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Summary - Resumen - Résumé

English
Predicting the performance of manufactured parts is extremely important, especially

for industries in which there is almost no room for uncertainties, such as aeronautical or
automotive. Good quality manufacturing operation simulations are essential to obtain
reliable numerical predictions of the processes. Numerical methods such as Finite Ele-
ment Methods represent a powerful instrument in achieving high level of reliability of the
simulations.

During most metal manufacturing processes, the medium deforms by generating large
quantities of plastic strain and relatively high strain rates. Working with metals that are
characterized by low thermal conductivity properties inevitably induces heat to be locally
retained, thus developing high temperatures where the material deforms the most. Such
particular combinations of low thermal-property material and high strain-rates-inducing
manufacturing processes might lead to plastic strain localization, also known as Adiabatic
Shear Bands (ASB). These are unfavorable conditions for the classical mathematical mod-
els that are used to predict the behavior of the continuum, because they are not anymore
able to deliver predictions that are in good agreement with experimental evidence. Under
these circumstances in fact spurious mesh dependency is exhibited.

Since the first evidences of the shortcomings of the classical model were highlighted,
many non-classical continuum mechanics theories have been developed to overcome this
issue, and most of them introduce dependencies at different levels with the plastic strain
gradient. In the first part of the manuscript, some of these theories are presented and
their specific regularization properties are addressed. One option which can be used to
regularize such a non-physical behavior is to resort to the micromorphic continuum.

The micromorphic theory enhances the continuum description by introducing addi-
tional degrees of freedom to the body, such that its position is not the only variable
that can uniquely describe the status of the continuum. In the example of the micro-
morphic theory, the additional degree of freedom might be forced to coincide with the
cumulative plastic strain. This manuscript includes the investigations on the extents of
the regularization properties of the scalar micromorphic plastic strain gradient theory.

The cumulative plastic strain, however, is not the only field which can be used to
regularize the artifacts previously discussed. In fact, we can imagine to enhance the
continuum with not only one, but three additional variables, which are meant to represent
the parametrized grain rotations. For such specific choice of micromorphic variable, the
micromorphic theory takes the name of Cosserat theory, named after the two French
Cosserat brothers. In the Cosserat theory the grain rotation is used to define a non-
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classical strain measure, in which the difference between material and grain rotation
represents an additional deformation measure, thus inducing additional forms of stress.

The Cosserat theory represents the core of the investigation pursued during the PhD
that led to the present manuscript. The theory has first been studied in its small deforma-
tion framework. The effects of the characteristic lengths on the thickness of the predicted
shear bands have been reported, and the simulations of the ASB formation have been
carried out using such theory. Subsequently, a large deformation framework of the elasto-
visco-plastic Cosserat theory has been proposed. The model has been developed under
adiabatic thermomechanically-compatible assumptions, in order to cope with the condi-
tions that are met during machining operations. The model has been implemented in a
FE numerical software. Simple and more complex tests have been used to validate the
model implementation.

Since deformation localization was the main area of investigation, specific analytical
solutions of simplified localization cases have been developed under small deformation
framework using the elasto-plastic Cosserat media. The analytical solutions have also
been used to verify the correctness of the numerical implementation.

Castellano
La predicción de las prestaciones de una pieza fabricada es extremadamente impor-

tante, especialmente para las industrias en las que casi no hay lugar para las incertidum-
bres, como la aeronáutica o la automoción. Las simulaciones de operaciones de fabricación
de buena calidad son esenciales para obtener predicciones numéricas fiables de los pro-
cesos. Los métodos numéricos, como los métodos de elementos finitos, representan un
poderoso instrumento para lograr un alto nivel de fiabilidad de las simulaciones.

Durante la mayoŕıa de los procesos de fabricación de metales, el medio se deforma
generando grandes cantidades de deformación plástica y velocidades de deformación rel-
ativamente altas. Trabajar con metales que se caracterizan por sus bajas propiedades
de conductividad térmica induce inevitablemente a que el calor se retenga localmente,
desarrollando aśı altas temperaturas donde el material se deforma más. Estas combina-
ciones particulares de material con bajas propiedades térmicas y procesos de fabricación
que inducen altas velocidades de deformación pueden conducir a la localización de la
deformación plástica, también conocida como Adiabatic Shear Bands (ASB). Estas son
condiciones desfavorables para los modelos matemáticos clásicos que se utilizan para pre-
decir el comportamiento del continuo, porque ya no son capaces de ofrecer predicciones
que estén en buen acuerdo con la evidencia experimental. En estas circunstancias, de
hecho, se exhibe una dependencia espuria de la malla.

Desde que se pusieron de manifiesto las primeras evidencias de las deficiencias del
modelo clásico, se han desarrollado muchas teoŕıas de mecánica del continuo no clásicas
para superar este problema, y la mayoŕıa de ellas introducen dependencias a diferentes
niveles con el gradiente de deformación plástica. En la primera parte del manuscrito, se
presentan algunas de estas teoŕıas y se abordan sus propiedades espećıficas de regular-
ización. Una opción que puede utilizarse para regularizar este comportamiento no f́ısico
es recurrir al continuo micromórfico.

La teoŕıa micromórfica mejora la descripción del continuo introduciendo grados de
libertad adicionales al cuerpo, de manera que su posición no es la única variable que puede
describir de forma única el estado del continuo. En el ejemplo de la teoŕıa micromórfica, el
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grado de libertad adicional puede ser forzado a coincidir con el gradiente de la deformación
plástica acumulada. Este manuscrito incluye las investigaciones sobre los alcances de
las propiedades de regularización de la teoŕıa del gradiente de la deformación plástica
micromórfica escalar.

Sin embargo, la deformación plástica acumulativa no es el único campo que puede
utilizarse para regularizar los artefactos anteriormente discutidos. De hecho, podemos
imaginar mejorar el continuo no sólo con una, sino con tres variables adicionales, que
están destinadas a representar las rotaciones de grano parametrizadas. Por esta elección
espećıfica de la variable micromórfica, la teoŕıa micromórfica toma el nombre de teoŕıa
Cosserat, llamada aśı por los dos hermanos franceses Cosserat. En la teoŕıa de Cosserat
la rotación del grano se utiliza para definir una medida de deformación no clásica, en
la que la diferencia entre la rotación del material y del grano representa una medida de
deformación adicional, induciendo aśı formas adicionales de tensión.

La teoŕıa de Cosserat representa el núcleo de la investigación realizada durante el
doctorado que dio lugar al presente manuscrito. La teoŕıa se ha estudiado primero en
su marco de pequeñas deformaciones. Se ha informado de los efectos de las longitudes
caracteŕısticas sobre el espesor de las bandas de cizalladura predichas, y se han realizado
simulaciones de la formación de ASB utilizando dicha teoŕıa. Posteriormente, se ha prop-
uesto un marco de gran deformación de la teoŕıa elasto-visco-plástica de Cosserat. El
modelo se ha desarrollado bajo supuestos adiabáticos compatibles con la termomecánica,
con el fin de hacer frente a las condiciones que se dan durante las operaciones de mecan-
izado. El modelo se ha implementado en un software numérico de elementos finitos. Se
han utilizado ensayos simples y más complejos para validar la implementación del modelo.

Dado que la localización de las deformaciones era el área principal de investigación,
se han desarrollado soluciones anaĺıticas espećıficas de casos simplificados de localización
en el marco de pequeñas deformaciones utilizando el medio elasto-plástico de Cosserat.
Las soluciones anaĺıticas también se han utilizado para verificar la corrección de la imple-
mentación numérica.

Français
La prédiction des performances d’une pièce fabriquée est extrêmement importante,

en particulier pour les industries dans lesquelles il n’y a pratiquement pas de place pour
les incertitudes, comme l’aéronautique ou l’automobile. Des simulations d’opérations de
fabrication de bonne qualité sont essentielles pour obtenir des prédictions numériques
fiables des processus. Les méthodes numériques telles que la méthode des éléments fi-
nis constituent un instrument puissant pour atteindre un haut niveau de fiabilité des
simulations.

Pendant la plupart des processus de fabrication des métaux, le milieu se déforme
en générant de grandes quantités de déformation plastique et des taux de déformation
relativement élevés. Le fait de travailler avec des métaux caractérisés par de faibles
propriétés de conductivité thermique induit inévitablement une rétention locale de la
chaleur, développant ainsi des températures élevées là où le matériau se déforme le plus.
Ces combinaisons particulières de matériaux à faible propriété thermique et de procédés de
fabrication induisant des taux de déformation élevés peuvent conduire à une localisation
de la déformation plastique, également connue sous le nom de Bandes de cisaillement
adiabatiques (ASB). Ce sont des conditions défavorables pour les modèles mathématiques
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classiques qui sont utilisés pour prédire le comportement du continuum, car ils ne sont
plus capables de fournir des prédictions en bon accord avec les résultats expérimentaux.
Dans ces circonstances, on observe en fait une dépendance fallacieuse à la taille de maille
.

Depuis les premières preuves de l’insuffisance du modèle classique, de nombreuses
théories non classiques de la mécanique des milieux continus ont été développées pour sur-
monter ce problème, et la plupart d’entre elles introduisent des dépendances à différents
niveaux par rapport au gradient de déformation plastique. Dans la première partie du
manuscrit, certaines de ces théories sont présentées et leurs propriétés de régularisation
spécifiques sont abordées. Une option qui peut être utilisée pour régulariser un tel com-
portement non-physique est de recourir au milieu micromorphe.

La théorie micromorphe améliore la description du continuum en introduisant des
degrés de liberté supplémentaires pour le corps, de sorte que sa position n’est pas la seule
variable qui peut décrire de manière unique l’état du continuum. Dans l’exemple de la
théorie micromorphe, le degré de liberté supplémentaire peut cöıncider avec la déformation
plastique cumulée. Ce manuscrit inclut les investigations sur l’étendue des propriétés de
régularisation de la théorie scalaire micromorphe du gradient de déformation plastique.

La déformation plastique cumulative, cependant, n’est pas le seul champ qui peut
être utilisé pour régulariser les artefacts discutés précédemment. En fait, nous pou-
vons imaginer d’améliorer le continuum avec non seulement une, mais trois variables
supplémentaires, qui sont censées représenter les rotations paramétrées des grains. Pour
un tel choix spécifique de variable micromorphique, la théorie micromorphique prend le
nom de théorie de Cosserat, du nom des deux frères français Cosserat. Dans la théorie
de Cosserat, la rotation du grain est utilisée pour définir une mesure de déformation
non classique, dans laquelle la différence entre la rotation du matériau et celle du grain
représente une mesure de déformation supplémentaire, induisant ainsi des formes de con-
trainte supplémentaires.

La théorie de Cosserat représente le cœur de l’investigation poursuivie pendant le
doctorat qui a conduit au présent manuscrit. La théorie a d’abord été étudiée dans le
cadre des petites déformations. Les effets des longueurs caractéristiques sur l’épaisseur
des bandes de cisaillement prédites ont été rapportés, et les simulations de la formation
des ASB ont été effectuées en utilisant cette théorie. Par la suite, un cadre de grande
déformation de la théorie élasto-visco-plastique de Cosserat a été proposé. Le modèle a
été développé sous des hypothèses adiabatiques thermomécaniquement compatibles, afin
de faire face aux conditions rencontrées pendant les opérations d’usinage. Le modèle a
été implémenté dans un logiciel numérique par éléments finis. Des tests simples et plus
complexes ont été utilisés pour valider l’implémentation du modèle.

La localisation de la déformation étant le principal domaine d’investigation, des solu-
tions analytiques spécifiques de localisation simplifiés ont été développées dans un cadre
de petites déformations en utilisant le milieu élasto-plastique de Cosserat. Les solu-
tions analytiques ont également été utilisées pour vérifier l’exactitude de l’implémentation
numérique.
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Chapter 1

Introduction

Manufacturing processes of metallic materials can be found in almost every engineering
field, e.g. aerospace, naval and civil. Performing the numerical simulations of the pro-
cesses, however, still represents a big challenge in many aspects. The material, in fact,
during the process, experiences prohibitive deformation fields, consequently reaching very
high temperatures, close to the material melting point. From the physical standpoint,
a properly-adapted model is necessary to obtain results from the simulation that would
describe the real medium development.

During machining, for example, the metal is shaped into its final form through removal
of small quantities of material, which is shredded from the final piece through shear
deformation mainly. The material locally experiences high plastic deformation, which
induce, if the adiabatic condition is met (the thermal diffusion is characterized by a lower
velocity than heat production rate), to locally retain high temperatures, thus leading
to material thermal-softening. Upon material softening, a severe mesh dependence is
experienced whether these equations were to be solved through Finite Element Modeling
(FEM) [de Borst and Mühlhaus 1992; Chambon et al. 1998; W. M. Wang et al. 1997].
On top of that, an accurate, thermodynamically-consistent material description must be
employed to correctly capture the thermal softening induced by high plastic deformation
[Aldakheel et al. 2017; Lele et al. 2009; Cheng et al. 2015; Wcis lo and Pamin 2017; Pamin
et al. 2017]. Furthermore, the fact that during these processes the deformation is prone
to localize in narrow areas makes it necessary to adopt numerical models which are able
to predict size-effects [Fleck and Hutchinson 1997; González et al. 2014; Yuan et al. 2001;
Joshi et al. 2004; Wu et al. 2010; Marchand et al. 1988; Nguyen et al. 2015; Poole et al.
1996; Stölken et al. 1998].

It is well known that the classical Cauchy continuum description is not sufficient
to predict the different responses of the medium when either stresses or strains local-
ize. Although experimental evidence strongly emphasized the existence of size-dependent
behaviors, where smaller is the size, stronger is the response, the classical continuum
mechanics models do not possess a characteristic length scale that allows the prediction
of said size-effects. The description of the classical continuum mechanics is, in fact, of
a local nature, meaning that the configuration of the medium at any location is solely
determined by the properties characterizing the continuum at that specific location, and
the distribution of the said properties in the neighborhood of this location does not in-
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fluence the local properties. Several descriptions of the continuum have been proposed
in the literature as alternatives to the classical continuum mechanics, in the attempt of
including a gradient-related response of the medium, and these theories are referred to as
non-local or higher-order theories. In general, any continuum mechanics model, different
from the classical model, belongs to the family of the generalized continuum mechan-
ics. A common feature that is shared by all of them is the appearance of a characteristic
length scale in the constitutive framework, which naturally arises when the internal power
and the constitutive material model are explicitly defined.This characteristic length scale
determines the magnitude with which the model responds to localization of deformation.

Another limitation of the classical theory can be identified when tackling strain local-
ization problems: if a specific form of the constitutive material behavior is chosen, the
static boundary value problem loses its ellipticity and assumes a hyperbolic character.
This problem characterizes, but is not limited to (same behavior could be found for non-
associated plastic flow, e.g., [Sabet et al. 2019; Vardoulakis 1980; Needleman 1979]), the
condition in which the material tangent experiences a local negative slope. The change in
the form of a boundary value problem causes the solution not to be uniquely determined
anymore. The negativeness of the material tangent could be induced by several physical
phenomena, and the one which most concerns our research is the thermal softening in-
duced in metallic materials severely deformed. Such behavior can be experienced by the
continuum when high temperatures are locally produced by the plastic deformation and
subsequently retained due to the the combination between low thermal conductivity of
the materials and high strain rates. At relatively high temperatures, the material reduces
its yield strength, subsequently experiencing a softening of a thermal nature. From the
analytical point of view the boundary value problem is not uniquely defined, and from the
numerical point of view (if the problem ought to be discretized through Finite Element
Method, for instance), the solution appears to be spuriously mesh-dependent.

As already mentioned, these problems are strongly relevant to manufacturing pro-
cess simulations because the material is heavily deformed in a short amount of time,
thus inducing deformation localization and thermal softening. Moreover, it was already
demonstrated that a strong size effect characterizes some manufacturing processes and
that the classical continuum mechanics was no longer adequate to predict these behav-
iors [K. Liu et al. 2007; X. Wang 2007; Pamin et al. 2017; Demiral et al. 2016; Guha et al.
2014].

The research presented in this PhD manuscript is devoted to assess these problems
in metal manufacturing simulations. Resorting to a generalized continuum mechanics
theory could compensate for the limitations of the classical continuum mechanics both in
terms of size-effects and spurious mesh-dependency. At first, a Strain Gredient theory has
been used to solve these problems. The implementation of this theory in a FEM software
has been done through the micromorphic theory [Eringen 1999a], taking advantage of a
specific analogy among the thermal equilibrium equations and the micromorphic balance
equations. Therefore, as a first step, this simple approach was adopted, and just with a
small effort it was possible to demonstrate that some of the problems characterizing metal
manufacturing simulations could be solved by using generalized continuum mechanics.

However, the processes of interest are highly characterized by shear deformation, thus
the medium undergoes large material rotations at the locations where the deformation
localizes. This line of reasoning, coupled with the fact that the deformations are localized
in areas the size of which is comparable with the grain size, led us think that the rotations
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experienced by the micro-structure, whose effects are normally neglected during homo-
geneous deformation, would assume a major role in characterizing the material response
during these processes, and a medium description that fits well with this description is
the Cosserat theory [Cosserat et al. 1909].

The Cosserat theory finds many applications in geomechanics, because the mechani-
cal behavior of the soil, being a granular material at macroscopic level, is characterized
by a size effects already at macroscopic level [Mühlhaus et al. 1987; Tordesillas et al.
2004; Rattez et al. 2018]. However, besides geomechanics, the Cosserat model has also
been extensively used both for homogeneous metal materials [Grammenoudis et al. 2001;
Bauer, Dettmer, et al. 2012] and polycrystal materials [Forest, Cardona, et al. 2000;
Neff 2006; Ask et al. 2019; Jebahi et al. 2020], and many authors focused on different
aspects of the Cosserat medium description. Steinmann and Willam investigated on the
localization properties of the Cosserat model in elasto-plastic materials under infinitesi-
mal deformations in case the loss of ellipticity was caused by negative material tangent
operator [Steinmann and William 1991]. De Borst and Sluys demonstrated that the
presence of an internal length in a von Mises plastic model formulated for the Cosserat
medium can be used to avoid mesh dependency when localization phenomena were simu-
lated [de Borst 1991a]. Most recently, Sabet and de Borst demonstrated that the Cosserat
medium description retains ellipticity also in case the material model is characterized by
a non-associated rate-independent plastic flow [Sabet et al. 2019]. Kratochv́ıl et al. in-
vestigated over the characteristic lengths introduced by the Cosserat medium description
from a physical point of view, by relating the Cosserat wryness to the Nye’s dislocation
tensor, thus interpreting the wryness tensor as a measure of geometrically necessary dis-
locations [Kratochv́ıl et al. 1999]. Khoei et al. drew a distinction between torsional and
bending characteristic lengths, and they investigated the effect of these lengths on the
shear bandwidth during different localization processes [Khoei et al. 2010]. Many lines of
work can also be found in literature proposing a thermodynamically-consistent model of
the Cosserat kinematics [Grammenoudis et al. 2001; Bauer, Dettmer, et al. 2012; Forest
and Sievert 2003; Forest and Sievert 2006; Rattez et al. 2018].

This PhD manuscript is structured in different chapters, each one addressing specific
topics that have been investigated while attempting at answering the question of solving
problems related to manufacturing simulations. In the first chapter a state-of-the-art
review on the various technologies used to simulate manufacturing operations will be
presented. The second chapter will introduce and explore the topic of strain gradient
applied to manufacturing simulations via the thermal-micromorphic analogy; the advan-
tages of adopting such theory will be analyzed by presenting three test cases in which
strain localization and size-effect will be tackled. In the fourth chapter the most general
thermodynamically-compatible Cosserat theory under a small deformation framework will
be described; the advantages of adopting such theory will follow in the same chapter, in
which a localization study will serve to demonstrate the full potential of the Cosserat
theory. The fifth chapter will address a novel equivalent stress evaluation in the Cosserat
media and novel analytical solutions of localization cases again using the Cosserat media.
The thermodynamically-compatible finite deformations Cosserat theory will be presented
in the sixth chapter, in which the elastic, plastic , viscoplastic and thermal aspects of the
formulation will be defined. The seventh chapter includes the discretization and numerical
implementation of the Cosserat theory under finite deformations in a FEM software. The
eighth chapter presents the tests that have been performed on the implemented theory,
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comparison with the developed analytical solutions, and additional simulations of manu-
facturing operations, such as machining. The ninth chapter will conclude the manuscript
with a summary of the developed investigation and the future development.
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Chapter 2

Literature review

The topic of Strain Gradient Theories (SGT) experienced a fervent increase of interest
from the scientific community in recent years. Although multiple reasons made the SGT
one of the hot topics in the field of Continuum Mechanics (CM), the main causes can
be identified in the ever-increasing computational power of numerical calculators (thus
enabling the implementation of techniques beforehand impossible to use) and in the de-
mand of more sophisticated CM theories which would better predict the medium behavior
under specific material deformation conditions. SGTs are specific theories that diverge
from the Classical CM, and for this reason they belong to the larger family of General-
ized Continuum Mechanics (GCM). GCM could be employed whenever the Classical CM
framework is not delivering anymore a proper medium behavior description if compared
with experimental observations. The features characterizing some models belonging to
the GCM can be of crucial importance in several situations, and in this chapter we assess
the role that they might play for manufacturing process simulations. However, it must
be noted that the adoption of such theories increases the computational cost involved in
simulating the observed phenomenon.

The most general feature, shared by many theories of the GCM, is the introduction
of one or more scale lengths in the model used to describe the medium behavior. This is
done through the definition of additional deformation measures that are meant to capture
specific phenomena which cannot be predicted by the classical CM models. In the vast
majority of the cases, the magnitude and the influence of these additional deformation
measures are negligible if compared with the standard one, i.e. strain. In specific sit-
uations, however, the material behavior demonstrates noticeable susceptibility to these
supplementary deformation measures, and proper models are required to capture such be-
haviors through simulations. The gradient of the strain has been widely and unanimously
recognized as one of the main feature which needs to be incorporated in the Classical
CM theory to predict such behaviors. Among all the SGTs, those that make use of the
gradient of the plastic part of the strain are called Strain Gradient Plasticity Theories
(SGPT).

Experimental observations show that many metal manufacturing processes are affected
by these phenomena, demonstrating noticeable sensitivity toward non-conventional defor-
mation measures [Joshi et al. 2004; Royer et al. 2011; Voyiadjis et al. 2009; Wu et al. 2010;
J. Huang et al. 2001; Laheurte et al. 2006; Cahuc et al. 2007; K. Liu et al. 2007; X. Wang
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2007; Demir 2009; Jing et al. 2013]. The manufacturing techniques in which the strain
gradient plays a bigger role result to be those in which the loads are highly localized, e.g.
micro-cutting, milling, micro-bending, thin wire drawing, machining, friction stir welding,
sheet stamping, inverse drawing, adiabatic cutting. These machining processes favor the
development of rather peculiar conditions in the processed material, where a combination
of separate factors contribute to produce a relatively complex scenario.

The present research aims at addressing the following research question: What is
the state of the art in using generalized continuum mechanics to simulate manufacturing
processes. This research question can be broken-down in the following sub-questions:

� What is a generalized continuum mechanics model?

� Why such models are required for the simulation of manufacturing operations?

� Which enhanced models of continuum mechanics can be used to simulate manufac-
turing operations?

� Which contributions can be found in literature that already used enhanced model
to simulate manufacturing operations?

In Section 2.1, this multitude of events simultaneously taking place during these pro-
cesses are singularly assessed, and then the features that represent them are traduced
into requirements of a continuum mechanics theory meant to correctly describe them.
Section 2.2 presents the milestones in the development of different theories of the GCM
and in Section 2.3 the investigations that employed these theories to simulate machining
operations will be thoroughly reviewed. Finally, the conclusions of the present review will
present advantages and disadvantages of using different theories from GCM to simulate
different machining processes.

2.1 Challenges in Manufacturing Processes Simulations

Among the different metal manufacturing techniques, the ones that require a proper the-
ory to be described are those that modify the material through strain localization, or
severe plastic strain development or material removal, or a combination of those. Dur-
ing machining, for example, material is removed from the work piece by inducing large
amounts of shear in localized areas called Shear Bands (SBs) (see Figure 2.1). Due to
the high speed of the process (cutting velocities up to 90 m/s)[Ye et al. 2014; Molinari,
Musquar, et al. 2002; Dixit et al. 2011; Tang et al. 2018], high strain rates (105 s−1) are
induced in the SBs [Calamaz et al. 2008; List et al. 2013; Lee et al. 2006]. The high
levels of stresses and strains give rise to plastic deformations, therefore inducing soft-
ening in the material at this same location. In addition to this, since the SBs usually
span an extremely narrow area if compared to the global scale of the work piece, the
continuum at this location experiences high stress and high strain gradients as well. To
complete the picture, it must be mentioned that plastic deformations usually give rise to
heat productions, and considering the case in which the rate of heat production is much
larger than the heat flow within the material (especially in metals characterized by low
thermal conductivity), high temperature fields are retained, and the SBs are referred to
as Adiabatic Shear Bands (ASBs). In Figure 2.2 the crystallographic analysis during a
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Figure 2.1: Adiabatic Shear Band formation during orthogonal cutting Titanium alloy
[Molinari, Musquar, et al. 2002].

Friction Stir Welding process highlights the modification of the grain size and orientation
induced during manufacturing. Shear bands have been reported to appear also during a
high-temperature compression test on Nickel super-alloy [Tang et al. 2018].

On top of the already complex scenario, at the location where the applied forces are
transferred from the tool to the workpiece, the material experiences complex behaviors as
well. High stress and shear gradients develop in this zone, leading to the same conditions
which are found within the SB. Furthermore, the mechanism with which the loads are
transferred from the workpiece to the material must be accurately assessed as well. The
extreme conditions in which the contact must be modeled are actually different from the
ones for which the classical contact models have been developed

Overall, the problem of simulating machining seems to be composed of several sub-
problems, some of them interconnected with each others, and some independent from one
another. This complex problem can be more easily assessed if divided into separate and
independent blocks. These might be listed as:

� Strain localization in a length scale whose order of magnitude is the same as grain
size, therefore violating the limit of validity of material homogeneity;

� Mesh-size hypersensitivity when introducing material softening in the behavior law
during the analysis;

� Proper material characterization at high temperatures and high strain rates devel-
oping during manufacturing processes;

� The complex material behavior at the tool-workpiece contact location.

These phenomena could take place separately or simultaneously. Several approaches can
be found in literature that address these problems individually, but their occurrence,
taking place all at once, represents a challenging issue to be addressed. Complex prob-
lems, such as the one investigated here, have also addressed through model reduction
methods [Chinesta et al. 2011].
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Figure 2.2: Shear bands produced during FSW of AA2050 with an advancing side on the
left (a).

2.1.1 Strain localization & Mesh-Size Dependency

Strain localization in a narrow area whose order of magnitude is comparable to the ma-
terial grain size compels the adoption of a non-classical CM framework that would be
able to model the size effect. In literature, several authors highlighted the inadequacy
of the classical CM framework whenever it was used to reproduce experimental data in
which the size effects were noticeable [Fleck and Hutchinson 1997; Stölken et al. 1998;
Begley et al. 1998; Poole et al. 1996; Nix et al. 1998; Ma et al. 1995; González et al. 2014;
Stelmashenko et al. 1993; Panteghini and Bardella 2016; Han et al. 2007; Dahlberg and
Faleskog 2013; Askes et al. 2011; Gurtin and Anand 2005b; D. Liu and Dunstan 2017;
Al-Rub et al. 2005; Duan et al. 2001; E. C. Aifantis 1999]. Overall, the inconsistencies are
more pronounced whenever the dimensions of the specimens become comparable to the
order of magnitude of the specimen grain size, or, equivalently, when the deformations
localize in areas whose size is comparable to the specimen grain size.

Fleck and Hutchinson performed several static torsion and tensile tests on copper wires
of different diameters (12-170 µm) [Fleck and Hutchinson 1997]. Their results, reported
in Figure 2.3, highlight that smaller diameter wires are characterized by a much stiffer
torsional response (scaled with the wire radius), although tensile tests performed on the
same specimen demonstrate a very small, thus negligible, size dependency. Similar tests
were performed by Liu et al. who reached the same conclusion [D. Liu, Y. He, et al.
2013b; D. Liu, Y. He, et al. 2013a]. Fleck and Hutchinson also reported that the size-
effect is present in a Vickers micro-indentation test conducted on single crystal tungsten
specimens [Fleck and Hutchinson 1997]. The performed tests demonstrated a strong size-
dependency, as the material hardness doubles by using an indent whose diagonal is one
order of magnitude smaller. Similar size-effects in a micro-indentation test have also been
reported by many other authors [Ma et al. 1995; Poole et al. 1996; González et al. 2014;
Nix et al. 1998; Stelmashenko et al. 1993].

The size-effect has also been experimentally investigated by Stölken and Evans [Stölken
et al. 1998]. They presented the results of micro-bending tests conducted on 12.5 µm,
25 µm and 50 µm thin Nickel foils (Figure 2.4). The results of their tests highlighted
that foils with a smaller thickness were behaving stronger. The applied bending moment
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(a) (b)

Figure 2.3: Variation of Torsional stiffness during torsion test on a copper wire (a) and
variation of Hardness during microindentation test on tungsten single crystal (b) [Fleck
and Hutchinson 1997].

Figure 2.4: Variation of the normalized bending moment on thin Nickle foils during
micro-bending test [Stölken et al. 1998].

(normalized with respect to the foil thickness) of the 50 µm thick foil is twice the one
recorded with a 12.5 µm thick foil. Similar tests leading to similar conclusions were
conducted by Ehrler et al. [Ehrler et al. 2008].

In the same referenced papers, so as in a broad branch of literature [Panteghini and
Bardella 2016; Han et al. 2007; Dahlberg and Faleskog 2013; Askes et al. 2011; Gurtin
and Anand 2005b; D. Liu and Dunstan 2017; Al-Rub et al. 2005; Duan et al. 2001;
E. C. Aifantis 1999], the authors point out that the classical CM is not able to capture
these localization phenomena due to the absence of a length scale in the model that
would counteract the localization of the fields. Micro-torsion tests also highlighted the
shortcoming of the classical CM framework [Dunstan et al. 2009; Fleck, Muller, et al.
1994]. The SGPT, whose mathematical description includes one or more length scales,
has been proposed as a valid candidate to capture phenomena of different natures.

The size-effect can be predicted thanks to the definition of an additional deformation
measure, i.e. the strain gradient. The dimensional analysis of this quantity reveals that it
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is not dimensionless and, unlike strain, it should be adimensionalized by means of a spe-
cific length, and the sensitivity of non-classical CM theories to size-effects comes directly
from the definition of this non-dimensionless deformation measure. Many researchers
investigated over the physical nature of the length scales of the SGPTs. Depending
on the degrees of complexity of the observed phenomena, more than one characteristic
lengths can be identified. For example, Fleck and Hutchinson identified up to five distinct
characteristic lengths, each associated to one of the five invariants of the strain gradient
tensor [Fleck and Hutchinson 1997]. These characteristic lengths however can be reduced
to three in case of incompressible isotropic medium. In a successive study, Fleck and
Hutchinson identified a single characteristic length in an equivalent plastic strain gradi-
ent theory [Fleck and Hutchinson 2001]. Liu and Dunstan, based on the SGPT of Fleck
and Hutchinson, gave a physical interpretation to the characteristic length by making a
connection to physical quantities via critical thickness theory [D. Liu and Dunstan 2017].
Duan et al., based on the same SGPT, associated the additional characteristic length
to geometrically necessary dislocations through three different dislocation models [Duan
et al. 2001]. Similarly, Dahlberg and Bo̊asen assumed an equivalence between the mi-
crostructural length scale and dislocation density and provided an evolution law of the
characteristic length [Dahlberg and Bo̊asen 2019]. Zhang and Aifantis gave a compre-
hensive review of the interpretations of the characteristic length associated with SGPTs
[X. Zhang et al. 2015].

Several other researchers focused on the calibration procedure and the quantification
of this length for metals. Yuan and Chen proposed to identify the characteristic length
from micro- and nano- indentation tests [Yuan et al. 2001]. Stölken and Evans developed
a micro-bending test to measure the characteristic length [Stölken et al. 1998]. Abu Al-
Rub and Voyiadjis also proposed to adopt micro- and nano- indentation tests to calibrate
the characteristic length and its evolution law [Al-Rub et al. 2004; Al-Rub et al. 2005].

Thereby, it can be concluded that the problem of properly capturing the size-effect ris-
ing during manufacturing simulation due to strain localization can be solved by adopting
a medium description that includes the gradient of the strain as a deformation measure.
In addition, adding the strain gradient as a deformation measure would solve not only
the problem related to size-effect, but also the one related to mesh hypersensitivity.

Mesh hypersensitivity is an issue which has its root in the loss of ellipticity of the
partial differential equation governing the medium equilibrium [de Borst and Mühlhaus
1992; Benallal et al. 2010; Wcis lo, Pamin, et al. 2018]. In case the non-linear plastic
behavior of the material experiences a decreasing flow stress, i.e. softening, the nature of
the set of partial differential equations governing the equilibrium changes, and a strong
mesh sensitivity is experienced, in particular, the solution does not appear to converge
toward an asymptotic value when the mesh size is decreased. The process of recovering
the property of mesh independence in literature is referred to as regularization procedure.

Jirasek and Rolshoven provided an extensive comparison of the regularization proper-
ties of many SGPT by analyzing the response of a mono-dimensional bar under tension,
whose plastic behavior is characterized purely by softening [Jirásek et al. 2009]. They
explored the regularization mechanics of the Toupin-Mindlin elastic SGT [Toupin 1962;
Mindlin 1963], the plastic version of Toupin-Mindlin SGT developed by Chambon et al.
[Chambon et al. 1998], the Fleck and Hutchinson plastic SGT [Fleck and Hutchinson
1997] and the Mechanism-based SGT [Qiu et al. 2003]. Nguyen et al. coupled a non-local
plasticity model with damage to successfully capture the softening behavior experienced
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Figure 2.5: Measured Temperature field in a torsional Kolsky test at a strain rate of
1600 s−1 [Marchand et al. 1988]

by the material during ductile failure in the post-peak regime [Nguyen et al. 2015]. Lele
and Anand demonstrated that SGPTs are able to provide mesh independent results in
case of viscoplastic material as well [Lele et al. 2009].

Several other researchers overcame the mesh hypersensitivity issue through other solu-
tions besides the SGT. Mediavilla et al. used a damage-enriched material model, in which
the gradient of the damage field would enter in the material model, thereby achieving the
same regularization effect produced by the SGTs [Mediavilla et al. 2006]. Many other
researchers included the gradient of the damage variable in the model to regularize the
solution [Brepols et al. 2017; Saanouni and Hamed 2013; Peerlings et al. 1996; Nguyen
et al. 2015]. Higher Order continuum descriptions (see Section 2.2) are also well known
equivalent solution to avoid the pathological mesh dependence [Sabet et al. 2019; Mazière
et al. 2013; Ling et al. 2018; Forest 2009].

Therefore, the issues of mesh hypersensitivity due to localization during machining
simulations can be simultaneously addressed through the adoption of non-local theories,
to which the SGPT belong.

2.1.2 Material characterization at High Temperatures and High
Strain Rates

The high strain rate fields produced during machining are inevitably intertwined with
thermal-related consequences. Materials experiencing high strain rate are likely to plas-
ticize and subsequently to generate heat. If the rate of heat production is higher than
the rate of heat conduction, high temperatures will be retained in the plasticized zone.
The consequences of high temperatures on material behavior can be easily modeled and
they might be independently analyzed and simply assessed by performing material tests
at high temperatures; on the contrary, the reliability of the model relating high strain
rates with mechanical behavior, due to unavoidable raises in temperature, is dependent
on the fidelity of the research done on the thermal behaviors.

In general, it must be recognized that reproducing the same level of shear deformation
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(a) (b)

Figure 2.6: (a) Correlation between the measured temperature field and the stress-strain
curve in a shear test performed at a strain rate of 500 s−1. (b) Difference between the
temperature fields measured during two shear tests at different strain rates [Rahmaan
et al. 2018].

(≈ 2.0) and strain rate (≈ 105s−1) that takes place during manufacturing processing
under controlled lab conditions is not an easy task. The thermal aspect involved in the
development of high strain rates was reported by Marchand and Duffy, who collected
experimental data of both temperatures and shear strain fields during a dynamic torsion
test [Marchand et al. 1988]. They tested a thin hollow tube of HY-100 steel in a torsional
Kolsky (split-Hopkinson) bar properly modified to provide torsional loading at high strain
rate (1600 s−1). The specimen was 0.38 mm thick and 2.5 mm long, with an inner diameter
of 9.5 mm. The authors adopted such high strain rates so as to induce the formation of
adiabatic shear bands and then measure the temperatures that developed in the ASB.
This condition is equivalent to the one that can occur during machining processes. From
the collected data, reported in Figure 2.5, it can be inferred that the thermal contribution
to the energy balance cannot be neglected when SBs develop during machining.

The influence of the thermal field and strain rates on the mechanical behavior was
also recently investigated by Rahmaan et al. [Rahmaan et al. 2018] (Figure 2.6). They
performed dynamic shear tests on 2 mm thick AA7075-T6 sheets at different strain rates
(from 0.01 to 103 s−1) inducing increments in temperatures of up to 60 º C in the specimen
due to plasticity. The authors distinguished between a strain hardening dominant region
and thermal softening dominant region. From their results, it is evident that plastic
strain at high strain rates (500 s−1) induce a temperature raise causing material softening.
Additionally, the temperatures profiles obtained using different strain rates were directly
compared, and the analysis showed that the influence of the strain rate on the developed
temperature is considerably lower when the strain rates are reduced.

The researches reported in this section proves the fact that in the sought of a complete
theory to model machining, the thermal and dynamic contributions cannot absolutely be
neglected. Therefore, besides the usual governing equations relative to force equilibrium,
a thermodynamical approach must be adopted so that energetic equilibrium equations
would be included in the CM model. Therefore, the simulations of manufacturing pro-
cesses involving very high deformation rates require an approach that would encompass
thermodynamical considerations. This can be achieved by properly characterizing the
media behavior from a deeper thermodynamical standpoint (from which the material
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constitutive behavior naturally derives), while solving the energy equation (heat equa-
tion) in addition to the standard set of equations governing the force equilibrium. This
approach requires the temperature to be included as an additional degree of freedom of
the continuum whose field is the solution of the energy equation. However, if the heat
dissipation rate is very small compared to the heat production rate, the boundary value
problem can be considered as adiabatic, thus demoting the temperature from a degree of
freedom of the system to a state variable [X. Wang 2007; G. Chen et al. 2011; Ye et al.
2014; Calamaz et al. 2008].

Another crucial consideration is that thermal-induced effects could be isolated and
separately analyzed, but the opposite cannot be done with high strain rates, which are un-
avoidably related with heat productions. High temperatures soften the material, whereas
higher strain rate have an opposite hardening effect. However, if high levels of strains
are rapidly obtained, the material plasticize and temperature developments are expected
to occur, thus interconnecting the strain rate effect with the thermal effect. So the ideal
approach would be to separate these two aspects: first developing a model of the mechan-
ical behavior that delivers the correct effect of thermal variation on the medium response,
and then to successively incorporate the effect of the strain rate on mechanical behavior
in terms of hardening.

2.1.3 Tool-Workpiece Contact

During machining processes, the contacts conditions between the tool and the workpiece
lie beyond the assumptions made for the contact models usually used in mechanics. Es-
pecially the high temperatures and the high pressures, in fact, induce the material to
behave more liquid-like than solid-like (see Figure 2.7). The simple Coulomb law is not a
good model anymore [Astakov 2006].

Zorev’s model is a well-known refined friction model that is widely used for machining
simulation. It recognizes two different zones at the tool-workpiece contact zone, each
characterized by two different frictional behavior [Zorev 1963]. He individuates a sliding
zone, where the material response is purely elastic, and a sticking zone, that is instead
characterized by plastic flow.

This special condition does not only require a modification of the classical CM govern-
ing equations, but it also impels the adoption of a proper numerical contact model able
to cope with a change in the friction conditions from a sliding form to a sticking form
(transversely promoted by high temperatures and stresses also). Based on this model,
further modifications have been reported in literature attempting at delivering a precise
model characterizing the metal behavior in the sliding and sticking regime [Shirakashi
et al. 1973; Childs 2006; Bahi et al. 2012; Bahi et al. 2011; Ackroyd et al. 2003].

A throughout review of experimental data on the topic of tool-workpiece interaction
was collected by Astakov [Astakov 2006]. In this book chapter he reported many experi-
ments which attempt to extrapolate many features of the phenomena from a tribological
point of view such as the friction coefficient (assuming Coulomb law), contact stress dis-
tribution, thermal distribution and more.

Towards the development of a more appropriate contact model, the Friction Stir
Welding (FSW) benchmark, as suggested by Cahuc et al. [Cahuc et al. 2007], might
result in a useful mean which could be used to test the validity of the model itself.
However, being FSW characterized by some on the main above-cited typical problems
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Figure 2.7: Temperature distribution in the chip during orthogonal cutting on AISI 1045
steel obtained with a camera in circumferential (a) and axial (b) directions [Astakov
2006].

affecting machining, other independent features must be assesses before being able to test
a more complex model.

The enhancement of the governing equations of the continuum mechanics from a
classical to a generalized framework will likely bring the introduction of more complex
variables associated with status of the continuum, such as strain gradients. Therefore,
further considerations must be made on how these additional unknowns will fit into the
proposed contact model, or even more important, how the contact conditions affect ma-
terial deformations in enhanced continua.

2.2 Historical Excursus of GCM in Literature

The GCM belongs to a branch of mechanics that aims to describe the continuum behavior
through a set of equations which differ from the one belonging to the Classical CM
[Eringen 1962; Gurtin 1982]. This definition is attributed to a quite large group of theories,
and, they can be further grouped into other two categories: Higher Order Theories and
Higher Grade Theories [Forest and Sievert 2006; Forest 2009]. The former group aims to
enhance the continuum with additional degrees of freedom, and the latter adopts the same
quantities characterizing the classical CM framework, in addition to their higher spacial
gradients. Although the distinction here is quite net, some proposed theories present
features that are common to both classes. Most of the GCM belongs to the Higher Order
Theories, because they include partial or full contributions of the second gradient of the
displacements.

Another major distinction that can be drawn among the GCM theories consists in
using the additional deformation measure as internal variable or as additional degree
of freedom of the media, and this choice has significant repercussions also at the level of
numerical implementation. In the first case, the only degrees of freedom of the continuum
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are the displacements, and the additional deformation measure is evaluated purely from
them. In the second case, the additional deformation measure is used as a degree of
freedom (or it derives from the additional degrees of freedom) and its distribution resolves
as the solution of the set of partial differential equation, so as the displacement field. The
theories here reported are explored in their small deformation framework.

Notation

Einstein’s convention is employed in the whole chapter. Tensors are indicated through
compact notation or index notation, regardless of capital or not-capital letters:

a =⇒ ai;

a
:

=⇒ aij ;

a
:

=⇒ aijk;

a
:
:

=⇒ aijkl;

The outer product is indicated with ⊗ and it operates in the following manner:

A
:

⊗B
:

= C
:
:

=⇒ AijBkl = Cijkl;

Single and double contraction operators are respectively indicated as follows:

A
:

· B
:

= C
:
:

=⇒ AijkBklm = Cijlm;

A
:

: B
:

= C
:

=⇒ AijkBjkl = Cil;

Divergence and gradient operators are represented as:

A
:

⊗∇ = B
:

=⇒ ∂Aij
∂xk

= Bijk;

A
:

·∇ = B =⇒ ∂Aij
∂xj

= Bi;

where xi is the i-th Cartesian coordinate of an Eulerian space. When handling with
skew-symmetric second order tensors, it might be easier to define the first order tensor
associated to it as:

A = −1

2
ε
:

: B
:

; (2.1)

where ε
:

is the Levi-Civita permutation symbol.

2.2.1 Aifantis’ Theory

The pioneering work of Aifantis belongs to a class of SGTs known as Mechanics-Based
Strain Gradient (MSGT). The original idea of Aifantis was to enhance the classical Equa-
tion for the flow stress with a term related to the spacial gradient of the plastic strain in
order to represent the effect of dislocation-state evolution on a macroscopic scale [E. C.
Aifantis 1984; E. C. Aifantis 1987]. The yield stress as defined by Aifantis reads [E. C.
Aifantis 1999]:

σY = σ0 + kεpeq − c1|∇εpeq| − c2∇2εpeq; (2.2)
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where σY is the flow stress, σ0 is the initial flow stress, k, c1 and c2 are parameters,
εpeq is the von Mises cumulative plastic strain and ∇ is the nabla operator, returning
the gradient/Laplacian of the field. By using this flow stress evolution law, the strain
field in the medium has to be found through solution of partial differential equation.
The two characteristic lengths are embedded in the definition of the constants c1 and
c2. The work of Aifantis was one of the first researches linking micro-defects, such as
dislocations, to macro-deformation measures , such as strain. However, the definition of
the internal power of the theory was not explicitly stated, and it was not declared whether
the inelastic deformations were dissipative or not (the thermodynamic of the model was
not originally defined). Successively, Gudmundson [Gudmundson 2004] incorporated the
Aifantis model into the broader framework that he proposed, identifying the internal
power density definition as:

p(i) = σ
:

: ε̇
:

e + q ε̇peq + m ·
(
∇εpeq

)
; (2.3)

where the stress has been partitioned into the contribution conjugate to the elastic de-
formation (ε

:

), σ
:

, and the part conjugate to the equivalent inelastic strain (εpeq), that is a
scalar q, and, in addition, the gradient of the equivalent plastic strain is introduced into
the internal power definition, where its power conjugate, the moment stress m, naturally
arises. Gudmundson interpreted this stress as derived from a free energy potential in a
quadratic form, as originally suggested by Steinmann [Steinmann 1996]:

ψ = L2E∇εpeq ·∇εpeq/2; (2.4)

from which, the constitutive model for the moment stress derives as:

m = L2E∇εpeq; (2.5)

Later on, the thermodynamical considerations related to the Aifantis model have been
investigated by Gurtin and Anand [Gurtin and Anand 2009], and they outlined that the
Aifantis model cannot be thermodynamically compatible in absence of a defect energy.

2.2.2 Gradient of the local spin vector - Fleck and Hutchinson
1993

Fleck and Hutchinson developed a phenomenological SGT based on the couple-stress
theory [Toupin 1964; Toupin 1962; Mindlin 1963], with the idea of relating the strain
gradient to the dislocations developed at microstructural level [Fleck and Hutchinson
1993]. Besides the standard definition of strain, they considered also the effects of the
skew-symmetric part of the displacement gradient, i.e. the local spin tensor θ

:

, defined as:

θ
:

= skew (u ⊗∇) ; (2.6)

being this a skew-symmetric tensor, it can rewritten in a pseudo-vectorial form as:

×
θ = −1

2
ε
:

: θ
:

; (2.7)

where ε
:

is the Levi-Civita permutation tensor. The gradient of the local spin vector,

which could be though as a material curvature gradient, is:

χ
:

=
×
θ ⊗∇; (2.8)
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and an additional decomposition in plastic and elastic part of curvature is proposed:

χ
:

= χ
:

e + χ
:

p; (2.9)

Based on the definition of the given deformation measures, the internal power would
assume the following shape:

p(i) = σ
:

: ε̇
:

+ m
:

: χ̇
:

; (2.10)

where σ
:

is the Cauchy stress, energetically conjugate to the strain, thereby symmetric
tensor, and m

:

is the not-symmetric couple stress tensor as also introduced by Toupin and

Mindlin [Toupin 1964; Toupin 1962; Mindlin 1963].The definition of the strain energy
density function for an isotropic material was given in a quadratic form as:

u(i) =
λ

2
εeiiε

e
jj + µ εeijε

e
ij + µ lelχ

e
ijχ

e
ij ; (2.11)

where λ and µ are the Lamé parameters and lel is an elastic characteristic length used to
a-dimensionalize the curvature tensor. The plastic behavior is governed by an equivalent
plastic deformation measure that was defined as:

Ξp
2

= εp
2

eq + l2plχ
p2

eq ; (2.12)

where εpeq is the von Mises strain invariant
√

2/3εpijε
p
ij and similar definition corresponds

to χpeq. The length lpl is used to a-dimensionalize the plastic contribution of the material
curvature tensor (defined as gradient of the plastic part of the local spin tensor), and it
was though as the free-slip distance between statistically stored dislocations on an average
sense. If the condition lel � lpl is applied, then the material curvature is assumed to
be mostly plastic, therefore providing a sensitive contribution in characterizing plastic
phenomena, while being negligible in elastic regimes.

2.2.3 Second Gradient of displacement - Fleck and Hutchinson
1997

In 1997 Fleck and Hutchinson enriched the Mindlin-Toupin theory [Toupin 1964; Toupin
1962; Mindlin 1963] with a J2 plasticity contribution [Fleck and Hutchinson 1997]. Instead
of considering only the gradient of the material spin tensor as done in [Fleck and Hutchin-
son 1993], they used the full second gradient of the displacement vector η

:

= u⊗∇⊗∇:

p(i) = σ
:

: ε̇
:

+ τ
:

···η̇
:

; (2.13)

where σ
:

is the Cauchy stress, ε
:

is the strain, τ
:

is commonly referred to as higher order

stress and ··· is the triple contraction. By assuming an additive decomposition of the second
gradient of displacement:

η
:

= η
:

e + η
:

p (2.14)

the definition of the strain energy density function is given once again in a quadratic form:

u(i) =
λ

2
εeiiε

e
jj + µ εeijε

e
ij + a1 η

e
ijjη

e
ikk + a2 η

e
iikη

e
kjj + a3 η

e
iikη

e
jjk + a4 η

e
ijkη

e
ijk + a5 η

e
ijkη

e
kji;

(2.15)
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where ai are material parameters to be calibrated and they include characteristic lengths.
For incompressible medium, some of the terms in the internal energy definition would
drop, and the internal energy would be function of the terms associated to µ, a3, a4 and
a5 only [Smyshlyaev et al. 1996]. An equivalent deformation measure is then defined as
function of the remaining terms, and it will characterize the standard plastic behavior of
the medium:

Ξp
2

= εp
2

eq +

3∑
i=1

l2pliχ
p2

eqi
; (2.16)

where lpli are three additional plastic characteristic lengths in the model, which will
govern the three different deformation modes each of one embodied by the three remaining
contributions of the second displacement gradient in the equivalent deformation measure
definition, that are, χp

2

eqi
.

2.2.4 Gradient of the cumulative plastic strain - Fleck and Hutchin-
son 2001

Successively, in 2001, Fleck and Hutchinson proposed even another version of the theory,
in which the additional variable was not the whole second gradient of displacement (that
also includes the gradient of the local rotation), but they focused on the gradient of the
plastic strain only [Fleck and Hutchinson 2001]:

ε
:

p ⊗∇; (2.17)

A direct comparison can be made between the SGPTs of Fleck1997 and Fleck2001 if we
compare the definition of the additional deformation measures they enriched their theory
with:

[sym (u ⊗∇)]
p ⊗∇ 6= (u ⊗∇ ⊗∇)

p
; (2.18)

This comparison highlights that the gradient of the plastic strain does not necessarily
coincides with the plastic part of the second gradient of displacement. In this case, the
strain energy potential would not depend on the gradient of the plastic strain, effectively
achieving the same description as in Fleck1993 if the characteristic length was set to be
much smaller than the plastic one:

u(i) =
λ

2
εeiiε

e
jj + µ εeijε

e
ij ; (2.19)

while the total power would still feels the contribution of the gradient:

p(i) = σ
:

: ε̇
:

+ ψ
:

···
(
ε̇
:

p ⊗∇
)

; (2.20)

where ψ
:

is an higher order stress that activates only in case gradients of plastic deforma-

tion are presents. The equivalent plastic strain in the present theory measures:

Ξp
2

= εp
2

eq + l2pl|∇εpeq|2; (2.21)

However, two subsequent contributions from Gurtin and Anand [Gurtin and Anand
2009] and Gudmundson [Gudmundson 2004], when analyzing the thermodynamical com-
patibility of this model, found out that it violates the requirement on the positiveness of
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the dissipation. Following these considerations, Fleck and Willis first [Fleck and Willis
2009a], and Hutchinson later [Hutchinson 2012], provided a reformulation of the theory
with the constitutive model of incremental nature, so that it fits in a thermodynamically-
compatible framework.

2.2.5 Irrotational plastic flow and Burgers tensor - Gurtin and
Anand 2005

In 2005 Gurtin and Anand proposed a SGPT characterized by an irrotational plastic
flow and by Burgers tensor as an energetically deformation measure [Gurtin and Anand
2005b; Gurtin and Anand 2005a]. Being the plastic strain irrotational, it means that,
contrary to Fleck1993, the condition θ

:

p = 0 is valid, therefore this term has no energetic
contribution:

p(i) = σ
:

: ε̇
:

e + τ
:

: θ̇
:

e + σ
:

p : ε̇
:

p + ψ
:

···
(
ε̇
:

p ⊗∇
)

; (2.22)

The definition of the density of free energy of the medium was explicitly made depen-
dent on elastic strain, ε

:

e, and Burgers tensor, G
:

, that reads:

G
:

= curlε
:

p; (2.23)

therefore, this means that the part of τ
:

associated with G
:

is recoverable, and it plays

the role of a back-stress. They identify a dissipative characteristic length, lpl, that comes
into plays when an equivalent plastic deformation is defined as:

Ξp
2

= |ε
:

p|2 + l2pl|
(
ε
:

p ⊗∇
)
|2; (2.24)

together with an energetic characteristic length, lel, that associates the deformation mea-
sures in the definition of the internal recoverable energy in a quadratic form:

u(i) =
λ

2
εeiiε

e
jj + µ εeijε

e
ij +

1

2
µl2elGijGij ; (2.25)

2.2.6 The common framework - Gudmundson 2004

Gudmundson provided a general framework with the potential to incorporate many SG-
PTs[Gudmundson 2004]. The internal power definition is his model depends of the elastic
strain, full plastic strain tensor and the gradient of the full plastic strain:

p(i) = σ
:

: ε̇
:

+
(
q
:

− σ
:

′
)

: ε̇
:

p + ψ
:

···
(
ε̇
:

p ⊗∇
)

; (2.26)

where q
:

is a deviatoric microstress, power conjugate to the plastic strain, σ
:

′ is the de-
viatoric part of the Cauchy stress and ψ

:

is an higher order stress, power conjugate to

the gradient of the plastic strain. From the application of the divergence theorem, it is
possible to write the equilibrium governing equations of the medium:

σ
:

·∇ = 0; (2.27)

ψ
:

·∇ + σ
:

′ − q
:

= 0
:

; (2.28)
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Additionally, Gudmundson defined the constitutive equations through thermodynami-
cal considerations, by explicitly evaluating the medium dissipation and by applying the
Clausius-Duhem inequality. The innovation of the theory lies in the identification of a
stress conjugate to the plastic strain and plastic strain gradient from the thermodynamical
point of view, such that the dissipation can be easily defined as:(

σ
:

− ∂φ

∂ε
:

e

)
: ε̇
:

e +

(
q
:

− ∂φ

∂ε
:

p

)
: ε̇
:

p +

ψ
:

− ∂φ

∂
(
ε
:

p ⊗ ∇̄
)
 :
(
ε̇
:

p ⊗∇
)

; (2.29)

where φ is the Helmholtz free energy potential. By imposing the second thermodynamic
principle (positive dissipation), Equation (2.29) defines the constitutive model of the
medium (elastic part) and the dissipation:

σ
:

=
∂φ

∂ε
:

e
; (2.30)

π =

(
q
:

− ∂φ

∂ε
:

p

)
: ε̇
:

p +

ψ
:

− ∂φ

∂
(
ε
:

p ⊗ ∇̄
)
 :
(
ε̇
:

p ⊗∇
)

; (2.31)

where π is the medium density dissipation. He showed that, with this mathematical
description, it is possible to retrieve the Aifantis1987 SGPT, the Fleck1997 SGPT and
Fleck2001 SGPT.

2.2.7 Dislocations-enriched SGT

Gao and coworkers proposed in 1999 a Mechanism-Based Strain Gradient Theory (MSGT)
[Gao, Y. Huang, et al. 1999; Y. Huang et al. 2000]. This SGT aims at correlating the
strain gradient with Statistically Stored Dislocations (SSD) and Geometrically Necessary
Dislocations (GND), and it is built upon the dislocations-based Taylor’s flow stress [Taylor
1938], whose shear stress law description reads:

σ = αµb
√
ρSSD + ρGND; (2.32)

where σ is the flow stress, α is a constant usually assumed to be 0.5 [Nix et al. 1998], µ
is the shear modulus and b is the magnitude of the Burgers vector. In a single crystal,
the GNDs are directly related with the plastic strain gradient [Nye 1953; Ashby 1970;
Stölken et al. 1998]:

ρGND =
r̄ηeq
b

; (2.33)

where r̄ is the Nye factor and ηeq is an equivalent measure of the strain gradient, that
they evaluated as:

ηeq =

√
1

4
η
:

···η
:

; (2.34)

The flow stress, assuming von Mises plasticity, can be written as [Nix et al. 1998]:

σ = σY

√
f2(ε) + l ηpeq; (2.35)
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where σY is the yield stress measured without strain gradient effect (ρGND = 0), f2(ε)
is a function of the strain, and l is a characteristic length that reads:

l = 3α2

(
µ

σY

)2

b; (2.36)

The introduction of the strain gradient in the MSGT, entails the introduction of an
additional term in the internal power density definition:

p(i) = σ
:

: ε̇
:

+ ψ
:

···η̇
:

; (2.37)

where σ
:

and ε
:

are the usual Cauchy stress and usual strain, and ψ
:

and η
:

are higher

order stress tensor and strain gradient tensor. One of the conclusions outlined by Gao et
al. was that due to the fact that:

∂σij
∂ηklm

6= ∂ψklm
∂εij

(2.38)

a potential for the strain energy density cannot exist. In the MSGT, the size effect is
induced by including the influence of the strain gradient in the flow stress model.

In 2004 Huang proposed a simplified model, based on the MSGT, called the Con-
ventional Mechanism-Based Strain Gradient Theory (CMSGT). This theory is called a
low-order theory, whereas the MSGT is a high order theory, and the difference lies in the
fact that the CMSGT makes use of the plastic strain gradient only at the constitutive
level, leaving the contribution of the higher order stress out of the theory. This notably
simplifies the implementation of the theory, although the well-posedness of the associated
boundary value problem is not ensured [Niordson et al. 2003].

Another major contribution in the development of dislocations-based strain gradient
theories can be identified in the work of Menzel and Steinmann [Menzel et al. 2000]. They
proposed a phenomenological description of the hardening process through introduction
of second and fourth order gradient of the plastic deformation for single crystals and
polycrystals materials respectively. They exploited the second thermodynamic principle
(Clausius-Duhem inequality), in which the definition of the dissipation was given in an
additive decomposition. One of the terms composing the dissipation was dependent upon
the dislocation density, which was measured as incompatibility of the plastic part of the
gradient of the displacement field:

α
:

p = curl (u ⊗∇)
p

; (2.39)

As an example, they proposed, for single crystals, a quadratic Helmholtz potential func-
tion of α

:

p, in which a characteristic length appears to adimentionalize the curvature. By
defining the free energy as such, the yield condition, which depends on the stress conju-
gate to the dislocation measure, depends on the curvature, therefore, the yield conditions
become a partial differential equation in which there exists a dependency on the second
gradient of the displacement field.

Regarding polycrystals, they adopted another measure to quantify the incompatibility
of the plastic field:

η
:

p = curl
(

curlε
:

p
)

; (2.40)
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where ε
:

is the usual strain. Once again, the Clausius-Duhem inequality is explicitly given
as summation of terms, and one of them depends on this incompatibility measure. By
identifying the stress conjugate to this measure, and by giving the yield condition as
function of this stress, it is possible to verify that the yield condition contains fourth
order gradient of the displacement field.

Among the SGTs incorporating dislocation measures, the research line initiated by
Wulfinghoff et al. also deserves to be mentioned. This viscoplastic theory was originally
developed in [Wulfinghoff and Böhlke 2012], and then successively modified to incorporate
the effect of grain boundary resistance on the plastic flow [Wulfinghoff, Bayerschen, et al.
2013]. They adopted the combination of a micromorphic-like approach (see Section 2.2.9)
with a penalty term in the free energy to incorporate the effect of the plastic strain and
its gradient on the yield limit development.

2.2.8 Gradient of micro-structure rotation - Cosserat Media

The Cosserat model derives from the work of the Cosserat brother at the beginning
of the 20th century [Cosserat et al. 1909]. This continuum mechanics theory enhances
the kinematics of the continuum with additional degrees of freedom, that are meant
to represent the microstructural rotation. In the three-dimensional space, the Cosserat
theory possesses three additional degrees of freedom: the three components of the pseudo-
vector ω that represents the local rotation of the microstructure. This vectorial field is
defined, as the displacement field, over the entire domain under consideration. Another
additional feature of the Cosserat kinematics is the definition of the gradient of the vector
of microrotation, ω ⊗∇, which is sometimes referred to as wryness, and it incorporates
both the curvature and the torsion of the microstructure. Based on the defined kinematic
measures, the internal power reads:

p(i) = σ
:

: ė
:

+ ξ
:

: Γ̇
:

; (2.41)

where e
:

and Γ
:

are the Cosserat strain and wryness, defined as:

e
:

= u ⊗∇ + Ω
:

; (2.42)

Γ
:

= ω ⊗∇; (2.43)

where ξ
:

is the couple stress conjugate of the wryness, and the tensor Ω
:

is obtained from
the micro-rotation vector ω through the Levi-Civita permutation operator:

Ω
:

= −1

2
ε
:

· ω; (2.44)

which returns a second order tensor. To be noted that if material and microstructure
rotations are equivalent, the Cosserat strain coincides with the classical strain, the wryness
becomes equal to the curvature in the Fleck1997 SGPT, and the Cosserat theory becomes
a constrained Cosserat theory [Koiter 1964]. The Cosserat theory therefore employs the
gradient of the rotation vector to regularize the boundary value problem. Assuming an
elastic isotropic behavior, the constitutive model of the Cosserat media can be written
as:

σ
:

= λ tr
(
e
:

e
)

I
:

+ 2µ sym
(
e
:

e
)

+ 2µc skw
(
e
:

e
)

; (2.45)

µ
:

= α tr
(
Γ
:

e
)

I
:

+ 2β sym
(
Γ
:

e
)

+ 2 γ skw
(
Γ
:

e
)

; (2.46)
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from which, two (more can be identified [Forest 2009]) elastic characteristic lengths can
be identified as [Khoei et al. 2010]:

lbel =

√
γ

µ
; (2.47)

ltel =

√
α+ β + γ

2µ
; (2.48)

where the superscripts t and b indicate whether the characteristic length governs the
torsional or bending response of the material respectively. The constrained Cosserat
theory can also be obtained by enforcing the skew symmetric part of the Cosserat strain
to be negligible through the employment of high enough values of the coefficient relating
this term to the stress (µc) in Equation (2.45). The plastic framework of the Cosserat
media can be taken from the one developed by de Borst [de Borst 1991a], in which the
J2 von Mises plasticity is extended to the Cosserat framework, and the equivalent stress
measure reads:

σeq =

√
3

2

(
aσ
:

′ : σ
:

′ + aσ
:

′ : σ
:

′T + bµ
:

: µ
:

+ bµ
:

: µ
:

T
)

; (2.49)

from which the plastic characteristic length of the Cosserat Media can be obtained as:

lp =

√
a

b
; (2.50)

2.2.9 Gradient of micro-structure deformation - Micromorphic
Media

The Cosserat medium allows the continuum to have an independent rotation from the
material one. Similarly, the micro-strain framework allows the continuum to have an ad-
ditional, independently defined strain (six additional degrees of freedom) that differs from
the classical strain definition [Forest and Sievert 2006]. In reality, these two models are
nothing but a constrained micromorphic model in which the micro-strain is constrained
(Cosserat or Micropolar) or the micro-rotation is constrained (micro-strain). This theory,
independently developed by Mindlin [Mindlin 1963] and Eringen and Suhubi [Eringen
and Suhubi 1964], adopts the gradient of the additional independent microdeformation
field to describe the complete status of the domain, thus adding nine more independent
variables to describe the media [Eringen 1999a]. The internal power in the micromorphic
media reads:

p(i) = σ
:

: (u ⊗∇) + a
:

: φ
:

+ b
:

···
(
φ
:

⊗∇
)

; (2.51)

where φ
:

is the second order micromorphic deformation tensor containing the additional
nine degrees of freedom, a

:

and b
:

are power conjugates to the micromorphic deforma-

tion and to its gradient. In this framework, following Eringen [Eringen 1999a], a single
characteristic length arises naturally from the angular moment balance equation:

φ
:

− l2∇2φ
:

= u ⊗∇; (2.52)
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that links the displacements with the Micromorphic degrees of freedom [Dillard et al.
2006].

The full micromorphic theory enhances the continuum with 9 additional degrees of
freedom, but it is still possible to take advantage of the versatility and the easiness of
the numerical implementation of this theory by adopting a scalar modification of the
micromorphic theory. Such solution was exploited by Anand et al., who used a single
additional degree of freedom provided by the simplified micromorphic theory to model
an equivalent measure of the cumulative equivalent plastic strain [Anand et al. 2012]. In
this case, the micromorphic theory assumes a form similar to the previously discussed
SGT, but it distinguishes itself from the others in the solid thermodynamic foundations
on which it relies.

The micromorphic approach has also been used by Poh et al. as an implicit formulation
that accommodates the gradient of the plastic strain [Poh et al. 2011]. The internal power
that they defined has the following form:

p(i) = σ
:

: ε̇
:

+ Q
:

: ˙̃
:

εp + τ
:

···
(

˙̃
:

εp ⊗∇
)

; (2.53)

where σ
:

and ε
:

are the usual Cauchy stress and strain, ε̃
:

p is the microscopic plastic strain,
Q
:

and τ
:

are the work conjugate to the microscopic plastic strain and its gradient. The

microscopic plastic is a non-local measure of plastic deformation of the continuum and it
is different form the the plastic strain. The governing equation of the microscopic plastic
strain is obtained by developing the local equilibrium condition of the angular moment,
that transforms into a governing equation of the higher degree of freedom, that is, the
microscopic plastic strain, and it reads:

ε̃
:

p = ε
:

p + l2p∇
2ε̃
:

p; (2.54)

where lp is a plastic characteristic length tuning the magnitude of the non-locality of the
formulation. If lp = 0, the classical theory is retrieved. Equation (2.54) is a Helmholtz-
type differential equation. The scalar version of this theory was previously developed
by Peerlings [Peerlings 2007], and it can be easily retrieved by adopting a scalar plastic
microstrain instead of a tensorial one. In the scalar version, the definition of the free
energy was given in a quadratic form as:

u(i) =
1

2
ε
:

e : C
:
:

: ε
:

e +
h

n+ 1
pn+1 +

1

2

(
3

2
h̃

)
(p̃− p)2 +

1

2

(
3

2
h̃

)
l2p (∇p̃)2

; (2.55)

where C
:
:

is the elastic fourth-order tensor, h and h̃ are hardening moduli, incorporated in

the is free energy to model hardening, p and p̃ are equivalent plastic strain and equivalent
plastic microstrain, n a material parameter.

2.3 Reported Applications of GCM in Manufacturing
Processes Simulation

The implementation of GCM in a FEM solver is not an easy task, and the more complex
the model, the more difficult is the implementation. Furthermore, if the theory has to
be used for machining simulation, this represents an additional element of difficulty due
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to the additional features that must be taken care of, such as friction, temperature and
strain rate influence, large deformation framework and so on.

From the point of view of FE implementation, in GCM two different groups can
be delineated: one that only requires to access and enhance the material behavior of
the Finite Elements, and another one that requires a deeper level of accessibility. For the
latter, a total new Element formulation must be provided. The key feature to differentiate
between the two groups is the necessity of defining new degrees of freedom for the element.
Whether it is demanded to add another degree of freedom or not, it depends on the
nature of the continuum description that must be used: if the strain gradient needs to
be evaluated through solution of PDEs, then the variable carrying the strain gradient
measure requires to be treated as an additional degree of freedom, otherwise, the strain
gradient will be treated as a solution-dependent variable. In the latter case, the strain
gradient depends on the displacement field on a similar way the classical strain measure
does, and the classical structure of the continuum description is unaltered.

Among the theories previously presented, the CMSGT is the only one that does not
require modifications of the element formulation. This traduces in a easier implemen-
tation of the theory, and this represent an advantage that should not be superficially
neglected, especially if combined with the already mentioned difficulties characterizing
machining simulations. Nonetheless, on a similar low-order theory developed by Acharya
and Bassani [Acharya et al. 1996] and Bassani [Bassani 2001], doubts have been raised on
the physicality of the obtained response and on the well-posedness of the boundary value
problem.

In the present section, several applications of SGPTs to machining operations will be
presented. Although it is possible to find plenty of researches in literature focusing on
the implementation and verification of SGPTs, here the objective is to gather the main
contributions toward the application of SGPTs for manufacturing processes. Important
advancements were done in the theoretical understanding of the phenomenon occurring
during machining operations[J. Huang et al. 2001; Laheurte et al. 2006], but unfortunately
not many contributions on the implementation of these SGPT for machining were found.

2.3.1 Scalar SGPT applied to flat punch molding

The first example of applications of SGPT in manufacturing operations is the one provided
by Guha et al. [Guha et al. 2014]. They implemented the Fleck1997 SGPT as revisited
by Fleck and Hutching in 2001 (ref. Section 2.2.4) in a viscoplastic isothermal large
deformation framework to simulate flat punch molding. This manufacturing process is
similar to the indentation test in case the size of the surface of the punch is comparable
to the material grain size, thus achieving similar deformation fields to the ones developed
during an indentation test. This test is of particular interest for manufacturing processes
acting at macroscale (≈ µm).

The main disadvantage of this SGPT is that the equivalent plastic strain is treated as
an independent variable of the continuum, therefore it requires to be embedded as an ad-
ditional degree of freedom in a Finite Element Procedure. Consequently, the independent
field of the equivalent plastic strain must be solved through PDEs, and since the plas-
tic deformation is not intrinsically defined over the domain (but rather it derives from
the current deformation state of the media) the domain of definition of the equivalent
plastic strain field requires to be updated at every iteration. The procedure of finding
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Figure 2.8: Predicted characteristic hardness against the characteristic length using the
viscoplastic model of Fleck2001 SGT [Guha et al. 2014]. w is half the punch width, H is
the hardness, σ0 is the initial material yield stress and l∗ is the characteristic length as
in Equation (2.21).

the boundaries of the definition domain of the equivalent plastic strain is facilitated if a
Corotational approach or an Updated approach are used.

They performed simulations of a flat punch molding using different values of charac-
teristic length. A strong dependency of the characteristic hardness on the characteristic
length (or on the punch width) is predicted, as reported in Figure 2.8. As expected, this
trend is very similar to the one characterizing the indentation tests [Nix et al. 1998; Shu
et al. 1998; Poole et al. 1996]. Their research further emphasize the necessity of adopting
a SGPT to simulate manufacturing operations acting on the micro scale.

2.3.2 SGPT used to model rolling at small scale

The employment of the full gradient of plastic strain for manufacturing operations is
reported in a recent contribution by Nielsen et al. [Nielsen et al. 2016]. They used the
SGPT described by Gudmunson [Gudmundson 2004] first, and Fleck and Willis [Fleck and
Willis 2009b] later, to simulate rolling processes of metal sheets of up to 5 µm of thickness
in 2D. Simulations were performed under steady-state condition, integrations were done
with forward Euler scheme, and the continuum was enhanced with 9 additional degrees of
freedom, being the components of the plastic strain tensor. Gaussian integration schemes
were used for integration over the element. The contact between the plate and the roll
was modeled through a sticking-sliding model. The material hardening was set to be
dependent on the strain gradient.

Rolling simulations were carried out using different ratios of the characteristic length
over the sheet thickness, and the results replicated the experimental values accurately.
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The simulated rolling force demonstrated sensitivity over the size-effect, similarly to what
was experienced experimentally. The authors outlined that large size-effects were mea-
sured when the characteristic length over thickness ratio was 0.25.

2.3.3 MSGT applied to orthogonal cutting

The first line of research here reported is the one originated from Liu et al. [K. Liu et al.
2007; Kai Liu 2005; K. Liu et al. 2006]. They implemented the Mix-Gao MSGT, thereby
adopting a non-local Taylor-derived material hardening description as in Equation (2.35),
where the equivalent measure of the strain gradient was evaluated as in Equation (2.34),
and they used a non-local volume integral to evaluate the strain gradient at every inte-
gration point as proposed by Gao and Huang [Gao and Y. Huang 2001]:

ηijk =

∫
V

[
εikξj + εjkξi − εijξk −

1

4
(δikξj + δjkξi) εpp

]
dV

(∫
V

ξmξkdV

)−1

; (2.56)

where ξi is the i-th local coordinate over which integration is performed. In this frame-
work, the classical continuum mechanics description stays the same, and the strain gra-
dient effects only the plastic flow, acting as an additional source of hardening (this is
after all the reasoning behind the MSTG). The flow stress they used is the one in Equa-
tion (2.35), and they used the Johnson-Cook evolution of the flow stress to replace f
[Johnson et al. 1985]. The characteristic length was identified with:

l = 18α2

(
µ

σY

)2

b; (2.57)

They implemented this model in a Finite Element Procedure, using ABAQUS® Implicit
through a UMAT FORTRAN subroutine, and they used this model to study the effect of
the radius of the cutting tool during orthogonal micro-cutting [K. Liu et al. 2007], and to
verify the increments in material hardening and cutting energy by using the SGPT [K.
Liu et al. 2006]. In Figure 2.9a a comparison is reported from the work of Liu et al. in
terms of Specific Cutting energy while using different tool radii. In Figure 2.9b instead,
the effect of using the SGPT is reported again in terms of Specific Cutting Energy. They
used a sticking-sliding friction model as the one developed by Zorev [Zorev 1963]. The
thermal fields during simulations have been solved through the classical heat equation.
Heat was assumed to generate at the tool-workpiece contact location due to friction and
at the plastic zones due to plastic work; the Taylor-Quinney constant was set to 0.9 (90%
of the plastic work would transform into heat) [Taylor and Quinney 1934]. An adaptive
remeshing algorithm was used to obtain chip separation. The minimum mesh size they
used measured 0.06 µm in the cutting zone, with a chip thickness of 0.5 µm.

The work of Liu et al. represents a big contribution toward the application of SGPTs
for machining simulation, both in terms of progress toward the objective and in terms
of proof of the fact that SGPT are necessary to achieve it. However, the disadvantages
of using a MSGT are that the system of PDE describing the continuum behavior have
not been rigorously derived and thermodynamical consistency of the model has not been
proved, therefore, for future development, a more complete and rigorous SGPT would be
ideally used, or a thermodynamically-consistent MSGT would have be provided.

Another contribution in simulating machining with SGPTs is the one provided by
Asad, Mabrouki et al. [Asad et al. 2010; Asad 2010; Mabrouki et al. 2016]. They
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(a) (b)

Figure 2.9: Predicted effect of the tool radius on the Specific Cutting Energy Variation
during orthogonal cutting test (a), and effect of the adoption of a SGT on the predicted
Specific Cutting Energy (b) [K. Liu et al. 2007].

also used the MSGT as the one used by Liu et al., but they estimated the equivalent
strain gradient measure based on geometrical consideration of the workpiece and the
tool used for machining operation [Asad 2010]. This has large implications on the limited
applicability of this theory for a generic simulation. They also quantified the characteristic
length as in Equation (2.57). Besides the evaluation of the strain gradient, they used the
same flow stress description as the one used by Liu et al., but the chip formation was
induced through a damage-enriched Johnson-Cook behavior law, where damage initiation
and propagation were defined based on ductile Johnson-Cook fracture behavior [Asad et
al. 2010]. They also used an ABAQUS® Explicit VUMAT subroutine to implement the
model. In Figure 2.10 the difference between using this variety of MSGT and the classical
continuum mechanics description is reported for different cutting speeds.

2.3.4 Micromorphic Media applied to forming

The discussed Micromorphic theory is enhancing the medium by 9 additional degrees of
freedom, this being an equivalent deformation tensor of the microstructure defined at each
point of the continuum. It has also been said that the Micropolar and the Microstrain
theories are nothing but a constrained version of the Micromorphic theory. Due to the
physics that Eringen described with the Micromorphic theory, this terminology associates
to the introduction of additional degrees of freedom in the system that are connected
with the microstructure. Through the years, many theories that enhance the continuum
with additional degrees of freedom have been semantically linked with the Micromorphic
theory, although the physics they described was not related to microstructure. However, in
the literature, this became an established nomenclature for continuum mechanics theories
enhancing the media with additional degrees of freedom.

The additional degree of freedom can be used for different purposes, it can be used
for carrying an equivalent measure of the cumulative plastic strain [Peerlings 2007; Poh
et al. 2011; Mazière et al. 2013; Anand et al. 2012] or for an equivalent damage variable
[Saanouni and Hamed 2013; Forest 2009]. In any case, the equation governing the angular
momentum (that for classical continuum mechanics ensures the symmetry of the Cauchy
stress tensor) transforms into a balance equation for the additional degrees of freedom
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Figure 2.10: Predicted Specific Cutting Energy Variation during orthogonal cutting test
for different cutting speed with and without SGT [Mabrouki et al. 2016].

and it is referred to as generalized balance equation. In case these additional variables are
meant to replace already existing variables, the generalized balance equation transforms
into a coupling equation between additional and already existing variables.

In 2017, Diamantopoulou et al. used the Micromorphic theory to enhance the con-
tinuum with one scalar additional degree of freedom (meant to represent the damage
variable of the medium) and they simulated some metal forming processes with this the-
ory [Diamantopoulou et al. 2017]. The enhanced internal power of the continuum reads:

p(i) = σ
:

:
(
u̇
:

⊗∇
)

+ Y ḋ+ Z ·∇ḋ; (2.58)

where σ
:

is the Cauchy stress tensor, d is the additional Micromorphic damage variable,
Y and Z are higher order stresses associated to the damage variable and its gradient
respectively. The description of the theory continues with the considerations related to
the thermodynamical admissibility of the theory: the definition of the Helmholtz free
energy, the definition of the dissipation potential and the subsequent derivation of the
material constitutive behavior and the elastoplastic flow rules from the previously defined
potentials. In this medium description, the characteristic length appears in the generalized
balance equation coupled with the gradient of the Micromorphic damage variable.

The theory was implemented in ABAQUS® Explicit, through a VUEL subroutine.
The introduction of an additional degree of freedom implies a modification of the system of
PDEs to be solved, thereby compelling the modification of the Finite Element description
rather than an higher-level modification of the material module.

The authors verified the developed formulation through tensile test and bending both
performed using the material parameters of the DP1000 steel. The results of their analysis
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demonstrated an embedded mesh regularization property of the model, that was proven by
varying the mesh size, whereas the global force-displacement graphs remained unchanged.

2.4 Conclusion

By distinguishing between higher order and higher grade formulations, the choice of im-
plementing a continuum mechanics theory belonging to one group or the other depends on
the specifications of the process that must be simulated. In general, higher grade theories
are more complex to be implemented from a FEM point-of-view, whereas higher order
theories are, in most cases, an extension of the classical FEM implementation to an higher
number of degrees of freedom, thereby they result more straightforwardly implementable.
In Table 2.1 the main characteristics of the presented theories of GCM are reported.

Name d.o.f. Additional feature Higher Order/Grade

Aifantis (Sec. 2.2.1) 3 σY ∝ ∇2εpeq Higher Grade

Fleck1993 (Sec. 2.2.2) 3 p(i) ∝ skew (u̇ ⊗∇) Higher Grade

Fleck1997 (Sec. 2.2.3) 3 p(i) ∝ u ⊗∇ ⊗∇ Higher Grade

Fleck2001 (Sec. 2.2.4) 3 p(i) ∝ ε
:

p ⊗∇ Higher Grade

Gurtin (Sec. 2.2.5) 3 p(i) ∝ (ε
:

p ⊗∇,θ
:

) Higher Grade

Gudmundson (Sec. 2.2.6) 3 p(i) ∝ ε
:

p ⊗∇ Higher Grade

Gao (Sec. 2.2.7) 3 σY ∝ u ⊗∇ ⊗∇ Higher Grade

Cosserat (Sec. 2.2.8) 6 p(i) ∝ (θ
:

,Γ
:

) Higher Order

Micromorphic (Sec. 2.2.9) 12 p(i) ∝ (φ
:

,φ
:

⊗ ∇) Higher Order

Table 2.1: Summary of the presented theories belonging to GCM.

For the simulation of machining operations that involve the development of high tem-
peratures, regardless of the choice between higher order or higher degree, it is require the
adoption of a theory incorporating a thermodynamical description that would ensures a
proper thermodynamically-consistent description. The suggested approach would be to
define the dissipation potential and the Helmholtz free energy from which the constitutive
behavior of the medium would directly follow. If higher temperatures are foreseen, the
dissipation potential assumes a fundamental role in determining the material response,
thereby a proper calibration of the potential at operational conditions is required. If
extremely high temperature develops, e.g. through the friction stir welding technique,
melting temperature is likely to occur, and the solid description of the medium is not
adequate anymore, since the continuum behaves as liquid rather than solid, therefore a
mixed Lagrangian-Eulerian formulation is required to performed the simulation. How-
ever, the effect of the strain gradient during friction stir welding is not the main character
of the whole process, therefore this manufacturing technique is left out of this manuscript.
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One of the main drawback of the majority of the higher order theories is that, since
the plastic strain is an additional variable of the system, the boundary conditions in terms
of plastic strain must be applied at the moving elasto-plastic boundary, so another addi-
tional step is required to identify this boundary inside the original domain. Furthermore,
if the simulated manufacturing technique involves the development of plastic strain at
the domain boundaries, e.g. orthogonal cutting, then the choice related to the type of
boundary conditions (in terms of plastic strain) that must be applied at this boundary
is very important. If, however, the process that must be simulated does not involve the
production of plastic strain at the boundary, then this question does not need to be posed,
and the choice of using this type of continuum theory is not unfavorable. Two simulations
of orthogonal cutting using SGPTs were reported, and both of them are using MSGT. In
light of the previous discussion, the choice of the MSGT is a smart solution, since it has
already been mentioned that this type of SGPT does not require the plastic strain field
to be solved through PDEs, therefore it is not characterized by this type of problem.

To conclude, the choice of the SGPT to be adopted for simulations of manufacturing
operations must be taken while looking at several characteristic of the observed phenom-
ena occurring during the process:

� The forces/moments used to shear/shape the continuum localize in areas that are
comparable to the grain size of the metal; in this case a further hardening due to
the dislocations movement must be properly captured by adopting a SGPT;

� The velocity with which the continuum is deformed might induce material to behave
viscously, and this must be covered by a proper design of the material behavior;

� The temperature developed during the process might be relatively high, and this
imposes to considerate the thermal behavior (often adiabatic) that are taken into
account by the definition of a thermodynamically-consistent description of the con-
tinuum;

� Implementation-wise if the plastic deformation is expected to occur at the bound-
aries, a higher degree theory is favorable.
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Chapter 3

A micromorphic plasticity
explicit scheme for metal
manufacturing simulations

Good quality manufacturing operation simulations are essential to obtain reliable nu-
merical predictions of the processes. In many cases, it is possible to observe that the
deformation localizes in narrow areas, and since the primary deformation mode is under
shear, these areas are called shear bands. In classical continuum mechanics models, the
deformation localization may lead to spurious mesh dependency if the material locally ex-
periences thermal or plastic strain softening. One option to regularize such a non-physical
behavior is to resort to non-local continuum mechanics theories. The research presented
in this chapter adopts a scalar micromorphic approach, which includes a characteristic
length scale in the constitutive framework to enforce the plastic strain gradient theory to
regularize the solution. Since many manufacturing process simulations are often assessed
through finite element methods with an explicit solver to facilitate convergence, we present
an original model formulation and procedure for the implementation of the micromorphic
continuum in an explicit finite element code. The approach is illustrated in the case of
the VPS explicit solver from ESI GROUP. According to the original formulation, an easy
way to implement a scalar micromorphic approach is proposed by taking advantage of
an analogy with the thermal balance equation. The numerical implementation is verified
against the analytical solution of a semi-infinite glide problem. Finally, the correctness
of the method is addressed by successfully predicting size effects both in a cutting and a
bending tests.

The layout of the chapter is as follows. The formulation of the micromorphic analytical
model is provided in Section 3.2 in which both the kinematics and the energetic aspects of
the theory are presented, alongside its thermodynamic description, so that the recoverable
and dissipative contributions are explicitly stated as such. The section concludes with
the pivotal analogy between the thermal and the micromorphic balance equations, which
further simplifies any possible implementation of the theory in a Finite Element software.
In Section 3.2.7 the discretization of the equations and the implementation of the method
in the explicit finite element software VPS/Pam-Crash ® from ESI [ESI Group 2000] will
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be described. Section 3.3 will be used to present a simple analytical solution that will be
useful to verify the implementation of the model in a finite element framework. Finally,
in Section 3.4 the numerical method will be used to simulate two manufacturing opera-
tions in which significant strain gradient effects are expected to take place, namely the
shear/trimming operation and the bending test. The mesh-dependency will be analyzed,
along with the size-effect in terms of cumulative plastic strain distribution. Conclusions
follow in section 3.5.

3.1 Introduction

In recent years, different generalized continuum mechanics theories have been used to
simulate manufacturing operations. A flat punch molding process was simulated by Guha
and co-workers using the plastic strain gradient theory [Guha et al. 2014]. A similar
theoretical framework was used to simulate steady-state rolling processes in [Nielsen
et al. 2016]. Other relevant contributions in the application of non-local theories for
manufacturing operation simulations can be found in the investigations of Liu et al. [K.
Liu et al. 2007; Kai Liu 2005; K. Liu et al. 2006] and Asad et al. [Asad et al. 2010],
who both reproduced orthogonal cutting simulations using strain gradient effects. More
recently, Diamantopoulou and co-workers [Diamantopoulou et al. 2017] used a non-local
continuum mechanics theory enhanced with the gradient of a scalar damage variable to
simulate metal forming.

Besides the strain gradient theories, other generalized continuum mechanics theory
could solve the aforementioned problems. The micromorphic approaches, for instance,
involve the gradient of a tensor of any rank, supposed to perform the targeted strain
gradient operation [Forest 2009], and they can also be used to overcome the limitations
of the classical continuum mechanics. The micromorphic approach introduces additional
degrees of freedom in the problem, and, depending on the type of theory that is required,
the computational cost might dramatically increase. For instance, a full-order micro-curl
model, as the one proposed by Cordero et al. [Cordero et al. 2010], requires at least 5
additional degrees of freedom in two-dimensional settings. In contrast, the micromorphic
approach involving a scalar micromorphic variable, so-called reduced-order micromorphic
model, includes only one additional degree of freedom.

In this context, our contribution aims at investigating the size-effect predictions and
regularization properties of a time-dependent strain gradient theory that is implemented
through a scalar micromorphic framework using an explicit formulation, in which a
viscoplastic micromorphic-related variable is included, but no micromorphic inertia is
present. The main novelty of the proposed method lies in the easiness of the implemen-
tation of the theory in an already-well-structured finite element solver. It represents an
alternative to existing implementations of such micromorphic models like the one pro-
posed by Saanouni and Hamed [Saanouni and Hamed 2013]. The framework that we will
present can, in fact, simply be solved through a common thermal-field solver, and such
crucial aspect will be properly addressed in the present chapter.

Notations

In this work, the following notations are used. The first, second and fourth-order tensors
will be indicated by a bar, tilde or double tilde, respectively, underneath the tensor: a,a

:
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and a
:
:

. The single or double dot above of a degree of freedom indicates the first or second

time derivative respectively. Single and double contractions are indicated by single dot
or double dots between the tensors and they operate on the inner indices of the tensors:

a
:

· b
:

= c
:

; ⇐⇒ aijbjk = cik, (3.1)

a
:

: b
:

= c; ⇐⇒ aijbij = c, (3.2)

where Einstein index summation convention applies. The single and double tensor prod-
ucts operate as:

a ⊗ b = c
:

; ⇐⇒ aibj = cij , (3.3)

a
:

⊗ b
:

= c
:
:

, ⇐⇒ aijbkl = cijkl, (3.4)

3.2 Theoretical Formulation and Finite Element Im-
plementation

The micromorphic scheme has been proven to be a straightforward and relatively sim-
ple procedure to introduce additional degrees of freedom to the continuum in order to
achieve non-local regularization effects [Forest 2009; Forest 2016], and it has been used
already in several other contributions [Poh et al. 2011; Anand et al. 2012; Mazière et al.
2015; Saanouni and Hamed 2013; Saanouni 2013; Diamantopoulou et al. 2017; Davaze
et al. 2021]. Among the cited works, the only ones to adapt and implement the micro-
morphic approach for an explicit time-dependent problems can be found in [Saanouni
and Hamed 2013; Saanouni 2013; Diamantopoulou et al. 2017; Davaze et al. 2021]. The
aforementioned authors presented a time-dependent framework, in which the governing
equations for the micromorphic variables include a second-order time derivative of the
micromorphic variables. Additional coefficients associated with this term were included
to characterize the inertia of the micromorphic variables, a role that is usually assigned
to the density for the governing equations of displacement fields. Furthermore, Davaze
and co-workers [Davaze et al. 2021] included some dissipation terms associated with the
first-order time derivative of the micromorphic variable in governing equation so as to
avoid any oscillation of the solution caused by the form of the partial differential equation
(specifically induced by the presence of a second-order time derivative term). However,
the authors of this research used the theory to achieve mesh-regularization for fracture
growth simulations in metals. Exploring the extent of such an approach for manufacturing
operation simulations was not their target.

In the present work, we make use of a scalar micromorphic approach to govern the
strain gradient effect and to restore mesh independence. The classical continuum mechan-
ics model is enhanced with one additional degree of freedom. The governing equations
for such an additional variable will be directly derived from the definition of the internal
power. The micromorphic approach will be used to control the distribution of the cu-
mulative plastic strain. Therefore, the additional degree of freedom will be enforced to
follow this quantity through a penalty term.

In this section, the kinematics of the theory will first be provided, from which the
balance equations can be derived, the definition of the Helmholtz free energy and of the
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Clausius Duhem inequality will follow. Finally, the section will conclude with the analogy
between the micromorphic-balance equation and the thermal field equation.

3.2.1 Kinematics and Balance Equations

The kinematics of the model follows the one commonly used in the classical continuum
mechanics. The second-order strain tensor is defined as:

ε
:

= sym [u ⊗∇] , (3.5)

with u being the displacement vector and ∇ denotes the gradient of a vector. Further-
more, the total strain tensor is additively decomposed into an elastic part ε

:

e and a plastic
part ε

:

p as follows:

ε
:

= ε
:

e + ε
:

p, (3.6)

By indicating the velocity v as u̇, we can define the strain rate as:

ε̇
:

= sym [v ⊗∇] . (3.7)

The variables which are supposed to carry the targeted strain gradient effects are selected
among the available state variables which can be tensors of any rank. Here, we consider a
scalar variable. Two types of degrees of freedom (DOFs) are applied to the material point:
the classical displacement vector u and the additional scalar micromorphic variable pχ
associated with the cumulative plastic strain p through the penalty term Hχ to be defined
later. Therefore, every node is endowed with 3 displacement and 1 micromorphic variable:

DOF = {u, pχ}. (3.8)

Based on the definition of the strain and of the micromorphic variable, we are allowed to
write the internal and kinetic power densities of the body as dependent on the strain, the
micromorphic variable and its gradient1:

p(i) = σ
:

: ε̇
:

+ a ṗχ + b ·∇ ṗχ, (3.9)

p(k) = ρü · u̇, (3.10)

where ρ is the mass density and ü is the acceleration vector. Here, a and b are generalized
stresses associated with the micromorphic variable and its gradient, respectively. In this
formulation, the densities of power generated by external forces and contact forces can
be written as:

p(e) = f e · u̇ + ae ṗχ + be ·∇ṗχ, (3.11)

p(c) = f c · u̇ + ac ṗχ, (3.12)

with f e being the density of body force, ae and be are the generalized body stresses
associated to pχ and its gradient. f c and ac are the classical traction and the micromorphic

1There is a possibility here to explicitly define the kinetic and damping energy of the continuum as
function of the micromorphic variable as well. Such type of descriptions have already been proposed
by other researchers[Nedjar 2001; Saanouni and Hamed 2013; Davaze et al. 2021]. In the present work,
however, we will include instead a viscous contribution of the micromorphic variable in the constitutive
model of the continuum.
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traction. The contact power density defined in Eq. (3.12) clearly states that the gradient
of the micromorphic variable is not linked to any boundary effect. The global power
balance law can be written as:∫

Ω

(
p(i) + p(k)

)
dΩ =

∫
∂Ω

p(c)dS +

∫
Ω

p(e)dΩ, (3.13)

which, through Eq.s (3.9), (3.10), (3.11) and (3.12), transforms into:∫
Ω

u̇ ·
[
−σ
:

·∇ − f e + ρü
]

dΩ +

∫
Ω

ṗχ [(be − b) ·∇ + a− ae] dΩ

+

∫
∂Ω

u̇ ·
[
−f c + σ

:

· n
]

dS +

∫
∂Ω

ṗχ [−ac + (be − b) · n] dS = 0, (3.14)

Based on the principle of virtual power, the equilibrium equations are obtained as:{
ρü = σ

:

·∇ + f e,

(b − be) ·∇ = a− ae,

(3.15)

(3.16)

which are bounded by the following Neumann boundary conditions:{
σ
:

· n = f c,

(b − be) · n = ac,

(3.17)

(3.18)

where n is the outer normal to the surface closing the domain Ω.

3.2.2 Helmholtz Free Energy Potential

The constitutive model of the medium characterizing the shape of both the classical and
the generalized stresses is provided via the definition of their associated potential. The
free energy density function is assumed to depend on the following state variables:

{ε
:

e, p, pχ,∇pχ} (3.19)

namely, the elastic strain, the cumulative plastic strain, the micromorphic variable, and
its gradient. The chosen potential has the form:

ψ(ε
:

e, p, pχ,∇pχ) =
1

2
ε
:

e : C
:
:

: ε
:

e + ψp(p) + ψχ(p, pχ,∇pχ), (3.20)

where C
:
:

is the elastic fourth-order stiffness tensor, ψp is the plastic contribution to

the Helmholtz free energy (in case of hardening/softening it accounts for the expan-
sion/shrinking of the yield surface in the stress space), and ψχ is the additional micro-
morphic contribution. A simple quadratic potential is adopted for the latter:

ψχ(p, pχ,∇pχ) =
1

2
Hχ(p− pχ)2 +

1

2
∇pχ ·A

:

· ∇pχ, (3.21)
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where A
:

is the higher-order modulus. For an isotropic material, the elastic stiffness tensor
C
:
:

and the tensor of higher-order moduli reduce to the following forms:

C
:
:

= λ trace
(
ε
:

)
I
:

⊗ I
:

+ 2µI
:
:

, (3.22)

A
:

= A I
:

, (3.23)

with λ and µ as the classical Lamé parameters and A the new higher order modulus. The
following linear isotropic plastic behavior is assigned to the material:

ψp(p) =
1

2
Hp p

2; (3.24)

where Hp is the hardening modulus. Nonlinear hardening laws are possible but not
considered here for simplicity.

3.2.3 Clausius-Duhem Inequality

The Clausius-Duhem inequality will be used to ensure the thermodynamic consistency of
the model and to define the recoverable and dissipative parts of the mechanical contribu-
tions. The local form of the second law of thermodynamic for an iso-thermal transforma-
tion can be expressed for a continuum body as:

p(i) − ψ̇ ≥ 0. (3.25)

Expanding the time derivative of Helmholtz free potential with respect to the variables
on which it depends, and by retrieving the additive elasto-plastic decomposition of the
strain rates, the Clausius-Duhem inequality reads:(

σ
:

− ∂ψ

∂ε
:

e

)
: ε̇
:

e + σ
:

: ε̇
:

p − ∂ψ

∂p
ṗ+

(
a− ∂ψ

∂pχ

)
ṗχ +

(
b − ∂ψ

∂∇pχ

)
·∇ṗχ ≥ 0. (3.26)

At this stage, the choice on the elastic part of the strain to be energetically recoverable
can be made. It implies that the terms multiplying ε̇

:

e must vanish so as to ensure that
the elastic strain does not contribute in entropy production, leading to:

σ
:

=
∂ψ

∂ε
:

e
= C
:
:

: ε
:

e, (3.27)

The distinction between recoverable and dissipative parts of the generalized stress terms
must also be drawn. For the gradient of the micromorphic variable, we assume that it is
fully recoverable, therefore:

b =
∂ψ

∂∇pχ
, (3.28)

This means that the gradient of plastic strain solely contributes to the free energy poten-
tial. In the case of metals, this can be justified by the fact that the plastic strain gradient
contains contributions of the dislocation density tensor which is known to be associated
with energy storage [Forest, Sievert, and E. Aifantis 2002; Gurtin 2002]. Regarding now
the dissipation produced by the variation of the micromorphic variable, its positiveness
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can be ensured, as originally suggested by Gurtin [Gurtin 1996; Forest 2009], by impos-
ing that the generalized stress a possesses a recoverable part and a dissipative part that
depends on ṗχ itself:

a =
∂ψ

∂pχ
+ Cχ ṗχ, (3.29)

where Cχ is a parameter related to viscous micromorphic effects. Lastly, for the plastic
part of the Helmholtz free energy:

∂ψ

∂p
= R, (3.30)

where R is a thermodynamic force associated to variation of the cumulative plastic strain.
The residual dissipation rate can now be written as:

σ
:

: ε̇
:

p −R ṗ+ Cχṗ
2
χ ≥ 0. (3.31)

The positiveness of the new parameters A and Cχ then ensures the positive definiteness
of the micromorphic contributions in the free energy density and in the dissipation rate.

3.2.4 Partial differential equation governing the micromorphic
variable and enhanced hardening law

By considering the explicit definition of the Helmholtz free energy potential given in
Eq. (3.21), the generalized stresses read:

a = −Hχ (p− pχ) + Cχ ṗχ, (3.32)

b = A∇pχ. (3.33)

The previous equation ((3.32)) indicates that the micromorphic variable pχ and cumula-
tive plastic strain p are related to each other through the penalty term Hχ. In order for
the micromorphic variable to closely match the value of the cumulative plastic strain, it
is necessary to ensure that the value of Hχ is relatively large. At this stage, it is possible
to re-write the additional partial differential equation governing the micromorphic distri-
bution by plugging the selected constitutive behavior into it. In absence of higher-order
body forces (ae and be), Eq. (3.16) can be written as:

Cχṗχ = A∇2pχ +Hχ (p− pχ) (3.34)

where ∇2 indicates the Laplacian differential operator. The previous equation represents
the only additional equation that must be solved combined with the ones governing the
displacement fields.

Previous researchers already explored the potential of the micromorphic theory in
rate-dependent analysis under explicit integration schemes using a modified version of
Eq. (3.34). For instance, Saanouni and Hamed proposed a theory in which the second-
order time derivative (acceleration) of pχ takes the place of the first-order time derivative
in Eq. (3.34) [Saanouni and Hamed 2013; Diamantopoulou et al. 2017]. Therefore, in
analogy with the PDE governing the displacement fields, a form of inertia was associated
to the micromorphic variable, whereas, in case of the present investigation, a viscous
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term associated to the micromorphic variable is considered. The PDE governing the
micromorphic field can be rewritten as:

τchṗχ = l2ch∇2pχ + (p− pχ) with lch =

√
A

Hχ
and τch =

Cχ
Hχ

, (3.35)

where lch is the characteristic length scale endowing the theory with the spatial regular-
ization property, and τch is a characteristic time. To fully solve Eq. (3.35), it must be
coupled with a constitutive model for the plastic behavior of the medium. Starting from
the yield function:

f(σ
:

, R) = σeq − σ0 −R (3.36)

where σeq is the von Mises equivalent stress measure and σ0 is the initial yield stress.
Assuming associated plasticity and the normality rule to hold, the rate of the plastic
strain can be written as:

ε̇
:

p = ṗ
∂f

∂σ
:

= ṗn
:

, (3.37)

and the dissipation in Eq. (3.31) takes the form:

(σ
:

: n
:

−R) ṗ+ Cχṗ
2
χ ≥ 0; (3.38)

and in case of plastic loading:

(σeq −R) ṗ+ Cχṗ
2
χ = σ0 ṗ+ Cχṗ

2
χ ≥ 0; (3.39)

From the specific form of the plastic part of the Helmholtz free energy and from Eq. (3.30),
one can infer the stress that is thermodynamically associated with the cumulative plastic
strain:

R = Hp p+Hχ(p− pχ) (3.40)

This represents the hardening law enhanced by a new micromorphic contribution. This
shows the coupling arising in the theory between plasticity and the micromorphic variable.
After substituting the equation (3.35), the following alternative expression of the enhanced
hardening law is obtained:

R = Hp p−A∇2pχ + Cχṗχ (3.41)

The linear hardening/softening contribution (depending on the sign of Hp) to the yield
stress is enhanced by the Laplacian of the micromorphic variable, a usual term in regu-
larization methods, but also by an additional viscous term whose magnitude is controlled
by the value of parameter Cχ.

3.2.5 Micromorphic-Thermal Analogy

The comparison between the scalar micromorphic model described in the previous section
and the classical thermo-mechanical theory is here outlined. The development of the latter
theory will not be fully reported, but we will make use of the main governing equations
of the thermal field to draw the comparison with the micromorphic theory previously
developed. On the one hand, the additional variable in the present theory, pχ, ought to
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Table 3.1: Analogy between micromorphic gradient plasticity and thermal analysis.

Micromorphic Heat

DOF pχ T

Constitutive law b = A∇pχ q = −k∇T

Balance law Cχṗχ = A∇2pχ +Hχ (p− pχ) ρCṪ = k∇2T + r

Source term Hχ (p− pχ) r

be solved through the PDE (3.34), whereas, on the other hand, the additional degree of
freedom of the classical thermo-mechanical theory, that is temperature T , must be solved
through a different PDE, and here the two equations are reported (where the Fourier
conduction law is assumed to be valid for the heat flux)

Cχṗχ = A∇2pχ +Hχ (p− pχ) , (3.42)

ρCṪ = k∇2T + r, (3.43)

where C is the specific heat capacity of the material, r is a source term and k is the
thermal conductivity of the material, that we assumed to be independent from tempera-
ture. Although the two equations are used to govern completely different physical fields,
a straightforward parallelism among them can be identified. In Table 3.1, a comparison
between different aspects of the two theories is reported. The analogy between these
two theories inspired the idea of adapting an already implemented numerical resolution
scheme (meant to be used for the thermal field) for the micromorphic variable. The
main objective of the present investigation is, in fact, the analysis of the feasibility of
such idea. The main advantage of the proposed method is that the micromorphic theory
can be easily implemented in an explicit resolution scheme, while requiring very limited
access and marginal effort in modifying the original code. This aspect obviously makes
the implementation of this theory more attractive than other methodologies which would
require high level of accessibility to the main solver, since both new element and material
definitions would need to be developed. Such an analogy has been used in the past for
coupling chemical diffusion and mechanics in the implicit version of the numerical solver
ABAQUS [Diaz et al. 2016]. The analogy has also been recognized and used to imple-
ment gradient plasticity and gradient damage models, again, in the implicit version of
ABAQUS [A. et al. 2018]. Note that in these implementations, the viscous term, i.e. the
transient term proposed in the present work, is absent.

The two PDEs are in fact so similar that in order to solve for the micromorphic
variable, instead of the temperature, only two minor modifications need to be done.
Given the comparison between the two PDEs (Eq. (3.42) and Eq. (3.43)), and given the
form of the yield function in Eq. (3.36), the elements that require non-trivial modifications
are the source term r and the yield radius: the former has to coincide with the difference
between the cumulative plastic strain and the micromorphic variable (amplified by the
Hχ parameter), and the latter has to take into account the extra hardening due to the

51



micromorphic variable:

r = Hχ(p− pχ); (3.44)

f = σeq − σ0 −Hp p−Hχ(p− pχ); (3.45)

whereas the coefficients present in the thermal balance equation can be easily substi-
tuted with the parameters characterizing the micromorphic PDE. Implementing the con-
ditions (3.44) and (3.45) represents the only real, yet minor, effort that is required to make
use of the present theory, assuming the existence of a thermal solver and the possibility
of applying small modifications.

3.2.6 Influence on the Cχ parameter

The additional parameter Cχ naturally arises from the development of the chosen consti-
tutive material model for the generalized stress a. In order to obtain the final form of the
governing Eq. (3.34), so that the thermal-micromorphic analogy is valid, the presence of
the Cχ parameter is required, and it should not vanish in the case of the implementation
of the transient problem. However, from the analysis of Eq. (3.32), it is clear that the
parameter Cχ regulates the development of the viscous part of the micromorphic vari-
able, and therefore that a viscous part of the micromorphic variable exists. Being this
an additional material parameter, the question on the calibration of such value must be
addressed.

The purpose of using the micromorphic analysis, in the present investigation, is to
gain indirect control on the distribution of the cumulative plastic strain and its gradient,
thus the constraint on the micromorphic variable to closely follow the value of the cu-
mulative plastic strain through the penalty parameter. The present theory also accounts
for the development of viscous stresses generated by not-negligible strain rates, and the
micromorphic variable follows the value of the cumulative plastic strain, regardless of
whether the plastic strain increment is caused by quasi-static or viscous stresses. The
adoption of large values of the Cχ parameters (compared to Hχ) would allow the viscous
part of the micromorphic variable to produce additional meaningful generalized stress
(see Eq. (3.32)), therefore altering the value that it should have, based only on the differ-
ence between micromorphic variable and cumulative plastic strain (effectively producing
the same stress as if this difference was larger). Therefore, too large values of Cχ would
somehow corrupt and interfere with the equivalence between cumulative plastic strain
and micromorphic variable. On the contrary, by neglecting any meaningful contribution
of the viscous micromorphic term to exist, we lose the analogy with transient thermal
analysis proposed here for the implementation.

Therefore, for the present investigation, the Cχ parameter must exist, so that the
thermal-micromorphic analogy holds, but its value should not be too large. The allowed
magnitude for this parameter will be tested by checking an analytical solution in the
static case, considered in Section 3.3.1.

3.2.7 Numerical Implementation

The micromorphic plasticity model has been implemented in VPS Explicit [ESI Group
2000], a finite element software developed by ESI Group solving both dynamics and heat
problems. In order to account for the large deformation expected during manufacturing
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operations, the theory has been developed according to the VPS standard method, that
is, using rate-type constitutive equations. This does not alter the theory so far presented,
since the micromorphic part remains unchanged. For the same reason, the space gra-
dients that are encountered in this chapter are meant to be evaluated with respect to
the current configuration of the medium, as in an Updated-Lagrangian approach. The
additive decomposition is applied to the strain rate tensor, which can be split into elastic
and plastic contributions:

D
:

= D
:

e + D
:

p, (3.46)

where D
:

is the strain rate, and the elastic constitutive model is rewritten by means of a
hypoelasticity relation:

o

σ
:

= C
:
:

: D
:

e, (3.47)

where
o

σ
:

is the Jaumann stress rate, and it can be re-written as:

o

σ
:

= σ̇
:

−W
:

· σ
:

+ σ
:

·W
:

, (3.48)

where W
:

is the spin tensor. The finite element solution is obtained by establishing the

weak form of Eqs. (3.15) and (3.16) using the Galerkin method. The dynamic balance
Equation (3.15) is weighted with the test velocities u̇ whereas the micromorphic balance
Equation (3.16) is weighted with the test micromorphic variable rates ṗχ. Integration
over the domain is achieved by the use of the divergence theorem to lower the order of the
derivatives. The natural boundary conditions are incorporated as forcing terms, leading to
the equations to be discretized by finite-element interpolations. The discretization of the
displacement and micromorphic fields over the domain is achieved by using proper-order
interpolation functions. The following algebraic equations are derived:

M
:

· Ü = Fext − Fint; (3.49)

C
:χ
· ṗ

χ
= ar − aint; (3.50)

where M
:

is the mass matrix, Fext is the vector of external nodal forces, Fint is the vector
of internal nodal forces, C

:

χ is the viscosity parameter matrix, ar is the vector containing
the nodal generalized forces generated by the source terms and aint is the vector of nodal
generalized forces induced by Laplacian of the micromorphic variable. In Eq. (3.50) the
similarity with the discretized algebraic equation to solve the heat equation in thermal
analysis can be appreciated once again. In fact, VPS Explicit uses the same form of
equation to solve the heat equation:

C
:

· Ṫ = Q
∂Ω

+ Q
Ω
− Q

K
; (3.51)

where T is the nodal temperature vector, C
:

is the heat capacity matrix, Q
∂Ω

is the nodal
heat flow depending on the heat flux on the outer surface ∂Ω, Q

Ω
is the nodal heat flow

depending on the internal heat source and Q
K

is the internal nodal heat flow depending
on the heat flux inside the domain Ω.

A central difference explicit scheme associated to the lumped mass matrix is used to
solve Eq. (3.49). Assuming that the problem is initially found at time t0 and that the
objective is to evaluate its status at time t1 = t0 + ∆t, the following standard steps are
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taken:

Üt0 = M
:

−1
t0 ·

[
Fextt0

− Fintt0

]
; (3.52)

U̇t0+ ∆t
2

= U̇t0−∆t
2

+ ∆t Üt0 ; (3.53)

Ut1 = Ut0 + ∆t U̇t0+ ∆t
2

; (3.54)

A forward Euler scheme associated with the viscosity lumped matrix is implemented to
solve Eq. (3.50):

ṗχt0 = C
:

χt0
·
[
art0 − aintt0

]
; (3.55)

pχt1 = pχt0 + ∆t ṗχt0 ; (3.56)

A weak micromorphic-mechanical coupling is implemented in VPS Explicit, that is, the
two equations are solved separately so that displacements are considered constants while
solving for pχ and vice-versa. The micromorphic field influences the plastic behavior of
the continuum (through condition (3.44)), and, in return, the cumulative plastic strain
(the difference between the cumulative plastic strain and the micromorphic variable) acts
as a source term in the micromorphic balance equation (in condition (3.45)).

Regarding the mechanical behavior, a user material routine implements the mechanical
model as previously defined. The values of the micromorphic variables at the Gauss
quadrature points are interpolated by mean of the interpolation functions from the nodal
values. So the user material routine not only integrates the mechanical behavior but also
computes the source term Hχ(p− pχ) at the Gauss points. Regarding the micromorphic
treatment, a specific function is developed inside the thermal solver in order to recover the
source term from the material computations previously evaluated. The main algorithmic
steps of the explicit resolution over the time increment ∆t may be summarized by the
following scheme:

Algorithm 1: Algorithmic steps of the explicit resolution scheme implemented
in VPS Explicit.

1 Micromorphic: at time tn, compute C
:

χ, ar and aint;

2 Stability condition: compute the time step ∆t;
3 Micromorphic: explicit time integration, compute pχt1 ;

4 Mechanics: explicit time integration, compute un+1;
5 Next Step: compute tn+1 = tn + ∆t.

The critical time step for the time integration of the equations is taken as the minimum
between the critical time step for the mechanical and the micromorphic integration. The
critical time step for the mechanical integration follows the standard definition, whereas
the critical time step for the integration of the micromorphic variable is the the same
used for the thermal variable (following the micromorphic-thermal analogy exploited in
Section 3.2.5).

54



3.3 Strain Localization in simple shear test

3.3.1 Analytical solution

The analytical solution is developed for the rate-independent static case as a reference
for validation of the FE scheme at the static limit. It is inspired from similar solution
proposed by [Mazière et al. 2015; Scherer, Besson, et al. 2019; Scherer, Phalke, et al.
2020a]. Consider a periodic strip made of a thick rectangular plate of the width W along
X1 direction, the length L along X2 direction, and the thickness T along X3 direction
(Fig. 3.1) undergoing simple shear. A macroscopic deformation ε̄ is applied such that

u = ε̄
:

· X + ν(X), with ε̄
:

= ε̄12(e1 ⊗ e2 + e2 ⊗ e1), (3.57)

where ν is the periodic displacement fluctuation. Due to equilibrium conditions, the shear
stress component is homogeneous so that the equivalent stress σeq is invariant along X1,
X2 and X3, hence

σeq(X1,X2,X3) = σeq. (3.58)

The yield condition including the linear softening term and the micromorphic contribution
(with Cχ = 0 here) can be written as

f = σeq − (σ0 +Hpp+Hχ(p− pχ)) = 0 with Hp < 0. (3.59)

The PDE governing the micromorphic variable is given by

A
∂2pχ
∂X2

2

= Hχ(pχ − p). (3.60)

Elimination of the variable p in the previous equation by means of the yield condition
(3.59) leads to the following form of the PDE to be solved for pχ:

A
∂2pχ
∂X2

2

− HpHχ

Hp +Hχ
pχ +

Hχ

Hp +Hχ
(σeq − σ0) = 0. (3.61)

In case of linear softening (3.61) takes the form

∂2pχ
∂X2

2

−

(
2π

λ

)2

pχ = −

(
2π

λ

)2

κ, (3.62)

where λ is the characteristic width of the deformation zone. The expressions for constants
λ and κ are:

λ = 2π

√
A(Hp +Hχ)

|Hp|Hχ
; (3.63)

κ =

(
λ

2π

)2
Hχ

A(Hp +Hχ)
(σeq − σ0), (3.64)
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where width of the deformation zone λ is a characteristic length scale. Note that for large
value of Hχ (Hχ � Hp), the characteristic length scale λ takes the form:

λ ' 2π

√
A

Hp
. (3.65)

The gradient parameter A controls the width of the shear band. With increasing A value,
width of the shear band increases. The PDE (3.62) governing pχ is only valid in the
region X2 ∈ [−λ2 ,

λ
2 ] and the solution is of the form

pχ(X2) = α1 cos

(
2π
X2

λ

)
+ α2 sin

(
2π
X2

λ

)
− κ. (3.66)

For symmetry reasons, pχ(X2) = pχ(−X2) leads to α2 = 0. At the elastic/plastic in-
terfaces, i.e at X2 = ±λ2 , continuity of micromorphic variable pχ and of the generalized
stress normal to the interface M · X2 must hold, hence

pχ

(
± λ

2

)
' p

(
± λ

2

)
= 0, (3.67)

M

(
± λ

2

)
· X2 = A

dpχ
dX2

∣∣∣∣
X2=±λ2

= 0. (3.68)

where we make the approximation that pχ is sufficiently close to p, i.e. that the penalty
coefficient is large enough. Combining (3.67) and (3.68) with (3.66) leads to

α1 =
(σeq − σ0)

Hp
. (3.69)

Moreover, the equivalent stress is expressed as

σeq =
µ

L

∫ L
2

−L
2

(
ε12 − p

2

)
dX2, (3.70)

where µ is the elastic shear modulus. From the yield condition:

p =
σeq − σ0 +Hχpχ

Hp +Hχ
(3.71)

which can be substituted in Eq. (3.70) and integration gives an expression for σeq as a
function of applied macroscopic shear ε̄12 and then the uniform shear stress writes

σeq =
ε̄12 + σ0

Ze
1
µ + 1

Ze

, with
1

Ze
=

λ

HpL
. (3.72)

where µ is the shear modulus of the material.
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Figure 3.1: Geometry of the shear localization strip problem.

Table 3.2: Numerical values of material parameters used for the simulation of a periodic
strip undergoing simple shear.

E ν ρ σ0 Hp Hχ A Cχ

75 GPa 0.3 2.8× 103 Kg/m3 100 MPa -500 MPa 106 MPa 0.08 N 90 MPa.s

3.3.2 FE solution

The FE simulations are performed with a periodic strip. The associated 2D coordinate
system and geometry are shown in Fig. 3.1. The strip has been meshed with 3D 8-nodes
elements onto which plane strain conditions were applied by imposing zero out-of-plane
displacement to all the nodes. The nodes at the bottom of the strip (X2 = −L/2) were
clamped along X1 and X2. The nodes on the top surface (X2 = L/2) were clamped
along X2 and a Dirichlet type of boundary condition was applied along X1 whereas the
displacements along X2 were fixed. Linear shape functions have been used to interpolate
the nodal fields, and full integration schemes have been used for the material behavior.
Numerically, in order to trigger the strain localization in a periodic strip, a small defect is
introduced at the centre (Fig. 3.1). The defect is one element having an initial yield stress
3% less than the matrix. Isotropic elasticity is considered. The material parameters used
for the analytical solution and FE simulations are presented in Table 3.2.

Fig. 3.2a and 3.2b show the cumulative plastic strain fields with the classical and the
micromorphic models using two different mesh discretizations, one coarse and one fine
mesh (using 0.010 mm and 0.003 mm thick elements respectively). Given the fact that in
this example the shear band is already known to have a thickness of ≈ 0.08 mm, the chosen
mesh size lies well within a safe regime for the gradient effects to be properly captured.
The classical plasticity model exhibits pathological mesh dependency and width of the
shear band always collapse to one element irrespective of the mesh size. In contrast, the
width of the formed shear band with the micromorphic model is finite and independent
of the mesh size. This indicates the capabilities of the implemented micromorphic theory
in an explicit scheme to solve the shear strain localization problem.

Furthermore, the cumulative plastic strain variation along X2 obtained from the FE
solution is validated against the analytical solution developed for the rate-independent
case (cf. Eq. (3.66)), see Fig. 3.3. The FE simulation is validated for ε̄12 = 0.01. Moreover,
simulations are performed by changing the simulation time while keeping the same applied
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Figure 3.2: Localization of plastic strain in a periodic strip undergoing simple shear for
two different mesh sizes.
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Figure 3.3: Validation of FE solution against the analytical solution. (a) Equivalent
plastic strain distribution obtained for a simulation of 10 seconds for two different mesh
discretizations (101 vs. 303 elements); (b) equivalent plastic strain distribution obtained
with a fine mesh for different total time.

total shear strains. Fig. 3.3b shows that the perfect agreement with an analytical solution
is obtained for t = 10 sec. which corresponds to low enough strain rate to make the
viscous contribution in Eq. (3.41) negligible. Larger strain rates are observed to limit the
localization since the maximum strain in the band decreases for increasing strain rates.
Since the total strain is imposed, this means that a higher elastic strain compensates the
lower plastic strain which means that stress values are higher.

In order to retrieve the quasi-static solution, also the viscous parameter Cχ had to
be chosen small enough. The reason is to minimize as much as possible any viscous-
like component of the generalized stress a in Eq. (3.32) to retrieve the rate–independent
solution.

Metals at high temperatures are known to be strain rate sensitive. This effect is
generally taken into account by means of an appropriate viscoplastic flow rule, for instance
based on a Norton power law. In the present work, rate-independent plasticity only has
been considered but the generalization to viscoplasticity is straightforward in the proposed
framework. Note that the proposed model presents an additional strain rate sensitivity,
via the viscosity parameter Cχ. This will require appropriate calibration for instance
using strain field measurements during localization.

3.4 Numerical examples

In this section, the applicability of the implemented scalar micromorphic strain gradient
theory is tested for two additional cases: a shearing operation process and a bending test.
The aim of this section is to exploit the analogy explained in section 3.2.5, whose numerical
implementation has been previously presented, to prove that simulations of manufacturing
operations using the micromorphic continuum under an explicit integration scheme can
be successfully performed.
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Industry best practice discourages the employment of complex numerical methods to
produce simulations, mainly to guarantee a high degree of reliability of the results and
computational efficiency in terms of CPU time. Regarding this reasonable concerns, the
results that will be presented here are to be considered as proof of the simplicity of the
method, which requires only one additional parameter to be calibrated, that is A (see the
discussion on the Cχ parameter in Section 3.2.6).

As previously explained in the introduction, the relevance of the application of reg-
ularization procedures in manufacturing operations is vital, especially in cases in which
the thermal power has a major presence. Thermal softening can take place when high
rates of plastic strain are produced, and similar softening can be reproduced by assigning
a negative slope to the hardening function in Eq. (3.40). The regularization potential of
the proposed method is investigated in the shearing operation section. Moreover, one of
the missing features of the classical continuum mechanics is the capability of predicting
any size effect. This becomes of major relevance whenever the deformation localizes is
small regions or in the case of forming of micro-components [Zhu et al. 2020; L. Li et al.
2009]. The ability of the proposed method to capture the size effect is proven in the
bending section.

3.4.1 Shearing Operation

The shear band formation is a commonly observed phenomenon in manufacturing opera-
tions in case of heavy deformation, for instance, high-speed shaping, forging, machining,
and several other processes [Molinari, Musquar, et al. 2002; Burns et al. 2002]. Nu-
merically, the shear band simulation shows spurious mesh dependency when we consider
a classical plasticity approach with strain softening. Dynamics combined with viscosity
or/and heat conduction are known to provide regularization but the involved length scales
are often too small for efficient FE modeling so that strain gradient or micromorphic plas-
ticity is still useful to introduce physically more realistic length scales [Stathas et al. 2022;
Wcis lo and Pamin 2017].

Shearing operation is most commonly used in the metal forming industries for sheet
metal cutting. In this section, the implemented micromorphic approach is used for the
regularization of shear band formation in shearing operation.

The shearing operation is performed on a sheet of 5 mm thickness under plane strain
conditions with one element across the width. The geometry is shown in Fig. 3.4. The
sheet has been meshed with 3D 8-nodes elements with linear shape functions and full
integration schemes. The lower tool is fixed, while velocity is applied to the upper tool in
the downward direction. At the initial deformation stage, a linearly increasing velocity up
to 4 mm/sec. is applied. Once the velocity of 4 mm/sec. is achieved, it is kept constant in
the later stage of the deformation. The contact between the deformable sheet and tools
is taken into account using a constant coefficient of friction 0.3. The tools are considered
as rigid bodies, while the sheet is assigned with an elastoplastic material behavior using
linear strain softening. Isotropic elasticity is considered. The used material parameters
in the numerical simulations are presented in Table 3.3.

At first, simulations are performed with classical plasticity using three different mesh
discretizations. The elements size of the different meshes in the region of interest span
from 0.2 to 0.04 mm respectively, and, as it will be possible to appreciate in Figure 3.6,
this element size is extremely small if compared with the shear band thickness, thus
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L = 20 mm

W = 5 mm

R = 0.2 mm

R = 0.2 mm

c = 0.5 mm

Figure 3.4: Geometry used for the shear operation simulation.

Table 3.3: Numerical values of material parameters used for the simulation of the shearing
operation.

E ν ρ σ0 Hp Hχ A Cχ

75 GPa 0.3 2.8 × 103 kg/m3 100 MPa -500 MPa 106MPa 128-800 N 90 MPa.s

ensuring that the gradient effect are correctly captured. The limitation of the classical
plasticity model, known as pathological mesh dependency in the strain localization prob-
lem can be observed from Fig. 3.5a and 3.5e by the contours of the cumulative plastic
strain. The magnitude of the cumulative plastic strain is different for two different mesh
discretizations, and it increases with finer mesh. Furthermore, the observed width of the
shear band is different for two different mesh discretizations and it always collapses to
one element size irrespective of the mesh size. In contrast, the formed width of the shear
band using the micromorphic approach is finite and does not depend on the mesh density
as seen from Fig. 3.5b and 3.5f. In addition, the magnitude of the cumulative plastic
strain reaches asymptotic values while reducing the mesh size.

Furthermore, the effect of the diffusivity coefficient A on the shear band widths is
investigated. Fig. 3.6 shows the variation of cumulative plastic strain for three different
values of the gradient parameters A, 128 N, 320 N, and 800 N. As the value of A increases
the intensity of plastic strain gradient within the shear region reduces. As expected from
the analytical expression for the length scale in Eq. (3.63), the width of the shear band
increases with an increase in the A value. For the three different values of the A parameter,
128 N, 320 N and 800 N, the observed widths of the shear bands are 2.4 mm, 2.8 mm, and
3.5 mm, respectively. If the characteristic length was evaluated through Equation (3.63),
the values of 3 mm, 5 mm and 8 mm would be the results. The divergence of these values
is due to the fact that the boundary conditions are not the same, thus the deformation
state is not pure shear.
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0.0 0.035 0.082 0.128 0.175

(a) Classical plasticity model. Coarse Mesh.

0.0 0.023 0.054 0.085 0.115

(b) Micromorphic model. Coarse Mesh.

0.0 0.134 0.312 0.491 0.670

(c) Classical plasticity model. Intermediate
Mesh.

0.0 0.024 0.057 0.089 0.122

(d) Micromorphic model. Intermediate Mesh.

0.0 0.342 0.684 1.027 1.283

(e) Classical plasticity model. Fine Mesh.

0.0 0.025 0.057 0.090 0.123

(f) Micromorphic model. Fine Mesh.

Figure 3.5: Mesh size effect on the plastic strain localization during shearing simulation.
On the left the results were predicted by the classical plasticity model, on the right by
the micromorphic. From the top to the bottom, increasing mesh size.
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Figure 3.6: Effect of the variation of the characteristic length scale on the plastic strain
distribution during shearing simulation.

17.4 mm

2 mm

Figure 3.7: Geometry and the applied boundary conditions on the beam used for the
bending simulations.

3.4.2 Bending

The bending test is used to verify that the implemented micromorphic model is able to
capture the size effect for hardening plasticity. It is possible to find in literature many
studies that experimentally highlighted the presence of extra hardening in the bending
moment, whenever the specimen geometry was reaching sub-millimeters dimension, ap-
proaching grain size. In 1994 Fleck and co-workers [Fleck, Muller, et al. 1994] reported
hardening behavior in a copper wire under torsion for wire diameters in the order of
10 − 100 micro-meters, whereas tensile tests performed on the same wires found no ev-
idence of size effect. Stölken and Evans [Stölken et al. 1998] designed a micro-bend
test to measure the plastic characteristic length scale associated with the strain gradient,
subsequently reporting the results pertaining to thin (12.5µm 7→ 50µm) Nickel foils.

In Fig. 3.7, the geometry and the boundary conditions of the specimen are reported.
The specimen has been discretized using 3D type of elements under plane strain condi-
tions. Linear shape functions are used to interpolate nodal values, and full integration
scheme is used for the elements. One element spans the 1 mm width and 10 elements
span half the thickness of the beam (mesh size of 0.1 mm) so that there should be enough
elements to capture the size effect. The left face of the beam is clamped, whereas a ma-
terial rotation is enforced on the nodes of the right face through a coupling involving the
nodes of the right face and an auxiliary node. The resultant bending moment is probed
at the auxiliary node. A total rotation of 45◦is applied.
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Table 3.4: Numerical values of material parameters used for the simulation of the bending
test

E ν ρ σ0 Hp Hχ A Cχ

75 GPa 0.3 2.8 103 kg/m3 100 MPa 200 MPa 106MPa 128-800 N 90 MPa.s

0.0 0.010 0.020 0.029 0.039 0.049

Figure 3.8: Cumulative plastic strain field during bending process using micromorphic
medium.

The size effect can be experimentally encountered whenever the geometry of the spec-
imen reduces down to approximately the grain size of the metal. Virtually, the same
phenomenon could be achieved by keeping constant the geometry of the specimen and
simultaneously increasing the characteristic length scale. The effectiveness of the formula-
tion in predicting the size effect through the bending test has been verified by employing
the latter method. The numerical framework previously presented does not explicitly
make use of the grain size, but a characteristic length scale in Eq. (3.35) was identified,
and this will serve the same purpose. The use of larger or smaller characteristic lengths
will respectively induce a stiffer or softer global response of the specimen. Three different
values of gradient parameter A have been used. The other material parameters used in
the simulation of the bending tests are reported in Table 3.4. In the attempt of replicating
a quasi-static bending test, the chosen value of the Cχ parameters is relatively small, so
that any viscous contribution of the micromorphic variable would be negligible.

In Fig. 3.8 the distribution of the cumulative plastic strain for the bending test using
the micromorphic model is reported. Besides the edge effect induced by the boundary
condition at the right surface, the solution appears to be invariant along the longitudinal
direction of the strip.

The classical and micromorphic solutions in terms of normalized bending moment vs.
applied rotation are shown in Fig. 3.9. The probed bending moment has been normalized
with respect to the first moment of area of the beam cross-section, that is b h2, where b
is the width of the rectangular cross-section, and h is the height of the rectangular cross-
section. From Figure 3.9, it can be appreciated that the classical solution is retrieved
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Figure 3.9: Normalized bending moment vs rotation angle for different high order moduli.

by using the micromorphic approach with a null penalty term Hχ and null higher-order
modulus (A). Three values of the higher-order modulus (respectively three different
characteristic lengths scales) are used for the test: 128 N, 320 N, and 800 N. The curves
belonging to the micromorphic theory clearly demonstrate the ability of the method to
capture the size effect. The extra hardening reported in Fig. 3.9 follows the same trend
as the one relative to the experimental tests reported by Stölken and Evans [Stölken et al.
1998].

In the case of bending, the micromorphic medium does not need to regularize any
localization phenomenon; rather, it has to predict an additional hardening, as presented
in this section. The characteristic length scale can be identified in this case by:

lch =

√
A(Hp +Hχ)

|Hp|Hχ
; (3.73)

The obtained characteristic length scales using A = 128 N, 320 N, and 800 N are 0.8 mm,
1.26 mm, and 2.0 mm, respectively. These characteristic length scales can be normalized
by the thickness h of the beam. The obtained lch/h ratios for A = 128 N, 320 N and 800
N are 0.40 mm, 0.63 mm and 1.0 mm, respectively. Fig. 3.9 shows that for high lch/h
ratio, i.e. high A value, stronger response can be predicted.

The plasticity material model used for the bending test is characterized by a linear
hardening behavior (Tab. 3.4). From the analysis of the curves, it can be inferred that
the regularization, and subsequently the size effect, is affecting the solution only in the
plastic regime, whereas the initial elastic stiffness of the curves is the same regardless of
the characteristic length scale used in the model. This is the expected behavior, given the
fact that the present micromorphic theory regulates the localization of the plastic field.
Thus there should be no difference between the curves in the elastic regime. In hardening
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plasticity, the plastic strain gradient contribution leads to an increased apparent hardening
of the beam in the plastic regime. The peak in terms of adimentionalized bending moment
in Figure 3.9 is to be attributed to the dynamic nature of the test, and it affects all the
curves regardless of the classical or micromorphic nature of the theory used.

3.5 Conclusion

In this chapter, a micromorphic strain gradient plasticity model has been formulated and
implemented in a commercial explicit finite element code in order to perform simulations
of manufacturing operations in time-dependent environments. The reasons to account for
the strain gradient while simulating manufacturing operations deal with regularization of
strain localization phenomena in softening plasticity, on the one hand, and prediction of
size effects in hardening plasticity. The originality of the approach lies in the use of the
micromorphic model instead of strict strain gradient plasticity and in the introduction of
a viscosity contribution to the micromorphic plastic evolution. The advantage of these
two ingredients is that they ease the numerical implementation in a commercial finite
element code by mimicking the transient heat equations. Earlier formulations are based
on strict strain gradient plasticity without transient term, on the one hand, or on the
introduction of micromorphic inertia instead of the proposed viscous term.

The main outcome of the research presented in this chapter lies in the proof that it is
possible to implement an explicit micromorphic model in a relatively easy and straight-
forward manner. This was achieved by slightly modifying the pre-existing routines of
material integration and thermal field resolution in the VPC/PAMCRASH software de-
veloped by ESI. This proof of concept is meant to demonstrate that limited effort is
required to implement the micromorphic theory in any other software that allows for
minor modification in their procedures.

The implemented theory has been demonstrated to recover the analytical solution
for a semi-infinite glide layer under quasi-static loading conditions. The supplementary
shearing tests highlighted the need to use of the strain gradient theory in case deformation
localizes, and the typical extra hardening in bending has also been modeled.

Most importantly, it has been proven that the size effect can be predicted with this
method and that manufacturing operations can be simulated with such theory with a
limited increase in computational cost and only one additional material parameter (the
characteristic length). The same model can therefore be used to address regularization
issues in softening plasticity and ”smaller is harder” size effects in microforming. Fur-
ther work should be dedicated to develop case studies involving real material data and
more complex 3D specimen geometries. In particular the consideration of adiabatic shear
banding can be included in the approach in a way similar to the work done in [Russo,
Forest, et al. 2020] whereas full coupling with heat conduction phenomenon would require
more intrusive programming in the considered commercial code.
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Chapter 4

Application of the infinitesimal
Cosserat theory to localization

During most metal manufacturing processes, the medium deforms by generating large
quantities of plastic strain at relatively high strain rates, inevitably inducing rises in
temperature. Metals characterized by low thermal conductivity properties might locally
retain high temperatures, consequently undergoing thermal softening. The classical bal-
ance laws governing the continuum equilibrium show severe mesh sensitivity if they were
numerically discretized through Finite Element Methods. Furthermore, the plastic defor-
mation tends to localize in narrow areas whose characteristic length is comparable to grain
size, thereby requiring the adoption of theories able to predict size-effects. In this chapter
we demonstrate that the Cosserat medium, even under a small displacement assuption,
is able to overcome these issues related to manufacturing processes simulation. We first
provide a thermodynamically-consistent description of the Cosserat medium, and then
we propose a method to calibrate the two additional characteristic lengths introduced by
the Cosserat medium description by enriching the model with the TANH stress flow rule
under adiabatic conditions.

The problems related with metal manufacturing simulations are already well known
issues, and previous researches adopted a strain gradient theory approach to overcome
them [X. Wang 2007; J. Huang et al. 2001; Joshi et al. 2004; Royer et al. 2011], how-
ever, to the best of of the author’s knowledge, no research has been conducted so far on
the application of the Cosserat medium for metal manufacturing simulations. Therefore,
in this chapter, the authors aim to cover this gap by providing a thermodynamically-
consistent Cosserat medium description, which would be able to predict size effects even
for relatively high temperatures, while retaining a compatible physical description and
without loss of ellipticity. Furthermore, via the provided framework, it would be possible
to unambiguously and uniquely correlate plastic deformations with temperature varia-
tions, allowing the calibration procedure to be performed through comparison of thermal
fields.

In order to reproduce the same phenomena occurring in manufacturing processes,
the Hat-Shaped Specimen [Peirs, Verleysen, Degrieck, and Coghe 2010] was chosen as
benchmark test. The combination of specific load case and specimen geometry drives
the shear deformation to localize in a narrow band that takes the name of Adiabatic
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Shear Band (ASB). The same ASB develops during machining operations [Ye et al. 2014;
Calamaz et al. 2008; List et al. 2013; Molinari, Soldani, et al. 2013; X. Wang 2007].
Regarding the material model to be plugged in the Cosserat framework, the Johnson-
Cook (JC) model is widely used in machining simulations [Peirs, Verleysen, Degrieck,
and Coghe 2010; J. C. Li et al. 2010; G. Chen et al. 2011; Cahuc et al. 2007; Guo et al.
2006], however, it underestimates the softening effect on the flow stress [Guo et al. 2006].
Many models have been derived from the JC to overcome this issue, and we decided to
use the TANH model among the others [Calamaz et al. 2008].

The chapter follows the structure here reported: Section 4.1 provides the description
of the most general Cosserat model under a small deformation assumption, included the
kinematics, energetic (Helmholtz free energy potential) and thermodynamic (Claudidu-
Duhem inequality) aspects of the Cosserat model; the problem of spurious mesh depen-
dency is presented in Section 4.2, and the Cosserat media is presented as a solution of the
problem, highlighting the regulartization properties of the Cosserat media; Sections 4.3
and 4.4 present the methodology used to calibrate the additional characteristic lengths
introduced by the Cosserat medium, and finally the conlusions terminate this chapter in
Section 4.5.

Notation and Recalls of Tensorial Algebra

Einstein’s convention is employed in the whole chapter. Tensors are indicated through
compact notation or index notation, regardless of capital or not-capital letters:

a =⇒ ai;

a
:

=⇒ aij ;

a
:

=⇒ aijk;

a
:
:

=⇒ aijkl;

The outer product is indicated with ⊗ and it operates in the following manner:

A
:

⊗B
:

= C
:
:

=⇒ AijBkl = Cijkl;

Single and double contraction operators are respectively indicated as follows:

A
:

· B
:

= C
:
:

=⇒ AijkBklm = Cijlm;

A
:

: B
:

= C
:

=⇒ AijkBjkl = Cil;

Divergence and gradient operators are represented as:

A
:

⊗∇ = B
:

=⇒ ∂Aij
∂xk

= Bijk;

A
:

·∇ = B =⇒ ∂Aij
∂xj

= Bi;
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where xi is the i-th Cartesian coordinate of an Eulerian space. When handling with
skew-symmetric second order tensors, it might be easier to define the first order tensor
associated to it as:

A = −1

2
ε
:

: B
:

; (4.1)

where ε
:

is the Levi-Civita permutation symbol.

4.1 Generalized Cosserat Media under Small Displace-
ment Assumption

4.1.1 Kinematics and Balance Laws

The Cosserat model [Cosserat et al. 1909] enhances the Classical Continuum Mechanics
(CM) model by introducing three additional degrees of freedom, being the microstucture
infinitesimal rotation around the three axis. The degrees of freedom of the continuum
can then be written as:

{ui, θi}, i = 1, 2, 3 (4.2)

where ui is the spacial displacement along the i-th direction, and θi is the micro-structural
rotation around the i-th axis. The superscript × indicates the fact that the quantity is a
pseudo-vector. As function of these degrees of freedom, the deformation measures in the
Cosserat medium are defined as:

e
:

= u ⊗∇ −Θ
:

; (4.3)

k
:

= θ ⊗∇; (4.4)

where the nabla operator ∇ is referring to the initial frame of reference and Θ
:

is the
skew-symmetric second order tensor associated with the pseudo-vector θ:

Θ
:

= −ε
:

· θ; (4.5)

The first deformation measure, e
:

, is commonly referred to as Cosserat deformation,
while the second, k

:

, is addressed as Cosserat wryness. It must be noted here that the
former incorporates the difference between material infinitesimal rotation and micro-
structure rotation in addition to the strain measure usually used in linearized (small
deformation) CM as can be seen in the following:

e
:

= sym (u ⊗∇) + skew (u ⊗∇)−Θ
:

; (4.6)

where sym and skew indicate the symmetric and the skew-symmetric parts of a tensor
respectively. The balance laws governing the Cosserat medium equilibrium can be de-
rived by explicitly expressing the internal and external power related to the deformation
measures defined in Eq. (4.3) and (4.4):

P (i) =

∫
Ω

(
σ
:

: ė
:

+ µ
:

: k̇
:

)
dΩ; (4.7)
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where σ
:

is the power conjugate to the Cosserat strain rate and µ
:

is the power conjugate
to the Cosserat wryness rate; in literature they are commonly referred to as stress and
couple stress tensors. It is important to highlight here that due to the not-symmetric
nature of the Cosserat strain and Cosserat wryness, both the stress and couple stress
tensors are not symmetric as well. Equivalently, the external power can be defined as:

P (e) =

∫
Ω

(
f · u̇ + c · θ̇

)
dΩ +

∫
∂Ω

(
t · u̇ + m · θ̇

)
dS; (4.8)

where f is the body force per unit volume conjugate with displacement, c is the body
couple per unit volume conjugate with micro-structure rotation, t is the surface traction
conjugate with displacement, and finally m is the surface couple per unit surface conjugate
with micro-structure rotation. The internal power can be equivalently written as:

∫
Ω

(
σ
:

: ė
:

+ µ
:

: k̇
:

)
dΩ =

∫
Ω

[
2σ · θ̇ − u̇ ·

(
σ
:

·∇
)
− θ̇ ·

(
µ
:

·∇
)]

dΩ+∫
∂Ω

[
u̇ · σ

:

· n + θ̇ · µ
:

· n
]

dS; (4.9)

where the vector σ is the axial vector associated with the skew-symmetric part of the
stress tensor σ

:

as in Eq. 4.1, and n is the unit vector normal to the outer surface of the
domain Ω. The equality between internal and external power can be expressed in its weak
form as:∫

Ω

u̇ ·
[(

σ
:

·∇
)

+ f
]

dΩ +

∫
Ω

θ̇ ·
[
2σ + c +

(
µ
:

·∇
)]

dΩ+

+

∫
∂Ω

u̇ ·
[
t − σ

:

· n
]

dS +

∫
∂Ω

θ̇ ·
[
m − µ

:

· n
]

dS = 0; (4.10)

from which, given the arbitrariness of u̇ and θ̇, the strong forms of the linear and angular
momentum balances can be derived as:

σ
:

·∇ + f = 0; (4.11)

µ
:

·∇ + 2σ + c = 0; (4.12)

which are vectorial partial differential equations in the variables u and θ, bounded by:

σ
:

· n = t; (4.13)

µ
:

· n = m; (4.14)

4.1.2 Clausius-Duhem inequality

The material behavior can be explicitly stated in terms of stress-strain relationship or
by expressing the Helmholtz free energy and resorting to the Clausius-Duhem inequality.
Given that our objective is to characterize the energetic behavior of the Cosserat medium,
in this work we employ the second method. The following decompositions of strain and
wryness are adopted:
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e
:

= e
:

e + e
:

p + e
:

th; (4.15)

k
:

= k
:

e + k
:

p + k
:

th; (4.16)

in which the relation between elastic, plastic and thermal deformation has an additive
character, due to the linearization performed under small displacements and small rota-
tions assumptions. It is then necessary to define the state variables of the medium, and
in this work they are the following:

{e
:

e,k
:

e, T, α}; (4.17)

namely, elastic strain, elastic wryness, temperature and a hardening variable, which can
be a tensor of any rank. Based on the choice of the state variables, the Helmholtz free
energy density per unit volume can be written as:

ψ = ψ
(
e
:

e,k
:

e, T, α
)

; (4.18)

Here a more explicit definition of the Helmholtz free energy, linearized with respect to the
initial conditions {e

:

e
0 = 0, k

:

e
0 = 0, T0, α0 = 0}, is provided in a still quite generic form. It

assumes quadratic potentials for the elastic deformation measures, typical energy defini-
tion related to thermal deformations, standard energy definition related to heat exchange
and an additional term concerning the stored energy relative to plastic deformations:

ψ
(
e
:

e,k
:

e, T, α
)

=
1

2
e
:

e : Λ
:
:

: e
:

e +
1

2
k
:

e : C
:
:

: k
:

e − (T − T0) P
:

: e
:

e

− (T − T0) P
:

k : k
:

e − 1

2
ρ
Cε
T0

(T − T0)
2

+ ψα; (4.19)

where Λ
:
:

and C
:
:

are the fourth-order elastic stiffness tensors, relating stress-strain and

couple stress-wryness respectively, P
:

and P
:

k are second order tensors relating thermal
variations with elastic expansions or wrynesses respectively, Cε is the specific heat capac-
ity, ρ is the density and ψα is the part of the Helmholtz free energy that accounts for
variation in the recoverable energy of the continuum due to variation in the material yield
limit, e.g. hardening or softening. Subsequently, we employ the first and second thermo-
dynamic principles to write the Clausius-Duhem inequality and to explicitly express the
dissipation of the continuum. From the first thermodynamic principle:

u̇ = σ
:

: ė
:

+ µ
:

: k̇
:

− q ·∇ + r; (4.20)

where u̇ is the internal energy rate density per unit volume, not to be mistaken with
the displacement rate, q is the heat flux and r is the heat production. The second
thermodynamic principle reads:

η̇ − r

T
+
(q

T

)
·∇ ≥ 0; (4.21)

where η̇ is the entropy rate density per unit volume. Considering that the Helmholtz free
energy is defined as:

ψ
(
e
:

e,k
:

e, T, α
)

= u− Tη; (4.22)
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and by expressing its differential as:

ψ̇ =

[
∂ψ

∂e
:

e
ė
:

e +
∂ψ

∂k
:

e
k̇
:

e +
∂ψ

∂T
Ṫ +

∂ψ

∂α
α̇

]
= u̇− T η̇ − Ṫ η; (4.23)

the second thermodynamic principle assumes the following form:(
σ
:

− ∂ψ

∂e
:

e

)
: ė
:

e +

(
µ
:

− ∂ψ

∂k
:

e

)
: k̇
:

e + σ
:

: ė
:

p + µ
:

: k̇
:

p

−

(
∂ψ

∂T
+ η + σ

:

:
∂e
:

th

∂T
+ µ
:

:
∂k
:

th

∂T

)
Ṫ − ∂ψ

∂α
α̇−

q · (∇T )

T
≥ 0; (4.24)

from which, assuming that the elastic strain, elastic wryness and thermal variation are
fully recoverable, the followings can be derived:

σ
:

=
∂ψ

∂e
:

e
; (4.25)

µ
:

=
∂ψ

∂k
:

e
; (4.26)

η = −∂ψ
∂T

+ σ
:

:
∂e
:

th

∂T
+ µ
:

:
∂k
:

th

∂T
; (4.27)

and, by expanding Eq. (4.25) and (4.26), the following relation between thermal defor-
mations, elastic deformations and stress/couple stress can be found:

σ
:

=
∂ψ

∂e
:

e
= Λ
:
:

: e
:

e −P
:

(T − T0) = Λ
:
:

:
[
e
:

e −Λ
:
:

−1 : P
:

(T − T0)
]

= Λ
:
:

:
[
e
:

e − e
:

th
]

; (4.28)

µ
:

=
∂ψ

∂k
:

e
= C
:
:

: k
:

e −P
:

k (T − T0) = C
:
:

:
[
k
:

e −C
:
:

−1 : P
:

k (T − T0)
]

= C
:
:

:
[
k
:

e − k
:

th
]

;

(4.29)

where:

e
:

th = Λ
:
:

−1 : P
:

(T − T0) = Γ
:

(T − T0) ; (4.30)

k
:

th = C
:
:

−1 : P
:

k (T − T0) = Γ
:

k (T − T0) ; (4.31)

and the tensors Γ
:

and Γ
:

k are operators used to compute the thermal expansion/wryness.

The remaining terms in Eq. (4.24) define the medium dissipation, here referred to as Π:

Π = σ
:

: ė
:

p + µ
:

: k̇
:

p − ∂ψ

∂α
α̇−

q · (∇T )

T
≥ 0; (4.32)

Furthermore, we can write the heat equation from Eq. (4.20) and (4.23) as:

σ
:

: ė
:

p + µ
:

: k̇
:

p − q ·∇ + r =
∂ψ

∂α
α̇+ T η̇; (4.33)
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4.1.3 General Elastic Material Model

From Eq. (4.25) and (4.26) it can be observed that the form of the constitutive equations
of stress and couple-stress directly derives from the chosen form of the Helmholtz free
energy, it is then essential to give a proper shape to this potential. The Helmholtz free
energy form adopted in Eq. (4.19) is still quite general, and many mechanical behaviors
can be modeled using this form. The most simple model used for isotropic materials can
be expressed as [de Borst and Sluys 1991]:

σ
:

= λ tr
(
e
:

e
)

I
:

+ 2 G sym
(
e
:

e
)

+ 2 Gc skw
(
e
:

e
)

; (4.34)

µ
:

= ξ tr
(
k
:

e
)

I
:

+ 2β sym
(
k
:

e
)

+ 2 γ skw
(
k
:

e
)

; (4.35)

where I
:

is the Identity second-order tensor, and the following conditions on the material
parameters must be valid:

3λ+ 2G ≥ 0

G ≥ 0

Gc ≥ 0

&


3ξ + 2β ≥ 0

β ≥ 0

γ ≥ 0

(4.36)

In this constitutive model, λ and G are the usual Lamé parameters and Gc, ξ, β and
γ are additional material coefficients. In the 2D case, it is customary to assume β = γ
for simplicity [de Borst 1991a]. For our computations, we are prone to use relatively
high values of Gc when compared to G, such that the mismatch would be characterized
by a stiffer response, and the value of skw{u ⊗ ∇} would be negligible if compared to
sym{u ⊗ ∇}. In this case, the Cosserat theory would recover the characteristics of a
couple-stress theory, also known as constrained Cosserat theory [Koiter 1964]. There is,
however, a conceptual difference between the hydrostatic term of the wryness and its
deviatoric counterpart: while, in fact, the former is related to variation of the micro-
structure rotation along the axis in which it is defined (torsion), the latter expresses the
variation of the micro-structure rotation along the other two directions (bending), and
in general these two deformations might be characterized by different responses. After
a simple dimensional analysis, the following elastic characteristic length of the Cosserat
medium can be defined:

lel =

√
β

G
(4.37)

To be noted that in case no simplifications were done on the constitutive behavior of the
Cosserat model, other characteristic lengths were identifiable, as done in other researches
[Khoei et al. 2010].

4.1.4 General Visco-Plastic Material Model

In the same way we defined the material response by defining the Helmholtz free energy
instead of the stress-strain relation, it is possible to explicitly state the shape of the
viscoplastic potential associated to the plastic deformation. A general shape of the multi-
criterion Cosserat viscoplastic potential is retrieved [Forest and Sievert 2003] where two
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potentials are defined, one related to e
:

p and one related to k
:

p. They can be modeled
using the general viscoplastic potential form as the one proposed by Chaboche in case of
standard continuum mechanics [J. Chaboche 1989] :

Ω =
D

k + 1

 〈f
(
σ
:

, p, T
)
〉

D

k+1

+
L

ξ + 1

 〈g
(
µ
:

, pk, T
)
〉

L

ξ+1

; (4.38)

where Ω is the viscoplastic potential, D and L are the drag stress and couple stress, k and
ξ are parameters to be calibrated and 〈f〉 and 〈g〉 are over-stress and over-couple-stress
between the Macaulay brackets. If we assume associated plasticity and explicitly give the
form of Ω, the plastic behavior would be completely defined. This is because the plastic
strain rate and plastic wryness rate can be written as:

ė
:

p =
∂Ω

∂f

∂f

∂σ
:

, k̇
:

p =
∂Ω

∂g

∂g

∂µ
:

; (4.39)

from which, the first ratios are equal to the rates of the viscoplastic multipliers:

ṗ =
∂Ω

∂f
, ṗk =

∂Ω

∂g
(4.40)

and the second ones define the direction of the plastic flows, being equal to the one of the
associated stress/couple stress:

∂f

∂σ
:

= n
:

σ,
∂g

∂µ
:

= n
:

µ; (4.41)

The choice of expressing the viscoplastic potential as in Eq. (4.38) would impose the cali-
bration of additional parameters related with both the contributions coming from plastic
deformation and plastic wryness. However, the expression of the viscoplastic potential
usually used with the Cosserat medium is simplified by assuming a single criterion, thus
a single viscoplastic multiplier, which is common to both plastic deformation and plastic
wryness:

Ω =
D

k + 1

 〈f
(
σ
:

,µ
:

, p, T
)
〉

D

k+1

; (4.42)

and:

ṗ =
∂Ω

∂f
, ė

:

p = ṗ
∂f

∂σ
:

, k̇
:

p = ṗ
∂f

∂µ
:

; (4.43)

with f depending both on stresses and couple stresses:

f = f(σ
:

,µ
:

, p, T ) = σeq(σ
:

,µ
:

)−R(p, T ); (4.44)
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where R represents the radius of the yield surface above which plasticity is activated. In
the Cosserat framework, several equivalent stress measures can be adopted :

σeq =

√
3

2

(
a1σ
:

′ : σ
:

′ + a2σ
:

′ : σ
:

′T + bµ
:

: µ
:

)
; (4.45)

σeq =

√
3

2

(
a1σ
:

′ : σ
:

′ + a2σ
:

′ : σ
:

′T + b1µ
:

: µ
:

+ b2µ
:

: µ
:

T
)

; (4.46)

σeq =

√
3

2

[
a3

(
σ
:

′
sym : σ

:

′
sym

)
+ a4

(
σ
:

′
skw : σ

:

′T
skw

)
+ b3

(
µ
:

sym : µ
:

sym

)
+ b4

(
µ
:

skw : µ
:

T
skw

)]
;

(4.47)

where the first one was proposed by de Borst [de Borst 1991a; de Borst 1993], the second
one by Forest [Forest and Sievert 2003], and the third one is based on the invariant de-
composition of a second order tensor [Zheng 1994]. The operator σ

:

′ returns the deviatoric
part of the tensor σ

:

. Based on the dimensional analysis of the coefficients appearing in
the Equations above, and assuming that the terms ai are equal to each other, as well as
the bi terms, the plastic characteristic length arises from the model as:

lp =

√
a

b
; (4.48)

The last remark regarding the completeness of the plastic model concerns the definition
of the plastic part of the Helmholtz free energy, that is, ψα in Eq. (4.19). This is, in
general, equal to [Śloderbach et al. 2018]:

ψα =

∫ α

0

π(ξ)dξ; (4.49)

where π is a general stress thermodynamically associated to the internal variable α. In
most plastic evolution laws the equivalent cumulative plastic strain is used as hardening
parameters, such that ṗ = α̇, and π is essentially the stress thermodynamically conjugated
to the equivalent cumulative plastic strain. Given the integral formulation of this term,
its closed form does not necessarily exist, and it could be eventually found once the plastic
flow rules are defined.

4.1.5 Adiabatic Temperature Evolution

The derivation of the temperature rate can be derived starting from the definition of the
entropy from Eq. (4.27) and assuming the Helmholtz free energy function as in Eq. (4.21):

η = −1

2
e
:

e :
∂Λ
:
:

∂T
: e
:

e − 1

2
k
:

e :
∂C
:
:

∂T
: k
:

e + (T − T0)
∂P
:

∂T
: e
:

e

+ P
:

: e
:

e + (T − T0)
∂P
:

k

∂T
: k
:

e + P
:

k : k
:

e

+
Cε
T0

(T − T0)− ∂ψα
∂T

+ σ
:

:
∂e
:

th

∂T
+ µ
:

:
∂k
:

th

∂T
; (4.50)
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then, by then taking the time variation of the entropy:

η̇ =
∂η

∂e
:

e
: ė
:

e +
∂η

∂k
:

e : k̇
:

e +
∂η

∂T
Ṫ +

∂η

∂α
α̇; (4.51)

where:

∂η

∂e
:

e
= −e

:

e :
∂Λ
:
:

∂T
+ P
:

+ (T − T0)
∂P
:

∂T
+
∂e
:

th

∂T
: Λ
:
:

; (4.52)
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:

e = −k
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∂T
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:
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∂P
:

k
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:
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: C
:
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; (4.53)

∂η

∂α
= − ∂2ψα

∂T ∂α
; (4.54)

and:
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∂T
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:
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: e
:

e +
∂2P
:

k
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:

e

)
− ∂2ψα

∂T 2
; (4.55)

and by plugging them it into the heat Equation Eq. (4.33), we obtain:

σ
:

: ė
:

p +µ
:

: k̇
:

p− q ·∇ + r =
∂ψα
∂α

+ T

(
∂η

∂e
:

e
: ė
:

e +
∂η

∂k
:

e : k̇
:

e +
∂η

∂T
Ṫ +

∂η

∂α
α̇

)
; (4.56)

from which the temperature rate can be evaluated as:

Ṫ =

σ
:

: ė
:

p + µ
:

: k̇
:

p − q ·∇
:

+ r − ∂ψα
∂α
− T

(
∂η

∂e
:

e
: ė
:

e +
∂η

∂k
:

e : k̇
:

e +
∂η

∂α
α̇

)
T
∂η

∂T

; (4.57)

The one reported in Eq. (4.57) is an expression of the temperature rate which contains
many terms whose magnitude is well below the magnitude of the larger terms as σ

:

: e
:

p for

example, therefore assumptions were made on some of the quantities populating Eq. (4.57)
in order to make it usable, and here follows the list of hypotheses:

� q = r = 0;

�
∂Λ
:
:

∂T
=
∂C
:
:

∂T
= 0;

�
∂Cε
∂T

= 0;
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Parameter Order of Magnitude Parameters Order of Magnitude

σ
:

: ė
:

p 1011 [J / m3·s] P
:

: ė
:

e 106 [J / m3·s·K]

µ
:

: k̇
:

p 1010 [J / m3·s] σ
:

: Γ
:

106 [J / m3·K]

ρCε 1010 [J / m3·K]
∂2ψα
∂T 2

10−1 [J / m3·K2]

∂ψα
∂α

1010 [J / m3]
∂2ψα
∂T∂p

10−1 [J / m3·K]

Table 4.1: Order of magnitudes of the terms in Eq. (4.57).

� ψα = ψα(α, T ) =⇒ ψα
e
:

e
=
ψα
k
:

e
= 0;

� T = 500K;

� Γ
:

= ΓI
:

= 10−5K−1;

� Γ
:

k = 0
:

K−1m−1;

�
∂Γ

∂T
=
∂Γk
∂T

= 0;

� |e
:

e| = 10−3;

� |ė
:

e| = 10−1s−1;

� |ė
:

p| = 103s−1;

� |k
:

e| = 10−2 m−1;

� |k̇
:

e| = 10−4 m−1s−1;

� |k̇
:

p| = 102 m−1s−1;

� |σ
:

| = 108Pa;

� |µ
:

| = 108 Pa m;

Furthermore, by assuming the material elastic and plastic models to be the ones
described in Tables 4.2 and 4.3, the terms in Eq. (4.57) have the orders of magnitudes
listed in Table 4.1. From the comparison of the order of magnitudes of the terms in
Eq. (4.57) that are presented in Table 4.1, the temperature flow rule can assume the
following form:

Ṫ =
σ
:

: ė
:

p + µ
:

: k̇
:

p − ∂ψα
∂α

α̇+ T
∂2ψα
∂T∂α

α̇

ρT

[
Cε
T0

+
∂Cε
∂T

(T − T0)

T0

]
− ∂2ψα

∂T 2
T

; (4.58)

which in case of further simplification becomes:

Ṫ =

σ
:

: ė
:

p + µ
:

: k̇
:

p − ∂ψα
∂p

ṗ

ρT
Cε
T0

; (4.59)

Note that it is possible, with this formulation, to evaluate the part of plastic work con-
verted into adiabatic temperature increment without any additional calibration to be
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performed. Many researches can be found in literature where the effects of harden-
ing/softening on the temperature increment is incorporated in a unique parameter, namely
the Taylor-Quinney coefficient Ξ [Taylor and Quinney 1934], that requires calibration in
different condition:

Ṫ =
Ξ

ρCε

(
σ
:

: ė
:

p + µ
:

: k̇
:

p
)

; (4.60)

By using this temperature evolution law and the evolution of the plastic deformations
defined in Eq. (4.43), the elastic predictor can then be written as:

ė
:

e = ė
:

− ė
:

th − ė
:

p = ė
:

− Ṫ Γ
:

− ṗ ∂f
∂σ
:

; (4.61)

k̇
:

e = k̇
:

− k̇
:

th − k̇
:

p = k̇
:

− Ṫ Γ
:

k − ṗ
∂f

∂µ
:

; (4.62)

4.2 Regularization of the Solution & Choice of the
Minimun Mesh Size

The model described in the previous section is here proposed to be a suitable solution for
manufacturing processes simulations. The main reason is the embodied property of the
model to enlarge the domain of the vectorial solution space {u} for which the ellipticity
of the PDEs is retained. In most of the plastic models employed to simulate manufac-
turing processes, the strain hardening effect overcompensates the thermal softening, thus
the PDEs rarely experience a loss of ellipticity. However, when high temperatures are
expected to develop, material softening could most likely exceed the strain hardening, but
not many material models are able to properly predict the flow stress at high tempera-
tures (≈ 0.8 Tm–melting temperature), therefore thermal softening might not be correctly
captured. The Johnson-Cook model, widely used in manufacturing processes, is known to
underestimate the softening effect [Guo et al. 2006], and its implementation in a strain-
gradient theory was already documented [X. Wang 2007]. Due to the limitation of the
JC model in capturing material softening, many modified versions model can be found
in literature. Among the others, we decided to use the TANH model [Calamaz et al.
2008]. Both the Classical CM model and the Cosserat model have been fetched with this
material description. Therefore, acknowledging the lacking of a proper material plastic
model able to predict flow stress models at high operational temperature, in this section
we limit ourself to demonstrate the procedure by which the two additional Cosserat char-
acteristic lengths might be calibrated. Given our final object of employing the Cosserat
medium to simulate manufacturing processes, the calibration procedure will be performed
by modeling a Hat-Shaped Specimen under compression [Peirs, Verleysen, Degrieck, and
Coghe 2010]. The Hat-Shaped test is characterized by the development of an ASB inside
the specimen, followed by an increase in temperature due to the high levels of localized
plastic strain. Since most of the manufacturing processes that export material from the
final piece are designed to do so through the development of ASBs and subsequent ma-
terial removal, this example could represent a simplified condition of the one occurring
during manufacturing. In fact, the calibration procedure has been performed precisely
while looking at the fields developed at the ASB location. The geometry of the specimen
was taken from the work of Peirs et al. [Peirs, Verleysen, Degrieck, and Coghe 2010].
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Figure 4.1: Hat-Shaped Specimen [Peirs, Verleysen, Degrieck, and Coghe 2010], geometry
(a) and mesh with boundary conditions (b). Units in millimeters. In (b) the cross section
along the shear band is indicated with red nodes.

Although the same geometry and material properties were used, the plastic behavior cho-
sen for this test is different than the one adopted by Peirs et al. The specification of
the plastic model and the material properties will be assessed in Section 4.4, and aim to
reproduce the behavior of the Titanium alloy Ti6Al4V. Given the axial-symmetry of the
specimen, only half of the cross section has been modeled in 2D under axial-symmetric
conditions. In Figure 4.1 the geometry and the boundary conditions of the benchmark
tests are reported. A vertical downward velocity of 5.5 m/s was imposed at the top sur-
face of the specimen, and the simulations lasted until a vertical negative displacement
of -0.275 mm was reached. The simulations have been produced using the FEM solver
Z-set [Z-set 2013], in which the Cosserat element description and material behavior are
implemented. Quadratic interpolation has been used to discretize displacement and rota-
tion fields between nodal values, thereby quadratic elements have been used. One of the
reasons for us to employ a Cosserat medium description is to avoid the mesh dependency
developed when the material softens at high temperatures. Therefore, a preliminary veri-
fication was performed in order to be sure that the Cosserat medium description would be
able to produce mesh-insensitive results. Simulations of the Hat-Shaped specimen under
compression were carried out using the Classical CM and the Cosserat descriptions both
fetched with a plastic behavior that reproduces pure softening. For these simulations,
the mechanical and thermal properties reported in Table 4.2 were used. In addition to
the ones indicated in the table, the couple stress moduli β and γ were both equal to
0.114 MPa·mm2. Although this model might not be descriptive of the behavior of any
material, this numerical exercise allow us to verify the mesh independence in the most
sever condition of pure softening. The flow stress adopted for this exercise reads:

R(p) = R0 +H p; (4.63)
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Figure 4.2: Cumulative plastic distribution for different mesh sizes using Classical CM
(a) and Cosserat medium (b).

where H is the softening modulus, which was set equal to - 30 MPa. As it can be seen from
Eq. (4.63), the equivalent cumulated plastic strain in this case is causing the same effect
that is usually induced by the temperature on the flow stress. According to Eq. (4.63),
the material softening is induced whenever plastic strain cumulates, while normally the
softening is a thermally-activated phenomena. The same simulation was performed for
two different mesh size, a finer mesh of 20 µm x 15 µm and a coarser mesh of double the size
for both the Classical CM and the Cosserat medium, and the plastic distributions across
the ASB were compared. In Figure 4.2 the comparison is appreciable. The equivalent
plastic strain distribution has been plotted across the ASB. While the Classical CM
description exhibits a strong mesh-dependency, the Cosserat medium does not show such
dependency. More discussion related to the differences in cumulative plastic distribution
between Classical CM and Cosserat medium will be provided in the Section 4.3, but this
results clearly shows that the Cosserat medium can retain mesh independence results
under conditions for which the Classical CM cannot.

4.2.1 Minumum Mesh Size Identification

In order to ensure the mesh size to be smaller than the elastic characteristic length of the
model, a preliminary investigation was made to find the characteristic length for which
the simulations would converge. In this analysis, the assumptions that both ai and bi
are equal to 0 in Eq. (4.46) were made. Consequently, both the deformation and the
wryness are fully elastic. Under this assumptions, the Hat-Specimen under compression
was simulated using an initial mesh size of 20 µm x 15 µm, and using the material
properties as Table 4.2. The results in terms of load-displacement of the Hat-Shaped
Specimen are reported in Figure 4.3. The values of the elastic characteristic length range
from 101 mm to 10−4 mm. The curves achieve convergence already for values of the
elastic characteristic length of 10−2 mm, therefore suggesting the adoption of a mesh size,
along the direction orthogonal to the ASB, smaller than 100 µm. Subsequently, using a
mesh size of 40 µm x 30 µm can be considered a safe choice. Furthermore, for all the
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Figure 4.3: Convergence analysis of the elastic characteristic length performed on the
load-displacement graph of the Hat-Shaped Specimen using bi = ai = 0 as assumption in
Eq. (4.46). Values of the characteristic lengths are given in millimeters.

simulations, quadratic elements are used, so that the distance between the nodes spanning
the element edges is ulteriorly halved.

4.3 Elastic characteristic length calibration

In our case, since we are modeling in 2D, there is no torsional component in the wryness
(keii = 0, ii = 1, 2, 3), therefore the parameter α does not have any influence and it must
not be calibrated. Throughout the calibration process the value of Gc was set constant
and imposed to be higher than the second Lame parameter (shear modulus), such that
the Cosserat model would assume similar nature of a strain gradient theory. The value
of Gc was set to be equal to 114000.0 MPa. The calibration of the elastic characteristic
length can be performed by simply varying the coefficient β in Eq. (4.37). The Classical
CM framework can be retrieved by imposing the elastic characteristic length to vanish,
and in this case the deformation localizes as if it was unaffected by the ”diffusing” effect
induced by not-vanishing k

:

. The calibration procedure shall start from large values of
β and then its values should progressively reduce. Differently from the analysis done in
the previous section, for the current calibration procedure only the condition b1 = b2 = 0
was used in Eq. (4.46), that is, the plastic characteristic length was set equal to infinity.
Consequently, the developed curvature is fully elastic, but the strain is also plastic, and
ṗ depends on the stress only in Eq. (4.46).

The calibration procedure could be performed by comparing data of different nature
between experiments and simulations. Following the complete thermodynamic descrip-
tion outlined in Section 4.1 we could compare the temperature distribution in the ASB,
especially because this can be easily measured through thermal camera or, in case the
plastic deformation localizes inside the specimen, by positioning thermocouples at the
location where the ASB is expected to develop. Since the magnitude of the characteristic
length influences the area over which the developed deformation spreads (thickness of
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Figure 4.4: Effects of the characteristic elastic length on the load-displ graph (a) and
on the temperature distribution (b). Values of the characteristic lengths are given in
millimeters.

ASB), many thermocouples might be necessary to capture both the thermal distribution
and its peak value. To be noted here that in adiabatic conditions the thermal variation
is only driven by local development of plastic deformation, since there is no time for the
temperature to diffuse, thus the measured temperature is a direct indication of the devel-
oped plastic deformation. Six values of the elastic characteristic length were used, from
101 mm to 10−4 mm. The effects of the elastic characteristic length have been investi-
gated by looking both at the load-displacement curve and at the temperature distribution
at the ASB.

As already observed in case of a hyper-elastic material model, the adoption of an
elastic characteristic length, whose order of magnitude is comparable with the geometry
size, extends the stiffening effect to a macroscopic level, inducing the whole system to
behave stiffer. In case a plastic component is introduced in the Cosserat strain, the same
behavior is observed, as inferred by Figure 4.4a. It can be observed from this Figure that
the over-prediction of the initial elastic stiffness is negligible for values of the characteristic
length smaller or equal than ≈ 10−1 mm. Furthermore, it can be appreciated from the
same Figure the trend of the load-displ curve of converging toward the results produced
for a Classical CM simulation for values of the characteristic length that approach zero.
The curve, however, should not overlap with the one obtained from the adoption of the
TANH model in a Classical CM framework because, although the curvature is providing
a null energetic contribution, the part of the Cosserat strain accounting for the mismatch
between macro and micro rotation is still playing a role.

In Figure 4.5 the thermal fields across the ASB are reported. From the Figure, it
is possible to identify the effect of the characteristic length on the thermal distribution.
The elastic characteristic lengths indicate the range over which the thermal field, in this
case, is spreading: smaller elastic characteristic length will induce the fields to spread over
smaller domains. It can be noted that the temperatures reached in the Classical CM case
are lower than the ones in the Cosserat model with a characteristic length of 10−4 mm,
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E [MPa] ν Gc [MPa] ρ [kg/m3] Cε [J/kg·K] Tm [K] Γ [1/K] Γk [1/K·mm]

114000.0 0.3 114000.0 4428.0 580.0 1926.0 8.5e-6 0.0

Table 4.2: Elastic and thermal material properties corresponding to the Titanium alloy
Ti6Al4V [Peirs, Verleysen, Degrieck, and Coghe 2010].

however, it should be reminded that the results of this simulation strongly depend on the
mesh size.

4.4 Plastic characteristic length calibration

Although the model previously described defines the plastic behavior of the medium by
providing the explicit function of the plastic potential Ω, most of the models used in
literature are simply provided through their flow stress definition. The flow stress used
here derives from the one developed by Calamaz et al. [Calamaz et al. 2008], but the
dependence of the flow stress on the rate of the equivalent plastic strain has been omitted
in order to simplify the model and focus only on strain hardening and thermal softening
behaviors. This flow stress model has been used several times in literature [Hor et al. 2013;
L. He et al. 2018], but it has never been coupled with the Cosserat medium description.
The radius of the yield surface is defined as:

R =

[
A+

Bpn

exp (pa)

] [
1−

(
T − T0

Tm − T0

)m] [
D + (1−D) tanh

(
1

(p+ S)
c

)]
; (4.64)

where:

D = 1−
(
T

Tm

)d
; (4.65)

S =

(
T

Tm

)b
; (4.66)

and the flow rule of the viscoplastic multiplier p follows:

ṗ = exp

(
〈f〉
RC

)
− 1 = exp

[
1

C

(σeq
R
− 1
)]
− 1; (4.67)

It must be remembered that since we are using a single viscoplastic multiplier, ṗ depends
on both plastic strain and wryness contributions. The material properties are listed in
Table 4.2, and they belong to the Titanium alloy Ti6Al4V, and the TANH flow stress
model parameters have been summarized in Table 4.3. The calibration of the plastic
characteristic length has been done under the hypothesis that a1 = a2 and b1 = b2 in
Eq. (4.46). The characteristic plastic length was chosen in the range between 100 mm
and 10−4 mm. From the previous calibration procedure it was evident that the elastic
characteristic length for this problem had to be smaller or equal than 10−2 mm for the
deformation to localize. However, excessively low values of β induce the development
of a relatively low values of couple stress if compared to the stress, therefore obliging
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(a) lel = 100 mm (b) lel = 10−1 mm

(c) lel = 10−2 mm (d) lel = 10−3 mm

(e) lel = 10−4 mm (f) Classical CM

Figure 4.5: Temperature distribution in a Hat-Shaped specimen using the Cosserat frame-
work with different values of β compared to the Classical CM result.
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A [MPa] B [MPa] C m n a b c d

1120.0 667.0 0.0270 1.33 0.47 1. 1. 1. 1.

Table 4.3: Visco-plastic coefficients used in the TANH model [Peirs, Verleysen, Degrieck,
and Coghe 2010].
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Figure 4.6: Effects of the characteristic plastic length on the load-displ graph (a) and
on the temperature distribution (b). Values of the characteristic lengths are given in
millimeters.

the adoption of high values of the coefficient b in Eq. (4.46) if we wanted the couple
stresses to have an effect on σeq. Thus for the plastic characteristic length calibration,
an elastic characteristic length of 10−2 mm has been chosen. Once again, we look at
the effects on the global load-displacement graph and to the temperature distribution
inside the ASB, which are reported in Figures 4.6a and 4.6b respectively. In Figure 4.6a
it can be observed that the load-displacement curves are bounded between the curves
obtained for lpl = 100 mm and lpl = 10−4 mm, which represent the asymptotic results
for larger or smaller characteristic plastic lengths respectively. This behavior suggests
that the plastic development is simultaneously driven by both strain and wryness in case
the characteristic plastic length belongs to the range ≈ [10−1 mm÷10−3 mm], and that
it is purely dominated by strain or wryness only in case the characteristic plastic length
falls respectively before or after this domain. If we look at the temperature distribution
across the ASB in Figure 4.6b, it shows an increasing peak of predicted temperature
at the center of the shear band, and a narrower localization of the thermal field with
a decreasing plastic characteristic length. The maximum difference between the peaks
of the temperatures belonging to the different plastic characteristic lengths measures 65
K. This difference lies well beyond the resolution of instruments, like thermocouples or
thermal camera, thus the effect of different plastic characteristic lengths could be probed.
Nonetheless, 65 K of difference is still a relative low value if compared with the total
produced temperature, that is around 500 K. This indicates a relative weaker influence
of the characteristic plastic length on the developed thermal field if compared with the
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effects produced by different values of elastic characteristic lengths on the thermal fields.

4.5 Conclusion

Simulations of manufacturing processes can provide valuable information that help opti-
mizing machined materials and machining benches. Furthermore, the knowledge related
to the deformation history of the material is a key factor in addressing the post-processed
status of the medium, for example in terms of residual stresses. In order to achieve
more reliable simulations of these processes, we proposed the adoption of the Cosserat
model as description of the medium behavior. A thermodynamically-consistent geomet-
rically linearized formulation of the Cosserat theory was proposed in Section 4.1, where
a thermo-elasto-visco-plastic framework was provided for the material characterization
through the definition of visco-plastic potential, Helmholtz free energy and dissipation
potential.

Using a purely-softening plastic behavior, the Cosserat medium was first proven to
provide mesh-independent results, then the TANH flow-stress model was implemented,
and it was used to describe an example of the calibration procedure of the elastic and
plastic characteristic lengths using a hat-shaped specimen. The calibration of the elastic
characteristic length was done by comparing the global load-displacement graph, and, for
the specific plastic model used here, its values was found to be in the range of microns,
that is comparable to grain size of the Titanium alloy used for the simulation [Dong et al.
2018]. By fixing the value of the elastic characteristic length to be equal to 10−2 mm, the
calibration of the plastic characteristic length was performed once again by comparing
the load-displacement graphs. The analysis suggested the existence of a range for the
plastic characteristic length in which the contribution of plastic strain and plastic wryness
were playing a comparable role. Outside these limits the plastic developments were fully
dominated by the plastic components of one of the two deformation measures. However,
finally the elastic characteristic length was found to have greater effects than the plastic
ones.

Nonetheless, since the effects of the plastic characteristic length are highlighted at
large plastic deformation, it is advisable to use a large deformation theory for the Cosserat
medium. This remains the topic for the future research. For future research it is also
foreseen the adoption of a physically-based material plastic law, ideally dislocation-based,
and the validation of the Cosserat model for more complex manufacturing operations, such
as machining or orthogonal cutting.
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Chapter 5

Analytical solutions in
Cosserat elasto-plasticity

In this chapter, are derived the analytical solutions of the glide problem for the elasto-
plastic Cosserat media under small deformation. For the plastic part of the solutions, a
relatively-new formulation of the equivalent stress measure is here proposed. This specific
choice of properly picked invariants of the second order stress tensor allowed the analytical
solution of this particular problem to be found straightforwardly.

Two sets of boundary conditions will be considered: the first set leaves the micro-
rotations free at the boundaries of the specimen, whereas the second set contains an
additional constraint on the micro-rotations. Different mechanical properties will be used
for each set of boundary conditions. Both cases are analyzed in elasticity and elasto-
plasticity.

The first set of boundary conditions (free micro-rotation) is of specific interest for this
research, since it recreates the conditions for localization of deformation and subsequent
formation of a shear band. Analyzing this case is of pivotal importance to improve the
understanding of the shear band formation during metal manufacturing. The exact width
of the shear band predicted using the Cosserat medium will be analytically derived.

This chapter is structured in three sections: in the first one, the relatively-new formu-
lation of the equivalent stress will first be presented, then the second and third section
will focus on the analytical solutions of the free-rotations and the fixed-rotations sets of
boundary conditions, both in elasticity and elasto-plasticity.

5.1 Reformulation of the equivalent plastic stress in
the cosserat media

The formulation of the equivalent stress that has been previously used derives from the
research of de Borst [de Borst 1991b], and it reads:

σde Borst
eq =

√
3

2

√
a1(σ

:

d : σ
:

d) + a2(σ
:

d : σ
:

T
d ) + b1(m

:

: m
:

) + b2(m
:

: m
:

T ); (5.1)
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where the subscript d indicates the deviatoric part of the tensor. Several features of this
specific formulation can be pointed out:

� In case of a plane 2D analysis only the entries m31 and m32 are not zero, and using
a coefficient b26=0 can induce the formation of some not-physical plastic wryness
kp13 and kp23 if the normality rule is applied;

� In the specific case analyzed in the next Section 5.3, if a1 and a2 are chosen to be
0 and 1 respectively, then the J2 is imaginary (in the example of the next section,
this happens in a region close to the edges);

� For general values of a1 and a2, there exist no clear distinction between the action
belonging to the additional part of the deformation (skew(e

:

)) and to the classical-

Cauchy part of the deformation (sym(e
:

)). Ideally, we want to split these two con-
tributions and treat them separately.

In literature, other forms of equivalent stress for the Cosserat media can be found, namely
the one proposed by Lippmann, Mühlhaus and Vardoulakis, Steinmann[Lippmann 1969;
Mühlhaus et al. 1987; Steinmann 1994], in which the symmetric and skew-symmetric
parts of the stress tensor are multiplied with two different parameters. In a large de-
formation framework of the Cosserat media, the Cauchy stress, Kirchhoff stress and the
Mandel stress have been used for the definition of the equivalent stresses, by Bauer et
al. [Bauer, Dettmer, et al. 2012], Steinmann [Steinmann 1994] and by Grammenoudis and
Tsakmakis [Grammenoudis et al. 2001; Grammenoudis et al. 2005] respectively.

In the attempt of proposing a different formulation for the equivalent stress, one
possible solution would be to look at the invariants of the tensors that should contribute
to the equivalent stress measure. From the work of Zheng, [Zheng 1994], the invariants
of a generic tensor C

:

are a combination of the invariants of its symmetric and skew
symmetric parts, referred to as A

:

and W
:

respectively. The invariants of A
:

are:

� trace
(
A
:

)
, � trace

(
A
:

2
)

, � trace
(
A
:

3
)

,

the invariant of W
:

is:

� trace
(
W
:

2
)

,

and the mixed invariants are:

� trace
(
A
:

W
:

2
)

, � trace
(
A
:

2W
:

2
)

, � trace
(
A
:

2W
:

2A
:

W
:

)
.

Based on the invariants of its second order tensor, the following formulation of the equiv-
alent stress is proposed:

σeq =

√
3

2

√
a3(σ

:

s
d : σ

:

s
d) + a4(σ

:

k
d : σ

:

k
d) + b3 [trace(m

:

)]2 + b4(m
:

s
d : m
:

s
d) + b5(m

:

k
d : m
:

k
d);

(5.2)
Here it is important to mention that same analysis on the equivalent stress measure in
the Cosserat media has been done simultaneously and independently by Pantegini and
et. [Panteghini and Lagioia 2021]. If this formulation is compared with the one of de
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Borst (Eq. (5.1)), we can see that in the previous formulation the symmetric and skew-
symmetric parts of the stress are not treated separately, and we can appreciate this
difference by explicitly expressing the stresses in Equation (5.1) with their symmetric and
skew-symmetric parts σ

:

= σ
:

s + σ
:

k (subscript d removed for clarity):

a1

(
σ
:

: σ
:

)
+ a2

(
σ
:

: σ
:

T
)

= a1

(
σ
:

s : σ
:

s + σ
:

s : σ
:

k + σ
:

k : σ
:

s + σ
:

k : σ
:

k
)

+

+ a2

(
σ
:

s : σ
:

sT + σ
:

s : σ
:

kT + σ
:

k : σ
:

sT + σ
:

k : σ
:

kT
)

=

a1

(
σ
:

s : σ
:

s + σ
:

k : σ
:

k
)

+ a2

(
σ
:

s : σ
:

s + σ
:

k : σ
:

kT
)

; (5.3)

By remembering that, for a generic tensor A
:

, both A
:

s : A
:

s and A
:

k : A
:

k are two of its

invariants [Zheng 1994], the question arises on why these invariants are combined as such
in the formulation of the equivalent stress in Equation (5.1). By using such combination of
invariants, if the coefficients a1 and a2 are equal, the contribution to the equivalent stress

of the skew-symmetric part of the stress disappears (σ
:

k : σ
:

kT = −σ
:

k : σ
:

k), effectively
recovering the formulation of the equivalent stress for the Cauchy continuum. On the
other hand, if the objective was to emphasize the effect of the skew-symmetric part of the
stress on the equivalent stress, then the difference between the two a coefficient should be
increased. On the contrary, an important advantage of the newly proposed decomposition
is that we can clearly identify and explicitly quantify the classical contributions of the
Cauchy stress and the additional part coming from the Cosserat theory, therefore, the
coefficients a3 and a4 act as a direct amplifier of the symmetric and skew-symmetric parts
of the equivalent stress measure.

If all the terms related to the couple stress were assumed to be null, the old formulation
can be retrieved by the new formulation through the following conditions:

{
a3 = a1 + a2,

a4 = a1 − a2,

(5.4)

(5.5)

In a simplified 2D condition, the trace of the couple stress tensor in null, therefore the
assumption on the bi terms can be removed, and, in general, the following conditions
must applied to retrive the old formulation:

a3 = a1 + a2,

a4 = a1 − a2,

b3 = 0,

b4 = b1 + b2,

b5 = b1 − b2.

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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Table 5.1: Elasto-plastic material properties used for the free rotations problem.

E ν β σ0 H

200000 MPa 0.3 77 MPa mm2 250 MPa 0 MPa / ±1000 MPa

5.2 Set 1 of boundary conditions: free micro-rotations

For the semi-infinite glide planar Cosserat problem under plain strain condition, the
following degrees of freedom are considered:

u =

u(y)

0

0

 and θ =

 0

0

θ(y)

 (5.11)

thus there exist only two degrees of freedom: displacement u and micro-rotation θ. Since
a semi-infinite layer of material is considered, the problem effectively becomes a one-
dimension problem (both the variables are function of y only). The Cosserat strain and
wryness are defined as:

e
:

= u ⊗∇ + ε
:

· θ =

 0 u,2 + θ 0

−θ 0 0

0 0 0

 ; (5.12)

k
:

= θ ⊗∇ =

0 0 0

0 0 0

0 θ,2 0

 ; (5.13)

where the subscript ,2 indicates the first derivative of the function with respect to the y
coordinate. The balance Equations for the Cosserat media have been previously derived,
and they are the following:

σ
:

·∇ + f = 0; (5.14)

m
:

·∇ + axl(σ
:

) + c = 0; (5.15)

which, in absence of body and contact forces, can be particularized for the current problem
as:

σ12,2 = 0; (5.16)

m32,2 = σ12 − σ21; (5.17)
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u(L) = u0

tc(L) = 0

u(-L) = -u0

tc(L) = 0

2L x

y

Figure 5.1: First set of boundary conditions used for the glide test using the Cosserat
continuum.

The definition of the normals at the boundaries of the domain are:

n− = n (y = −L) =

 0

−1

0

 ; (5.18)

n+ = n (y = L) =

0

1

0

 ; (5.19)

The tractions and couple tractions can then be defined, for example at the top most
boundary of the domain (y = L, n = n+), as:

t = σ
:

· n+, (5.20)

tc = m
:

· n+ (5.21)

Dirichlet boundary conditions were applied to the displacement fields at the top and
bottom of the strip, opposite in magnitude:

u (y = L) = u0; (5.22)

u (y = −L) = −u0; (5.23)

and Neumann boundary conditions were applied on the micro-rotational fields, in terms
of couple traction, at the top and bottom of the strip, and they were set to be null:

tc3 (y = L) = 0; (5.24)

tc3 (y = −L) = 0; (5.25)

and this means that the rotations fields should have a null derivative at the top and bottom
of the strip. The geometry and the boundary conditions are reported in Figure 5.1. Using
this set of boundary condition in classical continuum mechanics would lead to a simple
homogeneous solution in which the shear is equal to the applied displacement divided by
the length of the specimen. In terms of material properties, in Table 5.1 the mechanical
properties used for the free-rotations boundary value problem have been reported.
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5.2.1 Elastic behavior with free rotations

The standard Cosserat isotropic constitutive behavior is considered for stress and couple
stress:

σ
:

= λ trace(e
:

e)I
:

+ 2µ sym(e
:

e) + 2µc skew(e
:

e); (5.26)

m
:

= α trace(k
:

e)I
:

+ 2β sym(k
:

e) + 2 γ skew(k
:

e); (5.27)

where the superscript e indicates the elastic part of the deformation, and since we are
only considering fully elastic solutions in this sub-section, it would correspond to the total
deformation. In this case, the stress and couple stress are:

σ
:

=

 0 u,2(µ+ µc) + 2µc θ 0

u,2(µ− µc)− 2µc θ 0 0

0 0 0

 , (5.28)

m
:

=

0 0 0

0 0 0

0 2β θ,2 0

 , (5.29)

and the tractions and couple tractions would be:

t =

u,2 (µ+ µc) + 2µcθ

0

0

 , (5.30)

tc =

 0

0

2βθ,2

 , (5.31)

and, by substituting the stresses and couple stresses in the balance equation (5.16) and
(5.17), they become:

u,22 = − 2µc
µc + µ

θ,2, (5.32)

β θ,22 = µcu,2 + 2µc θ. (5.33)

The general solution to the boundary value problem can be found by differentiating
Eq. (5.33) and substituting the function u,22 in Eq. (5.32):

β θ,222 = µcu,22 + 2µc θ,2 =⇒ θ,222 = ω2
e θ,2, (5.34)

where we defined the inverse of the intrinsic elastic length as:

ωe =

√
2µµc

β(µ+ µc)
, (5.35)
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and the general solutions of the differential equation have the following forms:

θ(y) = A cosh(ωe y) +B sinh(ωe y) + C, (5.36)

u(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)] +Dy + E. (5.37)

However, we have to consider also the not-derived form of Equation (5.33) as additional
differential equation, and this extra equation establishes the value of the constant C:

A cosh(ωey)

[
βω2

e + 2
µ2
c

µ+ µc
− 2µc

]
+B sinh(ωey)

[
βω2

e + 2
µ2
c

µ+ µc
− 2µc

]
= 2µc(D+2C),

(5.38)
where the terms in parenthesis can be elided and be found to be zero, therefore leading
to:

C = −D
2
, (5.39)

and the general solutions of the micro-rotation and the displacements are:

θ(y) = A cosh(ωe y) +B sinh(ωe y) + C, (5.40)

u(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2C y + E. (5.41)

The specific solution can be found by imposing the set of boundary conditions. By sub-
stituting the general solutions in the displacement boundary conditions Equations (5.22)
and (5.23), they transform into:

A sinh (−ωe L) +B cosh (−ωe L) = (2C L+ E + u0) ωe
µ+ µc

2µc
, (5.42)

A sinh (ωe L) +B cosh (ωe L) = (−2C L+ E − u0) ωe
µ+ µc

2µc
, (5.43)

whereas the boundary conditions on the tractions in Equations (5.24) and (5.25) can be
rewritten as:

2β ωe [A sinh (ω L) +B cosh (ωe L)] = 0, (5.44)

2β ωe [A sinh (−ωe L) +B cosh (−ωe L)] = 0, (5.45)

From the Newman boundary conditions (Equations (5.44) and (5.45)): A = 0

B = 0
(5.46)

So, the Dirichlet boundary conditions (Equations (5.42) and (5.43)) can be written as: −2C L = E + u0,

−2C L = −E + u0,
=⇒

 C =
−u0

2L
,

E = 0.

(5.47)
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Figure 5.2: Identification of the elastic and plastic zones expected for the strip test.

At the end, the particular solutions for the given boundary conditions are:

u(y) =
u0

L
y, (5.48)

θ(y) = − u0

2L
, (5.49)

where it can be appreciated that the solution from the classical Cauchy continuum is
retrieved. In this case the Cosserat rotation follows the material rotation, since no re-
striction has been posed on it.

5.2.2 Elasto-plastic behavior with free micro-rotations

Given the fact that the fields are homogeneous, in the present case of boundary conditions,
the stress will also be homogeneous, therefore the equivalent stress has the same value
throughout the specimen, and if this value goes beyond the yield, the whole specimen
turns plastic. In case of a softening plastic behavior, the material experiences a point of
un-stable equilibrium, and it requires some triggering in order to exploit the instability.
In order to numerically induce instability at a specific location, often the material in
this region is characterized with a slightly smaller yield stress, such as to trigger plastic
deformation to initially nucleate here. We suppose that the nucleation occurs in the
middle of the specimen, therefore leading to a symmetric solution with respect to the x
axis, and the elastic and plastic domains will develop as depicted in Figure 5.2.

The aim now is to find the general and specific solutions to the boundary value prob-
lem for the plastic domain. Differently from the elastic problem, we introduce another
unknown field, which plays as an additional variable for the problem, that is the cu-
mulative equivalent plastic strain. The governing differential equations which have been
previously presented are still valid for the plastic zone, here they are reported:

σ12,2 = 0, (5.50)

m32,2 = σ12 − σ21, (5.51)

in addition to these, we must also include the yield condition (that must hold in the
plastic zone) and the assumption on the load that should be monotonically increasing. In
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order to do so, the following linear plastic behavior is considered here:

R(p) = R0 +H p, (5.52)

where R0 is the initial yield value, H is the slope of the curve and p is the plastic multiplier.
Assuming an equivalent stress measure as presented in Equation (5.2), and by considering
that bi = 0, a4 = 0, the wryness is fully elastic (Equation (5.29) is still valid), the yield
condition assumes the following form:

f = σeq(y)−R0 −H p = 0; =⇒ σeq(y) = R0 +H p, (5.53)

which can be written as:

|σ12 + σ21| =
[

2√
3 a3

(R0 +H p)

]
. (5.54)

Furthermore, the constitutive model for the stress within the elasto-plastic domain reads:

σ
:

= λ trace(e
:

e)I
:

+ 2µ sym(e
:

e) + 2µc skew(e
:

e), (5.55)

assuming an additive elasto-plastic decomposition:

σ
:

= λtrace(e
:

− e
:

p)I
:

+ 2µ sym(e
:

− e
:

p) + 2µcskew(e
:

− e
:

p), (5.56)

and, by assuming the normality rule to hold (and monotonic proportional loading), the
following relation can be considered:

e
:

p = pn
:

= p
∂σeq
∂σ
:

= p

√
3 a3

2

(σ12 + σ21)

|σ12 + σ21|

0 1 0

1 0 0

0 0 0

 , (5.57)

then, by considering the following:

e
:

= u⊗∇+ε
:

·θ =

 0 u,2 + θ 0

−θ 0 0

0 0 0

 =

 0 u,2/2 0

u,2/2 0 0

0 0 0

+

 0 θ + u,2/2 0

−θ − u,2/2 0 0

0 0 0

 ,
(5.58)

the stress reads:

σ
:

=

 0 u,2[µ+ µc] + 2µcθ + µp
√

3 a3 0

u,2[µ− µc]− 2µcθ + µp
√

3 a3 0 0

0 0 0

 , (5.59)

from which, the traction and couple traction would be:
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Figure 5.3: Value of the coefficient multiplying θ,2 in Equation (5.65) computed by using
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t =

u,2 (µ+ µc) + 2µcθ + µ p
√

3 a3

0

0

 , (5.60)

tc =

 0

0

2βθ,2

 , (5.61)

Finally, by substituting the formulation of the stress in the yield condition (5.54), this
can be explicitly written, and the full set of governing equations in the plastic domain
will look like: 

u,22[µ+ µc] + 2µcθ,2 = −µp,2
√

3 a3

2µcu,2 + 4µcθ = 2βθ,22

2µu,2 + 2µ p
√

3 a3 = −
[

2√
3 a3

(R0 +H p)

] (5.62)

The general solution to the problem can be found by deriving the second equation with
respect to y:

u,22 = −2 θ,2 +
β

µc
θ,222; (5.63)
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same can be done to the last equation:

p,2 = −µu,22

[ √
3 a3

µ 3 a3 +H

]
, (5.64)

and by plugging both of them in the first equation, the following condition on θ can be
found:

θ,222 =

{
2µµcH

β [(µ+ µc)H + µµc 3 a3]

}
θ,2. (5.65)

Depending on the sign of the coefficient multiplying θ,2, the solution has different forms.
In Figure 5.3 this coefficient is depicted as function of the hardening/softening modulus
(using the mechanical material properties reported in Table 5.1). If the snapback region

is excluded (H < −3µµc a3

µ+ µc
≈ −2.3 · 105), the coefficient assumes the same sign as the

plastic hardening modulus, therefore we can identify different families of solutions based
on the values of H. The most interesting condition for our investigation, however, is the
one in which the material experiences a softening behavior, which is introduced in order to
simulate thermal softening occurring in the material during manufacturing operations. It
is already well known that the classical plasticity theory, combined with softening plastic
behavior, is characterized by a spurious mesh dependency, whereas the strain gradient
theory, or the Cosserat theory in this case, regularizes the localization. In Figure 5.4 the
difference in terms of cumulative plastic strain can be appreciated from the numerical
simulation. For this reason, in this section (first set of boundary condition) we will focus
on the softening behavior, and we will investigate over the analytical solution of the fields
in this specific case.

5.2.3 Softening, H<0: localization of deformation.

In case a softening behavior is assigned to the material, the coefficient multiplying θ,2 in
Eq. (5.65) is negative, and the Equation can be re-written as:

θ,222 =

{
2µµcH

β [(µ+ µc)H + µµc 3 a3]

}
θ,2 = −

{
− 2µµcH

β [(µ+ µc)H + µµc 3 a3]

}
θ,2 = −ω2

p θ,2,

(5.66)
where ωp is the inverse of the plastic length associated with the plastic zone. Given the
negativity of the coefficient multiplying θ,2, the solutions of the differential equations in
the plastic domain are based on sine/cosine functions:

θP (y) = F cos (ωp y) +G sin (ωp y) + I

uP (y) = −

[
2µc + β ω2

p

ωp µc

]
[F sin (ωp y)−G cos (ωp y)]− 2 I y +M

p(y) =

[
µ
√

3 a3

µ3 a3 +H

][
2µc + β ω2

p

µc

]
[F cos (ωp y) +G sin (ωp y)]

+
2µ
√

3 a3

µ3 a3 +H
I − R0

3µa3 +H

(5.67)
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Figure 5.4: Numerical solutions of the plastic field distribution for the classical and the
Cosserat model using the softening plastic behavior.
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In which case, the total system of differential equations to be solved is (once again we
divide the problem into three domains as in Figure 5.2):

Top Elastic


θT (y) = A cosh(ωe y) +B sinh(ωe y) + C

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2C y + E

(5.68)

Center Plastic



θP (y) = F cos (ωp y) +G sin (ωp y) + I

uP (y) = −

[
2µc + β ω2

p

ωp µc

]
[F sin (ωp y)−G cos (ωp y)]− 2 I y +M

p(y) =

[
µ
√

3 a3

µ3 a3 +H

] [
2µc + β ω2

p

µc

]
[F cos (ωp y) +G sin (ωp y)]

+
2µ
√

3 a3

µ3 a3 +H
I − R0

3µa3 +H
(5.69)

Bottom Elastic


θB(y) = Q cosh(ωe y) +R sinh(ωe y) + S

uB(y) = − 2µc
(µ+ µc)ωe

[Q sinh(ωe y) +R cosh(ωe y)]− 2S y + U

(5.70)

which must be coupled to the symmetric boundary conditions:

uT (L) = u0

tcT (L) = 0

uB(−L) = −u0

tcB (−L) = 0

(5.71)
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Given the symmetry of the boundary conditions, we can assume that the solutions are
even/odd functions. Therefore, the following conditions can be imposed:

θT (y) = θB(−y) =⇒ [A−Q] cosh (ωe y) + [B +R] sinh (ωe y) + [C − S] = 0

θT (y) = θT (−y) =⇒ [A−A] cosh (ωe y) + [B +B] sinh (ωe y) + [C − C] = 0

uT (y) = −uB(−y) =⇒ 2 [C − S] y + [E + U ] = 0

θP (y) = θP (−y) =⇒ [F − F ] cos (ωp y) + [G+G] sin (ωp y) = 0

uP (y) = −uP (−y) =⇒ [M +M ] = 0

ypT = −ypB ;
(5.72)

leading to the following conditions on the coefficients:

� A = Q

� B = R = 0

� C = S

� E = −U

� G = 0

� M = 0

� ypT = −ypB = y0

and by using such conditions, the number of coefficients reduces, and the system of
equations as well:

Top Elastic


θT (y) = A cosh(ωe y) + C

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y + E

(5.73)

Center Plastic



θP (y) = F cos (ωp y) + I

uP (y) = −

[
2µc + β ω2

p

ωp µc

]
[F sin (ωp y)]− 2 I y

p(y) =

[
µ
√

3 a3

µ3 a3 +H

] [
2µc + β ω2

p

µc

]
[F cos (ωp y)]

+
2µ
√

3 a3

µ3 a3 +H
I − R0

3µa3 +H

(5.74)

Bottom Elastic


θB(y) = A cosh(ωe y) + C

uB(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y − E
(5.75)

100



Through Equations (5.60) and (5.61), the tractions can be written as:

tT (y) = −2Cµ, (5.76)

tcT (y) = 2β ωe [A sinh (ωe y)] , (5.77)

tP (y) = −2 I

[
µH

H + 3 a3 µ

]
−
√

3 a3µR0

3 a3µ+H
, (5.78)

tcP (y) = −2β ωp [F sin (ωp y)] . (5.79)

At this point, the boundary conditions and the continuity of tractions and couple tractions
can be applied. The Dirichlet boundary condition is:

uT (L) = u0, (5.80)

the Neumann condition is:
tcT (L) = 0, (5.81)

the boundary condition on the equivalent plastic strain is:

p(y0) = 0, (5.82)

and the continuity of the fields must be superimposed at the coordinate y0:

uT (y0) = uP (y0), (5.83)

θT (y0) = θP (y0), (5.84)

tT (y0) = tP (y0), (5.85)

tcT (y0) = tcP (y0). (5.86)

By combing all the conditions, the following system of Equations can be written:

uT (L) = u0, (5.87)

tcT (L) = 0, (5.88)

uT (y0) = uP (y0), (5.89)

θT (y0) = θP (y0), (5.90)

tT (y0) = tP (y0), (5.91)

tcT (y0) = tcP (y0), (5.92)

p(y0) = 0, (5.93)

which is a system of 7 Equations linearly dependent (6 linearly independent), with 6 un-
knowns (which are the coefficients in the general solutions of the fields in Equations (5.73),
(5.74) and (5.75)), and it can be solved numerically in general. The comparison between
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Figure 5.5: Stripe under glide with free rotational boundary conditions. Softening plastic
behavior. Material parameters in Table 5.1.
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Figure 5.6: Comparison in terms of cumulative plastic strain for the localization case using
different applied displacements (a) and different values of β (b). Material parameters in
Table 5.1.

analytical and numerical solutions can be found in Figure 5.5, and it can be observed
that they match closely. The thickness of the shear band is expected to be invariant
with respect to the applied displacement, and in order to verify that this is behavior is
correctly captured, two different values of the external applied displacements have been
used and the results are reported in Figure 5.6a. As expected, the localization zone does
not get broader with an increasing applied displacement. From the analytical solution,
the thickness of the shear band for the present analysis can then be evaluated as:

lpch =
2π

ω2
p

= −πβ [(µ+ µc)H + µµc 3 a3]

µµcH
, (5.94)

and it can be observed that the only parameters affecting the size of the localization
zone are the ones that can be found in Equation (5.94). The thickness of the shear band
is linearly dependent on the couple stress modulus β, therefore, the same localization
problem has been studied with different values of β, and the the results can be found
in Figure 5.6b. This small demonstration has been done to prove that the thickness
of the simulated shear band using the Cosserat media in case of softening material is
directly dominated by this additional material parameter, thus it can be straightforwardly
calibrated based on the measured shear band during experimental analysis.

5.3 Set 2 of boundary conditions: fixed micro-rotations

This set of boundary conditions can be considered as a modification of the previous one,
where an extra constraint is enforced on the Cosserat rotation. It is known from the
previous solution that the Cosserat rotation tends to follow the material rotation, but in
this section we investigate the solution in case the Cosserat rotation is enforced to be null
at the boundaries. Dirichlet boundary conditions were applied to the displacement fields
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y

Figure 5.7: Second set of boundary conditions used for the glide test using the Cosserat
continuum.

at the top and bottom of the strip, opposite in magnitude:

u (y = L) = u0; (5.95)

u (y = −L) = −u0; (5.96)

and Dirichlet boundary conditions were also applied on the micro-rotational fields, and
they were set to be null:

θ (y = L) = 0; (5.97)

θ (y = −L) = 0; (5.98)

The geometry and the boundary conditions are reported in Figure 5.7.

5.3.1 Elastic behavior with fixed micro-rotations

The general solutions previously found for the first set of boundary conditions holds
in this case as well, however, in this case we can particularize the general solutions by
applying different sets of boundary conditions. The general solutions in Equations (5.40)
and (5.41)are reported here:

θ(y) = A cosh(ωe y) +B sinh(ωe y) + C, (5.99)

u(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2C y + E. (5.100)

The particular solution can be found by substituting the general solution into the bound-
ary conditions. By coupling the Dirichlet boundary conditions on θ (Equations (5.97)
and (5.98)):

B = 0, (5.101)

A = − C

cosh(ωe L)
, (5.102)
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Figure 5.8: Solutions of the field distribution using the fixed-rotation set of boundary con-
ditions and elastic behavior. Comparison with the FEM solution is reported. Mechanical
properties in Table 5.2.

then, from the conditions on the displacement fields (Equations (5.95) and (5.96)):

E = 0, (5.103)

C = − u0(µ+ µc)ωe
2 [Lωe(µ+ µc)− µc tanh(ωeL)]

. (5.104)

Finally, the specific solutions for the imposed set of boundary conditions look like:

θ(y) = − u0(µ+ µc)ωe
2 [Lωe(µ+ µc)− µc tanh(ωeL)]

(
1− cosh(ωey)

cosh(ωeL)

)
, (5.105)

u(y) =

{
− u0(µ+ µc)ωe

2 [Lωe(µ+ µc)− µc tanh(ωeL)]

}[
2µc sinh(ωey)

ωe(µ+ µc) cosh (ωe L)
− 2 y

]
, (5.106)

which are reported in Figure 5.8, alongside the comparison with the FEM solutions. The
mechanical properties used for this tests are reported in Table 5.2.

5.3.2 Elasto-plastic behavior with fixed micro-rotations

In the previously investigated case (localization) the first plastic zone could be found at
the center of the specimen because it was imposed by us by triggering localization at the
center of the specimen. Positioning the shear band somewhere else (as long as it was
far from the boundaries) would have not altered anything about the solution inside the
plastic domain. In the present case, however, we must first investigate over the location
at which the first plastic section would appear. In order to do so, we could increase the
loading factor (u0) until the stress reaches the initial yield value. The maximum value of
the Equivalent stress and its position in the domain y ∈ [−L;L] can be easily found. The
first objective would be to find the location in the specimen where the yield condition
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Table 5.2: Elasto-plastic material properties used for fixed rotations problem.

E ν β σ0 H

200000 MPa 0.3 77000 MPa mm2 250 MPa 0 MPa / ±1000 MPa

will be initially met. This can be achieved by expressing the equivalent stress measure
(Equation (5.1)) for the present case, in which a4 = bi = 0:

σeq(y) =

√
3

2

√
a3 2

(
σ12 + σ21

2

)2

=

√
3 a3

2
|σ12 + σ21| . (5.107)

The stress tensor is here reported as:

σ
:

=

 0 u,2(µ+ µc) + 2µc θ 0

u,2(µ− µc)− 2µc θ 0 0

0 0 0

 , (5.108)

from which, the equivalent stress measure can be written as:

σeq(y) = ±
√

3 a3 |u,2| µ, (5.109)

and, given the distribution of u(y) depicted in Figure 5.8a, we expect the maximum
equivalent stress to be located away from the boundaries (where u,2 is null), that is, in
the middle of the specimen. Given the hyperbolic cosine distribution of the equivalent
stress, and given the fact that the function is concave, we know that the maximum will
occur at the location y = 0, thus we can analyze the equivalent stress measure as function
of the loading factor u0 to identify the exact load for which the plastic condition is met
for the first time. Given the following yield criterion:

f(σeq, R) = σeq −R = 0, (5.110)

where R is the radius of the yield surface, we can superimpose that this criterion is met,
while solving for the loading factor, that is, u0:

σeq(y = 0) =
√

3 a3µ

∣∣∣∣u0

[
− ωe

2 cosh(ωeL) (Lωe − tanh(ωeL))
+

1

2L

(
1 +

tanh(ωeL)

ωeL+ tanh(ωeL)

)]∣∣∣∣ = R, (5.111)

and, considering that the yield stress is the initial one, the first plastic development should
take place for the following loading value:

u0 = ± R0

µ
√

3 a3

[
− ωe

2 cosh(ωeL) (Lωe − tanh(ωeL))
+

1

2L

(
1 +

tanh(ωeL)

ωeL+ tanh(ωeL)

)] ,
(5.112)
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Figure 5.9: Value of the Coefficient multiplying θ,2 in Equation (5.65) computed by using
the mechanical properties resumed in Table 5.2.

Therefore, as in the previous case, it is expected that the domain is divided into top-
bottom elastic parts and central plastic zone, as in Figure 5.2. The analytical solutions
in the plastic domain still obey the differential equation (5.65), which is here reported:

θ,222 =

{
2µµcH

β [(µ+ µc)H + µµc 3 a3]

}
θ,2; (5.113)

and, once again, the type of solution depends on the sign of this coefficient. In Figure 5.9
the coefficient has been pictured as function of the H value by using the mechanical
properties listed in Table 5.2. Depending on the choice of the hardening modulus H,
different families of solutions can be found.

5.3.3 Perfect plasticity, H=0

In case of perfectly plastic behavior, the balance equations, together with the yield con-
dition, can be written as:

u,22[µ+ µc] + 2µcθ,2 = −µp,2
√

3 a3;

2µcu,2 + 4µcθ = 2βθ,22;

2µu,2 + 2µ p
√

3 a3 = − 2R0√
3 a3

;

(5.114)

these equations can be solved by deriving the second one and the third one with respect
to y, then, by plugging them into the first one, the result is:

θ,222 = 0; (5.115)
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which means that the we can simply derive the general solution of the rotational field.
Together with the other differential equations, we are able to write the general solution
for u(y), θ(y) and p(y) in the plastic zone as:

Perfect Plasticity



θP (y) = F y2 +Gy + I;

uP (y) = −2F

3
y3 −Gy2 + y

[
2β F

µc
− 2 I

]
+M ;

p(y) =
2√
3 a3

[
F y2 +Gy − β F

µc
+ I

]
− R0

3µa3
;

(5.116)

The governing equations for the plastic domain must be coupled with the one that are
valid in the elastic domain (see Figure 5.2). The system of differential equations in the
end will look like:

Top Elastic


θT (y) = A cosh(ωe y) +B sinh(ωe y) + C;

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2C y + E;

(5.117)

Center Plastic



θP (y) = F y2 +Gy + I;

uP (y) = −2F

3
y3 −Gy2 + y

[
2β F

µc
− 2 I

]
+M ;

p(y) =
2√
3 a3

[
F y2 +Gy − β F

µc
+ I

]
− R0

3µa3
;

(5.118)

Bottom Elastic


θB(y) = N cosh(ωe y) +Q sinh(ωe y) +R;

uB(y) = − 2µc
(µ+ µc)ωe

[N sinh(ωe y) +Q cosh(ωe y)]− 2Ry + T ;

(5.119)

which must be coupled with the following symmetric boundary conditions:

uT (L) = u0;

θT (L) = 0;

uB(−L) = −u0;

θB(−L) = 0;

(5.120)
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which will allow us to assume that the solutions are even/odd functions:

θT (y) = θB(−y) =⇒ [A−N ] cosh (ωe y) + [B +Q] sinh (ωe y) + [C −R] = 0;

θT (y) = θT (−y) =⇒ [A−A] cosh (ωe y) + [B +B] sinh (ωe y) + [C − C] = 0;

uT (y) = −uB(−y) =⇒ −2 [C − C] y + [E + T ] = 0;

θP (y) = θP (−y) =⇒ [F − F ] y2 + [G+G] y + [I − I] = 0;

uP (y) = −uP (−y) =⇒ 2

3
y3 [F − F ]− y2 [G+G] + [M +M ]

+ 2 y

[
β F

µc
− I − β F

µc
+ I

]
= 0;

ypT = −ypB = y0;
(5.121)

thus producing the following constraints:

� A = N

� B = Q = 0

� C = R

� E = −T

� G = 0

� M = 0

� ypT = −ypB = y0

that simplifies the system of equations in the following:

Top Elastic


θT (y) = A cosh(ωe y) + C;

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y + E;

(5.122)

Center Plastic



θP (y) = F y2 + I;

uP (y) = −2F

3
y3 + y

[
2β F

µc
− 2 I

]
;

p(y) =
2√
3 a3

[
F y2 − β F

µc
+ I

]
− R0

3µa3
;

(5.123)

Bottom Elastic


θB(y) = A cosh(ωe y) + C;

uB(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y − E;

(5.124)

which contains 6 unknowns to be found. The tractions in the elastic and plastic zones
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Figure 5.10: Stripe under glide with fixed rotational boundary conditions. Perfectly
plastic behavior. Mechanical properties resumed in Table 5.2

are:

tT (y) = −2µC; (5.125)

tcT (y) = 2β ωe [A sinh (ωe y)] ; (5.126)

tP (y) = − R0√
3 a3

; (5.127)

tcP (y) = 4β F y; (5.128)

The system can be solved by imposing the Dirichlet boundary conditions (Equations (8.19d)
and (8.19d)) coupled with the continuity condition of the displacements,micro-rotations,
tractions and couple tractions at the elasto-plastic interface, that is y0. The system can
be solved numerically, leading to the semi-analytical solution that can be appreciated in
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Figure 5.10.

5.3.4 Softening, H<0

The general solutions for the governing equations in case of softening have already been
derived (Equations (5.73), (5.74) and (5.75)), and after the application of the symmetry
condition of the solution, the fields for the top, center and bottom domains are:

Top Elastic


θT (y) = A cosh(ωe y) + C

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y + E

(5.129)

Center Plastic



θP (y) = F cos (ωp y) + I

uP (y) = −

[
2µc + β ω2

p

ωp µc

]
[F sin (ωp y)]− 2 I y

p(y) =

[
µ
√

3 a3

µ3 a3 +H

][
2µc + β ω2

p

µc

]
[F cos (ωp y)]

+
2µ
√

3 a3

µ3 a3 +H
I − R0

3µa3 +H

(5.130)

Bottom Elastic


θB(y) = A cosh(ωe y) + C

uB(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)]− 2C y − E
(5.131)

Through Equations (5.30) and (5.31), the tractions can be written as:

tT (y) = −2Cµ, (5.132)

tcT (y) = 2β ωe [A sinh (ωe y)] , (5.133)

tP (y) = −2 I

[
µH

H + 3 a3 µ

]
−
√

3 a3µR0

3 a3µ+H
, (5.134)

tcP (y) = −2β ωp [F sin (ωp y)] . (5.135)

The application of the boundary conditions and the continuity conditions will be used to
find the 6 unknown coefficients. The system has been solved numerically. The comparison
between analytical and numerical solution can be found in Figure 5.11.
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Figure 5.11: Stripe under glide with fixed rotational boundary conditions. Softening
plastic behavior. Mechanical properties resumed in Table 5.2
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5.3.5 Hardening, H>0

Assuming that the plastic modulus is positive, the following solutions are obtained:

Hardening



θP (y) = F cosh (ωp y) +G sinh (ωp y) + I,

uP (y) =
−2µc + βω2

p

ωpµc
[F sinh (ωp y) +G cosh (ωp y)]− 2 I y +M,

p(y) = −
[

µ
√

3 a3

3µa3 +H

] [(−2µc + βω2
p

µc

)
(F cosh (ωp y) +G sinh (ωp y))

]

− 2 I µ
√

3 a3

3µa3 +H
− R0

3 aµ+H
.

(5.136)
The field Equations of the degrees of freedom for the three domains are the followings:

Top Elastic


θT (y) = A cosh(ωe y) +B sinh(ωe y) + C,

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2C y + E,

(5.137)

Center Plastic



θP (y) = F cosh (ωp y) +G sinh (ωp y) + I,

uP (y) =
−2µc + βω2

p

ωpµc
[F sinh (ωp y) +G cosh (ωp y)]− 2 I y +M,

p(y) = −
[

µ
√

3 a3

3µa3 +H

][(−2µc + βω2
p

µc

)
(F cosh (ωp y) +G sinh (ωp y))

]

− 2 I µ
√

3 a3

3µa3 +H
− R0

3 aµ+H
,

(5.138)

Bottom Elastic


θB(y) = Q cosh(ωe y) +R sinh(ωe y) + S,

uB(y) = − 2µc
(µ+ µc)ωe

[Q sinh(ωe y) +R cosh(ωe y)]− 2S y + U.

(5.139)

Dirichlet boundary conditions are applied on the displacement field:

u(L) = u0, (5.140)

u(−L) = −u0, (5.141)

and on the micro-rotational field:

θ(L) = 0, (5.142)

θ(−L) = 0, (5.143)
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The symmetric boundary conditions allow us to assume that the solutions are even/odd
functions:

θT (y) = θB(−y) =⇒ [A−Q] cosh (ωe y) + [B +R] sinh (ωe y) + [C − S] = 0,

θT (y) = θT (−y) =⇒ [A−A] cosh (ωe y) + [B +B] sinh (ωe y) + [C − C] = 0,

uT (y) = −uB(−y) =⇒ [D − T ] y + [E + U ] = 0,

θP (y) = θP (−y) =⇒ [F − F ] cosh (ωp y) + [G+G] sinh (ωp y) + [I − I] = 0,

uP (y) = −uP (−y) =⇒
−2µc + βω2

p

ωpµc
[F − F ] sinh (ωp y) + [M −M ] y + [N +N ] = 0,

ypT = −ypB = y0,
(5.144)

thus producing the following constraints:

� A = Q

� B = R = 0

� C = S

� E = −U

� G = 0

� M = 0

� ypT = −ypB = y0

therefore the simplified field Equations will look like:
θT (y) = A cosh(ωe y) + C,

uT (y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)] +Dy + E,

(5.145)



θP (y) = F cosh (ωp y) + I,

uP (y) =
−2µc + βω2

p

ωpµc
[F sinh (ωp y)]− 2 I y,

p(y) = −
[

µ
√

3 a3

3µa3 +H

] [(−2µc + βω2
p

µc

)
(F cosh (ωp y))− 2 I

]
− R0

3 aµ+H
,

(5.146)
θB(y) = A cosh(ωe y)−B sinh(ωe y) + C,

uB(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y)−B cosh(ωe y)] +Dy − E,
(5.147)
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Figure 5.12: Stripe under glide with fixed rotational boundary conditions. Hardening
plastic behavior.

and the tractions:

tT (y) = −2µC, (5.148)

tcT (y) = 2β ωe [A sinh (ωe y) +B cosh (ωe y)] , (5.149)

tP (y) = −2 I

[
µH

H + 3 a3 µ

]
−
√

3 a3µR0

3 a3µ+H
, (5.150)

tcP (y) = 2β ωp [F sinh (ωp y)] . (5.151)

The application of the boundary conditions and of the continuity conditions at the co-
ordinate y0 will allow us to derive the exact values of the 6 unknowns. The system can
be solved numerically with a Newton-Raphson algorithm. The solution can be found in
Figure 5.12.

115



5.4 Choice of the mechanical properties.

Two sets of mechanical properties have been used to plot the fields in the previous cases,
each for a different set of boundary condition. The mechanical properties used for the
first case (free micro-rotation) are:

E ν β σ0 H

200000 MPa 0.3 77 MPa mm2 250 MPa 0 MPa / ±1000 MPa

whereas, for the second set of boundary conditions (fixed micro-rotation), the following
material properties have been used:

E ν β σ0 H

200000 MPa 0.3 77000 MPa mm2 250 MPa 0 MPa / ±1000 MPa

We can appreciate that the Poisson ratio and the Young modulus are chosen to be rea-
sonable values for the metal alloys. The yield stress has been chosen to be large enough
to avoid negative yield stress in case of linear softening behavior. The hardening modulus
has been assumed to be positive, null and negative in order to investigate the three dif-
ferent families of solutions for the fields in the plastic domain. The only difference among
the two sets of mechanical properties is represented by the choice of the higher order
modulus β. The elastic and plastic solutions are directly influenced by this modulus:

ω2
e =

2µµc
β(µ+ µc)

, (5.152)

ω2
p = ± 2µµcH

β [(µ+ µc)H + µµc 3 a3]
, (5.153)

therefore choosing a value for β is equivalent to choosing a specific value for the charac-
teristic lengths as well. In Section 5.2 our objectives were to induce a localization of the
equivalent plastic strain and to control the thickness of the shear band through the choice
of β; the thickness of the shear band (Equation (5.94)) is here reported:

lpch =
2π

ω2
p

= −πβ [(µ+ µc)H + µµc 3 a3]

µµcH
. (5.154)

Therefore, we chose β in order to obtain a shear band thickness that was large enough
to be observable, but smaller that the domain length 2L. In the second set of boundary
conditions, if we simply consider an elastic medium, the restriction on the micro-rotation
to be null at the boundaries induces a deviation from the solutions of the first set of
boundary conditions (Equations (5.49) and (5.49)); in the latter, the expected micro-
rotational field is constant. The distance from the boundary required for the micro-
rotational field to recover a constant value is inversely dependent on ωe (see Figure 5.8b):

lech ∝
1

ω2
e

. (5.155)
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However, for the specific material properties that we used in the free-micro rotations case,
lech is much smaller than lpch. Therefore, if the the same value of β (77 MPa mm2) was
used also for the second set of boundary conditions, the distance required for the solution
to retrieve a constant value would be too small. In order to emphasize the effect of the
restrictions on the micro-rotation, a larger value of the modulus β has been used for the
second set of boundary conditions (77000 MPa mm2).

5.5 Summary of the Analytical Solutions

Here the general solution (prior to the application o the boundary condition) to the
boundary value problems are reported.

Elastic

 θ(y) = A cosh(ωe y) +B sinh(ωe y) + C;

u(y) = − 2µc
(µ+ µc)ωe

[A sinh(ωe y) +B cosh(ωe y)]− 2 I y + E;
(5.156)

Softening



θP (y) = F cos (ωp y) + I

uP (y) = −

[
2µc + β ω2

p

ωp µc

]
[F sin (ωp y)]− 2 I y

p(y) =

[
µ
√

3 a3

µ3 a3 +H

] [
2µc + β ω2

p

µc

]
[F cos (ωp y)]

+
2µ
√

3 a3

µ3 a3 +H
I − R0

3µa3 +H

(5.157)

Hardening



θP (y) = F cosh (ωp y) +G sinh (ωp y) + I,

uP (y) =
−2µc + βω2

p

ωpµc
[F sinh (ωp y) +G cosh (ωp y)]− 2 I y +M,

p(y) = −
[

µ
√

3 a3

3µa3 +H

] [(−2µc + βω2
p

µc

)
(F cosh (ωp y) +G sinh (ωp y))

]

− 2 I µ
√

3 a3

3µa3 +H
− R0

3 aµ+H
.

(5.158)
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Perfect Plasticity



θP (y) = F y2 +Gy + I;

uP (y) = −2F

3
y3 −Gy2 + y

[
2β F

µc
− 2 I

]
+M ;

p(y) =
2√
3 a3

[
F y2 +Gy − β F

µc
+ I

]
− R0

3µa3
;

(5.159)
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Chapter 6

Large deformation Cosserat
thermomechanics

This chapter presents the theoretical aspects of the Cosserat theory under a Finite De-
formation assumption. Whenever deformations are considered as finite, all the simpli-
fications relative to the infinitesimal displacement fall and various descriptions of the
continuum can be used, depending on the final application. The main feature in which
the Cosserat theory differs from the standard finite deformation theories is the micro-
rotation, which, as the deformations, also requires proper handling when the rotations
are not infinitesimal anymore. For this reason, the first section of this chapter dwells
on the description of finite rotations. The full thermodynamically compatible Cosserat
theory under large deformations will be presented through increasing levels of complexity,
until the full treatment is reached. Sections 6.2 and 6.3 present the kinematics and the
balance laws of the Cosserat media under large deformations. The purely elastic behav-
ior of the Cosserat continuum is introduced in Section 6.4 through the definition of an
hyper-elastic potential, such as to propose a potentials-derived general theory, whereas
the visco-plastic and elasto-plastic behaviors is detailed in Sections 6.5 and 6.6. In this
report, the free energy potential associated with the curvature has been taken from the
simplified version proposed by Neff [Neff 2004; Neff 2006]. Both Plastic and visco-plastic
models are proposed in this report. For the visco-plastic model, the general visco-plastic
potential as originally proposed by Chaboche has been used [J. L. Chaboche 2008]. The
yield functions employ a linear hardening combined with a double exponential curves.
A version of the theory has also been proposed in which the curvature is fully elastic.
Finally, the thermal aspects of the theory are detailed in Section 6.7.

6.1 Recalls of algebraic rotations

Rigid rotations in a three-dimensional Euclidean space {e1; e2; e3} endowed with Carte-
sian norm are isomorphic R3 → R3 transformations, and they can be uniquely identified
through a set of three independent parameters [Bauchau 2011]. More parameters can be
used to uniquely identify a rotation, but then they are not anymore independents from
each other. Every description of the rotation is based on a different choice of parametriza-
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Parametrization p(θ) ν ε

Cartesian Rotation Vector θ

[
sin

θ

2

]
/

[
θ

2

] [
tan

θ

2

]
/

[
θ

2

]
Linear sin (θ) cos−1

(
θ

2

)
cos−2

(
θ

2

)
Euler Rodrigues 2 sin

(
θ

2

)
1 cos−1

(
θ

2

)
Cayley-Gibbs-Rodrigues 2 tan

(
θ

2

)
cos

(
θ

2

)
1

Wiener-Milenkovic 4 tan (θ/4) cos2

(
θ

4

) [
1− tan2

(
θ

4

)]−1

Table 6.1: Some parametrization methods reported from [Bauchau 2011].

tion. Parameterizing the rotation is a useful procedure which can facilitate the numerical
implementation of a code that deals with large rotations. It is important to highlight that
the parameters do not include information on the orientation of an object in the space,
but they rather describe the rotation transformation which is to be applied to said ori-
entation. The most general rotation operation can be embodied in a rotation matrix R

:

,
which can be applied to a general vector a by left multiplying the vector by the matrix:

R
:

· a, (6.1)

and the resulting vector would be trivially equal to the original vector a rotated. Although
the rotation matrix is a second order tensor (9 entries), it can be constructed by using
less parameters.
In general, rotation parametrization can be distinguished between vectorial and non-
vectorial parametrization, depending on the number of parameters used. The minimum
set of independent parameters is three, and every form of parametrization that uses only
three parameters belongs to the group of vectorial parametrization. Other solutions that
use more than three parameters, e.g. quaternions, are part of the non-vectorial rotation
parametrizations. The parameter vector can be expressed as:

θ = p(θ) n̂, (6.2)

where p(θ) is the generating function, it can assume different values depending on the
chosen parametrization (see Table 6.1) and n̂ is the unit vector defining the direction
around which the rotation takes place. Choosing different generating function is equiva-
lent to choosing a different parametrization. The most common rotation parametrizations
are summarized in Table 6.1. The rotation matrix can be expressed as function of the
vectorial parameters in a general form as:

R
:

= I
:

+ ζ1(θ)θ
:

+ ζ2(θ)θ
:

· θ
:

, (6.3)
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where:

ζ1(θ) =
ν2

ε
, (6.4)

ζ2(θ) =
ν2

2
, (6.5)

and the values of ν and ε are indicated in the Table 6.1 for different types of parametriza-
tion; the second order tensor θ

:

is the skew-symmetric tensor whose axial vector is the
parameter vector θ. The advantage of parameterizing the rotation operation is mainly in
the reduced number of independent parameters that identify the rotation, and this leads
to a reduced effort in terms of memory in case the rotation has to be numerically modeled.
For instance, in case of the large rotations experienced by the Cosserat continuum, we
would enhance the continuum with only three additional degrees of freedom, being the
components of the vector θ. In this manuscript we chose to use a Cartesian Rotation
Vector to parametrize the rotation. The rotation tensor can also be expressed by means
of the famous Rodrigues formula:

R
:

= I
:

+
sin θ

θ
θ
:

+
1− cos θ

θ2
θ
:

· θ
:

, (6.6)

which, through similarities that arise by adopting a Taylor expansion, can also be ex-
presses as:

R
:

= exp
(
θ
:

)
= exp

(
−ε
:

· θ
)

=

∞∑
n=0

θ
:

n

n!
. (6.7)

6.2 Cosserat kinematics

In a Euclidean three-dimensional space, on which a Cartesian metric is defined {e1; e2; e3},
we identify a continuous bounded region Ω as our material domain of interest. Our pur-
pose is to characterize the evolution of the motion of our domain of interest in time. Let
us consider an initial time t0 at which the position and state variables, to be defined later,
of the body are known. In this context, the right subscripts indicate the time at which
the quantity is evaluated, for instance Ω0 is our domain of interest at time 0.
At every time, all the points of the domain are endowed with three degrees of freedom
(d.o.f.) that are the displacements that the continuum undergoes at that specific loca-
tion. At time 0, the position vector is written as X. In the Cosserat description of the
continuum, every point of the domain of interest does not only possess a position in the
space, but also an orientation with the respect to a frame of reference. This orientation
does not coincide with the material orientation in general, and in the Cosserat theory
such additional degrees of freedom are used to describe the micro-structure orientation.
A triad of directors

{
φ

1
;φ

2
;φ

3

}
is attached to every point in the domain, which could

be used to describe, for example, the lattice orientation or the fibers orientation within
a matrix. Therefore, besides the displacement vector u, every point of the domain is
characterized also by a pseudo-vector θ which encapsulates the information about the
rotations R

:

(θ) which is applied to the reference triad of directors in order to modify the
micro-structure orientation and to obtain the directors’ orientation at time t. In this
context, the theory follows a Lagrangian description, meaning that the the continuum
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description is given with respect a reference configuration that coincides with the original
material configuration.
Following the discussion regarding the rotations, from Equation (6.7) it is clear that al-
though the rotation operator is a second order tensor, R

:

, the body is endowed with only
three additional degrees of freedom, being the three components of the pseudo-vector
meant to represent the rotation of the micro-structure orientation with respect to the
initial frame of reference (these three d.o.f.s are the variables of the three-dimensional
Lie group associated to the rotation R

:

). At time t these d.o.f. are embraced in the
pseudo-vector θ:

R
:

= exp
(
θ
:

)
= exp

(
−ε
:

· θ
)
. (6.8)

Given an initial configuration, X, and a current configuration, x, the evaluation of the
deformation is performed by computing the variation of the position vector at time t with
respect to the variation of the position vector at time 0:

F
:

=
dx

dX
= x ⊗ ∇0, (6.9)

where F
:

is the deformation gradient and its determinant is the Jacobian J = det
(
F
:

)
.

The Cosserat description of the media does not require only the deformation gradient
as measure of the media distortion, but it also requires the following quantity to fully
describe the state of the continuum [Kafadar et al. 1971; Eringen 1999b]:

Γ
:

= −1

2
ε
:

:
[
R
:

T ·
(
R
:

⊗ ∇0

)]
, (6.10)

which is referred to as wryness. Equation (6.10) quantifies the variation of the rota-
tion tensor, in the reference configuration, meaning that it is a Lagrangian deformation
measure. By defining the displacement field as u = X − x, we can consequently define:

v = u̇, (6.11)

ω
:

= Ṙ
:

·R
:

T , (6.12)

which are the velocity vector and gyration tensor respectively. By combining these quan-
tities we can define the Eulerian Cosserat deformation rate and Eulerian Cosserat wryness
rate as:

v ⊗ ∇ − ω
:

, (6.13)

ω ⊗ ∇, (6.14)

where ω is the axial vector of the skew-symmetric tensor ω
:

. Standard relationship is
valid:

v ⊗ ∇ = Ḟ
:

· F
:

−1, (6.15)

and, in the same way, the gradient of the gyration vector can be evaluated with respect
to the reference configuration as:

ω ⊗ ∇ = (ω ⊗ ∇0) · F
:

−1. (6.16)
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In order to account for the difference between material and micro-structural rotations, the
Cosserat theory employs a modified deformation gradient in which the coupling between
these two rotations is explicitly stated:

Ū
:

= R
:

T · F
:

= R
:

T ·Q
:

·U
:

, (6.17)

where Q
:

is the material rotation tensor and U
:

is the classical right stretch tensor. It

can be proved that Ū
:

can be used as an objective strain measure since it is invariant

to a rigid rotation applied both to the material and to the Cosserat rotation [Steinmann
1994]. This can be easily proved by hypothesizing that the continuum is currently found
under the following strain Ξ

:

0:

Ū
:

0 = R
:

T
0 Q
:

0U
:

0, (6.18)

and by fetching the rotations R
:

and Q
:

with an increment of rotation R
:

∆, such that they
would result as:

R
:1

= R
:

∆R
:

, (6.19)

Q
:1

= R
:

∆Q
:

, (6.20)

so that the strain measure after the application of such rotation would be:

Ū
:

1 = R
:

T
1 Q
:

1 = R
:

T
0 R
:

T
∆R
:

∆Q
:

0U
:

0 = Ū
:

0, (6.21)

thus proving that it is a suitable choice as strain measure. In terms of rates, the following
relations are defined for the strain:

˙̄
:

U = Ṙ
:

TF
:

+ R
:

T Ḟ
:

, (6.22)

˙̄
:

U · Ū
:

−1 = R
:

T ·
[
v ⊗ ∇ − ω

:

]
·R
:

. (6.23)

The rate of the wryness can be evaluated by taking the time derivative of Equation (6.10)
and by exploiting the skew-symmetric character of the tensor:

Γ̇
:

= R
:

T · [ω ⊗ ∇0] , (6.24)

Γ̇
:

· Ū
:

−1 = R
:

T · [ω ⊗ ∇] ·R
:

. (6.25)

6.2.1 Choice of the elasto-plastic decomposition

The decomposition of the wryness in plastic and elastic parts is not a trivial kinematic
aspect of the theory in large deformation, as two different wryness decomposition can
be found in literature: one proposed by Dluzewski [Dluzeswki 1991]and the other by
Steinmann [Steinmann 1994]. Both authors justified their choices with arguments that
are reported in the following sub-sections. The model proposed by Dluzewski has been
chosen for this report. The main difference between the two kinematics lies in the elasto-
plastic decomposition of the rotation tensor: Steinnmann considers the rotation tensor as
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elasto-plastic, whereas Dluzewski argues that it is not decomposable, thus to be treated
as fully elastic. The decomposition of Steinnmann is:

Steinmann

 R
:

= R
:

e ·R
:

p,

Γ
:

= −1

2
ε
:

:
[
R
:

pTR
:

eT
(
R
:

e ⊗∇0

)
R
:

p + R
:

pT
(
R
:

p ⊗∇0

)]
= Γ
:

e + Γ
:

p,

(6.26)
and, as extracted from [Steinmann 1994]: ‘In the context of micro-polar elasto-plasticity
the viewpoint is adopted that the dislocation flow influences the orientation of the inde-
pendent triad as well, thus giving rise to the notion of the plastic micro-polar rotation
R
:

p which is complemented by the elastic micro-polar rotation R
:

e. Phenomenologically,

an unloaded stress and couple stress-free configuration is therefore locally defined by F
:

e−1

together with R
:

eT . [...] as a consequence of these considerations, the objective stress and

couple stress response will depend solely on the elastic parts of the (spatial) left stretch
and curvature measures.’ Another advantage of using such decomposition is represented
by the possibility of identifying an intermediate plastic configuration obtained through
the transformations embedded by F

:

p and R
:

p. This type of decomposition has been used

also by Bauer et al. [Bauer, Schäfer, et al. 2010; Bauer, Dettmer, et al. 2012], Gramme-
noudis and Tsakamis [Grammenoudis et al. 2005; Grammenoudis et al. 2001]. Recently,
Johanssen and Tsamakis published their work related to the connections between La-
grangian and Eulerian formulations of curvature [Johannsen et al. 2019] and they also
adopted the formulation proposed by Steinmmann. The other possible decomposition
follows from the work of Dluzewski:

Dluzekwski

 Ū
:

= Ū
:

e · F
:

p,

Γ
:

= Γ
:

e · F
:

p + Γ
:

p,
(6.27)

and the argument for the adoption of such model is extracted from [Forest, Cailletaud,
et al. 1997]: ‘An elastic-plastic decomposition of the rotation [Steinmann 1994], as of
the displacement, is not recommendable, because these non-objective variables can not be
connected with the quantities of energy and dissipation. Such a connection is possible only
on the level of strains. [...] The decomposition (6.27) enable one to define at each point
the released state of the crystal for which stresses and couple stresses are removed and
plastic deformation and curvature only remain. This is the reason why (6.27) is more
suitable for crystals than a purely additional decomposition [Sansour and Keck 1994].’
This decomposition has also been used by Forest et al. [Forest, Cailletaud, et al. 1997;
Forest and Sievert 2003], Sansour [Sansour 1998] and Ask et al. [Ask et al. 2019]. Another
argument in favor of such decomposition is reported from the work of Sansour [Sansour
1998]: ‘As a next step we consider the decomposition of the second Cosserat deformation
tensor Γ

:

. Two observations are helpful. First, the deformation gradient F
:

or the stretch

tensor Ū
:

can be understood as elements of a matrix group acting on the tangent space

at the identity. This is reflected also in their physical meaning by stretching (for F
:

also

rotating) the tangent space. For such an action, a multiplicative decomposition is a natural
choice. Such a mathematical or physical meaning is not assigned to the tensor Γ

:

. Second,

from its very definition, the tensor Γ
:

is equivalent to the vectors [...], for which an additive
decomposition is, due to lack of any motivation for a multiplicative decomposition, an
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Figure 6.1: Schematic representation of the deformation decomposition in the Cosserat
media.

appropriate operation.’
In this work, the Dluzekwski kinematic model has been used, and the following elasto-
plastic decomposition is used:

Ū
:

= Ū
:

e · Ū
:

p
, (6.28)

Γ
:

= Γ
:

e · F
:

p + Γ
:

p, (6.29)

where:

Ū
:

e
= R
:

TF
:

e, (6.30)

Ū
:

p ≡ F
:

p. (6.31)

In Figure 6.1 the deformation decomposition is reported. By deriving Equations (6.28)
and (6.29) with respect to time, the rates of the elastic parts of the deformations can be
identified as:

˙̄U
:

e = ˙̄U
:

· Ū
:

p−1

− Ū
:

e · ˙̄U
:

p · Ū
:

p−1

, (6.32)

Γ̇
:

e
= Γ̇
:

·Ξ
:

p−1

− Γ
:

e · Ξ̇
:

p ·Ξ
:

p−1

− Γ̇
:

p ·Ξ
:

p−1

. (6.33)
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6.3 Balance laws

To construct the theory of the Cosserat we can start from the definition of the internal
power density as function of the quantities whose variations induce an energy variation
of the media, that are, the strain rate and the wryness rate defined in Equations (6.13)
and (6.14):

p(i) = σ
:

:
(
v ⊗ ∇ − ω

:

)
+ m
:

: (ω ⊗ ∇) , (6.34)

where σ
:

is the stress tensor, power conjugate to the Cosserat strain rate, and m
:

is the
couple stress tensor, power conjugate to the Cosserat wryness rate. Note that the stress
tensor is in general not symmetric, differently from the stress tensor typically used in
classical continuum mechanics. Equivalently, the densities of power generated by external
forces and contact forces can be expressed as:

p(e) = f e · v + ge · ω, (6.35)

p(c) = f c · v + gc · ω, (6.36)

from which the power balance law can be written as:∫
Ω

v ·
[
σ
:

· ∇ + f e
]

dv +

∫
∂Ω

v ·
[
f c − σ

:

· n
]

ds

+

∫
Ω

×
ω ·
[
m
:

· ∇ + 2
×
σ + ge

]
dv +

∫
∂Ω

×
ω ·
[
gc −m

:

· n
]

ds = 0, (6.37)

where f e is the external volume force, ge is the external volume couple, f c is the contact
force, gc is the contact couple, n is the outward normal unit vector of the boundary ∂Ω
which closes the Ω domain and σ is the axial vector obtained from the skew-symmetric

part of the stress tensor. From the balance of power, given the arbitrariness of v and
×
ω,

the local balance laws can be written for the Cosserat Media:

σ
:

· ∇ + f e = 0, (6.38)

m
:

· ∇ + 2
×
σ + ge = 0, (6.39)

which must be valid at every point in the domain Ω. On the boundary ∂Ω the followings
must hold:

σ
:

· n = f c, (6.40)

m
:

· n = gc. (6.41)

Equation (6.34) expresses the internal power in an Eulerian frame of reference, but we
can equivalently express the internal power in a Lagrangian frame of reference. Through
Equations (6.23) and (6.16), and taking into account density modification, Equation (6.34)
transforms into:

J p(i) = Jσ
:

· F
:

−T : Ḟ
:

− Jσ
:

: ω
:

+ J m
:

· F
:

−T : (ω ⊗∇0) , (6.42)
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where we split the stress tensors in the two components that are related to the velocity
gradient and the Cosserat rotation tensor. Equation (6.42) can be rewritten as:

J p(i) = S
:

: Ḟ
:

− s · ω + M
:

: (ω ⊗∇0) , (6.43)

from which the power conjugates to Ḟ
:

, ω and (ω ⊗ ∇0) can be clearly identified. Writing
the internal power as such allows to identify the two-point first Piola-Kirchhoff stress
tensor and couple stress tensor:

S
:

= Jσ
:

· F
:

−T , (6.44)

M
:

= J m
:

· F
:

−T , (6.45)

s = 2 J axl
(
σ
:

)
= −ε

:

:
(
S
:

· F
:

T
)
. (6.46)

The internal power in Equation (6.34) can also be written such that the power conjugates

to ˙̄
:

U · Ū
:

−1 are highlighted (such as done by Ask et al. in [Ask et al. 2019]):

J p(i) = JR
:

Tσ
:

R
:

:
[

˙̄
:

U · Ū
:

−1
]

+ JR
:

Tm
:

R
:

:
[
Γ̇
:

· Ū
:

−1
]
, (6.47)

which can be rewritten as:

J p(i) = σ̄
:

:
[

˙̄
:

U · Ū
:

−1
]

+ m̄
:

:
[
Γ̇
:

· Ū
:

−1
]
, (6.48)

where the stress and couple stress can be gathered as:

σ̄
:

= JR
:

Tσ
:

R
:

, (6.49)

m̄
:

= JR
:

Tm
:

R
:

. (6.50)

The internal power can also be written in a framework that would correspond to the
classical Lagrangian framework, that is, by identifying the power conjugates to the rates
of the Cosserat strain and wryness as defined in Equations (6.22) and (6.24) respectively.
In the classical Boltzmann continuum, these deformation rates would correspond to the
rate of the Green-Lagrange deformation measure. It is possible to re-write the internal
power definition from Equation (6.34) and we could re-arrange the terms such as to
identify the power-conjugate stress of such deformation rate measures:

J p(i) = JR
:

Tσ
:

F
:

−T : ˙̄
:

U + JR
:

Tm
:

F
:

−T : Γ̇
:

, (6.51)

which can be simplified in:

J p(i) = T
:

: ˙̄
:

U + T
:

c : Γ̇
:

, (6.52)

where we identified the equivalent second Piola-Kirchhoff stress and couple stress tensors:

T
:

= JR
:

Tσ
:

F
:

−T , (6.53)

T
:c

= JR
:

Tm
:

F
:

−T . (6.54)
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Configuration Deformation Rate Power Conjugate

Eulerian Ḟ
:

F
:

−1 − Ṙ
:

R
:

T σ
:

R
:

Γ̇
:

Ū
:

−1R
:

T m
:

Mixed Ḟ
:

S
:

axl
(
−Ṙ
:

·R
:

T
)

s

R
:

· Γ̇
:

M
:

Lagrangian ˙̄
:

U T
:

Γ̇
:

T
:

c

Cosserat ˙̄
:

UŪ
:

−1 σ̄
:

Γ̇
:

Ū
:

−1 m̄
:

Table 6.2: Deformations and power conjugates in different configurations.

By making use of these definitions, the equilibrium equations can also be written in the
Lagrangian configuration. In particular, we could express the weak form of the balance
equations (Equations (6.38) and (6.39)) in the reference configurations to achieve the
following equilibrium equations: (

R
:

T
:

)
·∇0 + f e0 = 0, (6.55)(

R
:

T
:

c

)
·∇0 + axl

(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)

+ ge
0

= 0, (6.56)

bounded by (from Equations (6.40) and (6.41) using Nanson’s formula):

R
:

T
:

· n0 = f c0, (6.57)

R
:

T
:

c · n0 = gc
0
, (6.58)

where f e0 and ge
0

are external forces and couple forces, and the subscript 0 indicates that
they are acting on the reference configuration (they are different from f e, ge and n acting
on the current configuration). In Table 6.2 the deformation rates and power stress and
couple stress conjugates in the Eulerian, Lagrangian, mixed and Cosserat configurations
are reported. The relationships among the different stress measures are computed in
Table 6.3.
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6.4 Hyper-elastic material

For this section the following assumption is made:

F
:

p = I
:

, (6.59)

Γ
:

p = 0
:

, (6.60)

Ḟ
:

p
= 0

:

, (6.61)

Γ̇
:

p
= 0

:

. (6.62)

A complete description of the elastic constitutive material response begins with the def-
inition of the Helmholtz free energy, or, in case of isothermal hyper-elastic description,
elastic potential. Defining the relation between stress and strain through the elastic poten-
tial/Helmholtz free energy definition entails many advantages, for instance, if a potential
exists, the fourth-order elastic tensor relating stress and strain benefits from major sym-
metry.
Although Kafadar and Eringen originally used Ū

:

and Γ
:

as strain measures [Kafadar et

al. 1971; Eringen 1999a], the modified deformation gradient Ū
:

is not null for the initial
configuration so the following Cosserat strain is defined:

Ξ
:

e = Ū
:

e − I
:

, (6.63)

The deformations Ξ
:

and Γ
:

are called micro-polar Lagrangian strain and curvature tensors

by Grammenoudis and Tsakmakis, and by Bauer et al. [Grammenoudis et al. 2001; Bauer,
Schäfer, et al. 2010] and Biot-Like quantities by Erdelj et al. [Erdelj et al. 2020]. Here we
stick to the first nomenclature. Note that:

Ξ̇
:

e = ˙̄U
:

e. (6.64)

Clausius-Duhem inequality

The second principle of thermodynamics in isothermal case can be written as:

− ρψ̇ + p(i) ≥ 0, (6.65)

S
:

(I P-K) T
:

(II P-K) σ̄
:

S
:

(I P-K) - S
:

= R
:

T
:

S
:

= R
:

σ̄
:

R
:

T · F
:

−T

T
:

(II P-K) T
:

= R
:

TS
:

- T
:

= σ̄
:

R
:

TF
:

−T

σ̄
:

σ̄
:

= R
:

TS
:

F
:

TR
:

σ̄
:

= T
:

F
:

TR
:

-

Table 6.3: Relationships between the different stresses.
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where ρ is the Eulerian density of the continuum and ψ̇ is the Helmholtz free energy rate
per unit of mass. By substituting the internal power density and by assuming that the
deformation is purely elastic, the inequality in a Lagrangian form can be obtained:

− ρ0ψ̇ + T
:

: Ξ̇
:

e + T
:

c : Γ̇
:

e ≥ 0, (6.66)

where ρ0 is the density of the medium in the reference configuration. By considering the
dependency of the Helmholtz free energy on the Cosserat deformations (which is purely
elastic):

ρ0ψ̇
(
Ξ
:

e,Γ
:

e
)

= ρ0

[
∂ψ

∂Ξ
:

e
: Ξ̇
:

e +
∂ψ

∂Γ
:

e
: Γ̇
:

e

]
, (6.67)

then, the Clausius-Duhem inequality can be written as:[
−ρ0

∂ψ

∂Ξ
:

e
+ T
:

]
: Ξ̇
:

e +

[
−ρ0

∂ψ

∂Γ
:

e
+ T
:

c

]
: Γ̇
:

e ≥ 0, (6.68)

and since the material is purely hyper-elastic, no form of dissipation is allowed, therefore
the followings can be written:

T
:

= ρ0
∂ψ

∂Ξ
:

e
, (6.69)

T
:c

= ρ0
∂ψ

∂Γ
:

e
, (6.70)

from these, the constitutive behavior can be directly derived from the specific chosen form
of the Helmholtz potential.

Helmholtz free energy definition

The Helmholtz free energy can be though to be dependent on the elastic Cosserat strain
Ū
:

e and elastic wryness Γ
:

e[Erdelj et al. 2020; Neff 2006; Bauer, Dettmer, et al. 2012]:

ρ0ψ
e
(
Ξ
:

e,Γ
:

e
)

=
λ

2

[
tr
(
Ξ
:

e
)]2

+ µ||sym
(
Ξ
:

e
)
||2 + µc||skew

(
Ξ
:

e
)
||2+

α

2

[
tr
(
Γ
:

e
)]2

+ β||symΓ
:

e||2 + γ||skew
(
Γ
:

e
)
||2. (6.71)

It was possible to define the Helmholtz free energy as function of Ξ
:

e and Γ
:

e thanks to the
fact that these are objective quantities, i.e. the Cosserat configuration is obtained through
an isomorphic transformation (the metric is unchanged). From Equations (6.71), (6.69)
and (6.70), the stress and couple stress in the Cosserat configuration can be written for
this specific choice of the Helmholtz free energy. The second Piola-Kirchhoff stress and
couple stress tensors:

T
:

= λtr
(
Ξ
:

e
)

I
:

+ (µ+ µc)
[
Ξ
:

e
]

+ (µ− µc)
[
Ξ
:

eT
]
, (6.72)

T
:c

= α tr
(
Γ
:

e
)

I
:

+ (β + γ)
[
Γ
:

e
]

+ (β − γ)
[
Γ
:

eT
]
. (6.73)
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6.5 Rate-dependent elasto-viscoplastic material

In order to mathematically describe the plastic behavior of the medium, it might result
useful to introduce plasticity through an internal state variable, which can coincide with
the generalized cumulative equivalent plastic deformation measure, i.e. Λpeq. The form
here adopted to describe the Helmholtz free energy for a plastic material follows the same
structure as the one in Equation (6.71), but, in addition, there is also the contribution of
the plastic part of the deformation measure:

ρψ
(
Ξ
:

e,Γ
:

e,Λpeq

)
= ρψe + ρψp, (6.74)

where ψe is the part of the Helmholtz free energy associated with the elastic material
behavior already stated in Equation (6.71), and ψp includes the free energy that depends
on the plastic developments of the medium. The rate of the Helmholtz free energy thus
reads:

ρ0ψ̇
(
Ξ
:

e,Γ
:

e,Λpeq

)
= ρ0

[
∂ψ

∂Ξ
:

e
: Ξ̇
:

e +
∂ψ

∂Γ
:

e
: Γ̇
:

e +
∂ψ

∂Λpeq
Λ̇peq

]
, (6.75)

The Clausius-Duhem inequality can be rewritten as:

− ρψ̇ + p(i) ≥ 0, (6.76)

or in a Lagrangian framework:

− ρ0ψ̇ + T
:

: Ξ̇
:

+ T
:

c : Γ̇
:

≥ 0. (6.77)

At this point, considering that the time variation of the Helmholtz free energy can be
developed based on the variables upon which it depends:

ρ0ψ̇
(
Ξ
:

e,Γ
:

e,Λpeq

)
= ρ0

[
∂ψ

∂Ξ
:

e
: Ξ̇
:

e +
∂ψ

∂Γ
:

e
: Γ̇
:

e +
∂ψ

∂Λpeq
Λ̇peq

]
, (6.78)

it is possible to use the elasto-plastic decompositions of deformation gradient and wryness
as in Equations (6.28) and (6.29) to write Equation (6.77) as:[
−ρ0

∂ψ

∂Ξ
:

e
+ T
:

F
:

pT

]
: Ξ̇
:

e +

[
−ρ0

∂ψ

∂Γ
:

e
+ T
:

cF
:

pT

]
: Γ̇
:

e+

[
Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ξ̇
:

p +
[
T
:

c

]
: Γ̇
:

p − ∂ψ

∂Λpeq
Λ̇peq ≥ 0, (6.79)

where, by assuming that the first two entries are purely energetic, the followings can be
inferred:

T
:

= ρ0
∂ψ

∂Ξ
:

e
· F
:

p−T , (6.80)

T
:c

= ρ0
∂ψ

∂Γ
:

e
· F
:

p−T , (6.81)
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which, for the chosen form of the Helmholtz free energy, become:

T
:

=

{
λtr
(
Ξ
:

e
)

I
:

+ (µ+ µc)
[
Ξ
:

e
]

+ (µ− µc)
[
Ξ
:

eT
]}
· F
:

p−T , (6.82)

T
:c

=

{
α tr

(
R
:

TΓ
:

e
)

I
:

+ (β + γ)
[
R
:

TΓ
:

e
]

+ (β − γ)
[
Γ
:

eTR
:

]}
· F
:

p−T . (6.83)

It is worth mentioning here that in classical continuum mechanics the second Piola-
Kirchhoff stress usually does not depend on the plastic part of the deformation, whereas
the stresses and couple stresses presented in Equations (6.82) and (6.83) do. The rea-
son for this behavior lies in the different configuration in which the theories have been
written: usually the second Piola-Kirchhoff stress is defined in the intermediate released
configuration, whereas the stresses and couple stresses defined in the Cosserat theories
have been defined in the reference (initial) configuration.

In classical continuum mechanics, the power conjugates to Ḟ
:

pF
:

p−1

is called Mandel stress.
In case of the Cosserat media we have both a Mandel stress and Mandel couple stress, and
they can be clearly identified from the Clausius Duhem inequality once the elastic part
of the strain rate has been considered as recoverable, thus removed from the inequality.
After rearranging Equation (6.79):

Ḟ
:

pF
:

p−1

:
[
F
:

eTT
:

F
:

pT + Γ
:

eTT
:

cF
:

pT
]

+ Γ̇
:

pF
:

p−1

:
[
T
:

cF
:

pT
]
− ∂ψ

∂Λpeq
Λ̇peq ≥ 0, (6.84)

from which, the Mandel stress and couple stress can be identified as:

Π
:

= Ū
:

eT ·T
:

· F
:

pT + Γ
:

eT ·T
:

c · F
:

pT , (6.85)

Π
:c

= T
:

c ·Ξ
:

pT , (6.86)

and, by using the just derived formulations of T
:

and T
:

c, the Mandel stress and couple
stress can be finally be written as:

Π
:

= ρ0 Ū
:

eT · ∂ψ
∂Ξ
:

e
+ ρ0 Γ

:

eT · ∂ψ
∂Γ
:

e
, (6.87)

Π
:c

= ρ0
∂ψ

∂Γ
:

e
. (6.88)

By using the chosen formulations of the Helmholtz free energy, the Mandel stress and
couple stress can be written as:

Π
:

= λtr
(
Ū
:

e
)

Ξ
:

e + (µ+ µc)
[
Ū
:

eT ·Ξ
:

e
]

+ (µ− µc)
[
Ū
:

eT ·Ξ
:

eT
]

+

α tr
(
Γ
:

e
)

Γ
:

e + (β + γ)
[
Γ
:

eT · Γ
:

e
]

+ (β − γ)
[
Γ
:

eT · Γ
:

eT
]
,

(6.89)

Π
:c

= α tr
(
Γ
:

e
)

I
:

+ (β + γ)
[
Γ
:

e
]

+ (β − γ)
[
Γ
:

eT
]
. (6.90)
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At this stage, it can be assumed that a dissipation potential exists and that it is a function
of the Mandel stress and couple stress:

Ω = Ω
(
Π
:

,Π
:

c

)
, (6.91)

and the power conjugates to Mandel stress and couple stress can be thought to be governed
by the following flow rules:

Ḟ
:

p · F
:

p−1

=
∂Ω

∂Π
:

, (6.92)

Γ̇
:

p · F
:

p−1

=
∂Ω

∂Π
:

c
, (6.93)

from which, the remaining terms of the Clausius Duhem inequality can be re-written as:

Π
:

:
∂Ω

∂Π
:

+ Π
:

c :
∂Ω

∂Π
:

c
− ∂ψ

∂Λpeq
Λ̇peq ≥ 0. (6.94)

The dissipation potential can be re-written in a form that allows us to define a generalized
plastic deformation measure for the Cosserat medium Λ

:

p, as well as its own generalized
stress-like-conjugate Π

:

eq as:

Ω = Π
:

:
[
Ḟ
:

p · F
:

p−1
]

+ Π
:

c :
[
Γ̇
:

p · F
:

p−1
]

= Π
:

eq : Λ̇
:

p. (6.95)

Dissipation potential definition

In this report, we are going to use the general form of dissipation potential as originally
proposed by Chaboche [J. L. Chaboche 2008], and we are going to adopt a single-criterion
plasticity theory as proposed by Forest and Sievert [Forest and Sievert 2003]:

Ω =
K

n+ 1

〈
f

K

〉n+1

, (6.96)

where f is the over-stress which can be written as:

f = Πeq − φ, (6.97)

which is complemented by a newly proposed von Mises-derived Cosserat equivalent stress
as presented in Section 5.1:

Πeq =

√
3

2

[
a1I1(Π

:

) + a2I2(Π
:

) + b1I1(Π
:

c) + b2I2(Π
:

c) + b3I3(Π
:

c)
]
, (6.98)

in which the Ii indicates the i-th invariant of the tensor. In this case, the chosen invariants
are:
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� I1(Π
:

) = sym
(
Π
:

d

)
: sym

(
Π
:

d

)
, � I2(Π

:

) = skew
(
Π
:

d

)
: skew

(
Π
:

d

)
,

� I1(Π
:

c) = tr
(
Π
:

2
c

)
,

� I3(Π
:

c) = skew
(
Π
:

cd

)
: skew

(
Π
:

cd

)
,

� I2(Π
:

c) = sym
(
Π
:

cd

)
: sym

(
Π
:

cd

)
,

where d indicates the deviatoric part of the tensor. Several forms can be assigned to the
yield radius (assuming isotropic hardening), for example, a linear-bi-exponential isotropic
hardening evolution law could be used:

φ = φ0 +HΛpeq +Q1

[
1− exp (−g1Λpeq)

]
+Q2

[
1− exp (−g2Λpeq)

]
, (6.99)

where φ is the radius of the yield surface in the principal stresses space. Chosen the form
of the potential, it is possible to give the explicit form of the power conjugates to the
Mandel stress and Mandel couple stress:

Ḟ
:

p · F
:

p−1

=
∂Ω

∂Π
:

=
∂Ω

∂f

∂f

∂Π
:

= λ̇n
:

, (6.100)

Γ̇
:

p · F
:

p−1

=
∂Ω

∂Π
:

c
=
∂Ω

∂f

∂f

∂Π
:

c
= λ̇n

:

c, (6.101)

where λ̇ is the plastic multiplier and n
:

and n
:

c are the plastic flow directions (normal to

the yield surface in the principal stresses space if the normality rule is assumed to hold).
In the elasto-viscoplastic framework, the visco-plastic multiplier can be written as:

λ̇ =

〈
f

K

〉n
, (6.102)

and the directions normal to the yield surfaces can be written as:

n
:

=
3

2

a1 sym
(
Π
:

d

)
+ a2 skew

(
Π
:

d

)
Πeq

, (6.103)

n
:c

=
3

2

b1 Π
:

T
c + b2 sym

(
Π
:

cd

)
+ b3 skew

(
Π
:

T
cd

)
Πeq

. (6.104)

6.5.1 Rate-dependent elasto-viscoplastic material with no dissi-
pated wryness

In case the wryness is considered fully recoverable, it cannot be split into elastic and
plastic parts:

Γ
:

≡ Γ
:

e, (6.105)

so, from the second thermodynamic principle:[
−ρ0

∂ψ

∂Ξ
:

e
+ T
:

F
:

pT

]
: Ξ̇
:

e +

[
−ρ0

∂ψ

∂Γ
:

+ T
:

c

]
: Γ̇
:

+
[
Ū
:

eTT
:

]
: Ξ̇
:

p ≥ 0, (6.106)
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and again:

T
:

= ρ0
∂ψ

∂Ξ
:

e
·Ξ
:

p−T , (6.107)

T
:c

= ρ0
∂ψ

∂Γ
:

, (6.108)

Π
:

= ρ0Ū
:

eT · ∂ψ
∂Ξ
:

e
, (6.109)

but no couple Mandel stress exists, therefore the J2 von Mises equivalent stress measure
reads:

Πeq =

√
3

2

[
a1I1(Π

:

d) + a2I2(Π
:

d)
]
. (6.110)

Assuming the existence of a viscoplastic potential, we can write the Clausius-Duhem
inequality as:

Π
:

:
∂Ω

∂Π
:

− ∂ψ

∂Λpeq
Λ̇peq ≥ 0, (6.111)

and we can also assume that:

Ḟ
:

p · F
:

p−1

=
∂Ω

∂Π
:

=
∂Ω

∂f

∂f

∂Π
:

= λ̇n
:

, (6.112)

and the viscoplastic multiplier is:

λ̇ =

〈
f

K

〉n
. (6.113)

6.6 Rate-independent elasto-plastic materials

The rate-independent elasto-plastic material is a special case of the rate-dependent elasto-
viscoplastic case. The description of the Helmholtz energy is the same, and the Clausius-
Duhem inequality also still holds. The main difference is that the plastic multiplier is
found by applying a specific condition on the plastic development, namely, the stress re-
mains on the yield surface. Thus the plastic multiplier is implicitly evaluated by applying
the so called consistency condition.

Consistency condition

In case of plastic material, the plastic increment is not arbitrarily chosen through the
definition of a plastic potential as it is possible to do in the definition of the visco-plastic
material, but rather it is the solution of a system of equations (constraints) applied on the
plastic evolution of the medium, i.e. the consistency condition. Such condition ensures
that through the plastic loading, the radius of yield surface coincides with the equivalent
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stress applied, and it mathematically reads:
f = 0,

ḟ = 0,

(6.114)

for every positive increment of the plastic multiplier. By using the same definition of the
yield function as in Equation (6.97), the previous system of Equations becomes:

Geq = φ,

∂f

∂Π
:

: Π̇
:

+
∂f

∂Π
:

c
: Π̇
:c

+
∂f

∂φ
φ̇ = 0,

(6.115)

that is, the variation of the yield function is null although the continuum is under plastic
loading, and this implies that the stress remains on the yield surface. In order to solve
the consistency condition we will consider the followings:

Π
:

= λtr
(
Ξ
:

e
)

Ū
:

e + (µ+ µc)
[
Ū
:

eT ·Ξ
:

e
]

+ (µ− µc)
[
Ū
:

eT ·Ξ
:

eT
]

+

α tr
(
Γ
:

e
)

Γ
:

e + (β + γ)
[
Γ
:

eT · Γ
:

e
]

+ (β − γ)
[
Γ
:

eT · Γ
:

eT
]
,

(6.116)

Π
:c

= α tr
(
Γ
:

e
)

I
:

+ (β + γ)
[
Γ
:

e
]

+ (β − γ)
[
Γ
:

eT
]
, (6.117)

then, considering the dependency of the Mandel stress and Mandel couple stress on the
elastic parts of the deformation measures, of the micro-rotation and of wryness, and
considering the dependency of φ on the equivalent cumulative plastic strain, the followings
can be written:

Π̇
:

=
∂Π
:

∂Ξ
:

e
: Ξ̇
:

e +
∂Π
:

∂Γ
:

e
: Γ̇
:

e, (6.118)

Π̇
:c

=
∂Π
:

c

∂Ξ
:

e
: Ξ̇
:

e +
∂Π
:

c

∂Γ
:

e
: Γ̇
:

e, (6.119)

φ̇ =
∂φ

∂Λpeq
Λ̇peq. (6.120)

Furthermore, it could be demonstrated that if we use an associated plastic flow, the
variation of the yield stress with respect to the equivalent cumulative plastic strain is
equal to the variation of the latter with respect to the plastic multiplier [Dunne et al.
2005]:

∂φ

∂Λpeq
Λ̇peq =

∂φ

∂λ
λ̇. (6.121)

With all the ingredients presented so far, the consistency condition reads:

n
:

:

(
∂Π
:

∂Ξ
:

e
: Ξ̇
:

e +
∂Π
:

∂Γ
:

e
: Γ̇
:

e

)
+ n
:

c :

(
∂Π
:

c

∂Ξ
:

e
: Ξ̇
:

e +
∂Π
:

c

∂Γ
:

e
: Γ̇
:

e

)
− φ̇ = 0, (6.122)
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and this condition must be fed with the derivatives of the Mandel stress and Mandel
couple stress with respect to the elastic deformation gradient and the elastic curvatures,
which can be derived from equations (6.89) and (6.90), and the increments of the latter
deformation measures can be derived from from Equations (6.32) and (6.33). Solving the
consistency condition for the increment of the plastic multiplier will give:

λ̇ =

n
:

:

[
∂Π
:

∂Ξ
:

e
:
(
Ξ̇
:

F
::

p−1
)

+
∂Π
:

∂Γ
:

e
:
(
Γ̇
:

F
:

p−1
)]

+ n
:

c :

[
∂Π
:

c

∂Ξ
:

e
:
(
Ξ̇
:

F
:

p−1
)

+
∂Π
:

c

∂Γ
:

e
:
(
Γ̇
:

F
:

p−1
)]

∂φ

∂λ
+ n
:

:

[
∂Π
:

∂Ξ
:

e
:
(
Ū
:

en
:

)
+
∂Π
:

∂Γ
:

e
:
(
Γ
:

en
:

+ n
:

c

)]
+ n
:

c :

[
∂Π
:

c

∂Ξ
:

e
:
(
Ū
:

en
:

)
+
∂Π
:

c

∂Γ
:

e
:
(
Γ
:

en
:

+ n
:

c

)] .
(6.123)

Although the formulation seems complex, it is very much similar to its counterpart in a
small deformation framework:

λ̇ =
n
:

: E
:
:

: ė
:

+ n
:

c : C
:
:

: k̇
:

∂φ

∂λ
+ n
:

: E
:
:

: n
:

+ n
:

c : C
:
:

: n
:

c

, (6.124)

where E
:
:

and C
:
:

are the fourth-order elastic operators for the Cosserat strain, e
:

, and

curvature ,k
:

, respectively. The first difference is that in small deformation the strain is
defined as combination of displacement gradient and micro-rotation vector, whereas in
the formulation we provided the explicit dependency on the deformation gradient and
micro-rotation operator; the second difference is that in the linearized version the cou-
pling between the stress/couple stress and the wryness/deformation gradient/rotation
disappears.

6.6.1 Rate-independent elasto-plastic materials with no dissipa-
tive wryness

In this case it is necessary to re-write the consistency condition:
Πeq = φ,

∂f

∂Π
:

: Π̇
:

+
∂f

∂φ
φ̇ = 0,

(6.125)

thus:

n
:

:

(
∂Π
:

∂Ξ
:

e
: Ξ̇
:

e +
∂Π
:

∂Γ
:

e
: Γ̇
:

e

)
− φ̇ = 0, (6.126)

and by isolating the λ̇:

λ̇ =

n
:

:

[
∂Π
:

∂Ξ
:

e
:
(

˙̇
:

UF
:

p−1
)

+
∂Π
:

∂Γ
:

e
:
(
Γ̇
:

e
)]

∂φ

∂λ
+ n
:

:

[
∂Π
:

∂Ξ
:

e
:
(
Ξ
:

en
:

)] . (6.127)
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6.7 Thermal analysis

In case the temperature plays a relevant role in the analysis, its contribution must be
included, and the whole framework should still obey the second thermodynamic principle.
We restrict the analysis to an adiabatic scenario, in which the heat flux does not have
time to flow within the bulk. Another assumption is that no additional deformations are
induced by changes of temperature, and that the temperature only affects the radius of
the yield surface. In this case, the temperature is not a degree of freedom, rather a state
variable. In this case, the Helmholtz free energy is function of the temperature as well, and
an additive decomposition of the contributions coming from elastic and thermo-plastic
can be hypothesized [Grammenoudis et al. 2001]:

ρ0ψ
(
Ξ
:

e,Γ
:

e,Λpeq, T
)

= ρ0ψ
e + ρ0ψ

p,T , (6.128)

and for the present investigation, we assumed it to have the following specific form:

ρ0ψ
p,T
(
Λpeq, T

)
=

{
1

2
HΛp

2

eq +Q1

[
Λpeq +

e
−b1Λpeq
1

b1

]
+Q2

[
Λpeq +

e
−b2Λpeq
1

b2

]}
·
(

T − T0

Tmelt − T0

)
− 1

2
ρ0
Cε
T0

(T − T0)
2
. (6.129)

Considering that the Helmholtz free energy depends also on the temperature, its rate of
variation can be expressed as:

ρ0ψ̇
(
Ξ
:

e,Γ
:

e,Λpeq, T
)

= ρ0

[
∂ψ

∂Ξ
:

e
: Ξ̇
:

e +
∂ψ

∂Γ
:

e
: Γ̇
:

e +
∂ψ

∂Λpeq
Λ̇peq +

∂ψ

∂T
Ṫ

]
, (6.130)

and, in a non-isothermal case, it can also be expressed as:

ρ0ψ̇ = J p(i) − T η̇ − Ṫ η. (6.131)

By combining them we can write the heat equation as:

J p(i) − ρ0

[
∂ψ

∂Ξ
:

e
: Ξ̇
:

e +
∂ψ

∂Γ
:

e
: Γ̇
:

e +
∂ψ

∂Λpeq
Λ̇peq +

∂ψ

∂T
Ṫ

]
− Ṫ η − T η̇ = 0, (6.132)

from the Equation above, considering that the temperature expressed in Kelvin can only
be positive and considering that the internal power can be expressed as in Equation (6.52),
the following Clausius-Duhem, inequality can be assumed to be valid:[
−ρ0

∂ψ

∂Ξ
:

e
+ T
:

F
:

pT

]
: Ξ̇
:

e +

[
−ρ0

∂ψ

∂Γ
:

e
+ T
:

cF
:

pT

]
: Γ̇
:

e −
[
ρ0
∂ψ

∂T
+ η

]
Ṫ[

Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ḟ
:

p +
[
T
:

c

]
: Γ̇
:

p −R Λ̇peq ≥ 0, (6.133)

where we identified the thermodynamical force associated to the variation of the equivalent
plastic strain:

R = ρ0
∂ψ

∂Λpeq
=
{
HΛpeq+Q1

[
1− e(−b1Λpeq)

]
+Q2

[
1− e(−b2Λpeq)

] }( T − T0

Tmelt − T0

)
, (6.134)
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which can be used to write the radius of the yield surface for the temperature-dependent
case:

φ = φ0

(
T − T0

Tmelt − T0

)
+R. (6.135)

where φ0 is the initial yield stress. Once again, the elastic parts of the deformation are
recoverable. Furthermore, the following relationship can be derived:

η = −ρ0
∂ψ

∂T
. (6.136)

Thus, the second thermodynamic principle would be exactly the same as in the plastic
case, except for R, which, in this case, depends on the temperature. The most important
element of this section, however, is the definition of the thermal increment, based on
thermodynamical considerations. The adiabatic thermal rate (thus fully due to plastic
power) can be computed from the heat Equation (6.132). The entropy can be evaluated
from Equation (6.136):

η = −

{
1

2
HΛp

2

eq +Q1

[
Λpeq +

e
−b1Λpeq
1

b1

]
+Q2

[
Λpeq +

e
−b2Λpeq
2

b2

]}
1

Tmelt − T0
+ρ0

Cε
T0

(T − T0) ,

(6.137)
from which, its variation is:

η̇ =
∂η

∂T
Ṫ +

∂η

∂Λpeq
Λ̇peq. (6.138)

At this point, the heat Equation (6.132) can be rewritten by using Equations (6.52)
and (6.130): [

Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ḟ
:

p +
[
T
:

c

]
: Γ̇
:

p + T η̇ −R Λ̇peq = 0, (6.139)

which, by making use of Equation (6.138), becomes:[
Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ḟ
:

p +
[
T
:

c

]
: Γ̇
:

p − ρ0CεṪ − T
∂η

∂Λpeq
Λ̇peq −R Λ̇peq = 0. (6.140)

After simplification, the final form of the heat equation is:[
Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ḟ
:

p +
[
T
:

c

]
: Γ̇
:

p − ρ0 Cε Ṫ+HΛpeq +Q1
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1− e(−g1Λpeq)

]
+Q2

[
1− e(−g2Λpeq)

]
Tmelt − T0

T0 Λ̇peq = 0, (6.141)

from which, the Ṫ term can be evaluated as:

Ṫ =

[
Ū
:

eTT
:

+ Γ
:

eTT
:

c

]
: Ḟ
:

p +
[
T
:

c

]
: Γ̇
:

p

ρ0 Cε
+HΛpeq +Q1

[
1− e(−g1Λpeq)

]
+Q2

[
1− e(−g2Λpeq)

]
(Tmelt − T0) (ρ0 Cε)

T0 Λ̇peq. (6.142)

in which the first term of the right hand side is the term which is classically used to
evaluate an adiabatic temperature variation due to plastic work, and the second term is
often neglected.
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Chapter 7

Numerical implementation of
the large deformation Cosserat
model

This chapter presents the fundamental steps which are required for the numerical imple-
mentation of the Cosserat theory that has been presented in the previous chapter. The
focus will be on the numerical treatment of the rotation when its magnitude is finite. In
case of a small deformation framework, in fact, the rotations are linearized and their non-
linearity is thus neglected. However,since the rotations are characterized by a non-linear
mapping between the parameters and the Eulerian R3 space, proper handling is required
for the description of many aspects, such as: incremental fields, differentials and update of
the parameter fields. These aspects are extremely important for the numerical treatment,
since the FEM analysis involves incremental increase of the loadings, evaluation of the
element and material tangent matrices, and subsequent update of the fields at the end of
the load increment.

Two versions of the numerical implementation will be presented, the first one for an
unconstrained three-dimensional conditions, and the second one for plane-strain condi-
tion. The differentiation is required here because many steps are significantly simplified
when plane conditions are applied. For instance, the parameters that are required to de-
scribe the rotation are reduced to one, and many non-linearities in the analysis disappear.
For this reason, both 3D and 2D versions of the numerical treatment are presented.

The main objective of the FEM implementation is to provide the software with the
element stiffness matrix and the external force vector. The formulation has been imple-
mented in the software Z-SET, in which it was possible to include the Finite Element as
an object in a C++ environment by mean of dynamic libraries.

The chapter begins with the description of the streps required to write the Cosserat
theory in its strong form, which is a necessary passage in order to adapt the formulation
for a finite element implementation. The weak form of the equilibrium equations pro-
posed in the previous chapter are written for a general domain, and such domain is then
transformed in finite elements, into which shape functions are used to discretize the fields
of the degrees of freedom. Once the element stiffness matrix is obtained, the focus is the
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treatment of the material behavior, to be specific, the evaluation of the material tangent
matrix, which is used to integrate the material behavior. The variations of the Mandel
stress and couple stress are also included in the treatment, which are used to evaluate the
increments of the state variable used to monitor the plastic developments in the contin-
uum. Finally, the topic of updating the micro-rotational degrees of freedom is addressed,
and linearized versions of the differentials of rotations and wryness are provided.

The numerical implementation of the theory has been done while considering the
following Helholtz free energy:

ρ0ψ
e
(
R
:

F
:

e,Γ
:

e
)

=
λ

2
(Je − 1)

2
+ µ||sym

(
R
:

F
:

e − I
:

)
||2 + µc||skew

(
R
:

F
:

e − I
:

)
||2+

α

2
tr2
(
Γ
:

e
)

+ β||symΓ
:

e||2 + γ||skew
(
Γ
:

e
)
||2; (7.1)

Most of the treatment of the rotations has been taken from the book of Bauchau,
“Flexible multibody dynamics” [Bauchau 2011].

7.1 Strong form of the equilibrium equation and vir-
tual work principle

The discretization procedure starts with the discretization of the entire domain of interest
Ω in n sub-domains, which are commonly referred to as mesh elements. The equilibrium
equations relative to the reference configuration (Lagrangian) have been derived in the
previous chapter (Equations (6.55) and (6.56)), and they are here reported in absence of
external body forces and moments: (

R
:

T
:

)
·∇0 = 0, (7.2)(

R
:

T
:

c

)
·∇0 + axl

(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)

= 0, (7.3)

where T
:

and T
:

c are the II Piola-Kirchhoff stress and couples stress tensors. The equilib-
rium equations are bounded by:

R
:

T
:

· n0 = f c0, (7.4)

R
:

T
:

c · n0 = gc
0
, (7.5)

and this set of equations must hold for every configuration C (to which a couple {u, θ}
corresponds) in which equilibrium holds. We could use this condition to our advantage
and find the set of degrees of freedom that, for a given set of external boundary conditions
(either in displacement or traction form), are in equilibrium. Let us assume that at time t
the domain configuration is identified by ut, θt and characterized by the stresses T

:

t,T
:

t
c,

and that is in equilibrium. It is then possible to apply a perturbation to the equilibrium
configuration by applying a virtual infinitesimal variation to the degrees of freedom; the
virtual internal work associated to such perturbation would then be equal to:

u∗ ·
(
R
:

T
:

)t
·∇0 = 0, (7.6)

θ∗ ·
(
R
:

T
:

c

)t
·∇0 + axl

(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)t
· θ∗ = 0, (7.7)
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where u∗ and θ∗ are the virtual variations. By integrating these conditions over the
domain, we end up with the following formulation of the internal virtual work Li:

Li =

∫
Ω0

{
T
:

t : R
:

T tF
:

∗ + T
:

t
c :
[
R
:

T t (θ∗ ⊗∇0)
]

+ axl
(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)t
· θ∗

}
dΩ0,

(7.8)
and we can similarly apply the same reasoning to the boundary equations to obtain the
virtual variation of the external work as:

Le =

∫
∂Ω0

[
f c
t

0 · u∗ + gc
t

0
· θ∗

]
dS0. (7.9)

The Virtual Work Principle ensures that the configuration at time t is under equilibrium
as long as the external virtual work is equal to the internal one for every virtual variation
of the degrees of freedom (which are compatible with the applied constraints):

Li
t

= Le
t

, ∀ (u∗, θ∗) ∈ R3. (7.10)

We could make use of the virtual work principle to find the configuration at time t+ ∆t
that would be in equilibrium under the set of external forces balance:

u∗ ·
(
R
:

T
:

)t+∆t

·∇0 = 0, (7.11)

θ∗ ·
(
R
:

T
:

c

)t+∆t

·∇0 + θ∗ · axl
(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)t+∆t

= 0, (7.12)

leading to the following internal virtual work:

Li =

∫
Ω0

{
T
:

t+∆t : R
:

T t+∆t

F
:

∗ + T
:

t+∆t
c :

[
R
:

T t+∆t

(θ∗ ⊗∇0)
]

+ axl
(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)t+∆t

· θ∗
}
dΩ0,

(7.13)
and external virtual work

Le =

∫
∂Ω0

[
f c
t+∆t

· u∗ + gc
t+∆t

· θ∗
]
dS0. (7.14)

Considering the standard FEA treatment in terms of nodes and shape functions, the
displacement and micro-rotational virtual fields can be discretized as:

u∗i (x, y, z) = Nu
ij (x, y, z)χ∗uj , (7.15)

θ∗i (x, y, z) = Nθ
ij (x, y, z)χ∗ θj , (7.16)

where χ∗uj and χ∗ θj are j-th nodal virtual variations of the degrees of freedom, and Nu
ij

and Nθ
ij are the shape functions of the respective degrees of freedom (which could be in

general different among each others). In many FE codes, the nodal degrees of freedom

142



are assembled in vectors:
[
χ∗u1

1 χ∗u1
2 ... χ∗u1

n

] [
χ∗u2

1 χ∗u2
2 ... χ∗u2

n

] [
χ∗u3

1 χ∗u3
2 ... χ∗u3

n

]


T

,

(7.17)
where n is the number of nodes. The same is done for the micro-rotational degrees of
freedom:
[
χ∗ θ11 χ∗ θ12 ... χ∗ θ1n

] [
χ∗ θ21 χ∗ θ22 ... χ∗ θ2n

] [
χ∗ θ31 χ∗ θ32 ... χ∗ θ3n

]


T

.

(7.18)
The shape functions are therefore assemble into matrices as:

[
Nu

1 Nu
2 ... Nu

n

] [
0 0 ... 0

] [
0 0 ... 0

]

[
0 0 ... 0

] [
Nu

1 Nu
2 ... Nu

n

] [
0 0 ... 0

]

[
0 0 ... 0

] [
0 0 ... 0

] [
Nu

1 Nu
2 ... Nu

n

]



. (7.19)

The shape functions interpolate the nodal values inside the elements, and they can be
functions of any order. Generally, first or second order polynomials are used, whereas
third order functions are usually employed for isogeometric structural analysis [Russo
and B. Chen 2020]. In order to evaluate the deformations within the element domain,
the derivatives of the displacement and micro-rotational fields must be evaluated, and in
classical FEA this is achieved through the employment of the so-known B matrix, which

143



contains the derivatives of the shape functions, and it is constructed as:

[
∂Nu

1

∂x

∂Nu
2

∂x
...

∂Nu
n

∂x

] [
0 0 ... 0

] [
0 0 ... 0

]

[
0 0 ... 0

] [
∂Nu

1

∂y

∂Nu
2

∂y
...

∂Nu
n

∂y

] [
0 0 ... 0

]

[
0 0 ... 0

] [
0 0 ... 0

] [
∂Nz

1

∂z

∂Nu
2

∂z
...

∂Nu
n

∂z

]

[
∂Nu

1

∂y

∂Nu
2

∂y
...

∂Nu
n

∂y

] [
0 0 ... 0

] [
0 0 ... 0

]

[
0 0 ... 0

] [
∂Nu

1

∂z

∂Nu
2

∂z
...

∂Nu
n

∂z

] [
0 0 ... 0

]

[
0 0 ... 0

] [
0 0 ... 0

] [
∂Nz

1

∂x

∂Nu
2

∂x
...

∂Nu
n

∂x

]

[
0 0 ... 0

] [
∂Nu

1

∂x

∂Nu
2

∂x
...

∂Nu
n

∂x

] [
0 0 ... 0

]

[
0 0 ... 0

] [
0 0 ... 0

] [
∂Nu

1

∂y

∂Nu
2

∂y
...

∂Nu
n

∂y

]

[
∂Nz

1

∂z

∂Nu
2

∂z
...

∂Nu
n

∂z

] [
0 0 ... 0

] [
0 0 ... 0

]



,

(7.20)
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and the same can be done with the micro-rotational degree of freedom (here not included
for brevity). The application of this B matrix to the vector of the nodal degrees of freedom
as defined in Equation (7.17) returns a column vector that contains the 9 entries of the
deformation gradient tensor in the following order:

1 4 9

7 2 5

6 8 3


, (7.21)

and such particular choice is strictly related to the structure of the FE code, Z-set in this
case. By discretizing the virtual fields by mean of the N and B matrices, the internal
work of a single element is:

Li(e) =

{∫
Ω0

[
(RT)

t+∆t ·Bu
]
dΩ

}
· χ∗u +

{∫
Ω0

[
(RTc)

t+∆t ·Bθ
]
dΩ

}
· χ∗ θ+{∫

Ω0

[
axl
(
RTFT − FTTRT

)t+∆t

·Nθ

]
dΩ

}
· χ∗ θ. (7.22)

Accordingly, assuming that the only existing external forces are due to contact, from
Equation (7.14) the external virtual work can of one element be discretized as:

Le(e) =

[∫
∂Ω0i

(
f c
t+∆t

0 ·Nu
)
dS

]
· χ∗u +

[∫
∂Ωi

(
gc

t+∆t

0 ·Nθ
)
dS

]
· χ∗ θ, (7.23)

from which, the discretized work balance equation in one element looks like:{∫
Ω0

[
(RT)

t+∆t ·Bu
]
dΩ

}
χ∗u+{∫

Ω0

[
(RT)

t+∆t
Bθ + axl

(
RTFT − FTTRT

)t+∆t

Nθ

]
dΩ

}
χ∗ θ =[∫

∂Ω0

(
f c
t+∆t

0 Nu
)
dS

]
χ∗u +

[∫
∂Ω0

(
gc

t+∆t

0 Nθ
)
dS

]
χ∗ θ, (7.24)

and given the arbitrariness of the virtual variation of the nodal degrees of freedom, it is
possible to remove them from the Equations, which would then transform into a balance
equation among the internal an external forces:

f t+∆t
int = f t+∆t

ext , (7.25)
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which can be expressed in a column vector form as:

fu t+∆t
int1

fu t+∆t
int2

...

fu t+∆t
intn

fθ t+∆t
int1

fθ t+∆t
int2

...

fθ t+∆t
intn



=



fu t+∆t
ext1

fu t+∆t
ext2

...

fu t+∆t
extn

fθ t+∆t
ext1

fθ t+∆t
ext2

...

fθ t+∆t
extn



(7.26)

where the subscripts and superscripts of the forces indicate the number of the node and
the type of degree of freedom respectively. The previous equation ensures the equivalence
among the external and internal forces acting at every node i. Assuming that n nodes
exist in the element, the internal and external force vectors will be n-dimensional. By
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explicitly expressing the internal and external force vectors, they can be written as:

∫
Ω0

{
B
:

uT RTt+∆t
}
dΩ

∫
Ω0

{
B
:

θT RTc
t+∆t

+N
:

θT
[
axl
(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)t+∆t

]}
dΩ



=



∫
∂Ω0

(
N
:

uT · f c
t+∆t

0

)
dS

∫
∂Ω0

(
N
:

θT · gct+∆t

0

)
dS



. (7.27)

Some transposes appeared in the formulation to retain matrix multiplication compati-
bility. The equilibrium condition imposed by Equation (7.27) must be verified at every
point of the load-path. We can define the residual vector R as given by the difference
between internal and external forces at time t+ ∆t, which should ideally equal to a null
vector:

Rt+∆t = f t+∆t
int − f t+∆t

ext . (7.28)

By assuming continuity in the deformation process of the continuum, the residual at time
t+ ∆t can be thought as derived from the one defined at time t:

Rt+∆t = Rt +
∂Rt

∂χ
· δχ, (7.29)

by hypothesizing that the external force does not depend on the d.o.f. variation,

∂Rt

∂χ
=
∂f tint

∂χ
= K
:

t, (7.30)

where K
:

t is the element stiffness matrix evaluated at time t, representing a perturbation
of the internal forces with respect to the variations of the nodal degrees of freedom. In
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order to write Equation (7.30) in a consistent way, theK
:

matrix has the following entries:

K
:

=



∂fuint1

∂u1
1

∂fuint1

∂u2
1

∂fuint1

∂u3
1

. . .
∂fuint1

∂u3
n

∂fuint1

∂θ1
1

∂fuint1

∂θ2
1

· · ·
∂fuint1

∂θ3
n

...
...

...
...

...
...

...
...

...

∂fuintn

∂u1
1

∂fuintn

∂u2
1

∂fuintn

∂u3
1

. . .
∂fuintn

∂u3
n

∂fuintn

∂θ1
1

∂fuintn

∂θ2
1

· · ·
∂fuintn

∂θ3
n

∂fθint1

∂u1
n

∂fθint1

∂u2
1

∂fθint1

∂u3
1

. . .
∂fθint1

∂u3
n

∂fθint1

∂θ1
1

∂fθint1

∂θ2
1

· · ·
∂fθint1

∂θ3
n

...
...

...
...

...
...

...
...

...

∂fθintn

∂u1
n

∂fθintn

∂u2
1

∂fθintn

∂u3
1

. . .
∂fθintn

∂u3
n

∂fθintn

∂θ1
1

∂fθintn

∂θ2
1

· · ·
∂fθintn

∂θ3
n



(7.31)

which can also be re-written as:

K
:

=



∫
Ω0

(
B
:

uT · ∂RT

∂χu

)
dΩ

∫
Ω0

(
B
:

uT · ∂RT

∂χθ

)
dΩ

∫
Ω0

(
B
:

θT · ∂RTc

∂χu

+N
:

θT ·
∂axl

(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)

∂χu

 dΩ

∫
Ω0

(
B
:

θT · ∂RTc

∂χθ

+N
:

θT ·
∂axl

(
R
:

T
:

F
:

T − F
:

T
:

TR
:

T
)

∂χθ

 dΩ


,

(7.32)
where four groups composing the stiffness matrix can be clearly identified. The stresses
appearing in the stiffness matrix are modified I Piola-Kirchhoff stresses and they are equal
to:

S = RT, (7.33)

s = axl
(
S
:

F
:

T − F
:

S
:

T
)

= 2 axl
(
S
:

F
:

T
)
, (7.34)

M = RTc, (7.35)

which can also be evaluated as:

S
:

= ρ0R
:

· ∂ψ
∂]F
:

e
F
:

p−T , (7.36)

M
:

= ρ0R
:

· ∂ψ
∂]Γ
:

e
F
:

p−T , (7.37)

s = 2 axl

(
R
:

· ∂ψ
∂]F
:

e
F
:

eT + R
:

· ∂ψ
∂]Γ
:

e
Γ
:

eT

)
= 2 axl

(
S
:

· F
:

T + M
:

· Γ
:

T
)
, (7.38)

148



and, by using the chosen Helmholtz free energy in Equation (7.1):

S
:

=

{
Jeλ (J− 1) F

:

e−T + (µ+ µc)
[
F
:

e
]

+ (µ− µc)
[
R
:

· F
:

eT ·R
:

]
− 2µR

:

}
· F
:

p−T , (7.39)

s = −ε
:

:
{

Jeλ (Je − 1) I
:

+ (µ+ µc)
[
F
:

e · F
:

eT
]

+ (µ− µc)
[
R
:

· F
:

eT ·R
:

· F
:

eT
]
− 2µ

[
R
:

· F
:

eT
]}

,

(7.40)

M
:

=

{
α tr

(
R
:

T · Γ
:

e
)

R
:

+ (β + γ)
[
Γ
:

e
]

+ (β − γ)
[
R
:

· Γ
:

eT ·R
:

]}
· F
:

p−T . (7.41)

The stiffness matrix can therefore be written as:

K
:

=



∫
Ω0

(
B
:

uT · ∂S

∂χu

)
dΩ

∫
Ω0

(
B
:

uT · ∂S

∂χθ

)
dΩ

∫
Ω0

(
B
:

θT · ∂M

∂χu
−N
:

θT · ∂s

∂χu

)
dΩ

∫
Ω0

(
B
:

θT · ∂M

∂χθ
−N
:

θT · ∂s

∂χθ

)
dΩ


.

(7.42)
Note that geometrical non-linearities embedded in the evaluation of the variation of the
B matrices are not included because we are integrating over the domain Ω0 which is a
fixed domain in time. In the classical continuum mechanics only the top-left part of the
matrix is used. Regarding the external forces vector in Equation (7.27), f c0 and gc

0
can

be substituted by using the boundary conditions in Equations (7.4) and (7.5), then the
application of the divergence theorem and the substitution of the chosen stress forms
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leads to: 

∫
∂Ω0

(
N
:

uT · f c0
)
dS

∫
∂Ω0

(
N
:

θT · gc
0

)
dS



=



∫
Ω0

(
B
:

uT · S
)
dΩ

∫
Ω0

(
B
:

θT ·M −N
:

θT · s
)
dΩ



. (7.43)

The variation of the stresses and couple stresses in the element stiffness matrix (7.42) with
respect to variations of the nodal degrees of freedom must be evaluated. In the derivation
of such elements, the chain rule will be used: the stresses (or fluxes) are function of
the deformations, which, in turn, are functions of the degrees of freedom. Furthermore,
the integration of the entries in the stiffness matrix will be performed at the quadrature
points (or integration points, IP) inside the domain, and we are considering the variation
of such entries with respect to the degrees of freedom at the nodes (not at the IPs), thus
proper handling of the link of the fields between IPs and nodal values must be included.
By virtue of the chain rule, the following terms can be used:

∂S

∂χu
=
∂S

∂F
· ∂F

∂χu
, (7.44)

∂S

∂χθ
=
∂S

∂R
· ∂R

∂χθ
+
∂S

∂Γ
· ∂Γ

∂χθ
, (7.45)

∂M

∂χu
=
∂M

∂F
· ∂F

∂χu
, (7.46)

∂M

∂χθ
=
∂M

∂R
· ∂R

∂χθ
+
∂M

∂Γ
·
∂Γ
:

∂χθ
, (7.47)

∂s

∂χu
=

∂s

∂F
· ∂F

∂χu
, (7.48)

∂s

∂χθ
=

∂s

∂R
· ∂R

∂χθ
+
∂s

∂Γ
· ∂Γ

∂χθ
, (7.49)
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and, by considering these relationships in the element stiffness matrix, it becomes:

K
:

=



∫
Ω0i

[
B
:

uT ·
(
∂S

∂F

)
·B
:

u

]
dΩ

∫
Ω0i

[
B
:

uT ·
(
∂S

∂R
· ∂R

∂χθ
+
∂S

∂Γ
· ∂Γ

∂χθ

)]
dΩ

∫
Ω0i

[
B
:

θT ·
(
∂M

∂F

)
·B
:

u−

N
:

θT ·
(
∂s

∂F

)
·B
:

u

]
dΩ

∫
Ω0i

[
B
:

θT ·
(
∂M

∂R
· ∂R

∂χθ
+
∂M

∂Γ
· ∂Γ

∂χθ

)
−

N
:

θT ·
(
∂s

∂R
· ∂R

∂χθ
+
∂s

∂Γ
· ∂Γ

∂χθ

)]
dΩ


.

(7.50)
This specific expression of the element stiffness matrix still presents some terms that
require further developing. To be specific: the variations of the fluxes with respect to
the deformation measures at the IP, and the variations of wryness and rotation tensor
at the IP with respect to the variation of the micro-rotational degree of freedom at the
node. The formers are the entries of the material tangent matrix, whereas the latter terms
given the non-linearity of the parameter fields, must be addressed separately (the fields
are not additive as is case of the displacements). Both the elements that need further
investigation will be addressed in the next sections in case of a 3D and 2D analysis.

7.2 Three dimensional model

7.2.1 Material tangent matrix

The variations of these stresses with respect to the deformation measures are entries of
the material tangent matrix:

KMijkl
=
∂(flux)ij
∂(def)kl

, (7.51)

where the fluxes are:
{S, s,M}, (7.52)

and the deformations are:
{F,R,Γ}. (7.53)

If the fluxes and the deformations are rearranged in column vectors following the order
defined in Equation (8.19d), the material tangent can be written as:

KMij =
∂(flux)i
∂(def)j

, (7.54)
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and the matrix would be composed as:

∂Si
∂Fj

∂Si
∂Rj

∂Si
∂Γj

∂si
∂Fj

∂si
∂Rj

∂si
∂Γj

∂Mi

∂Fj

∂Mi

∂Rj

∂Mi

∂Γj



. (7.55)

Regarding the micro-rotation, we might want to make use of the chain rule, expressing
the variations of the flux with respect to the micro-rotation matrix R

:

at first (at the

Gauss points), and then analyzing the variation of the latter with respect to the the
nodal variation of the rotation parameters. The material tangent matrix that we require
for the code implementation would provide the variation of the fluxed with respect to
the deformations. In case plasticity occurs, the variation of the stresses S

:

, s and M
:

cannot be found explicitly anymore, but it must be rather implicitly evaluated through
the identification of the consistent tangent matrix. Due to the lack of time, the evaluation
of the consistent material tangent matrix has not been performed as it should have been.
Such procedure can be found in the recent investigations carried out by Scherer et al.
and Ling et al. in case of micromorphic and strain gradient theory respectively [Scherer,
Phalke, et al. 2020b; Ling 2018]. In order to improve convergence, the material tangent
matrix for the Cosserat media under finite deformation has been evaluated through the
followings:

∂ (•)
∂F
:

=
∂ (•)
∂F
:

e
·
∂F
:

e

∂F
:

+
∂ (•)
∂F
:

p
·
∂F
:

p

∂F
:

, (7.56)

∂ (•)
∂Γ
:

=
∂ (•)
∂Γ
:

e
·
∂Γ
:

e

∂Γ
:

+
∂ (•)
∂F
:

p
·
∂F
:

p

∂Γ
:

+
∂ (•)
∂Γ
:

p
·
∂Γ
:

p

∂Γ
:

. (7.57)

By reporting the fluxes in their index forms:

Sij =

[
Jeλ (J− 1)

(
F
:

e−T
)
ip

+ (µ+ µc)
[
F eip
]

+ (µ− µc) [RimF
e
nmRnp]− 2µRip

]
F p

−1

jp ,

(7.58)

152



si = −εilm

{
Je λ (Je − 1) δlm + (µ+ µc) [F elnF

e
mn] + (µ− µc) [RlnF

e
onRopFmp]− 2µRlnF

e
mn

}
,

(7.59)

Mij =
{
αRipRmnΓemn + (β + γ) Γeip + (β − γ) [RimΓenmRnp]

}
F p

−1

jp , (7.60)

we can evaluate their variation with respect to the elastic and plastic parts of the defor-
mations:

∂Sij
∂Fekl

= λJe

{
(Je − 1)

[(
F
:

e−1
)
lk

(
F
:

e−1
)
pi

(
F
:

p−1
)
jp
−
(
F
:

e−1
)
pk

(
F
:

e−1
)
li

(
F
:

p−1
)
jp

]
+

+J
(
F
:

e−1
)
lk

(
F
:

e−1
)
pi

(
F
:

p−1
)
jp

}
+(µ+ µc)

[
δik

(
F
:

p−1
)
jl

]
+(µ− µc)

[
RilRkp

(
F
:

p−1
)
jp

]
,

(7.61)

∂Sij
∂Fpkl

= −

{
Jeλ (J− 1)

(
F
:

e−TF
:

p−T
)
il

+ (µ+ µc)
[
F
:

eF
:

p−T
]
il

+ (µ− µc)
[
R
:

F
:

eTR
:

F
:

p−T
]
− 2µR

:

F
:

p−T

il

}
F
:

p−T

kj ,

(7.62)
∂Sij
∂Rkl

= (µ− µc)
[
δikF

e
mlRmp

(
F
:

p−1
)
jp

+RimFkm

(
F
:

p−1
)
jl

]
− 2µδik

(
F
:

p−1
)
jl
,

(7.63)
∂Sij
∂Γekl

= 0, (7.64)

∂Sij
∂Γpkl

= 0, (7.65)

∂si
∂Fejk

= −εilm

{
(µ+ µc) [δljδnkF

e
mn + F elnδmjδnk] +

(µ− µc)
[
RlnδojδnkRopF

e
mp +RlnF

e
onRopδmjδpk

]
− 2µRlnδmjδnk

}
, (7.66)

∂si
∂Fpjk

= 0, (7.67)

∂si
∂Rjk

= −εilm

{
(µ− µc)

[
δljδnkF

e
onRopF

e
mp +RlnF

e
onδojδpkF

e
mp

]
− 2µδljδnkF

e
mn

}
,

(7.68)

∂si
∂Γejk

= 0, (7.69)

∂si
∂Γpjk

= 0, (7.70)
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∂Mij

∂Fekl
= 0, (7.71)

∂Mij

∂Fpkl
= −

{
αtr

(
R
:

TΓe
:

)
Rip + (β + γ) Γeip + (β − γ)

[
R
:

Γ
:

eTR
:

]
ip

}
F p

−1

jk F p
−1

lp , (7.72)

∂Mij

∂Rkl
= α

[
δikF

p−T

lj RmnΓemn +
(
RF p

−T
)
ij

Γekl

]
+

(β − γ)

[
δik

(
Γe

T

RF p
−T
)
lj

+
(
RΓe

T
)
ik
F p

−T

lj

]
, (7.73)

∂Mij

∂Γekl
= α

[(
RF p

−T
)
ij
Rkl

]
+ (β + γ)

[
δikF

p−T

lj

]
+ (β − γ)

[
Ril

(
RF p

−T
)
kj

]
, (7.74)

∂Mij

∂Γpkl
= 0. (7.75)

By reporting Equations (7.56) and (7.57) in an index form:

∂ (•)
∂Fij

=
∂ (•)
∂Fekl

∂Fekl
∂Fij

+
∂ (•)
∂Fpkl

∂Fpkl
∂Fij

, (7.76)

∂ (•)
∂Γij

=
∂ (•)
∂Γekl

∂Γekl
∂Γij

+
∂ (•)
∂Γpkl

∂Γpkl
∂Γij

+
∂ (•)
∂Fpkl

∂Fpkl
∂Γij

, (7.77)

which become:

∂ (•)
∂Fij

=
∂ (•)
∂Fekl

δkiF
p−1

jl +
∂ (•)
∂Fpkl

Fe
−1

ki δlj , (7.78)

∂ (•)
∂Γij

=
∂ (•)
∂Γekl

δkiF
p−1

jl +
∂ (•)
∂Γpkl

δkiδlj +
∂•
∂Fpkl

Γe
−1

ki δlj , (7.79)

the entries that we just derived can be grouped as:

∂Sij
∂Fkl

= λJe

{
(Je − 1)

[(
F
:

−1
)
lk

(
F
:

−1
)
ji
−
(
F
:

−1
)
jk

(
F
:

−1
)
li

]
+ J

(
F
:

−1
)
lk

(
F
:

−1
)
ji

}
+ (µ+ µc) [δikδlj ] + (µ− µc)

[
R
:

ilRkj

]
, (7.80)

∂Sij
∂Rkl

= (µ− µc)
[
δikF

e
mlRmp

(
F
:

p−1
)
jp

+RimFkm

(
F
:

p−1
)
jl

]
− 2µδik

(
F
:

p−1
)
jl
,

(7.81)

∂si
∂Fjk

= −εilm

{
(µ+ µc)

[
δlj

(
F
:

p−1

· F
:

e T
)
km

+
(
F
:

p−1

· F
:

e T
)
kl
δmj

]
+

(µ− µc)
[(

F
:

e ·R
:

T
)
mj

(
F
:

p−1 ·R
:

T
)
kl

+
(
R
:

· F
:

e T ·R
:

F
:

p−T
)
lk
δmj

]
−2µ

[(
R
:

· F
:

p−T
)
lk
δmj

]}
,

(7.82)
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∂si
∂Rjk

= −εilm

{
(µ− µc)

[
δljδnkF

e
onRopF

e
mp +RlnF

e
onδojδpkF

e
mp

]
− 2µδljδnkF

e
mn

}
,

(7.83)
∂si
∂Γjk

= 0, (7.84)

∂Mij

∂Γkl
= α

[
Rij

(
F
:

p−1 ·R
:

)
lk

]
+ (β + γ)

[
δikF
:

p−1
lj

]
+ (β − γ)

[(
F
:

p−1 ·R
:

)
li
Rkj

]
, (7.85)

which cen be used to fill the material tangent matrix for a the three dimesional uncon-
strained case:

K
:

M =



∂S

∂F

∂S

∂R

∂S

∂Γ

∂s

∂F

∂s

∂R

∂s

∂Γ

∂M

∂F

∂M

∂R

∂M

∂Γ



=



(7.80) (7.81) 0
:

(7.82) (7.83) 0
:

0
:

0
:

(7.85)


(7.86)

7.2.2 Variation of Mandel stress and couple stress tensors

The Mandel stress and couple stress can be written as:

Π
:

= F
:

eT · S
:

· F
:

pT + Γ
:

eT ·M
:

· F
:

pT ; (7.87)

Π
:c

= M
:

· F
:

pT ; (7.88)

and, if they are expanded:

Π
:

= Jeλ (Je − 1) I
:

+ (µ+ µc)
[
F
:

eTF
:

e
]

+ (µ− µc)
[
F
:

eTR
:

F
:

eTR
:

]
− 2µF

:

eTR
:

+

αtr
(
R
:

TΓ
:

e
)

Γ
:

eTR
:

+ (β + γ)
[
Γ
:

eTΓ
:

e
]

+ (β − γ)
[
Γ
:

eTR
:

Γ
:

eTR
:

]
;

(7.89)

Π
:c

= α tr
(
R
:

TΓ
:

e
)

R
:

+ (β + γ)
[
Γ
:

e
]

+ (β − γ)
[
R
:

Γ
:

eTR
:

]
; (7.90)
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from which their variation with respect to the elastic deformations and micro-rotation
are:

∂Πij

∂F ekl
= λJeδijF

:

−T
kl (2 Je − 1) + (µ+ µc)

[
δilF

e
kj + δjlF

e
ki

]
+

(µ− µc)
[
δilR
:

F
:

eTR
:

kj + F
:

eTR
:

ilRkj

]
− 2µδilRkj ;

(7.91)

∂Πij

∂Rkl
= (µ− µc)

[
F ekiF

:

eTR
:

lj + F
:

eTR
:

F
:

eT

ik δjl

]
− 2µF ekiδjl+

αΓeklΓ
:

eTR
:

ij + αtrace
(
R
:

TΓ
:

e
)

Γekiδjl + (β − γ)
[
ΓekiΓ

:

eR
:

lj + Γ
:

eTR
:

Γ
:

eT

ik δjl

]
;

(7.92)

∂Πij

∂Γekl
= αRklΓ

:

eTR
:

ij + α trace
(
T
:

TΓ
:

eT
)
δilRkj+

(β + γ)
[
δilΓ

e
kj + Γekiδjl

]
+ (β − γ)

[
δilR
:

Γ
:

eTR
:

kj + Γ
:

eTR
:

ilRkj

]
;

(7.93)

∂Πcij

∂Rkl
= αΓeklRij + α trace

(
R
:

TΓ
:

e
)
δikδjl + (β − γ)

[
δikΓ
:

eTR
:

lj + R
:

Γ
:

eT

ik δjl

]
; (7.94)

∂Πcij

∂Γekl
= αRklRij + (β + γ) [δikδjl] + (β − γ) [RilRkl] ; (7.95)

7.2.3 Derivatives of R
:

and Γ
:

The second group of terms that need further development are the ones expressing varia-
tions of the micro-rotation tensor and wryness at the integration points with respect to
nodal variations of the degrees of freedom:

∂R

∂χθ
,

∂Γ

∂χθ
.

These quantities can be expressed as:

∂R

∂χθ
=
∂R

∂θ

∂θ

∂χθ
,

∂Γ

∂θ

∂θ

∂χθ
.

where the relationship between the parameters at the IP θ and the parameters at the
nodes χθ are given by the shape functions contained in the Nθ matrix, and the other
terms that need further development are the ones expressing variations of the deformation
measures, R

:

and Γ
:

, at the integration points with respect to a variation of the parameters:

∂R

∂θ
,

∂Γ

∂θ
.

where the parameter vector θ is presented in Table 8.19d. It is remembered that for this
research a Cartesian parameterization was chosen. The variations of the micro-rotation
and of the wryness with respect to the parameters can be evaluated starting from the
expression of the rotation matrix as [Bauchau 2011]:

R
:

(θ) = I
:

+
sin (θ)

θ
θ
:

+
1− cos (θ)

θ
θ
:

· θ
:

; (7.96)
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where, once again, θ
:

is the skew-symmetric tensor whose axial vector is θ and θ is the norm
of the parameters vector. We want now to express the variation of the rotation tensor
with respect to a variation of the parameters that embody it. This can be evaluated after
considering that:

θ =
√
θ2

1 + θ2
2 + θ2

3;
∂θ

∂θi
=
θi
θ

;
∂θ
:

∂θi
=
∂ − ε

:

· θ
∂θi

= −ε
:

· ei; (7.97)

where θi is the i-th component of the parameter vector, and ei is the i-th unit vector
forming the orthonormal basis of the Euclidean space. The final expression of the variation
of the rotation with respect to the i-th parameter is:

∂R
:

∂θi
=

[
cos (θ) θi − sin (θ)

θi
θ

]
θ
:

θ2
− sin (θ)

θ
ε
:

· ei+

[sin (θ) θ θi − (1− cos(θ))2 θi]
θ
:

· θ
:

θ4
− 1− cos (θ)

θ2

[
ε
:

· ei
]
· θ
:

− 1− cos (θ)

θ2
θ
:

·
[
ε
:

· ei
]

; (7.98)

This expression has been simplified by Gallego and Yezzi [Gallego et al. 2015], obtaining
the following:

∂R
:

∂θi
=
θiθ
:

+
[
θ ×

(
I
:

−R
:

)
· ei
]
×

θ2
·R
:

; (7.99)

where (·)× is the operator that returns the skew-symmetric tensor of a given vector. The
final third order tensor is composed by the three bi-dimensional tensors expressed in
Equation 7.99, and is here denoted as R

:

∗:

R∗ijk =
∂Rij
∂θk

; (7.100)

Therefore, the variation of the micro-rotation tensor R
:

with respect to a nodal variation

of the parameter vector χθ can be written as:

∂Rij
∂χθk

=
∂Rij
∂θl

∂θl
∂χθk

= R∗ijlN
θ
lk, ⇐⇒

∂R
:

∂χθ
= R
:

∗ ·N
:

θ, (7.101)

The derivation of the second term can be performed as:

∂Γij
∂χθk

=
∂Γij
∂θl

∂θl
∂χθk

=
∂Γij
∂Rmn

∂Rmn
∂θl

∂θl
∂χθk

, ⇐⇒
∂Γ
:

∂χθ
=

(
∂Γ
:

∂R
:

: R
:

∗

)
·N
:

θ, (7.102)

where the derivative of the wryness with respect to the micro-rotation must be evaluated.
It can be done by reporting the wryness in an index form (Equation (6.10)):

Γij = −1

2
εiklRmk

∂Rmn
∂Xl

, (7.103)

157



whose variation with respect to the micro-rotation tensor would look like:

∂Γij
∂Rkl

= −1

2
εilm

∂Rkm
∂Xj

= −1

2
εilm

∂Rkm
∂θn

∂θn
∂Xj

= −1

2
εilmR

∗
kmn

∂θn
∂Xj

, ⇐⇒
∂Γ
:

∂R
:

= −1

2
ε
:

· R
:

∗T · B
:

θ · χθ,

(7.104)
where the transpose of the third order tensor acts on the first two indices. Therefore, the
variation of the wryness tensor with respect to the rotational degrees of freedom can be
written as:

∂Γij
∂χθk

= −1

2
εilmR

∗
pmn

∂θn
∂Xj

R∗plqN
θ
qk. (7.105)

In classical continuum mechanics the gradient of the displacements F
:

can be simply
evaluated by applying the B matrix onto the nodal displacements. The wryness, however,
cannot be simply evaluated as done with the deformation gradient because of its non-
linearity. From the definition of the wryness in Equation (6.10), using the property of the
permutation symbol and Equation (7.100), the wryness tensor can be evaluated as:

Γij = −1

2
εiklRmk

∂Rml
∂Xj

= −1

2
εiklRmk

∂Rml
∂θn

∂θn
∂Xj

, ⇐⇒ Γ
:

= −1

2
ε
:

:
[
R
:

T · R
:

∗
]
· B
:

θ · χθ.

(7.106)
Similar works found in the literature, for example the one by Erdelj et al. [Erdelj et al.
2020], evaluate the wryness as:

Γ
:

= R
:

T ·H
:

(θ) · B
:

θ · χθ, (7.107)

where H
:

(θ) is the tangent operator of the rotational operator in the parametric space

{θ1, θ2, θ3} [Erdelj et al. 2020; Bauchau 2011]. By comparing it with the formulation that
we derived, the following can be asserted:

H
:

(θ) = −1

2
ε
:

:
[
R
:

R
:

∗
]
. (7.108)

7.3 Plane strain model

In case of plane strain condition, the rotation has only one degree of freedom, so that
there will be only one active rotation on the continuum:

θ =


0

0

θ3


, (7.109)

158



therefore, also the vector s (which is the skew-symmetric part of the Cauchy stress tensor)
has only one non vanishing component:

s =


0

0

s3


. (7.110)

Subsequently, another consequence is that the only active components of the wryness
tensor are Γ31 = ∂θ3/∂x and Γ32 = ∂θ3/∂y:

Γ
:

=


0 0 0

0 0 0

Γ31 Γ32 0


. (7.111)

which can be evaluated as:

Γ =

Γ1

Γ2

 =



∂θ3

∂X1

∂θ3

∂X2



= B
:

θ · χθ. (7.112)

The Helmholtz free energy becomes:

ρψ
(
R
:

TF
:

e,Γ
:

e
)

=
λ

2
(J− 1)

2
+µ||sym

(
R
:

TF
:

e
)
−I

:

||2+µc||skew
(
R
:

TF
:

e − I
:

)
||2+

β

2
||Γ
:

e||2,
(7.113)

and the stresses are:

S
:

=

{
Jeλ (J− 1) F

:

e−T + (µ+ µc)
[
F
:

e
]

+ (µ− µc)
[
R
:

· F
:

eT ·R
:

]
− 2µR

:

}
· F
:

p−T ,

(7.114)

s = −ε
:

:
{

Jeλ (Je − 1) I
:

+ (µ+ µc)
[
F
:

e · F
:

eT
]

+ (µ− µc)
[
R
:

· F
:

eT ·R
:

· F
:

eT
]
− 2µ

[
R
:

· F
:

eT
]}

+

− ε
:

:
[
2βΓ

:

eΓ
:

eT
]

;

(7.115)
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M
:

= 2βΓ
:

eF
:

p−T . (7.116)

With the simplifications done so far, the element stiffness matrix looks like:

K
:

=



∫
Ωi

(
B
:

vT · ∂S

∂F
·B
:

u

)
dΩ

∫
Ωi

(
B
:

vT · ∂S

∂θ3
⊗Nθ

)
dΩ

−
∫

Ωi

(
NθT ⊗ ∂s3

∂F
·B
:

u

)
dΩ

∫
Ωi

(
B
:

θT · ∂M

∂Γ
·B
:

θ − ∂s3

∂θ3
N
:

θT ⊗Nθ

)
dΩ

.
(7.117)

7.3.1 Material tangent matrix in 2D

From these simplifications, it is possible to compose the material tangent matrix, which
can be written as:

KMijkl
=
∂(flux)ij
∂(def)kl

, (7.118)

where, under the assumption we made, the fluxes are:

{S, s3,M}, (7.119)

and the deformations are:
{F, θ3,Γ}, (7.120)

where the couple stress and the wryness only contain two not vanishing components, that
are {M31,M32} and {Γ31,Γ32} respectively. It is important to note here that we used the
degree of freedom θ3 itself as a measure of deformation rather than the rotation matrix,
and the reason is that this simplifies the derivation. Following the considerations men-
tioned in the three-dimensional treatment of the material tangent matrix, the following
can be written:

KMij
=



∂Si
∂Fj

∂Si
∂θ3

0
:

∂s3

∂Fj

∂s3

∂θ3
0
:

0
:

0
∂Mi

∂Γj



(7.121)
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In two dimensions, the variation of the micro-rotation tensor with respect to θ3 can be
simply obtained as (see next subsection 7.3.3):

∂R
:

∂θ3
= A
:

·R
:

, (7.122)

where : 
0 −1 0

1 0 0

0 0 0


. (7.123)

By reporting the fluxes in their index forms:

Sij =

[
Jeλ (J− 1)

(
F
:

e−T
)
ip

+ (µ+ µc)
[
F eip
]

+ (µ− µc) [RimF
e
nmRnp]− 2µRip

]
F p

−1

jp ,

(7.124)

s3 = −ε3lm

{
Je λ (Je − 1) δlm + (µ+ µc) [F elnF

e
mn] + (µ− µc)

[
RlnF

e
onRopF

e
mp

]}
,

(7.125)

M3s = 2βΓe3qF
p−1

sq , (7.126)

where the subscript s and q range from 1 to 2. The entries of the material tangent matrix
can be evaluated as:

∂Sij
∂Fekl

= λJe

{
(Je − 1)

[(
F
:

e−1
)
lk

(
F
:

e−1
)
pi

(
F
:

p−1
)
jp
−
(
F
:

e−1
)
pk

(
F
:

e−1
)
li

(
F
:

p−1
)
jp

]
+

+J
(
F
:

e−1
)
lk

(
F
:

e−1
)
pi

(
F
:

p−1
)
jp

}
+(µ+ µc)

[
δik

(
F
:

p−1
)
jl

]
+(µ− µc)

[
RilRkp

(
F
:

p−1
)
jp

]
,

(7.127)

∂Sij
∂Fpkl

= −

{
Jeλ (J− 1)

(
F
:

e−TF
:

p−T
)
il

+ (µ+ µc)
[
F
:

eF
:

p−T
]
il

+ (µ− µc)
[
R
:

F
:

eTR
:

F
:

p−T
]
− 2µR

:

F
:

p−T

il

}
F
:

p−T

kj ,

(7.128)

∂Sij
∂Rkl

∂Rkl

∂θ3
= (µ− µc)

[
ARF e

T

RF p
−T

ij +RF e
T

ARF p
−T

ij

]
− 2µARF p

−T

ij , (7.129)

∂Sij
∂Γekl

= 0, (7.130)

∂Sij
∂Γpkl

= 0, (7.131)
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∂s3

∂Fejk
= −ε3lm

{
(µ+ µc) [δljδnkF

e
mn + F elnδmjδnk] +

(µ− µc)
[
RlnδojδnkRopF

e
mp +RlnF

e
onRopδmjδpk

]
− 2µRlnδmjδnk

}
, (7.132)

∂si
∂Fpjk

= 0, (7.133)

∂s3

∂Rjk

∂Rjk
∂θ3

= −ε3lm

{
(µ− µc)

[
ARF e

T

RF e
T

lm +RF e
T

ARF e
T

lm

]
− 2µARF e

T

lm

}
, (7.134)

∂si
∂Γejk

= 0, (7.135)

∂si
∂Γpjk

= 0, (7.136)

∂Mij

∂Fekl
= 0, (7.137)

∂M3j

∂Fpkl
= −2β

(
Γ
:

eF
:

p−T
)

3l
F p

−1

jk , (7.138)

∂Mij

∂Rkl
= 0, (7.139)

∂M3j

∂Γe3l
= 2β F p

−T

lj , (7.140)

∂Mij

∂Γpkl
= 0. (7.141)

The considerations previously done in case of a three-dimensional material treatment
(not consistent tangent matrix) are still valid for the plane-strain condition as well. . By
reporting Equations (7.56) and (7.57) in an index form:

∂ (•)
∂Fij

=
∂ (•)
∂Fekl

∂Fekl
∂Fij

+
∂ (•)
∂Fpkl

∂Fpkl
∂Fij

, (7.142)

∂ (•)
∂Γij

=
∂ (•)
∂Γekl

∂Γekl
∂Γij

+
∂ (•)
∂Γpkl

∂Γpkl
∂Γij

+
∂ (•)
∂Fpkl

∂Fpkl
∂Γij

, (7.143)

which become:

∂ (•)
∂Fij

=
∂ (•)
∂Fekl

δkiF
p−1

jl +
∂ (•)
∂Fpkl
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Therefore, the entries of the material tangent matrix are:
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∂Fkl
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}
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, (7.146)
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∂s3

∂Γij
= 0, (7.149)

∂M3j

∂Γ3l
= 2βδlj . (7.150)

The final elements of the material tangent matrix can be found by reference in the fol-
lowing Equations:

K
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7.3.2 Variation of Mandel stress and couple stress in 2D

In 2D the Mandel stress and couple stress are:

Π
:

= F
:

eT · S
:

· F
:

pT + Γ
:

eT ·M
:

· F
:

pT ; (7.152)

Π
:c

= M
:

· F
:

pT ; (7.153)

and if these terms are expanded:

Π
:

= Jeλ (Je − 1) I
:
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[
F
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e
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Π
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:

e, (7.155)

and the variation with respect to the deformations can be evaluated as:
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∂ΠM
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e
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, (7.158)

∂ΠM
cij

∂θk
= 0, (7.159)

∂ΠM
cij

∂Γekl
= 2βδikδjl. (7.160)

7.3.3 Derivatives of R
:

and Γ
:

in 2D

Given a generic rotation matrix, if the parameter vector has only one non-zero component
(simple rotation around one of the axis), for example θ3 around the z-axis, it can be written
as:

R
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= exp
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·
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0
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+ 0
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)
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(7.161)
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which can be simply differentiated with respect to θ3 obtaining:

∂R
:

∂θ3
= A
:

·R
:

= R
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′, (7.162)
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′T , (7.163)
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., (7.164)

In FEA, the gradient of R
:

and R
:

′ at the integration points can be evaluated using the B
matrix as:
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Also the wryness can be simplified in case of a 2D assumption:

Γ
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= −1

2
ε
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:
[
R
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(
R
:

⊗∇0
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, (7.167)

and, recalling that the rotation matrix in 2D is:

R
:

=
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, (7.168)

from which:
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then:

R
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and finally:
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Under the same simplifying assumption, it is also possible to evaluate the derivative of
the wryness with respect to the rotation θ3:
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∂θ3
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. (7.172)

7.4 Updating the deformation measures

One disadvantage of using the rotation parameters as degrees of freedom is that the
rotation and the wryness operators cannot be, in general, handled as classically done
with the displacement degrees of freedom, for instance:

R
:

(θ3) = R
:

(θ1) ·R
:

(θ2) 6= R
:

(θ1 + θ2), (7.173)

meaning that the operation of updating the rotational degrees of freedom requires proper
procedure rather than simple addition of the parameters (as done for example with dis-
placement degrees of freedom). Given a rotation tensor R

:

derived from a composition of
two rotations R

:

1 and R
:

2:

R
:

3(θ3) = R
:

1(θ1) ·R
:

2(θ2), (7.174)
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its rotation parameter vector θ3 can be computed through a two step procedure that
involves the two rotation parameters vectors θ1 and θ2 [Bauchau 2011]:

θ3 = 2 acos

[
ν1ν2

(
1

ε1ε2
− 1

4
θ1 · θ2

)]
θ3 =

ν1ν2

ν3

[
1

ε2
θ1 +

1

ε1
θ2 +

1

2
θ
:

1 · θ2

] , (7.175)

where the terms ν and ε depend on the chosen parameterization and can be found in
Table 6.1. The first Equation returns the angle of the rotation, θ3, thus enabling the
computation of ν3, and the second Equation returns its respective vectorial parametriza-
tion (θ3). The update of the rotation parameter vector must therefore be performed
through the presented two-step procedure.
The updating procedure of the wryness tensor also requires proper handling. Given the
definition of the wryness tensor:

Γ
:

3 = −1

2
ε
:

:
[
R
:

T
3 ·
(
R
:

3 ⊗ ∇0

)]
, (7.176)

the updated wryness can be simply evaluated by applying the wryness operator on the
updated rotation matrix, R

:

3, as in Equation (7.174), resulting in:
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. (7.177)
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Chapter 8

Simulations of Cosserat
thermo-mechanics at finite
deformation

This chapter includes the tests performed to verify the correctness of the implemented
formulation and applications to the simulation of strain localization phenomena in thermo-
elastoviscoplastic materials. The Cosserat element under large deformation has been im-
plemented under 2D plane strain conditions, therefore, all the simulations here presented
are under plane strain conditions. All the elements used in the following tests are quadri-
lateral and they have 8 nodes, interpolating the fields with quadratic shape functions.
Each element possesses 24 DOFs, 16 of which are in-plane nodal displacements u1 and
u2, and the other 8 are the nodal micro-rotations (only the third component of θ in a 2D
space).
In the following section, two homogeneous-field bench tests are presented. The first se-
ries of tests have been performed on a single element with proper boundary condition
in order to test the pure mechanical response of the implemented theory under tensile
loading, and the second one under gliding. Hyper-elastic, Elasto-plastic and elasto-visco-
plastic material behavior were tested. Subsequently, more complex multi-elements tests
were used to a assess the element capability to simulate the proper behavior. Forest et
al. proposed a micro-rotation boundary test [Forest and Sievert 2003], and the same
test has been here performed using a large deformation element. Then, the localization
problem analyzed in Section 5.2.3 has been simulated using the finite deformation the-
ory proposed in the previous chapter, and the same test has been used to present the
problem of saturating yield stress during localization. The same test has been used also
to investigate the separate and opposite effects that thermal softening and strain rate
hardening have on localization process. The hat-shaped specimen was previously used
to investigate the size effect using the small deformation Cosserat theory [Russo, Forest,
et al. 2020], and the same test has been here used to investigate over the saturating yield
stress in case of geometrically-induced localizations. Finally, the theory has been used to
simulate a simplified case of manufacturing operation, and the numerical predictions have
been quantitatively compared with the experimental results obtained at the University of
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(b) Deformation history of the single element
tensile test in a LD framework.

λ [MPa] µ µc [MPa] β [MPa·mm2]

40384.0 26923.0 100000.0 60000.0

Table 8.1: Elastic material properties used to run the tensile and glide tests.

Bordeaux.

8.1 Homogeneous fields: single element tests

8.1.1 Hyper-elastic, visco-plastic and elasto-plastic tension test

The tensile tests is meant to verify the correctness of the part of the stiffness matrix that
acts on the displacement degrees of freedom. A single square element of 1 mm long edge
has been used. The left bottom corner of the element has coordinates (0,0) and the top
right corner lies in (1,1). Homogeneous deformation fields have been achieved through
application of the following BCs:

u1 = 0 mm @x = 0 mm,

u1 = 4 mm @x = 1 mm,

u1 = 0 mm @y = 0 mm,

(8.1)

representing a stretching of the element by 400%. Referring to the mechanical elastic
response reported in Equations (7.114), (7.115) and (7.116), the elastic mechanical prop-
erties used to run this bench test are summarized in Table 8.1. As expected, when large
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φ0 [MPa] H [MPa] Q1 [MPa] g1 [-] Q2 [MPa] g2 [-]

900 1000 1500 0.2 1200 0.2

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-] K [MPa] n [-]

1.0 0.0 0.0 0.0 0.0 1000 1.2

Table 8.2: Visco-plastic material properties used to run the tensile and glide tests.

deformations are simulated while using a SD framework, the theory is not anymore re-
liable, in fact, as reported in Figure 8.1a, the element linearly and continuously shrinks
along the y direction and reaches a point in which the thickness becomes null. The sim-
ulation continues and the top nodes are brought below the bottom ones. This condition
occurs due to the fact that in a SD simulation the deformations are expected to be small
so that a check of the Jacobian is not required, and the non-linear behaviors are lin-
earized. On the contrary, the geometrical non-linear behavior of the element along the
y-axis has been perfectly captured by the LD formulation as it has been reported in Fig-
ure 8.1b. The results in terms of load-displacement are reported in Figure 8.2, where it is
appreciable that, as expected, the two curves diverge from each due to the nonlinearity.
The tensile tests has been also used to verify the correctness of the implementation of
the elasto-plastic and elasto-visco-plastic material model in the Cosserat element in large
deformation under plane-strain condition. For clarity, the plastic hardening law is here
reported:

φ = φ0 +HΛp +Q1 [1− exp (−g1Λp)] +Q2 [1− exp (−g2Λp)] , (8.2)

and the equivalent stress is evaluated as in Equation (6.98) here reported:

Πeq =

√
3

2

[
a1I1(Π

:

) + a2I2(Π
:

) + b1I1(Π
:

c) + b2I2(Π
:

c) + b3I3(Π
:

c)
]
. (8.3)

The material properties concerning the hyper-elastic part of the model have been taken
from the already performed test (Table 8.1), whereas the coefficients used to characterize
the elasto-plastic and elasto-visco-plastic parts have been summarized in Table 8.2. The
visco-plastic and elasto-plastic tests were performed by applying a reduced displacement
of 0.1 mm, still maintaining the same boundary conditions as in Equation (8.1). Regarding
the visco-plastic tests, they were performed by using two different durations of application
of the loads, such as to emphasize the viscous effect. In Figure 8.2 the responses in terms
of load-displacement have been reported, and they highlight a correct implementation
of the model. The visco-plastic behavior correctly predicts a stiffer response for loads
applied during shorter periods of time, and then the theory reduces to the elasto-plastic
one when the loads are applied for long periods of time.
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Figure 8.2: Load-displacement graph of the tensile test on a single element. Comparison
of SD and LD formulations (a) and comparison of hyper-elastic, elasto-visco-plastic and
elasto-plastic models (b). The legend in (b) indicates the strain rates.

y

x

y

x

Figure 8.3: Undeformed and deformed shape assumed by the element during the glide
test
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8.1.2 Hyper-elastic, visco-plastic and elasto-plastic glide test

This test is meant to verify the correctness of the implementation of the terms related
to the skew-symmetric part of the tensors. The geometry and the mechanical properties
used for this test are the same as the ones used for the tensile test: the element was a
1 mm square whose vertexes have coordinates of (0,0) and (1,1), and the properties are
reported in Table 8.2. An homogeneous shear field is induced in the element by applying
the following boundary conditions:

u1 = 0 mm @y = 0 mm,

u1 = 2 mm @y = 1 mm,

u2 = 0 mm @y = 0 mm,

u2 = 0 mm @y = 1 mm.

(8.4)

Ideally, this set of BCs shall induce the element to return an equivalent shear strain
of 1 in a SD framework. This value was indeed reproduced during the SD test. The
micro-rotation was left free to follow the macro-rotation, therefore the micro-rotation
was expected to have the same value of the macro-rotation in the whole element. This
condition was verified in the SD test, where the micro-rotation had an homogeneous
value of -1 (micro-rotation notation follows the right-hand rule). As expected, the LD
test produced a smaller but uniform micro rotation value equal to 0.7878 rad. The
difference in produced micro-rotation is due to the fact that the large value of µc acts as
a penalty term constraining the micro-rotation and the material rotation in both SD and
LD framework, however, the material rotation in SD is linearized and it is fully non-linear
in the LD framework. Figure 8.3 shows the deformed configuration of the element during
the glide test. The tests performed under SD and LD conditions produced the same
deformed configuration, but the difference between the two formulations can be found in
the different predicted value of micro-rotation. In Figure 8.4a the force-displacement are
reported for the glide test performed under LD and SD. Once again, it is evident that the
LD framework is able to capture the additional tensile stiffness induced by the geometrical
non-linearity of the test. In Figure 8.4b the response in terms of load-displacement can
be observed in case of hyper-elastic, visco-plastic and elasto-plastic behaviors, where the
viscous element was tested for two different total time of application of the load. As
expected, also under shear loading, the viscous response in fact reduces to a plastic one
in case of large application time. As per the tensile test, the inelastic tests used the same
boundary conditions of the hyper-elastic one, but the applied load was reduced to 0.1
mm, so that the distinctions between the different behaviors would be more appreciable.

8.2 Simple micro-rotation boundary layer

This test aims at verifying the correctness of the method for a multi-element case, that
is, verifying that the element stiffness matrix is properly written and that the assembly
of the stiffness matrices of adjacent elements is correctly performed. This test has been
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Figure 8.4: Load-displacement graph of the glide test on a single element. Comparison of
hyper-elastic SD and LD formulations (a) and comparison of hyper-elastic, elasto-visco-
plastic and elasto-plastic models (b). The legend in (b) indicates the strain rates.

previously used by [Forest and Sievert 2003]. They developed the analytical solution of
the boundary value problem in case of monotonic load application, which can be used
as a solid and reliable candidate for the verification of the numerical method. In this
test, the gradient of the micro-rotation is of central importance, such as the entangling
between the displacement and micro-rotational degrees of freedom. The geometry of the
performed test is pictured in Figure 8.5. The following BCs are applied to the specimen:

u1 = 0 mm @y = 0mm,

u2 = 0 mm @y = 0mm,

θ3 = 0 rad @y = 0mm,

θ3 = 0.001 rad @y = 5mm,

(8.5)

and the application of a micro-rotation at the top boundary induces plasticity at the
same location, in a thin layer, that then expands as the load increases. Elasto-plasticity
is the chosen mechanical behavior for this test. The applied micro-rotation, due to the
entanglement characterizing the Cosserat media, produces material rotation and shear
strain. The generated deformation fields are not homogeneous, and this means that in
this test we can observe the effect of the gradient of the micro-rotation and also verify
its implementation. The fields numerically predicted are compared against the analytical
solutions, which has been obtained under the assumption of infinitesimal variations of the
degrees of freedom [Forest and Sievert 2003]. The distribution of the shear stress and of
the couple-stress have been used to verify the correctness of the formulation. In Figure 8.6
these comparisons are reported against their analytical solution. It must be mentioned
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Figure 8.5: Geometry used for the micro-rotation boundary layer test.

λ [MPa] µ [MPa] µc [MPa] β [MPa·mm2] φ0 [MPa]

115348 76923 100000 76923 100.0

H [MPa] Q1 [MPa] g1 [-] Q2 [MPa] g2 [-]

0.0 0.0 0.0 0.0 0.

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-]

1.0 1.0 0.0 1.0 1.0

Table 8.3: Elasto-plastic material properties used for the micro-rotational boundary layer
test.
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Figure 8.6: Comparison between the numerically predicted and analytical derived distri-
butions of the shear stress σ12 and of the couple stress m32 fields along the y-direction of
the specimen.

that the predicted fields coincide with the analytical solution because the applied micro-
rotation on the top boundary is small enough to induce small deformations, thus the
produced results still remain infinitesimal. Application of larger micro-rotations would
induce appreciable differences in the predicted fields andd a departure from the analytical
solution.

8.3 Semi-infinite plane under glide: shear band anal-
ysis

Besides the standard tests, the main benchmark for the validation of the numerical method
has been to retrieve the analytical solution for the localization of a semi-infinite plane
under glide. The focus on this test follows the requirement of the proposed method to
be used for manufacturing operations in which the prediction of the correct thickness of
the adiabatic shear band must be correctly addressed. The numerical fields are compared
against the analytical solutions derived in Chapter 5. The cumulative plastic strain has
been selected as main field to be used for the comparison. The geometry and boundary
conditions used to reproduce a glide test were previously summarized in Figure 5.1 in
Chapter 5. The simplified meshed geometry used for the test is reported in Figure 8.7a,
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Figure 8.7: Meshed geometry of the strip test used to verify the numerical implementation
for a localization phenomenon (a) and deformed shape assumed by the specimen during
the application of the load (b).

and the boundary conditions are the followings:

u1 = 0.02 mm @y = −5mm

u1 = −0.02 mm @y = 5 mm

u2 = 0 mm @everywhere

. (8.6)

The mechanical properties used to perform the simulation can be found in Table 8.4:
a linear softening behavior has been assigned to the material such as to induce strain
localization in the strip. It is well known that if this material behavior was to be assigned
to the classical continuum mechanics, the simulations would not be not able to deliver
a finite and mesh-independent localization zone, and this was also previously reported
in Figure 5.4. Given the fact that the problem can be simplified to a mono-dimensional
analysis, the fields must only be discretized along the y direction, therefore a vertical
strip has been modeled, and periodic boundary conditions were applied to the right and
left nodes of the elements. In Figure 8.7 the mesh and the deformed shape assumed by
the specimen are reported. The assigned system of boundary conditions would lead to an
homogeneous solution in which it is not possible to study localization: the localization
process was in fact triggered to initialize in the center of the geometry through the reduc-
tion by a small negligible percentage (≈ 1.5%) of the yield stress of the central element.
Different features of the Cosserat media were analyzed while studying the localization
test. For example, in Figure 8.8 the effect of using different characteristic lengths is re-
ported. Here the analytical solution of the thickness of the shear band is reported from
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λ [MPa] µ [MPa] µc [MPa] β [MPa·mm2] φ0 [MPa]

115348.0 76923.0 100000.0 77.0 250.0

H [MPa] Q1 [MPa] g1 [-] Q2 [MPa] g2 [-]

-250.0 0.0 0.0 0.0 0.

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-]

1.0 1.0 0.0 0.0 0.0

Table 8.4: Elasto-plastic material properties used for the shear band test.

Equation (5.94):

lpch =
2π

ωp
=

√
−πβ [(µ+ µc)H + µµc 3 a3]

µµcH
. (8.7)

In order to obtain two different thicknesses of the shear band, two different values for the
couple stress modulus β have been used. Such behavior has been correctly captured by
both numerical and analytical models. The fact that the thickness of the shear band can
be easily tuned by changing the value of the higher order modulus β indicates the clear
connection between this additional parameter included in the model and the observed
experimental value of the thickness of the shear band if such model ought to be calibrated.
In order to verify that the thickness of the shear band does not expand with the increasing

loads, the applied displacements have been amplified and the cumulative plastic strain
has been reported for the two different values of the applied displacement in Figure 8.9.
As expected, the localization zone does not get broader with an increase of the applied
displacement. This was expected from the analytical model, in which we can observe that
the period of the sin/cos functions does not depend on the boundary conditions or on the
state of the continuum, but it rather depends only on the mechanical properties of the
material.

8.3.1 Shear band broadening for saturating yield stress

Although it is useful to mimic localization in the shear band through purely softening
plastic behavior, this type of material characterization does not correspond to any realistic
material model. Many types of metals, in fact, exhibit an hardening behavior at first,
followed by a plateau, in their stress-strain curve [Babu and Lindgren 2013]. The softening
behavior that the material experiences during localization is often, in fact, of a thermal
nature: the plastic work is converted into heat, and, depending on the thermal diffusion
coefficient of the material and on the developed strain rates, the heat might be locally
retained and not be diffused, thus inducing local thermal softening. Without the thermal
effect (and in absence of any geometry that might induce localization), in fact, it is not
certain that the deformations are able to localize. These doubts have, in fact, arose when
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Figure 8.8: Comparison between the analytical solution and the numerical prediction for
the distribution of the cumulative plastic strain along the strip using different character-
istic lengths.
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Figure 8.9: Comparison between the analytical solution and the numerical prediction for
the distribution of the cumulative plastic strain along the strip using different applied
displacements.
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the distribution of the plastic field was analyzed analytically in the previous Section 5.3.3,
and it was found that the localization zone might not be bounded. The differential
equations governing the fields in the plastic zone in case of perfectly plastic behavior,
regardless of the boundary conditions, are here reported, suggesting a parabolic-type of
solution for the distribution of the cumulative plastic strain in case of perfectly plastic
behavior:

p(y)H=0 =
2√
3 a3

[
Ay2 +B y − β A

µc
+ C

]
− φ0

3µa3
. (8.8)

The equation describing the cumulative plastic fields suggests that, differently from the
softening case, the solutions are not periodic, thus not bounded by the periodicity of the
function. Due to the form of the general solution, one might be induced to infer that,
differently from the softening case, the localization zone might broaden. In order to verify
weather the localization zone broadens or not after localization and subsequent saturation
of the stress-strain curve, a numerical escamotage has been used. In this case, in fact, the
Cosserat material has been characterized with the following plastic behavior:

φ = φ∞ + (R0 − φ∞) e−b p, (8.9)

where φ∞ is the asymptotic stress of saturation, R0 is the initial yield stress, b is a constant
and p is the cumulative plastic strain. In Figure 8.11 the representation of such curve
is reported for the parameters given in Table 8.5. The adoption of a yield stress as the
one indicated in Equation (8.9) has a double advantage: the initial negative slope of the
curve ensures that localization would be initiated, and the saturation of the curve is used
to simulate the saturation of the real stress-strain curve. The initial distribution of the
cumulative plastic strain should follow a sinusoidal function, and once the yield stress start
saturating, however, the cumulative plastic strain field should shift its distribution from
a sinusoidal (belonging to the softening analytical solution) to a parabolic one (belonging
to the perfectly plastic analytical solution), thus losing its property of periodicity.
The exponential material model was not planned to be used in the beginning, therefore
it has been subsequently implemented in the numerical solver and the localization test
has been performed using such model. The mechanical properties used for this test are
reported in Table 8.5. For this test, the distribution of the cumulative plastic strain
has been reported at different loading stages in order to follow its development, and the
results can be appreciated in Figure 8.10. From this Figure, it is evident that the shear
band broadens when the asymptotic values of yield stress are reached. In order to have
a reference, the exponential stress-strain curve has been linearized at its origin, so as to
obtain a linear softening behavior which would lead to a similar shear band thickness (at
least in the first step of the loading). Since the correct linearization of the curve would
lead to the adoption of an extreme slope of the curve, the choice of the steepness of the
curve has been performed via observation of the produced two curves as reported already
in Figure 8.11. It can be appreciated that the linearized softening behavior is acceptably
approximating the exponential curve until the cumulative plastic strain reaches the values
of ≈ 0.02. The slope of the linearized curve in Figure 8.11 can be estimated to be
≈ −1250 [MPa]. By plugging this value, along with the other mechanical properties, in
Equation (8.8), the expected characteristic length is ≈ 1.9 mm. The localization problem
was then also simulated by using a linear softening slope of -1250 MPa, such as to obtain
the same shear band thickness that would develop in the first stages of the simulation using
the exponential plastic behavior. In Figure 8.10 the comparison between the development
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λ [MPa] µ µc [MPa] β [MPa·mm2]

115348.0 76923.0 100000.0 77.0

φ0[Mpa] φ∞[Mpa] b[-] a1 [-]

250.0 200.0 40.0 1.0

a2 [-] b1 [-] b2 [-] b3 [-]

s1.0 0.0 0.0 0.0

Table 8.5: Elasto-plastic material properties used for the localization problem using ex-
ponential softening behavior.
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Figure 8.10: Development of the cumulative plastic strain fields at 33%, 66% and 100%
of the applied load. Comparison between linearized softening and exponential/saturation
plastic behaviors.
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Figure 8.11: Yield function used to verify the broadening of the shear band. The
specific curve has been obtained by using the following parameters: φ∞ = 200MPa,
R0 = 250MPa, b = 40.

of the plastic fields between the exponential and linear plastic behavior are reported.
Three different stages are reported, each corresponding to different percentages of the
load application (33%, 66% and 100% of the displacement u0), and the same stages (in
terms of maximum reached cumulative plastic strain) are reported in Figure 8.11 by mean
of intersections with the yield curves. In the first stage, the plastic strain distributions are
almost identical, because the maximum plastic strain experienced (≈ 0.02) still lies within
the zone in which the linearization of the exponential curve is a good approximation
(by looking at Figure 8.11). The second reported stage of development of the plastic
field already presents major differences between each other, due to the saturation effect
introduced in the exponential curve: the developed plastic strain is, in fact, beyond the
point at which the two curves diverge from each other, that is, ≈ 0.05 (see Figure 8.11).
The third reported stage is characterized by an even more pronounced difference. The
gray area in Figure 8.10 represents the thickness of the shear band as predicted by the
analytical solution trough Equation 8.8. From the Figure, it can be appreciated that the
shear band thickness remains bounded in case of purely linear softening behavior, but
this is not the case for the softening-saturating plastic behavior. In the latter case, in
fact, the shear band thickness increases as soon as the yield stress saturates.
This small example highlights the necessity for an additional element which should enforce
material softening during simulation, such as to retrieve the harmonicity of the plastic
field solutions producing a constant shear band thickness. The proposed solution is the
adoption of another source of softening which would ensure such behavior even during
the stages in which the stress-strain curve saturates, that is, a thermal softening.
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λ [MPa] µ [MPa] µc [MPa] β [MPa·mm2] ρ [kg/mm3] m[-]

115348.0 76923.0 100000.0 77.0 4.57 e−6 1.5

φ0[Mpa] φ∞[Mpa] b[-] Cε [J/Kg/◦C] Tm [◦C]

250.0 200.0 200.0 5.25e5 1100

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-]

1.0 1.0 0.0 0.0 0.0

Table 8.6: Thermo-elasto-plastic material properties used for the localization test.

8.3.2 Viscous and thermal effects on shear band broadening

The previous section analyzed the localization process in a simple yet essential test, using
a rate-independent elasto-plastic material model. The objective of this section is to push
further the localization test with the final goal of approaching, step-by-step, the condi-
tions which characterize the machining process. The first element which must be added
is the viscous component of the material model. It is fundamental to understand what
are the consequences of adopting a viscous material model for the thickness of the shear
band. Subsequently, the thermal contribution is introduced in the analysis, following the
theory presented in Section 6.7, and then the effect of the thermal softening, on top of
the viscous one, is investigated by looking at the thickness of the shear band.
As a first step, the elasto-visco-plastic model is used while fetching the behavior with vis-
cous parameter that allow to retrieve rate-independent elasto-plasticity, that are K = 3
MPa and n = 18 (these parameters are used to define the plastic multiplier in Equa-
tion (6.102)). The reason to do so is to make sure that visco-plasticity can be reduced to
rate-independent plasticity in case the proper material parameters are chosen regardless
of the chosen strain-rate. The exponential plastic law is used in this test, such that lo-
calization occurs but then the shear band thickness should be prone to thickening. The
mechanical properties used to run the thermal-elasto-plastic simulations are summarized
in Table 8.6. In Figure 8.12a the plastic strain distribution is depicted for different ap-
plied strain-rates, and, as it can be appreciated, the viscous effect is removed thanks to
the choice of the K and n parameters. The thermal contribution of the theory was tested
for this special choice of viscous parameters. With the given viscous material properties
there exists no viscous stress, however, the thermal contribution is time-dependent, due
to the adiabatic assumption made during the development of the theory. The same test
was performed maintaining the viscous parameters K = 3 MPa and n = 18, an initial
temperature of 25◦ C was assigned to the specimen, and the other material properties
used to evaluate the increment of temperature can be found in Table 8.6. In Figure 8.12b
the distribution of the plastic strain can be observed for different applied strain rates.
Although the meaning of such results is not physically reliable (because the adiabatic
assumption does not hold for long periods of time), these curves suggest an interesting

182



-1

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

ep
cu

m
[-

]

y coord [mm]

0.0004 s−1

0.004s−1

0.04 s−1

0.4 s−1

0.57 s−1

x10−2

(a)

2

0

2

4

6

8

10

12

ep
cu

m
[-

]

0.0004 s−1

0.004s−1

0.04 s−1

0.4 s−1

0.57 s−1

x10−2

0 2 4 6 8 10
y coord [mm]

(b)

Figure 8.12: Distribution of the plastic strain for different applied strain-rates. The choice
of the viscous parameters allows to retrieve rate-independent plastic behavior.

effect of the thermal contribution of the theory: by observing the variation of the plastic
strain distribution, in fact, it is possible to infer that including a thermal softening in the
theory allows to counterbalance the spreading of the shear band due to saturation of the
stress-strain curve. This result must be confirmed also while using more realistic values
for the viscous behavior, but it is here shown nonetheless that the thermal softening is a
fundamental ingredient for the simulation of high strain-rate plastically-driven processes.
As third step, the same localization tests were performed by fetching the material model
with more realistic viscosity parameters so as to investigate the effect of viscosity on the
localization phenomenon. The viscous material parameters used are K = 300 MPa and
n = 7, and no thermal effect at this stage. Once again the load was applied in different
time step in order to emphasize the viscous effect. In Figure 8.13a the cumulative plastic
strain fields are reported. As it can be observed there exist a strong viscous effect since
the average plastic strain outside the expected shear band is not negligible, so it can be
observed that the viscous effect limits localization, as expected. However, the thickness
of the shear band seems to be influenced by the viscous effect: the observable amplitudes
of the plastic strain distribution in fact decreases by applying the load in shorter interval
of time. Figure 8.13a shows the fields for an adjusted range of the y-axis, the localized
plastic strain in the middle of the specimen would otherwise be not noticeable if the y-axis
spanned from 0 to the maximum reached valued. This to say that, despite the tiny local-
ization in the middle, the viscous effect overcompensates the localization phenomenon.
Adding the thermal effect to the analysis does not noticeable improve the situation. In
fact, as it can be appreciated in Figure 8.13b, the localization process is boosted by the
introduction of thermal softening, but only in case of the highest applied strain-rate. The
curves with or without thermal effect are similar up to the case in which the load was
applied during 0.001 seconds. The fact that the thermal effect starts only with relatively
large values of strain rates is the expected behavior. The point at which the thermal
softening starts to play in favor of the localization can be adjusted by selecting a proper
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Figure 8.13: Distribution of the plastic strain for different applied strain-rates. The choice
of the viscous parameters allows to retrieve rate-independent plastic behavior.

value of the exponent m. The choice of m influences the dependence of the yield stress
on temperature, thus increasing or decreasing the softening effect.
Finally, these tests indicated that the viscous and thermal features of the Cosserat theory
play respectively against and in favor of the localization process. Therefore, during the
calibration phase of the viscous and thermo mechanical parameters, the trade-off between
these two phenomena must be pursued.

8.4 Hat-shaped specimen

The hat-shaped specimen has been used many times to test newly developed material
models because it is a relatively easy experiment to conduct [J. C. Li et al. 2010; Russo,
Forest, et al. 2020; Peirs, Verleysen, and Degrieck 2008; Peirs, Verleysen, Degrieck, and
Coghe 2010; El-Magd et al. 2006; Hor et al. 2013; Kuhn et al. 2000]. In the context
of this PhD thesis, such model has been used to attempt to simulate the localization
phenomenon (which is one of the main feature of this test) in a controlled manner, which
takes place under conditions which resemble the ones characterizing machining operations.
In Figure 8.14 the geometry and the boundary conditions of the test are reported, whereas
in Figure 8.15a it is possible to appreciate the distribution of the plastic strain and the
shear band formation. The field pictured in Figure 8.15a has been obtained by fetching
the material model with the properties listed in Table 8.7, that is, by characterizing the
material with a linear softening behavior. This test has also been conducted using an
exponential softening-plateauing yield stress function, in order to study the effect of the
saturation of the yield stress on the geometry induced localization. The properties used
for this material model can be found in Table 8.8. In Figure 8.15b the comparison in
terms of cumulative plastic strain is reported between the linear softening behavior and
the exponential softening-plateauing behavior. The plastic strain fields have been probed
along a central horizontal line at the center of the shear band. As it can be observed, the
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Figure 8.14: Meshed geometry and boundary conditions of the hat-shaped specimen test.

λ [MPa] µ µc [MPa] β [MPa·mm2] φ0 [MPa]

115348.0 76923.0 100000.0 0.77 250.0

H [MPa] Q1 [MPa] g1 [-] Q2 [MPa] g2 [-]

-1250.0 0.0 0.0 0.0 0.

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-]

1.0 0.0 0.0 0.0 0.0

Table 8.7: Elasto-plastic material properties used for the hat-shaped specimen test using
linear softening behavior.
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λ [MPa] µ µc [MPa] β [MPa·mm2]

115348.0 76923.0 100000.0 0.77

φ0[Mpa] φ∞[Mpa] b[-] a1 [-]

250.0 200.0 40.0 1.0

a2 [-] b1 [-] b2 [-] b3 [-]

0.0 0.0 0.0 0.0

Table 8.8: Elasto-plastic material properties used for the hat-shaped specimen test using
exponential softening behavior.

saturation of the yield stress still induces a broadening of the shear band, even in case the
localization was enforced also by geometry. As previously established in [Russo, Forest,
et al. 2020], the only characteristic length that plays a major role in the localization
phenomenon is the one that compares shear stress and couple stress moduli:

lech =

√
µ

β
. (8.10)

Assuming to fetch the material model with properties that belong to a specific known
metal, the only additional material parameter which requires further calibration is the
couple stress modulus β.
If the shear band thickness was

8.5 Manufacturing simulations

The final test of the developed theory would be to simulate machining operations by
using a thermodynamically-compatible elasto-visco-plastic Cosserat theory under a large
deformation assumption. The objective would be to calibrate the higher order modulus
against experimental data, which could be, for example, displacement or strain fields.
Ideally, since the thermal part of the theory should also be properly calibrated, it would
be ideal to compare the numerically-predicted thermal fields against the ones experimen-
tally produce. The thermal fields, however, are not as easily obtainable as the strain
fields, due to the technical requirements of the cameras which must be used to capture
the process. It was possible, within the ENABLE project, to capture the displacement
distribution for a specific orthogonal cutting process performed at the University of Bor-
deaux, and it was also possible to post-process the data through digital image correlation
to obtain the strain fields. All the details of the experimental set-up and of the field
measurements can be found in Zouabi et al. [Zouabi et al. 2021]. This last part of the
present PhD thesis, in fact, focuses on using the strain fields measured during the orthog-
onal cutting process as input for at least an estimation of the higher order modulus to be
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Figure 8.15: Distribution of plastic strain in the hat-shaped specimen during shear band
formation (a) and comparison between the cumulative plastic strain fields in case of linear
softening behavior and exponential softening-plateauing behavior (b).
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Figure 8.16: Displacement fields obtained during orthogonal cutting by mean of digital
image correlation. Every raw indicates a different time at which the image was taken and
processed [Zouabi et al. 2021].

used. A proper calibration of the modulus would require a more extensive experimental
and numerical investigation, but it is here shown that at least such procedure is a viable
option for enhancing the models used for complex machining simulations. Figure 8.16
shows, in a progressive series of frames, the development of the measured fields during
the machining operations. The last column contains the Euler-Almansi estimated strain
measure. In order to avoid the complexity deriving from the adoption of a remeshing
algorithm for the Cosserat LD model, the morphology of the metal as depicted in the
first frame of Figure 8.16 has been chosen as initial geometry for the numerical model,
and the meshed part can be observed in Figure 8.17. The simulation of the machining
process was also performed by using an initial simple rectangular metal initial geometry,
in which the tool was cutting the chip from the metal to create the typical geometries
produced in machining simulations [Calamaz et al. 2008]. However, whereas the small
deformation framework does not include any check on the Jacobian of the deformation
(which is used as indicator for excessive distortion of the media and subsequent stop
of the simulation), the large deformation implementation uses this value to perform the
numerical integration in the deformed element, therefore excessively distorted elements
cannot be processed by the numerical routine. Because of this reason, the simulations us-
ing a rectangular initial geometry led to numerical error when elements reached excessive
distortion. In order to avoid such problem, investigations on a remeshing algorithm in the
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Figure 8.17: Meshed geometry used for the orthogonal cutting test.

Z-Set code were pursued, but due to lack of time and due to the complexity of the subject,
no good results were achieved in this regard. This is the reason why it was chosen to use
the geometry depicted in Figure 8.17 as the initial one. In terms of boundary conditions,
displacements and micro-rotations were fixed at the bottom edge of the machined part,
whereas a constant horizontal displacement was applied to the advancing tool, and its
vertical movement was constrained. The advancing velocity (also known as feed rate in
machining community) was 1 mm/s. The entire tool was modeled as a rigid body. The
original test was performed on the Ti-6Al-4V titanium alloy, so the mechanical properties
belonging to this specific metal were implemented in the numerical model. The mechan-
ical properties to simulate the elasto-plastic behavior were taken by the investigation
carried out by Babu for his PhD at the University of Lulea [Babu 2018] (also obtainable
through the journal papers [Babu and Lindgren 2013; Babu, Lundbäck, et al. 2019]); the
viscous properties of the Ti-6Al-4V were estimated from the investigations of de Sotto et
al [de Sotto et al. 2020]; finally, the required thermal properties of the Ti-6Al-4V were
already known [ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys
and Special-Purpose Materials. 1990]. All the thermo-mechanical properties are listed
in Table 8.9, and they must be considered to be valid at the initial temperature of 25 ◦

C. Besides the explicit dependence of the yield stress on temperature, also the Young’s
modulus, the Poisson ratio and the specific heat coefficient are temperature-dependent;
the reader is referred to the work of Babu to know more about the exact values of these
coefficients as the temperature varies [Babu 2018]. The contact between the tool (on
the most right in Figure 8.17) and the machined part has been modeled through a sim-
ple Coulomb law, in which no special treatment was given to the additional degrees of
freedom. A friction coefficient of 0.1 was assigned to the contact. The entire part was
assumed to have an initial temperature of 25◦ Celsius. In Figure 8.18 the distributions
of cumulative plastic strain and temperature are reported for different stages of the sim-
ulation. As it can be seen from Figure 8.18, the temperature in the shear band rapidly
reaches the melting value, therefore lowering down the yield stress to 0 in the localization
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Figure 8.18: Cumulative plastic strain (on the left) and temperature fields (on the right)
simulated during the orthogonal cutting simulation. The fields have been captured at
three different time step.
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λ [MPa] µ µc [MPa] β [MPa·mm2] ρ [kg/mm3] m[-]

86291.0 39865.0 100000.0 1.0e−4 4.5 e−6 1.0

φ0[Mpa] φ∞[Mpa] b[-] Cε [J/Kg/◦C] Tm [◦C] K [MPa]

970.0 1400.0 200.0 5.25e5 1100 155.0

a1 [-] a2 [-] b1 [-] b2 [-] b3 [-] n [-]

1.0 1.0 0.0 0.0 0.0 7.0

Table 8.9: Thermo-elasto-visco-plastic material properties used for the orthogonal cutting
simulation.

zone. Once the temperature reaches its maximum value, the Lamé parameters (Young’s
modulus and Poisson ratio) vanish, meaning that the the deformations in the shear band
become stress-free. Contrary to what was observed in the previous Section (8.13), the
viscous-thermal properties used in this test induce the softening to overcompensate the
viscous effect, and for this reason the temperature in the shear band rapidly rise up to
the melting point. This suggests that the material model should be properly adjusted
such as to find a more suitable trade-off between the thermal and viscous effects.
In order to capture the size effect (strain gradient effect) during cutting simulations, dif-
ferent values of characteristic length were used, and the results are reported in Figure 8.19.
The mechanical properties still are the ones reported in Table 8.9, but different values of
the couple stress modulus were used. From the plastic fields distributions depicted in the
Figure it is possible to conclude that the strain gradient effect was properly simulated
numerically. Once again, the actual value of the higher order modulus must be adequately
calibrated by comparing the thickness of the simulated shear band with the one exper-
imentally measured. In Figure 8.19 the cumulative plastic strain fields are reported for
different higher order moduli, at the smaller one reported is equal to 10−3 MPa·mm2.
Simulations have been run for smaller values of β, but no difference was noticed, and it is
here recalled that for smaller values of β a smaller characteristic length is used, meaning
that, ultimately, the classical continuum mechanics is retrieved. This suggests that, for
the specific case here simulated, the strain-rate hardening (viscous part of the process) is
overcompensating the thermal softening even in the classical continuum mechanics case.
The thickness of the adiabatic shear band predicted by the Cosserat theory can only be
increased (with respect to the classical mechanics result) by using larger values of the
higher order modulus, but it cannot reduce it further.
The shear band thickness evaluated in Equation (8.7) was derived under specific condi-

tions, and a negative hardening module was the main one. For this reason it would be
difficult to relate the conditions in the cutting test with the ones used in the simple glide
test. However, it is still possible to evaluate the thickness of the shear band produced in
the experiments and to compare it to the one numerically predicted. From the analysis
of the equivalent strain in Figure 8.16, it is possible to estimate the thickness of the shear
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(a) β = 10−3MPa·mm2 (b) β = 10−1MPa·mm2

(c) β = 100MPa·mm2

(d) β = 101MPa·mm2

epcum [-]
0.0 0.17 0.33 0.5 0.67 0.83 1.0

Figure 8.19: Shear band thickness prediction while using different values of the couple
stress modulus β.
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band to be 0.032 mm. The numerical simulation of the same process using an higher
order modulus of 10−3MPa·mm2 (and lower) induces the formation of a shear band of
0.043mm. Despite the fact that the experimental and numerical thickness values are close,
this result does not indicate that a numerical twin of the experimental test was created,
but rather this only suggests that it is possible to use the thermodynamically-compatible
Cosserat model to simulate machining processes. There is still room for improvements,
which will be discussed in the next Chapter.
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Chapter 9

Conclusion and future
developments

This PhD thesis investigated over the application of the Cosserat media as a substitute
to the strain gradient theory to capture size effects and gradient effects during simula-
tions of thermomechanical processes. The features required to simulate these processes
have been defined in Chapter 1, and the concept of generalized continuum mechanics was
introduces. The context of the present PhD thesis is also given, identifying it as part of a
bigger project called ENABLE. A deeper analysis of the topics of generalized continuum
mechanics is proposed in Chapter 2, in which a broad literature review on these theo-
ries and on their application to manufacturing simulations is presented. Every theory
is individually addressed in terms of additional elements that are used to enhance the
classical continuum mechanics. One of the many frameworks presented in this Chapter
is further analyzed in the next Chapter, that is Chapter 3. The scalar micromorphic
plastic strain gradient theory is in fact not only dissected, but also implemented in the
software PamCrash in collaboration with researchers from within the ESI company and
ESR 4 Vikram Phalke. The team of 4 collaborated in exploiting a thermal-micromorphic
analogy to easily implement the numerical framework in the software and in simulating
size-effects and mesh-independence with the scalar micromorphic framework. The collab-
oration led to a recently published journal paper. The present PhD manuscript continued
with investigating the extents of the additional features brought by the Cosserat the-
ory in terms of size-effects, mesh independence and characteristic lengths. In Chapter 4
a general thermodynamically-consistent Cosserat theory under small deformations was
provided, and applications of a specific model (TANH [Calamaz et al. 2008]) were pre-
sented in case of a localization problems induced by the geometry of the specimen. The
hat-shaped specimen was used to investigate the effect of the elastic and plastic char-
acteristic lengths on the shear band formed in the specimen, and the main conclusion
of the Chapter was that the elastic characteristic length was enough to regularize the
shear band. Chapter 5 is used to present many analytical solutions to problems that are
extremely relevant to the localization that occurs during machining operations. The ana-
lytical solutions were derived under the assumption of small deformations in the Cosserat
media. The profiles of the cumulative plastic strain during localization tests were the
main outcome of this Chapter, because, besides proving the analytical solution of the
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thickness of the shear band, they will be used to verify the numerical implementation of
the Cosserat theory under large deformations. The thermodynamically-compatible elasto-
visco-plastic Cosserat theory under large deformation in presented in Chapter 6, and its
numerical implementation in the software Z-SET is provided in Chapter 7, alongside the
discretization process of the weak form of the equilibrium equations. The handling of the
rotations requires proper care because of their strong nonlinear nature, so its parameter-
ization, parameters-treatment and parameters updating is explicitly addressed. Finally,
the Chapter 8 includes the validation tests of the implemented theory on a single element
and on more complex tests, such as the localization one whose analytical solution was
derived in Chapter 5. The last part of the last Chapter focuses on predicting the correct
thickness of the shear band in an orthogonal cutting test. The experimental test was con-
ducted in the University of Bordeaux [Zouabi et al. 2021], and the aim was to calibrate
the additional material parameter based on the comparison of the thickness of the shear
band between numerical and experimental solution.
Overall this PhD thesis highlighted the necessity of the adoption of a theory that incor-
porates the following aspects for manufacturing operation simulations:

� gradient-based additional deformation measure to capture size effects;

� strong thermodynamic description to cope with the extreme temperatures that rise
during machining;

� information from the micro-structure to create a mechanism-based material behav-
ior,

and the answer to these requirements was found in the thermodynamically-compatible
elasto-visco-plastic Cosserat theory under large deformations. It was proved that this
framework can capture size effect, and that it can regularize localization occurring in ma-
chining. Finally, it was demonstrated that this theory can be used to simulate adiabatic
shear band formation in machining.
However, the present investigation cannot be considered as complete. In fact, the adop-
tion of remeshing algorithm is not only strongly advised, but it is required to complete the
simulations up to the point in which it is possible to observe the chip formation. This is
definitely the next step of investigation, and it is also the direction in which there is more
room for improvement. As mentioned earlier, the amount of time and effort required to
carry on the investigations aiming at achieving a working remeshing algorithm was not
compatible with the remaining time left for this PhD and the objective became to work
further on the complex handling on the nonlinearities of the rotations. Still the remeshing
algorithm is a fundamental feature for simulating machining and it must be included in
the future. A large deformation framework is necessary but it does not solve the problem.
Another major point for the completeness of the theory would be the flawless implementa-
tion of the three-dimensional framework, which has not been completed because the focus
was the bi-dimensional one. The complete framework was presented already in Chapter 6,
its numerical implementation was discussed in Chapter 7, but the actual numerical im-
plementation requires refinement, especially the routines performing the updates of the
rotation/wryness and the ones evaluating the tangent plane in the parametric space of
the same quantities.
Another point which can be further improved is the material behavior in the plastic
regime. The present model makes use of the cumulative plastic strain as internal state
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variable to track the inelastic state of the continuum. However, a more appropriate choice
of state variable would be the dislocation density. This quantity expresses a scalar equiv-
alent value of the tensorial measures of the distortion of the metal lattice through evalua-
tion of the geometrically necessary dislocations. The application of a similar model in the
Cosserat media was proposed by B̂ırsan and Neff et al. [B̂ırsan et al. 2016]. Furthermore,
the plastic model behavior can also be improved by attempting the implementation of a
mechanism-based framework in the Cosserat media [Babu and Lindgren 2013]. Lastly,
also the contact algorithm can be further improved. Right now a simple Coulomb friction
law is considered, in which only the displacement degrees of freedom play a role. How-
ever, more complex contact models can be considered, in which also the grain rotation
is involved[Lewandowski-Szewczyk et al. 2020; H. W. Zhang et al. 2005; S. Zhang et al.
2013]. For instance, it is possible to enforce a contact boundary condition at the contact
surface such that micro-rotations are allowed or not to be modified, similarly to what is
done using a Coulomb model.
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González, D. et al. (2014). “Numerical analysis of the indentation size effect using a strain
gradient crystal plasticity model”. In: Computational Materials Science 82, pp. 314–
319.

Grammenoudis, P. and C. Tsakmakis (2001). “Hardening rules for finite deformation mi-
cropolar plasticity: Restrictions imposed by the second law of thermodynamics and the
postulate of Il’iushin”. In: Continuum Mechanics and Thermodynamics 13.5, pp. 325–
363.

Grammenoudis, P. and C. Tsakmakis (2005). “Finite element implementation of large de-
formation micropolar plasticity exhibiting isotropic and kinematic hardening effects”.
In: International Journal for Numerical Methods in Engineering 62.12, pp. 1691–1720.

Gudmundson, P. (2004). “A unified treatment of strain gradient plasticity”. In: Journal
of the Mechanics and Physics of Solids 52.6, pp. 1379–1406.

Guha, S., S. Sangal, and S. Basu (2014). “Numerical investigations of flat punch molding
using a higher order strain gradient plasticity theory”. In: International Journal of
Material Forming 7.4, pp. 459–467.

202



Guo, Y. B., Q. Wen, and K. A. Woodbury (2006). “Dynamic material behavior modeling
using internal state variable plasticity and its application in hard machining simula-
tions”. In: Journal of Manufacturing Science and Engineering 128.3, pp. 749–759.

Gurtin, M. E. (1982). An Introduction to Continuum Mechanics. Ed. by Richard Bellman.
Academic Press.

Gurtin, M. E. (1996). “Generalized Ginzburg-Landau and Cahn-Hilliard equations based
on a microforce balance”. In: Physica D: Nonlinear Phenomena 92.3-4, pp. 178–192.

Gurtin, M. E. (2002). “A gradient theory of single-crystal viscoplasticity that accounts
for geometrically necessary dislocations”. In: Journal of the Mechanics and Physics of
Solids 50.1, pp. 5–32.

Gurtin, M. E. and L. Anand (2005a). “A theory of strain-gradient plasticity for isotropic,
plastically irrotational materials. Part I: Small deformations”. In: Journal of the Me-
chanics and Physics of Solids 53.7, pp. 1624–1649.

Gurtin, M. E. and L. Anand (2005b). “A theory of strain-gradient plasticity for isotropic,
plastically irrotational materials. Part II: Finite deformations”. In: International Jour-
nal of Plasticity 21.12, pp. 2297–2318.

Gurtin, M. E. and L. Anand (2009). “Thermodynamics applied to gradient theories involv-
ing the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson
and their generalization”. In: Journal of the Mechanics and Physics of Solids 57.3,
pp. 405–421.

Han, C. S. et al. (2007). “A Finite Element approach with patch projection for strain
gradient plasticity formulations”. In: International Journal of Plasticity 23.4, pp. 690–
710.

He, L. et al. (2018). “Simulation analysis of the influence of dynamic flow stress behavior
on chip formation”. In: International Journal of Advanced Manufacturing Technology
95.5-8, pp. 2301–2313.

Hor, A. et al. (2013). “Modelling, identification and application of phenomenological con-
stitutive laws over a large strain rate and temperature range”. In: Mechanics of Ma-
terials 64, pp. 91–110.

Huang, J et al. (2001). “Gradient Plasticity : Implications to Chip Formation in Ma-
chining”. In: 4th International ESAFORM Conference on Material Forming, pp. 527–
530.

Huang, Y. et al. (2000). “Mechanism-based strain gradient plasticity - II. Analysis”. In:
Journal of the Mechanics and Physics of Solids 48.1, pp. 99–128.

Hutchinson, J. W. (2012). “Generalizing J2 flow theory: Fundamental issues in strain
gradient plasticity”. In: Acta Mechanica Sinica 28.4, pp. 1078–1086.

Jebahi, M., L. Cai, and F. Abed-Meraim (2020). “Strain gradient crystal plasticity model
based on generalized non-quadratic defect energy and uncoupled dissipation”. In: In-
ternational Journal of Plasticity 126, p. 102617.

203



Jing, X. B., B. Lin, and D. W. Zhang (2013). “Modeling and analysis of factors of size effect
in micro-cutting: The tool geometry and the depth of cutting”. In: 2013 International
Conference on Manipulation, Manufacturing and Measurement on the Nanoscale. Au-
gust, pp. 314–318.
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