Julius-Maximilians-Universitat Wirzburg

Chair of Computer Science VII - Robotics and Telematics

Master Thesis

Evaluation of Concepts for gNodeB
Satellite Backhaul using Open-Source 5G
Frameworks
Aitzol Monroy

Submission: June 30, 2022

Supervisor and Reviewer
Prof. Dr.-Ing. Markus Gardill

Second Reviewer
Prof. Dr. Guido Dietl

Abstract

There has been a tremendous increase in mobile networks in recent years. From
connecting a few devices with low requirements, to the requirement of connecting many
more devices with increasing technical needs. This has resulted in the urgency to
increase network capacity to meet the needs of all users, increase connection speeds
and decrease latency.

In many cases, the demand for 5G capacity is very difficult to achieve with conventional
infrastructure, especially in remote areas where access is not easy. This is where the
concept of using satellites to improve communications networks comes into play. For
years, satellite communications have been separated from telecommunications
networks. Today, with the new generation of satellites, built with 5G architecture in mind,
they can be integrated into these telecommunications networks to extend the coverage
of cars, planes or any device in remote areas.

Integrating these satellites into the mobile network, routing the backhaul of a 5G gNB
over a satellite is a possible option, which will be analysed in this work.

In this master thesis, concepts for the satellite backhaul are implemented and evaluated
using open-source 5G frameworks, looking into how the gNB and Core Network (CN)
elements interact, and respond to changes and limitations in the network. To do so, a
5G network has been created using what Open Air Interface (OAIl) provides.

Contents

i T 4o T [¥ T 4o o FOUU T PSP STPPPTOUPRPPRRTRPRINt 1
2. TECHNICAI BASICS .veeeuteieiiieiiieeie ettt ettt ettt ettt e st e e st e s bt e e st e e sabe e e sabeesabeesneeesabeesaneeas 3
2.0, 5G ArChITECIUI: .ttt ettt e sat e st e e s be e e s b e e sbeessaseesaneeesareeas 3
N 0 Y C I o = OO TPPTPTT 3
2.0.2. NG-RAN ettt ettt b e b et sttt nb e she e sanesare e 5
2.0.3. BACKNAUL ..t e st e e s bee e saneena 6
2.0.4. NEtWOIK INTEIr aCeS. ..cciiiie ittt ettt et e st e s sree e sbeeesaneenas 7
2.1.5. Control and User Plane Separationcccccvieeeeciiieeeiiieeeecitee e ecieee et e e esevae e e eeaneee s 8

2.2, 5G ProtoCOl STACK ..cuveeteeiietieiee ettt st s 9
2.3. 5G DeEPlOYMENT SCENAIIOS ..cc.uviieeeeiiiee ettt e cettee e e ectte e e e eette e e e ebteeesebteeesebteeaseseneeseseneasanns 11
2.3.1. Enhanced Mobile Broadband.........ccoccueeriiiiiiieniieeieesiec ettt 11
2.3.2. Ultra-Reliable Low Latency COmmuNICatioNseevevuieeeiiiiiieeerieee e e eeieee e 11
2.3.3. Massive Machine Type CommuUNICatiONS.........ccccuieiiiiiieeeeeiiee e e eecree e e evee e e 11

2.4. 5G Network Functions Deployment in SHCEScccviieieciieeeccieee et e 12
2.5. Satellite Backhaul TEChNOIOZY....cccuviiiiiiiieeicieee et e e 13
2.6. Multi-access EAge COMPULING ...ccivcuiiiiiiiiee ittt ettt e e et e e e srte e e s sbae e e e sbeeeaseans 14
2.7.5G Frequency Bands and Frame STrUCTUIEcooccuiiieieiiiiee ettt e evaee e 15
2.8. OPpEN SOUICE 5G FramMEWOIKS. ...cccccuiiieietiieeeeiteeeeecte e e eectte e e e ette e e e etteeeeeetseeeesbseeeseseneaeanes 16
2.8 SISRAN L 16
2.8.2. OAlcceee e e e et he e s s n e s r e neenrees 17

0] o] (=T o aT=T o1 = o o TSRS 19
3.1. Retrieving the IMages 0N DOCKETccccuviii ittt ettt e e ectre e e e e sate e e e enaaeaeeans 19
I 01T o [} A o] =11 11 ¢SRSt 19
3.2.1. Deploy OAI 5G Core NEtWOIK.....occuiiiiieiiee ettt e e e svee e e 20
3.2.2. Deploy OAl gNB in RF Simulator Mode and in SA Mode........ccccoecveeeivieeecciieeeeee, 20
3.2.3. Deploy OAI NR-UE in RF Simulator Mode and in SA Mode........ccovvveerieienieencieeennnen. 21

3.3 TrAffiC ChECK ..ot st st e 22
3.4. Explanation on the Configuration in the Docker-compose.yaml..........cccceeeciieeeecineeens 24
3.4.1. Content Of the BIOCKSccceeriiriiiiieiecee ettt 24
3.4.2. Configuration of the NetWOrKs........ccooiiiiiiiiiie e 28

B RESUILS ettt ettt ettt s e e b e e s bt e s bt e s s bt e s be e e ne e e s be e e sanee s re e e nee e s reeennreeaa 30
4.1, EValuQtioNn TOOIS c..eeeieiiiieiee ettt et st e e s e s e 30
L =Y S PP 31
4.2.1. Test WIithoUt ReSTIHCLIONS.ccoviiiieieeieecieeere et 31
4.2.2. Test With ReSEIICTIONS ...ccveiriiriiiiiee et s 44

LI 0o o ol [3 3o Y o TSN 54

5.1, RESUIt DISCUSSION ...cutieiiiiiiiiie ettt st ettt sbe e st s st e b e b e snees 54
5.2, FULUIE WOTK ettt st st bbb 54
[y o) B 7= U <SPS 56
LIST OF TaBIES ..ttt et ettt e s it e s bt e e sab e e st e e s nee e sareeeneeas 58
A O N IS ettt 59
271 o] [ToT = =T o] o1V PR 62
FAY o] 0 =Y o Vo | PP RRSPP 65
FAY] 0 =Y o Vo |Gt PRSP 65
F Y] o< o Vo 1 PP 71
PN o] o< o Vo D SRR 72

1. Introduction

Mobile communications have played and continue to play a major role in all areas of
society. Mobile communications are one of the main means to make the economy more
dynamic and efficient.

To analyse the evolution of mobile telephony, one would have to go back to 1973, when
the first mobile phone call was made. It was in 1979 that the first 1G network was
launched in Japan, the first country to have 1G service. Within a few years it was
extended to the whole world. This generation was launched to provide voice call which
was analog signals. This generation of telephony had no security whatsoever, as the
calls were not encrypted [1].

2G was born in Finland in 1992, providing many advantages compared to 1G. 2G
brought smaller and cheaper mobile phones and the ability to send SMS and MMS
messages. Transmission was switched from analogue to digital and calls were
encrypted. Time and code multiplexing made better use of channels, with more
simultaneous users supported by the network. Voice quality was clearer and noise was
reduced. Circuit switching is still used in this technology.

Before moving to 3G there were other improvements such as 2.5G, which introduces
packet switching for data communication, allowing for higher network performance as
each packet within the network is treated individually and can follow any path it chooses.

In 2001, 3G technology appeared, with the aim of increasing transmission capacity to
offer services such as mobile internet connection and file downloading. It is called UMTS
standard which allows speeds up to 6Mb/s. 3G allows international roaming services to
be introduced. What was really revolutionary about 3G was the ability to surf the internet.

Launched in 2009, 4G is the technological evolution that offers faster internet and higher
bandwidth. 4G is an IP-based generation, which includes techniques such as Multipol
Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM).
Today the average Down Link (DL) speed for 4G is 50 Mbps.

Due to the increase in the number of devices connected to the internet, and the need to
increase speeds and reduce latencies, 5G has emerged.

5G comes with the promise of breaking the 3 Gbps barrier and reducing latency to under
1ms. 5G uses more radio spectrum than any other technology, and that allows for more
users, more data and faster connections. South Korea was the first country to offer 5G
in 2019.

As for the actual speed of 5G networks, it will depend on the location. In the UK,
maximum speeds of between 247 Mbps and 753 Mbps have been reported by the major
carriers In terms of latency, an average of 30ms has been reported [2]. 5G is essential
for connecting smart cities, self-driving cars and other industries.

2020s
ice Mobile Broadband Interconnected

Human-to-Human L Devices, Sensors,
Earty Mobile Phones Voice and Some Text ternet A and Systems

Analog Voice Digital Vo
od I

ed Data

Figure 1: Evolution of the cellular network [3]

Work on 6G technology has been underway since 2019 and is expected to be
commercialised in 2030, with the first real-world use cases expected from 2026. Possible
uses include extended reality (XR), Artificial Intelligence (Al) and energy efficiency.
Speed could be 1Tbps and 0.1ms latency.

One of the important elements of 5G is the backhaul, which is the connection of the CN
to the subnetworks that connect to it. One of the challenges of mobile technologies is
reaching any remote area, and this is where the term "Satellite Backhaul" comes into
play. This technology makes it possible to reach places where a terrestrial infrastructure
is not possible routing the communication from the Next Generation Radio Access
Network (NG-RAN) to the satellite and from the satellite to the CN.

In this master thesis, concepts for the satellite backhaul are implemented and evaluated
using open-source 5G frameworks. For this purpose, a 5G network will be implemented
in a software framework.

2. Technical Basics

This section will introduce all the technical aspects necessary for the correct
understanding of the thesis. Starting from the basis that a 5G network has been
implemented and evaluated in software.

2.1. 5G Architecture:

As in previous versions of 3 generation Partnership Project (3GPP), 3GPP defined for
5G the CN and the New Radio (NR) access technology called 5G NR. In previous
generations it was necessary for both the Radio Access Network (RAN) and the CN to
be deployed from the same generation. With 5G it is possible to integrate elements from
different generations in different configurations [4].

On the one hand there is the Standalone (SA) configuration, which uses the 5G RAN
and the 5G CN, and on the other hand there is the Non-Standalone (NSA) configuration,
which combines 4G CN and 5G RAN. In the case of NSA, operators take advantage of
the existing core network. Both of the cases are illustrated in Figure 2.

a) b)
4G EPC 4G EPC 5G Core
CN
RAN
5G
LTE
B C
4 b |

N Control Plane

————— DataPlane

Figure 2: 5G a) non-standalone and b) standalone configuration

2.1.1. 5G Core

The 5G core network architecture is the basis of the new 5G technology specifications
and enables the increased capacity demands that 5G technology must guarantee. The
new 5G network core, as defined in 3GPP [5] is Service Base Architecture (SBA), which
provide efficiency for the network. Compared to the previous generation of core like
Evolved Packet Core (EPC) network, the elements of this new network are defined to be
Network Functions (NF) which will interact with the rest of the network elements via
Application Programming Interface (API) invocation. The Network Repository Functions
(NRF) block allows network functions to discover the services offered by other network
functions. A service is a capability offered to a 5G network, with the characteristics of

high cohesion, coupling capability and management independent of other services. This
makes each NF to be handled independently without affecting other services.

With the SBA architecture the network becomes very efficient by deploying new features
on it, allowing new services to be implemented easily or even bugs to be fixed easily.

This section analyses the case for 5G SA core network, which is illustrated in Figure 3.

Nnssf Nnef Nnrf Npcf Nudm Naf

P

Nausf

Figure 3: 5G architecture divided into several functional blocks with their interfaces [6]

Functional blocks:

AMF: Access and Mobility management Function (AMF), Interacts with the RAN
and the User Equipment (UE). Receives session and connection data from the
UE through the N1 and N2 interfaces, but is responsible only for handling
connection and mobility management tasks. It allows devices to register,
authenticate and move among the network jails. It handles Non Access Stratum
(NAS) protocol ciphering and integrity protection.

UPF: The User Plane Function (UPF) is a very important block within the 5G CN
that enables such low-latency ‘edge’ computing, as it can be placed close to
where the service is provided, reducing the distance to the service provider. The
UPF is responsible for packet routing and forwarding, packet inspection, Quality
of Service (QoS) handling, and external Protocol Data Unit (PDU) session for
interconnecting Data Network (DN) in the User Plane (UP) [7]. It uses N3 to
connect with gNB; N6 to connect with de DN, which could be the internet
connection; N9 to connect with other UPF; N4 to connect with the Session
Management Function (SMF).

An important concept within the UPF is the PDU session, which provides
connectivity between the UE and the DN of different QoS, depending on the
service required or contracted.

SMF: The SMF is primarily responsible for handling session management, such
as setting up sessions, modifying them, or even releasing them. Performs DHCP
protocol and ARP proxying for the PDUs and many other functionalities. It is
connected to the UPF through N4 interface.

e AUSF: Authentication Server Function (AUSF) is responsible for the security
procedure for UE authentication using the 5G-AKA authentication method, which
includes mutual authentication between the device to be connected to the
network and the network itself.

Security is very important for the success of any technology, with the use of this
block network spoofing is tried to avoid, where a fake base station can broadcast
a different tracking area code and UE's can connect to it. On the other hand, it
also avoids "lack of confidentiality" concept, which could detect the presence of
a specific user by intercepting certain OTA signalling messages.

e UDM: The Unified Data Management (UDM), which is similar to 4G’s Home
Subscriber Service (HSS), manages data for access authorization, user
registration, roaming access and data network profiles. It selects the
authentication method based on the subscriber identity and stores the long-terms
credentials used in AKA authentication.

e NRF: NRF is a based block of the 5G SBA, as it works as a centralized repository
for all the 5G NFs in the operator’s network. The NRF allows 5G NFs to register,
get notified about the registration of another NF and discover each other via a
standards-based API. So in this case, when a new NF is added, it is only
necessary to give it the IP address of the NRF so that it can communicate with it,
and this NRF block will let all the other blocks know about it.

The different network entities are connected by an underlying TCP/IP transport network,
which supports diff-serv QoS.

Thanks to Network Function Virtualization (NFV) technologies, the mobile network
functions can be virtualised and hosted in the cloud. This makes the 5G CN flexible
enough to meet the needs of different services [4].

2.1.2. NG-RAN

NG-RAN is a part of the 3GPP 5G system [8], it represents the radio acces network for
5G. This node could be a gNB for the case of 5G or a NG-eNB, which provides a LTE/E-
UTRAN service. The NG-RAN can be divided into access stratum, which is for dialogue
between mobile equipment and the RAN, and non-access stratum, which is for dialogue
between mobile equipment and the CN.

With regard to the Centralized Unit (CU)- Distributed Unit (DU) split [9] the following
applies:

The NG-RAN enables splitting the gNB into a gNB-CU , gNB-DU or gNB-RadioUnit (RU).
As it can be seen in the picture below, the gNB-CU and the gNB-DU are connected by
the F1 interface. A gNB may consist on a gNB-CU and one or more gnB-DUs. As can be
seen in Figure 4, the gNBs are connected to each other through the Xn interface. The
NG interface is used to connect the gNB to the 5G CN. Being NG-U to connect to the
UPF block and NG-C to connect to the AMF block. Figure 4 shows the relationships
between blocks and interfaces.

NG-RAN\

Figure 4: NG-RAN architecture

RU: This logical separation includes the hardware device that receives or transmits the
radio signals from the antenna. It is responsible for converting the physical signal to
digital for proper signal processing. The Layer 1 functions includes the digital front end
(DFE) and the lower PHY layer. When designing the RU it is very important to calculate
the size, weight and power consumption of the devices [10].

DU: This logic block can be deployed on a Commercial off-the-shelf (COTS) server, and
can be placed close to the RU to reduce communication time. It runs the Radio Link
Control (RLC), Medium Access Control (MAC), and parts of the PHY layer. This logical
division will be responsible for a subset of the gNB's functions, depending on the
functional division being made. Its operation is controlled by the CU

CU: It provides support for the Radio Resource Control (RRC), Packet Data
Convergence Protocol (PDCP) and Service Data Adaptation Protocol (SDAP) layers.
There is a single CU for each gNB, but there can be many DUs connected to a single
CU.

By being able to split the architecture, this makes it possible to combine different
distributions between the CU and DU depending on the availability of the intermediate
network and the network design, required latency and backhaul bandwidth requirements.
As explained above, this split architecture, which is fully virtualised using COTS or other
hardware devices, can be deployed in any data centre within the RAN.

2.1.3. Backhaul

The backhaul of a network consists of connecting the CN to RANs. 5G backhaul refers
to the signal between the 5G CN and remote sites or networks, such as RAN. The
backhaul in the case of 5G networks has to support a large number of devices and data
rates, so a correct design is important for the proper functioning of the network.

The connection between the 5G CN and the CU is called backhaul, which implements
the NG interface explained before. The link between the CU and the DU is referred to as
midhaul. Finally, the transport network between the DU and RU is known as fronthaul.

A distinction can be made between wired and wireless backhaul.
Wired backhaul

Wired backhaul would require the use of fibre optics for fast use, but this implies an
expensive and not easy to install solution, as depending on the location or distances it
may not be feasible. In this case, speeds of 10 Gbps and latencies of 0.1 ms can be
achieved.

Wireless backhaul

Wireless backhaul makes it unnecessary to use cables or underground connections and
makes installation easier. The use of microwave and millimetre waves makes it easy to
deploy [11]. The only disadvantage of wireless backhaul is that the system can be
interrupted by weather. As for the range of the backhaul, it will depend on the frequency
bandwidth.

Wireless backhaul includes satellite backhaul, which facilitates the deployment of
services in remote locations. A satellite backhaul is used between the CN and the RAN
and is used to transport the N2 for control and N3 for data interfaces as shown in Figure
5. Among the different uses are the ability to transmit any kind of data, whether it is HDTV
or video. It could also be used in an loT device scenario.

gNB

Figure 5: Satellite backhaul

2.1.4. Network Interfaces

This section describes the main network interfaces Uu, N1, N2, N3, N4 and N6, shown
in Figure 3 and 4. However, it should be noted that the following are also found: F1 for
communication between gNB-DU and gNB-CU, Xn for communication between gNB'’s.
In the CN there are also N5, for the communication between PCF and AF; N7, for the
communication between SMF and PCF; N8, for the communication between AMF and
UDM; N9, for the communication between UPFs; N10, for the communication between

SMF and UDM; N11, for the communication between AMF and SMF; N12, for the
communication between AMF and AUSF; N13, for the communication between AUSF
and UDM; N14 for the communication between AMFs and finally N15 for the
communication between AMF and PCF.

Uu: This interface connects the gNB and the NR-UE over the air [12].

N1: This transparent interface connects the UE and the AMF, which handles the security
NAS messages.

N2: This is a very important interface, it connects gNB and the AMF. Due to Control and
User Plane Separation (CUPS), before a service can be accessed, the UE must be
connected to the network. This interface is used for all control plane signaling.

N3: This interface connects the NG-RAN and the UPF. In this case, this interface carries
user information. It replaces S1-U interface from the 4G EPC and is key to supporting
CUPS architecture. The distance of this block from the NG-RAN block depends on the
latency and throughput required by the application or service to be provided. The GTP-
U protocol is used. In the Figure 6 can be seen the protocol stack, the communication
between them and what a user plane communication would look like.

- UE/Server Traffic
.
Application bbb L LD L LS et St b 0 D D LT S — Acp;\:a.ﬁor‘
PDU Layer PDU Layer
UE's IP . azzizac ‘
(Overlayaddr) : : \
S0 S I SV e— L R NG P ecge Route
' 3 d (DL Ovenay Address Server |
: B TE"? D ets cR109 traffic detdction- - - - - - DNN6IP }
- ' with PDR, UL IP 192.0.2.10)
PDCP - PDCP uDP=2152 --- UDP = 2152 ",-Q,.,,a,d“;g, :
‘ : | UPF N6 §P
; r gNB N3 IP UPFN3IP | 192.0.23
RLC - RLC, L3 (Underl‘ay IP) L3 (Underlay IP)
J 1 10.20.31.10 10.20.31.3 |
MAC - MAC/ L2} R L e [C .
PHY —_— PHY L) 1 L’ o NN R
%\ R-Uu ; ! N3 : N6 '
UE " gNB Ere " UPF S evaias DN/ Server

Figure 6: 5G Data Path Protocol Stack [13]

N4: This interface connects the SMF and UPF, it is the bridge between the control and
user plane in the core network. This connection is responsible for the QoS and Quality
of Experience (QOE) that is required. Through this interface goes the traffic of the PDU
session management and traffic steering towards the UPF and PDU usage and event
reporting towards the SMF. It receives the policy rules obtained from the Policy Control
Function (PCF) regarding packet handling and forwarding [14].

N6: This interface provides connectivity between the UPF and DN, any internal or
external network such as clouds or internet.

2.1.5. Control and User Plane Separation

Due to the increase in mobile data traffic, cellular RANs relying on CUPS have been
introduced in 3GPP Release 14. In 4G EPC, Charging Data Record (CDR) can be

8

generated by both Serving Gateway (SGW) and Packet Data Network Gateway (PGW)
where Control Plane (CP), that is related to messages of the creation of the Packet Data
Network (PDN) sessions and the UP messages that represent the actual data are
transferred. With CUPS architecture, the CP messages will be handled by the CP node
(GW-C) and UP messages will be handled by the UP node (GW-U).

In 5G the UPF will be responsible for handling UP traffic, while the SMF is in charge of
the CP. This architecture saves costs and allows the UPF to be brought closer to the
user to reduce service latency. Bringing the UPF closer to the user is essential for
applications such as the connected car, where low latency is required [15] [16].

Among the advantages of using the CUPS architecture are the following:

e Latency in the application service is reduced by using user plane nodes that are
closer to the user or more appropriate for the type of QoE required. The clearest
example would be the use of high bandwidth applications such as video. As the
user plane node is close to the end user, the operator will not need to send the
user's request all the way to the central hub.

¢ With high data traffic demand, it will be sufficient to increase the number of user
plane nodes without having to increase the number of control plane nodes.

e The scaling and evolution of the resources of control and user plane are done
independently.

2.2. 5G Protocol Stack

When analysing the protocol stack, it is worth mentioning that there is a difference
between the control plane illustrated in Figure 7 and the user plane in Figure 8, which
will be explained below. In this first part, the 5G NR-Uu protocol stack will be analysed
[17] [18].

PHY

Contains digital and analogue signal processing functions, that the gNB and UE use to
send and receive information. It has Frequency Division Duplex (FDD) and Time Division
Duplex (TDD) configurations. Based on Orthogonal Frequency Division Multiple Access
(OFDMA), Sub Carrier Spacing (SCS) could be 15,30,60,120,240 kHz and uses an
adaptative modulation scheme, from Binary Phase-Shift Keying (BPSK) to 256
Quadrature Amplitude Modulation (QAM).

MAC

This layer receives both user plane and control plane data from the RLC layer and it
creates logical channels to this protocol. It also provides low level control of the physical
layer and data transfer and radio resource allocation. It does error correction through
Hybrid Automatic Repeat Request (HARQ). It manages the priority between UEs.

RLC

RLC protocol ensures reliable delivery of data streams to upper layers with error control
and correction that need to arrive intact. It also handles segmentation and duplication

detection. It has three different modes, Transparent, Unacknowledge and Acknowledge
mode.

PDCP

It is a Layer 2 protocol, which carries out higher level transport functions related to
integrity protection and ciphering procedures. It provides to upper layers transfer of user
and control plane data. It also does in case of need reordering and in-order delivery.

SDAP

The Service Data Adaptation Protocol (SDAP) Maps the interaction between the Packet
of a QoS flow and data radio bearer by marking the user data packets properly. It does
the transfer of user plane data. It marks each packet with the corresponding QoS Flow
ID.

RRC

Is the signalling protocol used in access stratum procedures involving the mobile and the
gNB. RRC can configure PDCP, RLC and MAC. It is the responsible for the connection
establishment in the N3 interface with GTP-U protocol which is used for the tunnel
creation for N3 interface. It is also the interface with the NGAP protocol for the interaction
with the AMF through N2 interface.

NAS

NAS transfers messages between the UE and the AMF for PDU session management,
security, mobility management, authentication and registration request [19].

Figure 7 shows the protocol stack for the control plane. As can be seen, the N1 interface
is used to exchange NAS messages between the UE and the AMF block. As for the N2
interface, the NG-AP protocol is used for operations such as updating configurations and
managing PDU session resources.

N1

NAS

»
£

NAS

RRC « RRC NG-AP - NG-AP
PDCP <« o> PDCP a SCIP < > SCTP
RLC <« o> rRic o=C® \Jp < > P
: . L

L2

A
v

3GPP MAC +——> 3CEPMAC pf ARgz <

A
Y

L1

3GPPPHY «————>» 3GPPPHY L1

NR-Uu N2

UE gNB AMF

Figure 7: Control Plane protocol stack [20]

Although Figure 8 is essentially identical to Figure 6, the illustration of the user-plane
protocol stack is included here again for the direct comparison to the control-plane

10

protocol stack. In this case, a PDU session is illustrated. The GTP-U protocol supports
multiplexing of the traffic from different PDU sessions by tunnelling user data over N3
interface [21].

Application € »i Application

TCP/UDP < > TCP/UDP
P < > IP — P
{ v i ¢ [
SDAP — SDAP GTP-U — GTP-U '
PDCP « i PDCP UDP 4——‘——}—> UDP
' % :] L2 > L2
RLC > RLC IP ————> IP :
i ne
: ' , ARS |
3GPPMAC ~ |«————> 3GPPMAC L2 > 2
3GPPPHY ~ «————» 3GPPPHY L1 - L1 L1 « L1
NR-Uu N3 N6

Figure 8: User Plane protocol stack [20]

2.3. 5G Deployment Scenarios

In this section, the possible 5G deployment scenarios will be explained. The three main
5G operating scenarios are Enhanced Mobile Broadband (eMBB), Massive Machine
Type Communications (MMTC) and Ultra-Reliable Low Latency Communications
(URLLC) [22].

2.3.1. Enhanced Mobile Broadband

eMBB is a natural evolution to existing 4G networks, it is characterised by providing
broadband access over a wide coverage area that include faster data rates and better
QoE than 4G mobile broadband services. To increase the capacity, broadband access
should be available in densely populated areas, such as city centres or stadiums.
Regarding the connectivity, it must be provided anywhere to keep a good QoE. It is not
less important to improve user mobility to enable these services in moving vehicles.

2.3.2. Ultra-Reliable Low Latency Communications

URLLC supports a range of advanced services for latency-sensitive connected devices,
such as self-driving vehicles, railway and transport infrastructure, 4.0 industry, security
in critical missions and applications and interactive video games.

2.3.3. Massive Machine Type Communications

mMTC deployment scenarios usually envisage an assume density between 1.000 and
100.000 users per square kilometre, leading up to 1.000.000 devices per cell. The UP
traffic generated is hence expected mostly on the uplink (UL), on the DL typically only
device activation with data between 100 and 1.000 bits per activation are required to be
transmitted. This would require networks to handle a number of connections 3-4 orders
of magnitude higher than eMBB, while each connected device will lead to a data traffic

11

5 to 8 orders of magnitude lower than 5G eMBB. mMTC will address the needs of Low
Power Wide Area (LPWA) networks, which include low-cost devices with long battery life
and wide area coverage. It benefits rural activities such as agriculture as well as industrial
uses and the management of cities [23].

In Figure 9 isillustrated, how depending on the type of service needed, it will move closer
to or further away from each deployment scenario.

In the case of smart cities, connectivity of many devices will be needed, without the need
for low latency or high speeds. In the case of Smart Home/Building, it is somewhere in
between the connectivity of many devices and the need for a slightly faster data rate. For
3D video, UHD screens or for gaming and working in the cloud you will need an
intermediate latency and an intermediate speed as well. For augmented reality
applications, industry automation and especially self-driving cars, the reduction of the
response time becomes more important. Finally, for critical mission application low
latency and the connection of multiple devices is needed.

Enhanced Mobile Broadband

Gigabytes in a second I ai

3D video, UHD screens
I Work and play in the cloud
Smart Home/Building S) |
. - Augmented reality
: E | - Industry automation

Mission critical application

F Self Driving Car

Smart City

Massive Machine Type Ultra-reliable and Low Latency
Communications Communications

Figure 9: 5G applications [24]

2.4. 5G Network Functions Deployment in Slices

NF in different slices can be used in different configurations, or be placed further from or
closer to the UE, depending on the vertical application using the slice. To reduce the
latency, control functions are moved to the edge. Network functions can be implemented
in virtual machines and executed using a cloud infrastructure. Figure 10 shows the
different configurations depending on the type of service required.

eMBB slice: use a high capacity radio bearer and have two UPFs, one in the edge and
other one in the cloud, to better support user mobility.

URLLC slice: have aradio bearer with low delay and medium capacity and many control
functions moved to the edge to further reduce latency.

12

MIoT slice: low bit-rate radio bearer, a single UPF assuming low mobility and most
control NFs in the core, assuming that latency is not important.

NG-EQAN 5(:}0

UE Radio gNB CU 5GC (@edge) 5GC (@core)

| gNBCUCP | AF A
gNB-CU-DP UPF
) | gNBCUCP | AME | PCF
[SMF | UPF up

[gNB-CU-DP]
UPF
L

\ / "\\ i) \ / \ 4

<

F

eMBB |
w

MF
[

ape
0

[urLLC]

e

| MiloT

l
| =
/]
Df

(SDN Controller J '
[NFV orchestration]

Figure 10: 5G NFs Slices [17]

2.5. Satellite Backhaul Technology

A satellite system can be used as a transport network within the 5G network in order to
provide connectivity between areas. This technology started in the 2000s and is being
exploited for the clear advantages it offers. The Backhaul between the RAN and the CN
can therefore rely on such systems and is used to transport 5G N1, N2 and N3 interfaces.
Satellite systems remain the only or the most viable system to provide connectivity in
specific contexts [25].

The minimum requirements that a satellite has to have to meet the 5G Key Performance
Indicator (KPI) are as follows:

¢ Ubiquity: It has to have the ability to be present everywhere at the same time
offering high speed capacity using the following elements: capacity backfill within
geographical gaps, overflow to satellites when terrestrial links exceed their
capacity, global blanket coverage, back-up/resilience for network backhaul and,
most importantly, emergency communication.

¢ Mobility: Satellite is the single most readily available technology capable of
providing connectivity anywhere on the planet, whether on land, at sea or in the
air for moving vehicles such as trains, ships or planes.

e Broadcasting: The satellite shall be capable of distributing broadcast or multicast
content with information centric networks and caching at any time.

13

e Security: Satellite communications should offer solutions for secure, reliable and
consistent deployment in difficult communication scenarios, including emergency
response.

Satellite and terrestrial integration in 5G can be investigated around four main uses
cases [25]:

e Use Case 1: “Edge delivery & offload for multimedia content and Multi-access
Edge Computing (MEC) VNF software”. Enabling fast and efficient broadcast
communication to the edge of the network for live broadcasts, broadcast streams
and distribution of MEC VNF updates.

e Use Case 2: “5G fixed backhaul”: Connectivity where it is environmentally
unfriendly or difficult to deploy, whether in natural areas, rural areas, maritime
services or isolated areas.

e Use Case 3: “5G to premises”: Networks for use in combination with terrestrial
broadband networks, either to improve coverage or improve performance.

e Use Case 4: “5G moving platform backhaul broadband connectivity to moving
platforms, such as aircraft or ships.

Figure 11 would correspond to the “5G fixed backhaul”, which will be the schematic used
in this work.

T Satellites

SAT K | Satellite

k 28 M~ Gateway

Local cell Y% - Local cell

Optimal

routing

. Terrestrial (satellite /
Cache/Storage *s_ .l Backhaul terrestrial
X | Network Backhaul)

A A Operator core

Local cell Local cell network

. Internet

Figure 11: Satellite Backhaul [25]

2.6. Multi-access Edge Computing

MEC is a new service where network solution is designed to be implemented at servers
located near mobile stations [26]. The idea behind MEC is that tasks are processed
closer to the client, thereby reducing network congestion, latency and ensure efficient
network operation and service delivery, and thereby improve QoE. MEC is an evolution
of cloud computing using mobile and cloud technologies and edge computing, where

14

virtualisation technologies, including virtual machines and containers are used. Many
service providers move workloads and services from the core network, mostly in data
centres, to the edge of the core network.

Service providers can also benefit from MEC to collect more specific data about
customers in terms of content, location and interests, in order to introduce new services
or use this data for commercial reasons [27].

MEC applications [28]:

- Vehicle to everything (V2X): refers to the communication between a
vehicle and anything that may affect or be affected by the car

- Video analytics: Providing video surveillance for cameras connected to
the network

- Location services: Positioning solution using MEC

- loT and Big-data: MEC can provide computational and storage resources
in close proximity to data sources, reducing IoT data and signalling to
ensure fast response or to enable new services

- Augmented reality

- Optimized local content distribution

- Data caching

2.7. 5G Frequency Bands and Frame Structure

5G uses a variety of frequency bands known as FR1 (Frequency Range), the ones that
are below 7.125 GHz, and FR2, also known as mmWave, the ones above 24.250 GHz.

Frequency range Frequency range
designation (MHz)
FR1 410- 7125
FR2 24250-52600

Table 1: Frequency range

Lower frequencies have better range but offer lower data rates. In the case of FR2 they
have higher maximum bandwidth due to the higher carrier frequencies. At mmWave
spectrum, data rates are higher but waves can not get through walls, trees or even
glass.

Thus, there is a trade-off between coverage and speed, depending on the deployment
scenario. Low band spectrum can be used in rural areas. High band spectrum could be
ideal for short range communications in dense urban areas and within buildings. They
could serve thousands of users in a stadium, critical 10T applications or applications
that need URLLC are more use cases.

As can be seen in Figure 12, depending on the frequency, there will be a different
coverage radius and different capacity.

15

RADIO COVERAGE IN METERS ESTIMATION OF EXPECTED
BASEBAND CAPACITY BW MHZ

- 700 MHZ 800 MHZ900 MHZ 1,8 GHZ 2,1 GHZ 2,6 GHZ 3,5 GHZ 26 GHZ

Figure 12: Characteristics of frequency range [29]

5G NR uses flexible SCS derived from basic 15 kHz SCS used in LTE, and can be
implemented from 15 kHz up to 240 kHz.

The 240 kHz SCS can be used to provide millimeter wave broadcast signals. All other
SCS are compatible with data and signaling, except 60 kHz, which is for physical data
channels only.

Reasons for having different subcarrier spacing:

The modulation that uses 5G is OFDM. In OFDM, the number of subcarriers that can be
obtained from a specific frequency range is directly related to the spectrum efficiency
(bits per Hz per second). The more subcarriers are available in a frequency range, the
smaller the spacing between subcarriers is, the more data can be transmitted or
received.

The OFDM symbol length is related to the SCS, the narrower it is the SCS, the longer
OFDM symbol length will be. With a longer OFDM symbol, there is more space for the
cyclic prefix (CP). With a longer CP, you get a larger cell radius and more fading channel
tolerance.

In the FR1, where frequency ranges are lower, the wide spectrum is narrow, so the SCS
should be as small as possible to get as many subcarriers as possible.

In FR2, as the carrier frequency increases up to 52 GHz, the frequency drift due to
transmitter or receiver motion is greater, as the doppler effect becomes more noticeable
as the frequency rises. So in this FR the use of larger SCS is needed.

For low latency applications, the use of high SCS would be of interest, due to its short
slot duration. The higher the SCS, the less duration of the slot.

2.8. Open Source 5G Frameworks

In this section, srsRAN and OAIl open source 5G frameworks are analyzed.

2.8.1. srsRAN

16

srsRAN is a free and open-source 4G and 5G software radio suite, it implements 4G LTE
and 5G NR UE modem entirely in software [30].

The srsRAN package of the latest version released on 22.04.2022 includes:

- srsUE: a full stack 4G and 5G NSA / SA UE application

- srsENB: a full stack 4G eNodeB and 5G NSA / SA gNB capabilities

- sSrsePC: a light-weight 4G EPC implementation with Mobility
Management Entity (MME), Home Subscriber Server (HSS) and S/P-GW

The SA mode was implemented in the 22.04 version, so OAI platform was chosen, due
to at the time of starting with this master thesis, OAl was more suitable for analysing 5G
network.

2.8.2. OAl

The OpenAirinterface Software Alliance (OSA) is French non-profit organization that
gathers a community of developers from all over the world, who work together to build
wireless cellular RAN and CN technologies [31].

OAI 5G RAN
5G RAN supports NSA / SA gNB and NSA / SA UE. OAI RAN sub-activities include [32]:

L1-simulation framework: In this case the RF Simulator is used, which replaced the radio
board (USRP device for example) by software communications (TCP/IP) to make
possible a without a RF board. The OAIl gNB and the OAI UE communicate as if there
were an RF interface between them, but without real-time clock constraints. The 1/Q
samples are transmitted over this radio channel simulator. This simulator is the ideal tool
to check signal processing algorithms and protocols implementation.

L2-simulation framework: In order to simulate a large number of users, this framework
allows to connect the OAIl UE with the OAI gNB through the nFAPI interface. NFAPI
separates the gNB into MAC entity and PHY entity and the base station connects through
this interface to a channel proxy that simulates the channel and allows to connect many
UE.

There is also available a CU/DU split version of the 5G gNB deployment in OAI. This
split mode allows to:

- Control Plane exchanges between the CU and DU entities over F1-C
interface, to enable UE registration and stablish PDU session.
- User plane traffic over F1-U interface, using GTP-U protocol.

The OAI 5G-NR includes the following characteristics for the gNB and UE [33]:

- TDD and FDD, with bandwidths of 10,20,40,80 and 100 MHz

- 30 KHz of SCS with normal CP

- Intermediate DL and UL frequencies to interface with IF equipment

- Single antenna port

- 14 OFDM symbols in UL and DL

- Highly efficient 3GPP compliant LDPC and polar encoder and decoder
- Encoder and decoder for short blocks

- Support for UL transform precoding (SC-FDMA)

17

OAI 5G CN

5G CN is composed of the following components: AMF, SMF, NRF, AUSF, UDM and
UPF [34]. This CN supports basic procedures such as registration, de-registration and
PDU session management. Several UEs can be implemented at the same time and
several PDU sessions can be implemented. With the NRF block running, features such
as NF registration and discovery can be added.

For deployment 2 options can be used:
1.- The simplest is using the AMF, SMF, NRF and UPF blocks.

2.- A second option would be to add to the previous blocks UDM, AUSF and Unified Data
Repository (UDR) to add more functions to the network and UE authentication.

18

3. Implementation

This section will explain the whole procedure that has been followed to set up the
environment.

OAl has been chosen as the platform to create the network and run the simulations, as
at the time of starting the work, it was the most developed platform to perform simulations
between the gNB and the 5G CN. SA Setup with OAI NR UE Soft modem is the setup
selected, where the OAlI RAN (RFSIMULATOR) and CN components are build using
docker images and docker-compose. The steps of [35] have been followed, adapting it
to our system.

3.1. Retrieving the Images on Docker

First step would be to pull the following images from docker:

docker pull mysql:5.7

docker pull ocaisoftwarealliance/oai-amf:latest
docker pull ocaisoftwarealliance/oai-nrf:latest
docker pull ocaisoftwarealliance/oai-smf:latest

r v+ B B A

docker pull oaisoftwarealliance/oai-spgwu-tiny:latest

$ docker pull oaisoftwarealliance/oai-gnb:develop
$ docker pull oaisoftwarealliance/oai-nr-ue:develop

The mysql container will serve as a database to hold the UE data, the oai-amf container
will perform the functions of the AMF block, the oai-nrf the functions of the NRF block,
the oai-smf the functions of the SMF block, the oai-spggw block the functions of the UPF
block, the oai-gnb functions of the gNB and the oai-nr-ue will act as if it were a user.

After pulling all containers, must be re-tagged for docker-compose file to work:

$ docker image tag oaisoftwarealliance/oai-amf:latest oai-amf:latest
$ docker image tag oaisoftwarealliance/oai-nrf:latest oai-nrf:latest
$ docker image tag oaisoftwarealliance/oai-smf:latest oai-smf:latest
$ docker image tag oaisoftwarealliance/oai-spgwu-tiny:latest oai-spgwu-tiny:latest

Ro:]

docker image tag oaisoftwarealliance/oai-gnb:develop oai-gnb:develop

$ docker image tag oaisoftwarealliance/oai-nr-ue:develop oai-nr-ue:develop

3.2. Deploy Containers

All the following commands need to be run from the folder “openairinterface5g-
develop/ci-scripts/yaml_files/5g_rfsimulator” as seen in the Figure 13.

a5gbs@a5gbs-CELSIUS-W570:~/Desktopf/Aitzol /openairinterface5g-develop/ yaml_files/5g_rfsimulator$ I

Figure 13: Folder from where the commands will be executed

19

3.2.1. Deploy OAI 5G Core Network

To deploy the OAI 5G CN, the command in Figure 14 must be executed:

S docker-compose up -d mysql cai-nrf ocai-amf oail-smf oai-spgwu ocail-ext-dn
network "rfsim5g-oai-public-net" with driver "bridge"
network "rfsim5g-oai-traffic-net" with driver "bridge"
rfsims5g-oai-nrf ...

rfsimsg-mysql soo
rfsims5g-oai-amf ...
rfsim5g-oai-smf ...
rfsim5g-oail-spgwu ...
rfsim5g-oai-ext-dn ...

Figure 14: CN execution

As can be seen in the Figure 15, after executing the command in Figure 14, 2 docker-
bridges are created: "rfsimb5g-oai-public-net" and "rfsim5g-oai-traffic_net-net", together
with the CN blocks.

rfsim5g-public: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.71.129 netmask 255.255.255.192 broadcast 192.168.71.191
inet6 feB80::42:abff:fe93:62f3 prefixlen 64 scopeid 8x20<link=>
ether 82:42:ab:93:62:f3 txqueuelen & (Ethernet)
RX packets 4 bytes 112 (112.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets 32 bytes 5584 (5.5 KB)
TX errors @ dropped @ overruns @ carrier ® collisions @

rfsim5g-traffic: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1580
inet 192.168.72.129 netmask 255.255.255.192 broadcast 192.168.72.191
inet6 feB80::42:fff:feed:2680 prefixlen 64 scopeid @x28<link=>
ether 982:42:0f:ed:26:80 txqueuelen & (Ethernet)
RX packets 9225 bytes 489256 (489.2 KB)
RX errors @ dropped @ overruns @ frame @
TX packets 185408 bytes 27992550 (27.9 MB)
TX errors @ dropped @ overruns @ carrier ® collisions @

Figure 15: Created bridges after executing CN

3.2.2. Deploy OAI gNB in RF Simulator Mode and in SA Mode

It must be taken into account that for the correct operation of the environment, before
executing this point, the CN must be in correct operation, for that the following command
in Figure 16 is used:

S docker-compose ps -a
Command

docker-entrypoint.sh (healthy) 3306/tcp, 33060/tcp
mysqld

rfsim5sg-oati-amf /bin/bash fopenair- (healthy) 38412 /sctp, 80/ftcp,
amf/bin ... 9090 /tcp

rfsim5g-oai-ext-dn /bin/bash -c apt (healthy)
update;

rfsimsg-oatl-nrf /bin/bash fopenair- (healthy) 80/tcp, 9090/tcp
nrf/bin ...

rfsim5g-oai-smf /bin/bash fopenair- (healthy) 80/tcp, 8865/udp,
smf/bin ... 9090 /tcp

rfsim5g-oail-spgwu Jopenair-spgwu- (healthy) 2152 /udp, 8805/ /udp

b oo

Figure 16: CN blocks in healthy state

20

Once the correct functioning of the CN is checked, the gNB block is deployed as it follows
in Figure 17.

$ docker-compose up -d oai-gnb
rfsim5g-mysql is up-to-date

rfsim5g-ocail-nrf is up-to-date
rfsim5g-ocail-amf is up-to-date

rfsim5g-ocail-smf is up-to-date
rfsim5g-oail-spgwu is up-to-date
rfsim5g-oai-ext-dn is up-to-date
Creating rfsim5g-oai-gnb ...

Figure 17: gNB correct execution

It can be verified that the gNB is connected to the AMF executing “docker logs rfsim5g-
oai-amf” command and getting the result in Figure 18.

Successfully sent 512 bytes on stream 8
sending NG_SETUP_RESPONSE Ok
ghB with gnB_1id oxe, assoc_id 4 has been attached to AMF

' information
Status gNB Name
Connected » anb-rfsim

Figure 18: gNB connection in the AMF

3.2.3. Deploy OAI NR-UE in RF Simulator Mode and in SA Mode

Now, the UE is implemented executing the command in Figure 19:

S docker-compose up -d oai-nr-ue
rfsimbg-mysgql is up-to-date
rfsim5g-ocai-nrf is up-to-date
rfsim5g-oai-amf is up-to-date

rfsimbg-oai-smf is up-to-date
rfsim5g-oai-spgwu is up-to-date
rfsim5g-oai-ext-dn is up-to-date
rfsimbg-oai-gnb is up-to-date
Creating rfsim5g-oai-nr-ue ...

Figure 19: OAI NR-UE correct deployment

You can have as many UE as you want, to deploy a second user the following has to be
added in the oai_db.sql file as shown in Figure 20 and in the docker-compose.yaml file
as shown in Figure 21.

INSERT INTO ‘users’ VALUES ('2089901060001161','1','55000000000000',NULL, 'PURGED',
50,40000000,100000000,47,0000000000,1,0xTec86ba6eb707ed08905757b1bb44b8T,
0,0,0x40, 'ebd07771ace8677a" ,0xc42449363bbad02b66d16bc975d77ccl);

Figure 20: Adding a user in the SQL configuration

21

oal-nr-ue2:
image: oail-nr-ue:develop
privileged: true
container_name: rfsim5g-oai-nr-ue2
environment:
RFSIMULATOR: 192.168.71.140
FULL_IMSI: '208990100001101'
FULL_KEY: 'fecB86batbeb707ed08905757blbbaabsaf’
OPC: 'C42449363BBAD02B66D16BCIT5D77CCL’
DNN: oai
NSSAI_SST: 1
NSSAI_SD: 1
USE_ADDITIONAL_OPTIONS: -E --sa --rfsim -r 106 --numerology 1 -C 3619200000 --
nokrnmod --log_config.global_log_options level,nocolor,time
depends_on:
- oai-gnb
networks:
public_net:
ipv4_address: 192.168.71.151
healthcheck:
test: /bin/bash -c "pgrep nr-uesoftmodem
interval: 10s
timeout: 5s
retries: 5

Figure 21: Adding a user in docker-compose configuration file

In the Figure 22 can be seen how the environment will look like after deploying all the
containers in docker, with the corresponding IP addresses. The interfaces to be analyzed
later on are the Uu, N2, N3 and N6. The NG-AP and GTP-U protocol, which are marked
in red, are important as they are the protocols used by the AMF to communicate with the
gNB and by the UPF to communicate with the UPF.

152.168.71.132

192.168.71.151 TCP

12.1.1.3 N2 [Namf
My SQL |NG-AP EXT-DN
NR-UE2 s
erver Demo Private IP: 192.168.71.128/26 192.168.72.135
192.168.71.131 Demo Public IP: 192.168.72.128/26
Nsmf
o Norf SMF
[NR-UE J [gNB J NRF 192.168.71.133
192.168.71.150 192.168.71.140 192.168.71.130
12.1.1.2 N3 UPF N6
GTP-U
192.168.71.134
192.168.72.134
12.1.1.1
Figure 22: Final setup with each block information
3.3. Traffic Check

To check internet connectivity, ping from the UE block to www.lemonde.fr through the
oaitun_uel interface is done. As it can be seen in the Figure 23, the ping arrives without
any problem.

22

root@4baedbarsc19: foptfoai-nr-ue# ping -I ocaitun_uel -¢ 10 www.lemonde.fr
PING s2.shared.global. 7) from 12.1.1.2 oaitun_uel: 56(84) bytes of data.
64 bytes from 151. - .114.217): icmp_seq=1 ttl=56 time=11.7 ms
64 bytes from 151. .114, 2: 15: .114.217): icmp_seq=2 ttl=56 time=8.99 ms
64 bytes from 151. 114,21 151 .114.217): icmp_seq=3 ttl=56 time=13.9
64 bytes from 151. .114,2: 151 .114.217): icmp_seq=4 ttl=56 time .9
64 bytes from 151. .114,2: 151 .114,217): icmp_seq=5 ttl=56 time=10.8
64 bytes from 151. .114, 21 15! .114.217): icmp_seq=6 ttl=56 time=12.6
64 bytes from 151. .114,2: 151 .114.217): icmp_seq=7 ttl=56 time=13.8
54 bytes from 151. .114,2: 151 .114,217): ic<mp_seq=8 ttl=56
bytes from 151. .114, 21 151 - .217): icmp_seq=9 ttl=56 -
bytes from 151. .114, (151.101.114.217): icmp_seq=10 ttl=56 time=8.

--- s2.shared.global.fastly.net ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9012ms
rtt minfavg/max/mdev = 8.369/13.938 .693/5.992 ms
root@4baedba7sci19: foptjoail-nr-ues

Figure 23: Checking internet connectivity

Now, UDP traffic in DL is going to be tested, for this, iperf server is started inside the NR-
UE container, and iperf client is started inside the ext-dn container. As can be seen in
the Figure 24 and Figure 25, the traffic sent from the server reaches the client in its
entirety.

root@4baedba75c19: foptfoai-nr-ue# iperf -B 12.1.1.2 -u -1 1 -s

Server listening on UDP port 5001
Binding to local address 12.1.1.2
Receiving 1470 byte datagrams

UDP buffer size: 208 KByte (default)

3] local 12.1.1.2 port 5001 connected with 192.168.72.135 port 43088
ID] Interwval Transfer Bandwidth Jitter Lost/Total Datagrams
5 KBytes 517 Kbits/sec 0.433 44 (9%)
KBytes 517 Kbits/sec 0.368 44 (8%)
KBytes 586 Kbits/sec 0.412 43 (0%)
KBytes 517 Kbits/sec 0.395 44 (0%)
KBytes 586 Kbits/sec 0.383 43 (0%)
KBytes 517 Kbits/sec 0.497 44 (0%)

Figure 24: Iperf server check

a5gbs@a5gbs-CELSIUS-HW570:~/Desktop/Aitzol/openairinterf
rS docker exec -it rfsimS5g-oai-ext- /bin/bash

root@s3ssq7zezadbafr: /# iperf -¢ 12.1.1.2 -u -1 1 -t 20 -b 506K

Client connecting to 12.1.1.2, UDP port 5601
Sending 1470 byte datagrams, IPG target: 22968.75 us (kalman adjust)
UDP buffer size: 208 KByte (default)

3] local 192.168.72.135 port 43088 connected with 12.1.1.2 port 5001
ID] Interval Transfer Bandwidth
3] 0.0- 1.0 sec 64.6 KBytes 529 Kbits/sec

3] .0- 2.0 sec 63.2 KBytes 517 Kbits/sec
3] .0- 3.0 sec 61.7 KBytes 506 Kbits/sec
3] .0- 4.0 sec 63.2 KBytes 517 Kbits/sec
3] .0- 5.0 sec 61.7 KBytes 506 Kbits/sec

Figure 25: Iperf client check

23

3.4. Explanation on the Configuration in the Docker-
compose.yaml

In Appendix 1 can be seen all the code of the docker-compose.yaml file, in this section
will be explained what has been thought to be the most important. Two parts can be
distinguished, on the one hand the individual programming of each block, and on the
other hand the programming of the networks.

3.4.1. Content of the Blocks

In the table 2 is a summary of the most relevant information for each block. This
information has been obtained from the file docker-compose.yaml, which can be found
in appendix 1.

Container IP Info
name
oai-nrf 192.168.71.130 -
mysq|l 192.168.71.131 -
oai-amf 192.168.71.132 depends on: - oai-nrf, - mysq|l
connected with: - mysql - NRF
oai-smf 192.168.71.133 depends on: - oai-nrf, - oai-amf
connected with: - UPF - NRF
oai-spgw 192.168.71.134 depends on: - oai-nrf, - oai-smf
192.168.72.134 connected with: - SMF - NRF
oai-ext-dn 192.168.72.135 depends on: - oai-spgw
"ip route add 12.1.1.0/24 via 192.168.72.134 dev
eth0”
oai-gnb 192.168.71.140 depends on: - oai-ext-dn

connected with: - AMF

oai-nr-ue 192.168.71.150 depends on: - oai-gnb
connected with: - gNB

Table 2: Information of each block
oai-nrf

The first block to be deployed is the oai-nrf as this block does not depend on any other
block. Tthe function of this block is to allow 5G NFs to register and discover each other
via a standards-based API. The IPv4 that has been assigned is 192.168.71.130, as
shown in Figure 26, in which the ifconfig command has been executed from inside the
block. This procedure will be done in the other blocks as well.

24

@a5gbs-CELSIUS-W570
3 docker exec -it rfsimSg-oa
oot@2bof70a2a097: fopenair-nrf# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING ,MULTICAST>= mtu 1580
inet 192.168.71.130 netmask 255.255.255.192 broadcast 192.168.71.191
ether 92:42:¢0:a8:47:82 txqueuelen & (Ethernet)
RX packets 11636 bytes 1381720 (1.3 MB)
RX errors @ dropped @ overruns @ frame @
TX packets 7701 bytes 713773 (713.7 KB)
TX errors @ dropped © overruns @ carrier @ collisions @

o: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.08.0
locp txqueuelen 1008 (Local Loopback)
RX packets ® bytes © (0.0 B)
RX errors @ dropped © overruns @ frame @
TX packets ® bytes © (0.0 B)
TX errors @ dropped © overruns @ carrier @ collisions ©

Figure 26: OAI-NRF block interfaces

mysql

The next block to be implemented is mysql and the IP assigned to it is 192.68.71.131. In
this case there is no interface figure, as no commands could be executed from the block.

oai-amf

The next container to be activated is oai-amf, which it depends on the oai-nrf container
and mysql, so the correct order of deployment is important. This block receives all
connection and session related information from the UE through the N1 and N2
interfaces. IPv4 192.168.71.132 has been assigned, as can be observed in Figure 27.
The oai-amf is connected to the mysqgl server and the NRF.

bs@a5gbs-CELSIUS-W5
S docker exec -it rfsimSg-cai-amf /
root@SSQsd’dSb?bf Jopenair-amf# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 15080
inet 192.168.71.132 netmask 255.255.255.192 broadcast 192.168.71.191
ether 92:42:¢0:aB8:47:84 txqueuelen @ (Ethernet)
RX packets 928 bytes 87457 (B7.4 KB)
RX errors @ dropped @ overruns @ frame 8
TX packets 866 bytes 75891 (75.8 KB)
TX errors @ dropped © overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.8.9.89
loop txqueuelen 1000 (Local Loopback)
RX packets 4 bytes 257 (257.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets 4 bytes 257 (257.0 B)
TX errors @ dropped © overruns @ carrier ® collisions @

Figure 27: OAI-AMF block interfaces

oai-smf

Then it comes oai-smf, the IP assigned to this block is 192.168.71.133, as is shown in
Figure 28. It depends on the oai-nrf and oai-amf blocks and it is connected with the UPF
and NRF. Its responsibility is to create, update and remove PDU sessions and manage
session context with the UPF.

25

a5gbs@a5gbs-CELSIUS-W57
a S docker exec -it rfsimsg-oai-sm
root@7ed4fab1005c9: fopenair-smf# ifconfig
ethe: flags=4163<UP,BROADCAST ,RUNNING ,MULTICAST> mtu 1500
inet 192.168.71.133 netmask 255.255.255.192 broadcast 192.168.71.191
ether 892:42:c0:a8:47:85 txqueuelen @ (Ethernet)
RX packets 5397 bytes 446685 (446.6 KB)
RX errors @ dropped ® overruns @ frame @
TX packets 7253 bytes 762137 (762.1 KB)
TX errors @ dropped © overruns @ carrier ® collisions @

lo: flags=73<UP,LOOPBACK ,RUNNING> mntu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1008 (Local Loopback)
RX packets 18 bytes 1194 (1.1 KB)
RX errors @ dropped ® overruns @ frame @
TX packets 18 bytes 1194 (1.1 KB)
TX errors @ dropped ©® overruns @ carrier ® collisions ©

Figure 28: OAI-SMF block interfaces

oai-spgwu

In the case of oai-spgwu, it depends on the oai-nrf and oai-smf and connects to the SMF
and NRF. In Figure 29 it is visible how it uses the ethO0 interface, with the 192.168.71.134
IP to connect to the "rfsim5g-oai-public-net" network, the one where almost all blocks are
hosted; and the ethl interface, with 192.168.72.134 |IP address to connect to the
"rfsim5g-oai-traffic-net", which it uses to connect to the External Data Network (EXT-DN).
This 2 network will be seen later. It also has the tunO interface, with 12.1.1.1 IP which is
used to connect to the UE.

@a5gbs-CELSIUS-H570 iri _fi _rfsimul
docker exec -it rfsimSg-oai-spgwu /binf/bash
root@27d94de8bfa8 fopenair-spgwu-tiny# ifconfig
ethe: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.71.134 netmask 255‘255.255‘192 broadcast 192.168.71.191
ether 92:42:c0:a8:47:86 txqueuelen @ (Ethernet)
RX packets 5443 bytes 459351 (459.3 KB)
RX errors @ dropped @ overruns © frame ©
TX packets 12973 bytes 5203583 (5.2 MB)
TX errors @ dropped @ overruns @ carrier @ collisions @

ethl: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.72.134 netmask 255.255.255.192 broadcast 192.168.72.191
ether 92:42:c0:238:48:86 txqueuelen @ (Ethernet)
RX packets 5138 bytes 4495607 (4.4 MB)
RX errors @ dropped @ overruns @ frame @
TX packets 2227 bytes 201152 (2081.1 KB)
TX errors @ dropped © overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK ,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.08.0.0
loop txqueuelen 10808 (Local Loopback)
RX packets 4 bytes 257 (257.0 B)
RX errors @ dropped ® overruns ©® frame @
TX packets 4 bytes 257 (257.0 B)
TX errors @ dropped © overruns @ carrier @ collisions @

tun®: flags=4305<UP,POINTOPOINT ,RUNNING,NOARP,MULTICAST>= mtu 1500
inet 12.1.1.1 netmask 255.255.255.0 destimation 12.1.1.1
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets 24 bytes 12530 (12.5 KB)
RX errors @ dropped © overruns ©® frame @
TX packets 2851 bytes 4253830 (4.2 MB)
TX errors @ dropped @ overruns @ carrier @ collisions @

Figure 29: OAI-SPGWU block interfaces
oai-ext-dn

Then it comes oai-ext-dn, this block simulates the external network, which could be the
internet or any other network. This is the block that will be used later to generate the
traffic, simulating an external network. It is assigned the IP 192.168.72.135 and in order

26

to have connectivity with the UE and UPF block the following command is added in the
docker-compose.yaml file when executing it "ip route add 12.1.1.0/24 via
192.168.72.134 dev eth0".

oai-gnb

The oai-gnb block depends on the oai-ext-dn and connects to the AMF. The assigned IP
is 192.168.71.140, as shown in Figure 30. This block is important because this block
connects to the CN, and from here the N2 and N3 interfaces come out, which are the
ones of interest.

a5gbs -CELSIUS-W5
docker exec -i
root@dss461c1dc7s: foptfoai-gnb# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 15080
inet 192.168.71.140 netmask 255.255.255.192 broadcast 192.168.71.191
ether 92:42:c0:a8:47:8c txqueuelen @ (Ethernet)
RX packets 160156852 bytes 3979729783234 (3.9 TB)
RX errors @ dropped © overruns © frame 0
TX packets 157183613 bytes 2959097923004 (2.9 TB)
TX errors @ dropped @ overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mntu 65536
inet 127.0.0.1 netmask 255.08.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes @ (0.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets ® bytes @ (0.0 B)
TX errors @ dropped @ overruns @ carrier © collisions @

Figure 30: OAI-gNB block interfaces
oai-nr-ue

Then there is the oai-nr-ue block, which it depends on the oai-ext-dn block ant it connects
with the gNB. The 192.168.71.150 IP address is assigned to the interface ethO of the
network the "rfsim5g-oai-public-net”, and the interface oaitun_uel will receive the
12.1.1.2 IP address, as can be observed in Figure 31. The oaitun_uel is an interface
that is generated with the RF simulator.

a5gbs@a5gbs-CELSIUS-H570: na
ator$ docker exec -it rfsim5g-oai-nr-ue fbinfbash
root@4baedba7sc19: foptfoai-nr-ue# ifconfig
eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.71.1580 netmask 255.255.255.192 broadcast 192.168.71.191
ether 92:42:c0:38:47:96 txqueuelen @ (Ethernet)
RX packets 99483753 bytes 1829332576370 (1.8 TB)
RX errors @ dropped ® overruns ® frame @
TX packets 98161670 bytes 2468039115948 (2.4 TB)
TX errors @ dropped ® overruns @ carrier & collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.8
loop txqueuelen 1808 (Local Loopback)
RX packets 6 bytes 552 (552.0 B)
RX errors @ dropped @ overruns © frame ©
TX packets 6 bytes 552 (552.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions ©

oaitun_uel: flags=4305<UP,POINTOPOINT ,RUNNING,NOARP,MULTICAST> mtu 1500
inet 12.1.1.2 netmask 255.255.255.0 destination 12.1.1.2
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets 2849 bytes 4250834 (4.2 MB)
RX errors @ dropped @ overruns @ frame @
TX packets 24 bytes 12530 (12.5 KB)
TX errors @ dropped @ overruns @ carrier ® collisions 0

Figure 31: OAI-NR-UE block interfaces
oai-nr-ue2

Then follows oai-nr-ue2. In this case another user is simulated, for this purpose the IP
192.168.71.151 and 12.1.1.3 are assigned, as found in Figure 32. Everything else will
be the same as oai-nr-uel.

27

a5gbs@aSgbs-CELSIUS-H5T :
docker exec -it rfsim5g-oai
root@291c4c68f683: /opt/oail-nr-ue# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.71.151 netmask 255.255.255.192 broadcast 192.168.71.191
:147:97 txqueuelen @ (Ethernet)

2 bytes 4066462969 (4.0 GB)
RX errors @ dropped © overruns @ frame @
TX packets 230631 bytes 5469571874 (5.4 GB)
TX errors @ dropped @ overruns @ carrier ® collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mntu 65536
inet 127.0.0.1 netmask 255.0.08.0
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes @ (0.0 B)
RX errors @ dropped © overruns @ frame @
TX packets @ bytes 0 (0.0 B)
TX errors @ dropped @ overruns @ carrier ® collisions ©

oaitun_uel: flags=4305<UP,POINTOPOINT ,RUNNING,NOARP,MULTICAST> mtu 1500
inmet 12.1.1.3 netmask 255.255.255.0 destinmation 12.1.1.3
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500
RX packets ©® bytes @ (0.0 B)
RX errors @ dropped ® overruns @ frame @
TX packets @ bytes @ (8.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

Figure 32: OAI-NR-UE2 block interfaces

3.4.2. Configuration of the Networks

(UNSPEC)

In this case there are 2 networks, "rfsim5g-oai-public-net" and "rfsim5g-oai-traffic-net",
where both networks are deployed in bridge way, as shown in Figure 33.

A bridge network is a Link Layer device which forwards traffic between network
segments, in Docker terms, a bridged network allows containers connected to the same
bridged network to communicate, while providing isolation from containers that are not

connected to that bridged network [36].

networks:
public net:
driver: bridge
name: rfsim5g-oai-public-net
ipam:
config:
- subnet: 192.168.71.128/26

driver _opts:

com.docker.network.bridge.name: “rfsim5g-public”

traffic_net:
driver: bridge
name: rfsimbg-oai-traffic-net
ipam:
config:
- subnet: 192.168.72.128/26
driver_opts:

com.docker.network.bridge.name: “"rfsimbg-traffic”

Figure 33: OAI created networks

rfsim5g-oai-public-net

This is a network with IP range 192.168.71.128/26. The block contains the following
containers: OAI-SMF, OAI-AMF, OAI-SPGWU, OAI-gNB, OAI-NRF, mysq|, and the UEs.

28

rfsimbg-oai-traffic-net

In this case it is a network with IP range 192.168.72.128/26. The block contains the
following containers: OAI-SPGWU and OAI-EXT-DN.

29

4. Results

4.1. Evaluation Tools

To measure latency and communication status, the ping command has been used.
Packet generation has been done using the iperf tool. Iperf requires 2 systems, one to
act as a server while the other acts as a client. The client is the one that connects to the
server. In this case the NR-UE container has been used as the server and the EXT-DN
container as the client.

For the simulations that have been carried out in this project, UDP traffic has been
created as it allows to define the transmission speed. It gives information about
bandwidth, delay, jitter and datagram loss on the connection.

These are the different command formats that have been used:
Inside the server: iperf-B 12.1.1.2 -u-i 1 -s

Inside the client: iperf-c 12.1.1.2 -u -i 1 -t 20 -b 500K

-B: To tell the server that the traffic will come through this interface.
-u: To run iperf in client mode.

-i: To stablish the reporting intervals.

-s: server command.

-t: length of the test in seconds.

-b: set bandwidth in bit/s.

Wireshark software can be used to analyse the traffic between the interfaces. This tool
allows to intercept the traffic within the network, how often each packet is sent or the
latency of the packets. One of the great advantages of Wireshark is that it allows to use
filters to capture what you are interested in, either filtering by IP address or protocol. Not
only that, it also allows to view and create graphs of the size or number of packets
received.

In the case of this thesis, Wireshark has been used to analyse the traffic on each
interface of interest. Once the data was available, graphs and tables with values were
created using the tools provided by this software, such as the size of the packets
exchanged, the amount of packets sent or the origin and destination of these.

The Traffic control (tc) tool is used to create block limitations. It is a Linux utility that
allows to add network delay, packet loss or bandwidth limits.

In the case of this project it will basically be used to limit the bandwidth, since the
datasheet of a SXC1280 device has been used to try to adapt to these limitations.

30

4.2. Test

In the case of the tests, it has been performed first without restrictions and then with
restrictions.

4.2.1. Test Without Restrictions

In this first section, the results obtained will be analysed without adding delays or extra
constraints.

4.2.1.1. Uu Air Interface
This is the traffic on the Uu interface between the gNB and UE containers, without

creating any traffic from the outside. The traffic that is already between these two blocks
belongs to the RF Simulator, which sends 1/Q samples.

In the configuration of the docker-compose.yaml file the lines in Figure 34 and Figure 35
can be seen, confirming that the traffic on this interface belongs to the RF Simulator.

-E --sa --rfsim -r 186 --numerology 1 -C 36 @ --nokrnmod

Figure 35: Configuration of the RF Simulator in the UE block
--rfsim means that the RF Simulator is used.
--sa means that is a SA mode.
-r 106 the bandwidth in terms of number of resource blocks, 106 resource blocks.
-C 3619200000, means the DL carrier frequency used in Hz.

Figures 36 and 37 show the traffic exchanged between the UE and the gNB, with Figure
36 corresponding to the gNB and Figure 37 to the UE.

[RLC] [mac_rlc_status ind] Radio Bearer (channel ID 4) is NULL for UE with rntiP 1234
[NR_PHY] Number of bad PUCCH received: 369
[NR_MAC] Frame,Slot 768.0
UE ID ©@ RNTI 1234 (1/1) PH @ dB PCMAX © dBm, average RSRP -44 (8 meas)
+ dlsch_rounds 15848/93/93/93, dlsch_errors 93, pucchd DTX 369, BLER 0.00808 MCS @
+ dlsch_total bytes 19794152
ulsch_rounds 15850/93/92/92, ulsch_DTX 369, ulsch_errors 92
: ulsch_total_bytes_scheduled 19796658, ulsch_total_bytes_received 19681742

[RLC] [mac_rlc_status ind] Radio Bearer (channel ID 4) is MULL for UE with rntiP 1234
[NR_PHY] Number of bad PUCCH received: 369

[NR_MAC] Frame,Slot 896.0

UE ID @ RNTI 1234 (1/1) PH @ dB PCMAX © dBm, average RSRP -44 (8 meas)

UE @: dlsch_rounds 15976/93/93/93, dlsch_errors 93, pucch® DTX 369, BLER 0.00000 MCS @
UE 0: dlsch_total bytes 19954024

UE 8: ulsch_rounds 15978/93f92/92, ulsch_DTX 369, ulsch_errors 92

UE 0: ulsch_total bytes_schedulad 19956522, ulsch_total_bytes_received 19841614

Figure 36: gNB rfsim running

31

al ™

[NR_MAC] - Recelved TA_COMMAND 31 TAGID €
[NF‘._M."LC] 783. recelved TA_COMMAND 31 TAGID ©
[NR_MAC] 793.1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 3.1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 3.1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 2 Received TA_COMMAND 31 TAGID €
[NR_PHY]

[NR_PHY] round stats for Downlink

[NF‘__PH‘;'] s EEsEse e e e e

[NR_MAC] 1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 3.1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 3.1] Received TA_COMMAND 31 TAGID 6
[NR_MAC] 3.1] Recelved TA_COMMAND 31 TAGID 6
[NF‘._HAC] _'.1] Recelved TA_COMMAND 31 TAGID 6
[NR_MAC] 3.1] Recelved TA_COMMAND 31 TAGID €
[NR_MAC] 1] Recelved TA_COMMAND 31 TAGID €
[NR_PHY] e

[NR_PHY] -)

Figure 37: UE rfsim running

In the case of this interface there is a lot of traffic, because when launching the RF
Simulator, this simulator will use most of the available CPU resources. It will be seen
later that when Wireshark is started and the computer requires more CPU resources, the
transmission speed on this interface will decrease.

Table 3 shows the average traffic in each direction, obtained from Figure 38.

Direction Average
gNB - UE 686 Mb/s
UE - gNB 932 Mb/s

Table 3: Data rate at the Uu interface

Figure 38 shows the traffic that has moved from 192.168.71.140, the gNB, to
192.168.71.150, the UE, and vice versa.

Wireshark - Conversations - vethc544ae6

Ethernet - 2 IPvd - 2 1PvE TCP-1 ubpP

Address A ~ Address B Packets Bytes Packets A - B BytesA B Packets B » A Bytes B s A Rel Start Duratien Bits/s A s B Bits/s B = A
1 98 0.602021 0.0000 —
176,197 4.327M 0.000000 37.1344

192.168.71.132 192.168.71.140 2 196 1
192.168.71.140 182.168.71.150 364,208 7.512M 188,011

Figure 38: Uu traffic flow

In the Figure 39 the traffic exchange between the gNB and the UE can be seen. As said
before, 1/Q samples are exchanged between the gNB and UE.

This traffic is automatically generated by simulating the communication between users
and the gNB.

32

Uuinterfacewit

File Edit View Go Capture Analyze Statistics Telephany Wireless Tools Help

1 & N b= = & =

A = BEAREB QesEF E=S @ a § ik
[WTpply 2 display E > =)+
No. Time - Destination Protocol | Lengtt info e |
- 1 0.000000000 192.168.71.140 8 TCP 65226 4043 ~ 47766 [PSH, ACK] Seq=1 Ack=1 Win=3059 Len=65160 TSval=2122101727 TSecr=2371438413 |

2 0.000012069 192.168.71.140 TCP 26130 4043 ~ 47766 [PSH, ACK] Seq=65161 Ack=1 Win=3059 Len=26064 TSval=2122101727 TSecr=2371438413

3 0.000064472 192.168.71.150 TCP 98 47766 — 4043 [PSH, ACK] Seq=1 Ack=91225 Win=2116 Len=32 TSval=2371438413 TSecr=2122101727 I

4 0.000070776 192.168.71.140 TCP 1002 4043 - 47766 [PSH, ACK] Seq=91225 Ack=33 Win=3072 Len=936 TSval=2122101727 TSecr=2371438413

5 0.000106777 192.168.71.150 TCP 65226 47766 — 4043 [PSH, ACK] Seq=33 Ack=92161 Win=2116 Len=65160 TSval=2371438413 TSecr=2122101727

6 ©.000121383 192.168.71.150 TCP 27066 47766 — 4043 [PSH, ACK] Seq=65193 Ack=92161 Win=2116 Len=27000 TSval=2371438413 TSecr=2122101727

7 0.000127320 192.168.71.140 TCP 66 4043 - 47766 [ACK] Seq=92161 Ack=65193 Win=3072 Len=0 TSval=2122101727 TSecr=2371438413

8 0.080143282 192.168.71.140 TCP 98 4043 - 47766 [PSH, ACK] Seq=92161 Ack=92193 Win=3059 Len=32 TS5val=2122181728 TSecr=2371438413

9 0.800191137 192.168.71.140 TCP 65226 4043 - 47766 [PSH, ACK] Seq=92193 Ack=92193 Win=3059 Len=65168 TSval=2122101728 TSecr=2371438413

10 0.600206426 192.168.71.140 TCP 26130 4043 - 47766 [PSH, ACK] Seq=157353 Ack=92193 Win=3853 Len=26064 TSval=2122101728 TSecr=2371438413

11 0.600306115 192.168.71.150 TCcP 66 47766 ~ 4043 [ACK] Seq=92193 Ack=183417 Win=2179 Len=0 TSval=2371438414 TSecr=2122101728

12 0.600310919 192.168.71.140 TCcP 1602 4043 - 47766 [PSH, ACK] Seq=183417 Ack=92193 Win=3859 Len=938 TSval=2122181728 TSecr=2371438414

13 0.600348055 192.168.71.150 TCcP 98 47766 ~ 4043 [PSH, ACK 179 Len=32 TSval=2371438414 TSecr=2122181728

14 0.600375267 192.168.71.150 TCP 65226 47766 - 4843 [PSH, ACK 179 Len=65160 TSval=2371438414 TSecr=2122161728

15 0.600388043 192.168.71.140 TCP 98 4043 ~ 47766 [PSH, ACK n

16 ©.600398499 192.168.71.150 TCP 26130 47766 —~ 4843 [PSH, ACK] Seq=157385 Ack=184353 Win=2179 Len=26864 TSval=2371438414 TSecr=2122181728

17 ©.600399513 192.168.71.150 TCP 1602 47766 - 4843 [PSH, ACK] Seq=183449 Ack=184385 Win=2179 Len=936 TSval=2371438414 TSecr=2122101728

18 0.600405344 192.168.71.140 TCP 66 4043 ~ 47766 [ACK] Seq=184385 Ack=183440 Win=3845 Len=0 TSval=2122161728 TSecr=2371438414

19 0.600425706 192.168.71.140 TCP 39618 4843 - 47766 [PSH, ACK] Seq=184385 Ack=184385 Win=3058 Len=39552 TSval=2122101728 TSecr=2371438414

20 0.600776928 192.168.71.150 TCP 98 47766 — 4043 [PSH, ACK] Seq=184385 Ack=223937 Win=2160 Len= TSval=2371438414 TSecr=2122101728

21 0.600813731 192.168.71.150 TCP 65226 47766 —~ 4843 [PSH, ACK] Seq=184417 Ack=223937 Win=2160 Len=65160 TSval=2371438414 TSecr=2122181728

22 ©.000830665 192.168.71.150 TCP 26130 47766 —~ 4043 [PSH, ACK] 7 7 Win=2160 L TSval=2371438414 TSecr=2122101728

23 0.000833111 192.168.71.140 TCP 66 4043 - 47766 [ACK] Seq=223937 Ack=249577 Win=3072 Len=0 TSval=2122101728 TSecr=2371438414

24 ©.000842435 192.168.71.150 TCP 1002 47766 — 4843 [PSH, ACK] Seq=275641 Ack=223937 Win=2160 Len=936 TSval=2371438414 TSecr=2122101728

25 0.000952942 192.168.71.140 TCP 66 4043 - 47766 [ACK] Seq=223937 Ack=276577 Win=3072 Len=0 TSval=2122101728 TSecr=2371438414

26 0.001045435 192.168.71.150 TCP 98 47766 — 4043 [PSH, ACK] Seq=276577 Ack=223937 Win=2160 Len=32 TSval-=2371438414 TSecr=2122101728

27 0.001085661 192.168.71.150 TCP 65226 47766 — 4043 [PSH, ACK] Seq=276609 Ack=223937 Win=2160 Len=65160 TSval=2371438414 TSecr=2122101728

28 0.001109242 192.168.71.150 TCP 26130 47766 —~ 4043 [PSH, ACK] Seq=341769 Ack=223937 Win=2160 Len=26064 TSval=2371438414 TSecr=2122101728

29 0.601110124 192.168.71.140 TCP 66 4043 - 47766 [ACK] Seq=223937 Ack=341769 Win=3072 Len=0 TSval=2122101728 TSecr=2371438414

30 0.601120548 192.168.71.150 TCP 1602 47766 —~ 4043 [PSH, ACK] Seq=367833 Ack=223937 Win=2160 Len=936 TSval=2371438414 TSecr=2122101728

21 0 00121A0EN 407 1R8 T4 140 TrD AR ADAT . ATTRR TAMK] San=272037 Ack=2R07R0 WHn=2072 | on=0_TSual=24122104720 TCarr=2271420414 5 e

Frame 50: 65226 bytes on wire (521868 bits), 65226 bytes captured (521888 bits) on interface vethc544aeé, id @
Ethernet II, Src: 02:42:c:a8:47:8c (82:42:c0:aB:47:8c), Dst: 02:42:c0:a8:47:96 (82:42:c0:aB:47:96)

Internet Protocol Version 4, Src: 192.168.71.148, Dst: 192.168.71.150

Transmission Control Protocol, Src Port: 4843, Dst Port: 47766, Seq: 408353, Ack: 553153, Len: 65160

Data (65160 bytes)

Figure 39: Uu interface Wireshark traffic

As for the size of the packets sent, as shown in Figure 40, it can be seen that half of the
packets have an average size of 45637 bytes, being large packets. It should be noted
that the MTU for the loopback interface is 65536 bytes. For the rest of the interfaces it is
1500 bytes.

wireshark - Packet Lengths - Uuinterfacewithoutiperf.pcap

Topic / Item - Count Average MinVal Max Val Rate (ms) Percent Burst Rate Burst Start

« Packet Lengths 364210 20626,16 66 65226 9,8079 100% 38,2900 0,785
0-19 0 - - - 0,0000 0,00% - -
20-39 0 - - - 0,0000 0,00% - -
40-79 70722 66,04 66 78 1,9045 13,42% 8,0700 2,815
80-159 73627 98,00 82 110 19827 20,22% 8.0000 0,785
160-319 4] - - - 0,0000 0,00% - -
320-639 5789 524,34 322 630 0,1559 1,59% 0,7300 4,801
640-1279% 50163 1005,58 642 1186 1,3508 13,77% 5,6200 1,960
1280-2559 471 1545,97 1290 2482 0,0127 0,13% 0,7100 2,809
2560-5119 302 3686,87 2962 4874 0,0081 0,08% 0,2400 7.452

5120 and greater 163136 45637,05 5346 65226 4,3031 44,79% 16,7800 0,840

Figure 40: Uu interface packet lengths

In the Figure 41, the Packets/sec values can be observed. It starts being 30.000
Packets/sec, then the value goes decreasing until the second 15 where it stablished to
an average of 5.000 Packets/sec. This is because the more CPU available is, the faster
it will transmit. So, when launching Wireshark as it needs CPU resources, it decreases
the Packets/sec sent.

Wireshark - 1/0 Graphs - Uuinterfacewithoutiperf.pcapng

Wireshark 40 Graphs: Uuinterfacewithoutiperf.pcapng

30000 |-

25000 - \

20000 -

Packets/1 sec

15000 |-

10000 - \

5000 - \\ e o - e
\
o B 0 15 20 3 30 35
Time (s}
Gick 0 sefect packet 253573 (115 = 7239),
Enabled Graph Name _ Display Filter _ Color style ¥ axis Field SMA period B
v All Packets [| Line Packets. None
TcpEmors tepanalysist.. [l Bar Packets Hone
Filtered pack..._gtp | | Line Packets None
= = <= —
+ | |[w][E Mouss () drags O zooms e T Ty (i Reset

fd Save as. Copy [Xclose 3iHelp

Figure 41: Packets/sec going over the Uu interface

33

Then, the following iperf traffic is created: iperf -c 12.1.1.2 -u -i 1 -t 10 -b 3M

As can be seen in the Figure 42, only 40 to 50 packets per second are detected, when
250 packets should be detected. It can also be seen that the graph is not uniform and
has many packet losses.

Wireshark - 1/O Graphs - veth02c417a

Wireshark 1/0 Graphs: veth02c417a

Packets/1 sec

1 1 1 1 1
0 5 10 15 20 25

Time (s}
Na packets in interval (8s).
Enabled Graph Name Display Filter Color Style Y Axis Y Field [
All Packets] Line Packets
TCP Errors tep.analysis.f... [l Bar Packets ~| |
L] >

Figure 42: Iperf traffic on the Uu interface

After creating 3Mbits/sec during 10 seconds of traffic from DN to the UE, the following
can be seen: only 557 kbits/sec and 26kb/s arrived, as illustrated in Figure 43. After
analyzing every interface, a comparison with each one will be done. However, this is
because there is so much traffic between the gNB and UE, that the traffic that is created
through the interface does not reach the UE.

Wireshark - Conversations - veth02c417a o

Ethernet - 2 IPv4 -3 1PV TCP -1 UDP - 2
Address A Address B Packets v Bytes Packets A + B Bytes A+ B Packets B + A BytesB = A Rel Start Duration Bits/s A = B Bits/s B - A
12.11.2 192.168.72.135 0 33k 16.378731 9.9853 0
192.168.71.134 192.168.71.140 876 696k 876 696k 0 0 16.378730 9.9853 557k 0

Figure 43: Uu iperf traffic flow

In the Figure 44 can be seen the UDP traffic that goes from the EXT-DN to the UE, the
protocol used is GTP-U. This protocol is used for the transmission of user information
between the CN and the CN and the RAN. The GTP-U protocol has been used from
3G/4G networks to the current 5G networks. When sending information, a GTP tunnel is
created between the receiver and the transmitter to send encapsulated PDUs.

34

*veth02c417a 0

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
S EBE 2 B ==

AN s@mERO Qe+ EF S S QaQQE

[udp B)+

No. Time Source Destination Protocel Length Info —

— 2849. 16.378731192 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 50681 Len=1470
2850.. 16.393764225 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 5001 Len=1470
2850.. 16.408606320 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2852.. 16.442333010 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 50601 Len=1470
2853.. 16.457221396 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2853.. 16.472176647 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 50601 Len=1470
2855.. 16.505848513 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 5001 Len=147@
2856.. 16.520774536 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2859.. 16.584337035 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 50681 Len=1470

.. 16.618039756 192.168.72.135 ALl] 76 43476 —~ 5001 Len=1470
2861.. 16.636715013 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2864.. 16.681588281 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 -~ 5001 Len=1470
2864.. 16.700276647 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2866.. 16.733878331 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 50601 Len=1470
2867.. 16.745093518 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2869.. 16.797426085 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2876.. 16.808659711 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 -~ 5001 Len=1470
2872.. 16.857233213 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2873.. 16.872196322 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 50601 Len=1470
2875.. 16.905862968 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2877.. 16.954503938 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2878.. 16.969385582 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2878.. 16.988119690 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2886.. 17.910515509 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 50601 Len=1470
2886.. 17.025464853 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 5001 Len=1470
2881.. 17.040431544 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 —~ 5001 Len=1470
2883.. 17.074184867 192.168.72.135 12.1.1.2 GTP <U.. 76 43476 — 50681 Len=1470 -
»

» Frame 286143: 76 bytes on wire (688 bits), 76 bytes captured (608 bits) on interface veth82c417a, id @

» Ethernet II, Src: 02:42:c0:a8:47:86 (02:42:c0:a8:47:86), Dst: 02:42:c0:aB:47:8c (02:42:c0:aB:47:8c)

» Internet Protocol Version 4, Src: 192.188.71.134, Dst: 192.168.71.140

» User Datagram Protocol, Src Port: 2152, Dst Port: 2152

» GPRS Tunneling Protocol

» Internet Protocol Version 4, Src: 192.188.72.135, Dst: 12.1.1.2

» User Datagram Protocol, Src Port: 43476, Dst Port: 5001

» Data (1478 bytes)

Figure 44: UU iperf traffic created

4.2.1.2. N2 interface

As explained above, only control information will go through this N2 interface. At the start
of the gNB and UE session, the NGAP messages described below are exchanged, then
SCTP messages, which are explained later. Below is an explanation of the control
messages exchanged in the beginning [37]:

NGSetupRequest and NGSetupResponse: To exchange application level data
between the gNB and AMF. It deletes any existing application level configuration data in
the two nodes and replaces it by the one received at that moment.

InitialUEMessage, registration request: This initial message procedure is used when
the NG-RAN has received from the gNB the first UL NAS message transmitted on an
RRC connection to be forwarded to an AMF. It contains a UE-AMF message that is
transferred without interpretation in the NG-RAN node.

DownlinkNASTransport, Authentication request: After receiving the
InitialUEMessage this message is sent from the AMF to the NG-RAN node, the AMF
allocates a unique AMF UE NGAP ID to be used for the UE. It sends the key selector,
RAND and AUTN to the UE.

UplinkNASTransport, Authentication response: The UE responds to the
authentication request.

DownlinkNASTransport, Security mode command: The purpose of this message is
to initialize and start NAS signalling security between the UE and the AMF. It includes
the ngKSI (key set identifier).

UplinkNASTransport: This message is used when the NG-RAN has received from the
radio interface a NAS message to be forwarded to the AMF to which a UE-associated
logical NG-connection for the UE exists.

35

InitialContextSetupRequest: This message goes from the AMF to request the setup of
a UE context.

UERadioCapabilityInfolndication: This is a message from the gNB informing all the
details of UE radio capabilities.

SACK: Selective Acknowledgment mechanism, to inform that sender data has been
received. It allows the receiver to modify the ACK field to describe noncontinuous blocks
of received data, that way the sender could retransmit only is missing at the receiver’'s
end.

InitialContextSetupResponse: This message goes from the NG-RAN node to confirm
the setup of a UE context.

PDUSessionResourceSetupRequest: It contains the information required by the NG-
RAN node to setup the PDU session. To assign resources on Uu and NG-U for one or
several PDU sessions and QoS flows and to setup corresponding DRBs for a given UE.

PDUSessionResourceSetupResponse: It responds to the previous request, in case
the PDU sessions resources failed, it tells to the AMF.

Figure 45 shows the NGSetupRequest messages exchanged at the time of connecting
the base station to the CN.

Source Destination Protocol Length Info

192.168,71.132 1592.168.71.148 NGAF 578 NGSetupResponse

Figure 45: Moment when the gNB is connected to the CN

On the other hand, the Figure 46 represents the messages exchanged when connecting
the UE to the gNB.

. 487150435 o o 1ALy o o ULy o InitialUEMessage, Registration request
580.614179149 192.168.71.132 192.168.71.148 NGAP/N.. 630 DownlinkNASTransport, Authentication request
580.618831177 192.168.71.140 192.168.71.132 NGAP/N.. 146 UplinkNASTransport, Authentication response
580.621287601 192.168.71.132 192.168.71.140 NGAP/N.. 462 DownlinkNASTransport, Security mode command
580.627447483 192.168.71.140 192.168.71.132 NGAP/N.. 174 UplinkNASTransport
580.630300059 192.168.71.132 192.168.71.140 NGAP/N.. 139@ InitialContextSetupReguest
580.640224480 192.168.71.140 192.168.71.132 NGAP 122 UERadioCapabilityInfoIndication
580.843921253 192.168.71.132 192.168.71.140 SCTP 62 SACK
580.843951339 192.168.71.140 192.168.71.132 NGAP 86 InitialContextSetupResponse
581.047922807 192.168.71.132 192.168.71.14@ SCTP 62 SACK
581.646460391 192.168.71.140 192.168.71.132 NGAP/N.. 118 UplinkNASTransport
581.847925392 192.168.71.132 192.168.71.148 5CTP 62 SACK
581.847954768 192.168.71.140 192.168.71.132 NGAP/N.. 146 UplinkNASTranspart
581.878228125 192.168.71.132 192.168.71.14@ NGAP/N.. 266 PDUSessionResourceSetupRequest
581.882424381 192.168.71.140 192.168.71.132 NGAP 122 PDUSessionResourceSetupResponse

Figure 46: Moment when the UE is connected to the CN

In the Figure 47 it can be seen that until second 369 there is no traffic at all, which is
normal since the gNB connects at that moment. On the other hand, the UE connects at
second 580 and a peak can be seen in the graph that appears because at that moment
most of the messages are exchanged between the gNB and AMF for the correct
connection of the UE.

36

Wireshark - 1/O Graphs - N2frombeginning.pcapng

Wireshark IO Graphs: N2frombeginning.pcapng

Packets/1 sec

[AT

L L
o] 500 1000 1500
Time (s)

No packets in interval (10625},

Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA Period
All Packets [| Line Packets None
TCP Errors tep.analysis.f... [l Bar Packets None
Filtered pack... gtp [] Line Packets None
v Filtered pack... ip.addr == 1... . Line Packets None

Figure 47: Packets/sec on the N2 interface

From Figure 48 it can be seen that most of the packets are between 40 and 159 bytes
in size. This means that the packets exchanged are small in size, which means that no
large resources would be needed for proper transmission on this link.

Topic / Item Count Average MinVal Max Val Rate (ms) Percent Burst Rat¢~ Burst Start
* Packet Lengths 419 112,36 42 2088 0,0002 100% 0.4600 581,848
0-19 0 - - - 0,0000 0,00% - -

20-39 0 - - - 0,0000 0,00% - -

40-79 142 52.31 42 74 0,0001 33.89% 0,3500 581,848
80-159 222 99.68 82 147 0,0001 52,98% 0,0900 580,581
160-319 45 190,80 160 308 0,0000 10.74% 0,0800 580,594
320-639 5 503,00 381 630 0,0000 1,19% 0,0300 580,605
640-1279 3 981,33 844 1104 0,0000 0,72% 0,0300 581,850
1280-2559 2 1739,00 1390 2088 0,0000 0,48% 0,0200 580,595
2560-5119 0 - - - 0,0000 0,00% - -

5120 and greater 0 0,0000

Figure 48: Packet size on the N2 interface

As can be seen in the Figure 49, the messages exchanged between the AMF and the
gNB are very few and of small size. With an average of 60 bits per second.

Ethernet - 12 1Pvd - 6 IPv6 - 3 TCP -5 upP- 9

Address A v Address B Packets Bytes Packets A = B Bytes A B Packets B - A Bytes B — A Rel Start Duration Bits/sA=B Bits/sB—=A

192.168.71.129 224.0.0.251 12 1774 12 1.774 0 0 4309778 1505.4438 9 o
192.168.71.129 192.168.71.191 6 552 6 552 0 0 992.824713 5.0122 881 o
192.168.71.130 192.168.71.132 10 1.757 4 1.202 6 555 581.849229 0.0005 - —

192.168.71.131 192.168.71.132 34 6.122 16 3.974 18 2.148 580.581074 0.0326 974k 526k
192.168.71.132 192.168.71.140 9 9 11k 371.789556 1590.1944

192.168.71.132 192.168.71.133 30 4.609 16 2.354 14 2.255 581.850463 0.0376 500k 479k

Figure 49: Traffic flow in N2 interface

Once the UE is successfully connected, only SCTP messages with the characteristics of
Figure 50 are sent.

37

Wireshark - Conversations - N2frombeginning.pcapng

|

t Ethernet-12 | IPva-6 | IPv6-3 | SCTP-1 | TCP-5 | UDP-9

f

{ |Address A ~ Port A Address B Port B Packets Bytes Packets A B BytesA - B Packets B » A BytesB - A Rel Start Duratien Bits/sA - B Bits/sB = A

{ 192.168.71.140 49022 192.168.71.132 38412 218 24k 109 11k 109 13k 371.789556 1590.1944 55 67
]

Figure 50: SCTP protocol traffic flow in N2 interface

SCTP messages are the only traffic after the NGAP messages have been sent. The
SCTP protocol sends a HEARTBEAT message to the destination to monitor the
accessibility of the destination address. In this case it is the AMF block that sends it to
the gNB, which replies with a HEARTBEAT_ACK.

As can be seen in the Figure 51, 2 HEARTBEAT and 2 HEARTBEAT _ACK messages
are sent every 30 seconds.

View Go Capture Analyze Statistics Telephony Wi

@ @HIRE QC VA=

wireshark 1/O Graphs: N2frombeginning.pcapng

| |
[Apply a display filter ... <Ctrl/> ‘
lo. Time ~ Source Destination Pmto(u Length Info 0.6
320 1353.7270415.. 192.168.71.140 102.168.71.132 98 HEARTBEAT_ACK
221 1357.8290274.. 102.168.71. 140 102.168.71.132 st 08 HEARTBEAT
322 1357.8230436.. 192.168.7 192.168.71.140 scTp 98 HEARTBEAT ACK
223 1358.8470102.. 02: 62:42:C0:28:47:84 ARP 42 Wno has 102.168.71.
224 1358.8470286. 02: 184 02:42:c0:aB:47:8c ARP 42 192.168.71.132 is @ 0.5
225 1386.4950227... 192.168.71.132 192.168.71.140 scTp 08 HEARTBEAT
226 1386.4950418.. 192.168.71.140 102.168.71.132 scTp 98 HEARTBEAT ACK
227 1390.5010257... 192.168.71.140 102.168.71.132 scTp 98 HEARTBEAT
228 1300.5010407... 192.168.71.132 192.168.71.140 scTp 98 HEARTBEAT ACK
220 1391.6162002.. 02:4: -8 3 ARP 42 Wno has 192.168.71, y 0.4
330 13916163066, ARP 42192.168.71.132 is @ &
331 1417.2159221. scTR 98 HEARTBEA =
332 1417.2159474. scTP 98 HEARTBEAT ACK)
sCTR 98 HEARTBEAT]
SCTP. 95 HEARTBEAT_ACK. g 03
- SCTP 96 HEARTBEA &
336 1447.9359417.. 192.168.71. . scTP 98 HEARTBEAT ACK
337 1456.1279273.. 192.168.71.140 1o7 108 11132 scTP 98 HEARTBEAT
338 1456.1279441.. 192.168.71.132 192.168.71.140 scTP 98 HEARTBEAT_ACK
339 1480.7039258.. 192.168.71.132 192.168.71.140 sCTP 98 HEARTBEAT 0.2
340 1480.7039452.. 192.168.71.140 192.168.71.132 sCTP 98 HEARTBEAT_ACK
341 1488.8959311.. 192.168.71.140 192.168.71.132 sCTP 98 HEARTBEAT
342 1488.8959483.. 192.168.71.132 192.168.71.140 scTP 98 HEARTBEAT_ACK
343 1509.7534158.. feB0::b079:157F:fed_ Fr62::fD MDNS 180 Standard query 0x08
344 1509.7535296... feB0::42:e4ff:fe80:. Fro2::fD MDNS 180 Standard query 0x08 o1
345 1509.7535530.. 192.168.71.129 224.0.0.251 MDNS oo |
346 1511.4242863. 192.168.71.132 192.168.71.140 5CTP 98 HEARTBEA ‘
» Frame 334: 9 bytes on wire (784 bits), 08 bytes captureu (784 bits) on interface vethsfbfab3, 14 o f L n n n ‘ n
» Ethernet II, Src: 02:42:c0:a8:47:84 (82:42:cB:a8:47:84), Dst: 82:42:c0:aB:47:8c (82:42:c0:a8:47:8
» Internet Protocol Version 4, Src 105 168 502 to8 74 2db . 1400 1425 1450) 1475 1500
» Stream Control Transmission Protocol, Src Port: 38412 (38412), Dst Port: 49922 (49622) Time (s)

Figure 51: N2 interface HEARTBEAT messages

4.2.1.3. N3 interface

In this interface, without iperf traffic creation, there is no traffic at all. So the following
traffic shown in Figure 52 has been created using the next command: iperf -c 12.1.1.2 -
u-il1-t10-b 1M

lient connecting to 12.1.1.2, UDP port 56001
ending 1470 byte datagrams, IPG target: 11215.21 us (kalman adjust)
DP buffer size 208 KByte (default)

3] local 192.168.72.135 port 39058 connected with 12.1.1.2 port 5001
ID] Interval Transfer Bandwidth
0. .0 sec 131 KBytes 1.07 Mbits/sec
sec 128 KBytes .05 Mbits/sec
128 KBytes .05 Mbits/sec

sec 128 KBytes .05 Mbits/sec
sec 128 KBytes .05 Mbits/sec 4] local 17 1.1.2 port 5001 connected with 192.168.72.135 port 39058

sec 128 KBytes .05 Mbits/sec 0.0- sec 123 KBytes 1.01 Mbits/sec .428 ms

sec 116 KBytes 953 Kbits/sec .971 ms
sec 119 KBytes 976 Kbits/sec .761 ms
sec 118 KBytes 964 Kbits/sec .091 ms

.0- 7.0 sec 129 KBytes .06 Mbits/sec

.0- 8.0 sec 128 KBytes .05 Mbits/sec
«8-9.0 sec 128 kBytes +05 Mths/sec sec 119 KBytes 976 Kbits/sec .466 ms
9.0-10.0 sec 128 KBytes .05 Mb}ts/sec .0- 6.8 sec 125 KBytes 1.02 Mbits/sec .729 ms
0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 6.0- 7.0 sec 121 KBytes 988 Kbits/sec .432 ms
3] sent 893 datagrams .0- 8.0 sec 119 KBytes 976 Kbits/sec .337 ms
3] Server Report: 4] .0- 9.0 sec 119 KBytes 976 Kbits/sec .506 ms
3] 0.0-10.0 sec 1.18 MBytes Kbits/sec 0.000 ms 54/ 893 (0%) .0-10.0 sec 123 KBytes 1.01 Mbits/sec .488 ms

0ot@1885291b463b: /# I 1 .0-10.0 sec 1.18 MBytes 985 Kbits/sec .459 ms 54/ 893 (6%)

Figure 52: Iperf traffic created on the N3 interface

As can be seen in the Figure 52, 1Mb/s is sent for 10 seconds. The server figure on the
right shows that 6% of the total datagrams were lost. which may be due to the high traffic
on the last Uu interface.

38

In Figure 53 it is possible to see the moment when the iperf traffic is created. The packets
in green correspond to the filtered traffic for the created traffic, and in black considering
all the traffic, as there is some control traffic between the NRF, SMF and UPF.

Wireshark - I/O Graphs - vethb1b3e40 X

‘Wireshark I/O Graphs: vethblb3ed0
15 20

,_.
=
S

Packets/1 sec

50 -

o il L
0 5 10
Time (s)

Click to select packet 1818 (175 = 2)

Enabled Graph Name Display Filter Color Style ¥ Axis ¥ Field SMA Period
v All Packets [| Line Packets. None
TCP Errors tep.analysis.f.. [l Bar Packets None
Filtered pack... gtp [] Line Packets None
v Filtered pack... ip.addr==1.. [l Line Packets. None
Filtered pack... udp [] Line Packets None
Filtered pack... ip.addr==1.. [l Line Packets None

Figure 53: Packets/sec on N3 interface

In Figure 54 it can be seen that during the 10 seconds that the Iperf transmission lasts,
around 1.132 kb/s are transmitted from 192.168.71.134 to 192.168.71.140, and 54 kb/s
from 192.168.72.135 to 12.1.1.2, which is all the traffic created.

Wireshark - Conversations - vethb1b3e40 o

Ethernet - 3 IPvd - 4 IPvE TCP-3 upP-3

Address A ~ Address B Packets Bytes Packets A + B BytesA B Packets B —+ A BytesB —» A Rel Start Duration Bits/s A+ B Bits/s B = A

12.1.12 192.168.72.135 895 68k 1 68 894 67k 6.512715 10.0373 54 54k
192.168.71.130 192.168.71.134 30 2.997 12 1.107 18 1.890 0.000000 20.0005 442 755
192.168.71.133 192.168.71.134 348 3 174 3 174 2.184481 20.0008 69 69

6
192.168.71.134 192.168.71.140 1,790 1.4, . . < 2 1.582 6.512704

Figure 54: N3 interface traffic flow

As for the size of the packets shown in Figure 55, it can be noticed that most of them are
75 or 1514 bytes length, which correspond to the Iperf traffic created.

Wireshark - Packet Lengths - vethb1b3e40 o

|

Topic f Item + Count Awverage MinVal Max Val Rate (ms) Percent Burst Rate Burst Start
¥ |Packet Lengths 1832 778,73 42 1514 0,0826 100% 0,2800 9,911
0-19 0 - - - 0,0000 0,00% - -
20-39 0 - - - 0,0000 0,00% - -
40-79 931 75,45 42 76 0,0420 50,82% 0,1700 9,911
80-159 0 - - - 0,0000 0,00% - -
160-319 6 227,50 163 292 0,0003 0,33% 0,0200 0,000
320-639 0 - - - 0,0000 0,00% - -
640-1279 0 - - - 0,0000 0,00% - -
1280-2559 895 1514,00 1514 1514 0,0403 48,85% 0,1000 13,535
2560-5119 0 - - - 0,0000 0,00% - -
5120 and greater 0 - - - 0,0000 0,00% - -
Display filter:
Copy Save as... X Close

Figure 55: Packet length on the N3 interface

39

The packets are fragmented and reassembled as the MTU is by default 1500 in this case,
so if it exceeds this limit, it will be fragmented. Each network element will reassemble the
IP packet to get the full data and then establish a GTP tunnel to send the data to the next
network element. IP header and data is tunnelled by GTP. When there are a lot of
packets, these are fragmented and reassembled, consuming a lot of the kernel's IP
resources and harming the network throughput. In the case of Figure 56, the traffic that
has been captured in Wireshark has had to be fragmented.

[F[ip.addr == 192.168.71.140 (<] -]+
No. Time ~ Source Destination Protocol Length Info -
15 6.031054113 192.168. 192.168.71.14@ IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=49f9) [Reassembled in #16
- 16 6.031061483 192.168. 12.1.1.2 GTP <U.. 76 39858 — 5001 Len=1470
17 6.042361349 192.168. 192.168.71.14@ IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=49fa) [Reassembled in #18
18 6.042367264 192.168. 12.1.1.2 GTP <U.. 76 39858 — 5001 Len=1470
19 6.053501995 192.168. 192.168.71.14@ IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=49fc) [Reassembled in #20
20 6.053509161 192.168. 12.1.1.2 GTP <U.. 76 39858 — 5001 Len=1470
21 6.064740336 192.168. 192.168.71.146 IPwd 1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=49fd) [Reassembled in #22
22 6.064748049 192.168. 12.1.1.2 GTP <l.. 76 39858 ~ 5081 Len=1470
23 6.875960409 192.168. 192.168.71.146 IPwd 1514 Fragmented IP protocol (proto=UDP 17, off=0@, ID=49fe) [Reassembled in #24
24 6.075867205 192.168. 12.1.1.2 GTP <l.. 76 39858 ~ 5081 Len=1470
25 6.887161509 192.168. 192.168.71.140 IPw4 1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=49ff) [Reassembled in #26
26 6.087168677 192.168. 12.1.1.2 GTP <l.. 76 39858 — 5881 Len=1470
27 6.098381329 192.168. 192.168.71.140 IPw4 1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=4a@l1) [Reassembled in #28
28 6.098387957 192.168. 12.1.1.2 GTP <l.. 76 39858 — 5881 Len=1470
29 6.189597546 192.168. 192.168.71.140 IPwv4 1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=4a@4) [Reassembled in #3868
30 6.189604601 192.168. 12.1.1.2 GTP <l.. 76 39858 ~ 5001 Len=1470
31 6.120823190 192.168. 192.168.71.140 IPwv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=4a@7) [Reassembled in #32
32 6.120829388 192.168. 12.1.1.2 GTP <l.. 76 39858 ~ 5001 Len=1470
33 6.132037720 192.168. 192.168.71.148 IPvd 1514 Fragmented IP protocol (proto=UDP 17, off=8, ID=4ab8) [Reassembled in #34
34 6.132044624 192.168.72.135 12.1.1.2 GTP <U.. 76 39858 - 5001 Len=1470

Figure 56: Packets detected on the N3 interface

4.2.1.4. N6 interface

On this interface, without creating any external traffic, the only thing that has been found
are some pings between the UPF and the EXT-DN, probably to check the correct
connection. As shown in the Figure 57 the 42 bytes packets are ARP messages
requesting the IP, the 98 bytes packets correspond to ping messages.

No. Time Source Destination Protocol Lengtt Info
1 request seq=1/256, (reply in 2)
- 2 (0.800024297 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply i B21a, seq=1/256, ttl=64 (request in 1)

3 1.905361853 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request id=8x021a, seq=2/512, ttl=64 (reply in 4)

4 1.005387070 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=0x021a, seq=2/512, ttl=64 (reguest in 3)
5 11.161487754 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request 1d=0x021b, seq=1/256, ttl=64 (reply in 6)

6 11.161520929 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x021b, seq=1/256, ttl=64 (reguest in 5)
7 12.173364366 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request 1id=8x821b, seq=2/512, ttl=64 (reply in 8)

8 12.173387608 192.168.72.134 192.168.72.135 IcMP 98 Echo (ping) reply id=8x821b, seq=2/512, ttl-64 (request in 7)
9 22.380643034 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request id=8x021c, seq=1/256, ttl=64 (reply in 18)
10 22.380666011 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x@21c, seq=1/2566, ttl=64 (reguest in 9)
11 23.405361234 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) reguest 1d=@x@21c, seq=2/512, ttl=64 (reply in 12)
12 23.405380271 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@xe21c, seq=2/512, ttl=64 (reguest in 11)
13 28.589340203 3 02:42:c0:a8:48:86 ARP 42 Who has 182.168.72.1347 Tell 192.168.72.135
14 28.589361229 @2:42:c0:a8:48: B2:42:cB:a8:48:87 ARP 42 192.168.72.134 is at 02:42:c0:a8:48:86
15 33.589321381 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request id=8x021d, seq=1/256, ttl=64 (reply in 16)
16 33.589365474 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x021d, seq=1/256, ttl=64 (reguest in 15)
17 34.605360855 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request 1d=@x©21d, seq=2/512, ttl=64 (reply in 18)
18 34.605385736 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x021d, seq=2/512, ttl=64 (reguest in 17)
19 38.829353071 0©2:42:c0:aB8:48:86 02:42:c0:a8:48:87 ARP 42 Who has 182.168.72.1357 Tell 192.168.72.134
20 38.829360485 0©2:42:c0:a8:48:87 B2:42:cB:a8:48:86 ARP 42 192.168.72.135 is at 02:42:c0:a8:48:87
21 44.729309403 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request id=8x02le, seq=1/256, ttl=64 (reply in 22)
22 44.729340700 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x021e, seq=1/2566, ttl=64 (reguest in 21)
23 45.7413639e7 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) reguest 1d=@x©2le, seq=2/512, ttl=64 (reply in 24)
24 45.741387754 192.168.72.134 192.168.72.135 ICMP 98 Echo (ping) reply id=@x821e, seq=2/512, ttl=64 (reguest in 23)
25 55.921190094 192.168.72.135 192.168.72.134 ICMP 98 Echo (ping) request 1id=@x821f, seq=1/256, ttl=64 (reply in 26)

Figure 57: Traffic captured at the N6 interface

As can be seen in the Figure 58, the traffic on this interface is very small. Only 179 bits/s
in each direction, without having created any traffic.

Ethernet - 1 IPvd -1 1Pv6 TCP ubDpP

Address A ~ Address B Packets Bytes Packets A+ B BytesA =B Packets B+ A BytesB = A Rel Start Duration Bits/s A= B Bits/sB = A
02:42:c0:a8:48:86 02:42:c0:a8:48:87 20 1.736 10 868 10 868 0.000000 38.7729 179 179

Figure 58: N6 interface traffic flow

40

As for the number and size of packets, the Figure 59 shows that 4 packets correspond
to ARP messages and 16 packets to ping messages.

Wireshark - Packet Lengths - veth485fegb (.

Topic [Item -~ Count Average MinVal Max Val Rate (ms) Percent Burst Rate Burst Start
w Packet Lengths 20 86,80 42 98 0,0005 100% 0,0200 0,000
0-19 0 - - - 0,0000 0,00% - -
20-39 0 - - - 0,0000 0,00% -
40-79 4 42,00 42 42 0,0001 20,00% 0,0200 16,245
80-159 16 98,00 98 98 0,0004 80,00% 0,0200 0,000
160-319 0 - - - 0,0000 0,00% - -
320-639 0 - - - 0,0000 0,00%
640-1279 0 - - - 0,0000 0,00%
1280-2559 0 0,0000 0,00%
2560-5119 0 0,0000 0,00%
5120 and greater 0 0,0000 0,00%

Figure 59: N6 interface packet length

Then, 3Mb/s of traffic UDP will be created for 10 seconds. The graph of packets
through the interface can be seen in the Figure 60. It can be seen to change from
almost zero traffic, to just over 250 packets/second.

Wireshark - 1/O Graphs - veth485fesb [

Wireshark I/O Graphs: veth485fe8h

i 250 - j
il
il
i
i
i

150 -

Packets/1 sec

50

{
| RPN DY SRV DUV PO S L_A_/_I_A_M
Rl N L N !

0 50 100 150 200
Time (s)
No packets in interval (115s).
Enabled Graph Name Display Filter Color Style Y Axis Y Field -
v All Packets [| Line Packets
TCP Errors tep.analysisf... [l Bar Packets.
Filtered nack... atn u line Packefs [~

[] »

Figure 60: Packets/sec when creating iperf traffic on the N6 interface

In this case, out of 2676 datagrams, only 17 were lost, the 0.64%.

3] ©0.0-10.0 sec 3.73 MBytes 3.13 Mbits/sec 0.329 ms 17/ 2676 (0.64%)

Figure 61: Result of iperf traffic created

Regarding the traffic passing through this N6 interface, a traffic of 3229kb/s has been
detected for 10 seconds, with a total of 4049 kB sent, as shown in Figure 62. Which is
coherent with the traffic generated.

Ethernet - 1 1Pva -2 IPVE TCP UDP -1

Address A ~ Address B Packets Bytes Packets A+ B BytesA—+ B Packets B -+ A BytesB » A Rel Start Duration Bits/s A+ B Bits/s B+ A
12112 192.168.72.135 2,678 4.049% 1 1.512 2,677 4.047k 3.590539 10.0257 1.206 3.229k

Figure 62: N6 iperf traffic flow

41

Calculating 2678 packets as shown in Figure 63 multiplied by 1512 bytes per packet,
gives a total of 4049 kB, giving the same result as above.

Wireshark - Packet Lengths - veth485fe8b &

Topic / Item -~ Count Average MinVal Max Val Rate (ms) Percent Burst Rate Burst Start

« Packet Lengths 2690 1505,61 42 1512 0,1976 100% 0,2900 5,086
0-19 0 - - - 0,0000 0,00% - -
20-39 0 - - - 0,0000 0,00% - -
40-79 4 42,00 42 42 0.0003 0.15% 0,0200 5,180
80-159 8 98,00 98 98 0,0006 0,30% 0,0200 0,000
160-319 0 - - - 0,0000 0,00% - -
320-639 0 - - - 0,0000 0,00% - -
640-1279 0 - - - 0.0000 0.00% - -
1280-2559 2678 1512,00 1512 1512 0,1967 99,55% 0,2800 11,928
2560-5119 0 - - - 0,0000 0,00% - -

Figure 63: N6 packet lengths

4.2.1.5. Other results

SQL-AMF

To see the communication between the SQL and the AMF go to appendix 2. This
appendix shows the communication between the SQL server and the AMF. In order for
the NR-UE to connect to the core network, the entry in the SQL database must be
created. In the appendix can be seen the user login request and the handshake for the
exchange of keys and certificates.

Comparison of Uu, N3 and N6 interfaces

Next, 3Mb/s iperf traffic was created for 10 seconds, and analysed on the N6, N3 and
Uu interfaces at the same time. For the graphs shown in Figures 64, 65 and 66, it should
be noted that traffic from 192.168.72.135 to 12.1.1.2 has been captured.

In the case of the N6 interface in the Figure 64, it is seen that just over 250 packets/s are
passing through at a steady rate.

Wireshark - 1/0 Graphs - veth6b4cgb7 o

Wireshark If/O Graphs: veth6b4c8b7

Packets/1 sec

Time (s)
Click to select packet 6 (55 = 2).
Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA Period*
v All Packets [| Line Packets None
TCP Errors tcp.analysis.f... [l Bar Packets None -

] 0

Figure 64: N6 iperf analysis

42

For the N3 interface, the same packets are observed as on N6, just over 250 packets/s
at a steady rate as well, as illustrated in Figure 65.

Wireshark - 1/0 Graphs - vethb1b3e40 (<]
Wireshark IO Graphs: vethb1lb3e40
————
250 | {‘ \
| \

Packets/1 sec

L L L L
] 5 10 15 20 25 30

Time (s)
Click to select packet 4940 (195 = 267)
Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA Period *
All Packets Line Packets None
TCP Errors tep.analysis.f. . Bar Packets None v

L] >

Figure 65: N3 iperf analysis

In the case of the Uu interface, only a maximum of 50 packets/s is seen to pass through,
with irregular ups and downs, so more than 200 are lost. This is due to the fact that, as
mentioned above, between the gNB and the UE, the RF Simulator is running, and this
generates about 900Mb/s both for DL and UL. Figure 66 shows the above described.

Wireshark - 1/O Graphs - veth02c417a (]
Wireshark 1/O Graphs: veth02c417a
50 - /\
N\ A
W

a0 / Nt
. /
a
o 30 !‘ I‘.
7 /
kol ! 1
ﬁ / \
&£ 20

10 -

0 L I 1 1 1 I
o 5 10 15 20 25
Time (s}
No packets in interval (8s).
Enabled Graph Name Display Filter Caolor Style Y Axis Y Field -
All Packets . Line Packets
TCP Errors tep.analysisf.. [l Bar Packets - |

(] 3

Figure 66: Uu iperf analysis

Analysing the results obtained in Figure 67, it can be said that on the N6 interface, a data
rate of 3,232 kb/s has been obtained from 192.168.72.135 to 12.1.1.2. To analyse the
data of the Uu and N3 interfaces, it is necessary to take into account Figure 56, in which
it can be seen that the packets have been fragmented on the N3 interface. Thus, on the
N3 interface, a speed of 162kb/s was obtained for GTP-U protocol traffic and 3,399 kb/s
for IPv4 traffic. Finally, on the Uu interface, 26 kb/s was obtained for GTP-U traffic and
557 kb/s for IPv4 traffic. The packet loss on the Uu interface is proportional for packets
going from 192.168.72.135 to 12.1.1.2, than for those going from 192.168.71.134 to

43

192.168.71.140. Since dividing 3.399k by 557k equals 6.1 and dividing 162k by 26k

equals 6.2.

Wireshark - Conversations - veth02c417a 0

1Pv4 - 3 1Pv6 TCP-1 upP- 2

Ethernet - 2

Address A Address B Packets ~ Bytes Packets A + B Bytes A+ B Packets B —+ A Bytes B —» A Rel Start
192.168.72.135 0 33k 16.378731

192.168.71.134 192.168.71.140 876 696k 876 696k 0 0 16.378730

192.168.71.140 192.168.71.150 404,418 8.321M 207,729 3.515M 196,689 4.805M 0.000000

Limit to display filter Absolute start time

Copy -

Duration Bits/s A+ B Bits/s B = A
9.9853 0
9.9853 557k 0
38.3863 732M 1.001M

Conversation Types -

IPvd - 4 IPV6.
~ Address B

TCP - 4
Packets Bytes

Ethernet - 3 UDP- 3

Address A Packets A — B BytesA - B Packets B — A Bytes B » A Rel Start

192.168.72.135 203k 10.818592
192.168.71.130 192.168.71.134 40 3.996 16 1.476 24 2.520 0.000000
192.168.71.133 192.168.71.134 E:d 464 4 232 4 232 2118272

192.168.71.134 192.168.71.140 5,356 4.258k 5.354

Limit to display filter Absolute start time

Copy -

1.582 10.818581

Duration Bits/s A— B Bits/s B — A
10.0175
30.0006 393 671
30.0013 61 61
10.0175 3.399k 1.263

Conversation Types ~

IPva-2 | IPv6 TCP
Packets Bytes

Ethernet - 1 uppP-1

Address A ~ Address B Packets A + B
12.1.1.2 192.168.72.135

192.168.72.134 192.168.72.135 12 1.176 6 588

Bytes A+ B Packets B + A Bytes B —+ A Rel Start
2.677 4.047k 8.834900
6

588 0.000000

Limit to display filter Absolute start time

Copy -

Duration
10.0176
26.2712 179 179

Bits/s A =B Bits/s B = A

Conversation Types -

Figure 67: Comparison of iperf traffic from top to bottom: Uu, N3 and N6

4.2.2. Test with Restrictions

In this next section, some limitations will be added to see how the network will react. For
this purpose, an SXC1280 device has been taken as a reference. This transceiver
provides ultra long range communication in the 2.4 GHz band. Assuming that 2 chips are
used for Tx and 2 for Rx, the maximum data rate in each mode can be 4Mbit/s in FSK
Mode. So tests will be done limiting to this speed, and even going down to 125 kb/s. The

Figure 68 shows the possible data rate for each chip.

Symbol Raw Bitrate Rb [Mb/s] Bandwidth BW [MHz DSB] Sensitivity [dBm]
FSK_BR_2_000_BW_2 4 20 24 83
FSK_BR_1_600_BW_2_4 16 24 -84
FSK_BR_1_000_BW_2_4 10 24 87
FSK_BR_1_000_BW_1_2 1.0 12 -88
FSK_BR_0_800_BW_2_4 0.8 24 -87
FSK_BR_0_800_BW_1_2 08 1.2 -89
FSK_BR_0_500_BW_1_2 0.5 12 -90
FSK_BR_0_500_BW_0_6 05 0.6 -89
FSK_BR_0_400_BW_1_2 04 12 -91
FSK_BR_0_400_BW_0_6 04 0.6 -90
FSK_BR_0_250_BW_0_6 0.25 0.6 92
FSK_BR_0_250_BW_0_3 0.25 03 -93
FSK_BR_0_125_BW_0_3 0.125 03 -95

Figure 68: Possible SXC1280 data rate values

44

The following command format shall be used to set the limitations:
tc qdisc add dev ethO root tbf rate “X”’mbit latency “Z’ms burst “Y kb

Data rate is limited to “X” Mbps in the eth0 interface, burst up to “Y” kbit to be sent at
max rate. Packets over “Z” ms due to rate limitation are dropped.

Appendix 3 shows the ping times obtained before the limitations, which are very low.

4.2.2.1. N2 interface with limitations

To start with, a limitation of 4Mb/s is set using the next command:
tc gdisc add dev eth0 root tbf rate 4.0mbit latency 500ms burst 256kb.

Without any limitation the ping below would be less than 1 ms as it can be seen in the
appendix 3, as the gNB and AMF are being simulated on the same network. But in this
case by limiting the data rate to 4Mb/s, the ping goes to 18ms as shown in Figure 69,
but it still works.

cy 500ms burst 2Snkb

root@bbdelbde4f5d /opt/oai-gnb# ping 192.168.71.132 -c 5
.168.71.132 (192.168. Tl 132) 5n(a4) bytes of data.
from 192.168.71.132: 12. 4
from 192. 1.132:
from 192. 1.132:

from 192. 1.132: icmp:seq=4 tt
from 192.168.71.132: icmp_seq=5 ttl=64 time=16

- 192.168.71.132 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4085ms
rtt min/avg/max/mdev = 12.422/18.133/23.842/3.780 ms

Figure 69: Ping on N2 with 4 Mb/s limitation

The following Figure 70 displays how in the second 84 the ping on N2 is detected, while
the traffic on the N2 link continues to work without any problem. It is worth noting that
the ping messages contain only 98 bytes per packet, so it is not too much of a problem
for the interface.

wireshark - 1/O Graphs - veth78f1e1e (%]
Wireshark 1/O Graphs: veth7eflele
al
3k
u
3
=L
27 I | |
= | |
] (1 | |
& ‘ | I | I
| \I | |
Il [l | Il
Il I| | | | |
W (1 (1 | H
| | |
i
N | I |
‘ I | L
11 |
‘ [| ‘ .
|
o, : L i I / I . —
0 20 40 60 80
Time (s)
No packets in interval (38s)
Enabled Graph Name Display Filter Color Style Y Axis Y Field SMA |~

All Packets Line Packets Nond

v TCP Errors tep.analysis.flags [] Bar Packets None
. . . . - _—— - 3

Figure 70: N2 ping Packets/sec graph

45

In the Figure 71 it can be seen how the AMF correctly receives the ping and the ping
response is sent. This assumes that the system is still functioning properly.

*veth78flele ee0
File Edit View Go Capture Analyze Statistics Te\Ephony Wireless Tools Help

A4 m @—DD@Q

Qe &r

‘4
]

[WTApply a display filte -]+
No. Time Seurce Destination Protocol Lengtt Info -

3 0.863415657 192.168.71.132 192.168.71.140 SCTP 08 HEARTBEAT_ACK
4 0.063600794 192.168.71.140 192.168.71.132 SCTP 98 HEARTBEAT_ACK
5 5.142209057 B2:42:c0:a8:47:8c 02:42:c0:a8:47:84 ARP 42 Who has 192.168.71.1327 Tell 192.168.71.14(
6 5.142214851 02:42:cB:a8:47:84 02:42:cB:a8:47:8c ARP 42 192.168.71.132 is at 82:42:cB:a8:47:84
7 30.715993274 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT
8 30.785310899 192.168.71.140 102.168.71.132 SCTP 98 HEARTBEAT_ACK

32.763991341 fe80::ecac:40ff:feb. 7f02::2 ICMPVE 70 Router Solicitation from ee:ac:48:53:88:Tc
10 32.834027587 192.168.71.140 192.168.71.132 SCTP 08 HEARTBEAT
11 32.834043655 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT_ACK
12 63.483993815 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT
13 63.517210613 192.168.71.140 192.168.71.132 scTP 08 HEARTBEAT_ACK
14 65.568171369 192.168.71.140 192.168.71.132 SCTP 98 HEARTBEAT
15 65.568186563 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT_ACK
16 63.648941488 ©2:42:c0:a8:47:8c 02:42:c0:a8:47:84 ARP 42 Who has 192.168.71.1327 Tell 192.168. 71 140
17 68.648948024 ©2:42:c0:a8:47:84 02:42:c0:a8:47:8¢c ARP 42 192.168.71.132 is at 02:42:c0:a8:47:8:
18 70.651987131 02 47: 5 '3 ARP 42 Who has 192.168.71.1407 Tell 192.168. 71 137
19 70.733888890 ARP 42 192.168.71.148 is at 092:42:c0:a8:47:8c
20 84.262525861 .168.71. .168.7 IcHP 98 Echo (ping) request id=8xABc6, seq=1/256,
21 84.262538566 192.168.71.132 192.168.71.140 IcmMp 98 Echo (ping) reply id=0x08c6, seq=1/256,
22 85.283950604 192.168.71.140 192.168.71.132 IcmMp 98 Echo (ping) request id=0x@@c6, seq=2/512,
23 85.283961054 192.168.71.132 192.168.71.140 IcmMp 98 Echo (ping) reply id=0x00c6, seq=2/512,
24 86.288922740 192.168.71.140 192.168.71.132 Icmp 98 Echo (ping) request 1d=0x08c6, seq=3/768,
25 86.288933935 192.168.71.132 192.168.71.140 ICcMP 98 Echo (ping) reply id=0x08c6, seq=3/768,
26 87.270463180 192.168.71.140 192.168.71.132 IcmMp 98 Echo (ping) request id=0x00c6, seq=4/1024)
27 87.270473871 192.168.71.132 192.168.71.148 Icme 98 Echo (ping) reply id=0x80c6, seq=4/1024,
28 88.282679340 192.168.71.140 192.168.71.132 IcmMp 98 Echo (ping) request id=8x@@8c6, seq=5/1280)
29 88.282689910 192.168.71.132 192.168.71.140 IcmMp 98 Echo (ping) reply id=0x@8c6, seq=5/1280,
30 89.208450613 192.168.71.140 192.168.71.132 IcmMp 98 Echo (ping) request id=0x08c6, seq=6/1536,
31 89.208468584 192.168.71.132 192.168.71.140 Icme 98 Echo (ping) reply 1d=0x00c6, seq-6/1536,
32 96.251996028 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT
33 96.300363286 192.168.71.140 192.168.71.132 SCTP 98 HEARTBEAT_ACK
34 098.345p05888 192.168.71.140 192.168.71.132 scTP 08 HEARTBEAT
35 98.345024129 192.168.71.132 192.168.71.140 SCTP 98 HEARTBEAT_ACK
36 101.4096945680 02:42:c0:a8:47:8c 02:42:c0:a8:47:84 ARP 42 Who has 192.168.71.1327 Tell 192.168.71.14(
37 101.486952944 02:42:c0:a8:47:84 02:42:c0:a8:47:8c ARP 42 192.168.71.132 is at 092:42:c0:a8:47:84 -

Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface weth78flele, id @
Ethernet II, Src: 02:42:c0:a8:47:84 (02:42:c0:a8:47:84), Dst: 02:42:c0:aB8:47:8c (02:42:c0:aB:47:8¢c)
Internet Protocol Version 4, Src: 192.168.71.132, Dst: 192.168.71.140

Stream Control Transmission Protocol, Src Port: 38412 (38412), Dst Port: 60842 (60842)

vvvw

Figure 71: Ping detected in N2 interface

Then a limitation of 2 Mb/s is set, giving the following results: In this case the ping goes
up to 32 seconds, but is still acceptable. So, depending on the type of service required,
it will be valid or not. Figure 72 shows the ping obtained.

root@bbdelbde4r5d: fopt/oal-gnb# tc qdisc add dev eth® root tbf rate 2.0mbit late
cy 500ms burst 256kb

root@bbdelbde4fsd: fopt/oai-gnb# ping 192.168.71.132 -c 5

ING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.

64 bytes from 192.168.71.132: icmp_seq=1 ttl=64 time=43.3

64 bytes from 192.168.71.132: icmp_seq=2 ttl=64 time=45.3

64 bytes from 192.168.71.132: icmp_seq=3 ttl=64 time=36.5

64 bytes from 192.168.71.132: icmp_seq=4 ttl=64 time=32.9

64 bytes from 192.168.71.132: icmp_seq=5 ttl=64 time=4.72

- 192.168.71.132 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
max/mdev = 4.724/32.581/45.323/14.635 ms

Figure 72: Ping on N2 with 2 Mb/s limitation

The data rate in this next case will be limited to 1 Mb/s, resulting in 40 ms the average
ping, as illustrated in Figure 73.

cy 10ems burst 04Lb
oot@bbdelbded4f5d: fopt/oail-gnb# ping 192.168.71.132 -c 5
ING 192.168.71.132 (192.168.71.132) 56(84) bytcs of data.
bytes from 192.168.71.132: icmp_seq=1 ttl=64
bytes from 192.168.71.132: icmp_seq=2 ttl=64
bytes from 192.168.71.132: icmp_seq=3 ttl=64
bytes from 192.168.71.132: icmp_seq=4 ttl=64
bytes from 192.168.71.132: icmp_seq=5 ttl=64 time=43.7

- 192.168.71.132 ping statistics ---
packets transmitted, 5 received, 8% packet loss, time 4002ms
= 34.605/40.110/51.467/6.607 ms

Figure 73: Ping on N2 with 1 Mb/s limitation

46

The data rate limitation is then lowered to 500 kb/s, with an average result of 86 ms. This
result can be seen in Figure 74.

S docker exec -it rfsim5g-oai-gnb /bin/bash
root@4ea3sf441804: /opt/oai-gnb# tc qdisc add dev eth® root tbf rate 500kbit latency 186ms burst 64kb
root@4ea38f441804: /opt/oai-gnb# ping 192.168.71.132 -c 5

.168.71.132 (192.168.71.132) 56(84) bytes of data.

from 192.168.71.132: icmp_seq=1 ttl=64 time=93.7 ms

from 192.168.71.132: ilcmp_seqg=2 ttl=64 ti 62.5 ms

from 192.168.71.132: icmp seq=3 ttl=64 ti 81.1 ms

from 192.168.71.132: icmp_seq=4 ttl=64 ti 160 ms
from 192.168.71.132: icmp_seq=5 ttl=64 time=93.8 ms

- 192.168.71.132 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 62.571/86.295/100.143/13.368 ms

Figure 74: Ping on N2 with 500 kb/s limitation

In the case of limiting the data rate to 250 kb/s ping starts to increase too much, as can
be seen in Figure 75 reaching 150 ms on average.

root@4ea3sf441804: fopt/oai-gnb# tc qdisc add dev eth® root tbf rate 250kbit latency 500ms burst 64kb
root@4ea38f441804: fopt/oai-gnb# ping 192.168.71.132 -c 5

PING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.

64 bytes from 192.168.71.132: icmp_seq=1 ttl=64 time=173

64 bytes from 192.168.71.132: icmp_seq=2 ttl=64 time=158

64 bytes from 192.168.71.132: icmp_seq=3 ttl=64 time=121

64 bytes from 192.168.71.132: icmp_seq=4 ttl=64 time=140

64 bytes from 192.168.71.132: icmp_seq=5 ttl=64 time=164

--- 192.168.71.132 ping statistics ---
5 packets transmltted 5 recelved 0% packct loss tlme 4005ms

Flgure 75 Ping on NZW|th 250 kb/s limitation

Now the limitation will be the lowest that the SXC1280 device can have, setting it to 125
kb/s, resulting in an average ping of 316 ms as can be found in Figure 76.

root@bbdelbde4fsd: fopt/oail-gnb# ping 192.168.71.132 -c 5
PING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.
64 bytes from 192.168.71.132: icmp_seq=1 ttl=64 time=212
64 bytes from 192.168.71.132: icmp_seq=2 ttl=64 time=380
64 bytes from 192.168.71.132: icmp_seq=3 ttl=64 time=354
64 bytes from 192.168.71.132: icmp_seq=4 ttl=64 time=426

64 bytes from 192.168.71.132: icmp_seq=5 ttl=64 time=206

--- 192.168.71.132 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4003ms
206.839/316.024/426.068/89.848 ms

Figure76: Ping on N2 with 125 kb/s limitation

In the graph below on the Figure 77 can be seen how the ping coincides with the normal
messages on the N2, without having any negative impact on them.

Wireshark IO Graphs: veth78flele

Packets/1 sec
o

Time (s)

Figure 77: Packets/sec graph in N2 interface with limitation

47

Then a 50 kb/s limitation was set, which caused the ping to go up to 8388 ms, which is
an outrageous amount for a normal application. Figure 78 shows the value obtained.

root@4ea38f441804: fopt/oal-gnb# tc qdisc add dev eth® root tbf rate 58kbit latency 580ms burst 64kb
root@4ea3sfr441804: fopt/oail-gnb# ping 192.168.71.132 -c 5

PING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.

64 bytes from 192.168.71.132: icmp_seg=1 ttl=64 time=9988

64 bytes from 192.168.71.132: icmp_seq=2 ttl=64 time=9494

64 bytes from 192.168.71.132: icmp_seq=3 ttl=64 time=8486

64 bytes from 192.168.71.132: icmp_seqg=4 ttl=64 time=7474
64 bytes from 192.168.71.132: icmp_seq=5 ttl=64 time=6497

--- 192.168.71.132 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4078ms
rtt min/avg/max/mdev = 6497.853/8388.335/9988.816/1281.011 ms, pipe 5

Figure 78: Ping on N2 with 50 kb/s limitation

The limit has been lowered to find a value that the ping did not reach, to look for the
failure. To do this, the limit has been lowered to 25 kb/s to obtain a ping with no response.
As can be clearly seen in Figure 79, if this data rate were used, communication would
not be possible.

root@4ea38f441804: /opt/oai-gnb# tc qdisc add dev eth® root tbf rate 25kbit latency 500ms burst 64kb

root@4ea3sf441804: fopt/oai-gnb# ping 192.168.71.132 -c 5
PING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.

--- 192.168.71.132 ping statistics ---
5 packets transmitted, © received, 100% packet loss, time 7099ms

Figure 79: Ping on N2 with 25 kb/s limitation

4.2.2.2. N3 interface with limitations

For this interface the steps of the N2 will be followed, starting with 4 Mb/s and reducing
it to the minimum possible.

For this first step, a limit of 4 Mb/s has been set, giving an average ping of 32 seconds,
as shown in Figure 80.

root@bbdelbdeafsd: fopt/oal-gnb# tc qdisc add dev ethe root tbf rate 4.8mbit late
ncy 500ms burst 256kb
root@bbdelbde4f5d: fopt/oal-gnb# ping 192.168.71.134 -c 5

.168.71.134 (192.168.71.134) 56(84) bytes of data.

from 192.168.71.134: icmp_seq=1 ttl=64 time=20.5

from 192.168.71.134: icmp_seq=2 ttl=64 time=29.3

from 192.168.71.134: icmp_seq=3 ttl=64 time=33.1

from 192.168.71.134: icmp_seq=4 ttl=64 time=31.1
from 192.168.71.134: icmp_seq=5 ttl=64 time=48.9

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
rtt min/avg/max/mdev = 20.502/32.617/48.915/9.223 ms

Figure 80: Ping on N3 with 4 Mb/s limitation
Then, iperf traffic of 500 kb/s during 20 seconds is created.

The Figure 81 illustrates the ping at second 35, and the iperf traffic from second 75
onwards. The green traffic belongs to the UPF-gNB communication, while the black one
is in general, taking into account some control traffic between the NRF, SMF and UPF.
So in this N3 interface with this limitation it still works.

48

Wireshark - 1/O Graphs - vethc2ea37d o) <

Wireshark /O Graphs: vethc2ea37d

100

"
| 'L\/\AA'LT‘
80

Packets/1 sec

20

N Y N N R N W Ao
O—IL————J T L__/——J¢\J_JIL_J_J L L__T R — N

0 25 50 75 100
Time (s)

Figure 81: Packets/sec graph in N3 interface with limitation

Next, a limitation of 2 Mb/s is set, resulting in an average ping of 34 seconds, still a
very acceptable ping for most applications. The Figure 82 indicates the ping obtained.

ncy 50ms burst 250Lb

root@bbdelbde4f5d: fopt/oai-gnb# ping 192.168.71.134 -c 5

PING 192.168.71.134 (192.168.71.134) 56(84) bytes of data.
bytes from 192.168.71.134: icmp_seq=1 ttl=64 time=60.3
bytes from 192.168.71.134: icmp seq=2 ttl=64 time=29.1
bytes from 192.168.71.134: icmp_seq=3 ttl=64 time=30.5

bytes from 192.168.71.134: icmp_seq=4 ttl=64 time=27.2
bytes from 192.168.71.134: icmp_seq=5 ttl=64 time=27.3

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms
max/mdev = 27.211/34.927/60.322/12.758 ms

Figure 82: Ping on N3 with 2 Mb/s limitation

In this next case it has been limited to 1 Mb/s, obtaining an average ping of 36 ms, as
shown in Figure 83, somewhat higher than in the previous case but without much
difference.

root@4ea3gf441804: fopt/oai-gnb# tc qdisc add dev eth® root tbf rate imbit latency 500ms burst 64kb
root@4ea38f441804: fopt/oai-gnb# ping 192.168.71.134 -c 5

PING 192.168.71.134 (192.168.?1.134) 56(84) bytes of data.

64 bytes from 192.168.71.134: icmp_seqg=1 ttl=64 time=45.0

64 bytes from 192.168.71.134: icmp_seq=2 ttl=64 time=29.0

64 bytes from 192.168.71.134: icmp_seqg=3 ttl=64 time=53.5

64 bytes from 192.168.71.134: icmp_seq=4 ttl=64 time=28.6
64 bytes from 192.168.71.134: icmp_seg=5 ttl=64 time=27.3

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt minfavg/max/mdev = 27.302/36.721/53.580/10.637 ms

Figure 83: Ping on N3 with 1 Mb/s limitation

Now, by limiting it to 500 kb/s the ping has gone up to 82 ms, so depending on the service
you want to provide, it could be a very high latency. Figure 84 illustrates the ping
performed.

49

root@4ea3sf441804: [opt/oai-gnb# tc qdisc add dev eth® root tbf rate 500kbit latency 5080ms burst 64kb
root@4ea3sf441804: fopt/oai-gnb# ping 192.168.71.134 -c 5

.168.71.134 (192.168.71.134) 56(84) bytes of data.

from 192.168.71.134: icmp_seq=1 ttl=64 ti

from 192.168.71.134: icmp_seq=2 ttl=64

from 192.168.71.134: i _Se ttl=64

from 192.168.71.134: i _Se ttl=64 .
from 192.168.71.134: icmp_seq=5 ttl=64 time=95.

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt minfavg/max/mdev = 65.591/82.683/96.687/12.552 ms

Figure 84: Ping on N3 with 500 kb/s limitation

In the case of limiting it to 250 kb/s, the previous ping has doubled to 173 ms, as shown
in Figure 85.

root@4ea3s8f441804: fopt/oail-gnb# tc qdisc add dev eth® root tbf rate 250kbit latency 560ms burst 64kb
root@4ea3s8f441804: fopt/oai-gnb# ping 192.168.71.134 -c 5

PING 192.168.71.134 (192.168.71.134) 56(84) bytes of data.

64 bytes from 192.168.71.134: icmp_seg=1 ttl=64 time=151

64 bytes from 192.168.71.134: icmp_seg=2 ttl=64 ti 172

64 bytes from 192.168.71.134: icmp_seq=3 ttl=64 time=143

64 bytes from 192.168.71.134: icmp_seq=4 ttl=64 time=214

64 bytes from 192.168.71.134: icmp_seqg=5 ttl=64 time=185

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4003ms
143.237/173.421/214.079/25.198 ms

Figure 85: Ping on N3 with 250 kb/s limitation

In the following case it is limited to 125 kb/s, giving an average ping of 301 ms. Figure
86 shows the result obtained.

root@bbdelbde4fsd: fopt/oai-gnb# ping 192.168.71.134 -c 5
.168.71.134 (192.168.71.134) 56(84) bytes of data.
from 192.168.71.134: icmp_seq=1 ttl=64 time=353
from 192.168.71.134: icmp_seq=2 ttl=64 time=230
from 192.168.71.134: icmp_seg=3 ttl=64 time=204
from 192.168.71.134: icmp_seq=4 ttl=64 time=372
from 192.168.71.134: icmp_seq=5 ttl=64 time=346

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 40084ms
rtt minfavg/max/mdev = 204.661/301.517/372.375/69.485 ms

Figure 86: Ping on N3 with 125 kb/s limitation

The data rate is then limited to 50 kb/s, resulting in a fairly high average ping of 781 ms.
So the system would presumably continue to work, but with a very high latency. Figure
87 illustrates the ping result obtained.

root@4ea38f441804: fopt/oai-gnb# tc qdisc add dev eth® root tbf rate 50kbit latency 500ms burst 64kb
root@4ea3sf441804: fopt/oai-gnb# ping 192.168.71.134 -c 5

PING 192.168.71.134 (192.168.71.134) 56(84) bytes of data.

64 bytes from 192.168.71.134: icmp_seq=1 ttl=64 time=

64 bytes from 192.168.71.134: icmp seq=2 ttl=64

64 bytes from 192.168.71.134: icmp_seq=3 ttl=64

64 bytes from 192.168.71.134: icmp_seq=4 ttl=64 =
64 bytes from 192.168.71.134: icmp seq=5 ttl=64 time=751

--- 192.168.71.134 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3998ms
rtt minfavg/max/mdev = 751.375/781.468/811.767/21.355 ms

Figure 87: Ping on N3 with 50 kb/s limitation

For the latter case the data rate has been limited to 25 kb/s and as in the previous
interface the ping has not been received back. So, this limit would be the limit. Figure 88
reveals how the ping has not received a response.

50

root@4ea3sf441804: fopt/oai-gnb# tc qdisc add dev eth® root tbf rate 25kbit latency 5@@ms burst 64kb
root@4ea38f441804: fopt/oai-gnb# ping 192.168.71.134 -c 5
PING 192.168.71.134 (192.168.71.134) 56(84) bytes of data.

- 192.168.71.134 ping statistics ---

5 packets transmitted, 8 received, 1808% packet loss, time 4886ms

The table 4 shows the comparison of latency times between the N2 and N3 interface
under the same constraint. As can be seen, the latencies are quite similar between the

2 interfaces.

Figure 88: Ping on N3 with 25 kb/s limitation

Data Rate N2 latency N3 latency
limitation

4 Mb/s 18 ms 32 ms

2 Mb/s 32 ms 34 ms

1 Mbl/s 40 ms 36 ms
500 kb/s 86 ms 82 ms
250 kb/s 150 ms 173 ms
125 kb/s 316 ms 301 ms

50 kb/s 8388 ms 780 ms

25 kb/s no reply no reply

Table 4. N2 and N3 interface latency

Figure 89 illustrates the values in the table 4. As can be seen, latency increases at the
same rate. The data with 50 kb/s and 25 kb/s have not been added to the graph as
they were very high values.

Latency with limitations

7

150 =@==N2 latency (ms)

350

300

250

200

ms

100 N3 latency (ms)

. A

/\ﬁ

4 2 1 0,5
Mb/s

0,25 0,125

Figure 89: N2 N3 latency comparison

4.2.2.3 Uu interface

Next, a limitation of 4 Mb/s has been established in the gNB and the behaviour of the Uu
interface has been analysed, taking into account that there was a lot of traffic in this
interface since the RFSimulator is running, obtaining the following results:

The Figure 90 and 91 show how a 500 kb/s traffic is created for 5 seconds from the EXT-
DN to the UE. In total 314 kB are sent, of which only 274 kB arrive on the receiver side

51

when analysed. This is due to the fact that the limitation given to the gNB is applied to
the communication with the UE and there is congestion and errors. As can be seen in
the Figure 91, the jitter was 88 ms, which is quite high.

root@48bbde5099cc: /# iperf -c 12.1.1.2 -u -1 1 -t 5 -b 588K

Client connecting to 12.1.1.2, UDP port 5881
Sending 1470 byte datagrams, IPG target: 22968.75 us (kalman adjust)
UDP buffer size: 208 KByte (default)

3] local 192.16
ID] Interval
8.8- 1.
1.8- 2.
.0- 3.
.8-

.72.135 port 48065 connected with 12.1.1.2 port 5001
Transfer Bandwidth
64.6 KBytes 529 Kbits/sec
63.2 KBytes 517 Kbits/sec
61.7 KBytes 506 Kbits/sec
. 63.2 KBytes 517 Kbits/sec
.8- 5. 61.7 KBytes 506 Kbits/sec
.8- 5.0 sec 314 KBytes 512 Kbits/sec
Sent 219 datagrams
3] WARNING: did not receive ack of last datagram after 10 tries.

6
2
7
2
7

Figure 90: Iperf TX in Uu interface with 4 Mb/s restrictions

‘Croot@d95de34024a9: fopt/oai-nr-ue# iperf -B 12.1.1.2 -u -1 1 -s

server listening on UDP port 5001
Binding to local address 12.1.1.2
teceiving 1470 byte datagrams

JDP buffer size: 288 KByte (default)

3] local 12.1.1.2 port 5001 connected with 192.
ID] Interval Transfer Bandwidth
8.8- 1. 1 KBytes 247 Kbits/sec
.0- KBytes 129 Kbits/sec
.0- KBytes 188 Kbits/sec
.0- KBytes 200 Kbits/sec
.0- KBytes 106 Kbits/sec
.0- KBytes 200 Kbits/sec
.0- KBytes 200 Kbits/sec
.0- KBytes 235 Kbits/sec
.0- KBytes 118 Kbits/sec
.0-108. KBytes 200 Kbits/sec
.B-11. KBytes 235 Kbits/sec
1.0-12. KBytes 118 Kbits/sec
.B-12. KBytes 180 Kbits/sec

sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec
sec

(Y=l I = R [O PV N
(To T I« R T S PV N
noocoocococooQco00Q O

168.72.135 port 48065
Jitter Lost/Total
37.627 26
49.183
69.105
79.266
61.321
70.154
79.981
69.194
66.820
78.807
68.839
66.417
87.868

Datagrams
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

ms 28/ 219

Figure 91: Iperf RX in Uu interface with 4 Mb/s restrictions

For the following test a limit of 125 kb/s has been set and a traffic of 500 kb/s has been
created for 5 seconds. As expected, traffic did not reach the destination and the following
results were obtained as shown in Figure 92 and 93.

Although 314 kB of traffic was sent, nothing was received, as it was limited to 125 kb/s

and 500 kb/s were sent.

Client connecting to 12.1.1.2, UDP port 56001
Sending 1470 byte datagrams, IPG target: 22968.75 us (kalman adjust)
UDP buffer size: 208 KByte (default)

3] local 192.

ID] Interval

3] 0.0- 1.

3] 1.8- 2.

3] 2.0- 3.

3] 3.0- 4.
4

.72.135 port 57588 connected with 12.1.1.2 port 5801

Transfer Bandwidth

64.6 KBytes 529 Kbits/fsec

63.2 KBytes 517 Kbits/fsec

61.7 KBytes 506 Kbits/sec

63.2 KBytes 517 Kbits/sec

3] .0- 5.0 sec 61.7 KBytes 506 Kbits/sec

3] 0.8- 5.0 sec 314 KBytes 512 Kbits/sec

3] Sent 219 datagrams

3] WARNING: did not receive ack of last datagram after 10 tries.
oot@48bbde5099cc: /# |J

s5ec
5ecC
sec
s5ec

Figure 92: Iperf TX in Uu interface with 125 kb/s restrictions

52

rver listening on UDP port 5801
Binding to local address 12.1.1.2
Receiving 1470 byte datagrams
UDP buffer size: 288 KByte (default)

3] local 12.1.1.2 port 5001 connected with 192.168.72.135 port 57588
ID] Interva Transfer Bandwidth Jitter Lost/Total Datagrams
0. 1.0 sec 5. KBytes 47.0 Kbits/sec 4.038 ms o/ 4 (
sec Bytes .00 bits/sec .000 (
sec Bytes 00 bits/sec .000
sec Bytes 00 bits/sec .006
sec Bytes 00 bits/sec .006
sec Bytes .00 bits/sec .006
sec KBytes 70.6 Kbits/sec 293.591
sec Bytes bits/sec .0e0
sec Bytes bits/sec .0e0
sec Bytes bits/sec .0e0
sec Bytes bits/sec
sec Bytes .00 bits/sec
sec KBytes 70.6 Kbits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes .00 bits/sec
sec KBytes 70.6 Kbits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes 00 bits/sec
sec Bytes .00 bits/sec
sec KBytes 11.8 Kbits/sec
sec KBytes 47.0 Kbits/sec
sec Bytes .00 bits/sec
sec Bytes .00 bits/sec
sec Bytes .00 bits/sec .000 ms
sec Bytes .00 bits/sec .000 ms
.0 sec 0. Bytes .00 bits/sec 0.000 ms
server threads to complete. Interrupt again

3] 31.8-32.0 sec B8.61 KBytes 70.6 Kbits/sec 802.034

3] 32.8-33.0 sec 0.80 Bytes .00 bits/sec 0.000 ms

3] 33.8-34.0 sec 2.87 KBytes 23.5 Kbits/sec B847.168
oot@d95de3402439: fopt/oai-nr-ue# I

,
2.
3.
4
5

e
o000

Qoo
o000 0Q

Q0
o000 0

oo

0000000000000 0000000000000O0
coocooooe

D00 OVHFOOODDONWOECODOWOODOODNAEEAEEO

(i}
0.
0
(i)

Figure 93: Iperf RX in Uu interface with 125 kb/s restrictions

53

5. Conclusion

The main objective of this thesis was to evaluate the concepts for gNB satellite backhaul
using open-source 5G frameworks. This study has consisted, firstly, in an investigation
of the technical 5G foundations as well as the analyse of the use of the srsRAN and OAI
platform, as they are open-source frameworks.

Once it was decided that OAI would be used, the different configurations offered were
studied. Since for this project it was decided that simulations would be done on a single
computer, without the use of any hardware device, and taking into account that the main
objective was to analyse the N2 and N3 interfaces, which connect the control and data
plane between the gNB and the CN, it was decided to use the “OAl Full Stack 5G-NR
RF simulation with containers” [35]. Since only one computer was used for this thesis,
this made it very cost-effective.

The reason for analysing the N2 and N3 interfaces was that these 2 interfaces can be
routed through the satellite, to enable access to the telecommunications network to any
base station in remote locations.

In the case of the CN, only the UPF, AMF, SMF and NRF blocks were deployed, as they
were sufficient for the purpose of analysis.

5.1. Result Discussion

To analyse the results, the traffic from each block of interest to the block next to it was
studied. In this way, the messages exchanged on the interfaces Uu, from UE to gNB;
N6, from UPF to EXT-DN; N2, from gNB to AMF; N3, from gNB to UPF were captured,
the last two interfaces being the most important ones to consider.

In the case of N2, the control messages exchanged for the correct registration of each
UE have been studied. In the case of N3, being a data interface, it has been analysed
how the traffic is sent through this interface.

Once these interfaces were analysed, in which the transmission was clean, without any
type of limitation, other than that which the capacity of the computer used could offer.
Some limitations have been introduced in the gNB to see how the traffic and response
times varied and make it more realistic, as the aim of this thesis was to discuss the
possible use of routing the N2 and N3 interfaces via satellites, and the limitations this
offers have to be taken into account.

By applying the limitations and limiting the data rate, it has been seen that the ping has
been rising, so it will depend on the type of service or application to be used to know if it
is acceptable or not, it has also been seen that with a limitation of 25kb/s, the ping did
not reach, so that no service could be offered with that data rate.

5.2. Future Work

As mentioned above, the simulations have been done fully in software, without

54

introducing any kind of device, be it USRP device or mobile phone. So a possible future
project would be to introduce these hardware to make the simulations more realistic.

Another possible project would be to use devices that each simulate a 5G CN block and
thus have to be interconnected.

It is also possible to simulate using more blocks in the CN, since in this case only the
essential ones have been used to analyse the interfaces that were of interest.

Other types of channel limitations could also be introduced for signal propagation.

55

List of Figures

Figure 1.
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Evolution of the cellular NetWOork [3].....ccccveveieieeeeeeeeeseee e 2
5G a) non-standalone and b) standalone configurationccccceevveceveeeennene 3
5G architecture divided into several functional blocks with their interfaces [6] 4
NG-RAN IrCIITECIUIEoueiiiieieeerereee e 6
Satellite DACKNAUL...........cviieiee e 7
5G Data Path Protocol Stack [L3]......cccccevieieiiiieierie e ere e e esnene s 8
Control Plane protocol Stack [20]cceceieevierieneeriesieeecre et 10
User Plane protocol Stack [20]......cceceeiieiieieeniiceeieseeiesie et 11
5G aPPHCALIONS [24]....ccuiriieeiriieieeeieeee st 12

Figure 10: 5G NFS SHCES [L7] ..cueeieiririerieeieeeeeee ettt 13
Figure 11: Satellite BACKNAUI [25]ccoviriiiieieieieeneriesceeeee e 14
Figure 12: Characteristics of frequency range [29]c.ccocererereinienenenesesesreeeeeeeeees 16
Figure 13: Folder from where the commands will be executed............ccccceveviviniinneenee 19
FIQUIE 14: CN EXECULION....c..ouiiuieiiriietirtestestetet ettt sttt ettt st sbe sttt se et enes 20
Figure 15: Created bridges after exeCuting CNccocevirenenieiieinineneneeseeeeeeeeees 20
Figure 16: CN blocks in healthy State..........ccccceiiiiirininieceeee e 20
Figure 17: gNB COITECE EXECULIONc.evviiiieieiieiieieeie sttt sttt sae et eees 21
Figure 18: gNB connection in the AMF ... 21
Figure 19: OAI NR-UE cOorrect deploymMENt..........covoveiiiieeiececeeeseeeesie et 21
Figure 20: Adding a user in the SQL configurationc.ccceevveveneevenecceereceece e, 21
Figure 21: Adding a user in docker-compose configuration fileccccecvevviveceieenennn, 22
Figure 22: Final setup with each block informationc.cccoeveeeiieviiicceececeeee e, 22
Figure 23: Checking internet CONNECHIVILYccecieieiiiieeieseceee et 23
Figure 24: Iperf SEIVEI CRECKcvi ittt st ere b 23
Figure 25: [perf ClIENT CRECK.........ovieeeeeeeec ettt et 23
Figure 26: OAI-NRF BIOCK INtEITACESceeoviiieeetieeeeceeee ettt st 25
Figure 27: OAI-AMF DIOCK INTEIACESooveeiieeeeeeeeeeee et 25
Figure 28: OAI-SMF DIOCK INTEIACESocveeiieceeeeeeeece ettt 26
Figure 29: OAI-SPGWU bIOCK INTEITACES.......cccveieiieieececeseeeee sttt 26
Figure 30: OAI-gNB bIOCK INtEITACESccveeiieeeeeieeeee ettt 27
Figure 31: OAI-NR-UE bIOCK INtEIfACEScceveeieiieeeiecteeeseeeee sttt 27
Figure 32: OAI-NR-UE2 bIOCK INtEITACES.......ccceeceeiieieiesieeieseceee et 28
Figure 33: OAI created NEIWOIKScooivieeiireeieeeeerte e sre st eete e eaesresseensens 28
Figure 34: Configuration of the RF Simulator in the gNB blockc..cccoeveiiiiininenne. 31
Figure 35: Configuration of the RF Simulator in the UE blocCK...........ccccovevvevieriecenenienne 31
Figure 36: gNB rfSIM FUNNINGcciiieieieieeseeee et e s reeseense s 31
Figure 37: UE rfSIM FUNNINGocveiiiieieeceees ettt ae et esaesresneenne s 32
Figure 38: U traffiC fIOWccuveieiceee ettt 32
Figure 39: Uu interface Wireshark traffiCcccccvvvveieece e 33
Figure 40: Uu interface packet 1enNgthsooooiiieiiice e 33
Figure 41: Packets/sec going over the Uu interfaceccoeverireeienieieneeeeeecene 33
Figure 42: Iperf traffic on the Uu iNterfaceccooveeeiiiieeec e 34
Figure 43: Uu iperf traffic flOW.........coooieeeee e 34
Figure 44: UU iperf traffic Created.........oco oottt 35
Figure 45: Moment when the gNB is connected to the CN........ccoceeiiiiiieninceinceeeee 36
Figure 46: Moment when the UE is connected to the CN.........cccoecveiievieniesecceeieeiens 36
Figure 47: Packets/sec on the N2 iNterfacecccecveveeciececie e 37

56

Figure 48:
Figure 49:
Figure 50:
Figure 51.:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71.:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91.:
Figure 92:
Figure 93:

Packet size 0N the N2 INTEITACEcooveveieieeeeeeeeete ettt esaee s 37

Traffic flow IN N2 INEITACE.........ccocivireeee e 37
SCTP protocol traffic flow in N2 interface........cccccoeveveieecececeecececeeeeee, 38
N2 interface HEARTBEAT MESSAJES.....cccecvireererteeeeiesteeeesteeeestesveese e esnennes 38
Iperf traffic created on the N3 interface.........coovevvveeeviseeceseeeeeeeeeee, 38
Packets/sec 0N N3 NLEITACEooevevieieiereeeee s 39
N3 interface traffic fIOWocoviririneeeee s 39
Packet length on the N3 interface.........cccoveviveeeeviceececeeeeee e 39
Packets detected on the N3 Interface ... 40
Traffic captured at the N6 INtErfacecocoevevinineieieeeeeeeee 40
N6 interface traffic flOWccovvieiieee e 40
NG interface packet [ENGth ..o 41
Packets/sec when creating iperf traffic on the N6 interface...........cccccouenee..e. 41
Result of iperf traffic created............coceeiinince e 41
NG IPerf traffiC fOW......ccueieieeeee s 41
NG PaCKEt IENGLNS ..o s 42
NG IPEIT ANAIYSIS ...t 42
N3 IPEIT ANAIYSIS ...ttt 43
QT T o L= g = T F= 11T OO SRTTRS 43
Comparison of iperf traffic from top to bottom: Uu, N3 and N6....................... 44
Possible SXC1280 data rate ValUES..........cccevvverirenieieieeeeseseseee e 44
Ping on N2 with 4 Mb/S lIMItation.........cccccveeiiieieeiicece e 45
N2 ping PacketS/SEC graphc.ccciieeieiiceetecteeeeste ettt 45
Ping detected in N2 iNterfacecccooceviieeciiceeeeceeee et 46
Ping on N2 with 2 Mb/S lIMItation..........ccccveeiiieieceeeeeeece e 46
Ping on N2 with 1 Mb/S liMitation..........cccveeiiievieceeececeeece e 46
Ping on N2 with 500 Kb/s [IMitation..........cccccoevievieiieiecececece e 47
Ping on N2 with 250 Kb/s lIMitation...........cccoevieieiieiecececece e 47
Ping on N2 with 125 Kb/s limitation...........cccccevireierinieeseeeseeeee e 47
Packets/sec graph in N2 interface with limitation...........ccccceeeevevivnceveieenenne, 47
Ping on N2 with 50 kb/s lIMitation..........ccccceeiviriinieeecece e 48
Ping on N2 with 25 Kb/s lImMitation..........ccccceeivircienieeececeseeeee e 48
Ping on N3 with 2 Mb/S lIMitation.........cccceceeeiririeseeeeceee e 48
Packets/sec graph in N3 interface with limitation...........ccccceeveveviveieveieenenee, 49
Ping on N3 with 2 Mb/S liMitation.........cccoeceeeerieciericeeece e 49
Ping on N3 with 1 Mb/S liMitation.........cccceeeeeirirciesieeeeee e 49
Ping on N3 with 500 kb/s lIMitation.........c.ccecceeireierieiereseee e 50
Ping on N3 with 250 kb/s lIMitation...........ccecevireerinieeceeeseeeee e 50
Ping on N3 with 125 Kb/s lIMitation..........ccccoevieiiiiieiececececeeeee e 50
Ping on N3 with 50 kb/s lIMitationcccceeeiiieiiiieececeeece e 50
Ping on N3 with 25 Kb/s IMitationcccceeiririenieeeeeee e 51
N2 N3 latenCy COMPANISON ...c..iiuieiiieieiere ettt ettt ee e eeeeeas 51
Iperf TX in Uu interface with 4 Mb/s restrictions...........ccocceeveveeeenincenenceee, 52
Iperf RX in Uu interface with 4 Mb/s restrictions..........ccocceoveveevenincenenceee, 52
Iperf TX in Uu interface with 125 kb/s restrictions..........cccccevvevvenienccenvneeeenne. 52
Iperf RX in Uu interface with 125 kb/s restrictionsccccecevvevinieneneeeenne. 53

57

List of Tables

Table 1: FrEQUENCY FANGEccuciiieiieiieiintertestetee ettt sttt ettt sb e sttt et ese e 15
Table 2: Information Of €aCh DIOCK..........c.uvo oo 24
Table 3: Data rate at the UU INTEITACEoooveeeeeeeeee et 32
Table 4: N2 and N3 interface Iate€NCYccevieeeiiiieieee e 51

58

Acronyms

gNB gNodeB

CN Core Network

OAI Open Air Interface

UMTS Universal Mobile Telecommunications System
MIMO Multiple Input Multiple Output

OFDM Orthogonal Frequency Division Multiplexing
DL Down Link

Al Artificial Intelligence

NG-RAN Next Generation Radio Access Network
3GPP 3" generation Partnership Project

NR New Radio

RAN Radio Access Network

SA Stand Alone

NSA Non-Stand Alone

NFV Network Functions Virtualization

5GC 5G Core

SBA Service Base Architecture

EPC Evolved Packet Core

NF Network Functions

API Application Programming Interface

NRF Network repository Functions

AMF Access and Mobility management Function
UE User Equipment

NAS Non Access Stratum

UPF User Plane Function

QoS Quality of Service

PDU Protocol Data Unit

DN Data Network

UP User Plane

59

SMF Session Management Function
AUSF Authentication Server Function
UDM Unified Data Management

HSS Home Subscriber Service

CU Centralized Unit

DU Distributed Unit

TCP Transmission Control protocol

DFE Digital Front End

PHY Physical

COTS Commercial off-the-shelf

RLC Radio Linc Control

MAC Medium Access Control

RRC Radio Resource Control

PDCP Packet Data Convergence Protocol
SDAP Service Data Adaptation Protocol
CUPS Control and User Plane Separation
GTP-U GPRS Tunnelling Protocol

QoE Quality of Experience

PCF Policy Control Function

CDR Charging Data Record

SGW Serving Gateway

PGW Packet Data Network Gateway

CP Control Plane

PDN Packet Data Network

FDD Frequency Division Duplex

TDD Time Division Duplex

OFDMA Orthogonal Frequency Division Multiple Access
SCS Sub-Carrier Spacing

BPSK Binary Phase-Shift Keying

QAM Quadrature Amplitude Modulation
HARQ Hybrid Automatic Repeat Request
SDAP Service Data Adaptation Protocol

60

NGAP NG Application Protocol

eMBB Enhanced Mobile Broadband

URLLC Ultra Reliable Low Latency Communications
MIoT Massive loT

UL Up Link

LPWA Low Power Wide Area

KPI Key Performance Indicator

MEC Multi-access Edge Computing

V2X Vehicle to Everything

0T Internet of Things

FR Frequency Range

CP Cyclic Prefix

MME Mobility Management Entity

HSS Home Subscriber Server

OSA OpenAirinterface Software Alliance
SC-FDMA Single Carrier frequency-division multiple acces
UDR Unified Data Repository

EXT-DN External Data Network

UDP User Datagram Protocol

SCTP Stream Control Transmission Protocol
MTU Maximum Transmission Unit

USRP Universal Software Radio Peripheral

61

[1]

(2]

(3]

[4]
[5]

[6]
[7]

(8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bibliography

A. F. M. Shahen Shah, "A Survey From 1G to 5G Including the Advent of 6G:
Architectures, Multiple Access Techniques, and Emerging Technologies," 2022
IEEE 12th Annual Computing and Communication Workshop and Conference
(CCWCQC), 2022, pp. 1117-1123, doi: 10.1109/CCWC54503.2022.9720781.

S. K. James Rogerson, 15 02 2022. [Online]. Available:
https://5g.co.uk/guides/how-fast-is-5g/#5G_latency_explained.

‘Reorganizacion del espectro,” 07 03 2022. [Online]. Available:
https://forum.huawei.com/enterprise/es/reorganizaci%C3%B3n-del-
espectro/thread/834875-100267.

“Road to 5G: Introduction and Migration,” 04 2018.

ETSI TS 123.501 V16.6.0", 10-2020, [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123
501v160600p.pdf.

M. Dryjanski, “GRANDMETRIC, 5G Core Network Functions,” [Online]. Available:
https://www.grandmetric.com/2018/03/02/5g-core-network-functions/.

Cisco, Ultra Cloud Core 5G User Plane Function, Release 2021.01.
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/upf/2020-03/b_ucc-5g-upf-
config-and-admin-guide_2020-03/b_UPF_chapter_011011.pdf.

“3GPP, NG-RAN Architecture,” 2021. https://www.3gpp.org/news-events/2160-
ng_ran_architecture.

Masini, G. (2021). A Guide to NG-RAN Architecture. In: Lin, X., Lee, N. (eds) 5G
and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-030-58197-8 8

E. Jordan, “5G Technology world,” 24 02 2021. [Online]. Available:
https://www.5gtechnologyworld.com/open-ran-functional-splits-explained/.

“Principles of 5G Backhaul,” 28 04 2021. [Online]. Available:
https://www.aciist.com/principles-of-5g-backhaul/.

‘ETSI TS 138 305 Vv15.1.0" 10 2018. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/138300_138399/138305/15.01.00_60/ts 138
305v150100p.pdf.

D. Cheung, “6G Core GTP-U,” 07 2020. [Online]. Available:
https://clcnetwork.wordpress.com/2020/07/05/5g-core-part-3-user-plane-and-
gtp-u-tunnel/.

“Developing Solutions,” [Online]. Available:
https://www.developingsolutions.com/products/dstest-5g-core-network-
testing/n4-interface/.

K. Liang, G. Liu, L. Zhao, X. Chu, S. Wang and L. Hanzo, "Performance Analysis
of Cellular Radio Access Networks Relying on Control- and User-Plane
Separation,” in IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp.
7241-7245, July 2019, doi: 10.1109/TVT.2019.2918546.

K. R. Kumar, K. S. Kumar Kavuluri and D. Das, "Novel Algorithm to Recover the
Lost CDR Information by Control and User Planes Separation in 4G and
5G," 2021 IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT), 2021, pp. 1-6, doi
10.1109/CONECCT52877.2021.9622598.

A. Detti, 5G Functional Architecture. https://www.5gitaly.eu/2018/wp-
content/uploads/2019/01/5G-Italy-White-eBook-Functional-architecture.pdf.

62

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

“ETSI TS 138 211 [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/15.02.00_60/ts_138
211v150200p.pdf.

F. Firmin, “3GPP, NAS,” Available: https://www.3gpp.org/technologies/keywords-
acronyms/96-nas.

F. Zampognaro, ‘ROMARS,” [Online]. Available:
https://romars.tech/pubblicazioni/n3iwf/.

S. Ahmadi, “ScienceDirect, "5G Network Architecture",” 2019.
https://www.sciencedirect.com/topics/engineering/protocol-stack.

Zhengyu Zhu, Xingwang Li, Zheng Chu,Chapter 2 - Three major operating
scenarios of 5G: eMBB, mMTC, URLLC,Editor(s): Zhengyu Zhu, Zheng Chu,
Xingwang Li,Intelligent Sensing and Communications for Internet of Everything,
Academic Press,2022,Pages 15-76,ISBN 9780323856553,
https://doi.org/10.1016/B978-0-32-385655-3.00006-0

M. C. X. A. T. M. Riccardo Trivisonno, “MDPI, mloT Slice for 5G Systems: Design
and Performance Evaluation,” 21 02 2018. https://doi.org/10.3390/s18020635.

‘D2.1 5G VICTORI Use case and requirements definition and reference
architecture for vertical services,” 2020. https://www.5g-victori-project.eu/wp-
content/uploads/2020/06/2020-03-31-5G-VICTORI_D2.1_v1.0.pdf.

Liolis, Geurtz, A., Sperber, R., Schulz, D., Watts, S., Poziopoulou, G., Evans, B.,
Wang, N., Vidal, O., Tiomela Jou, B., Fitch, M., Diaz Sendra, S., Sayyad
Khodashenas, P., & Chuberre, N. (2019). "Use cases and scenarios of 5G
integrated satellite-terrestrial networks for enhanced mobile broadband: The
SaT5G approach. International Journal of Satellite Communications and
Networking, 37(2), 91-112. https://doi.org/10.1002/sat.1245"

K. Ray and A. Banerjee, "Prioritized Fault Recovery Strategies for Multi-Access
Edge Computing Using Probabilistic Model Checking," in IEEE Transactions on
Dependable and Secure Computing, doi: 10.1109/TDSC.2022.3143877.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, "On Multi-
Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud
Architecture and Orchestration," in IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1657-1681, thirdquarter 2017, doi:
10.1109/COMST.2017.2705720.

“ETSI, Multi-access Edge Computing,” [Online]. Available:
https://www.etsi.org/technologies/multi-access-edge-computing.

5. P. A. W. Group, “View on 5G Architecture,” 2019.https://5g-ppp.eu/wp-
content/uploads/2019/07/5G-PPP-5G-Architecture-White-
Paper_v3.0_PublicConsultation.pdf.

“srsRAN 22.04 Documentation,” [Online]. Available:
https://docs.srsran.com/en/latest/.

“OAl,” [Online]. Available: https://openairinterface.org/.

“‘OAI-RAN-PROJECT,” [Online]. Available: https://openairinterface.org/oai-5g-
ran-project/.

“OAl-FeatureSet,” [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/-
/blob/develop/doc/FEATURE_SET.md#functional-split-architecture.

"OAI-CN," [Online]. Available: https://openairinterface.org/oai-5g-core-network-
project/.

‘OAl Full Stack 5G-NR RF simulation with containers,” [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/ci-
scripts/yaml_files/5g_rfsimulator/README.md.

63

[36] “Docker, Use bridge networks,” [Online]. Available:
https://docs.docker.com/network/bridge/.
[37] “ETSI TS 138 413 V15.0.0,” 07 2018. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/138400_138499/138413/15.00.00_60/ts_138
413v150000p.pdf.

64

Appendix

Appendix 1

version:

'3.8"

services:

oai-

nrf:
container name: "rfsimbSg-ocai-nrf"
image: oai-nrf:latest
environment:
- NRF_INTERFACE NAME FOR SBI=eth0
- NRF_INTERFACE PORT FOR SBI=80
- NRF_INTERFACE HTTP2 PORT FOR SBI=9090
- NRF_API VERSION=vl
- INSTANCE=0
- PID DIRECTORY=/var/run
networks:
public net:
ipv4 address: 192.168.71.130
volumes:
- ./nrf-healthcheck.sh:/openair-nrf/bin/nrf-healthcheck.sh
healthcheck:
test: /bin/bash -c "/openair-nrf/bin/nrf-healthcheck.sh"
interval: 10s
timeout: 5s
retries: 5

mysqgl:

oai-

container name: "rfsim5g-mysqgl"
image: mysqgl:5.7
volumes:
- ./oail db.sqgl:/docker-entrypoint-initdb.d/oai db.sql
- ./mysgl-healthcheck.sh:/tmp/mysgl-healthcheck.sh
environment:
- TZ=Europe/Paris
- MYSQL_DATABASE=oai db
- MYSQL USER=test
- MYSQL PASSWORD=test
- MYSQL_ROOT_PASSWORD=1inux
healthcheck:
test: /bin/bash -c "/tmp/mysgl-healthcheck.sh"
interval: 10s
timeout: 5s
retries: 5

networks:
public net:
ipv4 address: 192.168.71.131
amf:
container name: "rfsimbS5g-oai-amf"
image: oai-amf:latest
environment:

- TZ=Europe/paris

- INSTANCE=0

- PID DIRECTORY=/var/run
- MCC=208

- MNC=99

65

- REGION ID=128

- AMF SET ID=1

- SERVED GUAMI MCC 0=208

- SERVED GUAMI MNC 0=99

- SERVED GUAMI REGION ID 0=128

- SERVED GUAMI AMF SET ID 0=1

- SERVED GUAMI MCC 1=460

- SERVED GUAMI MNC 1=11

- SERVED GUAMI REGION ID 1=10

- SERVED GUAMI AMF SET ID 1=1

- PLMN SUPPORT MCC=208

- PLMN_SUPPORT_MNC=99

- PLMN_SUPPORT_TAC=OX0001

- SST _0=1

- SD _0=1

- SST 1=1

- SD_1=12

- AMF INTERFACE NAME FOR NGAP=ethO

- AMF INTERFACE NAME FOR N1ll=ethO

- SMF INSTANCE ID 0=1

- SMF _FQDN O=oai-smf

- SMF IPV4 ADDR 0=0.0.0.0

- SMF HTTP VERSION 0=vl

- SELECTED_ O=true

- SMF INSTANCE ID 1=2

- SMF FQDN l=oai-smf

- SMF IPV4 ADDR 1=0.0.0.0

- SMF HTTP VERSION 1=v1

- SELECTED l=false

- MYSQL SERVER=192.168.71.131

- MYSQL USER=root

- MYSQL_PASS=linux

- MYSQL DB=oai db

- OPERATOR KEY=c42449363bbad02b66d16bc975d77ccl

- NRF_IPV4 ADDRESS=192.168.71.130

- NRF_PORT=80

- NF REGISTRATION=yes

- SMF SELECTION=yes

- USE_FQDN_DNS=yes

- NRF_API VERSION=vl

- NRF_FQDN=oai-nrf

- EXTERNAL AUSF=no

- AUSF_IPV4 ADDRESS=0.0.0.0

- AUSF_PORT=80

- AUSF_API VERSION=vl

- AUSF FQDN=localhost
depends_on:

- oai-nrf

- mysql
volumes:

- ./amf-healthcheck.sh:/openair-amf/bin/amf-healthcheck.sh
healthcheck:

test: /bin/bash -c "/openair-amf/bin/amf-healthcheck.sh"

interval: 10s

timeout: 15s

retries: 5
networks:

public net:

ipv4d address: 192.168.71.132
oai-smf:

container name: "rfsim5g-oai-smf"

66

image: oai-smf:latest
environment:
- TZ=Europe/Paris
- INSTANCE=0
- PID DIRECTORY=/var/run
- SMF_INTERFACE NAME FOR N4=eth0
- SMF INTERFACE NAME FOR SBI=ethO
- SMF_INTERFACE_PORT_FOR_SBI=8O
- SMF_INTERFACE HTTP2 PORT FOR SBI=9090
- SMF_API VERSION=v1l
- DEFAULT DNS_ IPV4 ADDRESS=172.21.3.100
- DEFAULT DNS SEC IPV4 ADDRESS=4.4.4.4
- AMF IPV4 ADDRESS=0.0.0.0
- AMF_PORT=80
- AMF_API VERSION=v1l
- AMF FQDN=oai-amf
- UDM_IPV4_ADDRESS=127.0.0.l
- UDM_PORT=80
- UDM API VERSION=v1l
- UDM FQDN=localhost
- UPF_IPV4 ADDRESS=192.168.71.134
- UPF_FQDN 0O=oai-spgwu
- NRF_IPV4_ADDRESS=192.168.71.130
- NRF_PORT=80
- NRF_API VERSION=vl
- NRF_FQDN=oai-nrf
- REGISTER NRF=yes
- DISCOVER UPF=yes
- USE_FQDN DNS=yes
- DNN NIO=oai
- DNN NI2=ocai.ipv4
depends_on:
- oai-nrf
- oai-amf
volumes:
- ./smf-healthcheck.sh:/openair-smf/bin/smf-healthcheck.sh
healthcheck:
test: /bin/bash -c "/openair-smf/bin/smf-healthcheck.sh"
interval: 10s
timeout: 5s
retries: 5
networks:
public net:
ipv4 address: 192.168.71.133
oai-spgwu:

container name: "rfsimbSg-ocai-spgwu"
image: oai-spgwu-tiny:latest
environment:

- TZ=Europe/Paris

- PID DIRECTORY=/var/run

- SGW_INTERFACE_NAME FOR S1U S12 S4 UP=ethO
- SGW_INTERFACE NAME FOR SX=ethO

- PGW_INTERFACE NAME FOR_SGI=eth0
- NETWORK_UE_NAT OPTION=yes

- NETWORK UE_IP=12.1.1.0/24

- SPGWCO IP ADDRESS=192.168.71.133
- BYPASS UL PFCP_RULES=no

- MCC=208

- MNC=99

- MNC03=099

- TAC=1

67

- GTP_EXTENSION HEADER PRESENT=yes
- GW_ID=1

- REALM=openairinterface.org

- ENABLE 5G FEATURES=yes

- REGISTER NRF=yes

- USE_FQDN NRF=yes

- UPF_FQDN 5G=oai-spgwu

- NRF_IPV4 ADDRESS=192.168.71.130
- NRF_PORT=80

- NRF_API VERSION=vl

- NRF_FQDN=oai-nrf

- NSSAI SST 0=1

- NSSAI SD 0=1

- DNN_O=oai

depends_on:

cap

cap_

- oai-nrf

- oai-smf
add:

- NET ADMIN
- SYS ADMIN
drop:

- ALL

privileged: true
volumes:

healthcheck.

- ./spgwu-healthcheck.sh:/openair-spgwu-tiny/bin/spgwu-
sh

healthcheck:

healthcheck.

test: /bin/bash -c "/openair-spgwu-tiny/bin/spgwu-
sh"

interval: 10s

timeout: 5s

retries: 5

networks:

ocal-ext-

public net:

ipv4 address: 192.168.71.134
traffic net:

ipv4 address: 192.168.72.134
dn:

image: ubuntu:bionic

privileged: true

container name: rfsimb5g-oai-ext-dn
entrypoint: /bin/bash -c \

"apt update; apt install -y procps iptables iproute2

iperf iputils-ping;"\

"iptables -t nat -A POSTROUTING -o eth(0 -j MASQUERADE;"\
"ip route add 12.1.1.0/24 via 192.168.72.134 dev ethO;

sleep infinity"
depends_on:

- oal-spgwu

networks:

traffic net:
ipv4 address: 192.168.72.135

healthcheck:

oai-gnb:

test: /bin/bash -c "ping -c 2 192.168.72.134"
interval: 10s

timeout: 5s

retries: 5

image: oai-gnb:develop
privileged: true
container name: rfsimbg-oai-gnb

68

environment:
REFSIMULATOR: server
USE SA TDD MONO: 'yes'
GNB _NAME: gnb-rfsim

TAC: 1
MCC: '208'
MNC: '99'

MNC LENGTH: 2
NSSAI SST: 1
NSSAI SDO: 1
NSSAI SDl: 112233
AMF IP ADDRESS: 192.168.71.132
GNB_NGA IF NAME: eth0
GNB_NGA IP ADDRESS: 192.168.71.140
GNB_NGU IF NAME: ethO
GNB_NGU IP ADDRESS: 192.168.71.140
USE ADDITIONAL OPTIONS: --sa -E --rfsim --
log config.global log options level,nocolor,time
depends_on:
- oail-ext-dn
networks:
public net:
ipv4 address: 192.168.71.140
healthcheck:
test: /bin/bash -c "pgrep nr-softmodem"
interval: 10s
timeout: 5s
retries: 5
oai-nr-ue:
image: oai-nr-ue:develop
privileged: true
container name: rfsimbg-oai-nr-ue
environment:
RFSIMULATOR: 192.168.71.140
FULL IMSI: '208990100001100"'
FULL KEY: 'fec86babeb707ed08905757blbb44b8f"
OPC: 'C42449363BBAD02B66D16BC975D77CC1"’
DNN: oai
NSSAI SST: 1
NSSAI SD: 1
USE _ADDITIONAL OPTIONS: -E --sa --rfsim -r 106 --
numerology 1 -C 3619200000 --nokrnmod --log config.global log options
level, nocolor, time
depends_on:
- oai-gnb
networks:
public net:
ipv4 address: 192.168.71.150
healthcheck:
test: /bin/bash -c "pgrep nr-uesoftmodem"
interval: 10s
timeout: 5s
retries: 5

oai-nr-ue?2:
image: oai-nr-ue:develop
privileged: true
container name: rfsimbSg-oai-nr-ue?2
environment:
RFSIMULATOR: 192.168.71.140
FULL IMSI: '208990100001101"'

69

FULL KEY: 'fec86bab6eb707ed08905757b1lbb44b8f"
OPC: 'C42449363BBAD02B66D16BC975D77CC1"
DNN: oai
NSSAI SST: 1
NSSAI SD: 1
USE _ADDITIONAL OPTIONS: -E --sa --rfsim -r 106 --
numerology 1 -C 3619200000 --nokrnmod --log config.global log options
level, nocolor, time
depends_on:
- oai-gnb
networks:
public net:
ipv4 address: 192.168.71.151
healthcheck:
test: /bin/bash -c "pgrep nr-uesoftmodem"
interval: 10s
timeout: 5s
retries: 5

networks:
public net:
driver: bridge
name: rfsimbg-oai-public-net
ipam:
config:
- subnet: 192.168.71.128/26
driver opts:
com.docker.network.bridge.name: "rfsimS5g-public"
traffic net:
driver: bridge
name: rfsimbSg-ocai-traffic-net
ipam:
config:
- subnet: 192.168.72.128/26
driver opts:
com.docker.network.bridge.name: "rfsimbg-traffic"

70

vy

Appendix 2

Frame 1: 7@ bytes on wire (56@ bits),

613771618
. 162882684
. 842176389
893583579
. 682174632
. 885025952
. 885050016

. 885097186

678.
678.
678.
678.
678.
678.
678.
678.
678.
678.

22 678.
23 678.
24 678.
25 678.
26 678.
27 678.
28 678.
29 678.
30 678.
31 678.
32 678.
33 678.
34 678.
35 678.
36 678.
37 678.
38 678.
39 678.
40 678.
41 678.
42 678.
43 680.
44 634,
45 684.
46 834,

885257558
885275638
894929931
804338261
897513393
897523658
893867054
898894758
907646656
907654773
907910116
907928288
908128483
908132936
908212185
908226795
908246435
908249866
908277962
908296028
908390527
908393929
908746450
908761696
916860398
916868140
917315079
917333641
917388729
917662881
917678543
154417656
931900997
B31934374
735905652

Tedl
Tedl

92: 42:

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

Destlnatlon Protoco Length Info
1

Broadcast
Broadcast
Broadcast

192. 5

192.168. 192.168.71.131 TCP
192.168. 192.168.71.131 TLSv1.2
192.168. 192.168.71.132 TCP
192.168. 192.168.71.132 TLSv1.2
192.168. 192.168.71.131 TCP
192.168. 192.168.71.131 TLSv1.2
192.168. 192.168.71.132 TCP
192.168. 192.168.71.132 TLSv1.2
192.168. 192.168.71.131 TCP
192.168. 192.168.71.131 TLSv1.2
192.168. 192.168.71.132 TCP
192.168. 192.168.71.132 TLSv1.2
192.168. 192.168.71.131 TCP
192.168. 192.168.71.131 TLSv1.2
192.168. 192.168.71.132 Tce
192.168. 192.168.71.132 TLSv1.2
192.168. 192.168.71.131 TCP
192.168. 192.168.71.131 TLSv1.2
192.168. 192.168.71.132 TLSv1.2
192.168. 192.168.71.131 TCP
02:42: Broadcast ARP
02:42: 02:42:c0:a8:47: ARP
082:42: 02:42:c0:a8:47: ARP
fedd: Zcﬂl: 9aff: fET ffe2::2 ICMPVE

6
144
66
182
66
264
66
2088
66
171
66
308
66
266
66
117
66
102
66
186
66
184
66
381
66
215
66
147
66
176
147
66
42
42

g

70 Router Solicitation from 2e:dc:9a

e
Standard query 0x0000 PTR _:

Standard query 0x00600 PTR pSs.
Standard query 0x0000 PTR 1pps

Who has 192.168.71.1327 Tell 192 168
Who has 192.168.71.1407 Tell 192.168.
Who has 192.168.71.1317 Tell 192.168.
192.168.71.131 is at @: c0:aB:47:

35934 — 3306 [ACK]

Seg=1 Ack=.

Server Greeting proto=10 version=

35934 - 3306 [ACK]
Login Request user=
3306 — 35034 [ACK]
Client Hello

Seq=1 Ack=79 W.

.local,

.local, "QM

QM" question PTR _ipp._tcp.local,
question PTR _ipp._tcp.local,

M" quest
M" quest

.local, "QM" question PTR _ipp._ tcp.local, "QM" quest

71.148
71.150
71.132
83

TSval=3864300981 TSecr=2870286053

4512 Len=@ TSval=3864300981 TSecr=2870286053

Seq=79 Ack=37

Len=0 TSval=28

TSecr:

3306 —+ 35934 [ACK] Seq=79 Ack=235 Win=65536 Len=8@ TSval=2870286066 TSecr=3864300994

Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
35934 — 3306 [ACK] Seq=235 Ack=2181 Win=64512 Len=0 TSval=3864300995 TSecr=2870286867
Certificate, Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message

3386 -+ 35034 [ACK] Seq=2101 Ack=340 Win=65536 Len=0 TSval=2878286076
New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

35934 — 3306 [ACK]
Application Data
3306 - 35934 [ACK]
Application Data
35934 — 3306 [ACK]
Application Data
3306 ~ 35034 [ACK]
Application Data
35934 — 3306 [ACK]
Application Data
3306 ~ 35034 [ACK]
Application Data
35934 — 3306 [ACK]
Application Data
3306 - 35034 [ACK]
Application Data
35934 — 3306 [ACK]
Application Data
Application Data
35934 — 3306 [ACK]

Who has 192.168.71.

70 bytes captured (560 bits) on interface vethd9b78c9, id @

Ethernet II, Src: 2e:dc:9a:72:b2:84 (2e:dc:9a:72:b2:84), Dst: IPvBmcast_©2 (33:33:00:00:00:02)

Internet Protocol Version 6, Src:

fe80::2cdc:9aff:fe72:b284, Dst: ff02::2

Internet Control Message Protocol v6

71

Seq=340 Ack=2343
5eq=2343 Ack=548
Seq=540 Ack=2394
5eq=2394 Ack=576
Seq=576 Ack=2434
Seq=2434 Ack=694
5eq=694 Ack=2743
Seq=2749 Ack=843

Seq=843 Ack=2838

Seq=953 Ack=2911

Win=64512

Win=65536

Win=64512

Win=65536

Win=64512

Win=65536

Win=64512

Win=65536

Win=64512

Win=64512

1337 Tell 192.168.71.132
Who has 102.168.71.1327 Tell 192.168.71.131
192.168.71.132 is at 02:42:c@:aB:47:84

'2:b2:84

Len=0

Len=0

Len=0

Len=0

Len=0

Len=0

Len=0

Len=0

Len=0

Len=0

TSval=3864301004

TSval=2878286076

TSval=3864301004

TSval=2870286076

TSval=3864301004

TSval=2870286076

TSval=3864301005

TSval=2878286085

TSval=3864301013

TSval=3864301014

TSecr=3864301684

TSecr=2870286076

TSecr=38643016004

TSecr=2870286076

TSecr=3864301604

TSecr=2876286076

TSecr=3864301004

TSecr=2870286077

TSecr=3864301813

TSecr=2870286085

TSecr=2870286086

Appendix 3

Ping from the UE to blocks that are on the same network rfsim5g-oai-public-net (gNB,
AMF, NRF, SMF, UPF, MySQL) : 0.04 ms

ING 127.0.0.1 (127 0.0.1) 56(84) bytes of data
4 bytes from 127.0.0.1: icmp_seqg=1 ttl=64 time=0.025 ms
4 bytes from 127.0.08.1: icmp seq=2 ttl=64 time=0.021 ms

-- 127.8.0.1 ping statistics ---

packets transmitted, 2 received, @% packet loss, time 1004ms
tt min/avg/max/mdev = 0.021/0.023/0.025/0.002 ms
oot@e6e4fs504f01c: foptfoail-nr-ue# ping 192.168.71.134 -c 2

ING 192.168.71.134 (192.168.71.134) 56(84) bytes of data.

4 bytes from 192.168.71.134: icmp_seqg=1 ttl=64 time=0.048 ms
4 bytes from 192.168.71.134: icmp seq=2 ttl=64 time=0.102 ms

-- 192.168.71.134 ping statistics ---

packets transmitted, 2 received, 0% packet loss, time 1018ms
tt min/avg/max/mdev = 0.048/0.075/0.1082/0.027 ms
oot@e6e4f504f01c: foptfoai-nr-ue# ping 192.168.71.133 -c 2

ING 192.168.71.133 (192.168.71.133) 56(84) bytes of data.

4 bytes from 192.168.71.133: icmp_seqg=1 ttl=64 time=0.043 ms
4 bytes from 192.168.71.133: icmp _seq=2 ttl=64 time=0.030 ms

-- 192.168.71.133 ping statistics ---

packets transmitted, 2 received, 0% packet loss, time 1006ms
tt min/avg/max/mdev = 0.030/0.036/0.043/0.008 ms
oot@e6e4f504f01c: fopt/oai-nr-ue# ping 192.168.71.130 -c 2

ING 192.168.71.130 (192.168.71.130) 56(84) bytes of data.

4 bytes from 192.168.71.130: icmp_seq=1 ttl=64 time=0.049 ms
4 bytes from 192.168.71.130: icmp seq=2 ttl=64 time=0.037 ms

-- 192.168.71.130 ping statistics ---

packets transmitted, 2 received, 0% packet loss, time 1011ms
tt min/avg/max/mdev = 0.037/0.043/0.049/0.006 ms
oot@e6e4f504f01c: fopt/oai-nr-ue# ping 192.168.71.132 -c 2

ING 192.168.71.132 (192.168.71.132) 56(84) bytes of data.

4 bytes from 192.168.71.132: icmp_seqg=1 ttl=64 time=0.047 ms
4 bytes from 192.168.71.132: icmp_seq=2 ttl=64 time=0.031 ms

-- 192.168.71.132 ping statistics ---

packets transmitted, 2 received, 0% packet loss, time 1019ms
tt min/avg/max/mdev = 0.031/0.039/0.047/0.008 ms
oot@e6e4f504f01c: foptfoail-nr-ue# ping 192.168.71.140 -c 2

ING 192.168.71.140 (192.168.71.140) 56(84) bytes of data.

4 bytes from 192.168.71.140: icmp_seq=1 ttl=64 time=0.038 ms
4 bytes from 192.168.71.140: icmp_seq=2 ttl=64 time=0.035 ms

72

--- 192.168.71.140 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1823ms
rtt min/avg/max/mdev = 0.035/0.036/0.038/0.006 ms
root@e6e4f504f01c: fopt/oail-nr-ue# ping 192.168.71.150 -c 2
PING 192.168.71.1560 (192.168.71.150) 56(84) bytes of data.

64 bytes from 192.168.71.150: icmp_seq=1 ttl=64 time=0.024 ms
64 bytes from 192.168.71.150: icmp_seq=2 ttl=64 time=0.020 ms

--- 192.168.71.150 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1827ms
rtt min/avg/max/mdev = 0.020/0.022/0.024/0.002 ms
root@e6e4f504f01c: fopt/oai-nr-ue# ping 12.1.1.2 -c 2

PING 12.1.1.2 (12.1.1.2) 56(84) bytes of data.

64 bytes from 12.1.1.2: icmp_seg=1 ttl=64 time=0.025 ms

64 bytes from 12.1.1.2: icmp_seq=2 ttl=64 time=0.022 ms

--- 12.1.1.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1832ms
rtt min/avg/max/mdev = 0.022/0.023/0.025/0.005 ms
root@e6e4f504701c: fopt/oal-nr-ue# ping 192.168.71.131 -c 2
PING 192.168.71.131 (192.168.71.131) 56(84) bytes of data.

64 bytes from 192.168.71.131: icmp_seq=1 ttl=64 time=0.084 ms
64 bytes from 192.168.71.131: icmp_seq=2 ttl=64 time=0.835 ms

--- 192.168.71.131 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1019ms
rtt minfavg/max/mdev = 0.035/0.059/0.084/0.025 ms
root@e6e4fs504f01c: jopt/oal-nr-ue# ‘

Ping from EXT-DN to any container on the same network rfsim5g-oai-traffic-net (UPF,
EXT-DN): 0.03 ms

root@c3led44371ca9: /# ping 192.168.72.134 -c 2

PING 192.168.72.134 (192.168.72.134) 56(84) bytes of data.

64 bytes from 192.168.72.134: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 192.168.72.134: icmp_seq=2 ttl=64 time=0.0831 ms

--- 192.168.72.134 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1024ms
rtt min/avg/max/mdev = 0.031/0.037/0.044/0.008 ms
root@c3led44371ca9: /# ping 192.168.72.135 -c 2

PING 192.168.72.135 (192.168.72.135) 56(84) bytes of data.

64 bytes from 192.168.72.135: icmp_seq=1 ttl=64 time=0.026 ms
64 bytes from 192.168.72.135: icmp_seq=2 ttl=64 time=0.020 ms

--- 192.168.72.135 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1821ms
rtt minfavg/max/mdev = 0.020/0.023/0.026/0.003 ms
root@c31e44371ca9: /# ping 127.0.0.1 -c 2

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seg=1 ttl=64 time=0.026 ms

64 bytes from 127.8.0.1: icmp_seqg=2 ttl=64 time=0.019 ms

Ping from the UE to a container on the other network: 3 ms

oot@c31e44371ca9: f# ping 12.1.1.2 -c 2

ING 12.1.1.2 (12.1.1.2) 56(84) bytes of data.

64 bytes from 12.1.1.2: icmp_seg=1 ttl=63 time=3.68 ms
64 bytes from 12.1.1.2: icmp_seqg=2 ttl=63 time=2.79 ms

-- 12.1.1.2 ping statistics ---
packets transmitted, 2 received, 0% packet loss, time 1881ms
max/mdev = 2.795/3.237/3.680/0.446 ms

73

