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Abstract

We address the problem of completing two files with records containing a fully
observed common subset of variables. The technique investigated involves the
use of regression and/or classification trees. An extension of current methodology
(the intersection-seeking or “forest-climbing” algorithm) is proposed to deal with
multivariate response variables. The method is demonstrated and shown to be
feasible and have some desirable properties.

Keywords: file completion; imputation; regression trees.

Acknowledgements. We thank for support the Spanish MEC (grant
PB98-0149). We gratefully acknowledge comments from Vicente Nufiez,
Eva Ferreira, Karmele Fernandez, and participants of the IWSM’15 and
COMPSTAT’ 2000 meetings. Any errors and obscurities that remain are
our own.

1 Introduction
1.1 The problem

Our starting point are two files, A and B with a total of N = N4 + Np observations.
When stacked, they can be seen as a single table with the structure shown in Figure 1.
The shaded area corresponds to observed values and the unshaded area to missing ones.

We deal with the problem of imputing the missing values in the file B, using the
values of the common variables X1, ..., Xp. In other words, we address the issue of
imputing the non shaded areas.

In the problem that motivates this research, this two files contain data from two
sample surveys which share a common set of questions. Variables X1, ..., X, are thus
known for all NV cases, but variables Y7, ..., Y, have only been collected for the N4
cases in the first survey. In general, we may have more than two surveys and patterns
of missingness more complicated than the one in Figure 1; but the simplified setting
adopted suffices for the purposes of our exposition.
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Figure 1: Structure of the problem. The unshaded area of the table is missing.
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1.2 Outline of the paper

Section 2 describes very briefly some of the techniques that have been used for sur-
vey imputation or file matching, and provides some pointers to the literature. Section 3
introduce the proposed method, against the background of the existing techniques. Sec-
tion 4 contains results of simulations showing the performance of the proposed method.
Some concluding remarks in Section 5 close the paper.

2 Imputation techniques

A short description of imputation techniques and some pointers to the literature are
given next. The interested reader may also refer to Nordholt (1998).

2.1 Regression and the EM algorithm

A quite natural idea is to use the cases with complete values of variables (X,Y) to fit
regressions of Y on X and then use these regressions to impute the missing values by
Y. This idea goes back at least to 1960, (see Buck (1960) for an early proponent).

The implied assumption when using regressions in this manner is the constancy of
the relationships among the predictors X and the responses in both surveys. Obviously,
a good fit of the regression models is also required, if the imputation is to be any good.

It is important to realize that even if the above assumption is justified, the imputed
values will lack the variability of the genuine values: we are replacing unknown values
about the regression hyperplane by imputed values on the hyperplane. This has to be
corrected or taken into account in any subsequent analysis.

The EM algorithm advocated in Dempster et al. (1976) (see also Rubin (1991))
provides an easy, iterative way to maximize the likelihood function of a model with
incomplete data in a wide variety of settings. We can use the model with maximum
likelihood estimates replacing the parameters to generate imputations.

2.2 Nearest neighbours and deck replacement

Another common idea is to replace the missing values in one case by those of another
case in some sense “close” to it, according to a predefined notion of “closeness” in
the space of common variables X. For instance, to impute Y; = (Y;1,.. .,Yi,q)T
fori € {Ns+1,...,N} we could use Y; = Y; for some j € {1,...,Na} such



that X; ~ X;. This gives rise to a variety of flavours of the nearest neighbour idea,
depending on how we define proximity in the space X of the X variables.

Sometimes, “closeness” means “close in the card deck”, reflecting the practice of
replacing the missing values in one case with those of the case next to it in the com-
puter card deck —a reasonable procedure if the order in the deck reflects geographical
contiguity or otherwise similarity among cases. See for instance (Rubin, 1987, p. 60).

In spite of their simplicity, deck replacement methods have advantages: the im-
puted values do not suffer from the lack of variability that afflict the regression imputed
values. Also, the imputed values belong to some other case in the sample, hence are
realistic and internally coherent. We will turn to this issue later.

Deck replacement methods are critically dependent on the rules used to determine
the nearest neighbours. When this rules are poorly chosen, the quality of the imputa-
tions may suffer greatly.

2.3 Neural networks

Artificial Neural Networks have shown great usefulness in many problems, as universal
approximators. They are ideally suited to model complex relationships when there is
no clear choice of a parsimonious model. Useful monographs are Ripley (1996) and
Bishop (1996). Nordbotten (1996) and Villagarcia and Mufioz (1997) are examples of
uses in survey imputation.

2.4 Multiple imputation

Not an imputation technique, but rather a methodology that can improve many of them:
Rubin (1987) and Little and Rubin (1987) convincingly show its rationale and benefits.
See also Rubin (1986). Basically, the idea is to construct the distribution of the missing
values conditional on the observed ones (the predictive distribution) and sample from
this distribution. Rather than replacing each missing value with a single imputation
(such as the conditional mean), we draw from the predictive distribution several such
replacements (proper imputations).

The idea is to generate not one but several complete data sets. In our setting, we
would create several matrices such as the one in Figure 1, sharing the shaded areas but
with different imputations for the missing data. We can then perform several classical,
complete data analysis, and compare them to have an idea on how much the results
vary due to random fluctuation in the imputation.

Of course the problem lies in obtaining a suitable approximation to the predictive
distribution, and considerable effort has been expended in this area in the last years.
Schafer (1997) describes how to create multiple imputations under a variety of multi-
variate models. The techniques rely heavily on Markov Chain Monte Carlo (MCMC)
to generate approximate drawings from the predictive distributions.

A different strategy is adopted in the chained equations approach (see van Buuren
and Oudshoorn (1999), Oudshoorn et al. (1999), van Buuren and Oudshoorn (2000)):
univariate models are fitted to each univariate response to approximate the conditional
distribution given all other variables. Then, the Gibbs sampler is used to derive approx-
imate drawings from the joint multivariate distribution.



2.5 Imputation using regression or classification trees

We propose the use of regression and/or classification trees to impute missing values.
Using trees has a number of advantages: it gives a unified treatment of continuous
and categorical variables, provides useful byproducts to assess the goodness of fit and
makes multiple imputation easy. Trees also have well known advantages: flexibility,
few assumptions, relative insensitivity to outliers, etc. The seminal book Breiman et al.
(1984) describes these advantages.

Consider the simplest possible case in which we have p common variables X and
q = 1, i.e. there is only one specific variable to impute (refer to Figure 1, p. 2). The
case (usually more relevant in practice) g > 1, is taken up in Section 2.6, and a method
is proposed in Section 3.

Let X be the space of all possible values of X. A tree of Y on the X induces a
partition of X’ such that in each class we have like values of Y. Since no restrictions
are imposed on the kind and distributions of the variables, the CART methodology
described in Breiman et al. (1984) seems a good way to build such partition. To impute
a case, we drop it down tree and look at the leave where it ends. This is formalized in
Algorithm 1, pag. 4.

Algorithm 1 — Univariate imputation using trees.

1. Build atree Yx “regressing” Y onthe X, using cross validation and observations
i=1,...,Ny4. Let )y,...,Y, the leaves of said tree, and Y the partition they
form.

2. To impute the value of Y for a case with ¢ € {N4 +1,..., N}, drop it down
the tree Vx . If it falls in the leave Vs (;), impute Y as a function of the values of
Y observed in that leave.

Notice that the method described lends itself quite well to something close to mul-
tiple imputation, since each case will normally end in a terminal node which contains
cases with more than one value of Y. Thus, we can sample among them at random
to create multiple imputations, if we consider the tree as giving a sufficiently good ap-
proximation to the predictive distribution. We can also impute using the mean, median,
mode, etc., if we want a single imputation.

It is worth mentioning that Algorithm 1 can be seen as a regression method —
only a tree replaces familiar linear or nonlinear regression, with both advantages and
disadvantages. It can also be seen as a nearest neighbour method. But, while a nearest
neighbour method using, for instance, Mahalanobis distance in the space X, would
disregard the values of the Y, here a different notion of proximity is used. A case is
“near” another if both happen to fall in the same leave when dropped down the relevant
tree. Thus, the notion of proximity used does take into account the response variable:
the method is an instance of predictive matching. This is quite important and further
discused later.

The use of trees to impute univariate missing values is already common practice
and an option for imputation in several statistical and data mining packages.



2.6 Trees for multivariate imputation

When we attempt to generalize the method to multivariate Y (i.e., ¢>1), we stumble
upon a pitfall. We would like a method to construct trees partitioning the X’ space in
such a way that each class contains like values of the (multivariate) response: but there
is no unique way to define likeness in a multidimensional space. A possibility is to
use Kullback-Leibler or a similar measure of discrepancy as in Ciampi (1991), but this
requires a model for the distribution of the response variables. Another posibility when
all responses are categorical is to create a new response with D = H‘;:l d; levels,
where d; is the number of levels in the j-th response and g the number of responses.
This approach is advocated, for example, in Mesa et al. (2000).

One obvious way out is to use different trees to impute each of the variables in
Y, effectively turning a multivariate problem into ¢ univariate ones. This is clearly
undesirable, for it disregards relationships that may exists among components of Y’;
nonsensical imputations might be produced which fail to comply logical or arithmetic
constraints that we know must hold.

To circumvent such problem, it is desirable to impute all variables in Y for each
case 7 at once, taking the values of an observed “similar” case (again, multiple imputa-
tion is a possibility). This automatically guarantees consistency of the imputed values,
and is a commonly accepted way to proceed (see Lejeune (1995), pag. 140 and Lebart
and Lejeune (1995) in this connection). Section 3 describes the method we propose for
multivariate imputation.

3 Theintersection-seeking algorithm

3.1 Notation

To simultaneously impute Y; = (Y;1,...,Y;,) we use the univariate trees ygg') con-
structed for each of the variables Y;, j = 1,..., ¢, as described next and formalized in
Algorithm 2.

Let the nodes of each tree be numbered, and let y,ﬁj) be the k-th node of tree ygg').

We use y,gj) to denote the node, the subset of cases ending in, or going through, that
node, and the corresponding region of X. For instance, let ¢ = 2 (i.e., there are two
variables Y; e Y> in survey A) and let the trees y)((l) and yg? have the simple form
depicted in Figure 2. Then, all cases in the training sample with Xy < a will end up in
node ygl) when dropped down the tree constructed for variable Y7; the corresponding
region yQ(I) of X is shown in Figure 3.

For each g-tuple (ay,...,a4) such that a; (j € {1,...,q}) is the label of a node
in tree Y, we define

Carpag = YOI NYP N .NYD. Q)

Finally, let node y(‘{;k) be the “father” of node yéj) in tree ygg'). When there is no
ambiguity about the tree referred to, we will simply refer to nodes (1 ax) and ay.

3.2 Description

Consider now case 4,7 € {N4 + 1,..., N}, for which an imputation of Y; is sought.
Assume that when dropping that case through the trees built for each of the variables in



Figure 2: Trees y§§) and y§3>. Next to each non terminal node is the condition whose
fulfillment sends a case through the right son.

X1>a

Y, it ends in the leaves y(” .. ,y(") and hence belongs to C;, ... ;.. The simple idea
in our method is to |mpute Y;asa function of the values Y from cases in the training
sample (file A) which also belong to C;, , .. ;. Those cases have values for each variable
Yi,..., Y, which, as far as the relevant trees can ascertain, are indistinguishable from
the ones of the case to impute.

As in the univariate Algorithm 1, a variety of options exist: to impute using one or
several Y sampled randomly from C;, ;.. using the mean, the median, or any other
suitable function.

In the previous example, consider a case to impute 7 such that a’ < X; < a and

X, < b itwill end in leaves ") and * when dropped down the trees ¥ and

y;?). The intersection of those leaves,

Cor =V N Y, @)

)

is shown in Figure 4. We propose to impute Y; using the values of Y observed for
cases in the training sample that also fall in Co_7.

3.3 Details of the implementation

A problem may arise if case 7 to be imputed belongs to an intersection C;, | .. ;, Which
is empty; no cases in the training sample belong to that particular intersection. When
this happens, the intersection needs to be gradually enlarged to a non empty set: start-

ing from the leaves yfl”, y(") where 4 ended, our algorithm “climbs” the trees,
replacing one node at a time by its “father”. In doing so, we have at each step a choice
of ¢ trees that we may climb. The goal is to choose at each step in such a way that the
quality of the imputation suffers least.

Let us see the heuristics implemented in our algorithm, which is one possible way
of doing it. Continuous variables Y are assumed, but the idea can be generalized.

In the construction of trees, nodes are divided for as long this improves the fit

in terms of deviance —for regression trees, usually the sum of squares is used; see



Figure 3: Partitions of the X" space induced by trees y§§) and yg?.
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Breiman et al. (1984), Cap. 3. Let R(t) be the deviance at node ¢ and R(T') the total
deviance of tree T', defined as

R = > (si—7) ®)
R(T) = ) R(), @)

where T is the set of “leaves” or terminal nodes of tree 7" and 7, is the arithmetic mean
of values of the response variable for the cases in node t¢.

For any of the trees y(j), j =1,...,q, the cost of climbing from node ¢, to its
father node t,, can be evaluated by

N, _ _
> it (Y — yj,tp)z B Efvz'ﬁ (?Jij - yj,th)2 )
N, Na
= l%(tp)/NP - R(th)/Nh Vi=1,.,q, (6)

c(j)(th)

where R(t5) and R(t,) are resubstitution estimates of the deviance in node ¢ (from
which we consider climbing) and its father node ¢,,, N, and N}, are the number of cases
in nodes ¢, and t;, respectively, and Uity Yjtn the means of variable Y; for said nodes.

With the previous notation, we can specify Algorithm 2. A few comments are worth

Algorithm 2 — Multivariate imputation using trees.

1: (optionally) Compute suitable transformations of the variables Y.

2: Construct trees y§§), ey §g>.

3: for ¢ € {Cases to impute} do

4. Drop case i down the trees, and determine the intersection Cy, ,..., o, Of the leaves

o ((,‘fz) where it falls.

5. whileCy,,. o, =0 do

6 Compute the costs ¢ (ay), . . ., c{@(a,) of climbing from the current nodes.
7: Select & such that climbing from node «y, is of minimal cost.
8
9

ar — (1 ag); replace node oy, by its father.
end while
10:  Impute i from Cy, ... a,-
11: end for
12: (if required) Reconstruct the original variables from the imputed tranformations.

making. First, the criterion to choose which tree must be climbed is scale dependent.
Therefore, we may want to scale the variables to have common variance, or variances
which reflect their importance.

Second, Algorithm 2 can be applied both to the original variables or to any suitable
transformations (for instance, principal components). The motivation behind using
principal components is to reduce the number of trees to construct: this speeds up the
process of finding an intersection. But both the first and last step in the algorithm are
however optional.



4 Simulations

We tested the performance of the proposed method carrying out some simulations. We
report below the results obtained in only a few situations, which give a flavour of the
rest and bring out a number of interesting features.

4.1 Setup common to all simulations

We generated artificial samples from the general location model (see Olkin and Tate
(1961), Schafer (1997)). We denote by (W, Z) = (Wh1,...,W,, Z1, ..., Z,) a vector
with (W1, ..., W,) categorical and (Z1, ..., Zs) continuous variables. Variable W,
can take dy levels, £ = 1,...,r. The categorical vector W can take D = [[,_, d¢
levels; its sample information can be summarized in a contingency table with that many
cells. The distribution of W is fully specified by IT = (m1,...,7p), Where g =
Prob {W = w,} and wq denotes the values of W in cell d. Conditional on W/,

(Z|W = wa) ~ N(pa, %),

i.e. to each “state” wg of W there is a conditional normal distribution for Z with a
(possibly) different mean vector pg and common covariance matrix 3.

We considered situations with categorical and continuous predictors and responses
always continuous. The p fully observed variables (the X columns in Figure 1) were
made of pcar categorical variables from W and pcon Continuous variables from Z.
The ¢ responses (the Y columns in Figure 1) were generated as functions of the p =
Pear + Peon Predictors, and then normal noise added. For instance, with pcar = 3
categorical, pcoy = 2 continuous and ¢ = 3 responses, the “raw” responses were
generated as

14}
S3 5 4 3 2 1 Wy
Se | « [ 45 432 W, | . )
Ss 3 4 5 4 3 A

Zy

The raw responses where centered and scaled, multiplied by a factor SNR to adjust
the signal-to-noise ratio —the ratio of the variance of the signal to the variance of the
noise—, and noise added.

Z3 53 €3

Zy <~ SNR xscaled| Ss | + | es

Zs S5 €5
where:

es 0 1 oy 72

es | ~N 0 |, %¢ 1

€5 0 73 Vg 1
and

(%)=+((5)(5 1))

We considered the combinations in the number of predictors and responses and other
parameters summarized in Table 1. At the chosen values of SNR = 3,5 y 10, the



Table 1: Summary of simulation setup. Parameters in curly brackets {} represent
alternatives. Each row of the table corresponds to 36 different simulation runs.

Pear | Peon | q | Levels of W Yp Yq SNR N
3 2 |3 (3.2.3) {0.01,0.9} | {0.01,0.9} | {3,5,10} | {200,500, 1000}
5 0 |5| (84432 | {0.01,0.9} | {0.01,0.9} | {3,5,10} | {200,500,1000}
5 5 | 5| (84432 | {0.01,0.9} | {0.01,0.9} | {3,5,10} | {200,500,1000}

correlations +y, and ~, showed no discernible influence, so we do not discuss them any
further.

The functional relationship f(W, Z1,..., Z,,) linking predictors to responses
was either linear with a coefficient matrix patterned as in (7) or quadratic.

When f(W, Zi,..., Z,.,) is linear, the artificial data are generated according to
the general location model: there is little doubt that a parametric imputation method
which chooses the right model will work best. Our objective was to benchmark the
intersection-seeking algorithm and see how much one looses in exchange for the flexi-
bility and relative generality of a non parametric method.

We ported the library mi x by J. Schafer (available at ht t p: / / www. st at . psu.
edu/ ~j | s/ writen for the S-Plus programming language) to R (described in Ihaka
and Gentleman (1996)). This library includes functions for imputation based on the
general location model. Functions were writen also in R for the intersection-seeking
method, making extensive use of the library r par t (described in Therneau and Atkin-
son (1997) and available from CRAN, htt p: // cran. at. r - proj ect. or g).

We wanted to see how well the missing information can be recovered by each
method, rather than generate multiple imputations. From the total sample size N, the
last 50 observations of the ¢ responses were put aside and reconstructed once using each
of the methods trained on the remaining IV — 50 observations. With the ni x library, the
imputations where values drawn from the distribution f(Xmis|Xobs, éML), not taking
into account the variability of O (obtained with the EM algorithm). Hence, they are
not “bayesianly proper” imputations (see Schafer (1997), p. 105).

When using the intersection-seeking method, we imputed once by drawing a single
observation from the intersection Cy, ... o, Chosen by Algorithm 2.

Each combination of parameters picking one from each column of Table 1 was used
to generate n = 500 artificial samples.

4.2 Results

In the following we report on a subset of results which convey the essential of what we
found.

The 50 observations deleted from each artificial sample were reconstructed using
two methods: our intersection-seeking algorithm (Inter) and the EM plus data augmen-
tation as implemented in the m x library referred to above. Table 2 lists the average
square root of the mean square error (RMSE) of approximation for different combina-
tions of signal-to-noise ratio (SNR) and sample size.

Four different cases are considered: the parameters and relationship between pre-
dictors and responses are given at the bottom of each column. We offer some comments
in the following.

10



Case 1 is a small sized design with five predictors (three categorical, two normal)
and three responses. The nature of the dependency among predictors and responses
is linear. Thus, the general location model is adequate and given the small total num-
ber of parameters involved it is expected that the EM estimation plus imputation by
data augmentation (in mi x) will perform quite well. This is indeed the case. Notice
that since we are imputing missing values by another like value (not by an estimated
mean!) and the data are generated with variance equal to 1, the optimal RMSE is /2
(corresponds to imputing one missing value with another of exactly the same mean).

The value in the m x column for Case 1 nearly achieves this theoretical best per-
formance, as could be expected. The small number of parameters are estimated quite
precisely.

Table 2: Average RMSE of imputation. Each figure is the average on n = 500 replica-
tions. The parameters pcar, Pcon @and g and the type of dependency among predictors

and responses is given below each column. 4/2(SNR? 4 1) is the RMSE achieved
imputing with a case randomly chosen among those completely observed.

P N Casel Case?2 Case3 Case4
Inter mix | Inter mix Inter mix | Inter mix
3 200 | 214 141 | 495 4,58 - - 214 297
3 500 | 194 142 | 384 4,61 232 257 | 190 260
3 1000 | 192 143 | 3.40 4,56 232 213 | 192 215
V/2(SNR? + 1) 4.47 4.47 4.47 4.47
5 200 | 3.05 1.43 | 8.00 7.40 - - 3.06 4.66
5 500 | 2.67 142 | 5.90 7.25 339 394 | 259 396
5 1000 | 259 142 | 5.25 7.40 338 3.04 | 261 3.02
v/2(SNR? + 1) 7.21 7.21 7.21 7.21
10 200 | 5.67 1.41 | 16.10 14.80 - - 5,63 9.13
10 500 | 477 142 | 1190 1460 | 6.44 7.60 | 458 7.60
10 1000 | 457 142 | 1040 1460 | 6.35 557 | 459 556
2(SNR? + 1) 14.21 14.21 14.21 14.21
Deat 3 3 5 5
With levels: (3,2,3) (3,2,3) (8,4,4,3,2) | (8,4,4,3,2)
Pcon 2 2 5 0
q 3 3 5 5
Dependency: Linear Quadratic Linear Linear

The intersection-seeking algorithm does not perform nearly as well, although it is
clearly better than random imputation.

The situation is reversed in Case 2. Here we have again the same (small) number
of parameters, but the functional relationship linking responses and predictors is no
longer linear, but quadratic. As expected, the general location model cannot cope with
this and its RMSE of imputation is no better than random deck imputation.

The performance of the intersection-seeking algorithm also suffers, but is still better
than random imputation, except for the smallest sample size: the trees are flexible
enough to capture at least partially the relationship among predictors and responses.

11



We have found that even when responses and predictors are related as the general
location model assumes, the intersection seeking algorithm may perform equally or
better. The last two columns of Table 2 epitomize two such situations.

Case 3 considers the case with ten predictors (five categorical, five multivariate
normal) and five multivariate normal responses. The smallest sample size (N = 200)
has been dropped from the simulation as it was insufficient to use either method.

Even though the observations have been generated acording to the general location
model, the non-parametric, intersection-seeking algorithm does nearly as well for the
largest sample size (N = 1000) and looks even slightly better for N = 500. The
reason for this seemingly couterintuitive result is the following: pcar = 5 categorical
predictors with respectively 8, 4, 4, 3 and 2 levels give a total of D = [[d, = 768
cells. The general location model prescribes one mean vector u g4 for each cell, totally
unrelated to each other.

Now, clearly with N = 500 observations, a large portion of those mean vectors
cannot be estimated. The mi x library replaces the global mean vector p when there
is need to impute a case with a combination of the pcar levels not seen in the training
sample. No advantage is taken of the fact that, perhaps, a “similar” though not equal
combination of levels is present in the training sample.

As compared to this, the intersection-seeking algorithm imputes from a pool of sim-
ilar cases in an intersection of leaves. If the intersection is empty in the first instance,
it will be enlarged gradually and a case be drawn from the first non empty intersection,
rather than from the whole training sample; this accounts for its superiority when N is
not large relative to D = [] d,.

This superiority is all the more noticeable when there are no continuous predic-
tors. The general location model has a clear advantage at capturing linear relationships
among continuous variables. Trees can only give a coarser, step-like approximation to
those relations. When there are no continuous predictors and IV is not large relative to
D (Case 4 in Table 2), the intersection-seeking algorithm performs at its best, although
the general location model recovers some ground as the sample size increases.

5 Summary and conclusions

A new method for imputation has been presented. It can cope with a large variety of
problems, because of the generality of the tool used for approximation —classification
or regression trees. It makes few assumptions, is computationally feasible, and appears
to give good results: in simulated data, the method works well whenever the common
variables X are good predictors for the Y’s (see Figure 1) and the functional relation-
ship among predictors and responses can be reasonably well approximated by a tree.

The method has been tested on simulated and real data sets of relatively large size
(see Barcena and Tusell (1999), Barcena and Tusell (2000)) and can also be extended
to cope with irregular patterns of missingness in the data (see Barcena (2000)).

We see room for improvement, specially in the climbing strategy, at the expense of
increased complexity and computational burden. Our work proceeds along this line.
Further work is also required in comparing our method to other flexible, all-purpose
methods of imputation, like those using neural networks.
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