to the random series as features: DFRF . The ran-
dom series are defined by S segments -where the length S is a user-defined
parameter-, each segment associated with a random number. The idea is that
these random series can be interpreted as the possible shapes of the time se-
ries. In the experiments carried out on 16 UCR datasets, they compare their



2.2 A taxonomy of distance based time series classification 27

representation -in combination with SVMs- against 6 state-of-the-art distance
based classification methods. In particular, they propose two variants of their
method: the first employs a large number of random series, while the second
employs a small number. The experimentation shows that the first approach
outperforms the accuracies of the baseline methods but incurs in large com-
putational times, while the second obtains comparable accuracies in less time
(reducing the time complexity from quadratic to linear).

With the aim of addressing the limitation of the high computational cost of
the DTW distance, Goebel et al. [102] proposed the use of a fast lower bound
for the DTW algorithm, called LB Keogh [103]. Employing DFLB Keogh with
SVMs, Janyalikit et al. showed in their experimentation on 47 UCR datasets
that their method speeds the classification task up by a large margin, while
maintaining the accuracies comparing with the state-of-art DFDTW−R pro-
posed in [16].

As previously mentioned, another weakness of using distances as features
is the high dimensionality of the distance matrix, since for n instances a n×n
matrix is used as the input to the classifier. In view of this, Goebel et al.
[104] proposed a dimensionality reduction approach using Principal Compo-
nent Analysis (PCA) in order to keep only those dimensions that retain the
most information. In their experimentation they compare the use of DFDTW
with the reduced version of the same matrix, DFDTW+PCA in combination
with SVMs. They showed PCA can have a consistent positive effect on the
performance of the classifier but this effect seems to be dependent of the choice
of the kernel function applied in the SVM. Note that for prediction purposes,
they transform the new time series using the PCA projection learned from the
training examples and, hence, the prediction process will also be significantly
faster.

Another dimensionality reduction approach used in these cases is proto-
type selection, employed by Iwana at el. [83]. The idea is to select a set of p
reference time series, called prototypes, and compute only the distances from
the series to the p prototypes. The authors pointed out that the distance fea-
tures let each feature be treated independently and, consequently, prototype
selection can be seen as a feature selection process. As shown in [104], this
dimensionality reduction technique not only speeds up the training phase but
also the prediction of new time series. The proposed method uses the Ad-
aBoost [105] algorithm, which is able to select discriminative prototypes and
combine a set of weak learners. They experimented with DFDTW+PROTO and
analyzed different prototype selection methods.

To conclude this section, a summary of the reviewed methods of Global
distance features for TSC can be found in Table 2.1.



28 2 A Review on Distance based Time Series Classification

Table 2.1: Summary of global distance feature approaches

Authors Features Classifier Datasets
Gudmundsson et al. [84] DFGDT W , DFNDT W SVMs 20 UCR
Jalalian et al. [81] DFDT W SVMs 20 UCR
Kate et al. [16] DFED −DFDT W −DFDT W −R − SAX SVMs 47 UCR
Giusti et al. [96] DFR1,...,4

d1,...,6
SVMs 85 UCR

Mori et al. [97] DFED GPs, SVMs 45 UCR
Wu et al. [99] DFRF SVMs 16 UCR
Goebel et al. [102] DFLB Keogh SVMs 47 UCR
Goebel et al. [104] DFDT W +P CA SVMs 42 UCR
Iwana et al. [83] DFDT W +P ROT O Adaboost 1 (UNIPEN)

2.2.2.2 Local distance features

In this section, instead of using distances between entire series, distance to
some local patterns of the series are used as features. Instead of assuming
that the discriminatory characteristics of the series are global, the methods
in this section consider that they are local. As such, the methods in this
category employ the so-called shapelets [26], subsequences of the series that
are identified as being representative of the different classes. An example of
three shapelets belonging to different time series can be seen in Figure 2.4.
An important advantage of working with shapelets is their interpretability,
since an expert may understand the meaning of the obtained shapelets. By
definition, shapelets are subsequences and as such, the methods employing
shapelets are not a priori applicable to other types of data. However, it is
worth mentioning that the original shapelet discovery technique [26] is carried
out by enumerating all possible candidates (all possible subsequences of the
series) and using a measure based on information theory that takes O(n2l4),
where n is the number of time series and l is the length of the longest series.
Thereby, most of the work related to shapelets has focused on speeding up the
shapelet discovery process [27, 106, 107, 108] or on proposing new shapelet
learning methods [109]. However, we will not focus on that but rather on how
shapelets can be used within distance based classification.

Building on the achievements of shapelets in classification, Lines et al.
[88] introduced the concept of Shapelet Transform (ST). First, the m most
discriminative (over the classes) shapelets are found using one of the meth-
ods referenced above. Then, the distances from each series to the shapelets
are computed and the shapelet distance matrix shown in Figure 2.5 is con-
structed. Finally, the vectors of distances are used as input to the classifier.
In [88], the distance between a shapelet of length s and a time series is de-
fined as the minimum Euclidean distance between the shapelet and all the
subsequences of the series of length s. Shapelet transformation can be used
in combination with any classifier and, in their proposal, the authors exper-
imented with seven classifiers (C4.5, 1-NN, Näıve Bayes, Bayesian Network,



2.2 A taxonomy of distance based time series classification 29

Fig. 2.4: Visual representation of two shapelets (Shap1 and Shap2) and six
time series from the Coffee dataset (UCR). These shapelets are identified as
being representative of class membership: Shap1 belongs to class 1, as can be
seen in the three time series (T1, T2 and T3) which belong to class 1, while
Shap2 belongs to class 2, as can be seen in the three time series (T4, T5 and

T6) which belong to class 2.

Random Forest, Rotation Forest and SVMs) and 26 datasets, showing the
benefits of the proposed transformation.

D

Training set

Classi er

Shap 1 Shapm

Shapelet distance matrix

Fig. 2.5: Example of the local distance features methods using ST.

Hills et al. [28] provided an extension of [88] that includes a comprehen-
sive evaluation which analyzes the performance of the seven aforementioned
classifiers using the complete series and the ST as input. As such, the authors
concluded that the ST gives rise to improvements in classification accuracy
in several datasets. In the same line, Bostrom et al. [110] proposed another
shapelet learning strategy (called binary ST ) and evaluated their ST in con-
junction with an ensemble classifier on 85 UCR datasets, showing that it
clearly outperforms conventional approaches of TSC.



30 2 A Review on Distance based Time Series Classification

Recently, Li & Lin [2018] proposed another approach that exploits time
series distances in a novel way: their method maps the series into a specific
dissimilarity space in which the different classes are effectively separated. This
specific dissimilarity space is defined based on what they call Separating Ref-
erences (SRs), which, in practice, are subsequences. These SRs are found,
by means of an evolutionary process, such that the distances between the
SRs and series belonging to different classes differs with a large margin. The
corresponding decision boundaries that split the classes in the dissimilarity
space are also found during the same process. As such, this approach does
not specifically employ distances as features but, since it is very related to the
methods in this category, it has been included. They experiment with 40 UCR
datasets showing that their Evolving Separating References (ESR) approach
is competitive with the benchmark TSC methods, being particularly suitable
for datasets in which the size of learning set is small.”

Lastly, [111] introduced another representative subsequence based ap-
proach that is similar to shapelet based methods but from a novel perspective.
Their method first transforms the real-valued series into discrete-valued se-
ries using Symbolic Aggregate approXimation (SAX) [112] and employs a
grammar induction (GI) procedure [113] to generate a pool of representative
pattern candidates. Then, it selects the most representative patterns from
these candidates and transforms them back into subsequences. Finally, the
series are represented by a vector containing the distances from the series to
these subsequences, and the classification is carried out using SVMs.A signif-
icant difference between this method, called Representative Pattern Mining
(RPM), and shapelet based methods is that, while a shapelet may be rep-
resentative of more than one class -exclusiveness is not required-, in RPM
the representative subsequences can only belong to one class. In addition, the
pattern discovery in RPM is much more efficient than the existing shapelet
discovery procedures.

To sum up, a summary of the reviewed methods that employ Local distance
features can be found in Table 2.2.

Table 2.2: Summary of Local distance feature approaches

Authors Features Classifier Datasets

Lines et al. [88] ST 7 classifiers* 18 UCR + 8 own
Hills et al. [28] ST 7 classifiers* 17 UCR + 12 own
Bostrom et al. [114] Binary ST Ensemble 85 UCR
Li et al. [115] SRs ESR 40 UCR
Wang et al. [111] RPM SVMs 42 UCR + 1 own

* C4.5, 1-NN, Näıve Bayes, Bayesian Network, Random Forest,
Rotation Forest and SVMs



2.2 A taxonomy of distance based time series classification 31

2.2.2.3 Embedded features

The methods presented until now within the Distance features category em-
ploy the distances directly to create feature vectors representing the series,
however, this is not the only way to use the distances. In the last approach
within this section, the methods using Embedded features do not employ the
distances directly as the new representation. Instead, they make use of them
to obtain a new representation. In particular, the distances are used to iso-
metrically embed the series into some Euclidean space while preserving the
distances.

The distance embedding approach is not a specific method for time series.
In many areas of research, such as empirical sciences, psychology, or biochem-
istry, it is common to have (dis)similarities between the input objects and
not the objects per se. As such, one may learn directly in the dissimilarity
space mentioned in Section 2.2.2.1, or one may try to find some vectors whose
distances approximate the given (dis)similarities. If the given dissimilarities
come from the Euclidean distance, it is possible to easily find some vectors
that approximate the given distances. This is known in literature as metric
multidimensional scaling [116]. On the contrary, if the distances are not Eu-
clidean (or even not metric), the embedding approach is not straightforward
and many works have addressed this issue in research [93, 94, 117, 118].

In the case of time series, this approach is particularly advantageous since
a vector representation of the series is obtained such that the Euclidean dis-
tances between these vectors approximate the given time series distances.
The main motivation is that many classifiers are implicitly built on Euclidean
spaces [118] and this approach aims to bridge the gap between the Euclidean
space and elastic distance measures. However, as it will be seen, the consistent
treatment of new test instances is not straightforward and it is an issue to be
considered.

As examples in TSC, the authors of [119] and [120] proposed, for the first
time, a time series embedding approach in which a vector representation of
the series is found such that the Euclidean distances between these vectors
approximate the DTW distances between the series, as represented in Fig-
ure 2.6. They applied three embedding methods: multidimensional scaling,
pseudo-Euclidean space embedding, and Euclidean space embedding by the
Laplacian eigenmap technique [121]. They experimented with linear classifiers
and a unique dataset (Australian Sign Language (ASL) [122]), in which their
Laplacian eigenmap based embedded method achieved a better performance
than the 1-NN classifier with DTW.

Another approach presented in [123] first defines a DTW based similarity
measure, called DTWS, following the relation between distances and inner
products [124] (see equation (2.2)). Then they search for some vectors such
that the inner product between these vectors approximates the given DTWS:



32 2 A Review on Distance based Time Series Classification

Classi er

DTW

Training set Distance matrix

Approximated distance matrix Embedded vectors

Embedding

Fig. 2.6: Example of the stages of embedded distance features methods using
the approach proposed in [119].

DTWS(Ti, Tj) = DTW (Ti, 0)2 +DTW (Tj , 0)2 −DTW (Ti, Tj)2

2 (2.2)

where 0 denotes the time series of length one of value 0. Their method learns
the optimal vector representation preserving the DTWS by a gradient descent
method, but a major drawback is that it learns the transformed time series,
but not the transformation itself. The authors propose an interesting solution
to deal with the high computational cost of DTW, which consists of assuming
that the obtained DTWS similarity matrix is a low-rank matrix. As such, by
applying the theory of matrix completion, sampling only O(n logn) pairs of
time series is enough to perfectly approximate a n× n low-rank matrix [125].
However, it is not possible to transform new unlabeled time series, which
makes the method rather inapplicable in most contexts.

Finally, Lods et al. [87] presented a particular case of embedding that
is based on the shapelet transform (ST) presented in the previous section.
Their proposal learns a vector representation of the series (the ST), such that
the Euclidean distance between the representations approximates the DTW
between the series. In other words, the Euclidean distances between the row
vectors representing each series in Figure 2.5 approximate the DTW distances
between the corresponding time series. The main drawback of this approach
is the time complexity in the training stage: first all the DTW distances are
computed and then, the optimal shapelets are found by a stochastic gradient
descent method. However, once the shapelets are found, the transformation of
new unlabeled instances is straightforward, since it is done by computing the
Euclidean distance between these series and shapelets. Note that the authors
do not use their approach for classifying time series but for clustering, but since



2.2 A taxonomy of distance based time series classification 33

it is closely related to the methods in this review and their transformation
can be directly applied to classification, it has been included in the taxonomy.

As previously mentioned, an important aspect to be considered in the
methods using embedded features is the consistent treatment of unlabeled
test samples, which depends on the embedding technique used. In [120], for
instance, it is not clearly specified how unlabeled instances are treated. The
method by Lei et al. [123], on the other hand, learns the transformed data
and not the transformation, hence it is not applicable to real problems. Lastly,
in [87], new instances are transformed by computing the distance from these
new series to the learnt shapelets.

To end this section, a summary of the reviewed methods employing Em-
bedded distance features for TSC can be found in Table 2.3.

Table 2.3: Summary of embedded distance feature approaches

Authors Features Classifier Datasets

Mizuhara et al. [120] DTW distance preserving vectors Linear classifiers ASL
Lei et al. [123] DTWS similarity preserving vectors XGBoost 6 own
Lods et al. [87] DTW distance preserving ST clustering 15 UCR

2.2.3 Distance kernels

The methods within this category do not employ the existing time series
distances to obtain a new representation of the series. Instead, they use them
to obtain a kernel for time series. Before going in-depth into the different
approaches, a brief introduction to kernels and kernel methods is presented.

2.2.3.1 An introduction to kernels

The kernel function is the core of kernel methods, a family of pattern recogni-
tion algorithms, whose best known instance is the SVM [126]. Many machine
learning algorithms require the data to be in feature vector form, while kernel
methods require only a similarity function (known as kernel) expressing the
similarity over pairs of input objects [127]. The main advantage of this ap-
proach is that one can handle any kind of data including vectors, matrices, or
structured objects, such as sequences or graphs, by defining a suitable kernel
which is able to capture the similarity between any two pairs of inputs. The
idea behind a kernel is that if two inputs are similar, their output on the
kernel will be similar, too.

More specifically, a kernel κ is a similarity function

κ : X × X → R
(x, x′)→ κ(x, x′)



34 2 A Review on Distance based Time Series Classification

that for all x, x′ ∈ X satisfies

κ(x, x′) = 〈Φ(x), Φ(x′)〉 (2.3)
where Φ is the mapping from X into some high dimensional feature space
and 〈, 〉 is an inner product. As equation (2.3) shows, a kernel κ is defined by
means of a inner product 〈 , 〉 in some high dimensional feature space. This
feature space is called a Hilbert space and the power of kernel methods lies in
the implicit use of these spaces [128].

In practice, the evaluation of the kernel function is one of the steps within
the phases of a kernel method. Figure 2.7 shows the usage of the kernel func-
tion within a kernel method and the stages involved in the process. First,
the kernel function is applied to the input objects in order to obtain a kernel
matrix (also called Gram matrix), which is a similarity matrix with entries
Kij = κ(xi, xj) for each input pair xi, xj . Then, this kernel matrix is used by
the kernel method algorithm in order to produce a pattern function that is
used to process unseen instances.

Data

Kernel matrix

Pattern function

Algorithm

Fig. 2.7: The stages involved in the application of kernel methods [127].

An important aspect to consider is that the class of similarity functions
that satisfies (2.3), and hence are kernels, coincides with the class of similarity
functions that are symmetric and positive semi-definite [127].

Definition 4. (Positive semi-definite kernel) A symmetric function κ :
X × X → R satisfying

n∑
i=1

n∑
j=1

cicjκ(xi, xj) ≥ 0 (2.4)

for any n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R is called a positive semi-definite
kernel (PSD) [129].

As such, any PSD similarity function satisfies (2.3) and (since it is a kernel)
defines an inner product in some Hilbert space. Moreover, since any kernel
guarantees the existence of the mapping implicitly, an explicit representation
for Φ is not necessary. This is also known as the kernel trick (see [127] for
more details).



2.2 A taxonomy of distance based time series classification 35

Remark 1. We will also refer to a PSD kernel as a definite kernel.

Remark 2. We will informally denominate indefinite kernels to non-PSD ker-
nels which are employed in practice as kernels, even if they do not strictly
meet the definition.

Providing the analytical proof of the positive semi-definiteness of a kernel
is rather cumbersome. In fact, a kernel does not need to have a closed-form
analytic expression. In addition, as Figure 2.7 shows, the way of using a kernel
function in practice is via the kernel matrix and, hence, the definiteness of a
kernel function is usually evaluated experimentally for a specific set of inputs
by analysing the positive semi-definiteness of the kernel matrix.

Definition 5. (Positive semi-definite matrix) A square symmetric ma-
trix K ∈ Rn×n satisfying

vTKv ≥ 0 (2.5)

for any vector v ∈ Rn is called a positive semi-definite matrix [129].

The following well-known result is obtained from [127]:

Proposition 1. The inequality in equation (2.5) holds ⇔ all eigenvalues of
K are non-negative.

Therefore, if all the eigenvalues of a kernel matrix are non-negative, this
kernel function is considered PSD for the particular instance set in which it
has been evaluated. In this manner, the definiteness of a kernel function is
usually studied by the eigenvalue analysis of the corresponding kernel ma-
trix. However, a severe drawback of this approach is that the analysis is only
performed for a particular set of instances, and it cannot be generalized.

After introducing the basic concepts related to kernels, some examples of
different types of kernels are now presented. As previously mentioned, one of
the main strengths of kernels is that they can be defined for any type of data,
including structured objects, for instance:

• Kernels for vectors: Given two vectors x,x′, the popular Gaussian
Radial Basis Function (RBF) kernel [127] is defined by

κ(x,x′) = exp
(
−||x− x′||2

2σ2

)
(2.6)

where σ > 0 is a free parameter.
• Kernels for strings: Given two strings, the p-spectrum kernel [130] is

defined as the number of sub-strings of length p that they have in common.



36 2 A Review on Distance based Time Series Classification

• Kernels for time series: Give two time series, a kernel for time series
returns a similarity between the series. There are plenty of ways of defining
a similarity. For instance, two time series may be considered similar if
they are generated by the same underlying statistical model [131]. In this
review, we will focus on those kernels that employ a time series distance
measure to evaluate the similarity between the series.

Therefore, in this category denominated Distance kernels, instead of using
a distance to obtain a new representation of the series, the distances are used
to obtain a kernel for time series. As such, the methods in this category aim
to take advantage of the potential of time series distances and the power of
kernel methods. Two main approaches are distinguished within this category:
those that construct and employ an indefinite kernel, and those that construct
kernels for time series that are, by definition, PSD.

2.2.3.2 Indefinite distance kernels

The main goal of the methods in this category is to convert a time series
distance measure into a kernel. Most distance measures do not trivially lead
to PSD kernels, so many works focus on learning with indefinite kernels. The
main drawback of learning with indefinite kernels is that the mathematical
foundations of the kernel methods are not guaranteed [132]. The existence of
the feature space to which the data is mapped (equation (2.3)) is not guaran-
teed and, due to the missing geometrical interpretation, many good properties
of learning in that space (such as orthogonality and projection) are no longer
available [132]. In addition, some kernel methods do not allow indefinite ker-
nels (due to the implementation or the definition of the method) and some
modifications must be carried out, but for others the definiteness is not a
requirement. For example, in the case of SVMs, the optimization problem
that has to be solved is no longer convex, so reaching the global optimum is
not guaranteed [92]. However, note that good classification results can still
be obtained [133, 134, 135], and as such, some works focus on studying the
theoretical background about SVMs feature space interpretation with indefi-
nite kernels [136]. Another approach, for instance, employs heuristics on the
formulation of SVMs to find a local solution [137] but, to the best of our
knowledge, it has not been applied to TSC. Converting a distance into a ker-
nel is not a specific challenge of time series and there is a considerable amount
of work done in this direction in other contexts [92, 138].

For TSC, most of the work focuses on employing the distance kernels pro-
posed in [138]. They propose to replace the Euclidean distance in traditional
kernel functions, such as the Gaussian kernel in equation 2.6, by the prob-
lem specific distance measure. They called these kernels distance substitution
kernels. In particular, we will call the following kernel Gaussian Distance Sub-
stitution (GDS) [138]:



2.2 A taxonomy of distance based time series classification 37

GDSD(x, x′) = exp
(
−d(x, x′)2

σ2

)
(2.7)

where x, x′ are two inputs, D is a distance measure and σ > 0 is a free
parameter. This kernel can be seen as a generalization of the Gaussian RBF
kernel presented in the previous section, in which the Euclidean distance is
replaced with the distance calculated by D. For the GDS kernel, the authors
of [138] state that GDSD is PSD if and only if D is isometric to an L-2 norm,
which is generally not the case. As such, the methods which use this type of
kernel for time series generally employ indefinite kernels.

Within the methods employing indefinite kernels, there are different ap-
proaches, and for TSC we have distinguished three main directions (shown in
Figure 2.8). Some of them just learn with the indefinite kernels [90, 133, 135,
139, 140] using kernel methods that allow this kind of kernels and without
taking into consideration that they are indefinite; others argue that the in-
definiteness adversely affects the performance and present some alternatives
or solutions [81, 84, 141]; finally, others focus on a better understanding of
these distance kernels in order to investigate the reason for the indefiniteness
[86, 142].

Indefinite distance kernels

◦ Employing indefinite kernels
Jalalian et al. [81]
Gudmundsson et al. [84]
Kaya et al. [90]
Bahlmann et al. [133]
Shimodaira et al. [135]
Pree et al. [139]
Jeong et al. [140]

◦ Dealing with the indefiniteness
Jalalian et al. [81]

◦ Regularization
Chen et al. [141]

◦ Analyzing the indefiniteness
Zhang et al. [86]
Lei et al. [142]

Fig. 2.8: Different approaches taken with indefinite distance kernels



38 2 A Review on Distance based Time Series Classification

Employing indefinite kernels

Bahlmann et al. [133] made the first attempt to introduce a time series spe-
cific distance measure within a kernel. They introduced the GDTW measure
presented in equation (2.1) as a kernel for character recognition with SVMs.
This kernel coincides with the GDS kernel in equation (2.7), in which the
distance d is replaced by the DTW distance, i.e., GDSDTW . They remarked
that this kernel is not PSD since simple counter-examples can be found in
which the kernel matrix has negative eigenvalues. However, they obtained
good classification results and argued that for the UNIPEN1 dataset, most
of the eigenvalues of the kernel matrix were measured to be non-negative,
concluding that somehow, in the given dataset, the proposed kernel matrix is
almost PSD. Following the same direction, Jeong et al. [140] proposed a vari-
ant of GDSDTW which employs the Weighted DTW (WDTW) measure in
order to prevent distortions by outliers, while in [90] also employed the GDS
kernel with SVMs, but instead of using the distance calculated by the DTW,
they explored other distances derived from different alignment methods of the
series, such as Signal Alignment via Genetic Algorithm (SAGA) [143]. Pree et
al. [139] proposed a quantitative comparison of different time series similarity
measures used either to construct kernels for SVMs or directly for 1-NN clas-
sification, concluding that some of the measures benefit from being applied in
an SVM, while others do not. Note that in this last work, how they construct
the kernel for each distance measure is not exactly detailed.

There is another method that employs a distance based indefinite kernel
but takes a completely different approach to construct the kernel: the idea of
this kernel is to, rather than use an existing distance measure, incorporate
the concept of alignment between series into the kernel function itself. Many
elastic measures for time series deal with the notion of alignment of series. The
DTW distance, for instance, finds an optimal alignment between two time se-
ries such that the Euclidean distance between the aligned series is minimized.
Following the same idea, in DTAK, Shimodaira et al. [135] align two series
so that their similarity is maximized. In other words, their method finds an
alignment between the series that maximizes a given similarity (defined by
the user), and this maximal similarity is used directly as a kernel. They give
some good properties of the proposed kernel but they remark that it is not
PSD, since negative eigenvalues can be found in the kernel matrices of DTAK
[144].

On the other hand, Gudmundsson et al. [84] employed the DTW based sim-
ilarity measures they proposed (shown in equantion (2.1)) directly as kernels.
Their method achieved low classification accuracies and the authors claimed
that another way of introducing a distance into a SVM is by using the dis-
tance features introduced in Section 2.2.2.1. They compared the performance
of DTW based distance features and DTW based distance kernels, concluding
that distance features outperform the distance kernels due to the indefinite-



2.2 A taxonomy of distance based time series classification 39

ness of these second ones.

Dealing with the indefiniteness

There is a group of methods that attribute the poor performance of their
kernel methods to the indefiniteness, and propose some alternatives or solu-
tions to overcome these limitations. Jalalian et al. [81], for instance, proposed
the use of a special SVM called Potential Support Vector Machine (P-SVM)
[146] to overcome the shortcomings of learning with indefinite kernels. They
employed the GDSDTW kernel within this SVM classifier which is able to
handle kernel matrices that are neither positive definite nor square. They car-
ried out an extensive experimentation including a comparison of their method
with the 1-NN classifier and with the methods presented by Gudmundsson et
al. [84]. They conclude that their DTW based P-SVM method significantly
outperforms both distance features and indefinite distance kernels, as well as
the benchmark methods in 20 UCR datasets.

Regularization

Another approach that tries to overcome the use of indefinite kernels con-
sists of regularizing the indefinite kernel matrices to obtain PSD matrices. As
previously mentioned, a matrix is PSD if and only if all its eigenvalues are
non-negative, and a kernel matrix therefore can be regularized by clipping all
the negative eigenvalues to zero, for instance. This technique has been usually
applied for non-temporal data [92, 147, 148] but it is rather unexplored in the
domain of indefinite time series kernels. Chen et al. [141] proposed a Kernel
Sparse Representation based Classifier (SRC) [149] with some indefinite time
series kernels and applied spectrum regularization to the kernel matrices. In
particular, they employed the GDSDTW , GDSERP (Edit distance with Real
Penalty (ERP) [150]) and GDSTWED (Time Warp Edit Distance (TWED)
[14]) kernels and their method checks whether the kernel matrix obtained
for a specific dataset is PSD. If it is not, the corresponding kernel matrix is
regularized using the spectrum clip approach.

Regarding this approach, it is also worth mentioning that in the work by
Gudmundsson et al. [84], the authors point out that they tried to apply some
regularization to the kernel matrix subtracting the smallest eigenvalue from
the diagonal but they found out that the method achieved a considerably low
performance. Additionally, the authors added that matrix regularization can
lead to matrices with large diagonal entries, which may result in overfitting
[151].

Finally, the consistent treatment of training and new unlabeled instances
is not straightforward and is also a matter to bear in mind [92]. When new
unlabeled instances arrive, the kernel between them and the training set has

1 On-line handwritten digit data set [145].



40 2 A Review on Distance based Time Series Classification

to be computed. If the kernel matrix corresponding to the training set has
been regularized, the kernel matrix corresponding to the unlabeled set should
also be modified in a consistent way, which is not a trivial operation. There-
fore, the benefit of matrix regularization in the context of time series is an
open question.

Analyzing the indefiniteness

The last group of methods do not focus on solving the problems of learn-
ing with indefinite kernels but, instead, focus on a better understanding of
these distance kernels and their indefiniteness. Lei et al. [142] theoretically
analyze the GDSDTW kernel, proving that it is not a PSD kernel. This is
because DTW is not a metric (it violates the triangle inequality [152]) and
non-metricity prevents definiteness [138]. That is, if d is not metric, GDSd is
not PSD. However, the contrary is not true and, hence, the metric property of
a distance measure is not a sufficient condition to guarantee a PSD kernel. In
any case, Zhang et al. [86], hypothesized kernels based on metrics give rise to
better performances than kernels based on distance measures which are not
metrics. As such, they define what they called the Gaussian Elastic Metric
Kernel (GEMK), a family of GDS kernels in which the distance D is replaced
by an elastic measure which is also a metric. They employed GDSERP and
GDSTWED and stated that, even if the definiteness of these kernels is not
guaranteed, they did not observe any violations of their definiteness in their
experimentation on 20 UCR datasets. In fact, these kernels are shown to per-
form better than the GDSDTW and the Gaussian kernel in those experiments.
The authors attribute this to the fact that the proposed measures are both
elastic and obey metricity. In order to provide some information about the
most common distance measures applied in this context, table 2.4 shows a
summary of properties of the main distance measures employed in this re-
view. In particular, we specify if a given distance measure D is a metric or
not, if it is an elastic measure or not, and if the corresponding GDSD is proven
to be PSD or not.

Table 2.4: Summary of distance properties used in GDS
Distance metric elastic GDSd is PSD

Euclidean X × X

DTW × X ×
ERP X X ×

TWED X X ×

To sum up, there are some results that suggest a relationship between the
metricity of the distance and the performance of the corresponding distance
kernel. However, it is hard to investigate the contribution of metricity in the
accuracy since several factors take part in the classification task. The definite-



2.2 A taxonomy of distance based time series classification 41

ness of a distance kernel seems to be related to the metricity of given distance
-metric distances seem to lead to kernels that are closer to definiteness than
those based on non-metric distances-, and the definiteness of a kernel may
directly affect on the accuracy. In short, the relationship between metricity,
definiteness and performance is not clear and is, thus, an interesting future
direction of research.

To conclude, a summary of the reviewed methods of Indefinite distance
kernels can be found in Table 2.5.

Table 2.5: Summary of indefinite kernel approaches
Authors Kernel Classifier Datasets

Employing indefinite kernels
Bahlmann et al. [133] GDSDT W SVMs 1 (UNIPEN)
Jeong et al. [140] GDSW DT W SVDD1, SVMs 20 UCR
Kaya et al. [90] GDS + alignment based distances SVMs 40 UCR
Pree et al. [139] Unespecified similarity based kernels SVMs 20 UCR
Shimodaira et al. [135] DTAK SVMs ATR
Gudmundsson et al. [84] NDTW, GDSDT W SVMs 20 UCR
Dealing with the indefiniteness
Jalalian et al. [81] GDSDT W P-SVM 20 UCR
Regularization
Chen et al. [141] GDSDT W , GDSERP , GDST W ED KSRC2 16 UCR
Analyzing the indefiniteness
Lei et al. [142] GDSDT W SVMs 4 UCR
Zhang et al. [86] GDSERP , GDST W ED SVMs 20 UCR

2.2.3.3 Definite distance kernels

We have included in this section those methods that construct distance kernels
for time series which are, by definition, PSD. First of all, we want to remark
that there are other kernels for time series in the literature that are PSD but
have not been included in this review. We have only incorporated those ker-
nels based on time series distances and, in particular, those which construct
the kernel functions directly on the raw series. Conversely, the Fourier kernel
[131] computes the inner product of the Fourier expansion of two time series,
and hence, does not compute the kernel on the raw series but on the Fourier
expansion of them. Another example is the kernel by Gaidon et al. [154] for
action recognition, in which the kernel is constructed on the auto-correlation
of the series. There are also smoothing kernels that smooth the series with
different techniques and then define the kernel for those smoothed representa-
tions [155, 156, 157, 158]. On the contrary, we will focus on those that define
a kernel directly on the raw series. Regarding those included, all of them aim
to introduce the concept of time elasticity directly within the kernel function
by means of a distance, and we can distinguish two main approaches: in the

2 Support Vector Data Descriptor [146, 153].
2 Kernel Sparse Representation based Classifiers [149].



42 2 A Review on Distance based Time Series Classification

first, the concept of the alignment between series is exploited, while in the sec-
ond, the direct construction of PSD kernels departing from a given distance
measure is addressed.

Xue et al. [159] proposed the Altered Gaussian DTW (AGDTW) kernel,
in which, first, the alignment that minimizes the Euclidean distance between
the series is found, as in DTW. For each pair of time series Ti and Tj , once
this alignment is found, the series are modified to this alignment resulting in
Ti
′ and Tj

′. Then, if l is the maximum length of both series, the AGDTW
kernel is defined as follows:

κAGDTW (Ti, Tj) =
l∑

s=1
exp

(
−
||Ti′s − Tj

′
s||

2

σ2

)
Since AGDTW is, indeed, a sum of Gaussian kernels, they provide the proof
of the definiteness of the proposed kernel.

There is another family of methods that also exploits the concept of align-
ment but, instead of considering just the optimal one, considers the sum of
the scores obtained by all the possible alignments between the two series.
Cuturi et al. [17] claimed that two series can be considered similar not only
if they have one single good alignment, but rather if they have several good
alignments. They proposed the Global Alignment (GA) kernel that takes into
consideration all the alignments between the series and provide the proof of
its positive definiteness under certain mild conditions. It is worth mentioning
that they obtain kernel matrices that are exceedingly diagonally dominant,
that is, that the values of the diagonal in the matrix are many orders of mag-
nitude larger than those out of the diagonal. Thus, they use the logarithm of
the kernel matrix because of possible numerical problems. That transforma-
tion makes the kernel indefinite (even if it is not indefinite per se), so they
apply some kernel regularization to turn all its eigenvalues positive. However,
since the kernel they obtain is PSD and it is because of the logarithm trans-
formation that it becomes indefinite, it has been included within this section.
In [144], the author elaborates on the GA kernels, give some theoretical in-
sights, and introduce an extension called Triangular Global Alignment (TGA)
kernel, which is faster to compute and also PSD.

There is another kernel that takes a similar approach. In their work about
periodic time series in astronomy, Wachman et al. [160] investigate the simi-
larity between just shifted time series. In this way, they define a kernel that
takes into consideration the contribution of all possible alignments obtained
by employing just time shifting:

Kshift(Ti, Tj) =
l∑

h=1
eγ〈T i,T j+h〉

where γ ≥ 0 is a user-defined constant. In this way, the kernel is defined
by means of a sum of inner products between Ti and all the possible shifted



2.2 A taxonomy of distance based time series classification 43

versions of Tj with a shift of h positions. The authors provided the proof of
the PSD of the proposed kernel.

On the other hand, there are methods that, instead of focusing on align-
ments, address the construction of PSD kernels departing from a given dis-
tance measure. These methods can be seen as refined versions of the GDS
kernel in which the obtained kernel is PSD. Marteau et al. [161] elaborate on
the indefiniteness of GDS kernels derived from elastic measures, even when
such measures are metrics. As previously mentioned, metricity is not a suffi-
cient condition to obtain PSD kernels. They postulated that elastic measures
do not lead to PSD kernels due to the presence of min or max operators in
their definitions, and define a kernel where they replaced the min or max
operators by a sum (

∑
). In [162], these same authors define what they called

an elastic inner product, eip. Their goal was to embed the time series into
an inner product space that somehow generalizes the notion of the Euclidean
space, but retains the concept of elasticity. They provide proof of the exis-
tence of such a space and showed that this eip is, indeed, a PSD kernel. Since
any inner product induces a distance [163], they obtained a new elastic metric
distance δeip that avoids the use of min or max operators. They evaluated
the obtained distance within a SVM by means of the GDSδeip kernel, in order
to compare the performance of δeip with the Euclidean and DTW measures.
Their experimentation showed that elastic inner products can bring a signif-
icant improvement in accuracy compared to the Euclidean distance, but the
GDSDTW kernel outperforms the proposed GDSδeip in the majority of the
datasets.

They extended their work in [82] and introduced the Recursive Edit Dis-
tance Kernels (REDK), a method to construct PSD kernels departing from
classical edit or time-warp distances. The main procedure to obtain PSD ker-
nels is, as in the previous method, to replace the min or max operators by a
sum. They provided the proof of the definiteness of these kernels when some
simple conditions are satisfied, which are weaker than those proposed in [17]
and are satisfied by any classical elastic distance defined by a recursive equa-
tion. Note that, while in [162] the authors define an elastic distance and con-
struct PSD kernels with it, in [82] the authors present a method to construct
a PSD kernel departing from any existing elastic distance measure. As such,
the REDK can be seen as a refined version of the GDS kernel which leads to
PSD kernels. In this manner, they proposed the REDKDTW , REDKERP and
REDKTWED methods and compare their performance with the correspond-
ing distance substitutions kernels GDSDTW , GDSERP and GDSTWED. An
interesting result they reported is that REDK methods seem to improve the
performance of non-metric measures in particular. That is, while the accura-
cies of REDKERP and REDKTWED are slightly better than the accuracies
of GDSERP and GDSTWED, in the case of DTW the improvement is really
significant. In fact, they presented some measures to quantify the deviation
from definiteness of a matrix and showed that while GDSERP and GDSTWED

are almost definite, GDSDTW is rather far from being definite. This makes us



44 2 A Review on Distance based Time Series Classification

wonder if metricity implies proximity to definiteness, and in addition, if accu-
racy is directly correlated to the definiteness of the kernel.

Furthermore, they explored the possible impact of the indefiniteness of the
kernels on the accuracy by defining several measures to quantify the deviation
from definiteness based on eigenvalue analysis. If Dδ is a distance matrix,
GDSDδ

is PSD if and only if Dδ is negative definite [164], and Dδ is negative
definite if it has a single positive eigenvalue. In this manner, the authors
studied the deviation from definiteness of some distance matrices, and stated
that when the distance matrix Dδ was far from being negative definite, the
REDKδ outperforms the GDSδ kernel in general, while when the matrix is
close to negative definiteness, REDKδ and GDSδ perform similarly.

Recently, Wu et al. [101] introduced another distance substitution kernel,
called D2KE, that addresses the construction of a family of PSD kernels de-
parting from any distance measure. It is not specific for time series but in
their experimentation they include a kernel for time series departing from
the DTW distance measure. Their kernel employs a probability distribution
over random structured objects (time series in this case) and defines a kernel
that takes into account the distance from two series to the randomly sampled
objects. In this manner, the authors point out that the D2KE kernel can be
interpreted as a soft version of the GDS kernel, which is PSD. Their exper-
imentation on four time series datasets showed that their D2KEDTW kernel
outperforms other distance based approaches such as 1-NN or GDSDTW both
in accuracy and computational time.

To conclude this section, a summary of the reviewed methods on Definite
distance kernels can be found in Table 2.6.

Table 2.6: Summary of definite distance kernels

Authors Kernel Classifier Datasets

Xue et al. [159] AGDTW KSRC, SVMs 4 UCR
Cuturi et al. [17] GA SVMs TI461

Cuturi et al. [144] TGA SVMs 5 UCI
Marteau et al. [162] GDSδeip SVMs 20 UCR
Marteau et al. [82] REDKDTW , REDKERP , REDKTWED SVMs 20 UCR
Wu et al. [101] D2KE SVMs 3 UCI + 1 own
Wachman et al. [160] Kshift SVMs Astronomy

1 TI46 speech dataset [165].



2.3 Computational cost 45

2.3 Computational cost

An important aspect that has not been addressed in depth when present-
ing the taxonomy is the computational cost of the methods included. The
time complexity of the classification methods, in general, is dominated by the
learning phase and depends on the size of the dataset from which the model
is learnt; in distance based classification, in addition to the size of the dataset
-understood as the number of instances-, the complexity of both the learning
and prediction phases also depends on the computational cost of the employed
distance measure. At the same time, the cost of the distance measure also
highly depends on the lengths of the series we are working with. In this way,
many time series distances, especially the most commonly employed measures
(DTW, ERP, TWED...), are characterized by a quadratic complexity on the
length of the series, which results in methods which are very time consuming
for cases in which the length of the series is large. In this context, many of the
methods that employ common time series distance measures usually turn out
to be too time consuming for real world applications. Even if this is so, and
even if some of the reviewed works experimentally evaluate the running times
of their methods or aim at speeding up their learning processes, most of them
do not even address this issue. Thereby, in this section, a brief overview of the
complexity of distance based TSC methods is provided in order to review the
computational specificities of the methods in each category of the taxonomy.

First of all, it is important to highlight that one of the most significant
differences between distance based and non-distance based classification meth-
ods (from the point of view of the computational cost) is the time complexity
of the prediction phase. In non-distance based methods, normally, the learn-
ing phase depends on the size of the training dataset but, once the model is
learnt, the prediction of unlabeled instances does not depend on this dataset
and is usually independent from the size of the dataset. In distance based
classification, on the contrary, both the learning and the prediction stages
computationally depend on the size of the dataset and on the chosen distance
measure, so they must both be taken into account. Thereby, from now, we
are going distinguish between the computational cost of the learning and the
prediction phases of the reviewed methods. Note that we are going to provide
a general computational time analysis of the methods but there are excep-
tions which do not exactly fit into the computational characterization that we
provide for each category.

In the case of the methods based on the 1-NN classifier, there is no learning
phase and the computational cost of prediction is determined by the size
of the dataset and the complexity of the distance measure (which, in turn,
depends on the lengths of the series). For instance, the distances DTW, ERP
or TWED have a complexity of O(l2), where l is the length of the longest
time series, while the cost of the Euclidean distance is O(l). As such, the
computational cost of predicting an unlabeled time series using the DTW
distance, for instance, is O(l2ntr) (where ntr is the size of the training dataset),



46 2 A Review on Distance based Time Series Classification

since the ntr distances between the unlabeled series and the series in the
dataset have to computed. The approach adopted by most researchers to
accelerate this process is to speed up the computation of the employed distance
measure, for example by using the fast lower bound for the DTW [103], which
reduces the complexity of the distance to O(l) [4].

Regarding the methods that exploit distances as features, it is important
to note that the computation of the distances and the learning/prediction of
the classifier are two independent steps with their corresponding computa-
tional costs. In the learning stage, first, the pairwise distances between all
the series in the dataset are computed -as a preprocessing step- to obtain the
distance features, which are then used as input for learning the classifier. We
focus only on the complexity of the first step, which is specific for distance
based methods: the computational cost of this step depends on the complex-
ity of the distance measure, as well as on the size of the training dataset. For
instance, computing the DTW distance matrix of the n series in a dataset
has a complexity of O(n2l2). For prediction, the distances from the new unla-
beled series to all the series in the training dataset have to be computed also
as a preprocessing step. Then, the obtained distance features are introduced
into the classifier to predict the unknown label. As in the previous case, the
distance computation depends on the complexity of the distance measure and
the size of the dataset. As such, an important drawback is that, for cases with
large datasets or high time consuming distances, the prediction can become
unrealistically time consuming. In view of this, several approaches have been
taken to mitigate the effect of these two factors: Goebel et al. [102] employed
the fast lower bound to speed up the computation of the distances (from
quadratic to linear), while Iwana et al. [83] and Goebel et al. [104] address
the issue of reducing the dimension of the distance matrix that is used as in-
put to learn the model. The former proposed using time series prototypes and
used the distances to them instead of calculating the entire distance matrix,
while the latter applied PCA in order to reduce its dimensionality.

In the shapelet based approaches, there are some preprocessing steps in
order to obtain the features before the application of the classifier. In the
learning phase, first, a shapelet discovery stage is carried out in which the
best shapelets are learnt and, then, the pairwise distances between the se-
ries in the dataset and the obtained shapelets are computed. The initially
proposed shapelet discovery technique takes O(l4ntr2), which turns out to be
very time consuming for real world applications. As such, over the years, many
methods have been proposed to speed up this search [27, 106, 107, 108]. Once
the shapelets have been discovered, the computational cost of calculating the
pairwise distances between series and shapelets depends on the complexity of
the distance, the number of series and the number of shapelets. The distance
between a series and a shapelet is computed using the Euclidean distance
most of the times -which has a complexity of O(l)-, so, once the shapelets
are learnt, the distance computation has a complexity of O(lntrm), where m
is the number of shapelets. This number is determined in the shapelet dis-



2.3 Computational cost 47

covery process, which usually involves techniques such as candidate pruning
or shapelet clustering in order to reduce the amount of shapelets [26, 28]. In
the prediction phase, the shapelet based methods require a preprocessing step
that involves a distance computation between the new unlabeled series and
the learnt shapelets, which has O(lm) complexity in the case of the commonly
employed Euclidean distance.

For the embedding based methods, the pairwise distances between the
series in the dataset have to be computed before they are embedded into
another space. In the learning, this process has O(l2ntr2) complexity (with the
DTW distance, for example), while the complexity of the embedding process
depends on the specific technique employed. Hayashi et al. [119] and Mizuhara
et al. [120], for instance, applied multidimensional scaling, pseudo-Euclidean
space embedding, and Euclidean space embedding by the Laplacian eigenmap
technique, but they do not specify the computational cost of these methods so
it is hard to draw conclusions. Lei et al. [123] and Lods et al. [87], employed
gradient descent based techniques, and, while the formers do not specify the
complexity of the method, the latter points out that the complexity of the
learning phase is quite high. Then, the obtained features are introduced into
a classifier. In prediction, the pairwise distances between the unlabeled series
and the training dataset have to be computed, which has a complexity of
O(l2ntr) for cases using DTW [119, 120].

In the methods that employ distance kernels, there is no preprocessing step
and the series are directly used as input to the given kernel method. However,
the distance kernels are derived from time series distances, so the computa-
tional cost of the kernel methods is mainly dominated by the computation of
the kernel matrix (analogous to the distance matrix). In particular, this com-
putation depends on the complexity of the distance measure from which the
kernel is derived as in [133, 140, 141] methods. As such, the distance substi-
tution kernels derived from DTW, ERP, EDR or TWED are computationally
more expensive (O(l2ntr2)) than the Gaussian RBF kernel (O(lntr2)), for in-
stance. In the prediction phase, the kernel matrix -computed in the learning
phase- is extended with the pairwise values between the unlabeled series and
the series in the dataset, which has the same complexity as the previous 1-NN
or global distance features methods.

Apart from the distance substitution kernels, the review includes other
distance kernels that are specific for time series and whose computational
cost has to be analysed more in depth. The kernel proposed in [17] considers
all the alignments instead of only the optimal one and, thus, has a complexity
of O(l2ntr2) in the learning phase and O(l2nts) in prediction phase, where
nts in the number of time series in the test set. In view of this, the same
authors proposed another version of the kernel [144], which, by means of
adding additional constraints on the allowed alignments, is faster than the
original kernel but equally accurate. In the definite kernel derived from an
elastic inner product proposed in [162], the computational cost is evaluated
experimentally and the authors show that the proposed elastic kernel has



48 2 A Review on Distance based Time Series Classification

a complexity of O(l). As such, the learning phase takes O(lntr2), while the
prediction phase O(lnts). In other words, they obtained an elastic kernel for
time series that is characterized by a linear complexity instead of the quadratic
complexity derived from the traditional elastic distances, which is a significant
improvement.

From a general point of view, it is hard to draw accurate comparative
results between the methods presented due to their variants and the lack
of experimental computational time results available in the published works.
Wu et al. [99] carried out the most comprehensive evaluation of the computa-
tional cost of several distance based TSC methods until now. They first com-
pare their DFRF distance features method with two embedding methods: the
method proposed in [120], and the one in [87], concluding that their method
outperforms the other two, both in accuracy and in computational time. In
addition, two variants of their method are also evaluated on 16 UCR datasets
against other baseline distance based TSC approaches (1-NN with DTW, the
GA kernel [17] and DFDTW [16]); the first variant of their method outper-
forms the other approaches in accuracy but involves a high computational
cost, while the second variant achieves competitive accuracies, significantly
reducing the required computational time.

To summarize, distance based TSC methods have usually quadratic com-
plexity both in the length of the series and in the size of the dataset, due to the
common use of elastic measures. In this context, if the series are long enough
or the size of dataset is large, the methods can become too time consuming for
real world applications. As such, it is an important aspect to be considered.
Some of the methods take this into account and evaluate the running time
of their method but, in general, in our opinion, it has not been addressed
enough. There are some attempts to speed up the distance based methods
[83, 102, 104, 144, 162] but it is still a direction in which there is considerable
room for improvement. In addition, we think that a comprehensive compar-
ison of the running times of the methods would be a great contribution as
future work.

2.4 Discussion

In this Chapter, we have presented a review on distance based TSC and have
included a taxonomy that categorizes all the discussed methods depending on
how each approach uses the given distance. We have seen that from the most
general point of view, there are three main approaches: those that directly
employ the distance together with the 1-NN classifier, those that use the
distance to obtain a new feature representation of the series, and those which
construct kernels for time series departing from distance measure. The first
approach has been widely reviewed, so we refer the reader to [76, 78, 166] for
more details about the discussion.



2.4 Discussion 49

Regarding the methods that employ a distance to obtain a new feature
representation of the series, these approaches have been considerably studied
for time series as it bridges the gap between traditional classifiers (that expect
a vector as input) and time series data, taking advantage of the existing time
series distances. In addition, some methods within this category have outper-
formed existing time series benchmark classification methods [16]. Note that
distance features can be seen as a preprocessing step, where a new representa-
tion of the series is found which is independent of the classifier. Depending on
the specific problem, these representations vary and can be more discrimina-
tive and appropriate than the original raw series [28]. As such, an interesting
point that has yet to be addressed is to compare the different transformations
of the series in terms of how discriminative they are for classification.

Nevertheless, learning with the distance features can often become cum-
bersome depending on the size of the training set and a dimensionality reduc-
tion technique must be applied in many cases in order to lower the otherwise
intractable computational cost. Some of the methods [83, 104] reduce the di-
mensionality of the distance matrix once it is computed. Another direction
focuses on time series prototype selection [83], that is, selecting some repre-
sentative time series in order to compute only the distances to them instead
of to the whole training set. It is worth mentioning that there has been some
work done in this context in other dissimilarity based learning problems [167]
but it is almost unexplored in TSC. Due to the interpretability of the time se-
ries and, in particular, of their prototypes, we believe that this is a promising
future direction of research.

Another feature based method consists of embedding. The embedded dis-
tance features have only been employed in combination with linear classifiers
[120] or the tree based XGBoost classifier [87], which, in our opinion, do not
take direct advantage of the transformation. The main idea of the embedded
features is that if the Euclidean distances of the obtained features are com-
puted, the original time series distances are approximated. In this way, we
believe classifiers that compute Euclidean distances within the classification
task (such as the SVM with the RBF kernel, for instance) will profit better
from this representation. In addition, in the particular case of kernel methods,
the use of embedded features can be seen as a kind of regularization; the RBF
kernel obtained from the embedded features would be a definite kernel that
approximates the GDS indefinite kernel.

As already pointed out, the third way of using a distance measure is trying
to construct kernels departing from these existing distances. However, these
distances do not generally lead to PSD kernels. Both distance features and
distance kernel approaches are not specific for time series, and some work has
been done to compare the benefits of each approach in a general context. Chen
et al. [92] mathematically studied the influence of distances features and dis-
tances kernels within SVMs in a general framework. In TSC, Gudmundsson et
al. [84] and Jalalian et al. [81] address the problem of experimentally evaluat-
ing whether it is preferable to use distance features or distance kernels. Both



50 2 A Review on Distance based Time Series Classification

works assert that the indefiniteness of the distance kernels negatively affects
the performance, although their proposals are restricted to the DTW distance.
It would be interesting to comprehensively compare these two approaches tak-
ing into account different distances, kernels and classifiers in order to draw
more general conclusions.

The problem of the definiteness of a kernel has been widely addressed
within the methods in this review. Note that the definiteness of a kernel
guarantees the mathematical foundations of the kernel method and, therefore,
it seems natural to think that definiteness and performance are correlated,
which is the assumption of almost all the methods. Some authors confirm
that the performance is still good and do not care about the indefiniteness
of the kernels, while, in general, the research focuses mainly on trying to
somehow deal with the indefiniteness of the kernels. Isolating the contribution
of the definiteness of a kernel to the performance is rather challenging due to
the many other factors (optimization algorithm or the choice of the kernel
function) that also affect it. However, since the relation between definiteness
and accuracy is a general matter -not specific for time series, and in fact, not
specific for distance kernels-, a promising future direction would be to evaluate
whether there exists or not a direct correlation between them.

Within the methods that try to deal with the indefiniteness there are
two main directions. The first uses kernel based classifiers that can handle
indefinite kernels. This approach is almost unexplored in TSC, since only the
P-SVM in [81] has been applied, achieving very competitive results. Indeed,
there are some studies on learning with indefinite kernels from a general point
of view [132], and considering that indefinite kernels appear often within TSC,
this approach may be interesting future work.

The second approach, called kernel regularization, aims to adapt the in-
definite kernel to be PSD. As in the previous direction, this is also an almost
unexplored approach for time series. Only eigenvalue analysis has been applied
with ambiguous results. Chen et al. [168] used eigenvalue regularization tech-
niques but they do not evaluate the regularization itself, while Gudmundsson
et al. [84] argued that the method after kernel regularization achieves lower
performance than the method with the indefinite kernel. One of the main
shortcomings of this specific regularization is that it is data dependent, and,
in addition, the consistent treatment of new test samples is not straightfor-
ward. As previously mentioned, it is not clear whether regularization is helpful
or whether the new kernel becomes so different from the initial one that the
information loss is too big; this is an open question which has not been studied
in detail.

As previously mentioned, another direction focuses on a better under-
standing of the indefiniteness of these kernels. Concerning the GDS kernels,
which are distance kernels valid for any type of data, the first attempt in the
time series domain was to define kernels departing from distances that are
metrics. Although it has been proven that the metric property does not guar-
antee the definiteness of the induced GDS kernel, Zhang et al. [86] argued



2.4 Discussion 51

that the performance of metric distance kernels is significantly better than
those defined with non-metric distances, suggesting that kernels with metric
distances are closer to definiteness. In addition, Marteau et al. [82] conjecture
that the reason of the indefiniteness is the presence of min or max operators
in the recursive definition of time series distance measures. An interesting
observation is that these discussions arise from time series distances but are,
regardless, general issues concerning the characteristics of a distance measure
and the derived GDS kernel. Even if the mentioned works address the rela-
tion between metricity and definiteness, this connection is not yet clear. It is
also an interesting future research direction due to the generalizability of the
problem and the possible applications.

Cuturi et al. [17], by contrast, focused on the specific challenge of con-
structing ad-hoc kernels for time series. As such, they found a direct way of
constructing PSD kernels that take into account the time elasticity by defining
a kernel that does not consider just the optimal alignment between two series
but, instead, considers all the possible alignments. Moreover, given an elastic
distance measure defined by a recursive equation, Marteau et al. [14] address
the construction of distance based PSD kernels. Their kernel can be seen as a
particular case of GDS kernel for elastic measures that become PSD by replac-
ing the min or max operators in the recursive definition of the distance by a
sum. By using this trick, they obtain kernels for time series that take into ac-
count time elasticity and are also PSD. Their comprehensive experimentation
shows that SVM based approaches which use these kernels clearly outperform
the 1-NN benchmark approaches, even for the DTW distance. Furthermore,
they reported that the REDK kernel brings significant improvement in com-
parison with the GDS kernel, especially when the kernel matrices of the GDS
kernels are far from definiteness, which in their particular case corresponds to
the non-metric measures. However, they experimented with just two metric
and one non-metric measures which is not enough to draw strong conclusions.

It is also worth mentioning that many methods introduced in the taxonomy
are not specific for time series, but become specific when a time series distance
is employed. In particular, only the methods that are based on shapelets and
the methods that construct kernels for time series considering the concept of
alignment between series are specific for time series. The rest of the methods
are general methods of distance based classification for any type of data. An
interesting observation is that questions or problems arising for time series
can be extrapolated to a general framework. In the same manner, some of the
presented approaches are specific for some classifiers (1-NN, kernel methods),
while others can be used in combination with any classifier. Also note that
many of the methods, such as those which employ global distance features,
embedded features or indefinite distance kernels, are directly applicable in the
case of multi-variate or streaming time series, provided a suitable distance for
this kind of series is defined. The extension of these methods for multi-variate
or streaming time series could be a possible future direction. It would be
interesting also to extend other methods, such as the shapelet based methods



or the ad-hoc definite kernels, to these kind of time series, since, in these cases,
the adaptation of the methods by itself would be a great contribution.

To conclude, note that in contrast to the number and variety of existing
kernels for other types of data, there are rather few benchmark kernels for
time series in current literature [127]. Therefore, we would like to highlight
the value of these kernels for time series, especially those that are able to deal
with the temporal nature of the series and are PSD.





3

Time Series Classifier Recommendation by a
Meta-Learning Approach

3.1 Introduction

In TSC, there is a great number of competitive and diverse classifiers (see Sec-
tion 1.1). In this context, from a pragmatic user’s point of view, choosing a
suitable classifier for a certain problem is a difficult task, since there is a lack
of orientation. As introduced in Section 1.2, meta-learning is field that has
been focused on automatic model recommendation and, in the case of time
series data, has been used to design automatic forecasting method recommen-
dation [43, 44, 45, 46] or similarity measure selection for clustering [47]. In
this Chapter, we will exploit meta-learning for proposing an automatic time
series classifier recommendation system.

Since state-of-the-art meta-features are designed for non-ordered data, we
propose a novel set of 24 specific landmarkers for TSC, which meet the re-
quirements of being simple, fast and good predictors of the performance of
state-of-the-art TSC algorithms. We validate the proposed landmarkers for
classifier recommendation considering several types of meta-targets. Finally,
we explore the hierarchical inference of meta-targets; some types of meta-
targets are more fine-grained than others and, from the prediction of these
meta-targets, less fine-grained meta-targets can be inferred. As such, we ex-
perimentally compare the two approaches for obtaining a given meta-target:
by direct prediction of the meta-target and by inference from the predictions
of more fine-grained meta-targets.

The rest of the Chapter is organized as follows. In Section 4.3, our method
for time series classifier recommendation is described in two parts: meta-
attributes and meta-targets. The hierarchical inference of meta-targets is pre-
sented in Section 3.3, while the experimentation is exposed in Section 3.4.
Lastly, the main conclusions and future works of this Chapter are presented
in Section 3.5.



54 3 Time Series Classifier Recommendation by a Meta-Learning Approach

3.2 Time Series Classifier Recommendation

The main objective addressed in this Chapter is to propose a time series clas-
sifier recommendation (TSCR) system. Algorithm recommendation, as stated
in [35], aims at ”saving time by reducing the number of algorithms tried out
on a given problem with minimal loss in the quality of the results obtained
when compared to the best possible ones”.

From a practical point of view, the scheme of a TSCR system is shown
in Figure 3.1. Given a repository of supervised time series datasets and a
set of candidate classifiers, firstly, the accuracies of the candidate classifiers
in those datasets are calculated by evaluating each classifier in each dataset.
Then, the accuracies of the classifiers are employed to construct the meta-
target. Secondly, a vector of meta-attributes is extracted from each dataset.
Lastly, the meta-attributes and meta-target are used to build the TSCR sys-
tem employing a meta-learner. Note that this is a supervised learning scenario
and each meta-target type requires a specific meta-learner. In this way, for a
new time series dataset -in which the accuracies of the candidate classifiers
are unknown-, the meta-attributes are extracted and passed to the TSCR,
which outputs a classifier recommendation based on the chosen meta-target
type. In the following sections, the meta-attributes proposed and meta-targets
considered in this work are presented.

3.2.1 Meta-Attributes

The characterization of a dataset is, probably, one of the challenges that has
attracted most attention in meta-learning, since the performance of a meta-
learning system highly depends on this characterization [169]. Indeed, meta-
attributes need to fulfil two crucial requirements: on the one hand, they need
to be fast to compute, and, on the other hand, they need to contain useful
information for discriminating between the performances of the candidate
classifiers. The definition of the meta-attributes highly depends on the specific
task for which the meta-learning system is built.

In the case of time series data, as mentioned earlier, there are rather few
works that have addressed the development of meta-attributes [43, 44, 45, 46,
47, 170]. In fact, most of these works focus on time series forecasting algorithm
recommendation [43, 44, 45, 46, 170]. In contrast to TSC or clustering, where
a set of time series is needed, a time series forecasting problem is composed
of a single time series. This is an important distinction from the point of
view of meta-learning, since, in the former case, meta-attributes correspond
to single time series, while in the latter, meta-attributes correspond to a time
series dataset. As far as we know, the only work in which time series dataset
characterization has been addressed is [47], where a set of meta-attributes are
proposed with the purpose of similarity measure selection for time series clus-
tering. However, this characterization is defined for unsupervised time series



3.2 Time Series Classifier Recommendation 55

TSCR

NEW DATABASE

DB1

DBD

EVALUATION

Classi

3

Fig. 3.1: Meta-learning scheme for TSC algorithm recommendation.

datasets and can not be applied in our case, which focuses on supervised time
series datasets. This contribution focuses on the definition of meta-attributes
for supervised time series datasets.

In this context, most of the state-of-the-art meta-attributes are designed
for non-ordered instances and they become meaningless for describing time
series datasets. The most generalizable meta-attributes are landmarkers, since
they are quick estimators of the accuracies of the candidate classifiers and,
hence, can be defined for any type of task and data. As such, we propose a
set of landmarker based meta-attributes for supervised time series datasets.

The design of landmarkers totally depends on the candidate classifiers
considered in the meta-learning problem. In our case, the candidate classi-
fiers have been chosen from those that appear in the work by Bagnall et al.
[8], since the results obtained in their extensive experimentation are pub-
licly available [171] -as well as a Weka-compatible Java toolbox, tsml [71],
with the implementation of most of the classifiers included in their work-.
In this way, we choose as candidate classifiers those that are included in [8]
and implemented in the tsml or sktime (and the extension for deep learning
sktime-dl) [72] toolboxes. These classifiers are: C4.5 decision tree (C45) [172],



56 3 Time Series Classifier Recommendation by a Meta-Learning Approach

naive Bayes (NB) [173], Bayes Network (BN) [174], SVM with linear (SVML)
[18] and quadratic kernel (SVMQ) [18], Rotation Forest (RotF) [175], Ran-
dom Forest (RandF) [176] , Multilayer Perceptron (MLP) [177], 1-NN with
Euclidean distance (NN), 1-NN with DTW distance (DTW) [10], 1-NN with
Weighted DTW distance (WDTW) [140], 1-NN with Time Warp Edit distance
(TWE) [14], 1-NN with Move–Split–Merge distance (MSM) [15], 1-NN with
Complexity Invariant distance (NN CID) [178], 1-NN with Edit Distance with
Weal Penalty (ERP) [150], 1-NN with Derivative DTW (DD DTW) [179], 1-
NN with Derivative Transform distance (DTD C) [180], Time Series Forest
(TSF) [24], Fast Shapelets (FS) [27], Shapelet Transform (ST) [28], Bag of
Patterns (BOP) [29], and Bag of SFA Symbols (BOSS) [30]. Additionally,
even if they are not included in [8], we have added two new benchmark deep
learning classifiers: Resnet [181] and InceptionTime [182] in order to have a
more up-to-date set of candidate classifiers. In this way, the list of candi-
date classifiers includes 24 heterogeneous time series classifiers. The discarded
classifiers from [8] are: Longest Common Subsequence (LCSS) [13] (the tsml
implementation does not reproduce the results), Elastic Ensemble (EE) [183]
(implementation with bugs), Time Series Bag-of-Features (TSBF) [184] (not
implemented in tsml), Learned Pattern Similarity (LPS) [185] (implemen-
tation with bugs), DTW Features (DTW F) [16] (code not available) and
Collective of Transformation-Based Ensembles (COTE) [31] (it is an ensem-
ble of several TSC methods, so from an algorithm recommendation point of
view, it does not make sense to include it). Additionally, 3 classifiers have
been discarded due to their high requirement of computational resources: Lo-
gistic [186] (which requires more than 50GB of RAM memory in the PigCVP
dataset from the UCR repository), and Learn Shapelets [109] and SAX Vector
Space Model (SAXVSM) [187] (which take more than 5 and 25 days to classify
a single train/test split in the Crop dataset from the UCR, correspondingly).
Note that some of the considered classifiers (ST and BOSS, for instance) are
also ensembles, but they are ensembles of classifiers of the same nature, while
COTE is an ensemble of many types of different classifiers.

Given a candidate classifier Ci, its landmarker Li is a quick estimator of
the accuracy obtained by Ci. This quick estimator is generally obtained in two
ways: by running simplified versions of the candidate classifier [41] (algorithm
reduction), or by running the original algorithm in a subsample of the data,
obtaining the so-called subsampling landmarkers [42] (dataset reduction). In
both types of reductions, the greater the reduction, the higher the loss of
relation between the landmarker and the original algorithm [188], so striking
a balance between the level of reduction and the relation with the original
algorithm is a key aspect. Our approach exploits both types of reductions:
first, subsampling landmarkers are applied by evaluating the classifiers on a
subsample of the dataset. Given a time series dataset with n instances, we
propose a stratified subsample that depends on n. The proportion to which
the dataset is reduced, the subsample ratio (r), is shown in Table 3.1. We are
dealing with supervised datasets so, in those datasets in which the subsample



3.2 Time Series Classifier Recommendation 57

ratio does not permit a minimum number of instances of each class, the r
specified in Table 3.1 is increased by steps of 0.1 until n∗ r/k ≥ 10 or r = 0.8,
where k is the number of classes.

Table 3.1: The subsample ratio (r) applied to a time series dataset with n
instances (before the modification to ensure a minimum number of

representatives of each class).

Intervals Subsample ratio (r)
n < 100

100 ≤ n < 300
300 ≤ n < 800
800 ≤ n < 1500

1500 ≤ n < 5000

0.80
0.60
0.40
0.20
0.10

5000 ≤ N 0.05

In the second step, an algorithm reduction is carried out for those clas-
sifiers that still take too long in the subsampled datasets. In order to iden-
tify the slow classifiers, we conduct the following analysis: we sort the 112
datasets from the UCR repository employed in this work by the dimen-
sion (defined by n*l, where n is the number and l the length of the series)
and run the 24 classifiers in subsampled versions of the 5 largest datasets
(StarlightCurves, UWaveGestureLibraryAll, HandOutlines, MixedShapesRegu-
larTrain, and,NonInvasiveFetalECGThorax1 )1. If a classifier takes more than
30 minutes in any of the aforementioned datasets, it is considered a slow clas-
sifier. In this way, we identify 7 slow classifiers: BOSS, DD DTW, DTD C,
MLP, ST, ResNet and InceptionTime, to which algorithm reductions are car-
ried out. Three types of algorithm reductions are proposed (summarized in
Table 3.2) :

• Reducing the parameter range: in those cases in which a parameter is set
by a grid search, this grid search is deleted and, by default, the value
of the parameter is set to the middle of the search range (DD DTW and
DTD C). In the R parameter of the LS, however, some values in the search
range incur larger costs than others, so we set it to the computationally
least expensive value.

• Reducing the iterative process/ensemble: for the classifiers that have an
iteration process (MLP, ResNet and InceptionTime), we limited the num-
ber of iterations. An analogous reduction is carried out for the ensembles
(BOSS).

1 The computation times of the 24 classifiers in the 5 subsampled datasets are
included in Appendix A.1.



58 3 Time Series Classifier Recommendation by a Meta-Learning Approach

• Setting a time limit: in the ST classifier, the training time can be directly
limited by the user, so we use this characteristic to reduce the computation
time.

Table 3.2: Algorithm reductions carried out to the slow classifiers.

Classifier Parameter Default Reduced
BOSS MaxEnsembleSize 500 100

DD DTW α grid search in {0,0.01, . . . , 1} 0.5
DTD C α grid search in {0, 0.01, . . . , 1} 0.5
MLP NumEpochs 500 50
ST time limit unlimited 5 minutes

ResNet NumEpochs 1500 200
InceptionTime NumEpochs 1500 200

To sum up, given a supervised time series dataset, we propose a set of
24 landmarkers to describe the dataset: 17 of them are based on dataset
reductions, while the rest are based on dataset and algorithm reductions.

3.2.2 Meta-target

The meta-target, also known as the recommendation, corresponds to the out-
put of the recommendation system. Five types of meta-targets are considered
in this work (summarized in Table 3.3): classifier accuracies, complete rank-
ing, top-M ranking, best set and best classifier. Each meta-target type gives
rise to a different TSCR system, in which both the meta-target in the training
set and meta-learner shown in Figure 3.1 must be specifically designed. We
will refer to the meta-learner associated to a given meta-target type as the
specific meta-learner (SML). The SMLs employed for each meta-target type
are summarized in Table 3.4. In the following lines, a brief overview of the
considered meta-target types is presented.
Classifier accuracies: this meta-target provides the accuracies obtained by
each candidate classifier in a given dataset. When building the training set
for learning this TSCR system, the values of the meta-targets for the train-
ing instances are directly defined by the accuracies of the classifiers. This
meta-target type gives rise to a multi-output regression problem, and the
SML chosen for this problem is the linear multi-output regression. It is the
most fine-grained meta-target type, and the user is free to choose among the
candidate classifiers with the provided information.

Complete ranking: this meta-target provides an accuracy based ranking of
the candidate classifiers in a given dataset. The values of the meta-targets in



3.2 Time Series Classifier Recommendation 59

Table 3.3: Summary of the considered meta-target types.

Meta-target Output type

Classifier accuracies C1 C2 . . . C8 . . . CP
0.91 0.87 . . . 0.95 . . . 0.72

Complete ranking C8 C1 C2 . . . C5
1 2 3 . . . P

Top-M ranking C8 C1 C2
1 2 3

Best subset {C1 , C8}

Best C8

the training set are obtained by converting the raw accuracies of the candidate
classifiers into a ranking. In case of ties, the best ranking position of the tied
classifiers is assigned to all the tied classifiers. This meta-target type requires
a ranking learning strategy, and the SML employed in this case is the k-
NN for rankings [32] (based on the Euclidean distance), commonly used in
meta-learning. From the user point of view, ranking recommendation is less
fine-grained than the classifier accuracies but still leaves the user with a great
choice since information regarding all the classifiers is provided.
Top-M ranking: in this case, the meta-target corresponds to the partial
ranking of the M best-performing classifiers in a given dataset. When build-
ing the training set, the values of the meta-targets are obtained by converting
the classifier accuracies into a ranking and selecting the classifiers at the first
M positions (M is predefined by the user). The ties are handled in the same
manner as for complete rankings. Analogously to the case of complete rank-
ings, the SML employed for this meta-target type is the k-NN for rankings
based on the Euclidean distance. This meta-target type is less fine-grained
than the complete ranking since only the ranking of the M best-performing
classifiers is provided.
Best subset: this meta-target provides the set of best-performing classifiers
in a given dataset. Establishing which algorithms perform well on a given
dataset is not straightforward, and it is usually defined in relative terms. A
commonly employed approach to obtain the values of the meta-targets in the
training set consists of defining a margin [189], such that the classifiers with
accuracies within this margin are considered applicable classifiers in the given
dataset. We propose a margin based on the proposal in [189], but enhanced
to consider the range of the accuracies obtained by the candidate classifiers
in the given dataset: [

amax, amax −W (amax − amin)
)

(3.1)



60 3 Time Series Classifier Recommendation by a Meta-Learning Approach

where W is a user-defined parameter, while amax and amin are the maximum
and minimum accuracies obtained by the candidate classifiers in the given
dataset. Note that, the greater W , the wider the interval and, hence, the
larger the set of applicable classifiers. The best set meta-target gives rise to a
multi-label classification problem, and, analogous to the ranking meta-targets,
a k-NN version based on the Euclidean distance- for multi-label classification
[190] is employed as SML. This meta-target type is less fine-grained than the
top-M meta-target types since it does not provide a ranking, but an unordered
set of the applicable classifiers.

Table 3.4: The specific meta-learner employed for each meta-target.

Meta-target SML

Classifier accuracies Linear multi-output regression

Complete ranking k-NN for rankings

Top-M rankings k-NN for rankings

Best set k-NN for multi-label

Best k-NN for multi-class

Best: this meta-target provides the best classifier among the candidate clas-
sifiers. The values of the meta-targets in the training set are obtained in a
straightforward manner. The best classifier meta-target gives rise to a multi-
class standard classification problem, and, for the sake of consistency, a k-NN
for multi-class problems is used. This meta-target type is the least fine-grained
meta-target, since it only provides the best performing classifier and gives no
information about the rest of the classifiers.

3.3 Hierarchical inference of meta-targets

In this section, we explore the hierarchical relationship between the different
meta-target types. Some meta-target types are more fine-grained than others
and this fact gives rise to a hierarchy. By using this hierarchy, instead of
building a specific TSCR system for each meta-target type, we investigate
the approach of inferring meta-targets from the predictions made by more
fine-grained TSCR systems.

Figure 3.2 shows the scheme of the hierarchical inference of the meta-
target MTj from the meta-target MTi, where MTi is a more fine-grained



3.3 Hierarchical inference of meta-targets 61

meta-target than MTj . In Section 3.2.2, we showed how M̃Ti and M̃Tj(1) are
predicted by the associated TSCRi and TSCRj systems, correspondingly. In
the hierarchical inference, M̃Tj(2) is obtained by transforming the prediction
M̃Ti made by TSCRi.

TSCRi

TSCRj

Hierachical 

inference

Fig. 3.2: Scheme of the two approaches for obtaining M̃Tj : (1) by employing
the TSCRj associated to MTj and (2) by hierarchical inference from the

prediction of the MTi meta-target.

More fine-grained information is learnt by TSCRi than by TSCRj , so
M̃Tj(2) could be expected to be more accurate than M̃Tj(1). However, from
a learning point of view, the prediction of MTi is a harder task, and, therefore,
more errors could be committed, so the comparison of these two approaches
can shed some light on which learning strategy should be adopted when build-
ing a recommendation system for TSC algorithms.

As far as we know, despite its interest, this point of view is still almost
unexplored in the meta-learning community. In [191], the author inferred the
expected ranking and the expected best classifier from the predicted classifier
accuracies, but reported that the inferred versions seem to perform slightly
worse than the specific strategies. Bensusan et al. carried out a similar ex-
periment in [192], where a ranking is inferred from the predicted classifier
accuracies. In the same manner, the authors reported that even if the re-
gression models obtained low errors, the results of the inferred rankings were
not very promising. Moreover, not all the possible hierarchical dependencies
are studied, but only a few pairs. In this work, we explore all the feasible
hierarchical inferences for the considered meta-target types.

The feasible inferences for each meta-target type are shown in Table 3.5.
From classifier accuracies, all the meta-targets can be inferred: complete rank-



62 3 Time Series Classifier Recommendation by a Meta-Learning Approach

ing, top-M ranking, best set and best classifier. Complete ranking, top-M
ranking and best classifier transformations are straightforward, while, in the
best set transformation, the same procedure described in Section 3.2.2 is fol-
lowed. A complete ranking can be directly transformed into a top-M ranking
and best classifier. The best set, however, can not be inferred since the cri-
terion employed for the transformation is not applicable in rankings. In the
same manner, a top-M ranking can not be transformed into a best set, and
from this meta-target, only the best classifier can be inferred. From the best
set, the only meta-target that could be inferred (best classifier) is not feasible,
due to the unordered nature of the best set. The best classifier meta-target is
the least fine-grained meta-target, and hence, no meta-target can be inferred
from it.

Table 3.5: Feasible hierarchical inferences.

Meta-target Feasible inferences
Classifier accuracies Complete ranking, Top-M ranking

Best set, Best
Complete ranking Top-M ranking, Best

Top-M ranking Best

3.4 Experimentation

The experimentation is divided into four parts: in the first part, the exper-
imental set up is introduced, as well as the evaluation procedure employed
for the proposed methods. In the second part, the results obtained by the
landmarkers are analysed and compared to those obtained by the original
classifiers. The experimental evaluation of the proposed TSCR systems is pre-
sented in the third part. Lastly, the hierarchical inference of the meta-targets
is experimentally studied1.

3.4.1 Experimental set-up

3.4.1.1 Datasets

The experimentation has been carried out employing datasets from the UCR
repository [168]. In this work, we have decided to use datasets of univariate
equal-length time series; most of time series classifiers can only be applied in
datasets of this type and the need for meta-learning becomes more evident
in a context with a large number of candidate classifiers. As such, the 112
datasets from the UCR with these characteristics have been used.

1 The TSCR systems, as well as the code for reproducing all the experiments pre-
sented in this Chapter are available at https://gitlab.bcamath.org/aabanda/tscr.

https://gitlab.bcamath.org/aabanda/tscr


3.4 Experimentation 63

3.4.1.2 Classifiers

All the experiments have been carried out in python with the help of the
sklearn library. For the classifier accuracies meta-target, the linear multi-
output regression included in the sklearn library is used. We set the number
of neighbours in the k-NN to 5 after preliminary experiments. For the top-M
rankings, we explore the results for M=3, M=5 and M=10. In the best subset
prediction, we need to establish the width of the margin for the best classifier,
W, beforehand. Figure 3.3 shows the number of labels by instance for the dif-
ferent values of W we have considered. It can be seen that the number of labels
increases as W grows. We employed the k-NN version of the sklearn for multi-
label classification with K=5 as it obtains competitive results compared to
other classifiers and ensures consistency with the previous approaches. Lastly,
regarding the best classifier meta-target, Figure 3.4 shows the distribution of
labels among the 112 datasets. It can be seen that InceptionTime is best per-
forming classifier in 37 datasets, followed by ResNet, ST and BOSS (which are
the best performing classifiers in 15, 15 and 11 datasets, respectively). In fact,
only 16 of the 24 algorithms win at least once, so it is a 16-class classification
problem, for which we employ the k-NN classifier for multi-class of the sklearn
library with K=1, set by preliminary experiments.

Fig. 3.3: Distribution of labels for the best set meta-target.

3.4.1.3 Evaluation

Each meta-target type requires a suitable evaluation measure for the corre-
sponding output type. In the following, the metrics employed for each meta-
target type are presented (summarized in Table 3.6). For the classifier accu-
racies meta-target, we employ the Mean Absolute Error (MAE), where Ac
and Ãc are the true and predicted accuracies of the candidate classifier c, and
p is the number of classifiers. In order to evaluate a complete ranking meta-
target, we employ a similarity measure based on the normalized Kendall’s
τ distance for rankings -which measures the pairwise disagreements between
two rankings-. Specifically, given a Kendall’s τ distance between two rankings



64 3 Time Series Classifier Recommendation by a Meta-Learning Approach

Fig. 3.4: Distribution of labels for the best classifier meta-target.

r1 and r2 of length n, τ(r1, r2), we propose the similarity measure τ̃c, which
takes values from 0 (for reverse rankings) to 1 (for identical rankings). There
are several ways for generalizing the KendallâĂŹs τ distance to top-M rank-
ings [193]; a basic generalization consists of, given two complete rankings r1
and r2, considering all the elements at positions higher than M are tied in
both rankings, and computing the Kendall’s τ distance between those partial
rankings. In this way, given two top-M rankings r′1 and r′2, if τ(r′1, r′2) is the
Kendall’s τ distance between these partial rankings, we propose the similar-
ity measure between top-M rankings τ̃p. This similarity measure takes values
analogously to τ̃c. For the best set meta-target, the evaluation measure used
is the mean label based accuracy, La, where Ytrue and Ypred are the set of true
and predicted labels, correspondingly. This metric takes values from 0 (when
the intersection is zero) to 1 (when the predicted set is equal to the true set).
Finally, in the case of best classifier meta-target, a weighted version of the F1
score (F1w) is employed as the evaluation measure: the F1 score is calculated
for each label and then a weighted average that takes into account the label
frequency is computed. The F1w score takes values from 0 (worst prediction)
to 1 (perfect prediction).

3.4.2 Analysis of the landmarkers

The estimations of the landmarkers have been obtained by executing the clas-
sifiers in a stratified random train/test partition with the same proportions
as in [171]. Then, in order to assess their quality, their accuracies and com-
putational times are analysed, with the objective of comparing them to those
obtained by the original classifiers. Note that the accuracies of the original
classifiers are publicly available in [171], but the computational time of the full
process (learning, parameter optimization and test phase) is not. In order to
give some insights into the computational cost of executing all the classifiers,
we run the 24 original classifiers in the StarlightCurves and Crop datasets. The
former is one of largest datasets in the UCR repository (9236 series of length
1024, with 3 classes), while the latter is a large dataset with many classes



3.4 Experimentation 65

Table 3.6: The meta-learner and evaluation metric employed for each
meta-target type.

Meta-target Metric

Classifier accuracies MAE = 1
p

∑p
c=1 |Ac − Ãc|

Complete ranking τ̃c(r1, r2) = 1− τ(r1,r2)
n(n−1)/2

Top-M rankings τ̃p(r′1, r′2) = 1− τ(r′1,r
′
2)

M2

Best set La = |Ytrue∩Ypred|
|Ytrue∪Ypred|

Best F1w = 1
L

∑L
l=1 wlF1l

(24000 series of length 46, with 24 classes). The total time spent for executing
the 24 classifiers is more than 12 days for the StarlightCurves dataset and
almost 4 days for the Crop dataset in a high performance computing cluster.

Regarding the computational cost of the landmarkers, Figure (3.5a) shows
the time spent (in minutes) in applying all the landmarkers to the 112 datasets.
It can be seen that, in 98 of the 112 datasets, the computation of all the land-
markers takes less than an hour. Those datasets in which the computation
takes more than an hour are large datasets that contain many classes, for
which, in order to ensure a minimum number of representatives of each class,
the subsample ratio is not as small as in other datasets with similar dimen-
sions. In this way, the time reduction is especially significant for those dataset
with few classes. This is the case of StarlightCurves, for example, for which
the computation of all the landmarkers takes 44 minutes, compared to the 12
days spent by the original classifiers. In the case of datasets with many classes,
the time reduction is not so great, even if it is still significant. In the Crop
dataset, for example, the computation of all the landmarkers takes almost an
hour (58 minutes), compared to the 4 days spent by the original classifiers.
Concerning the individual computation times of the landmarkers1, in 80 of
the 112 datasets, the slowest classifier is the ST classifier (which has a time
limitation), while BOSS, ResNet and RotF are slowest in 28, 3, and 1 dataset,
respectively.

In order to explore the relation between the accuracies obtained by a
landmarker and those obtained by the corresponding original classifiers, we
employed the Pearson correlation coefficient. The correlations between the

1 The cost of computing the 24 landmarkers in each dataset, including the slowest
landmarker and its corresponding time is included in Appendix A.2.



66 3 Time Series Classifier Recommendation by a Meta-Learning Approach

landmarkers and the original classifiers1 are shown in Figure 3.5b. It can be
seen that most of the landmarkers have a high correlation with the corre-
sponding original classifiers; the mean correlation is 0.86. The landmarker
with the lowest correlation is the InceptionTime, which is one of the slowest
classifiers, so finding a suitable trade-off between computation time reduction
and relation with the original classifier is a hard task. Indeed, small changes
in the reduction grade result in a considerable increase in the time needed
to compute the landmarker. Taking into account that a correlation of 0.40,
even if not high, still means that there is a positive correlation between the
landmarker and the original classifier, we chose to prioritize the time over the
correlation.

(a) (b)

Fig. 3.5: (a) Histogram of the time spent computing the landmarkers in the
112 dataset. (b) Histogram of the correlations of the 24 landmarkers and the

corresponding original algorithms.

Another way of testing the correlation of the landmarkers and the orig-
inal classifiers is dataset-wise. Given a dataset, the results obtained by the
landmarkers and the original classifiers in this dataset can be compared vi-
sually to see whether or not they are related. Due to the lack of space, only
two examples2 are shown in Figure 3.6. It can be seen that there is a clear
relation between the accuracies obtained by the original algorithms and the
corresponding landmarkers in the both datasets shown in the figure, since they
share a similar pattern. The landmarkers of both datasets are good potential
predictors of classifier recommendations.

1 The correlation of each landmarker and the corresponding classifier is included
in Appendix A.3.

2 The figures of the 112 datasets are included in Appendix A.4.



3.4 Experimentation 67

Fig. 3.6: Accuracies obtained by the original 24 classifiers and the
landmarkers in ChlorineConcentration (left) and ElectricDevices (right)

datasets.

3.4.3 TSCR

In this section, the proposed TSCR systems are experimentally evaluated.
Apart from the SMLs presented in Section 3.2.2, we present three additional
methods for each meta-target type: on the one hand, since classifier recom-
mendation has never been addressed before in TSC, in order to determine if
the results obtained by our methods are accurate or not, a baseline (BS) for
each meta-target type is presented. Moreover, in order to highlight the contri-
bution of the proposed landmarkers, the recommendation performance of the
landmarkers is compared with the recommendation performance of standard
meta-features for non-sequential data (MF). On the other hand, since not all
landmarkers necessarily have a great prediction power, a method that includes
a forward landmarker selection (SML FLS) is considered. In the following, a
brief introduction to those methods is presented.

BS: since there are no state-of-the-art proposals, we consider a set of agnostic
methods that, for each meta-target type, outputs a constant prediction with-
out any learning process. This prediction is made based on the mean values
of the accuracies of the classifiers in the training set: for the classifier accura-
cies meta-target, the BS is a method that, for any instance in the testing set,
predicts the mean accuracy of the candidate classifiers in the training set. In
the same manner, for the BS of the complete ranking meta-target, the output
is the ranking of the mean accuracies of the candidate classifiers in the train-
ing set, while the partial rankings of these rankings are used for the top-M
ranking meta-target. The prediction of the best set is computed by applying
the criterion of the margin in equation 3.1 to the mean accuracies of the can-
didate classifiers in the training set. Lastly, for the BS of the best classifier



68 3 Time Series Classifier Recommendation by a Meta-Learning Approach

meta-target, the classifier with the best mean accuracy in the training set is
used.

MF: In this method, instead of the landmarkers, standard meta-features
for non-sequential data are used as meta-attributes for the recommendation
system. Specifically, 73 standard meta-features (general, statistical and info-
theoretical) are extracted from each dataset employing the pymfe package [36]
for Python. These meta-features are used as input for the recommendation
system, employing the corresponding meta-learner in each case.

SML FLS: the followed forward landmarker selection (FLS) procedure is de-
scribed in Algorithm 1. The FLS starts with a random landmarker and, at
each iteration, adds the landmarker that improves the performance of the
meta-learner the most to the set of selected landmarkers, until there is no
improvement. The operator δ depends on the meta-target type and is the
result of evaluating the predictions of the SML with the corresponding evalu-
ation metric. For complete ranking, top-M ranking, best set and best classifier
meta-targets the aim is to maximize δ (as in the pseudo-code), while for clas-
sifier accuracies meta-target is evaluated in terms of error, so the aim is to
minimize δ.

Algorithm 1 Forward landmarker selection (FLS)
Input:

LM = set of all the landmarkers
δ = operator that computes the performance of a set of landmarkers

Output:
S = set of selected landmarkers

Algorithm:
Initialize S = one.random(LM)
candidate = argmax

Li∈LM\S
δ (S ∪ Li)

while δ (S ∪ candidate) > δ (S) do
S = S ∪ candidate
if |S| = |LM| then

break
else

candidate = argmax
Li∈LM\S

δ (S ∪ Li)

From a general point of view, the evaluation procedure of the methods is
the following: for the BS and SML, a 10 times repeated 5-fold nested cross
validation [194] is carried out. For the forward selection, instead, a two-level
nested cross validation is performed: in the first level, a 10 times repeated
5-fold nested cross validation is performed for evaluating the set of landmark-



3.4 Experimentation 69

ers, which have been selected in an internal 3-fold nested cross validation of
training sets of the first level. The method starts with all the landmarkers
once and selects the set of landmarkers that obtains the best performance in
the 3-folds.

The result obtained by the BS, MF, SML and SML FLS approaches for
the considered meta-target types are shown in Table 3.7. Recall that each
meta-target type is validated employing a different evaluation measure and,
hence, the results of different rows can not be compared with each other.

Table 3.7: Results of the baselines (BS), specific meta-learners with
meta-features as input (MF), specific meta-learners with landmarkers (SML)

as input, and specific meta-learners with forward landmarker selection
(SML FLS) for the considered meta-target types.

Meta-target Metric BS MF SML SML FLS
Classifier accuracies MAE 0.15 0.14 0.07 0.07
Complete ranking τ̃c 0.73 0.73 0.74 0.74

Top-M ranking M=3 0.37 0.31 0.47 0.48
M=5 τ̃p 0.50 0.50 0.59 0.61
M=10 0.63 0.64 0.68 0.69

Best set W=0.05 0.35 0.28 0.28 0.30
W=0.1 La 0.25 0.34 0.36 0.39
W=0.2 0.41 0.43 0.46 0.48

Best F1w 0.17 0.27 0.18 0.18

In the case of the classifier accuracies meta-target, it can be seen that, both
the BS and the MF obtain worse results than the SML, while the forward se-
lection does not improve the performance obtained by the SML. Additionally,
the best performance obtained, 0.07, is the MAE of the prediction of 24 classi-
fier accuracies, which, taking into account the range of the accuracies, is fairly
accurate.

In the complete ranking prediction, the SML is the best performing ap-
proach -closely followed by the BS and MF-, while the landmarker selection
does not improve the results. The good performance of the BS deserves atten-
tion; the BS always predicts the mean ranking in the training set, so it can be
deduced that most of the rankings in the testing set are close to that mean
ranking. In order to explore this issue, we conduct the same experiment but,
instead of computing the overall performance of all the predicted rankings,
the performance is evaluated separately for instances that have different simi-
larities (τ̃c) with respect to the mean ranking in the training set. For each fold
in the cross validation, the percentiles P25, P50 and P75 are extracted from the
similarities between the rankings in the training set and the mean ranking in
the training set, and the instances in the testing set are divided into 4 sets: S1
is the set of test instances with similarity within the range [P0, P25), and S2,
S3 and S4 within [P25 P50), [P50 P75) and [P75 P100], respectively. Figure 3.7
shows the mean performance and standard deviation of the BS and SML for



70 3 Time Series Classifier Recommendation by a Meta-Learning Approach

the different sets. It can be seen that, as expected, the SML outperforms the
BS in those instances with a true ranking that is very dissimilar to the mean
ranking in the training set. Even if the average performances are similar (0.73
and 0.74), the SML distributes the error more uniformly among the instances.

Fig. 3.7: Performance depending on the similarity of an instance respect to
the mean ranking in the training set.

In the case of the top-M rankings, two main conclusions can be drawn:
the SML FLS is the best approach for all values of M, and the performances
of all the meta-learners increases with M. These results are quite reasonable
since it is expected that predicting a top-10 ranking is an easier task than
predicting a top-3 ranking.

A similar pattern can be seen in the best set prediction: the performance of
the MF, SML and SML FLS increases with W and, hence, with the number
of labels per instance, while the performance of the BS does not seem to
follow this trend. The forward selection improves the results of the SML for
any W. The main difference with the results obtained for the top-M rankings
is that, in the best set prediction, for W=0.05 the BS outperforms the rest
of the approaches. A possible explanation for this fact is that, as Figure 3.3
shows, for W=0.05, most of the instances have very few labels. As shown in
Figure 3.4, InceptionTime, BOSS and ST are the best performing classifiers
in most of the datasets, so many of the instances contain these labels. Since
BS predicts the most frequent classifiers, it obtains good results due to the
label imbalance.

Lastly, regarding the best classifier meta-target, we handle the label imbal-
ance by the metric specified in Section 3.4.1.3. It can be seen that the MF is
the best performing approach, followed by SML and BS, while the SML FLS
does not improve the results.

Summarizing, the experimentation carried out shows that the SMLs are, in
7 out of 9 of the considered scenarios, the best performing TSCR approaches.
In some cases, the corresponding BS obtains results that are similar -in a single



3.4 Experimentation 71

case better- to the SML, which we think is because there are some classifiers
that, in general, obtain better results than others, a fact that benefits the BS.
The approach that employs the standard meta-features as input outperforms
the landmarker based approaches in a single case (best meta-target), and the
SML FLS improves the results of the SML in several cases, which indicates
that all the landmarkers are informative in some cases, while in orders they
are not.

3.4.4 Hierarchical inference of meta-targets

In this section, we experimentally compare the hierarchical inference of meta-
targets with the corresponding TSCR system in order to explore whether or
not a specific TSCR is needed. For each meta-target type, we chose the best
performing approach between the SML and the SML FS (Table 3.7) for the
hierarchical inference. The experimental set up is the same as that specified
in Section 3.4.3.

Table 3.8 displays the results obtained for the hierarchical inference of the
considered meta-target types. Following the scheme in Figure 3.2, the columns
indicate the MTi meta-target, while the rows refer to the inferred MTj meta-
targets; the first column, for example, displays the performances obtained for
the different meta-target types inferred from the predicted classifier accura-
cies. The results obtained by the SML of each meta-target type are shown in
the diagonal, while the × symbol reflects that the inference is not feasible for
this couple of meta-target types. Analogously to Table 3.7, each meta-target
type and, hence, each row, is evaluated employing a different metric, so the
results of different rows can not be compared with each other.

Table 3.8: Results obtained for the hierarchical inference approach of the
considered meta-target types. Columns indicate the departing meta-target,

while rows indicate the inferred meta-target.

Classifier accuracies Complete ranking Top-M ranking
M = 3, 5, 10

Best set
W = 0.05, 0.1, 0.2 Best

Classifier accuracies 0.07
Complete ranking 0.76 0.74

Top-M ranking M=3 0.55 0.46 0.48
M=5 0.68 0.59 0.61
M=10 0.65 0.68 0.69

Best set W=0.05 0.30 0.30
W=0.1 0.35 × × 0.39
W=0.2 0.45 0.48

Best 0.26 0.20 0.22 0.21 0.19 × 0.18

It can be seen, that, in general, the inference obtains very competitive
results. In fact, in most of the cases, the results of our experimentation show
that there is no need to employ a specific TSCR system for each meta-target
type, since almost equally or even better results can be inferred from more



72 3 Time Series Classifier Recommendation by a Meta-Learning Approach

fine-grained meta-targets. That means that, in this problem, a single model
is sufficient to obtain competitive results for many meta-target types. For
the complete ranking meta-target, for instance, our experimentation suggests
that a ranking learning method is not necessary since even a better perfor-
mance is obtained by inferring the rankings from the predictions of the linear
multi-output regression. An interesting pattern that is observed for the top-M
rankings meta-target is that, the smaller the parameter, the better the results
of the hierarchical inference (from the classifier accuracies) are compared to
the SML. A possible explanation for this fact is that, smaller parameters give
rise to more fine-grained meta-targets (shorter partial rankings), and these
meta-targets seem to benefit from more fine-grained TSCR systems.

To sum up, in contrast to what Kalousis et al. [191] and Bensusan et al.
[192] reported, the results of our experimentation suggest that, given a meta-
target type, the hierarchical inference obtains results that are competitive with
the specific TSCR. The main conclusion of this finding is that, at least in our
scenario, a single linear multi-output regression is enough to infer almost all
the meta-target types with results that are competitive with the corresponding
SML.

3.5 Conclusion and future work

In this Chapter, time series classifier recommendation has been addressed by
a meta-learning approach for the first time in the literature. The proposed
method consists of three main parts: landmarker based time series supervised
dataset characterization, classifier recommendation and hierarchical inference
of the meta-targets.

In the first part, the temporal supervised dataset characterization is tack-
led by the proposal of a set of 24 TSC landmarkers, which are obtained by
dataset subsampling and algorithm reductions. The experimental analysis of
the landmarkers show that they are fast to compute (in the StarlightCurves
dataset, for instance, the time is reduced from more than 12 days to 44 min-
utes), while the accuracies obtained by the landmarkers are highly correlated
to the results of the original classifiers (mean correlation of 0.86).

Five standard meta-target types are considered: classifier accuracies, com-
plete ranking, top-M ranking, best set and best classifier. For each meta-target
type, four TSCR approaches are considered: two specific meta-learners (the
SML and the SML FLS), as well as a baseline BS and an approach with
standard meta-features MF, for comparative purposes. The experimentation
validates the landmarkers we proposed since, in 7 of the considered 9 recom-
mendations, the SML outperforms the BS and MF, while the forward selection
improves or equals the results in 7 of 9 scenarios. Moreover, in those cases in
which the BS obtains competitive results, we prove that the proposed meth-
ods are more stable than the BS -in the sense that they distribute the error
more uniformly among the datasets-.



In the last part of the Chapter, the hierarchical inference of meta-targets
is addressed. This issue is an almost unexplored point of view in the meta-
learning literature, and the few works that have addressed it [191, 192] did
not report competitive results. In our work, by contrast, it is proved to be
a promising approach. Most of the meta-target types can be inferred from a
single linear multi-output regression, obtaining even better results than those
obtained with the corresponding TSCR system.

Regarding future work, the proposed TSCR systems could be extended to
other TSC scenarios, such as multi-variate or unequal-length TSC. In addition,
it would be interesting to find out which characteristic of the time series
datasets makes a classifier obtain better results than others. This is a pending
aspect in the TSC community and could be addressed by the definition of
meta-attributes that describe supervised time series datasets, based on the
characteristics that they contain.



4

Ad-Hoc Explanation for Time Series
Classification

4.1 Introduction

In the recent years, and with the rise of deep learning models, the state-of-the-
art methods are ofter too complex and understanding their decision making
process is rather complicated. In this context, Explainability [48] (introduced
in Section 1.3) is an increasing field of research that has arisen with the aim of
providing simple explanations of the predictions of models in a manner that
humans can understand.

In TSC, some efforts have been done to propose methods that explain
time series classifiers. Most of them have focused on intrinsic methods for
explaining deep learning models [64, 65, 66, 67] or machine learning classifiers
for time series [61, 62, 63]. However, as already mentioned in Chapter 1,
intrinsic explanation methods are limited to the model they are designed for.
Agnostic methods, instead, provide an explanation that is independent on the
model, and can be used to explain the predictions of any classifier. In TSC,
until now, two agnostic methods have been proposed [69, 70], both of them
following on a perturbation based approach. These perturbations, however,
are not specific and realistic for time series.

Our proposal aims at going a step further and provides a local model-
agnostic explanation based on a more realistic set of perturbations for time
series. To this end, some characteristic of the original series is perturbed and
the vicinity of a time series is generated by applying transformations that are
more natural for time series data. In this work, we consider 4 transformations
based on [4, 195, 196]: warp, scale, noise and slice. In this way, the explana-
tions provided by our method have an interpretation: an interval is important
because, if a transformation is applied to this interval, the prediction will
change. In this way, the proposed explanations offer a semantic meaning; if
a time series dataset is collected from sensors that capture the movements of
a person doing a certain exercise, a possible interpretation provided by our
method is that an interval is important for the prediction because, if the speed



4.2 Time series Transformations 75

of the movement in this interval changes, the time series will be categorized
into another class.

Given a transformation type, the proposed method provides two explana-
tions: the robustness for the prediction of the classifier with respect to that
transformation, and the relevance of each region of the series in the predic-
tion. This will measure how sensitive the classifier is in the time series of
interest to that transformation. In the case where a prediction is sensitive to
a transformation, the relevance of each region of the series in the prediction
is computed.

The rest of the Chapter is organized as follows: in Section 4.2, the pro-
posed transformations for time series are presented. The explanation method
is thoroughly described in Section 4.3, while the experimentation is presented
in Section 4.4. Finally, the main conclusions are drawn in Section 4.5.

4.2 Time series Transformations

In order to define a proper set of realistic and natural transformations for time
series, we follow the ideas presented in [4, 195, 196]. In [4], the authors state
that a similarity measure for time series should be robust to a set of transfor-
mations and they propose the scale, warp, noise, and outliers transformations.
In [195], the authors claim that time series with unequal-lengths appear natu-
rally in real-world problems due to reasons such as variations in the frequency
of measurements (warp) or variations in the starting or/and ending index of
the time series (slice), and propose transformations to simulate this kind of
time series. Lastly, time series data augmentation is addressed in [196], where
two methods are proposed: time series slice extraction and window warping.
Inspired by the previous works, we decided to consider 4 transformations:
warp, scale, noise, and slice. In our case, transformations that involve inter-
vals of the time series are considered, so the outlier transformation -which
applies to certain indexes of the series but not to a whole interval- has not
been taken into account. In the following sections, the considered transforma-
tions are presented in detail.

4.2.1 Warp

This transformation is a deformation of the series in the time axis (x-axis),
which produces a compression or expansion (depending on the warp level) of
the values of a series in a given interval. Time series with an interval warped
at different warp levels appear frequently in problems such as the GunPoint
dataset from the UCR repository. Figure 4.1 shows two time series from this
dataset, one from each class. The interval that represents the gun rising can
be seen as a warped version of the interval that represents the hand rising (or
vice-versa). In particular, in the time series from the Gun class, this movement
is made in a quicker manner than in the time series from the Point class. In



76 4 Ad-Hoc Explanation for Time Series Classification

this case, this interval is considered discriminative with respect to the warp
transformation, because if we compress/expand it, the classifier could change
its class prediction.

Fig. 4.1: Two time series from the GunPoint dataset. The time series from
the Gun class can be seen as a warped version of the time series from the
Point class (or vice-versa), where the warp has been applied in the marked

interval.

In order to synthetically create warped versions of a reference time series
T = (t1, . . . , ti, . . . , tl), we propose the warp transformation; given an interval
[s, e] in which the transformation is applied (such that 0 < s < e < l) and a
warp level kw, the warped version of T is defined by:

T ′ = (t′1, . . . , t′i, . . . , t′s+(e−s)∗kw+(l−e)) (4.1)

where

t′i =


ti, if i ≤ s

(w1tp + w2tq)/kw, if s < i ≤ s+ kw(e− s)

te+i−(s+kw(e−s)), i > s+ kw(e− s)

(4.2)



4.2 Time series Transformations 77

where tp = max
j=1,...,l

[jkw] < i and tq = min
j=1,...,l

[jkw] ≥ i. The notation [ ] refers
to the nearest integer and the weights are defined by w1 = kw − (i − p) and
w2 = kw − (q − i). The first and last parts in (4.2) correspond to the interval
that remains from the reference time series. The second part corresponds to
the warped interval, which is a weighted average of the two nearest warped
points of the reference time series.

Note that this transformation compresses (kw < 1) or expands (kw > 1) an
interval of the reference series, thus the transformed series will be shorter or
larger than the reference series. Two examples of synthetic warped versions of
a reference time series from the ArrowHead dataset from the UCR repository
are shown in Figure 4.2.

(a) kw = 1.2 in [100, 200]. (b) kw = 0.7 in [30, 100].

Fig. 4.2: A reference time series from the ArrowHead dataset and two
examples of synthetic warped version.

4.2.2 Scale

This transformation is a deformation of the series in the y-axis. It produces
an upward or downward displacement (depending on the scale level) of the
values of a series in a given interval. Time series with different scale levels can
be found, for example, in the Adiac dataset from the UCR repository. In this
dataset, images of 37 classes of diatoms (unicellular algae) are converted into
time series, and time series from different classes differ in the scale in several
intervals (see Figure 4.3). The interpretation of this fact is that these two
diatoms have very similar shapes, but differ in the amplitude of the shape in
some intervals. As such, the scale in those intervals is considered as relevant
for the prediction.

We propose the scale transformation of a reference time series T =
(t1, . . . , ti, . . . , tl) as: given an interval in which the transformation is applied
[s, e] (such that 0 < s < e < l) and a scale level ks, the scaled version of the
series is:



78 4 Ad-Hoc Explanation for Time Series Classification

Fig. 4.3: Two time series from different classes of the Adiac dataset that
differ in the scale level in the marked intervals.

T ′ = (t′1, . . . , t′i, . . . , t′l) (4.3)

where

t′i =

ti ∗ ks, if s ≤ i ≤ e

ti, otherwise
(4.4)

A reference time series from the ArrowHead dataset and two examples of
synthetic scaled versions are shown in Figure 4.4.

(a) ks = 0.7 in [180, 230]. (b) ks = 1.2 in [30, 80].

Fig. 4.4: A reference time series from the ArrowHead dataset and two
examples of synthetic scaled versions.

4.2.3 Noise

The noise transformation consists of adding noise to the series in a given
interval. An example of time series with different noise levels that determine
the class can be seen in the ECG200 dataset from the UCR repository, for



4.2 Time series Transformations 79

instance. In this dataset, the electrical activity of a heartbeat is recorded
in two scenarios (normal heartbeat and a myocardial infarction). Figure 4.5
shows two time series from different classes that differ in the noise level in
the marked interval. In these two examples, it can be seen that the heartbeat
in both scenarios is very similar, but the normal heartbeat is smoother than
the heartbeat of myocardial infarction. In this case, a noise transformation in
this interval may make the classifier predict the series into another class and,
hence, the noise level in the given interval is considered as discriminative.

Fig. 4.5: Two time series from different classes of the ECG200 dataset that
differ in the noise level in the marked interval.

Given a reference time series T = (t1, . . . , ti, . . . , tl), an interval in which
the transformation is applied [s, e] (such that 0 < s < e < l) and a noise level
kn, the noise-transformed version of the series is defined by:

T ′ = (t′1, . . . , t′i, . . . , t′l) (4.5)
where

t′i =

ti +N (0, A∗kn100 ), if s ≤ i ≤ e

ti, otherwise
(4.6)

with A = |max(T ) − min(T )| the amplitude of the series. As Equation 4.6
shows, the added noise is a Gaussian noise N (µ, σ), with µ = 0 and a σ that
depends on the amplitude of the time series and the noise level kn. In this way,
for kn = 5, for example, the standard deviation is set to 5% of the amplitude
of the series.

A reference time series from the ArrowHead dataset and two examples of
synthetic versions with noise are shown in Figure 4.6.

4.2.4 Slice

The slice transformation selects a subsequence of the time series and aligns it
at the beginning of the reference time series. This transformation can be seen



80 4 Ad-Hoc Explanation for Time Series Classification

(a) kn = 2 in [80, 170]. (b) kn = 7 in [160, 200].

Fig. 4.6: A reference time series from the ArrowHead datasets and two
examples of synthetic versions with noise.

as selecting and shifting a subsequence of the time series. As the authors of
[195] pointed out, for many time series that represent audio, video, or sensor
recordings, the exact moment at which the recording starts and finishes may
vary. For instance, for a time series that represents the audio recording of a
person saying a word, the location of subsequence that represents the word
may be different depending on the exact starting and ending point of the
recording.

Sliced time series can be found, for example, in the AllGestureWiimoteY
dataset from the UCR repository. This dataset consists of the y-axis recording
of 10 individuals performing 10 different gestures measured by the Nintendo
Wiimote controller. Two series from different classes are shown in Figure 4.7;
it can be seen that both time series have very similar shapes, but the time
series from class 5 is a sliced version of the time series from class 7. That is,
if the recording of the time series from class 7 had started a bit later and had
finished before, the classifier would probably have classified it in class 5. In
this way, the marked interval and, in particular, its location are considered as
relevant for the prediction.

Given a reference time series T = (t1, . . . , ti, . . . , tl) and a random interval
[s, e], the slice transformation consists of removing the intervals [1, s) and (e, l]
from the reference series. In this way, in contrast to the previous transforma-
tions, the slice transformations does not modify the series in the [s, e] interval,
but it is applied in [1, s) ∪ (e, l]. The sliced version of T is defined by:

T ′ = (t′1, . . . , t′i, . . . , t′e−s) (4.7)

where
t′i = ts+i, i = 1, . . . , e− s (4.8)

This transformation involves the time axis of the series, and hence, the
transformed time series are shorter than the reference series. A reference time
series from the ArrowHead dataset and two examples of sliced versions are
shown in Figure 4.8.



4.3 Time Series Classification Explanation Method 81

Fig. 4.7: Two time series from the AllGestureWiimoteY dataset. The time
series from class 5 can be seen as a sliced version of the time series from

class 7.

(a) Sliced in [5, 250]. (b) Sliced in [20, 230].

Fig. 4.8: A reference time series from the ArrowHead dataset and two
examples of synthetic sliced versions.

4.3 Time Series Classification Explanation Method

Given a time series in a labelled dataset, a classifier, and a transformation, the
method provides a two level explanation: the high-level explanation describes
the robustness of the prediction with respect to the transformation, while the
low-level explanation displays the relevance of each region of the series in the
prediction.

4.3.1 High-level explanation

The high-level explanation can be summarized in 3 steps (see Figure 4.9):
Neighbour generation. We create neighbour time series by sampling a ran-
dom interval of the reference series and applying the transformation to this
interval. For this, a random interval generation is needed, such that all the
time indexes of a series have the same probability to appear in an interval. We



82 4 Ad-Hoc Explanation for Time Series Classification

WARP

Neighbourhood

Interval-domain Time-domain

Reference 

time series

Same

class

Other

class

Same

class

High-level explanation

Estimation

 of the

robustness

Neighbour 

labelling

Neighbour

generation

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

Class 1

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

Neighbour

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

Neighbour

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

Neighbour

Fig. 4.9: Scheme of the high-level explanation with an example of time series
from the ArrowHead dataset and warp transformation with kw = 0.7.

employ an approach called randomized unwrap the circle method [197], which
considers the intervals as wrapped around the perimeter of a circle (described
in Algorithm 2).

Algorithm 2 Randomized unwrap the circle method
Input: Parameters of Beta prime distribution α, β
Output: Random interval in [0, 1] Sample x from BetaPrime(α, β)
1: Sample u uniformly on [−x, 1]
2: Return [0, 1] ∩ [u, u+ x]

Neighbour labelling. In this step, the generated neighbours are labelled by
the classifier. Some of the transformations involve deformations in the time
axis of the time series, giving rise to neighbours with larger or shorter lengths
than the reference time series. Since many benchmark classifiers for TSC are
not adapted to varying length series [195], this leaves us two options: to employ
a pre-processing step to equal the lengths of all the series, or to limit our
method to classifiers that can handle series of varying lengths. The first option
involves adding information to the shorter series and removing information
from the larger series, while the second works with all the information but
restricts our method to a shorter number of classifiers. In this work, in order
to keep the information as raw as possible, the second option has been adopted.
Estimation of the robustness. We consider that the prediction is robust
with respect to the transformation if all the neighbours are classified into the
same class of the reference time series. In the following, we call I = I=∪I6= the
set of generated random intervals, where I= refers to those intervals that result



4.3 Time Series Classification Explanation Method 83

Isolation 

of intervals 

of interest

Visualization

Low-level explanationSame class

Other class

1.0

0.0

-1.0

-2.0

0 50 100 150 200 250

1.0

0.8

0.6

0.0

0.4

0.2

Fig. 4.10: Scheme of the low-level explanation with an example of a time
series from the ArrowHead dataset.

in neighbours from the same class of the reference series, and I6= to those that
result in neighbours from other classes. As such, in this step, the robustness
of a prediction with respect to a transformation, Rtransf , is quantified by
measuring the percentage of neighbours that are classified into the same class
of the reference time series:

Rtransf = |I=|/|I|
where the operator | | refers to the cardinal. Rtransf varies in the range [0, 1],
where a value of 0 means that the prediction is completely sensitive to the
transformation, since all the considered neighbours are labelled into another
class. A value of 1, in contrast, means that the prediction is completely robust
with respect to the transformation, since all the considered neighbours are
labelled into the same class of the reference series.

4.3.2 Low-level explanation

The low-level explanation consists of computing the relevance of each region
of the time series in the prediction. In this step, two possible scenarios are con-
sidered: the prediction is completely robust with respect to a transformation
(Rtransf = 1), or the prediction is somewhat sensitive to a transformation
(Rtransf < 1). In the first case, a transformation never affects the prediction,
and hence, the low-level explanation is that there are no intervals that have
a special impact on the prediction, with respect to the transformation. In the
second case, the low-level explanation is computed following the next steps
(see Figure 4.10).
Isolation of intervals of interest. An interval is considered relevant for the
prediction if a transformation in this interval changes the prediction of the
classifier (i.e., those intervals in I 6=). In some regions of the time series, how-
ever, there may be intervals both from I 6= and from I=. In order to guarantee
that a region of the series is relevant for the prediction, we define the intervals
of interest as those intervals from I6= that do not have an interval from I=
around.



84 4 Ad-Hoc Explanation for Time Series Classification

The procedure to isolate the intervals of interest can be summarized in the
following steps:

(i) Identify those intervals from I6= that are closer than a parameter z from
any interval from I= employing the γ(z) function:

γ(z) = {i6= ∈ I6=| ∃i= ∈ I=, dH(i=, i6=) < z}
where dH is the Hausdorff distance between intervals1.

(ii) The set of isolated intervals of interest is defined by:

I6= \ γ(z)

Note that the set of isolated intervals depends on the parameter z, so
an adequate threshold z∗ needs to be set for each instance. Our preliminary
studies showed that the number of intervals returned by γ increases with z, but
the slope is generally decreasing (see Figure 4.11 for an example). However,
there are some jumps in the function, where the slope increases and then
decreases again. The values of z in which there is a jump are interesting as
candidates for z∗, since they indicate that there is a significantly larger group
of intervals at distance z than at distance z−1. In order to define an automatic
z∗ for each neighbourhood, we propose the following rule: if there is a jump
in the γ function, z∗ is fixed to the first distance z in which a jump occurs,
while if there is not a jump, z∗ is fixed to the distance in which half of the
intervals are removed. This jump is defined in terms of the second symmetric
numerical derivative (the complete rule is summarized in Algorithm 3).

Fig. 4.11: Example of the γ function on a time series from the CBF dataset
from the UCR repository and warp transformation with kw = 0.7.

1 Given two intervals A = [a1, a2] and B = [b1, b2] in R, the Hausdorff distance
[198] is defined by dH(A, B) = max{|a1 − b1|, |a2 − b12|}. Note that the slice
transformation is applied in the union of intervals instead of in intervals (Section
4.2.4), thus the extension for unions [199] is used for this transformation.



4.4 Experimentation 85

Algorithm 3 Automatic threshold
Input: Curve of removed intervals γ(z)
Output: Threshold z∗

if ∃z s.t. |γ(z + 1)− 2γ(z) + γ(z − 1)| > 0 then

z∗ = arg min
z∈N

{γ(z + 1)− 2γ(z) + γ(z − 1) > 0}

else
z∗ = arg min

z∈N
{γ(z) > |I6=|2 }

Visualization. This step consists of summarizing and representing the infor-
mation of the interval of interest in the original time series. The idea is that,
the more intervals of interest that contain a time index i, the more relevant this
index is for the prediction. As such, given a time series T = (t1, . . . , ti, . . . , tl),
we compute the number of isolated intervals that contain the index i for
i = 1 . . . l and this values are stored in a vector w = (w1, . . . , wi, . . . , wl). The
explanation, thus, can be seen as a weight vector w, in which wi represents
the relevance of the time index i in the prediction. Then, the time series is
coloured depending on these values. The red colour indicates that these time
indexes are contained in many relevant intervals, so this region is important
for the prediction, while the blue colour, indicates the opposite. Note that the
colorbar is normalized to [0, 1].

4.4 Experimentation

Explainability is a singular field in which the evaluation can be quite subjec-
tive and, hence, difficult to assess quantitatively. In this work, the evaluation
is carried out both qualitatively and quantitatively. The experimental set-up
is specified firstly, followed by a case of study. Lastly, for the quantitative
evaluation, we adapt the evaluation methodology presented in [74] for quan-
tifying the informativeness of explanation methods for TSC to the context of
the proposed transformations. All the code has been developed in Python and
is publicly available1.

4.4.1 Set-up

The experimentation has been carried out considering several parameters of
the transformations. The warp and scale levels considered in this experimen-
tation, kw and ks, are {0.7, 0.8, 0.9, 1.1, 1.2, 1.3}, while the considered noise

1 https://gitlab.bcamath.org/aabanda/tscexplanation.

https://gitlab.bcamath.org/aabanda/tscexplanation


86 4 Ad-Hoc Explanation for Time Series Classification

levels, kn are {1, 3, 5, 7, 9}. Each transformation level is independently stud-
ied. The slice transformation does not depend on any parameter but, in order
to ensure a minimum length in the generated neighbours, we set the minimum
interval length to 0.3 ∗ l, where l is the length of the series that is the object
of study.

Regarding the neighbour generation process, the size of the neighbourhood
is set to 500, while the parameters in 2 are set to α = 8 and β = 18. such
that the probability of a index to be covered by an interval is 0.3 [197]. In
this way, each time index appears in approximately 150 of the 500 generated
neighbours.

Lastly, regarding the classifiers, as mentioned before, in this experimenta-
tion we employ classifiers that handle varying length time series. As such, 3
benchmark and diverse classifiers for TSC have been chosen: from the category
of elastic or distance based classifiers, the 1-NN-DTW classifier, from shapelet
based classifiers, the Shapelet Transform (ST), and, from the dictionary based
category, the Bag-of-SFA-Symbols (BOSS).

4.4.2 Qualitative evaluation: case of study

In this section, the proposed explanation method is qualitatively evaluated
in some example time series extracted from datasets of the UCR repository.
Given a time series and a classifier, our method provides a separate explana-
tion for each transformation, so, due to the lack of space, a single represen-
tative example of each transformation is presented in this section. The expla-
nations are computed for two well-known datasets from the UCR repository
(GunPoint and Coffee), since these datasets have already been used before
in methods concerning TSC explainability [61, 63, 65]. The GunPoint dataset
has already been introduced, while the Coffee dataset is a binary dataset com-
posed of time series that represent food spectrographs of two types of coffee:
arabica and robusta. From each class in each dataset, a time series has been
randomly taken for the following examples1. In each example, the classifier
and the transformation level has been chosen such that the robustness of the
combination classifier-transformation in the given time series is lower than 1
-which makes the semantic analysis of the explanation meaningful-.

Warp. Figure 4.12a shows the explanation obtained for the warp transfor-
mation (kw = 0.7) and the 1-NN-DTW classifier in a time series from the
Gun class of the GunPoint dataset. The Rwarp is 0.45, which indicates that
the output of the classifier in this time series is quite sensitive to the warp
transformation - more than a half of the neighbours generated by warping
random intervals of the series are classified into the Point class-. Our method

1 For the sake of reproducibility, the time series index of each example is specified.
From the GunPoint dataset, time series 52 (Fig. 4.12a) and 1 (Fig. 4.12b). From
the Coffee dataset, time series 6 (Fig. 4.13a) and 21 (Fig. 4.13b).



4.4 Experimentation 87

states that the most discriminant region is the part in which the subject raises
the gun from the hip; if the subject does this movement faster, the time series
is likely to be classified into the other class.

Scale. The explanation for a time series from the Point class of the GunPoint
dataset for the scale transformation (ks = 1.2) and the 1-NN-DTW classi-
fier is shown in Figure 4.12b. The Rscale is 0.64, so the prediction is rather
robust to the scale transformation (35% of the scale transformed neighbours
are classified into the other class). The explanation indicates that the most
discriminative region is the part in which the subject is pretending to hold the
gun on the hip; if the vertical position of his/her hand was lower than what
it is, the 1-NN-DTW would probably classify this time series into the other
class.

(a) Warp (kw = 0.7) with the
1-NN-DTW classifier,

Rwarp= 0.45.

(b) Scale (ks = 1.2) with the
1-NN-DTW classifier,

Rscale= 0.64

Fig. 4.12: Two explanations provided by our method in a time series from
the Gun class (a) and Point class (b) from GunPoint dataset.

Noise. Figure 4.13a shows the explanation obtained for a time series from
the Arabica class of the Coffee dataset with the noise transformation (kn = 9)
and the BOSS classifier. In this case, the output of the BOSS classifier is
very robust to the noise transformation (Rnoise = 0.94); it is very difficult
to mislead the classifier by adding noise to the time series. An interesting
finding is that the explanation obtained by our method is very similar to that
reported in [63] for a time series from the same class, even when the methods
are fundamentally different. The authors point out that the highlighted regions
correspond to the chlorogenic acid and caffeine contents of the coffee blends,
i.e., the regions that discriminate between the Arabica and the Robusta coffee
types [200].



88 4 Ad-Hoc Explanation for Time Series Classification

Slice. An explanation obtained for a time series from the Robusta class of
the Coffee dataset with the slice transformation and the ST classifier is shown
in Figure 4.13b. The prediction of the ST classifier in this time series is quite
sensitive to the slice transformation, with a Rslice of 0.48. Analogously, the
explanation obtained by our method is very similar to that presented in [63],
where the highlighted regions correspond to the discriminative parts reported
in [200].

(a) Noise (kn = 9) with the BOSS
classifier,

Rnoise= 0.94.

(b) Slice with the
ST classifier,
Rslice= 0.48.

Fig. 4.13: Two explanations provided by our method in a time series from
the Arabica class (a) and Robusta class (b) from Coffee dataset.

4.4.3 Quantitative evaluation on UCR

In this section, the quantitative evaluation of the proposed method is pre-
sented.

4.4.3.1 Experimental Design

In the field of TSC, almost all the explanation methods in the literature are
evaluated in a qualitative way in a specific dataset [62, 63, 65, 66, 67, 69].
Recently, Nguyen et al. [74] presented a general methodology to quantitatively
evaluate whether an explanation method for TSC is informative. Given a time
series and an explanation, the authors propose perturbing the time series
by adding noise to the important and non-important regions of the series.
The idea behind their method is that perturbations on the important regions
should change the class prediction more frequently than perturbations on the
non-important regions.

Given the weight vector w computed in Section 4.4, the important and
non-important regions are defined based on the distribution of its values:
the p% most important indexes are the indexes of the p% highest values of



4.4 Experimentation 89

w, while the p% least important indexes are those corresponding to the p%
lowest values of w. In their work, however, the only considered perturbation is
noise, and it is added independently to each time index. The adaptation to this
evaluation method that we propose, allows the considered transformations to
be employed as perturbations (not only noise).

The general evaluation procedure is summarized in Figure 4.14: given a
classifier and a dataset divided into train/test sets, the classifier is trained
using the train set and the explanations for all the time series in the test
set, w1, . . . , wnts (where nts is the number of time series in the test set), are
computed. Then, perturbed versions of the test set are computed for different
values of p (in this work, 3 values of p are considered: 10, 50, 90). More
specifically, if X is the test set, Xp− is a modified version of the test set in
which the least important p% of the time indexes are perturbed in all the time
series of this test set. Analogously, Xp+ is a modified version of the test set
in which the most important p% of the time indexes are perturbed in all the
time series of this test set. Then, the labels of all the series in the perturbed
test sets are predicted by the classifier; given a perturbed test set, X10+ for
instance, the classifier is employed to obtain the corresponding labels Y 10+ .
In order to measure the frequency in which the labels of a perturbed test set
are different from the labels of the true test set, the consensus between them
is defined by:

Cp+ = 1
nts

nts∑
s=0

1ys=yp+
s

where

1ys=yp+
s

=
{

1 if ys = y
p+
s

0 otherwise
(4.9)

The consensus varies from 0 to 1, where 0 means that all the labels in Y p+

are different from those in Y , while 1 means that all the time series in the
perturbed test set are classified in the same class as the original time series.
The case for perturbations p− is analogous. The consensus is computed se-
quentially for the different values of p = (10, 50, 90), such that Cp− and Cp+

form two curves (as shown at the bottom of Figure 4.14).
The area under each curve, eLoss1 and eLoss2 correspondingly, is com-

puted employing the trapezoidal rule. Lastly, the area between both curves
(named in the original work as ∆eLoss, equation 4.10) is calculated; if it is
positive, the explanation is considered informative and if it is negative, unin-
formative.

∆eLoss = eLoss1 − eLoss2 (4.10)

In the original work, given the p% most important indexes of w, the trans-
formation is directly applied to these indexes. In the context of our work, the



90 4 Ad-Hoc Explanation for Time Series Classification

1

0.5

p

C
o
n
s
e
n

s
u
s

10 50 90

TEST SET

PERTURBED

TEST SETS

Fig. 4.14: Scheme of the evaluation methodology.

transformations are applied interval-wise instead of index-wise and, hence, an
interval in the p% most important indexes is needed. As such, two scenarios
are considered: 1) the p% most important time indexes form a single interval
or 2) the p% most important time indexes form more than one interval. In
the first scenario, a random interval is sampled in this range, and the pertur-
bation is applied to this interval. In the second scenario, the longest interval
is chosen, a random interval is sampled in this range and the perturbation
is applied to this interval. The case of p% least important time indexes is
analogous.

Lastly, note that the authors of the original work [74] employ different
classifiers to obtain the explanations and to evaluate the explanations (i.e., to
label the modified test sets). In our work, since the explanation depends on
the classifier for which it has been calculated, the same classifier is employed
for both purposes.



4.4 Experimentation 91

4.4.3.2 Results

The evaluation is carried out in datasets from the UCR repository that have
already been used for the scope of TSC explanations [61, 63, 65]. In particular,
the 4 datasets from the UCR employed in [74] are used in this experimentation:
CBF, Coffee, ECG200 and GunPoint.

Recall that, in some cases, the prediction may be robust with respect to a
given transformation and hence, there is no important region for this instance,
classifier and transformation. As such, the evaluation is carried out using only
those instances for which the Rtransf is lower than 1. In order to provide more
information to the reader, we also report the dataset-robustness with respect
to a transformation, measured by the number of instances in the test set in
which the prediction is robust to the transformation.

With the considered settings, ∆eLoss varies in the range [−2, 2], and an
explanation is considered informative if the corresponding ∆eLoss is positive.
The evaluation procedure is repeated 10 times in order to remove the effect
of randomness in the interval-wise perturbation process. Tables 4.1, 4.2, 4.3
and 4.4 report the ∆eLoss and the dataset-robustness between parenthesis
for each combination of classifier, dataset and transformation. The accuracy
obtained by each classifier in each dataset is also shown in parentheses in the
header of the tables.

CBF 1-NN-DTW (0.97) BOSS (0.99) ST (0.98)
Warp 0.7 0.33 (0.81) 0.36 (0.99) 0.45 (0.85)
Warp 0.8 0.30 (0.86) 0.64 (0.99) 0.55 (0.91)
Warp 0.9 0.29 (0.89) 0.47 (0.99) 0.42 (0.94)
Warp 1.1 0.36 (0.92) 0.32 (0.99) 0.56 (0.91)
Warp 1.2 0.31 (0.92) 0.46 (0.99) 0.72 (0.86)
Warp 1.3 0.46 (0.93) 0.55 (0.99) 0.65 (0.82)
Scale 0.7 0.48 (0.79) 0.37 (0.95) 0.47 (0.85)
Scale 0.8 0.52 (0.92) 0.43 (0.98) 0.52 (0.91)
Scale 0.9 0.47 (0.98) 0.55 (0.99) 0.27 (0.96)
Scale 1.1 0.78 (0.99) 1.05 (0.99) 0.41 (0.95)
Scale 1.2 0.77 (0.99) 0.66 (0.99) 0.54 (0.93)
Scale 1.3 0.39 (0.99) 0.44 (0.98) 0.46 (0.91)
Noise 1 0.02 (0.99) 0.13 (0.99) -0.06 (0.97)
Noise 3 0.10 (0.99) 0.20 (0.99) 0.04 (0.94)
Noise 5 0.11 (0.98) 0.00 (0.99) 0.14 (0.92)
Noise 7 0.10 (0.98) 0.06 (0.99) 0.24 (0.90)
Noise 9 0.14 (0.98) 0.20 (0.99) 0.24 (0.86)

Slice 0.54 (0.03) 0.09 (0.37) 0.07 (0.03)

Table 4.1: The ∆eLoss obtained for the explanations in CBF dataset. The
dataset-robustness is shown in parenthesis.



92 4 Ad-Hoc Explanation for Time Series Classification

Coffee 1-NN-DTW (0.98) BOSS (0.99) ST (0.99)
Warp 0.7 - (1) 0.23 (0.67) 0.10 (0.25)
Warp 0.8 - (1) 0.20 (0.71) 0.08 (0.57)
Warp 0.9 - (1) 0.85 (0.96) 0.30 (0.89)
Warp 1.1 - (1) 0.35 (0.96) 0.82 (0.89)
Warp 1.2 - (1) 1.25 (0.96) 0.49 (0.78)
Warp 1.3 - (1) 0.95 (0.92) 0.51 (0.75)
Scale 0.7 0.55 (0.25) 0.25 (0.71) 0.23 (0.82)
Scale 0.8 0.61 (0.61) 0.40 (0.92) 0.23 (0.89)
Scale 0.9 1.20 (0.92) 0.70 (0.96) 0.28 (0.89)
Scale 1.1 0.85 (0.93) 0.99 (0.96) 0.05 (0.93)
Scale 1.2 0.51 (0.50) 0.75 (0.96) 0.23 (0.82)
Scale 1.3 0.76 (0.14) 0.26 (0.78) 0.27 (0.75)
Noise 1 - (1) 0.00 (0.96) 1.10 (0.96)
Noise 3 0.10 (0.89) 0.05 (0.96) 0.32 (0.82)
Noise 5 0.24 (0.82) 0.15 (0.92) 0.04 (0.46)
Noise 7 0.07 (0.50) 0.05 (0.93) -0.04 (0.39)
Noise 9 0.18 (0.32) 0.20 (0.93) -0.05 (0.39)

Slice 0.41 (0.00) 0.79 (0.86) 0.36 (0.86)

Table 4.2: The ∆eLoss obtained for the explanations in Coffee dataset. The
dataset-robustness is shown in parenthesis.

Tables 4.1, 4.2, 4.3 and 4.4 show that the ∆eLoss is positive in almost
all the dataset-transformation-classifier combinations, which means that the
explanation is informative. In fact, there are only 7 cases (of the 216 cases)
in which it is negative, which are shown in italics. The results clearly validate
our explanation method, since, perturbing the important parts change the
prediction of the classifier more frequently than perturbing the non-important
parts, regardless of the classifier, transformation or dataset. Note that, this is
done in spite of the high values of robustness reached.

The dataset-robustness is, generally, very high in all the cases, which means
that it is rather hard to change the prediction of the classifiers employing the
considered transformations. This can be due to the distribution of the classes
within each dataset, or due to the capacity of the classifiers employed in this
work to handle the transformations. However, it is worth noting that the
dataset-robustness depends on the parameter of the transformation; for the
warp and scale transformations, the closer the parameter is to 1, the greater
the dataset-robustness, while for the noise transformation, the lower the pa-
rameter, the greater the dataset-robustness (which seems reasonable in both
cases, since those are the parameters that involve the slightest modifications).



4.5 Conclusions and Future Work 93

ECG200 1-NN-DTW (0.87) BOSS (0.89) ST (0.84)
Warp 0.7 0.58 (0.77) 0.55 (0.43) 0.38 (0.01)
Warp 0.8 0.54 (0.83) 0.40 (0.49) 0.34 (0.20)
Warp 0.9 0.33 (0.84) 0.61 (0.70) 0.54 (0.82)
Warp 1.1 0.58 (0.80) 0.35 (0.71) 0.24 (0.88)
Warp 1.2 0.45 (0.83) 0.39 (0.47) 0.46 (0.73)
Warp 1.3 0.40 (0.83) 0.39 (0.47) 0.56 (0.62)
Scale 0.7 0.66 (0.52) 0.37 (0.68) 0.64 (0.76)
Scale 0.8 0.83 (0.73) 0.33 (0.74) 0.24 (0.87)
Scale 0.9 0.71 (0.88) 0.36 (0.81) 0.26 (0.97)
Scale 1.1 0.71 (0.82) 0.46 (0.80) 0.06 (0.97)
Scale 1.2 0.80 (0.71) 0.47 (0.78) 0.52 (0.92)
Scale 1.3 0.66 (0.59) 0.52 (0.73) 0.28 (0.84)
Noise 1 0.12 (0.89) 0.10 (0.81) 0.00 (0.95)
Noise 3 0.26 (0.74) -0.02 (0.78) 0.00 (0.87)
Noise 5 0.21 (0.62) 0.05 (0.68) 0.00 (0.76)
Noise 7 0.25 (0.52) 0.01 (0.62) 0.00 (0.54)
Noise 9 0.27 (0.41) 0.06 (0.58) 0.00 (0.33)

Slice 0.40 (0.06) -0.31 (0.55) -0.07 (0.54)

Table 4.3: The ∆eLoss obtained for the explanations in ECG200 dataset.
The dataset-robustness is shown in parenthesis.

There are some interesting findings related with the classifiers that deserve
attention; on the one hand, the prediction of the 1-NN-DTW classifier is found
to be robust to the warp transformation in the Coffee dataset for all the
considered warp levels. In the rest of the datasets however, the robustness of
the 1-NN-DTW is similar to that of the BOSS and ST classifier, so the ability
of a classifier to deal with the warp transformation varies depending on the
dataset. On the other hand, the BOSS classifier is known to be robust to noise
[69], but, in the ECG200 dataset, for example, both the 1-NN-DTW and the
ST classifiers are found to be more robust to noise.

4.5 Conclusions and Future Work

In this Chapter, an explanation method for TSC that provides realistic -and
specific to time series- explanations is proposed. For this, 4 transformations
for time series are presented (warp, scale, noise and slice) and a synthetic
neighbourhood of a time series is created by applying these transformations
to random intervals of the series. The method provides explanations at two
levels: in the high-level, the robustness of a classifier’s prediction with respect



94 4 Ad-Hoc Explanation for Time Series Classification

GunPoint 1-NN-DTW (0.95) BOSS (0.99) ST (0.99)
Warp 0.7 0.58 (0.88) 0.21 (0.57) 0.23 (0.75)
Warp 0.8 0.69 (0.92) 0.48 (0.86) 0.03 (0.93)
Warp 0.9 0.54 (0.94) 0.63 (0.96) -0.39 (0.97)
Warp 1.1 0.83 (0.93) 0.32 (0.97) 0.89 (0.98)
Warp 1.2 0.76 (0.93) 0.54 (0.91) 0.70 (0.98)
Warp 1.3 0.41 (0.87) 0.55 (0.82) 0.78 (0.98)
Scale 0.7 0.47 (0.28) 0.32 (0.73) 0.30 (0.65)
Scale 0.8 0.51 (0.36) 0.40 (0.88) 0.36 (0.77)
Scale 0.9 0.45 (0.53) 0.18 (0.96) 0.29 (0.94)
Scale 1.1 0.64 (0.54) 0.32 (0.98) 0.60 (0.97)
Scale 1.2 0.76 (0.37) 0.32 (0.90) 0.40 (0.91)
Scale 1.3 0.83 (0.30) 0.41 (0.84) 0.37 (0.78)
Noise 1 0.46 (0.84) 0.00 (0.99) 0.14 (0.97)
Noise 3 0.43 (0.67) 0.02 (0.89) 0.09 (0.85)
Noise 5 0.44 (0.55) 0.06 (0.67) 0.14 (0.66)
Noise 7 0.39 (0.40) 0.03 (0.56) 0.24 (0.49)
Noise 9 0.43 (0.33) 0.07 (0.54) 0.60 (0.49)

Slice 0.01 (0.11) 0.74 (0.83) 0.75 (0.49)

Table 4.4: The ∆eLoss obtained for the explanations in GunPoint dataset.
The dataset-robustness is shown in parenthesis.

to a given transformation is measured, while in the low-level, the relevance of
each region of the series in the prediction is computed.

The experimentation is divided into a qualitative and a quantitative eval-
uation. In the former, the explanation provided by our method is visually
validated in some time series extracted from datasets of the UCR repository.
Taking advantage of the semantic meaning of the time series, our methods
show, for example, that the speed of the action recorded in the GunPoint
dataset is discriminant. In the latter, the proposed method is quantitatively
evaluated by adapting an existing evaluation methodology [74] to the con-
text of our transformations. The methodology consists of perturbing the time
series in the important and non-important regions (according to the expla-
nation), and checking whether the perturbations in the important regions
change the prediction of the classifier more frequently than perturbations in
the non-important regions. The results show that this holds in almost all the
considered combinations of dataset-classifier-transformation, which confirms
the informativeness of our method. Moreover, the dataset-robustness (mea-
sured by the number of time series in the test set for which the prediction
is robust to a transformation), give some insights into how robust the classi-
fiers are to the considered transformations; the BOSS classifier, for example,



which is supposed to be very robust to noise, is shown to be less robust to
noise than the 1-NN-DTW or the ST classifier in the ECG200 dataset from
the UCR repository.

Lastly, there are many possible directions for the future work: due to the
lack of space, the experimentation in this work is limited, but it could be ex-
tended to more classifiers and datasets, and, eventually, to the multi-variate
TSC scenario. Moreover, in this method, the transformations have been stud-
ied independently, while it could be interesting to study combinations of trans-
formations, for example, by successively applying different transformations to
random intervals. To conclude, we think that our method is a first attempt
at empirically studying the robustness in TSC, and it could be interesting to
continue in this direction.





5

General Conclusions and Future Work

5.1 Conclusions

In this thesis, three contributions to the field of time series classification have
been proposed. In Chapter 2, a review that organizes and comprehensively
revises the existing distance based time series classification methods is pre-
sented. The methods are categorized into three groups, depending on how each
approach uses the chosen distance: together with the 1-NN classifier, to obtain
new distance based features or to construct kernels. The approaches that use
the distance together with the 1-NN classifier have been widely reviewed and
we refer the reader to [76, 78, 166] for more details.

Regarding those methods that employ the distance to obtain a new feature
representation of the series, we distinguish between three approaches: global
distance features, local distance features, and embedded features. Global dis-
tance features are obtained by computing the distance matrix between the
time series in the training set and employing these distances to represent the
series in a new vector space, in which any non-temporal classifier can be ap-
plied. In the methods that employ local distance features, instead of comput-
ing the distance between the series, distances between the series and some rep-
resentative patterns (subsequences) of the series are computed. Lastly, given
that many classifiers are implicitly built on Euclidean spaces, some of the
methods aim at isometrically embedding the distance matrix obtained from
the training set into some Euclidean space.

Regarding those methods that employ the distance to construct kernels,
two main directions are followed: those that construct indefinite kernels, and
those that construct definite kernels. Time series distances do not generally
lead to PSD kernels and many of the methods just employ the indefinite ker-
nels without any special treatment or consideration. Recall that the definite-
ness guarantees the mathematical properties of a kernel, but the relationship
between the (grade of) definiteness and the accuracy obtained by employing
the kernel within a classifier is still an open question. In this context, some
of the methods apply different types of regularizations to convert the indef-



5.1 Conclusions 97

inite kernels into definite kernels, while some others study the relationship
between the definiteness and the accuracy more in-depth. Lastly, there are
also some works in which specific kernels for time series are proposed that
are, by definition, PSD.

In Chapter 3, with the goal of providing a practical tool for a non-expert
user, we develop the first time series classifier recommendation system. For
this objective, a meta-learning approach is followed to define a a characteriza-
tion of supervised time series datasets based on landmarkers. We choose the
classifiers included in [171] and implemented in the tsml [71] or sktime [72]
toolboxes as candidate classifiers. As such, our proposal includes 24 landmark-
ers for time series classifiers, obtained by dataset subsampling and algorithm
reductions. The experimental analysis shows that the proposed landmarkers
fulfill the conditions to be good landmarkers: they are fast to compute (in
one of the biggest datasets from the UCR repository, the computation time is
reduced from 12 days to 44 minutes), and the performances obtained by the
landmarkers are highly correlated with the results obtained by the original
classifiers (with a mean correlation of 0.86).

The recommendation system we proposed is based on 5 types of meta-
targets: classifiers accuracies, complete ranking, partial ranking, best set, and
best classifier. For each meta-target type, the performance of a specific meta-
learner based on the designed landmarkers is compared with the performance
of a baseline especially designed for this experimentation and the performance
of the standard meta-features. The results clearly validate our recommenda-
tion system, which beats the baselines and standard meta-features in 7 of the
9 considered scenarios.

The last part of the recommendation system relies on exploiting the hierar-
chical relationship between the meta-targets. Some meta-targets are more fine-
grained than others, which allows to infer from them other less fine-grained
meta-targets: the complete ranking, for instance, can be directly obtained by
the classifier accuracies. In this sense, we have experimentally studied if, given
a meta-target, it is worth employing the specific meta-learner for this meta-
target or, instead, similar performances can be obtained by inferring the latter
from more fine-grained meta-targets. We showed that, in our framework, most
of the meta-target types can be inferred from a single linear multi-output re-
gression on the classifiers accuracies, obtaining even better results than those
obtained with the corresponding specific meta-learner.

Lastly, the third contribution of this dissertation is presented in Chapter
4. In this chapter, with the aim of providing a deeper understanding of the
existing classifiers, we present an ad-hoc agnostic time series classification
explanation method. A perturbation based approach is followed for obtaining
the explanation, together with 4 specific and ah-hoc perturbations that we
propose for time series: warp, scale, noise and slice. With this perturbations,
the proposed method provides a two-level explanation: on the one hand, the
robustness of a prediction with respect to a transformation is computed and,



98 5 General Conclusions and Future Work

on the other hand, a visualization of the series in which the relevance of each
region of the series respect to the transformation is provided.

Given that the evaluation of explanation methods can be very subjective,
we tackle it in two manners. Firstly, a qualitative evaluation is carried out
in two well known time series datasets from the UCR repository. Secondly, a
quantitative ad-hoc evaluation methodology is proposed for the framework of
this work based on the evaluation procedure proposed in [74]. In this proce-
dure, an explanation method is considered informative if perturbations on the
relevant regions change the prediction more frequently than perturbations on
the non-relevant regions. The results obtained by this evaluation methodology
clearly validate our explanation method, which is found to be informative in
almost all the considered combinations of dataset-classifier-transformation.

5.2 Future Works

The contributions presented in this thesis have led to many new potential
directions of research. In the following paragraphs, we briefly present the
possible future directions:

• Extensions to other types of time series
The contributions presented in Chapters 3 and 4 have mainly focused
on univariate time series with finite and equal lengths. However, most of
the work can be easily adapted to multi-variate or unequal length time
series. In the the case of the recommendation system, this could be done
by designing landmarkers for the classifiers that can handle multi-variate
or unequal length time series. In Chapter 4, the classifiers considered can
deal with unequal length time series, so, even if we have not carried it
out because of the lack of space, the framework could be directly applied
to obtain explanations for this type of time series. Given that many of
the time series collected in real world scenarios are multi-variate or have
unequal lengths, we think that the extension of our work to this type of
data is a promising future work.

• Temporal information
In the TSC community, it is assumed that specific methods for time series
perform better than standard classifiers. However, there are certain prob-
lems in which standard classifiers (which are, generally, faster) are more
suitable [8]. Since standard classifiers do no take the order of the values
of the time series (the temporal information) into account, it means that
there are TSC problems in which the temporal information is not rele-
vant for the classification. In this sense, it would be interesting to study
whether, given a TSC problem, the temporal information is a relevant
characteristic for the classification or not.



5.3 Main Achievements 99

• Discriminatory characteristics of datasets and performance of classifiers
In the contribution presented in Chapter 3, we have addressed the prob-
lem of classifier recommendation by predicting the performance of time
series classifiers in certain problems. However, it would be interesting to
investigate which are the characteristic of a dataset that make a classi-
fier perform better than the others in a certain problem. In particular,
given that time series datasets have specific discriminatory characteristic,
understanding the relationship between the discriminatory characteristic
of a dataset and the accuracy of different classifiers would be extremely
valuable.

• Robustness of classifiers
In TSC, it is common to state that a particular classifier is robust to
noise or to time warping, but these statements have never been empir-
ically proven. In Chapter 4, we have presented a quantitative measure
to determine the robustness of a prediction (made by a certain classifier
for a given time series) with respect to the proposed time series trans-
formations. We think that the idea of the dataset-robustness proposed in
our work could be used to study and compare the robustness of certain
classifiers in different TSC problems.

5.3 Main Achievements

Journal Papers

• Abanda, A., Mori, U., Lozano, J. A. (2019). A review on distance based
time series classification. Data Mining and Knowledge Discovery, 33(2),
378-412. https://doi.org/10.1007/s10618-018-0596-4

• Abanda, A., Mori, U., Lozano, J. A. (2020). Time Series Classifier Rec-
ommendation by a Meta-Learning Approach. Submitted (major Revision).

• Abanda, A., Mori, U., Lozano, J. A. (2021). Ad-Hoc Explanation for
Time Series Classification. Submitted.

Conference Papers

• Abanda, A., Mori, U., Lozano, J. A. (2018). ¿Requiere la clasificación
de series temporales métodos espećıficos?. TAMIDA , XVIII Conferencia
de la Asociación Española para a Inteligencia Artificial (CAEPIA 2018).
Granada, Spain.

• Abanda, A., Mori, U., Lozano, J. A. (2018). PhD Thesis proposal:
A study on the discriminatory capacity of the temporal information
on supervised time series classification problems. Doctoral Consortium,
XVIII Conferencia de la Asociación Española para la Inteligencia Artifi-
cial (CAEPIA 2018). Granada, Spain.

https://doi.org/10.1007/s10618-018-0596-4


Posters

• Abanda, A., Mori, U., Lozano, J. A. (2018). A preliminary study about
the need of specific methods in time series classification. The 3rd Bilbao
Data Science Workshop, BIDAS18, BCAM, Bilbao.

• Abanda, A., Mori, U., Lozano, J. A. (2019). Feature Extraction for
Algorithm-Type Selection in Time Series Classification. The 7th EITIC
Doctoral Student Workshop, Universitat Pompeu Fabra (UPF), Barcelona.

• Abanda, A., Mori, U., Lozano, J. A. (2019). An Exploratory Analysis of
the Influence of the Temporal Information in Time Series Classification.
Learning from data streams and time series: convergences, specificities
and common challenges, FDST2019, Telecom, Paris.

Workshops

• 5-day toolbox development and coding workshop for Sktime and MLJ
projects. Participation as code contributor. University College London
(UCL), London

Short Visits

• 10 September-19 December 2020: LINKMEDIA Team (IRISA, INRIA).
University of Rennes, France. Supervisor: Simon Malinowski.

Awards

• Best doctoral thesis project at the XVIII Conference of the Spanish As-
sociation for Artificial Intelligence (CAEPIA), 2018.

Dissemination

• Intelligent Systems Group Seminar in UPV/EHU Donostia
• Dissemination talk to the member of Aupatuz during their visit to BCAM,

22 June, 2018, Bilbao.
• Organization of the visit to BCAM of students of La Salle Bilbao, 26

Apil, 2018. Organization of three talks and a workshop for building a 3D
hologram, Bilbao.

• Dissemination talk within the festival Pint of Science entitled: âĂĲIn-
teligencia Artificial: progresos y amenazasâĂİ, 22 May 2019, Bilbao.

Software

• https://gitlab.bcamath.org/aabanda/tscr: Time Series Classifier Recom-
mendation by a Meta-Learning Approach.

• https://gitlab.bcamath.org/aabanda/tscexplanation: Ad-Hoc Explanation
for Time Series Classification.

https://gitlab.bcamath.org/aabanda/tscr
https://gitlab.bcamath.org/aabanda/tscexplanation




A

Appendix

A.1 Landmarkers: computation time of subsample
landmarkers in the largest datasets from the UCR
repository

MixedShapesRegularTrain HandOutlines NonInvasiveFetalECGThorax1 StarlightCurves UWaveGestureLibraryAll
BOP 0.01 0.01 0.01 0.01 0.01
BOSS 131.62 60.79 32.65 16.16 22.45
BayesNet 0.35 0.02 0.04 0.03 0.02
C45 0.36 0.05 0.05 0.01 0.02
DD DTW 176.52 142.27 64.95 41.42 41.84
DTD C 847.53 344.01 128.27 65.47 72.08
DTW 0.03 0.04 0.01 0.01 0.01
ERP 0.01 0.01 0.01 0.01 0.01
FS 0.01 0.01 0.01 0.01 0.01
MLP 141.11 220.46 20.08 25.86 14.37
MSM 0.23 0.10 0.04 0.03 0.04
NB 0.26 0.01 0.01 0.01 0.01
NN 0.01 0.01 0.01 0.01 0.01
NN CID 0.01 0.01 0.01 0.01 0.01
RandF 0.32 0.05 0.11 0.05 0.05
RotF 27.42 10.55 8.56 2.23 5.71
SVML 0.46 0.02 0.13 0.02 0.04
SVMQ 0.03 0.02 0.07 0.01 0.01
ST 614.89 62.17 69.68 62.17 62.22
TSF 3.83 1.12 2.21 0.46 0.88
TWE 0.36 0.17 0.07 0.05 0.04
WDTW 0.10 0.05 0.01 0.01 0.01
ResNet 87.56 190.30 168.18 131.06 127.50
InceptionTime 78.24 85.86 115.32 96.03 25.84

Table A.1: For the 5 largest datasets in the UCR, the time (in minutes)
spent in computing the subsample landmarkers (those that take more than

30 minutes are in bold).



102 A Appendix

A.2 Landmarkers: computation times

Dataset Total time Slowest (time)
Adiac 14.74 ST (9.87)
ArrowHead 9.28 ST (6.23)
Beef 8.42 ST (6.19)
BeetleFly 8.45 ST (5.83)
BirdChicken 8.05 ST (5.66)
Car 10.9 ST (6.02)
CBF 7.53 ST (5.91)
ChlorineConcentration 12.9 ST (9.11)
CinCECGTorso 112.32 BOSS (47.34)
Coffee 8.9 ST (5.67)
Computers 17.21 ST (6.04)
CricketX 16.59 ST (8.5)
CricketY 15.63 ST (7.91)
CricketZ 14.38 ST (8.32)
DiatomSizeReduction 9.02 ST (5.91)
DistalPhalanxOutlineCorrect 6.28 ST (3.81)
DistalPhalanxOutlineAgeGroup 8.23 ST (6.39)
DistalPhalanxTW 8.41 ST (6.68)
Earthquakes 13.28 ST (6.08)
ECG200 3.97 ST (1.97)
ECG5000 8.55 ST (6.01)
ECGFiveDays 7.88 ST (6.25)
ElectricDevices 19.43 ST (14.19)
FaceAll 11.38 ST (7.13)
FaceFour 8.13 ST (5.76)
FacesUCR 9.66 ST (7.06)
FiftyWords 56.49 ST (41.31)
Fish 10.82 ST (6.15)
FordA 34.36 BOSS (11.92)
FordB 58.16 BOSS (29.22)
GunPoint 7.71 ST (5.9)
Ham 12.27 ST (6.18)
HandOutlines 129.6 BOSS (59.91)
Haptics 35.48 ST (6.71)
Herring 10.3 ST (5.93)
InlineSkate 68.54 BOSS (25.75)
InsectWingbeatSound 12.27 ST (6.34)
ItalyPowerDemand 1.43 Resnet (0.5)
LargeKitchenAppliances 32.09 BOSS (15.6)
Lightning2 12 ST (6.01)
Lightning7 8.74 ST (5.96)
Mallat 44.04 BOSS (17.91)
Meat 9.07 ST (5.9)
MedicalImages 8.47 ST (6.72)
MiddlePhalanxOutlineCorrect 6.62 ST (4.52)
MiddlePhalanxOutlineAgeGroup 9.33 ST (7.07)
MiddlePhalanxTW 10.47 ST (7.77)
MoteStrain 10.94 ST (8.02)
NonInvasiveFetalECGThorax1 98.48 BOSS (36.56)
NonInvasiveFetalECGThorax2 98.4 BOSS (35.09)
OliveOil 8.37 ST (6.05)
OSULeaf 11.59 ST (6.13)
PhalangesOutlinesCorrect 9.19 ST (6.94)
Phoneme 209.38 RotF (89.85)
Plane 7.6 ST (5.98)
ProximalPhalanxOutlineCorrect 6.59 ST (4.66)

Dataset Total time Slowest (time)
ProximalPhalanxOutlineAgeGroup 9.7 ST (7.3)
ProximalPhalanxTW 9.78 ST (7.07)
RefrigerationDevices 22.67 ST (7.17)
ScreenType 43.33 BOSS (25.19)
ShapeletSim 12.43 ST (6.07)
ShapesAll 56.41 BOSS (24.06)
SmallKitchenAppliances 42.22 BOSS (24.57)
SonyAIBORobotSurface1 8.96 ST (7.02)
SonyAIBORobotSurface2 5.58 ST (3.37)
StarLightCurves 44.3 BOSS (19.67)
Strawberry 9.96 ST (6.34)
SwedishLeaf 9.08 ST (7.04)
Symbols 14.41 ST (6.12)
SyntheticControl 4.4 ST (2.6)
ToeSegmentation1 11 ST (6.31)
ToeSegmentation2 9.85 ST (5.97)
Trace 9.4 ST (6.12)
TwoLeadECG 9.25 ST (7.14)
TwoPatterns 9.61 ST (6.73)
UWaveGestureLibraryX 35.03 ST (12.78)
UWaveGestureLibraryY 20.8 ST (7.07)
UWaveGestureLibraryZ 36.13 ST (17.24)
UWaveGestureLibraryAll 68.52 BOSS (31.69)
Wafer 9.2 ST (6.65)
Wine 7.4 ST (5.65)
WordSynonyms 15.25 ST (7.42)
Worms 17.17 ST (6.14)
WormsTwoClass 16.19 ST (6.05)
Yoga 20.9 ST (7.84)
ACSF1 46.76 BOSS (16.57)
BME 11.44 ST (6.81)
Chinatown 4.86 Resnet (2.84)
EOGHorizontalSignal 121.21 BOSS (66.99)
EOGVerticalSignal 100.25 BOSS (42.54)
FreezerRegularTrain 13.84 ST (6.74)
FreezerSmallTrain 11.38 ST (6.62)
GunPointAgeSpan 9.27 ST (6.23)
GunPointMaleVersusFemale 9.04 ST (6.17)
GunPointOldVersusYoung 8.55 ST (6.28)
HouseTwenty 25.07 BOSS (7.23)
InsectEPGRegularTrain 13.48 ST (5.92)
InsectEPGSmallTrain 14.52 ST (5.95)
MixedShapesSmallTrain 24.91 BOSS (7.89)
PigAirwayPressure 72.53 BOSS (28.4)
PigArtPressure 84.78 BOSS (36.01)
PigCVP 122.92 BOSS (67.03)
PowerCons 10.39 ST (6.01)
Rock 64.99 BOSS (34.39)
SemgHandGenderCh2 38.06 BOSS (17.34)
SemgHandMovementCh2 53.09 BOSS (23.1)
SemgHandSubjectCh2 68.49 BOSS (37.51)
SmoothSubspace 4.02 Resnet (3.15)
UMD 9.42 ST (6.3)
Crop 58.15 ST (42.1)
EthanolLevel 43.82 BOSS (13.48)
MixedShapesRegularTrain 28.72 BOSS (9.93)

Table A.2: For each dataset, the total time (in minutes) spent in computing
all the landmarkers, the slowest classifier and the corresponding time (in

minutes).



A.3 Landmarkers: Correlation between the landmarkers and the corresponding original classifiers 103

A.3 Landmarkers: Correlation between the landmarkers
and the corresponding original classifiers

Classifier Correlation
BOP 0.90
BOSS 0.90
BayesNet 0.93
C45 0.89
DD DTW 0.87
DTD C 0.83
DTW 0.84
ERP 0.84
FS 0.93
MLP 0.89
MSM 0.89
NB 0.95
NN 0.90
NN CID 0.85
RandF 0.90
RotF 0.88
SVML 0.93
SVMQ 0.90
ST 0.87
TSF 0.92
TWE 0.82
WDTW 0.92
ResNet 0.60
InceptionTime 0.40

Table A.3: The Pearson correlation between the accuracies obtained by the
landmarkers and the corresponding original classifiers in the 112 datasets

from the UCR.



104 A Appendix

A.4 Landmarkers: Accuracies of classifiers and
landmarkers by dataset

Fig. A.1: Accuracies of classifiers and landmarkers by dataset I.



A.4 Landmarkers: Accuracies of classifiers and landmarkers by dataset 105

Fig. A.2: Accuracies of classifiers and landmarkers by dataset II.



106 A Appendix

Fig. A.3: Accuracies of classifiers and landmarker by dataset III.



Fig. A.4: Accuracies of classifiers and landmarker by dataset IV.





References

[1] Eamonn Keogh and Shruti Kasetty. On the need for time series data
mining benchmarks. Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, page 102, 2002.
ISSN 13845810. doi: 10.1145/775047.775062. URL http://dl.acm.org/
citation.cfm?id=775047.775062.

[2] Anthony Bagnall, Jason Lines, William Vickers, and Eamonn Keogh.
The UEA & UCR Time Series Classification Repository. 2015. URL
www.timeseriesclassification.com.

[3] Tak Chung Fu. A review on time series data mining. Engineering Appli-
cations of Artificial Intelligence, 24(1):164–181, 2011. ISSN 09521976.
doi: 10.1016/j.engappai.2010.09.007. URL http://dx.doi.org/10.1016/j.
engappai.2010.09.007.

[4] Philippe Esling and Carlos Agon. Time-Series Data Mining. ACM
Computing Surveys, 45(1):1–34, 2012. ISSN 03600300. doi: 10.1145/
2379776.2379788. URL http://dl.acm.org/citation.cfm?doid=2379776.
2379788.

[5] F J Nogales, J Contreras, A J Conejo, and R Espinola. Forecasting
Next-Day Electricity Prices by Time Series Models. IEEE Transactions
on Power Systems, 17(2):342–348, 2002.

[6] T. Warren Liao. Clustering of time series data - A survey. Pattern
Recognition, 38(11):1857–1874, 2005. ISSN 00313203. doi: 10.1016/j.
patcog.2005.01.025.

[7] The Plasticc team, Tarek Allam Jr, Anita Bahmanyar, Rahul Biswas,
and Mi Dai. The Photometric LSST Astronomical Time-series
Classification Challenge (PLAsTiCC): Data set. arXiv preprint
arXiv:1810.00001, pages 1–15, 2018.

[8] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Ea-
monn Keogh. The great time series classification bake off: a review and
experimental evaluation of recent algorithmic advances. Data Mining
and Knowledge Discovery, 31(3):606–660, 2017. ISSN 1573756X. doi:
10.1007/s10618-016-0483-9.

http://dl.acm.org/citation.cfm?id=775047.775062
http://dl.acm.org/citation.cfm?id=775047.775062
www.timeseriesclassification.com
http://dx.doi.org/10.1016/j.engappai.2010.09.007
http://dx.doi.org/10.1016/j.engappai.2010.09.007
http://dl.acm.org/citation.cfm?doid=2379776.2379788
http://dl.acm.org/citation.cfm?doid=2379776.2379788


References 109

[9] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on
sequence classification. ACM SIGKDD Explorations Newsletter, 12(1):
40, 2010. ISSN 19310145. doi: 10.1145/1882471.1882478. URL http:
//portal.acm.org/citation.cfm?doid=1882471.1882478.

[10] Donald Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. Workshop on Knowledge Knowledge Discovery
in Databases, 398:359–370, 1994. URL http://www.aaai.org/Papers/
Workshops/1994/WS-94-03/WS94-03-031.pdf.

[11] Toni Giorgino. Computing and Visualizing Dynamic Time Warping
Alignments in R : The dtw Package. Journal of Statistical Software, 31
(7):1–24, 2009. ISSN 1548-7660. doi: 10.18637/jss.v031.i07. URL http://
www.jstatsoft.org/v31/i07{%}5Cnhttp://www.jstatsoft.org/v31/i07/.

[12] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Choti-
rat Ann Ratanamahatana. Fast time series classification using numeros-
ity reduction. Proceedings of the 23rd ICML International Conference
on Machine learning, pages 1033—-1040, 2006. doi: 10.1145/1143844.
1143974. URL http://dl.acm.org/citation.cfm?id=1143974.

[13] D. S. Hirschberg. Algorithms for the longest common subsequence prob-
lem. Journal of the ACM (JACM), pages 664–675, 1977.

[14] Pierre-François Marteau. Time Warp Edit Distance with Stiffness Ad-
justment for Time Series Matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(2):306–318, 2009.

[15] A Stefan and Das G Athitsos V. The move-split-merge metric for time
series. IEEE Transactions on Knowledge and Data Engineering, pages
1425–1438, 2013.

[16] Rohit J. Kate. Using dynamic time warping distances as features for im-
proved time series classification. Data Mining and Knowledge Discovery,
30(2):283–312, 2015. ISSN 1384-5810. doi: 10.1007/s10618-015-0418-x.
URL http://link.springer.com/10.1007/s10618-015-0418-x.

[17] Marco Cuturi and Jp Vert. A kernel for time series based on global align-
ments. IEEE Transactions on Acoustics, Speech and Signal Processing,
1:413–416, 2007. ISSN 1520-6149. doi: 10.1109/ICASSP.2007.366260.
URL http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=4217433.

[18] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[19] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast
subsequence matching in time-series databases. ACM SIGMOD Interna-
tional Conference on Management of Data, pages 419–429, 1994. ISSN
01635808. doi: 10.1145/191843.191925.

[20] I. Popivanov and R. J. Miller. Similarity Search Over Time-Series Data
Using Wavelets. Proceedings 18th International Conference on Data
Engineering (ICDE), pages 212–221, 2002. ISSN 1063-6382. doi: 10.
1109/ICDE.2002.994711.

http://portal.acm.org/citation.cfm?doid=1882471.1882478
http://portal.acm.org/citation.cfm?doid=1882471.1882478
http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
http://www.jstatsoft.org/v31/i07{%}5Cnhttp://www.jstatsoft.org/v31/i07/
http://www.jstatsoft.org/v31/i07{%}5Cnhttp://www.jstatsoft.org/v31/i07/
http://dl.acm.org/citation.cfm?id=1143974
http://link.springer.com/10.1007/s10618-015-0418-x
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4217433


110 References

[21] Anthony Bagnall and Gareth Janacek. A run length transformation for
discriminating between auto regressive time series. Journal of Classifica-
tion, 31(October):274–295, 2014. ISSN 01764268. doi: 10.1007/s00357-.

[22] Marcella Corduas and Domenico Piccolo. Time series clustering and
classification by the autoregressive metric. Computational Statistics and
Data Analysis, 52(4):1860–1872, 2008. ISSN 01679473. doi: 10.1016/j.
csda.2007.06.001.

[23] Padhraic Smyth. Clustering sequences with hidden Markov models.
Advances in Neural Information Processing Systems, 9:648–654, 1997.
ISSN 10495258. doi: 10.1017/CBO9781107415324.004. URL http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3648.

[24] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A
time series forest for classification and feature extraction. Information
Sciences, 239:142–153, 2013. ISSN 0020-0255. doi: 10.1016/j.ins.2013.
02.030. URL http://dx.doi.org/10.1016/j.ins.2013.02.030.

[25] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. A Bag-
of-Features Framework to Classify Time Series. EEE Transactions on
Pattern Analysis and Machine Intelligence, 35(11):2796–2802, 2013.

[26] Lexiang Ye and Eamonn Keogh. Time series shapelets: A New Prim-
itive for Data Mining. Proceedings of the 15th ACM SIGKDD Inter-
national conference on Knowledge Discovery and Data Mining, page
947, 2009. doi: 10.1145/1557019.1557122. URL http://portal.acm.org/
citation.cfm?doid=1557019.1557122.

[27] Thanawin Rakthanmanon and Eamonn Keogh. Fast Shapelets: A Scal-
able Algorithm for Discovering Time Series Shapelets. Proceedings of
the 13th ICDM International Conference on Data Mining, pages 668–
676, 2013. doi: 10.1137/1.9781611972832.74. URL http://epubs.siam.
org/doi/abs/10.1137/1.9781611972832.74.

[28] Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and An-
thony Bagnall. Classification of time series by shapelet transforma-
tion. Data Mining and Knowledge Discovery, 28(4):851–881, 2014. ISSN
13845810. doi: 10.1007/s10618-013-0322-1.

[29] Jessica Lin, Rohan Khade, and Yuan Li. Rotation-invariant similarity in
time series using bag-of-patterns representation. Journal of Intelligent
Information Systems, 39(2):287–315, 2012. ISSN 09259902. doi: 10.
1007/s10844-012-0196-5.

[30] Patrick Schäfer. The BOSS is concerned with time series classification.
Data Mining and Knowledge Discovery, pages 1505–1530, 2015. ISSN
1384-5810. doi: 10.1007/s10618-014-0377-7. URL http://dx.doi.org/10.
1007/s10618-014-0377-7.

[31] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. Time-
series classification with COTE: The collective of transformation-based
ensembles. IEEE Transactions on Knowledge and Data Engineering, 27
(9):1548–1549, 2016. ISSN 10414347. doi: 10.1109/ICDE.2016.7498418.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3648
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3648
http://dx.doi.org/10.1016/j.ins.2013.02.030
http://portal.acm.org/citation.cfm?doid=1557019.1557122
http://portal.acm.org/citation.cfm?doid=1557019.1557122
http://epubs.siam.org/doi/abs/10.1137/1.9781611972832.74
http://epubs.siam.org/doi/abs/10.1137/1.9781611972832.74
http://dx.doi.org/10.1007/s10618-014-0377-7
http://dx.doi.org/10.1007/s10618-014-0377-7


References 111

[32] P. B. Brazdil, C. Soares, and J. P. Da Costa. Ranking Learning Algo-
rithms: Using IBL and Meta-Learning on Accuracy and Time Results.
Machine Learning, pages 251–277, 2003.

[33] Rodrigo G F Soares, Daniel S A De Araujo, Ivan G Costa, Teresa B
Ludermir, and Alexander Schliep. Ranking and Selecting Clustering Al-
gorithms Using a Meta-Learning Approach. IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computa-
tional Intelligence, pages 3729–3735, 2008.

[34] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initial-
izing Bayesian Hyperparameter Optimization via Meta-Learning. Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
1128, pages 1128–1135, 2014.

[35] Pavel Brazdil, Christophe Giraud-carrier, Carlos Soares, and Ricardo
Vilalta. Metalearning: Applications to Data Mining. Springer, 2009.
ISBN 9783540732624.

[36] Edesio Alcobaca, Felipe Siqueira, Adriano Rivolli, LuÃŋs P. F. Garcia,
Jefferson T. Oliva, and AndrÃľ C. P. L. F. de Carvalho. Mfe: Towards
reproducible meta-feature extraction. Journal of Machine Learning
Research, 21(111):1–5, 2020. URL http://jmlr.org/papers/v21/19-348.
html.

[37] Yonghong Peng, Peter A Flach, Carlos Soares, and Pavel Brazdil. Im-
proved Dataset Characterisation for Meta-learning. In International
Conference on Discovery Science, pages 141–152, Berlin, Heidelberg,
2002. Springer.

[38] Adriano Rivolli, Carlos Soares, Joaquin Vanschoren, and F De Carvalho.
Characterizing classification datasets: a study of meta-features for meta-
learning. arXiv preprint arXiv:1808.10406, 2019.

[39] Ashvini Balte, Nitin Pise, and Kulkarni Parag. Meta-Learning With
Landmarking: A Survey. In International Journal of Computer Appli-
cations, volume 105, pages 47–51, 2014.

[40] Bernhard Pfahringer and Christophe Giraud-carrier. Meta-Learning by
Landmarking Various Learning Algorithms. (January):743–750, 2000.

[41] Hilan Bensusan and Christophe Giraud-carrier. Discovering Task Neigh-
bourhoods through Landmark Learning Performances A Set of Land-
markers. pages 325–330, 2000.

[42] Carlos Soares, Johann Petrak, and Pavel Brazdil. Sampling-Based Rela-
tive Landmarks: Systematically Test-Driving Algorithms Before Choos-
ing. pages 88–95, 2001. doi: 10.1007/3-540-45329-6.

[43] Marin Matijaš, Johan A K Suykens, and Slavko Krajcar. Load fore-
casting using a multivariate meta-learning system. Expert Systems with
Applications, 40:4427–4437, 2013.

[44] Christiane Lemke and Gabrys Bogdan. Meta-learning for time series
forecasting and forecast combination. Neurocomputing, 73(10-12):2006–
2016, 2016. ISSN 0925-2312. doi: 10.1016/j.neucom.2009.09.020. URL
http://dx.doi.org/10.1016/j.neucom.2009.09.020.

http://jmlr.org/papers/v21/19-348.html
http://jmlr.org/papers/v21/19-348.html
http://dx.doi.org/10.1016/j.neucom.2009.09.020


112 References

[45] Xiaozhe Wang, Kate Smith-miles, and Rob Hyndman. Rule induction
for forecasting method selection: Meta-learning the characteristics of
univariate time series. Neurocomputing, 72:2581–2594, 2009. doi: 10.
1016/j.neucom.2008.10.017.

[46] R. Prudêncio and T. Ludermir. Using Machine Learning Techniques to
Combine Forecasting Methods. pages 1122–1127, 2004.

[47] Usue Mori, Alexander Mendiburu, and Jose A. Lozano. Similarity Mea-
sure Selection for Clustering Time Series Databases. IEEE Transac-
tions on Knowledge and Data Engineering, 28(1):181–195, 2016. ISSN
10414347. doi: 10.1109/TKDE.2015.2462369.

[48] Alejandro Barredo, Natalia Dı́az-Rodŕıguez, Javier Del, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera.
Explainable Artificial Intelligence (XAI): Concepts , Taxonomies, Op-
portunities and Challenges Toward Responsible AI. Information Fusion,
pages 82–115, 2020. ISSN 1566-2535. doi: 10.1016/j.inffus.2019.12.012.
URL https://doi.org/10.1016/j.inffus.2019.12.012.

[49] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. In
Computer Vision and Pattern Recognition, 2016.

[50] Erico Tjoa and Cuntai Guan. A Survey on Explainable Artificial Intelli-
gence (XAI): Toward Medical XAI. IEEE Transactions on Neural Net-
works and Learning Systems, pages 1–21, 2020. doi: 10.1109/TNNLS.
2020.3027314.

[51] Marco Tulio Ribeiro and Carlos Guestrin. âĂĲWhy Should I Trust
You?âĂİ Explaining the Predictions of Any Classifier. The 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1135–1144, 2016.

[52] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire
Montavon, Wojciech Samek, and Klaus-robert Müller. Unmasking
Clever Hans predictors and assessing. Nature Communications, pages
1–8, 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-08987-4. URL
http://dx.doi.org/10.1038/s41467-019-08987-4.

[53] B Y Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for Inter-
pretable Machine Learning. Communications of the ACM, 2019.

[54] Riccardo Guidotti, Anna Monreale, and Salvatore Ruggieri. A Survey
of Methods for Explaining Black Box Models. ACM computing surveys,
51(5), 2018.

[55] Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box:
A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6:
52138–52160, 2018. doi: 10.1109/ACCESS.2018.2870052.

[56] Thomas Rojat, David Filliat, Javier Del Ser, Rodolphe Gelin, and D Na-
talia. Explainable Artificial Intelligence (XAI) on Time Series Data: A
Survey. arXiv:2104.00950v1, 2021.

https://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1038/s41467-019-08987-4


References 113

[57] Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization. Proceedings of the IEEE international
conference on computer vision, 2017.

[58] Brett Poulin, Roman Eisner, Duane Szafron, Paul Lu, Russ Greiner,
D S Wishart, Alona Fyshe, Brandon Pearcy, Cam Macdonell, and John
Anvik. Visual Explanation of Evidence in Additive Classifiers. Pro-
ceedings Of The National Conference On Artificial Intelligence, pages
1822–1829, 2006.

[59] Marco Tulio Ribeiro, S Singh, and Carlos Guestrin. Anchors: High-
Precision Model-Agnostic Explanations. Proceedings of the AAAI con-
ference on artificial intelligence, 32(1), 2018.

[60] Andreas Henelius, Kai Puolamäki, Henrik Boström, and Lars Asker. A
peek into the black box: exploring classifiers by randomization. Data
Mining and Knowledge Discovery, pages 1503–1529, 2014. doi: 10.1007/
s10618-014-0368-8.

[61] Pavel Senin. SAX-VSM: Interpretable Time Series Classification Using
SAX and Vector Space Model. IEEE International Conference on Data
Mining (ICDM), pages 1175–1180, 2013. doi: 10.1109/ICDM.2013.52.

[62] Isak Karlsson, Jonathan Rebane, and Panagiotis Papapetrou. Ex-
plainable Time Series Tweaking via Irreversible and Reversible Tempo-
ral Transformations. IEEE International Conference on Data Mining
(ICDM), 2018. doi: 10.1109/ICDM.2018.00036.

[63] Thach Le, Nguyen Severin, Gsponer Iulia, Ilie Martin, and Georgiana
Ifrim. Interpretable Time Series Classification using Linear Models
and Multi-Resolution Multi-Domain Symbolic Representations. Data
Mining and Knowledge Discovery, 33(4):1183–1222, 2019. ISSN 1573-
756X. doi: 10.1007/s10618-019-00633-3. URL https://doi.org/10.1007/
s10618-019-00633-3.

[64] Yichang Wang, Elisa Fromont, and Simon Malinowski. Learning Inter-
pretable Shapelets for Time Series Classification through Adversarial
Regularization. arXiv preprint arXiv:1906.00917, 2019.

[65] Hassan Ismail, Fawaz Germain, Lhassane Idoumghar Pierre-Alain
Muller, and Jonathan Weber. Deep Learning for Time Series Classi-
fication: a Review. Data Mining and Knowledge Discovery, 33(4):917–
963, 2019. ISSN 1573-756X. doi: 10.1007/s10618-019-00619-1. URL
https://doi.org/10.1007/s10618-019-00619-1.

[66] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time Series Classifica-
tion from Scratch with Deep Neural Networks: a Strong Baseline. Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1578–
1585, 2017.

[67] Roy Assaf, Ioana Giurgiu, Frank Bagehorn, and Anika Schumann.
MTEX-CNN: Multivariate Time series EXplanations for Predictions
with Convolutional Neural Networks. IEEE International Conference

https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-019-00619-1


114 References

on Data Mining (ICDM), pages 952–957, 2019. doi: 10.1109/ICDM.
2019.00106.

[68] Isak Karlsson, Panagiotis Papapetrou, and Henrik Boström. Generalized
random shapelet forests. Data Mining and Knowledge Discovery, 30(5):
1053–1085, 2016. ISSN 1573-756X. doi: 10.1007/s10618-016-0473-y.

[69] Laurence Roze and Alexandre Termier. Agnostic Local Explanation for
Time Series Classification. International Conference on Tools with Ar-
tificial Intelligence (ICTAI), pages 432–439, 2019. doi: 10.1109/ICTAI.
2019.00067.

[70] Felix Mujkanovic, Vanja Doskoč, and Martin Schirneck. TimeXplain –
a Framework for Explaining the Predictions of Time Series Classifiers.
arXiv preprint arXiv:2007.07606, pages 1–17, 2020.

[71] J. Large, J. Lines, G. Oastler, M. Middlehurst, M. Flynn, A. Bostrom,
P. Schäfer, C. Wei Tan, and Anthony Bagnall. UEA Time Series Clas-
sification Weka-compatible Java toolbox. 2017.

[72] Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov,
Jason Lines, and Franz J Király. sktime: A Unified Interface for Machine
Learning with Time Series, 2019.

[73] Anthony Bagnall, Aaron Bostrom, James Large, and Jason Lines. Simu-
lated Data Experiments for Time Series Classification Part 1: Accuracy
Comparison with Default Settings. arXiv preprint arXiv:1703.09480,
pages 1–, 2017. URL https://arxiv.org/pdf/1703.09480v1.pdf{%}
0Ahttp://arxiv.org/abs/1703.09480.

[74] Thu Trang Nguyen, Thach Le Nguyen, and Georgiana Ifrim. A Model-
Agnostic Approach to Quantifying the Informativeness of Explanation
Methods for Time Series Classification. International Workshop on Ad-
vanced Analytics and Learning on Temporal Data (AALTD20), 2020.

[75] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M.B. Vitányi. The
similarity metric. IEEE Transactions on Information Theory, 50(12):
3250–3264, 2004. ISSN 00189448. doi: 10.1109/TIT.2004.838101.

[76] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter
Scheuermann, and Eamonn Keogh. Experimental comparison of rep-
resentation methods and distance measures for time series data. Data
Mining and Knowledge Discovery, 26(2):275–309, 2013. ISSN 13845810.
doi: 10.1007/s10618-012-0250-5.

[77] Yanping Chen, Bing Hu, Eamonn Keogh, and Gustavo E.A.P.A. Batista.
DTW-D: Time Series Semi-Supervised Learning from a Single Exam-
ple. Proceedings of the 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, page 383, 2013. ISSN
9781450321747. doi: 10.1145/2487575.2487633. URL http://dl.acm.org/
citation.cfm?doid=2487575.2487633.

[78] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang,
and Eamonn Keogh. Querying and mining of time series data:
experimental comparison of representations and distance measures.
Proceedings of the VLDB Very Large Database Endowment, 1(2):

https://arxiv.org/pdf/1703.09480v1.pdf{%}0Ahttp://arxiv.org/abs/1703.09480
https://arxiv.org/pdf/1703.09480v1.pdf{%}0Ahttp://arxiv.org/abs/1703.09480
http://dl.acm.org/citation.cfm?doid=2487575.2487633
http://dl.acm.org/citation.cfm?doid=2487575.2487633


References 115

1542–1552, 2008. ISSN 2150-8097. doi: 10.1145/1454159.1454226.
URL http://dl.acm.org/citation.cfm?id=1454159.1454226{%}5Cnfile:
///Users/bwilcox6/Dropbox/Thesis/Mekentosj/Library.papers3/Files/
08/08A2DC46-9492-4520-BB79-9AED63E1370D.pdf{%}5Cnpapers3:
//publication/uuid/C5531CD9-BAC2-42E8-89C9-413B86FB7C35.

[79] Jason Lines and Anthony Bagnall. Time series classification with
ensembles of elastic distance measures. Data Mining and Knowl-
edge Discovery, 29(3):565–592, 2015. ISSN 13845810. doi: 10.1007/
s10618-014-0361-2.

[80] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Addison-Wesley, Reading, MA, addison-we edition, 2005.

[81] Arash Jalalian and Stephan K. Chalup. GDTW-P-SVMs: Variable-
length time series analysis using support vector machines. Neurocom-
puting, 99:270–282, 2013. ISSN 09252312. doi: 10.1016/j.neucom.2012.
07.006. URL http://dx.doi.org/10.1016/j.neucom.2012.07.006.

[82] Pierre-François Marteau and Sylvie Gibet. On Recursive Edit Dis-
tance Kernels With Application to Time Series Classification. IEEE
Transactions on Neural Networks and Learning Systems, 26(6):1–15,
2014. ISSN 2162237X. doi: 10.1109/TNNLS.2014.2333876. URL
https://arxiv.org/pdf/1005.5141.pdf.

[83] Brian Kenji Iwana, Volkmar Frinken, Kaspar Riesen, and Seiichi Uchida.
Efficient temporal pattern recognition by means of dissimilarity space
embedding with discriminative prototypes. Pattern Recognition, 64
(September 2016):268–276, 2017. ISSN 00313203. doi: 10.1016/j.patcog.
2016.11.013. URL http://dx.doi.org/10.1016/j.patcog.2016.11.013.

[84] S Gudmundsson, T P Runarsson, and S Sigurdsson. Support vector
machines and dynamic time warping for time series. In Joint Con-
ference on Neural Networks (IEEE World Congress on Computational
Intelligence), pages 2772–2776, 2008. ISBN 2161-4393 VO -. doi:
10.1109/IJCNN.2008.4634188.

[85] Young-Seon Jeong and Raja Jayaraman. Support vector-based al-
gorithms with weighted dynamic time warping kernel function for
time series classification. Knowledge-Based Systems, 75(June):184–
191, 2015. ISSN 0950-7051. doi: http://dx.doi.org/10.1016/j.knosys.
2014.12.003. URL http://www.sciencedirect.com/science/article/pii/
S095070511400433X.

[86] Dongyu Zhang, Wangmeng Zuo, David Zhang, and Hongzhi Zhang.
Time series classification using support vector machine with Gaus-
sian elastic metric kernel. Proceedings - International Conference
on Pattern Recognition, pages 29–32, 2010. ISSN 10514651. doi:
10.1109/ICPR.2010.16.

[87] Arnaud Lods, Simon Malinowski, Romain Tavenard, and Laurent Amsa-
leg. Learning DTW-Preserving Shapelets. In International Symposium
on Intelligent Data Analysis, pages 198–209. Springer, Cham, 2017.

http://dl.acm.org/citation.cfm?id=1454159.1454226{%}5Cnfile:///Users/bwilcox6/Dropbox/Thesis/Mekentosj/Library.papers3/Files/08/08A2DC46-9492-4520-BB79-9AED63E1370D.pdf{%}5Cnpapers3://publication/uuid/C5531CD9-BAC2-42E8-89C9-413B86FB7C35
http://dl.acm.org/citation.cfm?id=1454159.1454226{%}5Cnfile:///Users/bwilcox6/Dropbox/Thesis/Mekentosj/Library.papers3/Files/08/08A2DC46-9492-4520-BB79-9AED63E1370D.pdf{%}5Cnpapers3://publication/uuid/C5531CD9-BAC2-42E8-89C9-413B86FB7C35
http://dl.acm.org/citation.cfm?id=1454159.1454226{%}5Cnfile:///Users/bwilcox6/Dropbox/Thesis/Mekentosj/Library.papers3/Files/08/08A2DC46-9492-4520-BB79-9AED63E1370D.pdf{%}5Cnpapers3://publication/uuid/C5531CD9-BAC2-42E8-89C9-413B86FB7C35
http://dl.acm.org/citation.cfm?id=1454159.1454226{%}5Cnfile:///Users/bwilcox6/Dropbox/Thesis/Mekentosj/Library.papers3/Files/08/08A2DC46-9492-4520-BB79-9AED63E1370D.pdf{%}5Cnpapers3://publication/uuid/C5531CD9-BAC2-42E8-89C9-413B86FB7C35
http://dx.doi.org/10.1016/j.neucom.2012.07.006
https://arxiv.org/pdf/1005.5141.pdf
http://dx.doi.org/10.1016/j.patcog.2016.11.013
http://www.sciencedirect.com/science/article/pii/S095070511400433X
http://www.sciencedirect.com/science/article/pii/S095070511400433X


116 References

[88] Jason Lines, Luke M. Davis, Jon Hills, and Anthony Bagnall. A shapelet
transform for time series classification. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 289, 2012. ISBN 9781450314626. doi: 10.1145/2339530.
2339579. URL http://dl.acm.org/citation.cfm?doid=2339530.2339579.

[89] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967. ISSN 0018-
9448. doi: 10.1109/TIT.1967.1053964. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1053964.

[90] Hüseyin Kaya and Åđule Gündüz-ÖÊĞüdücü. A distance based time
series classification framework. Information Systems, 51:27–42, 2015.
ISSN 03064379. doi: 10.1016/j.is.2015.02.005.

[91] Elżbieta Pȩkalska and Robert P.W. Duin. The Dissimilarity Repre-
sentation for Pattern Recognition: Foundations and Applications. 2005.
ISBN 9812565302.

[92] Yihua Chen, Eric Garcia, and Maya Gupta. Similarity-based
classification: Concepts and algorithms. Journal of Machine
Learning Research, 10(206):747–776, 2009. ISSN 15324435. URL
http://jmlr.csail.mit.edu/papers/volume10/chen09a/chen09a.pdf{%}
5Cnhttp://dl.acm.org/citation.cfm?id=1577096.

[93] Elżbieta Pȩkalska, Pavel Pacĺık, and Robert P.W. Duin. A Gener-
alized Kernel Approach to Dissimilarity-based Classification. Journal
of Machine Learning Research, 2:175–211, 2001. ISSN 15324435. doi:
10.1162/15324430260185592.

[94] Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, and Klaus
Obermayer. Classification on Pairwise Proximity Data. Advances
in Neural Information Processing Systems, 11:438–444, 1999. ISSN
10495258. URL http://books.google.com/books?hl=en{&}lr={&}id=
bMuzXPzlkG0C{&}oi=fnd{&}pg=PA438{&}dq=Classification+
on+Pairwise+Proximity+Data{&}ots=MvnhyCBIPi{&}sig=
VlrAY0hS9e7RXEmLBFReVbH4r74.

[95] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Op-
timization for Spoken Word Recognition. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 26(1):43–49, 1978. ISSN 00963518.
doi: 10.1109/TASSP.1978.1163055.

[96] Rafael Giusti, Diego F. Silva, and Gustavo E.A.P.A. Batista. Improved
time series classification with representation diversity and SVM. In
International Conference on Machine Learning and Applications, num-
ber 1, pages 1–6, 2016. ISBN 9781509061662. doi: 10.1109/ICMLA.
2016.108.

[97] Usue Mori, Alexander Mendiburu, Eamonn Keogh, and Jose A. Lozano.
Reliable early classification of time series based on discriminating the
classes over time. Data Mining and Knowledge Discovery, 31(1):233–
263, 2017. ISSN 1573756X. doi: 10.1007/s10618-016-0462-1.

http://dl.acm.org/citation.cfm?doid=2339530.2339579
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053964
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053964
http://jmlr.csail.mit.edu/papers/volume10/chen09a/chen09a.pdf{%}5Cnhttp://dl.acm.org/citation.cfm?id=1577096
http://jmlr.csail.mit.edu/papers/volume10/chen09a/chen09a.pdf{%}5Cnhttp://dl.acm.org/citation.cfm?id=1577096
http://books.google.com/books?hl=en{&}lr={&}id=bMuzXPzlkG0C{&}oi=fnd{&}pg=PA438{&}dq=Classification+on+Pairwise+Proximity+Data{&}ots=MvnhyCBIPi{&}sig=VlrAY0hS9e7RXEmLBFReVbH4r74
http://books.google.com/books?hl=en{&}lr={&}id=bMuzXPzlkG0C{&}oi=fnd{&}pg=PA438{&}dq=Classification+on+Pairwise+Proximity+Data{&}ots=MvnhyCBIPi{&}sig=VlrAY0hS9e7RXEmLBFReVbH4r74
http://books.google.com/books?hl=en{&}lr={&}id=bMuzXPzlkG0C{&}oi=fnd{&}pg=PA438{&}dq=Classification+on+Pairwise+Proximity+Data{&}ots=MvnhyCBIPi{&}sig=VlrAY0hS9e7RXEmLBFReVbH4r74
http://books.google.com/books?hl=en{&}lr={&}id=bMuzXPzlkG0C{&}oi=fnd{&}pg=PA438{&}dq=Classification+on+Pairwise+Proximity+Data{&}ots=MvnhyCBIPi{&}sig=VlrAY0hS9e7RXEmLBFReVbH4r74


References 117

[98] Carl Rasmussen and Cristopher Williams. Gaussian Processes for Ma-
chine Learning. 2006. ISBN 026218253X.

[99] Lingfei Wu, Ian En-Hsu Yen, Jinfeng Yi, Fangli Xu, Qi Lei, and Michael
Witbrock. Random Warping Series: A Random Features Method for
Time-Series Embedding. Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, 84:793–802, 2018.
URL http://proceedings.mlr.press/v84/wu18b.html.

[100] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale
Kernel Machines. Neural Information Processing Systems NIPS, (1):
1–10, 2007.

[101] Lingfei Wu, Ian En-Hsu Yen, Fangli Xu, Pradeep Ravikuma, and
Michael Witbrock. D2KE: From Distance to Kernel and Embedding.
arxiv.org/abs/1802.04956v3, pages 1–18, 2018. URL http://arxiv.org/
abs/1802.04956.

[102] Thapanan Janyalikit, Phongsakorn Sathianwiriyakhun, Haemwaan
Sivaraks, and Chotirat Ann Ratanamahatana. An Enhanced Support
Vector Machine for Faster Time Series Classification. In Asian Confer-
ence on Intelligent Information and Database Systems, pages 616–625,
2016. ISBN 9783662493809.

[103] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of
dynamic time warping. Knowledge and information systems, (February
2003):358–386, 2005. doi: 10.1007/s10115-004-0154-9.

[104] Brijnesh Jain and Stephan Spiegel. Dimension Reduction in Dissimilar-
ity Spaces for Time Series Classification. In International Workshop on
Advanced Analytics and Learning on Temporal Data, pages 31–46, 2015.
ISBN 9783319444116. URL https://link.springer.com/content/pdf/10.
1007/978-3-319-44412-3.pdf.

[105] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generaliza-
tion of On-Line Learning and an Application to Boosting. Computer
and System Sciences, 139:119–139, 1997.

[106] Qing He, Dong Zhi, Fuzhen Zhuang, Tianfeng Shang, and Zhongzhi Shi.
Fast time series classification based on infrequent shapelets. Proceedings
of the 11th ICMLA International Conference on Machine Learning and
Applications, 1:215–219, 2012. doi: 10.1109/ICMLA.2012.44.

[107] Abdullah Mueen, Eamonn Keogh, and Neal Young. Logical-shapelets:
an expressive primitive for time series classification. Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 1154–1162, 2011. doi: 10.1145/2020408.
2020587. URL http://dl.acm.org/citation.cfm?doid=2020408.2020587.

[108] Lexiang Ye and Eamonn Keogh. Time series shapelets: A novel
technique that allows accurate, interpretable and fast classification.
Data Mining and Knowledge Discovery, 22(1-2):149–182, 2011. ISSN
13845810. doi: 10.1007/s10618-010-0179-5.

[109] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-
Thieme. Learning time-series shapelets. In Proceedings of the 20th

http://proceedings.mlr.press/v84/wu18b.html
http://arxiv.org/abs/1802.04956
http://arxiv.org/abs/1802.04956
https://link.springer.com/content/pdf/10.1007/978-3-319-44412-3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-44412-3.pdf
http://dl.acm.org/citation.cfm?doid=2020408.2020587


118 References

ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 392–401, 2014. ISBN 9781450329569. doi: 10.1145/
2623330.2623613. URL http://dl.acm.org/citation.cfm?doid=2623330.
2623613.

[110] Aaron Bostrom and Anthony Bagnall. Binary Shapelet Transform for
Multiclass Time Series Classification. Transactions on Large Scale Data
and Knowledge Centered Systems, 8800:24–46, 2014. ISSN 16113349.
doi: 10.1007/978-3-662-45714-6.

[111] Xing Wang, Jessica Lin, Pavel Senin, Los Alamos, Tim Oates, Sunil
Gandhi, Arnold P Boedihardjo, Crystal Chen, and Susan Frankenstein.
RPM: Representative Pattern Mining for Efficient Time Series Classi-
fication. Proceedings of the 19th International Conference on Extend-
ing Database Technology, pages 185–196, 2016. ISSN 23672005. doi:
10.5441/002/edbt.2016.19.

[112] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing
SAX: A novel symbolic representation of time series. Data Mining and
Knowledge Discovery, 15(2):107–144, 2007. ISSN 13845810. doi: 10.
1007/s10618-007-0064-z.

[113] Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi,
Arnold P Boedihardjo, Crystal Chen, Susan Frankenstein, and Man-
fred Lerner. GrammarViz 2 . 0: A Tool for Grammar-Based Pattern
Discovery in Time Series. (1218325):468–472, 2014.

[114] Aaron Bostrom, Anthony Bagnall, and Jason Lines. Eval-
uating Improvements to the Shapelet Transform. In www-
bcf.usc.edu, 2016. URL http://www-bcf.usc.edu/{∼}liu32/milets16/
paper/MiLeTS{ }2016{ }paper{ }8.pdf.

[115] Xiaosheng Li and Jessica Lin. Evolving Separating References for Time
Series Classification. pages 243–251, 2018. URL https://epubs.siam.
org/doi/pdf/10.1137/1.9781611975321.28.

[116] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling:
Theory and Applications. Springer-Verlag, 1997.

[117] Richard C. Wilson, Edwin R. Hancock, Elżbieta Pȩkalska, and
Robert P.W. Duin. Spherical and hyperbolic embeddings of data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11):
2255–2269, 2014. ISSN 01628828. doi: 10.1109/TPAMI.2014.2316836.

[118] David W Jacobs, Daphna Weinshall, and Yoram Gdalyahu. Classifica-
tion with Nonmetric Distances: Image Retrieval and Class Representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(6):583–600, 2000.

[119] Akira Hayashi, Yuko Mizuhara, and Nobuo Suematsu. Embedding time
series data for classification. International Workshop on Machine Learn-
ing and Data Mining in Pattern Recognition, pages 356—-365, 2005.

[120] Yuko Mizuhara, Akira Hayashi, and Nobuo Suematsu. Embedding of
time series data by using Dynamic Time Warping distances. Systems

http://dl.acm.org/citation.cfm?doid=2623330.2623613
http://dl.acm.org/citation.cfm?doid=2623330.2623613
http://www-bcf.usc.edu/{~}liu32/milets16/paper/MiLeTS{_}2016{_}paper{_}8.pdf
http://www-bcf.usc.edu/{~}liu32/milets16/paper/MiLeTS{_}2016{_}paper{_}8.pdf
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975321.28
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975321.28


References 119

and Computers in Japan, 37(3):1–9, 2006. ISSN 08821666. doi: 10.1002/
scj.20486.

[121] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering. Advances in Neural Infor-
mation Processing Systems, 14:585–591, 2002. ISSN 10495258. doi:
10.1.1.19.9400. URL http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.19.9400{&}rep=rep1{&}type=pdf.

[122] M. Lichman. UCI Machine Learning Repository, 2013. URL http://
archive.ics.uci.edu/ml.

[123] Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inder-
jit S. Dhillon. Similarity Preserving Representation Learning
for Time Series Analysis. arXiv:1702.03584 [cs], 2017. URL
http://arxiv.org/abs/1702.03584{%}5Cnhttp://www.arxiv.org/pdf/
1702.03584.pdf{%}5Cnhttps://arxiv.org/abs/1702.03584.

[124] Colins C. Adams. The Knot Book: An Elementary Introduction to the
Mathematical Theory of Knots. 2004.

[125] Ruoyu Sun and Zhi Quan Luo. Guaranteed Matrix Completion via Non-
Convex Factorization. IEEE Transactions on Information Theory, 62
(11):6535–6579, 2016. ISSN 00189448. doi: 10.1109/TIT.2016.2598574.

[126] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Ma-
chine Learning, 297:273–297, 1995.

[127] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern
analysis. 2004. ISBN 9780521813976.

[128] Vladimir Vapnik. Statistical Learning Theory, volume 2. New York,
1998. ISBN 0-471-03003-1. doi: 10.2307/1271368. URL http://eu.wiley.
com/WileyCDA/WileyTitle/productCd-0471030031.html.

[129] Bernhard Schölkopf. Learning with kernels: support vector machines,
regularization, optimization, and beyond. 2001. ISBN 0262194759.
doi: 10.1198/jasa.2003.s269. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.167.5140{&}rep=rep1{&}type=pdf.

[130] Christina Leslie, Eleazar Eskin, and William Stafford Noble. the
Spectrum Kernel: a String Kernel for Svm Protein Classification.
In Proceedings of the Pacific Symposium on Biocomputing, pages
564–575, 2002. URL http://www.ics.uci.edu/{∼}welling/teatimetalks/
kernelclub04/spectrum.pdf.

[131] Stefan Rüping. SVM Kernels for Time Series Analysis. Technical report,
2001.

[132] Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexan-
der J. Smola. Learning with non-positive kernels. Proceed-
ings of the 21th ICML International Conference on Machine
Learning, (7):81, 2004. ISSN 00200255. doi: 10.1145/1015330.
1015443. URL http://eprints.pascal-network.org/archive/00000714/
{%}5Cnhttp://portal.acm.org/citation.cfm?doid=1015330.1015443.

[133] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. Online
handwriting recognition with support vector machines - A kernel ap-

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9400{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9400{&}rep=rep1{&}type=pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1702.03584{%}5Cnhttp://www.arxiv.org/pdf/1702.03584.pdf{%}5Cnhttps://arxiv.org/abs/1702.03584
http://arxiv.org/abs/1702.03584{%}5Cnhttp://www.arxiv.org/pdf/1702.03584.pdf{%}5Cnhttps://arxiv.org/abs/1702.03584
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471030031.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.5140{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.5140{&}rep=rep1{&}type=pdf
http://www.ics.uci.edu/{~}welling/teatimetalks/kernelclub04/spectrum.pdf
http://www.ics.uci.edu/{~}welling/teatimetalks/kernelclub04/spectrum.pdf
http://eprints.pascal-network.org/archive/00000714/{%}5Cnhttp://portal.acm.org/citation.cfm?doid=1015330.1015443
http://eprints.pascal-network.org/archive/00000714/{%}5Cnhttp://portal.acm.org/citation.cfm?doid=1015330.1015443


120 References

proach. Proceedings - International Workshop on Frontiers in Hand-
writing Recognition, IWFHR, pages 49–54, 2002. ISSN 15505235. doi:
10.1109/IWFHR.2002.1030883.

[134] Dennis Decoste and Bernhard Schölkopf. Training Invariant Support
Vector Machines using Selective Sampling. Machine Learning, 46,:161–
190, 2002.

[135] Hiroshi Shimodaira, Ken Ichi Noma, Mitsuru Nakai, and Shigeki
Sagayama. Dynamic Time-Alignment Kernel in Support Vector
Machine. Advances in Neural Information Processing Systems, 2
(1):921–928, 2002. ISSN 1049-5258. doi: citeseer.ist.psu.edu/
shimodaira01dynamic.html. URL http://hdl.handle.net/1842/1161.

[136] Bernard Haasdonk. Feature space interpretation of SVMs with indefinite
kernels. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(4):482–492, 2005. ISSN 01628828. doi: 10.1109/TPAMI.2005.
78.

[137] Pai-hsuen Chen, Rong-en Fan, and Chih-jen Lin. A Study on SMO-Type
Decomposition Methods for Support Vector Machines. IEEE Transac-
tions on Neural Networks and Learning Systems, 17(4):893–908, 2006.

[138] Bernard Haasdonk and Claus Bahlmann. Learning with Distance Sub-
stitution Kernels. Pattern Recognition, pages 220–227, 2004. ISSN
03029743. doi: 10.1007/978-3-540-28649-3 27.

[139] Helmuth Pree, Benjamin Herwig, Thiemo Gruber, Bernhard Sick, Klaus
David, and Paul Lukowicz. On general purpose time series similarity
measures and their use as kernel functions in support vector machines.
Information Sciences, 281:478–495, 2014. ISSN 00200255. doi: 10.1016/
j.ins.2014.05.025. URL http://dx.doi.org/10.1016/j.ins.2014.05.025.

[140] Young-seon Jeong, Myong K Jeong, and Olufemi A Omitaomu.
Weighted dynamic time warping for time series classification. Pattern
Recognition, 44(9):2231–2240, 2011. ISSN 0031-3203. doi: 10.1016/j.
patcog.2010.09.022. URL http://dx.doi.org/10.1016/j.patcog.2010.09.
022.

[141] Zhihua Chen, Wangmeng Zuo, Qinghua Hu, and Liang Lin. Kernel
sparse representation for time series classification. Information Sciences,
292:15–26, 2015. ISSN 00200255. doi: 10.1016/j.ins.2014.08.066. URL
http://dx.doi.org/10.1016/j.ins.2014.08.066.

[142] Hansheng Lei and Bingyu Sun. A Study on the Dynamic Time Warping
in Kernel Machines. Proceedings of the 3rd SITIS International IEEE
Conference on Signal-Image Technologies and Internet-Based System,
pages 839–845, 2007. doi: 10.1109/SITIS.2007.112.

[143] Hüseyin Kaya and Åđule Gündüz-ÖÊĞüdücü. SAGA: A novel signal
alignment method based on genetic algorithm. Information Sciences,
228:113–130, 2013. ISSN 00200255. doi: 10.1016/j.ins.2012.12.012.

[144] Marco Cuturi. Fast Global Alignment Kernels. In Proceedings of the
28th ICML International Conference on Machine Learning, pages 929–

http://hdl.handle.net/1842/1161
http://dx.doi.org/10.1016/j.ins.2014.05.025
http://dx.doi.org/10.1016/j.patcog.2010.09.022
http://dx.doi.org/10.1016/j.patcog.2010.09.022
http://dx.doi.org/10.1016/j.ins.2014.08.066


References 121

936, 2011. ISBN 9781450306195. URL http://www.iip.ist.i.kyoto-u.ac.
jp/member/cuturi/Papers/cuturi11fast.pdf.

[145] Isabelle Guyon, Lambert Schomaker, Rkjean Planiondon, Mark Liber-
man, Stan Janet, Ecole Polytechnique De Montreal, and Linguistic Data
Consortium. UNIPEN project of on-line data exchange. pages 29–33,
1994.

[146] Sepp Hochreiter and Klaus Obermayer. Support Vector Machines for
Dyadic Data. Neural Computation, 1510:1472–1510, 2006.

[147] Gang Wu, Edward Y. Chang, and Zhihua Zhang. An analy-
sis of transformation on non-positive semidefinite similarity ma-
trix for kernel machines. Proceedings of the 22th ICML In-
ternational Conference on Machine Learning, 8, 2005. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.
4077{&}rep=rep1{&}type=pdf{%}5Cnpapers2://publication/uuid/
0C628F77-949C-406A-BDE8-9FBEB8FD4424.

[148] Gang Wu, Edward Y. Chang, and Zhihua Zhang. Learning with
non-metric proximity matrices. Proceedings of the 13th ACM In-
ternational Conference on Multimedia, page 411, 2005. doi: 10.
1145/1101149.1101239. URL http://portal.acm.org/citation.cfm?doid=
1101149.1101239.

[149] Li Zhang, Pei-chann Chang, Jing Liu, Zhe Yan, Ting Wang, and Fan-
zhang Li. Kernel Sparse Representation-Based Classifier. IEEE Trans-
actions on Signal Processing, 60(4):1684–1695, 2012.

[150] Lei Chen and Raymond Ng. On The Marriage of Lp-norms and Edit
Distance. In International conference on Very large data bases, pages
792–803, 2004.

[151] Jason Weston, Bernhard Schölkopf, Eleazar Eskin, Christina Leslie, and
William Stafford Noble. Dealing with large diagonals in kernel matrices.
In Annals of the Institute of Statistical Mathematics, volume 55, pages
391–408, 2003. doi: 10.1023/A:1026338322729.

[152] F Casacuberta, E Vidal, and H Rulot. On the metric properties of
dynamic time warping. IEEE Transactions on Acoustics, Speech and
Signal Processing, 35(11):1631–1633, 1987. ISSN 0096-3518. doi: 10.
1109/TASSP.1987.1165065.

[153] David M.J. Tax and Robert P.W. Duin. Support Vector Data Descrip-
tion. Machine Learning, 54,:45–66, 2004.

[154] Adrien Gaidon, Zaid Harchoui, and Cordelia Schmid. A time series
kernel for action recognition. In Procedings of the British Machine Vi-
sion Conference, pages 63.1–63.11, 2011. ISBN 1-901725-43-X. doi:
10.5244/C.25.63. URL https://hal.inria.fr/inria-00613089/.

[155] A. Troncoso, M. Arias, and J. C. Riquelme. A multi-scale smoothing
kernel for measuring time-series similarity. Neurocomputing, 167:8–17,
2015. ISSN 18728286. doi: 10.1016/j.neucom.2014.08.099. URL http:
//dx.doi.org/10.1016/j.neucom.2014.08.099.

http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Papers/cuturi11fast.pdf
http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Papers/cuturi11fast.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.4077{&}rep=rep1{&}type=pdf{%}5Cnpapers2://publication/uuid/0C628F77-949C-406A-BDE8-9FBEB8FD4424
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.4077{&}rep=rep1{&}type=pdf{%}5Cnpapers2://publication/uuid/0C628F77-949C-406A-BDE8-9FBEB8FD4424
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.4077{&}rep=rep1{&}type=pdf{%}5Cnpapers2://publication/uuid/0C628F77-949C-406A-BDE8-9FBEB8FD4424
http://portal.acm.org/citation.cfm?doid=1101149.1101239
http://portal.acm.org/citation.cfm?doid=1101149.1101239
https://hal.inria.fr/inria-00613089/
http://dx.doi.org/10.1016/j.neucom.2014.08.099
http://dx.doi.org/10.1016/j.neucom.2014.08.099


122 References

[156] Karthik Kumara, Rahul Agrawal, and Chiranjib Bhattacharyya. A large
margin approach for writer independent online handwriting classifica-
tion. Pattern Recognition Letters, 29(7):933–937, 2008. ISSN 01678655.
doi: 10.1016/j.patrec.2008.01.016.

[157] K R Sivaramakrishnan and Chiranjib Bhattacharyya. Time Series Clas-
sification for Online Tamil Handwritten Character Recognition âĂŞ A
Kernel Based Approach. In International Conference on Neural Infor-
mation Processing, pages 800–805, 2004.

[158] Zhengdong Lu, K. Todd Leen, Yonghong Huang, and Deniz Erdogmus.
A Reproducing Kernel Hilbert Space Framework for Pairwise Time Se-
ries Distances. In Proceedings of the 25th ICML International Con-
ference on Machine learning, volume 56, pages 624–631, 2008. URL
https://hal.inria.fr/inria-00613089/.

[159] Yangtao Xue, Li Zhang, Zhiwei Tao, Bangjun Wang, and Fan-zhang
Li. An Altered Kernel Transformation for Time Series Classification.
In International Conference on Neural Information Processing, pages
455–465, 2017. ISBN 9783319701394.

[160] Gabriel Wachman, Roni Khardon, Pavlos Protopapas, and Charles R.
Alcock. Kernels for Periodic Time Series Arising in Astronomy. In
European Conference on Machine Learning and Knowledge Discovery
in Databases, 2009. ISBN 9783642041730.

[161] Pierre-François Marteau and Sylvie Gibet. Constructing Positive
Definite Elastic Kernels with Application to Time Series Classi-
fication. CoRR, pages 1–18, 2010. doi: 10.1109/TNNLS.2014.
2333876. URL http://arxiv.org/abs/1005.5141{%}5Cnhttp://dx.doi.
org/10.1109/TNNLS.2014.2333876.

[162] Pierre-François Marteau, Nicolas Bonnel, and Gilbas Ménier. Dis-
crete Elastic Inner Vector Spaces with Application in Time Series
and Sequence Mining. IEEE Transactions on Knowledge and Data
Engineering, 25(9):2024–2035, 2012. doi: 10.1109/TKDE.2012.131.
URL http://arxiv.org/abs/1206.6196{%}0Ahttp://dx.doi.org/10.1109/
TKDE.2012.131.

[163] W. H. Greub. Linear algebra. Springer-Verlag, 1975.
[164] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels:

Theory and Algorithms. Journal of Machine Learning Research, 5:1035–
1062, 2004.

[165] Mark Liberman. TI46 speech corpus. In Linguistic Data Consortium,
1993.

[166] Joan Serrà and Josep Ll Arcos. An empirical evaluation of similarity
measures for time series classification. Knowledge-Based Systems, 67:
305–314, 2014. ISSN 09507051. doi: 10.1016/j.knosys.2014.04.035. URL
http://dx.doi.org/10.1016/j.knosys.2014.04.035.

[167] Elżbieta Pȩkalska, Robert P.W. Duin, and Pavel Pacĺık. Prototype
selection for dissimilarity-based classifiers. Pattern Recognition, 39(2):
189–208, 2006. ISSN 00313203. doi: 10.1016/j.patcog.2005.06.012.

https://hal.inria.fr/inria-00613089/
http://arxiv.org/abs/1005.5141{%}5Cnhttp://dx.doi.org/10.1109/TNNLS.2014.2333876
http://arxiv.org/abs/1005.5141{%}5Cnhttp://dx.doi.org/10.1109/TNNLS.2014.2333876
http://arxiv.org/abs/1206.6196{%}0Ahttp://dx.doi.org/10.1109/TKDE.2012.131
http://arxiv.org/abs/1206.6196{%}0Ahttp://dx.doi.org/10.1109/TKDE.2012.131
http://dx.doi.org/10.1016/j.knosys.2014.04.035


References 123

[168] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony
Bagnall, Abdullah Mueen, and Gustavo E.A.P.A. Batista. The UCR
Time Series Classification Archive. 2015. URL www.cs.ucr.edu/{∼}
eamonn/time{ }series{ }data/.

[169] Jorge Kanda, Andre De Carvalho, Eduardo Hruschka, Carlos Soares,
and Pavel Brazdil. Meta-learning to select the best meta-heuristic for
the Traveling Salesman Problem: A comparison of meta-features. Neuro-
computing, 205:393–406, 2016. ISSN 0925-2312. doi: 10.1016/j.neucom.
2016.04.027. URL http://dx.doi.org/10.1016/j.neucom.2016.04.027.

[170] Teresa Bernarda Ludermir. Meta-learning approaches to selecting time
series models. (October), 2004. doi: 10.1016/j.neucom.2004.03.008.

[171] Anthony Bagnall, Jason Lines, W. Vickers, and Eamonn Keogh. The
UEA and UCR time series classification repository. URL http://www.
timeseriesclassification.com.

[172] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[173] George H. John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345, San Mateo, 1995. Morgan Kaufmann.

[174] I BenGal. Bayesian networks. In Bayesian networks. Encyclopedia of
Statistics in Quality and Reliability, 2008.

[175] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A
new classifier ensemble method. IEEE transactions on pattern analysis
and machine intelligence, pages 1619–1630, 2006.

[176] L. Breiman. Random forests. Machine learning, pages 5–32, 2001.
[177] H. Taud and J. F. Mas. Multilayer perceptron (mlp). Geomatic Ap-

proaches for Modeling Land Change Scenarios, pages 451–455, 2018.
[178] G. E. Batista, E. J. Keogh, O. M. Tataw, and V. M. De Souza. Cid: an

efficient complexity-invariant distance for time series. Data Mining and
Knowledge Discovery, pages 634–669, 2014.

[179] Tomasz Górecki and Maciej  Luczak. Using Derivatives in Time Series
Classification. Data Mining and Knowledge Discovery, pages 310–331,
2013. doi: 10.1007/s10618-012-0251-4.

[180] Tomasz Górecki. Using derivatives in a longest common subsequence
dissimilarity measure for time series classificatio. Pattern Recognition
Letters, 45:99–105, 2014. doi: 10.1016/j.patrec.2014.03.009.

[181] Z. Wang, W. Yan, and T. Oates. Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 International
joint conference on neural networks (IJCNN), pages 1578–1585, 2017.

[182] B. Fawaz, H. I.and Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, and F. Petitjean. Inceptiontime: Finding alexnet for time
series classification. Data Mining and Knowledge Discovery, pages 1936–
1962, 2020.

www.cs.ucr.edu/{~}eamonn/time{_}series{_}data/
www.cs.ucr.edu/{~}eamonn/time{_}series{_}data/
http://dx.doi.org/10.1016/j.neucom.2016.04.027
http://www.timeseriesclassification.com
http://www.timeseriesclassification.com


124 References

[183] J. Lines and A. Bagnall. Time series classification with ensembles of
elastic distance measures. Data Mining and Knowledge Discovery, pages
29(3), 565–592, 2015.

[184] M. G. Baydogan, G. Runger, and E. Tuv. A bag-of-features frame-
work to classify time series. IEEE transactions on pattern analysis and
machine intelligence, pages 35(11), 2796–2802, 2013.

[185] M. G. Baydogan and G. Runger. Time series representation and similar-
ity based on local autopatterns. Data Mining and Knowledge Discovery,
pages 30(2), 476–509, 2016.

[186] S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic
regression. Applied Statistics, 41(1):191–201, 1992.

[187] P. Senin and S. Malinchik. SAX-VSM: Interpretable Time Series Clas-
sification Using SAX and Vector Space Model. pages 1175–1180, 2013.
doi: 10.1109/ICDM.2013.52.

[188] Rui Leite and Pavel Brazdil. Improving Progressive Sampling Via Meta-
Learning on Learning Curves. pages 250–261, 2004.

[189] L. Todorovski and S. Džeroski. Experiments in Meta-level Learning
with ILP. pages 98–106, 1999.

[190] Min-ling Zhang and Zhi-hua Zhou. M L-KNN: A lazy learning approach
to multi-label learning. Pattern Recognition, 40:2038–2048, 2007. doi:
10.1016/j.patcog.2006.12.019.

[191] A. Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, Uni-
versity of Geneva, 2002.

[192] Hilan Bensusan and Alexandros Kalousis. Estimating the Predictive
Accuracy of a Classifier. pages 25–36, 2001.

[193] Ronald Fagin, Ravi Kumar, and D Sivakumar. Comparing top k lists.
SIAM Journal on discrete mathematics, 17(1):134–160, 2003.

[194] M. Stone. Cross-validatory choice and assessment of statistical pre-
dictions. Journal of the Royal Statistical Society, Series B (Statistical
Methodology), pages 36(2):111–147, 1974.

[195] Chang Wei Tan, Eamonn Keogh, and Geoffrey I Webb. Time Series
Classification for Varying Length Series. arXiv:1910.04341v1, 2019.

[196] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data
Augmentation for Time Series Classification using Convolutional Neural
Networks. International Workshop on Advanced Analytics and Learning
on Temporal Data (AALTD16), 2016.

[197] Luc Devroye, Peter Epstein, and Jörg-Rüdiger Sack. On Generating
Random Intervals and Hyperrectangles. Journal of Computational and
Graphical Statistics, 2(3):291–307, 1993.

[198] Felix Hausdorff. Set Theory. Republished by Americal Mathematical
Society (AMS) – Chelsea 2005, 2nd edition, 1962.

[199] Michael Fielding Barnsley. Superfractals. Australian National Univer-
sity, Canberra, 2006.

[200] Romain Briandet, E Katherine Kemsley, and Reginald H Wilson. Dis-
crimination of Arabica and Robusta in Instant Coffee by Fourier Trans-


	Introduction
	1.1 Time series classification
	1.1.1 Supervised classification with time series data
	1.1.2 Time series classifiers

	1.2 Meta-learning
	1.2.1 Meta-learning for classifier recommendation
	1.2.2 Meta-learning for time series

	1.3 Explainability
	1.3.1 Explanation methods for time series

	1.4 Data and software sources
	1.5 Overview of the dissertation

	A Review on Distance based Time Series Classification
	2.1 Introduction
	2.2 A taxonomy of distance based time series classification
	2.2.1 k-Nearest Neighbour
	2.2.2 Distance features
	2.2.3 Distance kernels

	2.3 Computational cost
	2.4 Discussion

	Time Series Classifier Recommendation by a Meta-Learning Approach
	3.1 Introduction
	3.2 Time Series Classifier Recommendation
	3.2.1 Meta-Attributes
	3.2.2 Meta-target

	3.3 Hierarchical inference of meta-targets
	3.4 Experimentation
	3.4.1 Experimental set-up
	3.4.2 Analysis of the landmarkers
	3.4.3 TSCR
	3.4.4 Hierarchical inference of meta-targets

	3.5 Conclusion and future work

	Ad-Hoc Explanation for Time Series Classification
	4.1 Introduction
	4.2 Time series Transformations
	4.2.1 Warp
	4.2.2 Scale
	4.2.3 Noise
	4.2.4 Slice

	4.3 Time Series Classification Explanation Method
	4.3.1 High-level explanation
	4.3.2 Low-level explanation

	4.4 Experimentation
	4.4.1 Set-up
	4.4.2 Qualitative evaluation: case of study
	4.4.3 Quantitative evaluation on UCR

	4.5 Conclusions and Future Work

	General Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Works
	5.3 Main Achievements

	Appendix
	A.1 Landmarkers: computation time of subsample landmarkers in the largest datasets from the UCR repository
	A.2 Landmarkers: computation times
	A.3 Landmarkers: Correlation between the landmarkers and the corresponding original classifiers
	A.4 Landmarkers: Accuracies of classifiers and landmarkers by dataset

	References

