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Abstract

Synthetic and recorded speech form a great part of our everyday listening experience, and much

of our exposure to these forms of speech occurs in potentially noisy settings such as on public

transport, in the classroom or workplace, while driving, and in our homes. Optimising speech

output to ensure that salient information is both correctly and effortlessly received is a main

concern for the designers of applications that make use of the speech modality. Most of the

focus in adapting speech output to challenging listening conditions has been on intelligibility,

and specifically on enhancing intelligibility by modifying speech prior to presentation. However,

the quality of the generated speech is not always satisfying for the recipient, which might lead

to fatigue, or reluctance in using this communication modality. Consequently, a sole focus

on intelligibility enhancement provides an incomplete picture of a listener’s experience since

the effect of modified or synthetic speech on other characteristics risks being ignored. These

concerns motivate the study of ‘supra-intelligibility’ factors such as the additional cognitive

demand that modified speech may well impose upon listeners, as well as quality, naturalness,

distortion and pleasantness.

This thesis reports on an investigation into two supra-intelligibility factors: listening effort

and listener preferences. Differences in listening effort across four speech types (plain natural,

Lombard, algorithmically-enhanced, and synthetic speech) were measured using existing meth-

ods, including pupillometry, subjective judgements, and intelligibility scores. To explore the

effects of speech features on listener preferences, a new tool, SpeechAdjuster, was developed.

SpeechAdjuster allows the manipulation of virtually any aspect of speech and supports the

joint elicitation of listener preferences and intelligibility measures. The tool reverses the roles

of listener and experimenter by allowing listeners direct control of speech characteristics in

real-time. Several experiments to explore the effects of speech properties on listening prefer-

ences and intelligibility using SpeechAdjuster were conducted. Participants were permitted

to change a speech feature during an open-ended adjustment phase, followed by a test phase

in which they identified speech presented with the feature value selected at the end of the ad-

justment phase. Experiments with native normal-hearing listeners measured the consequences

of allowing listeners to change speech rate, fundamental frequency, and other features which

led to spectral energy redistribution. Speech stimuli were presented in both quiet and masked

conditions.

Results revealed that listeners prefer feature modifications similar to those observed in

naturally modified speech in noise (Lombard speech). Further, Lombard speech required the

least listening effort compared to either plain natural, algorithmically-enhanced, or synthetic

speech. For stationary noise, as noise level increased listeners chose slower speech rates and

flatter tilts compared to the original speech. Only the choice of fundamental frequency was

not consistent with that observed in Lombard speech. It is possible that features such as
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fundamental frequency that talkers naturally modify are by-products of the speech type (e.g.

hyperarticulated speech) and might not be advantageous for the listener.

Findings suggest that listener preferences provide information about the processing of speech

over and above that measured by intelligibility. One of the listeners’ concerns was to maximise

intelligibility. In noise, listeners preferred the feature values for which more information survived

masking, choosing speech rates that led to a contrast with the modulation rate of the masker, or

modifications that led to a shift of spectral energy concentration to higher frequencies compared

to those of the masker. For all features being modified by listeners, preferences were evident

even when intelligibility was at or close to ceiling levels. Such preferences might result from a

desire to reduce the cognitive effort of understanding speech, or from a desire to reproduce the

sound of typical speech features experienced in real-world noisy conditions, or to optimise the

quality of the modified signal.

Investigation of supra-intelligibility aspects of speech promises to improve the quality of

speech enhancement algorithms, bringing with it the potential of reducing the effort of under-

standing artificially-modified or generated forms of speech.
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Extracto

El habla sintética y el habla grabada forman gran parte de nuestra experiencia auditiva diaria,

y la mayoŕıa de nuestra exposición a estas formas de habla ocurre en entornos potencialmente

ruidosos, como el transporte público, las aulas o el lugar de trabajo, mientras conducimos y en

nuestros hogares. Optimizar la salida del habla para garantizar que la información destacada

se reciba correctamente y sin esfuerzo es una preocupación principal para los diseñadores de

aplicaciones que hacen uso de la voz. La mayoŕıa de los trabajos destinados a adaptar el habla

a condiciones auditivas desafiantes se han centrado en la inteligibilidad, y espećıficamente en

mejorar la inteligibilidad mediante la modificación del habla antes de su presentación. Sin em-

bargo, la calidad del discurso generado no siempre es satisfactoria para el receptor, lo que puede

llevar a la fatiga o reticencia en el uso de esta modalidad de comunicación. En consecuencia,

un enfoque exclusivo en la mejora de la inteligibilidad proporciona una imagen incompleta de

la experiencia de un oyente, ya que el efecto del habla modificada o sintética en otros aspectos

corre el riesgo de ser ignorado. Estas consideraciones motivan el estudio de factores de ‘suprain-

teligibilidad’, como la demanda cognitiva adicional que el habla modificada puede suponer para

los oyentes, aśı como su calidad, naturalidad, distorsión y lo agradable que pueda resultar dicha

habla.

Esta tesis se centra en la investigación de dos factores de supra-inteligibilidad: el esfuerzo

de escucha y las preferencias del oyente. Se midieron las diferencias en el esfuerzo de escucha

ante cuatro tipos de habla (natural simple, habla Lombard, habla mejorada algoŕıtmicamente

y habla sintética) utilizando los métodos existentes, incluida la pupilometŕıa, juicios subje-

tivos y puntuaciones de inteligibilidad. Para explorar los efectos de las funciones de voz en las

preferencias del oyente, se desarrolló una nueva herramienta, SpeechAdjuster. SpeechAd-

juster permite la manipulación de prácticamente cualquier aspecto del habla aśı como la elic-

itación conjunta de las preferencias del oyente y las medidas de inteligibilidad. La herramienta

invierte los roles de oyente y experimentador al facilitar a los oyentes el control directo de las

caracteŕısticas del habla en tiempo real. Se realizaron varios experimentos para explorar los

efectos de las propiedades del habla en las preferencias de escucha y la inteligibilidad utilizando

SpeechAdjuster. A los participantes se les permitió cambiar una función de voz durante

una fase de ajuste abierta, seguida de una fase de prueba en la que identificaron el discurso

presentado con el valor de la función seleccionado al final de la fase de ajuste. Los experimentos

con oyentes nativos con capacidad auditiva normal midieron las consecuencias de permitir que

los oyentes cambien la velocidad del habla, la frecuencia fundamental y otras caracteŕısticas

destinadas a la redistribución de la enerǵıa espectral. Los est́ımulos de habla se presentaron

tanto sin ruido como con ruido de fondo (enmascaramiento).

Los resultados revelaron que los oyentes prefieren modificaciones de caracteŕısticas similares

a las observadas en el habla modificada naturalmente en presencia de ruido (habla Lombard).
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Además, el habla Lombard requirió el menor esfuerzo de escucha en comparación con el habla

natural simple, el habla mejorada algoŕıtmicamente o el habla sintética. En condiciones de

ruido estacionario, a medida que aumentaba el nivel de ruido, los oyentes eligieron velocidades

de habla más lentas e inclinaciones espectrales más planas en comparación con el discurso

original. Sólo la elección de la frecuencia fundamental no fue consistente con la observada

en el habla Lombard. Es posible que caracteŕısticas como la frecuencia fundamental que los

hablantes modifican naturalmente sean subproductos del tipo de habla (por ejemplo, habla

hiperarticulada) y no sean ventajosas para el oyente.

Los resultados también sugieren que las preferencias de los oyentes proporcionan infor-

mación sobre el procesamiento del habla más allá de lo que la inteligibilidad indica. Una de

las preocupaciones de los oyentes fue maximizar la inteligibilidad. En condiciones de ruido,

los oyentes prefeŕıan los valores de caracteŕısticas en los que más información sobreviv́ıa al

enmascaramiento, eligiendo velocidades de habla que condujeran a un contraste con la tasa de

modulación del enmascarador, o modificaciones que condujeran a un cambio de concentración de

enerǵıa espectral a frecuencias más altas en comparación con las del enmascarador. Para todas

las caracteŕısticas modificadas por los oyentes, las preferencias eran evidentes incluso cuando la

inteligibilidad estaba en o cerca de niveles máximos. Tales preferencias pueden obedecer a un

deseo de reducir el esfuerzo cognitivo para comprender el habla, o a un deseo de reproducir el

sonido t́ıpico de las caracteŕısticas del habla experimentadas en condiciones ruidosas del mundo

real, o de mejorar la calidad de la señal modificada.

La investigación de los aspectos suprainteligibles del habla promete optimizar la calidad de

los algoritmos de mejora del habla, y por consiguiente, el potencial de reducir el esfuerzo de

comprensión de formas de habla modificadas o generadas artificialmente.
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Chapter 1

Introduction

1.1 Motivation

In our everyday life we are exposed to a variety of speech types, both naturally and artificially

produced. Both speakers and speech enhancement developers attempt to help the listener

by modifying the speech characteristics. Talkers modify their speech when exposed to noise,

producing Lombard speech. Live and recorded public address announcements may involve mod-

ifications designed to enhance intelligibility. Synthetically-generated speech is commonplace in

mobile devices, voice assistants and telephone enquiry systems. Speech understanding in ideal

conditions is automatic and effortless. However, several factors, such as ambient noise and the

listener’s limitations, may have a negative effect on the perception of speech.

Correct message reception is critical in many situations. Consequently, a great deal of effort

has been devoted to evaluating the effect on intelligibility of different speech styles [Cooke et al.,

2013a] and changes in distinct speech properties [Nejime and Moore, 1998; Adams and Moore,

2009; Lu and Cooke, 2009a]. Near-end listening enhancement algorithms can achieve significant

improvements in speech understanding compared to unprocessed speech under adverse condi-

tions [Taal and Jensen, 2013; Schepker et al., 2015]. However, the perceived speech after the

near-end listening enhancement might not be completely satisfying for the listener, since com-

monly used speech enhancement algorithms mainly focus on intelligibility improvements. Other

subjective aspects of perceived speech, such as listening effort, quality, naturalness, pleasant-

ness and overall listener preferences, also need to be considered. To refer to speech attributes

above and beyond word recognition, the term ‘supra-intelligibility’ is used. The objective of this

thesis is twofold: to study supra-intelligibility aspects of speech in terms of both listening effort

and listener preferences, and to develop a tool for investigating supra-intelligibility aspects of

speech.

Complementary to the speech clarity dimension is the overall listener’s experience, which

has been far less investigated. Listening can become hard, even when intelligibility is at ceiling.

Listening effort reflects the cognitive resources necessary for speech understanding. A great

exertion of effort is sometimes necessary in situations with background noise, low speech inten-

sity, poor mobile connection, accented speech, or listener’s high motivation (e.g. larger peak

pupil dilation for higher rewards; for a recent review see Carolan et al. [2022]). Variations in

listening effort can also be found among different populations. For instance, non-native listeners

exert greater effort compared to native listeners, even when performing a task to the same level
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[Borghini and Hazan, 2018].

A high allocation of cognitive resources imposes a great handicap on the listener, leading

to reduced performance in multi-tasks [Sarampalis et al., 2009], a stronger feeling of listen-

ing and/or mental fatigue, or rejection of social life. In a more extreme case [World Health

Organization. Regional Office for Europe., 2011], working in an unpleasant environment with

frequent and loud announcements may lead to ill health. Listening effort has been estimated

using subjective measures such as questionnaires, behavioural metrics (e.g. response time), and

physiological measures such as pupillometry (e.g. see review by McGarrigle et al. [2014]).

Listening effort can be considered as one of the several individual aspects of listener pref-

erences. Listener preferences arise from the generalised judgement of speech perception that

includes factors such as intelligibility, naturalness and pleasantness. Listener preferences can

be collected by allowing listeners to modify speech properties using adjustment tools. Listen-

ers are familiar with the concept of smooth audio modifications, such as that used for volume

adjustment on television and radio. Listeners’ responses derived from speech-adjustment tools

can be precise, since the speech can be fine-tuned, in contrast to traditional tests in which the

listener is provided only with few options. Previous studies have suggested different real-time

audio feature modifications [Assmann and Nearey, 2007; Kean et al., 2015; Zhang and Shen,

2019; Novak III and Kenyon, 2018]. Such preferences can be expected to vary according to

the listening environment [Kean et al., 2015; Walton et al., 2016], and any hearing impairment

[Buyens et al., 2014; Shirley et al., 2017], as well as having an individual component [Walton

et al., 2016]. A better understanding of the basis for listener preferences promises to inform the

design of speech modification algorithms that are capable of both increasing intelligibility and

reducing listening effort, providing a better overall listening experience.

The motivation for this thesis is to elucidate the ‘hard to listen’ effect (i.e. the condition in

which speech requires more effort from the listener) by evaluating the contribution of distinct

speech factors to this effect for different listening conditions. The overarching objective of

this thesis is to determine whether listeners exhibit supra-intelligibility preferences when they

are given the power to manipulate distinct speech properties that speakers naturally modify to

produce Lombard speech. The main hypothesis is when intelligibility is at ceiling levels, listeners

will attempt to reduce listening effort and maintain speech quality. It is assumed that, for the

conditions where intelligibility is maximised, the relationship between listener preferences and

a wide range of speech feature values (e.g. spectral slope) will be a bell-shaped distribution, as

shown in Fig. 1.1. Besides the user-centric aspect of listener preferences, when listeners of the

same group (e.g. younger vs older adults, normal-hearing vs hearing impaired, native vs non-

native) are listening under the same conditions (e.g. stationary noise, competing speech), it is

expected that similar speech feature values will excite similar cognitive or hearing patterns (e.g.

frequencies to which the listener is particularly sensitive, speech intensity, prosodic features of

a language that are familiar to the listener).

1.2 Outline

Chapter 2 surveys previous work on speech perception in terms of intelligibility and supra-

intelligibility aspects of speech. Studies of speech quality, listening effort and listener preferences

are included, and different ways to measure supra-intelligibility aspects that have previously

been used are described. Figure 1.2 illustrates the main focus of each of chapters 3 to 7.
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Figure 1.1: The plot illustrates how the listener preferences (left axis) are expected to vary when
intelligibility (right axis) is at ceiling as a function of a speech feature (x-axis).

In chapter 3, the impact of different speech types and of nativeness on listening effort were

studied. Three measures of listening effort were investigated: (i) an objective measure of intelli-

gibility, (ii) a physiological measure of listening effort (pupil size), and (iii) listeners’ subjective

judgements. The examined speech types were plain (natural) speech, speech produced in noise

(Lombard speech), speech enhanced to promote intelligibility, and synthetic speech.

Chapter 4 describes SpeechAdjuster, an open source tool that reverses the roles of lis-

tener and experimenter by allowing listeners direct control of speech characteristics in real-time.

This change of paradigm enables listeners’ preferences to be measured directly, without recourse

to rating scales. Incorporation of a test phase in which the preferences are frozen also enables

intelligibility to be estimated within the same trial. Offline computation and smooth online

interpolation within the tool permit measurement of the impact of changes in practically any

target speech feature (e.g. fundamental frequency or spectral slope) or background character-

istic (e.g. noise spectrum), regardless of complexity.

Ch.	4	

SPEECHADJUSTER	

Ch.	3	

pupillometry	 Ch.	5	

�speech	rate	

Ch.	6	

�fundamental	
	frequency	

Ch.	7	

�spectral	energy	
reallocation	

Ch.	3	
	plain	natural,	Lombard,	
algorithmically	enhanced,	

and	synthetic	
speech	

Figure 1.2: An overview of the different studies conducted in this thesis. The ellipses with the
thick black lines correspond to the methods used for investigating the supra-intelligibility aspects
of speech and the attached nodes show the speech types or the distinct features that were studied.

Several experiments were conducted using SpeechAdjuster to explore the effects on lis-

tening preferences and intelligibility of speech properties that are typically modified in naturally
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enhanced speech (chapters 5-7). In chapter 5, the relationship between speech rate and masker

properties was investigated. Listeners adjusted speech rate while listening to word sequences

in quiet, in stationary noise at different noise levels, and in modulated noise for 5 envelope-

modulation rates. After selecting a preferred rate, participants went on to identify words pre-

sented at that rate. Preferences regarding the fundamental frequency for speech presented in

energetic and in competing speech maskers were tested in chapter 6, while in chapter 7, spectral

properties (spectral tilt, spectral band energy modifications, frequency filter characteristics) of

speech presented under conditions of energetic masking were investigated.

This thesis studies the effects of speech features other than signal intensity on listener pref-

erences. Throughout, stimuli are normalised to have the same RMS energy before and after

modification. This approach is common, for example, in evaluating the performance of speech

enhancement algorithms [Cooke et al., 2013a; Rennies et al., 2020], and leads to a focus on

speech modifications that benefit listeners independent from the simple expedient of increasing

audibility by raising signal level. One consequence of normalisation is that speech modifica-

tions always represent the joint outcome resulting from both the direct effect of the modified

parameter itself (e.g. flatter spectral tilt), and the effect on any change in local SNR across

time and frequency due to the subsequent normalisation (e.g. more energy in mid frequencies).

In order to assess changes in local SNR that result from speech parameter modification, chapter

6 introduces a new metric that measures the distribution of speech glimpses across frequency.

The pupillometry study was used as a reference study to understand the effort involved in

speaking styles that can be found in real-life conditions. Each of the tested speech types involves

changes of one or more of the features studied in chapters 5, 6 and 7. Thus, insights can be

derived as to whether the preferred values of the distinct speech features have contributed to

reducing the listening effort required.

Finally, chapter 8 describes the main findings, novel contributions and conclusions. Indirect

comparisons between listener preferences and listening effort are provided and future paths are

also discussed.

1.3 Research questions

In this thesis I have tried to answer the following research questions:

1. How is listening effort affected by the presence of noise?

2. What is the difference between naturally produced, artificially enhanced, and synthetically

produced speech in terms of cognitive processing load?

3. Do listener preferences change under challenging conditions?

4. Do listeners always choose a preference that maximises intelligibility?

5. What is the nature of preferences when intelligibility is constant?
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Chapter 2

Supra-intelligibility aspects of

speech

Intelligibility is the main factor that listeners take into account when judging speech quality.

When intelligibility is constant, other dimensions emerge, such as pleasantness, naturalness and

listening effort [Preminger and Tasell, 1995]. In noisy conditions, improving speech intelligibility

is more important for the listener, while for more favourable SNRs speech quality has an impact

[Tang et al., 2018]. Previous studies have shown that, for equivalent speech intelligibility, other

factors can increase the cognitive effort: e.g. when attending to plain rather than clear speech

[Borghini and Hazan, 2020], or to synthetic speech rather than natural [Pisoni et al., 1987].

While intelligibility has been widely used for evaluating speech, supra-intelligibility aspects (i.e.

speech aspects beyond intelligibility) have been far less investigated. Section 2.1 describes one

approach to the speech understanding mechanism and intelligibility. Section 2.2 presents the

methods traditionally used to evaluate supra-intelligibility. The remaining sections survey the

different subjective and objective measures for specifically evaluating speech quality (sec. 2.3),

listening effort (sec. 2.4), and listener preferences (sec. 2.5).

2.1 Speech understanding mechanism

Speech perception is a process involving three sequential steps; a speech sound is heard, inter-

preted, and understood [Moore et al., 2008]. Specifically, the auditory information is received;

subsequently it is transformed to a neural signal; and finally, the phonetic information is pro-

cessed. Speech processing is automatic and effortless when it happens under ideal conditions.

In quiet, the speech information in frequency and time is in excess of that required for perceiv-

ing speech accurately by normal-hearing listeners [Moore, 2008]. In noise, however, the speech

perception task becomes more difficult and additional work is required from the automatic

processes. One hypothesis is that two automatic processes are involved in the perception of

speech: i.e. bottom-up and top-down processes. During the bottom-up process, the incoming

speech signal is analysed, while the top-down process is based on the listener’s prior knowledge.

The brain is capable of isolating certain sound sources and filtering out others (‘selective gain’

mechanism [Kerlin et al., 2010]). In the literature, several techniques have been suggested as

being involved in the automatic mechanism. Some of these are the clustering and stitching

of speech pieces into a single signal (i.e. auditory grouping [Bregman, 1990]), extraction of
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time-frequency regions where the target speech is less masked (i.e. glimpsing [Cooke, 2003]),

or spatial source separation between the target and the masker when located in different re-

gions [Hawley et al., 2004]. Finally, visual cues are also a useful mechanism for distinguishing

phonemes in noise [Macleod and Summerfield, 1987].

Although there are a number of factors that can interfere with optimal speech comprehen-

sion, normal-hearing listeners are able to understand speech under severe conditions [Diehl,

2008]. In order to achieve successful communication, talkers naturally modify their speaking

style to take account of the environmental conditions and their interlocutor [for a review see

Cooke et al., 2014a]. Such environmental conditions can be additive ambient noise, in which

the talker produces the so-called ‘Lombard’ speech (e.g. at a cocktail party) [Summers et al.,

1988; Hazan and Baker, 2011], reverberation [Brunskog et al., 2009], or wide separation between

talker and interlocutor [Pelegŕın-Garćıa et al., 2011]. On the other hand, speech types related to

interlocutor’s characteristics include speech directed to infants [Burnham et al., 2002], children

with learning disabilities [Bradlow et al., 2003], hearing-impaired listeners [Lam and Kitamura,

2012], non-natives [Sankowska et al., 2011], machines [Mayo et al., 2012], or pets [Burnham

et al., 2002].

The talker’s intention is to facilitate the listener’s comprehension by increasing the speech

clarity and reducing the required cognitive effort. They achieve this by making acoustic and

linguistic adaptations, separately or in combination. For the acoustic modifications in par-

ticular, one mechanism is to improve audibility by increasing vocal intensity [Picheny et al.,

1986; Castellanos et al., 1996; Pelegŕın-Garćıa et al., 2011], raising the fundamental frequency

to shift the spectrum to frequencies to which the ear is more sensitive [Bond and Moore, 1990;

Pittman and Wiley, 2001], enhancing voiced sounds in intensity and duration [Boril and Pollak,

2005], and reallocating spectro-temporal energy [Lu and Cooke, 2008]. Another mechanism

is to increase the speech coherence in the presence of competing sounds by increasing speech

modulation [Krause and Braida, 2004; Boril and Pollak, 2005], with changes in the first two

formants [Picheny et al., 1986; Bradlow et al., 2003], or by inserting pauses between words

[Picheny et al., 1986]. Finally, linguistic level modifications can also be applied, such as using

a simpler vocabulary.

To study the effect of different speech types on speech perception, researchers usually evalu-

ate the intelligibility. Intelligibility can be defined as the percentage of words accurately recog-

nised (word recognition rate). Factors that can reduce intelligibility include imperfect listening

conditions, with or without aspects such as ambient noise or reverberation; the interlocutor’s

limitations, such as being a non-native, or hearing-impaired; and the talker’s limitations, such

as accented speech. Intelligibility decreases as a function of SNR: i.e. a lower SNR leads to lower

intelligibility. Additionally, intelligibility reduction is affected differently for the different types

of speech, SNRs, distortions, maskers and reverberation [Picheny et al., 1985, 1986; Summers

et al., 1988; Robinson et al., 2002]. For example, elongated speech has been shown to increase

intelligibility in babble noise [Adams and Moore, 2009], while in stationary noise no significant

gains were observed [Nejime and Moore, 1998]. Moreover, spectral tilt flattening led to gains

in intelligibility in the presence of noise, but increasing the fundamental frequency did not have

any impact [Lu and Cooke, 2009a].
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2.2 Traditional measures of supra-intelligibility aspects of

speech

Supra-intelligibility aspects of speech are highly subjective in nature and thus they have tra-

ditionally been measured using subjective judgements. One of the widely used methods is

the collection of subjective ratings. Subjective ratings are fast, easily distributed (no special

equipment is needed) and easily developed. These paradigms require a participant to map a

large and potentially-complex subjectively-interpreted concept, such as quality, on to a rather

artificial and usually discrete set of values, such as ‘very natural’, ‘quite natural’ and the like.

Furthermore, while intelligibility and subjective factors can be measured in the same task, for

practical reasons these measurements are sequential and hence delayed relative to the stimulus,

raising issues such as whether individual differences in working memory capacity might affect

the outcome.

Another commonly used evaluation method over different systems is the paired comparison

test. To test the performance of a system over N others all the possible pairs with the reference

system have to be presented and evaluated separately. This method can be time-consuming,

while another disadvantage is that the results can be either binary or limited to a 4-point scale

(i.e. comparison category rating test) [Loizou, 2011].

Differences in the internal standards of listener groups can result in great variability in the

evaluation. For example, in Larsby et al. [2005], elderly adults did not report greater listening

effort than young adults, despite their worse performance in the task. Another limitation of

subjective judgements is that individuals might interpret the notions under investigation, e.g.

listening effort, differently. More specifically, previous studies showed that subjective ratings

of listening effort were correlated with task performance [Gosselin and Gagné, 2011; Johnson

et al., 2015; Seeman and Sims, 2015]. In addition, listener’s judgements might be influenced by

their experiences. In Tang et al. [2018], modified speech affected perceptual quality for listeners

who preferred plain over modified speech under quiet conditions.

Despite the wide use of subjective methods for evaluating supra-intelligibility aspects of

speech, they are not always consistent with objective methods. For example, a large-scale vali-

dation study was conducted for evaluating the convergent validity and sensitivity of commonly

used measures of listening effort, concluding that listening effort measures are not consistently

or strongly intercorrelated [Strand et al., 2018]. In line with this study, other studies have shown

that subjective measures of listening effort are correlated with listeners’ task performance and

not with objective measures of listening effort [Gosselin and Gagné, 2011; Johnson et al., 2015;

Seeman and Sims, 2015].

The following sections present the different methods that have been used in the literature for

evaluating speech quality, listening effort, and listener preferences. Apart from the usually used

forced-choice paradigms, listener-driven tools to explore supra-intelligibility aspects of speech,

by allowing the listener to modify speech properties in real-time using adjustment tools, are

also presented.

2.3 Speech quality

Speech quality can be influenced by several perceptual attributes, such as intelligibility, listening

effort, pleasantness, naturalness, loudness, and overall experience. Sometimes the speech quality

21



term is not defined in the experiment, but instead, individuals are free to judge according to

their listening experience [e.g. Tang et al., 2018]. Previous studies have shown that perceived

speech quality is poorer when the speech signal is attenuated in the range where the pitch

and harmonic information occur (below 1000 Hz) [Gabrielsson et al., 1988]. Speech quality

also varies as a function of changes to the frequency response [Gabrielsson et al., 1988, 1990].

Temporal modifications have been shown to have a more negative impact on speech quality,

compared to spectral modifications and methods of enhancing specific time–frequency regions

[Tang and Cooke, 2010]. However, listeners might not notice the deteriorated speech quality

under conditions in which the masker covers artefacts or distortions of the speech signal [Taal

et al., 2014].

2.3.1 Subjective measures

For the subjective quality of speech in noise, an evaluation methodology was suggested in the

ITU-T P.835 [ITU-T, 2003]. First, three separate quality ratings have to be assessed. Listeners

have to attend to the speech signal alone, the background noise alone and the speech plus noise,

and rate them separately on a five-point scale. Finally, the mean opinion score (MOS) and the

absolute category rating (ACR) are derived. This methodology has been applied for evaluating

speech enhancement algorithms subjectively [Rohdenburg et al., 2005; Hu and Loizou, 2006,

2007, 2008].

A different category rating scale was used in Preminger and Tasell [1995] for investigating the

relation between speech quality and intelligibility. Listeners had to assign a number to quantify

the speech they heard, along with the dimension of interest, by pointing to a numbered location

on a line using the mouse. Each quality dimension (i.e. intelligibility, pleasantness of tone,

listening effort, loudness, and total impression) was rated on a scale from 0 to 100. In a first

experiment, in which the intelligibility varied, results showed that the ratings of loudness, effort,

and total impression could be predicted by the judged intelligibility. In a second experiment,

in which the intelligibility was kept constant, results revealed that the listeners interpreted

the speech quality dimensions differently, while none of them was highly correlated with the

total impression. In Taal et al. [2014], a different approach was used. Among other factors,

listeners subjectively evaluated the speech quality of methods that enhance intelligibility, using

the AB-preference test. They heard two versions of the same sentence and were asked to choose

the sentence that they preferred in terms of speech quality. Results showed that the proposed

algorithm, which optimally redistributes the speech energy over time and frequency based on

a perceptual distortion measure, apart from improving intelligibility was also able to preserve

the speech quality.

2.3.2 Objective measures

The most widely used metric for objective assessment of speech quality is the perceptual eval-

uation of speech quality [PESQ; Rix et al., 2002] standardised by the ITU-T recommendation

(P.862; ITU-T [2001], P.862.2; ITU-T [2005]). An overview of the PESQ measure is the follow-

ing. First, both the reference and the degraded signals are aligned to a standard listening level.

Then, they are filtered to model a standard telephone handset, and signals are aligned in time

and processed via an auditory transform. Finally, two distortion parameters are extracted, ag-

gregated in frequency and time, and mapped to a prediction of subjective mean opinion score.
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This measure can handle different degradations, such as background noise, filtering [Beerends

et al., 2002] and applying time–frequency-varying gain functions [Hu and Loizou, 2008] and

source separation algorithms [Mowlaee et al., 2012]. To compute the predictions, two signals

are compared, the reference/original and the degraded/modified speech signal, and results show

high correlation under a variety of conditions. For noise-dependent speech algorithms, PESQ

may affect the speech quality differently if the masker varies [Tang and Cooke, 2010].

More speech quality measures which require both signals (the reference/original and the

degraded/modified speech signal) have been suggested. However, a limitation of such metrics

is that for some conditions the reference signal is not available. Some of them are the compu-

tational model, which computes the auditory spectrum distance [Karjalainen, 1985], the per-

ceptual speech quality measure (PSQM) which was used to predict the quality of speech codecs

[Beerends and Stemerdink, 1994], and the measuring normalising block technique (MNB), which

uses a perceptual transformation and a distance measure [Voran, 1999]. Another speech quality

measure is the perceptual analysis/measurement system (PAMS), which was designed for evalu-

ating the quality of telephone networks taking into account issues of previous models caused by

linear filtering and variable delay packet-based transmission [Rix and Hollier, 2000]. Finally, the

perceptual objective listening quality assessment [POLQA; Beerends et al., 2013], standardised

by the ITU-T as Recommendation P.863 [ITU-T, 2011], has been developed to assess speech

quality. This algorithm includes two parts: a temporal alignment part, with which a wide

variety of complex distortions can be aligned—e.g. different delay variations in utterances or

temporal stretching/compression of the degraded signal—and a perceptual model part, which

calculates the internal representation of the reference and degraded signals. Finally, there is the

hearing aid speech quality indices [HASQI; Falk et al., 2015] algorithm, which uses a comparison

of the time-frequency envelope between the two signals and a cross-correlation measurement.

Additionally, objective measures have been suggested for predicting the quality of noisy

speech enhanced by noise suppression algorithms [see Hu and Loizou, 2008]. For making pre-

dictions, the time-domain, frame-based segmental SNR [SegSNR; Hansen and Pellom, 1998]

considers only the frames with segmental SNR in the range of −10 to 35 dB, the frequency-

weighted segmental SNR [fwsegSNR; Tribolet et al., 1978], while the weighted spectral slope

metric [WSS; Klatt, 1982] is based on an auditory model of 36 overlapping filters and finds a

weighted difference between the spectral slopes in each band. Finally, linear predictive coding

[Quackenbush et al., 1988], such as the log-likelihood ratio (LLR), Itakura-Saito distance mea-

sure (IS), and cepstrum distance measures (CEP). In Hu and Loizou [2008], the investigators

reported that the segSNR measure was poorly correlated with the subjective quality ratings.

They thus concluded that it is unsuitable for evaluating the performance of enhancement algo-

rithms. In addition, the same authors reported that, amongst the tested objective measures,

the predictions using PESQ had the highest correlation with the overall quality.

2.4 Listening effort

The attention or cognitive resources and processes required for comprehending speech are re-

ferred to collectively in the literature as listening effort. One definition for the listening effort

is ‘the mental exertion required to attend to, and understand, an auditory message’ [McGar-

rigle et al., 2014]. A model for describing the processes involved while listening to speech has

been suggested in Rönnberg [2003] and Rönnberg et al. [2013] (ease-of-language understanding).
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Talkers may try to decrease the cognitive effort of the interlocutor. Some of the techniques that

they use is to slow down their speaking rate [Picheny et al., 1986; Uther et al., 2007; Bradlow

et al., 2003], use simpler vocabulary [Zampini et al., 2012], vary the fundamental frequency for

giving emphasis to the significant information [Fernald and Mazzie, 1991], and enhance artic-

ulatory movements [Fitzpatrick et al., 2015]. However, exposure to conditions that require a

listener to exert substantial effort and the engagement of additional cognitive resources may

lead to long-term fatigue, social life withdrawal, or may have a negative impact on dual-task

performance. Such conditions can be limitations of the source signal (e.g. degraded speech,

accented speech), sound transmission interference (e.g. noise), or limitations of the receiver

(e.g. hearing impaired or non-native listener).

2.4.1 Subjective measures

Subjective listening effort is usually assessed using questionnaires or rating scales. In the

questionnaires, listeners have to respond to questions that refer to their everyday listening

experience. One questionnaire is the Speech, Spatial and Qualities of Hearing Scale [SSQ;

Gatehouse and Noble, 2004], which is designed to measure a range of hearing disabilities across

several domains. An example question on listening effort is ‘Do you have to put in a lot of effort

to hear what is being said in conversation with others?’ and the listener has to give an answer

in the range from 0 (a lot of effort) to 10 (no effort). In Dawes et al. [2014] the SSQ was used

to examine the changes in listening effort subsequent to acclimatisation to hearing aids.

On the other hand, rating scales are used to judge the effort of each testing condition.

Usually, rating scale techniques accompany physiological techniques. In Luts et al. [2010],

listeners rated the listening effort on a 13-point scale. There were 7 subcategories, ranging

from ‘no effort’ (0) to ‘extreme effort’ (6) with 1 empty button in between. A similar test was

used by Brons et al. [2013], with the differences that the scale was a 9-point rating scale and

they used 5 labelled buttons instead of 7. Different rating scales have been used in studies

where listeners were asked to answer a similar question to ‘How much effort did it take to

perceive the speech during the block?’. In Larsby et al. [2005] and Koelewijn et al. [2012], the

subjective evaluation of listening effort for different noise backgrounds ranged from 0 (none at

all/no effort) to 10 (extremely great/very effortful). Similar ratings have been used in Zekveld

et al. [2010] for evaluating the listening effort for speech of different intelligibility levels. Other

studies have used larger rating scales. In van Esch et al. [2013], in which an auditory profile

test battery was evaluated, after each trial listeners had to estimate the exerted effort on a

100-point rating scale from 0 (no effort) to 100 (maximum effort). In Rudner et al. [2012],

the relation was investigated between subjective effort ratings and other measures during aided

speech recognition in noise. Listeners rated the listening effort using a visual analogue scale of

11.7 cm. The left-hand end represented ‘no effort’ (at 0 cm) and the right-hand end ‘maximum

possible effort’ (at 11.7 cm), and the rating was computed as the distance from 0 cm to the

point marked by the participant. Finally, the National Aeronautics and Space Administration

Task Load Index (NASA-TLX) questionnaire [Hart and Staveland, 1988] was designed to elicit

a participant’s workload performance for a variety of dimensions using a visual-analogue rating

scale, but it has also been used for assessing listening effort. In the NASA-TLX questionnaire,

a question related to listening effort is ‘How hard did you have to work to accomplish your level

of performance?’ Mackersie and Cones [2011] used this questionnaire to examine the listening

effort under conditions of near-ceiling-level performance, while Peng and Wang [2019] used it
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to test a wide range of realistic classroom acoustic conditions while varying talker accent and

listener English proficiency.

2.4.2 Behavioural measures

The behavioural measures used for estimating listening effort are the single-task, dual-task,

and recall paradigms [for reviews see McGarrigle et al., 2014; Gagné et al., 2017; Strand et al.,

2018]. The total processing resources that a person has available to perform tasks are supposed

to be limited in capacity and speed [Broadbent, 1958; Kahneman, 1973]. If the overall cognitive

resources needed for a task are less than the available resources, then the task is performed

optimally. However, if the available resources are less than those needed for the task, then the

performance of one of the tasks will decrease. In the experiments they typically ask listeners

to give priority to the primary task; thus, the performance of the secondary task is expected to

deteriorate.

In single- and dual-task paradigms, listeners are instructed to optimise performance on the

primary task (e.g. speech recognition). The single-task paradigm is when a primary task is per-

formed alone. Listeners respond to stimuli, either verbally identifying the heard word/sentence

[Gatehouse and Gordon, 1990], or by pressing a response button [Houben et al., 2013]. Response

time has been interpreted as reflecting listening effort. In Houben et al. [2013], listeners had to

identify three digits in varying levels of stationary noise; slower response times were recorded

for the more challenging conditions. A speech recognition task is often used as the primary

task [Hicks and Tharpe, 2002; Howard et al., 2010; Gosselin and Gagné, 2011; Govender and

King, 2018b].

When a secondary task (e.g. arithmetic operation) is performed simultaneously with the

primary task, the paradigm is called dual-task. Listening effort is computed as the loss of

performance of the secondary task when it is performed under the dual-task condition, as

compared to the same task performed alone (this is illustrated in Fig. 1 in Gagné et al. [2017]).

The additional secondary task may include, for example, a tactile pattern-recognition task

[Gosselin and Gagné, 2011], a visual recognition task (e.g. random presentations of a probe

Hicks and Tharpe [2002], or a visual motor task Govender and King [2018b]). In Wu et al. [2016],

a dual-task paradigm was used to assess listening effort at a wide range of SNRs. Reaction

times, in line with subjective effort measures, showed less effort exertion for lower SNRs. In

Sarampalis et al. [2009], the benefit of a digital noise reduction algorithm was tested using dual-

task paradigms, either in quiet or in the presence of a 4-talker babble masker at various SNRs.

Noise reduction was found to both reduce effort and benefit performance in simultaneous tasks.

Finally, the recall paradigm (memory task) is also based on the assumption that the more

cognitive resources occupied, the poorer the recall performance (i.e. fewer cognitive resources

are free for processing a new message). Some of the recall paradigms that have been used are

the word recall task, the serial recall task, and the paired-associates recall task. For the word

recall task, listeners were asked to respond to word lists or sentences while holding words in

memory [Johnson et al., 2015; Sarampalis et al., 2009]. For the serial recall task, participants

listened to lists of words. Word reproduction was stopped randomly and they had to recall the

last three words presented [McCoy et al., 2005; Sommers and Phelps, 2016]. For the paired-

associates recall task, listeners were asked to memorise lists of 5 word pairs. After some seconds

they were presented with the first word from one of the 5 pairs and were asked to recall the

second word of the pair [Murphy et al., 2000; Picou et al., 2011].
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2.4.3 Physiological measures

Behavioural measures alone cannot systematically measure changes in effort. Several measures

related to the activity of the central and autonomic nervous systems have been used to assess

listening effort (McGarrigle et al. [2014]; Gagné et al. [2017]; Guijo and Cardoso [2018] review

the existing physiological measures). The most widely used measure is pupillometry. A greater

pupillary response (i.e. greater pupil diameter) is observed when the task requires more effort.

Features typically used to estimate effort are the mean pupil dilation, peak pupil dilation or

delay to reach the peak (latency). These features show an increasing trend with decreasing

intelligibility [Zekveld et al., 2010]. The peak pupil dilation has been shown to reflect listening

effort when tested in speech performance tasks involving sentences presented under conditions of

informational or energetic masking [Zekveld et al., 2010; Zekveld and Kramer, 2014], with more

effort observed for a competing talker masker than stationary or fluctuating maskers [Koelewijn

et al., 2012, 2014]. Furthermore, it has been shown that pupil dilation is sensitive to speech

quality. Differences between natural and synthetic speech have been observed [Govender and

King, 2018a] and it is argued that, in quiet, pupil dilation reflects attention and engagement

[Govender et al., 2019]. Pupillometric measures of effort have also been obtained as a function

of syntactic complexity [Wendt et al., 2016], attention to location [Koelewijn et al., 2015]

and spectral resolution [Winn et al., 2015]. It has been demonstrated that pupil size varies

with regard to the noise type, i.e. a larger peak when listening to an informational masker

compared to an energetic masker [Koelewijn et al., 2012]; SNR, i.e. forming an inverted U-

shaped curve, with the peak pupil dilation at intermediate intelligibility levels and lower values

when comprehension is easier or harder (at very adverse SNR levels listeners tend to give up the

task) [Zekveld et al., 2010; Zekveld and Kramer, 2014]; speech location, i.e. location uncertainty

increased the pupil dilation response [Koelewijn et al., 2015]; syntactic complexity i.e. pupil

dilations increased with syntactic complexity [Wendt et al., 2016]; and spectral resolution i.e.

pupil dilation greater with degradation in spectral resolution [Winn et al., 2015].

Other measures that have been used for measuring listening effort are functional magnetic

resonance imaging [Wild et al., 2012], electroencephalography [Obleser et al., 2012], heart rate

variability [Seeman and Sims, 2015], skin conductance [Mackersie and Cones, 2011; Seeman

and Sims, 2015] and electromyographic activity [Mackersie and Cones, 2011]. A speech under-

standing task that requires more effort to complete leads to higher values for those measures:

i.e. increased activity in the left inferior frontal gyrus, alpha power, heart rate variability,

skin conductance and electromyographic activity. For instance, Mackersie and Cones [2011]

obtained psychophysiological recordings (heart rate, skin conductance, skin temperature and

electromyographic activity) during speech perception tasks with intelligibility close to ceiling,

but with varying task demands involving digit presentation to one or both ears. Higher levels

of mean skin conductance and electromyographic activity were observed when task demand

increased.

2.5 Listener preferences

When the speech quality is considered as unidimensional it can be interpreted as the listener’s

preference. The listener’s preference is the overall listener’s experience when listening to a

speech signal, which can be affected by aspects of speech such as intelligibility, listening effort,

pleasantness, naturalness and loudness. These factors can vary with the listening environment
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[Kean et al., 2015; Walton et al., 2016], hearing impairment [Buyens et al., 2014; Shirley et al.,

2017], as well as having an individual component [Walton et al., 2016].

2.5.1 Subjective measures

A commonly used method for exploring listener preferences is by asking the listener to make

judgements about the presented stimuli using a rating scale. The effect of noise on speech rate

has been studied in Adams and Moore [2009], and for listening conditions encountered in real

life (i.e. non-degraded, reverberation, bandpass filtered, and low-pass filtered conditions) in

Moore et al. [2007]. Participants judged the rates of the presented target sentence using an

equal-interval 5-step scale from too slow to too fast i.e. ‘too slow’, ‘slow, but ok’, ‘preferred’,

‘fast, but ok’, and ‘too fast’. They indicated their choices by clicking on an icon on the computer

monitor using the mouse.

Many studies have used the paired-comparison paradigm to compare listening preferences.

Listener preferences for different speaking styles have been determined, e.g. for oral reading and

spontaneous speaking tasks [Lass and Prater, 1973] and for prose speech to children [Lass and

Fultz, 1976; Leeper and Thomas, 1978]. The listeners’ task was to choose which of the two speech

rates in the pair they preferred to listen to. Brons et al. [2013] tested different hearing aid noise-

reduction systems to determine whether noise-reduction systems differ perceptually, and which

factors underlie the overall preference of individual listeners. The investigators used a paired-

comparison rating to measure overall preference. Listeners were asked which of the fragments

they would prefer for prolonged listening. There were 7 possible answers, ranging from ‘A is

much more natural/much less annoying/much better’ to ‘B is much more natural/much less

annoying/much better’. The 7 choice categories were derived from the comparison category

rating method described in ITU-T P.800 [ITU-T, 1996]. Listeners had the option to indicate

no difference between A and B, and were allowed to listen to the fragments as often as they

liked before answering the question. Boymans and Dreschler [2000] collected the subjective

preferences for 4 different hearing aid settings. Listeners stated which program they preferred

if they had to listen to speech in ‘this condition’ through the whole day.

Other studies have used a combination of the two aforementioned techniques, i.e. paired-

comparison paradigm and rating-scale. The listener first indicates which of the two options

is preferable to listen to (pair-comparison paradigm), and then answers the question of how

much this option is preferred (rating-scale). Using this combination, previous studies have

determined listener preferences for noise-reduction algorithms or settings [Ricketts and Hornsby,

2005; Luts et al., 2010]. Ricketts and Hornsby [2005] investigated the effect of digital noise

reduction processing on aided speech recognition and sound quality measures. Listeners had

to tell the investigator to switch to ‘one’ or ‘two’ as often as they liked and then report which

setting they preferred. Once a setting was preferred, listeners had to specify the ‘strength

of preference’ on a scale of 1 to 10, how strongly they preferred that particular setting over

the other. The preference scale was provided as a visual marker to aid their decision on how

strongly they preferred one setting over another. A preference of 1 was indicated as ‘no or very

little preference’, and 10 indicated a ‘very strong preference’. In Luts et al. [2010], listeners

had to assess the algorithms’ performance. Each algorithm was compared to the unprocessed

condition. Subjects could listen to the algorithms for as long as needed and could toggle between

the algorithms as often as they wanted. After indicating a preference, the subject had to rate

how much better the preferred algorithm was compared to the other one. This rating can be
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interpreted as the confidence of the subjective preference judgments. The outcome of the test is

the amount of preference for an algorithm over the unprocessed condition. The preference score

varied between ‘very much worse’ scored as −5 and ‘very much better’ scored as +5. Listeners

did not have the option of equal preference (0).

2.5.2 Objective measures

It is a common procedure for the experimenters to choose a priori fixed conditions for testing

the speech stimuli. An alternative approach is the listener-driven preferences technique, which

allows the listeners to modify speech properties in real time using adjustment tools. This tech-

nique allows the listeners to tune the target speech stimuli to find the preferred value. Some

studies have used Lexicon Varispeech [Lee, 1972], a tool for demonstrating real-time modifi-

cation of speech properties [Lee, 1972]. In Riensche et al. [1979], the effect of age and sex on

the preferred listening rate of speech was investigated. Listeners were presented with a read-

ing of a prose passage and were allowed to adjust a Varispeech I time compressor/expander

to yield their preferred listening rate. Wingfield and Ducharme [1999] allowed younger and

older adults to adjust the speech rate of time-compressed and time-expanded speech passages

of low and high predictability. Stimuli were presented through a Lexicon Varispeech II com-

pressor/expander and listeners could control the rate using a knob to speed up the speech or

slow it down. Participants were instructed to adjust the rate to the point where they felt that

the passage could be understood and accurately recalled. There was no time constraint; how-

ever, all the listeners were able to find the desired rate by approximately halfway through the

passage. Audio loudness preferences in realistic environments were investigated by Kean et al.

[2015] via a USB knob controller. Turning the knob clockwise raised the volume and turning

it counter-clockwise lowered it. Listeners were instructed to adjust the volume for the most

pleasing playback effect. They could modify the speech at any time during the playbacks and

leave the level in place if they were satisfied with the sound. The influence of environmental

noise on audio preferences was also tested by Walton et al. [2016] in a study that simulated

mobile audio listening. Listeners were able to adjust the background–foreground balance and

the overall level through a virtual interface. In order to avoid any influence on the listeners’

judgments, no visual feedback for the adjustments was provided.

Virtual adjustment devices have also been used to allow participants to actively control

speech rate [Novak III et al., 2014; Novak III and Kenyon, 2018]. Listeners could control the

rate of audio playback in real time with an on-screen slide bar. Listeners had to adjust the

speech until they found the value that was best for understanding the target speech. They

did not have any guidance as to what settings might be ‘best’. Torcoli et al. [2017] introduced

the Adjustment/Satisfaction Test, a user-adjustable system complemented by a user satisfaction

assessment, applied to the evaluation of dialogue enhancement. Listeners controlled the relative

level of speech with a knob and scored their satisfaction level using a rating scale. A virtual

knob was used in Zhang and Shen [2019] to allow listeners to modify a local signal-to-noise ratio

criterion for retaining or removing time-frequency regions of speech. Listeners could increase the

local criterion value by turning the knob clockwise and decrease it by turning the knob counter-

clockwise. Instructions were to ‘adjust the knob so that the speech would be the clearest and

easy to listen to for a long time’.
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2.6 Summary

Investigating the mechanisms involved when a talker naturally modifies speech under different

conditions so as to facilitate the listener, and the processes involved when a listener perceives

speech, may provide insights into the development of speech enhancement algorithms. Such

algorithms find applications in public address systems, hearing aids and telephony. Since the

target audience of such algorithms consists of humans, it is important that the speech modifi-

cations satisfy them. Therefore, the most accurate evaluation of an algorithm is both through

word task performance and evaluation of supra-intelligibility factors. The remainder of this

thesis explores intelligibility and supra-intelligibility aspects of speech for different speech types

and distinct speech characteristics.
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Chapter 3

Native and non-native listening

effort for different speech types

3.1 Introduction

1Listening to speech is not always performed in ideal conditions. An additional obstacle faces

a listener who has to communicate in a second language (L2). Many people move to a foreign

country to study or work, and collaboration between people who are native in different languages

is widespread. The task becomes more demanding when the listener does not have the advantage

of seeing the talker and consequently has to rely only on audio cues. Thus, it is of interest

to investigate how different speech types affect non-native listeners. Their performance in

challenging conditions has already been explored [Meador et al., 2000; Weiss and Dempsey,

2008] (for a review see Garcia Lecumberri et al. [2010]), as has the effect of modified speech

styles on non-native intelligibility, with Cooke and Garcia Lecumberri [2016] concluding that

listening in an L2 is more detrimental although native and non-native listeners display a similar

pattern across speech types. However, far less emphasis has been placed on investigating the

effort required to understand distinct speech types. Exposure to conditions that require a

listener to exert substantial effort and the engagement of additional cognitive resources may

lead to long term fatigue. Such conditions might be degraded source signals, sound transmission

interference or limitations of the receiver (see review in Mattys et al. [2012]). This chapter

examines listening effort for distinct speech types under conditions of additive noise for native

and non-native listeners.

Previous studies have explored the impact of different speech types on listening effort.

Borghini and Hazan [2020] examined the impact of conversational and clear speaking styles

on listening effort in the presence of 8-talker babble noise using an SRT procedure. Apart

from the expected finding that listeners tolerated a lower SNR for clear compared to plain style

sentences, both the mean and peak pupil dilations were greater for plain speech, suggestive

of a greater listening effort. Koch and Janse [2016] conducted an eye-tracking experiment to

explore the effect of speech rate on spoken word recognition, using conversational materials

with a natural variation in speech rate. While listeners exhibited longer response times for fast

speech, there was no speech rate effect on the pupil response.

1Portions of the work described in this chapter were published as a paper in Interspeech 2018 proceedings
[Simantiraki et al., 2018].
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The impact of synthetic speech on listening effort has also been investigated, revealing that

pupil dilation is sensitive to speech quality. Three studies by Govender and colleagues exam-

ined the differences between natural speech and four speech synthesis approaches of differing

sophistication, namely Hybrid, Unit Selection, Hidden Markov Model (HMM) and Low-Quality

HMM, all drawn from the Blizzard Challenge 2011 [King and Karaiskos, 2011]. Govender and

King [2018b] tested synthetic speech in noise-free conditions using a dual-task paradigm, finding

that synthetic speech led to slower reaction times (suggesting a higher cognitive load) as speech

quality decreased. Again using stimuli in quiet, Govender and King [2018a] found greater pupil

dilation for synthetic speech compared to its naturally-produced counterpart. Masking noise

also led to an increase in pupil dilation for synthetic speech [Govender et al., 2019].

These findings collectively indicate that forms of speech that differ from canonical ‘plain’

speech have the potential to affect a listener’s experience, either by reducing effort in the case

of clear speech, or increasing it for synthetic speech. One hypothesis is that listening effort is

influenced by naturalness. Synthetic speech, particularly that produced by less sophisticated

approaches, is clearly unnatural, and the finding that effort reduces for more recent state-

of-the-art synthesis techniques which are mainly distinguished by their degree of naturalness

supports a potential inverse relationship between naturalness and effort. The primary goal

of the current study is to further explore this relationship by examining pupil responses to

both plain and synthetic speech as well as to two additional speech forms known to improve

intelligibility in masked conditions but which differ in naturalness, namely Lombard speech and

algorithmically-enhanced speech. Lombard speech refers to speech that results when a talker is

exposed to sufficiently intense noise while speaking. Many studies have shown Lombard speech

to be substantially more intelligible than plain speech when presented at the same SNR [Pittman

and Wiley, 2001; Marcoux et al., 2022]. Of the many forms of algorithmically-modified speech,

one of the most successful in enhancing intelligibility is SSDRC [Zorila et al., 2012], an approach

which involves both spectral modification and dynamic range compression. SSDRC produced

the largest gains in an international evaluation of modification techniques [Cooke et al., 2013b].

We hypothesise that in masked conditions in which Lombard speech and SSDRC are at ceiling

levels of intelligibility, if naturalness is a key factor in listening effort we will see smaller peak

pupil dilation for Lombard speech than for SSDRC.

Research on listening effort mainly deals with native normal-hearing or hearing-impaired

listeners. Far less investigated is the listening effort exerted by non-native listeners. Speech

perception by non-native listeners is one input factor that contributes to increased listening

effort [Framework for Effortful Listening, FUEL; Pichora-Fuller et al., 2016]. Previous studies

have shown that non-native listeners have a greater pupil response compared to native listeners

when perceiving words [Schmidtke, 2014] or sentences in babble noise with equated intelligibility

for the two groups [Borghini and Hazan, 2018]. In Borghini and Hazan [2020], listening effort

for clear and plain speech and semantic plausibility in the presence of babble noise were studied

while the SNR was adapted to obtain an intelligibility score of 50%. Their results showed that

both native and non-native listeners exert less effort when listening to the naturally-enhanced

speech type. In Peng and Wang [2019], the listening effort of native and non-native listeners was

evaluated objectively using a dual-task of speech comprehension and an adaptive pursuit rotor

(i.e. try to track a small disc on a turntable) and subjectively using the NASA task load index

questionnaire [Hart and Staveland, 1988]. They tested several combinations of background noise

level and reverberation time and results indicated that the reported effort of non-native listeners
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was higher than that of native listeners when comprehending speech in adverse conditions. It

is currently an open question as to whether listening effort follows a similar pattern i.e. do

non-native listeners also suffer a disproportionate increase in effort when processing challenging

forms of speech when compared to the effort experience by native listeners? The current study

addresses this question by comparing the patterns of intelligibility in masked conditions with

those of effort as revealed by pupil responses for both native and non-native listeners.

Two experiments explored the effect of four distinct speech types (plain, synthetic, Lombard,

SSDRC) on subjectively-reported effort, pupil responses, and intelligibility. Both experiments

asked listeners to process English sentences in three levels of speech-shaped noise. Expt. I

(sec. 3.2) involved a cohort of native English listeners, while in Expt. II (sec. 3.3) a group

of Spanish listeners processed the same materials at a more favourable set of SNRs. In this

chapter, growth curve analysis (GCA) was used for analysing the pupil data since the entire

time-course of the data is taken into account resulting in more meaningful information [Mirman,

2014].

The research questions for this chapter are: does listening effort vary for different speech

types; does listening effort exerted by native and non-native listeners pattern differently across

listening conditions?

3.2 Experiment I: Impact of different speech types on lis-

tening effort for native listeners

3.2.1 Methods

Participants

Participants (N=26, 6 males) were young normal-hearing native British English speakers (age

range: 18 − 24, mean=20.5, S.D 1.8). Participants were requested not to wear glasses and

eye makeup. All had hearing levels better than 25 dB in both ears as determined by pure-tone

audiometric screening in the range 125 − 8000 Hz. Listeners were paid on completion of the

experiment. Technical problems during recording led to the exclusion of data from two partic-

ipants.

Speech and masker materials

The Harvard sentence lists [Rothauser et al., 1969] provided the basis for the four distinct

speech styles tested in the current study. Harvard sentences typically contain 7-9 words, of

which 5 are preselected as keywords for scoring purposes. The speech signals used in the

current study constitute a subset of the speech material used in for an international challenge

in intelligibility-enhancing speech modifications [Cooke et al., 2013a].

• In the plain condition, sentences were produced in quiet conditions by a British English

male talker who was asked to speak normally.

• The same talker also produced sentences in the presence of a speech-shaped noise (SSN)

masker, resulting in the Lombard condition. Lombard speech is a natural form of modified

speech with clear differences from speech produced in quiet. For example, Lombard
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speech normally results in a flatter spectral tilt, increased fundamental frequency, and

some segments exhibit longer durations [Summers et al., 1988].

• A modified speech condition was created by applying the Spectral Shaping and Dynamic

Range Compression (SSDRC) method [Zorila et al., 2012] to the plain speech sentences.

The SSDRC algorithm incorporates ideas from both Lombard and clear speech styles,

and has been shown to produce significant intelligibility gains [Cooke et al., 2013b].

• Finally, a synthetic speech style was generated using hidden Markov model text-to-speech

(TTS) synthesis. The system employed [Yamagishi et al., 2009] was capable of adapting

to individual speakers, so in addition to the (orthographic) sentence text, the TTS system

was also provided with additional speech material from the talker who produced the plain

and Lombard sentences.

Figure 3.1 shows example spectrograms for the same sentence in each of the four types and

provides values for duration, spectral tilt and mean fundamental frequency.
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Figure 3.1: Spectrograms of the phrase ‘The birch canoe slid on the smooth planks’ for each of
the speech types tested in the current study, along with corresponding values for duration (dur.)
in seconds, spectral tilt (tilt) in dB/octave, and mean fundamental frequency (f0) in Hz.

Experimental stimuli were created by mixing sentences in each of the four styles with a

speech-shaped masking noise at each of three SNRs: −1, −3 and −5 dB, resulting in 12 condi-

tion blocks. These SNRs were chosen on the basis of recommendations in a study by Ohlenforst

et al. [2017] to avoid values that are too high (low noise) and likely to be effortless for par-

ticipants, or too low (high noise), potentially leading participants to expend less effort due

to the perceived level of difficult of the task. In pilot tests, the three SNRs chosen produced

intelligibility levels both near to and below ceiling.

Procedure

Maskers started two seconds prior to the onset of each sentence, and stopped three seconds

after sentence offset. Pupil data from the 1-second interval immediately preceding the onset of

the sentence was used for calibration (see sec. 3.2.1). Speech-plus-noise mixtures were created

by rescaling the speech signal to achieve the desired SNR in the region where it overlapped
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with the masker. The resulting mixtures were normalised to have the same root mean square

level, and 20 ms half-Hamming ramps applied to the start and end to reduce onset and offset

transients.

Listeners heard 12 blocks of stimuli, one block for each combination of speech type and

SNR. Each block consisted of 15 target sentences that were used for scoring, preceded by 5

familiarisation sentences. None of the 180 (15 x 12) sentences heard by any given listener were

repeated. Block order was balanced across listeners using a Latin square design, and sentence

order within blocks was randomised. Before starting the experiment, participants were able to

adjust the volume to a comfortable listening level.

The experiment took place in a sound proof studio at the University of Edinburgh. Pupil

data was collected using the remote EyeLink 1000 eye-tracker with sampling frequency 500 Hz

and the pupil size was measured in terms of pupil area (number of black pixels) while partici-

pants listened to sentences through Sennheiser HD-380 pro headphones.

Participants were seated in front of a computer screen with a white background and a black

cross in the middle (Fig. 3.2). Participants were instructed to look at the black cross while

listening to the stimuli. At the end of the trial the cross became red and participants had to

repeat verbally the words they had heard (Fig. 3.3).

Figure 3.2: Experimental set up. The left image shows a listener during the task while the right
shows the experimenter’s monitor.
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Figure 3.3: Schematic representation of the experimental procedure.

On completion of each block, participants answered the question ‘How much effort did it
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take to listen and understand the sentences in this block?’ using a numeric rating scale from 0

(no effort) to 10 (very effortful). The experiment was split into two parts of approximately 30

minutes each, with an intervening 5-minute break.

Calibration

Similar practices to those suggested in Winn et al. [2018] were used in the processing of raw

pupillary responses and in discarding trials. Pupil data from the left eye was used. Pupil area

data was first downsampled to 50 Hz and converted to pupil diameter, and the following signal-

cleaning procedure (designed, for example, to detect blinks) was applied. For each trial, cases

where the pupil size was more than two standard deviations lower than the overall mean pupil

size were considered as missing values. Trials with more than 15% missing values, as well as

participants with fewer than 80%valid trials, were excluded from the analyses. For valid trials,

any missing values were linearly-interpolated using data in a window that covered the interval

from 5 samples prior to the missing value, to 8 samples after the missing value. Following

signal-cleaning, pupil traces were calibrated following Wagner et al. [2015]:

ERPD =
observation− baseline

baseline
∗ 100 (3.1)

where ERPD is the event-related pupil dilation, observation is the uncalibrated pupil diameter

and baseline is the mean pupil diameter during the one second interval preceding the onset of

the speech. Finally, pupil data were smoothed using a 5-point moving average filter. Figure 3.4

provides an example of the uncalibrated pupil area (upper plot) and calibrated pupil diameter

(lower plot). A visual inspection for artefacts led to the exclusion of around 11% of the pupil

data, based on a criterion on removing blocks with fewer than two-thirds of trials correct.
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Figure 3.4: Pupil size variation during a single trial. Upper: uncalibrated pupil area; lower:
calibrated pupil diameter. Times are relative to sentence onset at 0 s.
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Statistical analyses

Statistical analyses were carried out in R (R Core Team [2021] version 3.3.3). The time-course of

pupil dilation for each SNR was modelled using growth curve analysis [GCA; Mirman, 2014]. A

third-order polynomial was used for modelling the data within the time window of 0 s (speech

onset) until 4.5 s after speech onset while the peak pupil dilation was included. An order 3

polynomial was chosen after observing the average pupil dilation responses of all participants

and conditions. The time terms can be interpreted as follows: the intercept as the overall

mean pupil dilation, the linear term as the overall rate of pupil dilation, the quadratic term

as the shape of peak, and the cubic term as the falling slope of the curve. Model selection

started with the complete model, which is the time-course of the pupil dilation data as a third-

order orthogonal polynomial. It included as fixed effects both speech type (speech type) and

intelligibility for the three orthogonal terms and as random factors the intercept and the three

orthogonal terms per participant. Intelligibility scores were computed for each sentence with 5

-total keywords included in a sentence- to be the maximum score. The model fit was evaluated

using model comparisons with anova. Improvements in model fit were evaluated using the

log-likelihood ratio, which is distributed as χ2 with degrees of freedom equal to the number

of parameters added. Statistical significance (p-values) for individual parameter estimates

was assessed using the normal approximation (i.e. treating the t-value as a z-value). The

intelligibility factor did not improve the model and thus it was removed. The lme4 package

(Bates et al. [2015] version 1.1-15) was used for fitting a linear mixed-effect model to the data.

To model the relationship of speech conditions (i.e. SNR and speech type) with both

intelligibility and subjective listening effort ratings, linear mixed effects analysis was used. As

fixed effects, the SNR and speech type were added into the model, with random intercepts for

participants. P -values were obtained by likelihood ratio tests of the full model (interaction

between the fixed effect terms), the model with only the SNR as fixed factor, and the model

without the interaction term. Intelligibility score percentages were converted to rationalised

arcsine units in order to make them more suitable for statistical analysis [Studebaker, 1985].

Post-hoc comparisons used least-squares means [emmeans package; Lenth, 2021], with Tukey

adjustment for multiple comparisons. Additionally, repeated-measures correlation between in-

telligibility scores and subjective listening effort ratings were performed via the rmcorr package

[Bakdash and Marusich, 2017].

Trials for which listeners did not perceive any word correctly were excluded from the analysis.

The sentence plus noise combination may was too hard, which can lead the listeners giving up

or to exert a great amount of effort without succeeding in the task. Pupil dilation is influenced

by speech intelligibility and when intelligibility is close to 0 the pupil dilation is small [Zekveld

and Kramer, 2014; Ohlenforst et al., 2017]. Thus, to avoid such pupil size behaviours, these

trials were excluded. For the −1 dB SNR condition, 9.7% of the trials were excluded, for the

−3 dB SNR 15.6%, and for the −5 dB SNR 30.3% (for more details see Table A.1 in appendix).

3.2.2 Results

Pupil dilation

Figure 3.5 depicts the ERPD of the raw data averaged across participants for each speech style

and SNR. For the most favourable SNR, TTS shows the greatest change in pupil dilation over

the baseline, followed by plain speech. A similar trend is seen at the intermediate SNR. For the
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Figure 3.5: Mean pupil size increase over baseline as a function of speech type. Noise starts 1 s
before the baseline onset as shows Fig. 3.4.

adverse SNR plain speech exhibits the largest relative increase in pupil size. Lombard speech

generally results in the lowest ERPD at each noise level.

The best-fitted model was the following (Figs. 3.6 - 3.8 show the best-fitted model on the

pupil data for each speech type and SNR).

ERPD ∼ (time1 + time2 + time3) ∗ speech type+ (time1 + time2 + time3|participant) (3.2)

with time1, time2, time3 being the 3 orthogonal terms, speech type the 4 tested speech types,

and participant the participant id. Table 3.2 shows the estimates of each polynomial term and

speech type for the different SNRs and Table 3.3 the interpretation of the GCA results as a
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function of the polynomial term and SNR.
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Figure 3.6: Mean pupil size over time (black dots) with grey error bars to denote the ±1 SE.
The solid line shows the fitted model for the −5 dB SNR.
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Figure 3.7: As Fig. 3.6 but for the −3 dB SNR.

Intelligibility scores

The mean percentage of correct words repeated by participants for the different speech types

and SNRs is shown in Fig. 3.9 (right panel). A ceiling effect can be observed for the Lombard
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Figure 3.8: As Fig. 3.6 but for the −1 dB SNR.

Speech type -1 -3 -5
Intercept:plain 2.45 (0.30) 2.35 (0.36) 3.03 (0.41)
Intercept:Lombard -0.97 (0.04)* -1.20 (0.04)* -0.91 (0.04)*
Intercept:SSDRC -0.84 (0.04)* -0.60 (0.04)* -0.83 (0.05)*
Intercept:TTS 0.81 (0.04)* 0.80 (0.04)* -0.22 (0.04)*
time1:plain 4.74 (2.63) 6.95 (2.67) 10.16 (3.57)
time1:Lombard -6.47 (0.61)* -9.67 (0.63)* -10.41 (0.68)*
time1:SSDRC -9.20 (0.59)* -14.36 (0.66)* -14.17 (0.70)*
time1:TTS 8.06 (0.59) 0.11 (0.62) 0.56 (0.70)
time2:plain -14.05 (2.61) -8.82 (2.01) -13.53 (2.76)
time2:Lombard 5.35 (0.61)* 2.11 (0.63)* 0.98 (0.68)
time2:SSDRC 3.82 (0.59)* -3.11 (0.66)* 0.71 (0.70)
time2:TTS 0.83 (0.59) 0.12 (0.62) 8.09 (0.70)*
time3:plain 4.56 (1.53) 4.03 (1.26) 4.79 (1.86)
time3:Lombard -6.43 (0.60)* -2.33 (0.63)* -1.17 (0.68)
time3:SSDRC 1.79 (0.59)* 0.18 (0.66) 1.74 (0.70)*
time3:TTS -3.02 (0.59)* 2.22 (0.62)* 1.66 (0.70)*

Table 3.2: Summary of estimates of intercept and orthogonal polynomial time terms (time1,
time2, time3) with plain speech as baseline for the different SNRs. The standard error is shown
in parentheses and the asterisk indicates those conditions significantly different from baseline.

style for the most favourable SNR, and for SSDRC for all SNRs. As expected, intelligibility

decreased with increasing noise level.

Statistical analysis also verified that as noise level decreased, intelligibility scores increased

[p < 0.05] except for SSDRC which was not statistically different for any of the SNRs, and

for Lombard speech which was not statistically different between −1 and −3 dB SNR. Speech

type comparisons revealed that the intelligibility differed significantly at each of the 3 SNRs
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Term Interpretation Order -1 -3 -5

Intercept
overall mean
pupil dilation

greater
to lower

TTS = plain 6=
SSDRC = Lombard

TTS 6= plain 6=
SSDRC 6= Lombard

plain 6= TTS 6=
SSDRC 6= Lombard

Linear
overall pupil
dilation rate

steeper
to flatter

SSDRC 6= Lombard 6=
plain 6= TTS

SSDRC 6= Lombard 6=
plain = TTS

SSDRC 6= Lombard 6=
plain = TTS

Quadratic
shape of peak
(height and width
of the curve)

sharper
to flatter

TTS = plain 6=
SSDRC 6= Lombard

SSDRC 6= plain =
TTS 6= Lombard

plain = SSDRC =
Lombard 6= TTS

Cubic falling slope
faster
to slower

Lombard 6= TTS 6=
plain 6= SSDRC

Lombard 6= plain =
SSDRC 6= TTS

Lombard = plain 6=
TTS = SSDRC

Table 3.3: Interpretation of each polynomial term and results as a function of SNR. Results
are ordered based on the 3rd column. The symbol ‘=’ signifies that the speech types were not
statistically significant different and ‘6=’ the opposite.
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Figure 3.9: Left plot: mean subjective listening effort ratings from 0 (no effort) to 10 (very
effortful). Right plot: mean intelligibility scores. Error bars denote ±1 standard error.

[p < 0.01] (only for −1 dB SNR, scores were not statistically different between Lombard and

SSDRC and a marginal difference [p = 0.07] between Lombard and plain was obtained). The

ranking was the same for all SNRs with performance order from highest to lowest to be SSDRC,

Lombard, plain, and finally TTS.

Subjective listening effort ratings

Mean subjective ratings for the different speech types across the 3 SNRs are depicted in Fig. 3.9

(left panel), revealing an unambiguous ranking of speech types. Synthetic speech was considered

the most effortful style and SSDRC the least. Subjective effort of all speech types increased

with increasing SNR. As for the intelligibility scores, subjective listening effort ratings showed

a clear ranking of effort across speech types that is the inverse of the intelligibility scores.

Statistical analysis showed that as noise level increased, each speech type was rated as

significantly more effortful [p < 0.05] except for SSDRC which was rated similarly for all

conditions (apart from −1 and −5 dB SNR [p < 0.01]), while ratings for Lombard and TTS

were similar at −1 and −3 dB SNR. Also marginal differences were obtained between −3 and

−5 dB SNR for plain [p = 0.06] and TTS [p = 0.09]. Independent of the SNR, the order of the

subjective ratings was from the least to the most effortful: SSDRC, Lombard, plain, and TTS

with scores for Lombard and SSDRC not to differ at −1 dB SNR.
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Additionally, correlation tests verified the negative correlation of intelligibility and subjective

ratings [r = −0.87].

3.2.3 Interim discussion

This experiment explored the effort that native English listeners exert when listening to different

speech types. Participants listened to sentences in the presence of a masker at 3 noise levels.

Effort was estimated both by participants’ own ratings and by the physiological measure of pupil

size change. At all SNRs listeners found synthetic speech to be both the least intelligible and

subjectively the most effortful to process, while the converse was the case for algorithmically-

modified speech. Listeners ranked Lombard speech as both more intelligible and less effortful

than plain speech. Pupil size changes displayed similar tendencies as subjective effort ratings but

showed a more complex pattern that varied with SNR. Two differences between the outcomes

from pupil size and subjective ratings stand out: (i) while listeners rated SSDRC as the least

effortful speech style, pupil size was always smallest in the Lombard speech condition, at all

SNRs; (ii) synthetic speech produced the largest effort ratings at all SNRs but pupil size for

plain speech was larger in the more adverse condition.

Comparing the results for the naturally produced speech types, plain speech had higher

ERPD and sharper peak than Lombard speech (apart from −5 dB SNR at which they did

not differ). The peak of the pupil dilation has been widely used for estimating objectively

mental effort i.e. the higher the peak value the higher the effort (e.g. in Zekveld et al. [2010];

Koelewijn et al. [2012]; Zekveld and Kramer [2014]). Thus, listeners might have been engaged

more for plain speech than for Lombard speech. Additionally, the pupil diameter for plain speech

reached its peak with slower rate to that for Lombard speech. It is shown that the time that

the pupil diameter reaches its peak (also called peak latency) increases with decreasing speech

intelligibility [Zekveld et al., 2011]. Furthermore, subjective and objective measures showed

that plain speech requires more effort compared to SSDRC. This outcome can be driven by

both the intelligibility gains and the listeners’ preferences. Indeed, a study by Tang et al. [2018]

found that listeners preferred SSDRC-modified speech over plain speech at low SNRs.

For the naturally and artificially enhanced speech types, the overall lower pupil response for

Lombard speech shows that naturally enhanced speech is less cognitively demanding. A possible

explanation for this might be the slightly higher speech clarity when listening to SSDRC. The

listener might perceive more phonemes when listening to SSDRC, thus having to piece together

more phonemes might require the investment of greater effort. Another explanation for per-

ceiving Lombard speech as less effortful compared to SSDRC may be the listeners’ expectations

for the speech in noise. SSDRC had lower f0 and was shorter in duration than Lombard speech

which is the speaking style that talkers adopt in noise. Finally, for all conditions, the pupil re-

sponse for SSDRC reached its peak faster. This means that for the artificially enhanced speech

type, listeners needed to engage their attention quicker very likely to overcome the acoustic

cues imposed by an unusual speech type.

For all conditions, synthetic speech was the least intelligible and for the intermediate noise

levels, the most effortful. Previous studies have shown that pupillary responses are related to

intelligibility performance [Zekveld and Kramer, 2014]. In line with this, the low intelligibility

scores here for this speech type led to extra processing load in performing the task compared to

the other speech types. Finally, pupillary responses can also be influenced by naturalness (more

prominent in less noise) i.e. less natural speaking style may result in more processing effort.
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In Govender et al. [2019], among other tasks, listeners were asked to score the naturalness of

the speaking styles heard and they reported lower naturalness for synthetic speech (including

hidden Markov model TTS synthesis) compared to natural speech. Only for the most adverse

condition in which the intelligibility score for the synthetic speech was approximately 40%, the

ERPD of plain speech was higher than that of TTS. Listening effort typically is maximised

for speech-in-noise tasks at intelligibility levels of around 50% while for conditions of lower

intelligibility the effort declines [Zekveld and Kramer, 2014; Ohlenforst et al., 2017; Wu et al.,

2016].

3.3 Experiment II: Impact of different speech types on

listening effort for non-native listeners

This experiment was conducted to explore the listening effort that non-native listeners exert

when listening to stimuli under conditions similar to those that native listeners experienced in

Expt. I (sec. 3.2). Differences from the Expt. I (sec. 3.2.1) are presented below.

3.3.1 Methods

Participants

Thirty-one normal-hearing native Spanish listeners (7 males) aged between 18 and 29 (mean age

of 20.5, S.D 2.5 years) took part. Fifteen were monolingual in Spanish and the remaining were

bilingual in Spanish and Basque. Listeners were students in the English, German, Translation

and Interpretation Studies Department at the University of the Basque Country, in the second

or later year of their studies. Participants reported that they did not suffer from cataracts

nor diabetes, and had no known hearing problems. Additionally, they were asked not to wear

hard contact lenses or eye makeup during the experiment. Participants underwent a pure tone

hearing screening; all had a hearing level less than or equal to 25 dB in both ears. Listeners

were paid on completion of the experiment.

Speech and masker materials

Similar stimuli to those in Expt. I (sec. 3.2) were used. For the native listeners, speech material

was mixed with SSN at −1, −3, and −5 dB SNR while for the non-natives the SNRs were

higher (+20, +5, and −1 dB SNR) since L2 sentence listening in adverse conditions has a more

detrimental effect for the latter group of listeners [Garcia Lecumberri et al., 2010]. The −1 dB

SNR was chosen as the common condition for the two groups and the most adverse one for

the non-native listeners. Based on the linear model suggested in Cooke and Garcia Lecumberri

[2016] (the stimuli were the same as in this study) which describes the intelligibility loss of non-

native relative to native listeners, even the least intelligible speech type (TTS) was not expected

to be unintelligible for the non-natives (average intelligibility score around 25%). Additionally,

a low-noise condition of +20 dB SNR was used as baseline for evaluating the listening effort

exerted for the different speech types for a near-clean SNR. Finally, an intermediate SNR of

+5 dB was tested which corresponds to an SNR in a more realistic scenario [Pearsons et al.,

1977; Smeds et al., 2015; Wu et al., 2018].
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Procedure

The experiment lasted around 1 hour and 15 minutes (i.e. approximately 15 minutes more

than Expt. I) with a 5 minute break in the middle. It took place in a sound proof booth at the

University of the Basque Country in Vitoria-Gasteiz. Pupil data was collected using a Tobii

x3-120 eye-tracker with sampling frequency of 40 Hz. The pupil size was measured in terms of

pupil diameter (an estimate of the pupil size in millimetres). Participants listened to sentences

through Sennheiser HD-380 pro headphones.

In addition to the task described in Expt. I (sec. 3.2.1), listeners had to score their level

of competence in English for each of the skills: speaking, listening, reading and writing in

a scale from 1(=beginner) to 5(=native), and also were asked to read 10 English sentences.

Spoken sentences were recorded and used to rate participants’ accents. For rating the degree

of foreign accent, an online test (see appendix Fig. B.1) was performed and 13 native British

English listeners were asked to evaluate the accent. Three evaluators with middle to high con-

tact with Spanish, or had lived in a Spanish-speaking country for more than a month were

excluded since their rating ability might have been influenced by their exposure to the Spanish

language. Evaluators rated two out of the ten sentences (identical for all speakers) on a scale

from 1(=native-like) to 7(=very accented). The rated sentences were drawn from the Harvard

corpus (1) ‘A fresh start will work such wonders’ and (2) ‘The club rented the rink for the fifth

night’. The web test lasted approximately 5 minutes and ratings of 10 evaluators were used for

the analysis.

Calibration

An identical calibration to that used for the native listeners (sec. 3.2.1) was used. Six partici-

pants were excluded from the analysis as there were trials with more than 15% of missing values

and trials with artefacts (after a visual inspection on the data) that resulted in less than 80%

of valid trials per participant.

Statistical analyses

Growth curve analysis was used for evaluating pupillary responses. As in the first experiment,

third-order polynomials were used to model growth curves and the analysis time window started

from the 0 s (speech onset) until 4.5 s after speech onset. Models were constructed by adding

as separate fixed effects the speech type, intelligibility, accent ratings (median values), mean

reported proficiency level in English, months lived in a foreign country, and the year of studies.

As random effects, the subject id, trial number, and block number were added. Model fitting

showed that only speech type as a fixed factor improved the model and thus the remaining fac-

tors were excluded from the model. In the +20 dB SNR condition, the interaction between the

third polynomial term and speech type was removed due to lack of convergence. For the cor-

relation tests, the Pearson correlation coefficient was computed for the non-repeated-measures.

Specifically, comparisons between accent ratings and intelligibility, year of the studies, months

that participants have spent in a foreign country, and self-reported mean English level were

tested.

Trials for which listeners did not perceive any word correctly were excluded from the analysis.

For the −1 dB SNR condition, 10.4% of the trials were excluded, for the +5 dB SNR 4.1%, and

for the +20 dB SNR 1.4% (see appendix for more details; Table A.1).
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3.3.2 Results

Pupil dilation

Figure 3.10 depicts the ERPD of the raw data averaged across-participants for each speech style

and SNR. For the least noisy condition, the pupil dilates similarly for all speech types until

approximately 2 s when the pupil size differs until the end of the time course of the ERPD. The

divergence among the speech types increases as the noise level increases. For the most adverse

condition, Lombard speech has the smallest ERPD value, followed by SSDRC, with plain and

TTS having the highest ERPDs.
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Figure 3.10: Mean pupil size increase over baseline as a function of speech type. Noise starts
1 s before the baseline onset as shows Fig. 3.4
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The −1 dB SNR condition was identical to that presented to native listeners in Expt. I. The

effect with the raw pupil data is comparable to that revealed for the non-natives (Fig. 3.5). The

best-fitted model was identical to that of Expt. I (Eq. 3.2) except for the +20 dB SNR which

was as follows (corresponding models can be found in Figs. 3.11 - 3.13).

ERPD ∼ (time1 + time2 + time3) + speech type+ time1 : speech type+ time2 : speech type

+(time1 + time2 + time3|participant)
(3.3)

with time1, time2, time3 representing the 3 orthogonal terms, speech type the 4 tested speech

types, and participant the participant id.
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Figure 3.11: Mean pupil size over time (black dots) with grey error bars to denote the ±1 SE.
The solid line shows the fitted model for the −1 dB SNR.

Table 3.4 shows the estimates of each polynomial term and speech type for the different

SNRs and Table 3.5 the interpretation of the GCA results as a function of the polynomial term

and SNR.

Intelligibility scores

The mean percentage of correct words repeated by participants for the different speech types

and SNRs is shown in Fig. 3.14 (right panel). SSDRC was the most intelligible for all conditions

while TTS was the least intelligible. The natural speech types were less intelligible than SSDRC.

However, for the more favourable SNR, plain, Lombard, and SSDRC achieved equal scores.

Intelligibility of all speech types decreased with increasing SNR.

Statistical analysis verified the visual observations. As noise level decreased intelligibility

scores increased [p < 0.001] except for SSDRC which was statistically different only for −1 and

+20 dB SNR [p = 0.0001]. Speech type comparisons revealed that for each of the 3 SNRs the

intelligibility scores were significantly different [p < 0.05] except for Lombard and SSDRC at +5
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Figure 3.12: As Fig. 3.11 but for the +5 dB SNR.
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Figure 3.13: As Fig. 3.11 but for the +20 dB SNR

and +20 dB SNR. For the most favourable SNR, only TTS was significantly lower compared

to the remaining speech types [p < 0.0001]. The speech type order from highest to lowest

performance was identical for the mid and low SNRs; SSDRC, Lombard, plain, and finally

TTS.

For the common condition with the native listeners (−1 dB SNR), non-natives produced
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Speech type +20 +5 -1
Intercept:plain 2.34 (0.56) 1.89 (0.47) 2.11 (0.42)
Intercept:Lombard 0.07 (0.04) -0.17 (0.04)* -1.17 (0.05)*
Intercept:SSDRC -0.12 (0.04)* 0.50 (0.04)* -0.58 (0.05)*
Intercept:TTS -0.25 (0.05)* 0.44 (0.04)* 0.24 (0.05)*
time1:plain 18.61 (3.40) 15.94 (3.32) 12.82 (2.95)
time1:Lombard 1.09 (0.60) -6.62 (0.57)* -4.18 (0.62)*
time1:SSDRC -0.58 (0.60) 3.87 (0.57)* 3.31 (0.62)*
time1:TTS -6.29 (0.60)* -2.06 (0.58)* 2.33 (0.66)*
time2:plain -9.01 (1.81) -9.77 (1.56) -10.27 (1.56)
time2:Lombard 2.70 (0.60)* 2.77 (0.57)* 5.23 (0.62)*
time2:SSDRC 2.24 (0.60)* 0.44 (0.57) 3.71 (0.62)*
time2:TTS -0.27 (0.60) 2.39 (0.58)* 1.00 (0.66)
time3:plain -7.21 (0.92) -7.09 (1.09)
time3:Lombard 2.65 (0.57)* 1.83 (0.62)*
time3:SSDRC 1.81 (0.57)* -1.09 (0.62)
time3:TTS 2.38 (0.58)* 1.38 (0.66)*

Table 3.4: Summary of estimates of intercept and orthogonal polynomial time terms (time1,
time2, time3) with plain speech as baseline for the different SNRs. The standard error is shown
in parentheses and the asterisk indicates the significant different conditions from baseline.

Term Interpretation Order +20 +5 -1

Intercept
overall mean
pupil dilation

greater
to lower

Lombard = plain 6=
SSDRC 6= TTS

SSDRC 6= TTS 6=
plain 6= Lombard

TTS 6= plain 6=
SSDRC 6= Lombard

Linear
overall pupil
dilation rate

steeper to
flatter

TTS 6= plain =
Lombard = SSDRC

Lombard 6= TTS 6=
plain 6= SSDRC

Lombard 6= plain 6=
SSDRC = TTS

Quadratic
shape of peak
(height and width
of the curve)

sharper
to flatter

plain = TTS 6=
Lombard 6= SSDRC

SSDRC = plain 6=
Lombard = TTS

plain = TTS 6=
SSDRC 6= Lombard

Cubic falling slope
faster to
slower

plain 6= Lombard =
SSDRC = TTS

SSDRC = plain 6=
Lombard = TTS

Table 3.5: Interpretation of each polynomial term and results as a function of SNR. Results
are ordered based on the 3rd column. The symbol ‘=’ signifies that the speech types were not
statistically significant different and ‘6=’ the opposite.
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Figure 3.14: Left plot: mean subjective listening effort ratings from 0 (no effort) to 10 (very
effortful). Right plot: mean intelligibility scores. Error bars denote ±1 standard error.
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much lower intelligibility scores. The drop in intelligibility score was 28% points for SSDRC,

33% for Lombard, 44% for plain, and 34% for TTS. However, the ranking was the same. Even

for the condition with the least noise (+20 dB SNR), non-natives had much lower performance

than that of the native listeners at −1 dB SNR.

Subjective listening effort ratings

Mean subjective ratings for the different speech types across the 3 SNRs are depicted in Fig. 3.14

(left panel). For the adverse noise level, synthetic speech was considered as the most effortful

while SSDRC and Lombard speech the least. For the positive SNRs, plain speech was as effortful

as SSDRC and Lombard speech, while for the +20 dB SNR all speech types had ratings around

the middle of the scale. Subjective effort of all speech types increased with increasing SNR.

As for the intelligibility scores, subjective listening effort ratings showed a clear ranking across

speech types that is the inverse of the intelligibility scores.

Post-hoc comparisons indicated that as noise level decreased, the subjective listening effort

of all speech types decreased [p <= 0.001] (except for TTS and Lombard between −1 and

+5 dB SNR which were not statistically different) while for SSDRC effort did not change (with

marginal difference between −1 and +20 dB SNR; [p = 0.07]). Comparing the speech types,

the reported effort for Lombard and SSDRC was similar for the different SNRs. Plain speech

was reported as more effortful than SSDRC only for the −1 dB SNR [p = 0.0001]. TTS always

reported as the most effortful [p < 0.05] except for the +20 dB SNR in which it was reported

with the same rating as for SSDRC and for −1 dB SNR in which it was similar to that of plain

speech. The correlation test showed that subjective listening effort was negatively correlated

with intelligibility scores [r = −0.71].

Regarding the common condition with the native listeners (−1 dB SNR), non-native listen-

ers rated all speech types as more effortful with a near-constant difference of approximately 3.9

points, except for TTS for which the difference was 1.7 points. However, the ranking was the

same i.e. from the least to the most effortful it was the SSDRC, Lombard, plain, and finally TTS.

Accent ratings

To assess any relationship between participants’ year of the studies, months in a foreign country,

self-reported mean English level, and task performance with the mean accent ratings across

judges for each participant was computed and Pearson correlation was used. Accent ratings were

negatively correlated with intelligibility [r = −0.41, p < 0.05], year of studies [r = −0.44, p <

0.05], the months that participants have spent in a foreign country [r = −0.39, p = 0.05] and

were not correlated with the self-reported mean English level. In other words, the more native-

like the voice sounds, the better the listener’s intelligibility performance or the higher the year

in English studies or the more the months lived in a foreign country.

3.3.3 Interim discussion

Expt. II explored listening effort and intelligibility for non-native listeners. Spanish participants

with a high proficiency level in English listened to English sentences in the presence of speech

shaped noise at 3 noise levels. Listening effort was evaluated subjectively by asking the listeners

to estimate the effort that they exerted in a continuous range from 0 to 10, and objectively

using pupillometry. Additionally, intelligibility scores were computed to ensure that the task
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was properly performed and to test its correlation with the listening effort measures.

For the most favourable SNR, medium or no differences among the speech types except

TTS in all three measures were observed. Exploring the listening effort for a near-clean SNR

which acts as a ceiling condition for the non-native listeners reveals differences that are purely

related to the different types of speech and are not influenced by the masker’s characteristics. In

line with Rönnberg et al. [2013], little cognitive effort was reported when listening to naturally

produced speech in quiet conditions. Although, the results of this study revealed that naturally

produced speech types led to the greatest overall mean pupil dilation and artificial speech (i.e.

SSDRC and TTS) to lower when presented at the most favourable SNR. This observation

contradicts with Rönnberg et al. [2013] results possibly because they conducted experiments

with native listeners. Non-native listeners may not be of benefit from similar acoustic cues

to native listeners. For the SSDRC condition, listeners achieved similar intelligibility scores

to the natural speech types but with slightly lower effort (flatter peak and lower overall pupil

dilation). A greater speech energy concentration to higher frequencies might have made the

speech comprehension easier. However, in the absence of noise, SSDRC is expected to be

more detrimental than the naturally produced speech types since SSDRC processing changes

the acoustic-phonetic structure of speech (e.g. formant energy modifications). Cooke and

Garcia Lecumberri [2016] found a drop in intelligibility for SSDRC in quiet compared to noisy

conditions. In the current study, TTS was less intelligible compared to the other speaking styles

(which scored approximately 10% higher). For this speech type, listeners may have reached their

highest possible intelligibility score, which could not be improved even with extra effort.

As it was expected under adverse noise levels, Lombard speech facilitated listeners’ inten-

tion to understand speech compared to plain speech. This was true for all three measures in

the experiment; listeners perceived speech with higher clarity, reported less effort, and pupil

response was smaller (lower overall pupil dilation and flatter peak pupil dilation). This result

is in line with the study by Borghini and Hazan [2020] in which non-native listeners benefited

from clear speech relative to plain speech in the presence of babble noise.

Interestingly, the results for the Lombard and SSDRC speech types showed medium or no

differences in intelligibility and subjective rated effort while pupil responses differed significantly.

The opposite behaviour was observed for these two speech types in the most adverse and

most favourable conditions. The cognitive load measured with the pupil size revealed that for

the −1 dB SNR, Lombard speech was perceived with less effort (lower overall pupil dilation,

steeper peak pupil dilation) and for the +20 dB SNR, with more effort than SSDRC. Although,

SSDRC had been developed using features of Lombard speech, for the −1 dB SNR, the extra

effort exerted might have resulted from features like f0 which have not be adopted by SSDRC.

Finally, for the most favourable SNR, listeners may have had to engage more for the Lombard

speech. This may happen since Lombard speech is not a speech type that a listener would

expect to hear in low-noise conditions.

3.4 General discussion

Previous studies have showed that non-native listeners do not perform equally well to native

listeners in word identification tasks [Cooke and Garcia Lecumberri, 2016] and have to allocate

a greater amount of cognitive resources compared to natives [Borghini and Hazan, 2018]. Thus,

the noise levels used for the non-native listeners are lower compared to those for the native
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listeners. The conditions of SNR equals to −1 dB was kept identical for both groups for evalu-

ating the listening effort when the listeners are exposed to the same amount of acoustic-phonetic

cues (second research question). The first research question has been answered for each exper-

iment separately in the corresponding sections (3.2 and 3.3). The results demonstrated that

listening effort of native and non-native listeners varies with type of speech, as judged both by

participants’ own ratings and by the physiological measure of pupil size change.

Intelligibility ranking from the speech types is similar for both groups.

The ranking of intelligibility derived from the speech types for the common condition is

similar for both groups of listeners. For non-native listeners the loss in word recognition was

around 35% (Fig. 3.9, 3.14 (right panels)). The intelligibility ranking observed is in line with

that reported by Cooke and Garcia Lecumberri [2016] in which the effect of the same speech

types on intelligibility in the presence of SSN was tested for non-native listeners. The results in

this chapter might reflect the resistance of each speech style to the energetic masking. In line

with previous studies, synthetic speech was less intelligible than natural speech [Venkatagiri,

2003; Axmear et al., 2005] and the least intelligible compared to plain, Lombard, and SSDRC

speech types [Cooke and Garcia Lecumberri, 2016]. This might be a consequence of the different

formant structure or/and shorter duration compared to the other three speech types which can

be observed in Fig. 3.1.

Listening effort patters similarly for the different speech types for both groups.

Additionally, the listening effort revealed by pupillary responses for native and non-native

listeners patterns similarly for the different speech types. More specifically, TTS and plain

speech had the sharpest peak and the greatest overall mean pupil dilation, SSDRC follows,

and finally Lombard speech is the one with the flattest peak and the lowest overall mean pupil

dilation. Previous studies have showed that the higher the degradation of the signal, the larger

the decrease in intelligibility and quality having as a result an increase in pupil dilation [Zekveld

and Kramer, 2014; Koelewijn et al., 2012]. In Borghini and Hazan [2020] clear speech, which

is also a naturally enhanced speech type, reduced the listening effort of both native and non-

native listeners in the presence of babble noise compared to plain speech. Correspondingly, here,

Lombard and SSDRC reduced listeners’ effort more compared to plain and TTS. The greater

duration of Lombard speech may not have contributed so to be perceived as the least effortful

since Koch and Janse [2016] found that the increased speech rate does not have an effect on

pupil response in young or older listeners. Lombard speech may have lessen the explicit reliance

of speech understanding on working memory resulting in a lower cognitive load for both groups

compared to the other speech types tested in this chapter.

Slower rise of pupil size for non-native listeners compared to natives.

A difference in pupillary responses between native and non-native listeners is that for the

former group, the pupil starts to dilate just a few milliseconds after the onset of the sentence

while for the latter it starts around 1 second later. This could be explained by either native

listeners engage faster with the task or both groups are engaged but for the non-natives the

task is harder. This was observed for all speech types. The slower rise of pupil size might

signify greater cognitive demands. Several factors can contribute to the increased effort of L2

listeners such as the higher number of competing words triggered by their first language and

lower proficiency level compared to natives. Thus, the greater peak pupil latency revealed for
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non-native listeners might be derived from the longer processing required for comprehending

speech. Pupillometry results in Borghini and Hazan [2018, 2020] showed that listening effort

(measured with the mean and peak dilation) during sentence identification is higher for non-

native compared to native listeners when intelligibility is equated.

Subjective ratings of listening effort are not always consistent with physiological

measures.

Subjective ratings of listening effort are not always consistent with physiological measures.

In both experiments, pupillary responses to synthetic speech across the different SNRs showed

no clear relationship to the subjectively reported effort. Participants might have reported their

opinion of their performance on the task in response to the subjective question they were

asked. In Zekveld and Kramer [2014], subjective effort evaluation showed that processing load

was higher for lower intelligibility, while subjective ratings and peak pupil dilation were not

related to each other. This finding is also supported by other studies [Zekveld et al., 2010;

Koelewijn et al., 2012] with Wendt et al. [2016] concluding that subjective ratings and pupil

dilation may well represent different aspects of effort. Non-native listeners reported higher effort

compared to natives for the −1 dB SNR and had much lower intelligibility scores (lower than

80% independent of the speech type). This was expected since listening to a second-language

under imperfect conditions is more demanding even if the proficiency level of the listener is high.

This condition was the most adverse condition for the non-native listeners and thus their ratings

might be more negatively scored since they might have rated the conditions comparatively. Even

though the ranking of the speech types was the same for the two groups. The cognitive load

derived by pupil diameter may provide complementary information to subjective ratings and

intelligibility scores.
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Chapter 4

SpeechAdjuster: A tool for

investigating listener preferences

and speech intelligibility

4.1 Introduction

1 In the previous chapter, one dimension of the overall listener’s experience, listening effort,

was investigated. A pupillometry study was conducted to estimate the required effort when

listening to different speech types in noise. Results revealed a clear impact of speech type on

the cognitive demands required for speech comprehension with Lombard speech to induce less

demands on mental processing compared to the other speech types tested. It is of interest to

examine the influence of distinct speech properties that speakers naturally modify to produce

Lombard speech. In this chapter, a tool for investigating supra-intelligibility aspects of speech

is introduced and in the following chapters, this tool is used to study such aspects when altering

only distinct speech properties.

Intelligibility is readily measurable, but a different approach is required to capture attributes

above and beyond word or sentence scores. Subjective preferences have traditionally been mea-

sured using rating scales [Moore et al., 2007; Adams and Moore, 2009; Brons et al., 2013],

but these paradigms require a participant to map a large and potentially-complex subjectively-

interpreted concept such as quality on to a rather artificial and usually discrete set of values

such as ‘very natural’, ‘quite natural’ and the like. Furthermore, while intelligibility and sub-

jective factors can be measured in the same task, for practical reasons these measurements are

sequential and hence delayed relative to the stimulus, raising issues such as whether individual

differences in working memory capacity might affect the outcome.

In this chapter, an alternative approach which attempts to avoid issues of interpretation

and delayed responses is presented. The technique is to provide listeners with the ability

to manipulate some (usually continuous) dimension of interest in real-time, and to select a

parameter setting that they judge to be in some sense optimal. Instructions given to participants

are deliberately neutral, and the emphasis is simply on the discovery of a preferred setting that

allows them to recognise as many words as possible. Participants are able to spend as long

1SpeechAdjuster was published as a paper in Interspeech 2021 proceedings [Simantiraki and Cooke, 2021].
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as necessary on exploring the available stimulus space governed by the parameter of interest.

Having chosen an ‘optimal’ setting, listeners carry out a short task with the parameter setting

frozen. For instance, the task might involve a small number of test phrases in which participants

identify words in sentences.

SpeechAdjuster, an open-source, cross-platform software tool which allows the manipu-

lation of virtually any aspect of speech, and supporting joint elicitation of listener preferences

and intelligibility measures is described. It operates by precomputation of modified speech for

a fixed set of points on a given modification continuum, and uses smooth, rapid, mid-utterance

switching to produce the sensation of continuously-variable speech alteration.

4.2 SpeechAdjuster

For the purpose of illustration in what follows, imagine we wish to examine the possible influence

of the mean fundamental frequency (f0) of a target speech signal in the presence of background

noise. Participants are provided with the means to modify mean f0, and are instructed to use

this control to adjust f0 in such a way as to recognise as many words as possible. The task

might be described as being akin to tuning a radio set to produce the best possible signal.

4.2.1 Adjustment and test phases

A SpeechAdjuster experiment consists of a sequence of trials, each of which is made up

of an open-ended adjustment phase, optionally followed by a fixed-length test phase. In the

adjustment phase, the listener is presented with speech material such as words, phrases or

continuous speech, with or without masking noise, and the task is to explore the parameter

space for the characteristic under study (e.g. mean f0) in order to find a value which the listener

considers optimal in terms of understanding as many words as possible. When the participant

decides that the adjustment is complete, the endpoint value of the chosen parameter is used

to generate one or more test stimuli that the user responds to, just as in a traditional speech

intelligibility task. During the test phase, listeners supply responses to stimuli by typing in an

input box. To avoid memory load, listeners are permitted to start typing at any point after the

onset of the stimulus.

4.2.2 Virtual control of speech parameters

There are many ways to elicit continuous uni-dimensional preferences. Here, five different

mechanisms were explored: (1) a pair of up/down arrow buttons; (2) a mouse wheel; (3) a

normal scrollbar; (4) a scrollbar whose value returns to the midpoint when released; and (5)

a virtual rotary knob. In pilot experiments, five normal-hearing adult listeners with Spanish

as a native language adjusted the volume level of Spanish sentences, first in quiet and then in

stationary masking noise, using each of these mechanisms in independent trials. Listeners were

consistent in reporting that the rotary knob and up/down arrows were the easiest to understand

and apply. Consequently, SpeechAdjuster provides the experimenter with the choice of these

two forms of input (Fig. 4.1).

The selection of which mechanism is the most appropriate to use will be task-dependent.

The pair of arrow buttons avoids the listener having a visual indication of the current value of

the parameter (apart from feedback that the upper or lower extreme has been reached). Since
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Figure 4.1: SpeechAdjuster GUI options during the adjustment phase: (a) a pair of arrow
buttons (up/down) and (b) a virtual rotary knob. During the test phase, a text input box is
added.

the listener has no indication of the parameter value at the start of each trial, they are prevented

from adopting a strategy based on using the same parameter settings as on the previous trial,

purely on a visual basis, since this may or may not be the most appropriate setting. On the

other hand, the rotary knob can be used to simulate realistic scenarios where listeners are aware

of the current parameter value and the need to adjust it from trial to trial on the basis of clear

between-trial acoustic changes. To some extent, the choice will depend on how trials are blocked

across conditions. For example, the choice of a mean f0 value in the presence of stationary noise

might be expected to be similar from one trial to the next if the experiment is blocked by noise

type, motivating the use of up/down buttons. Conversely, if the masker changes from trial to

trial, or if the masker is the same but varies in some property that is likely to interact with the

target speech (e.g. a competing speech masker), the mean f0 chosen might differ from trial to

trial, in which case the visually more intuitive rotary knob would be preferred.

Figure 4.2 depicts the adjustment phase of a typical series of trials where a listener was

able to control mean f0. The plot shows all the speech modifications that a listener performed

via up/down buttons during the adjustment phase for each of five trials. Initial f0 values

were chosen at random. These traces exhibit typical features of user-controlled exploration

of parameter space: listeners sample the entire range during some trials, while other trials

show more rapid adjustment phases and faster decisions, and overall there is a high level of

consistency in the final value chosen. In this instance, listeners were not allowed to proceed

to the test phase until five seconds had elapsed. This user-configurable value ensures that

participants spend at least the specified time exploring the space of possible adjustments before

signalling that they are ready for the test phase.
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Figure 4.2: A listener’s f0 adjustments (y-axis) across time (x-axis) for five independent trials.
The vertical dotted line indicates the time point (here 5 s) when the completion button (denoted
Finished adjusting? in Fig. 4.1) in the adjustment phase was activated.

4.2.3 Stimulus preparation

SpeechAdjuster requires each stimulus (e.g. word, phrase or longer speech passage) to be

precomputed at each of a range of discrete parameter values. For instance, in the case of

f0, each experimental stimulus will be processed offline to produce N different exemplars that

differ only in mean f0, with the N points along the f0 continuum chosen by the experimenter to

meet some criterion such as equal-spacing on a semitone scale. The number N of such levels is

customisable and only impacts on the amount of offline storage required, and does not affect the

latency of online processing. In our own experiments [Simantiraki et al., 2020; Simantiraki and

Cooke, 2020] we have found that 20-25 discrete values are adequate to produce the impression

of continuous change.

In online operation, all N versions of the same stimulus (e.g. the same sentence with different

mean f0) can be considered to be activated in parallel, and the user’s actions control which

one is actually chosen to be output by SpeechAdjuster at any given time point. In practice,

the signal that the listener hears is merely the concatenation of segments. Switch-over is low

latency and to minimise artefacts a short fade-out ramp is applied to the current segment and

a similar fade-in ramp applied to the next segment corresponding to the new stimulus.

Figure 4.3 shows an example speech spectrogram that results as a consequence of a listener

adjusting mean f0 at several points during the utterance.

4.2.4 Configuration

The experimenter can adjust many parameters of SpeechAdjuster, allowing it to be adapted

to the requirements of each listening task and to the linguistic background of the participants.

Options include those that control the tool’s appearance, the textual content and language of

all interface components, participant instructions, inter-stimulus delays and numbers of trials.

Other options control the size of audio chunks used during streaming, chosen to ensure that
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Figure 4.3: A spectrogram of the speech sample ‘The girl at the booth sold fifty bonds’ that
results from a listener making changes to mean f0 at the four time instants denoted by the
vertical lines. The initial mean f0 is around 290Hz, while the final value is 130Hz.

user-controlled changes are applied rapidly, but without audible artefacts. A complete list of

options can be found in the user guide that is provided with the application.

4.2.5 Outputs

SpeechAdjuster collects detailed information during both the adjustment and test phases.

In the former phase, the tool makes available both raw data in the form of time-stamps for

all adjustments, and summary data on the initial and final parameter values and the total

time taken to move to the test phase. Textual responses are collected during the test phase.

SpeechAdjuster can also produce a range of figures that depict experimental outcomes.

Specifically, the tool can (1) visualise the adjustments that a listener performed in a trial (as

shown in Fig. 4.2); (2) produce a histogram of listeners’ preferences; (3) generate box plots

of listeners’ choices and the time needed for the adjustments across the different experimental

conditions; and (4) display a two-dimensional heatmap showing each listener’s preferences for

each of the tested phrases.

An example of the use of data produced by SpeechAdjuster on listeners’ mean f0 pref-

erences coupled with intelligibility scores is shown in Fig. 4.4. This figure illustrates that

preferences tap into information over and above intelligibility: in this case, the proportion of

words identified correctly is at or near ceiling across the entire range of mean f0 values, but lis-

teners express a clear preference for values at or above the mean f0 of the original (unmodified)

speech material.

4.2.6 Implementation, platforms and availability

SpeechAdjuster is open-source software with a GNU General Public License v3.0. SpeechAd-

juster is written using the Python programming language and makes use of cross-platform

libraries, specifically Kivy [Virbel et al., 2011] for the graphical user interface and PyAudio

[Pham, 2006] for audio streaming. Consequently, SpeechAdjuster can be used on Windows,

OSX and Linux variants.

SpeechAdjuster can be installed with the command ‘pip install speechadjuster’. The

source code is available at https://github.com/osimantir/speechadjuster.
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Figure 4.4: Probability of each mean f0 value (histogram, left axis), along with the percentage of
words recalled correctly (black dots, right axis). Error bars represent ± 1 standard error. The
vertical line corresponds to the mean f0 of the original speech.

4.3 Applications

SpeechAdjuster has been used to investigate the effect of changes in speech rate [Siman-

tiraki and Cooke, 2020] and spectral energy reallocation, including spectral tilt modifications

[Simantiraki et al., 2020]. Precomputation of stimuli permits many types of speech transforma-

tion, of arbitrary complexity, to be investigated. Examples of more complex processes include

gradations in degree of foreign accent, emotional valency, or more general voice morphing.

SpeechAdjuster could also be used to explore user preferences in some dimension of interest

in speech synthesis, or to choose between families of synthesis algorithms. Other applications

include the determination of optimal parameters in audio engineering in which the level of one

audio signal is reduced by the presence of another signal [Torcoli et al., 2019] or of the proper

balance between intelligibility and supra-intelligibility aspects of speech important for near-end

listening enhancement algorithms [Chermaz and King, 2020].

In addition to testing listeners’ preferences directly, SpeechAdjuster can help in the

selection of starting parameters for conventional listening experiments with fixed conditions,

and has been used in this manner in experiments on distorted speech involving sine-wave and

noise-vocoded speech generation. Precomputation also allows for the possibility of experimental

screening and modification of stimuli to enable artefact-removal. Figure 4.5 shows an example

for three types of distorted speech.

4.4 Limitations

While SpeechAdjuster supports the elicitation of listeners’ preferences and generates infor-

mation that is clearly complementary to intelligibility scores (e.g. Fig. 4.4), it does so in a

holistic manner, and consequently is unable to say anything about the weighting of individual

factors that influence listeners’ preferences, which may be due to listening effort, naturalness,

pleasantness, attractiveness, familiarity, distortion or other quality-related considerations, and

which can be expected to show substantial inter-participant variability.

One limitation of the current version of the tool is that speech transformations cannot involve

nonlinear modifications to the length of speech constituents, as would be the case most obvi-

58



Figure 4.5: Examples of the use of SpeechAdjuster to explore the parameter space of three
forms of distorted speech. The top panel shows locally time-reversed speech where the user was
able to adjust the size of the window within which reversal took place. The middle panel depicts
the output of a tone-vocoder where listeners changed the number of vocoder channels from 2 to
5 as the utterance progressed. The lower panel shows the result of filtering speech through a
narrow spectral slit. In this case the user was able to control the centre frequency of the filter.

ously in speech rate variation, but could also occur in modifications involve mapping between

speech styles such as plain, clear or Lombard speech that typically involve changes in segment

durations. However, linear elongation has been tested in Simantiraki et al. [2020] in which

speech rate modifications were applied on single words and the changes while tuning speech

were applied from the next word onwards. In principle, while linear speech rate variations are

straightforward to implement, nonlinear changes will require some form of segment annotation

to ensure that durational changes are applied at the correct time-points when switching from

one parameter value to the next.
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Chapter 5

Listener preferences - Speech rate

5.1 Introduction

1 Previous studies have shown that listeners are sensitive to the perception of speech rate [Kidd,

1989; Smith et al., 1989; Dilley and McAuley, 2008; Peelle and Davis, 2012]. Fast speech has

been found to disrupt intelligibility of both natural [Fairbanks and Kodman, 1957; Versfeld and

Dreschler, 2002] and synthetic speech [Lebeter and Saunders, 2010; Valentini-Botinhao et al.,

2014]. However, there is little agreement on whether a slower speech rate benefits intelligibility

[Adams and Moore, 2009; Adams et al., 2012; Nejime and Moore, 1998; Cooke et al., 2014b;

Cooke and Aubanel, 2017]. A recent study [Cooke and Aubanel, 2017] found no intelligibility

gains for linearly-elongated speech when presented in stationary noise, but significant gains for

the same speech in the presence of both competing speech or speech-shaped noise whose envelope

was modulated by that of the competing speech. However, it was unclear whether the benefit

was due to the net availability of more phonetic information due to the dips in the masker, or

to a difference in modulation rates between the target and masker speech. This chapter focuses

on speech rate that is expected to impact both intelligibility and listener preferences.

Traditionally, in experiments, a small number of experimenter-chosen rates is used [e.g.

in Nejime and Moore, 1998]. However, a different approach in which listeners are allowed to

control the stimuli rate has been also used. In Zhao [1997], listeners could modify the auditory

speech rate by clicking the on-screen buttons ‘Faster’ and ‘Slower’ for making speech faster

or slower, respectively. In Piquado et al. [2012], the presentation of narratives interrupted at

periodic intervals and participants were allowed to pause before initiating the next segment.

Both studies concluded that when the listeners controlled for the stimuli, speech comprehension

improved. Novak III and Kenyon [2018] used an on-line speech dilation technique [Novak III

et al., 2014] to allow listeners to modify speech rate in real-time using an on-screen slider bar.

In that study, listeners were asked to fine-tune the rate of a speech signal in varying levels of

background noise. They tested listener intelligibility of the preferred and unmodified speech

rates and showed that as noise level increased, decreased speech rates were preferred.

The study in this chapter extends the previous research by investigating the impact of

different masker types and masker modulation rates on listener preferences, while also allowing

listeners to change speech rate in both directions (faster and slower). As per Cooke and Aubanel

1Portions of the work described in this chapter were published as a paper in Interspeech 2020 proceedings
[Simantiraki and Cooke, 2020].
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[2017] results for the speech-shaped noise, it is hypothesised that if listeners’ choices are based

on intelligibility, speech rate might not vary with regard to the noise level since slower speech

rate was not beneficial to intelligibility. Also it is hypothesised that for lower variations of

the speech-modulated masker, listeners will choose faster speech rates. Elongated masker’s

‘valleys’ may function as the listening in the dips phenomenon (i.e. pull out and stitch together

speech pieces from momentary masker’s dips). The intelligibility gains of this phenomenon has

been previously studied [Miller and Licklider, 1950; Peters et al., 1998; Füllgrabe et al., 2006].

The target speech was linearly-elongated so the durational modifications to be independent

from masker fluctuations. This is in contrast to local modifications of duration for minimising

energetic masking for which apriori knowledge of the masker is necessary. Listeners are able to

control the speech rate using the SpeechAdjuster (see chapter 4). Listeners changed speech

rate in an open-ended adjustment phase, followed by a fixed length test phase (sec. 5.3). In

separate conditions, listeners adjusted and identified speech in quiet, speech-shaped noise, and

speech-modulated noise (sec. 5.2).

The research questions addressed in this chapter are: for the stationary noise, does speech

rate vary with regard to the noise level; for the fluctuating noise, do listeners choose a different

speech rate than that of the masker?

5.2 Methods

5.2.1 Listeners

Eighteen native Spanish listeners (15 females) aged 18-23 (mean age of 19.9 years; SD =

1.4 years) participated in the experiment. All passed an audiological screening with a hear-

ing level better than 25 dB at frequencies in the range 125 − 8000 Hz in both ears. Listeners

were paid 20 euros for their participation.

5.2.2 Stimuli

Speech material

The speech material was drawn from an open source Spanish-words corpus [Tóth et al., 2015].

This corpus consists of 3968 high frequency Spanish words, spoken by four talkers, two male

and two female. The words were in a read speaking style and each one consisted of up to three

syllables (e.g. ‘abierta’ which means ‘open’ in English). For the experiment, the words uttered

by one of the female talkers were used.

Speech morphing

Linear elongation/compression was employed and all rate morphing was carried out using

TANDEM-STRAIGHT [Kawahara et al., 2008], a version of the STRAIGHT vocoder [Kawa-

hara et al., 1999]. The TANDEM-STRAIGHT framework deconstructs an input speech into

three parameters, modifies, and reconstructs a speech signal based on the source-filter model.

Twenty-two different speech rates were available for listeners to choose covering the range

from 2.5 times slower than the original to 2.5 times faster, with speech rates located at equally-

spaced points on a multiplicative inverse scale. Since the target speech material was read speech

and hence not as fast as casual speech, we determined on the basis of informal listening tests
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to deploy 15 steps with the speech rate faster than the original, one at the original rate, and

6 with rates slower than the original. Words were independently normalised to have an equal

root mean square level after rate modifications, on a 20 ms half-Hamming ramps were applied

to reduce onset/offset transients.

Stimuli

Stimuli were presented in quiet and in 8 additive noise masking conditions: speech-shaped noise

(SSN) at SNRs of 0, +6 and +12 dB, and speech-modulated noise (SMN) for 5 envelope mod-

ulation rates, mixed with speech at +6 dB SNR. Maskers were based on concatenated Spanish

sentences from the Sharvard corpus [Aubanel et al., 2014], spoken by a female talker. Maskers

were unrelated to the target speech stimuli described above. The SSN masker resulted from

passing random uniform noise through a filter with the long-term spectrum of the concatenated

sentences. The SMN masker was generated by multiplying the SSN masker by the instantaneous

envelope of the concatenated sentences. In addition to the original rate, envelope modulation

rates 1.4 and 2.5 times faster, and 1.7 and 2.5 times slower than the original were tested (rates

of 1.4 and 1.7 correspond to equidistant steps from the original rate on the 22-point scale used

here). In the masked conditions SNRs were computed by concatenating stimulus words without

gaps.

5.3 Procedure

For the experiment, SpeechAdjuster was used. The experiment was blocked into the 9

conditions described above. Across participants, block order was counterbalanced using a Latin

square design. Each block contained 22 trials. A trial started with a speech rate from the 22

available randomly permuted. The trial consisted of an adjustment phase followed by a test

phase. During the adjustment phase, words were presented in a randomised order with 500 ms

of intervening silence. Participants were instructed to choose an optimal value of speech rate

that allowed them to recognise as many words as possible. Participants were able to control

speech rate using the up/down arrow keys to speed up or slow down respectively. Changes in

speech rate was applied to the next and subsequent words. The adjustment phase continued

for as long as participants required (which averaged 7.04 s; SD = 5.59 s). Having finished their

choice of speech rate, participants were able to proceed to the test phase by clicking an on-screen

button. Participants were not allowed to proceed to the test phase until at least five seconds

of the adjustment phase had elapsed. In the test phase, participants were presented with

words spoken at the speech rate chosen in the adjustment phase, under the same experimental

condition as they had experienced during the adjustment phase. Participants had to identify

words during the test phase and type them into an on-screen text input box. During the test

phase of a single trial, five test words were presented consecutively and across conditions no

word was repeated. In total, listeners responded to 990 unique words (9 conditions x 22 trials

x 5 test items) during the experiment.

Prior to the main experiment, listeners were given written guidance which encouraged them

to think of the task in the same way as choosing an appropriate volume for the television: too

quiet makes it difficult to understand the words, and too loud is uncomfortable. They then

underwent a familiarisation phase consisting of 5 trials in each of Quiet, SSN and SMN (at a

single SNR for the masked conditions). The entire experiment lasted around two hours, and
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participants were able to take a break between each block. All instructions provided to the

listeners were given in Spanish. Stimuli were presented through Sennheiser HD380 headphones

at a fixed presentation level while listeners were seated in sound-attenuating booths in a purpose-

build speech perception laboratory at the University of the Basque Country (Alava Campus).

For evaluating intelligibility, scores were computed based on the number of keywords cor-

rectly recalled in each trial (5 test words). Prior to scoring, all accents over vowels were removed.

For example, both ‘árbol’ and ‘arbol’ were considered as correct responses for the word ‘árbol’.

5.4 Results

Speech rate preferences

Figure 5.1 plots speech rate preferences, intelligibility and the time spent in the adjustment

phase for the 9 conditions. In quiet, listeners preferred to listen to speech 1.2 times faster than

the original rate, and at 97.7%, word scores were close to ceiling. Listeners spent 5.4 s during the

adjustment phase in this condition, close to the 5 s minimum permitted. Compared to quiet, in

noise listeners selected slower speech rates and spent longer on adjustment. Even at the various

‘optimal’ speech rates (i.e. those most-frequently selected) for the different masking conditions,

listeners did not achieve intelligibility scores as high as those in the Quiet condition. Within

each masker type (SMN, SSN) adjustment time was longer for conditions resulting in lower

intelligibility. However this was not true across masker types; for example, less time was spent

adjusting in the 0 dB SNR condition for the SSN masker than in some of the SMN conditions

even though intelligibility was substantially lower in the 0 dB SNR SSN condition.

Separate one-way within-subjects ANOVAs conducted to compare the effect of condition

on each of the three measurements indicated significant main effects on speech rate preferences

[F (8, 136) = 9.1, p < 0.001, η2 = 0.09], adjustment time [F (8, 136) = 6.1, p < 0.001, η2 = 0.14]

and intelligibility [F (8, 136) = 124.7, p < 0.001, η2 = 0.83]. Post-hoc comparisons using the

Tukey HSD test indicated that all conditions, relative to the Quiet baseline, resulted in signif-

icantly lower intelligibility, longer adjustment time (except for SSN at +6 and +12 dB SNR),

and slower preferred speech rate (except SMN at the 2.5 times slower modulation rate). For

the SSN conditions, these comparisons showed increasingly higher intelligibility with increasing

SNR and for the adverse noise level significantly higher adjustment time and slower rate com-

pared to the less noisy conditions. For the SMN conditions, the two slower masker modulation

rates led to significantly higher intelligibility than the faster modulation rates. Significantly less

time was needed to adjust speech rate when the masker’s modulation rate was different than the

original. Adjustment time in the face of modulated maskers was longer than for the stationary

maskers apart from the least adverse SSN condition. Finally, listeners preferred significantly

faster speech when the masker modulation rate was slow, with a tendency towards the converse

when the masker modulation rate was fast.

Listener preferences and intelligibility

The probability with which each of the 22 permitted speech rate values was preferred by listen-

ers, along with the percentage of keywords correctly recalled at that speech rate, is presented in

Fig. 5.2 for the Quiet and SSN conditions and in Fig. 5.3 for the Quiet and SMN conditions (the

Quiet condition is repeated for convenience). At the most adverse SSN condition (0 dB SNR) it
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Figure 5.1: Speech rate preferences (upper plot), intelligibility scores (middle plot) and adjust-
ment time (lower plot) are depicted. Dashed vertical lines separate the SMN, Quiet, and SSN
conditions. The solid horizontal line in the upper plot indicates the original speech rate. Error
bars represent ± one standard error.

is notable that those listeners who chose faster rates produced lower intelligibility scores, but in

general intelligibility scores were relatively uniform across speech rates, though not necessarily

at ceiling levels. Nevertheless, listeners showed distinct preferences for certain speech rates as

manifested by the relatively sharply-peaked preference distributions.

Inter-rater reliability was determined using two-way intra-class correlation [McGraw and

Wong, 1996] to assess the degree that listeners provided consistency in their mean speech rate

choices across conditions, using the icc function of irr package in R. The resulting intra-class

correlation value of 0.879 was in the ‘excellent’ range [Cicchetti, 1994], indicating that listeners

had a high degree of agreement in selecting preferred speech rates.

Initial speech rate preference versus adjustment time

Repeated-measures correlation via the rmcorr package in R [Bakdash and Marusich, 2017]

showed that the initial speech rate value of each trial was positively correlated with the final

preference (i.e. a fast initial rate tended to lead to fast speech at the end of adjustment, and

vice versa) [p < 0.001] and negatively correlated with adjustment time [p < 0.001]. In other

words, when the initial speech rate was far from the ‘optimal’ value (considered as the mean

value chosen by the cohort of listeners at the end of adjustment), listeners tended not to tune

it all the way to this value.
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Figure 5.2: Probability of each speech rate value preference (histogram, left axis) for the Quiet
and SSN conditions, along with the percentage of words recalled correctly (black dots, right axis).
Error bars represent ± one standard error. The black line denotes the step that corresponds to
the speech rate of the original speech signal.

Speech adjustments across trials

Figures 5.4 and 5.5 show the results of the three measurements (intelligibility, listener prefer-

ences, adjustment time) as a function of trial presentation order for the SMN and SSN maskers,

respectively (the Quiet condition is repeated for convenience). For each participant, speech

rate preferences and adjustment time were standardized (using z-score) across all conditions, in

order to reduce individual trends such as slow/fast responders or always choose one response

side i.e. low variability of chosen speech rate. For the Quiet condition, Spearman’s rank-order

correlation showed a negative correlation between trial number and adjustment time and be-

tween trial number and preferred rate [for both rS = −0.1, p < 0.05]. This indicates that

participants responded faster and chose faster rates when they were more familiar with the task

while intelligibility was at ceiling regardless of trial number. For the SMN conditions, only the

adjustment time of the unmodified and 2.5 times faster modulation rate conditions decreased

monotonically with increased trial number [rS = −0.1, p <= 0.05]. For the 2.5 and 1.7 times

slower modulation rate conditions, listeners preferred slightly slower speech rates with increased

trial number [rS = 0.1, p <= 0.05] while for the 2.5 times faster modulation rate, slightly faster

[rS = −0.1, p = 0.05]. The results for the speech rate preferences across conditions showed that

listeners preferred faster speech when the masker modulation rate was slow and the opposite

when the modulation rate was fast. Combining this finding with the trial order results reveals

that listeners decided to choose less extreme steps when they became more familiar with the

task. For the SSN, the only monotonic relationship was revealed for the 0 dB SNR condition

in which listeners’ performance was slightly improved [rS = 0.1, p = 0.05] with increased trial

number.
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Figure 5.3: As Fig. 5.2 but for the Quiet and SMN conditions.

5.5 Discussion

In this chapter, listeners’ speech rate preferences in stationary and temporally-modulated noise

were explored. Findings revealed distinct speech rate preferences that showed up even with

intelligibility at ceiling. Such preferences reveal supra-intelligibility aspects of speech rate,

suggesting that in stationary noise listeners prefer a slower speech rate as noise level increases,

while for fluctuating noise they prefer faster speech when masker modulation rate is slow and

vice versa. These findings are in line with the real-time speech rate modification study of

Novak III and Kenyon [2018], whose listeners chose to expand speech at adverse SNRs in the

face of a 4-talker babble masker even though such preferences did not improve intelligibility.

My findings also revealed that the preferred speech rate in Quiet was faster than any of the

masking conditions. This might be due to the simple procedure of adapting to faster speaking

rates in noise-free conditions [Adank and Janse, 2009].

RQ1: Does speech rate vary with regard to the noise level?

For stationary noise, it has been argued [Cooke and Aubanel, 2017] that linear elongation

of speech resulting from a slower speech rate is not beneficial to intelligibility because it merely

leads to elongation of those ‘glimpses’ of speech that escape masking rather than revealing

additional speech information. The findings in this chapter support this claim: in general,

intelligibility did not improve for listeners who chose slower speech (Fig. 5.2). The fact that

listeners preferred slower rates in more adverse stationary noise might indicate a desire to reduce
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Figure 5.4: The average of the z-score normalization of the listeners’ preferences and adjustment
time and the average of the percentage of the intelligibility scores across trials. Each row shows
the results of the different masker’s modulation rates of the SMN. Shaded areas correspond to
the ± one standard error. Asterisks denote the significant correlation between the measurement
and the trial number.

listening effort since the listener has more time to process speech, or could reflect an attempt

to reproduce typical speech rates experienced by participants in real-world noisy conditions

which are characterised by slower speech [Tartter et al., 1993]. It is supported by Novak III

and Kenyon [2018] who found a clear listener preference for decreased rates of speech as noise

increased while degraded performance was revealed relative to unmodified speech in the same

conditions. Thus, listener preferences criteria are above and beyond word recognition.

RQ2: Do listeners choose a different speech rate than that of the masker?

Concerning the speech-modulated noise conditions, listeners tended to prefer a target speech

rate that contrasted with that of the masker. When speech is interrupted, listeners have the

ability to track the speech and piece together the phoneme pieces in order to understand the

speech [Miller and Licklider, 1950; Howard-Jones and Rosen, 1993]. Previous studies have

showed that performance in steady-state noise is lower than in a single competing talker [Miller,

1947; Festen and Plomp, 1990]. It is attributed that the benefit in the latter condition is due

to the dips which allows the listener to recognise the target speech supported by the following

finding: at +6 dB SNR the intelligibility score for the SSN was lower than that for all the
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Figure 5.5: As Fig. 5.4 but for the SSN masker.

SMN variations. Additionally, Cooke and Aubanel [2017] found that in fluctuating masking

condition, the artificial decrease of speaking rate is beneficial since by elongating the utterance,

the amount of spectral glimpses increases. The effect of the acoustic and lexical factors on speech

intelligibility vary with regard to the masker’s modulations [Fogerty et al., 2021]. Additionally,

differences in modulation rate might act as a cue for segregating the two signals, a possibility

supported by that intelligibility improves when the fluctuation rates of target speech and the

background speech masker [Gordon-Salant and Fitzgibbons, 2004] are mismatched. A contrast

in modulation rates might help in a number of ways. One is to allow a target to be tracked

through time by sequential grouping of those speech fragments with similar rates. Indeed, some

listeners in Novak III and Kenyon [2018] reported that their speech rate choices helped them to

track the target speaker. A complementary possibility is that listeners manipulate speech rate in

order to promote energetic masking release. For example, a faster rate potentially allows more

evidence of the target to ‘fit’ in the longer temporal dips of a masker with slow modulations.

There is some evidence that talkers adopt such a strategy when ‘listening-while-speaking’ [Cooke

and Lu, 2010]. Apart from the faster speech rates, the potential longer ‘glimpses’ for the slower

modulation rates of the masker benefited the listeners in terms of word recognition and response

time (i.e. higher intelligibility scores and faster adjustment times).

Listeners spent more time adjusting the target speech rate in the presence of

temporally-modulated noise.

The modulated nature of the masker allows varying amounts of target speech energy to be

audible at different points, and it is possible that this causes additional cognitive load for the

listener and makes it harder to predict when to listen. In Larsby et al. [2005], more perceived

effort was reported for noises with a high degree of temporal variation at a relatively high SNR

(+10 dB). In Krueger et al. [2017], at low SNRs listeners rated stationary masking as more
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effortful than fluctuating noise, but the difference between the two types of masker was reduced

or eliminated with increasing SNR, leading to the suggestion that peaks in the fluctuating

masker might have a negative impact on listeners in less noisy conditions. Finally, for the Quiet

condition, listeners spent the least time for adjusting the speech rate. This can be explained

from the fact that listeners use effective cognitive strategies which allow them to adapt quickly

to time-constrained speech [Dupoux and Green, 1997]. Also Koch and Janse [2016] examined

the effect of speech rate on listening effort in quiet condition and results revealed that differences

in speaking rate did not affect listening effort using pupil dilation measures.

Preferred rate was faster than the original speech for all conditions.

Finally, we note that although listeners preferred reduced speech rates in adverse conditions,

in all conditions the mean rate chosen was faster than the original speech (Fig. 5.1). This is

most likely due to the use of read speech, which is typically somewhat slower than normal or

casual speech [Koopmans-van Beinum, 1991]. The findings of this study can be relevant for

speech enhancement algorithms to improve speech based on speech rate preferences for different

masking conditions.
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Chapter 6

Listener preferences -

Fundamental frequency

6.1 Introduction

Speakers often adopt different speaking styles when communicating in order to adapt their

voice to the current situation. Such situations include talking in a noisy environment and

communicating with a specific group of interlocutors (e.g. speech directed to infants, the

hearing-impaired or non-native listeners). Among other features that a talker changes in such

situations are features related to prosody e.g. fundamental frequency (f0). Prosody plays an

important role in communication [Cutler et al., 1997; Wagner and Watson, 2010], since it can

reveal the talker’s intention and emotions, while it also functions as an attentional cue and allows

salient information to be emphasised. A higher f0 is observed with increasing vocal intensity

[Summers et al., 1988; Bond and Moore, 1990], or when speaking to infants [Bradlow et al.,

2003] or pets [Burnham et al., 2002], while no such increase has been found when speaking to

non-native listeners [Uther et al., 2007]. Though f0 characteristics vary across natural speaking

styles [Boril and Pollak, 2005; Mayo et al., 2012] and amongst different speakers [Bradlow et al.,

1996; Barker and Cooke, 2007], intelligibility benefits related to f0 are currently unclear.

Many studies have focused on the impact of f0 on intelligibility. Previous research has shown

that, under quiet and stationary noise conditions, changes in mean f0 alone do not facilitate

intelligibility [Assmann et al., 2002; Lu and Cooke, 2009a]. However, the absence of f0 variation

can lead to poorer intelligibility [Wingfield et al., 1984; Laures and Weismer, 1999; Laures and

Bunton, 2003; Watson and Schlauch, 2008]. Different studies have shown that the advantage of

f0 is more evident in the presence of a competing talker [Bird and Darwin, 1998; Assmann, 1999],

since f0 modifications benefit the segregation of target and background sources. Increases in

mean f0 difference between target and competing talker lead to improvements in identification

accuracy [Brokx and Nooteboom, 1982; Bird and Darwin, 1998; Assmann, 1999]. Varying f0

with time might also help intelligibility, since momentary differences in f0 occur [Bregman,

1990]. However, in Assmann [1999], f0 variation did not result in intelligibility improvements.

Rather less research has looked at listener preferences. In Assmann et al. [2006], listeners

judged the naturalness of frequency-shifted (f0 and formant frequency shifts) sentences in quiet

by adjusting a graphical slider on a range from highly unnatural to definitely natural. Listeners

judged sentences as more natural when f0 and formant frequencies were ‘matched’ (low f0
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with low formant frequency values and vice versa), similar to natural speech. In Assmann

and Nearey [2007], listeners had to adjust f0 and formant frequencies to their preferred levels

using a self-paced adjustment procedure. Listeners adjusted either mean f0 or mean formant

frequencies of vowel triads (vowel triads were formed by concatenating the vowels /i/, /a/, /u/

extracted from /hVd/ words, e.g. hod) by moving the computer mouse to the left for lower

f0 (or formant frequencies) and to the right for higher. Listeners were asked to search for the

most natural-sounding voice. The results suggested that listeners preferred an f0 and a pattern

of formant frequencies similar to those of natural speech.

In this chapter, we test two main hypotheses. The first hypothesis is that if naturalness is

a critical factor for the listener preferences [Assmann et al., 2006; Assmann and Nearey, 2007],

listeners will choose the f0 features to be close to those of the original speech. The second

hypothesis is that in the presence of competing speech listeners will choose the f0 features to

differ from the maskers since this can lead to improvements in identification accuracy [Brokx

and Nooteboom, 1982; Bird and Darwin, 1998; Assmann, 1999]. This chapter describes how

SpeechAdjuster was used to explore listener preferences in a choice of f0 characteristics.

Two experiments were conducted to investigate listeners’ mean f0 and f0 variation preferences

in energetic (Expt. I sec. 6.2) and informational (Expt. II sec. 6.3) maskers. This extends the

work of Assmann and Nearey [2007] to preferences in noise using sentence material (meaningful

sentences instead of vowel triads).

The main questions addressed in the current chapter are: (1) do listeners choose different

modifications of f0 features (mean and variation) for different conditions; and (2) do listeners

make their choices based on aspects beyond intelligibility?

6.2 Experiment I: Listeners’ f0 preferences for speech pre-

sented in conditions of energetic masking

6.2.1 Methods

Listeners

Seventeen Greek monolingual listeners (10 female) participated in the experiment. All were

young adults in the age range of 19− 33 (mean 24.2 years; S.D. 3.8 years). Listeners reported

no known hearing problems. Thirteen of the participants reported good to excellent knowledge

of English and nine reported extensive music studies. An incentive of 10 euros was given for

participation.

Stimuli

Sentence material

A Greek corpus [Sfakianaki, 2019] provided sentence material for the experiments. The corpus

consists of 720 semi-predictable sentences in modern Greek with a similar level of difficulty to

that of the original English Harvard sentences [Rothauser et al., 1969]. From this point on,

the corpus will be referred as GrHarvard. The number of words in a sentence varies from 5

to 9. Each sentence contains exactly 5 keywords. For the sentence design, meaningful words

resembling everyday language were used. An example is ‘Θα κόψω το φρούτο σε τρία ίσα

72



μέρη.’ (‘I will cut the fruit into three equal pieces.’); the keywords are indicated with bold

letters.

Speech material

A 31-year-old native Greek male talker was recruited to read the complete GrHarvard cor-

pus. The talker was asked to read each sentence at a normal speaking rate and was able to

repeat any utterance if necessary. The talker’s original mean f0 (computed using all the voiced

segments of the 720 sentences) was around 130 Hz (S.D. 20 Hz).

The recordings took place in a sound studio at the Speech Signal Processing Laboratory,

University of Crete, in Heraklion, Greece. The sentences were recorded using Pro Tools 12

software with an RME Fireface 400 recorder. A Neumann KMS104 handheld vocal condenser

microphone (cardioid directional polar pattern) was placed on a desktop microphone stand, on

a table at a fixed distance of 15 cm from the talker’s mouth. The recordings were made at a

sampling rate of 44.1 kHz. Sentences were segmented using an amplitude-based pause detector

based on the normalised envelope of the signal. The algorithm’s effectiveness and the quality

of the recordings were screened manually. More specifically, signals were checked for clipping,

if utterances were properly split, and if all utterances were of the same speaking style. In cases

of recordings with issues, the utterances were recorded again. The recorded sentences had a

mean duration of 2.8 s (S.D. 0.3 s). For the experiments, spoken phrases were downsampled to

16 kHz and a 20 ms half-Hamming ramp was applied at the beginning and end of each record-

ing. Finally, each stimulus was normalised to the same root-mean-square level.

Stimulus preparation

In the experiment, listeners were allowed to perform modifications on the mean f0 for half

of the trials, while for the remaining trials they were allowed to modify the f0 variation of the

target speech. The talker’s original f0 was modified (f0
′) using the following formula (eq. 6.1).

f0
′ =

f0 − µ
σ

· σ′ + µ′ (6.1)

where µ and σ are the mean and standard deviation of f0, respectively. The desired mean

and standard deviation of f0
′ are denoted by µ′ and σ′. Changes in mean f0 were performed

with a simple shift in the entire contour, keeping the f0 variation constant (σ′ = σ). Similarly,

when changing the f0 variation, mean f0 was kept constant (µ′ = µ) as described below. Pitch

modification was performed using PSOLA [Charpentier and Stella, 1986].

For both features tested (mean f0 or f0 variation), there were 25 available steps amongst

which the participant could choose. The same number of steps was used so that the participants

would not be aware which feature was being tested. Each block consisted of trials testing both

features. Previous research has showed that listeners prefer f0 values close to the original voice

[Assmann and Nearey, 2007]. Using exponential growth, listeners were provided with more

modification options close to the original pitch. Thus, the increments to the talker’s original

mean f0 values followed an exponential curve, as shown by function 6.2.

µ′ = µ+ (m+ k ∗ (1 + r)t) (6.2)
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where m = −65 is a correction term, k = 250 is the starting value and r = −0.1 is the growth

rate of the values as t = [0 : 1 : 24] changes in discrete intervals with 25 steps. The terms m

and k were chosen so that the mean f0 of the specific talker would not attain values lower than

80 Hz or very high values that would result in a greatly unnatural voice. The upper plot of

Fig. 6.1 shows the f0 contour of an utterance for each of the 25 steps.
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Figure 6.1: f0 contours of the sentence ‘Οι φιγούρες από χαρτόνι φάνηκαν πίσω από τον μπερντέ’.
The mean f0 (upper plot) and f0 variation (lower plot) modifications of the 25 steps are depicted.
The red lines denote the original mean f0 value (step= 14) and to the original f0 variation value
(step= 11)

The changes in f0 variation were derived as a consequence of stretching the f0 range. The

f0 range was expanded based on the following function (eq. 6.3).

σ′ = σ · (δ + k ∗ (1 + r)t) (6.3)
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where δ = 1e− 6 is an offset set to a small non-zero value to prevent f0 variation going to zero,

k = 10 is the starting value and r = −0.2 is the growth rate of the values as t = [0 : 1 : 24]

changes in discrete intervals with 25 steps. The lower plot of Fig. 6.1 shows the f0 contour of an

utterance for each of the 25 steps. Any f0 values lower than 75 Hz or higher than 500 Hz were

mapped linearly in the range [75, 80] or [450, 500], respectively. All f0 modifications and values

selected for the formulas were chosen based on pilot experiments to ensure that the speech

produced did not have any audible artefacts or sound unnatural.

The sentences were presented in quiet, or mixed with speech-shaped noise (SSN) at −3, 0

and +3 dB SNR. The masker was generated by filtering random uniform noise with the long-

term spectrum of the 720 concatenated sentences (without gaps) of the GrHarvard corpus. The

desired SNRs were obtained by rescaling the noise. From the GrHarvard corpus, the sentence

IDs used in this experiment were 350 − 575 for the adjustment phase, 576 − 656 for the test

phase, and 714− 720 for the practice session.

Energetic masking measures

In order to examine the impact of f0 modifications on energetic masking, the extended glimpsing

model was used [Tang and Cooke, 2016]. The extended glimpsing model computes the glimpses,

i.e. spectro-temporal regions, where the target energy exceeds the masker energy and augments

the original glimpsing model by taking into account the absolute hearing level and durational

changes, and by compressing the output values into the range [0− 1] (Fig. 6.2).

A new measure was introduced for determining the glimpse distribution of an utterance

across frequencies (DGAF). Specifically, DGAF is the mean of glimpses across the time series

of an utterance for each different frequency band (Fig. 6.3), i.e. a form of ‘glimpse spectrum’.

This new representation gives the overall spectral picture of the masked speech signal and

provides more information than just the spectral tilt of the glimpses. It can be useful for speech

enhancement algorithms that do not perform enhancement at the phoneme level, such as the

Automatic Sound Engineer [Chermaz and King, 2020]. Specifically, it provides insights into

which speech spectral bands need to be enhanced under different noise conditions, or how the

energy could be redistributed in cases where it is concentrated in bands that are not perceptually

important for the listener.

Speech stimuli were normalised so the total energy before each modification to be equal to

the total energy after the modification i.e. same root-mean-square level. In other words, every

speech modification represents a tradeoff between the effect of the parameter being modified

(e.g. mean f0) and the effect on local SNR change in time-frequency. Thus, the choice reveals

the best ‘compromise’ step for the listener. The DGAF measure can help in interpreting this

‘compromise’ by computing the mean spectral glimpses that have been affected by the energy

reallocation after speech normalisation.

Statistical analysis tools

Since not all the data in the different conditions were normally distributed, non-parametric sta-

tistical tests were used. All tests were performed in Python using functions of the stats.scipy li-

brary (shown in parentheses below). Differences among the experimental conditions were tested

using the rank-based, Kruskal–Wallis H-test (kruskal). Post-hoc comparisons were performed

using Dunn’s test (posthoc dunn is part of the scikit posthocs library). For testing whether f0
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Figure 6.2: Black areas denote the speech energy that is predicted to have survived energetic
masking (glimpses). The glimpses are plotted for the phrase ‘Το κανό γλιστρά πάνω στις λείες
σανίδες’ (‘The canoe slides on the smooth planks’) in time (x-axis) and across 34 frequency
bands (34 equivalent rectangular bandwidths, ERB-rate scale, with filterbank frequency started
at 75 Hz, y-axis). The masker was SSN at −3 dB SNR.

m
ea

n
p

ro
p

or
ti

on
of

gl
im

p
se

s

Frequency band

Figure 6.3: Mean proportion of glimpses (y-axis) across the 34 frequency bands (x-axis) for the
phrase used in Fig. 6.2. The generated distribution is the glimpse distribution of an utterance
across frequencies (DGAF).
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preferences differed significantly from critical values (e.g. the talker’s original mean f0), the

one-sample Wilcoxon signed rank test (wilcoxon) was used. Holm’s correction [Holm, 1979]

was used to adjust p − values for multiple comparisons. Finally, the Kullback–Leibler diver-

gence [Kullback and Leibler, 1951] was used for measuring the distance between two probability

distributions (entropy).

6.2.2 Procedure

Each of the two experiments was divided into 4 blocks by condition (quiet and masked at 3

SNRs), with each block containing 5 trials in which listeners were allowed to modify mean f0,

and 5 trials for modifying f0 variation. The presentation order of the 10 trials was random.

Each trial consisted of an adjustment phase followed by a test phase. In the adjustment phase,

phrases (with a 0.5 s gap between sentences) were presented in random order. Participants had

to listen to at least 5 s of speech before proceeding to the test phase, but could listen to as much

speech during the adjustment phase as desired. In the test phase, intelligibility was evaluated

with a speech perception task using the f0 value chosen at the end of the adjustment phase.

Participants listened to two sentences separately during the test phase (the average of which

was used for the statistical analysis). Participants typed what they heard into an on-screen text

box. The tested phrases were presented only once. Prior to the experiment, all participants

underwent a task familiarisation phase consisting of 3 trials, 1 in quiet and 2 in noise.

For the experiment, SpeechAdjuster and instructions similar to the ones described in

chapter 4 were used. Listeners were asked to tune the speech in real time until they could

recognise as many words as possible. Real-time changes could be made using the up/down

keys on the keyboard while listening to sentences, so listeners would not to be influenced by

their previous choices. The task was explained as akin to choosing an appropriate volume for

the television: too quiet makes comprehension difficult, while too loud leads to discomfort.

All information was provided to the listeners orally and written in Greek. As explained in

chapter 4, the pair of arrows option does not give to the listener any visual indication of the

feature step changes. The only indication appears when an extreme step is reached, informing

the listener with an onscreen message.

A MacBook Air computer was used to run the SpeechAdjuster software. Stimuli were

presented through Sennheiser HD380 Pro headphones. The presentation level was not con-

trollable by listeners, but was preset at a level that pilot experiments indicated would be a

comfortable level of listening. Across participants, block order was counterbalanced using a

Latin square design. Experiments on average lasted around one hour and participants could

have a short break at the end of each block. The experiments took place in a sound-proof room

at the Speech Signal Processing Laboratory, University of Crete, in Heraklion, Greece.

To evaluate intelligibility, scores were computed based on the number of keywords correctly

recalled in each trial (2 test phrases x 5 keywords per phrase). Prior to scoring, all accents over

vowels were removed and letter/diphthongs with the same pronunciation were replaced with a

unique letter. Thus, keywords were considered as correct if all a word’s letters were matched.

6.2.3 Results

Listener f0 preferences

Figures 6.4 and 6.5 plot f0 preferences, intelligibility scores and the time spent in the adjustment
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phase for the 4 conditions (Quiet and SSN at 3 SNRs). For the mean f0 modifications (Fig. 6.4),

listeners did not show any particular trend across the different conditions, while as noise level

increased, intelligibility scores decreased and listeners needed more time in the adjustment

phase. For the f0 variation feature (Fig. 6.5), similar results are observed. However, it can be

observed that by controlling the f0 variation listeners were able to achieve higher intelligibility

score at 0 dB SNR (almost 100% correct responses) compared to the mean f0 modifications.

For both f0 features, listeners in general preferred speech with lower than the original mean

f0 and f0 variation and spent on average more than 20 s during the adjustment phase in all

conditions.
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Figure 6.4: Median values (black dots) of mean f0 preferences (upper plot), intelligibility scores
(middle plot) and adjustment time (lower plot) for the different conditions are depicted. The
horizontal line in the upper plot indicates the original mean f0 value. The error bars represent
± standard error of median. For the upper plot, statistics were computed based on the steps
(right axis) and values on the left axis show the f0 values corresponding to the steps.

A rank-based, Kruskal–Wallis H-test was conducted to compare the effect of conditions

on each of the three measurements and each of the two tested features. Results indicated

significant main effects only for adjustment time (mean f0 [H = 53.90, p < 0.001]; f0 varia-

tion [H = 64.11, p < 0.001]) and intelligibility (mean f0 [H = 67.15, p < 0.001]; f0 variation

[H = 82.71, p < 0.001]). Post-hoc pairwise comparisons for both f0 features indicated that

adjustment times were significantly different for the different conditions, except for Quiet and

+3 dB SNR. This was also true for the intelligibility scores for the mean f0 feature. Finally,

for the f0 variation feature, only the intelligibility at −3 dB was significantly different from the

other SNRs.
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Figure 6.5: As Fig. 6.4 but for the f0 variation feature.

Distribution of listener preferences vs intelligibility

The probability with which each of the 25 permitted mean f0 and f0 variation steps were pre-

ferred by listeners, along with the percentage of keywords correctly recalled, are presented in

Fig. 6.6 and 6.7, respectively. In quiet, listeners had distinct f0 preferences, even though intelli-

gibility was always at ceiling. For the most adverse condition (−3 dB SNR), it is noticeable that

those listeners who chose mean f0 or f0 variation close to the original had poorer intelligibility

compared to the rest. For mean f0, poorer intelligibility was also found for choices lower than

the original values. However, in general most listeners preferred a mean f0 slightly lower than

the original.the original values. However, in general most listeners preferred a mean f0 slightly

lower than the original.

A one-sided, one-sample Wilcoxon test was performed to test whether the talker’s original f0

mean and variation were significantly lower compared to that preferred by listeners for each dif-

ferent condition (in total 8 tests performed; 2 features x 4 conditions). In all conditions except

for f0 variation at −3 dB SNR, the preferred f0 steps were significantly greater than the talker’s

original f0 values (mean f0 in Quiet [T = 2003, p < 0.001]; +3 dB SNR [T = 2357, p < 0.001];

0 dB SNR [T = 2255, p < 0.001]; −3 dB SNR [T = 2478, p < 0.001] and f0 variation in Quiet

[T = 2390, p < 0.001]; +3 dB SNR [T = 2345, p < 0.001]; 0 dB SNR [T = 2384, p < 0.001]).

f0 choices and energetic masking

Figures 6.8 and 6.9 show the spectral areas where the speech energy survives energetic masking

for the different noise conditions and f0 feature steps. To better understand the importance
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Figure 6.6: Probability of each mean f0 value (histogram, left axis), along with the percentage
of words recalled correctly (black dots, right axis). The error bars represent ± standard error.
The black vertical line denotes the step that corresponds to the original mean f0.
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Figure 6.7: As Fig. 6.6 but for the f0 variation feature.

of the spectral energy distribution in relation to the listener’s preferences, the DGAF measure,

described in sec. 6.2.1 ‘Energetic masking measures’ was used. Heat maps with the DGAF of

the different feature steps were computed, which allows easier comparisons and may provide

insights for the interpretation of listener preferences. In the plots, the black colour denotes that

glimpses are more concentrated at those frequencies while white denotes the opposite.

The masker in this experiment was SSN, generated with the long-term speech spectrum of

the target talker. Thus, most of its energy is concentrated in frequencies below 1000 Hz. As
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Figure 6.8: The sum of the DGAF (see Fig. 6.3) of the 80 utterances from the test phase was
computed for the ERB-rate scale (in total 34; y-axis) and for each of the 25 mean f0 steps (x-
axis). Plots are normalised with the maximum value derived from the 3 conditions (subplots).
The colour bar denotes the mean amount of glimpses of all the utterances normalised with the
maximum value. The black colour implies that in this frequency area a greater amount of speech
energy exceeds energetic masking compared to the remaining areas, while the white colour means
the opposite. low and high on the x-axis denote the lowest and highest pitch, respectively. The
y-axis, shows the highest and lowest frequencies that correspond to the respective ERB-rates.
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Figure 6.9: As Fig. 6.8 but for the f0 variation feature. low and high on the x-axis denote the
lower and higher f0 variation, respectively.

expected, DGAF heat maps reveal that for lower pitch values, the target speech energy that

survives masking is greater for lower frequencies, while the energy in low frequencies decreases

as pitch increases (Fig. 6.8). Additionally, in Fig. 6.8, for the different steps it can be observed

that the energy that escapes masking is the greatest close to each step’s pitch value. This is true

for all steps of SNR +3 dB, while for the SNRs for which the noise level is greater than or equal

to the target speech level, this phenomenon declines for ERB-rates close to the target talker’s

mean f0. This corresponds to the ERB-rates 2 (106 Hz) and 3 (141 Hz), since the talker’s mean

f0 was around 130 Hz (step 14).
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mean f0 f0 variation
DGAF (ERB-rate 2) GPext DGAF (ERB-rate 2) GPext

SNR(dB)
−3 0.64 2.71 1.75 2.14
0 0.92 3.28 0.32 0.34

+3 0.43 1.46 2.04 2.13

Table 6.1: The symmetric Kullback–Leibler Divergence (KLD) derived from a comparison be-
tween the listener preferences distribution with DGAF of ERB-rate 2 distribution and GPext
distribution for the different SNRs. The lower the KLD value, the closer the two distributions
are. If the KLD value equals zero, the two distributions are identical.

For the f0 variation feature (Fig. 6.9), at low frequencies the number of values relative to

glimpses decreases (white regions) when f0 variation decreases (steps 11 − 25 or f0 variation

values 21.5 − 0.94 Hz). Step 11 was the original f0 variation. The plots show that, for higher

variations, the DGAF increases for ERB-rate 1 (75 Hz) and decreases for ERB-rates 2 and 3

(frequencies around 106 and 141 Hz, which are also the ERB-rates closest to the original pitch),

while the opposite happens for lower variations. This was expected, since high f0 variability

results in having more frequency components with low energy, in contrast to low variability,

which makes the peaks from harmonics more prominent. For the most adverse noise level,

listeners might have chosen the f0 variation of step 12, closest to the original, which allows

speech energy to escape.

For both features, as the noise level increases, the black areas on the plots are fewer, imply-

ing that a higher amount of target speech energy is masked by noise. For both features and for

all conditions, DGAFs in channels above the 15th ERB-rate (or 970 Hz) do not vary much with

regard to f0 modifications, implying that frequencies related to intelligibility (1000− 3000 Hz)

do not contribute to energetic masking release with the f0 modifications. The above observa-

tions suggest that the participants chose steps where more of the spectral energy of the speech

escapes than in the original steps. However, the chosen steps are close to the original pitch.

Modelling f0 preferences

For modelling the listener preferences, the DGAF closest to the listeners’ preferred step was

used (mean f0 step 16 or 117 Hz). The ERB-rate closest to the preferred step was the 2nd

(106 Hz). The DGAF was computed only for this channel and can be seen in Fig. 6.10a and

6.10b for mean f0 and f0 variation features, respectively. The extended glimpse proportion

(GPext) metric for the same utterances was also computed and plotted across the listeners’

preferences (Fig. 6.11a and 6.11b). GPext is an objective measure of energetic masking and a

good predictor of intelligibility [Tang and Cooke, 2016]. It can be observed that the DGAF for

the ERB-rate of frequency 106 Hz can describe listener preferences more precisely compared

to GPext. The symmetric Kullback–Leibler Divergence (KLD) test validated this observation

(Table 6.1). DGAF and GPext were computed using the actual sentences and noise segments

heard by listeners in the test phase of the experiment.

6.2.4 Interim discussion

In Expt. I, SpeechAdjuster was used to investigate listener preferences for f0 in the presence

of stationary noise. The masker in this experiment was generated to have the same long-term

spectrum as the target speech, implying a high degree of energetic masking. The results reveal
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Figure 6.10: Probability of each f0 value (histogram, left axis), along with the DGAF of the
2nd ERB-rate or 106 Hz (red dots, right axis). The error bars represent ± standard error. The
black vertical line denotes the step that corresponds to the original value.
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Figure 6.11: Probability of each f0 value (histogram, left axis), along with the glimpses (red
dots, right axis). The error bars represent ± standard error. The black vertical line denotes the
step that corresponds to the original f0.

which long-term spectral changes caused by f0 modifications were preferred by the listeners.

Our findings show that listeners always preferred mean f0 and f0 variation lower than those of

the original speech; they chose similar mean f0 values regardless of the condition; and they had

a tendency to choose higher levels of f0 variation for the most adverse condition compared to

quiet. Additionally, as noise level increased, intelligibility decreased and listeners spent more

time choosing their preferred f0 value.

Listeners showed a preference for similar mean f0 values, regardless of the condition. An

explanation might be that in stationary noise such modifications do not facilitate intelligibility.

In Lu and Cooke [2009a], mean f0 increments similar to those found in Lombard speech were

tested. The authors reported that the amount of energy moved to higher frequencies when the

mean f0 increase was small and insufficient to facilitate intelligibility. However, Barker and

Cooke [2007] showed a positive correlation between mean f0 and intelligibility for females for

sentences presented in SSN, while there was marginal evidence that male speakers produced

more intelligible speech with low mean f0. The latter marginal outcome might explain our

83



finding that listeners preferred in general to lower the mean f0. Additionally, this finding is

supported by Ryalls and Lieberman [1982] and Assmann and Nearey [2008], who found that

very high mean f0 values lead to poor vowel identification compared to lower f0 values, since

vowel identification in this condition might be influenced by the sparse sampling of the harmonic

spectrum. The impact of a sparse or dense sampling of the harmonic spectrum on different

mean f0 values for the different noise levels is observed in Fig. 6.8. The sparse sampling (higher

pitch values) compared to the dense sampling (lower pitch values) resulted in a small number

of regions with higher energy of the speech than that of the masker.

By controlling f0 variation, listeners maintained speech understanding at high levels, while

there was a tendency to choose speech with higher f0 variation in the most severe condition

compared to quiet (although this was not statistically significant). Laures and Bunton [2003]

examined the effect of a flattened f0 contour on the intelligibility of speech in white and babble

noise. Consistent with our finding, they showed that the lack of f0 variation has a significant

impact on overall speech intelligibility. Additionally, Watson and Schlauch [2008] examined f0

variation in white noise resulting in poorer intelligibility for speech with flattened f0 compared

to more variable unmodified f0. Our findings show that listeners did not just prefer those f0

variation values which lead to higher intelligibility, compared to what the extended glimpsing

model would predict (Fig. 6.11b).

6.3 Experiment II: Listeners’ f0 preferences for speech in

the presence of competing speech

6.3.1 Methods

Listeners

Twenty-three Greek monolingual listeners (4 female) were recruited. They were all young adults

in the age range of 19−27 years (mean 20.9 years; S.D. 2.3 years). Listeners reported no known

hearing problems. All but one participant reported good to excellent knowledge of English. Ad-

ditionally, 9 of the 23 listeners reported extensive music studies. An incentive of 10 euros was

given for participation. Two of the participants had also participated in Expt. I; however, the

experiments were conducted around 6 months apart and a different set of test phrases was used.

Stimuli

Sentences were presented in quiet, or mixed with competing speech (CS) at −10, −6, −3 dB

SNR. The masker was generated by concatenating all the 720 phrases with a gap of 0.5 s between

them. The desired SNRs were obtained by rescaling the noise. The speech material used in

this experiment was drawn from the same corpus described in Expt. I (sec. 6.2.1), but for this

experiment a different set of phrases was used, apart from the phrases in the practice session.

More specifically, the phrase IDs were 90−500 for the adjustment phase and 1−81 for the test

phase.

As in Expt. I, listeners in each trial were allowed to modify either mean f0 or f0 variation.

For the mean f0 modifications, 25 steps were available to listeners, which corresponded to the

first 25 half semitones starting from 75 Hz. Figure 6.12 shows the f0 contour of an utterance

for each of the 25 steps. The f0 variation steps were computed as for Expt. I (sec. 6.2.1).
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Figure 6.12: f0 contours of the sentence‘Οι φιγούρες από χαρτόνι φάνηκαν πίσω από τον μπερντέ’.
The 25 mean f0 steps are depicted. The red line denotes the original mean f0 value (step = 20).

6.3.2 Procedure

The procedure used in this experiment was identical to that in Expt. I (6.2.2).

6.3.3 Results

Listener f0 preferences

Figures 6.13 and 6.14 plot f0 preferences, intelligibility scores and the time spent in the ad-

justment phase for the 4 conditions (Quiet and CS at 3 SNRs). For the mean f0 modifications

(Fig. 6.13), listeners preferred lower mean f0 values in noise compared to Quiet conditions. As

the noise level increased, intelligibility scores decreased and more time was needed in the ad-

justment phase. Similar results were observed for the f0 variation feature (Fig. 6.14), with the

only difference that in noise, listeners preferred slightly higher f0 variations. In noise, listeners

preferred speech with lower than the original mean f0 value and in quiet almost equal to the

original, while for the f0 variation the opposite was seen. As in Expt. I, listeners spent on

average more than 20 s during the adjustment phase in all conditions.

A rank-based, Kruskal–Wallis H-test was conducted to compare the effect of condition on

each of the three measurements and each of the two tested features. Results indicated significant

main effects for adjustment time (mean f0 [H = 31.57, p < 0.001], f0 variation [H = 58.82, p <

0.001]), intelligibility (mean f0 [H = 143.83, p < 0.001], f0 variation [H = 180.90, p < 0.001])

and for the preferred step (mean f0 [H = 70.95, p < 0.001]; f0 variation [H = 19.30, p < 0.001]).

Post-hoc pairwise comparisons for the mean f0 feature indicated that all the pairs of noise levels

for intelligibility scores and for the adjustment time were significantly different, except for intel-

ligibility at −3 dB SNR and adjustment time at −6 dB SNR, which were statistically different

only from those in Quiet. For the preferred steps, only the Quiet condition differed significantly

from all noise conditions. Regarding the f0 variation, results indicated that the adjustment time

and preferred steps of only the Quiet condition were significantly different from the remaining

conditions. Intelligibility scores were statistically different for all pairs of conditions except for

−6 and −3 dB SNR.
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Figure 6.13: Median values (black dots) of mean f0 preferences (upper plot), intelligibility scores
(middle plot) and adjustment time (lower plot) for the different conditions are depicted. The
horizontal line in the upper plot indicates the original mean f0 value. The error bars represent
± standard error of median. For the upper plot, statistics were computed based on the steps
(right axis), while values on the left axis show the corresponding to the steps f0 values.

Distribution of listener preferences vs intelligibility

The probability with which each of the 25 permitted mean f0 and f0 variation levels were

preferred by listeners along with the percentage of keywords correctly recalled are presented

in Fig. 6.15 and 6.16, respectively. In Quiet, listeners had distinct f0 preferences even though

intelligibility was always at ceiling. For the conditions in noise, it can be observed that those

listeners who chose mean f0 or f0 variation close to original had poorer intelligibility. Except

for the quiet condition, listeners’ preferences are widely spread across the available modification

levels especially for the mean f0 feature.

A one-sided, one-sample Wilcoxon test was used to test whether the preferred steps were

significantly different from the original speech step. For the mean f0 feature, results showed that

only in noise the preferred steps were significantly lower (lower pitch) than the original (−3 dB

SNR [T = 598, p < 0.001]; −6 dB SNR [T = 681, p < 0.001]; −10 dB SNR [T = 452, p < 0.001]).

For the f0 variation, results showed that only in Quiet listeners preferred significantly lower f0

variation (higher step) than the original [T = 4258, p < 0.001].

f0 choices and energetic masking

To examine the impact of f0 modifications on energetic masking, the same procedure as in Expt.
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Figure 6.14: As Fig. 6.13 but for the f0 variation feature.
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Figure 6.15: Probability of each mean f0 value (histogram, left axis), along with the percentage
of words recalled correctly (black dots, right axis). The error bars represent ± standard error.
The black vertical line denotes the step that corresponds to the original mean f0.

I was followed. Figures 6.17 and 6.18 show the sum of the DGAF values of all utterances in the

test phase for the mean f0 and f0 variation features, respectively. In line with SSN, it is observed

that for the competing talker masker, DGAF in channels above the 15th (or 970 Hz) do not
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Figure 6.16: As Fig. 6.15 but for the f0 variation feature.

vary much with regard to f0 modifications, implying that the frequencies related to intelligibility

(1000 − 3000 Hz) do not contribute to energetic masking release with these f0 modifications.

The competing talker’s mean f0 was around 130 Hz and the closest ERB channel to this is the

3rd one (141 Hz). As expected, in Fig. 6.17, it can be observed that the values in this channel

are smaller compared to the remaining channels for all noise levels. The difference diminishes

under less noisy conditions.
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Figure 6.17: As Fig. 6.8. The sum of the DGAF (see Fig. 6.3) of the 80 utterances from the
test phase was computed for the ERB-rate scale (in total 34; y-axis) and for each of the 25
mean f0 steps (x-axis).

The closest mean f0 step to the original is the 20th (approx. 130 Hz). The participants chose

a mean f0 step where more spectral energy of the speech is escaped compared to that escaped

for the original pitch.

For the f0 variation feature, listeners chose steps with higher variability for the masked
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Figure 6.18: As Fig. 6.17 but for the f0 variation feature. low and high on the x-axis denote
the lower and higher f0 variation, respectively.

conditions (step around 11, Fig. 6.14) than for the Quiet condition. In Fig. 6.18, it can be

seen that from step 11 and for higher f0 variation values (steps 1 − 11), the overall glimpses

are higher compared to those of lower f0 variation (steps 12 − 25). However, listeners did not

choose different values for the different conditions.

Modelling f0 preferences

From the heat maps, the DGAF of ERB-rate 1 (75 Hz) to 5 (221 Hz) varies greatly with regard

to the f0 modifications; thus, these ERB-rates were used for modelling the listener preferences.

The DGAF was computed for ERB-rates and can be seen in Fig. 6.19a and 6.19b for the mean

f0 and f0 variation, respectively. The GPext metric for the same utterances was also computed

and plotted across the listener preferences (Fig. 6.20a and 6.20b). It can be observed that the

DGAF values for ERB-rates 1−5 (75−221 Hz) can describe listener preferences more precisely

compared to GPext. The symmetric KLD test validated this observation (Table 6.2). DGAF

and GPext were computed using the actual sentences and noise segments heard by listeners in

the test phase of the experiment.

mean f0 f0 variation
DGAF(ERB-rate 1-5) GPext DGAF(ERB-rate 1-5) GPext

SNR(dB)
−10 0.84 1.06 0.28 0.22
−6 0.32 0.23 1.28 1.86
−3 0.38 0.33 0.36 0.39

Table 6.2: The symmetric Kullback–Leibler Divergence (KLD) derived from the comparison be-
tween the listener preferences distribution with DGAF of 1−5 ERB-rate distribution and GPext
distribution for the different SNRs. The lower the KLD value, the closer the two distributions.
If it equals zero, the two distributions are identical.

6.3.4 Interim discussion

In Expt. II, SpeechAdjuster was used to investigate listener preferences for f0 in the presence

of a competing talker. The informational masking in this experiment was extreme, since the
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Figure 6.19: Probability of each f0 value (histogram, left axis), along with the DGAF of the
1 − 5 ERB-rates (red dots, right axis). The error bars represent ± standard error. The black
vertical line denotes the step that corresponds to the original f0.
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Figure 6.20: Probability of each f0 value (histogram, left axis), along with the glimpses (red
dots, right axis). The error bars represent ± standard error. The black vertical line denotes the
step that corresponds to the original f0.

same talker was used for both target and masking voices. Brungart [2001] showed that highest

intelligibility of an utterance can be achieved when the target and masking utterances are

spoken by different-sex talkers and the least intelligible when the talker and masker are spoken

by the same individual. Thus, it was expected that listeners would choose the target talker’s

f0 characteristics to be highly different from the masker’s (towards the female pitch region)

in order to be able to disentangle the two talkers more easily. Contrary to our expectations,

our results revealed that listeners did not prefer values higher than the original pitch for the

masked conditions. As this observation holds for both experiments of this chapter, it will

be addressed further in the general discussion below. Specifically, our main findings are that

listeners preferred speech with a mean f0 similar to the original in quiet, but lower in noise;

a lower f0 variation for speech in Quiet compared to noise; while only for the Quiet condition

was the preferred f0 variation value lower than that of the original speech.

Regarding the listeners’ preference of lower pitch in noise, it is known that when the pitch
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of two simultaneous speakers differs, then they can be perceptually separated and recognised

separately. A tone can be perceived as separate when a low harmonic in a complex is mistuned

by more than 3% of the harmonic frequency [Moore et al., 1986]. It has been shown that when

two vowels are presented at the same time with different f0s, listeners identification accuracy

is improved [Scheffers, 1983]. Furthermore, previous studies have shown that increasing the

difference in pitch between target and background talkers helps to distinguish them, resulting

in increased intelligibility [Assmann, 1999; Brokx and Nooteboom, 1982]. Even for listeners

who chose the original pitch, intelligibility was not lost (Fig. 6.15 at −3 and −6 dB SNR). This

can be explained by the fact that natural mean f0 variations exist in the concurrent speech

streams, even if both come from the same talker, which might have facilitated the listener. In

our study, most of the listeners chose a mean f0 greater than 2 semitones below the original

(Fig. 6.13 upper plot). Darwin et al. [2003] tested how increases in f0 affect intelligibility when

listening to two sentences uttered by the same talker. They concluded that a difference in f0

greater than 2 semitones results in systematic improvements in performance.

Regarding the f0 variation results, in noise higher variation was chosen compared to the

Quiet condition. Increasing the target talker’s f0 variation has been found to facilitate intelli-

gibility for several reasons. First, momentary differences in f0 help segregate the two sources

[Bregman, 1990]. Coherent f0 modulation makes it easier to track a voice over time, since the

speech is perceived as coming from a single speaker [Nooteboom et al., 1978]. When both target

and competing speech derive from the same talker, by changing the target talker’s f0 variation,

the perceptual fusion and crossing pitch contours are reduced. Finally, enhanced pitch prosody

can help in speech recognition that is distorted by competing speech. Our results revealed that

for higher f0 variations, the energetic masking release in low frequencies is higher (Fig. 6.18).

6.4 General discussion

The aim of the experiments in this chapter was to explore listener preferences in the choice

of f0 in quiet, stationary noise and competing speech. The impact of f0 on intelligibility for

different maskers has been studied [Assmann, 1999; Lu and Cooke, 2009a], while it is not clear

if only intelligibility as a factor is adequate to cover listeners’ preferences on speech. For our

experiments, native-Greek listeners were recruited and SpeechAdjuster was used to collect

their responses. The stationary noise in Expt. I was generated using the same long-term

spectrum as the competing talker in Expt. II. Thus, the differences in listeners’ choices for

the common SNR condition (−3 dB) in the second experiment derive from the informational

masking imposed by the competing talker. For an SNR of −3 dB, the intelligibility of speech

masked by speech from the same talker was expected to be substantially poorer than when the

masking used speech-shaped noise. However, listeners’ f0 choices might have helped them to

acquire almost the same intelligibility scores for both maskers (median score for both maskers

was 80%). The preferred mean f0 step for the competing speech (106 Hz) condition was slightly

lower than that for the SSN (117 Hz). However, the two experiments for the mean f0 feature

cannot be compared directly, since the mechanism for computing the mean f0 steps was different

in each experiment. The same applies to the f0 variation feature. Listeners achieved quite

similar intelligibility scores for both maskers (median score for SSN was 80% and for CS 70%)

when choosing speech with a slightly more variable f0 for the competing speech (the difference

in variability was around 4.3 Hz). Specifically, for the stationary noise (Expt. I), listeners chose
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similar mean f0 and f0 variation values, lower than the original, regardless of the condition.

For the competing talker (Expt. II), listeners preferred speech with a similar mean f0 to the

original in Quiet, but a lower value in noise. For the f0 variation, lower values were chosen for

speech in Quiet compared to noise. The stimuli under the Quiet condition for the f0 variation

feature were identical in both experiments, and prompted similar responses. In general, results

showed distinct preferences, even in conditions with intelligibility at ceiling, while for some

conditions listeners’ adjustments helped them to maintain their intelligibility (i.e. for the f0

variation feature at 0 dB SNR for SSN, and for both features at −6 dB SNR for CS). Even

though the trend for the preferred f0 values was similar in both experiments; preferences in

noise were more evident in Expt. II compared to Expt. I. Finally, our findings are expected to

be language independent, since intrinsic f0 patterns are generally consistent across non-tonal

languages (for f0 vowel patterns [Whalen and Levitt, 1995]).

Listeners did not prefer to increase the mean f0 with higher noise levels (Fig. 6.4, 6.13), as

happens in Lombard speech, but instead they preferred speech with a lower f0 for both masker

types. This finding supports the idea that the increase in f0 observed in Lombard speech

might be a by-product of hyper-articulated speech (passive result of raising subglottal pressure

[Gramming et al., 1988]), leading neither to increased intelligibility, nor to being preferred

by listeners. Intelligibility benefits in Lombard speech might derive from other factors, such

as a flatter spectral tilt (flatter tilt in noise is also preferred by listeners, see chapter 7 and

Simantiraki et al. [2020]), changes in consonant-vowel energy ratio, and formant frequencies.

Even though preferences were not greatly different from the original pitch, there was a general

tendency to choose values lower than the original. A model based on the glimpsing model [Tang

and Cooke, 2016] was introduced to test the impact of speech with denser or sparser harmonics

on energetic masking. When the mean f0 is lowered, the number of harmonics increases and

becomes denser, thereby affecting the energetic masking by increasing the amount of speech that

escapes from masking at low frequencies, as was also revealed in our results (Fig. 6.8, 6.17).

It is known that harmonics are unresolved if they fall into the same equivalent rectangular

bandwidth of the auditory filter [Plack and Oxenham, 2005]. Thus, the steps of which more

glimpses exist at low frequencies are more likely to be preferred by listeners. Our results

revealed that listeners’ f0 preferences can be described precisely in terms of the number of

glimpses relative to the total of the utterance’s glimpses at low frequencies (Table 6.1 and 6.2).

Even though our results (Fig. 6.6, 6.7, 6.15, 6.16) show that there is a drop in intelligibility

for those listeners who chose f0 values close to the original, the majority of listeners might

have based their choices on criteria apart from intelligibility, such as naturalness. Since the

target talker was male (with mean f0 around 130 Hz), lowering the pitch might have sounded

more appropriate given his formant frequencies. Previous studies of listeners’ f0 preferences

have shown that if f0 is ‘matched’ with formants, then speech is considered as more natural

[Assmann et al., 2006] and is preferred by listeners [Assmann and Nearey, 2007], regardless of

whether it is lower or higher than the original pitch.
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Chapter 7

Listener preferences - Spectral

energy reallocation

7.1 Introduction

Amongst other speech properties that talkers naturally modify to promote audibility is the

speech energy in mid and high frequencies. Under various circumstances, such as when talkers

produce clear speech [Krause and Braida, 2004], Lombard speech [Summers et al., 1988; Junqua,

1993] or speech at a distance from the listener [Liénard and Benedetto, 1999], the level of

spectral components at higher frequencies is greater compared to that in conversational speech.

In Lombard speech the enhanced energy in the 1000− 4000 Hz region comes as a side-effect of

the enhancement of the higher formants’ amplitude and the flatter spectral slope [Garnier and

Henrich, 2014]. In Lu and Cooke [2008], an overall shift in the centre of gravity of energy from

lower to higher frequencies was found for speech produced by competing talkers, babble, and

stationary noise.

Although the observed energy reallocation strategies might be a passive effect of a talker’s

increased vocal effort [Lu and Cooke, 2009b; Garnier and Henrich, 2014], such shifts in spectral

energy are effective in enhancing intelligibility in noise [Skowronski and Harris, 2006]. Increased

energy in the 1000− 3000 Hz range was found to be one of the factors that makes clear speech

more intelligible than conversational speech [Krause and Braida, 2004].

Previous studies have explored the impact of different spectral energy reallocation methods

on intelligibility. Lu and Cooke [2009a] tested spectral tilt modifications and found that spectral

tilt flattening can lead to intelligibility gains in the presence of noise. In Tang and Cooke [2010],

five energy reallocation strategies were tested (3 based on equalising local SNRs to a fixed global

SNR, and 2 strategies of energy modification to a subset of frequency channels or changes based

on the local SNR). The investigators found that increasing the SNR of specific frequency bands

led to a large increase in intelligibility, but accompanied by a significant reduction in speech

quality. In Tang and Cooke [2012], modifications of energy reallocation by adding energy to

frequencies that are less likely to be masked resulted in intelligibility improvements in noise.

This chapter extends the previous research on intelligibility by investigating the impact of

enhancing or attenuating the energy of different frequency components on listener preferences

and intelligibility. Listeners were able to reallocate the speech energy by adjusting [1] spectral

tilt, [2] energy of certain spectral bands, [3] cut-off frequency of a high-pass filter, [4] cut-
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off frequency of a low-pass filter, [5] bandwidth of a band-pass filter, and [6] location of the

frequency band to enhance (Fig. 7.1). The features tested were divided up into two experiments.

A listener had the option to participate in only one or both experiments. In the first experiment

(Expt. I, sec. 7.2) listeners were allowed to adjust features [1] and [2]. In this experiment, the

magnitude of specific bands was changing. In the second experiment (Expt. II, sec. 7.3) features

[3] to [6] were tested, allowing the listeners to enhance different frequencies while maintaining

the band magnitude. Spectral modifications were carried out via SpeechAdjuster (chapter 4)

and tested for speech in quiet and in three levels of speech-shaped noise, with the constraint

to maintain the overall energy unchanged. Similar practices used in both experiments are

described in the first sections: i.e. speech material (subsection in sec. 7.2.1), statistical tools

(subsection in sec. 7.2.1), and procedure (sec. 7.2.2). Listener demographics, stimuli preparation

and results are described separately for each experiment.

[1]	spectral	tilt	

[2a]	spectral	band	(500-1000	Hz)	
energy	modification	

[2b]	spectral	band	(1000-2000	Hz)	
energy	modification	

[2c]	spectral	band	(2000-4000	Hz)	
energy	modification	

[3]	cut-off	frequency	of	a	high-pass	
filter	

[4]	cut-off	frequency	of	a	low-pass	
filter	

[5]	bandwidth	of	a	band-pass	filter	

[6]	location	of	the	frequency	
band	to	enhance	

energy	

frequency	

Figure 7.1: A visual-summary of the features tested in this chapter. The allowed user variations
are indicated with blue arrows.

In noise, it is expected that listeners will adjust speech in order to increase intelligibility.

One assumption, therefore, is that their choices will lead to enhancement of mid-frequencies and

spectral tilt flattening, so that as noise level increases, the enhancement will be greater and the

tilt flatter. The first research question is the following: do listeners choose to reallocate speech

spectral energy so to maximise intelligibility? Listener preferences might be also influenced

by other factors beyond intelligibility. Conditions in which intelligibility is almost constant,

such as the noise-free condition, should be investigated. Thus, the second research question

is: do listeners’ preferences show patterns that are independent of intelligibility? Finally, the

third research question is: do listeners’ preferences change in challenging conditions? Listeners’

preferences may change in a way similar to Lombard speech, where the level of background

noise affects speech characteristics related to the spectral energy.
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7.2 Experiment I: Effects of spectral tilt and spectral band

energy modifications on listeners’ preferences and in-

telligibility

7.2.1 Methods

Listeners

Thirty-five native Spanish listeners (30 females) aged between 18 and 34 years (mean 20.1; SD

2.6) were recruited. All listeners passed an audiological screening with a hearing level better

than 25 dB at frequencies in octave steps in the range 125 − 8000 Hz in both ears. Listeners

were paid 10 euros for their participation.

Stimuli

Speech material

Speech stimuli were drawn from the Sharvard Corpus [Aubanel et al., 2014]. It consisted of

Spanish sentences spoken by one male and one female native Spanish talker at a normal speak-

ing rate. The level of difficulty of this corpus is similar to that of the original English Harvard

Corpus. Each sentence contains 5 keywords: e.g. ‘El color gris está muy de moda’ (‘The

gray color is very fashionable’); keywords are indicated in bold. For the experiment, a male

voice was used as the target speech and a female voice for generating the maskers.

Stimulus preparation

Two speech features were tested: changes consisting of modifications to spectral tilt (Fig. 7.1[1])

and spectral band energy (Fig. 7.1[2a]-[2c]). The latter feature has three variations.

Spectral tilt. For spectral tilt modifications (Fig. 7.1[1]), pre-emphasis and de-emphasis filters

were used, in order to enhance or attenuate the energy in the higher frequencies, respectively.

Changes in spectral tilt were achieved by filtering the speech signal with a digital filter (filter

function in Matlab 2016b), using the rational transfer function H(z) = 1 − λz−1 for pre-

emphasis and H(z) = 1
1−λz−1 for de-emphasis. The λ coefficients, for both the pre-emphasis

and the de-emphasis filter, were drawn linearly from the range [0.2, 1]. In total, 23 steps were

constructed, corresponding to tilts in the range [−10.85, 0.59] dB/octave. Eleven steps were

constructed with spectral tilt steeper than the original, 1 with the original spectral tilt, and 11

with spectral tilt flatter than the original. The original spectral tilt value was −5.24 dB/octave.

To measure spectral tilt, the speech spectral energy in octave bands was computed and a first

degree polynomial was fitted to the data. The first coefficient of the polynomial was used to

express the tilt in dB per octave. Figure 7.2 shows spectrograms of a phrase with the original

and two extreme spectral tilts. It can be seen that, for the steepest tilt, the speech energy is

up to 4000 Hz, while for the shallowest tilt it spans the full spectrum.

Spectral band energy modifications. For the spectral band energy modifications (Fig. 7.1[2a]-

[2c]), three bands were chosen that correspond to the frequency ranges of 500−1000, 1000−2000,
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Figure 7.2: Spectrograms of the phrase ‘El papel rojo dio un poco de color’ for the spectral tilt
modifications.

and 2000 − 4000 Hz. In any single trial, the listener was able to modify the energy of one of

the bands. In total, 21 spectral band energy steps were assigned using an exponential growth

function (eq. 7.1).

magnitudedB = m+ k ∗ (1 + r)t) (7.1)

where m = 15 is a correction term, k = −100 is the starting value of the exponential growth and

r = −0.2 is the growth rate of the values, as t = [0 : 1 : 20] represents discrete intervals in 21

steps. The terms m and k were chosen so that the band that corresponds to the greatest energy

attenuation contains the minimum energy and the greatest energy enhancement the maximum

energy, without causing clipping to the output speech. Exponential growth was used so the

number of steps are almost equally distributed for enhanced and attenuated speech.

In a frame-by-frame analysis (window of 30 ms), a Fourier transform was performed. The

amplitude spectra were multiplied using a custom filter that enhances/attenuates the desired

frequencies and retains the remaining ones. Then, the Fourier coefficients were reconstructed

from the modified amplitude and the original phase and the filtered signal was generated using

the inverse Fourier transform. Figure 7.3 shows the spectrograms of a phrase with the original

and the two extreme magnitude steps for the band 1000 − 2000 Hz. We can see that for the

greatest attenuation, there is almost no energy in the band 1000− 2000 Hz.

Stimuli were presented in quiet and in 3 additive noise conditions using a speech-shaped

noise (SSN) masker at SNRs of −6, −3 and 0 dB. The masker was generated by filtering ran-

dom uniform noise with the long-term spectrum of the 700 concatenated sentences of the female

talker of the Sharvard corpus, without gaps. The desired SNRs were obtained by rescaling the

noise. Figure 7.4 shows the long-term spectrum of the 3 maskers. From the Spanish corpus, the

sentence IDs used in this experiment were 1− 380 for the adjustment phase, 381− 541 for the

test phase, and for the practice session 10 random unique phrases were drawn from the adjust-

ment phase set. The amplitude of each sentence was normalised using a fixed root-mean-square
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Figure 7.3: An example of the spectrograms of the phrase ‘El papel rojo dio un poco de color’
after modifying the magnitude of band 1000− 2000 Hz.

criterion so as to ensure that each sentence had approximately the same presentation level as

every other sentence.

P
ow

er
sp

ec
tr

al
d

en
si

ty
(d

B
)

102 103 104
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (Hz)

Figure 7.4: Long-term average spectrum of the concatenated sentences of the Sharvard corpus
uttered by a female.

Statistical analysis tools

Since not all the data in the different conditions were normally distributed, non-parametric

statistical tests were used and the median values (robust statistic) of the data were analysed.

All tests were performed in Python using functions of the stats.scipy and scikit posthocs li-

braries (showed in parentheses below). Differences among the experimental conditions were

tested using the rank-based, Kruskal–Wallis H-test (kruskal). Post-hoc comparisons were per-
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formed using Dunn’s test (posthoc dunn), and the Holm correction [Holm, 1979] was followed to

counteract the problem of multiple comparisons. Finally, Kullback–Leibler divergence was com-

puted to compare the distributions derived from listener preferences and intelligibility measures

(entropy).

7.2.2 Procedure

The experiment was divided into 4 blocks according to condition (Quiet and SSN at 3 SNRs),

with each block containing 5 trials in which listeners were able to modify one of 4 parameters

(spectral tilt and energy of 3 spectral bands). The presentation order of the 20 trials was

random. The procedure was similar to that described in chapter 6. Each trial consisted of an

adjustment phase followed by a test phase. In the adjustment phase, sentences were presented

in a random order (with a 0.5 s gap between sentences), starting at a random feature value.

The term ‘feature’ refers to the spectral tilt and the 3 spectral band modifications. Participants

had to listen to at least 5 s of speech before proceeding to the test phase, but could listen to

as much speech during the adjustment phase as desired. In the test phase, intelligibility was

evaluated by a speech perception task using the value of the feature as chosen at the end of the

adjustment phase. Participants listened to 2 sentences separately and had to type what they

heard into an on-screen text box after each sentence presentation. Prior to the experiment, all

the participants underwent a task familiarisation phase consisting of 5 trials, 2 in quiet and 3

in noise.

The real-time modifications technique and the instructions used in this experiment were

similar to those described in chapter 4. Listeners were asked to tune the speech in real-time

until they could recognise as many words as possible. Real-time changes could be made by using

the up/down keys while listening to sentences. The task was explained as akin to choosing an

appropriate volume for a television: too quiet makes comprehension difficult, while too loud

leads to discomfort.

A balanced Latin square design was used for block ordering across participants. Stimuli were

presented through Sennheiser HD380 headphones at a fixed presentation level, different for each

condition (approx. 84, 79, 77 and 75 dB SPL for the −6, −3, 0 dB SNR and quiet conditions,

respectively). For the calibration, a Brüel and Kjaer type 4153 artificial ear and a Brüel and

Kjaer type 2260 sound level meter were used. Listeners were seated in a sound-attenuating

booth in a purpose-built speech perception laboratory at the University of the Basque Country.

7.2.3 Results

Spectral energy reallocation preferences

Figures 7.5 and 7.6 show the median spectral energy reallocation preferences, intelligibility

scores, and the time spent in the adjustment phase for the 4 conditions (Quiet and SSN at 3

SNRs). For the spectral tilt modifications (Fig. 7.5), in all conditions, listeners chose to reduce

tilt with respect to the original. As the noise level increased, listeners preferred speech with

progressively more energy at higher frequencies (resulting in a preference for a flatter spectral

tilt), while intelligibility scores were below ceiling only for the most adverse condition (−6 dB

SNR), and the time for adjusting the speech increased. For spectral band energy modifications

(Fig. 7.6), in noise listeners chose to attenuate the energy in band 500−1000 Hz and to enhance

bands 1000 − 2000 Hz and 2000 − 4000 Hz, while for the Quiet condition, participants chose
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Figure 7.5: Median values (black dots) for spectral tilt preferences (upper plot), intelligibility
scores (middle plot) and adjustment time (lower plot) for the different conditions. The hori-
zontal line in the upper plot indicates the original spectral tilt value. The error bars represent
the ± one standard error of median.

speech with spectral energy allocated as in the original speech. Intelligibility scores were at

ceiling when the target speech had equal or greater level than the noise. For the negative

SNRs, the enhancement of the 2000− 4000 Hz band helped listeners to achieve an intelligibility

score greater or equal to 88% (similar to those for the spectral tilt modifications), while the

manipulation of the other bands resulted in lower scores and required more adjustment time. For

all features, the time needed to find the appropriate step increased with the noise level. For band

1000−2000 Hz, listeners preferred identical magnitude for both −3 and 0 dB SNR. However, for

the −3 dB, listeners needed more time compared to that for 0 dB and their intelligibility scores

were poorer. Apart from the spectral tilt modifications, in which the spectral slope of a phrase

directly changes, the slope also changes as a result of modifying the spectral band energy. The

slopes for all the test phrases at each of the steps for the 3 spectral band energy modifications

were computed (as described in sec. 7.2.1 Stimulus preparation) and plotted in Fig. 7.7.

As expected, when the band 500− 1000 Hz is enhanced, corresponding to a higher step, the

slope becomes steeper (i.e. more negative), while for the remaining variations the opposite is

true. For the adverse noise conditions, listeners chose to attenuate the band 500 − 1000 Hz,

which implies an enhancement of the remaining bands, although they did not choose the lowest

possible step. Spectral tilt and band 2000−4000 Hz features showed similar intelligibility scores

(Fig. 7.5 and Fig. 7.6, respectively); thus, the frequency components greater than 4000 Hz
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Figure 7.7: Mean spectral tilts of all the test phrases at each of the steps (markers correspond
to the 25 modification steps) for the spectral band energy modifications. The standard error at
each data point was around 0.03 (for clarity, not shown).

did not contribute to the increased intelligibility. Additionally, for the spectral tilt, listeners

chose speech with slope at 0 dB (Fig. 7.5), which is the same as the one chosen for the band

2000 − 4000 Hz at −6 dB (Fig. 7.6). This result signifies the high importance of this band in

relation to both the performance and the listener preferences in adverse noise levels.
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A rank-based, Kruskal–Wallis H-test was conducted to compare the effect of conditions

on each of the three measurements (preferences, intelligibility scores, and adjustment time)

and each of the 4 tested modifications. Results indicated significant main effects for all mea-

surements [p < 0.001] (Table 7.1). Post-hoc pairwise comparisons for the spectral tilt feature

indicated that all measurements were significantly different for the different conditions (except

for the adjustment time at −3 and −6 dB SNR and the preferences at 0 and −3 dB SNR). For

the spectral band energy modifications, results indicated that all measurements were signifi-

cantly different for the different conditions, with the following exceptions: the preferred steps

at −3 and −6 dB SNR for band 500 − 1000 Hz; the preferred steps at 0 and −3 dB SNR for

band 1000− 2000 Hz and the adjustment time at the SNR pairs of −3, −6 and −3, 0; and the

intelligibility scores at −3, 0 for band 2000− 4000 Hz.

adjustment time intelligibility preferred step
sp. tilt 114.98 99.69 172.05

0.5-1 kHz 130.27 149.31 183.45
1-2 kHz 177.57 212.96 56.33
2-4 kHz 55.19 97.46 175.07

Table 7.1: H-values of the Kruskal-Wallis statistical test for the different features and measures.

Effects of spectral modifications on listener preferences and intelligibility

Figures 7.8a-7.8d show the probability that each value of spectral tilt (Fig. 7.8a) or of the

specific band’s energy (Fig. 7.8b-7.8d) is preferred by listeners, along with the percentage of

keywords identified correctly as a function of noise level. Under all conditions, listeners showed

distinct spectral tilt preferences, even when intelligibility is at or near ceiling performance. With

increasing SNR, the number of steps with intelligibility scores at ceiling increases and listener

preferences occupy a wider range. One feature of these results is the poorer intelligibility score

obtained by those listeners who preferred to listen to speech with a steeper spectral tilt, or

with more enhanced magnitude of band 500− 1000 Hz, or with more attenuated magnitude of

bands 1000−2000 Hz and 2000−4000 Hz compared to the original speech, especially under the

more adverse conditions. Listener preferences clearly reveal information beyond that captured

by intelligibility scores. For some conditions, it can be observed that the median value does

not represent the step that was mostly preferred. This can be seen in the histograms at −6 dB

SNR for band 500 − 1000 Hz modifications, where listeners preferred the greatest attenuation

available, while for band 2000− 4000 Hz they preferred the lowest.

Energy reallocation choices and energetic masking

Figures 7.9a-7.9d show the overall speech energy that survives the energetic masking under

the different conditions as computed by the DGAF measure, described in sec. 6.2.1 ‘Energetic

masking measures’. It can be observed that listeners are aiming for a similar DGAF pattern at

each SNR. Considering our results (preferred step approx. 16, 18, 21 for 0, −3, and −6 dB SNR,

respectively), listeners seem to seek for a tilt close to the original, but at the same time the tilt

with enough glimpses in the range 2000 − 4000 Hz. Figure 7.9b shows that by enhancing the

band 500− 1000 Hz (higher steps), important frequency regions for speech perception in noise

are deactivated, while the opposite is true when band 500−1000 Hz is attenuated (lower steps).
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(a) Spectral tilt (b) Energy modification of band 500 − 1000 Hz

(c) Energy modification of band 1000 − 2000 Hz (d) Energy modification of band 2000 − 4000 Hz
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Figure 7.8: Probability of each step (histogram, left axis), along with the percentage of words
recalled correctly (black dots, right axis). The error bars represent ± one standard error. The
vertical line denotes the step that corresponds to the original speech.

Listeners chose steps approx. 6, 5, 4 for 0, −3 and −6 dB SNR, respectively, which suggests

that for the less noisy conditions they preferred to listen to speech with band 500 − 1000 Hz

neither fully activated or deactivated, while for the more adverse condition the enhancement of

the 22− 28 ERB-rate was of high importance. For band 1000− 2000 Hz (steps approx. 12, 12,

14 for 0, −3 and −6 dB SNR, respectively) listeners preferred to enhance the 16− 22 ERB-rate

(1000 − 2000 Hz), while some glimpses also remained in the upper and lower frequencies. The

same can be observed for band 2000− 4000 Hz, but for the 22− 28 ERB-rate (preferred steps

approx. 14, 15, 17 for 0, −3 and −6 dB SNR, respectively). The poorer intelligibility scores

of band 500 − 1000 Hz and 1000 − 2000 Hz compared to those of band 2000 − 4000 Hz might

be explained, since the boost of the 2000− 4000 Hz range was greater for band 2000− 4000 Hz

variation. However, the preferred steps were not only those that corresponded to the maximum

enhancement of the region 2000− 4000 Hz. It is possible that listeners adjusted speech so as to

find a balance between their performance and speech naturalness.

Modelling energy reallocation preferences

Figure 7.10a-7.10d show the listener preferences for the different feature values along with

the glimpses (GPext). It can be observed that for some conditions the glimpses follow the
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Figure 7.9: Speech energy that survived the energetic masking across frequencies (34 ERB-rate,
y-axis) and for each step (x-axis). For each step, the sum of the DGAF (see Fig. 6.3) of 160
utterances from the test phase in the experiment was computed and normalised with the total
number of glimpses for all conditions. Black colour denotes that the concentration of speech
energy exceeding energetic masking is high.

distribution of the listener preferences (e.g. Fig. 7.10b), although this is not true everywhere

(e.g. Fig. 7.10d). A similar observation can be made for the actual intelligibility scores in

Fig. 7.8. Table 7.2 shows the Kullback–Leibler Divergence (KLD) results for comparing the

distributions derived from listeners’ performance, preferences and glimpse proportion (GPext)

for the different conditions under investigation. As expected, the results showed that the

performance and GPext distributions were similar (symmetric KLD close to zero), whereas

each differed to a much greater extent from the distribution of listeners’ preferences (higher

symmetric KLD values). This suggests that listener preferences encompass information that is

not limited to intelligibility.

7.2.4 Interim discussion

In Expt. I, listeners’ preferences for spectral tilt and energy in certain spectral bands (500−1000,

1000 − 2000, and 2000 − 4000 Hz) in additive speech-shaped noise were investigated. The

results reveal whether any change in the long-term speech spectrum, caused by these features,

is preferred by listeners. Regardless of the feature, our findings show that listeners preferred

similar values to those of unmodified speech for the Quiet condition, while in adverse noise levels

they chose to enhance mid-frequencies. As the noise level increased, listeners chose flatter tilt or

enhanced energy at higher frequencies, while intelligibility decreased and the adjustment time
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p
(l

is
te

n
er

p
re

fe
re

n
ce

s)

G
P
e
x
t

Figure 7.10: Probability of each feature value (histogram, left axis), along with the glimpses
(red dots, right axis). Glimpses computed for the 160 utterances of the test phase. The error
bars represent ± one standard error. The vertical line denotes the step that corresponds to the
original speech.

increased. Listeners in noise achieved the highest intelligibility (approx. 90% for −6 dB SNR

and 100% up to −3 dB SNR) when they manipulated the spectral tilt and the energy of band

2000− 4000 Hz. For these features, listeners also needed less time to find the appropriate step,

compared to the other features. Our results showed that the target speech energy in frequency

components greater than 4000 Hz did not contribute to increasing intelligibility.

Listeners appeared to make their choices in a way that maximised intelligibility (Fig. 7.10).

In line with Lu and Cooke [2009a], it was found that listeners prefer flatter spectral tilts or

increased energy in higher frequencies, which also facilitate intelligibility when noise increases,

as more speech information survives the energetic masking – i.e. more glimpses [Cooke, 2006] –

and thus speech perception performance increases. Under all conditions, the extended glimps-

ing model follows the distribution of listener preferences well; however, the proportions of the

glimpses at ceiling span in a wider region than the peak of the listener preferences. Our exper-

iment also confirmed that the glimpsing model is a good predictor of intelligibility (Table 7.2).

However, it failed to predict speech aspects beyond that. This observation strengthens our hy-

pothesis for the second research question of this chapter, that listeners’ preferences encompass
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feature SNR(dB) Performance vs preferences Performance vsGPext GPext vs preferences

sp. tilt
−6 0.905 0.074 1.814
−3 3.395 0.064 3.203
0 0.489 0.009 0.476

0.5-1 kHz
−6 2.278 0.263 4.107
−3 2.973 0.038 3.436
0 2.540 0.006 2.363

1-2 kHz
−6 1.496 0.188 1.563
−3 0.679 0.036 0.715
0 1.233 0.014 1.457

2-4 kHz
−6 0.961 0.039 1.506
−3 0.478 0.007 0.468
0 1.613 0.007 1.437

Table 7.2: The symmetric Kullback–Leibler Divergence (KLD) derived from the comparison
between the following pairs of distributions for the different SNRs: listener preferences and
performance, listener preferences and GPext, and GPext and listener preferences. The lower
the KLD value, the closer the two distributions are. If KLD equals zero, the two distributions
are identical.

information beyond intelligibility.

Another criterion for listeners’ choices might be naturalness. Neutral speaking style in quiet

is characterised by less flat spectral tilt compared to the speech that a human produces in noise

(i.e. Lombard speech) [Summers et al., 1988]. Furthermore, Lombard speech is affected by

the level of background noise, with speakers producing speech with a flatter spectral tilt at

higher noise levels [Summers et al., 1988; Tartter et al., 1993; Varadarajan and Hansen, 2006].

However, it is not clear what would be the listeners’ preferences for other than SSN. It would be

interesting to examine whether, for a noise with higher energy at higher frequencies, listeners

would choose to shift the spectral energy downwards to avoid noise overlap with the target

speech, and therefore to increase the number of glimpses, or whether, as in this experiment,

they would prefer to shift the spectral energy in a way influenced by how humans speak naturally

in response to high-pass filtered noise [Lu and Cooke, 2009b] or broadband noise [Garnier and

Henrich, 2014].

7.3 Experiment II: Effect of frequency bands on listeners’

preferences.

A second experiment was conducted in order to test four more spectral energy reallocation

techniques. Listeners were allowed to adjust the cut-off frequency of a high-pass filter, the

cut-off frequency of a low-pass filter, the bandwidth of a band-pass filter, and which frequency

band to enhance (Fig. 7.1[3-6]). To complement Expt. I, in which magnitude modifications

were investigated, this experiment explored the frequency areas that listeners would choose to

enhance under different noise conditions.

7.3.1 Methods

Listeners

Thirty-seven native Spanish listeners (32 females) aged between 18 and 34 (mean 20.1 years;
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SD 2.6 years) participated in this experiment. All listeners passed an audiological screening

with a hearing level better than 25 dB, at frequencies in octave steps in the range 125−8000 Hz

in both ears. Listeners were paid 10 euros for their participation. Some of the listeners also

participated in Expt. I (sec. 7.2).

Stimuli

Speech material

The speech material used in this experiment was taken from the same source as in Expt. I

(7.2.1), but a different set of test phrases was used.

Stimulus preparation

Four speech features were tested: the cut-off frequency of a high-pass filter, the cut-off frequency

of a low-pass filter, the bandwidth of a band-pass filter, and the enhancement of a frequency

band using a sliding band-pass filter. For each feature, a filter in the frequency domain was

designed and applied to the phrases using the fir1 and filter functions in Matlab 2016b, re-

spectively. An FIR filter with a Chebyshev window of 100 dB of ripple was designed. The

Chebyshev filter was used as it has a very good amplitude response.

For the first two features, the middle frequency of 25 log-spaced frequency bands from 300

to 7200 Hz was used as the cut-off frequency of the filter, as shown in Fig. 7.11a for the high-

pass filter and 7.11b for the low-pass filter, resulting in 25 different steps. The original speech
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Figure 7.11: The filters applied for the two extreme and the middle (step=13) steps of each
feature.

was that of the 1st step for the high-pass filtering and the 25th step for the low-pass. For the
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band-pass case, 51 log-spaced frequency bands, starting from 300 Hz and up to 7200 Hz, were

computed. The middle band (989 − 2184 Hz) was the lowest in bandwidth, corresponding to

the 1st step. For each step the spectral components of two bands were added, one before and

one after the central band. A total of 25 steps were constructed, with the final (original speech)

having 300 Hz and 7200 Hz as cut-off frequencies (Fig. 7.11c). For the last feature, 25 log-spaced

band-pass filters from 300 to 7200 Hz were constructed (Fig. 7.11d). None of the steps was close

to the original speech. Figure 7.12 shows the spectrograms of a phrase for the original and two

extreme steps for the bandwidth of the band-pass filter. The corresponding spectrograms of

the remaining features can be found in Appendix D (Fig. D.1-D.3). From the Spanish corpus,

the sentence IDs used in this experiment were 1− 380 for the adjustment phase, 541− 701 for

the test phase, while for the practice session 4 random unique phrases were drawn from the

adjustment phase set.
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Figure 7.12: Spectrograms of the phrase ‘El papel rojo dio un poco de color’ for the different
bandwidth band-pass filters. The middle plot corresponds to the phrase with the spectral energy
concentrated in the frequency area with the greatest bandwidth, and the bottom plot to that with
the lowest bandwidth.

7.3.2 Procedure

The procedure used in this experiment was identical to that in Expt. I (7.2.2).

7.3.3 Results

Spectral energy allocation preferences

Figures 7.13 and 7.14 show the spectral energy allocation preferences, intelligibility scores, and

the time spent in the adjustment phase for the 4 conditions (Quiet, and SSN at 3 SNRs).

For the high-pass filter (Fig. 7.13), as noise level increased, listeners preferred higher cut-off

frequencies, while even for the quiet condition listeners did not choose speech energy allocated as

in the original speech. Furthermore, for SNRs below 0 dB listeners’ performance decreased and
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Figure 7.13: Median values (black dots) for listener preferences (upper plot), intelligibility scores
(middle plot) and adjustment time (lower plot) for the different conditions. The left column
corresponds to the results for the high-pass filter and the right column those for the low-pass
filter. The horizontal lines in the upper plots indicate the unmodified speech. The error bars
represent ± one standard error of the median.

adjustment time increased. For the low-pass filter (Fig. 7.13), similar results can be observed.

However, intelligibility scores, apart from the Quiet condition, were much lower compared to

the speech choices for the high-pass filter, achieving only 60% at the −6 dB SNR level compared

to 90% for the high-pass filter. For the bandwidth of the band-pass filter (Fig. 7.14), listeners

preferred to enhance frequencies in the range of 450− 4500 Hz for the low-noise and noise-free

conditions, while a slightly wider frequency area (around 400 − 5000 Hz) was preferred under

more adverse conditions. Intelligibility score decreased with increasing noise level; however,

the score was neither as low as it was for the low-pass filter nor as high as that achieved for

the high-pass filter. Finally, for the sliding band filter (Fig. 7.14), as the noise level increased

listeners chose to enhance bands located within higher frequency ranges than those preferred

under the Quiet condition. Intelligibility scores decreased as the noise level increased, with the

maximum score of 70% being achieved under the Quiet condition. Intelligibility scores were

generally lower compared to those achieved when the other features were adjusted. For all

features, the adjustment time increased with increasing noise level, and the sliding band filter
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Figure 7.14: As Fig. 7.13 but for the bandwidth of the band-pass filter and the sliding band. For
the bandwidth of the band-pass filter, the centre frequency is around 1450 Hz.

required a substantially longer time, even for the Quiet condition (around 15 s, while for the

remaining features the minimum time permitted, around 5 s, was sufficient).

A rank-based, Kruskal–Wallis H-test was conducted to compare the effect of condition on

each of the three measurements and each of the tested features. The results indicated significant

main effects for all measurements [p < 0.001], except for listeners’ preferences for the band-

width band-pass filter [p = 0.1]. The results of the statistical analysis can be found in Table 7.3.

Post-hoc pairwise comparisons for the high-pass filter indicated that listener preferences dif-

fered significantly only between Quiet and each of the remaining conditions, intelligibility scores

differed according to the different conditions, and adjustment time was significantly different

for all pairs of conditions except for −3 and 0, 0 and Quiet. For the low-pass filter, all pairs of

conditions differed significantly for the three measurements (except for the listener preferences

between −3 and −6 dB SNR, and adjustment time between 0 and −3 dB SNR). For the band-

pass filter, intelligibility and adjustment time differed for all pairs of conditions. Finally, for

the sliding band filter, preferences and intelligibility scores differed significantly for the different

conditions, while adjustment time differed only for the pairs −6 and 0, −6 and Quiet.
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adjustment time intelligibility preferred step
hpf 49.72 87.21 43.26
lpf 162.01 288.73 100.56
bpf 148.39 209.63 ns
sbf 25.32 107.19 202.27

Table 7.3: H-values of the Kruskal–Wallis statistical test for the different features and measures.
hpf, lpf, bpf, and sbf stand for the high-pass, low-pass, band-pass, and sliding band filters,
respectively. ns represents a statistically non-significant difference.

Effects of spectral modifications on listener preferences and intelligibility

Figures 7.15a-7.15d show the probability with which each feature value was preferred by lis-

teners, along with the percentage of keywords perceived correctly. One feature of these results

is the poorer intelligibility score obtained by those listeners who preferred to listen to speech

filtered by very high cut-off frequencies for the high-pass filter, or very low cut-off frequencies

for the low-pass filter, even under the Quiet condition. For the low-pass filter, intelligibility

was higher for those listeners who preferred higher cut-off frequencies. Figure 7.15c shows

(a) Cut-off frequency of the high-pass filter (b) Cut-off frequency of the low-pass filter

(c) Filter’s bandwidth (d) Sliding band filter
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Figure 7.15: Probability of each step (histogram, left axis), along with the percentage of words
recalled correctly (black dots, right axis). The error bars represent ± one standard error.
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that listeners’ choices were spread over a wide area for all conditions. Although intelligibility

was high for all listeners’ choices in Quiet, under more adverse conditions there was a drop in

intelligibility for those listeners who chose to listen to speech with energy concentrated more

in the area around 1000 − 2000 Hz. In Fig. 7.15d, preferences are seen to be concentrated

around a few frequencies for all conditions, following the intelligibility distribution. For some

conditions, it can be observed that the median value does not represent the step that was most

preferred. This is apparent from the histogram of the high-pass filter for the Quiet condition,

which shows that the most preferred step was the lowest one (Fig. 7.15a; cut-off frequency of

450 Hz) while the median preferred value was approx. 755 Hz (Fig. 7.13). A similar association

was also observed in the low-pass filter histograms, where the highest step (cut-off frequency of

5400 Hz) was the most preferred under all conditions, but more so as the noise level increased

(Fig. 7.15b). The median preferences were approx. 4869 Hz for −6 and −3 dB SNR, 4390 Hz

for 0 dB SNR and 3218 Hz for Quiet (Fig. 7.13). Finally, for the bandwidth of the band-pass

filter the median value again did not correspond to the step that was most preferred. The

most preferred bandwidth was the widest one (300−7200 Hz), and the number of people choos-

ing this step increased with the noise level (Fig. 7.15c). The median preferences were around

447− 4838 Hz for all conditions (Fig. 7.14).

Energy reallocation choices and energetic masking

Figures 7.16a-7.16d show the speech energy that survives energetic masking for the different

conditions. For all features, as noise level increases fewer areas survive the masking. As in

Expt. I, listeners chose steps for which the speech energy in the range 2000− 4000 Hz (22− 28

ERB-rate) was high and glimpses outside this range also exist. The bands chosen by listeners

corresponded to frequencies higher than those dominated by noise (2 − 16 ERB-rate) and fo-

cused on frequencies important for speech perception.

Modelling energy allocation preferences

Figure 7.17a-7.17d show the listener preferences for the different feature values along with the

glimpses (GPext). It can be observed that for some conditions the glimpses follow the listeners’

preferences distribution (e.g. 7.17d); however, this is not true everywhere (e.g. 7.17c). For the

sliding band filter at 0 dB SNR, the peak of glimpses (band of 2145− 4291 Hz) is not identical

to that of preferences (band of 1572 − 3145 Hz), while for higher noise levels the peaks coin-

cide. Table 7.4 shows the KLD results from comparing the distributions derived from listeners’

performance, preferences and glimpse proportion (GPext) for the different conditions. As in

Expt. I, listeners’ performance and GPext distributions were close to each other (symmetric

KLD close to zero) and differed less (smaller symmetric KLD value) compared to the difference

between them and the listeners’ preferences distribution.

7.3.4 Interim discussion

In Expt. II, listeners’ preferences in relation to frequency band enhancement were investigated.

Specifically, the experimental features were the cut-off frequencies of high- and low-pass filters,

the bandwidth and the cut-off frequencies of band-pass filters. To model listener preferences, the

extended glimpsing model was used. Results showed that the model described the preferences
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Figure 7.16: Speech energy that survived the energetic masking across frequencies (34 ERB-rate,
y-axis) and for each of the 25 steps (x-axis). For each step, the sum of the DGAF (see Fig. 6.3)
of 160 utterances from the test phase in the experiment was computed. lcf and hcf on the x-axis
denote the lower and higher cut-off frequencies, respectively.

feature SNR(dB) Performance vs preferences Performance vsGPext GPext vs preferences

hpf
−6 2.722 0.105 3.486
−3 1.230 0.167 2.962
0 1.042 0.075 1.471

lpf
−6 4.542 0.298 5.663
−3 3.136 0.124 4.946
0 2.994 0.079 3.241

bpf
−6 0.541 0.049 0.534
−3 1.062 0.053 1.220
0 0.432 0.004 0.418

sbf
−6 1.061 0.399 1.685
−3 1.304 0.249 1.795
0 0.370 0.116 0.588

Table 7.4: The symmetric Kullback–Leibler Divergence (KLD) derived from comparisons be-
tween the following pairs of distributions for the different SNRs: listener preferences and per-
formance, listener preferences and GPext, and GPext and listener preferences. The lower the
KLD value, the closer the two distributions are. If KLD equals zero, the two distributions are
identical. hpf, lpf, bpf, and sbf stand for the high-pass, low-pass, band-pass, and sliding band
filters, respectively.

well (Fig. 7.17). As expected, one of the listeners’ choices in noise was to enhance the amount

of speech spectral energy that escapes the energetic masking. Possible reasons for the listeners’

preferences are discussed below.
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(a) Cut-off frequency of the high-pass filter (b) Cut-off frequency of the low-pass filter

(c) Filter’s bandwidth (d) Sliding band filter
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Figure 7.17: Probability of each step (histogram, left axis), along with the glimpses (red dots,
right axis) for the different features. Glimpses computed for the 160 utterances of the test phase.
The error bars represent ± one standard error.

In our experiment, listener preferences for high-pass filtered speech resulted in high task

performance. In Quiet, listeners had a distinct preference for the lowest available cut-off fre-

quency (450 Hz), even though intelligibility was at ceiling for a wider range of steps. Task

performance was lower for those listeners who chose cut-off frequencies above approximately

1700 Hz (Fig. 7.15a). This is in line with the results in McClurg [2018], where in quiet, intel-

ligibility was high when utterances were high-pass filtered at 700 Hz (the lowest tested cut-off

frequency) and significantly declined at 1973 Hz, while when speech was high-pass filtered above

3000 Hz it became unintelligible.

For the intermediate conditions (Fig. 7.15a at 0 and −3 dB SNR), listener preferences are

unclear, i.e. there is no dominant peak. The probability mass of the preferences is concentrated

in the area where intelligibility is at ceiling. However, for the most adverse noise level, listeners

chose to enhance more the speech energy in frequency ranges above the energetic masker (most

preferred cut-off frequency around 1030 Hz). Not only did this choice allow frequencies higher

than 1030 Hz to pass, but also the overall energy level of this region was higher compared to

those for lower cut-off frequencies. Listeners may have made a compromise between these two

effects. Several studies have shown the relevance of shifts in the spectral energy distribution

113



to the mid-frequency region, especially above 1000 Hz, in relation to intelligibility. Such shifts

are also observed in Lombard and clear speech [Krause and Braida, 2004; Skowronski and

Harris, 2006; Lu and Cooke, 2009b]. Niederjohn and Grotelueschen [1976] suggested high-pass

filtering followed by amplitude compression for enhancing F2 and F3 formants while supressing

F1. Their results revealed a significant effect on intelligibility in white noise. Furthermore,

in Godoy and Stylianou [2012], intelligibility gains were reported when the frequency region

1000− 4000 Hz was boosted while maintaining the overall energy of the signal.

Unlike high-pass filtering, which reduces the low-order harmonics that are important for

pitch perception, low-pass filtering retains this information. For the low-pass filtered speech,

listeners chose higher cut-off frequencies in noise (5400 Hz) compared to Quiet (3218 Hz). Low-

pass filtering has been widely used in speech perception research, since it has been shown that

almost all cues of speech intelligibility are contained within the low frequency region of the

speech spectrum, up to 4000 Hz [Fletcher and Galt, 1950; French and Steinberg, 1947], which

is consistent with our findings (listeners in Quiet chose cut-off frequencies lower than 4000 Hz

and achieved close to 100% intelligibility). Low-pass filtering retains lower frequency acoustic

energy including the tonal quality of the speech which maintains prosodic features such as pitch

range, intonation contour and rhythm. Frota et al. [2002] showed that prosodic differences can

be perceptually detectable within the low 400 Hz frequency region.

For the bandwidth modifications, in contrast to what we would expect, listeners did not

choose to enhance mid-frequencies more in noise than in Quiet. The preferred range in all

conditions was 300 − 7200 Hz (the highest modification step). One explanation is that the

energy level in this band is higher than that of the original plain speech (because of RMS

normalisation), resulting in more glimpsing areas. However, as Fig. 7.17c shows, narrower

bands allow more speech energy to escape masking. Listeners may have made their choice so

that the output speech sounded less artificial than if they had chosen a narrower band. In

telephony a range comparable to this is used (adaptive multi-rate wideband of 50 − 7000 Hz

[3GPP TS 26.190, 2005]). This range enhances the clarity, resulting in greater intelligibility

and better talker recognition, while the speech also sounds more natural, expressing emotions

more precisely.

7.4 General discussion

In this chapter, the impact of spectral energy redistribution on listener preferences and intelli-

gibility in quiet and speech-shaped noise at three different noise levels (−6, −3, and 0 dB SNR)

was explored. In total, 6 features were tested (Fig. 7.1): namely, spectral tilt, energy of certain

spectral bands, cut-off frequencies of high- and low-pass filters, bandwidth of a band-pass filter,

and frequency band to enhance. The tested features were split up into two experiments. For

the experiments, native Spanish listeners were recruited and SpeechAdjuster was used to

collect their responses.

RQ1: Do listeners choose to reallocate speech spectral energy so to maximise

intelligibility?

Overall, the listeners’ choices demonstrated that their main priority was to maximise intel-

ligibility. For all conditions, listener preferences were in the range where intelligibility was at

ceiling (as estimated by the extended glimpsing model; Fig. 7.10 and 7.17). In noise, listeners
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chose to shift the speech energy (under a regime of constant energy overall) in frequencies above

1000 Hz. This mechanism reduces the effect of energetic masking that speech-shaped noise im-

poses and thus, the spectral energy is enhanced in the range where the ear is more sensitive.

Previous studies have shown that enhancing mid and higher frequencies improves intelligibility.

Krause and Braida [2004] showed that the shift of spectral energy to high frequencies helps to

increase the intelligibility of clear speech relative to conversational speech in the presence of

speech-shaped noise. Tang and Cooke [2018] investigated speech modification strategies based

on reallocating energy statically across the spectrum, using masker-specific spectral weightings.

The RMS level before and after the modifications was kept constant. They concluded that

generic spectral weighting patterns that boost energy above 1000 Hz are beneficial for maskers

with a speech-shaped long-term spectrum. Finally, in Niederjohn and Grotelueschen [1976],

high-pass filtering was used to enhance the energy in high frequencies and supress the first

formant in white noise. The enhancement of the second formant relative to the first may have

led to improvements in intelligibility.

RQ2: Do listeners’ preferences show patterns that are independent of intelligibility?

Listeners may have made their choices so as to decrease processing demands, and hence to

reduce listening effort. Lexical retrieval can be facilitated by a greater number of glimpses,

i.e. more acoustic information available, so the acoustic mismatches between the target speech

and the mental representation are reduced [Rönnberg et al., 2013]. A study by Borghini and

Hazan supports this speculation [Borghini and Hazan, 2020]. They conducted a pupillometry

experiment to test the impact of clear versus plain speech on listening effort. Listeners were

presented with the stimuli in babble noise while intelligibility level was equated (SNR was

individually adjusted to target a 50% intelligibility level). Pupil data revealed that clear speech

requires less listening effort. One of the characteristics that differentiates clear from plain speech

is greater energy in the mid frequencies. This allows more energy to escape the babble noise

masking and thus might have contributed to the reduced listening effort.

Listeners also may have chosen to maintain the speech quality. In quiet, listeners did not

choose to reallocate spectral energy. One explanation could be that the closer the average

spectrum to the original speech, the more natural the speech sounds. Moore and Tan [2003]

determined how the perceived naturalness of speech is affected by several spectral distortions

in quiet. Their results revealed that spectral tilt modifications degrade naturalness, especially

when they are applied over the whole frequency range. On the other hand, according to our

experiments, in noise listeners shifted the energy to higher frequencies. High-frequency regions

include cues that may contribute to the perception of sound quality. In Gabrielsson et al.

[1988], the effect of different frequency responses on speech quality was evaluated. The most

preferred system for all tested conditions (quiet and in noise at +10 dB SNR) was characterised

by a flat response at lower frequencies (below 1000 Hz) and a 6 dB/octave increase above that

(1000− 4000 Hz). Such an increase at higher frequencies led to an improvement in brightness,

nearness (sounds close to the listener), spaciousness (sounds open and spacious), clarity (sounds

clear, distinct and pure), and total impression (an overall judgement of how good the listener

thinks the reproduction is), and a decrease in softness (sounds soft and gentle).

Another supra-intelligibility aspect of speech related to listener preferences may be speech

familiarity. Both in quiet and in noise, the preferred spectral energy modifications are similar

to those that a talker naturally produces under corresponding conditions. Specifically, in quiet,
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listeners adjusted speech to be close to original/plain speech, which is the speaking style used

under real-life noise-free conditions. In noise, listeners chose to enhance mid and higher fre-

quencies, as in Lombard and clear speech types. Lombard speech produced by male speakers

has slightly less energy in the 0 − 1000 Hz region compared to speech produced in quiet [Gar-

nier and Henrich, 2014], while in noise male talkers increase the energy between 2000−4000 Hz

[Junqua, 1993; Castellanos et al., 1996]. In Garnier and Henrich [2014], the speech spectrum in

noise was significantly enhanced in the regions 1000−2000 Hz and 2000−4000 Hz, while energy

in frequencies above 4000 Hz was lower compared to conversational speech in quiet. Such en-

hancements are also observed in opera singers (‘singing formant’) and in stage actors (‘actor’s

formant’), who enhance the speech energy around 1000−4000 Hz for projecting their voice over

a distance [Bele, 2006].

RQ3: Do listeners’ preferences change under challenging conditions?

As noise level increases, listeners preferred a greater increase in the energy at higher fre-

quencies, e.g. by choosing a flatter spectral tilt. Listeners chose the feature values that do not

severely attenuate pitch and harmonic information. Specifically, they did not choose the flattest

spectral tilt options, for which the normalised DGAF shows a high energy attenuation of low

frequencies. For instance, this can be observed in the listeners’ choices for the spectral tilt

feature under intermediate conditions (Fig. 7.9a). In previous studies, algorithms that boost

mid and high frequencies, sacrificing energy below 1000 Hz, were judged as poorer in quality

compared to others [Gabrielsson et al., 1988; Tang et al., 2018]. Another explanation could

be that the available speech cues in the low frequencies also benefit the match between the

acoustic signal and the existing representations in the long-term memory, reducing cognitive

processing. Finally, for the spectral tilt feature at only the most adverse noise level, listeners

preferred to increase intelligibility at the expense of the energy in low frequencies. Under this

condition the steps for which intelligibility was at ceiling were limited (Fig. 7.10a). Thus, this

outcome supports the hypothesis that listeners’ priority was to maximise intelligibility.

To sum up, once intelligibility was no longer an issue, listeners based their choices on other

criteria. For the conditions where intelligibility was at ceiling for a range of steps, preferences

were not uniformly distributed across those steps. In almost all the cases, a peak emerged,

orientated towards the enhancement of lower frequencies. This observation supports our earlier

speculations that listeners may attempt not to harm the speech quality and to reduce listening

effort.
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Chapter 8

Conclusions

8.1 Summary

Artificially enhanced speech is not always satisfying for the listener. Speech enhancement al-

gorithms focus mainly on improving intelligibility, while speech aspects beyond intelligibility

that also have an impact on the listener have been far less thoroughly investigated. The topic

of this thesis was inspired by the fact that the ‘optimal’ quality for user-centric applications

can only be estimated with respect to the listener, and the purpose of this research was to test

the impact of different speech types and of distinct speech characteristics specifically on supra-

intelligibility aspects of speech. First, measures of listening effort were collected for different

speaking styles and comparisons were drawn between native and non-native listeners (chap-

ter 3). Then, a tool named SpeechAdjuster (chapter 4) was introduced and implemented

to investigate intelligibility and supra-intelligibility aspects of speech. SpeechAdjuster was

used in a series of experiments that were conducted to collect, along with intelligibility scores,

listeners’ preferences for distinct speech parameters that were selected to be features that talkers

naturally modify in noisy conditions. The features and conditions tested were the speech rate

in stationary and temporally-modulated noise (chapter 5), the fundamental frequency in the

presence of stationary noise and competing speech (chapter 6), and other features that led to

spectral energy reallocation in stationary noise (chapter 7). Finally, a measure was introduced

for determining the glimpse distribution of an utterance across frequencies (DGAF) (chapter 6).

8.2 Outcomes

8.2.1 Innovations

• A tool, called SpeechAdjuster, was developed that allows the manipulation of almost

any aspect of speech and supports joint elicitation of listener preferences and intelligibility

measures (chapter 4).

• The DGAF measure was introduced to determine the glimpse distribution of an utterance

across frequencies, i.e. the mean of glimpses across the time series of an utterance for

each different frequency band (chapter 6).
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8.2.2 Main findings

• Listeners showed distinct preferences for the tested speech features, revealing aspects of

speech beyond intelligibility. Specifically, for constant intelligibility:

– In quiet, listeners adjusted speech to be close to the original (i.e. plain) speech.

– For modulated maskers, listeners preferred speech rates modulated in a way that

contrasted to those of the masker (chapter 5).

– For stationary noise, listeners preferred a slower speech rate as the noise level in-

creased (chapter 5).

– Regardless of the noise level, listeners chose a slightly lower mean fundamental fre-

quency compared to the original (chapter 6).

– For stationary noise, listeners preferred to reallocate the speech energy, choosing

settings that enhanced the energy in the lower frequencies (chapter 7).

• The more cognitively demanding the task was, the greater the adjustment time the lis-

teners needed.

– In quiet, they needed around the lowest permitted time (5 s).

– In noise, they needed progressively more time depending on the noise level.

– They needed different times for the different masker types (e.g. more time for speech-

modulated noise compared to speech-shaped noise for the same SNR; chapter 5).

– They needed different times for features that cause different acoustical or phonolog-

ical distortions (e.g. the sliding band filter required the greatest time; chapter 7).

• Subjective ratings of effort were correlated with intelligibility, while they were not always

consistent with the pupillary responses (chapter 3).

• A clear impact of speech type on the cognitive demands required for speech compre-

hension was apparent. Pupil dilation determined that Lombard speech imposes smaller

demands on mental processing compared to plain, TTS, and artificially enhanced speech

(chapter 3).

The aforementioned findings are discussed in the next section in an attempt to interpret listener

preferences.

8.3 Interpreting listener preferences

Results revealed clear preferences for the different speech features and conditions tested. Listen-

ers tended to opt for feature values that would improve intelligibility, as well as speech aspects

beyond that once understanding the speech was no longer an issue. Listeners were instructed

to tune the speech until they could recognise as many words as possible, without any additional

information on how to make the adjustments. For all the listener preference experiments, the

total energy of the stimuli before and after the modifications was kept constant. Thus, listener

preferences reflected the best compromise between the effect of the parameter being modified

and the effect on local SNR change in time-frequency. An estimate of the local SNR can be
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indicated by the proposed DGAF measure. Tang and Cooke have investigated the gains in intel-

ligibility and the effects on quality when local SNRs are enhanced using several strategies [Tang

and Cooke, 2010, 2011]. However, an understanding of the beneficial effects on local SNR that

made listeners in our experiments choose the specific feature values will require further analysis.

Listener preferences revealed an attempt to reduce cognitive demands.

According to the Ease of Language Understanding model [ELU; Rönnberg et al., 2013], in

ideal conditions, speech understanding is an implicit, automated, and effortless process, while

distorted speech (e.g. noisy conditions, signal processing, hearing loss) is detrimental to this

process. To make sense of a distorted speech signal, the top-down cognitive analysis is enhanced

[Gatehouse, 1990; Pichora-Fuller et al., 1995; Wingfield, 1996] and explicit cognitive processing

is triggered, requiring more cognitive resources. The limited capacity of the working memory

[Kahneman, 1973] makes such a task effortful. The degree of explicit processing needed for

speech understanding is positively linked to effort [Rönnberg et al., 2019]. In our experiments,

under quiet conditions, listeners may have chosen the original (i.e. plain) speech, as the distor-

tions caused by the speech processing for the remaining options may have led to phonological

mismatches with the expected mental representation. In noise, listeners chose feature values in

such a way as to overcome the energetic masking by avoiding it, either in time, i.e. choosing a

target speech rate that contrasts with that of the speech modulated noise masker (chapter 5),

or spectrally, i.e. reallocating spectral energy when speech is masked with speech-shaped noise

(chapter 7). These preferences may have derived from the listeners’ desire to reduce listening

effort. In noise, part of the acoustic information is masked, resulting in decreased audibility.

Missing or incomplete segments of the target speech lead to a mismatch with the stored lex-

ical representation; thus, the acoustic signal requires more perceptual processing to interpret

speech. This process results in greater listening effort [Winn and Teece, 2021]. Listeners under

the speech-shaped noise condition may have selected slower speaking rates as the noise level

increased, in order to extend the time available for processing speech (chapter 5).

The more cognitively demanding a condition is, the more time the listener may need to find

the ‘optimal’ value. Listeners in our experiments were under no time constraint while perform-

ing the task; thus, they could spend as much time as necessary on perceptual learning. The

perceptual system is capable of recalibrating speech processes and adapting to distortions that

the speech imposes [Samuel and Kraljic, 2009]. In quiet, speech understanding is supposed to

be effortless; thus, the listeners in these experiments needed close to the shortest permitted time

to finalise their choice. For increasing noise levels, the processing demands increase and the ad-

justment time became progressively higher. For instance, for the spectral tilt feature at −3 and

0 dB SNR, the listeners achieved almost equal intelligibility scores, whereas they needed more

time to adjust the speech under the more adverse conditions (chapter 7). The extra processing

demands required in conditions with more noise were reflected in pupillary activity, a known

measure of listening effort in which peak pupil dilation increases with noise level [Ohlenforst

et al., 2017]. Finally, apart from the additional cognitive demands that the higher noise level

imposes, different types of masker also had different impacts on effort [Brungart et al., 2013].

For the experiment in chapter 5, listeners spent more time adjusting the speech rate in the

presence of temporally-modulated noise compared to stationary noise. The modulated nature

of the masker may impose an additional cognitive load on the listener.
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Listeners may have tried to maintain the speech quality.

Listeners chose feature values that do not have a negative impact on naturalness. Specifi-

cally, listeners chose a similar fundamental frequency to the original speech, since a simple shift

in fundamental frequency without the appropriate formant adjustments has a negative effect

on naturalness [Assmann et al., 2006]. In line with our findings, a simple shift in fundamental

frequency was not preferred by the listeners in Assmann and Nearey [2007]. Moreover, in noise,

listeners in our experiments did not choose the options that entailed extreme attenuation of

pitch and harmonic information. In previous studies, the quality of algorithms that boost mid

and high frequencies, sacrificing energy below 1000 Hz, was judged as poorer compared to others

[Gabrielsson et al., 1988; Tang et al., 2018].

Listeners may have made their choices based on what they find familiar.

In Tang et al. [2018], listeners in quiet conditions with intelligibility at ceiling preferred plain

speech over modified speech, while plain speech was rated to have better quality. Listeners were

not given any specific reference for the quality assessment, but one explanation is that they

applied a consistent quality standard based on their experience. In our experiments, in noisy

conditions, listeners chose speech features similar to those naturally produced by speakers in

noise. Specifically, listeners preferred slower speech rates and flatter spectral tilts, while for

higher noise levels the effect was greater [Tartter et al., 1993]. Speech in noise is also char-

acterised by an increase in pitch, which was not observed in our results. The deterioration in

quality may have discouraged the listeners from selecting a higher pitch.

Do all supra-intelligibility aspects of speech culminate in listening effort?

Listener choices influenced by speech quality and familiarity may well lead to a reduction in

listening effort. Speech distortions that lead to poorer speech quality may require the invest-

ment of higher cognitive resources. It has been shown that, for constant intelligibility, changes

in signal quality, such as increased spectral resolution in a cochlear implant simulation, can

result in decreased listening effort measured using the dual-task paradigm [Pals et al., 2013].

Additionally, naturally produced speech types that listeners are accustomed to hearing under

specific conditions have been shown to be less cognitively demanding. In Borghini and Hazan

[2020], for the same level of speech intelligibility, the cognitive effort increased when attending

to plain instead of clear speech in the presence of babble noise. Furthermore, this study found

(chapter 3) that Lombard speech was the least effortful compared to plain and artificial speech

types in the presence of speech-shaped noise. Speech characteristics of clear and Lombard

speech were preferred in our experiments under noisy conditions (i.e. slower speech rate, flatter

spectral tilt). However, the distinct speech features that led to the reduction in listening effort

should be further investigated.

8.4 Potential research directions

One direction may be to develop a model to predict listener preferences. Such a model could

be useful in the optimisation of speech enrichment algorithms. In near-end listening enhance-

ment algorithms, objective intelligibility metrics are usually used to optimise the algorithm’s

parameters. However, an objective intelligibility metric cannot really distinguish between con-

ditions of ceiling intelligibility, which can only be understood in terms of listeners’ preferences.

SpeechAdjuster can be valuable for determining the optimal parameters in audio engi-
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neering, in which the level of one audio signal is reduced by the presence of another signal,

or for achieving the proper balance between intelligibility and supra-intelligibility aspects of

speech important for near-end listening enhancement algorithms. In the development of such

a predictive model, the DGAF measure can be useful to indicate the preferred spectral profile.

One limitation of this thesis is that the relationship between listener preferences and supra-

intelligibility factors was not investigated. Only indirect comparisons were drawn between

listener preferences and listening effort, quality and familiarity. Thus, another research direc-

tion could be to extend the relationship between the outcomes from tools such as SpeechAd-

juster to other measures. For instance, it would be of interest to compare SpeechAdjuster-

elicited preferences with listening effort metrics based on pupillometry [Winn et al., 2018], EEG

[Sauseng and Klimesch, 2008; Obleser et al., 2012] or self-reports [Gatehouse and Noble, 2004;

Rudner et al., 2012].

8.5 Endpiece

The overarching objective of this thesis is to determine whether listeners exhibit supra-intelligibi-

lity preferences when they are given the power to manipulate distinct speech properties. The

collective outcome of the experiments described here suggests that the answer is yes. Listeners

in noise chose to elongate speech, chose spectral modifications that cause the least possible

damage to the lower frequencies, and selected slightly lower fundamental frequencies compared

to the original speech. Dissecting the relationship between listener preferences and quality,

naturalness and cognitive effort is a fruitful area for future research.
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Appendix A

Trial exclusions in chapter 3

Table A.1 depicts the percentage of trials with which native (left table) and non-native (right

table) listeners did not perceive any word correctly for each speech type and SNR.

Speech type
SSDRC plain TTS Lombard

SNR
−5 0.3% 6.1% 23.3% 0.6%
−3 0.3% 1.7% 13.3% 0.3%
−1 0% 0.8% 8.3% 0.6%

Speech type
SSDRC plain TTS Lombard

SNR
−1 0.5% 3.1% 5.6% 1.2%
+5 0.3% 1.3% 2.3% 0.2%
+20 0.1% 0.1% 1.1% 0.1%

Table A.1: Percentage of trials with 0 words recalled correctly by native (left table) and non-
native (right table) listeners.
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Appendix B

Accent evaluation - web test in

chapter 3

Figure B.1: Online test with which native British English listeners evaluated the accent of the
non-native listeners.
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Appendix C

Individual differences in

chapter 6

C.1 Experiment I
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Figure C.1: Bar plot of the mean f0 intelligibility scores for each listener. The error bars
represent the 95% confidence intervals. Ordering on x-axis is based on the listeners’ mean f0
preferences at −3 dB SNR.
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Figure C.2: Similar to C.1 but for the mean f0 preferences.
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Figure C.3: Similar to C.1 but for the time required for choosing the preferred mean f0.
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Figure C.4: Bar plot of the intelligibility scores achieved with the preferred f0 variation for each
listener. The error bars represent the 95% confidence intervals. Ordering on x-axis is based on
the listeners’ f0 variation preferences at −3 dB SNR.
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Figure C.5: Similar to C.4 but for the f0 variation preferences.

0

50

100

150

200

250

300

350

-3
0
+3

∞

SNR (dB)

A
dj

us
tm

en
t t

im
e 

(s
)

Participant ID
    8_25    8_34       8_24       8_35       8_22       8_30       8_26       8_32      8_36         8_2         8_27       8_29       8_33      8_31        8_37       8_38       8_28

Figure C.6: Similar to C.4 but for the time required for choosing the preferred f0 variation.

Figures C.1-C.6 show the results of intelligibility, listener preferences and adjustment time of

both f0 features for each different listener and condition. It can be observed that for both

features, listener preferences vary across listeners and conditions. In general, listeners seem

to have different f0 preferences regarding the noise level except the participant with ID 8 2

who preferred almost the same mean f0 values regardless the noise level while he/she indicated

different f0 variation preferences for the different conditions. In contrast, participant with ID
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8 29 preferred the same f0 variation, while different mean f0 values. In general, listeners spent

more adjustment time in more adverse conditions with some listeners spending more than 3

minutes (e.g. 8 30, 8 31) without this observation to indicate greater intelligibility achieve-

ments. Finally, intelligibility scores were generally poorer for conditions with greater noise level

with some listeners performing better than others (e.g. 8 2, 8 38) regardless condition. No

difference was observed for those participants who reported extensive music studies.

C.2 Experiment II
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Figure C.7: Bar plot of the intelligibility scores achieved with the preferred mean f0 for each
listener. The error bars represent the 95% confidence intervals. Ordering on x-axis is based on
the listeners’ mean f0 preferences at −10 dB SNR.
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Figure C.8: Similar to C.7 but for the mean f0 preferences.
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Figure C.9: Similar to C.7 but for the time required for choosing the preferred mean f0.
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Figure C.10: Bar plot of the intelligibility scores achieved with the preferred f0 variation for
each listener. The error bars represent the 95% confidence intervals. Ordering on x-axis is
based on the listeners’ f0 variation preferences at −10 dB SNR.
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Figure C.11: Similar to C.10 but for the f0 variation preferences.
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Figure C.12: Similar to C.10 but for the time required for choosing the preferred f0 variation.

Figures C.7-C.12 show the results of intelligibility, listener preferences and adjustment time of

both f0 features for each different listener and condition. Intelligibility scores vary, with some

listeners to achieve higher scores compared to others regardless the condition (e.g. 9011 for the

mean f0 and 9001 for the f0 variation) and some other listeners to perform poorly (e.g. 9003

for the mean and f0 variation). This might be related to the listeners’ choices since listener

9011 overall preferred higher pitch values compared to listener 9003. Similar results showed

for f0 variation feature where listener 9001 preferred overall higher f0 variation resulting to

better performance compared to listener 9003 who preferred lower f0 variation. Regarding

the adjustment time (Fig. C.9 and C.12) there were some participants who needed more than

4 minutes for adjusting speech in adverse conditions (listener 9015 for both f0 features and

listener 9017 for mean f0 only). No difference was observed for those participants who reported

extensive music studies.
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Appendix D

Spectrograms of features tested

in chapter 7

D.1 Experiment II
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Figure D.1: Spectrograms of the phrase ‘El papel rojo dio un poco de color’. The upper plot
corresponds to the phrase of the original speech, the middle to the phrase after applying the
high-pass filter with the lowest cut-off frequency, and the lower plot to that with the highest
cut-off frequency.
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Figure D.2: As Fig. D.1 but for the low-pass filter.
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Figure D.3: As Fig. D.1 but for the sliding band-pass filter with middle plot corresponding to
the phrase filtered with the first of the 25 log-spaced filters and the lower plot to the phrase with
the last of the filters.
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RESUMEN

En nuestra vida cotidiana estamos expuestos a una variedad de tipos de habla, tanto naturales

como artificiales. Tanto los hablantes como los que desarrollan mejoras del habla intentan

ayudar al oyente modificando las caracteŕısticas del habla. Los hablantes modifican su habla

cuando se exponen al ruido, produciendo un habla lombarda. Los anuncios de megafońıa en

vivo y grabados pueden contener modificaciones diseñadas para mejorar la inteligibilidad. El

habla generada sintéticamente es habitual en dispositivos móviles, asistentes de voz y sistemas

de consultas telefónicas.

La percepción del habla es un proceso que involucra tres pasos secuenciales; se escucha,

interpreta y comprende un sonido del habla [Moore et al., 2008]. En concreto, se recibe la

información auditiva; posteriormente se transforma en una señal neuronal; y finalmente, se

procesa la información fonética. El procesamiento del habla es automático y sin esfuerzo cuando

ocurre en condiciones ideales. En un entorno silencioso, la información del habla en cuanto a

frecuencia y tiempo excede la requerida para percibir el habla con precisión por oyentes con

audición normal [Moore, 2008]. En un entorno ruidoso, sin embargo, la tarea de percepción

del habla se vuelve más dif́ıcil y se requiere un trabajo adicional por parte de los procesos

automáticos. Una hipótesis es que hay dos tipos de procesos automáticos que están involucrados

en la percepción del habla: a saber, procesos de abajo hacia arriba (bottom-up) y de arriba hacia

abajo (top-down). Durante el proceso de abajo hacia arriba, se analiza la señal de señal de habla

entrante, mientras que el proceso de arriba hacia abajo se basa en el conocimiento previo del

oyente. El cerebro es capaz de aislar ciertas fuentes de sonido y filtrar otras (mecanismo de

‘ganancia selectiva’ [Kerlin et al., 2010]). En la literatura, se han sugerido varias técnicas

como participantes en el mecanismo automático. Algunas de éstas son el agrupamiento y

unión de partes del habla en una sola señal (es decir, agrupación auditiva [Bregman, 1990]),

extracción de regiones de tiempo-frecuencia donde el habla objetivo está menos enmascarada (es

decir, glimpses [Cooke, 2003]), o separación espacial entre la señal objetivo y el enmascarador

cuando se encuentran en diferentes regiones [Hawley et al., 2004]. Finalmente, los indicios

visuales también son un mecanismo útil para ayudar a distinguir fonemas en ruido [Macleod y

Summerfield, 1987].

Aunque hay una serie de factores que pueden interferir con la comprensión óptima del habla,

los oyentes con audición normal pueden entender el habla en condiciones severas [Diehl, 2008].

Para lograr una comunicación exitosa, los hablantes modifican naturalmente su estilo de hablar

teniendo en cuenta las condiciones ambientales y a su interlocutor [para una revisión, consultar



Cooke et al., 2014a]. Tales condiciones ambientales pueden ser ruido ambiental aditivo -en el

que el hablante produce la llamada habla ‘lombarda’ (por ejemplo, en un reunión social con

múltiples hablantes) [Summers et al., 1988; Hazan y Baker, 2011]-, reverberación [Brunskog

et al., 2009], o separación amplia entre hablante e interlocutor [Pelegŕın et al., 2011]. Por

otro lado, los tipos de habla modificados por el hablantee atendiendo a las caracteŕısticas del

interlocutor incluyen el habla dirigida a bebés [Burnham et al., 2002], a niños con discapacidades

de aprendizaje [Bradlow et al., 2003], a oyentes con discapacidad auditiva [Lam and Kitamura,

2012], a no nativos [Sankowska et al., 2011], a máquinas [Mayo et al., 2012] o a mascotas

[Burnham et al., 2002].

La intención del hablante es facilitar la comprensión al oyente aumentando la claridad

del habla y reduciendo el esfuerzo cognitivo requerido. Esto se logra haciendo adaptaciones

acústicas y lingǘısticas, por separado o en combinación. Para las modificaciones acústicas en

particular, un mecanismo es mejorar la audibilidad aumentando la intensidad vocal [Picheny et

al., 1986; Castellanos et al., 1996; Pelegŕın et al., 2011], elevando la frecuencia fundamental para

desplazar el espectro a frecuencias a las que el óıdo es más sensible [Bond y Moore, 1990; Pittman

y Wiley, 2001], realzando los sonidos sonoros en cuanto a intensidad y duración [Boril y Pollak,

2005] y reasignando enerǵıa espectro-temporal [Lu y Cooke, 2008]. Otro mecanismo es aumentar

la coherencia del habla en presencia de sonidos competidores aumentando la modulación del

habla [Krause y Braida, 2004; Boril y Pollak, 2005], con cambios en los dos primeros formantes

[Picheny et al., 1986; Bradlow et al., 2003], o insertando pausas entre palabras [Picheny et al.,

1986]. Finalmente, también se pueden aplicar modificaciones a nivel lingǘıstico, como usar un

vocabulario más simple.

Para estudiar el efecto de diferentes tipos de habla sobre la percepción del habla, los inves-

tigadores suelen evaluar la inteligibilidad. La inteligibilidad se puede definir como el porcentaje

de palabras reconocidas con precisión (tasa de reconocimiento de palabras). Los factores que

pueden reducir la inteligibilidad incluyen condiciones de audición imperfectas, con o sin as-

pectos como el ruido ambiental o la reverberación; limitaciones del interlocutor, como no ser

nativo o tener problemas de audición; y limitaciones del hablante, como el habla con acento.

La inteligibilidad disminuye en función de la ratio señal-ruido, conocida como SNR (Signal-to-

Noise-Ratio): es decir, una SNR más baja conduce a una inteligibilidad más baja. Además,

la reducción de la inteligibilidad se ve afectada de manera diferente para los diferentes tipos

de voz, SNR, distorsiones, enmascaradores y reverberación [Picheny et al., 1985; Picheny et

al., 1986; Summers et al., 1988; Robinson et al., 2022]. Por ejemplo, se ha demostrado que el

habla “alargada” aumenta la inteligibilidad en el ruido multi-hablante [Adams y Moore, 2009],

mientras que en el ruido estacionario no se observaron ganancias significativas [Nejime y Moore,

1998]. Además, el aplanamiento de la inclinación espectral conduce a mejoras en la inteligi-

bilidad en presencia de ruido, pero el aumento de la frecuencia fundamental no tiene ningún

impacto [Lu y Cooke, 2009a].

La recepción correcta del mensaje es cŕıtica en muchas situaciones. En consecuencia, se

ha dedicado un gran esfuerzo a evaluar el efecto sobre la inteligibilidad que tienen diferentes

estilos de habla [Cooke et al., 2013a] y cambios en diversas propiedades del habla [Nejime y

Moore, 1998; Adams y Moore, 2009; Lu y Cooke, 2009a]. Los algoritmos de mejora de la

escucha cercana al oyente (near end) pueden lograr mejoras significativas en la comprensión

del habla en comparación con el habla no procesada en condiciones adversas [Taal y Jensen,

2013; Schepker et al., 2015]. Sin embargo, el habla percibida después de la mejora de la



escucha cercana al oyente podŕıa no ser completamente satisfactoria para el oyente, ya que los

algoritmos de mejora del habla comúnmente utilizados se centran principalmente en mejorar la

inteligibilidad. Deben también tenerse en cuenta otros aspectos subjetivos del habla percibida,

como el esfuerzo auditivo, la calidad, naturalidad, que sea grato escucharla y las preferencias

generales del oyente. Para referirse a los atributos del habla más allá del reconocimiento de

palabras, se utiliza el término ‘supra-inteligibilidad’. El objetivo de esta tesis es doble: estudiar

los aspectos de supra-inteligibilidad del habla en términos de esfuerzo auditivo y preferencias

del oyente, y desarrollar una herramienta para investigar los aspectos de supra-inteligibilidad

del habla.

Complementaria a la dimensión de la claridad del habla es la experiencia general del oyente,

que ha sido mucho menos investigada. Escuchar puede volverse dif́ıcil, incluso cuando la intel-

igibilidad está al nivel más alto posible. El esfuerzo de escucha refleja los recursos cognitivos

necesarios para la comprensión del habla. A veces es necesario un gran esfuerzo en situaciones

con ruido de fondo, baja intensidad del habla, conexión móvil deficiente, habla con acento o

alta motivación del oyente (por ejemplo, mayor dilatación máxima de la pupila para mayores

recompensas; ver una revisión reciente en Carolan et al. [2022]). También se pueden encontrar

variaciones en el esfuerzo de escucha entre diferentes poblaciones. Por ejemplo, los oyentes

no nativos realizan un mayor esfuerzo en comparación con los oyentes nativos, incluso cuando

realizan una tarea al mismo nivel [Borghini y Hazan, 2018].

Una alta asignación de recursos cognitivos impone una gran desventaja al oyente, lo que lleva

a un rendimiento reducido en multitareas [Sarampalis et al., 2009], mayor sensación de escucha

y/o fatiga mental, o rechazo a la vida social. En un caso más extremo [Organización Mundial

de la Salud. Oficina Regional para Europa., 2011], trabajar en un entorno desagradable con

anuncios frecuentes y ruidosos puede provocar problemas de salud. El esfuerzo de escucha se ha

estimado utilizando medidas subjetivas como cuestionarios, métricas de comportamiento (por

ejemplo, tiempo de respuesta) y medidas fisiológicas como la pupilometŕıa (ver la revisión de

McGarrigle et al. [2014]).

El esfuerzo de escucha se puede considerar como uno de los varios aspectos individuales

de las preferencias del oyente. Las preferencias del oyente surgen del juicio generalizado de la

percepción del habla que incluye factores como la inteligibilidad, la naturalidad y el agrado.

Las preferencias de los oyentes se pueden recopilar permitiéndoles modificar las propiedades del

habla utilizando herramientas de ajuste. Los oyentes están familiarizados con el concepto de

modificaciones suaves de audio, como las que se usan para ajustar el volumen en la televisión

y la radio. Las respuestas de los oyentes derivadas de las herramientas de ajuste del habla

pueden ser precisas, ya que el habla se puede modificar finamente, en contraste con las pruebas

tradicionales en las que el oyente solo tiene pocas opciones. Estudios previos han sugerido

diferentes modificaciones de caracteŕısticas del audio en tiempo real [Assmann y Nearey, 2007;

Kean et al., 2015; Zhang y Shen, 2019; Novak III y Kenyon, 2018]. Se puede esperar que

tales preferencias vaŕıen según el entorno de escucha [Kean et al., 2015; Walton et al., 2016] y

cualquier discapacidad auditiva [Buyens et al., 2014; Shirley et al., 2017], además de tener un

componente individual [Walton et al., 2016]. Una mejor comprensión de la base de las pref-

erencias del oyente promete aportar información para el diseño de algoritmos de modificación

del habla que sean capaces tanto de aumentar la inteligibilidad como de reducir el esfuerzo

auditivo, proporcionando una mejor experiencia auditiva general.

La motivación de esta tesis es dilucidar el efecto ‘dif́ıcil de escuchar’ (es decir, la condición



en la que el habla requiere más esfuerzo por parte del oyente) evaluando la contribución de

distintos factores del habla a este efecto para diferentes condiciones de escucha. El objetivo

general de esta tesis es determinar si los oyentes manifiestan preferencias de suprainteligibilidad

cuando se les da la posibilidad de manipular distintas propiedades del habla que los hablantes

modifican naturalmente para producir habla lombarda. La hipótesis principal es que cuando la

inteligibilidad está en niveles máximos, los oyentes intentarán reducir el esfuerzo de escucha y

mantener la calidad del habla. Se supone que, para las condiciones en las que se maximiza la

inteligibilidad, la relación entre las preferencias del oyente y una amplia gama de valores de las

caracteŕısticas del habla (por ejemplo, la pendiente espectral) tendrá una distribución en forma

de campana. Además del aspecto centrado en el usuario de las preferencias del oyente, cuando

los oyentes del mismo grupo (por ejemplo, adultos jóvenes frente a adultos mayores, normo-

oyentes frente a personas con discapacidad auditiva, nativos frente a no nativos) escuchan en las

mismas condiciones (por ejemplo, ruido estacionario, habla competidora), se espera que valores

similares de rasgos del habla exciten patrones cognitivos o auditivos similares (por ejemplo,

frecuencias a las que el oyente es particularmente sensible, intensidad del habla, caracteŕısticas

prosódicas de un idioma que le son familiares).

Esta tesis describe una investigación sobre dos factores de supra-inteligibilidad: el esfuerzo

de escucha y las preferencias del oyente. En primer lugar, se recopilaron medidas del esfuerzo

de escucha para diferentes estilos de habla y se realizaron comparaciones entre oyentes nativos

y no nativos. Se investigaron tres medidas del esfuerzo auditivo: (i) una medida objetiva de

inteligibilidad, (ii) una medida fisiológica del esfuerzo auditivo (tamaño de la pupila) y (iii) los

juicios subjetivos de los oyentes. Los tipos de habla examinados fueron habla simple (natural),

habla producida en ruido (habla lombarda), habla mejorada para promover la inteligibilidad

(SSDRC; Zorila et al. [2012]) y habla sintética (TTS; Yamagishi et al. [2009] ) en presencia

de ruido con forma de voz (speech shaped noise) a tres SNR diferentes. Se realizaron dos

experimentos, uno con oyentes nativos y otro con no nativos. Para el primer experimento, se

reclutaron 26 oyentes nativos de inglés británico. Los est́ımulos se presentaron a -5, -3 y -1 dB

de SNR. Para el segundo experimento, la configuración fue idéntica a la anterior excepto por los

niveles de ruido que fueron -1, +5, +20 dB de SNR. En total se reclutaron 31 oyentes españoles

con alto nivel de competencia en inglés. También se realizó una prueba web paralela para que

los oyentes nativos de inglés evaluaran el acento en inglés de los participantes españoles. Se

recogieron las puntuaciones de los 10 evaluadores. Los resultados revelaron que las valoraciones

subjetivas del esfuerzo estaban correlacionadas con la inteligibilidad, mientras que no siempre

eran consistentes con las respuestas pupilares. Además, fue evidente un claro impacto del tipo de

habla en las demandas cognitivas requeridas para la comprensión del habla. La dilatación de la

pupila determinó que el habla lombarda impone demandas menores en el procesamiento mental

en comparación con el habla simple, śıntesis text to speech y habla mejorada artificialmente.

A continuación, se introdujo e implementó una herramienta llamada SpeechAdjuster para

investigar los aspectos de inteligibilidad y suprainteligibilidad del habla. SpeechAdjuster es una

herramienta de código abierto que invierte los roles de oyente y experimentador al permitir que

los oyentes controlen directamente las caracteŕısticas del habla en tiempo real. Este cambio

de paradigma permite medir directamente las preferencias de los oyentes, sin recurrir a escalas

de calificación. La incorporación de una fase de prueba en la que se congelan las preferencias

también permite estimar la inteligibilidad dentro del mismo ensayo. El cálculo previo (offline)

y la interpolació en ĺınea (online) dentro de la herramienta permiten medir el impacto de los



cambios en prácticamente cualquier caracteŕıstica del habla presentada (por ejemplo, frecuencia

fundamental o pendiente espectral) o caracteŕıstica de fondo (por ejemplo, espectro de ruido),

independientemente de su complejidad.

Se realizaron varios experimentos con SpeechAdjuster para explorar los efectos sobre las

preferencias auditivas y la inteligibilidad de las propiedades del habla que normalmente se

modifican en el habla mejorada de forma natural. En primer lugar, se investigó la relación

entre la velocidad del habla y las propiedades del enmascarador. El habla rápida puede reducir

la inteligibilidad, pero hay poco acuerdo sobre si los oyentes se benefician de un habla más lenta

en condiciones ruidosas. Dieciocho oyentes nativos de español ajustaron la velocidad del habla

mientras escuchaban secuencias de palabras en silencio, en ruido estacionario con relaciones

señal-ruido de 0, +6 y +12 dB, y en ruido modulado para 5 velocidades de modulación de

envolvente. Después de seleccionar una velocidad preferida, los participantes identificaron las

palabras presentadas a esa velocidad. En segundo lugar, se investigaron las preferencias con

respecto a la frecuencia fundamental para el habla presentada en enmascaradores de energéticos

y de habla competidora. Los beneficios de inteligibilidad relacionados con la frecuencia fun-

damental (F0) no están claros actualmente, mientras que las preferencias de F0 de los oyentes

han sido poco investigadas. En este sentido, se realizaron dos experimentos para investigar las

preferencias de los oyentes sobre el F0 ante enmascaradores energéticos e informativos. Para

los experimentos, se reclutaron oyentes nativos griegos. El material de oraciones del corpus

griego utilizado se presentó en Sfakianaki [2019]. En el primer experimento, se recogieron las

preferencias de F0 de 17 oyentes en silencio y en presencia de ruido estacionario a -3, 0 y +3

dB de SNR. En el último experimento, se recogieron las preferencias de F0 de 23 oyentes en

silencio y en presencia de un hablante competidor (el mismo que el hablante objetivo) a -10, -6

y -3 dB de SNR. Finalmente, se investigaron las propiedades espectrales (inclinación espectral,

modificaciones de enerǵıa de banda espectral, caracteŕısticas del filtro de frecuencia) del habla

presentada en condiciones de enmascaramiento energético. El aplanamiento de la inclinación

espectral ha revelado ganancias de inteligibilidad en presencia de ruido [Lu y Cooke, 2009a]. En

nuestro experimento, los oyentes ajustaron las propiedades espectrales del ruido estacionario en

relaciones señal/ruido de -6, -3 y 0 dB y, posteriormente, se evaluó la inteligibilidad.

Esta tesis estudia los efectos de las caracteŕısticas del habla distintas de la intensidad de la

señal en las preferencias del oyente. En todo momento, los est́ımulos se normalizaron para tener

la misma enerǵıa cuadrática media antes y después de la modificación. Este enfoque es común,

por ejemplo, en la evaluación del rendimiento de los algoritmos de mejora del habla [Cooke et al.,

2013a, Rennies et al., 2020], y lleva a centrarse en las modificaciones del habla que benefician a

los oyentes independientemente del simple recurso de aumentar la audibilidad elevando el nivel

de la señal. Una consecuencia de la normalización es que las modificaciones del habla siempre

representan el resultado conjunto resultante tanto del efecto directo del parámetro modificado

en śı mismo (por ejemplo, una inclinación espectral más plana) como del efecto sobre cualquier

cambio en la SNR local a lo largo del tiempo y la frecuencia debido a la normalización posterior

( por ejemplo, más enerǵıa en las frecuencias medias). Para evaluar los cambios en la SNR local

que resultan de la modificación de los parámetros del habla, se introdujo una nueva métrica

que mide la distribución de los glimpses del habla a través de la frecuencia.

Los resultados revelaron que los oyentes tienen distintas preferencias por las caracteŕısticas

del habla evaluadas, lo que revela aspectos del habla más allá de la inteligibilidad. Espećıficamente,

para una inteligibilidad constante: (1) en silencio, los oyentes ajustaron el habla para estar cerca



del habla original (es decir, simple); (2) para enmascaradores modulados, los oyentes prefeŕıan

velocidades de voz moduladas de una manera que contrastaba con las del enmascarador; (3)

para el ruido estacionario, los oyentes prefirieron una velocidad de habla más lenta a medida

que aumentaba el nivel de ruido; (4) independientemente del nivel de ruido, los oyentes eligieron

una frecuencia fundamental media ligeramente más baja en comparación con la original; (5)

para el ruido estacionario, los oyentes prefirieron reasignar la enerǵıa del habla, eligiendo con-

figuraciones que mejoraran la enerǵıa en las frecuencias más bajas. Los resultados también

mostraron que cuanto más exigente cognitivamente era la tarea, mayor era el tiempo de ajuste

que necesitaban los oyentes: (1) en silencio, necesitaban alrededor del tiempo permitido más

bajo (5 s); (2) en ruido, necesitaron progresivamente más tiempo dependiendo del nivel de ruido;

(3) necesitaban tiempos diferentes para los diferentes tipos de enmascaradores (por ejemplo,

más tiempo para el ruido modulado en comparación con el ruido con forma de voz para la

misma SNR; (4) necesitaban tiempos diferentes para las caracteŕısticas que provocan distor-

siones acústicas o fonológicas diferentes (por ejemplo, el filtro de banda deslizante requirió el

mayor tiempo).

El estudio de la pupilometŕıa se utilizó como investigación de referencia para comprender

el esfuerzo que implican los estilos de habla que se pueden encontrar en condiciones de la vida

real. Cada uno de los tipos de voz probados implica cambios de una o más de las caracteŕısticas

estudiadas en los experimentos de preferencias del oyente realizados con SpeechAdjuster. Por lo

tanto, se puede obtener información sobre si los valores preferidos de las distintas caracteŕısticas

del habla han contribuido a reducir el esfuerzo de escucha requerido.

Las preferencias de los oyentes revelaron un intento de reducir las demandas cognitivas.

Según el modelo de Facilidad de Comprensión del Lenguaje [ELU; Rönnberg et al., 2013], en

condiciones ideales, la comprensión del habla es un proceso impĺıcito, automatizado y sin es-

fuerzo, mientras que el habla distorsionada (por ejemplo, condiciones ruidosas, procesamiento

de señales, pérdida de audición) es perjudicial para este proceso. Para dar sentido a una

señal de voz distorsionada, se mejora el análisis cognitivo de arriba hacia abajo (top-down)

[Gatehouse, 1990; Pichora-Fuller et al., 1995; Wingfield, 1996] y se activa el procesamiento cog-

nitivo expĺıcito, lo que requiere más recursos cognitivos. La capacidad limitada de la memoria

de trabajo [Kahneman, 1973] hace que esta tarea sea laboriosa. El grado de procesamiento

expĺıcito necesario para la comprensión del habla está positivamente relacionado con el esfuerzo

[Rönnberg et al., 2019]. En nuestros experimentos, en condiciones de silencio, los oyentes

puede que hayan elegido el habla original (es decir, simple), dado que las distorsiones causadas

por el procesamiento del habla para las opciones restantes pueden haber provocado desajustes

fonológicos con la representación mental esperada. En ruido, los oyentes eligieron los valores de

las caracteŕısticas que superaran el enmascaramiento energético evitándolo, ya sea en el tiempo,

es decir, eligiendo una velocidad de habla objetivo que contraste con la del enmascarador de

ruido modulado por habla, o espectralmente, es decir, reasignando enerǵıa espectral cuando el

habla se enmascara con ruido en forma de habla. Estas preferencias pueden haberse derivado

del deseo de los oyentes de reducir el esfuerzo de escucha. En presencia de ruido, parte de la

información acústica se enmascara, lo que reduce la audibilidad. Los segmentos del habla que

faltan o están incompletos conducen a una falta de coincidencia con la representación léxica

almacenada; por lo tanto, la señal acústica requiere más procesamiento perceptivo para inter-

pretar el habla. Este proceso da como resultado un mayor esfuerzo de escucha [Winn y Teece,

2021]. Los oyentes bajo la condición de ruido en forma de voz pueden haber seleccionado veloci-



dades de habla más lentas a medida que aumentaba el nivel de ruido para aumentar el tiempo

disponible para procesar el habla.

Cuanto más exigente cognitivamente sea una condición de escucha, más tiempo necesitará

el oyente para encontrar el valor “óptimo”. Los oyentes en nuestros experimentos no teńıan

limitaciones de tiempo mientras realizaban la tarea; por lo tanto, pod́ıan dedicar todo el tiempo

necesario al aprendizaje perceptivo. El sistema perceptivo es capaz de recalibrar los procesos del

habla y adaptarse a las distorsiones que impone el habla [Samuel y Kraljic, 2009]. En condiciones

de silencio, se supone que la comprensión del habla se realiza sin esfuerzo; por lo tanto, los

oyentes en estos experimentos necesitaron casi el menor tiempo permitido para finalizar su

selección. Para niveles de ruido crecientes, las demandas de procesamiento aumentan y el

tiempo de ajuste se hizo progresivamente más alto. Por ejemplo, para la función de inclinación

espectral a -3 y 0 dB de SNR, los oyentes lograron puntuaciones de inteligibilidad casi iguales,

mientras que necesitaron más tiempo para ajustar el habla en las condiciones más adversas. Las

demandas de procesamiento adicionales requeridas en condiciones con más ruido se reflejaron en

la actividad pupilar, una medida conocida del esfuerzo cognitivo en la que la dilatación máxima

de la pupila aumenta con el nivel de ruido [Ohlenforst et al., 2017]. Finalmente, además de

las demandas cognitivas adicionales que impone el mayor nivel de ruido, los diferentes tipos

de enmascaradores también tuvieron diferentes impactos en el esfuerzo [Brungart et al., 2013].

En el experimento que investigaba la velocidad del habla, los oyentes dedicaron más tiempo a

ajustar la velocidad del habla en presencia de ruido modulado temporalmente en comparación

con el ruido estacionario. La naturaleza modulada del enmascarador puede imponer una carga

cognitiva adicional al oyente.

Otro hallazgo es que los oyentes pueden haber intentado mantener la calidad del habla.

Los oyentes eligieron valores caracteŕısticos que no tienen un impacto negativo en la naturali-

dad. Espećıficamente, los oyentes eligieron una frecuencia fundamental similar a la del discurso

original, ya que un simple cambio en la frecuencia fundamental sin los ajustes de formantes

apropiados tiene un efecto negativo en la naturalidad [Assmann et al., 2006]. De acuerdo con

nuestros hallazgos, los oyentes de Assmann y Nearey [2007] no prefeŕıan un simple cambio en

la frecuencia fundamental. Además, en ruido, los oyentes de nuestros experimentos no eligieron

las opciones que implicaban una atenuación extrema del tono y la información armónica. En

estudios previos, la calidad de los algoritmos que potencian las frecuencias medias y altas, sac-

rificando enerǵıa por debajo de los 1000 Hz, se consideró más pobre en comparación con otros

[Gabrielsson et al., 1988; Tang et al., 2018].

Los oyentes pueden haber hecho sus elecciones basándose en lo que les resulta familiar. En

[Tang et al., 2018], los oyentes en condiciones tranquilas con inteligibilidad a niveles máximos

prefirieron el habla simple sobre el habla modificada y el habla simple se calificó como de

mejor calidad. A los oyentes no se les dio ninguna referencia espećıfica para la evaluación de la

calidad, pero una explicación a estos resultados es que aplicaron un estándar de calidad consis-

tente basado en su experiencia. En nuestros experimentos, en condiciones ruidosas, los oyentes

eligieron caracteŕısticas del habla similares a las que producen naturalmente los hablantes en

ambientes ruidosos. Espećıficamente, los oyentes prefeŕıan velocidades de habla más lentas e

inclinaciones espectrales más planas, y para niveles de ruido más altos el efecto era mayor

[Tartter et al., 1993]. El habla en ruido también se caracteriza por un aumento en el tono (F0),

que no se observó en nuestros resultados. El deterioro de la calidad puede haber disuadido a

los oyentes de seleccionar un tono más alto.



Finalmente, las elecciones de los oyentes influidas por la calidad del habla y la familiaridad

pueden conducir a una reducción en el esfuerzo de escucha. Las distorsiones del habla que pro-

ducen una peor calidad del habla pueden requerir la utilización de mayores recursos cognitivos.

Se ha demostrado que, para una inteligibilidad constante, los cambios en la calidad de la señal,

como una mayor resolución espectral en una simulación de implante coclear, pueden resultar

en una disminución del esfuerzo auditivo medido con el paradigma de doble tarea [Pals et al.,

2013]. Además, se ha demostrado que los tipos de habla producidos de forma natural que los

oyentes están acostumbrados a escuchar en condiciones espećıficas son menos exigentes desde

el punto de vista cognitivo. En Borghini y Hazan [2020], para el mismo nivel de inteligibilidad

del habla, el esfuerzo cognitivo aumentó al escuchar habla simple en lugar de habla clara en

entornos con habla multihablante de fondo. Además, en nuestros experimentos encontramos

que el habla lombarda fue la que menos esfuerzo requirió en comparación con los tipos de habla

simples y artificiales en entornos de ruido en forma de habla. Nuestros oyentes, en condiciones

ruidosas, prefirieron las caracteŕısticas del habla clara y lombarda (es decir, una velocidad de

habla más lenta, una inclinación espectral más plana). Sin embargo, las distintas caracteŕısticas

del habla que condujeron a la reducción del esfuerzo de escucha deben investigarse más a fondo.

El resultado conjunto de los experimentos descritos aqúı sugiere que los oyentes exhiben

preferencias de suprainteligibilidad cuando se les da la posibilidad de manipular distintas

propiedades del habla. Los oyentes, en presencia de ruido de fondo, eligieron alargar el habla,

modificaciones espectrales que causan el menor daño posible a las frecuencias más bajas y

seleccionaron frecuencias fundamentales ligeramente más bajas en comparación con el habla

original. Diseccionar la relación entre las preferencias del oyente y la calidad, la naturalidad y

el esfuerzo cognitivo es un área fruct́ıfera para futuras investigaciones.


