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Groups acting on p-adic trees have been well studied over the past decades since they
represent a source of examples with interesting properties in group theory. Groups
with intermediate growth or counterexamples to the General Burnside Problem can
be found inside this class of groups. In this thesis we analyze some properties
concerning the structures of two families of groups acting over primary regular rooted
trees, i.e. regular rooted trees such that every vertex has a number of descendants
equal to a power of a prime. These two families are the GGS-groups acting over the
p-adic tree and the p-Basilica groups, a generalization of the Basilica group over the
p-adic tree for a prime p. A GGS-group over the p™-adic tree is defined by a vector
e whose components are elements in Z /p"™ Z. Depending on the defining vector of
the GGS-group, we determine which of them are branch. We reduce our study to
the fractal GGS-groups, since the non-fractal ones cannot be branch. We prove
that all of them, except the ones acting over the 2"-adic tree whose defining vectors
have only one invertible component in position 2"~!, are weakly regular branch.
The GGS-groups with constant defining vector are weakly regular branch but not
branch. For the other GGS-groups, we prove that they are all regular branch with

some small exceptions for which the question is still open.



The p-Basilica groups are weakly branch but not branch for any prime p. These
provide the first examples of groups with these properties that are super strongly
fractal. For this class of groups we study also other problems. We show that they
have the p-congruence subgroup property but not the congruence subgroup property
nor the weak congruence subgroup property, providing the first examples of weakly
branch groups with such properties. We compute the orders of the congruence
quotients of these groups, which enables us to determine the Hausdorff dimensions
of the p-Basilica groups. Lastly, we show that the p-Basilica groups do not possess
maximal subgroups of infinite index and that they have infinitely many non-normal

maximal subgroups.



Sommario. I gruppi che agiscono su alberi p-adici sono stati ampiamente studiati
negli ultimi decenni poiché rappresentano una fonte di esempi con interessanti pro-
prieta nella teoria dei gruppi. All’interno di questa classe di gruppi si possono trovare
esempi di gruppi con crescita intermedia o controesempi al Problema Generale di
Burnside. In questa tesi analizzeremo alcune proprieta riguardanti le strutture di
due famiglie di gruppi che agiscono su alberi regolari di grado pari ad una potenza di
un primo. Queste due famiglie sono i gruppi GGS che agiscono sull’albero p™-adico
e i gruppi p-Basilica, una generalizzazione del gruppo Basilica agli alberi p-adici
dove p e un primo. Un gruppo GGS sull’albero p"-adico € definito da un vettore
e con p" — 1 componenti in Z /p" Z. A seconda del vettore che definisce il gruppo
GGS, determiniamo quali di essi sono branch. Abbiamo ridotto il nostro studio
ai gruppi GGS frattali, poiché quelli non frattali non possono essere branch per
definizione. Abbiamo dimostrato che tutti, eccetto i GGS che agiscono sull’albero
2™-adico la cui unica componente invertibile nel vettore di definizione & in posizione
2"~1 sono debolmente branch regolari. I gruppi GGS con vettore costante sono
debolmente branch regolari ma non branch. Per gli altri gruppi GGS, abbiamo di-
mostrato che sono tutti branch regolari con qualche piccola eccezione per le quali
il problema & ancora aperto. I gruppi p-Basilica sono debolmente branch regolari
ma non branch per ogni primo p, e rappresentano il primo esempio di gruppi super
fortemente frattali con questa proprieta. Questa classe di gruppi e anche il primo
esempio di gruppi debolmente branch con la p-proprieta del sottogruppo di con-
gruenza ma senza la proprieta del sottogruppo di congruenza e senza la proprieta
debole del sottogruppo di congruenza. Inoltre il calcolo degli ordini dei quozienti di
congruenza di questi gruppi ci permettono di determinare la dimensione di Haus-
dorff dei gruppi p-Basilica. Infine, mostriamo che i gruppi p-Basilica non possiedono
sottogruppi massimali di indice infinito e che hanno infiniti sottogruppi massimali

non normali.



Resumen. Los grupos que actiian sobre arboles p-adicos han sido extensamente
estudiados durante las ultimas décadas dado que representan una fuente de ejemplos
con interesantes propiedades en teoria de grupos. Dentro de esta clase de grupos se
pueden encontrar ejemplos de grupos con crecimiento intermedio o contraejemplos al
Problema General de Burnside. En esta tesis analizamos algunas propiedades con re-
specto a las estructuras de dos familias de grupos que actian sobre arboles regulares
primarios con raiz, es decir, arboles con raices tales que cada vértice tiene un ntimero
de descendientes igual a una potencia de un primo. Estas dos familias son los grupos
GGS que actian sobre el arbol p™-adico y los grupos p-Basilica, una generalizacion
del grupo Basilica sobre el arbol p-adico para un primo p. Un grupo GGS sobre el
arbol p™-adico estd definido por un vector e cuyas componentes son elementos en
Z |p"™ Z. Dependiendo del vector de definicién del grupo GGS, determinamos cudles
de ellos son ramificados. Reducimos nuestro estudio a los grupos GGS fractales, ya
que los no fractales no pueden ser ramificados. Probamos que todos ellos, excepto los
GGS que actian sobre el arbol 2-4dico cuyos vectores de definicién tienen solo una
componente invertible en la posicién 2”1, son débilmente ramificados regulares. Los
grupos GGS con un vector de definicién constante son débilmente ramificados regu-
lares pero no son ramificados regulares. Para los otros grupos GGS, probamos que
todos son ramificados regulares con algunas pequenas excepciones para las cuales el
problema aun estd abierto. Los grupos p-Basilica son débilmente ramificados pero
no son ramificados para ningin primo p. Estos son los primeros ejemplos de grupos
con estas propiedades que son super fuertemente fractales. Para esta clase de gru-
pos estudiamos también otros problemas. Mostramos que tienen la p-propiedad de
subgrupos de congruencia pero no la propiedad de subgrupos de congruencia ni la
propiedad débil de subgrupos de congruencia, proporcionando los primeros ejemp-
los de grupos débilmente ramificados con tales propiedades. Calculamos los 6rdenes
de los cocientes de congruencia de estos grupos, lo que nos permite determinar las
dimensiones de Hausdorff de los grupos p-Basilica. Por tdltimo, mostramos que los
grupos p-Basilica no poseen subgrupos maximales de indice infinito y que tienen

infinitos subgrupos maximales no normales.
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Introduction

Groups of automorphisms of regular rooted trees are a source of groups with inter-
esting properties in group theory. The first Grigorchuk group, defined by Rostislav
Grigorchuk in 1980 [28], is the first example in this family of an infinite finitely gener-
ated periodic group, providing a counterexample to the General Burnside Problem.
It is also the first example of a group with intermediate growth [29], solving the
Milnor Problem [14]. Later on many examples of groups of tree automorphisms, to-
gether with many generalizations of the Grigorchuk group, were defined and studied.
Important examples are the family of Gupta-Sidki groups [36] and the second Grig-
orchuk group [28]. The Grigorchuk-Gupta-Sidki groups, also called GGS-groups,
provide a further generalization. A necessary and sufficient condition for a GGS-
group to be a counterexample to the General Burnside Problem, in the case when
m is a prime power, has been given by Vovkivsky [56].

Another well known example of group of automorphisms of a binary tree is the
Basilica group introduced by Grigorchuk and Zuk in [34]. This group is torsion-
free, of exponential growth and it was the first example of an amenable but not
subexponentially amenable group.

An automorphism f of a regular rooted tree 7 of degree m can be identified with

its isomorphic images under 1 defined as follows

v AT — Aut 7 Sym(m)
f % ’z/}(f):(f]-?"'?fm)’r'

where 7 is a permutation in Sym(m) representing the action of f on the first level
of T and fi,..., fin are automorphisms in Aut7 that represent the action of f
on the subtrees 7; hanging from the vertices of the first level. When f stabilizes
the vertices of the first level, i.e when 7 is trivial, the automorphism f can be

identified with the vector (fi, ..., fin) € AutT x -+ x Aut T, thus the group Aut 7

1



2 Introduction

contains an isomorphic copy of the direct product of itself m times. One of the most
studied problems in the literature regarding groups of automorphisms of a tree, is
to determine which of them are branch, where branchness is a measure of how close
the structure of the group resembles the structure of the full automorphism group
AutT of the tree.

A subgroup G of Aut 7 is called weakly regular branch over a subgroup K if K
contains the direct product of itself as an isomorphic image. The group G is called
reqular branch over K if it is weakly regular branch over K and |G : K| < oc.
Regular branch groups are also branch groups. The definition of branch groups was
first given by Grigorchuk in his talk at the Groups St. Andrews Conference in Bath
in 1997. A subgroup G of Aut T is called weakly branch if for every n € N the n-th
rigid stabilizers are non-trivial, where the rigid stabilizer is defined as the biggest
subgroup of GG that maps under ¥ onto a direct product of m™ copies of some group.
If for all n € N the n-th rigid stabilizer has finite index in the group G, the group
G is called branch.

This thesis is devoted to the study of two families of groups generalizing the
GGS-groups and the Basilica group.

Chapter 1 is devoted to definitions and known results about groups acting on
regular rooted trees. After giving the definition of groups of automorphisms of
regular rooted trees and after seeing several ways to describe them, we see properties
related to the structures of these groups. In particular, we define self-similar and
fractal groups, we see the definitions of the four types of branch structures mentioned
above, and we identify isomorphisms that preserve these branch structures. In
this preliminary chapter are also included definitions and basic properties regarding
growth and amenability. We will also give the definitions of some generalizations of
the congruence subgroup property. The congruence subgroup property asks whether
every finite index subgroup contains some level stabilizer, and consequently the
completion with respect to the topology defined by the basis {stg(m) | m € N},
called the congruence completion, coincides with the profinite completion.

This property holds for some well-known examples of groups acting on rooted
trees, such as the Grigorchuk group [6] and GGS-groups over the p-adic tree with
non-constant defining vectors [20].

Most of the well known subgroups of Aut7 are groups acting over the p-adic

tree for a prime p, and they are often subgroups of the pro-p subgroup I' of Aut 7



Introduction 3

that coincides with the following iterated wreath product

I =~ @szﬂ.ch.
neN

Thus all the stabilizers have index in the group equal to a power of p, while a normal
subgroup need not have a p-power index. Thus when G does not have the congruence
subgroup property it is natural to ask if G has the p-congruence subgroup property,
i.e. if every normal subgroup of G with index a power of p contains some level
stabilizer. This weaker version of the congruence subgroup property was introduced
by Garrido and Uria-Albizuri in [27]. They provide examples of groups without the
congruence subgroup property and with the p-congruence subgroup property, like
the GGS-groups with constant defining vector over the p-adic tree and the Basilica
group.

In [44] Pervova proved that some of the well known finitely generated branch
groups like the Grigorchuk groups and the periodic GGS-groups acting over the p-
adic tree do not contain maximal subgroups of infinite index. The first example of a
finitely generated branch group that does have maximal subgroups of infinite index
was given by Bondarenko in [12].

In this preliminary chapter we collect results related to this topic and we see that
for finitely generated groups the existence of maximal subgroups of infinite index is
related to the existence of proper prodense subgroups. We use this result to prove
that the p-Basilica groups do not possess maximal subgroups of infinite index. This
result in the case of the Basilica group was proved in [24].

Chapter 2 is devoted to the study of the branch structures of the GGS-groups
acting over the p"-adic tree where p is a prime. The first section of this chapter
deals with some properties about the structures of these groups and some results
that let us reduce our study to some specific GGS-groups.

The GGS-groups are generated by a rooted automorphism a and a directed au-

tomorphism b defined by:
Y(a) = (1,.™,1)o

P(b) = (a,a®, ..., a1, b).

where o = (12...m) € Sym(m) and e = (e1,...,em_1) € (Z/mZ)™ L.

Vovkivsky proved in [56] some criteria for GGS-groups over the p™-adic tree to be



4 Introduction

infinite, periodic and regular branch. He proved that an infinite periodic GGS-group

G acting over the p™-adic tree corresponding to the defining vector

e=(e1,...,em1) € (Z/p"Z)P" 1

p

is a regular branch group over G” if and only if there exists at least an integer
ke {1,...,p"—1} such that e is not congruent to 0 modulo p. He also proved that
G is periodic if and only if for each k = 0,...,n — 1 the following conditions hold

Sk i=e€pk +egpr + ey =0 (mod PkH)' (0.0.1)

As a consequence most of the GGS-groups over the p™-adic tree are not periodic.
We extend some of Vovkivsky’s results to the non-periodic GGS-groups acting over
the p™-adic tree.

More specifically let G be a GGS-group over the p”-adic tree, let e be its defining

vector and let
F@") = (Z/p"Z)"" "'\ (pZ /p" Z)"" .

If e does not belong to F(p™), the corresponding GGS-group cannot act transi-
tively on each level and by definition it is not a branch group. Thus we reduce our
study to the GGS-groups with defining vector e € F(p™).

Given e € F(p"), we define

Y ={1<i<p"—1]|e; #0mod p}, (0.0.2)

and

t:=max{s€Z|s>0andp’|iforalliecY}.

Then we have Y C {p*,2p!,...,p"—p'}, and we say that Y is mazimal if the equality
holds. Also we define

E(P")={e e F(p") | eyt = €t mod p for all 1 < i,j < p"~'—1},

that is, the set of vectors that have the same values modulo p for the set of indices

{pt,2pt,...,p" — p'}. Note that if e € £(p") then Y is maximal. Finally, we denote
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by £'(2") the following set:
M ={ec F2") |t=n—-1}.

We proved that if G is a GGS-group acting over the p™-adic tree with defining vector
belonging to F(p™) \ £(p™) then it is a regular branch group over G’ or over v3(G).
In particular, for periodic GGS-groups this result improves Vovkivsky’s result.

For the groups in £(p™) the problem is still open. Only for a particular class of
GGS-groups with defining vector inside £(p™) that we define as partially constant
we prove that they are regular branch.

For the GGS-groups with defining vector in F(p™) \ £'(2") we get the following

result.

Theorem. A GGS-group G over the p"-adic tree with defining vector e € F(p™) \

E'(2™) is weakly regular branch over G".

The GGS-group with constant defining vector acting on the p™-adic tree is a
groups with defining vector belonging to £(p™) and it has a different structure. It
is proved in [20] that the GGS-group with constant defining vector acting on the
p-adic tree is weakly regular branch over the subgroup K’, where K = (ba~")¢, but
it is not branch. We extend this result to the GGS-groups over the p™-adic tree with
constant defining vector.

The results of this chapter are collected in the article [18].

Chapter 3 is devoted to the study of a generalization of the Basilica group to
a family of groups acting over the p-adic tree, called the p-Basilica groups. The
Basilica group acts on the binary tree and is generated by two elements, a and b,

which are recursively defined as follows:

P(a) = (1,b) and (b) = (1,a)0,

where o is the cyclic permutation (12), which swaps the two maximal subtrees. For
every prime p, the p-Basilica group is a natural generalisation of the Basilica group
that acts on the p-adic tree. Such a group G is generated by two automorphisms, a

and b, defined as follows:

Y(a) = (1,271 1,6) and ¢ (b) = (1,271, 1,a)o,
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where o is the cyclic permutation (12 --- p). We note that for the prime p = 2 the
2-Basilica group coincides with the Basilica group. For every prime p the generators
have infinite order and the groups are torsion free, self-similar, spherically transitive
and super strongly fractal. These groups are weakly regular branch over the derived
subgroups, but they are not branch since the first rigid stabilizer has infinite index
in the group. These results give the first example of weakly branch, but not branch,
groups that are super strongly fractal.

We determine the structures of some subgroups and quotients of the p-Basilica
group G for any prime p. In particular G/v3(G) is isomorphic to the integral Heisen-
berg group, and this result is used to prove that for every prime p the p-Basilica
group does not have the weak congruence subgroup property. This property is a
different weaker version of the congruence subgroup property and asks whether any
normal subgroup of finite index contains the derived subgroup of some level stabi-
lizer.

Since for any prime p the p-Basilica group is contained in the pro-p subgroup
I, the group G does not have the congruence subgroup property as all quotients of
G by level stabilizers are p-groups and GG contains subgroups with arbitrary index
as its abelianization is Z x Z. This provides the first examples of weakly branch
groups with the p-congruence subgroup property but not the congruence subgroup
property nor the weak congruence subgroup property.

The determination of the orders of the congruence quotients of the p-Basilica
groups lets us compute the Hausdorff dimension of the closure of the p-Basilica
group G in the group I'. For a subgroup G of I', the Hausdorff dimension of the

closure of G in I is given by

hdimp(G) = lim 10819 :ste()]

€ |0,1], 0.0.3
n—oo log T : str(n)] 0,1] ( )

where lim represents the lower limit. The Hausdorff dimension of G is a measure
of how dense G is in T'. This concept was first applied by Abercrombie [1] and by

Barnea and Shalev [3] in the more general setting of profinite groups.

Theorem. Let G be a p-Basilica group, for p a prime. Then:
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1. The orders of the congruence quotients of G are given by

-1 n—3 3 n f r
pn P +--4p +p-|—2 or n even,
lng |G : Stg(n)’ =

p"—1+p”_3+-~~+p4+p2+n7+1 fOT‘TL odd.

2. The Hausdorff dimension of the closure of G in T is

. 2 p
hdimp(G) = P

Francoeur [24, Thm. 4.28] proved that the Basilica group does not possess maxi-
mal subgroups of infinite index, thus providing the first example of a weakly branch
but not branch group without maximal subgroups of infinite index. Also, the Basil-
ica group has non-normal maximal subgroups [23, Cor. 8.3.2]. We extend these
results to p-Basilica groups for all primes p, likewise giving another infinite family
of weakly branch groups with such properties. Note that the first infinite family of
weakly branch, but not branch, groups without maximal subgroups of infinite index
was given by Francoeur and Thillaisundaram in [26], namely the GGS-groups over

the p-adic tree defined by the constant vector.

Theorem. Let G be a p-Basilica group, for p a prime. Then all mazimal subgroups

of G have finite index, and G has infinitely many non-normal mazimal subgroups.

The results about the p-Basilica groups are collected in the article [19].

Both papers that collect the results of this thesis were carried out in collaboration
with other authors. The research work was done through numerous face-to-face and
online discussions, and the author of this thesis participated actively in obtaining

all of the results.






Chapter 1

Preliminaries

In this chapter we collect definitions and known results about groups acting on

regular rooted trees.

1.1 Automorphisms of regular rooted trees

A tree is a connected graph with no cycles. For m > 2, a reqular rooted tree of
degree m, also called the m-adic tree, is a tree with a distinguished vertex called the
root and such that each vertex has m descendants.

More precisely, let X be a finite set, also called alphabet, and X* be the free
monoid of the words with letters in X where the operation is juxtaposition. If
m > 2 is an integer, the m-adic tree T is the rooted tree whose vertices are words
of X* in the alphabet X = {z1,...,2;,}. The root of T is the empty word (. The
descendants of a word uw € X* are the words v of the form v = uz where z € X*.
The vertex v is said to be an immediate descendant of u if z € X. Two vertices
u and v are joined by an edge if any of the two is an immediate descendant of the
other one. We denote by L, the n-th level of T, that is the set of words of length
n in X*. (See Figure 1.1)

A sequence of consecutive vertices which starts at the root and such that each
vertex occurs at most once is called path. An end is an infinite path.

An automorphism f of T is a bijective map of the set of the vertices of T
that preserves incidence, i.e. an automorphism of 7 as a graph. As a consequence

an automorphism fixes the root since it is the unique vertex connected with m
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o -
Tr1xry T1T2 1Ty, T2T1 T2X2 T2Tm TmTl Tmd2 TmIm

FIGURE 1.1: The m-adic tree.

vertices, sends vertices of £, to vertices of the same level, and sends paths and ends
respectively to paths and ends.

The set Aut 7T of all automorphisms of a tree 7 forms a group under composition.
We will write the composition as juxtaposition by writing fg instead of g o f.

The set of all words of length less than or equal to a given n € N can be identified
with the finite subtree of T consisting of its vertices up to the level n. We denote this
finite subtree by 7,, and we refer to it as the tree truncated at level n. Considering

the restriction map:
O, AutT — AuwtT,

f = fln

the group Aut 7, can be seen as a quotient of the whole group Aut 7. More precisely
the kernel of this restriction map is the set of all automorphisms that fix all the
vertices of 7 up to the level n. Actually this kernel coincides with the stabilizer of

the level n that we denote by st(n) and is formally defined by
stin) ={feT| flu)=uYueL,}. (1.1.1)

Indeed, by definition of automorphism of a rooted tree, if we know the image f(u)
of an automorphism f € Aut7T at the vertex v € L,,, we automatically know the
images under f of all vertices above u in the path connecting u to the root. As a
consequence, the action of f on 7, is completely determined by the action of f on
L. This means that an automorphism f fixes all the vertices of 7 up to the level

n if and only if it fixes all the vertices of L£,. Since ®,, is surjective, for all n € N we
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have
Aut T, = Aut T/ st(n).

We observe that for n = 0, the level £y contains only the root. Thus st(0)
coincides with the full group Aut 7.

For a vertex u € X*, we denote by st(u) the stabilizer of the vertex u defined as
st(u) ={f € Aut T | f(u) = u}.

From (1.1.1) we observe that st(n) coincides with the intersection of the stabilizers
of all vertices of £,,.

An automorphism f of a regular rooted tree 7 can be described recursively as
follows. The root vertex is always fixed and, if we assume that f is already defined

on L, and that v = uz is an immediate descendant of u € £,,, we have

fw) = f(u) fu(x) (1.1.2)

where f(,) is a permutation in Sym(X) and is said to be the label of f at u. The
set of all these labels is called the portrait of f. Thus giving a portrait is equivalent
to giving an automorphism.

The subtree 7, of T hanging from u € X* is formed by all the descendants of u
and is isomorphic to 7. As a consequence Aut 7, = Aut 7.

As noted before, if f € AutT and we know the image f(u) for all u € L, we
know the images under f of all vertices in 7,,. Thus an automorphism f € Aut T can
be also described by knowing for all u € £,, the image f(u) and the action of f on
T. called the section of f in u and denoted by f,,. Formally the section f, € AutT
is defined as follows for all v € X™:

fuv) = f(u) fu(v). (1.1.3)

Since wv is a descendant of u, then f(uv) is a descendant of f(u), i.e. there exists
w € X* such that f(uv) = f(u)w. Thus the section of f at the vertex w is the
automorphism of 7 that sends v to w. In particular if f € Aut7T fixes a vertex
u € X* then the section of f at the vertex u can be identified with the restriction
of f to the subtree hanging from u.

We have the following rules for the sections that can be easily proved making use
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of the definition. All of them, with the exception of the last one, are also satisfied
by the labels. Let f,g € Aut7T and u,v € X*, we have

(f9)u = fugf(u)

(= Fr1) " (1.1.4)
(fa = (9g-10w)) " Fo 29701 w))
fuv - (fu)v

We observe that when f € st(u) for the vertex g(u) € X* we can write the third

formula in a more elegant way

(FDgw) = 9u " fugpw) = (fu)?" (1.1.5)

1.2 On the structure of Aut7T

In this section we analyze properties of the group Aut 7T useful for describing its
structure.

First of all we observe that for all n € N the stabilizer of the n-th level is a normal
subgroup of Aut 7T of finite index. This follows from the fact that Aut 7, is a finite
group since it is a subgroup of the symmetric group of 7,. Thus the stabilizers of
the levels form a chain of normal subgroups with finite index in Aut 7 with trivial
intersection and this proves that Aut 7 is a residually finite group.

Moreover the family F = {st(n)}5°; with the inclusion is a directed set and the

family of quotients {Aut 7 /st(n)}o2; with the homomorphisms

Tmn : AutT/st(m) — AutT/st(n)

(1.2.1)
I st(m) — fst(n)

for all m > n forms an inverse system of finite groups. Then the group Aut7 is a

profinite group since it is isomorphic to the inverse limit of this quotients.

Aut T = {iﬁl{Aut T/st(n)}ol,.

n—N

The elements belonging to st(n) can be characterized in terms of their portrait

as follows. If f € st(n) then necessarily f(,y = 1 for all u € 7, 1. Indeed if for a
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certain u € Tp,—1 the label f(,y # 1 then the descendants of u are permuted accord-
ing to the permutation f(,). By the property of the automorphisms of preserving
the incidence, it follows that the subtrees hanging from the descendants of w are
permuted according to that permutation and as a consequence the vertices of the

n-th level that belong to these subtrees are not fixed by f.

f est(n)
------------ > labels =1

level n — 1
1 1 1
———————————— » possible non-trivial labels

FIGURE 1.2: The portrait of f € st(n).

Thus if f € st(n) we can identify f with a vector whose components are the
sections of f hanging from the vertices of the n-th level, because all labels until the

level n — 1 are equal to 1. For all n € N we can define the following map

p o st(n) — Aut 7 x ™ x Aut T

1.2.2
f - (fu)ue/:n ( )

When n = 1 for simplicity we will write ¢ instead of ¢;. From (1.1.4) it is easy to
show that this map is a homomorphism. It is also injective because f € ker(i)y,) if
and only if f, = 1 for all u € £,, and from the characterization of the elements in
st(n) it follows that each label in f must be trivial and so f is the trivial automor-

phism. Thus for all n € N we have the following isomorphism
st(n) = AutT x T Aut T (1.2.3)

which means that Aut7 has the property of containing direct products of itself.
In a similar way, for every positive integer n and for all £ < n, we can define the

following isomorphism when we work in the quotient group Aut 7,:

k
Onk: StawT, (k) — AutT,—g ¥ Tox Aut Tk
f — (fu)ueﬁk

(1.2.4)

Also in this case when n =1 we will write ¢,, instead of ¢y, 1.
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From the characterization of the portrait of an element f in st(n) we observe that
the sections of such an element in the vertices of the first level are automorphisms

that stabilize the level £,_1. Thus from (1.2.2) we have an isomorphism

Wi ost(n) — st(n—1)x " xst(n—1)

1.2.5
f — (fu)ueX ( )

and in general for r € {1,...,n} we have an isomorphism

Yr: ost(n) — st(n—r) x - x st(n— 1)

f - (fu)uefln_r

Similarly, when we work in the group Aut 7,, for & < n we have an isomorphism

bn : StAut'Tn(k) — StAutTn,l(k — 1) X X StAutﬁfl(k — 1)

(1.2.6)
f — (fu)uEX
For each vertex u € T we can define the following map
:ost — AuwtT
Yui stu) b (1.2.7)

= fu
and from (1.1.4) it is easy to show that this map is a homomorphism.

The following proposition shows that the group Aut7 is a semidirect product.

Proposition 1.1. Let T be the m-adic tree, and for n € N let H,, be the subgroup
defined as follows:
H,={fe AT | fu=1YueL,}.

Then AutT = H, X st(n).

Proof. From the definition of H,, and the characterization of the elements in st(n)
it is easy see that H,, is a subgroup of Aut7 that intersects st(n) trivially. The
statement is proved noting that each element f € Aut7 can be written as a prod-
uct of two automorphisms g and h, respectively belonging to st(n) and H,,, whose
portraits are represented in Figure 1.3. Indeed by the formulas in (1.1.4) for every

u € L,, for m < n we have

(9h) (w) = 9wy hig(u) =1 higw)) = flow) = fw)
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and for every u € L, for m > n we have

(9h) () = 9y Mg(w) = 9w - 1 = fru)-

O
h e Hy, g € st(n)
————— » same labels of f - -+ labels =1
level n — 1
1] level n 1 1 1
labels = 1 same labels of f

FIGURE 1.3: Decomposition of f = gh € Aut 7 with g € st(n) and h € H,,.

Definition 1.2. An automorphism f € Aut 7T is called
e finitary if there exists n € N such that f € H,,

o directed if there exists a path {0, u1,ujug, uiugus,...} with v; € X for all
i > 1, such that the unique possible non-trivial labels of f are those in the

vertices of the form u; - - - upx for x € X,  # up4q and n > 0.

o bounded if the sets {w € X" | f, # 1} have uniformly bounded cardinalities

over all n.

We observe that for n = 1 the subgroup H; is the set of the rooted automorphisms.
Formally f € Aut7T is a rooted automorphism if f, is the identity map for every
u € L1. Actually a rooted automorphism f permutes rigidly the subtrees hanging
from the vertices of £;. Indeed if z € £ and u € X* then f(zu) = o(z)u where
o € Sym(X) is the permutation at the root. So Hj is isomorphic to Sym(X) and

from the previous proposition we have the following structure for Aut 7.

Aut 7 = Sym(X) x st(1) 2 Sym(X) x (Aut 7T x -~ x Aut T) (1.2.8)
= Aut 7 Sym(X).

This structure suggests a more compact way of representing an automorphism. For

an automorphism f € Aut7 we can write

f=97
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where 7 € Sym(X) and ¢ is an automorphism in st(1) whose sections are 1(g) =
(91,---,9m). Thus we can extend the isomorphism % defined in (1.2.2) to an iso-
morphism between the full group Aut7 and the wreath product Aut 7 Sym(X) as

follows
v AwtT — Aut 7 Sym(X)

fooo= ) =g gm)T
By iterating the formula in (1.2.8), the group Aut7 can be also seen as the

(1.2.9)

iterated permutational wreath product

Aut 7T = (- (Sym(X) (Sym(X) ¢ Sym(X)))---).

In the following sections we will consider groups acting on primary trees, i.e.
regular rooted trees of degree a power of a prime number. Most of the groups that

we will analyse are subgroups of the group I'" < Aut7 defined as follows.

Definition 1.3. Let 7 be a regular rooted tree of degree p™ for a prime p and a
positive integer n. The subgroup I'™ of Aut 7T is the set of all automorphisms whose

labels are powers of the cycle o = (12 --- p").

In particular I'" coincides with the following iterated wreath product

"™ 2 Jim Cpn 271 G, (1.2.10)
meN

We observe that only for n = 1, the group I'!, that we will indicate by I for ease of
notation, is a Sylow pro-p subgroup of Aut 7 corresponding to the p-cycle (12 --- p).

1.3 Self-similar and branch groups

In this section we collect definitions and properties of the subgroups of Aut 7 that,
in a certain sense, tell us how similar the structure of these groups is to the group
AutT.

Definition 1.4. A subgroup G of Aut7 is said to be spherically transitive if it

acts transitively on each level £, of T.

Let G be any subgroup of Aut 7. We denote by stg(n) = st(n) NG the stabilizer
of the n-th level in G and by stg(u) = st(u) NG the stabilizer of the vertex u € X*
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in G. Considering the restriction maps

Ynt stg(n) — AutT x " Aut T
g - (gu)ueﬁn
and
Uy o stg(u) — AutT

g — Gu,s

n

in general the images of these maps are not contained in G X . x G and in G

respectively. A family of groups for which this happens is the following.

Definition 1.5. A subgroup G of Aut7T is said to be self-similar if for all g € G
and all uw € X* the section g, belongs to G.

By using induction on the levels and the formulas (1.1.4), a group G < Aut 7 is
self-similar if the previous condition is satisfied for a set of generators of the group

G and for the vertices of the first level.

Lemma 1.6. Let S be a generating set for a group G < AutT. Then G is self-
stmilar if and only if sz € G for all s € S and x € X.

When the group G is the full group Aut 7T, the maps 1, and v, defined respec-
tively in (1.2.2) and (1.2.7) are surjective. This might not be true when G is a

proper subgroup of Aut 7. In this case we have the following definitions.
Definition 1.7. A self-similar subgroup G of Aut 7T is said to be

e fractal if 1y (stg(u)) = G for all u € X*.

o strongly fractal if ¥, (stg(1)) = G for all z € X.

o super strongly fractal if ¢, (stg(n)) = G for all v € £,, and for all n € N.

Actually G is fractal if the property v, (stg(u)) = G holds for all u € X, since
by the self-similarity this property extends to all the vertices of the other levels.
Moreover if the group is transitive on the first level, the following result shows that

it is sufficient to check the condition for a specific vertex z € X (see also [32, Sec.3]).

Lemma 1.8. [55, Lem. 2.7] If G < AutT s self-similar and transitive on the
first level and ¥y (sta(z)) = G for some x € X, then G is fractal and spherically

transitive.
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The next lemma is a corollary of [55, Lem. 2.12] and it is useful to prove that a

group G is super strongly fractal. For completeness we give the proof here.

Lemma 1.9. If G < Aut T is self-similar and transitive on the first level and for
each n € N there ezists un € Ly, such that ¢, (stq(n)) = G, then G is super strongly

fractal.

Proof. Let v be a vertex in L,, and, for simplicity, let us write u for u,. Since G is
self-similar, the inclusion 1, (stg(n)) € G holds. By the previous lemma, the group
G is spherically transitive, so there exists g € G such that v = g(u). Let h € G and
observe that h9% € G as G is self-similar. By hypothesis there exists f € stg(n)
such that

Ju= wu(f) = hg;l'

Then by (1.1.5) we have

—1
o) = (f) g = (fu)? = (W% )% = h.
This proves the reverse inclusion and the proof is complete. 0

We observe that most of the groups acting over the p-adic tree studied in the
literature are subgroups of the the Sylow pro-p subgroup I" defined in (1.2.10), thus
each element in such group G permutes the vertices of the first level according to
a power of the cycle (12---p). According to this permutation, if a vertex of the
first level is fixed, then all the other vertices must be fixed. This implies that for
such group G the stabilizer of a vertex of the first level coincides with the first level
stabilizer stg(x) = stg(1) for all x € X. Hence for a self-similar group G contained
in I, the conditions of being fractal and strongly fractal are equivalent.

Obviously, every super strongly fractal group is also strongly fractal, and every
strongly fractal group is fractal. In [55] the author shows that these inclusions
are strict, indeed for a prime p, the GGS-group acting over the p-adic tree with
constant defining vector is strongly fractal but not super strongly fractal, and a
certain subgroup of the Hanoi tower group is fractal but not strongly fractal. For
more details see [55]. Examples of super strongly fractal groups are given by the
GGS-groups acting over the p-adic tree with non-constant defining vector, and an
example of a self-similar but non-fractal group is given by the group G acting over

the m-adic tree generated by two automorphisms a and b, where ¢(a) = (1,...,1)o



Chapter 1 Preliminaries 19

is a rooted automorphism defined by the permutation ¢ = (12---m), and b is the
so called adding machine, i.e. an automorphism defined by ¥(b) = (1,...,1,b)o.
Indeed a & 1, (stg(x)) for all z € X.

We observe that when the group G is self-similar we have

n

Un(sta(n)) C G x " x G.

When the group is also strongly fractal, this map is surjective in each component.
But we remark that this does not imply that the stabilizer stg(n) maps under
U, onto G X o G as happens when G is the full group Aut 7T, neither need
stg(n) map onto a natural direct product inside G x m x (G, where by natural
direct product we mean that there exist Hi,..., Hy,n subgroups of G such that
Yn(stg(n)) = Hy X -+ X Hyn. The biggest subgroup of st (n) that maps under v,
onto a natural direct product is the rigid stabilizer of the level n denoted by rstg(n)

and defined as follows

rste(n) = (usta(u) |u € Ln) = [ rst(w)

(7 L‘«n

where by rstg(u) we denote the rigid stabilizer in G of a vertex u, that is defined
as the subgroup of GG that consists of those automorphisms of 7 that fix all vertices
not having u as a prefix. In other words an automorphism ¢ is in the rigid vertex

stabilizer of w if all labels of g outside 7, are trivial (see Figure 1.4).

g € rstg(u)

_________ trivial labels

possibly non trivial
labels

FIGURE 1.4: Portrait of g € rstg(u).

Definition 1.10. A spherically transitive group G < Aut7T is said to be weakly
branch if rstg(n) # 1 for all n, and it is said to be branch if the index |G : rstg(n)|

is finite for all n.
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Definition 1.11. A self-similar and spherically transitive group G < Aut 7T is said
to be weakly regular branch over K, where K < st(1), if

K x " x K C(K).

It is called regular branch over K if it is weakly regular branch over K and the index

|G : K| is finite. The group K is called branching subgroup.

One of the problems we investigate regards the branch structures of the GGS-
groups acting over regular rooted trees of degree a power of a prime and of the
p-Basilica groups. The next lemma is the main tool for finding branch structures in
a subgroup of Aut 7. This result is given in [22, Prop. 2.18] for GGS-groups acting
over a p-adic tree, but the same proof works more generally for spherically transitive

fractal groups.

Lemma 1.12. Let G be a spherically transitive fractal subgroup of AutT, and
let L and N be two normal subgroups of G. Suppose that L = <S>G and that
(1,...,1,8,1,...,1) € Y(N) for every s € S, where s appears always at the same
position in the tuple. Then L x -~ x L C(N).

In order to find the branch structures of groups acting on trees, it is useful
to identify isomorphic groups where the branch structure is preserved. We show
now that for a group G acting on a tree T of degree m and for an automorphism
f € Aut T with constant portrait, i.e. an automorphism such that there exists 7 €
Sym(X) such that f(,y = 7 for all u € X*, the branch structure of G can be found
from the branch structure of Gf. The following lemma is useful for proving this

result.

Lemma 1.13. Let f € AutT be an automorphism with constant portrait. Then
fu=f forallue X*.

Proof. Let 7 € Sym(X) be the permutation such that 7 = f.) for any vertex » € X*.
We prove that (fy).,) = 7 for all u,2z € X*. This implies that f, = f, since they
both have the same portrait. From (1.1.2) and (1.1.3) for every z € X we have

fluzz) = f(uz) fluz) (z) = fuz)7(2)

and

fluzz) = f(u) fuzz) = f(u)fzt(z)(fzt)(z)(x) = f(uz)(fU)(z)(x)‘
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This implies that (fy)(.) = 7, as desired. O

Lemma 1.14. Let G < AutT and f € AutT. Then rstg(u)f = rstes(f(uw)) for all
u € X* and rstg(£)! = rstgr (£) for every £ € N.

Proof. Let v be a vertex of T and let w € T be such that f(w) = v. Then v is not
a descendant of f(u) if and only if w is not a descendant of u. Let g € G then

g () = g/ (f(w)) = (S9N (f(w)) = f(g(w)).

Thus g7 (v) = v if and only if f(g(w)) = f(w), that is equivalent to g(w) = w. This
implies that rstg(u)! = rstgs (f(u)) for all w € X* and rstg(£)! = rstgy (£) for every
¢ eN. O

The following corollary (see [22, Prop. 2.17]) is a consequence of the previous

result. For completeness we give the full proof here.

Corollary 1.15. Let G < Aut T be a spherically transitive group and let f € Aut T .
Then

(i) G is weakly branch (branch) if and only if G' is weakly branch (branch).

(ii) G is weakly regular branch (regular branch) over K if and only if G is weakly

regular branch (reqular branch) over K7.
Proof. For the first item we observe that

rstg(n)f = (rstg(u) |u e L,)
= (rstgr(f(u)) | u € Ly) = 1rstgr(n).
Thus rstg(n) is trivial for some n € N if and only if rst;s(n) is. Moreover |G :
rsta(n)| = |GY : rstg(n)f| = |GY : rstgy(n)] and the result follows.

(ii) The group G is weakly regular branch over K if K X XK C Y(K). For a
given x € X, let L, < K be defined by

PY(Ly)=1x--x1IxKx1x--x1,

where K appears at the position . Then L, C rstg(x) and from the previous

lemma we have Li C rstqs(f(z)). Let | € Ly and let k € K be such that ¢(l) =
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(1,...,1,k,1,...,1). Let h € st(1) be such that ¢)(h) = (f,...,f) and let 7 €
Sym(X) be the permutation such that fi,) = 7 for all u € X*. Then we can write

f = h7, and we have

v =Q@Q,.. L k1, D)=, 1k )T
=(1,....,1,k,1,...,1)

where the last equality follows from the fact that 7(z) = f(x), and k7 is at the
position f(z). This proves that

YL =1x-x1xK/ x1x---x1

As Lﬁ: < K7 it follows that K x---x Kf C V(K I ). The reverse implication follows
by noting that f~! is of constant portrait too. The fact that |G : K| = |Gf : K|
completes the proof. O

From the definition of st(n), for a self-similar group G the image under 1 of stg(n)
is actually contained in stg(n —1) x -+ X stg(n — 1). The reverse inclusion does not
hold since an automorphism f of the form ¥(f) = (fi1,..., fi) with f; € stg(n —1)
for all i € {1,...,m} need not be an element in the group G. However we have the

following result.

Lemma 1.16. Let G < AutT be a self-similar group acting over the m-adic tree.
Then

Y(sta(n)) =stg(n — 1) x - x stg(n — 1) NY(sta(l)). (1.3.1)

We indicate by Gy, the quotient G,, = G/stg(n) that can be seen as a group
acting over the truncated tree 7, and we refer to this quotient as the n-th congruence
quotient of G. Since G,, can be seen as a subgroup of Aut7,, we can consider the

restriction of the map ¢,, defined in (1.2.6) and we have the following result.

Lemma 1.17. Let G < AutT be a self-similar group acting over the m-adic tree.
Then

bn(sta, (k) = sta, (k—1) x " x sta, | (k — 1) N én(ste, (1)). (1.3.2)

The following theorem enables us to determine whether a self-similar group is

torsion-free by looking at an appropriate quotient.



Chapter 1 Preliminaries 23

Theorem 1.18. Let G be a self-similar subgroup of AutT and suppose that there
exists a torsion-free quotient G/N with N < stg(1). Then G is torsion-free.

Proof. For every n € NU{0}, we indicate by S,, the set of torsion elements in
stg(n)\stg(n + 1). Then our goal is to prove that these sets are all empty. By
way of contradiction, suppose that S,, # @ for some n, which we choose as small as
possible.

Since G/N is torsion-free and N < stg(1), it is clear that n > 1. Let g €
Sy, be a torsion element. If ¥(g) = (g1,...,9p) then some g; belongs to stg(n —
1)\ stg(n) and, of course, the element g; is of finite order. So g; € S,,—1, which is a

contradiction. O

In particular, we will use this result to prove that the p-Basilica groups are

torsion-free (see Section 3.2).

1.4 Contracting property, growth and amenability

In this section we will review the concept of growth of a group and we will prove
some general results. If G is an arbitrary group generated by a symmetric subset .S,

i.e. a set for which S = S~!, then for every g € G,
lg| =min{n >0|g=s1--5y, for si,...,s, € S}

is called the length of g with respect to S. Now assume that G is a self-similar

subgroup of Aut7. Then for every g € G and every n € NU{0} we define

ln(g) = max{|g.| | u € Ly}

From the rule (gh), = guh we get that the function ¢, is subadditive, i.e. that

9(u)
ln(gh) < l,(g9) + ¢,(h) for every g,h € G, (1.4.1)

and from (g71)y = (gg-1(4)) ", that

lo(g™) = La(g) for every g € G.
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If there exist A < 1 and C, L € N such that
lh(g) < Mgl +C, for every n > L and every g € G,

then we say that the group G is contracting with respect to S.
The following lemma is straightforward, but very useful in proving that a sub-

group of Aut7 is contracting.

Lemma 1.19. Let G = (S) be a self-similar subgroup of AutT, where S is sym-
metric and suppose that (1(s) < 1 for all s € S. Then £,(g) < ln_1(g) for every
n€Nand g € G.

Proof. Observe that the condition ¢1(s) < 1 for all s € S, together with (1.4.1),
imply that ¢1(g) < |g| for every g € G. Now let u € £,, and write v = va with
v € Ly—1 and z € X. Then for every g € G we have

|gu’ = |(gv)x| < gl(gv) < |gv‘ < gn—1(9)7

and the result follows. O

We recall now some preliminary definitions about growth of groups and amenabil-
ity.
Let G be a group generated by a finite symmetric subset S. The length function

on G is a metric on G and therefore one can define the ball of radius n:
B(n)={g€G:|g| <n}

We say that the map v : Ng — [0, 00) where v(n) = |B(n)|, is the growth function
of G.

If we consider two growth functions 1,72, we say that vo dominates v; and we
write 71 = 7o if there exist C,a > 0 such that v1(n) < Cvys(an) for every n € N. If
Y1 = 72 and 9 = 1, we write v ~ 2. It is easy to see that this is an equivalence
relation.

As proved in [5, Lem. 2.10] (see also [39, Prop. 1.3])), the growth functions of G
with respect to two different generating sets are equivalent, for this reason we will

refer simply to the growth function of G and we will not specify the generating set.
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If v(n) < n® for some a € N, we say that G has polynomial growth. Instead G
is said to have exponential growth if lim, .o v(n)/™ > 1 (notice that such a limit
always exists [5, Lem. 8.1]). Finally v(n) has intermediate growth if ~(n) is equiv-
alent to neither of the above. Notice that it is also common to say that a group G

has subexponential growth if lim, . y(n)Y/™

= 0, and superpolynomial growth if
lim,, o0 In(y(n))/In(n) = oco. Groups of polynomial and exponential growth are
common. Examples of groups with exponential growth are the free groups. Exam-
ples of groups with polynomial growth are the abelian groups and more generally the
virtually nilpotent groups. Actually, Gromov proved in [35] the following celebrated

result.

Theorem 1.20. [35] A finitely generated group G is of polynomial growth if and

only if it is virtually nilpotent.

We recall that for a property P, a group is said to be virtually P if it contains a
subgroup of finite index that has the property P.

In [34] Grigorchuk and Zuk show that the Basilica group has exponential growth.
We will also see in Chapter 3 that the p-Basilica groups have exponential growth. In
1968 Milnor asked whether the growth of a group is necessarily equivalent to either
polynomial or exponential [14]. This problem is known as the Milnor problem and it
remained open until 1983 when Grigorchuk proved in [29] that the first Grigorchuk
group has intermediate growth. Other examples of groups with intermediate growth
are a family of groups generalising the first Grigorchuk group defined by Bartholdi
and Sunic in [9].

Next, we say that a group G is amenable if there is a finitely additive left-
invariant measure p on the subsets of G such that p(G) = 1, where p is said to be
left-invariant if ©(gA) = p(A) for A C G and g € G. (See [43] for details).

We denote the class of amenable groups by AG. The class of amenable groups
was introduced in 1929 by Von Neumann in [41] to explain why the Banach-Tarsky
Paradox occurs only for dimensions greater than of equal to three. In the same
paper the author proved that the finite groups and the abelian groups are amenable
and that the class AG is closed under taking subgroups, quotients, extensions, and
direct unions. Other examples are the solvable groups and consequently also the
nilpotent groups and the p-groups. On the other hand, the free group of rank 2 is

an example of non-amenable group.
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The class EG of elementary amenable groups, introduced in 1957 by Mahlon Day
in [17], is the smallest class of groups that contains all abelian and finite groups and it
is closed under taking quotients, subgroups, extensions and direct unions. For many
years the problem posed by Mahlon Day in [17] about the existence of amenable
but not elementary amenable groups remained open. In 1980 Chou showed in [16]
that all elementary amenable groups have either polynomial or exponential growth.
Finally the question was answered by Grigorchuk in 1984 when he proved in [30]
that the first Grigorchuk group is an example of group that is amenable since it
has intermediate growth but not elementary amenable by the result of Chou in [16].
Thus the inclusion EG C AG is strict.

So, a natural generalization of EG is the class SG of subexponentially amenable
groups defined in [15], i.e. the smallest class of groups which contains all groups of
subexponential growth and is closed under taking subgroups, quotients, extensions,
and direct unions. Of course, the class SG contains the class EG.

The first example of amenable but not subexponentially amenable group with
exponential growth is the Basilica group. It was proved by Grigorchuk and Zuk
in [34] that this group does not belong to the class of subexponentially amenable
groups, whereas it was proved by Bartholdi and Virdg in [10] that the Basilica group
is amenable. This proves that also the inclusion SG C AG is strict.

In Section 3.6 we show that also the p-Basilica group for a prime p is amenable
but not subexponentially amenable. To this end we use the following result that

appears as [37, Cor. 3].

Lemma 1.21. Let G < Aut T be a finitely generated, non-abelian, infinite group. If
G is weakly regular branch over a subgroup K and there exists some verter u € X*
such that V¥, (stx(u)) contains G, then G is not elementary amenable. Moreover, if

G is of exponential growth, then G is not subexponentially amenable.

1.5 Congruence subgroup property

In this section we introduce the congruence subgroup problem, that represents one of
the most studied problems concerning groups acting on trees. We start by recalling
that for a group G the profinite topology is the topology given by the basis of open
sets

B={¢gH|gec G H<Gand |G: H| <o}
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Since every subgroup of G of finite index contains a normal subgroup of G of finite

index, the topology given by the basis
B ={gN|geG N <G and |G: N| < oo}

coincides with the profinite topology. Indeed the inclusion B’ C B is trivial. For
the reverse inclusion, let H € B and let N be a normal subgroup of G with finite
index such that N < H. Then we can write H = |J;,c bV, thus H is open in the
topology defined by B'.

Inside the profinite group Aut 7, the family {st(n) | n € N} forms a system
of neighborhoods of the identity. For a subgroup G < Aut7, equipped with the
subspace topology, we can take as system of neighborhoods of the identity the family
{G Nst(n) | n € N} = {stg(n) | n € N}, and the topology given by the basis

{gstq(n) | g € G and n € N}

is called the congruence topology. Since stg(n) are normal subgroups of G with finite
index for every n € N, the profinite topology is finer that the congruence topology.

The congruence subgroup problem asks whether these two topologies coincide.

Definition 1.22. A subgroup G < Aut 7 is said to have the congruence subgroup
property if every finite-index subgroup of G contains a level stabiliser stg(n) for

some n € N.

One can reformulate this property in terms of completions. More precisely, let G
and G be respectively the profinite completion and the congruence competion of G,
i.e. the completion of G with respect to the profinite topology and the congruence
topology. If (Z, =) is a directed set and 7’ is a subset of Z, the set Z’ is said to
be cofinal in T if for every i € Z there is some i € 7’ such that i = 7. Now
N ={NJdG | |G: N| < oo} and N/ = {stg(n) | n € N} are directed sets
with respect to the reverse inclusion. If the group G has the congruence subgroup
property, that is for all N € A there exists ny € N such that stg(ny) < N, it follows
that NV’ is cofinal in V. In this case from [46, Lem. 1.1.9] the completions of G with
respect to the profinite topology and the congruence topology are isomorphic.

This property holds for some well-known examples of groups acting on rooted
trees, such as the Grigorchuk group [6] and GGS-groups over the p-adic tree with

non-constant defining vectors [20].



28 1.5 Congruence subgroup property

Most of the well known subgroups of AutT are groups acting over the p-adic
tree for a prime p, and they are often subgroups of the pro-p group I' defined in
Definition 1.3. For a group G < T, the index |G : stg(n)| is a power of p for all
n € N. Thus when G does not have the congruence subgroup property it is natural
to ask if G has the p-congruence subgroup property, i.e. if every normal subgroup of
G with index a power of p contains some level stabilizer. This weaker version of the
congruence subgroup property was introduced by Garrido and Uria-Albizuri [27]. In
this paper, examples of weakly branch, but not branch, groups with the p-congruence
subgroup property and not the congruence subgroup property were provided. For
p odd, their examples were the GGS-groups defined by the constant vector, and for
p = 2, their example was the Basilica group. We will extend this result to p-Basilica
groups, for all odd primes p (see Section 3.4 for details).

Thinking of the congruence subgroup property from a topological point of view,
by allowing other completions, in [27] the authors introduce a further generalization
of the congruence subgroup property, i.e. the C-congruence subgroup property, where

C is a pseudo-variety, a class of groups satisfying the following definition.

Definition 1.23. Let C be a class of finite groups. We say that C is a pseudo-variety

of finite groups if the following properties are satisfied:
(i) C is closed under taking subgroups, that is, if G € C and H < G then H € C,
(ii) C is closed under taking quotients, that is, if G € C and N QG then G/N € C,

(iii) C is closed under taking finite direct products, that is, if Gi,...,Gy € C for
k€N then [[, G; € C.

Definition 1.24. Given a pseudo-variety C and a subgroup G < Aut7 such that
G/stg(n) € C for all n € N, the group G satisfies the C-congruence subgroup
property, or C-CSP for short, if every quotient of G lying in C is a quotient of some

G/ stg(n).

Remark 1.25. We observe that when C represents the class of finite groups or of
finite p-groups, that is in the case of the congruence subgroup property or of the

p-congruence subgroup property, the class C is also closed under taking extensions.

Since we often deal with groups that are subgroups of Aut7 x --- x Aut7 we

reformulate the last definition in a more general context as follows.
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Definition 1.26. Let K be a group and let C be a pseudo-variety of finite groups.
If £ = {K,}nen is a descending series of normal subgroups of K with K/K,, € C
for every n € N then we say that K has the C-congruence subgroup property (the
C-CSP, for short) relative to I if the following property holds: if LK and K/L € C
then there exists n € N such that K,, < L.

Thus the C-CSP for a subgroup G of Aut 7T is nothing but the C-CSP relative
to the series given by S, = {stg(n)}nen. Observe that the classical congruence
subgroup property of matrix groups also fits into this definition.

If we have a group K with a series K = { K, },,en then every subgroup H and ev-
ery factor group K/N have naturally induced series { HN K, } nen and { K, N/N }pen.

Then as in [27] we have the following.

Lemma 1.27. Let K be a group, let C be a pseudo-variety of finite groups, and let
K = {Ku}nen be a descending series of normal subgroups of K with K/K, € C for
every n € N. Then, given N < K, the following hold:

(i) If K has the C-CSP relative to K then K/N has the C-CSP relative to the

induced series.

(ii) If both N and K/N have the C-CSP relative to the induced series, then K has
the C-CSP relative to K.

(iii) Assume that C is closed under extensions. If K has the C-CSP relative to K
and K/N € C then N has the C-CSP relative to the induced series.

Proof. (i) Let H be a normal subgroup of K containing N such that H/N < K/N
and % ~ K/H € C. Since K has the C-CSP relative to L and H is a normal
subgroup of K such that K/H € C, there exists n € N such that K,, < H. Hence
K,N/N < HN/N = H/N.
(ii) Let L < K such that K/L € C. We consider the intersection L N N < N and we
note that
N _NL_K
LNN L — L
Since the class C is closed under subgroups, it follows that N/(L N N) € C. Thus

there exists n € N such that K,, "N < LN N.

1%

eC.

We observe that (L N K,)N is normal in K. Moreover the map sending g €
K/(LNK,) to (gL,gK,) € K/L x K/K, is an injective homomorphism, so K /(LN
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K,,) is isomorphic to a subgroup of K/L x K/K,. Since both quotients K/L and
K/K, belong to C, from the properties (i) and (iii) in Definition 1.23 it follows
that K/(L N K,) € C. The quotient K/(L N K, )N is isomorphic to a quotient of
K/(L N K,) and by (ii) in Definition 1.23 it belongs to C. By hypothesis, K/N
has the C-CSP. Since (L N K,,)N/N < K/N, there exists [ € N such that K;N/N <
(LNK,)N/N, so KN < (LNK,)N. Let m be the maximun between n and {. By
the Dedekind law we have

Km=K,NK <K,N(LNK,)N = (LNKy)(K,NN)<L

and the result follows.

(ii) Let L < N such that N/L € C. Since K/N € C and C is closed under extensions
it follows that K/L € C. So there exists n such that K, < L so K,, NN < L. This
completes the proof. O

For a group K with a series K = {K,},en of normal subgroups, we let K (@)
denote the dth cartesian power of K, and K@) = {Kfld)}neN the series naturally
induced by K in K. We have the following result.

Lemma 1.28. Let K be a group, let C be a pseudo-variety of finite groups, and let
K = {K,}nen be a descending series of normal subgroups of K with K/K,, € C for
every n € N. If K has the C-CSP relative to K, then K@ has the C-CSP relative

to the induced series for every d € N.

Proof. Let N be a normal subgroup of K@ such that K@ /N € C. For every
ie{l,...,d}, let
K;={1,"L k1,9 ke K}

and N; = N N K;. Then K; = K has the C-CSP relative to the series
Kin = {(1,=4 k, 1,970) | k € K,).

Since K;/N; = K;N/N < K (d) /N it follows that K;/N; € C and consequently there
exists n; € N such that K;,, < N;. If n = max;—;,__gn; then Ky(ld) < N, which
completes the proof. O

We reformulate [27, Lem. 6] as follows.
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Lemma 1.29. Let G be a subgroup of AutT and N I M < G. If G/M has the
C-CSP and M/N has the C-CSP, then G/N has the C-CSP.

We will focus on the case of the variety of finite p-groups, thus in the following
we refer to the p-CSP.

The following lemma is a slight generalisation of [27, Thm. 1], which corresponds
to the case when N is chosen so that L < K’. For completeness we give the full

proof here.

Lemma 1.30. Let G be a subgroup of AutT that is weakly branch over a normal
subgroup K. Let N be a normal subgroup of G such that:

(i) K' <N <K.
(ii) If L= (N x ---x N) then G/N,N/L and N/K' have the p-CSP.
Then G has the p-CSP.

Proof. Set Ly = w;l(N X m x N) for every k € N. We first prove by induction on &
that Li < G. Let g € G. Since G is self-similar, there exist hq,...h;, € G such that
¥(g) = (h1, ..., hy)T where 7 € Sym(X). The subgroup N is normal in G, thus we
have

B(LI) = (N x oo x NP)T = (N x -+ x N7 = (L)

where the last equality holds since the conjugation by 7 just permutes the compo-
nents. Assume the result true for £ — 1. We observe that
m
Y(Lg) = L1 X -+ X Ly_1.
Hence by induction we have

L) = (=)™ 5o X (L)) = (Dpmy X2 % L) = 4( L)

and the result follows.

Now we are going to prove by induction on k that G/Lj has the p-CSP. Since
L, = L and both G/N and N/L have the p-CSP, the result for £ = 1 follows
by Lemma 1.29. Now we suppose that it holds for & and we prove it for k + 1.
Observe that it suffices to prove that Ly /Ly satisfies the p-CSP. The series we are
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considering in this quotient is the one induced by {stz, (n)}nen. We have

mk

Yr(Lg) = N x--- x N (1.5.1)

and
mk’

Yp(Lg1) =L x -+ x L,

mk
so that 1 induces an isomorphism between Ly/Lyy1 and N/L x --- x N/L. Also

k

Yi(str, (n)) =sty(n —k) x Tox sty (n — k), for every n > k. (1.5.2)

Since N/L has the p-CSP with respect to {sty(n)L/L}nen, it follows that

k mkF

x N)/(L x -

m

mk
N/L x ™. x NJL = (N x " x L)

has the p-CSP with respect to the series induced by (1.5.2). It follows that Ly /Li+1
has the p-CSP, as desired.

In order to conclude that G has the p-CSP, let J <G be such that G/J is a finite
p-group. Since G is spherically transitive by the definition of weakly branch group,
we have rst(i)’ < J for some i € N by [27, Lem. 4]. Define the subgroup K; of the
i-th rigid stabiliser by the condition

Vi) = K x - x K. (1.5.3)

Since K’ < N it follows that K] < L;. Now taking into account that N/K' has the
p-CSP, the same argument as above yields that L;/K/ has the p-CSP as well. Thus
from Lemma 1.29 it follows that G/K/ has the p-CSP for every i € N. Since K| <
rstg (i)’ < J, this proves that J contains some level stabiliser in G and consequently
G has the p-CSP. O

The next lemmas are useful to prove that a group has the p-CSP.

Lemma 1.31. Let N and G be subgroups of AutT with N < G and G/N free

abelian of rank r, for some r € N. Suppose that, for large enough n € N, we have
G/N stg(n) = Cpxl(m X oo X Cpaniny s (1.5.4)

with lim, 00 Aj(n) = 00 for 1 <i <r. Then G/N has the p-CSP.
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Proof. Let N < J < G, where |G : J| = p™, for some m € N. Then G < J. Now
choose an integer n such that A\;(n) > m for 1 <i <r. We observe that

G

GP" N sta(n

/\

G NSt(;( )

\/

and by (1.5.4) we have

m m

|G/N st (n) : (G/Nsta(n))” | = |G/Nsta(n) : G Nstg(n)/N sta(n)| = p™
=|G/N : (G/N)""|,

which implies GP" N stg(n) = GP" N. Hence stg(n) < GP"N < J, and G/N has
the p-CSP. (]

We recall that a group G < Aut T has the weak congruence subgroup property if
every finite-index subgroup contains the derived subgroup of some level stabiliser;
cf. [50]. As we will see, the p-Basilica groups are the first examples of weakly
regular branch groups with the p-congruence subgroup property but not the weak

congruence subgroup property.

1.6 Maximal subgroups and prodense subgroups

The study of maximal subgroups of finitely generated branch groups started in 2000
when Pervova proved in [44] that the Grigorchuk groups and the periodic GGS-
groups acting over the p-adic tree do not contain maximal subgroups of infinite index.
In [7] Bartholdi, Grigorchuk and Sunic asked if every maximal subgroup in a finitely
generated branch group is necessarily of finite index. This problem was solved in
2010 by Bondarenko who constructed in [12] the first example of a finitely generated
branch group that does have maximal subgroups of infinite index. His method does
not apply to groups acting on the binary and ternary trees. Francoeur and Garrido

showed in [25] that the non-torsion Sunic groups have maximal subgroups of infinite
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index, providing the first examples of finitely generated branch groups acting on the
binary tree with such property. In [26] the authors extend the result of Pervova
by showing that all the non-periodic GGS-groups acting over the p-adic tree have
maximal subgroups only of finite index. In [24] the author proves that every maximal
subgroup of the Basilica group is of finite index. In Section 3.7 we will see that this
result extends to the p-Basilica groups.

The existence of maximal subgroups of infinite index is related to the existence

of proper prodense subgroups.

Definition 1.32. Let G be a group. A subgroup H of G is called prodense if
HN = G for all non-trivial normal subgroups N of G.

Following the notation in [24] we will denote by MF the class of groups whose

maximal subgroups are all of finite index.

Proposition 1.33. [2/, Prop. 2.22] Let G be a finitely generated infinite group such
that every proper quotient of G belongs to MJF. Then G admits a proper prodense

subgroup if and only if G admits a mazimal subgroup of infinite index.

We observe that when the group G is finite, then G belongs to MJF and every
proper quotient of G is in M. This is not the case for an infinite group, but for a
finitely generated branch group the condition to be in MF for every proper quotient

of G is always satisfied.

Proposition 1.34. [24, Prop. 2.23] Let G be a finitely generated branch group.
Then, G is infinite and every proper quotient of G is in MJF. In particular, G
admits a mazimal subgroup of infinite index if and only if it admits a proper prodense

subgroup.

We will see in Chapter 3 that for every prime p, the p-Basilica group is not a
branch group, so the previous proposition cannot be applied directly. As proved
for the Basilica group in [24, Sec. 4] we will see that every proper quotient of the
p-Basilica group is virtually nilpotent. More specifically we will use the following

results.

Theorem 1.35. [2/, Thm. 4.10] Let T be an m-adic tree for m > 2, and let G <
Aut T be a weakly regular branch group over a subgroup K. Let P be a property of
groups that is preserved under taking finite direct products, quotients and subgroups.

Then, every proper quotient of G is virtually P if and only if G/K' is virtually P.
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In Chapter 3 we will show that for a prime p, every proper quotient of the p-
Basilica group is virtually nilpotent. Since every finitely generated virtually nilpo-

tent group is in MF we can use the following result.

Theorem 1.36. [2/, Lem. 3.1, Thm. 3.2 and Thm. 3.3] Let T be a regular rooted
tree and let G < Aut T be a weakly branch group. Suppose that every proper quotient
of G is in MF. If H is a (proper) prodense subgroup of G, then ¥y (stg(u)) is a
(proper) prodense subgroup of 1, (stg(u)), for every vertex w € X*. Furthermore, if
M < G is a mazimal subgroup of G of infinite index, then ¢, (styr(w)) is a maximal

subgroup of ¥y (stg(u)), for every vertex uw € X*.

1.7 Automata groups

In this section we define automata groups. The automata groups are constructed
from automata. We will not define automata in all generality, we limit ourselves
to define the class of invertible synchronous finite state automata. We refer to [33]

and [8] for more details.

Definition 1.37. An invertible synchronous finite state automaton is a set A =
(Q, X, m, \) where

(i) X is a finite set called the alphabet,
(ii) @ is a finite set called the set of states,
(iii) mis amap m: X x Q — @ called the transition function,

(iv) AMisamap A : X x Q — X, called the output function, such that the function
Ag 1 X — X defined as A\;(z) = A(x, ) is a permutation of X for all ¢ € Q.

In the sequel we will refer to the invertible synchronous finite state automata
simply as finite automata.
The maps 7 and A can be extended to X* x ) according to the following rules:

n(0,) = g e = ()

(1.7.1)
A0, q) = Mzw, q) = Mz, )M (w, (7, q))

where x € X, ¢ € Q and w € X*.
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From (1.7.1) for all ¢ € @ the function A\, can be extended to an automorphism
of X* that fixes the empty word and preserves the incidence, i.e. it defines an
automorphism of an m-adic tree where m = | X|.

If the automorphism ), is bounded for all ¢ € @, the automaton A is called
bounded.

Definition 1.38. The automorphisms A, for ¢ € @ defined by an automaton A
generate a group with respect to the composition called automaton group generated

by A or group generated by the automaton A.

A finite automaton can be also represented by using directed labelled graphs
whose vertices correspond to the elements of ) and there exists an edge from the
state g1 to g9 if and only if 7(x,q1) = qo, for some z € X. In this case the edge
is labelled by z|\(x, ¢1). By starting from the node corresponding to a state ¢ and
following the edges it is possible to find the images of a word v € X* under the
action of )\;. In the next figure we have an example.

ZElliL‘l
1‘1|IL‘2

Ta|x3
(o
w&i{:&

FIGURE 1.5: An example of a directed labelled graph.

In this case @ = {Id,a}, X = {z1, 2,3} and the functions 7 and A are defined

as follows
T @xX — @
(Id,z;) — Id forie {1,2,3}
(a,z;) — Id forie {1,2,3}
and
A QxX Y
(Id, z;) z; forie {1,2,3}

(a,x;) ziy1 forie {1,2}

(CL, ZL'3)

L4l

x1
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For example, if f is the action of a in the automaton represented in Figure 1.5 the

image of the word xzox1x1x3 under f is the following
f(zaz1z123) = Na(T2T12123) = T3A1a(T17173) = 23712123

and it is easy to note that for a general word x;, - - - x;, the image is f(x;, -+ ;) =
Txiy -+ - X, Where T coincides with x;, 41 when 4; € {1,2} and T = x; when i; = 3,
i.e. it represents a rooted automorphism in Aut7 where 7 is the 3-adic tree.

Now suppose that we are given a subgroup G' = (S) of Aut 7, where S is finite. If
we have the property that s, € S for all s € S and all z € X, then G is an automaton
group with @ = S. Indeed, it suffices to consider the automaton corresponding to
the graph whose vertices are the elements of S and having an edge from s to s, for
every ¢ € X, labelled with x|s(z). By using this, one can see that all groups defined

in the next section are automata groups.

1.8 Some groups of automorphisms of regular rooted
trees

In this section we define and describe the properties of some well known groups of

automorphisms of regular rooted trees.

1.8.1 The first and the second Grigorchuk group

The first Grigorchuk group I' is a group acting on the binary tree generated by 4
automorphisms I' = (a, b, ¢, d) where a is the rooted automorphism corresponding to
the transposition o = (1,2), and the other generators are directed automorphisms

defined recursively as follows

P(b) = (a,c)
¥(c) = (a,d)
¥(d) = (1,b)

The portraits of the generators b,c and d are represented in the Figure 1.6 where
the only non-trivial labels until the third level are represented in the picture and

from the fourth level the non-trivial labels appear with the same sequence.
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b: c: d:

FIGURE 1.6: Directed generators of the first Grigorchuk group.

This group was introduced by Grigorchuk in 1980 [28] as a new counterexample
to the General Burnside Problem, indeed it is an infinite finitely generated periodic
group. Moreover it is the first known group with intermediate growth, is just infinite,
is regular branch over the subgroup K = ([a,b])’ and has the congruence subgroup
property.

The second Grigorchuk group was introduced in the same paper. It is a group
acting over the 4-adic tree and it is generated by two automorphisms a and b where
a is the rooted automorphism corresponding to the cycle o = (1234) and b is a

directed automorphism defined recursively as follows

»(b) = (a,1,a,b).

In Figure 1.7 we show the portraits of the generators a and b.

FIGURE 1.7: Generators of the second Grigorchuk group.
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As the first Grigorchuk group, the second Grigochuk group is a counterexample
to the General Burnside Problem, is just infinite, is regular branch over 73(G) and

possesses the congruence subgroup property.

1.8.2 The Gupta-Sidki groups

For an odd prime p, the Gupta-Sidki p-group is a group acting over the p-adic
tree generated by two automorphisms a and b where a is the rooted automorphism
corresponding to the cycle 0 = (12 --- p) and b is a directed automorphism defined

recursively as follows

F1GURE 1.8: Directed generator of the Gupta-Sidki p-group.

These groups were defined by Gupta and Sidki in 1983 [36]. For every prime
p the Gupta-Sidki p-group is a counterexample to the General Burnside Problem,
is just infinite, is regular branch over its derived subgroup and has the congruence

subgroup property.

1.8.3 The GGS-groups

The GGS-groups are a generalization of the second Grigorchuk group and the Gupta-
Sidki groups. Given e = (e1,...,em—1) # (0,...,0) in (Z /mZ)™" !, the GGS-group
G corresponding to the defining vector e is the subgroup G = (a, b) of Aut 7, where

a denotes the rooted automorphism corresponding to the cyclic permutation ¢ =
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(1,2,...,m) and b is a directed automorphism belonging to st(1) defined recursively

W(b) = (@, ..., a1, b).

FIGURE 1.9: Directed generator of a general GGS-group.

From the recursive definition of b it is clear the reason for the exclusion of the
defining vector e = (0, ..., 0), since in this case the automorphism b would be trivial
and G would be isomorphic to the cyclic group C,,. We note that a has order m
and the order of b is m/d where d = ged(eq, ..., em—1,m).

The labels in the portrait of b are all trivial except the labels in the vertices of
the form ux where u € {0, 21, T Tm, T TmTm, - ..} and © € {x1, T2, ..., Ty_1} that
are equal to o%.

We observe that the second Grigorchuk group is the GGS-group acting over the
4-adic tree with defining vector e = (1,0, 1) and for a prime p the Gupta-Sidki p-
group is the GGS-group acting over the p-adic tree with defining vector given by
e=(1,-1,0,2730).

1.8.4 The Basilica group

The Basilica group is a group acting over the binary tree introduced by Grigorchuk
and Zuk in [34]. The Basilica group is torsion-free, of exponential growth, is weakly
regular branch over its derived subgroup but not branch, does not have the con-
gruence subgroup property and is not just-infinite. It was the first example of an

amenable but not subexponentially amenable group.
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The Basilica group B is generated by two automorphisms B = (a,b) defined

recursively as follows:

Y(a) = (1,b) and ¥(b) = (1,a)0

where o denotes the transposition (1,2). The portraits of the generators are the

following.

g

FIGURE 1.10: Generators of the Basilica group.

The labels in the portraits are all trivial except the labels in the vertices u €
2nt1 2
{2 -n-+' x9 | n € N} for the automorphism a and in vertices u € {0, o "y | n € N}

for the automorphism b that are equal to o.
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GGS-groups over primary trees:

branch structures

In this chapter we study some properties of the GGS-groups acting over the p™-adic
tree that let us describe the branch structures of most of these groups.

We already mentioned that Vovkivsky gave in [56] a criterion for an infinite and
periodic GGS-group G over the p™-adic tree to be a regular branch group. He actu-
ally showed that a periodic GGS-group G with defining vector e = (e1,...,epm_1)
is a regular branch group over G” if and only if there exists k € {1,...,p" — 1} such
that ex # 0 mod p. He also proved two criteria for these groups to be respectively in-
finite and periodic. In particular G is periodic if and only if for each k =0,...,n—1

the following conditions hold
Sk = epk tegpp + -+ epn_pp =0 (mod PP (2.0.1)
and it is infinite if and only if there exists an 7 > 0 such that
Ry< Ry <--<Ri=Rij1=-<n (2.0.2)

where the sequence R; is defined recursively as follows: Ry is the largest integer
such that pfo | e, for all s € {1,...,p" — 1}, and for j > 0, and while R; < n,
Rj4q is defined inductively as the largest integer such that plt+1 divides e, for all
s {phi 2ptii ... pt—pli}.

By Vovkivsky’s result it follows that if n = 1 a GGS-group G acting over the p-

adic tree is always infinite and it is periodic if and only if the sum of the components

43
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of the defining vector is 0 modulo p. In [22] and [20] it has been proved that a GGS-
group over the p-adic tree is always regular branch with the sole exception when the
defining vector is constant, in which case it is shown that G is not branch although
it is weakly regular branch.

From (2.0.1) we note that most of the GGS-groups over the p"™-adic tree are not
periodic. In this chapter we extend some of the previous results to the general case

of a p-adic tree in many instances.

2.1 Preliminary results

In this section we collect some properties and preliminary results about the GGS-
groups acting over the p'-adic tree.

It is convenient to recall the definition. The GGS-group G corresponding to the
defining vector e = (ey,...,epn_1) € (Z /p*Z)P"~1 \ {0} is the subgroup of AutT
generated by two automorphisms G = (a,b), where a is the rooted automorphism
corresponding to the cycle o = (12 --- p™) and b is the directed automorphism

defined recursively as follows
P(b) = (a*,...,a%"1b).

For every integer ¢ > 0 let b; := b%. From the property of the section (1.1.4) we

have

»(b) = (a®,...,a%"~1b)
W(by) = (b,a®,...,a%" 1)

w(bp"—l) = (ae27 s 7a’epn_17 b, ael)'

As already mentioned, we let p’® be the highest power of p dividing all entries of
e. We note that the order of the generator a is p" and from the general expression
for the order of b over the m-adic tree given in Section 1.8.3, it follows that the order
of bis p"_RO.

Proposition 2.1. Let G be a GGS-group acting over the p™-adic tree. Then

(i) ste(1) = (BYC = (b,be, ..., b ).
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(ii) G = (a) x sta(1).

Proof. Clearly (b))% = (b, ba,...,b“pnfl) and also the inclusion (b, ba,...,bapnfl) <
st(1) is trivial. For the reverse inclusion we note that an element ¢ € G can
be written as g = a‘h where i € {0,1,...,p" — 1} and h € (b, ba,...,bapn ). In
particular g € stg(1) if and only if ¢ = 0 and (i) is proved. Since st(1) <G and the

-1

intersection (a) Nstg(1) is trivial, the proof is completed. O

Our first goal is to determine the abelianisation of GG. Following the notation
in [2], let H = (c,d | *" = d?" "™ = 1) be the free product {(c) * (d) of two cyclic
groups of order respectively p™ and p” 0. We prove that the abelianisation of G
coincides with the abelianisation of H, i.e. G/G' = H/H' = Cpyn x Cpn-r, (see [47,
Exercise 6.2.4]).

We consider the natural projection m : H — G such that ¢ — a and d — b.
Thus G = H/K where K = kerm. The description of the kernel K can be de-
duced from [48, Proposition 1] where it was proved for Aleshin type groups. These
groups can be seen as spherically transitive groups acting over spherically homoge-
neous rooted trees generated by rooted automorphisms and directed automorphisms.
However the condition to be spherically transitive is not required in the proof of [48,
Proposition 1]. Thus it applies to all GGS-groups acting over the p™-adic tree. Such
proposition can be rephrased, as done in [2, Proposition 4.2] for multi-edge spinal
groups, in the case of GGS-groups acting on primary trees as follows. For this

purpose, let us consider the homomorphism

d: () — HxV' xH

k k
e — (. e d)T

where o permutes the components of a tuple in H x ox H according to the cycle
(12...p").

Proposition 2.2. Let G = (a,b) be a GGS-group acting on the p"-adic tree, and
let H be as above. Consider the subgroup K = US2 (K, where Ky =1 and K,, =
O (K, 1 x i X K1) for n € N. Then the epimorphism m : H — G given by
¢+ a and d — b has kernel ker(m) = K. In particular G = H/K.

Now, following the idea in [2, Proposition 4.3] we determine the abelianisation

GG,
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Theorem 2.3. Let G be a GGS-group acting on the p™-adic tree. Then G/G' =

Cpn X CpnfRO .

Proof. First of all we prove that
>V (H x " x H') < H. (2.1.1)

For this purpose, let h € (d), and so h = (d*)7" - (di™)"™ form > 0, i1,...,im €
{1,...,p" B — 1}, and j1,...,jm € Z/p"Z with js # jei1 for 1 < s <m —1. We
write ®(h) = (h1,...,hpn). Let eqr(h) the sum of 4; for [ € {1,...,m} such that
ji = k, which coincides with the exponent sum of h with respect to d®. Then we

have

T

m P p"
ea(h) = ir=> eqr(h) = ealhs).
=1 k=1

k=1
If h ¢ H', since e.(h) = 0 (mod p") and H/H" = Cyn x Cpn-ry, it follows that
e€q(h) # 0 (mod p"~F0), thus eq(hy) Z 0 (mod p"~F0) for some k € {1,...,p"}. Tt
follows that ®(h) & H' x "~ x H' and (2.1.1) holds.
Let K = UK, as above. We show now that K < H’ by proving by induction
that K, < H’ for all n. Trivially the result holds for n = 0, and the case n = 1
follows from (2.1.1). Assume by induction that K, 1 < H’, then again from (2.1.1)

we have

n

Kp=0 '(Kn1 x " x Kn1) <O WH x " x H) < H,

as desired. Since G = H/K from the previous proposition, it follows that G /G’ =
H/H'K = H/H', which completes the proof. O

It readily follows from the definition that all GGS-groups are self-similar. Con-
sequently we can consider the group homomorphism 1, : stg(u) — G given by
g — gu. Recall that a subgroup G of Aut 7T is said to be fractal if it is self-similar
and v, is onto for every vertex u of the tree.

We denote by F(p") the set of defining vectors e € (Z /p" Z)P"~\(pZ /p" Z)P" L.
We observe that the condition e € F(p™) is equivalent to requiring that Ry = 0.

The following lemma shows that the condition e € F(p™) is a necessary and

sufficient condition for the group G to be fractal and spherically transitive.
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Lemma 2.4. Let G be a GGS-group over the p™-adic tree with defining vector e.

Then the following conditions are equivalent:
(i) G is spherically transitive.
(ii) G is fractal.

(iii) The composition of 1 with the projection on any component is surjective from

sta(1) onto G.
(iv) e € F(p").

Proof. We start by proving that e € F(p") implies that G is spherically transitive,
fractal and that the composition of ¢ with the projection on any component is
surjective from stg(1) onto G. By [55, Lemma 2.7], in order to prove that G is
spherically transitive and fractal, it suffices to see that G acts transitively on the
vertices of the first level of 7 and that ¢, (stg(x)) = G for some x € X. The former
is obvious, since a € G, and for the latter observe that since e € F(p") we have
p 1t e; for some ¢ and then ¥,n (b—;) = a® and ¢pn(b) = b generate G. This, together
with the fact that G is spherically transitive, implies (iii).

Now let e ¢ F(p™). Since p divides all components of e, for every x € X and
g € stg(z) the section gy is a word in {a?,b}. Thus G is not fractal and 1), cannot
be surjective from ste(1) onto G since we cannot obtain sections of the form a’h
for i coprime with p and h € stg(1). Now assume for a contradiction that G is
spherically transitive. Then there exists g € G such that g(z1z1) = x122. However,
from (1.1.3) and by the above we have g(z121) = g(21)gs, (x1) = x12; for some

j =1 (mod p), which is a contradiction. ]

As a consequence, since branch groups are spherically transitive by definition, in
the remainder we will always assume that e € F(p"), unless otherwise stated. Then
Ry = 0 and both a and b have order p".

The next lemma is the main tool for finding a branch structure in a GGS-group
and it is the generalization of [22, Prop. 2.18] to the case of a GGS-group G acting on
a p-adic tree with defining vector in F(p™). Indeed the only required conditions on
G in the proof on the aforementioned proposition are that G is spherically transitive

and that the map 1 is surjective on each component.
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Lemma 2.5. Let G be a GGS-group over the p"-adic tree with defining vector
in F(p"), and let L and N be two normal subgroups of G. If L = (X)%, and
(z,1,...,1) € p(N) for every x € X, then

L x---x LCy(N).
S

We observe that if G = (a,b) is a GGS-group with defining vector e, then
for an integer A #Z 0 mod p the set {a,b*} is also a generating set for G, where
b can be thought of as a directed automorphism defined recursively by ¢(b*) =
(a1, ..., a1, b*). Since we reduced our study to the GGS-groups with defining
vector e € F(p"), there exists an invertible component, say e. Thus up to multiply-
ing the defining vector by the inverse of e modulo p™ we can always assume that one
of the components of e is 1. The next lemma, that generalizes [22, Thm. 2.16], tells
us also more. It shows that if a component e of the defining vector of a GGS-group
G is invertible mod p then there exists another GGS-group which coincides with G
up conjugation in Aut 7 whose defining vector has the p*-th component equal to 1,

where p® is the highest power of p dividing k.

Lemma 2.6. Let G be a GGS-group over the p"-adic tree with defining vector
e € F(p"), and assume that e, Z 0 mod p. If p® is the highest power of p dividing
k then there exist o € Sym(p™ — 1) and f € AutT such that:

(i) a(p®) =k,
(ii) a(p™ — i) =p" — (i) foralli=1,...,p" — 1.

(iii) GT is the GGS-group with defining vector € = e,;l (€a(1)s -+ s Capr—1)). In

re=1.

particular, e,

Proof. By hypothesis we can write £k = hp® where h # 0 mod p. If r is a solution
to the congruence hr = 1 mod p"~*, then the permutation § € Sym(p") given by
(i) = ri mod p" for every i satisfies that 0% = ¢” and 6(k) = p°.

Let us define f € AutT recursively by f = dh, where d is the rooted automor-
phism corresponding to J, and h € st(1) is defined via ¥(h) = (f,..., f). Note that
h commutes with any rooted automorphism, since its components under v are all

the same. Then
of = (@D = (" =d", (2.1.2)
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since a? is the rooted automorphism corresponding to the permutation ¢® = ¢”.

Now let a = 6! and observe that « satisfies (i) and (ii). Also
D)) = ()P = (a0, .. a%em - b)Y = (700, a0 b)),

by using (2.1.2). Since 7 #Z 0 (mod p), it follows that G = (a”,b') = (a,bf) is the
GGS-group with defining vector (req(1y,---;7€qpn_1y). If we multiply this vector
by the inverse of re, modulo p" then we see that GY is also the GGS-group with

defining vector €, which proves (iii). O

Using the notation in [20] we define yo = ba~! and for all integers i we define
yi = ygi. For a GGS-group G over the p"-adic tree the subgroup K = (yo)¢ will
play an important role in the study of the structure of G, so we collect here some

of its properties.
Lemma 2.7. Let G be a GGS-group over the p™-adic tree and let K = (y0)¢. Then
(i) G' < K.
(1) K = (Yo, ypr—1)-
(i) K' = {lyo,yi] | i € {1,....p" =1} = ([yg. 91] | 9, h € G)°.
() Ypr—1ypn—2- - y1yo = 1.
Proof. We observe that the set {a,y0} generates G, thus G’ = {[a,yo])® and (i)

follows since K is normal in G. The second item follows from the fact that a has

—1 . . .
order p" and yg’ =y b — yz”}rl Since K’ is normal in G we have

K' = [y, y;] | 4,5 € {1,...,p" —1})C.

The second equality in (iii) follows from the fact that K = (yo)¢ = (y1)¢. For the
first equality we observe that [y;,y;] = [yo,yj_i]“i and this completes the proof of
(7i7). An easy calculation shows that (iv) holds. O

2.2 Regular branch GGS-groups over primary regular

rooted trees

As remarked in the previous section, in order to find a branch structure for a GGS-

group G acting over the p™-adic tree, we can assume that G has a defining vector in
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F(p™). This is equivalent to asking that Ry = 0 and this implies that the order of
both generators a and b of G is p™.
Given e € F(p"), we define

Y(e):={1<i<p"—1]e #0modp} C X, (2.2.1)

and
t(e) :=max{s€Z|s>0andp®|iforallicY(e)}. (2.2.2)

If there is no confusion about e then we simply write Y and ¢ for Y (e) and t(e).
Then we have Y C {p’,2p!,...,p"—p'}, and we say that Y is mazimal if the equality
holds. Also we define

E(p") ={e e F(p") | eipt = ejpr mod p for all 1 <i,5 < p"~* —1}, (2.2.3)

that is, the set of vectors that have the same values modulo p for the set of indices
{p',2p',...,p" — p'}. Note that if e € £(p") then Y is maximal.

According to Lemma 1.14, G has one of the four types of branch structure that
we have defined in Definition 1.10 and Definition 1.11 if and only if G¥ does. Thus,
by part (i) of Lemma 2.6, in order to study branch properties in a GGS-group, we
may assume without loss of generality that e, = 1, where ¢t = t(e) is as in (2.2.2).

In the remainder of this section, we fix the notation k := p'.

Definition 2.8. Suppose that e is a defining vector for a GGS-group G. We shall
say that e is invertible-symmetric, IS for short, if for all ¢ the component e; is

invertible if and only if ey»_; is. Then we also say that G is IS.

We start our analysis of branch structures in GGS-groups by dealing with the
case when G is not IS. By Lemma 2.6 we may assume that e, = 1 and q := epn_j, =
0 mod p. (Note that here part (ii) of the lemma is also needed.) We define a sequence

{gi}i>0 of automorphisms of 7 by means of

i+1]

Wig) = (1,...,1,[a,b],1,...,1) - (1,...,1,]p%,a? '], 1,..., 1), (2.2.4)

where the non-trivial components appear in the k-th position and in the (p™—2ik)-th

position, respectively, the latter being understood modulo p™.

Lemma 2.9. The sequence {g;}i>o0 defined in (2.2.4) is contained in stg(1)'.
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Proof. Since ¥([b,bx]) = (1,...,1,[a,b],1,...,1,[b,a?), where the non-trivial com-

ponents are at positions k& and p", we have gg = [b, bg]. Similarly,

i—1

Y6 T =L a1, ) (L [ 6L ),
(2.2.5)
where the non-trivial components appear at positions p" —(2i—1)k and p"— (2i—2)k,

respectively, and

i1
]

601y = (1, L 1) 1 a7, 1), (2.2.6)
with non-trivial components at positions p™ — 2ik and p™ — (2¢ — 1)k. By combining
(2.2.4), (2.2.5), and (2.2.6), one can readily check that

i-1 - (2i-1)k

gi = gia b7, b7 ] AR

for all 4 > 1. Thus g; € stg(1)" by induction on i. O
The following result is a consequence of the previous lemma.

Theorem 2.10. If G is not IS then
P(sta(l)) =G x - x G

In particular, G is reqular branch over G'.

Proof. The inclusion C is obvious since G is self-similar, so we only need to prove the
reverse inclusion. Let g; be defined as in (2.2.4). Since o(b) = p" and ¢ is divisible

by p, we have [b9", aqn“] = 1. Thus ¥(g,) has all components equal to 1 with the
exception of the component at position k, which is equal to [a, b]. Since g,, € stg(1)’

by Lemma 2.9 and G’ = {([a,])“, the desired inclusion follows from Lemma 2.5. [

In the remainder of this section we shall assume that G is IS. We continue our
analysis of branch structures by considering the case when Y is not maximal. Let
h be the smallest integer in {1,...,p" " — 1} such that hk ¢ Y. Note that h > 2.
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Then we set

q = €pn_hpk
Y = epn_(h_l)k

z = epn_k,

in other words, ¢, y and z are the symmetrical components of epg, €(,—1), and eg.
Thus p divides ¢, and y and z are invertible modulo p. In this case we define a

sequence {g;}i>o of automorphisms of 7 as follows:

i i1 2i41,,—(2i4+1)
z , al Y ]

w(gi)=(1,...,1,[a,b,a],1,...71)-(1,...,1,[bz,a 717--'71)7

where the non-trivial components are the k-th and the (p" — 2ik)-th.
Lemma 2.11. The sequence {gi}i>o defined in (2.2.7) is contained in y3(sta(1)).
Proof. Tt is easy to see that go = [b, by, b%;l]. We claim that g; = ¢;_1c1c2, where

_ Sl i g2imly =2 o (2i-1k
C = ([bk 7b 7bhk

7

and
—(2i+1) .  —2ik

cy = [bzi7 Zi’ b?;jy ]a
Then g; belongs to y3(stg(1)) by induction on 1.
The claim follows immediately from (2.2.7) by taking into account that

24

¢(Cl) = (17 MR 17 [a2i7b2i7 azqziy7 ]_1, ];7 ey ].)
i 2i—1,y—(2i—1)

(1,1 e el 711, 1),

where the non-trivial components appear in positions p™—(2i—1)k and p™— (2i—2)k,

and that

Sit1 q2i+1y7(2i+1)]

¢(Cz):(1,...,1,[bzi,a ,a ,1...,1)

with non-trivial components p" — 2ik and p" — (2i — 1)k. O

As a consequence of the previous lemma we have the following result.
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Theorem 2.12. If G is IS and Y is not maximal, then

P(y3(sta(1))) = 13(G) x - x 43(G).

In particular, G is regular branch over v3(G).

Proof. Since p divides ¢ and a has order p™, for large enough ¢ we have

elgi) = (1,.... 1, [a,b,a],1,...,1),

where [a, b, a] appears in the k-th component. Also g; € v3(stg(1))) by Lemma 2.11.

Moreover, since z is invertible modulo p,
GbF L) = (b AT )
where the first displayed component is the k-th one. Hence
(b, b b7 B7E) = (1,0, 1, [a, b, b7 2], 1, 1)

where the non-trivial component appears in position k. Since G = (a, bz_la_@k)
then
713(G) = ([a,b,al, [a,b,b" a” )%,

and the result follows from Lemma 2.5. (]
We now consider the case when Y is maximal. In this case G is trivially IS.

Theorem 2.13. Suppose that Y is mazimal. If there exists m € Y \ {k,p" — k}
such that

O = det (em_k cm ) % 0 mod p

€m  Em+tk
then ¥(v3(sta(1))) = 13(G) x - x v3(G). In particular, G is regular branch over
13(G).

Proof. In the following formulas the displayed components are the k-th and the last

one. We observe that

YbimEpTem Y= (..., a’m, ... 1),

-m “—m+k



54 2.2 Regular branch GGS-groups

Since by hypothesis d,, is invertible modulo p™, there exists a suitable power g of

b7, *bZrm . such that

On the other hand,
w(bkb:zp"—k) = (...,ba= k%" "~k 1)

and so by multiplying bkb:zpn_k by a suitable power of g we can find an element

h € stg(1) such that

Since all components of ¢ ([b, by]) are trivial except for the k-th one and the last one,

the former being equal to [a, b], we get

P([b,bg,g]) = (1,...,1,[a,b,al,1,...,1),
(b, by B) = (1, ., 1, a, 0,0, 1, ..., 1).

Hence ¥ (y3(stg(1))) = v3(G) x -+ X v3(G) by Lemma 2.5. O

Theorem 2.14. Suppose that Y is mazimal and that for allm € Y \ {k,p" — k} we

have

O = det (em_k em > = 0 mod p.

€m Cm+k
Ife ¢ E(p™) then
Y(y3(sta(1))) = 13(G) x --- x 13(Q).

In particular, G is reqular branch over ~v3(QG).

Proof. We first observe that when p = 3 and k = 3"~ !, the set Y coincides with
{k,p"™—k} since it is maximal by hypothesis. Thus the condition on the determinants
vacuously holds. This special case needs to be studied separately. Assume first that
Y\ {k,p" — k} # 0. From the condition d,, =0 (mod p) for all m € Y\ {k,p™ — k}
we get

ek = eézl mod p (2.2.8)

foralli =2,...,p"t — 1. Since e is not constant modulo p for the indices in Y, it

follows that esr, Z 1 mod p.
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We observe that
P([b,be, bed_ " 7F]) = (1,..., 1, [a, b, ba= 2" =k] 1, ..., 1), (2.2.9)

where the displayed component is the k-th one.

Now, taking into account that k # 3", we set g := "3k b;,f”n_"} Then

Blg) = (onry a1,

where the displayed components are the k-th one and the (p" — k)-th one. If y is

the inverse of eor, modulo p™, we get
B b g)) = (1,1, [a,ba™ 5] 1, 1), (2.2.10)

where the only non-trivial component is the k-th one.
Let s := p"'. By (2.2.8) and Fermat’s Little Theorem, we have

2 _ 2 — s—4 2(s=2) _ -3
epn—3k — €pn_k = €(s—3)k — €(s_1)k = €or  — €ap = €qp (1 — e2x) # 0 mod p,

—_ 2 . .
since egr, Z 1 (mod p). Hence {a“" 3% %"~k ba~¢2k"-k} is a generating set of G.

Since G’ = ([a, b])“, we have
14(G) = {[a,by @ 5n-r], [a, b, ba=e2xr .

From (2.2.9) and (2.2.10) we get ¢(y3(stg(1))) = v3(G) x -+ x v3(G), once again
by Lemma 2.5.

Assume now that p = 3 and Y = {k,p" — k} = {3771 37 — 3711, By hypothesis
e; mod 3 is not constant for 7 € Y, thus egn_p = 2mod 3. Let x = egn_j, and let
y be such that xy = 1 mod 3". In the next formulas the displayed components are

those in positions k,3™ — k and 3™. Then we have

wb)=(..,a,...,a"%...,b)

Yy ) = (.., ba™ .. ab™", 1)
Y(bbgt_p) = (-, 0a ", et )
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where the non-displayed components are powers of a with exponent divisible by 3.
Then
G([b,br, brby ) = (1,...,1,[a,b,ba™""],1,...,1) (2.2.11)

and
W([b, b, (B ) ) = (1, 1, [a,b,a%571)). (2:2.12)

We observe that (ba=®",a¥b™1) = (ba=*",a¥~*") = G, indeed y — 2% = 1 mod 3 as

both z and y are congruent to 2 modulo 3. Thus from Lemma 2.5 and from (2.2.11)
and (2.2.12) it follows that ¥ (y3(sta(1))) = v3(G) x - - - X v3(G). This completes the
proof. O

Remark 2.15. The previous theorems show that all GGS-groups over the p™-adic
tree are regular branch over G’ or over v3(G) except for the ones with defining vector
with Y maximal and such that e; = e; mod p for all 7,5 € Y, i.e. the ones whose

defining vector belongs to the set £(p™) defined as follows
EP")={e € F(") | €yt = ejpr mod p for all 1 <i,j <p"~*—1}. (2.2.13)
We denote by &'(2") the following set:
M)y ={ec F2") |t=n—1}

For the class of GGS-groups with defining vector in F(p™) \ £'(2"), we can show
that they are weakly regular branch. The problem is still open for the GGS-groups
with defining vector in £'(2").

Theorem 2.16. A GGS-group G over the p"-adic tree with defining vector e €
F(p™)\ €'(2™) is weakly regular branch over G”.

Proof. From Lemma 2.4 for every g1, g2 € G there exist hy, ho € stg(1) such that the
k-th components of ¥)(h;1) and 1 (ha) are g1 and g, respectively. If G does not have
an IS defining vector, then from Theorem 2.10 it is a regular branch group over G’
and in particular it is weakly regular branch over G”. Indeed let f € stg (1)’ be such
that ¥(f) = (1,...,1,[a,b],1,...,1) where the non-trivial component appears in
position k. Then ¥([f™, f*2]) = (1,...,1,[[a, b]%, [a, b]%2], 1,...,1), and the result
follows from Lemma 2.5 since G” = ([[a, D]?", [a, D]??] | g1, 92 € G)C.
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Thus we can assume in the remaining part of the proof that G has an IS defining

vector belonging to F(p"). An easy calculation shows that when e & £'(2")
D([[, bk o, bor] ™)) = (L, 1, [[a, 0], b, a7 #]2], 1, 1),

where the non-trivial component is at the k-th position. Now since G is IS, the com-
ponent e,n_j, is not divisible by p. Thus the sets {[a,b]9" | g1 € G} and {[b, a®"-*]92 |
g2 € G} are generating sets for G’. Then G” = ([[a, b]9", [b,a®"~*]9] | g1, 92 € G)©
and thus G is weakly regular branch over G” by Lemma 2.5. |

Remark 2.17. When e € £'(2") the problem is still open. In this case 2k coincides

with 2", so we have

(b)) =(1,...,1,[a,b],1,...,1,[b,qa]),

where the non-trivial components are the k-th and the last ones. By using the same

notation of the previous theorem we have

B([[b, 0], [br, bor) ") = (b, be] ™, b, b]"2])
=(1,...,1,[[a,b)%, [b,al??],1,...,1,[[b,al®, [a, b]9*]),

where we denote by g3, g4 € G the last components of A1 and hy respectively. Since
the last component need not be trivial, the argument in the previous theorem cannot

be applied.

We note that if G is periodic the quotient G/G” is a finitely generated soluble
group of derived length less then or equal to 2, thus it is finite and as consequence of
the previous theorem G is a regular branch group over G”, as proved by Vovkivsky
in [56]. Actually we can deduce an improved version of Vovkivsky’s result from
Remark 2.15.

Corollary 2.18. Let G be a periodic GGS-group over the p"-adic tree. Then G is

regular branch over v3(G).

Proof. From Remark 2.15 it suffices to show that e ¢ £(p"). Otherwise all e;,» have

the same (non-zero) value modulo p, fori = 1,...,p" " —1. Now since G is periodic,
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from (2.0.1) we get in particular that
Sp=ep+eg+Fem p=0p""=1)ey =0 (mod p).

This implies that e,x =0 (mod p), which is a contradiction. O

For the GGS-groups with defining vector in £(p™) we don’t have a complete
characterization. However we can describe the branch structure of a particular class
of such GGS-groups characterized by a special defining vector that belongs to the

set P of the partially constant defining vectors defined formally as follows.

Definition 2.19. Suppose that e is a defining vector of a GGS-group such that
e € £(p™). We say that e is partially constant if it is constant on Y and constant

equal to 0 outside Y.

We have the following result for the GGS-groups with partially constant defining

vector.

Theorem 2.20. Let G be a GGS-group with partially constant, but not constant,

defining vector. Then G is a regular branch group over v3(G).

Proof. We start by noting that the element [b, a,b] is trivial since each of the com-
ponents of ¥([b, a,b]) is. Indeed

U([b,a)) = (b,1,...,1,a" ,a,1,...,1,a  a,1,...,1,b7 1)

I are those in positions multiple of k, in the

where the components equal to a™
position immediately on the right appear the ones equal to a, and all the other
components, with the exception of the first and the last ones, are trivial. Since the
defining vector is not constant, the component e; is 0, and an easy calculation shows

that [b,a,b] is trivial. This implies that v3(G) = ([a, b,a])®. Now we observe that

(b, b, 0]) = (1,.... 1, [ab,al, 1,...,1,[b,a,b])

Thus the result follows again by Lemma 2.5. O
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2.3 GGS-groups over primary trees with constant defin-

ing vector

The GGS-groups with constant defining vector constitute a special class of GGS-
groups inside the set £(p™) that have a different structure as for the p-adic case. By
Theorem 2.16 these groups are weakly regular branch, in this section we prove that
they are not branch.

Let G be a GGS-group acting over the p'-adic tree with constant defining vector.
As remarked in the previous section, up to multiplying by an invertible element the
defining vector of G, we can assume that G is the GGS-group with defining vector

e = (1,P'=1 1), thus the directed automorphism b is defined as follows

Throughout this section, we let G denote the GGS-group defined on the p™-adic
tree by the vector e = (1,...,1). As in the previous section, we denote by K the

subgroup of G defined by K = (ba™1)9 and we set

yo =ba"! and y; = yg’i for all i€ Z.

‘We observe that

Yi = Yiv1 (2.3.1)
v =it (2.3.2)
and y; = y; if i = j (mod p").

The following lemmas are generalisations of [22, Lem. 4.1 and Lem. 4.2] to the

case n > 1. For completeness we give the full proofs here.

Lemma 2.21. Let G be the GGS-group with constant defining vector. Then

(i) If z; is the tuple whose only non-trivial components are the i—2-nd and the i—1-st

ones corresponding respectively to yz and y; L then

W(lyi, ) = 20z, for every i and j. (2.3.3)
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(ii) We have
Wi, ¥5] = (Wi, vie1[Yi—1, vi—2] - - [Yj+1, 5], for everyi > j. (2.3.4)

Proof. (i) Clearly, it is enough to prove the result for ¢ > j. Since both sequences
{y;} and {z;} are periodic of period p", we can assume that i and j lie in the set

{3,...,p" +2}. We observe that when r = j — 3 and k =i — r we have

r

i, i) = [ vS ] = [yk, ys)® -

Thus it suffices to prove the result for [yx,ys] with 4 < k < p™ + 2 since the vector
Y¥([ys,y;]) can be obtained from 1 ([yx,y3]) by shifting every component 7 positions

to the right. Since y; = a'ba*~" = a~'b,_; for every i, we have
[k, y3] = by aby taa ™ bp_1a ™ by = bt by by _oby = (b7 Mbg_2) bt bo.
When 4 < k < p" 4 1, we have

PO ) ) = (07407, E 0, ba, )@ b
= (L LA Ly 1 )R]

=(ys 31,0, Lyo, 1,000, 1),
and when k = p™ 4 2 we have

w((bl_lb)bl) = ((b‘ha_l, . ,a_l)(a7 ...,a, b))(b,a,...,a)
= (y7 11,7072 1, gy ) P0)

= (y1_1y2_1y17 17 ey ]-7 yz)

where the last equality holds since yll’ = y3'. Similarly we have

S 5) (Ly, LETE 1L,y 1,.00,1) if4<k<pt+41
k—1Y2) =
(it 1,0, 1) ifk=p"+2

Thus for every k we obtain

([, ys]) = zzg "
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as desired.

(ii) From (i) we have

Wy yi) = (Bim ) Gz ) - ()
= (i, vi-1 DU ([yi-1, vi2]) - V([Y5+1, y5])
= V([yi, vi—1) Wi Yi—1] - - (Y41, 95])

and the proof is completed. O

We have seen in Lemma 2.7 some general properties of the subgroups K and K’
that hold for a GGS-group over the p™-adic tree. In the next lemma we will see

other properties that hold when the GGS-group has constant defining vector.

Lemma 2.22. Let G be the GGS-group with constant defining vector. Then the
following hold:

(i) ¢ <K and |G: K|=|K:G'|=p"
(ii) K = (yo,...,ypr—1) and K' = ([y1, y0])9.

(i) K' x -+ x K' C(K') C(G) C K x---x K; in particular, G is weakly

reqular branch over K'.

(iv) P(G") =K' x---x K.

(v) If L = ¢~ Y(K'x---x K') then the conjugates [yi11,yi]” , where 0 < i, < p—1,
generate K' modulo L.
Proof. (i) We observe that G/K = (aK) = (bK) so G’ < K. Hence K = (ba™*,G)
and from Theorem 2.3 we get |G : K| = |K : G'| = p".
(if) From (2.3.1) and (2.3.2), clearly K = (yo,...,ypn—1). Hence K’ coincides
with the following subgroup

K/:<[?/i7yj]|0§j<i§p_1>6*

and the result follows from (ii) of Lemma 2.21.

(iii) We observe that

P([b,a]) = (et .. .,a" b7 Y (b,a,...,a)

=(@',1,...,1,b7'a) e K x "+ x K.
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Since G’ = ([b,a])¥, the inclusion (G') € K x --- x K follows from Lemma 1.12.

To prove the other non-trivial inclusion we observe that

Y(b,a]) = (y1,1,...,L,y7 )

and

w([y37y4]) = 232:4_1 = (y27y1_1y2_17y17 17 sy 1)

Thus for p™ > 3 we have

w([[y3ay4]7 [b7 (1]]) = ([ylva]) L..., 1)

and the result follows from Lemma 2.5 and from (ii) since K’ = ([y1,42]).
When p" = 2 the result is still true since K = (yo,y1) and K’ is trivial. Indeed
we have
[yo,y1] = ab~ b taba ta"tb =1,

where the last equality holds since both generators have order 2. We recall that
for p” = 2, the GGS group acting over the binary tree is isomorphic to the infinite
dihedral group.

This completes the proof of (iii) and also (iv) is proved since by (iii) we have
P(G') C K x --- x K, which implies that ¢/(G") C K’ x --- x K.

(v) Let g € G. We can write g = ha't’ for some i,j € Z and h € G’. Then

)aibj a’b’

1,90l = ([, 50)")*™" = ([y1, olly1, yo, k)

By (iv) we have ¢([y1,yo, h]) € (G") € K'x---x K’ s0 [y1,y0, ] € L. This proves
that
[y1,90)Y = [y1,0]*" mod L

that is
W1, 90)? = [yit1,v:)” mod L.

Since the conjugates [y1,y0]? generate K’ the result follows. O

Proposition 2.23. Let G be the GGS-group with constant defining vector. Then
Stg(l)/ = stg(2).
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Proof. We have stg(1) = (b; | i = 1,...,p"), where b; = b*. Hence stg(1) =
((biybi] 14,5 =1,...,pM9. Now for 1 <i < j < p" we have

W([bi,b]) = (1,1, a1, 1, [afb],1,...,1) € stg(1) x -+ x stg(1),

and consequently [b;, b;] € stg(2). This proves that stg(1)" < stg(2).
For the reverse inclusion, consider an element g € stg(2). By looking at it as an

element of stg(1), we can write g = hg’, where ¢’ € st(1)" and h is of the form

_ pkipke kpn
h_bl b2 "'bpn 9

for some integers k;. Observe that ¢(h) is given by the vector

(bk’l ak’2+"'+k‘pn ak‘l bk‘g ak3+--~+k],n ak’l +---+k‘pn_2 bkpn_l ak:pn ak’l +---+kpn_1 bkl’n)
’ Yot ) .

Now since h = g(¢’)~! € stg(2) and a has order p" modulo stg(1), if we set S =
k1 + - + Epn, the following congruences hold:

S—k1 =0 modp"
S —ky=0 mod p"

S —kpyr—1=0 mod p"

— e a2
\S kyn =0 mod p

It follows that k; = S mod p" for all t = 1,...,p", in particular k; = k; mod p" for
alli,j € {1,...,p"}. Since S = k1+- - -+kp» it follows that k; = k1+- - -+kp» mod p”,
ie. (p" — 1)k; =0 mod p™ for all s € {1,...,p"}. Hence k; =0 mod p" for all i,
and consequently g = ¢’ € stg(1)’, as desired. O

The following result generalizes [22, Lem. 4.4].

Proposition 2.24. Let g € stg(1) and write Y(g9) = (g1,...,9pn). Then the follow-
ing hold:

(i) If g€ G then [T~ gi € K'.

(i) If g € K' then [T1.1 " gigs” - gf" € K.
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Proof. (i) For every h € stg(1) we define w(h) = Hf; hi, where ¢)(h) = (h1, ..., hyn).
Since stg(1) = (b; |i=1,...,p") and

a(bi) =a b’ T = (o) =y €K,

it follows that 7(stg(1)) € K. Then the map 7 : stg(1) — K/K’ given by 7(h) =
7w(h)K' is a group homomorphism, and since ker 7 is clearly invariant under conju-
gation by a, we have ker 7 <! G. Now observe that 1 ([a,b]) = (b~ a,1,...,1,a7'b)
implies that [a,b] € ker 7. Hence G’ = ([a,b])Y < ker 7 and (i) follows.

(ii) This can be proved exactly as in [22, Lem. 4.4]. For completeness we give

the full proof here. We consider the following map:

Q: Kxl. xK = K/K
" — 24 10
) T gt g

Clearly @ is a homomorphism. From Lemma 2.22, ¢)(K’) is contained in the domain

of Q. We prove now that (K'’) is contained in the kernel of the map. Since

Q(K' x --- x K') = 1, it suffices to see that ¢(g) € ker(Q) for every system of

generators of K’ mod L where L = ¢~1(K’ x --- x K'). By (v) of Lemma 2.22 such

system of generators is formed by the conjugates [y; 1, yi]b‘j, where 0 < 1,7 <p"—1.
Let ¢ € T be defined by ¥(c) = (a,...,a). We prove now that

¢* = ¢°mod L for every g € K'. (2.3.5)
We observe that ¢ (b) = 1 (c)(1,...,1,a~'b), and so

B(g®) = (g®) b = () [w(g°), (1,...,1,a71D)]
= 1(g°) mod K’ x VXK

since ¥ (g¢) € K x P Kandabe K. Asa consequence of (2.3.5), it suffices to
see that ¥ ([yi+1, ] ) lies in ker(Q). Actually it is enough to prove that ¢ ([yi+1,vi])

lies in ker(Q) since for every i we have

QUlyi1,3i1) = Qi ([yis1, wi) )
= Q(¢([yi+1ayi]))aj~
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From (i) of Lemma 2.21 we have ¥ ([yi+1,¥i]) = 2412 *. Thus, in order to prove
the result it is sufficient to prove that Q(z;) = Q(z;) for all ¢ and j. Now, for i > 3

we have

Q(Zz) = Q((L 1;_'37 1, y2, yl_l» 1,..., 1))
= y¢21+a2+'~+ai_2(yl—l)a+a2+~~+ai’1K/

= K.
For i = 2 and 7 = 1 we get the same result, indeed we have

Q(ZQ) = Q((yl_lv 17 SR 17 yQ))
= (y; )K=y 'K’

and

Q(zl) = Q(17 ceey 17y27y1_1)

_ a+a2+...+a1’n_1 /
= Yo K

=y3ys - Ypr—1Yon K' = yy ' K’

where the last equality holds since yyn-1---y2y1 = 1. This proves that ¢ ([yi11,v:])
lies in ker(Q)) as desired. O

Corollary 2.25. Let g € K'stg(m) for some m € N. If ¢(g) = (z,1,...,1,y) then
both x and y lie in K'stg(m — 1).

Proof. Since ¢ (stg(m)) C stg(m —1) X - -+ x stg(m — 1), part (i) of Proposition 2.24
implies that xy € K'stg(m—1), and part (ii) implies that 2% € K'stg(m —1). Thus
z,y € K'stg(m —1). O

Lemma 2.26. For every m > 2 the quotient Q,, = G/K'stg(m) is a p-group of

class m and order pm+1m,

Proof. 1t is obvious that @, is a finite p-group, since G/ stg(m) is so. The lemma
will be proved if we show that |Q,, : @.,| = p**, that |v(Qm) : Yi+1(Qm)| = p" for
2 <i < m, and that Y,4+1(Qm) = 1.
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First of all, observe that
Qun/ Q) = GG stg(m) = G/G' = Cyn x Cip,
by using that stg(2) < G’ from Proposition 2.23, and Theorem 2.3. Hence

exp %’(Qm)/'}/i—i-l(Qm) | exXp Qm/QIm = pn (2'3'6)

for every i > 2.

Let us use the bar notation modulo K’stg(m). Then Q,, = (@,b) and con-

sequently QI = ([b,a],73(Qm)). Since A,, = K/K'stg(m) is an abelian normal
subgroup of Q,, and Q,, = (@, A,,) = (b, A,,), it follows that

'77(@771) = <[bvav 5711_?76]7’771+1(Qm)> = ([I_),E,Z:_.l,ﬁ],%_,_l(Qm» (2'3‘7)

for every ¢ > 2. From (2.3.6) we get |vi(Qm) : Vi+1(Qm)| < p” for i > 2. Hence the

proof will be complete if we show that:
(1) [bya,b,m71b] € K'stg(m).
(2) [bya,b,m2,b]P" " & K'stg(m).

for every m > 2. Indeed (1) then shows that i,11(Q.,) = 1, while (2) shows that
17 (Qm) + Yir1(Qum)| = [7i(Qi) = 7i+1(Qi)| = p™, by applying it with 4 in the place of
m. Note that, according to (2.3.7), (1) is equivalent to [b,a,.”.,a] € K’ stg(m) and
(2) is equivalent to [b,a, ™1, a)P" " & K'stg(m).
Now we prove (1) and (2) by induction on m > 2. Suppose first that m = 2. We
have
U([b,a]) = w(b7'b%) = (a'b,1,..., 1,7 a)

and
Y([b,a,b]) = ([a~'ba),1,...,1,[b" a, b)) = ([b,a],1,...,1,][a,b)). (2.3.8)

Since G’ < stg(1) the latter shows that [b, a, b] € stg(2) and (1) holds for m = 2. On
the other hand, if [b,a?" " € K’stg(2) then Corollary 2.25 implies that (b~1a)?" "' €
K'stg(1) = stg(1). This is a contradiction, since

b e " =a” " #£1 (mod stg(1)).
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This completes the proof of (1) and (2) for m = 2.

Now we assume that m > 3. From (2.3.8), we get

¥([b,a,b,.t. b)) = ([b,a,.?.,a],1,...,1,[a,b,.?. b]) (2.3.9)
for every i > 1. Thus, by the induction hypothesis,
P([b,a, b, b)) € (K'stg(m — 1) x -+ x K'stg(m — 1)) N Imp.
Now observe that
(K'stg(m —1) x -+ x K'stg(m — 1)) N Im
= (K'x - x K')(stg(m — 1) x -+ x stg(m — 1)) N Tma)

=(K'x - x K')(stg(m —1) x --+ x stg(m — 1) N Im))
C YK )p(stg(m)) = (K" stg(m)),

where the second equality follows from Dedekind’s Law and the inclusion from G

being weakly regular branch over K’. Thus
[b,a,b,71 b] € K'stg(m)

and (1) holds. On the other hand, if [b, a, b, =2, b]?" "' € K’stg(m) then from (2.3.9)
and Corollary 2.25 we obtain that [b, a, 72, a]pn_1 € K'stg(m — 1), contrary to the

induction hypothesis. This proves (2). O

Now we can determine the structure of the factor group G/K'. Let M be the
companion matrix of the polynomial X?"~1 + XP"~2 4 ... 4 X + 1, that is

0 0 -1
1 0 —1

M — 0 1 —]. E Mpn_l(Z).
0 0 1 -1

We have the following result.
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Theorem 2.27. The quotient G/K' is isomorphic to ZF" ~' x(z), where the element

z is of order p" and acts on ZP" 1 via M.

Proof. Let P be the semidirect product in the statement of the theorem. We first

study the lower central series of P. Set V = ZP"~! and write (v1,...,vyn_1) for the

canonical basis of V. Since we use right actions of groups, if M is the companion

matrix of f(X) = XP""1 4+ XP""2 4 ... 4 X + 1, then v* = vM for every v € V.
Let us define the map p in the following way:

p: V. — Vv

v o= [vz]=—v 40"

The matrix associated to p is M — I, where I stands for the identity matrix of order

p" — 1, that is the matrix

-1 0 0 -1
~1 0 -1

M-I=]0 1 -+ 0 —1
0 -~ 0 1 =2

and the matrix associated to p; : v — [v, x, - ! - x] is (M — I) since p; is the compo-
sition of the map p with itself i times.

For every W <V that is normal in P, we have [W, P| = {[w,z] | w € W}, since
V is abelian and the map p : v — [v,2] is a homomorphism on V. Since P/V is

cyclic, we have P’ = [V, P] and consequently
Yi(P) = {[v,z," 2] [veV}={v(M-I)"" |veV}.

Hence the rows of (M — I)"~! are generators of v;(P). Since V is a free abelian

group of finite rank, it follows that
|P:5i(P)| = p" |V : ~4(P)| = p" det(M — I)'"! = pi™ for every i >2, (2.3.10)

by taking into account that det(M —1I) = f(1) = p", since f(X) is the characteristic
polynomial of M. Observe also that N;>;7;(P) = 1, since P is residually a finite

p-group.
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Now recall that K = (y; | j =0,...,p"—1) with y§ = y;41 for all j. In particular
Ypn_o = Yprn—1 =Yg L .y;nl_z. Hence the assignments z — a and v; — y;—1 define
a surjective homomorphism « from P onto @ = G/K'. Suppose that 1 # w € ker «
and let m > 1 be such that w & ~,,,+1(P). Then « induces an epimorphism from

P/Ym+1(P) onto Q/¥m+1(Q) whose kernel is not trivial, and consequently

|P Y1 (P)] > |Q - Y1 (Q)] = [Qun : Yimt1 (@)

where Q,, = G/K'stg(m). This is a contradiction, since |P : 7,11(P)| = pm+hn
by (2.3.10) and | Qs : Yint1(Qm)| = |Qum| = D™ by Lemma 2.26. Thus ker o = 1
and we conclude that P =2 G/K ' as desired. O

Now we can generalise [20, Thm. 3.7] and show that G is not a branch group.

Theorem 2.28. Let G be a GGS-group with constant defining vector. Then G is

not a branch group.

Proof. Let L = v~ 1K' x Pl K’). By (iii) of Lemma 2.22 and by the definition
of rigid stabilizer, we have L < rstg/(1). Let us see that the equality holds. To this
purpose, let g € rstg/(v) for some vertex v of the first level. Then all components
of 1(g) are trivial, except possibly that corresponding to the position of v, call it
h. By using (i) of Proposition 2.24 we get h € K’. This proves that g € L, and
consequently rstg/(1) = L.

Now assume by way of contradiction that the group G is branch. Then |G :
rstg(1)| is finite and from [20, Lem. 3.6] also |G’ : rstg(1)] is finite. Thus |G : L] is
finite, and since L < K’ by Lemma 2.22; also |G : K| is finite. This is a contradiction,
since Theorem 2.27 shows that the factor group G/K' is infinite. O






Chapter 3

A generalization of the Basilica

group

In this chapter we analyze the structure and some properties of a new class of groups
introduced in [19] that generalize the Basilica group, a group acting over the binary
tree introduced for the first time by Grigorchuk and Zuk in [34] and whose principal

properties have been introduced in Section 1.8.4.

3.1 Definition and basic properties

For a prime p, the p-Basilica group is a group acting on the p-adic tree and generated

by two automorphisms a and b defined as follows:
YP(a) = (1,2751,6) and (b)) = (1,271, 1,a)0,

where o is the cyclic permutation (12 - -- p). Clearly for p = 2 the 2-Basilica group
coincides with the Basilica group. This generalisation of the Basilica group mirrors
Sidki and Silva’s generalisation of the Brunner-Sidki-Vieira group; (see [51] and [13]).
A different generalisation of the Basilica group to the p-adic tree, with p generators,
was first investigated by Sasse in her Master thesis [49], and Sasse’s work has been
developed further by Petschick and Rajeev [45]. Our 2-generator p-Basilica groups
are also investigated in [45]. Some of their results agree with ours even if our and

their works were developed independently.

71
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FI1GURE 3.1: Generators of the p-Basilica group

3.2 First properties

In this section we prove some basic properties of the p-Basilica groups. For any
prime p both generators of the p-Basilica group are bounded automorphisms (see
Definition 1.2). Indeed they both have at most one section different from the in-
dentity in each level. From the last paragraph of Section 1.7, for every prime p the
p-Basilica group is a group generated by a finite bounded automaton with set of
states {Id, a,b}. The directed labelled graph for the 3-Basilica group is represented
in Figure 3.2.

.T1|LL‘1 IL’1|331

FI1GURE 3.2: Directed labelled graph of the 3-Basilica group.

For every prime p the p-Basilica group is a self-similar group. This follows triv-
ially from the first level decomposition of the generators a and b and from Lemma 1.6.

The following is an elementary but essential result.
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Lemma 3.1. Let G be a p-Basilica group, for a prime p. Then G is fractal and

spherically transitive.

Proof. By Lemma 1.8, it suffices to show that GG acts transitively on the first level and
that ¢z (stq(z)) = G for some x € X. This is straightforward since b acts transitively
on the first level and since ¥ (a) = (1,...,1,b) and (¥*) = (a,...,a). O

Next we consider the stabilizers in G of the first two levels. Recall that we

indicate by G,, = G/stg(n) the congruence quotients of G. For convenience, we set
A= (a)% = (a)G' and B = (h)° = )&, (3.2.1)

and we observe that G = AB.
In the following for a prime p and a group G we will denote by W,(G) the wreath
product of G with a cyclic group of order p.

Lemma 3.2. Let G be a p-Basilica group, for a prime p. Then:

(i) stg(1) = A(bP) = (a,a’, ... ,abp_l,bp) and G1 = (bstg(1)) = C,.

(ii) G2 = Cp 1 Cy is a p-group of mazimal class of order pP*.
Proof. (i) Observe that a € stg(1), and for ¢,7 € N with 0 < r < p such that
n = pq + r we have

P(") = (a?,...,a%, a9, 7. 0l
Thus b" € stg(1) if and only if p | n and for i € N we have
Y(O?) = (d', ..., a"). (3.2.2)

Since st (1) < G we get A(bP) < st(1). This inclusion is an equality, since G /A(b’)
has order p and stg(1) is a proper subgroup of G. Now the result follows by observing
that (a,a®,... ,abp_l,bp) <4G.

(ii) Since ¥(b?) = (a,...,a) and a € stg(1), we have O € stg(2). By (i), if we

use the bar notation in Gg, we have

stg, (1) = (a,ab, ... a7,
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Since @ has order p in G5 and the tuples

Wa) = (1,...,1,b) (3.2.3)
w(a) = (1,711, a,1,...,1), for 1<i<p—1, (3.2.4)

commute with each other, stg, (1) is elementary abelian of order pP. Thus |G| =
pP*L. To complete the proof, observe that since G < T', the quotient G5 = G/ stg(2)
embeds in 'y = I'/stp(2) = C, 1 Cp, and that the latter is a p-group of maximal
class of order pPt!. O

Our next goal is to study the abelianisation of G. Observe that ¢(a) = (1,...,1,b)

and G being self-similar imply
Y(A) C B x--- X B. (3.2.5)

On the other hand, the map
T Wy,(G) - GG
(917'”7gp)o-i — gl"'ng,

is clearly a group homomorphism. Since ¥(b) = (1,...,1,a)o, it follows that
(ro)(B) C A/G. (3.2.6)

Theorem 3.3. Let G be a p-Basilica group, for a prime p. Then:

(i) G/A = (bA) and G/B = (aB) are infinite cyclic. In particular, the elements

a and b have infinite order in G.
(i) ANB=G"
(ii) G/G" = (aG') x (bVG') 2 Z X 7.

Proof. (i) We prove that G/A and G/B are infinite simultaneously. Assume for a
contradiction that, for some n € N, we have either a™ € B or b € A, and let us
choose n as small as possible. If " € A C stg(1) then n = pm for some m, and
consequently

Pp(O") = (a™,...,a™) e Y(A) C B x--- x B,
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by (3.2.5). Hence a™ € B, which is impossible since m < n. On the other hand, if
a™ € B then
V"G = (moyp)(a") € (moh)(B) C A/C

by (3.2.6). Thus b™ € A, which we just proved is not the case. This completes the
proof of (i).

(ii) Since [a,b] = a~ta® = (b1)%, from the definition of A and B it follows that
G’ < AN B. For the reverse inclusion let us take g € AN B. As g € A, from the
previous part of the proof, the exponent sum of b in ¢ must be zero, and as g € B,
also the exponent sum of a in g must be zero. This proves that g is trivial modulo
G'so ANB <G

Since G/G' = A/G’ - B/G', the last item follows trivially from (i) and (ii). O

The next result follows from Theorem 1.18 noting that for a p-Basilica group G

we have G’ < st (1) and from (iii) of Theorem 3.3 the quotient G /G’ is torsion-free.
Corollary 3.4. Let G be a p-Basilica group, for a prime p. Then G is torsion-free.
Next we study rigid stabilizers and the branch structure of G.
Theorem 3.5. Let G be a p-Basilica group, for a prime p. Then:
(i) tstg(1l) = A with¢(A) = BX---x B. In particular, the group G is not branch.

(i1) ¥(sta(1)) = G' x --- x G'. As a consequence, the group G is weakly reqular

branch over G'.

Proof. (i) We already know from (3.2.5) that ¢)(A) C B x --- x B, and the reverse
inclusion follows from Lemma 1.12, since ¢(a) = (1,...,1,b). Hence A < rstg(1) <
stq(1) = A(DP) and so rstg(1l) = A(bP") for some n > 0. It follows that

Y(rsta(1)) = Y(A(BP™")) = (B x -+ x B) x {(a",...,a")),

where the product is semidirect since B is normal in G and a has infinite order
modulo B. Assume n # 0, then there exists i # 0 such that (a™,...,a™) €
¥(rstg(1)), and by definition of rigid stabilizer we have (™ 1,...,1) € ¥ (rstg(1)).
Since (B x ---x B)N({a) x -+ x {a)) = {(1,...,1)} it follows that (a™*,1,...,1) €
((a™,...,a™)), which is a contradiction. Hence n = 0 and rstg(1) = A, which has

infinite index in G, so G is not branch.
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(ii) As ¢ (stg(1)) € G x---x @G, the inclusion C is clear. For the reverse inclusion,
observe that ¢ ([b?,a]) = (1,...,1,[a,b]). Since G’ = {[a,b]), the result follows from
Lemma 1.12. O

3.3 Commutator subgroup structure

In Section 3.2 we determined the abelianisation of a p-Basilica group G and proved
that G is weakly regular branch over G'. Now we study further properties of G’ and
of other subgroups obtained by taking commutators, and obtain some consequences.

In the following we will denote by C and D the following subgroups of G x PG

C={®",....,b") | i1+ +i, =0},
D={(g1,.-.,9p) €G x---xG | g1--- g, € 13(G)}.

Since b is of infinite order, the subgroup C is a free abelian group of rank p — 1

generated by the elements
ci=@,...,1,b7b,1,.1.,1), forie{0,1,...,p—2}. (3.3.1)
Note further that for all i € {0,...,p — 2} we have
e =y(bal’), (33.2)
indeed

Wb el ) =(1,...,1,a,.1., ) (bt a)o (1, ..., 1,a e
=(1,...,1,a,.%.,a)0'(1,...,1,b7L D)o (1,...,1,a" , .t a7 )
=(1,...,1,b71b,1,.%.,1),

so C is a subgroup of ¥(G"). Also since
coc1- - cpo = (b1 1,772 1,b), (3.3.3)

it is clear that C' is normalised by ¢ in the wreath product W,(G) = G (0).
We start our study of commutators by identifying the images of G’, v3(G) and
G" under 1.
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Theorem 3.6. Let G be a p-Basilica group, for p a prime. The following hold:
(i) Y(G') = (G x--xG)xC.
(i) Y(G") = v3(G) x -+ x 73(G).

(iii) Y(y3(Q)) = (Yo,---,yp—2) X D, where yo = ¢y ' ([a,b"1],1,...,1) and y; =
ci_lci_l for1<i<p-—2.

Proof. (i) The inclusion D is clear, taking into account that G is weakly regular
branch over G’, together with (3.3.2). For the reverse inclusion, observe that G’ =

(b1, a])¢ implies ¥(G") < {co)V?»(&). Moreover ¢y € C, so it suffices to show that
CWo(@) = ClEX@lo) < (G x - x G') % C. (3.3.4)
We observe that
OO x@xlo) < (C[C,G x -+ x G\ < (C(G x - x &)

where the last inclusion follows since C < G x --- x G. As o normalises both C' and
(G" x -+ x G') the inclusion in (3.3.4) follows. Finally, since b has infinite order
modulo G’ by Theorem 3.3(iii), we observe that the intersection of G’ x --- x G’ and
C is trivial, and so their product is semidirect.

(ii) We first show that v3(G) x -+ x 13(G) < ¥(G"). First of all, taking into
account (3.2.3) and (3.2.4) we have

(b, a,a]) = ¥([(@™") a,a]) = 1,

as a and a® commute by (3.2.3) and (3.2.4). So v3(G) = ([b,a,b])”. Now since
G is weakly regular branch over G, we have (1,...,1,[b,a]) € ¥(G"), and on the
other hand (1,...,1,b7%,b) = ¢y € 1(G’). Hence (1,...,1,[b,a,b]) € ¥(G") and the
desired inclusion follows from Lemma 1.12.

To show the other inclusion, it is sufficient to prove that ¥(G’)/(73(G) x -+ X
73(G)) is abelian. This is obvious from the expression for ¢(G’) obtained in (i)
indeed

P(G) _ (@'x---x@)C

¥3(G) x -+ x 13(G)  3(G) x - x 13(G)”
As G'/v3(@G) and C are both abelian, the result follows.
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(iii) We have v3(G) = [G', a][G’,b]G” and consequently

P(33(G)) = [(G), Y(@)][(G), P ()] (13(G) x -+ x 13(G))
= [(G), Y (0)](13(G) x -+ x 73(G))

since ¥(a) = (1,...,1,b) clearly centralises )(G’) = (G'x- - -xG")C modulo ¢ (G") =
v3(G) x - -+ x y3(G). Now we observe that the product

[G" x - x G p(0)](73(G) x -+ x 13(G)) =[G x --- x G, 0](13(G) x - x 13(G)),

corresponds to the commutator subgroup of the wreath product W,(G'/v3(G)), i.e.
with the elements of the base group whose component-wise product is 1 in G’ /v3(G).

Hence this subgroup coincides with D:
D=[G"x - x G p®)](13(G) x -+ x 13(G)) < ¥(73(G)) (3.3.5)

and we have 1(73(G)) = [(G"), ¥ (b)]D.

Now the factor group % (G’)/D is generated by z = ([a,b7!],1,...,1) and by
oy, Cp—2. Indeed ¥(G')/D is a quotient of (G' x -+ x G")C/(v3(G) x -+ X
73(G)) whose generators are z; = (1,.7.,1,[a,b71],1,...,1) fori € {0,...,p — 1}

and co, ...,cp—2. For i € {0,...,p — 2} we have
2O = (1,01, [0, b7 L, )b =

and from (3.3.5) for all i € {0,...,p— 1} the element z; coincides with z modulo D.
It is clear that [z,7(b)] € D and that [¢;,¢(b)] = y; for 1 <i < p—2. For i =0 we
have

[co,0(b)] = cg (b, 1,. .., 1,67 )z = cg et c;_13c;_12,z,

by using (3.3.3). Hence

P((@) = (Y15 Ypas o e ey lge, 1y 2) D.

Since

—2 1 -1 ~1 -1 -2 -(»-2) _ —p
Co €1 " Cp3Cp 2¥p oYy 3 Y1 )

it follows that (y3(G)) = (o, - - ., Yp—2)D. To prove that the product is semidirect,
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we observe that y; = (1,...,1,b,672,b,1,%71 1) for i € {1,...,p — 2} and yy =
([a, b1, 1,...,1,6°,b7P). Since D < G’ x --- x G’ and b has infinite order modulo
G’ the result follows. O

Corollary 3.7. Let G be a p-Basilica group, for p a prime. Then the centraliser

of G’ in G, and hence the centre of G, is trivial.

Proof. Suppose that g € C(G’) and let ¥(g) = (g1,...,9p)0". Since g commutes
with [bP,a] and ¥ ([P, a]) = (1,...,1,]a,b]), it follows that p | k. Hence g € stg(1).
In view of Theorem 3.6(i), the product G’ x --- x G’ C 1)(G"), so all components g;
also centralise G’ and consequently belong to stg(1). Repeating this process yields

g € stg(n) for every n € N, and so g = 1. O

For a group property P, recall that a group H is just non-P if H does not have
property P but every proper quotient of H has P.
The next lemma, that appears as [34, Lem. 10], is useful for proving the next

corollary.

Lemma 3.8. Let G be weakly regular branch over K. If G/K and (K)/(K X -+ - X

K) are solvable, then G is just non-solvable.
Corollary 3.9. For a prime p, a p-Basilica group is just non-solvable.

Proof. The group G is weakly regular branch over G’. By the previous lemma it
suffices to show that ¥(G’)/(G’ x --- x G') is solvable. Now from Theorem 3.6(i)
the quotient ¥(G")/(G' x --- x G') 2 C is abelian. Thus the result follows. O

In the following we give important information about the congruence quotient
G, = G/stg(n), namely the orders of the images of a and b, and the structure of
its abelianisation. In the remainder, let 5(n) = [»/2], i.e. B(n) = n/2 for n even
and B(n) = (n+1)/2 for n odd.

Theorem 3.10. Let G be a p-Basilica group, for a prime p. Then, for everyn € N,

we have:
(i) The orders of a and b modulo stg(n) are p® "=V and p?™) | respectively.

(ii)) We have |G,, : GI| = p" and G,,/G!, = pon—1) X Cpan), where the first factor

corresponds to a and the second to b.
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Proof. First of all, we prove by induction on n > 0 the following result: that if n is
even then
" € sta(n)\G sta(n + 1), (3.3.6)

and that if n is odd then

p(nfl)/z

a € stg(n)\G sta(n + 1). (3.3.7)

Note that this already implies (i), and furthermore that the orders of the images of
a and b in G, /G, are p?»=1 and pP(™) respectively.

The result is obvious for n = 0. Now we suppose it holds for n — 1. If n =
2m + 1 is odd, we have ¢(a?™) = (1,...,1,b"™), and since b*" € stg(n — 1) by the
induction hypothesis, we get a?” € stg(n). Assume, by way of contradiction, that

a”" € G'stg(n+1). By applying ¢ and taking Theorem 3.6(i) into account, we get
Y(a") = (1,...,1,0P") € (G'stg(n) x --- x G'stq(n))C.
Thus for some iy, .. .,%, summing up to 0, we have
(b, b BT € G sta(n) x - x G sta(n).

By multiplying together all components, we get " € G'stg(n), contrary to the
induction hypothesis.

Let us now consider the case when n = 2m is even. Note that ¥(bP") =
(aP""', . .,aP""). Since a?"T' € stg(n — 1), we get W7 € stg(n). As before,
suppose that b”" € G’stg(n + 1). Applying v as above and looking at the first
component, we get

ba?" ' e G sta(n) (3.3.8)

for some integer i. Hence b' € G/ st;(n—1). Since by induction b*" " & G’ sta(n—1),
necessarily p™ divides i. Then by (3.3.8) we obtain that a?”~ € G’ stg(n), contrary
to the induction hypothesis.

We now prove (ii). The abelian group G,, /G, is generated by the images of a and
b, of orders p?(»~1 and pP"™) respectively. Hence |G,, : GI| < pfr=1+8(n) — yn
and all assertions in (ii) immediately follow if we show that |G, : G| > p". To

this purpose, observe that (3.3.6) and (3.3.7) imply that the index |G'stg(n) :
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G’ stg(n + 1) is non-trivial for every n. Thus
n—1
|Gt G| = |G G'stg(n)] = [ 1G stali) : G sta(i+1)] > p,
i=0
as desired. O
Now we can give a stronger form of Lemma 3.1.

Theorem 3.11. A p-Basilica group G, for p a prime, is super strongly fractal.

Proof. Let u, = xzp.".z, for every n € N. Since G is self-similar and spherically

transitive, by Lemma 1.9 it suffices to show that v, (stg(n)) = G for all n. Since

1

Q1[)'“271—1(bpn) = a, qun—l(a’pn_ ) = b7 ¢u2n (bp") = b7 and ¢u2n (apn) = a,

the result follows from Theorem 3.10. O

The above result gives the first examples of weakly branch, but not branch,

groups that are super strongly fractal; cf. [54, Prop. 3.11] and [55, Prop. 4.3].

Definition 3.12. Let G be a subgroup of Aut 7. The group G is said saturated if
for any n € N there exists a subgroup H,, < stg(n) that is characteristic in G and

¥w(Hy,) is spherically transitive for all vertices v € L,,.

If the group G is spherically transitive and super strongly fractal, then it suffices
to show this last property for a single vertex u € L, since if we write v = g(u) with
g € G then, taking into account that H, C stg(n) and u € L, so h(u) = u for all
h € Hy, by (1.1.4) we have

wv(Hn) = T/}g(u)(Hg) = T/JU(Hn)gu = ¢u(Hn)v

where last equality follows from v, (H,,) < ¢, (stg(n)) = G, since G is super strongly

fractal.

Corollary 3.13. Let G be a p-Basilica group for a prime p. Then Aut(G) =
NAutT(G)'

Proof. From [38, Prop. 7.5] a saturated weakly branch group has its automorphism

group equal to its normalizer in Aut 7, thus it suffices to show that G is saturated.
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We set Hy = G, Hi = G', and H, = [H,_1,H"_,] for all n > 2, which are
characteristic subgroups of G. We prove now by induction that H, < stg(n) for
every n € N. We first observe that the quotient of two consecutive level stabilizers in
G is an elementary abelian p-group. Indeed G is a subgroup of I" defined in (1.2.10)
and str(n)/str(n +1) = Cp x Pl Cp.

For i = 0,1 trivially we have H; < stg(i). Assume the result true until n. Then

we have
Hy1 = [Hy, HY ] <[stg(n),sta(n — 1)P] <stg(n) <stg(n+1). (3.3.9)

Set u, = x,.".x), for every n € N. As explained above, we only need to show that
tu, (Hy) is spherically transitive. This will follow if we prove that v, ,(H,) =
G', since ¥([b~1,a]) = (1,...,1,b71,b), with b acting transitively on the first level
vertices, and since G’ x -+ x G’ < Y(G").

Let us then prove that 1, ,(H,) = G’ for every n € N. We use induction on n,

the case n = 1 being obvious. Assume now that n > 2. From (3.3.9) we have

H, <stg(n — 1)'
Q;[}’Ltn_l(fl’n) S djun—l (StG(n — 1),) = G/

where the equality follows from G being super strongly fractal. Thus we only have
to show that G’ < 4, ,(H,). Observe first that b € )y, ,(H,—1) by the in-
duction hypothesis. Since also b € 1, ,(H,—2) and ¥ (b)) = (a,...,a), we have
a € Py, (HP_,). Consequently [b,a] € vy, ,([Hp—1,HE_,]) = vy, ,(H,). Since
G’ = {[b,a])¥, in order to complete the proof it remains to show that v, _, (H,) <
G. We first observe that H, is normal in G since it is characteristic. Moreover
H, Cstg(n) Cstg(n—1), thus H,, Istg(n —1). Since G is super strongly fractal,
it follows that the map

Yy, ¢ stgn—1) — G

g — gun—l

is a surjective homomorphism and ¢, ,(Hp,) < Im(¢,, ,) = G, and the result
follows. 0

The previous result implies that every automorphism of the group G is actually
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a conjugation by an automorphism of Aut7. Examples of other groups acting on
rooted trees with automorphism group equal to its normaliser in Aut7 are the
Grigorchuk group and the Brunner-Sidki-Vieira group [38], and the branch multi-
EGS groups [54].

Next we generalise Theorem 3.5(ii) and give a relation between rigid stabilizers

and level stabilizers.

Theorem 3.14. Let G be a p-Basilica group, for a prime p. Then the following
hold:

(i) Yn(sta(n)’) = G' x Yoxa for every n € N.
(i1) rstg(n) = stg(n) for every n > 2.

Proof. (i) Since G is self-similar, the inclusion C is obvious. For the reverse inclusion,

we first prove by induction on n that

/2 /2 . .
0 P ([P 7, aP 7)) if n is even,
ara = (3310
U ([a? , bP D) if nis odd.

The case n = 1 follows trivially since v¥([a, b*]) = (1,271,1,[b, a]). For n = 2, since
P([bP, aP]) = (1,271, 1, [a, bP]), it follows that

Po([bP, aP]) = (1,772, 1,4([a, bP))) = (1,771, 1, [b, a]). (3.3.11)

Assume the result true until n and assume that n + 1 is even. We first observe that

for k € N we have

Thus

(n+1)/2 p(n+1)/2 (n+1)/2

p([pP , @ D= (12751, [a

p(n—l)/z

, bP
and by induction we have

(n+1)/2 p(n+1)/2

wn-ﬁ-l([bp y @ ]) = (wn(l)va'lawn(l)vwn([a
= (1,7""'71 1, [a, B]).

(n=1)/2 (n+1)/2
N )
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If n 4+ 1 is odd the proof is analogous noting that

n/2 (n+2)/2

W(la® P ) = (1, 1, e ).

By Theorem 3.10, it follows that (1,7 =1 1,[b, a]) € ¥, (stg(n)’). Now the result
follows from Lemma 1.12.

pn

(ii) It suffices to show that v, (rstg(n)) = G’ x -+ x G’ for every n > 2. For

n = 2 we have

b(rste(2)) C (rsta(1) x -5+ x rstg(1)) N (rsta(1))
:(Ax-l-)~><A)ﬂ(B><-I-)-><B)
=G¢' xoxa,

by using first Theorem 3.5 and then Theorem 3.3(ii). Hence
Pa(rsta(2)) CW(G) x -2 xp(G) = (G'x - xG)Ox-" x (G'x-"-xG)C, (3.3.12)

by Theorem 3.6. Now since G is weakly regular branch over G’, by definition of

rigid stabilizer we have

2

G x " x G C (st (2)).

If this inclusion is strict then we may assume that for m,l € N, not both equal
to zero, the element (a'd™,...) belongs to 12 (rstg(2)). By the definition of rigid
stabiliser, it follows that (a'b™,1,...,1) € 1y (rstg(2)), which contradicts (3.3.12).
This proves the case n = 2.

Assume now the result true for n — 1. Then

n—1

Yn1(1ta(n)) C (sta(1) x "+ x 18t (1)) Mo (st (n — 1)

pn—l , pn—l ,
=(Ax" o xANG x> xG)
=G x T x G,
and
n—1
Un(rsta(n)) C (G x -2 x GNC x oo x (G x -2 x GC. (3.3.13)

pn

We note that G’ x -+ x G’ C 1, (rstg(n)) since G is weakly regular branch over
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G’. Assuming the inclusion strict and following a similar argument as for the case
n = 2, there would exist I, m € N, where at least one between [ and m is different

from zero, such that (a'b™, 1, P, 1) € ¢, (rstg(n)), which contradicts (3.3.13). O

We close this section by determining the structure of the quotients G’ /v3(G),
G'/G", and v3(G)/G", which is key for Section 3.4. We need a couple of lemmas.

Lemma 3.15. Let G be a p-Basilica group, for a prime p. For every n € N, we

have
"/}(StG’(n)) = (StG/(n — ]) X oo X StG/(’I”L o 1)) C,pﬂ(nfl)'

Proof. The inclusion D is obvious from Theorem 3.6(i) and Theorem 3.10(i). For
the other direction, let g € stg/(n). From Theorem 3.6(i) we can write ¥(g) =
(wr,...,wp) (b, ... b%), where the first factor is in G’ x - - - x G’ and the second is in
C. Fix an index j € {1,...,p}. Since w;b% € stg(n—1) we have b € G'stg(n—1),
and then p?"—1 divides i; by Theorem 3.10. Thus b% € stg(n — 1) and it follows
that also w; € stg(n — 1). This proves the result. O

Lemma 3.16. Let G be a p-Basilica group, for p a prime. Then the order of [a,b]
modulo y3(G) ster(n) is at least p™=Y) for every n € N.

Proof. Since [a, b] and [a, b~!] are inverse conjugate, we prove the result for the order
of [a,b!]. Observe that ¢([a,b~']) = (1,...,1,b,b7!) = ¢;*. We use induction on n.
The result is obvious if n = 1, so we suppose that n > 2. If [a, b~ ]P" € 13(G) st (n),
we want to show that m > f(n — 1). By way of contradiction, we assume that

m < B(n —1). From Theorem 3.6(iii) and Lemma 3.15, we get

¥([a,0717") € P(73(G) st (n)
= (Yo - - - 7yp—2>D<StG/(n —1) x -+ x ster(n — 1)) Cpﬁ(n—l)7

thus by applying v to [a, b~ !]P" we get
;" = ydge, (3.3.14)

where y = ygo...y’;ﬁ_QQ for some ko,...,kp—2 € Z,d € D, g € ster(n —1) x --- X
str(n — 1), and ¢ € P’V It we reduce (3.3.14) modulo G’ x --- x G’ and use



86 3.3 Commutator subgroup structure

that yo reduces to ¢, ”, we get

mo__ _ k. _ —k. B(n—1
s pk0+klcl k1+k2~--cpf§ stk 2cpf’2’ 2 e oP”Y, (3.3.15)
Since cg, ..., cp—2 form a basis for the free abelian group C, it follows that all ex-

ponents in (3.3.15) are divisible by pP=1) and, as a consequence, so is p™ — pko.
Since m < B(n — 1), it follows that the p-part of pkq is p™. Now since B = (b)G' is
abelian modulo v3(G), the map

T : Bx---xB — B/y(G)

(91,---,9p) — g1 gp13(G)

is a group homomorphism. Observe that both C' and D lie in the kernel of 7, and

that 7(yo) = [a, b 1]y3(G). Hence by applying 7 to (3.3.14), we get
[a,b_l]ko € v13(G) stgr(n —1).

Since the p-part of kg is ™!, by the induction hypothesis we have m—1 > 8(n—2),
and so m > B(n—2)+ 1> B(n— 1), contrary to our assumption. This completes
the proof. O

Theorem 3.17. Let G be a p-Basilica group, for p a prime. Then:
(i) G'/v3(G) = Z.
(ii) G')G" = 7*~1,
(ii) 73(G)/G" = 7?2,

Proof. (i) We observe that G’ /v3(G) is cyclic and generated by the image of [a, b].
From Lemma 3.16, the order of [a,b] tends to infinity modulo v3(G) st (n) as n
goes to infinity. Hence the statement immediately follows.

(ii) The result follows from (i) and from Theorem 3.6 since we have

GG (G e G
& wa <73<G> X %(G)) ¢

~7 % -2 x 7 x 7PL.
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This completes the proof since (iii) is a straightforward consequence of (i) and (ii).
]

As a corollary of the previous result we can prove that the quotient G/vy3(G)
is isomorphic to the integral Heisenberg group. In the next section we will use
this result to prove that the p-Basilica group does not have the weak congruence
subgroup property for any prime p.

The integral Heisenberg group is the group defined by

b

Hs(Z) = | a,b,c,€ Z

o O =
S = 2

c
1
It is a 2-generator nilpotent group of class 2 whose presentation is the following

HS(Z) = <$>y | [xv'y] =2z, [x7z] = [yvz] = 1>7

where
1 10 1 00 1 01
z=1]0 1 0], y=]0 1 1] andz=|0 1 0
0 01 0 01 001

Note that H3(Z) = (x) x (y,z) = Z X (Z X Z).
For ¢ an odd prime, the integral Heisenberg group modulo g is the group defined

b

H3(q) = | a,b,c,e Z [qZ

S O =
O = Q2

c
1
It is a group of order ¢> whose presentation is the following

H3(Q) = <x,y | [xvy] =z,[a:,z] = [y,z] =Lal=yl=21= 1>

> () {2y 2w (2 2
W y’z_qZ qZ  qZ )"

For ¢ = 2 the integral Heisenberg group modulo 2 is isomorphic to the dihedral
group Dy.
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Corollary 3.18. Let G be a p-Basilica group, for p a prime. Then G/v3(G) is
isomorphic to the integral Heisenberg group Hs(Z).

Proof. The proof is analogous to [27, Prop. 23], where it was proved for the case
p = 2. In [24, Prop. 4.8] the author proved the same result using a different approach,
also for p = 2. For completeness we give the full proof here. From Theorem 3.3 and
Theorem 3.17 we know that

B G

— =({GF"Y27Z and
G (&) 13(G)

= (la, b]73(G)) = Z.

Since G’ is a normal subgroup of B and B/G’ is cyclic, it follows that B’ = [B, G'] <
v3(G), so B/~v3(G) is abelian. Moreover B/v3(G) = (by3(G)) x([a, b]v3(G)) = Z X Z.
Each element g in the group G can be written as g = a’h where i € N and h is a

product of conjugates of b, i.e. G = (a) x B. Thus modulo v3(G) we have

G B
> (ay3(G)) X >~ (ay3(G)) X ({(by3(@Q)) x {[a,bly3(G))) X Z x(Z x Z),
(G (a73(G)) (G) (a73(G)) x ((073(G)) x (la, by3(G))) ( )
and it is clear that this group has the same presentation as Hs(Z). O

As noted in [24, Cor. 4.9], the previous result yields an alternative proof that
the p-Basilica groups are not branch. As every proper quotient of a branch group
is virtually abelian and the integral Heisenberg group is not virtually abelian, the

result follows.

3.4 Congruence subgroup properties

Let G be a p-Basilica group, for p a prime. Since G/G' = Z x Z, the group G does
not have the congruence subgroup property as all quotients of G by level stabilizers
are p-groups. In this subsection we show that G has the p-congruence subgroup

property (p-CSP for short) but not the weak congruence subgroup property.
Theorem 3.19. Let G be a p-Basilica group, for a prime p. Then G has the p-CSP.

Proof. We apply Lemma 1.30 with K = N = G’. Thus if L = ¢~ }(G’' x --- x G')
and we prove that G/G’, G'/L and L/G" have the p-CSP, from Lemma 1.29 also
G’ /G" has the p-CSP and the result follows from Lemma 1.30 .
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First of all, the factor group G/G’ has the p-CSP by Lemma 1.31, since
GG stg(n) = Cpon-1) X Cppn)

with S(n) = [n/2], according to Theorem 3.10(ii).
Next we deal with G’/ L, which is free abelian of rank p—1 since by Theorem 3.6(i)

it is isomorphic to the subgroup C'. By Lemma 3.15, we have
Q/)(LStG’(n)) — (G/ N, G/)Cpﬁ(n—l)

and consequently G'/L stey (n) = ¢(G') /1h(Lstey (n)) = C/CP"" ™" Hence this case
also follows from Lemma 1.31.
Let us finally consider the case of L/G”. From (ii) of Theorem 3.6 and from (i)

of Theorem 3.17 we have
LIG" = (G x -+ x GI)((G) x -+ x 75(G)) = 2.
Since

Y(str(n)) = ¥(LNst(n))
=(G'x-xG)N(st(n—1) x -+ xst(n—1))

= ster(n—1) x - x ster(n — 1),
it follows that
(G str(n)) = 13(G) ster(n — 1) x -+ x 73(G) ster (n — 1),
and we have
L/G"str(n) = G'/(y3(G)star(n — 1)) x -+ x G'/(73(G) star(n — 1)).

Since G'/(v3(GQ) stgr(n — 1)) is generated by [a,b] modulo 73(G) stgr(n — 1) whose
order is at least 5(n — 2) from Lemma 3.16, there exists m > f(n — 2) such that

L/G”StL(n) =~ Cpm X e X Cpm.

and by applying once again Lemma 1.31 we get the result. ]
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Theorem 3.20. Let G be a p-Basilica group, for a prime p. Then G does not have

the weak congruence subgroup property.

Proof. Let q # p be a prime, and let N = (a?,b?, [a, b]?)v3(G), which is normal and
of finite index in G. By Corollary 3.18, we have G/N = Hj3(q). We claim that
stg(n)” £ N for every odd n, which is enough to prove the theorem. Arguing by
way of contradiction, since by Theorem 3.14 we have 1, (stg(n)") = G’ x Pl x G,
and according to (3.3.10)

(n+1)/2 n

o )= (1,7 01 b)) e x Pox @

Un([a P

(n+1)2

for odd n, it follows that [a?" >, """’ € N. As 43(G) < N, we get [a, b]P" € N.
Since also [a,b]? € N and q # p, we conclude that [a,b] € N and G/N is abelian.
This contradicts the fact that G/N = Hs(q). O

3.5 Hausdorff dimension

In this section we determine the orders of the congruence quotients of the p-Basilica
groups. This enables us to compute the Hausdorff dimension of the closure of the

p-Basilica group G in the group I' of p-adic automorphisms of 7. We recall that

= limC,y2-"1C,
neN
is a Sylow pro-p subgroup of Aut7 corresponding to the p-cycle (12 --- p).
For a subgroup G of ', according to a result of Abercrombie, Barnea and Shalev,

the Hausdorff dimension of the closure of G in I' is given by

hdimp(g) = lim M

€ (0,1}, 3.5.1
n—oo log T : str(n)] 0,1] ( )

where lim represents the lower limit. The Hausdorff dimension of G is a measure
of how dense G is in I'. This concept was first applied by Abercrombie [1] and
by Barnea and Shalev [3] in the more general setting of profinite groups. We note
that the Hausdorff dimension of the closures of several prominent weakly branch
groups, such as the first [31] and second [42] Grigorchuk groups, the siblings of the
first Grigorchuk group [53], the GGS-groups [22], the branch path groups [21], and

generalisations of the Hanoi tower groups [52], have been computed.
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Theorem 3.21. Let G be a p-Basilica group, for p a prime. Then:

(i) The orders of the congruence quotients of G are given by

Pl p+ B for n even,
log, |G : stg(n)| = ?
Pl p B pt 2+ 2L for noodd.

(ii) The Hausdor(f dimension of the closure of G in T is

. val p
hd G)= ——.
imr(G) P

Proof. (i) We argue by induction on n. The case n = 1 is clear, so we assume n > 2.
Write n = 2m + e, with e = 0 or 1. We need to establish that

pn+1 _ p1+e

log, |G : stg(n)| = o1 +m+e.

Note that, by Theorem 3.10,
|G :stg(n)| = |G : G'stg(n)]| |G sta(n) : sta(n)| = p™ |G : star(n)]

and that |G’ : stg/(n)| coincides with

W) : d(str(m))] = (G x ¥+ x G)C : (str(n — 1) x P x st (n — 1))

= plr—DA(-1) |G st (n — 1P
p(p—l)ﬁ(n—l)—p(n—l) |G« stg(n—1)]7,

where we have used Lemma 3.15 and the fact that C is free abelian of rank p — 1.
Here f(n — 1) = [(n=1)/2] as before. Thus

log, |G : stg(n)| = plog, |G :stg(n —1)|+ (p—-1)(B(n—1) —n+1)+1
=plog, |G :stg(n—1)| = (p—1)(m+e—1)+1,

since B(n — 1) = m. Now the result follows from the induction hypothesis.
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(ii) In order to get the Hausdorff dimension of G in T, we just need to take into
account formula (3.5.1) and the fact that

p"—1
p—1°

logp|F:stp(n)|:1_|_p_|_,,,_|_pn—1: D

We remark that the Hausdorff dimension of the Basilica group was given by
Bartholdi in [4].

3.6 Growth and amenability

Following the notation in Section 1.4, we prove in the next part that the p-Basilica
groups are contracting.

We remark that the contracting property is a tool to prove that a certain group
is torsion-free, by using induction on the length of a word, as it decreases in the
subsequent levels. The p-Basilica groups, like the Basilica group (see [34, Thm. 1)),
are examples of contracting groups that are also torsion-free.

Observe that the condition ¢;(s) <1 for all s € S of Lemma 1.19 is satisfied by
the set of generators S = {a,b,a”!,b7'} in a p-Basilica group. Thus we have the

following result.

Theorem 3.22. For p a prime, the p-Basilica group G is contracting with respect
to the set of generators S = {a,b,a~, b=}, with A = % and C =L =1.

Proof. By Lemma 1.19, it suffices to prove that
2
l(g) < §|gl +1, forevery g € G. (3.6.1)

We start by proving that ¢2(h) < 2 for every element h € G of length 3. We observe
that

w(bQ) = (1, ,1,a,a)o2
Y2 =(a"ta1,..., 1)o7 2
Y(ba) = (1,...,1,b,a)0 (3.6.2)
Yba™H) =(1,...,1,b7  a)o
Ylab™) = (a1 1,...,1,b)0 !
Ya v ) = (a1 1,..., 1,07 Yo,
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so £1(g) < 1 for g € {b%,b72,ba,ba"*,ab"',a=*b~'}. The components of all other
words of length 2, with the exception of a~'b and b~ 'a, are trivial or equal to

b2,b2,ba or a~ b1 indeed

bla?) = (1,...,1,12)
Y =(@1,...,1,b72) (3.6.3)
P(ab) = (1,...,1,ba)o
P e ) = (a1, )0t

V(e ) =(1,...,1,b ta)o (3.6.4)
Y(b~ra) = (a71b,1,...,1)0 L

This implies that f5(g) < 1 for every g of length 2 other than a~'b and b~'a. Since
h has length 3, one of the elements h or =1, call it h*, does not contain a~'b or

b~la as a prefix. If we write h* = gs with ¢ of length 2, then
la(h) = La(h*) < La(g) + L2(s) < 2,

as claimed.

Let now g be an arbitrary element in G. Then we write |g| = 35 + k with
k€ {0,1,2} and g = hy---hjf with |hj| = --- = |hj| = 3 and |f| = k, and (3.6.1)
immediately follows from the subadditivity of #o (1.4.1) and the fact that f2(f) < k.
This completes the proof. O

Corollary 3.23. Let G be a p-Basilica group, for a prime p. Then G has solvable

word problem.

Proof. This follows from Theorem 3.22 and [40, Prop. 2.13.8] where it is proved that
a contracting finitely generated subgroup of Aut7 has solvable word problem. [

In the following we determine the growth of a p-Basilica group G, for p an odd
prime, and we prove that G is amenable but not subexponentially amenable. The
corresponding versions of Theorem 3.27 and Lemma 3.28 for p = 2 were proved
in [34, Lem. 4 and Prop. 4] and in [34, Prop. 13] and [37, Cor. 10], respectively.
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In order to get these results we need some facts about semigroups. Let S and
T be two semigroups and let ST be the direct product of copies of S indexed by
T. The reqular wreath product of S and T denoted by ST is the semigroup whose

elements are the formal expressions (st) zwith s € Sforallt € T and z € T and

teT
whose operation is defined as in the regular wreath product of two groups, namely

(St)teTz' (S;)tET 2 = (stsgz)teT 27

for all (St)teT, (sg)teT € ST and 2,2 € T.
Let  and y be two symbols and let S be the free semigroup generated by x and
y. Let o be the cycle (12 --- p) and let n be the semigroup homomorphism defined

as follows:
n: S — S (o)
z = (1,...,1,9) (3.6.5)
y — (L,...,1,2)0
For each word w in S, we denote by w1, ..., u, the elements in S such that

n(u) = (u1,...,up)o"

for a certain r € {0,...,p — 1} depending on u. We have the following result.

Lemma 3.24. Let S be the free semigroup generated by x and y. If u and v are
two different words in S, then there exists i € {1,...,p} such that u; # v;.

Proof. Since u # v, we can assume without loss of generality that « = wxc and
v = wyd for certain w,c,d € S. Let wy,...,wp, € S and r € {0,...,p — 1} be such
that n(w) = (w1,...,wp)o". Then

n(w) = (wi,...,wp)o"(1,...,1,y)n(c)

= (w1, .. y Wp—pr—1, Wp—1Y, Wp—r+41, wp)UTn(C)

and

n(v) = (w1,...,wp)o" (1,...,1,z)on(d)

= (Wi, ... s Wp—p—1, Wp—p T, Wp—y41, wp)orﬂn(d)
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Thus v, = wp—,yu and vy_, = wy,_,20 for certain W and ¥ in S. Since S is the

free semigroup in x and y, it follows that u,_, # v,—, and the proof is complete. [

Remark 3.25. We observe that if u and v are two different words in the semigroup

S generated by x and y then, by applying the previous lemma two times, there exist

i,j € {1,...,p} such that (u;); # (v;);.
In the next lemma we denote by | - | the length with respect to the set {x,y}.

Lemma 3.26. Let S be the free semigroup generated by x and y and let u be a word
in S such that |u| > 2. Then there exist i,j € {1,...,p} such that |(w;);| < |ul.

Proof. Assume first that i € {1,...,p — 1}. Let z € {z,y} and w € S be such that

u = zw. Then

n(u) =(1,...,1,y)n(w) if z==x
n(u) =(1,...,1,x)on(w) it z=uy.

From (3.6.5) one can note that for each word w € S we have
max{|w;| | i€ {1,...,p}} < |w| (3.6.6)
Thus for i € {1,...,p— 1} and for all j € {1,...,p} we have
|(ua);] < fui] < fw| <[w|+1 = [ul

and the result follows.

It remains to check the result for ¢ = p. Let us assume first that w contains
y%. So there exist v,w € S such that u = vy?w. Since n(y?) = (1,...,1,z,2)0?, it
follows that |(y2);| < |y?| for all i € {1,...,p}. Since n(u) = n(v)n(y*)n(w) from
(3.6.6) for all j € {1,...,p} we have that

‘(up)j‘ < ‘Up’ < |7)p| + 1+ max{|w;| |7 € {1,...,p}}
< ol + [y?] + |w] = |ul.

The same happens if u contains yx since n(yx) = (1,...,1,y,z)o and |(yx);| <
lyx| for all i € {1,...,p}.
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It remains to check the cases u = 2! for [ > 2 and u = My for m > 1. We

observe that

By the first part of the proof, the lengths of all components of 5(y') and n(y™zx)
are strictly less than |y!| = |#!| and |y™a| = |#™y], respectively. This completes the

proof. O

Theorem 3.27. Let G = (a,b) be a p-Basilica group, for p an odd prime. Then the
semigroup generated by a and b is free. Consequently, the group G is of exponential

growth.

Proof. Let R C G be the subsemigroup generated by a and b and consider the

following commutative diagram of semigroup homomorphisms

1)
Si1{oc) — Ri{o) (3.6.7)
where ¢ is the surjective homomorphism defined by £(x) = a and &(y) = b, the
homomorphism 0 is the natural extension of £ to the wreath product S (o), i.e. for

allr € {0,...,p—1} and (s1,...,sp)0" € S (o) we have

((s1,---,8p)0") = (&(51),-..,&(sp))0",

the map 7 is the homomorphism defined in (3.6.5), and v is the restriction of the
group homomorphism ¢ : G — G ¢ {¢) to R.

In order to prove that R is free, assume by way of contradiction that there
exist two different words in a and b representing the same element f in R. By the
surjectivity of &, there exist u and v different words in the semigroup S such that
&(u) = &(v) = f. Without loss of generality we can assume that p = max(|ul, |v|) is
minimal, i.e. for all words @ # T whose images under £ represent the same element

in R we have max(|ul, [v]) > p. We first observe that p > 2, indeed if this is not
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the case then u and v are two different words in {1, z,y} and their images under £
cannot represent the same element in R.

Without loss of generality we can assume that p = |u|. Since u # v, from
Remark 3.25 there exist 4,5 € {1,...,p} such that (u;); # (v;);. Since |u| > 2, by
Lemma 3.26 we know that |(u;);| < |u| = p. If |u| < p then |(v;);] < |v| < p for
all 4,7 € {1,...,p}. If [v| = p > 2, from Lemma 3.26 we have |(v;);] < |v| = p for
all 4,5 € {1,...,p}. Since the diagram in (3.6.7) commutes, the elements (u;); and
(vi); are two different words whose images under & represent the same element in
R and such that max(|(u;);l, [(vs)]) < p. This contradicts the minimality of p and
the proof is complete. O

Lemma 3.28. For p a prime, the p-Basilica group G is amenable but not subexpo-

nentially amenable. In particular it is not elementary amenable.

Proof. For the Basilica group the result was proved by Grigorchuk and Zuk in [34,
Prop. 13] and [10]. Hence we assume that p is odd. As remarked in Section 3.2 the
group G is a group generated by a finite bounded automaton. From the main result
in [8], any group generated by a finite bounded automaton is amenable. It follows
that G is amenable, so it suffices to show that G is not subexponentially amenable.
Since G is weakly regular branch over G', from Lemma 1.21 (see [37, Cor. 3]) the
result follows provided that i, (stg(u)) contains G for some vertex u. We observe

that
Yt a?) = (1,272, 1,67P,6P)  and  +([a,bP]) = (1,271, 1, [b, a]),

thus ¥, ([b~%, al?) = a and 1y ([a,b?]) = b, where u = xpx,. This completes the
proof. O

3.7 Virtually nilpotent quotients and maximal subgroups

In this final section we study nilpotency and virtual nilpotency of quotients of a
p-Basilica group G, and we prove that all maximal subgroups of G have finite index,
and that G has infinitely many non-normal maximal subgroups. The following

lemma will be useful for both purposes.

Lemma 3.29. Let G be a p-Basilica group, for a prime p. Then G has a proper
quotient isomorphic to Wy(Z).
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Proof. Let L = ¢ 1(G’' x --- x G'). We have G = A(b), and on the other hand
Y(A) = B x --- x B by Theorem 3.5(i). Hence 1 induces an isomorphism between
G/L and the semidirect product (B/G’ x ---x B/G') x {(1(b)). Observe that 1(b) =
(1,...,1,a)0 acts as o on the direct product of p copies of B/G’, and that ¢ (b") =
(a,...,a) acts trivially. If we set N = L(bP) then it is clear that N < G and that
G/N = W,(Z), since B/G" = Z by Theorem 3.3(iii). O

Recall from Corollary 3.9 that the p-Basilica groups are just non-solvable. In [23,
Sec. 8.3] it was shown that the Basilica group is not just non-nilpotent. On the other
hand, by [23, Lem. 8.3.5 and Prop. 8.3.6], all proper quotients of the Basilica group
are virtually nilpotent. We extend these results to the p-Basilica groups for all
primes p. To this purpose we will use the following result proved by Baumslag in
[11].

Theorem 3.30. Let H and K be two nilpotent groups and let W = H{ K. The
group W is nilpotent if and only if H and K are p-groups with H of finite exponent
and K finite.

Theorem 3.31. Let G be a p-Basilica group, for a prime p. Then:
(i) The group G is not just non-nilpotent.

(i) Every proper quotient of G is virtually nilpotent, but G itself is not virtually

nilpotent.

Proof. (i) By Lemma 3.29, the group G has a proper quotient isomorphic to W), (Z).
From Theorem 3.30, this wreath product is not nilpotent. Hence G is not just
non-nilpotent.

(ii) From Theorem 3.6(ii), the map ¢ induces an embedding of G/G" into the
wreath product W,(G/~v3(G)). Since the latter is virtually nilpotent, also is G/G".

Now since G is weakly regular branch over G’ and G/G” is virtually nilpotent, it
follows that every proper quotient of G is also virtually nilpotent by Theorem 1.35.
On the other hand, the group G is not virtually nilpotent by Gromov’s celebrated
theorem 1.20, in light of Theorem 3.27. O

Let us now consider the maximal subgroups of G. We first prove that G does not
possess maximal subgroups of infinite index. The proof is analogous to that of [24,

Sec. 4.4], however with a necessary change to the end of [24, Prop. 4.27]. Due to
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the proof being so similar, we refer the reader to [24, Sec. 4.4], and only record here
the part that needs to be changed.

Recall from Definition 1.32 that a subgroup H of a group G is prodense if HN =
G for all non-trivial normal subgroups N of G. As noted in Section 1.6, finitely
generated virtually nilpotent groups belong to the class M, i.e. the class of groups
whose maximal subgroups are all of finite index. The previous theorem implies that
every proper quotient of a p-Basilica group in MJF. Thus from Proposition 1.34, in
order to prove that there are no maximal subgroups of infinite index in a p-Basilica
group it suffices to show that there are no proper prodense subgroups.

For H a proper prodense subgroup of G, by Theorem 1.36, for all vertices u €
T, the subgroup v, (stg(u)) is a proper prodense subgroup of G. We consider a
prodense subgroup H of G, and seek a vertex u such that ¢, (sty(u)) = G, which
then proves the theorem.

As in [24, Prop. 4.27], there is a vertex v such that either ab, b= 1a € 1, (sty(v))
or ba,b~ta € 1, (sty(v)). In the former case, we obtain a? € v, (sty(v)). Since p is
an odd prime, it follows that b=ta? € ¥, (sty(v)). Now

(O~ aP)) = (a7 MP, . 0T P),
P(a”P) = (a,...,a,b ta),

and

P((ba)?) = (ba, ..., ba,ab). (3.7.1)

Therefore, for u = va,z1, we have 1, ((b"1aP)P) = a and Yu((ab)P’) = ba. Since
both (b~ 1aP)? and (ab)f”2 belong to sty (u), it follows that ¥, (sty(u)) = {(a,ba) = G
and the result holds in this case.

In the latter case, we have ba,b~'a € ,(sty(v)), and so b* € ¥, (sty(v)). As
before, we obtain bPa = ¥~ '((a,...,a,ab)) € ¥,(sty(v)). Setting u = vz, and
taking into account (3.7.1), we see that a,ba € ¥, (stg(u)) and the result follows.

We conclude by showing the existence of non-normal maximal subgroups in the

p-Basilica groups.

Proposition 3.32. Let G be a p-Basilica group, for p an odd prime. Then for every
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prime q such that p divides ¢ — 1, the group G has a non-normal subgroup of index

q.

Proof. By Lemma 3.29, the group G has a quotient isomorphic to W,(Z), and so
also a quotient isomorphic to W,(Z /qZ). Thus it suffices to find a non-normal
subgroup of index ¢ in the latter group.

Let V=27 /q7Z x Lxz /q Z be the base group of Wy,(Z /qZ). The characteristic
polynomial corresponding to the action of o on V is X? — 1, which by the condition
that p divides g — 1, has p different roots in Z /qZ. Let A # 1 be one of these roots,
and let U = (u) be the eigenspace of A in V. Then we can write V = U x K for a
suitable subgroup K. If we set H = K (o) then H has index g in W,(Z /qZ). At
the same time, H is not a normal subgroup of W,(Z /qZ), since otherwise [u, o] =
w1 # 1 belongs to U N H = 1. O

Observe that there are actually infinitely many non-normal maximal subgroups
in a p-Basilica group, due to Dirichlet’s theorem about primes in arithmetic pro-

gressions.



Bibliography

[1]

2]

3]

[4]

[5]

[10]

A. G. Abercrombie, Subgroups and subrings of profinite rings, Math. Proc.
Camb. Phil. Soc., vol. 116, Cambridge University Press, 1994, pp. 209-222.

T. Alexoudas, B. Klopsch, and A. Thillaisundaram, Maximal subgroups of
multi-edge spinal groups, Groups, Geometry, and Dynamics 10 (2016), no. 2,
619-648.

Y. Barnea and A. Shalev, Hausdorff dimension, pro-p groups, and kac-moody
algebras, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5073-5091.

L. Bartholdi, Branch rings, thinned rings, tree enveloping rings, Israel J. Math.
154 (2006), no. 1, 93.

, Growth of groups and wreath products, Groups, Graphs and Random
Walks, London Math. Soc. Lecture Note Ser., vol. 436, Cambridge Univ. Press,
2017, pp. 1-76.

L. Bartholdi and R. 1. Grigorchuk, On parabolic subgroups and hecke algebras
of some fractal groups, Serdica Math. J. 28 (2002), no. 1, 47-90.

L. Bartholdi, R. I. Grigorchuk, and Z. Sunié, Branch groups, Handbook of
algebra, vol. 3, Elsevier, 2003, pp. 989-1112.

L. Bartholdi, V. A. Kaimanovich, and V. V. Nekrashevych, On amenability of
automata groups, Duke Math. J. 154 (2010), no. 3, 575-598.

L. Bartholdi and Z. Sunié¢, On the word and period growth of some groups of
tree automorphisms, 29 (2001), no. 11, 4923-4964.

L. Bartholdi and B. Virag, Amenability via random walks, Duke Math. J. 130
(2005), no. 1, 39-56.

101



Bibliography BIBLIOGRAPHY

[11] G. Baumslag, Wreath products and p-groups, Math. Proc. Camb. Phil. Soc.,
vol. 55, Cambridge University Press, 1959, pp. 224-231.

[12] I. V. Bondarenko, Finilte generation of ilerated wreath products, Archiv der
Mathematik 95 (2010), no. 4, 301-308.

[13] A. M. Brunner, S. Sidki, and A. C. Vieira, A just-nonsolvable torsion-free group
defined on the binary tree, J. Algebra 211 (1999), no. 1, 99-114.

[14] L. Carlitz, A. Wilansky, J. Milnor, R. A. Struble, N. Felsinger, J. M. S. Simoes,
E. A. Power, R. E. Shafer, and R. E. Maas, Advanced problems: 5600-5609,
The American Mathematical Monthly 75 (1968), no. 6, 685-687.

[15] T. Ceccherini-Silberstein, R.I. Grigorchuk, and P. de la Harpe, Amenability
and paradozxical decompositions for pseudogroups and for discrete metric spaces,
Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation
224 (1999), 57-97.

[16] C. Chou, Elementary amenable groups, Illinois Journal of Mathematics 24
(1980), no. 3, 396-407.

[17] M. M. Day, Amenable semigroups, Illinois Journal of Mathematics 1 (1957),
no. 4, 509-544.

[18] E. Di Domenico, G. A. Fernidndez-Alcober, and N. Gavioli, GGS-groups over
primary trees: Branch structures, to appear in Monatshefte fiir Mathematik
(2022).

[19] E. Di Domenico, G. A. Fernédndez-Alcober, M. Noce, and A. Thillaisundaram,

p-Basilica groups, to appear in Mediterranean Journal of Mathematics (2022).

[20] G. A. Fernandez-Alcober, A. Garrido, and J. Uria-Albizuri, On the congruence
subgroup property for GGS-groups, Proc. Amer. Math. Soc. 145 (2017), no. 8,
3311-3322.

[21] G. A. Ferndndez-Alcober, S. Giil, and A. Thillaisundaram, The congruence

quotients of branch path groups, in preparation.

[22] G. A. Fernandez-Alcober and A. Zugadi-Reizabal, GGS-groups: order of con-
gruence quotients and Hausdorff dimension, Trans. Amer. Math. Soc. 366
(2014), no. 4, 1993-2017.



Bibliography 103

[23]

[24]

[25]

[26]

[32]

[33]

D. Francoeur, On mazximal subgroups and other aspects of branch groups, Ph.D.

thesis, University of Geneva, 2019.

, On mazimal subgroups of infinite index in branch and weakly branch
groups, J. Algebra 560 (2020), 818-851.

D. Francoeur and A. Garrido, Mazimal subgroups of groups of intermediate
growth, Advances in Mathematics 340 (2018), 1067-1107.

D. Francocur and A. Thillaisundaram, Mazimal subgroups of non-torsion
Grigorchuk-Gupta-Sidki groups, arXiv preprint arXiv:2005.02346 (2020).

A. Garrido and J. Uria-Albizuri, Pro-C congruence properties for groups of
rooted tree automorphisms, Arch. Math. (Basel) 112 (2019), no. 2, 123-137.

R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal.
i Prilozhen. 14 (1980), no. 1, 53-54.

, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271
(1983), no. 1, 30-33.

, Degrees of growth of finitely generated groups, and the theory of in-
variant means, lzvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
48 (1984), no. 5, 939-985.

, Just infinite branch groups, New horizons in pro-p groups, Springer,
2000, pp. 121-179.

, Some topics in the dynamics of group actions on rooted trees, Proc.
Steklov Inst. Math. 273 (2011), no. 1, 64-175.

R. I. Grigorchuk, V. Nekrashevych, and V. I. Sushchansky, Automata, dynami-
cal systems, and groups, Trudy Matematicheskogo Instituta Imeni VA Steklova
231 (2000), 134-214.

R. I. Grigorchuk and A. Zuk, On a torsion-free weakly branch group defined by
a three state automaton, Internat. J. Algebra Comput. 12 (2002), 223-246.

M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math.
Inst. Hautes Etudes Sci. 53 (1981), no. 1, 53-78.



Bibliography BIBLIOGRAPHY

[36]

[37]

[38]

[43]

[44]

[45]

N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z.
182 (1983), no. 3, 385-388.

K. Juschenko, Non-elementary amenable subgroups of automata groups, J.
Topol. Anal. 10 (2018), no. 01, 35-45.

Y. Lavreniuk and V. Nekrashevych, Rigidity of branch groups acting on rooted
trees, Geom. Dedicata 89 (2002), no. 1, 155-175.

A. Mann, How groups grow, London Mathematical Society Lecture Note Series,
vol. 395, Cambridge University Press, 2011.

V. Nekrashevych, Self-similar groups, no. 117, Amer. Math. Soc., 2005.

J. V. Neumann, Zur allgemeinen theorie des masses, Fundamenta Mathemati-
cae 13 (1929), no. 1, 73-116.

Marialaura Noce and Anitha Thillaisundaram, Hausdorff dimension of the
second grigorchuk group, International Journal of Algebra and Computation
(2021), 1-11.

A. L. Paterson, Amenability, no. 29, American Mathematical Soc., 2000.

E. L. Pervova, Everywhere dense subgroups of one group of tree automorphisms,
Trudy Matematicheskogo Instituta imeni VA Steklova 231 (2000), 356-367.

J. M. Petschick and K. Rajeev, On the Basilica operation, arXiv preprint
arXiv:2103.05452 (2021).

L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
Springer Berlin Heidelberg, 2010.

D. J. Robinson, A course in the theory of groups, second ed., Graduate Texts

in Mathematics, vol. 80, Springer-Verlag, New York, 1996.

A. V. Rozhkov, On the theory of groups of aleshin type, Mat. Zametki 40 (1986),
no. 5, 572-589.

H. Sasse, Basilica-gruppen und ihre wirkung auf p-requliren bdumen, Master’s
thesis, Heinrich-Heine-Universitdt Diisseldorf, 2018.



Bibliography 105

[50] D. Segal, The finite images of finitely generated groups, Proc. London Math.
Soc. 82 (2000), no. 3, 597-613.

[51] S. Sidki and E. F. Silva, A family of just-nonsolvable torsion-free groups de-
fined on m-ary trees, Atas da XVI Escola de Algebra, Brasilia, Matematica
Contemporanea 21 (2001).

[52] R. Skipper, The congruence subgroup problem for a family of branch groups,
Internat. J. Algebra Comput. 30 (2020), no. 02, 397-418.

[53] Z. Sunié, Hausdorff dimension in a family of self-similar groups, Geom. Dedi-
cata 124 (2007), no. 1, 213-236.

[54] A. Thillaisundaram and J. Uria-Albizuri, The profinite completion of multi-egs
groups, J. Group Theory 24 (2021), no. 2, 321-357.

[55] J. Uria-Albizuri, On the concept of fractality for groups of automorphisms of a
regqular rooted tree, Reports@SCM (2016), no. 2, 33-44.

[56] T. Vovkivsky, Infinite torsion groups arising as generalizations of the second
Grigorchuk group, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, pp. 357—
377.



