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Chapter 1

Introduction
1.1 Introduction

Industry is defined as the economic activity concerned with processing raw
materials and manufacturing goods in factories. The first industrial revolution
took place in the 18th century and as Figure 1.1 shows, since then, the industry
has continuously evolved, mostly powered by economic, environmental and
technological factors.

Figure 1.1: Industrial revolutions.

Nowadays, we are witness of a new industrial revolution, referred to as
“Industry 4.0”. Industry 4.0 lies in industrial transformation, revitalisation
and development [1] by the upgrading of manufacturing technologies by cyber-
physical systems, the Internet of Things (IoT) and cloud computing [2]. As a
result of integrating new emerging and disruptive information technologies in
the industrial plants, the traditional factories are converted into Smart factories
or Factories of the Future.

Among the sectors that have adopted the Industry 4.0 philosophy, refineries
are one of them, giving place to “Oil and Gas 4.0” which core goal, similar to
Industry 4.0, is to achieve higher value by employing digital technologies. The
Oil and Gas industry is complex and diverse, and it can be divided into three
different sectors depicted in Figure 1.2: upstream, midstream and downstream.

Figure 1.2: Oil and Gas Streams. (Source: [3])

“Upstream” refers to the activities that concern the exploration and
production of oil and natural gas. The “midstream” segment is related to
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1. Introduction

the transportation and storage of crude oil and natural gas. The final sector
of the oil and natural gas industry is known as “downstream”. It includes
everything involved in converting crude oil and natural gas into thousands of
marketable subproducts. Such conversion is done in the refinery, which is a
group of manufacturing plants composed of several unit operations that convert
raw crude into valuable subproducts. Crude oil is a mixture of thousands of
different hydrocarbon compounds that, in the refining process, are separated
into fractions of varying boiling ranges. These fractions are further processed to
be converted into subproducts, such as butane, gasoline, or diesel fuels, among
others [4]. The separation of the crude oil into valuable subproducts is done
based on the boiling points (Figure 1.3).

Figure 1.3: Crude oil fractional distillation.

Refineries already produce vast volumes of subproduct. However, the
direction of the refining industry is determined by 1) increased operating costs
or investments due to stringent environmental regulations and 2) accelerating
globalisation resulting in stronger international petroleum price scenarios [5].
In consequence, the profit obtained by the refineries per unit of subproduct is
considerably small, as exemplified in Figure 1.4 in which the European refining
margins in the last two years are shown.

Figure 1.4: European refining margins in 2020 and 2021 in terms of dollars per
barrel. (Source: [6]).
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Optimising the refinery operations to reduce costs and improve efficiency
is mandatory to achieve the difference between profit and loss and be globally
competitive. In this regard, the digitalisation in the refinery sector is essential
to cope with future challenges and achieve a profitable outcome [5].

The irruption of digitalisation is driven by the development of 1) faster and
more informative sensing technology able to collect and store information from
multiple sources, as well as 2) the increment of computational resources [7] that
allow to process large amounts of data by advanced analytical platforms. This
way, the key enablers of the smart factories are technology, data and analytics.
Refineries are already collecting information from process units and streams (e.g.,
temperature, flow, pressure, pH, conductivity), resulting in massive amounts
of data that may give place to data-rich scenarios. The phrase “data-rich and
information poor” describes organisations rich in data but with a lack of processes
that produce meaningful information and create a competitive advantage from
such data [8]. In fact, nowadays, it is said that “the data is the new oil”, so
similar to the crude oil, data must be refined to extract valuable information.
For doing so, data analysis is mandatory and a principal actor in industrial
digitalisation.

Among the data analysis techniques, Artificial Intelligence (AI) in general
and Machine Learning (ML) methods, in particular, can ingest hundreds of
features and, if proper data preprocessing is conducted, learn and extract hidden
patterns between the input and output variables for modelling the problem at
hand. Thus, these methods represent an advantage over traditional first-principle
approaches that must be explicitly modelled based on the physical knowledge
of the analysed problem, which is often unfeasible in complex industrial plants
with several interconnected equipment.

As a consequence, AI is gaining territory in refining plants through soft-
sensors development. Soft-sensors (also called observed-based sensors, virtual or
inferential sensors) refer to mathematical models that enable to infer any system
variable or product quality based on some other available and related variables [9,
10]. The term soft-sensor derives from incorporating the word “software” to the
term “sensor” to distinguish from their counterparts so as computer programs
perform the estimations. Soft-sensors, which complement hardware sensors,
are easily implemented on existing hardware, suppose a low-cost alternative to
devices required to work in hostile environments and estimate data in real-time,
enabling real-time optimisation of the entire value chain [1].

It is important to note that soft-sensors are of special utility along all the
streams of the Oil and Gas industry. For instance, they have been employed
for the optimisation of the total refinery profit [11], the optimal scheduling for
crude oil loading and unloading [12] or steal injection [13], multi-level production
planning [14], fault [15] or leakage detection system [16] and maintenance decision
of petrochemical plant [17]. They are also of special interest for subproduct
quality estimation. Due to the efficiency demands and the environmental
regulations, the subproducts extracted from the crude raw must meet the
defined standards. A violation of such standards can result in production waste,
reprocessing, energetic inefficiencies or even expensive taxes. To comply with
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1. Introduction

the regulations, subproduct quality is currently estimated by online analysers
or laboratory tests. Online analysers are physical sensors equipped with an
automatic sample acquisition tool for quality analysis which results are included
in the computer system of the plant. However, since the analysis is performed
once the refining process ends, the use of online analysers has limitations for
preserving the quality of subproducts, which delays the possible corrective
actions. Besides, since online analysers can be exposed to extreme conditions,
they can be subject to failure making the measurements unreliable. Laboratory
tests produce the most reliable quality estimations, but the delay between the
sample collection and the laboratory results is even longer than online analysers,
generally of hours. In order to circumvent the limitations of the online analysers
and the laboratory tests, in the digitalisation era, soft-sensors are designed and
developed to complement the current instruments, enhancing the industrial
systems’ flexibility, adaptability and resilience, which exponentially improves
productivity and economic growth, ensuring the sustainability of the industry.

In this context, this thesis focuses on automatising the design and development
of new data-driven soft-sensors for real refineries use cases, specifically for
measuring different subproducts quality. In order to contextualise this thesis in
the current state-of-the-art, Section 1.2 surveys different data-driven soft-sensors
proposed for refineries’ product quality estimation. Furthermore, given the
importance of data preprocessing for developing reliable soft-sensors, the existing
approaches for features’ processing are carefully analysed, giving place to a
literature review of data preprocessing methods, specifically Feature Selection
(FS), Feature Weighting (FW) and Feature Normalisation (FN). Once the
related literature has been revised, the hypothesis and the goals of this thesis are
presented in Section 1.3. Finally, Section 1.4 discusses and shows the significant
contributions of this thesis to both Oil and Gas 4.0 and Machine Learning scopes.
Figure 1.5 illustrates a high-level diagram of the key concepts considered in this
thesis and the research contributions derived from this work.

Figure 1.5: Key concepts and contributions of this thesis.
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1.2 State-of-the-art

Refineries are complex industrial systems that transform crude oil into more
valuable subproducts. One of their primary concerns is to ensure high-quality
final subproducts that meet rigorous government regulations to maximise profit
for commercialising them. The traditional quality control systems are online
analysers and laboratory tests. However, as explained in Section 1.1, these
methods present limitations that the complementary use of soft-sensors can
overcome. Until the date, several soft-sensors have been developed to supplement
diverse laboratory tests, such as 95% ASTM-D86 of naphtha, gas oil and
kerosene [18–21], 10%, 50% and 90% boiling points of diesel [22] and the carbon
decomposition rate [23], among others. Online analysers are also complemented
by recently developed soft-sensors designed to estimate the octane number in
gasoline in a power-former unit [24], the side-cut and overhead stream in a
desihexanizer column [25], toluene estimation [26] or the butane content on the
bottom of a debutanizer column [27].

Figure 1.6: Properties of the ML algorithms in terms of the features’ processing.

The revised soft-sensors are generally modelled by Partial Least Squares
(PLS) or Artificial Neural Networks (ANN) based algorithms, like in [28] and
[18, 19, 21, 29, 30], respectively. Approaches based on Support Vector Machines
(SVM) or Decision Trees (DT) can also be found. A DT-based model can be
viewed as a flowchart diagram where one feature is processed at each node. Thus,
a decision tree computes the output by utilising the features of the dataset
independently. In contrast, the majority of the ML-based methods consider the
conjoint information of the features to estimate the output of the model. In the
latter cases, contrary to some ML algorithms, such as K-Nearest Neighbours or
K-means which compute the output based on the given input features (defined
in Section 1.4.2.1 as filter ML algorithms), algorithms like PLS [31], ANN [32] or
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SVM [33] (defined in Section 1.4.2.2 as wrapper ML algorithms) present internal
weights to, in a wrapper manner, adjust the contribution of the features to the
model. In addition to the internal weights, algorithms like SVM or ANNs are
formulated with a kernel or an activation function, respectively. Depending on
the kind of function, these algorithms are able to model not only linear but
also non-linear relationships between the features. Thus, these ML algorithms
are widely employed for modelling use cases related to refineries due to the
complexity of the non-linear phenomena involved in the operation process and
the great amount of historical operational data available. Figure 1.6 depicts
the described properties of the ML algorithms in terms of the above-mentioned
processing approaches of features.

However, in the literature there is no formal definition about which ML
algorithm to select for a particular problem, nor which considerations
must be taken.

The proper ML algorithm selection and configuration is essential for
developing reliable soft-sensors that extract hidden patterns from the data.
It is so the utilisation of relevant historical information. In this case, in order
to infer the subproduct quality, process information related to the particular
subproduct is needed. Refineries are organised as a chain of units. In fact,
several distillation columns are needed to separate each fraction and, then, the
subproducts. The separation of the hydrocarbons mixture depends on their
boiling point. In order to reach the desired temperature inside the distillation
tower, reflux and condensers are adjusted to reach and maintain the optimal
temperature. Each column is equipped with several sensors for monitoring flow,
temperature and pressure. Different online analysers to control the material
properties, like pH or Reid Vapour Pressure, are also common. Hence, as
Figure 1.7 illustrates, several process variables are involved in the disunion of
the subproducts and, consequently, several process variables must be considered
in order to infer the subproducts quality. For instance, the soft-sensors proposed
in [20, 34, 35] employ between 51 and 84 features for modelling the problem
at hand, while authors in [22] utilise up to 143 features to estimate different
diesel boiling points. Nevertheless, some authors exploit a reduced number
of features for modelling the problem since a “small number of variables are
easily maintainable in the industrial setting” [28]. This way, some works employ
less than 10 features, directly related with the resultant subproduct quality. It
must be noticed that these latter works are generally focused on estimating
the subproduct quality considering the process variables of the last unit of the
distilling chain, like [36–39] which infer butane concentration on the debutanizer
bottom based on sensors’ data from such column. Of course, the decision about
which features to include for modelling the problem must be guided by expert
knowledge. As previously mentioned, the features must be informative enough
for describing the process, avoiding redundancy that might disturb the modelling
process and increase the computational cost.
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Figure 1.7: Refinery flow chart. (Source: [40])

The utilisation of excessive features may also produce over-fitting [41],
corrupting the generalisation ability of the model, especially when the number
of training samples is insufficient. In order to circumvent it, authors in [18, 24,
25, 28, 42, 43] employ Feature Selection (FS) to choose the most representative
features of the dataset for modelling the problem at hand. It must be noticed
that these works employ less than 2400 samples for training the models. However,
the physical sensors used at the refineries commonly monitor the operational
variables continuously. Assuming a sampling rate of 10 minutes for the physical
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sensors, there would be 1008 samples per week and 4320 per month. Thus,
depending on the quantity and the variability of the training data, a reduced
number of features may prevent the algorithm from capturing hidden patterns
from the data, causing under-fitting [44]. In this sense, beyond FS, authors in
[27] propose a soft-sensor modelled by a variable-wise weighted Auto Encoder,
which includes a Feature Weighting method. It assigns to each feature a weight
representative of its relevance for estimating the output, determined by the
correlation between the feature and the output data.

There is no explicit methodology proposed in the literature to guide the
criteria for inferring the proper number of features depending on the
quantity and characteristics of the dataset. While including irrelevant or
redundant features disturbs the model’s performance and its generalisation
ability, selecting too little features can affect the algorithms ability for
capturing hidden patterns in the data.

Lastly, despite the mentioned algorithms ability to internally transform
the features’ influence on the model, it must be noticed that prior to the ML
algorithm utilisation, dataset features are usually scaled by FN methods such
as Min-Max normalisation [19, 23, 34], or z-score approach [21, 22, 45] to avoid
features’ magnitude difference to affect the modelling process.

As observed along the data-driven soft-sensors literature revision, in addition
to the proper ML algorithm selection, the features’ preprocessing strategy to
enhance the model’s performance is of great importance. Therefore, in the
following, a literature review about the highlighted features’ preprocessing
methods (Figure 1.8) is conducted.

Figure 1.8: Features’ preprocessing approaches. The colours represent the
weights’ value associated to each feature, from white which symbolises zero, to
dark orange associated to the weight value equal to one.
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The literature illustrates that, in addition to the ML algorithm, some authors
focus on the preprocessing stage for data-driven soft-sensors development to
enhance the reliability of the models. As above-mentioned, features’ preprocessing
is essential to reflect features’ real problem description ability on the model.

The first feature preprocessing approach previously remarked is Feature
Selection (FS). FS is utilised to choose a subset of features of the input dataset
by assigning a weight equal to 1 to the relevant features. On the contrary, the
discarded non-relevant features for modelling the problem are multiplied by 0.
Although unsupervised FS methods exist, the most widely utilised approaches
in soft-sensors literature are the supervised ones. As observed in the works [18,
45], FS is conducted by, or takes into consideration, expert knowledge. However,
there are different mathematical FS approaches proposed to rank and select the
most relevant features [46–50]. Figure 1.9 presents a taxonomy of the supervised
FS methods.

Supervised Feature Selection methods

Filter

Statistics Information theory

Wrapper

Simultaneously One-by-one

Forward Backward

Figure 1.9: Taxonomy of the supervised FS methods.

Regarding the reviewed research papers about quality monitoring soft-sensors,
an extended FS method is based on Pearson correlation coefficient [20, 25, 43].
In this approach the correlation between each feature of the input space and
the output is estimated, and the features with the highest Pearson correlation
coefficient are selected. Another method presented in [28] uses an approach
derived from a Genetic Algorithm (GA) to study the features’ relevance for
modelling the problem based on PLS regression in terms of Root Mean Squared
Error Cross-Validation. The difference of [28] with respect to the other mentioned
FS works is the technique applied to choose the features. FS based on Pearson
correlation suggests which features to select without considering the ML algorithm
used for modelling the soft-sensor. This approach is known as filter. In contrast,
[28] employs a wrapper method for FS. Both methods are considered in [51]
where authors revise the utilised FS approach to develop industrial soft-sensors.
Regarding the filter methods, those derived from correlation analysis or Mutual
Information are the most extended ones. The computation results quantify
each feature’s importance for representing the input space. Also, they can be
viewed as a ranking of the features’ relevance. The main challenge of filter
methods is to define the threshold from which features are discarded. Feature
Selection wrapper methods, in contrast, select, in an iterative manner, the
subset of features that obtains the highest model’s performance. Some wrapper
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methods, like those based on GA, search for the best subset of features by
means of evaluating at each iteration a different configuration of the selection
parameters, over all the features simultaneously, until the optimal one is reached.
In contrast, other approaches conduct a forward or backward search considering
the features one-by-one for its selection. This means that, one feature is added or
deleted from the feature space at each iteration, respectively. Then, the model’s
performance is computed. Finally, the subset with the best trade-off between the
number of features and performance reached is selected. Although discarding or
adding one-by-one the features allows to quantify their influence on the model’s
performance, note that the order in which the features are removed/included
should be also considered.

In contrast to the filter methods, the wrapper ones obtain the highest
performance at the cost of computational efficiency.

However, wrapper or filter FS methods assign a weight equal to 1 to the
selected features. Hence, the assignment of the same weight implicitly
means that the selected features are equally important for the model,
which may not be realistic.

A generalisation of FS is Feature Weighting (FW) [52–54]. FW assigns
different weights to each feature according to its relative relevance for representing
the output. Traditionally, the weights range from 0 to 1 so that the weights’ sum
equals 1. The higher the features’ relevance, the higher the feature weight value
resulting from the computing. Moreover, since feature weights can take value 0,
FW implicitly conducts feature selection discarding the non-relevant features.

Feature Weighting methods

Supervised

Global Local

Unsupervised

Global Local

Filter Wrapper Filter Wrapper Filter Wrapper Filter Wrapper

Figure 1.10: Taxonomy of the FW methods. (Source: Paper I)

In the literature, there are several Feature Weighting methods. Figure 1.10
illustrates a general classification of the FW approaches. Some FW methods
utilise label information to estimate the features’ relevance for modelling the
problem, like FS methods. However, FW also computes the weights of the
features in an unsupervised fashion based on features’ distribution properties.
Then, supervised and unsupervised FW methods can be found.

Among the supervised FW methods, similar to FS, filter or wrapper
approaches can be differentiated. Filter methods consider statistical or
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information theory-based approaches to estimate the relevance of the features.
Among the statistical methods, those based on correlation analysis are commonly
used [55]. Still, other statistical approaches like χ2 or Fisher score (F-score)
[56] are utilised to quantify the features’ importance. Finally, regarding
the information theory-based FW methods, they commonly employ Mutual
Information [57–60].

The filter methods are computationally cheaper and independent from
the ML algorithm. However, the resultant weights are dependent on the
selection of the quantification method, which is not straightforward.

Concerning the wrapper FW methods, the most extended practice is the use
of a Genetic Algorithm (GA) for the weights’ calculation in order to improve
the model’s performance in terms of a given metric [61–63]. In addition to GA,
Evolutionary algorithms (EA) [64], Differential Evolution (DE) algorithms [65]
or Particle Swarm Optimisation (PSO) [66] can be found in the literature.

The wrapper methods are performance oriented, but they focus on reaching
the highest performance for the particular ML algorithm and involve high
computational cost.

The mentioned FW approaches calculate a weight per feature. These methods
are known as global. Global approaches consider that a given feature presents
the same importance level along all its samples when modelling a problem. Local
methods consider that a subset of samples of a given feature may present a
different importance level when modelling a problem. Local FW methods can
also be differentiated between filter and wrapper. However, few supervised filter
local approaches are found in the literature. Authors in [67] reformulate Gini
and Entropy diversity index formulation to estimate local weights based on
information theory techniques. Other supervised filter local approaches [68, 69]
are based on the RELIEF algorithm, which is used in classification problems and
computes class-dependant weight to maximise the class separability. Regarding
the wrapper local FW methods with supervised learning of the weights, similar
to the global methods, some approaches are based on Differential Evolution [70],
or Evolutionary approaches [71]. However, most of the works reformulate the
objective function of the problem to include the local weights, which are adjusted
by Gradient Descent [72–74].

Local methods may be more realistic but defining the optimal number
of weights per feature and the characterisation of the samples for
discriminating among the different weights is not straightforward.

The supervised FW methods can be characterised by filter or wrapper and
global or local. The same classification can be made for the unsupervised FW
methods. Due to the absence of information about the real labels, unsupervised
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FW methods estimate the weights by means of specific characteristics and
relations between the features or by the obtained cluster structure. The filter
unsupervised FW methods generally apply first a clustering algorithm to group
the data samples into different partitions, and then, based on the obtained cluster
structure, the feature weights are calculated. Some examples can be found in
[75, 76], where the feature weights are calculated as the ratios of the means
of the features to the centroids. In contrast, in wrapper FW approaches the
weighting strategy is commonly embedded into the clustering objective function,
and iteratively, both the cluster structure and the feature weights are obtained.
One of the first works that embrace this approach is [77] in which the authors
adapt the K-means algorithm by means of including the feature weights into
the formula giving place to the Weighted K-Means (W-k-means). The weights
optimisation is done by partial optimisation. This idea has been widely employed
by other authors, which modified the weights adjustment strategy, like in [78].

Unsupervised global FW methods are generally based on clustering
K-means algorithm to characterise the dataset and then measure the
features’ contribution to such characterisation. However, K-means is
based on samples dispersion, which may not be the main property that
describes the use case at hand.

Regarding the local weights, similar to FS, their use in filter strategies is not
common. However, some exciting research works that use unsupervised filter
local FW methods are found. Among them, [79] proposes the Weighted Dynamic
Time Warping (WDTW), which includes weights into the formulation where
the phase difference between a reference point and the tested one is considered,
and large phase differences are penalised in order to prevent minimum distance
distortion caused by outliers. Later, the same authors in [80] proposed WDTW
as a kernel function into a multi-class Support Vector Machine for time series
classification. Additionally, filter approaches for unsupervised local feature
weights have been employed for static data with missing values [81, 82].

Given the clustering ground of unsupervised FW methods, the use of local
wrapper weights is most extended compared to the supervised FW methods.
In this case, there are as many local weights as clusters. Similar to the global
methods, these approaches include local weights into the problem formulation,
and the weights are adjusted iteratively according to the prior clustering
classification [83]. Other works include Evolutionary algorithms [84, 85] to
estimate such weights.

Unsupervised local FW methods derived from clustering are dependant on
the proper selection of the number of clusters. Those based on the phase
difference between samples can be more representative of continuous
industrial processes. However, they are still not common and the time
delay between operational parameters adjustment and its impact on the
industrial final product is not always known.
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As it can be observed in the literature review, there is a wide range of
FW methods. However, each approach presents advantages and limitations.
Given that unsupervised approaches do not consider the labels to estimate the
features’ relevance, the estimated weights may not represent the importance
of the features for modelling the use case. Regarding the filter methods, the
selection of the relationship between the input and the output is crucial to
estimate a representative weight that properly guides the training of the ML
algorithm. Besides, filter methods are not expressly oriented to the model’s
performance maximisation, since they do not consider the ML algorithm.

With respect to the wrapper methods, due to their iterative nature, they
require more computational resources. Besides, since the weights are estimated
based on the particularly used samples and labels, the generalisation ability of
the model may be compromised. Finally, regarding local FW methods, they are
expected to capture more realistically the importance of each feature and each
subset of samples for modelling the use case, especially in refining cases where
different production modes are used, or when the phase difference between the
samples may influence the output estimation. However, there is a memory and
computational cost associated with this approach. Besides, local weights may
disturb the output estimation when the subset of samples differentiation is not
straightforward, or the temporal relationships are dynamic or evolve. Therefore,
for selecting the FW method, a thorough reflection must be done.

Furthermore, as Figure 1.11 illustrates, in the case of FS and FW, it must
be noticed that the related weights take values at most equal to 1. Then, the
differences between the original magnitudes of the features can result in both
FS and FW approaches in an over-influence of a set of features on the ML
algorithm’s metric. Thus, in FS, features with higher magnitude can dominate
the calculations. On the other hand, the magnitude differences can disturb the
influence of the FW-based weights on transforming the space. For all these
reasons, the third preprocessing technique highlighted in the state-of-the-art is
Feature Normalisation (FN).

Figure 1.11: Scale difference between feature selection or weighting weights and
input data.

As observed in the reviewed literature about soft-sensors, FN is widely applied.
It is claimed to be particularly useful in statistical learning methods [86], since
it avoids magnitude differences among the features. Besides, FN is thought to
equalise the features’ contribution to the ML algorithm calculations. Thus, it is
considered a necessary step especially for methods that use distance measures
[87] and for Neural Networks-based approaches. Such is the importance of FN
that, for example, authors in [88] utilise FN in conjunction with other data
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preprocessing techniques explicitly to enhance the performance of the proposed
machine-fault diagnosis system.

Among the several existing FN techniques, Min-Max normalisation [89–92]
and Standardisation [51, 91, 93–96] are the most popular ones. However, despite
the general use of FN for the development of data-driven methods, no general
agreement about which particular method to choose for a particular scenario
is settled. For instance, it is common to scale features’ values within the range
[0, 1] by Min-Max normalisation in Neural Network-based approaches. However,
authors in [21, 45, 97] utilise Standardisation in the preprocessing stage.

Despite the common utilisation of FN, in the literature, the reasoning
about the selection of a particular FN method is not generally included.

In the literature, some works can be found that empirically aim at
investigating the most suitable FN technique for a particular problem. For
instance, authors in [98] study the effect of eight FN methods on the recovery
cluster structure over four agglomerate clustering methods applied on synthetic
data. Their results reveal that the range-based normalisation methods present
consistently superior recovery of the underlying cluster structure and that the
traditional z-score is the less effective on the analysed problem. Regarding
clustering approaches, a similar work can be found in [99] where authors conduct
an empirical comparison of the effect of six normalisation methods on clustering
results. In this case, real data from the social sciences field is employed. In
the chemical field also experimental analysis of the normalisation effect on two
clustering algorithms can be found in [100]. In addition to the analysis over
clustering algorithms, [101] compares different linear and non-linear normalisation
methods and their impact on a Deep Recurrent Neural Network for predicting
different Stock Exchange closing indexes. Besides, particular interest has been
put on the effect of FN for speech recognition problems [102, 103].

Recently, authors in [104] present a study aiming to investigate the impact
of 14 data normalisation methods on K-Nearest Neighbours (K-NN) algorithm
classification performance, considering FS and FW preprocessing techniques.
Specifically, authors employ the Ant Colony optimisation algorithm to, in a
wrapper manner, find the optimal feature selection configuration and the optimal
feature weights that maximise the K-NN accuracy. Based on their results, authors
conclude that data normalisation affects the datasets’ features properties, which
changes the feature relevance. Besides, regarding the applied normalisation
methods and the performance results, it is stated that median-based measures and
minimum and maximum statistical measures should not be used for normalising
data, being the mean and standard deviation measures the most recommendable
ones to transform the original dataset.

In contrast to the extended thought that FN equalises the features’
contribution, the literature review shows that the selection of the FN
method alters the model’s output.
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Despite the general assumption of the FN importance prior to the algorithm’s
training and the interest in analysing the FN impact on the models’ performance,
the experimental researches diverge on their conclusion. Therefore, until the
date, the selection of the FN approach for scaling the features still depends on
the analyst experience and criteria.

In the literature, there is no agreement about the proper FN method for
a given problem. Besides, since the FN method selection influence on
the ML algorithms has been experimentally analysed, the results directly
depend on the properties of the input datasets.

To summarise, from the literature review, the following conclusions that
motivate the presented thesis are drawn:

The data-driven soft-sensors demonstrate to be a promising complement to
the online analysers and laboratory tests to monitor the subproducts quality
continuously in the refinery industry. However, no roadmap for selecting the
proper ML algorithm for modelling a given use case was still proposed. Until the
date, such choice is conducted by the data analyst, conditioned by their expertise
and intuition about the proper ML algorithm selection and configuration for
discovering the hidden patterns. In addition to the ML algorithm selection,
the features’ preprocessing stage is difficult and time-consuming. Despite its
importance for creating reliable soft-sensors, the features’ preprocessing influence
on the model’s performance has not been formally analysed. In this sense, the
relevance of selecting informative features for properly modelling the problem
and saving computational resources is commonly acknowledged.

Since the primary goal of ML algorithms is to discover hidden patterns
in the historical data, among the reviewed feature preprocessing methods,
FW, which considers all the features suggested by the expert knowledge and
implicitly discards or reduces the less informative features’ contribution to
the model will be considered in this thesis. Furthermore, since the feature
weights generally take values within [0, 1] and the operational variables of the
refinery often present significant magnitude differences, FN is also considered
in this thesis. However, due to the general utilisation of FN and the lack of
formal analysis about its influence on the model’s performance, it is neces-
sary to understand and formalise its impact when transforming the input features.

1.3 Hypotheses and objectives

This Section thoroughly describes the hypotheses and objectives derived from
the literature review.

1.3.1 Hypotheses

The general hypothesis of this thesis is that it is possible to:
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H0 design and develop a methodology that selects the proper
feature preprocessing and ML algorithm for creating reliable
soft-sensors in the context of Oil and Gas 4.0.

The proposed methodology is focused on analysing and selecting the proper
features’ preprocessing methods to enhance the ability of ML algorithms for
creating reliable soft-sensors. In this line, particular hypothesis regarding ML,
FW and FN are established in this thesis:

H1 ML algorithms: It is assumed that not all the features are equally important
for modelling ML based soft-sensors for the refinery industry.

Hence, features’ preprocessing is an essential and a relevant part of the Machine
Learning-based model. More concretely, regarding the features’ contribution to
the model, particular hypotheses are established for both FW and FN:

H2 Feature Weighting: The proper representation of features’ relevance
is essential to guide the ML algorithm towards the maximum model’s
performance.

H3 Feature Normalisation: FN does not equalise the features’ contribution
to the model. Thus, this work assumes that it is possible to formalise a
methodology for quantifying the FN impact on transforming the features,
and hence, on model’s performance.

Once stated the general and particular hypothesis, next the objectives of this
thesis are described.

1.3.2 Objectives

The main objective of this thesis is to:

O0 Automatise data-driven soft-sensors development for refin-
ery’s subproduct quality estimation by proposing a method-
ology that considers different ML algorithms and features’
preprocessing techniques, specifically FW and FN.

In order to reach the main objective of this thesis, first, specific objectives in
the scope of Data Analysis are established for the design and development of
reliable soft-sensors, in particular with regards to

O1 Feature Weighting:

O1.1 Analyse the FW methods from both the mathematical formulation
and the practical use on industrial use cases perspectives considering:
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• The characteristics of the dataset.
• The practical orientation of the problem at hand.

O2.2 Validate that FW can improve the soft-sensor performance.

O2 Feature Normalisation:

O1.1 Prove that the selection of a particular FN method influences the
features’ contribution to the model and consequently the model’s
performance, considering:

• Filter ML algorithms: ML algorithms without internal weights
in their formulation.

• Wrapper ML algorithms: ML algorithms with internal weights in
their formulation.

O2.2 Propose a methodology to quantify the influence of the FN method
selection on the features’ contribution to the model.

O3 ML algorithms: Select and apply a set of candidate ML algorithms and
training methodologies to avoid over and under fitting.

Once reached the specific goals regarding the Machine Learning stages, next
the objectives of this thesis in the context of Oil and Gas 4.0 are to:

O4 create a flexible methodology for soft-sensors design and development that
selects, for the problem at hand, the proper features’ preprocessing method
and the proper ML algorithm.

O5 validate the designed methodology with a real use case on laboratory tests
in the refinery industry.

O6 validate the designed methodology with a real use case on online analysers
in the refinery industry.

Table 1.1 relates the presented objectives and the papers in which they have
been evolved.

Objectives Associated Paper
O0 Paper IV & Paper V

O1 O1.1 Paper IO2.2

O2 O1.1 Paper II & Paper IIIO2.2
O3 Paper IV & Paper V
O4 Paper IV & Paper V
O5 Paper IV
O6 Paper V

Table 1.1: Association between the objectives of the thesis and the papers in
which they are addressed.
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1.4 Results and discussion

This Section outlines the results of this thesis in terms of the objectives mentioned
above. These results are of theoretical and practical nature.

1.4.1 Feature Weighting

First, given the importance of features’ preprocessing to create reliable soft-
sensors, a thorough revision of the literature concerning FW methods has been
conducted. As mentioned in Section 1.2, FW methods aim at transforming
the features of the dataset in order to represent their proportional relevance
at estimating the output and thus, enhance the performance of the model.
There are plenty of FW methods in the literature. In fact, until 2020, up to
16200 works could be found on Google Scholar with the exact words “Feature
Weighting”. However, among those works, only five surveys can be found and
as Table 1.2 shows, these focus on a subset of FW methods. Therefore, it was
deemed necessary a new review work to establish a general taxonomy for the
FW methods based on their formulation and present a concise review about FW
methods concerning different aspects.

Review work Reviewed FW methods
[52, 57] FW methods for K-NN-based algorithms
[105] FW methods used in case-based reasoning problems
[53] FW methods for K-means-based algorithms
[54] Wrapper FW methods for clustering methods

Table 1.2: Summary of surveys about FW methods and their main focus.

In this line, first a general taxonomy which classifies the FW methods
according to the learning approach (supervised or unsupervised), the way the
weights are applied (global or local) and the estimation strategy (filter or wrapper)
is described in Section 2 of Paper I and graphically represented in Figure 1.10
(Figure 3 of Paper I). In Figure 1.10, it is observed that the three taxonomy
levels define each FW method. In order to clarify how each level is integrated into
the FW methods, Figures 1 and 2 from Paper I illustrate a flow chart of filter
(Figure 1.12) and wrapper (Figure 1.13) FW approaches, respectively, considering
whether supervised/unsupervised and global/local weighs are estimated.

Figure 1.12: Flow chart of filter FW approaches. (Source: Paper I)
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Figure 1.13: Flow chart of wrapper FW approaches. (Source: Paper I)
Once defined the general taxonomy for classifying the FW methods, a

literature revision is conducted with special attention on 1) the FW technique
description, 2) the input features of the problem, 3) the field of application,
4) the metric utilised for the evaluation of the ML-based model and 5) the
comparison with related works. The revised works are collected in Table 1
from Paper I specifying the information of these five categories. In addition,
the reviewed FW techniques are grouped and described in Section 3 of Paper I
according to the proposed taxonomy. At the same time, each subsection includes
the survey about the FW approaches and a pseudo-algorithm representative of
the described FW methods.

As a result of the revision and comparison of the works, Sections 3.1.3,
3.2.3, 4.1, 4.2 and 4.3 of Paper I collect concluding remarks, advantages
and limitations of the FW methods regarding their formulation with a special
focus on their impact on ML algorithms-based solutions. Finally, based on these
conclusions and with practical purposes, Section 4.4 in Paper I provides a
recommendation guide for the optimal selection of the FW approach according
to the characteristics and objectives of the problem at hand, with regards to 1)
labels’ availability, 2) high-dimensional dataset, 3) dimensionality reduction, 4)
dataset understanding, 5) features’ contribution estimation, 6) missing values, 7)
imbalanced dataset, 8) outliers, 9) noise, 10) interpretability, 11) condition-based
problems, 12) temporal dependency, 13) model’s performance maximisation, 14)
semi-supervised learning and 15) online learning. Figure 1.14 (Figure 4 in
Paper I) depicts the recommendations into the different levels of the proposed
taxonomy.

Local

Unsupervised 15. Online

Filter

Global

4. Dataset understanding
10. Interpretability

2. High-dimensional dataset

9. Noise
3. Dimensionality reduction

14. Semi-supervised

7. Imbalanced dataset11. Condition-based problems

8. Outliers

6. Missing values

12. Temporal dependency

Wrapper

5. Features contribution estimation
13. Algorithm performance maximization

Supervised
1. Labels

Figure 1.14: Recommendation for the proper FW method selection. (Source:
Paper I)
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As a result of the former analysis and the recommendations proposed in
Paper I, since in the real use cases of this thesis the measures of subproduct
quality are continuously registered, supervised FW methods will be applied.
Likewise, given the high-dimensionality of the refinery use cases, the possible
noisy data, the intention of enhancing the interpretability of the models and, in
future work, of including into the proposed soft-sensors online learning, global
filter FW methods are considered for designing and developing soft-sensors for
subproduct quality estimation in the refinery industry.

1.4.2 Feature Normalisation

Next, as mentioned in Sections 1.2 and 1.3, this thesis claims that FN does
not equalise the features’ contribution to the model. Actually, since the works
revised from the literature study the impact of FN in an experimental manner,
the conclusions are not extensible to new datasets. Then, this work formally
analyses the impact of FN on transforming the dataset. This thesis will focus
on FN methods that linearly transform the features based on statistical factors.
In this line, this work considers two hypotheses, described in Section 3.1 of
Paper IV:

• Hypothesis 1: Different FN methods transform a given dataset differently.

• Hypothesis 2: A given FN method transforms each feature of a dataset
differently.

In order to formally study the FN impact on transforming the features of the
dataset, first of all, a formulation of statistical-based FN methods is presented
in Equations 1 and 3 of Paper II and Paper III, respectively.

X̃Norm = X − pos(X)
dis(X) (1.1)

In Equation 1.1, pos(X) refers to the position or central tendency vector that
centres the values of the feature, and dis(X) corresponds to the dispersion
statistical vector, which scales the features.

With the aim of highlighting the magnitude of each feature, and thus compare
the magnitude differences among the features, decimal notation is defined in
Equation 1.2 (Equations 2 and 4 of Paper II and Paper III, respectively):

xij = sign(xij) 0.d1d2d3 . . . · 10nj = x̂ij · 10nj (1.2)

where d1, d2, . . . ∈ {0, . . . , 9} and nj ∈ Z in such a way that, ∀j, |nj | is the
minimum number which fulfils Xj = X̂j · 10nj and max{|X̂j |} < 1. Then, 10nj

represents the j-th feature’s magnitude factor. Thus, when comparing nj∀j the
original magnitude differences among the features can be analysed.

Moreover, when applying decimal notation in the formulation of the statistical-
based FN methods it can be concluded that, with FN, the magnitude differences
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among the features disappears, as shown in Equation 1.3 (Equations 3 and 5
of Paper II and Paper III, respectively).

X̃Norm
j = X̂j · 10nj − pos(X̂j) · 10nj

dis(X̂j) · 10nj

= X̂j − pos(X̂j)
dis(X̂j)

(1.3)

However, the de-magnified position and dispersion vectors still transform the
features of the dataset. As mentioned before, pos(X̂j) vector only translates the
values of the features. But dis(X̂j) expands or compresses the features of the
dataset in order to fulfil that dis(X̂j) = 1∀j, as demonstrated in Equation 1.4
(Equation 4 of Paper II).

dis(X̃j

Norm
) = dis

(
X̂j

dis(X̂j)
− pos(X̂j)

dis(X̂j)

)
= dis

(
X̂j

dis(X̂j)

)
= dis(X̂j)

dis(X̂j)
= 1(1.4)

Thus, it is demonstrated that FN does not equalise the features’ contribution
but the features’ dispersion in terms of the statistic of dispersion applied by the
FN approach. Table 1.3 (Table 1 in PaperII) collects different statistical-based
FN methods.

Normalisation method pos(X) dis(X)
Standardisation (ST) [98, 104]

X σX

Variable Stability Scaling [106, 107]
X

σ2
X

X

Pareto scaling [108, 109] X
√

σX

Min-Max normalisation (MM) [98, 104] min(X) range(X)
Range scaling [110, 111] X range(X)
Unitisation [98] 0 range(X)
Robust scaler [112, 113] Me(X) IQR(X)
MAD normalisation [114, 115] Me(X) mad(X)

Table 1.3: Linear-based normalisation methods. (Source: Paper II)

Min-Max normalisation, Range scaling and Unitisation utilise the same
dispersion factor to normalise the features. Then, in these cases, FN transforms
the features equally. However, for the rest of cases in Table 1.3, FN transforms
the features to fulfil Equation 1.4 in terms of different dispersion statistics.
Consequently, since each FN method is based on different dispersion statistics,
each FN will transform a given dataset differently. Thus, hypothesis 1 of
Paper IV is validated. Besides, since each feature presents a different dispersion
value, each feature will be differently transformed in order to fulfil Equation 1.4.
So, hypothesis 2 of Paper IV is also validated. And, consequently, hypothesis
H3 of Section 1.3.1.

Therefore, it is demonstrated that FN does not equalise the features’
contribution to the model but equalise their dispersion based on the disper-
sion factor utilised by the selected approach. Consequently, FN can be viewed
as a particular case of unsupervised FW where the inverse of the dispersion
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factors acts as feature weights wNorm. In this sense, it is possible to extract
information about the impact of FN when transforming the dataset by analysing
the dispersion factors. Thus, in Section VI.B.1 Paper III the dispersion
weights obtained from a set of FN methods for four datasets from the UCI
repository [116] are analysed in order to infer similarities/dissimilarities between
different FN methods when transforming the dataset. Intending to quantify
the FN impact when transforming the features of a given dataset, in Section
2.4 of Paper II a new metric referred to as Normalisation weight is presented
for measuring the over or under-influence of each feature resultant from the
application of the dispersion factor. Thus, this metric symbolises how each
feature is transformed by a FN method.

In fact, as it can be observed in Table 7 or Figure 6 of Paper II (Figure
1.15) with the Normalisation weight, it can be estimated a priory the degree
of expansion/compression applied to each feature by the dispersion factor of a
particular FN method.

Figure 1.15: Difference between the ideal weights w∗ and those assigned by each
normalisation method wnorm. (Source: Paper II)

Once demonstrated that FN, and precisely the dispersion factor, transforms
the features of a given dataset differently, it is expected that FN affects the
features’ contribution to the model and, hence, its performance. Consequently, in
the following, the influence of ML algorithm-based models is studied. As specified
in Figure 1.6 of Section 1.2, according to the properties of the ML algorithms,
two kinds of methods can be distinguished in terms of features’ contribution:
1) filter ML algorithms with no internal weights which directly operate over
the features introduced in the algorithm, or 2) wrapper ML algorithms which
include into their formulation internal weights that adjust the contribution of
the features based on the algorithm’s performance measure.

For filter ML algorithms, it is expected that, since no internal transformation
of the features is performed, the influence of FN when transforming the
features will impact on the performance of the models. In fact, most of the
experimental analysis found in the literature about the impact of FN on the
models’ performance is conducted over this kind of algorithms, like in [98–100,
104]. However, it should be noticed that, out of this thesis, no theoretical
investigation has been carried out in this field. On the other hand, regarding the
wrapper ML algorithms in terms of features’ contribution, due to the internal
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weights, it is thought that any previous contribution of the features can be
altered and avoided by the tuning phase of the ML algorithm. Nevertheless,
the hypothesis H3 of this thesis also considers that FN influences the features’
contribution to the wrapper ML algorithm-based models, and hence the models’
performance.

The research conducted on the filter and wrapper ML algorithms is described
below in Subsections 1.4.2.1 and 1.4.2.2, respectively.

1.4.2.1 Filter ML algorithms

Concerning the filter ML algorithms in terms of features’ contribution, the most
representative ones are those that estimate the output based on the distance
between the samples.

A distance function measures how far two elements are from each other.
The most commonly distance function used in ML algorithms is the Euclidean
distance, which calculates the closeness degree between x, y ∈ Rm as defined in
Equation 5 of Paper II as

d2(x, y) =
m∑

j=1
(xj − yj)2 (1.5)

By utilising the decimal notation previously defined into the formulation
of the Euclidean distance, as Equation 1.6 (Equation 6 of Paper II) shows,
the magnitude differences between the features directly influences the distance
computation.

d2
E(x, y) =

m∑
j=1

(·(x̂ − ŷ) · 10nj )2 (1.6)

That is why the application of FN before the distance calculation is
traditionally recommended. When including decimal notation and the
formulation of FN for defining the Euclidean distance between two normalised
samples, it is observed in Equation 1.7 (Equation 7 of Paper II) that the
magnitude factor disappears, and by the definition of decimal notation, the
numerator of each component x̂j − ŷj takes values in (−2, 2). Nevertheless, due
to the dispersion factor, each term of the sum presents a different influence on
the Euclidean distance computation.

d2
E(x̃, ỹ) =

m∑
j=1

(
(x̂j − ŷj) · 10nj

dis(X̂j) · 10nj

)2

=
m∑

j=1

(
(x̂j − ŷj)
dis(X̂j)

)2

(1.7)

Taking advantage of the formulation of FN methods contributed in this thesis,
by comparing Equation 1.6 with the weighted Euclidean distance

wd2
E(x, y) =

m∑
j=1

w2 · ((x̂ − ŷ) · 10nj )2 (1.8)
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it is clear that the Euclidean distance between two normalised samples is
equivalent to Equation 1.8 (Equation 9 in Paper II) when the weights are
computed as the inverse of the dispersion factors. Thus, it can be concluded that
FN influences the features’ contribution to the Euclidean distance. Moreover, if
a subset of features present significantly lower dispersion than the resting ones,
as Equation 1.9 (Equation 8 in Paper II) illustrates, such subset can dominate
the distance results.

dE(x̃, ỹ)2 =
∑
s∈S

(
(x̂s − ŷs)
dis(X̂s)

)2

+
∑
h∈H

(
(x̂h − ŷh)
dis(X̂h)

)2

≈
∑
s∈S

(
(x̂s − ŷs)
dis(X̂s)

)2

(1.9)

Therefore, this thesis also aims at quantifying the degree of influence of
each feature on the Euclidean distance-based algorithms. This way, it would be
possible to compare the impact of different FN approaches on the distance
calculation or even decide which FN technique may enhance the model’s
performance.

In the literature review, the work presented in [104] analyses the features’
influence based on their range, estimated as the difference between the maximum
and the minimum values of the feature. The features with the highest range
were considered the most influencing ones on the ML algorithms’ calculations.
However, some FN methods utilise the range as dispersion factor. Then,
according to Equation 1.9 (Equation 8 of Paper II), by estimating the
features’ contribution according to their range, it could be interpreted that
some FN approaches equalise the contribution of the features to the model. To
circumvent it, this thesis proposes a new metric for measuring the degree of
influence of each feature on Euclidean distance-based ML algorithms, referred
to as Proportional influence. In contrast to the range, this metric uses the
extreme and the mean value of the feature for measuring its influence. This
way, Infl(Xj) defined in Equation 1.10 (Equation 11 of Paper II) considers
the mean around which the samples of the features are concentrated and the
maximum separation from the samples to the mean.

Infl(Xj) = max {|(max(Xj) − Xj)|, |(min(Xj) − Xj)|} (1.10)

In order to compare the feature’s relative influence on the Euclidean distance-
based ML algorithm’s calculations, the Proportional influence IN is proposed:

IN(Xj) = Infl(Xj)/max{Infl(Xj)|j = {1, . . . , m}} (1.11)

With the proportional influence, as illustrated in Figure 1.16 (Figure 3 of
Paper II) the original features’ contribution and the resultant one from the
application of a given FN method can be analysed and compared before the
dataset transformation.

For instance, Figure 1.16 (Figure 3f in Paper II) shows in the first row
the original features’ proportional influence and the resultant from applying
standardisation (ST), Min-Max (MM) and Median Absolute Deviation (MAD)
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normalisation methods from Table 1.3. When comparing, it is clear that
the features’ contribution to the Euclidean distance-based models will differ
depending on the selected transformation. For instance, feature 4 presents a
proportional influence value close to 0.6 with MAD, close to 0.75 with ST, and
around 0.9 with MM.

Figure 1.16: Proportional influence of the features of Accent dataset from UCI
repository in the original space and the resultant from applying different FN
methods (ST, MM and MAD). (Source: Paper II)

Once proven the impact of FN on the features’ contribution to the
Euclidean distance-based models, this thesis experimentally validates the
obtained conclusions over two widely extended Euclidean distance-based ML
algorithms: K-Nearest Neighbours and K-means.

K-Nearest Neighbours (K-NN) [117] is a classification algorithm that
establishes the label of a given sample based on the class membership of its K
closest samples in terms of Euclidean distance.

Since each sample is classified based on the K closest neighbours and these are
selected according to the spatial distribution of the samples, if FN influences the
Euclidean distance, the neighbours’ selection and hence, the model’s performance
are expected to be also affected by the FN method. In Paper II, it is also
experimentally validated. As thoroughly described in Section 3.3.1 from
Paper II, the neighbours’ distribution is analysed in terms of Kendall’s τ , which
measures pairwise the rank similarity or in this case, the neighbours’ distribution
similarity between a given dataset normalised by two different FN methods. In
Table 3 of Paper II, it is depicted that for different UCI datasets, the mean
τ value ranges from 0.566 to 0.972. Of course, this neighbours’ distribution
similarity is measured for the entire neighbourhood, not only the selection of
the closest K neighbours. However, an intuition about the FN influences on
the K-NN selection can be derived from it. In fact, when analysing the FN
influence on the performance of K-NN for different values of K, it is observed
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that there are differences up to 6.445% in terms of accuracy, and up to 10.417%
in terms of recall. Similarly, if comparing the precision reached for a given K
and for a dataset normalised by two different FN methods, the differences reach
21.041%. A similar analysis has been conducted over a dataset of a real use
case from a refinery, which is described below in Section 1.4.4.2. In this case,
the mean τ values obtained when analysing the neighbours’ distribution are
higher than 0.779 in Table 11. But, when calculating the percentage of samples
–normalised by different FN methods– equally classified, in Table 9d of Paper
II, in some cases only 86.143% of the samples are labelled within the same class.
Furthermore, it is translated into a difference of up to 1.9% in terms of precision,
or even up to 3% of recall (Tables 12a and 12b of Paper II, respectively). For
all the mentioned above, it is proven that FN influences the K closest neighbours
selection and then the model’s performance.

K-means [118] is a clustering algorithm that groups the samples of the dataset
in K different disjoint groups. The groups are formed so that the distribution of
the samples maximises the intra-group cohesion, i.e. the distance of the samples
to their centroid.

According to the demonstration of the FN influence on the Euclidean distance
calculations, and as observed for K-NN, it is expected that FN affects the samples’
distribution between the clusters, and therefore, the K-means performance. But,
in addition, this thesis aims to demonstrate that the features’ dominance derived
from the dispersion factors differences conditions the K-means convergence. Since
the clusters are formed in order to minimise the intra-cluster dispersion, if a
subset of features presents a significantly lower dispersion factor, as demonstrated
from Equation 1.9 (Equation 8 in Paper II), K-means primarily allocate the
centroids in such a way that the dispersion in the mentioned components is
minimised. Thus, the higher the difference between the features’ proportional
influence the more conditioned the search space. When comparing Figures 5
and 8 with Figure 10 in Paper II, the raw and the dataset normalised with
MAD, which both present the highest difference with respect to the proportional
influence, the algorithm converges to a solution in less than five iterations.

Figure 1.17: Time in seconds employed by K-means to do 100 initialisation
for raw, ST, MM and MAD datasets, in a 16 GB RAM Dell Latitude 5580
workstation equipped with Intel Core i7-7600U CPU running at Microsoft
Windows 10 Enterprise. (Source: Paper II)

Accordingly, an intuition about the algorithm’s convergence is derived from
knowing the features’ dominance in advance. Furthermore, by understanding
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the features’ contribution to the model, discarding noncontributing features may
reduce the computational cost Figure 1.17 (Figure 13 in Paper II) without
affecting the K-means performance, as illustrated in 1.18.

(a) X

(b) X̃ST

(c) X̃MM

(d) X̃MAD

Figure 1.18: K-means results when applying Feature Selection based on the
values of proportional influence (Source: Paper II).

In this case, as Figure 1.18 illustrates (Figure 11 of Paper II), by removing
one by one the features with the lowest proportional influence value, and especially
for the original and MAD datasets, no significant differences in the model’s
precision is observed even when maintaining only the most influencing feature of
the dataset.

As a result of the described work about FN impact on Euclidean distance-
based ML algorithms, a roadmap for the proper selection of the FN method
when starting a new data analysis problem illustrated in Figure 1.19 is presented
in Section 6 of Paper II.
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1.4.2.2 Wrapper ML algorithms

As previously mentioned, wrapper ML algorithms, in terms of features’
contribution, include internal weights into their formulation. Examples of
this kind of ML algorithm are linear regression, logistic regression, SVM, or
ANNs. The internal weights of these algorithms are iteratively updated during
the training phase in order to maximise the model’s performance. Therefore, the
features’ contributions continuously change until the optimal configuration is
reached. In fact, it is widely assumed that FN is applied to equalise the features’
contribution in order to “speed up the learning process in ANNs, helping the
weights to converge faster” [86].

This thesis focuses on ANN-based models to demonstrate for the wrapper ML
algorithms the influence of FN on the features’ contribution to the model and
hence the model’s performance. For doing so, first a mathematical formulation
of the ANN is presented in Equation 1.12 (Equation 1 in Paper III).

Y = φ
(

. . . φ
(

X · W (1) + b1

)
. . . W (H+1) + bH+1

)
(1.12)

For φ(x) = x, (1.12) can be rewritten as in Equation 2 from Paper III

Ŷ = X ·

(
H+1∏
h=1

W h

)
+ cte = X · W + cte. (1.13)

As it can be observed, the matrix W h represents the internal weights of
the h-th layer of the network. In ANN-based models, especially when the
activation function is linear, the ANN’s weights are the fundamental parameters
that relate the input data with the estimated output. By taking advantage of
the formulation of the statistical-based FN methods and the decimal notation
proposed in this thesis, an ANN with linear activation function for a normalised
dataset can be formulated as

Ŷ = X̃ ·

(
H∏

h=1
W h

)
+ cte = X · D ·

(
H∏

h=1
W h

)
+ cte (1.14)

In Equation 1.14 (Equation 8 of Paper III) it is shown that the dispersion
factors, collected in the diagonal matrix D, are fixed weights contributing along
with the internal weights of the network in the output estimation. Therefore, it
could be assumed that during the training, the influence of the dispersion factor
can be discarded if interpreting W = D−1 · Ŵ . In such a case, contrary to the
filter ML algorithms, the influence of FN would disappear.

However, this thesis demonstrates that D influences the search space, the final
features’ contribution to the model, and consequently, the model’s performance.

Table 3 of Paper III depicts significant differences in the outputs estimated
from differently normalised datasets. For instance, in Table 3b, when comparing
the outputs of the training data for a dataset normalised by ST and by MAD FN
methods a mean RMSE of 86.412 is obtained. Such differences in the estimated
outputs are translated into differences in the model’s performance. For the
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mentioned case, in Table 5b, the difference between the mean RMSE of the
real labels with respect to the output estimated for the dataset normalised
by ST and MAD is 856.307. Then, it is demonstrated that FN influences the
ANN-based models’ performance. This conclusion is also validated through the
Wilcoxon signed-rank test. Furthermore, in Section VI.B.1 of Paper III, an
analysis of the dispersion factors as explanatory factors of the similitude and
differences between the performance reached by models trained by differently
normalised datasets is presented. It demonstrates that the higher the dissimilarity
between the dispersion factors of different FN methods, the higher the difference
expected between the model’s output estimations and consequently, the models’
performance.

In contrast to filter ML algorithms, due to the internal weights of the wrapper
approaches, the established techniques for analysing the features’ contribution
to the model compute the calculations in terms of the network’s internal weights
once the network has been trained. These methods are referred to as weight
matrix analysis techniques, and Garson or Yoon’s methods, defined in Equations
6 and 7 respectively, are well-known examples. However, until the date, the
impact of FN on the ANNs has not been considered. Since this work proves
their impact on the model’s performance, an adaptation of Garson and Yoon’s
methods, which includes the dispersion factors to calculate the final futures’
contribution is proposed in Equations 1.15 and 1.16, respectively. (Analogously,
Equations 9 and 10 in Paper III).

Ĝarsonj = (D · |W|)j∑m
j=1 |(D · W)j |

∈ [0, 1] (1.15)

Ŷ oonj = (D · W)j∑m
j=1 |(D · W)j |

∈ [−1, 1] (1.16)

The proposal is defined in Equation 10 of Paper III. After a thorough
analysis and comparison of the traditional and the proposed adaptation of
these weight matrix analysis methods along Section VI.C, it is concluded that
the inclusion of the dispersion factors in the features’ contribution calculation
significantly improves the estimation of the real features’ influence on the model.

All in all, it is demonstrated the relevance of the proper FN method selection
for enhancing reliable results in ML-based approaches.

1.4.3 Methodology for soft-sensors design and development

As demonstrated above, the selection of the FN technique influences the features’
contribution to the model. Simultaneously, FW transforms the features to
represent their relative importance by means of features’ weights ranging in [0, 1].
The scale of the features’ weight derived from FW is not enough for compensating
the magnitude differences among the features. Specially supervised filter FW
methods that estimate the weights for each feature independently from the
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ML are generally invariant to scale. Therefore, in order to conduct a proper
features’ preprocessing, the conjoint application of both FN and FW is mandatory.
Consequently, this thesis proposes the Two-stage methodology (Section 3.2.
and Section V from Paper IV and Paper V, respectively), given place to a
new methodology for the proper features’ preprocessing.

The Two-stage methodology combines both Feature Normalisation and
Feature Weighting to transform the raw dataset intelligently. By this means,
normalisation acts over the magnitude differences among the features to extol
the resulting importance representative of the features.

Then, the Two-stage based transformation results from multiplying, for
j ∈ {1, ..., m}, each normalised feature by the corresponding feature weight,

(X̃Norm
F W )j = wFW

j ·
(
wNorm

j · Xj

)
This way, the Two-stage methodology is flexible and allows the combination

of any selected FN and FW methods.

After establishing the methodology for the proper features’ preprocessing,
it must be noticed that a priory, in the literature, it has not been defined an
explicit methodology for the proper selection of the ML algorithm based on
some properties or characteristics of the dataset or the application field. Besides,
given that the features’ preprocessing impacts the features’ contribution to the
ML algorithm-based model, and hence its performance, this thesis proposes
a flexible methodology that considers several ML algorithms with different
hyper-parameter configurations. This way, the proposed methodology for the
soft-sensors design and development, as depicted in Figure 1.20, considers
different features’ preprocessing methods and ML algorithms configurations.
Finally, this methodology, referred to as autoML for soft-sensor design and
development, automatically selects the proper features’ preprocessing methods
and ML algorithms configuration.

Figure 1.20: High-level diagram of the autoML for soft-sensor design and
development. (Source: Paper V)

The main goal of the soft-sensors developed in this thesis is to estimate
if the subproducts quality meets the standards. Then, since most of the FW
literature is focused on classification problems and given that the final goal is
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to obtain a yes or no about the fulfilment of the requirements, the refinery use
cases are faced as classification problems. In the literature review of global filter
methods for classification problems, it was observed that Pearson correlation was
extended for estimating the relevance of a continuous feature with respect to a
categorical one. However, the Pearson correlation coefficient measures the degree
of linear correlation between two continuous variables. Therefore, this thesis also
proposes the adapted Pearson correlation, defined in Section 3.2.2 of Paper
IV. The adapted Pearson correlation is a new FW method specifically designed
to estimate the relative importance of real-valued features with respect to cate-
gorical labels in terms of class separability. It is done by encoding the labels
as centroids of the different classes, calculated according to the corresponding
samples from the analysed feature. In fact, by the rationale and formulation of
the proposed approach, the point-biserial correlation coefficient can be taken as
a particular case of the proposed adapted Pearson correlation when the number
of classes equals two.

All in all, the suitability of the proposed methodology for soft-sensor design
and development are validated in the context of Oil and Gas 4.0.

1.4.4 Application of the proposed autoML for soft-sensor design
and development in Oil and Gas 4.0

As mentioned in Sections 1.1 and 1.2, soft-sensors are of special interest for
subproduct quality estimation in order to complement the current laboratory
tests and online analysers. Thus, this thesis applies the proposed autoML
approach for two different real use cases from a refinery in order to validate it.

1.4.4.1 Laboratory test real use case- Needle penetration soft-sensor

The first application of the proposed autoML is presented in Paper IV. As it is
remarked in Section 1.1, industrial petroleum refineries are complex distillation
systems, composed by chain units where physical reactions aim at converting
crude in high quality subproducts.

Figure 1.21 depicts a high-level flow diagram of the crude refining process.
Firstly, the input crude properties, described in the dataset by 33 features
(C_1:C_33), determined by experts in the field and updated every six months
– or with a higher frequency if major changes regarding the use of new crude
occurs – is injected into Process 1 and Process 2 where the chemical and physical
reactions start the refining process. From Process 1 and 2 the processed crude is
pumped into the Process 3, where the refining process continues. The behaviour
of the Process 1, 2 and 3 is shown through 15 (P1_1:P1_15), 10 (P2_1:P2_10)
and 27 (P3_1:P3_27) features, respectively, that are continuously monitored,
providing information of flow, pressure and temperature. Along all the units of
the chain system, 9 online chemical quality analysers (A1_1:A_9) monitor the
process development.
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Input	crude
33

C_1:C_33

Quality	control
(penetration)

Online	analyzers
9

A_1:A_9

Process	1
(9,	1,	5)

[P1_1:P1_9,	P1_10,	P1_11:P1_15]

Process	2
(5,	1,	4)

[P2_1:P2_5,	P2_6,	P2_7:P2_10]

Process	3
(16,	6,	5)

[P3_1:P3_16,	P3_17,	P3_18:P3_27]

Figure 1.21: Flow diagram of the crude refining process. At each process unit,
the features related to flow, pressure and temperature are remarked with bold,
italic and underlined text, respectively. (Source: Paper IV)

The information of the crude refining process is collected in a dataset,
consisting of 33485 samples described by the mentioned 94 features recorded
every 15 minutes during 349 days.

The interest of the refinery is to maintain a high penetration quality of the
bottom product of the vacuum distillation unit located at the end of Process
3. In order to control the quality specifications, some samples are tested in the
laboratory according to [119]. Depending on the result, the samples are classified
into two groups: group 0 represents the samples that fulfil penetration quality
standards, and group 1 refers to the samples that do not meet the constraints.
In practice, if a sample does not meet the designed quality standard, the plant
operators adjust the operational variables aiming at correcting the outcome
quality at the end of the process. However, in practice, such laboratory test is
not performed following a predefined schedule and the results are available after
four hours, which entails a significant delay in knowing the penetration quality
of the product with the consequent economic loss for the refinery. In fact, from
the whole historical data, only 268 samples are labelled. Therefore, in order to
circumvent such drawback this thesis proposes complementary to the laboratory
test a soft-sensor that continuously estimates, based on the operational variables,
the subproduct quality.

For doing so, the presented autoML approach is applied. For the described
problem, this work considers ST, MM and MAD FN methods for the
normalisation stage of Figure 1.20. The proposed adapted Pearson correlation
(P) and Random Forest (RF) for features’ relevance estimation are candidates
of FW methods. Regarding the ML algorithms, for the development of the
soft-sensor K-means, K-NN, Random Forest classifier (RFc), Support Vector
Machine and MultiLayer Perceptron (MLP) ML algorithms are selected. Except
for K-means, which only hyper-parameter K is known in advance (K = 2),
for the rest of ML algorithms, a set of parameters configuration is stated. By
design, as shown in Figure 1.20, the autoML includes a Grid Search for the
optimal hyper-parameters configuration. In Table 1 of Paper IV the values
of the optimal hyper-parameters for each features’ preprocessing configuration
is presented. Table 1.4 collects the models’ accuracy results obtained from the
different ML algorithms with the optimal hyper-parameters configuration.

33



1. Introduction

raw Normalization Two-stage methodology
ST MM MAD ST·P MM·P MAD·P ST·RF MM·RF MAD·RF

K-means
mean 51.852 70.37 70.37 40.741 70.37 81.407 40.741 70.37 77.778 40.741
std 0 0 0 0 0 0.519 0 0 0 0

max 51.852 70.37 70.37 40.741 70.37 81.481 40.741 70.37 77.778 40.741
min 51.852 70.37 70.37 40.741 70.37 77.778 40.741 70.37 77.778 40.741

K-NN acc 70.37 77.778 77.778 77.778 81.481 81.481 77.778 81.481 81.481 77.778

RFc
mean 52.185 52.185 52.185 53.334 52.741 74.37 52.778 52.926 74.445 52.778
std 3.535 3.535 3.535 4.709 3.652 6.132 4.479 4.188 5.803 4.479

max 59.259 59.259 59.259 77.778 66.667 77.778 70.37 66.667 77.778 70.37
min 44.444 44.444 44.444 44.444 44.444 55.556 44.444 44.444 55.556 44.444

SVC acc 51.852 81.481 81.481 77.778 77.778 77.778 70.37 81.481 81.481 74.074

MLP
mean 51.667 67.259 65.444 64.519 74.815 77.37 66.852 74.852 67.555 63.889
std 14.372 8.5 11.018 4.971 6.317 12.839 3.261 7.884 10.622 5.918

max 81.481 81.481 85.185 74.074 85.185 85.185 74.074 88.889 85.185 70.37
min 29.63 44.444 40.741 44.444 59.259 40.741 40.741 51.852 55.556 37.037

Table 1.4: Accuracy statistics (mean, std, max, min) obtained in 100 MonteCarlo
simulations for each dataset and ML algorithm. Since K-NN and SVC are
deterministic only the accuracy value (acc) is shown. (Source: Paper IV)

As it can be observed in Table 1.4, the suitability of the proposed Two-stage
methodology is validated. In fact, in all the cases, the mean accuracy values
obtained by the features preprocessed with the Two-stage methodology equal or
outperform those yielded by the application of only FN. As depicted in Table
1.4, the maximum accuracy reached by the deterministic algorithms (K-NN and
SVC) is 81.481%. For some transformations of the dataset, K-means and MLP
also reach maximum accuracy values higher than 80%, but the unique model
that in terms of mean accuracy takes values higher than 80% is the one based on
K-means with MM and P preprocessing methods. In addition, it must be noticed
that the main interest of the refinery is the prompt detection of improvable
subproduct quality. Then, precision is also considered for the selection of the
soft-sensor. For the models based on K-NN and SVC with accuracy higher than
80%, the associated precision is lower than 88%. In contrast, the K-means-based
model obtains a precision value equal to 93.8%. Furthermore, between K-NN,
SVC and K-means, the principle of parsimony suggests to select, in equal
conditions, the simplest one, which corresponds to the model based on K-means.
Besides, given the formulation of K-means, the resulting model can be easily
explained and interpreted. Therefore, among the obtained models, the autoML
approach selects the resulting from combining MM FN and the adapted Pearson
correlation FW methods for the preprocessing stage and K-means ML algorithm
for designing the soft-sensor.

As explained in Section 4.3 of Paper IV, based on the knowledge obtained
from the analysis of the FN and FW influence on the features’ contribution
to the model, the proposed approach enables the interpretability of the soft-
sensor, which demonstrates the reliability of the soft-sensor for its application.
Specifically, it is concluded that the predominant features for the soft-sensor
modelling are those related to the streams of atmospheric residue and vacuum
residue. At the same time, these properties are relevant measures to infer the
penetration quality standard of the bottom subproduct of the vacuum distillation
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unit. Such correspondence between the soft-sensor and the physical process
validates the suitability of the proposed soft-sensors, which, at the same time, it
is expected to enhance the trust from the operator in the proposed soft-sensor’s
results. Moreover, the proposed soft-sensor is able to continuously estimate
with a precision higher than 93% the subproduct quality based on the operation
variables, anticipating at least four hours the results of the laboratory test and
accelerating the subproduct preprocessing which impacts on the refinery’s profit.

1.4.4.2 Online analyser real use case- Percentage of pentanes in butane
soft-sensor

Figure 1.22 depicts a high-level diagram of the analysed unit chain, in which
crude oil is converted into high-quality gas subproducts.

Figure 1.22: High level diagram of the pentanes use case. (Source: Paper V)

Columns C1 and C2 in Figure 1.22 represent two different stabilising naphtha
towers. After a refining process of the raw crude, stabilised naphtha and Liquefied
Petroleum Gas (LPG) are obtained at the bottom and the top of the columns
C1 and C2, respectively. The resulting LPG is then pumped from the top of
columns C1 and C2 to Merox, a gas sweetening unit in which the sulphur is
removed. Finally, the sweetened gases pass to the debutanizer column, where
propane and butane are separated. The estimated duration of the described unit
chain, from stabilising naphtha columns to the end of the debutanizer column,
is 400 minutes.

In order to fulfil the specification standards [120], the resultant butane must
not exceed a certain threshold of percentage of pentanes (1.5%). According to
the mentioned threshold, the refinery’s interest is to classify the percentage of
pentanes in butane as adequate (class 0) or improvable (class 1). Currently, such
measurement is conducted by an online analyser over samples extracted from the
debutanizer column. In contrast, this thesis aims to propose a soft-sensor that,
based on the refining process of C1 and C2, estimates 400 minutes in advance
the percentage of pentanes in butane. The final goal of the soft-sensor is to
facilitate as soon as possible the re-processing of the subproduct saving costs to
the refinery.

With that purpose, from the top of C1 and C2, 31 (C1_1:C1_31) and
22 (C2_1:C2_22) features are collected, respectively. These features at each
column gather information about flow, temperature and pressure. The number
of features of each column regarding each of these properties are presented in
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Figure 1.22 with bold, italic and underlined text, respectively. The process
variables information and the pentanes percentage output are recorded every ten
minutes for 465 days, from 24-10-2017 to 31-01-2019. Thus, the dataset consists
of 66847 samples described by the 53 features described above.

Again, the proposed autoML approach is applied to, in this case, design
and develop a soft-sensor for complementing the current online analyser in the
subproduct quality estimation.

In this use case, given the fully supervised available data, first, as described
in Section 3.1 of Paper V, a strategy for the selection of the optimal training
window based on 1) a time domain feature evaluation considering seasonality,
trend and stationarity, and 2) a class occurrence frequency analysis is conducted.
After choosing the proper training data, the proposed methodology illustrated
in Figure 1.20 is applied. Again, ST, MM and MAD methods are included in
the normalisation phase. For the FW stage, in this case, in addition to the
adapted Pearson correlation and Random Forest, Mutual Information (MI) is
also considered for the estimation of the features’ relevance. Regarding the
ML algorithms, this work considers Quadratic Discriminant Analysis (QDA),
K-NN. SVM, Ridge regression (RID), Logistic regression (LOG), MLP and
Stochastic Gradient Descent (SGD). For the different combinations of features’
preprocessing techniques, the proposed autoML searches with the Grid Search
algorithm the optimal hyper-parameters configuration to train the selected ML
algorithms. Table 1.5 collects the performance results, in terms of precision
reached by each ML algorithm configured with the optimal hyper-parameter for
each transformation of the dataset.

Algorithm Raw Normalisation Proposed methodology
X X̃ST X̃MM X̃MAD X̃ST

P X̃MM
P X̃MAD

P X̃ST
RF X̃MM

RF X̃MAD
RF X̃ST

MI X̃MM
MI X̃MAD

MI
QDA 24.414 62.304 64.286 61.340 0.000 38.506 40.909 53.548 72.973 47.689 90.000 0.000 100
KNN 27.551 23.192 40.554 26.359 41.429 39.370 42.529 24.724 38.998 43.416 35.057 32.113 37.956
SVC 56.897 0.000 7.368 0.000 22.562 16.068 20.564 52.250 16.333 65.079 21.914 16.071 24.145
RID 81.507 38.517 86.957 51.598 22.938 98.734 54.028 20.511 100 51.598 21.807 96.000 51.835
LOG 90.164 92.029 0.000 100 97.872 0.000 85.714 80.000 100 90.698 92.381 0.000 75.000

MLP

Max 100 82.178 84.647 83.974 88.587 93.878 77.500 78.599 100 75.646 85.976 91.509 75.954
Mean 34.595 51.622 68.631 58.136 80.558 82.055 73.460 71.364 95.180 71.675 76.591 73.593 72.384

std 36.386 20.673 11.569 19.943 4.064 5.892 2.066 2.014 3.809 2.049 3.601 6.334 2.106
Min 0.000 18.171 38.836 18.825 74.717 72.549 69.283 68.910 87.500 65.549 72.852 66.997 68.506

SGD

Max 26.606 46.868 18.929 75.862 71.795 0.000 81.022 41.640 0.000 44.660 23.343 0.000 30.334
Mean 8.013 42.328 13.236 41.045 34.554 0.000 42.824 37.842 0.000 41.662 18.144 0.000 26.709

std 6.171 2.028 1.850 13.979 13.019 0.000 10.755 1.365 0.000 1.465 2.359 0.000 1.245
Min 0.000 38.636 10.304 17.804 15.139 0.000 24.967 35.431 0.000 39.130 12.405 0.000 24.194

Table 1.5: Precision reached by each ML algorithm over the raw, normalised
and transformed datasets. (Source: Paper V)

As it can be observed in Table 1.5, the two-stage methodology reaches
superior performance results than its counterparts. Moreover, the proposed
methodology enables to design soft-sensors with a precision higher than 90%. In
fact, the selected soft-sensor by the autoML for the subproduct quality estimation,
designed as a combination of ST with the adapted Pearson correlation and logistic
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regression, obtains a precision of 98.925% for predicting the resultant product of
improvable quality.

Hence, this work demonstrates again the viability of the autoML approach
in terms of performance. Moreover, since the subproduct quality estimation
is computed based on the operational variables in columns C1 and C2, the
soft-sensor detects deviations from the specifications 400 minutes in advance
with respect to the online analyser, which directly translates to profit benefits
for the refinery.

Figure 1.23 depicts the tons of butane per hour that do not fulfil the
specification requirements.

Figure 1.23: Tons of butane per hour that do not fulfil the specification
requirements. (Source: Paper V)

The grey line in Figure 1.23 (Figure 13 in Paper V) depicts the total
amount of butane per hour resulting from the distilling process that does not
fulfil the specification requirements. The black area of Figure 1.23 represents
the amount of butane that does not meet the specifications correctly detected
by the soft-sensor. The quantity of butane resulting from the distilling process
is calculated based on data from the refinery. For the units conversion, from the
m3/l of butane flow measured at the end of the unit chain to the tons of butane
(Figure 1.23) utilised to calculate the final profit, a product density value equal
to 0.575 kg/l is utilised according to the refinery’s laboratory test conducted
over real data from February of 2018. As observed in Figure 1.23, in some hours
up to 14.56 tons of butane do not meet the specification requirements, which
forces the refinery to re-inject such subproduct in the distillation process until
fulfilling the specification, which ultimately results in a decrease in the amount
of butane to sale. However, a prompt prediction of the butane quality in terms
of percentage of pentanes allows to readjust the process in advance (400 minutes
before) and reduce the profit losses.

Due to the time-frame needed to reach the new operation point, and
considering a conservative approach, only the benefit over the 80% of the
correctly detected improvable butane is calculated. Thus, in the analysed period
and discarding the 20% of the detected improvable butane, 258.22 tons of butane
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that do not fulfil the specification requirements are correctly detected by the
proposed soft-sensor. Besides, each refinery sets its own sale price for each
subproduct. In the refinery from where the data come, the sale price of a ton
of butane in February of 2018 was 459.74$. Thus, in the studied two weeks,
the profit derived from the online prediction of the subproduct quality with the
proposed soft-sensor would be a total of 111, 939.35$. Then, the suitability of
the autoML approach for the design and development of a soft-sensor for the
percentage of pentanes in butane estimation and its profitability for the refinery
are demonstrated.
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Chapter 2

Conclusions
The main objective of this thesis is to automatise the data-driven soft-sensors
development for refinery’s subproduct quality estimation. For doing so, in this
thesis a methodology which bases on the proper features’ prepossessing techniques
and ML algorithms selection and configuration has been proposed, referred to
as autoML approach. The proposed autoML approach has demonstrated to
meet such goal. In fact, with the autoML approach two soft-sensors that reach
precision values higher than 90% have been developed for different real use cases
in the context of Oil and Gas 4.0. For the autoML design a thorough analysis of
different features’ preprocessing techniques has been conducted.

First, Feature Weighting methods have been studied. A general taxonomy
based on the formulation of the FW methods which enables the comparison of
different approaches has been proposed. In addition, a broad revision of the
literature has been conducted and published, which serves as guide for researches
about the state-of-the-art in the field. From the literature revision the
main conclusions are twofold. First, it is concluded that FW methods
improve the model’s performance. Second, for the proper FW method
selection both the particular characteristics of the dataset and the
practical orientation of the problem at hand must be considered.
Consequently, for such purpose, a recommendation guide has been also proposed.
Based on such guide, it is concluded that the supervised filter global
FW methods are the most appropriate ones for the proposal of the
autoML approach in the context of Oil and Gas 4.0.

Feature Normalisation methods have been also investigated. This thesis
concludes that FN does not equalise the features’ contribution to
the model. Actually, it has been demonstrated that FN transforms differently
the features of a given dataset, altering their contribution to the model, also
concluding that FN is a particular case of unsupervised FW methods.
To be consistent with the filter and wrapper FW methods, this thesis defines
the filter and wrapper ML algorithms in terms of the absence or inclusion of
internal weights to adjust the features’ contribution, respectively. In contrast to
the general unconcern about the FN methods, this thesis concludes that FN
considerably impacts not only on the filter but also on the wrapper
ML algorithm-based models’ performance. Such conclusion enhances
the understanding of the influence of FN on the data-driven models
and, further, enables the proposal of more realistic features’ relevance
analysis methods by including also the influence of FN, as demonstrated
in this thesis by the results obtained for the proposal of the adapted Garson’s
and Yoon’s methods.

From the understanding of the implications and the impact of the features’
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preprocessing on the ML algorithms it is concluded the necessity of
considering both FW and FN in order to properly represent the
features’ contribution to the model. Such conclusion has given place
to the proposal of the Two-stage methodology that integrates FN and FW
to intelligently transform the features of a given dataset. However, there is
not any ideal feature’s preprocessing method or ML algorithm for all the use
cases. And, furthermore, it has been demonstrated the influence of features’
preprocessing on the features’ contribution to the ML algorithms and the model’s
performance. Therefore, this thesis determines the suitability of a
flexible approach to select the proper configuration for the problem at
hand from a set of candidate features’ preprocessing methods and ML
algorithms. Thus, in this thesis, a flexible methodology that considers different
ML algorithms and searches for the best ML algorithms’ hyper-parameters
configuration based on applicant algorithms and preprocessing techniques is
presented. Such methodology, the proposed autoML approach, automatically
searches the best features’ preprocessing and ML algorithm for the soft-sensor
design and development. As previously mentioned, the autoML approach has
been validated on two real use cases, developing soft-sensors with promising
results.

The first described soft-sensor is designed to complement a costly laboratory
test that analyses needle penetration over samples collected from the bottom of a
vacuum distillation unit and whose results are available around four hours after
the sample collection. Such delay interferes with possible corrective measures
over the distillation process and may imply a waste of a significant amount of
subproduct that must be reprocessed if the specifications are not fulfilled. Until
the date, no data-driven soft-sensor was found for the vacuum distillation bottom
product quality estimation. Thus, it is clear the interest in developing
a complementary soft-sensor. In fact, this thesis contributes to the state-
of-the-art by proposing the first soft-sensor for the described application. The
proposed soft-sensor is able of continuously detecting with high precision if the
subproduct does not meet the standard requirements. In addition, the knowledge
extracted from the analysis of the features’ preprocessing methods and the two-
stage methodology enables the interpretability of the model. As a result, the
consistency between the most influencing features on the soft-sensors and the
key parameters for the physical analysis of the subproduct’s quality validates
the reliability of the soft-sensor for its applicability.

The second proposed soft-sensor is designed by the autoML approach for the
estimation of the percentage of pentanes in butane. Currently, the refineries
analyse the concentration of pentanes in butane with an online analyser located
at the debutanizer column. Therefore, corrective measures are not applicable
until the distilling process has reached the debutanizer column. In the literature
some soft-sensors have been proposed to analyse the quality of subproducts
obtained at the debutanizer column. However, non of these enable a prompt
inference of the subproduct quality. Then, this thesis states the importance
of complementing the online analyser with a soft-sensor that estimates
in advance the quality of the subproduct. For doing so, the soft-sensor
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Future work

computes its estimations based on the operational variables of the first distilling
columns of the analysed unit chain, which represents an advance of 400 minutes
with respect to the measurements of the current online analyser. In fact, the
results show the high precision of the soft-sensor. This way, it is concluded
that the proposed soft-sensor enables the prompt reprocessing of
the subproduct that does not meet the quality requirements, which
directly impacts on the refinery’s cost saving.

In addition, through the designed and developed soft-sensors for both real
use cases is concluded the validity of the proposed autoML approach for the
automatic design and development of soft-sensors for the refineries’ subproducts
quality estimation.

For all the above-mentioned, this thesis significantly contributes in both the
Machine Learning and Oil and Gas 4.0 fields.

2.1 Future work

From the analysis and approaches presented in this thesis, many extensions and
improvements can be made.

Regarding the analysis of FN impact, filter and wrapper ML algorithms in
terms of internal weights have been considered. However, it would be interesting
to enlarge the study with further ML algorithms and to include ML algorithms
with kernel or activation functions, such as polynomial kernel or ReLu. In
addition, in the literature several researches have been conducted in order to
find the proper weights initialisation for Artificial Neural Networks. It would be
interesting to conduct a similar analysis considering that the dispersion factor of
the FN also influences the search space.

Regarding the features’ preprocessing approaches in general, it must be
noticed that in this thesis the samples are utilised as static data. Therefore, an
analysis of features’ preprocessing methods for dynamic samples (time series)
would also be of interest.

Concerning the use cases, more concretely, those associated to laboratory tests
were the labels are scarce, an analysis of semi-supervised features’ preprocessing
techniques and semi-supervised ML algorithms can enhance the design of soft-
sensors.

Finally, due to the evolving nature of the properties of the input raw crude
to the distilling process, the inclusion of Concept drift detection techniques or
Just-in-time methods into the autoML approach should be considered in the
future.
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been proposed in the literature. Their main potential is the capability to

transform the features in order to contribute to the Machine Learning (ML)

algorithm metric proportionally to their estimated relevance for inferring the

output pattern. Nevertheless, the extensive number of FW related works makes

difficult to do a scientific study in this field of knowledge. Therefore, in this

paper a global taxonomy for FW methods is proposed by focusing on: 1)

the learning approach (supervised or unsupervised), 2) the methodology used

to calculate the weights (global or local), and 3) the feedback obtained from

the ML algorithm when estimating the weights (filter or wrapper). Among

the different taxonomy levels, an extensive review of the state-of-the-art is

presented, followed by some considerations and guide points for the FW
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1. Introduction

Machine Learning (ML) algorithms are widely employed to successfully extract

patterns and valuable information from data (Bishop et al., 1995). Nevertheless,

their performance is highly dependant on the quality of the given dataset.

If it contains irrelevant or noisy information, reliable knowledge cannot be5

easily extracted (Garćıa et al., 2015). Consequently, data preprocessing, which

transforms the raw data into a useful and understandable format, is a relevant

stage in ML algorithms (Garćıa et al., 2016).

In the same context, the selection of the representative features that best define

the output behaviour is an important task, which is frequently done with the10

aid of expert knowledge on the application field and/or by Feature Selection

methods (Jović et al., 2015; Li et al., 2018; Saeys et al., 2007; Venkatesh &

Anuradha, 2019). Traditionally, it has been assumed that all the selected

features are equally important when estimating the output. However, if some

features present higher scale than others, the results can be over-influenced15

by them, affecting the performance and the accuracy of the overall algorithm

(Daszykowski et al., 2007). In order to minimise such dominance, normalisation

methods (Jain et al., 2005; Milligan & Cooper, 1988; Panday et al., 2018) are

usually employed in order to equalise the contribution of each feature on the

algorithm metric (Aksoy & Haralick, 2001).20

Nevertheless, it is widely known that all the features are usually not equally

representative of the hidden pattern, especially in real-world problems. In this

context, in the last decades a wide portfolio of Feature Weighting (FW) methods

have been proposed with the aim of estimating the degree of relevance that each

feature has for extracting the output pattern (Wei et al., 2015). Their main goal25

is to transform or weigh the features to contribute to the ML algorithm metric

proportionally to their estimated relevance.

In this paper an extensive review of the state-of-the-art on FW methods is

presented. Moreover, this paper depicts a classification of them focusing on:

2
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1) the learning strategy followed (i.e. supervised or unsupervised), 2) the30

methodology used to calculate the weights (i.e. global or local), and 3) the

feedback obtained from the ML algorithm when estimating the weights (i.e.

filter or wrapper). In Section 2 the proposed taxonomy for their classification is

shown. Following this taxonomy, Section 3 collects the FW methods proposed in

the literature in the last years. Section 4 provides some considerations and guide35

points for the selection of optimal FW methods based on significant aspects to

consider in real-world data analysis problems. To conclude this review, Section

5 gathers a summary of conclusions and challenges that remain unsolved in the

FW field.

2. Taxonomy40

FW methods are techniques that, given a dataset X ∈ Rn×m composed by

n samples described by m features, obtain a set of weights W ∗ representing

the relative relevance of the features of X. The obtained weights w∗ij for

i = {1, . . . , n} and j = {1, . . . ,m}, generally ranging from 0 to 1 in such

a way that
∑
i,j wij = 1, multiply each value xij of X in order to create a45

weighted dataset X̃ representative of the relative importance each feature has

for the given system. In this sense, the higher the weight value, the higher

the relative importance of the corresponding feature. Besides, when wij = 0

the feature weight acts as a Feature Selection factor, discarding non-relevant

information from the dataset. The weighted dataset X̃ is ultimately used by50

the ML algorithm to model the system.

From this basis, this section describes the taxonomy regarding the FW methods.

At a first stage, the FW methods are classified based on the learning approach

employed to estimate the weights, namely supervised or unsupervised. The

supervised FW strategy refers to the methods that employ the information of55

the real labels Y to calculate the features weights. By contrast, unsupervised

FW is considered when there is no information about the real labels. Instead,

the feature weights are calculated considering other intrinsic characteristics of

3
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the dataset, such as distance between samples of the features or respect to a

given point. In general, unsupervised FW methods employ clustering algorithms60

to extract group structures from the dataset and utilise this information to

compute the weights.

At a second stage, the FW methods are classified based on the way the weights

are applied: global (i.e. over the entire instance space) or local (i.e. over

different parts of the instance space). Global FW approaches consider that the65

feature has the same relevance for calculating the output for the whole target

population. For each feature Xj , a single global weight wj is calculated, i.e. ∀i
wij = wj . Local weights are employed when it is assumed that a given feature

presents different degrees of relevance, depending on its samples or subsets of

them, for estimating the output. Thus, more than one weight are assigned70

to the same feature. In this case, the FW method obtains weights wgj , with

g ∈ {1, . . . , G} and 1 < G ≤ n, where G corresponds to the number of weights

assigned to each feature and which is generally equal to the number of classes

(supervised) or clusters (unsupervised).

Finally, the proposed taxonomy delves into the way the estimation strategy is75

made. In particular, filter and wrapper methods are distinguished. As Figure

1 depicts, filter FW methods calculate the (global or local) feature weights as

the relationship between the features and a given reference which corresponds

to, based on the learning approach selected, the real labels Y in the supervised

case or intrinsic characteristics of the data in the unsupervised one.80

Figure 1: Flow chart of filter FW approaches.

In contrast, as shown in Figure 2, wrapper methods employ feedback from

a given ML algorithm to estimate the feature weights (global or local) in a

4
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black-box iterative fashion. Thus, based on the performance obtained in the

previous iteration calculated by supervised or unsupervised evaluation metrics,

the method decides whether to adjust the weights or not in order to improve85

the model performance in the next iteration.

Figure 2: Flow chart of wrapper FW approaches.

In order to provide a comprehensive overview of the paper, Figure 3 depicts the

proposed taxonomy of the FW methods, achieved from the combination of the

different approaches per level, which is the basis of the next section schema.

Feature Weighting methods

Supervised

Global Local

Unsupervised

Global Local

Filter Wrapper Filter Wrapper Filter Wrapper Filter Wrapper

Figure 3: Proposed taxonomy of the FW methods.

3. Feature Weighting Methods90

In this section an extensive review of FW methods is presented following the

taxonomy proposed in Section 2. Besides, pseudo-algorithms are included

to describe the main process of each group of FW methods. Note that,

in the pseudo-algorithms, the learning approach (supervised/unsupervised) is

remarked with underline text, the way the weights are applied (global/local)95

with dotted box and the estimation strategy (filter/wrapper) with dashed box.

5
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For the sake of our knowledge, there is no other review work in the literature that

covers such a wide classification of FW methods, i.e. the encountered reviews

are focused on a particular taxonomy level or on a subset of it, such as: FW for

K-NN algorithms (Wettschereck & Aha, 1995; Wettschereck et al., 1997), FW100

for the K-means algorithm (de Amorim, 2016) or FW for different clustering

methods but employing the wrapper methodology (Deng et al., 2016).

In this work special attention will be paid to particular characteristics and

objectives of the problem at hand: (1) Labels’ availability when is possible

to obtain the labels. (2) High-dimensional dataset characterised by a high105

number of features compared to the number of observations. (3) Dimensionality

reduction for those problems that require the reduction of the number of

features due to high computational cost or other similar reasons. (4) Dataset

understanding for those problems in which the main interest is to provide the

domain expert with information about the influence of each feature on the110

output from the system/application’s perspective. (5) Features contribution

on the model for those problems in which the main objective is to infer the

influence of every feature on the performance of the ML based model. (6)

Missing values commonly caused by improper data collection or data acquisition

fails. (7) Imbalanced dataset when the dataset has an unequal distribution of115

classes. (8) Outliers when the dataset contains observations that significantly

deviate from most observations. (9) Noise when meaningless or corrupted

features are introduced in the dataset. (10) Interpretability for those problems

in which the main objective is to extract knowledge from the ML based model

from the system/application’s perspective. (11) Condition-based problems in120

which the relevance of the features varies depending on the operating condition

of the system (for instance, type of material or material thickness). (12)

Temporal dependency commonly found when time series are required to deal

with the modelling task of interest. (13) Algorithm performance maximisation

for those problems in which the main objective is to optimise the ML algorithm125

performance regardless the interpretability of the model. (14) Semi-supervised

6
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learning if the dataset comprises both labelled and unlabelled samples. (15)

Online learning for those systems whose properties change along the time.

3.1. Supervised Feature Weighting

This section presents the works in the literature focused on supervised feature130

weighting. As described previously, it takes advantage of the real labels Y to

estimate the feature weights. Depending on the number of weights calculated

per feature, global or local approaches can be distinguished.

3.1.1. Global Supervised Feature Weighting

Global feature weighting methods look for the optimal weight w∗j to be assigned135

to each feature Xj based on its relevance for estimating the output pattern.

Since supervised learning strategy is considered, this relevance is computed as

the relationship between the feature and the labels. The calculation of the global

weights can be done in a filter or a wrapper approach.

Filter Global Supervised Feature Weighting. In the case of filter global140

supervised FW methods, the weights estimation is done by the employment

of techniques on the field of Variable Importance Analysis (V.I.A.), also called

Sensitivity analysis (Christopher Frey & Patil, 2002; Wei et al., 2015). As

presented in Algorithm 1, the global weights w∗j are calculated in line 3 utilising

V.I.A methods to represent the importance of each feature Xj in terms of its145

relationship with the label Y . Once calculated the weights, these multiply

each feature of the dataset (line 5) creating the weighted dataset X̃ which is

ultimately passed to the ML algorithm (line 6). These works Christopher Frey &

Patil (2002); Wei et al. (2015) present an excellent introduction and description

of the basis and terminology associated to Variable Importance Analysis.150

In this context, two main approaches can be found to perform the Variable

Importance Analysis (V.I.A.) in line 3 of Algorithm 1: one based on Information

theory, and another one related to Statistical-based methods.

7
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Algorithm 1 Filter Global Supervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m and the labels Y

2: for j = 1 : m do

3: w∗j ← V.I.A.(Xj , Y )

4: for j=1:m do

5: X̃j ← wj ·Xj

6: Ỹ ← ML algorithm to X̃

Regarding the former, a commonly used V.I.A. measure employed for weight

estimation is Mutual Information (MI) defined as155

I(Xj , Y ) =
∑

xij∈Xj

∑

yi∈Y
P (xij , yi) · log

(
p(xij , yi)

p(xij)p(yi)

)
(1)

where p(·) is the probability distribution function and p(Xj , Y ) the conditional

probability distribution function of Xj and Y . Several works apply Equation 1

to estimate the weights in line 3 of Algorithm 1 (Garćıa-Laencina et al., 2009;

Wettschereck & Dietterich, 1995). For instance, the Linear Feature Weighted

SVM (LFWSVM) algorithm (Xing et al., 2009), the MI-MCS-FWSVM method160

(Giveki et al., 2012), the Correlation-based Feature Weighting (CFW) filter

method (Jiang et al., 2018) and the proposal (Hussain, 2019) estimate the

features relevance respect to the label Y and calculate the weights employing

the MI measure in line 3 of Algorithm 1. Similarly to the MI measure, the

Information Gain (IG) and the Regularised Entropy (re) measures are employed165

in (Chen & Hao, 2017; Wu et al., 2017), respectively.

From the variable importance analysis field, the employment of Statistical-based

methods to estimate the feature relevance is another extended approach. In

(Sahin et al., 2015) χ2 and Fisher (F-score) algorithms are employed to measure

in line 3 of Algorithm 1 the quality of the features respect to the label. Likewise,170

Granger causality (Granger, 1988) and AHP (Saaty, 2014) are applied in

(Bhattacharya et al., 2017) to improve the performance of the K-NN algorithm

8
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(line 6 of Algorithm 1).

Heretofore, all the presented FW methods estimate the weights for each feature

in an independent manner. However, as shown in (Elbasiony et al., 2013;175

Niño-Adan et al., 2019), methods that estimate the weights in a group manner,

i.e. using the Random Forest (RF) algorithm, are also utilised as filter FW

methods.

Although in most cases the main goal of the filter global supervised FW methods

is to increase the accuracy of the model, some authors make use of the filter FW180

approaches for other purposes. This is the case of the proposed Fast Feature

Weight algorithm for Data Gravitation Classification model (FFW-DGC) (Peng

et al., 2017) which aims at reducing the computational complexity of the FW

process in the DGC model. In this work the feature weights (line 3 of

Algorithm 1) are calculated combining two fuzzy sets: 1) one relative to the185

feature discrimination capability, computed by means of the MI (Equation 1)

between the discretized features and the labels, and 2) the second one related

to the redundancy between features, calculated by Pearson correlation as the

covariance of Xj and Y between their standard deviations:

ρ(Xj , Y ) =
COV (Xj , Y )

σXjσY
(2)

Finally, due to the presence of non-independent features in real problems,190

another common use of filter FW methods is to estimate the feature weights in

order to alleviate the conditional independence assumption of the Naive Bayes

(NB) algorithm (line 6 of Algorithm 1). In this context, the approach (Zhang

et al., 2016) adapts two filter FW approaches for NB classifier in the field of text

classification. The first approach employs in line 3 of Algorithm 1 Gain Ratio195

(GR) (Zhang & Sheng, 2004) assuming that the features take zero or nonzero

values, while the second one obtains the feature weights (line 3 of Algorithm 1)

from a Decision Tree (DT) classifier (Hall, 2007).
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Wrapper Global Supervised Feature Weighting. Regarding the wrapper FW

approach, as described in Algorithm 2 the weights w∗j are first initialised200

with random values (line 2 of Algorithm 2) and then, adjusted (line 10 of

Algorithm 2) in an iterative fashion (line 4 of Algorithm 2) considering the

relationship between the estimated output Ỹ and the real label Y in terms of

a given supervised evaluation metric that measures the performance of the ML

algorithm respect to the given label, i.e. perf(Ỹ , Y ). The iterative process205

ends after a predefined number of iterations n iter, when the performance

outperforms a given threshold θ or when the wrapper method converges, i.e.

it does not present significant improvement respect to the previous iteration in

terms of the performance measure (line 8 of Algorithm 2).

Algorithm 2 Wrapper Global Supervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m and the labels Y

2: Initialise w
(0)
j ∈ R

3: s← 0

4: while s < n iter do

5: for j=1:m do

6: X̃
(s)
j ← w

(s)
j ·Xj

7: Ỹ (s) ← ML algorithm to X̃(s)

8: if perf(Ỹ (s), Y )> θ or =perf(Ỹ (s−1), Y )+ε then

9: Break

10: w
(s+1)
j ←Adjust w

(s)
j

11: s← s+ 1

12: w∗j ← w
(s)
j

The most extended practice to configure the wrapper strategy is the employment210

of a Genetic Algorithm (GA) for the weights calculation in order to improve the

performance of the model in terms of accuracy (Komosiński & Krawiec, 2000;

Phan et al., 2017).

The flexibility for encoding the individuals in the GA algorithm offers multiple

10
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possibilities. For instance, the work (Ahn & Kim, 2009) proposes a Global215

Optimisation of Case-Based Reasoning (CBR), a hybrid model that employs

a GA algorithm to simultaneously optimise the feature weights (line 10 of

Algorithm 2), the instance selection and the K value for the K-NN algorithm

based on the classification accuracy (line 8 of Algorithm 2). The authors employ

the Wisconsin breast cancer image dataset from UCI repository in order to220

validate their method and conclude that the simultaneous optimisation of the

feature weights, the instance selection and the K value obtains the highest

accuracy (line 8 of Algorithm 2) for this problem.

Apart from the GA algorithm, other Evolutionary Algorithms (EA) are also

employed for Feature Weighting (lines 2-11 of Algorithm 2). For instance,225

Mateos-Garćıa et al. (2017) present the Simultaneous Weighting of Attributes

and Neighbours (SWAN) that employs an EA for adjusting the contribution

of the neighbours and the significance of the features that minimise the

cross-validation error (line 8 of Algorithm 2) . Similarly, the work (Triguero

et al., 2012) proposes a self-adaptive Differential Evolution (DE) algorithm in230

order to optimise the feature weights (line 12 of Algorithm 2) that maximise

the performance of the K-NN for prototype generation (line 8 of Algorithm 2).

In (Sotoodeh et al., 2019) a Particle Swarm Optimisation (PSO) algorithm is

employed to generate the optimum feature weight vector (line 12 of Algorithm

2) in terms of image retrieval system performance. In the same context, the235

research (Serrano-Silva et al., 2018) presents a performance comparison of DE,

GA and Novel Bath Algorithm (NBA) for FW in terms of AUC and execution

time over several financial datasets.

Nevertheless, other approaches, such as the Dynamic Representation and

the Neighbour Sparse Reconstruction-based Relief (DRNSR-Relief) presented240

in (Huang et al., 2018b), decompose the nonlinear problem into locally

linear problems. Specifically, the proposed algorithm represents the dynamic

relationship between the margin and the weight vectors. In this proposal,

the Gradient Ascent method is employed to calculate the expected margin
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vector and to update the feature weights in line 10 of Algorithm 2 in a245

wrapper fashion. Similarly, Yang et al. (2012) employ the Gradient Ascent

update method to estimate the feature weights that maximises the expected

leave-one-out classification accuracy (line 8 of Algorithm 2). The same approach

is applied by Raghu & Sriraam (2018) for the classification of EEG signals and

by Romeo et al. (2020) for the prediction of heterogeneous machine parameters250

in Industry 4.0. Finally, Ouyed & Allili (2020) present a Multinomial Kernel

Logistic Regression with Group of Features Relevance (GFR-MKLR) approach

for human interaction recognition. The authors include into the kernel and the

loss function the gestures’ weights, estimated during the training phase utilising

as wrapper FW approach the Newton-Raphson optimisation method.255

3.1.2. Local Supervised Feature Weighting

Local FW methods aim at obtaining more than one optimal weight per feature,

since it is assumed that the degree of relevance of each feature depends on the

sample (or subsets of samples). Similarly to global feature weighting methods,

the weights can be estimated in a filter or a wrapper approach.260

Filter Local Supervised Feature Weighting. In contrast to global FW methods,

very few works introduce a new filter approach for estimating local weights in a

supervised fashion. In fact, most of them adapt the global methods to the local

environment. In this case, as Algorithm 3 shows, the filter local supervised FW

methods estimate per feature as many weights as classes C recorded in Y , and265

the weights in line 4 of Algorithm 3 are computed according to the distribution

of the samples xij into the different classes. After the weights calculation, in line

7 of Algorithm 3 each sample of the dataset is multiplied by the corresponding

weight. The weighted dataset X̃ is then employed by the ML algorithm (line 8)

to ultimately estimate the output Ỹ .270

For instance, Marchiori (2013) proposes a decomposition of the well-known

RELIEF online method, which processes the samples in a serial way one-by-one,

into class dependant feature weights vectors (line 2 of Algorithm 3), in which
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Algorithm 3 Filter Local Supervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m and the labels Y ∈ {1, . . . , C}n

2: for c = 1 : C do

3: for j = 1 : m do

4: w∗cj ← Distribution({xij |yi = c})

5: for j=1:m do

6: for c = 1 : C do

7: X̃i′ j ← w∗cj ·Xi′ j ∀i
′ ∈ {i|yi = c}

8: Ỹ ← ML algorithm to X̃

each vector describes the relevance of features conditioned to each class (line

4 of Algorithm 3). Each class-dependant term generates a weighted distance275

by enlarging the sample margin of the corresponding class. Experiments

conducted over two breast cancer datasets from UCI repository show that the

accuracy obtained by the proposed decomposition is similar or superior than

the reached one by the traditional RELIEF method. A similar work can be

found in (Yilmaz et al., 2014) in which a RELIEF-based modality weighting280

approach, named RELIEF-MM, is proposed for fusing multimodal information

in multimedia data. Here, the authors convert the original RELIEF-f algorithm

into a class-specific representation. The final values of the modality weights

are obtained by grouping the training examples according to the classes and

processing samples of each class separately (line 4 of Algorithm 3).285

In regards to the adaptations of commonly known filter methods, Chen & Guo

(2015) reformulate the Simple Matching Coefficient (SMC) (line 8 of Algorithm

3) and propose the Weighted SMC distance (WSMD) (line 4 of Algorithm

3) aiming at including a supervised measurement of the contribution of the

categorical features (Entropy or Gini diversity index) for a global and a local290

approach. Experiments over real-world datasets support that the local weighting

approach outperforms the accuracies obtained by the global proposal in high
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dimensional datasets.

Wrapper Local Supervised Feature Weighting. Similar to the global approaches,

as Algorithm 4 presents, the local wrapper supervised FW methods adjust the295

randomly initialised (line 1 of Algorithm 4) weights w
(s)
cj in an iterative fashion

(line 11 of Algorithm 4) in order to maximise the performance of a given ML

algorithm. In the local case, there are as many weights per feature as classes C

and each sample of the dataset xij is multiplied by the local weight associated

to the corresponding sample label yi (line 7 of Algorithm 4). Once the iterative300

process ends (line 4 of Algorithm 4), the performance improves a given threshold

θ or the performance converges (line 9 of Algorithm 4), the lastly adjusted

weights are selected as the optimal ones (line 13 of Algorithm 4).

Algorithm 4 Wrapper Local Supervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m and the labels Y ∈ {1, . . . , C}n

2: Initialise w
(0)
cj ∈ R ∀c = 1 : C , ∀j = 1 : m

3: s← 0

4: while s < n iter do

5: for j=1:m do

6: for c = 1 : C do

7: X̃
(s)

i′ j
← w

(s)
cj
·Xi′ j ∀i

′ ∈ {i|yi = c}

8: Ỹ (s) ← ML algorithm to X̃(s)

9: if perf(Ỹ (s), Y )> θ or =perf(Ỹ (s−1), Y )+ε then

10: Break

11: w
(s+1)
cj ←Adjust w

(s)
cj

12: s← s+ 1

13: w∗cj ← w
(s)
cj

Regarding wrapper local supervised approaches, Paredes & Vidal (2000)

introduce the Class-Dependant Weighted (CDW) dissimilarity measure for NN305

classification (line 9 of Algorithm 4). The weights (line 11 of Algorithm 4)
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are obtained through Fractional-Programming Gradient Descent (FPGD)-based

minimisation of the ratio between intra-class and inter-class distances. Similarly,

Paredes & Vidal (2006) reformulate the objective function as the sigmoid

function of the ratios between intra-class and inter-class distances to emphasise310

the importance of the prototypes that are close to the boundaries. In line

with this research, authors in (Ren et al., 2019) propose the Learning of

Reduced Prototypes and Local Metric (LRPLM) that simultaneously learns

a set of prototypes and optimal local feature-wise metric to minimise in line 9

of Algorithm 4 the image set classification error probability.315

However, Jiao et al. (2015) claim that the distance metric proposed by Paredes

& Vidal (2000); Paredes & Vidal (2006) is not sufficient for characterising

the particularities of the different classes in the feature space. Thus, the

Evidential K-Nearest Neighbour classification method with Weighted attributes

(WEK-NN) method (Jiao et al., 2013) is extended to propose a more general320

distance metric, named Class-Conditional Weighted (CCW), which is related

to both the class labels of the prototypes and the query patterns. The idea

of the CCW metric is employed few years later by the same authors in (Jiao

et al., 2019). In this case, a new KNN-based classifier, called BPkNN, is

developed based on pairwise distance metrics and Belief function theory. Instead325

of learning a global distance metric, it is decomposed into a group of pairwise

distance metrics and K-NN (PkNN) sub-classifiers are adaptively designed to

separate the classes.

Another related approach can be found in (Taheri et al., 2014) where the authors

propose a novel Attribute Weighting method for a feature weighted NB classifier330

(AWNB), in which for each feature, a different weight per class is calculated.

An objective function based on the structure of the NB for binary classification

problems (line 8 of Algorithm 4) is modelled to optimise the feature weights

by means of the quasisecant method. Similarly, Jiang et al. (2019), based

on Weighting attributes to Alleviate Naive Bayes’ Independence Assumption335

(WANBIA) (Zaidi et al., 2013), introduce the Class-specific Attribute Weighted
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Naive Bayes (CAWNB) model, in which local weights are included into the

conditional probability calculations of the Naive Bayes to consider the relative

importance of the jth feature for the given class. Then, based on the objective

function, the authors present two CAWNB-based proposals to improve the340

prediction performance: CAWNBCLL that maximises in line 9 of Algorithm 4

the Conditional Log Likelihood (CLL) and CAWNBMSE which minimises (line

9 of Algorithm 4) the Mean Square Error (MSE).

Evolutionary algorithms are also employed to estimate the local weights in

the wrapper supervised approach. For instance, Mohemmed & Zhang (2008)345

analyse the performance of the Particle Swarm Optimisation (PSO) employing

different distance measures: the Euclidean, the class-dependant Mahalanobis

and the CDW proposed in (Paredes & Vidal, 2006) for reducing the classification

error of the Nearest Centroid Classifier (NCC) (lines 8 and 9 of Algorithm 4,

respectively). The authors conclude that the PSO based NCC (PSO-NCC)350

approach performs well in this particular classification task. Furthermore, the

k-Labels Dependant Evolutionary Distance Weighting (kLDEDW) presented in

(Mateos-Garćıa et al., 2012) employs the Differential Evolution (DE) algorithm

to optimise the local weights (line 11 of Algorithm 4) and the optimal value

of K for the K-NN algorithm. The analysis conducted by the authors confirms355

that the proposed approach outperforms, in terms of accuracy, five classification

algorithms including two above-mentioned local weighting methods: CDW

based on Gradient Descent (Paredes & Vidal, 2006) and (AlSukker et al., 2010)

which employs DE to estimate the weights. More recently, the work of Sinciya

& Celin (2017) improves the performance of the Data Gravitation Classification360

(DGC) algorithm (line 8 of Algorithm 4) for high dimensional data by the

employment of a PSO-based local feature weighting optimisation.

3.1.3. Concluding Remarks about Supervised Approaches

Regarding supervised FW methods, it can be highlighted that filter global

approaches are the most commonly employed ones in the literature. In this365

context, two approaches, namely Information theory and Statistical-based, can
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be further distinguished. Most of the Information-based FW approaches need

to know in advance the probability distribution of the features, which in real

world continuous problems is hard to obtain. To circumvent this, a normal

distribution of the continuous variables can be assumed, but this is not always370

realistic. Therefore, discretisation techniques are commonly applied with the

consequent loss of information. On the other hand, the Statistical-based FW

methods compute the relation between the features and the label by means of

statistical measures. Consequently, the selection of the statistical tests is of vital

importance for these approaches.375

In contrast, wrapper methods do not have such above-mentioned limitations and

the flexibility in the problem configuration enables its application for local FW

strategies. In this regard, the selection of the ML algorithm, its configuration

and encoding is crucial for the proper performance of the method and for not

getting stuck in a local optimum. However, there is a lack of an extensive380

empirical evaluation of wrapper methods and, in particular, a comparison

between filter and wrapper methods for the same problem. As wrapper methods

employ feedback from a ML algorithm to evaluate alternatives based on an

external validation measure, they are widely recognised to obtain better results

than filter approaches. Nevertheless, due to the iterative search process, wrapper385

methods require a moderate complexity which results in a high computational

cost, especially with more exhaustive search strategies or in high-dimensional

datasets. Besides, the weights resultant from wrapper approaches are high

dependant on the algorithm configuration and their contribution to the ML

algorithm metric can be higher than their real relevance for estimating the390

output. In this sense, the filter approaches, which calculate the weights

separately for each feature without the influence of the specific configuration

of the algorithm, enable an interpretation of the feature relevance in terms of

the employed Information theory or Statistical-based technique.
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3.2. Unsupervised Feature Weighting395

In this section, a review about FW methods framed within the unsupervised

approach is presented. As there is no information about the real labels, the

weight estimation is performed in most cases by means of certain characteristics

and relations of the features or by the obtained cluster structure. These

characteristics are generally calculated by means of unsupervised evaluation400

metrics. The works of Palacio-Niño & Berzal (2019) and Rendón et al. (2011)

present an excellent introduction and description of the basis and terminology

associated to clustering algorithms.

3.2.1. Global Unsupervised Feature Weighting

Global FW methods calculate a weight wj per feature Xj , j = {1, . . . ,m}.405

However, since the unsupervised learning strategy does not consider Y to

estimate the features relevance, in these cases the relative importance of each

feature is estimated according to certain clustering structure obtained from the

dataset.

Filter Global Unsupervised Feature Weighting. After analysing in detail the410

filter global unsupervised related literature, it must be highlighted that very

few works follow a filter approach for estimating the global weights in an

unsupervised fashion. Algorithm 5 describes the general procedure of this

approach. Generally, first a clustering algorithm is applied to group the data

samples into different partitions (line 2 of Algorithm 5), and then, as shown in415

line 4 of Algorithm 5, based on the obtained cluster structure the feature weights

are calculated as the relation between the features and the extracted structures.

Then, each weight multiplies the corresponding feature of the dataset (line 6)

and the obtained X̃ is passed in line 6 of Algorithm 5 to the ML algorithm.

An example can be found in (Gürüler, 2017) where the authors propose a420

novel hybrid algorithm, entitled KMCFW-CVANN, that combines the K-Means

Clustering algorithm (line 2 of Algorithm 5) for Feature Weighting and a

Complex-Valued Artificial Neural Network (line 7 of Algorithm 5) for Parkinson
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Algorithm 5 Filter Global Unsupervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m and a clustering algorithm

2: centroids← Clustering algorithm to X

3: for j = 1 : m do

4: w∗j ← Relation(Xj , centroidsj)

5: for j=1:m do

6: X̃j ← w∗j ·Xj

7: Ỹ ← ML algorithm to X̃

disease diagnosis. The feature weights in line 4 of Algorithm 5 are calculated

as the ratios of the means of the features to the centroids. For the classification425

phase the CVANN (line 7 of Algorithm 5) is applied. The results of the

experiments show that the KMCFW-CVANN reaches the highest diagnosis

accuracy in comparison with the other diagnosis approaches from the literature

(Polat, 2012; Sakar & Kursun, 2010) over the Parkinson dataset (Little et al.,

2007).430

Similarly, Güneş et al. (2010) present the K-Means Clustering based Feature

Weighting (KMCFW) method. Their proposal first extracts frequency domain

features for which the mean, minimum, maximum and standard deviation are

computed as statistical features. In the second stage, (line 2 of Algorithm 5)

the features are clustered by the K-means algorithm and the ratios of means435

of the features with respect to the obtained centroids are employed as feature

weights (line 4 of Algorithm 5).

Wrapper Global Unsupervised Feature Weighting. The wrapper approach is the

most applied procedure when considering unsupervised global FW problems. In

this context, the weights are commonly embedded into the clustering objective440

function and both the cluster structure and the feature weights are iteratively

obtained. Thus, as presented in Algorithm 6, for each feature Xj a weight

wj is associated. The weights are included into the ML algorithm (line 7 of
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Algorithm 6) by multiplying the features of the dataset (line 6 of Algorithm

6) and depending on the performance obtained by the ML algorithm (line 9 of445

Algorithm 6) the weights are adjusted.

Algorithm 6 Wrapper Global Unsupervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m

2: Initialise w
(0)
j ∈ R

3: s← 0

4: while s < n iter do

5: for j=1:m do

6: X̃
(s)
j ← w

(s)
j
·Xj

7: Ỹ (s) ← ML algorithm to X̃(s)

8: w
(s+1)
j ←Adjust w

(s)
j

9: if perf(Ỹ (s))> θ or =perf(Ỹ (s−1))+ε then

10: Break

11: s← s+ 1

One of the first works that follows a wrapper global unsupervised FW approach

is (Huang et al., 2005), in which the authors adapt the K-means algorithm

by means of including the feature weights into the formula giving place to the

Weighted K-Means (W-k-means). In this work, partial optimisation is employed

to iteratively obtain the samples membership for the different clusters (line 7

of Algorithm 6), to estimate the new centroids and finally, to recalculate the

weights(line 8 of Algorithm 6) based on the current partition of the data. In

order to obtain compact clusters, it considers the intra-cluster dispersion of the

different clusters for the calculation of the weights in line 8 of Algorithm 6 as:

wj =
1

∑
t∈H [Dj/Dt]

1
β−1

(3)

where Dj is the sum of the intra-cluster dispersion of the different K clusters

in the feature j and H the set of features with Dj 6= 0. As it can be observed,
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wj is dependant on a user-defined parameter β. Thus, the authors analyse the

range of values that can be assigned to β, concluding that it is recommended450

to take values of β < 0 or β > 1. Experiments over synthetic and real data

sets validate the proposal and conclude that the W-k-means can effectively

distinguish between noisy and normal features.

Since the W-k-means, several authors have proposed a new version of it for

different applications. Thus, in (Chen et al., 2009) the W-k-means is adapted455

to text clustering, while Hung et al. (2011) employ a variant of it for colour

image segmentation. Similarly, the proposal presented in (Saha & Das, 2015)

adapts the W-k-means to the fuzzy K-modes algorithm (line 7 of Algorithm 6)

in order to handle categorical data. In this case, the W-k-means distance and

the degree of membership of the samples in the different clusters take values460

in {0, 1}. In the case of the Minkowski W-k-means (MW-k-means) approach

proposed by De Amorim & Mirkin (2012), the Minkowski metric is employed

as distance function in the K-means algorithm (line 7 of Algorithm 6) and the

β parameter is fixed equal to the one utilised in the Minkowski distance and

learned in a semi-supervised manner. Additionally, the authors propose the465

anomalous cluster step to intelligently set K and initialise the centroids. The

proposal of De Amorim & Mirkin (2012) is employed later in (Panday et al.,

2018) where the authors utilise feature weighting as an unsupervised feature

selection tool.

Another adaptation is presented in (Chakraborty & Das, 2018) where the470

authors propose a version of (Huang et al., 2005) for the Gaussian Means

algorithm which also estimates the optimal number of clusters in the iterative

process. The proposed algorithm starts with a single cluster containing all

the samples. At the beginning of each iteration the objective function of the

W-k-means is calculated (line 7 of Algorithm 6) and the Anderson-Darling475

normality test is computed for the current centroids. If a cluster is not Gaussian,

the centroid is replaced by two new centroids as described in (Hamerly & Elkan,

2004). This iterative process ends when the objective function improvement is
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lower than a predefined threshold (line 9 of Algorithm 6).

Following with the same line of research, the Feature Weight Self-Adjustment480

(FWSA) mechanism presented in (Tsai & Chiu, 2008), removes the β parameter

in the objective function. The optimisation process is similar to (Huang et al.,

2005), but the weights are updated at each iteration (s) in line 8 of Algorithm

6 by adding an adjustment margin in the following manner:

w
(s+1)
j = w

(s)
j +

b
(s)
j /a

(s)
j∑m

j=1 b
(s)
j /a

(s)
j

(4)

where, for the jth feature, aj , bj are the sum of separations inter and intra485

clusters, respectively. Therefore, this proposal not only searches for compactness

but also considers the separation between the clusters. The authors analyse the

performance of their proposal over synthetic and real-world datasets. They

also compare the FWSA against the W-k-means in terms of SSE, Entropy, ARI

and number of iterations until convergence. Although FWSA is computationally490

more expensive, it outperforms the W-k-means. In addition, the authors remark

that the proposed algorithm do not need user-defined parameters as β.

Unsupervised wrapper FW methods have been also proposed to handle different

kind of data. In (Benkabou et al., 2018) the Detection of Outlier Time Series

(DOTS) adapts the K-medians for time series clustering by minimising an495

Entropy and Dynamic Time Warping (DTW) based objective function (line

7 of Algorithm 6). In this proposal, the weights are assigned to each time

series and the DTW between the time series and the medians of the clusters

is employed to compute the distance in line 7 of Algorithm 6. In addition, the

penalised entropy of the weights is added to the objective function in order to500

control the distribution of the weights. The optimisation process is done in a

partial manner, such as in (Huang et al., 2005), but the weights in line 8 of
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Algorithm 6 are estimated as:

wj =
e−Dj/λ∑m
t=1 e

−Dt/λ (5)

where λ is the regularisation term for the weight entropy. The idea is to

assign small weights to time series that increase the intra-cluster distances and505

therefore, are considered as outliers. Several experimental comparisons over

temporal data from datasets collected from the UCR repository are conducted

to evaluate the performance of the proposed approach in contrast to outlier

detection algorithms, such as: DTW+KM (Budalakoti et al., 2008), DTW+HC

(Portnoy, 2000), DTW+Spectral (Ng et al., 2002), DL-OCSVM (Bevilacqua510

& Tsaftaris, 2015), FD-OCSVM (Schölkopf et al., 2000) DTW+LOF (Breunig

et al., 2000) and Parzen-Window (Yeung & Chow, 2002).

Finally, unsupervised global FW methods for multi-view clustering can be found

in the literature. Authors Wang & Chen (2017) propose a multi-view fuzzy

clustering approach in which the weights are updated in line 8 of Algorithm515

6 based on the weighted distance of the data points of each view and the

corresponding centroid. Similarly, Zhang et al. (2018) introduce the Two-level

Weighted Collaborative k-means (TW-CO-k-means) approach for analysing

data from multiple sources or views, while satisfying the consistency across

different views and the diversity within each view. The views and the features520

in each view are assigned with weights that reflect their importance (line 6 of

Algorithm 6). The two-level methodology employs an objective function in line

7 of Algorithm 6 that considers the feature weighted intra-cluster dispersion

at each weighted view, a penalty term that measures the disagreement across

multiple views and two weight-entropy-based terms that adjust the distribution525

of the weights.

3.2.2. Local Unsupervised Feature Weighting

Local unsupervised feature weighting methods estimate more than one weight

wij per feature Xj . Filter approaches take into consideration the samples
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relation with a given reference obtaining for each sample a different weight,530

while wrapper approaches utilise clusters structures to adjust the weights and

obtain as many weights per feature as number of extracted clusters.

Filter Local Unsupervised Feature Weighting. Similar to global unsupervised

FW, the filter approach is not a commonly employed technique for estimating

the weights and few works are encountered in the literature. Most of works are535

related to time series data in order to include information about their temporal

behaviour. In these cases, as Algorithm 7 shows, generally for each sample xi

with i = {1, . . . , n} a local weight is estimated in line 3 of Algorithm 7, aiming

at measuring common information shared with a given sample of reference z.

Once the weights have been calculated, these in line 5 of Algorithm 7 multiply540

each sample of the dataset, creating the weighted dataset X̃ which is finally

utilised by the ML algorithm for the problem modelling (line 6).

Algorithm 7 Filter Local Unsupervised Feature Weighting methods

1: Given X ⊂ Rn×m and a reference point z

2: for i = 1 : n do

3: w∗i ← commonality(xi, z)

4: for i = 1 : n do

5: X̃i ← w∗i ·Xi

6: Ỹ ← ML algorithm to X̃

In this context, the exponential fading function, a monotonic decreasing function

that decays with the time, estimates the weights of the samples in line 3 of

Algorithm 7 as a function of time respect to the moment of interest (z in line 3 of545

Algorithm 7), assigning higher weight values to recent samples. This weighting

function includes a decay rate λ which controls the importance of the historical

information. The lower the value of λ, the higher the importance of the past data

compared to more recent information. This filter local unsupervised weighting

method is widely employed in temporal applications aiming at reducing the550

24

80



influence of the past. For instance, authors in (Aggarwal et al., 2004) include

the mentioned fading function in their proposed High-dimensional projected

data stream clustering method (HPStream) (line 6 of Algorithm 7) and authors

in (Ding & Li, 2005), aiming at assigning higher importance to recent data to

the recommendation process of their collaborative filtering algorithm (line 6 of555

Algorithm 7), include the estimated weights in the preference prediction phase.

Conversely, Jeong et al. (2011) propose the Weighted Dynamic Time Warping

(WDTW), a variant of the traditional DTW (line 6 of Algorithm 7). This variant

includes weights into the formulation to consider, when creating the path matrix,

the phase difference between two samples xi, x
′
i from two distinct sequences560

of different length. In order to measure such phase difference between the

samples, the authors introduce the Modified Logistic Weight Function (MLWF)

for the weight calculations in line 3 of Algorithm 7. This way, the authors

aim at penalising large phase differences in order to prevent minimum distance

distortion caused by outliers. In this work, the WDTW idea is also extended to565

other variants of the DTW such as DDTW (line 6 of Algorithm 7). Later, the

authors in (Jeong & Jayaraman, 2015) employ the proposed WDTW as a kernel

function into a multiclass Support Vector Machine (SVM) (line 6 of Algorithm

7) for time series classification and validate the proposed model over datasets

from the UCR repository.570

The Weighted Permutation Entropy (WPE) is proposed by Fadlallah et al.

(2013), in which the motif counts from signal patterns are weighted aiming

at retaining the amplitude information of nonlinear time series. Given the

time-delay embedding representation Xm,τ
j of a time series {xt}Tt=1 being

j = 1, . . . , T − (m − 1)τ , m the embedding dimension and τ the time delay,575

for each j (line 2 of Algorithm 7) the authors calculate the weights in line 3

of Algorithm 7 as the variance of each neighbours vector Xm,τ
j . This way

the proposed approach assigns different weights to neighbouring vectors with

same ordinal patterns but with different amplitude variations. The weighted

relative frequencies for each motif are employed to compute the WPE (line 6580
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of Algorithm 7). WPE can be utilised to detect abrupt changes in noisy or

multi-component signals and it is successfully employed by Zhou et al. (2018) in

combination with Ensemble Empirical Mode Decomposition (EEMD) and SVM

ensemble classifier (line 6 of Algorithm 7) for fault diagnosis of rolling bearing.

Filter approaches for local feature weights are also employed for static data585

with missing values. For instance, author in (Datta et al., 2016) propose

the Feature Weighted Penalty based Dissimilarity (FWPD), a measure that

considers the number of missing features. More concretely, such dissimilarity

measure includes a parameter α to control the relative importance between two

terms and a Feature Weighted Penalty that, for each pair of samples xi,xi′590

with i, i
′ ∈ {1, . . . , n}, calculates the penalty weight (line 3 of Algorithm 7) as

the proportion of shared features without missing values respect to the total

number of observed features. This FWPD is included into the K-NN classifier

mechanism (line 6 of Algorithm 7) to estimate the similarity between neighbours

in order to handle missing features.595

Wrapper Local Unsupervised Feature Weighting. Wrapper FW is the most

common approach for searching the optimal local weights. In this case, as can

be observed in Algorithm 8, there are as many weights as clusters K per feature.

These randomly initialised local weights (2 of Algorithm 8) are updated in each

iteration of the algorithm (line 9 of Algorithm 8) based on the results obtained600

by the ML algorithm (line 8 of Algorithm 8). This process ends when (line 10

of Algorithm 8) the performance overcomes a certain threshold θ, the algorithm

converges, i.e., the performance do not present a significant improvement respect

to the previous iteration, or until a number of iterations n iter is reached (line 4

of Algorithm 8). The works related to wrapper local unsupervised FW methods605

found in the literature are mainly based on partitioning, hierarchical and fuzzy

clustering. Other works based on classification and evolutionary algorithms can

also be found.

Specifically, the Local Attribute Weighting K-Means (LKM) algorithm proposed
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Algorithm 8 Wrapper Local Unsupervised Feature Weighting methods

1: Given a dataset X ⊂ Rn×m, a clustering algorithm and K

2: Initialise w
(0)
kj ∈ R ∀k = 1 : K , ∀j = 1 : m

3: s← 0

4: while s < n iter do

5: for j=1:m do

6: for k = 1 : K do

7: X̃
(s)

i′ j
← w

(s)
kj
·Xi′ j ∀i

′ ∈ {i|xi = k}

8: Ỹ (s) ← ML algorithm to X̃(s)

9: w
(s+1)
kj ←Adjust w

(s)
kj

10: if perf(Ỹ (s))> θ or =perf(Ỹ (s−1))+ε then

11: Break

12: s← s+ 1

13: w∗kj ← w
(s)
kj

in (Chan et al., 2004) is akin to the one employed in (Huang et al., 2005), but610

the weights, wkj with k = {1, . . . ,K} and j = {1, . . . ,m}, are related to a

specific cluster k and feature j. The method for updating the weights in line 9

of Algorithm 8 relies on the cluster dispersion at each dimension. Similarly, Shen

et al. (2006) propose the same idea adapted to the fuzzy C-means algorithm.

Another related proposal can be found in (Jing et al., 2007) where the Entropy615

Weighted K-Means algorithm (EWKM) for clustering high-dimensional objects

in subspaces is presented. In this proposal the weight values are employed to

identify the subsets of important dimensions that categorise different clusters.

This is achieved by including the weight entropy in the objective function

(line 8 of Algorithm 8) that is minimised in the clustering process in line620

10 of Algorithm 8. The experiments on both synthetic and real data have

shown that the new algorithm can generate better clustering results than other

subspace clustering algorithms, such as: FWKM (Jing et al., 2005), Bisecting

K-means (Karypis et al., 2000), PROCLUS (Aggarwal et al., 1999), HARP
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(Yip et al., 2004), LAC (Domeniconi et al., 2004) and COSA (Friedman &625

Meulman, 2004) and that is scalable to large high-dimensional data. Following

with the same line of research, in (Chen et al., 2012) an extension of the

EWKM algorithm (Jing et al., 2007) is introduced, called FG-k-means. It

automatically calculates two types of local weights in line 9 of Algorithm 8,

one for groups of features and the other one for the individual features in630

each cluster. The experimental results show the goodness of the FG-k-means

over the other considered algorithms and its robustness to noise and missing

values. Another work related to high-dimensional data is introduced by Gan

& Ng (2015). The referred AFG-k-means algorithm, extends the idea of Chen

et al. (2012) by incorporating an Automatic Feature Group selection algorithm635

which iteratively creates groups of features. Recently, Huang et al. (2018a)

extend the weighted K-means algorithm presented in (Chan et al., 2004) with

a l2 regularisation of the local features, obtaining the l2-WKmeans. The

authors introduce two versions of the algorithm to handle both numerical and

categorical data clustering. Experimental results show that for both numerical640

and categorical data the proposal outperforms the state-of-the-art algorithms

in terms of accuracy, Rand index, F-score and NMI.

In addition to the weighted K-means based algorithms, other clustering

algorithms are adapted to include local weights into their formulation. In

this sense, a new version of the Ward Hierarchical algorithm can be found in645

(de Amorim, 2015). It employs local cluster dependant weights calculated with

the Lp norm in line 9 of Algorithm 8 over the normalised datasets. As the

Ward algorithm, it does not need to know the number of clusters in advance.

In addition, although the algorithm’s performance depends on the term p of the

Lp norm, the value of p that maximises the Silhouette index is proposed. The650

proposal of Chen et al. (2016) presents a novel algorithm for Subspace Clustering

of Categories (SCC) for clustering categorical data. The algorithm utilises a

probabilistic distance function based on Kernel Density Estimation (KDE) to

measure the dissimilarity between categorical objects. The local weights are
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calculated at each iteration of Algorithm 8 in line 9 as the smoothed dispersion655

of the features in each cluster. The authors also propose a new categorical cluster

validity index which evaluates the average intra-cluster scatter and inter-cluster

separation. In the context of consensus clustering, authors in (Alguliyev et al.,

2020) develop a weighted consensus clustering for Big data applications that

assigns weights to single clustering methods based on purity utility function.660

Finally, to conclude with the partitioning clustering FW methods, authors

in (Hashemzadeh et al., 2019) present a Fuzzy C-means based method that

automatically calculates local weights for the features and also includes in

line 9 of Algorithm 8 a cluster weighting process to mitigate the initialisation

sensitivity of the algorithm. During the optimisation process the feature665

weights are calculated in line 9 of Algorithm 8 based on the intra-cluster

feature-weighted distance, while the cluster weights are recalculated by

employing the intra-cluster distances. The authors compare their proposal with

some state-of-the art algorithms (Frigui & Nasraoui, 2004; Tzortzis & Likas,

2014; Zhi et al., 2014; Zhou et al., 2016) utilising large real world and synthetic670

datasets. The results confirmed that the proposed method is not sensitive

to the cluster centroids initialisation and also that outperforms the clustering

results obtained by its competitors. Furthermore, the authors conclude that the

algorithm can be effectively employed on big data clustering and co-clustering

applications used as online feature and clustering weighting method.675

The local feature weighting strategy is also employed in conjunction with

classification algorithms (line 8 of Algorithm 8). The Subspace Weighting Naive

Bayes algorithm (SWNB) in (Chen & Wang, 2012) introduces a locally weighted

probability model, in which the weights are optimised in line 9 of Algorithm 8

to fit a Logitnormal priori distribution and the Maximum a Posteriori principle680

for Bayesian modelling in high dimensional spaces. The weights are then

calculated by the Newton-Raphson method. The experiments conducted on

document corpora and gene microarray datasets and the comparisons with other

weighting algorithms (Frank et al., 2002; John & Langley, 1995; Lee et al.,
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2011) demonstrate that the SWNB method is comparable or superior to its685

competitors.

Evolutionary algorithms are also applied to iteratively seek for the optimal

local feature weights. In the research conducted by Gançarski & Blansché

(2008) new FW methods based on EAs are proposed: Darwinian, Lamackian

and Baldwinian Evolutionary algorithms and their co-evolutionary approach690

(DE-LKM, LE-LKM, BE-LKM and DC-LKM, LC-LKM, BC-LKM). The

algorithms utilise in line 10 of Algorithm 8 the cost function defined in LKM

(Chan et al., 2004) as fitness function and estimate the internal quality of the

unsupervised classification by means of the Wemmert-Gançarski cluster quality

index (Wemmert et al., 2000). Finally, the NSGA algorithm (Deb et al., 2002)695

is employed as optimisation tool for the multi-objective optimisation approach

proposed by Zhou & Zhu (2018) with the aim of simultaneously estimating the

cluster centres and, in line 9 of Algorithm 8, the local weights that minimise

the intra-cluster dispersion and maximise the inter-cluster separation. Similarly,

the work presented in (Liu et al., 2019) employs the Adaptive Shorting-based700

Evolutionary Algorithm (ASEA) to optimise a new clustering validity index

for credit risk assessment based on four terms: 1) the weighted intra-cluster

compactness, 2) the inter-cluster separation, 3) penalties for the feature, 4)

penalties for the cluster weights. More concretely, the cluster weights and the

term intra-cluster compactness are incorporated to address the issue of class705

imbalance.

3.2.3. Concluding Remarks about Unsupervised Approaches

Regarding unsupervised FW approaches, filter methods are not commonly

employed in the literature and these obtain weights per sample, obviating

the differences in relevance among dimensions. The reviewed works usually710

calculate the features relevance based on previous clustering results or, in

the case of time series, estimate the relevance of the samples considering

the temporal distance from the target. In these cases, the weights quality

are dependant on the suitability of the clusters configuration or on the
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availability of expert knowledge about the temporal dependency of the system,715

respectively. Wrapper approaches, instead, are the most widely applied and

include the feature weights into the objective function of the ML algorithm.

Nevertheless, the application of evolutionary techniques is not so popular in

the unsupervised environment. The weights estimation is usually done as a

function of the current partition, so the results are generally highly dependant720

on the initialisation of the algorithm.

Table 1 summarises the reviewed research works in the field of FW in the

supervised and the unsupervised environment. It includes information about

(a) the specific technique applied for FW, (b) the type of data of the features,725

(c) the application field and/or the datasets used in the research, (d) the research

works and/or techniques used to compare the authors’ proposal, and (e) the ML

performance measure.
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ć
ıa

-G
u
t
ié
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ü
r
ü
le

r
(
2
0
1
7
)

D
is

t
a
n
c
e

fr
o
m

c
e
n
t
r
o
id

s
R

e
a
l

P
a
r
k
in

s
o
n

L
it

t
le

e
t

a
l.

(
2
0
0
7
)

P
o
la

t
(
2
0
1
2
)
;

S
a
k
a
r

&
K

u
r
s
u
n

(
2
0
1
0
)

S
e
n
s
it

iv
it

y
,

S
p
e
c
if

ic
it

y
,

P
r
e
c
is

io
n
,

R
e
c
a
ll

,
F

-m
e
a
s
u
r
e
,

K
a
p
p
a

s
t
a
t
is

t
ic

Unsupervised

Global

G
ü
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é

(
2
0
0
8
)

D
a
r
w

in
ia

n
,

L
a
m

a
c
k
ia

n
a
n
d

B
a
ld

w
in

ia
n

(
c
o
)
e
v
o
lu

t
io

n
a
r
y

a
lg

o
r
it

h
m

s
/
In

t
r
a
-c

lu
s
t
e
r

d
is

t
a
n
c
e

C
a
t
e
g
o
r
ic

a
l,

In
t
e
g
e
r
,

R
e
a
l

U
C

I
D

u
a

&
G

r
a
ff

(
2
0
1
7
)

K
-m

e
a
n
s
,

B
e
t
w

e
e
n

t
h
e
m

F
a
lk

s
-M

a
ll

o
w

in
d
e
x
,

R
a
n
d

in
d
e
x
,

J
a
c
c
a
r
d

c
o
e
ff

ic
ie

n
t

Z
h
o
u

&
Z

h
u

(
2
0
1
8
)

M
u
lt

i-
o
b

je
c
t
iv

e

o
p
t
im

is
a
t
io

n
/
In

t
e
r
-i

n
t
r
a

c
lu

s
t
e
r

m
e
a
s
u
r
e
s

C
a
t
e
g
o
r
ic

a
l,

In
t
e
g
e
r
,

R
e
a
l

U
C

I
D

u
a

&
G

r
a
ff

(
2
0
1
7
)

F
W

c
lu

s
t
e
r
in

g
A

c
c
u
r
a
c
y
,

R
a
n
d

in
d
e
x
,

N
M

I

L
iu

e
t

a
l.

(
2
0
1
9
)

M
u
lt

i-
o
b

je
c
t
iv

e

o
p
t
im

is
a
t
io

n
/
in

t
r
a
-c

lu
s
t
e
r

c
o
m

p
a
c
t
n
e
s
s

in
t
e
r
-c

lu
s
t
e
r

s
e
p
a
r
a
t
io

n

C
a
t
e
g
o
r
ic

a
l,

In
t
e
g
e
r
,

R
e
a
l

U
C

I
D

u
a

&
G

r
a
ff

(
2
0
1
7
)

D
u
n
n

(
1
9
7
3
)
;

G
a
n

&
W

u
(
2
0
0
8
)
;

P
a
r
v
in

&

M
in

a
e
i-

B
id

g
o
li

(
2
0
1
3
)
;

X
ia

e
t

a
l.

(
2
0
1
3
)

R
a
n
d

In
d
e
x
,

F
-m

e
a
s
u
r
e

T
a
b
le

1
:

F
W

r
e
s
e
a
r
c
h

w
o
r
k
s

c
la

s
s
if

ie
d

fo
ll

o
w

in
g

t
h
e

p
r
o
p
o
s
e
d

t
a
x
o
n
o
m

y
in

F
ig

u
r
e

3
.

35

91



4. Considerations for the Application of Feature Weighting Methods

In this section some guide points for the application of FW methods are proposed730

regarding the different taxonomy levels presented in Figure 3.

4.1. Supervised versus Unsupervised Learning

At the first level of the proposed taxonomy, the FW methods are divided into

supervised and unsupervised learning approaches. In our opinion, supervised

FW approach is always advisable if labels are available (Ahn & Kim, 2009). By735

this way, the relevance can be computed as the informative ability of each feature

for estimating the label (Chen & Hao, 2017; Jiang et al., 2018), increasing the

output accuracy of the ML model (Sinciya & Celin, 2017). However, in many

problems labels are not always available, thus, unsupervised FW methods can

be applied as follows: 1) expert-knowledge of the problem field can be employed740

to approximate the influence of each feature on the physical process (Sahin

et al., 2015); 2) temporal information, such as the distance of the samples to

a reference temporal moment, or the phase difference (Benkabou et al., 2018;

Jeong et al., 2011) can be considered to weigh the samples and 3) the estimation

of the feature relevance can be done by means of the metric employed for the ML745

clustering algorithm, such as the cohesion or separation of the former clusters

(De Amorim & Mirkin, 2012; Jing et al., 2007). In the latter case, the final result

is highly dependant on the initialisation of the ML clustering algorithm (Gan

& Ng, 2015). In order to circumvent this problem, some FW methods integrate

an evolutionary algorithm for the optimisation process to be able to efficiently750

explore the solution space and not converge to a local optimum (Gançarski &

Blansché, 2008; Kuo & Nguyen, 2019).

4.2. Global versus Local Approach

The second level of the proposed taxonomy discriminates between the way the

weights are calculated, i.e., globally or locally. In the local supervised approach,755

the samples are merged according to their label and for each group of samples

a local weight is commonly calculated (Chen & Guo, 2015). However, the

36

92



challenge is to assign, among all the estimated weights, the corresponding one

to a new unlabelled sample. In this context, probabilistic methods are usually

applied for estimating the class to which the new sample belongs, and therefore,760

assigning its weight. Another common strategy is to employ confidence-based

methods for assigning a local weight to the new sample (Jiang et al., 2019).

Nevertheless, depending on the number of local weights, the computational cost

may increase and global FW methods might be a more advisable approach.

Regarding unsupervised environments, expert-knowledge based local weights765

can also be employed. Furthermore, in condition-based systems, in which some

feature represents a specific condition of the physical system, makes advisable to

assign different weights depending on the particular system condition. Similarly,

if the temporal evolution of the analysed system is known, the local weight may

consider the temporal distance of each sample to the referenced one.770

Generally, in most cases a hybrid (global and local) approach can be applied.

However, for high dimensional datasets or when a high number of local weights

is presented, a global FW strategy may be recommended for reducing the

computational cost.

4.3. Filter versus Wrapper Method775

In the last level of the proposed taxonomy, the estimation of the weights are

divided into filter and wrapper methods.

In regards to unsupervised FW methods, the wrapper methods are the most

employed ones in the literature. Moreover, in supervised approaches, they have

also proven to increase the algorithm performance respect to filter approaches780

(Marchiori, 2013; Yilmaz et al., 2014). However, the calculated weights are

highly dependant on the ML algorithm configuration (Phan et al., 2017),

its hyper-parameters, or even the training dataset used (Peng et al., 2017).

Therefore, in order to ensure explainability, i.e. for a decision support system

(Chen & Guo, 2015) or high dimensional datasets (Yilmaz et al., 2014), filter785

methods are a preferable approach.
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Nevertheless, some encoding considerations must be taken to handle categorical

features with continuous ones in the same classification problem. Similarly,

the estimation of the probability distribution in some real scenarios is not

always possible. Then, instead of Information theory-based approaches,790

Statistical-based FW methods may be more suitable in these cases.

Finally, it must be taken into account that the differences among the features’

magnitudes can influence the results more than the calculated weights by

the FW methods. Consequently, prior to the weights calculation, additional

preprocessing steps, like normalisation methods (Milligan & Cooper, 1988),795

and a rigorous analysis about the influence of such rescaling transformation

(Niño-Adan et al., 2019) should be conducted.

4.4. FW approach selection

Based on the conclusions drawn from the analysis of the literature presented

in Section 3 as well as the considerations above, this Section provides800

recommendations for the optimal selection of the FW approach depending on

the characteristics and objectives of the problem at hand.

1. Labels: If the dataset is labelled, supervised feature weighting

approaches should be applied.

2. High-dimensional dataset (Peng et al., 2017): If the dataset comprises805

a large number of features, computationally cheaper strategies – like

global weights or filter methods – should be considered.

3. Dimensionality reduction (Panday et al., 2018): If the reduction of the

number of features is needed due to computational complexity problems,

in order to select the most informative ones, global filter approaches810

should be applied as Feature Selection method.

4. Dataset understanding: If there is no prior information about

the problem, the weights calculated by filter methods enhance the

understanding of the relevance of each feature of the dataset.

5. Features contribution estimation: If the aim is to extract knowledge815

about the influence of each feature on the performance of the model
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scoring, wrapper methods are recommended, since the weights obtained

are representative values of the contribution each feature has on the

outputs estimated by the model.

6. Missing values (Datta et al., 2016): If the dataset contains missing values820

and the application of some imputation method is required, the approaches

are: 1) to assign a lower global feature weight to those features with

missing values; 2) to employ local weights by means of assigning lower

weight to the samples with missing values, and representative values – of

the relevance between the sample and the label – to the remaining samples.825

7. Imbalanced dataset (Liu et al., 2019): If the dataset is imbalanced,

local feature weighting strategies aim at increasing the relevance of

the minority class samples.

8. Outliers (Jeong et al., 2011): If the dataset contains outliers, local

feature weighting methods allow assigning lower weight to such samples830

for minimising their influence.

9. Noise: If noisy features are expected in a dataset, using global filter

weighting approaches the weight of an artificially-generated noisy

feature can be estimated w∗. Then, the features of the dataset that present

similar weights wj (calculated by the same technique) to such estimated835

reference weight, wj ≤ w∗ + ε can be identified as noisy features.

10. Interpretability (Chen & Guo, 2015): If the interpretability of the model

is imperative, as stated in Section 3.1.3, filter approaches based on

Information theory or Statistical approaches should be considered.

11. Condition-based problems: If based on expert knowledge it is840

known that the analysed system presents different operational conditions

(determined by the value of certain representative features can take),

and thus, the relevance of the rest of features vary depending on the

condition under the system is working, then local feature weights are

recommended.845

12. Temporal dependency (Fadlallah et al., 2013; Jeong et al., 2011): If

the label of a sample depends not only on the values of such sample but
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also on the values of the previous ones, it is recommended to assign local

weights to the samples according to their temporal distance respect to

the analysed one.850

13. Algorithm performance maximisation (Ahn & Kim, 2009;

Mateos-Garćıa et al., 2017; Triguero et al., 2012; Yang et al., 2012):

If a maximisation of the algorithm performance – in terms of metric

optimisation – is sought regardless the interpretability of the model,

wrapper weighting methods that adjust the weights in order to855

maximise such metric are suggested.

14. Semi-supervised learning (De Amorim & Mirkin, 2012): If the dataset

comprises both labelled and unlabelled samples, local weights to increase

the impact of the labelled samples respect to the unlabelled ones are

advisable.860

15. Online learning (Marchiori, 2013; Yilmaz et al., 2014) : If an online

fashion is faced and extreme label latency is expected, then unsupervised

weighting methods are recommended. Besides, if concept drift is

foreseen, for both quick discovering of such drift and rapid adjustment

of the weights filter approaches are advised.865

Figure 4 depicts the above mentioned recommendations into the different levels

of the proposed taxonomy (Figure 3).

Local

Unsupervised 15. Online

Filter

Global

4. Dataset understanding
10. Interpretability

2. High-dimensional dataset

9. Noise
3. Dimensionality reduction

14. Semi-supervised

7. Imbalanced dataset11. Condition-based problems

8. Outliers

6. Missing values

12. Temporal dependency

Wrapper

5. Features contribution estimation
13. Algorithm performance maximization

Supervised
1. Labels

Figure 4: Recommendations for the optimal selection of the Feature Weighting approach.
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5. Conclusions and Future Challenges

This work presents an extensive review of FW methods based on a proposed

taxonomy or classification scheme, i.e: 1) At a first level, supervised and870

unsupervised methods are differentiated; 2) Then, regarding whether the

application of the weights is over the entire or over a subset of the instance

space, global and local approaches are presented, respectively; and 3) finally,

the evaluation criteria and the interaction with the ML algorithm give rise to a

filter/wrapper classification at a lower level. Moreover, some recommendations875

and guide points for the optimal selection of the FW approach are shown,

regarding the characteristics and objectives of the problem at hand.

In light of the great interest that attracted the FW field in the last years, it

is expected that the number of related works continues growing. As observed

in the conducted review, the majority of works are focused on integer, real or880

categorical input data, being few the FW works applied to time series data.

Since nowadays many real applications rely on time series data, future work

may be focused on delving FW methods for time series data. Moreover, in

order to be able to create a methodology for the application of a FW method

based on the characteristics of the input data and the problem at hand, a885

complete comparison in theoretical and experimental terms of the different FW

approaches has to be addressed. Similarly, an exhaustive study of the degree of

susceptibility of the ML algorithms to the feature weighting transformation will

be interesting and help the selection of the FW strategy.
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Abstract

Normalisation is a preprocessing technique widely employed in Machine Learn-
ing (ML)-based solutions for industry to equalise the features’ contribution.
However, few researchers have analysed the normalisation effect and its implic-
ations on the ML algorithm performance, especially on Euclidean distance-based
algorithms, such as the well-known K-Nearest Neighbours and K-means. In this
sense, this paper formally analyses the impact of Normalisation yielding results
significantly far from the state-of-the-art traditional claims. In particular, this
paper shows that normalisation does not equalise the contribution of the features
to distance-based ML algorithm and that each Normalisation method transforms
the features of the dataset differently, with the consequent impact on the results
and performance of the learning process for a particular problem. This paper
concludes that normalisation can be viewed as an unsupervised Feature Weight-
ing method. In this context, a new metric (Normalisation weight) for measuring
the future impact of Normalisation on the features is presented. Likewise, an
analysis of the normalisation effect on the Euclidean distance-based algorithms
is conducted and a new metric referred to as Proportional influence that meas-
ures the features influence on the Euclidean distance-based ML algorithms is
proposed. Both metrics enable the automatic selection of the most appropriate
Normalisation method for a particular engineering problem. Furthermore, the
optimal Normalisation method selection can significantly improve both the ML
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conclusions are validated on well-known datasets from the UCI repository and
a real-life application from the refinery industry.
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1. Introduction

Every second a huge amount of data is collected in many engineering applic-
ations within the context of Industry 4.0. Machine Learning (ML) algorithms
are commonly applied to extract valuable information from such data. The
main goal of ML algorithms in this context is to build, based on input data5

X (n samples, m features), a mathematical model f : X ⊂ Rn×m → Ŷ about
a engineering system so as Ŷ ≈ Y (real output), in order to make accurate
predictions or decisions, among others.

In the literature several approaches rely on Euclidean distance-based ML
algorithms, i.e. K-Nearest Neighbours (K-NN) and K-means. For instance, two10

versions of the K-NN are presented by Borghesan et al. (2019) for persistent
disturbances prediction. Authors in (Semenov et al., 2020) employ K-NN for
state analysis of hard–to–reach mechatronic units and devices. K-NN is also
utilised by Chelmiah et al. (2020) for wear state classification and Remaining
Useful Life (RUL) estimation of the mechanical rolling element bearings. Con-15

cerning the utilisation of K-means in industrial applications, Yao & Ge (2019)
propose the K-means to discriminate the different process modes for Residual
CO2 content estimation in a Predecarburization unit. A methodology that com-
bines Conditional Restricted Boltzmann Machines with K-means is presented
in (Gutierrez-Torre et al., 2020). Its goal is to improve the quality of data sent20

to an Automatic Identification System. Also, Cavalcante et al. (2019) intro-
duce a continuous learning-from-data algorithm for history-matching problems
-classical petroleum reservoir engineering data assimilation process that repro-
duces the behaviour of a real reservoir-, that includes a Region Definition step
based on K-means algorithm.25

When modelling a problem with data-driven methods, as important as the
selection of the ML algorithm, the collection of the data is. In fact, the modelling
ability and reliability are dependent on the quality of the input data (Cortés-
Ibáñez et al., 2020). If the acquired samples do not represent information about
the engineering phenomenon or if the dataset contains disturbing features, the30

algorithm cannot create an accurate model. Consequently, data preprocessing
(Famili et al., 1997; Garćıa et al., 2015) is a fundamental step in ML problems.
In this context, one traditional approach is analysing and adapting the features
that compose the dataset. Specifically, the expert knowledge or the employment
of Feature Selection (FS) methods (Chandrashekar & Sahin, 2014; Li et al., 2017;35

Rostami et al., 2021; Di Mauro et al., 2021; Hassani et al., 2021), which select the
relevant features for modelling the problem, are the mainly followed approaches
in the literature. Note that FS is conducted by assigning a factor equal to 1 to
the selected features and 0 to the others. Therefore, assigning the same factor
value implicitly means that the selected features are equally important for the40

model, which may not be realistic. In order to circumvent it, a generalisation
of FS is the Feature Weighting (FW) (Wettschereck et al., 1997; de Amorim,
2016; Deng et al., 2016). This approach assigns different weights to each feature
according to its relative relevance for representing the output. Traditionally,
the weights range from 0 to 1 so that the weights’ sum equals 1.45

2
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However, the differences between the original magnitude of the features can
result in both FS and FW approaches in an over-influence of a set of features
in the ML algorithm’s metric. Thus, in FS, features with higher magnitude can
dominate the calculations. On the other hand, the magnitude differences can
disturb the influence of the FW-based weights on transforming the space. For50

all these reasons, the third preprocessing technique highlighted in the state-of-
the-art is Feature Normalisation (FN).

FN is claimed to be particularly useful in statistical learning methods (Garćıa
et al., 2015). It is an extended practice in ML problems in order to equate the
magnitude of the features. Besides, it is thought to equalise their contribution in55

the ML algorithm calculations. There are several FN methods, of which Stand-
ardisation (Zhu et al., 2011; Vanini et al., 2014; Hsu et al., 2018; Curreri et al.,
2020; P lawiak et al., 2020) and Min-max normalisation (Park et al., 2005; Qiu
et al., 2017; Chu et al., 2020; Peng et al., 2020) are the most popular ones. Some
works empirically investigate the most suitable FN technique for a particular60

problem. For instance, Milligan & Cooper (1988) study the effect of 8 FN meth-
ods over 4 agglomerate clustering algorithms applied on synthetic data. Results
reveal that the range-based methods present consistently superior recovery of
the underlying cluster structure. Similar experiments are conducted in (Schaffer
& Green, 1996) and (Chu et al., 2009) in Social sciences and Chemical fields,65

respectively. In addition to the analysis over clustering algorithms, Bhanja &
Das (2018) compare the impact of different linear and non-linear FN methods
on a Deep Recurrent Neural Network for predicting the closing index of Bombay
and New York Stock Exchange. Recently, Singh & Singh (2019) study the effect
of 14 FN methods on K-NN classification performance considering FS and FW.70

Experimental analysis over 21 synthetic and real datasets from UCI repository
are conducted. Based on the obtained results, the authors conclude that FN
affects the datasets’ features properties, which causes a change in the features’
relevance. They also state that the mean and standard deviation measures are
the most recommendable ones to transform X. As it can be noticed from the75

related works, there is no general agreement about the suitability of a particular
FN method’s employment, since the conclusions are obtained from experimental
analysis.

Then, this work advances over the state-of-the-art by presenting a theoretical
analysis of the FN effect on the dataset transformation and its implications on80

distance-based ML algorithms. Specifically, in this work, the implications of the
FN method selection on K-NN and K-means algorithms are analysed. Besides,
two new metrics are proposed: a metric, called Normalisation weight, for meas-
uring the normalisation effect on transforming each feature of the dataset, and
a second metric for measuring the features’ influence on the Euclidean distance-85

based ML algorithm calculations, referred to as Proportional influence. The
theoretical conclusions are experimentally validated with different well-known
datasets from UCI repository as well as with real industrial use case. Fur-
thermore, the implications on the Euclidean distance, more concretely on the
neighbours’ selection of K-NN and its impact on the K-NN performance, and the90

convergence of K-means algorithms, are deeply analysed. The results show that
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the optimal FN method selection can significantly improve both the classifica-
tion performance and Euclidean distance-based ML algorithm’s computational
cost.

The presented conclusions and novel metrics not only benefice the data95

analysis practitioners during the preprocessing, specifically in high-dimensional
datasets composed of hundreds of features -such as in Big Data context or In-
dustry 4.0- but also establish a systematic methodology for learning process
automation or AutoML. In this line, a roadmap for the selection of the suitable
FN method for a new given problem is also suggested.100

This work is organised as follows: Section 2 presents the theoretical analysis
of the normalisation effect on the dataset transformation and its implications
on the Euclidean distance. As a result, a new metric for measuring the influ-
ence of the FN method is proposed. Section 3 describes the FN methods, the
ML algorithms and the performance measures employed for the experimental105

analysis. Besides, the new metric for measuring the features influence on the
Euclidean distance-based ML algorithm is presented. The experimental results
regarding the UCI datasets and the industrial case are collected in Sections 4
and 5, respectively. Section 6 suggests a roadmap for the FN method selection.
Finally, Section 7 gathers the conclusions and the paper’s contributions.110

2. Hypothesis and Foundations

2.1. Notations and Definitions

The statistical FN methods analysed in this work are defined as:

X̃Norm =
X − pos(X)

dis(X)
(1)

where pos(X) refers to the position or central tendency statistic vector1 that
centres the values of the features, and dis(X) corresponds to the dispersion115

statistic vector which scales the features.
As above-mentioned, FN is a preprocessing technique usually employed to

avoid magnitude differences among the features. In order to highlight the
magnitude corresponding to the values xij i = {1, . . . , n} of each feature Xj ,
j = {1, . . . ,m}, they can be expressed by decimal notation as follows:120

xij = sign(xij) 0.d1d2d3 . . . · 10nj = x̂ij · 10nj (2)

where d1, d2, d3, . . . ∈ {0, 1, . . . , 9} and nj ∈ Z in such a way that, ∀j, |nj | is

the minimum number which fulfils Xj = X̂j · 10nj and max{|X̂j |} < 1. Then,

10nj represents the j-th feature’s magnitude factor, and X̂j is the demagnified
feature where each value is |x̂ij | < 1 ∀i.

1For the sake of brevity, the vector composed by position or central tendency statistic is
referred as position statistic from now on.
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2.2. Normalisation Effect on Transforming the Dataset125

In order to analyse the effect of FN on the magnitude removal, decimal
notation (Equation 2) is employed. Since the statistical factors are estimated

by linear operations, pos(Xj) = pos(X̂j) · 10nj and dis(Xj) = dis(X̂j) · 10nj .
Then, the linear-based statistical FN methods can be stated for each feature as:

130

X̃Norm
j =

X̂j · 10nj − pos(X̂j) · 10nj

dis(X̂j) · 10nj

=
X̂j − pos(X̂j)

dis(X̂j)
(3)

As Equation 3 shows, the magnitude factor in the transformed dataset dis-
appears. However, each feature j is scaled by a dispersion factor dis(X̂j) cal-
culated regarding the distribution of its values. It is thought that FN equalises
the features’ contribution. However, in Equation 3, since each feature presents a
different dispersion value, each feature will be transformed differently. Besides,135

since each FN method employs different statistical dispersion measures, it is
expected that each FN method will transform a given dataset diversely.

In fact, Equation 4 demonstrates that FN only equalises the dispersion of
the features in the transformed space, not the feature’s contribution.

dis(X̃j

Norm
) = dis

(
X̂j

dis(X̂j)
− pos(X̂j)

dis(X̂j)

)
= dis

(
X̂j

dis(X̂j)

)
=

dis(X̂j)

dis(X̂j)
= 1 (4)

2.3. Normalisation Effect on the Euclidean Distance140

So far, the FN effect on transforming the dataset has been analysed
separately for each feature of the dataset. Nevertheless, the i-th sample of
the dataset xi = [xi1 xi2 . . . xim] is defined by its values for every feature
simultaneously. Therefore, not only the analysis of each transformed feature
is important, but also the interrelation between the resultant features. In145

fact, except for particular cases, such as Random Forest, most of the metrics
employed by ML algorithms are computed using the sample’s joint information
of all the features. Some ML algorithms, such as Support Vector Machines or
Artificial Neural Networks, include internal weights that adjust the feature’s
contribution. However, for K-Nearest Neighbours (K-NN) and K-means150

Euclidean distance-based ML algorithms, the calculations are performed
directly over the preprocessed dataset. Then, the relationship between the
features directly determines the calculations of the metrics. Thus, for K-NN
and K-means algorithms it is possible to analyse and analytically formalise the
FN method’s influence on the learning process.155

A distance is a mathematical function that measures how far two points are
located between them. One of the most commonly utilised distance metrics
is the Euclidean, which is defined as the sum of the square difference for each
component or feature between a pair of points:160

dE(x,y)2 =

m∑

j=1

(xj − yj)
2 (5)

which, by the employment of Equation 2 can be rewritten as:
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d2E(x,y) =

m∑

j=1

((x̂− ŷ) · 10nj )2 (6)

The features with higher nj value will contribute more to Equation 6. There-
fore, FN is traditionally recommended to avoid such dominance. The Euclidean
distance between two normalised samples x̃, ỹ is given by:

d2E(x̃, ỹ) =

m∑

j=1

(
(x̂j − ŷj) · 10nj

dis(X̂j) · 10nj

)2

=

m∑

j=1

(
(x̂j − ŷj)

dis(X̂j)

)2

(7)

Again, the magnitude disappears, but the dispersion factor still remains in165

the formula. Moreover, since x̂j , ŷj ∈ (−1, 1), then (x̂j − ŷj) ∈ (−2, 2) ∀j.

Proof 1. Based on the definition of the decimal notation it can be proven for
Equation 7 by reductio ad absurdum that the value of |x̂j − ŷj | < 2.

Assuming |x̂j − ŷj | ≥ 2:170

• If y ≥ 0: |x − y| = |x| + y ≥ 2 ⇐⇒ |x| ≥ 2 − y and by definition of the
decimal notation y < 1, thus |x| ≥ 2 − y =⇒ |x| > 1, which is against
Equation 2.

• If y < 0: |x− y| = |x| − y ≥ 2 ⇐⇒ |x| ≥ 2 + y
y>−1
=⇒ |x| > 1.

Analogously, for x ≥ 0 and x < 0. Therefore, it is proven that |x̂j − ŷj | cannot175

be greater or equal to two. Thus, |x̂j − ŷj | < 2.

In this sense, despite each numerator in Equation 7 takes values in (-2, 2),
due to the dispersion factor each term will present a different influence on the
Euclidean distance. This means that the dispersion factors derived from FN
can alter the terms’ or features’ influence on the samples’ distance calculations.180

Example 2.1. Figure 1 depicts features 1 and 10 of Accent dataset from UCI
and their normalisation by Standardisation (ST) and Min-Max (MM) methods.

Figure 1: Example of FN influence on features transformation.

Feature 1 will over-influence the Euclidean distance calculation between
samples x and y if DD = dis(X1)/dis(X10) < |x1−y1|/|x10−y10| = dd. In this185

case, for samples 0 and 327, dd = 0.906. Features 1 and 10 have a std value
of 5.105 and 5.042, respectively; and their range is equal to 23.818 and 27.756,
respectively. Thus, when normalising the dataset with ST, DD = 1.013 > dd,
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and consequently, feature 10 over-influences the Euclidean distance calculation.
In contrast, if MM FN method is employed, since DD = 0.858 < dd, feature 1190

over-influences the Euclidean distance calculations.

In addition, depending on the difference of the dispersion factors, a subset of
features can dominate the Euclidean distance calculations. Thus, if dis(X̂S)≪
dis(X̂H) for S ∪H = {1, . . . ,m} and S ∩H = ∅

dE(x̃, ỹ)2 =
∑

s∈S

(
(x̂s − ŷs)

dis(X̂s)

)2

+
∑

h∈H

(
(x̂h − ŷh)

dis(X̂h)

)2

≈
∑

s∈S

(
(x̂s − ŷs)

dis(X̂s)

)2

(8)

In the light of the above, it is concluded that the statistical FN methods,195

more concretely, the dispersion factors, influence the Euclidean distance.

2.4. Measuring the Normalisation Influence on the Features Transformation

As concluded above, the FN methods not only transform each feature of the
dataset differently but also influence the calculation of the Euclidean distance.
Conversely, as stated in Section 1, Feature Weighting assigns a weight to each200

feature proportional to a given property of the feature. This way, the Euclidean
distance calculation between two weighted samples is defined as:

wd2E(x,y) =

m∑

j=1

(w2
j · (x̂− ŷ) · 10nj )2 (9)

By comparing Equations 9 with the Euclidean distance between two norm-
alised samples (Equation 7) it is concluded that the inverse of the dispersion
statistic acts as a feature weight. Thus, this work states that FN is a particular205

case of unsupervised FW where the feature weights are estimated according to
the statistical dispersion of the features.

Based on this conclusion, and taking advantage of the FW perspective, where
the feature weights wj ∈ [0, 1] in such manner that

∑m
j=1 wj = 1, if the disper-210

sion statistical factor did not alter the features contribution, then w∗
j = 1/m.

Thus, by comparing wnorm
j = dis(X̂j)

−1/
∑m

j=1 dis(X̂j)
−1 respect to the ideal

weight w∗
j , a metric referred as Normalisation weight (Nw) for estimating the

over or under-influence each feature will have on the calculations is stated:

Nw =

[
sign(wnorm

1 − w∗
1) · w

norm
1

w∗
1

, . . . , sign(wnorm
m − w∗

m) · w
norm
m

w∗
m

]
(10)

Each term of Equation 10 poses for each component j the difference between215

the ideal weight w∗ and the one assigned by wnorm. The sign sign(wnorm
j −w∗

j )
represents the over-influence (+) or under-influence (-) that the feature will have
depending on the FN method due to the statistical dispersion factor. Thus, the
metric proposed in Equation 10 depicts the transformation over the features
caused by the FN method to equalise the features dispersion (Equation 4).220

Note that the values obtained by Equation 10 do not represent the relative
importance of the ML calculations’ features but symbolise how each feature is
transformed by a FN method, which ultimately influences the ML calculations.
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3. Methods

In order to complement the theoretical analysis conducted in Section 2, an225

empirical study of the FN methods influence is undertaken. For doing so, first
the selected algorithms and FN methods are presented. Then, the methodology
of the analysis is thoughtfully described.

3.1. Normalisation Methods, Metrics and ML algorithms

Next, the normalisation methods, algorithms and metrics utilised in this230

work to experimentally validate the conclusions from Section 2 are described.

3.1.1. Normalisation Methods

Normalisation method pos(X) dis(X)
Standardisation (ST) (Milligan & Cooper, 1988; Singh & Singh, 2019)

X σX

Variable Stability Scaling (van den Berg et al., 2006; Walach et al., 2018)
X

σ2
X
X

Pareto scaling (Noda, 2008; Trim et al., 2008) X
√
σX

Min-Max normalisation (MM) (Milligan & Cooper, 1988; Singh & Singh, 2019) min(X) range(X)

Range scaling (Hurley et al., 2019; Julian et al., 2019) X range(X)
Unitisation (Milligan & Cooper, 1988) 0 range(X)
Robust scaler (Thara et al., 2019; Vaitheeshwari & SathieshKumar, 2019) Me(X) IQR(X)
MAD normalisation (Kundu & Ari, 2017; Bergen & Beroza, 2019) Me(X) mad(X)

Table 1: Linear-based normalisation methods.

Table 1 collects diverse FN methods resulting from the combination of dif-
ferent position and dispersion statistics. As stated in Section 2, the dispersion
statistic expands or compresses in different degree the values of the features.235

Accordingly, the FN methods based on the same dispersion statistic, such as
Min-Max normalisation and Range scaling, will perform the same transforma-
tion over the data. Thus, the features transformed by any of these two methods
will present the same features’ influence on the Euclidean distance calculations.

In this work, three well-known FN methods from Table 1 will be utilised: ST,240

MM and MAD. The original and the normalised datasets X, X̃ST , X̃MM , X̃MAD

are employed to validate the conclusions from Section 2.

3.1.2. Features’ Proportional Influence on distance-based ML Algorithms

As demonstrated in Section 2, each FN method transforms the features of
a given dataset differently, which alters their contribution to the Euclidean245

distance-based ML calculations. Thus, the higher the separation between the
samples or subsets of them, the higher the influence of such features for classi-
fying or clustering the dataset samples in Euclidean distance-based algorithms.

The experimental research presented in (Singh & Singh, 2019) identifies the
dominant features by comparing the features’ range. The features with higher250

range are considered to have the most influence on the ML calculations. How-
ever, since MM normalisation employs the range to transform the features,
according to Equation 4, by this approach it could be interpreted that MM
method equalises the contribution of the features. The same reasoning is fol-
lowed to discard any other statistical dispersion from Table 1. This is why in255

this work, a new metric for measuring each feature’s degree of influence on the
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Euclidean distance-based ML algorithm calculations, referred to as Proportional
influence, is presented.

In contrast to the range calculated with the extreme values of the feature,
i.e. with the maximum and minimum values, the proposed metric employs not260

only the extreme values but also the mean value of the feature as follows:

Infl(Xj) = max {|(max(Xj)−Xj)|, |(min(Xj)−Xj)|} (11)
where

Infl(Xj) < range(Xj) ≤ 2 · Infl(Xj) (12)
Equation 11 measures the dispersion of each feature as the maximum differ-

ence, in absolute value, of the feature’s mean respect to the most distant value
(the maximum or the minimum value of the feature). In this sense, Infl(Xj)265

considers the mean around which the samples are allocated, and the maximum
distance from the samples to the mean. If the samples of a feature are concen-
trated around a point, the value of Infl(Xj) is lower than if the samples are
more scattered between them.

In order to compare the feature’s relative influence on the Euclidean distance-270

based ML algorithm calculations, the proportional influence IN is considered:

IN(Xj) = Infl(Xj)/max{Infl(Xj)|j = {1, . . . ,m}} (13)

3.1.3. Euclidean distance-based ML algorithms and performance measures

Two widely employed Euclidean distance-based ML algorithms are utilised
to validate the conclusions stated in Section 2.3.

• K-Nearest Neighbours (K-NN) (Cunningham & Delany, 2020) is a classi-275

fication algorithm that establishes the label of a given sample based on the
class membership of its K closest samples in terms of Euclidean distance.

• K-means (Jain, 2010) is a clustering algorithm that groups the samples of
the dataset in K different disjoint groups. The groups are formed in such
a way that the distribution of the samples among the groups maximises280

the intra-group cohesion, i.e. the distance of the samples to its centroid.

In order to analyse and quantify the differences in the classification perform-
ance (Sokolova & Lapalme, 2009) resulting from the FN method selection, the
accuracy, precision, and recall measures are employed.

• Accuracy is defined as the total number of correctly classified samples285

divided by the total number of samples. For imbalanced datasets, the
accuracy value is dominated by the majority class.

• Precision measures the proportion of samples assigned label 1 correctly
classified respect to all the samples classified with label 1.

• Recall represents the proportion of samples from class 1 correctly detected290

by the algorithm.

In multi-class classification problems, macro-precision and macro-recall
measures are employed, estimated as the average of the precision and recall
obtained for each class, respectively.
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3.2. Analysis of FN influence on transforming the dataset295

After normalising the raw dataset X with the three FN methods selected in
Section 3.1.1, the Normalisation weight is calculated with the aim of quantifying
the degree of compression/expansion imposed by each FN to each feature.

Then, the features’ Proportional influence IN (Equation 13) presented in
Section 3.1.2 is estimated to infer the features’ contribution to the Euclidean300

distance-based models.

3.3. Analysis of the FN influence on K-NN

Next, the methodology employed to validate the FN method selection influ-
ence on the K closest neighbours selection and its implications on the K-NN
classification performance is described.305

3.3.1. FN influence on the Neighbours Selection

The FN impact on the neighbours’ selection is analysed by studying the
neighbours’ distribution.

Algorithm 1 K-NN neighbours similarity (Kendall’s τ)

1: Given a dataset X̃∗ = {X,XST , XMM , XMAD} ⊂ Rn×m

2: for i = 1 : n do
3: for i

′
= 1 : n do

4: D∗(i, i
′
)← dE(xi,x

′
i)

5: for D∗, D+ = {D,DST , DMM , DMAD} ⊂ Rn×m, D∗ ̸= D+ do
6: for i = 1 : n do
7: τi(D

∗(i), D+(i))

8: Calculate the maximum, mean and minimum values of τ

As described in Algorithm 1, given a matrix D∗(i, i
′
) = dE(x∗

i ,x
∗
i′

) that

contains ∀i ∈ {1, . . . , n}, i′ ∈ {1, . . . , n} ≠ i, the pairwise Euclidean distances310

between each pair of samples of the dataset is calculated (line 4). Since K-NN
selects the neighbours according to their distance to a given sample, each row
i of D∗ can be interpreted as the ordinal relationship between the dataset’s
samples respect to the sample i. Kendall’s τ correlation coefficient (Lapata,
2006) assesses the relation between two ordinal variables. Then, for each pair315

of transformations-based distances D∗, D+ (line 5) and for each sample (line
6), the similarity between neighbours’ rank distribution is calculated in line 7.
Kendall’s τ scores between -1 and 1 and τ(x∗, x+) = 1 represents the total
agreement between the rankings/neighbours obtained by both transformation
methods over the same sample. For each pair of transformed datasets (line 7320

of Algorithm 1) a total of n Kendall’s τ values are obtained. Then, in order to
measure the neighbours’ similarity, the maximum, mean and minimum τ values
are analysed.

3.3.2. FN influence on K-NN performance

In order to study the FN influence on the K-NN performance, the accuracy,325

precision and recall performance measures are estimated and compared.
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3.4. Analysis of the FN influence on the K-means Convergence

Next, the methodology to analyse the influence of the dominant features
influence (Equation 8) on the K-means convergence is assessed.

Algorithm 2 K-means convergence

1: Given X∗ = {X,XST , XMM , XMAD}, the real labels Y and K = |Y |
2: for t = 1 : n initialisation do
3: Ỹ ← K-means(X∗)
4: Compute the confusion matrix between Y and Ỹ
5: if TN + TP < FN + FP then
6: Ỹ ← Ỹ + 1
7: Ỹ [Ỹ == 2]← 0

8: Estimate Precision(Y, Ỹ ).

First, the convergence of K-means with all the features is considered (Al-330

gorithm 2). For a given number of random initialisations, K-means is applied
to each transformed dataset (line 3). By understanding each cluster as a differ-
ent class, the results of K-means can be interpreted as the separability between
classes. So, for the binary problems, each cluster is encoded in lines 5-7 as 0
or 1 in such a way that the accuracy respect to Y is maximised. Finally, the335

precision obtained at each iteration of the training process is calculated. Note
that the purpose of Algorithm 2 is to experimentally validate Equation 8.
Then, the effect of removing one-by-one the non-dominant features according
to their IN values is analysed as described in Algorithm 3.

Algorithm 3 K-means features dominance

1: Given a dataset X∗ = {X,XST , XMM , XMAD} ⊂ Rn×m

2: for n del = 1 : m− 1 do
3: Remove the n del features with lowest IN (Equation 13).
4: Apply Algorithm 2.
5: Estimate the mean and standard deviation values of the precision reached from the

different initialisations.

4. Experiments with UCI datasets340

This Section experimentally validates over nine well-known datasets from
UCI repository (Dua & Graff, 2017) the conclusions presented in Section 2.

4.1. UCI datasets description

Table 2 describes the main characteristics of the nine well-known datasets
from UCI repository employed in this work.345

Breast Blood Cryotherapy Immunotherapy Parkinson Accent Glass Vehicle Wine

Features 30 4 6 7 22 12 9 18 13
Samples 569 784 90 90 195 329 214 864 178
Classes 2 2 2 2 2 6 6 4 3

Imbalanced Yes Yes No Yes Yes Yes Yes No No

Table 2: Datasets description in terms of number of features, samples, classes and balance.

The box-plots from Figure 2 illustrate the features’ properties of the datasets.
The bottom of the lower whisker and top of the upper whisker represent the
minimum and maximum values, respectively. Top, medium, and bottom of the
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box depict 75, 50 and 25 percentiles, respectively, and the triangular-shaped
marker the mean. Further, all the datasets have outliers at least in one feature350

and, except for Figure 2f, some features2 present magnitude differences.

4.2. Analysis of the normalised datasets

Figure 3 pictures, for each UCI dataset, the features’ Proportional influences
IN derived from each transformation (raw, ST, MM and MAD). Significant
differences in the statistical distribution of the Proportional influence values355

are observed depending on FN. As observed in Figure 3e, feature 13 takes IN
values higher than 0.93 with ST or MM, while INMAD = 0.728. Similarly,
feature 10 for MM presents a IN = 0.908, but for ST and MAD the IN value
of the mentioned feature is lower than 0.73. Then, from each FN the features’
proportional influence varies, and thus from each normalised dataset different360

performance results are expected.
Table 6 shows the mean absolute differences between IN values if comparing

two different FN methods. For the studied cases, the IN differences when com-
paring ST and MAD transformations are lower than those differences obtained
from ST with MM or MAD with MM. These results prove that each FN method365

transforms a given dataset differently. Then, the selection of the FN method
can affect the Euclidean distance-based ML algorithms’ performance.

Breast Blood Cryoth. Immunoth. Parkinson Accent Glass Vehicle Wine

|INST − INMAD| 0.071 0.069 0.137 0.096 0.126 0.046 0.157 0.131 0.035

|INST − INMM | 0.321 0.133 0.277 0.304 0.188 0.095 0.205 0.345 0.185

|INMM − INMAD| 0.390 0.138 0.414 0.400 0.315 0.131 0.362 0.475 0.220

Table 6: Mean absolute difference between the features Proportional influence (IN) derived
from different FN methods.

4.3. Normalisation Effect on the K-NN Neighbours selection

K-NN is employed to, first, analyse the FN influence on the K closest neigh-
bours selection, and then, its impact on the K-NN performance.370

4.3.1. Analysis of FN influence on the neighbours’ selection

Table 3 collects the results from applying Algorithm 1. The maximum,
mean and minimum Kendall’s τ values result from comparing the neighbours of
the raw respect to the normalised datasets (mean Kendall’s τ values are up to
0.899). Regarding the normalised datasets, the maximum differences between375

the neighbours’ rank are obtained by comparing MAD with MM since mean
τ values range from 0.566 to 0.900. The second highest rank differences result
from comparing ST respect to MM with mean τ values between 0.678 and 0.928.
Finally, the highest similitude between neighbours’ rank results from comparing
ST and MAD. These values are consistent with the results from Table 6, where380

the lowest and highest mean absolute differences between the IN values are
obtained when comparing MAD with ST and MM, respectively.

2Further information about the features can be found in (Dua & Graff, 2017).
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4.3.2. Analysis of FN influence on the K-NN performance

Table 4 gathers, for each dataset and K = [3, 5, 9, 11, 19], the classification
performance obtained by K-NN applied to the different transformations.385

In most cases, K-NN performance for a fixed value of K differs depending
on the FN method. The maximum differences for the distinct values of K vary
between 2.223% and 6.445% in terms of accuracy. In terms of recall, they range
from 3.773% to 10.417%. These differences are even more significant in terms
of precision ranging from 5.009% to 21.041%. These results show that the FN390

method selection can significantly affect the algorithm’s performance.
The obtained differences are not only meaningful by themselves. Variations

in accuracy of 1% - 4% and even lower than 1% are usually considered notable
for UCI datasets. In fact, authors in (Basak & Huber, 2020) employ evolution-
ary methods to learn feature weights that improve the accuracy of the K-NN395

algorithm for different UCI datasets. The difference in the resulting accuracy
is 0.15% and 3.38% for Breast and Immunotherapy datasets, respectively. In
contrast, in this work the accuracy differences derived from the FN method
selection for a fixed value of K are for most cases higher than the reported in
(Basak & Huber, 2020). Also, in (Bian et al., 2020), the maximum accuracy400

differences obtained for Breast, Blood, Glass and Wine datasets by employing
eight different FKNN-based algorithms are around 3%, 2%, 7% and 4%, respect-
ively. However, it must be observed that only with the application of different
FN methods to the traditional K-NN algorithm, maximum accuracy differences
of 1.2%, 1.6%, 5.1% and 1.1% are achieved (Table 4).405

Then, this work shows that the optimal FN method selection can be as
influencing as the employment of more sophisticated K-NN-based algorithms.

4.4. Normalisation Effect on the K-means Algorithm

In this section the results regarding the features dominance derived from the
FN method selection (Equation 8) and their influence on K-means performance410

is analysed. Tables 5a to 5i collect the results from applying Algorithm 3. Di-
verse impact of the features’ removal on the K-means convergence is observed.
Two scenarios can be distinguished: when the features’ IN values are distrib-
uted between 0 and 1, or where the minimum IN values are higher than 0.5.
The first scenario, former by the transformations derived from ST and MAD,415

considers two cases: 1) when the number of features m > 10, like in Breast,
Parkinson and Vehicle the removal of the features with lowest IN does not sig-
nificantly affect the mean precision (Tables 5a, 5e and 5h for ST and MAD);
2) for datasets with m < 10, removing the two features with lowest IN may
alter the mean precision around 1% for Cryotherapy or Immunotherapy with420

MAD, or up to 5% like in Table 5b for ST. Secondly, when the minimum fea-
tures’ proportional influence is up to 0.5, like in Breast with MM normalisation
(Table 5a), smooth changes in mean precision values are observed. In contrast,

significant changes –around 5%– result from removing 2 or 3 features from X̃ST ,
X̃MM and X̃MAD, such as in Table 5i. This behaviour can be due to the class425

conditioned distribution of the samples of the removed features, which may be
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further analysed in future works. In any case, from the engineering application
point of view, when a subset of features does not influence the learning process,
these can be removed, saving memory and computational cost.

5. Real use case dataset430

In this Section, real data obtained from a refinery located in The Basque
Country is employed to validate the theoretical analysis conclusions.

5.1. Use case description

The data corresponds to a real-life refinery use case. Refineries are com-
plex systems that extract higher quality subproducts from raw crude. Figure435

4 presents a high-level diagram of the real-life use case employed in this work.
Raw crude is injected into columns C1 and C2 where the distillation process sep-
arates Liquefied Petroleum Gas (LPG) from the top of the columns and heavier
subproducts from the bottom. The LPG is then pumped into a sweetening unit
where sulphur is removed (Chain unit 1). Finally, in Chain unit 2 LPG is further440

processed to obtain butane. According to the specification standards (BOE-A-
2006-2779, 2015), the resultant butane must not exceed a certain threshold of
percentage of pentanes (1.5%).

Figure 4: High-level flow diagram of the industrial refining process.

In order to validate the conclusions of Section 2, this work utilises inform-
ation of the operational process gathered in 22 features regarding the distilla-445

tion column C2. These features correspond to flow, pressure, and temperature
measures (remarked in bold, italic, and underlined text respectively in Figure
4). Based on these 22 operational process features, the goal is to classify the
resultant subproduct quality as acceptable or improvable with labels 0 or 1,
respectively.450

The dataset contains 12.960 samples described by the 22 above-mentioned
features. These samples have been collected every 10 minutes during three
months of the refining process. Each sample of the dataset has an associated
label regarding the resulting quality, from which 18.32% correspond to class 1.

5.2. Normalisation Effect on Transforming the Dataset455

Figure 5 illustrates the proportional influence of the features that compose
the raw dataset X. Feature C2 4 presents the maximum IN value in Figure 5.
The second feature in terms of proportional influence is C2 11, with INC2 11 <
0.4 ·INC2 4. Then, if X is employed for the learning algorithm, C2 4 is expected
to be the most influencing feature.460
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Figure 5: Proportional influence of the features of the raw dataset X.

Figure 6 depicts the magnitude of the features and the distribution of the
values per feature resulting from applying the decimal notation (Equation 2).

As it is expected from Figure 5, C2 4 gathers in Figure 6a the maximum
magnitude exponent value n4 = 5, followed by C2 5 and C2 6 with n5 = n6 = 4.
Then, the maximum magnitude factor is at least ten times higher than the oth-465

ers. However, although in Figure 5 the feature with the second maximum IN
is C2 11, n11 = 3, which is lower than n5 or n6. Hence, despite being the mag-
nitude an important factor, it is not determinant for the features’ dominance.

(a) Magnitude exponents nj of the raw dataset X

(b) Values gathered by each feature of X̂

Figure 6: Magnitude factors and X̂ obtained after decimal notation application (Equation 2).

Figure 6b presents for each feature the value of the samples of X after re-470

moving the magnitude factor, i.e. X̂. From Equation 2 |x̂ij | < 1, but depending
on the feature the samples are more concentrated in smaller intervals. For in-
stance, the samples of C2 5 in X̂ take values between 0 and 0.1, while C2 1 takes
values from 0 to 0.8. Besides, contrary to the rest of the features which are more
homogeneously distributed, in C2 22 the samples take only three differentiated475

values. Hence, despite |x̂ij | < 1, the features’ distribution of the samples also
determines the features influence.

In the following, the results obtained from normalising X are presented. By
the application of the Normalisation weight (Equation 10), and prior to the
dataset normalisation, Table 7 shows a measure about how much each feature480

will be expanded/compressed respect to an ideal weight w∗ = 1/m.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ST -0.10-0.10-0.21-0.37-0.89-0.91-0.53-0.61-0.123.40-0.41-0.18-0.78 1.06 -0.18-0.45-0.45 1.13 -0.09 1.15 1.15 7.74
MM -0.19-0.19-0.45 1.01 1.50 1.44 1.16 1.47 -0.241.32-0.69-0.35 1.22 1.25 -0.35-0.92-0.78 1.29 -0.17 1.53 1.52 2.96
MAD-0.02-0.02-0.05-0.08-0.18-0.25-0.10-0.13-0.032.02-0.07-0.04-0.28-0.32-0.04-0.16-0.16-0.31-0.03-0.31-0.3217.07

Table 7: Normalisation weight: Percentage of expansion(+) or compression(-) each FN method
imposes to each feature of column C2 of the real case study in comparison to w∗.

The value obtained for each feature in Table 7 differs depending on the FN
method. For the features C2 1:C2 3, C2 9, C2 11, C2 15:C2 17 and C2 19, the
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weight assigned by the normalisation methods is lower than w∗. Only features
C2 10 and C2 22 present in the three cases normalisation weights higher than485

w∗. In the remaining features, either with ST and MM methods, the value
obtained by Equation 10 is positive while the obtained for MAD is negative.

Figure 7: Difference between the ideal weights w∗ and those assigned by each normalisation
method wnorm.

In addition to Table 7, Figure 7 depicts a graphical representation of the
difference between the ideal weight w∗ and those wNorm assigned by each FN
method. It can be observed that C2 22 is the most expanded feature by the three490

FN methods. It is remarkable that, for the mentioned feature, MM presents a
lower normalisation weight than ST and MAD, and MAD is the most discrimin-
ating one. For ST and MAD, the feature with the second-highest normalisation
weight is C2 10. In this case, contrary to the observed in C2 22, the normalisa-
tion weight assigned for the feature by ST is higher than that given by MAD.495

Therefore, based on the results of the Normalisation weight, it can be known in
advance how each FN method would transform each feature of Figure 6b.

Figure 8: Proportional influence (IN) of the normalised datasets.

Figure 8 depicts the features’ Proportional influence of the normalised data-
sets. Features C2 10 and C2 22 are in Figure 8 the most influencing ones,
especially in X̃ST and X̃MAD. This was expected since these features present500

in Figure 7, by far, the highest normalisation weights. With MAD normalisa-
tion, the rest of features are insignificant in comparison to the most influencing
ones. For ST normalisation, the features present a IN value between 10% and
50% the proportional influence value of C2 22 or C2 10. In the case of MM,
there are no such significant differences between the highest and the lowest con-505

tributing features. Besides, C2 19 is also one of the most influencing features,
jointly with C2 10 and C2 22. The rationale behind this can be explained due
to a less uniform distribution of the samples of C2 10, C2 19 and C2 22 along
the features (Figure 6b).

Figure 9: Example of samples values along the features of X̂.
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As commented in Section 2, the FN effect on transforming the data impacts510

on each feature’s influence on the algorithm. Nevertheless, the particularit-
ies of the samples that compose the dataset and their multivariate behaviour
also affect the metric calculations. Despite the features’ associated weight and
|x̂ij | < 1, if the compared pair of samples present the same value for such fea-
ture, the wNorm losses its effect on the calculations. Figure 9 exemplifies the515

relationship of some samples between the features. For instance, samples 0 and
888 take the same value in the feature C2 22. They also have similar values for
the rest of features except for C2 19, where the value of sample 888 is close to
0.25, while the value for sample 0 is around 0. Consequently, despite the high
weight value assigned to feature C2 22, the distance between samples 0 and 888520

is more determined by the feature C2 19. In contrast, the highest differences
between samples 888 and 3938 are found in the features C2 1, C2 2, C2 3, C2 9
and C2 22. However, since the weight assigned to C2 22 is much higher than the
weights of C2 1, C2 2, C2 3, C2 9, the distance in those components is less in-
fluencing than in C2 22. Consequently, the calculation of the Euclidean distance525

for a pair of samples is affected by both IN and the particular interrelations
between them, dependent at the same time on the selected FN method.

5.3. Normalisation Effect on the K-NN

Next, an analysis of, first, the FN influence on the selection of the K closest
neighbours, and then, its implications on the K-NN performance is conducted.530

5.3.1. Analysis of FN influence on the neighbours’ selection

Table 11 collects the maximum, mean and minimum Kendall’s τ values ob-
tained from Algorithm 1. The highest rank disagreement is found when compar-
ing the raw respect to the normalised datasets. Regarding the normalised ones,
the most significant dissimilarities are observed when contrasting the minimum535

τ values (between 0.129 and 0.587) so as for some samples, the FN changes
drastically the distance rank from a given sample to the remaining ones. Be-
sides, by comparing by pairs the ranks’ similarity, the most significant differences
are observed when comparing X̃MM with X̃MAD, followed by those resulting
from the comparison of X̃ST and X̃MAD.540

τ X X̃ST X̃MM X̃MAD

X
max 1.000 0.593 0.708 0.550
mean 1.000 0.294 0.368 0.270
min 1.000 -0.105 -0.040 -0.122

X̃ST
max 0.593 1.000 0.953 0.943
mean 0.294 1.000 0.874 0.857
min -0.105 1.000 0.587 0.358

X̃MM
max 0.708 0.953 1.000 0.921
mean 0.368 0.874 1.000 0.779
min -0.040 0.587 1.000 0.129

X̃MAD
max 0.550 0.943 0.921 1.000
mean 0.270 0.857 0.779 1.000
min -0.122 0.358 0.129 1.000

Table 11: Maximum, mean and minimum τ values obtained by comparing the ranks for each
pair of dataset transformation.

It should be noted that, a difference in selecting a single neighbour can be
enough to assign a different class label to a sample. Suppose the case where
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(K − 1)/2 neighbours of the sample belong to class 0, and the rest to class 1.
If the non-shared neighbours for each transformed dataset belong to different
classes, in one case the sample is labelled as 0, while in the other method the545

sample’s label is set as 1. In this line, Tables 8a to 8d present for different values
of K the mean number of equal neighbours employed by the same sample by
different FN methods. For all cases, the lowest mean values are obtained with
the raw dataset. Regarding the normalised datasets, the lowest coincidence is
observed by comparing X̃MM and X̃MAD for K = {11, 19, 27, 35}, followed by550

the pair X̃ST and X̃MM in Tables 8a and 8b. In Tables 8c and 8d the mean
number value is the same for X̃ST respect to both X̃MM and X̃MAD.

5.3.2. Analysis of FN influence on the K-NN performance

The neighbours’ distribution differences derived from the FN method selec-
tion directly impacts on the samples’ classification. Tables 9a to 9d present555

the proportion of samples labelled by K-NN as class 1 for j-th dataset that are
equally labelled as class 1 when utilising i-th dataset, i.e. Sij/|{ŷi = 1}| being

Sij = {ŷj = 1|ŷi = 1} for a given K and i, j ∈ {X, X̃ST , X̃MM , X̃MAD}. It
can be observed that up to 13.857% of samples labelled as 1 when utilising one
FN method are classified as 0 when using a different one, with the associated560

economic and energetic consequences of the decisions on the refinery operation
depending on these estimations. Actually, for K = 35 only the 86.143% of the
samples labelled as 1 with MAD are classified as class 1 when employing MM.
Also, with K = 11 between 4% and 10% of the samples labelled as class 1 by
one method are labelled as 0 by other FN method.565

The samples classification differences are reflected in the algorithm’s per-
formance measures results. Tables 10a to 10d collect the accuracy, precision
and recall obtained by K-NN algorithm for X, X̃ST , X̃MM and X̃MAD. In
this particular case, the performance results obtained over X are improved by
applying any of the selected FN methods. Except for K = 11 with ST or570

K = 35 with MM in terms of precision, MAD attains the best performance. As
described in Section 5.1 the dataset is imbalanced so, the accuracy is not the
most representative performance measure in this particular case.

K ST-MM MM-MAD ST-MAD
11 0.810 0.758 0.052
19 1.469 1.862 0.393
27 0.170 0.090 0.260
35 0.983 0.735 0.248

(a) Precision

K ST-MM MM-MAD ST-MAD
11 1.728 3.455 1.727
19 1.727 2.822 1.095
27 1.306 3.286 1.980
35 1.180 2.527 1.347

(b) Recall

Table 12: Differences between the performance reached by each FN method.

Table 12 presents the absolute differences in precision and recall, respectively,
when comparing the results of the normalised datasets for different values of K.575

These differences are up to 1.862% and 3.455% in terms of precision and recall,
respectively. Thus, even with the same mean number of equal neighbours for
X̃ST respect to X̃MM or X̃MAD (Tables 8c and 8d), the algorithm’s performance
can vary non trivially due to the particular influence of one single neighbour,
with differences in precision up to 0.983%, and up to 1.980% in terms of recall.580

Hence, for all the above mentioned, it is experimentally confirmed that FN
influences the Euclidean distance calculation, which affects the neighbours’ se-
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lection and, consequently, the K-NN algorithm’s performance. Also, it must be
noticed that the reported impact of FN method selection will depend on the
particularities of the engineering application.585

5.4. Normalisation Effect on the K-means Algorithm
In the following, the influence on the K-means convergence of the features’

dominance derived from the FN method selection is analysed.
Figure 10 depicts the precision results obtained by applying Algorithm 2.

Each colour of Figure 10 represents each of the 100 random initialisations. K-590

means algorithm for the analysed problem converges to a solution in less than
25 iterations. However, depending on the features’ proportional influence dis-
tribution, the convergence is reached in less number of iterations.

With the raw dataset, highly dominated by the feature C2 4 in terms of
proportional influence, the algorithm converges for every random initialisation in595

less than 10 iterations (Figure 10a). Similarly, K-means converges in less than 10

iterations with X̃MAD, which in Figure 8 presented 2 dominant features, C2 22
and C2 10. In the case of X̃ST , C2 22 and C2 10 are the dominant features
(Figure 8), but the others do not present, in comparison to the maximum one,

as low influences as it occurs for X̃MAD. Then, in this case, K-means employs600

up to 15 iterations depending on the initialisation. In contrast, K-means applied
to X̃MM needs more than 15 iterations to converge. This is due to absence of
significantly dominant features in X̃MM .

Therefore, it can be concluded that the lower the number of dominant
features and the higher the differences in the influence between the most605

influencing features and the rest of the features, the lower the number of
iterations K-means needs to converge to a solution. Then, the features’ IN can
be considered as a strategy for Feature Selection.

Figures 11a to 11d depict the mean precision and standard deviation ob-610

tained from the results of 100 random initialisations of the K-means after ap-
plying FS based on the features’ IN (Algorithm 3). The X-axis represents the
number of features employed for training the K-means. As depicted in Figure 8,
X̃MAD presents the highest differences between the features’ IN values. Then,
in Figure 11d, the removal of features with lowest influence does not affect the615

mean precision reached by the K-means algorithm. Even by selecting only the
most influencing feature, C2 22, the mean precision remains around 0.15. Sim-
ilarly, X is mainly dominated by feature C2 4, but in contrast to X̃MAD, in
Figure 5 other features present a IN value around 0.3. Then, by removing the
features with lowest influence value, in Figure 11a the mean precision and the620

std values almost do not change. In fact, in this particular case the employment
of the two most influencing features only changes 0.001 the original precision
value. In the case of X̃ST dataset, most of the features present a IN between
40 − 50%. By selecting the eight most influencing features, in Figure 11b the
mean precision only decreases from 0.6 to 0.5. It can also be observed that625

by using the two most influencing features of X̃ST dataset, the precision ob-
tained is lower than 0.2. In contrast to Figures 11a, 11b and 11d, Figure 11c
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presents significant fluctuations in the mean precision value after removing the
six features with lowest proportional influence. The reason is that the features
of X̃MM with lowest IN present a value higher than 0.4 (Figure 8).630

The results depicted in Figures 11a to 11d show that the Proportional in-
fluence enables to capture the influence each feature will have on the distance-
based ML algorithm calculations. However, such influence derived from the
FN methods is not related to the true importance of the feature for estimat-
ing the real output of the problem. In this context, the proposed approach635

is focused on understanding the features dominance on the Euclidean distance
calculation (Equation 8). Furthermore, by inferring each feature’s influence on
the algorithm training, memory and run time can be saved by removing non-
contributing features that do not affect the clusters configuration.

Figure 12: Time in seconds employed by K-means to do 100 initialisation for raw, ST, MM
and MAD datasets, in a 16 GB RAM Dell Latitude 5580 workstation equipped with Intel
Core i7-7600U CPU running at Microsoft Windows 10 Enterprise.

Figure 12 depicts the time (in seconds) employed for K-means algorithm640

to train the model based on the Feature Selection conducted according to the
features influences of Figures 5 and 8. For the FS conducted over the raw
and the normalised datasets, it is observed that the time consumed presents a
decreasing tendency. Therefore, in addition to the memory-related advantages
derived from the features downsizing, the computational cost decreases as the645

number of employed features is reduced.

6. Roadmap for the FN Method Selection

Figure 13: Roadmap for the proper FN method selection.
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In Figure 13, a roadmap for the proper FN method selection is suggested.
Next, two examples are presented to exemplify the application of such roadmap
over a new given use case.650

Example 6.1. In the following, an example of the application of the presented
roadmap over the IoT Botnet Attacks dataset from UCI repository is shown. It
contains data about ack flooding Mirari attack (Bagui et al., 2021) consisting in
151743 samples characterised by 115 features.

Figure 14: Proportional influence IN values.

Figure 15: Features’ weight wMI estimated with Mutual Information (MI)

Figure 16: Distribution of the features’ IN
values derived from each FN method.

ST MM MAD
Accuracy 99.996 100. 99.988
Precision 99.999 100. 99.999
Recall 99.995 100. 99.983

Table 13: Performance obtained by K-NN
with K = 7 for the normalised datasets.

655

In step 1, ST, MM and MAD FN methods are selected. Figure 14 depicts
the IN values calculated in step 2. In the absence of expert knowledge, in step
2.1 the features’ relevance is estimated with Mutual Information (MI) supervised
FW method. The calculated weights wMI are plotted in Figure 15. As it can
be observed, there is no similitude between the IN values and the MI-based660

weights rankings. In fact, Kendall’s τ correlation coefficients between wMI and
IN(X̃Norm) for Norm ∈ {ST,MM,MAD} are −0.544, −0.455 and −0.567,
respectively. Then, no FN method selection can be chosen. Since no decision
about the proper FN method can be made based on the results of step 2.1,
the algorithm’s performance for each normalised dataset is computed. Table 13665

collects the performance measures resulting of applying K-NN with K = 7 in
step 3. With the FN methods selected in step 1, K-NN obtains performance
values higher than 99.9%. However, as Figure 16 depicts, in X̃ST and X̃MAD

most of the features present IN values lower than 0.6. Then, in these two cases,
high performance values are achieved with datasets dominated by few number of670

features. Consequently, X̃ST or X̃MAD are preselected in step 3.1 to analyse if
FS based on the IN values can be conducted to reduce computational time and
memory without performance loss. In step 4 the features with IN ≥ 0.6 are
selected to train the models. Thus, 10 features remain in X̃ST

FS after FS, which

correspond to the 8.7% the features of the dataset. For X̃MAD
FS , only 6 features675

present IN ≥ 0.6. In step 4.1, K-NN for X̃ST
FS reaches accuracy, precision, and

recall values equal to 95.022%, 93.125% and 99.99%, respectively. In contrast,
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for X̃MAD an accuracy of 35.625% and precision and recall values equal to 0%
are obtained.

Then, based on the performance results and the computation time and680

memory saving derived from applying according to step 4 FS based on IN val-
ues, X̃ST

FS is selected for this use case.

Example 6.2. Next, Air Pressure System (APS) Failure at Scania Trucks
dataset from UCI repository is employed. It is composed by 591 samples de-
scribed by 165 features. The goal is to identify if the registered failures are685

related to components of the APS. For doing so, in this example K-means is
used to clustering the samples. In this case, ST, MM and Pareto scaling (PA)
are selected in step 1. Figure 17 shows the features’ IN values estimated in
step 2.

Figure 17: Features’ proportional influence

Let’s assume that expert knowledge considers, in the following order, features690

67, 20, 21, 25, 137, 65 and 64 as the most important ones for modelling the
problem. In this case, the main interest is to check which FN method transforms
the features in such a way that the mentioned features present higher influence
on the Euclidean distance-based algorithm. For doing so, instead of analysing
the proportional influence of all the features, in step 2.1, Kendall’s τ correlation695

between the rank given by expert knowledge and the seven mentioned features’
IN values ranking is computed. The obtained correlation equals 0.619, 0.810 and
−0.048 for ST, MM and PA, respectively. Then, since the dataset derived from
MM FN method obtains the highest correlation value, MM is selected in step
2.1. In Figure 17, the lowest IN value is 0.503. Thus, due to the high features’700

proportional influence on the algorithm’s calculation no FS is conducted.

7. Conclusions

Data preprocessing is a fundamental and time-consuming part of data ana-
lysis in multiple engineering applications. Besides, the reliability of the models
is dependent on the quality of the employed data. In the Industry 4.0 context,705

where hundreds of features are collected, the preprocessing stage is an arduous
and challenging task. Then, the higher the understating of the preprocessing
approaches’ implications, the higher the options of automating such processes.
Precisely, industrial use cases are characterised by features representing distinct
physical properties captured from different process stages. Therefore, it is com-710

mon to find variables of different magnitude, and consequently FN is usually
applied. In this sense, this paper proposes a theoretical-experimental analysis
of the normalisation effect on transforming the original dataset and its implic-
ations on the Euclidean distance-based algorithms. Regarding the theoretical
analysis, it has been proven that statistical normalisation methods based on dis-715

persion statistics do not equalise the contribution of the features. In fact, it is
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shown that each FN method transforms a dataset diversely and that a given FN
method converts each feature differently. Consequently, Feature Normalisation
can be interpreted as a particular case of Feature Weighting. In this sense, a new
proposed metric referred as Normalisation weight for measuring the dispersion720

factor weight gives guidance about the impact of the normalisation method on
the features. The features conversion directly influences those algorithms that
employ the joint information of the features to estimate the output. This work
proves the influence of the FN method selection on the Euclidean distance-based
ML algorithm calculations. In order to measure such influence, a new metric725

referred as Proportional influence has been proposed.
In particular, K-NN and K-means algorithms are employed to demonstrate

the normalisation’s influence over the Euclidean distance calculations. K-NN
is utilised to reflect the normalisation influence on the neighbours’ selection
and, hence, on the classification performance. With regards to K-means al-730

gorithm, the features dominance impact over the convergence of the algorithm
is also demonstrated. Thus, normalisation influences not only the perform-
ance but also the computational cost, which can be considered when handling
large datasets or applying the model in an online adaptive scenario. In this
sense, a methodology is presented to study the neighbours’ distribution simil-735

arity between pairs of transformed datasets for the K-NN algorithm and, for
K-means algorithm, a guideline for reducing memory and computational cost
depending on the features influence on the metric is presented.

The theoretical conclusions are experimentally validated over different well-
known UCI datasets and real-life refining industrial case. Finally, this work740

proposes a roadmap to guide the FN method selection for a given new problem.
In order to complement the results obtained in this research, future work

in this area for automatic preprocessing could include the correlation analysis
between the features for enhancing the calculations of the features influence.
The suggested analysis can bring light to the impact of removing the features745

on the algorithm performance. Besides, the employment of Feature Weighting
methods to analyse each feature’s relative importance for estimating the output
could be employed to select among the normalisation methods the most suit-
able one for the problem at hand. In addition, the study about the features’
preprocessing impact on the model’s performance will be extended to further750

ML algorithms.

References

de Amorim, R. C. (2016). A survey on feature weighting based k-means al-
gorithms. Journal of Classification, 33 , 210–242.

Bagui, S., Wang, X., & Bagui, S. (2021). Machine learning based intrusion de-755

tection for iot botnet. International Journal of Machine Learning and Com-
puting , 11 .

26

142



Basak, S., & Huber, M. (2020). Evolutionary feature scaling in k-nearest neigh-
bors based on label dispersion minimization. In 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (pp. 928–935). IEEE.760

van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., &
van der Werf, M. J. (2006). Centering, scaling, and transformations: improv-
ing the biological information content of metabolomics data. BMC genomics,
7 , 142.

Bergen, K. J., & Beroza, G. C. (2019). Earthquake fingerprints: Extracting765

waveform features for similarity-based earthquake detection. Pure and Ap-
plied Geophysics, 176 , 1037–1059.

Bhanja, S., & Das, A. (2018). Impact of data normalization on deep neural
network for time series forecasting. arXiv preprint arXiv:1812.05519 , .

Bian, Z., Vong, C. M., Wong, P. K., & Wang, S. (2020). Fuzzy knn method770

with adaptive nearest neighbors. IEEE transactions on cybernetics, .

BOE-A-2006-2779 (2015). Real decreto 61/2006, de 31 de enero, por el que
se determinan las especificaciones de gasolinas, gasóleos, fuelóleos y gases
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ABSTRACT Artificial Neural Networks (ANNs) are weighted directed graphs of interconnected neurons
widely employed to model complex problems. However, the selection of the optimal ANN architecture and
its training parameters is not enough to obtain reliablemodels. The data preprocessing stage is fundamental to
improve the model’s performance. Specifically, Feature Normalisation (FN) is commonly utilised to remove
the features’ magnitude aiming at equalising the features’ contribution to the model training. Nevertheless,
this work demonstrates that the FN method selection affects the model performance. Also, it is well-known
that ANNs are commonly considered a ‘‘black box’’ due to their lack of interpretability. In this sense, several
works aim to analyse the features’ contribution to the network for estimating the output. However, these
methods, specifically those based on network’s weights, like Garson’s or Yoon’s methods, do not consider
preprocessing factors, such as dispersion factors, previously employed to transform the input data. This
work proposes a new features’ relevance analysis method that includes the dispersion factors into the weight
matrix analysis methods to infer each feature’s actual contribution to the network output more precisely.
Besides, in this work, the Proportional Dispersion Weights (PWD) are proposed as explanatory factors of
similarity between models’ performance results. The conclusions from this work improve the understanding
of the features’ contribution to the model that enhances the feature selection strategy, which is fundamental
for reliably modelling a given problem.

INDEX TERMS Artificial neural networks, explainability, feature contribution, feature normalization.

I. INTRODUCTION
Artificial Neural Networks (ANNs) are algorithms that sim-
ulate the human brain learning behaviour, modelled by a
weighted directed graph of interconnected nodes or neurons.
These neurons are simple functions whose arguments are the
weighted summation of the inputs to the node [1]. Due to
their ability to solve challenging computational problems [2],
[3], ANNs are widely applied in different fields, like industry
among others [4]–[8]. However, they are still considered
a ‘‘black box’’ since the network’s predictions cannot be
directly explained. Therefore, in the last decades, there has

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Venkateshkumar .

been a surge of interest in explainable Artificial Intelligence
(xAI) approaches [9]. In this line, researchers have shown
an increased claim in understating the features’ contribution
for modelling the network [10]–[12]. As authors in [13]
expound, the goal of feature relevance explanation techniques
is to describe the functioning of a model by measuring each
feature’s influence on the predicted output. Since feature
relevance methods can be viewed as indirect techniques to
explain a model, they have become a vibrant subject of study
in the xAI field [14]–[18].

The understanding of the features’ relevance is essential
not only to explain the features’ contribution to the model
but also to conduct proper Feature Selection (FS) [19]–[21].
FS is traditionally considered a preprocessing technique. It is
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well-known that in data analysis in general, and for ANN in
particular, data preprocessing is one of the essential stages in
the development of a solution, and the choice of preprocess-
ing steps can often have a significant effect on the algorithm’s
performance [22]. In the era of digitalisation, hundreds of fea-
tures from complex systems are usually monitored to extract
valuable knowledge from the data [23]. In order to reduce the
model complexity as well as to save memory and computa-
tional cost, features’ relevance-based FS is commonly applied
[24]–[26]. In some cases, the features’ relevance calculation
is conducted by means of network’s weights-based feature
importance analysis methods [27]–[29].

Along with FS, another commonly employed prepro-
cessing approach is the linear normalisation of the input
features. Feature Normalisation (FN) is often useful if the
features present values that differ significantly in magni-
tude. Each FN method transforms a given dataset differ-
ently. The impact of the FN method’s selection on the
algorithm’s performance has been experimentally studied by
some researchers [30]–[33] to estimate the most appropriate
one for a given problem. However, it remains the extended
approach of employing the min-max normalisation method
before the use of an ANN [34]–[38]. Despite the importance
of data normalisation, no works are found that include the
influence of data normalisation when analysing the features’
contribution to the resultant ANN model.

Thus, this work advances the state-of-the-art by theoret-
ically examining the impact of data normalisation on the
relative contribution of the input features to the ANN and,
ultimately, the algorithm’s performance. For that purpose,
this work presents a new proposal for feature’s contribution
analysis that extends Garson’s and Yoon’s methods to include
the normalisation influence when estimating the features’
contribution to the ANN. The theoretical conclusions are also
experimentally validated.

Section II describes the ANN-basedmodels and Section III
presents the formulation of FN. In Section IV the Garson’s
and Yoon’s traditional features’ relevance analysis methods
based onweight matrix analysis (Section IV-A) are presented,
and Section IV-B describes a new proposal for the adaptation
of these methods to include the dispersion factors in the com-
putation of the feature’s contribution. Section V describes the
employed well-known datasets from UCI repository [39] and
argues the proposed methods of this work. The experimen-
tal results of the analysis are collected in Section VI; and
a discussion and proposal of future work are described in
Section VII. Finally, Section VIII collects the conclusion of
the work.

II. ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Network is a weighted directed graph of
interconnected neurons that propagates data from the input
layer to the output layer by transforming such data to obtain
valuable information for modelling a problem. A neuron
receives the weighted values from the neurons of the pre-
vious layer. In the neuron, the sum of the weighted values

is computed and employed as the argument of an activation
function ϕ : R −→ R; being the identity ϕ(x) = x
the simplest one. The ANN architecture is flexible in the
number of hidden layers and neurons per layer. The higher
the number of hidden layers and the neurons that compose
them, the higher the model complexity.

In this work, the network’s layers are represented by h ∈
{0, 1, . . . ,H ,H + 1}, where H is the number of hidden
layers, and h = 0 and h = H + 1 symbolise the input and
output layers, respectively. The number of neurons in the h-th
hidden layer is denoted by nh. Note that n0 = m is equal to
the number of features, and for the single output problems,
nH+1 = 1. The matrix weight of the edges that connect the
neurons of the h−1 layer with the neurons of the h-th layer is
W h
∈ Rnh−1×nh , and bh represents the bias of the h-th layer.

Then, the mathematical formulation of an ANN-based model
is:

Y = ϕ
(
. . . ϕ

(
X ·W (1)

+ b1
)
. . .W (H+1)

+ bH+1
)

(1)

For ϕ(x) = x, (1) can be rewritten as

Ŷ = X ·

(
H+1∏
h=1

W h

)
+ cte = X ·W+ cte. (2)

For the single output problem, W is a vector of length m,
where the entry j ∈ {1, . . . ,m} represents the total weight the
network assigns to the j-th feature.

From (1), and especially, when the activation function is
the identity as in (2), the ANN’s weights are the fundamental
parameters that relate the input data with the estimated output.
The ANNweights, along with the bias, are iteratively updated
during the training phase of the model to obtain Ŷ ≈ Y .
However, for reaching so, not only the parameters training is
determinant but also the quality of the input data. As authors
in [40] remark, input data must be provided in the amount,
structure and format that suits the data mining task. Besides,
in order to avoid that the measurement unit affects the data
mining task, all the features should be expressed in the same
measurement units with a common scale or range. Feature
Normalisation (FN) attempts to equalise the features’ magni-
tude, and it is also employed to speed up the learning process
in ANNs, helping the weights converge faster.

III. FEATURE NORMALIZATION
FN is a preprocessing techniquewidely employed to avoid the
magnitude differences between the features of a given dataset.
Any statistical-based FN method can be expressed as

X̃ =
X − pos(X )
dis(X )

(3)

Equation (3) transforms a given dataset X into a nor-
malised one X̃ based on pos(X ) and dis(X ); pos(X ) refers
to the position or central tendency statistic vector,1 whereas

1For the sake of brevity, the vector composed by position or central
tendency statistic is referred as position statistic from now on.
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dis(X ) is the dispersion statistic vector which scales the fea-
tures.

Equation (4) defines the decimal notation proposed to
highlight the magnitude factors of each feature.

xij = sign(xij) 0.d1d2d3 . . . · 10nj = x̂ij · 10nj (4)

In (4), d1, d2, d3, . . . ∈ {0, 1, . . . , 9} and nj ∈ Z is fixed in
such a way that ∀j, |nj| is the minimum number which fulfils:
Xj = X̂j · 10nj , and max|X̂j| < 1. Then, ∀i, j, |x̂ij| < 1, and
10nj represents the magnitude factor of each feature. With the
defined decimal notation, and since the statistical factors are
estimated by linear operations, pos(Xj) = pos(X̂j) · 10nj and
dis(Xj) = dis(X̂j) · 10nj ; FN can be re-written as

X̃j =
X̂j · 10nj − pos(X̂j) · 10nj

dis(X̂j) · 10nj
=
X̂j − pos(X̂j)

dis(X̂j)
(5)

Equation (5) shows that the magnitude factors in the nor-
malised dataset disappear. This is the main reason why,
as aforementioned in Section II, FN is widely employed to
equalise the magnitude of the features. However, as a conse-
quence of FN, each feature j is scaled by a dispersion factor
dis(X̂j) dependant on its values distribution.

Note that the normalised features present a dispersion
equal to 1 in terms of the dispersion factor employed to
transform the dataset. But, in order to fulfil dis(X̃j) = 1
each feature X̂j is differently expanded or compressed. Thus,
the higher the value of dis(X̂j), the higher the level of com-
pression a feature undergoes, and consequently, the lower
the contribution weight on the ML algorithm. Analogously,
the lower the value of dis(X̂j), the higher the expansion of
X̂j, and the higher the expected contribution to the model.
Thus, the inverse of the dispersion factors can be viewed as
unsupervised feature weights. In fact, in the ANN’s first layer,
the network’s weights are multiplied by the normalisation
weights, so the first layer’s resulting weights are dis(X̂j)−1 ·
W 0
j ∀j ∈ {1, . . . ,m}. Then, since the dispersion factors act

as weights along with the network’s weights, it conditions
the model performance and the features’ contribution to the
model.

IV. FEATURE RELEVANCE ANALYSIS METHODS
ANN-based models are considered a ‘‘black box’’ since the
network’s predictions cannot be directly explained. There-
fore, several approaches to understand the features’ con-
tribution for modelling the network have been proposed.
Some features’ relevance analyses for ANN-based problems
rely on the network’s Weights Matrix Analysis (WMA) to
estimate the features’ contribution to the model. In this
Section, first, the well-known Garson’s and Yoon’s methods
are described. Next, a novel approach that considers the
network’s weights and the dispersion factors is proposed.

A. FEATURE RELEVANCE ANALYSIS METHODS BASED ON
NETWORK’s WEIGHT MATRIX
In order to understand the features’ contribution to the model,
WMAmethods are usually employed. These methods, which

belong to the features’ relevance explanation techniques,
calculate the features’ contribution based on the network’s
weights related to each feature. Among the WMA methods,
Garson’s [41], and Yoon’s methods [42] are well-known.
They compute the features’ contribution values as defined in
(6) and (7), respectively.

Garsonj =
|
∏H+1

h=1 W
h
|j∑m

j=1 |
∏H+1

h=1 W
h|
=

|Wj|∑m
j=1 |Wj|

∈ [0, 1] (6)

Yoonj =
(
∏H+1

h=1 W
h)j∑m

j=1 |
∏H+1

h=1 W
h|
=

Wj∑m
j=1 |Wj|

∈ [−1, 1]

(7)

Similarly to other features’ relevance explanation tech-
niques, it is considered that the higher the Garsonj or Yoonj
value is, the higher the features’ contribution to the network.

Note that the preprocessed features implicitly influence
the contribution values estimated by Garson’s and Yoon’s
methods in the sense that the weights have been obtained
from the training process with the preprocessed features (and
not the raw features). In order to calculate more precisely
the real feature’s contribution to the model, a novel method
that explicitly and formally considers the dispersion factors
in addition to the network’s weights is presented.

B. FEATURE RELEVANCE ANALYSIS METHODS BASED ON
NETWORK’s WEIGHT MATRIX AND DISPERSION FACTORS:
A NEW PROPOSAL FOR THE ADAPTATION OF GARSON’s
AND YOON’s METHODS
Despite data preprocessing –and hence FN– is considered
essential to obtain quality results, until the date, no works
that analyse the preprocessing stage impact for estimating the
features’ influence on the ANN-based model are found. This
work aims to advance the state-of-the-art by including the
dispersion factors in the features’ contribution estimation.

Equation (2) can be viewed as the formula for Ŷ estimation
given a dataset X . However, before ANN employment, ∀j ∈
{1, . . . ,m}Xj is usually transformed by a statistical-based
normalisation method. Then, from (2) and (5), the mathe-
matical formulation of an ANN-based model trained with a
normalised dataset X̃ can be re-defined as:

Ŷ = X̃ ·

(
H∏
h=1

W h

)
+ cte = X · D ·

(
H∏
h=1

W h

)
+ cte (8)

where D = diag dis(X1)−1 , · · · , dis(Xm)−1 is the diagonal
matrix, and the elements Djj correspond to the inverse of the
dispersion factor of the j-th feature. Equation (8) illustrates
that the dispersion factors, in addition to the weight matrix,
influence the features’ contribution to the model. Conse-
quently, in order to estimate the true impact of a given feature
on the model, this work proposes to include the dispersion
factors in Garson’s and Yoon’s methods for the features’
influence calculations as follows:

Ĝarsonj =
(D · |W|)j∑m
j=1 |(D ·W)j|

∈ [0, 1] (9)
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Ŷoonj =
(D ·W)j∑m
j=1 |(D ·W)j|

∈ [−1, 1] (10)

As described in Section IV-A, the higher the value of
Wj, the higher the j-th feature’s contribution to the network.
Similarly, by interpreting the inverse of the dispersion as
unsupervised weights, as stated in Section III, the higher
the value of dis(Xj)−1, the higher the contribution of such
feature to the model. Thus, the same rationale can be applied
to dis(Xj)−1 · |Wj|.

V. MATERIALS AND METHODS
This Section describes the procedure employed to experi-
mentally analyse and validate that the FN method selection
influences the ANN-based model performance and hence,
justify the inclusion of the dispersion factors in the features’
contribution estimation. Given the experimental analysis and
validation, Fig. 1 shows the high-level diagram of 1) the
data split and preprocessing and 2) the ANN-based model
training and evaluation conducted in this work. The ele-
ments employed in the following Sections to evaluate the FN
influence on the ANN-based models are highlighted with a
magnifying glass symbol. Note that Section III demonstrates
that the magnitude factors disappear when normalising the
features. Consequently, from now on X̂ (4) is employed.

A. DATASETS
In order to validate the hypothesis presented in Section IV-B,
four public available real use cases from UCI repository [39]
are employed.

TABLE 1. Description of datasets from UCI repository utilized in this work.

Table 1 summarises the utilised datasets. This work is
focused on regression problems; then, the four datasets have
continuous output values. Both NOX and CO datasets utilise
the same input data. However, NOX dataset aims at estimat-
ing the Nitrogen oxides (NOx) emission from a gas turbine,
while for CO the Carbon monoxide (CO) emission of the
same gas turbine is registered.

B. DATA PREPARATION, ANN-BASED MODEL TRAINING,
AND EVALUATION METRICS
The first step consists in preparing a given dataset to obtain
the train/test subsets and normalise the data. Then, the
ANN-basedmodel is trainedwith the preprocessed data. Each
step of Fig. 1 and the primarymetrics employed to analyse the
obtained results are next described.

FIGURE 1. High-level diagram of the proposed method for data
preprocessing, and ANN-based model train and evaluation.

1) DATASET SPLIT INTO TRAIN AND TEST SETS
A given dataset X ∈ Rn×m composed by n samples described
by m features and the associated real labels Y ∈ Rn are
split into train (X_train, Y_train) and test (X_test , Y_test)
disjoint sets of ntrain = 0.7 · n, and ntest = n − ntrain
samples, respectively. The training set is employed to adjust
the model’s parameters (weights and bias), while the test set
is utilised to validate the model’s performance.

2) NORMALIZATION METHODS
In order to validate the impact of the FN method selection
on the network, three well-known normalisation methods are
employed in this work. Table 2 presents the selected nor-
malisation methods and the statistical position and dispersion
factors utilised to transform the features.

Each normalisation method from Table 2 utilises different
position and dispersion statistics to transform the features
of a given dataset. More concretely, ST, MM and MAD
compress or expand each feature based on its standard
deviation σ , range, and median absolute deviation mad dis-
persion statistics, respectively. Thus, ST and MAD calculate
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TABLE 2. Normalization methods selected in this work for the analysis
and validation of the proposal.

the dispersion of the features’ samples around the mean
and median values, respectively. In contrast, MM computes
the statistical factors considering the extreme values of the
features.

The FN methods from Table 2 are employed as follows:
for each normalisation method ∗ ∈ {ST ,MM ,MAD} =
Norm the statistical factors are calculated from X_train as
described in (3). Then, they are applied to X_train and X_test
to create train X_train∗ and test X_test∗ datasets. Thus, from
a given dataset X , a normalised dataset X̃∗ is obtained for
each ∗ ∈ Norm.

Independently of the FN method utilised to transform the
input features, the output label is normalised with MM. The
only difference between the analysed models is the normal-
isation method utilised for the input data transformation.
Then, min(Y_train) and range(Y_train) values are utilised in
(3) to calculate Y_train, Y_test .

3) ANN TRAINING STRATEGY FOR THE ANALYSIS OF THE
NORMALISATION INFLUENCE
In this work, for each normalised dataset, an ANN with one
hidden layer composed of three hidden neurons ([m−3−1]) is
utilised. The neurons of the hidden and output layers are acti-
vated with the identity function. Amaximum of 300 iterations
is set, and the training stops if no improvement is observed
for 10 iterations. The network’s weights are initialised with
Xavier’s method [46], and MC = 50 random initialisations
are utilised for each normalised dataset. In this way, for each
initialisation, s ∈ {1, . . . ,MC}, the networks trained with
each X̃∗ employ the same initial network’s weights.

The ANN is trained with X_train∗ searching for the opti-
mal weights and bias values that obtain, for each initialisation,
Ŷ_train∗s ≈ Y_train. From each trained network, the esti-
mated outputs Ŷ_train∗s and Ŷ_test∗s are calculated and
re-scaled with the statistical factors of Y_train into the
original units, obtaining Ŷ_train∗s and Ŷ_test∗s . Besides, ∀s,
the network’s weight vectorWs is saved for further analyses.

4) METRICS FOR INFERRING THE
NORMALISATION INFLUENCE
The main goal of this work is to validate the impact of the
FN method selection influence on the model’s performance
and the adequacy of employing dispersion factors, in addition
to the network’s weight vector, to infer the features’ contri-
bution appropriately. For doing so, (1) the estimated outputs
Ŷ_train∗s and Ŷ_test∗s ; (2) the statistical dispersion factors
dis(Xj); and (3) the weight vector W∗s obtained from the
trained models are analysed primarily based on the following
metrics.

- Kendall’s τ correlation coefficient [47] measures the
degree of similarity between two ranks assigned to the same
set of objects, i.e. paired rankings. Kendall’s τ ranges from
-1 to 1. A τ = 0 indicates the non-relationship between
the two rankings. If τ = −1, a ranking is the inverse of the
other, while τ = 1 when both rankings are the same. Then,
the higher the value of τ , the higher the ranks similarity.

- Distance is a key concept in many statistical and pattern
recognitionmethodswhichmeasures the closeness or similar-
ity between two objects. The Euclidean distance Ed between
two vectors a,b is defined as Ed (a,b) =

√∑m
j=1(aj − bj)2,

and it is equal to 0 if the components of both vectors are the
same. The higher Ed , the higher the dissimilarity between the
components of the vectors. Although Ed is scale dependant,
in this work, it is applied to vectors with components ranging
from 0 to 1.

- Performance measures are utilised to analyse the
error or the similarity between two output features ya, yb
of length n. In this work, the mean absolute error (MAE),
the root mean squared error (RMSE) and the coefficient
of determination (R2) regression performance measures
are employed. MAE(ya, yb) = (1/n)

∑n
i=1 |yai , ybi | and

RMSE(ya, yb) = (1/n)
√∑n

i=1(yai , ybi )2 measures the error
as the mean absolute and the mean square quadratic differ-
ences between the elements of both output features, respec-
tively. Thus, the lower theMAE and RMSE values, the higher
the similarity between ya and yb. In contrast, R2(ya, yb) =
1−

(∑m
i=1(yai − ybi )

2/
∑m

i=1(yai − ya)
2
)
is a statistical mea-

sure of how well the regression predictions yb approximate
points of ya. R2 takes values up to 1. Values of R2 lower than
0 appear when the model fits the data worse than a horizontal
hyper-plane, while R2

= 1 indicates that the regression
predictions perfectly fit the data. Then, the higher the R2,
the higher the similarity between ya and yb.

C. ANALYSIS OF THE NORMALIZATION INFLUENCE ON
THE MODEL’s PERFORMANCE
The first analysis aims to verify that the model’s performance
varies depending on the selected FN method. In particu-
lar, the analysis lies in 1) studying the differences between
the outputs predicted by the models trained with the differ-
ently normalised datasets and 2) comparing the ANN-based
models’ performance depending on the FN method.

1) DIFFERENCE BETWEEN THE PREDICTIONS ESTIMATED BY
THE DIFFERENT MODELS
In order to analyse the difference between the predictions
estimated by the different models, for each s ∈ {1, . . . ,MC}
the MAE, RMSE and R2 between Ŷ_train∗s and Ŷ_train+s
and between Ŷ_test∗s and Ŷ_test+s for ∗ 6= + ∈ Norm are
calculated, and the maximum, mean, minimum and standard
deviation (std) values are computed for MC initialisations.
If the selection of the FN method does not influence the
model’s performance, then MAE = RMSE = 0 and R2

= 1.
Otherwise, differences between the estimated outputs would
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demonstrate the influence on the model’s performance of the
FN methods.

2) ANN PREDICTION PERFORMANCE DEPENDING
ON THE FN METHOD
Complementary, in order to analyse the ANN prediction
performance depending on the FN method, for each random
initialisation, MAE, RMSE and R2 between Ŷ_train∗s and
Ŷ_train, and Ŷ_test∗s and Ŷ_test are calculated together with
the maximum, mean, minimum and std values estimated
for the MC initialisations. Similarly, if the normalisation
method selection does not affect the model’s performance,
the same MAE, RMSE and R2 statistical values are expected
independently from the FN method employed when trans-
forming the data. In contrast, differences in the estimated
performance would also demonstrate the hypothesis of this
work.

Complementary, the non-parametric Wilcoxon signed-
rank test [48] is employed to check the existence of
statistical differences between RMSE(Y_train,Y_train∗)
and RMSE(Y_train,Y_train+), or between RMSE(Y_test,
Y_test∗) and RMSE(Y_test,Y_test+) for ∗ 6= + ∈

Norm. In Wilcoxon signed-rank test, the same subjects
are evaluated under two different conditions. In this case,
each subject is the model with the s-th random initial-
isation of the weights, and the different conditions are
the FN methods ∗ 6= + ∈ Norm utilised to trans-
form the network’s input features. The null hypothesis
H0 of Wilcoxon signed-rank test assumes that the related
samples [RMSE(Y_train,Y_train∗1), . . . ,RMSE(Y_train,
Y_train∗MC )] and [RMSE(Y_train,Y_train

+

1 ), . . . ,RMSE(Y_
train,Y_train+MC )] come from the same population, i.e,
the distribution of differences has a median of zero. The test’s
p-values are calculated and, if p-value< 0.05, H0 is rejected
with a significant level of 5%.

D. ANALYSIS OF THE DISPERSION FACTORS AS
EXPLANATORY FACTORS OF THE VARIATIONS
IN MODEL’s PERFORMANCE
Each FN method collected in Table 2 employs different dis-
persion statistics or factors to transform the input features.
Then, as stated in Section III, it is expected that each FN
method ∗ ∈ Norm transforms differently a given dataset,
which ultimately conditions the features’ contribution values
and, consequently, the ANN-based model’s performance.
Once verified that FN methods impact the model’s perfor-
mance, the dispersion factors are analysed as explanatory
factors of such variations. It is assumed that a relationship
exists between the results in the ANN-based model per-
formance and the dispersion factors. Thus, the higher the
differences between the dispersion factors, the higher the
difference between the output estimations and the weight
vector of the models trained with different X̃∗. The analysis
of the dispersion factors as explanatory factors is conducted
as follows:

1) ANALYSIS OF PROPORTIONAL DISPERSION FACTORS
In this work, first, ∀∗ ∈ Norm the scaling dispersion factors
w∗j = 1/dis∗(Xj), specifically, their Proportional Dispersion
Weight (PDW) estimated as ŵ∗j = w∗j /

∑m
j=1 w

∗
j are analysed.

In order to infer the expected similarity between X̃∗ and
X̃+ for ∗ 6= + ∈ Norm, the Kendall’s τ correlation and
the Euclidean distance between ŵ∗j and ŵ

+

j are calculated to
evaluate the similarity between the PDWs employed to create
the different normalised datasets.

2) SIMILARITY BETWEEN PDW AND
PERFORMANCE RESULTS
Once estimated the PDWs for each normalisation method,
the level of similarity between the dispersion factors are
compared accordingly with the level of similarity between the
model’s performance reached from Section V-C2 by differ-
ently normalised datasets. The coherence between both will
allow setting the dispersion factors as explanatory factors of
the variations in the model’s performance.

E. ANALYSIS OF THE NORMALISATION INFLUENCE ON
THE FEATURES’ CONTRIBUTION
As described in Section II, Garson’s and Yoon’s methods are
based on the network’s weights to estimate the contribution
of each feature in the model. From (6) and (7) it is observed
that the main difference in the resulting features’ contribution
values is due to the direction, so, for the sake of brevity, from
now, only Garson’s method is considered.

Thus, G∗ and Ĝ∗ represent the features’ contribution val-
ues calculated with the traditional and the adapted Garson’s
methods, respectively. ∗ ∈ Norm refers to the FN method
employed to obtain the X_train∗, so as the weight vectors
W∗ from (6) and D∗ ·W∗ from (9) can be computed. Then,
for each ∗, MC networks with different initial weights are
trained, and G∗s and Ĝ

∗
s are finally computed.

Once analysed the FN method selection influence on the
model’s performance and the relationship between the PDWs
and the estimated outputs, this Section studies the impact of
FN on the features’ contribution values and the adequacy of
the proposed adapted Garson’s method to calculate the real
features’ influence. For doing so, first, an analysis of the fea-
tures’ contribution values in terms of the traditional and the
adapted Garson’s method is conducted. Then, a comparison
with the results from Sections V-C and V-D is performed.
Finally, a Feature Selection strategy is applied in order to
demonstrate the superiority of the proposed adapted Garson’s
method for estimating the real features’ contribution.

1) MEAN FEATURES CONTRIBUTION
In order to analyse the FN method selection impact on the
features’ influence on the network, the mean features’ con-
tribution values resulting from the MC random initialisation
based on the traditional G

∗
= (1/MC)

∑MC
s=1 G

∗
s and on

the proposed adapted Garson’s method Ĝ
∗

are calculated and
analysed considering the steps described below.

VOLUME 9, 2021 125467154



I. Niño-Adan et al.: Normalization Influence on ANN-Based Models Performance

a: TRADITIONAL GARSON’s METHOD
First, the differences between the weight matrix-based fea-
tures contribution derived from the selection of the FN
method is analysed. In order to inspect the G

∗

j values dis-
tribution and the discriminative influence of the j-th feature:
1) the difference between the maximum and the minimum,
and 2) the standard deviation of the features’ contribution
values are calculated. Then, aiming at examining the effect
of FN in the features’ influence on the model, a pairwise
comparison between G

∗
and G

+
with ∗ 6= + is conducted

in terms of Kendall’s τ correlation coefficient and Euclidean
distance.

b: PROPOSED ADAPTED GARSON’s METHOD
The same analysis is performed over Ĝ

∗

to inspect the
features’ contribution computed with the adapted Garson’s
method.

c: COMPARISON BETWEEN THE TRADITIONAL AND THE
PROPOSED ADAPTED GARSON’s METHOD
Finally, with the aim of inferring the validity of the pro-
posed adapted Garson’s method to estimate the real features’

contribution, first, a comparison between G
∗
and Ĝ

∗

is per-
formed. Then, the results from Sections V-C2 and V-D are
here utilised to infer from the correspondence between the
models’ performance, the dispersion factors and the features’
relevance analysis methods the superiority of the proposed
adapted Garson’s method.

2) FEATURE SELECTION BASED ON THE
FEATURES’ CONTRIBUTION
In order to demonstrate the superiority of the proposed
adapted Garson’s method, a FS strategy is conducted to
analyse the effect of removing features considering the tradi-
tional Garson’s method versus the proposed adapted one. The
estimated features’ contribution values from the models that
obtain the lowest RMSE are employed for this strategy. Then,
for each ∗ ∈ Norm, the feature’ influence values calculated
with the traditional Garson’s method are denoted asG∗, while
the estimated with the proposed one are referred to as Ĝ

∗
.

The FS based on the features’ contribution values computed
with the traditional or the proposed Garson’s methods (fC ∈
{G∗, Ĝ

∗
}) is applied as described in Algorithm 1.

VI. EXPERIMENTAL VALIDATION
This Section shows the experimental results obtained from
training and testing the ANN architecture presented in
Section V-B3. More concretely, first, the influence of the
FN methods on the models’ performance is studied. Next,
an analysis of the proportional dispersion weights as explana-
tory factors of the estimated outputs is presented. Finally,
the impact of FN on the features’ contribution is demon-
strated, and the superiority of the proposed adapted Garson’s
method is validated.

Algorithm 1 Feature Selection Strategy

1: for fC ∈ {G∗, Ĝ
∗
} do

2: for ite ∈ {1, . . . ,m− 1} do
3: Remove the ite features with lowest fC value.
4: Train the network, estimate the output and re-scale

it to the original units.
5: Estimate the RMSE between the real labels and the

estimated ones.
6: end for
7: end for
8: Plot the RMSE values estimated based on G∗, and Ĝ

∗

jointly with the RMSE estimated with all the features to
analyse the effect of the feature removal.

A. ANALYSIS OF THE NORMALISATION INFLUENCE ON
THE MODEL’s PERFORMANCE
As described in Section V-C, an analysis of the dissimilarity
between the outputs estimated by the models trained with
differently normalised datasets is conducted. Note that ∀∗ ∈
Norm, the same 50 random initialisations establish the initial
weights of the ANN. Thus, the only differences when training
the models are the FN methods utilised to transform the input
features.

1) DIFFERENCE BETWEEN THE PREDICTIONS ESTIMATED BY
THE DIFFERENT MODELS
First, the comparison between the estimated outputs obtained
from the differently normalised datasets is conducted.

Table 3 collects for each dataset the maximum, mean, min-
imum and standard deviation of MAE, RMSE and R2 values
from comparing the estimated Ŷ_train∗ with Ŷ_train+ and
Ŷ_test∗ with Ŷ_test+ for ∗ 6= + ∈ Norm. Given that similar
results are obtained from train and test sets, for sake of brevity
only the results from the training set are described. From the
calculated scores presented in Tables 3a to 3d variations in the
estimated outputs derived from the FN method selection can
be inferred. In News, NOX and CO datasets the mean MAE
is up to 1021.831, 0.363 and 1.547, respectively. Similarly,
the mean RMSE(Ŷ_train∗, Ŷ_train+) values obtained are
higher than 0.28, 1.21, and 86.41, respectively. In the case
of CBM dataset, the RMSE vales are close to zero. How-
ever, in Table 3a, the mean R2 values are lower than 0.605
when comparing Y_trainMM with Y_trainST or Y_trainMAD,
respectively. Then, from Table 3 it is concluded that the
predictions considerably vary depending on the FN method
selected for the feature preprocessing phase.

2) COMPARISON BETWEEN THE MODELS’
PERFORMANCE SCORES
As demonstrated above, different outputs are obtained from
the models trained with differently normalised data. As an
example, Fig. 2 depicts the Y_test and Y_test∗ obtained for
∗ ∈ Norm from the NOX dataset.
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TABLE 3. Comparison between the estimated outputs Ŷ ∗, Ŷ+ for
∗ 6= + ∈ Norm in terms of MAE, RMSE and R2.

As Fig. 2 shows, the Y_test∗ values do not match the
real labels, and their values considerably differ depending
on the FN method. For instance, in the zoomed subplot for
sample number 1813, the estimated output for MM is more
than 3 units lower than the estimated with ST and MAD; so
differences in the performance of the models trained with the
different normalised sets are expected.

Next, the model’s performance of each selected dataset is
analysed as aforementioned in Section V-C. Table 4 collects
for ∗ ∈ Norm the maximum, mean, minimum and stan-
dard deviation of MAE, RMSE and R2 values calculated for
Ŷ_train∗s with respect to Y_train, and for Ŷ_test

∗ with respect
to Y_test . Note that the models obtain similar performance
results for train and test sets, and since this work does not aim
to analyse the models’ generalisation ability, only the results
over the train set are described.

As inferred from Table 3, and as Table 4 shows, FNmethod
selection affects the model’s performance. For instance, for
News dataset (Table 4b), depending on ∗ ∈ Norm, there

FIGURE 2. NOX.

is a difference up to 29.928 and 40.225 in terms of mean
MAE and RMSE, respectively. For the rest of datasets regard-
ing ∗, the differences in terms of mean MAE or RMSE are
lower than 0.1. However, in the case of the CBM dataset,
the 0.002 of increment in the error depending the FN method
corresponds to 8% of the original range of the real output
(Table 1). Nevertheless, although the models’ performance
differences in Tables 4a, 4c and 4d may not seem significant,
notice that Table 3 shows considerable differences between
the models’ outputs. Then, in order to complement the con-
clusions derived from Table 4, Table 5 collects the p-values
obtained with the Wilcoxon signed-rank test for assessing
significant differences in the model’s performance regarding
the FN method with which the training and test sets are
normalised.

The null hypothesis H0, which states no statistical
differences in the model’s performance –in terms of
RMSE– derived from the FN method selection, can be
rejected in 17 out of 24 performed tests with a significance
level of 5%. These 17 p-values, that represent the 70.833% of
the p-values collected in Table 5, are remarked with bold text.
In the rest of the cases (ST with respect to MM for News in
the test set, and in both train and test sets for CBM in ST with
respect to MAD, and MM with respect to ST and MAD of
CO datasets), there is no evidence for rejecting H0. However,
Table 3b for the News dataset shows that themean±std values
of RMSE(Ŷ_testST , Ŷ_testMM ) estimated from the 50 ran-
dom initialisation is 48.018± 140.604 (more than 6% of the
range of the real labels of the dataset in Table 1). Similarly, for
train and test sets, the mean±std values depicted in Table 3d
when comparing the RMSE of the outputs estimated for CO
dataset normalised with MM with respect to ST or MAD
are 0.25 ± 0.14 and 0.28 ± 0.15, respectively (around 1%
of the range of the real labels in Table 1). Then, although
in the mentioned cases there is no evidence for rejecting
H0, with the calculated statistics, significant differences are
inferred when the estimated outputs obtained by different ∗
are straightly compared.

All in all, it can be concluded that the selection of a
normalisation method for the preprocessing phase results in
significant differences in the model’s performance.
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TABLE 4. Maximum, mean, minimum and standard deviation of MAE,
RMSE and R2 values for comparing the real label Y and the estimated
one Ŷ ∗ for each of the 50 random initializations and for each ∗ ∈ Norm.

TABLE 5. P-values obtained from Wilcoxon signed-rank test.

B. ANALYSIS OF THE DISPERSION FACTORS AS
EXPLANATORY FACTORS
As explained in Section II the network’s weights adjust the
features’ contribution in order to create a model that estimates
Ŷ ≈ Y . Nevertheless, the hypothesis of this work is that the
dispersion factors influence the model’s training, and conse-
quently, the model’s performance. The former hypothesis has
been validated in SectionVI-A. In order to study the influence
of the FN method selection, first, an analysis and comparison
of the proportional dispersion weights estimated by different

FNmethods are conducted. Then, an analysis of the similarity
of these factors and the output estimations over the differently
normalised datasets is performed.

FIGURE 3. Proportional dispersion weights (PDW) ŵ∗ for ∗ ∈ Norm.

1) ANALYSIS OF THE PROPORTIONAL DISPERSION FACTORS
Fig. 3 shows for each dataset and for ∗ ∈ Norm, the pro-
portional dispersion weights ŵ∗j estimated for each feature.
In Fig. 3c for News dataset, especially in features 2, 3, 4,
44 and 45, it is observed that ŵ∗j significantly differs depend-
ing on the normalisation method employed. In fact, in News
dataset, ∀∗ ∈ Norm, feature 3 obtains the highest PDW, but
ŵST3 takes values closer to ŵMM3 than to ŵMAD3 . In contrast,
for CBM, NOX and CO datasets, ŵSTj and ŵMADj present the
most similar values.

In order to conduct the pairwise comparison between the
dispersion factors, Fig. 4 depicts the absolute difference
between ŵ∗j and ŵ

+

j for ∗ 6= + ∈ Norm.
Fig. 4c clearly shows that in News dataset |ŵSTj −

ŵMMj | < |ŵ
ST
j − ŵMADj | for j ∈ {3, 44, 45}; while for j ∈

{6, 18, 19, 24, 58} the minimum |ŵ∗j − ŵ+j | is reached with
MM andMAD. In contrast, ŵST and ŵMAD present the lowest
absolute differences in Figs. 4a and 4b.

Table 6 describes the similarity between ŵ∗j and ŵ+j for
∗ 6= + ∈ Norm in terms of Kendall’s τ correlation and
Euclidean distance.

For News dataset, τ (ŵST , ŵMM ) and τ (ŵMM , ŵMAD) val-
ues from Table 6a are far from 1, demonstrating that each
feature’s position in the rank derived from ŵ∗ significantly
varies depending on ∗ ∈ Norm. When comparing ŵMM

with ŵST or ŵMAD in CBM dataset, or ŵST with ŵMAD in
News dataset, τ ranges between 0.818 and 0.889. So, minor
PDWs’ rank variations can be found depending on ∗ ∈ Norm.
The only case in which the proportional dispersion weights’
ranking does not vary depending on ∗ is observed in
NOX or CO datasets. However, if the Euclidean distance
between PDW values is analysed, it can be concluded that
there are differences between the proportional estimated val-
ues with ST or MAD respect to the obtained with MM,
from which differences in the network’s performance can be
foreseen.
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FIGURE 4. Absolute differences between the proportional dispersion
weights |ŵ∗ − ŵ+| for ∗ 6= + ∈ Norm.

TABLE 6. Similitude analysis between the proportional dispersion
weights ŵ∗, ŵ+ for ∗ 6= + ∈ Norm.

2) SIMILARITY BETWEEN PDW AND
PERFORMANCE RESULTS
Next, an analysis of ŵ∗ as explanatory factors of the similari-
ties between the model’s performance obtained by the dataset
normalised by different FN methods is conducted.

According to Fig. 3c and Table 6, for News dataset,
ŵST and ŵMM are the most similar PDWs. These results
match with those from Table 3b were the lowest MAE and
RMSE and highest R2 result from juxtaposing Ŷ_trainST

with Ŷ_trainMM ; while the mean R2 value obtained when
comparing MAD with ST or MM is lower than −64.589.
Besides, Tables 6a and 6b show that the lowest τ and the
highest Ed values are obtained when examining the PDW
of News datasets. Similarly, Table 4b presents the highest
differences between the model’s performance resulting from
the different FN methods (up to 40.225 and 34.211 in terms
of mean RMSE).

Similarly, for CBM dataset, the Kendall’s τ in Table 6 is
lower than 0.9 when comparing the ranks of ŵST or ŵMAD

respect to ŵMM . Consequently, in Table 3a the mean R2 is
0.6 and −0.324 for the mentioned cases, respectively.

In contrast, ŵST and ŵMAD are the most similar PDWs
for CBM, NOX and CO datasets (Fig. 3 and Table 6). Sim-
ilarly, in Tables 3a, 3c and 3d the lowest mean MAE and
RMSE values are obtained when comparing Ŷ_trainST with
Ŷ_trainMAD. In fact, in NOX and CO datasets, the meanMAE
and RMSE errors between the outputs estimated with MM
respect to the calculated ones with ST or MAD are more
than 3.2 times higher than the resulting from comparing ST
and MAD. Besides, for these two datasets, τ (ŵ∗, ŵ+) =
1 (see Table 6), which explains that in Tables 3c and 3d
the mean R2(Ŷ_train∗, Ŷ_train+) are higher than 0.94 for
∗ 6= + ∈ Norm.

All in all, it is demonstrated that the higher the similarity
between ŵ∗ and ŵ+ for ∗ 6= + ∈ Norm, the lower the

difference expected between the output estimations resulting
from the dataset normalised with ∗ and +. Thus, in order
to select among different FN methods the suitable one for
the problem at hand, by knowing in advance the similar-
ity between ŵ∗ and ŵ+, the expected similarity between
Y_train∗ and Y_train+ can be inferred.

C. ANALYSIS OF THE NORMALIZATION INFLUENCE ON
THE FEATURES’ CONTRIBUTION
After demonstrating in previous Sections the influence of
FN method selection on the model’s performance, next,
as detailed in Section V-E1, an analysis of the features’
contribution values estimated from the differently normalised
datasets is conducted based on the traditional and the
proposed adapted Garson’s method. In addition, in order
to demonstrate the superiority of the adapted Garson’s
method to truly infer the real features’ contribution to
the model, the FS strategy described in Section V-E2 is
applied.

1) MEAN FEATURES’ CONTRIBUTION
This Section analyses the dissimilarities between the fea-
tures’ contribution to the models trained with different FN
methods, and the differences in the contribution values esti-
mated with the traditional Garson’s method and the proposed
adapted one. As described in Section V-E, this inspection
is conducted over the mean contribution values G and Ĝ
estimated from all the initialisation.

a: TRADITIONAL GARSON’s METHOD
Fig. 5 depicts the values of G

∗
for ∗ ∈ Norm. In addition,

Table 7a collects for each dataset, the difference between
the highest and the lowest features’ contribution values, and
the std of each G

∗
are collected in Table 7b. τ (G

∗
,G
+
)

and Ed (G
∗
,G
+
) for ∗ 6= + ∈ Norm are shown in

Tables 7c and 7d, respectively.
In Figs. 5a-5d it is observed that G

∗
values consider-

ably varies depending on the FN method. In fact, Table 7a
shows that the differences between the most extreme values
are greater than 82% for the CBM dataset normalised with
ST or MAD methods and for the News dataset normalised
with MM. Contrary, in the other cases, the features with
the lowest influence in the network present at least 60%
the contribution value of the most influencing one. So, in
these cases, the features’ contribution to the network is more
uniform than the observed in the former datasets. Finally,
regarding the features’ influence ranking, since 9 out of 12
Kendall’s τ values are lower than 0.72 in Table 7c, it can
be concluded that the selection of the FN method consider-
ably alters the network’s weight rank. The only cases with
τ ≥ 0.944 are obtained when comparing G

ST
and G

MAD
for

CBM, NOX and CO datasets. These results may be justified
by the low difference between ŵST and ŵMAD estimated for
CBM, NOX and CO datasets observed in Figs. 4a and 4b,
respectively.
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FIGURE 5. Ĝ
∗

.

TABLE 7. Similitude analysis between the features’ contribution
estimated with the traditional Garson’s method.

b: PROPOSED ADAPTED GARSON’s METHOD
In the following, the same analysis is performed over Ĝ

∗

for
∗ ∈ Norm.

Fig. 6 illustrates significant differences between max{Ĝ
∗

}

and min{Ĝ
∗

} values. In fact, as Table 8a shows, the pro-
portional differences between the most extreme contribution
values are higher than 99%. This means that, in comparison
with the most influencing feature, the feature with the lowest
contribution value affects less than 1% the network’s cal-
culations. Regarding the Kendall’s τ correlation coefficients
collected in Table 6a, 5 out of 12 values are lower than
0.85, which means that, in those cases, the rank of Ĝ

∗

varies
depending on the FN method. In contrast, for NOX and CO
datasets, the features’ contribution ranks are the same inde-
pendently from the normalisation method. This is coherent
with the results observed in Table 6a, wherein ŵ∗ presented
the same rank for ∗ ∈ Norm.

c: COMPARISON BETWEEN THE TRADITIONAL AND THE
PROPOSED ADAPTED GARSON’s METHOD
Significant differences derived from the inclusion of disper-
sion factors in the features’ relevance calculation are clear
when examining Figs. 5 and 6. From the traditional Garson’s

FIGURE 6. Ĝ
∗

.

TABLE 8. Similitude analysis between the features’ contribution
estimated with the adapted Garson’s method.

method, the features present more uniformly distributed con-
tribution values that the calculated ones with the proposed
approach. In fact, all the std values from G

∗
are lower than

0.052 (Tables 7b); while, in Table 8b, the std values of Ĝ
∗

are higher than 0.1 in most of the cases. Besides, in terms

of Kendall’s τ (G
∗
, Ĝ
∗

) the importance rankings obtained
with the traditional or the proposed Garson’s methods are
extremely different, as Table 9 illustrates.

In the following the results from Sections VI-C1.a and
VI-C1.b are compared with those from Section VI-A.

Regarding the features’ contribution values estimated with
the proposed adapted Garson’s method, the high τ and
low Ed values for CBM dataset from Tables 8c and 8d
may explain the mean MAE and RMSE differences close
to 0 in Tables 3 and 4. In NOX, where the features’ rele-

vance rankings do not vary, the low Ed (Ĝ
ST
, Ĝ

MAD
) agree

with the low mean MAE and RMSE differences from

Table 3c for the corresponding case, while Ed (Ĝ
MM
, Ĝ

ST
)=

0.114 and Ed (Ĝ
MM
, Ĝ

MAD
)= 0.118 reflect the increment

in the mean errors when comparing the resulting outputs.
The same rationale is applied to the results obtained for
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CO dataset. In contrast, for the mentioned cases, with the
traditional Garson’s method, the rank dissimilarities collected
in Table 7c, and Ed (G

∗
,G
+
) < 0.1 from Table 7d does not

seem enough to explain the performance differences from
Tables 3 and 4.

TABLE 9. τ (G
∗
, Ĝ
∗

).

Furthermore, contrary to the observed in Table 3b for
News dataset, according to Tables 7c and 7d, the low-
est mean MAE and RMSE errors would be expected
from the dataset normalised with ST and MAD. However,
the calculated errors in Table 3b agree with the trade-off
between τ coefficients and Euclidean distance values from
Tables 8c and 8d derived from the proposed adapted Garson’s
method.

Then, it can be concluded that different features’ contri-
bution values are derived from the FN method selection and
that higher correspondence exists between the results from
Sections VI-A and VI-B respect to the features’ contribu-
tion values estimated with the proposed adapted Garson’s
method compared to the observed with the traditional
one.

2) FEATURE SELECTION BASED ON
FEATURES’ CONTRIBUTION
This Section applies the FS strategy described in Section V-E2
to demonstrate the superiority of the adapted Garson’s
method for estimating the true features’ contribution to the
model. For doing so, since multiple initialisations have been
employed to train the models, for each ∗ ∈ Norm, the model
that reaches the lowest RMSE value is selected. Then, from
such model, the features’ contribution values computed with
the traditionalG∗ and the proposed adapted Garson’s method
Ĝ
∗
are employed.
Figs. 7 to 10 depict theG∗ and Ĝ

∗
values estimated for each

∗ ∈ Norm and each dataset, respectively.
In Figs. 7b, 8b, 9b and 10b it is observed that the feature

with lowest influence presents a contribution value lower
than 1% the value of the highest contribution. Thus, respect
to the most influencing one, the contribution to the model
of at least one feature is insignificant. In fact, according to
Figs. 7b and 8b, Ĝ

∗

j < 2 · max{Ĝ
∗

j } for most of the features.
In contrast, the features’ contribution values estimated with
the traditional Garson’s method do not show as high dis-
parity between the highest and lowest features contribution
values. Besides, Table 10 collects the Kendall’s τ coefficients
from comparing the features’ contribution rank estimated for
∗ 6= + ∈ Norm estimated with the traditional and the
proposed Garson’s method.

FIGURE 7. CBM.

FIGURE 8. News.

FIGURE 9. NOX.

FIGURE 10. CO.

When comparing the results from Tables 10a and 10b it
is observed that the features’ contribution rank significantly
varies depending on ∗ according to the traditional Garson’s
method. In contrast, highest τ (Ĝ

∗
, Ĝ
+
) values are obtained

when comparing the features’ rank estimated with the pro-
posed approach.

Aiming at contrasting the features’ contribution rank simi-
larity estimated by the traditional and the proposed Garson’s
methods, Kendall’s τ (G∗, Ĝ

∗
) correlation coefficients are

depicted in Table 11.
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TABLE 10. For ∗ 6= + ∈ Norm, similarity between the features’
contribution rank estimated by the traditional or the proposed Garson’s
method.

As Table 11 shows, since the τ values are lower than 0.5,
there are significant differences in the feature’s influence
rankings when comparing both feature relevance analysis
methods. In order to demonstrate the superiority of the pro-
posed adapted Garson’s method for the estimation of the real
features’ contribution values, the FS strategy (Algorithm 1)
is applied.

FS is the strategy of removing disturbing or non-
contributing features to improve themodel’s performance and
reduce the computational cost and the memory requirements.
As explained in Section IV-B and proven in Section VI, this
work states and demonstrates the influence of the FN method
selection in the model’s performance and in the features’
contribution to the model. Thus, in this Section the features
removal is conducted as described in Section V-E2 based on
G∗ and Ĝ

∗
for ∗ ∈ Norm. Every time a feature is discarded,

the model is retrained, and the RMSE between the estimated
output and the real one is calculated. This experiment aims to
compare the validity of the adapted Garson’s method, against
the traditional Garson’s method, for estimating the real fea-
tures’ contribution. For each dataset and each ∗, the random
initialisation that reaches the lowest RMSE when employ-
ing the whole dataset is utilised. Note that given a dataset,
the lowest RMSE value is obtained with different random
initialisations for the different FN methods.

TABLE 11. Kendall’s τ correlation between τ (G∗ and Ĝ
∗
) for each

∗ ∈ Norm.

Figs. 11 to 13 depict for each dataset and each FN method
the RMSE value obtained for each iteration of the FS strategy.
The X-axis refers to the number of features removed at each
stage of the procedure. Thus, 0 refers to the employment
of the whole dataset. The Y-axis collects the RMSE value
between the real and the estimated output for the training set.
The blue stars depict the results obtained when the features
are discarded according to G∗; and the pink vertical lines,
the RMSE value resulting from the feature selection strategy
based on Ĝ

∗
. The horizontal green line represents the RMSE

value reached with the complete dataset. Note that the fea-
tures are removed one by one, and since the rank similarity
between the contributions estimated by the traditional and the

FIGURE 11. CBM dataset.

FIGURE 12. NOX dataset.

FIGURE 13. CO dataset.

FIGURE 14. News dataset.

adapted Garson’s methods differs, the removed feature may
not coincide at each stage of the algorithm.

When comparing CBM, NOX and CO datasets it is
observed that the RMSE values resultant from the features

removal based on GST and GMAD and based on Ĝ
ST

and
Ĝ
MAD

are approximately the same. This was expected from
the results of Tables 10a and 10b. Nevertheless, in these
cases, especially for NOX and CO datasets, the RMSE values
obtained from the FS based on the adapted Garson’s method
are closer to the performance reached with the whole dataset,
especially when increasing the number of removed features.
In fact, as observed in Figs. 7a, 9a and 10a, and in Table 10b,
there are significant differences between the contribution
value estimated for the most influencing features and the rest-
ing ones. Consequently, in Figs. 12a to 12c and 13a to 13c it
is observed that the RMSE obtained with all the features
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and the RMSE obtained when utilising uniquely the most
influencing features is almost the same. Furthermore, inNews
dataset, in Fig. 4c significant differences between ŵ∗ for
∗ ∈ Norm were observed. Consequently, in Figs. 14a to 14c
by comparing the results from the FS strategy according to
the traditional or the adapted Garson’s methods, it is clear
that each feature contribution in the model differs depending
on the normalisation method employed to transform News
dataset. Besides, in Figs. 14a and 14b it is observed that
the RMSE error estimated at each stage of the FS strategy
based on the Ĝ

∗
remains closer to the RMSE obtained with

all the features than the RMSE resulting from FS according
to Garson’s traditional method.

All in all, it is demonstrated that the dispersion factors
inclusion in the features’ contribution calculation signifi-
cantly improves the estimation of the real features’ influence
on the model, as observed through the FS strategy.

VII. DISCUSSION
As stated and demonstrated in this work, the FN method
selection significantly affects the ANN-based model’s per-
formance and the inclusion of dispersion factors when esti-
mating the features’ contribution improves the understanding
of the features’ influence on the model.

The former point emphasises the influence of the FN
method selection; however, it remains open the question
about which FN to employ to transform a given dataset in
order to reach the best model’s performance; or even if it is
recommendable the application of FN or discard the magni-
tude of the features by removing the 10nj factors from (4).
As stated in Sections III and IV-B, FN imposes a dispersion
weight to compress or expand the features. Thus, FN can
be viewed as a Feature Weighting method that estimates
the features’ weights in an unsupervised manner since the
dispersion factors are calculated based on the features’ sta-
tistical characteristics. A weight that does not correspond to
the real relative importance of a given feature can result in a
performance loss. In fact, in Table 4b it is observed that for the
test set, lower mean RMSE and higher R2 scores are obtained
from the raw dataset with the magnitude factors removed than
from any normalised dataset. Thus, further research about the
suitability of the FN method selection would be interesting
given the properties of a given dataset. Moreover, since this
work demonstrates the influence of the FN on the network,
it is evident that other preprocessing techniquesmay also con-
dition the model’s performance. Hence, the impact of super-
vised FW preprocessing methods to improve the model’s
performance should be investigated. Furthermore, a conjoint
comparison between the supervised weights calculated with
a given FW method and their similitude with the dispersion
factors estimated with different FN may guide the selection
of a given normalisation method to preprocess the input data.

In addition, this work analyses the weight matrix analysis-
based methods to understand the features’ contribution to the
model. However, it would be interesting to extend the analysis
to other explainability analysis approaches. The presented

results are obtained from networks with the identity activation
function in the hidden and output layers. Then, further studies
for network’s with different activation functions are needed.

Another interesting research topic until the date in the
ANN branch is the search of the optimal weights initiali-
sation to maintain the fair initial features’ contribution to
the solution search space. However, in the same way that
FN influences the features’ contribution to the model’s per-
formance, it may be suspected that it may also condition
the suitability of the initial weight configuration for a fair
weights adjustment. As aforementioned, the lowest RMSE
values reached by each normalised dataset are obtained with
different random initialisations. Moreover, note that despite
the significant differences in terms of meanMAE, RMSE and
R2 based on ∗; the minimum estimated errors (reached with
different initialisations) in Table 4 are almost the same for
each normalised dataset. Further studies about the network
initialisation based on the conjoint influence of the dispersion
factors and the initial weight matrix may be of great interest,
which may result in a new weight initialisation strategy.

VIII. CONCLUSION
Due to the high ability of ANN to model complex systems,
these algorithms are being widely employed to solve complex
problems. Simultaneously, because of the lack of explainabil-
ity of the ANN, state-of-the-art focuses on bringing some
understanding about the network functioning. In this field,
several works aim at analysing the features’ contribution
to the model via weight matrices study. However, in such
works, the preprocessing phase is not considered when esti-
mating the features’ contribution. This work has been the-
oretically proven and later experimentally validated that the
dispersion factors employed to transform the input features’
influence the final features’ contribution to the model and
the model’s performance. In fact, as shown in this work,
the presented proportional dispersion weights are explanatory
factors of the similarity between the performance obtained
by models trained with different FN methods. Then, as a
conclusion of this work, it is recommended to include infor-
mation about the dispersion factors to analyse the features’
real contribution. In this line, this work proposes adapted
Garson’s and Yoon’s methods that include features’ disper-
sion factors for a more precise estimation of the features’
influence on themodel. Besides, a feature selection strategy is
employed to analyse in terms of RMSE variations the effect of
removing features according to Garson’s method or the pro-
posed adapted Garson’s method. These experiments demon-
strate that the RMSE results obtainedwhen removing features
according to the adapted Garson’s method match the conclu-
sions obtained from the features’ contribution values. Then,
the knowledge extracted from this proposal improves the
understanding of the features’ contribution to the model and
enhances the feature selection strategy, which is fundamental
in real use cases to model the problem at hand reliably.

Futureworkwill focus on considering the conjoint compar-
ison between the features’ weights derived from supervised
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FW and their similitude with the dispersion factors to guide
the optimal FN method selection. Besides, the impact of FW
as preprocessing technique for performance improvement
and the influence of preprocessing techniques on ANNs with
different activation functions will be considered in future
works. Moreover, new network’s initialisation approaches
based on the conjoint influence of the preprocessing fac-
tors and the initial weight matrix may be an exciting future
research topic.
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Abstract

Petroleum oil refineries are complex systems that convert crude into subproducts
of value. The profit of the refinery depends on the quality of the resultant
subproducts, which are usually determined by a laboratory analysis called
“Needle penetration”. Normally, this laboratory analysis is costly and
time-consuming since entails around four hours for its accomplishment. In
order to solve this limitation, this paper proposes a novel soft-sensor design
for online vacuum distillation bottom product penetration classification. The
design of the soft-sensor is based on a new approach, the two-stage methodology,
that considers the joint effect of both Normalization and Supervised Filter
Feature Weighting methods to transform the features. This methodology stands
on the analysis of the real impact of applying normalization methods on the
contribution of each feature, providing results that significantly differ from the
traditional premises of the state-of-the-art. The analysis include the impact of
normalization on distance metrics such as the Euclidean. Also, a new adaptation
of Pearson correlation for the estimation of the feature weights respect to
categorical labels is proposed in this work. Once the features are transformed,
five well-known Machine Learning (ML) algorithms (K-means, K-NN, RFc,
SVC and MLP) are considered for the design of the soft-sensor. The final
soft-sensor design is selected based on the feature space transformation strategy
and the ML algorithm that achieves the best results in terms of: accuracy,
precision, generalization and explicability. In order to validate the proposal, real
monitored data from a petroleum refinery plant sited in The Basque Country
is employed. Results show that the proposed two-stage methodology improves
the results obtained by the Normalization methods.
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Soft-sensor, Feature Normalization, Feature Weighting
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1. Introduction

In recent years, the Industry 4.0 era refers to the current trend of high
automation, monitorization and data exchange of the systems involved in
manufacturing technologies. In this context, petroleum oil refineries, composed
of chemical unit processes that convert crude into products of value, are also5

being monitored with the aim at optimizing their operational conditions and
improving the quality of the final fractional distillation products. In fact,
the benefit for the refinery industry from commercializing them depends on a
highly complex system in which the properties of the crude and the operational
variables are of outstanding importance along the distillation process.10

In particular, a widely extended method for controlling the quality of
the vacuum distillation unit bottom product is the “Needle penetration”, a
laboratory analysis conducted over a sample according to the norm UNE-EN
1426:2015 (bitumen and bituminous binders. Determination of Needle
penetration) [1]. In practice, it is not performed following a predefined schedule15

and the results are available after four hours, which entails a significant delay in
knowing the penetration quality of the product with the consequent economic
loss for the refinery. This drawback would be solved with the deployment
of a soft-sensor. However, for our sake of knowledge no soft-sensors for the
penetration quality estimation have been proposed in the literature until the20

date.
In the last decade, several researches based on Machine Learning algorithms

(ML) have been conducted for solving different open challenges in the refinery
industry. Some related examples are: the optimization of the total refinery
profit [2], the optimal scheduling for crude oil loading and unloading [3] or steal25

injection [4], multi-level production planning [5], fault [6] or leakage detection
system [7] and maintenance decision of petrochemical plant [8].

Nevertheless, most of the petroleum oil refinery process related works delve
into the development of soft-sensors approaches capable of inferring relevant
magnitudes at different parts of the distillation process based on some measured30

data and important operational variables. Among them, works focused on
soft-sensors design for the estimation of butane concentration can be found
in the literature [9, 10, 11]. Other works deal with the design of soft-sensors
for the estimation of the toluene content [12], oxygen content prediction in an
industrial coke furnace [13], or H2S and SO2 acid gases concentration in a Sulfur35

Recovery Unit (SRU) [14].
Regarding soft-sensors for the analysis of the quality of the obtained

subproducts, several works have been proposed in the last years. The work
presented in [15] aims at inferring the results of the laboratory analysis of the
quality of fractional distillation products, such as kerosene and light and heavy40

diesel fraction according to the international ASTM D86 standard. It employs
a Neural Network (NN), with a Genetic Algorithm (GA) for the optimization of
the weights and the NN structure. Authors in [16] propose an online prediction
method for some quality parameters of the distillation process, such as: the
temperature of heavy naphtha, kerosene and gas oil (ASTM D96) and the Abbel45
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inflammability analysis factor through a technique named eXtended Evolving
Fuzzy Takagi-Sugeno (exTS). Similarly, in [17] the authors propose a soft-sensor
based on Partial Least Square (PLS) regression in combination with a GA-based
Feature Selection strategy to select the most relevant process variables for
operation and quality control of the ASTM 90% distillation temperature (D90)50

in a crude distillation unit. Likewise, [18] presents a Bootstrap Aggregated
model for the estimation of the kerosene dry point.

However, a common problem reported along the works that employ real
industrial data is that the collected datasets are “data rich but information
poor” [19]. Then, special attention to the representation of the input space has55

been considered in different works of the literature. In order to extract relevant
information from the collected data and ensure the ML model reliability, a
preprocessing step is commonly needed. However, in case redundant or noisy
features are included, the model cannot be able to reflect the industrial process
reality. Consequently, Feature Selection (FS) techniques [20] are usually utilized60

as a preprocessing step to discard the non-informative features.
Regarding the application of FS methods in the refinery process, authors

in [21] obtain an improved gasoline dry point prediction accuracy by means
of eliminating the influence of the widespread outliers of the operation data.
Likewise, in order to extract the relevant features, the work presented in65

[22] employs a Recurrent Denoising Autoencoder (RDAE) and a Cumulative
Percent Variance (CPV). Then, the authors propose a Weighted AutoRegressive
Long Short Term Memory (WAR-LSTM) structure which is applied to a
Fluid Catalytic Cracking unit to estimate the flow rate and the yield of
some resultant subproducts: gasoline, diesel oil, coke and liquefied petroleum70

gas. In the preprocessing step of [23], authors employ a Robust Partial
Least Square (RPLS) method to identify the multivariate anomalies and
analyze the model performance based on different sampling intervals. Then, a
Dynamic Partial Least Square model (DPLS) selects and optimizes the dynamic
soft-sensing input variables that best estimate the naphtha dry point from75

an atmospheric-vacuum distillation tower. Finally, aiming at predicting the
kerosene D95 in a crude Distillation Unit (CDU), authors in [24] present a
double LASSO algorithm integrated into a MLP model that selects the most
sensitive features respect to the output value, avoiding redundancy problems
with some correlated features.80

Apart from FS techniques, Feature Weighting (FW) methods are a widely
employed preprocessing step to transform the input space and reflect the real
importance of each feature. Indeed, it obtains more accurate results than
selecting the features with highest relative importance [25]. However, within the
scope of the refinery process, the only work found in the literature that considers85

FW is [9]. The aim of the authors is to estimate the butane concentration at
the bottom of a debutanizer column by identifying first the relevant features by
correlation analysis and then, by assigning weights to the features accordingly
to this correlation output.

In addition to FS and FW, Normalization is also a widely employed90

preprocessing technique that aims at eliminating magnitude differences among

3
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the features in order to equalize their contribution on the ML algorithm
calculations. In the state of the are, plenty normalization methods are available,
and diverse experimental analysis have been conducted to select the most
suitable one for different scenarios [26, 27, 28] but consensus has not been95

found. In particular, the work presented in [28] experimentally investigates
the impact of 14 normalization methods considering FS and FW. The authors
employ Ant Colony algorithm for selecting the relevant features and finding
the optimal weights in a wrapper manner in order to increase the K-NN
classification accuracy over 14 synthetic and real datasets from UCI repository.100

Based on the accuracy results obtained over the datasets it is concluded that
mean and standard deviation are more suitable than min-max and median
measures to normalize the data and that, in conjunction with FS and FW,
data normalization affects the outcomes in terms of accuracy. However, in [28]
it is not analyzed the transformed normalized space, the normalized weighted105

space or the features influence on the classification of the samples, so as the
conclusions are based only on the performance results. In this regard, in contrast
to [28], this research establishes and validates conceptual hypotheses about
the effect of the normalization on transforming the input space and over the
Supervised Filter Feature Weighting methods application with special attention110

to the resulting transformed space and its influence on the modeling. This way
this work aims at strengthening a general understanding about the influence of
applying normalization methods. More concretely, in the ML scope this work:

• Analyzes the effect of normalization and feature weighting methods on
transforming the dataset based on the following hypotheses: 1) Each115

normalization method transforms differently a given dataset, 2) a given
normalization method transforms differently the features of a given
dataset, and then, 3) the normalization method modifies the final applied
relevance of the features estimated by Feature Weighting methods.

• The verification of these hypotheses not only affects the way the features120

of a dataset are transformed, but also their impact on the ML algorithm.
Then, based on the obtained conclusions, a new two-stage methodology
that combines normalization and feature weighting is proposed in order
to intelligently transform the input space.

• In addition, a new Feature Weighting method called “Adapted Pearson125

correlation” is presented, specifically designed to estimate the relative
importance of real-valued features respect to categorical labels in terms of
class separability.

From the application perspective, this work presents a real use case
of a petroleum refinery plant sited in The Basque Country, utilized to130

experimentally:

• Validate the conclusions from the presented hypotheses.

• Advance over the state of the art by proposing a soft-sensor for the online
penetration quality standard classification. In order to design, develop

4
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and validate the soft-sensor, real-time monitored data regarding crude135

properties and operational variables are employed.

• Demonstrate the validity of the proposed two-stage methodology
which achieves the best accuracy, precision, generalization ability and
interpretability for the above-mentioned penetration quality classification
problem.140

The remaining of the paper is structured as follows: Section 2 presents an
outline of the crude refining process. Section 3 depicts the hypotheses about
the normalization influence on transforming the input space and over the FW
methods application, along with the proposed adaptation of Pearson correlation
for FW. Besides, the steps followed for the design and development of the145

soft-sensor for the penetration quality standard classification of the vacuum
distillation unit bottom product are also described in Section 3. Classification
results and further analysis of the normalization effect over the input feature
space are shown in Section 4. Finally, Section 5 depicts the conclusions and the
future work.150

2. Crude Refining Process Description

As it is remarked in Section 1, industrial petroleum refineries are complex
distillation systems, composed by chain units where chemical reactions aim at
converting crude in high quality subproducts.

Input	crude
33

C_1:C_33

Quality	control
(penetration)

Online	analyzers
9

A_1:A_9

Process	1
(9,	1,	5)

[P1_1:P1_9,	P1_10,	P1_11:P1_15]

Process	2
(5,	1,	4)

[P2_1:P2_5,	P2_6,	P2_7:P2_10]

Process	3
(16,	6,	5)

[P3_1:P3_16,	P3_17,	P3_18:P3_27]

Figure 1: Flow diagram of the crude refining process. At each process unit, the features
related to flow, pressure and temperature are remarked with bold, italic and underlined text,
respectively.

Figure 1 depicts a high-level flow diagram of the crude refining process.155

Firstly, the input crude properties, described in the dataset by 33 features
(C 1:C 33), determined by experts in the field and updated every six months
– or with a higher frequency if major changes regarding the use of new crude
occurs – is injected into Process 1 and Process 2 where the chemical and physical
reactions start the refining process. From Process 1 and 2 the processed crude is160

pumped into the Process 3, where the refining process continues. The behavior
of the Process 1, 2 and 3 is shown through 15 (P1 1:P1 15), 10 (P2 1:P2 10)
and 27 (P3 1:P3 27) features, respectively, that are continuously monitoring the
development of the industrial system, providing information of flow, pressure or

5

171



temperature. Along all the units of the chain system, 9 online chemical quality165

analyzers (A1 1:A 9) monitor the process development.
The information of the crude refining process is collected in a dataset,

consisting of 33485 samples described by the mentioned 94 features recorded
every 15 minutes during 349 days.

The interest of the refinery is to maintain a high penetration quality of the170

bottom product of the vacuum distillation unit located at the end of Process 3.
In order to control the quality specifications, some samples are analyze in the
laboratory according to [1]. Depending on the result, the samples are classified
into two groups: the group 0 represents the samples that fulfill penetration
quality standards, and the group 1 refers to the samples that do not meet the175

constraints. In practice, if a sample does not meet the designed quality standard,
the plant operators adjust the operational variables aiming at correcting the
outcoming quality at the end of the process.

3. Design and Development of the Vacuum Distillation Bottom
Product Penetration Soft-sensor180

As stated above, the aim of the soft-sensor is to estimate the quality of
the vacuum distillation bottom product resultant from Process 3 in terms of
penetration, considering the 94 features collected. In particular, this work
proposes a new two-stage methodology based on Normalization and Supervised
Filter FW methods with specific contributions respect to (a) the analysis of the185

impact of normalization methods, (b) the adaptation of Pearson correlation for
the estimation of the feature weights respect to categorical labels, and (c) the
soft-sensor design, which integrates the proposed two-stage methodology and
ML algorithms. With that purpose, first the hypotheses about the impact
of normalization methods are presented in Subsection 3.1. The proposed190

methodology for the design of the soft-sensor is described in Subsection 3.2.

3.1. Hypotheses about the Impact of Linear Normalization Methods

As mentioned in Section 1, Normalization is widely employed in the
preprocessing step in order to equalize the magnitude of the features that
compose the dataset. However, this work demonstrates that the normalization195

methods do not totally equalize the contribution of each feature and that the
selection of the normalization technique affects the final algorithm performance.

In this work, three different normalization methods are applied:
Standardization (ST), Min-max normalization (MM) and MAD normalization
(MAD). All of them are linear transformations of the features based on standard200

deviation σ, range or MAD dispersion statistic, respectively. The mentioned
normalization methods are further described in Section 3.2.

In the following points, the hypotheses and foundations to justify the impact
of the application of Linear Normalization methods are described below.

1. Different normalization methods transform differently the same dataset:205

In general, normalization methods are thought to equalize the contribution
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of the features in the model. However, the selected normalization methods
transform each feature of the dataset in order to obtain a dispersion
statistic equal to one. This means that each normalization method
transforms the dataset to equalize a dispersion statistic along the features210

of the dataset, and, as each normalization method works with a different
dispersion statistic, each normalization method transforms differently the
same dataset.

2. The same normalization method transforms differently the features of
the same dataset: As remarked in Hypothesis 1, each normalization215

method equalizes a dispersion statistic along all the features of the dataset.
However, in this transformation, the features that originally present
high dispersion statistic value are compressed while the features with
originally low dispersion statistic are expanded. This means that, given
the equalization of a dispersion statistic along the features of the dataset,220

each feature is affected differently.

3. Supervised Filter Feature Weighting methods estimate the relative
importance of each feature respect to the labels. In general, given
m features, the calculated weights wj are presented in such way that∑m
j=1 wj = 1. Since normalization methods are commonly applied in225

ML algorithms and, from Hypotheses 1 and 2, they affect the initial
magnitudes of the features, the selected normalization method influences
the applied relevance of the features. This means that the factors applied
to the ML algorithm, resultant of the joint employment of normalization
and FW, can be significantly different from those independently computed230

by the Supervised Filter FW method.

In Figure 2, an example of the influence of the normalization factor is depicted.
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F 2

Original data: F1, F2

(a) raw data (F1, F2)
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Transformed data: F1/a, F2/b, a > b

(b) (F1/a, F2/b),a > b
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F 2

Transformed data: F1/a, F2/b, a < b

(c) (F1/a, F2/b),a < b

Figure 2: Linear transformations effect over the raw features F1, F2.

Given a dataset composed by the features F1 and F2 represented in Figure
2a, the application of the above-mentioned normalization techniques involves to
compress or to expand each feature by the factors a, b, calculated for F1 and F2,235

respectively. Then, Figure 2b depicts the transformed features after applying
such factors when the dispersion statistic of F1 is much lower than the one
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calculated for F2. Therefore, if a > b, the values of feature F1 are compressed
around a point in the X axis, while the values in F2 presents more expansion
along the Y axis. Contrary, if a < b, feature F2 present more compression along240

the X axis than the presented by F2 in Y axis (Figure 2c).
Furthermore, in order to illustrate the impact of the normalization, the

Euclidean distance dE , commonly employed in several ML algorithms, is
considered. Given xi,xh ∈ (F1, F2) two samples of the original dataset, and

x̃i, x̃h ∈ (F̃1, F̃2) the same two samples in the transformed dataset (F̃1, F̃2), the245

Euclidean distance between x̃i, x̃h is expressed as:

d2E(x̃i, x̃h) = (x̃F1
i − x̃F1

h )2 + (x̃F2
i − x̃F2

h )2 =

= (1/a2) · (xF1
i − xF1

h )2 + (1/b2) · (xF2
i − xF2

h )2 (1)

Therefore, if a < b → 1/a > 1/b and, consequently, F1 presents more influence
on calculating the distance between the samples. Contrary, if a > b→ 1/a < 1/b
and consequently F2 dominates the calculations in this case.

Definitively, all the explained transformations in Hypotheses 1 and 2 over the250

features can lead to features contributing more than others, and without a prior
knowledge of the feature relevance, no conclusions of which method is better
can be taken. Furthermore, from Equation 1 it can be concluded that feature
normalization can be considered as an unsupervised feature weighting method
in which each feature is transformed based on a feature’s statistic, instead of its255

true relative importance on estimating the output.
Regarding the Hypothesis 3, the application of a filter FW method in the

previous example transforms Equation 1 to:

w2
1 · (1/a2) · (xF1

i − xF1

h )2 + w2
2 · (1/b2) · (xF2

i − xF2

h )2 (2)

where w1, w2 are the estimated weights for the features F1, F2 respectively.
260

In the case that w1 > w2, it would be desirable the first component to
present higher contribution in the Euclidean distance calculation. However, if
w1/a < w2/b, the second component would predominate the calculations in
Equation 2. Henceforth, the selection of the normalization method influences
the applicability of the FW method and its impact on the ML algorithm, as265

described in Hypothesis 3.

3.2. Soft-sensor Design and Development based on the Proposed Normalization
and Feature Weighting Methodology

In order to create a reliable soft-sensor for the penetration quality
classification, this work analyzes according to the hypotheses presented in270

Section 3.1 the implications of the normalization methods for transforming the
original feature space, their impact on the application of the FW methods and
their effect over the ML algorithms calculations. This way, it will be possible
to select the best transformation of the original data that obtains the highest
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accuracy in the developed soft-sensor with special attention to the features275

influence on the created model.
With that goal, Figure 3 depicts the proposed two-stage methodology for

intelligently transforming the original dataset aiming at capturing the relative
importance of the features on estimating the output and thus, creating the
soft-sensor.280

Normalization

Feature Weighting

(P, RF)

Machine Learning 

algorithm

ST⋅P
MM⋅P

MAD⋅P
ST⋅RF

MM⋅RF

MAD⋅RF

ST

MM

MAD
Two-stage methodology

𝑤𝑗 , ∀𝑗 ∈ {1,… ,𝑚}

Y

Raw

dataset

X

K-means K-NN

RFc
SVC

MLP

𝐴𝑐𝑐 Penetration

soft-sensor

Figure 3: Flow chart of the soft-sensor design based on the proposed two-stage methodology.

3.2.1. Normalization

Firstly, in order to analyze the normalization effect and to validate
hypotheses 1 and 2 from Section 3.1, three widely employed Normalization
methods [26, 29] are selected for performing the features normalization:

• Standardization: STj =
(
Xj −Xj

)
/σj ∀j ∈ {1, ..., 94}. The resultant285

features are centered around the mean with standard deviation equal to
1. Although this method is affected by the presence of outliers, some
soft-sensor proposals [24] apply it in the preprocessing of the features.

• Min-max: MMj = (Xj −min(Xj)) / (max(Xj)−min(Xj)), ∀j ∈
{1, ..., 94}. The samples of the resulting features take values between [0, 1].290

Despite the technique is highly influenced by the presence of outliers, this
method is claimed as the most recommended by authors in [26]. It has
also been employed in the field of soft-sensors [15].

• MAD: MADj = (Xj −Me(Xj)) /Me (|Xj −Me(Xj)|), ∀j ∈ {1, ..., 94}.
In contrast to the other techniques, MAD normalization is considered a295

robust transformation [30] of the features because the statistics employed
for the transformation are not affected by the presence of outliers.

3.2.2. Feature Weighting (P, RF)

Secondly, in order to estimate the relative importance of each feature on
estimating the output and to validate the hypothesis 3 stated in Section 3.1 two300

different Filter Feature Weighting methods are utilized for the calculation of
the weights wj , ∀j ∈ {1, ..., 94}: the proposed adaptation of Pearson correlation
and the well-known Random Forest algorithm.

• Novel Adapted Pearson Correlation (P): In order to calculate the Pearson
correlation coefficient between a continuous and a categorical feature,305

where the categories have no meaning beyond the representation of the
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distinct group membership, an adaptation of the Pearson correlation
method is proposed in this paper. Given K the number of classes,
Y ∈ {0, ...,K − 1} the original labels assigned to the samples xi
∀i ∈ {1, ..., n} = I of the dataset X. The centroids of the different310

classes can be encoded as Y ′ ∈ {{xi|yi = 0}, ..., {xi|yi = K − 1}} =
{c0, ..., cK−1} with X,Y ′ ⊂ Rn×m. With the described transformation,
the Pearson correlation coefficient between each feature of the dataset and
the corresponding component of the centroids results on:

ρ(Xj , Y
′
j ) =

∑n
i=1(xij−Xj)(y′ij−Y ′j)√∑n

i=1(xij−Xj)2
√∑n

i=1(y
′
ij−Y ′j )2

(3)

Based on the transformation of the labels,315

Xj =
∑n
i=1 xij
n =

∑K−1
k=0 nk

∑
i∈I,yi=k xij/nk
n =

n0c0j+...+nK−1cK−1j

n = Y
′
j (4)

where nk is the number of samples belonging to the class k, and, both,

Xj , Y
′
j , can be interpreted as the pondered mean of the centroids, weighted

by the proportion of samples belonging to each cluster. Then, employing
Equation 4 and adding by classes, the numerator can be rewritten as:

∑K−1
k=0

∑
i∈I,yi=k(xij −Xj)(y

′
ij − Y ′j) =

=
∑K−1
k=0 (ckj −Xj)

∑
i∈I,yi=k(xij −Xj) =

=
∑K−1
k=0 (ckj −Xj)((

∑
i∈I,yi=k xij)− nkXj) =

=
∑K−1
k=0 nk(ckj −Xj)

2 (5)

Similarly, in the denominator320

√∑n
i=1(y′ij − Y ′j)2 =

√∑K−1
k=0 nk(ckj −Xj)2 (6)

Applying Equations 5 and 6, Equation 3 results on:

ρ(Xj , Y
′
j ) =

∑K−1
k=0 nk(ckj−Xj)2√∑n

i=1(xij−Xj)2
√∑K−1

k=0 nk(ckj−Xj)2
=

=

√∑K−1
k=0 nk(ckj−Xj)2∑n
i=1(xij−Xj)2

=

√∑K−1
k=0 nk(ckj−Xj)2
n
n

∑n
i=1(xij−Xj)2

=

=

√∑K−1
k=0

nk
n (ckj−Xj)2
σj

=

√
∑K−1
k=0

nk
n

(
ckj
σj
− Xj

σj

)2
(7)

In view of Equation 7, for each feature j ∈ {1, ...,m}, the Novel
Adapted Pearson Correlation coefficient can be interpreted as the weighted
Euclidean distance, weighted by the proportion of samples of each class
nk/n, between the vector of the centroids [c0j , ..., cK−1j ] and a vector of325

length K composed by the pondered mean of the centroids [Xj , ..., Xj ],
both calculated over the standardized feature Xj . Hence, the higher the
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absolute correlation coefficient value, the higher the separation between
the centroids of the K classes and the more informative the feature is
for classifying the samples. Thus, the proposed encoding of the labels330

allows to employ the Pearson correlation coefficient as a measure of the
separability of the classes. In particular, if K=2, given that n = n0 + n1
and nXj = n0c0j + n1c1j , Equation 7 can be rewritten as:

ρ(Xj , Y
′
j )K=2 = n

n

√∑1
k=0

nk
n (ckj−Xj)2
σj

=

√∑1
k=0 n·nk(ckj−Xj)2

n2σ2
j

=

=

√
n0(c0j−Xj)(nc0j−nXj)+n1(c1j−Xj)(nc1j−nXj)

n2σ2
j

=

=

√
n0(c0j−Xj)(n1c0j−n1c1j)+n1(c1j−Xj)(n0c1j−n0c0j)

n2σ2
j

=

=

√
n0·n1(c0j−c1j)((c0j−Xj)−(c1j−Xj))

n2σ2
j

=

=

√
n0·n1(c0j−c1j)2

n2σ2
j

=
√

n0·n1

n2

(c0j−c1j)
σj

(8)

Then, it can be noticed that the point-biserial correlation [31] can be
taken as a particular case of the proposed Adapted Pearson Correlation335

for the case K = 2. The final weight for each feature is computed as its
absolute value divided by the sum of all the features’ weights. Hence, the
sum of the resulting weights is equal to one.

• Random Forest classifier (RF) [32]: The features’ relevance is calculated
as the mean of the relevance, in terms of Mean Decrease Gini, obtained340

from 30 MonteCarlo simulations where a näıve Random Forest – with
100 estimators and without limit in the depth of the trees – classifies the
training samples.

3.2.3. Application of the Two-stage Methodology

As depicted in Figure 3, the proposed two-stage methodology consists in345

multiplying each normalized feature by the weight factor estimated by the FW
method. Consequently, six final datasets are calculated as ST·P = wP

j · STj , ...,

MAD·RF = wRFj ·MADj , respectively, for j ∈ {1, ...,m}.

3.2.4. Soft-sensor Development: Machine Learning Algorithms

As shown in Figure 3, once the 10 datasets are obtained (raw, ST, MM,350

MAD, ST·P, MM·P, MAD·P, ST·RF, MM·RF and MAD·RF), five of the
most commonly ML algorithms are employed to develop the soft-sensor, i.e.
K-means, K-Nearest Neighbors (K-NN), Random Forest (RFc), Support Vector
Classification (SVC) and MultiLayer Perceptron (MLP) with one hidden layer.
In contrast to their counterparts, K-means is a clustering algorithm that splits355

the samples in different groups. In this work, each group is understood as a
resultant penetration quality class and a label (0 or 1) is assigned considering
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the class membership of the samples of each group. That being so, the accuracy
of the model for comparing the group membership resulting from K-means and
the real class of the samples is maximized.360

Finally, the accuracies (Acc) statistics are obtained and the final soft-sensor
is selected among the obtained results.

4. Results

The design and selection of the soft-sensor based on the proposed two-stage
methodology described in Figure 3 is conducted in Subsection 4.1. In addition,365

an analysis of the normalization effect on the features transformation and on the
application of the weights is conducted for the selected soft-sensor in Subsection
4.2. This way, the hypotheses of Subsection 3.1 and the applicability of the
two-stage methodology for increasing the accuracy of the final soft-sensor are
validated. Finally, the knowledge extracted from the selected soft-sensor is370

illustrated in Subsection 4.3.

4.1. Analysis of the Results and Selection of the Soft-sensor

As described in Section 1, the main purpose of this work is to develop a
real-time soft-sensor able to classify the penetration quality based on 94 features
of the refinery process. The samples are categorized as 0 if the obtained quality375

meets the designed standard; otherwise, the sample is labeled as 1. It must be
remarked that several laboratory analysis are done whenever a change in the
process can result on not meeting the designed standard quality.

The raw dataset X contains 268 labeled samples from which 160 correspond
to the designed standard quality samples labeled as 0. Aiming at simulating380

the practice of the off-line model training and the on-line quality prediction
procedure, the original chronological order of data is considered for the training
and test sets selection. Thus, the first 90% of these samples are selected as the
training set, while the remaining 10% are employed as test set. Following the
two-stage methodology presented in Subsection 3.2, both the normalization and385

the FW are applied. For statistical significance, both the labeled and unlabeled
samples of the training set are employed in the normalization step, while for the
supervised weights calculation, only the labeled ones are utilized.

Then, the proposed ML algorithms are applied to the obtained 10
transformed datasets. In order to maximize the accuracy, the GridSearch (GS)390

algorithm is applied to obtain the best hyper-parameters among the following
values. In the case of K-NN algorithm, the number of neighbors varies between
[5, 6, 7, ..., 40] (35 options). For RFc, the GS searches the best performance
among the number of estimators = [5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100]
(13 possibilities). In the case of MLP, the GS searches among the combinations395

of the following activation functions ∈ {identity, logistic, relu} and the number
of neurons in the hidden layer equal to ∈ {1, 2, 3, ..., 10} (30 combinations).
Finally, for SVC, the GS algorithm combines the following values: C∈
[10, 1, 0.1, 0.01, 0.001], γ ∈ [10, 1, 0.1, 0.001, 0.0001] and the kernel functions
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[linear, rbf, sigmoid] (75 combinations for SVC). Obviously, K-means does not400

require any hyper-parameter optimization since K is equal to 2.
Table 1 presents the hyper-parameters selected by the GS algorithm for the

proposed ML algorithms.

Hyper·Parameters

K-NN RFc SVC MLP

BD n neighbors n estimators C γ kernel activation neurons

raw 13 70 10 10 linear logistic 8
ST 37 70 0.01 10 linear logistic 1
MM 5 70 10 0.01 rbf logistic 10
MAD 10 70 1 0.01 sigmoid logistic 4
ST·P 21 90 10 10 linear logistic 10
MM·P 15 90 10 10 rbf logistic 7
MAD·P 11 70 10 10 rbf logistic 2
ST·RF 17 70 10 10 linear logistic 10
MM·RF 23 70 10 10 rbf logistic 10
MAD·RF 5 70 10 10 linear logistic 3

Table 1: Best hyper-parameters obtained by the GridSearch algorithm for the proposed ML
algorithms.

Table 2 presents the accuracy statistics results (%) obtained for the different
ML algorithms with the selected hyper-parameters for each dataset (Table405

1).

raw
Normalization Two-stage methodology

ST MM MAD ST·P MM·P MAD·P ST·RF MM·RF MAD·RF

K-means

mean 51.852 70.37 70.37 40.741 70.37 81.407 40.741 70.37 77.778 40.741
std 0 0 0 0 0 0.519 0 0 0 0
max 51.852 70.37 70.37 40.741 70.37 81.481 40.741 70.37 77.778 40.741
min 51.852 70.37 70.37 40.741 70.37 77.778 40.741 70.37 77.778 40.741

K-NN acc 70.37 77.778 77.778 77.778 81.481 81.481 77.778 81.481 81.481 77.778

RFc

mean 52.185 52.185 52.185 53.334 52.741 74.37 52.778 52.926 74.445 52.778
std 3.535 3.535 3.535 4.709 3.652 6.132 4.479 4.188 5.803 4.479
max 59.259 59.259 59.259 77.778 66.667 77.778 70.37 66.667 77.778 70.37
min 44.444 44.444 44.444 44.444 44.444 55.556 44.444 44.444 55.556 44.444

SVC acc 51.852 81.481 81.481 77.778 77.778 77.778 70.37 81.481 81.481 74.074

MLP

mean 51.667 67.259 65.444 64.519 74.815 77.37 66.852 74.852 67.555 63.889
std 14.372 8.5 11.018 4.971 6.317 12.839 3.261 7.884 10.622 5.918
max 81.481 81.481 85.185 74.074 85.185 85.185 74.074 88.889 85.185 70.37
min 29.63 44.444 40.741 44.444 59.259 40.741 40.741 51.852 55.556 37.037

Table 2: Accuracy statistics (mean, std, max, min) obtained in 100 MonteCarlo simulations
for each dataset and ML algorithm. Since K-NN and SVC are deterministic only the accuracy
value (acc) is shown.

As observed in Table 2, the proposed two-stage methodology outperforms
or at least equalizes the maximum and mean accuracy results obtained for
the raw and the normalized datasets for each ML algorithm. Comparing the
best mean accuracy values obtained by the proposed two-stage methodology410

and a normalization method, there is an improvement approximately of 11%
in the case of K-means, 4% in K-NN, 21% in RFc and 10% in the MLP
algorithm. For the SVC the two-stage methodology equalizes the obtained
mean accuracy by the normalization techniques. Similarly, when focusing on the
maximum accuracy, the two-stage methodology outperforms in approximately415

11%, 4%, and 3% the maximum accuracy obtained by the normalized datasets
for K-means, K-NN and MLP, respectively. RFc and SVC present the same
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maximum accuracy by the normalization techniques and by the proposed
two-stage methodology. In overall, the convenience of the employment of the
two-stage methodology is validated with this real case problem.420

Likewise, the mean accuracy values obtained by K-means with MM·P, K-NN
with ST·P, MM·P, ST·RF and MM·RF, and SVC with ST·RF and MM·RF is
around 81.4%.

Once validated that the proposed two-stage methodology equalizes or
outperforms the results obtained by the normalized datasets for all the presented425

ML algorithms, the soft-sensor is selected according to: (a) the stability of
the soft-sensor, (b) the principle of the parsimony, (c) the explicability and
interpretability of the soft-sensor, and (d) the precision of the soft-sensor:

(a) As depicted in Table 2, the maximum accuracy reached by K-means
applied over MM·P is 81.481% and the standard deviation (std) is 0.519%,430

much lower than those obtained by MLP or RFc algorithms. Besides, such std
value is low enough to maintain K-means as an option for the soft-sensor, along
with K-NN and SVC that also achieve similar accuracy values.

(b) The principle of the parsimony or Occam’s razor says that “given two
explanations about the data, in equal conditions, the simplest one is preferable”435

[33]. The advantages of applying this criterion are specially important in
terms of generalization capability and computation and memory resources
requirements. First, it can be noticed that SVC depends on the configuration
of more hyper-parameters than K-NN and K-means. In the case of K-NN, the
number of neighbors selected by GS for the different transformed datasets varies440

from 15 to 23. In addition, K-NN algorithm needs higher memory resources to
keep all the historical samples and search the nearest neighbors to classify a
new sample. In contrast, K-means assigns the new sample to the closest cluster
based only on the Euclidean distance to the centroids.

(c) Additionally to the generalization capabilities and the computational445

and memory cost, the ML algorithms in Table 2 are sorted based on their
explicability and interpretability [34], being K-means the most interpretable
algorithm and the MLP the less one. Moreover, in K-means, the assignment of
a new sample to any of both penetration quality groups is done based on the
sample’s distance to the centroids. Therefore, the soft-sensor user would be able450

to interpret in which features the sample is distant to the normal group, thus,
obtaining information about which part of the system is affecting the process
in order to correct it.

(d) In addition to the accuracy reached by the soft-sensor, it must be
considered that, if the resulting subproducts present a desired quality but455

are wrongly classified, the change of the operational conditions may result
on a lost of quality and economical profit. So, as important as the accuracy
of the model is the precision for classifying correctly the samples that do
not meet the designed standard quality in order to change the process only
when there is certainty that a correction is needed. Thus, taking the group460

‘1’ as the positive samples, K-means for MM·P dataset shows a precision
= True positives/(True positives + False positives) of 0.938 in contrast with
the 0.875 reached by MM·P in K-NN, the 0.812 obtained by ST·P, ST·RF
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and MM·RF in K-NN algorithm and ST·P, ST·RF and MM·RF in SVC or
the 0.750 in the case of MM·P with SVC. Consequently, with the selection of465

the soft-sensor based on K-means with MM·P, the operator would have high
confidence in the classification of the new sample into the ‘1’ group, and only
then, re-adjust the refining process.

4.2. Analysis of the Impact of the Normalization and FW on the Selected
Soft-sensor470

In this subsection, an analysis about the normalization methods effect over
the dataset transformation and the obtained accuracy is performed. The
analysis is based on the hypotheses presented in Subsection 3.1.
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Figure 4: Color-map of the values of the normalized ranges of the 94 features that compose
the raw and the normalized datasets (ST, MM, MAD).

In Figure 4, each row represents the normalized ranges of the labeled training
samples of the raw and the normalized datasets (ST, MM, MAD). The cells in475

Figure 4 arrange from black color, corresponding to the maximum range value,
to white color for the insignificant ones.

As it can be observed in the first row of Figure 4, features C 1 and C 3
in the raw dataset present a range much higher than the rest of features.
However, ranges behavior for ST, MM and MAD varies significantly. Features480

P3 12 and P3 18 in ST present the highest ranges values, and all the features’
ranges in MAD are insignificant compared to the range of feature P3 18. In
the case of MM, contrary to the other normalization methods, several features
referred to input crude properties present a range value close to the highest
one. Consequently, the same feature is differently compressed or expanded485

based on the normalization strategy employed. Besides, the application of the
same normalization method to diverse features of the raw dataset differently
transforms each feature, i.e., some of them are expanded while others are
compressed. Definitely, Hypotheses 1 and 2 are validated.

The second step described in Section 3 is the application of the proposed490

two-stage methodology in order to intelligently transform the dataset to be
representative of the features relative importance, i.e. for each normalized
dataset, each normalized feature is multiplied by its corresponding weight.
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Figure 5: Weights obtained for the 94 features that compose the raw dataset by P and RF
Feature Weighting methods.

Figure 5 renders the weights for the 94 features obtained by the novel
Adapted Pearson and RF FW methods described in Section 3. The horizontal495

line represents the weight (1/m) each feature would have if all of them were
equally relative important for estimating the output. As it can be observed,
both Pearson and RF select the same features, C 12 and C 13, as the most
relevant ones to estimate the output. However, the degree of relevance each FW
method assigns is different. RF presents higher difference between the maximum500

and the minimum estimated weights but Pearson is more discriminative than
RF, i.e.

∑m
j=1 |wPj − 1/m| > ∑m

j=1 |wRFj − 1/m|. Besides, Pearson calculates
weights almost equal to zero for some features such as, P1 9, P2 10 and P3 13,
among others.

Figure 6 presents the normalized ranges of the features for the six datasets505

resultant from the two-stage methodology, i.e. after multiplying the normalized
features by the estimated weights.
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Figure 6: Color-map of the normalized ranges of the 94 features that compose the six datasets
resultant from the two-stage methodology.

As it can be noticed in Figure 6, the normalized ranges of the
above-mentioned features P1 9, P2 10 and P3 13 are near to zero for ST·P,
MM·P and MAD·P datasets, which means that their relative importance have510

significantly decreased respect to those assigned by the normalization methods.
In fact, comparing the ranges calculated for ST and MM from Figure 4 with
ST·P and MM·P or ST·RF and MM·RF from Figure 6, respectively, the effect
of the weights on transforming the dominance by the feature weighting methods
of some features is appreciated.515
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On the contrary, the ranges for MAD, MAD·P, MAD·RF in Figure 4 and
Figure 6 present the same behavior. This is because the range of the feature
P3 18 transformed by MAD normalization method is too high with respect to
the other features. Hence, the application of the weights by P and RF is not
enough to reduce the dominance of the mentioned feature. These results validate520

the Hypothesis 3 and justify the need of employing an adequate normalization
technique.

In this context, an analysis of the impact of an inappropriate selection of the
normalization method for the preferred K-means based soft-sensor is conducted:
The selected soft-sensor based on K-means with MM·P achieves a mean accuracy525

of 81.407%. However, as depicted in Table 2, the accuracy obtained for MAD,
MAD·P and MAD·RF with K-means is 40.741%. Figure 4 and 6 show that the
feature P3 18 presents the maximum range value in the three cases, while the
range of the remaining features is equal to zero. The higher the range of the
feature, the higher the expected distance between the centroids. Thus, due to530

this high feature dominance for MAD, MAD·P and MAD·RF, K-means achieves
the same classification accuracy in these cases.
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Figure 7: Test samples values and centroids calculated by K-means from MAD·RF dataset.

In Figure 7 the circle and the triangle depict the centroids of the training
groups ‘0’ and ‘1’, respectively, while the dashed lines refers to the test samples.
As expected from the ranges for MAD, MAD·P, and MAD·RF in Figure 4 and535

6, the difference between the centroids of the feature P3 18, remarked with
the vertical green line, is higher than the sum of all the distances between the
centroids of the rest of features. Thus, given the test sample xi and the centroids
cg, g ∈ {0, 1}, if |c0F − c1F | >> |c0j − c1j | F ∈ {1, ..., 94}, F 6= j ∈ {1, ..., 94},
then,

∑94
j=1(xij−c0j)2−

∑94
j=1(xij−c1j)2 ≈ (xiF −c0F )2−(xiF −c1F )2, i.e., the540

sum of the distances of the samples to the centroids is equivalent to the distance
of the centroids to the imposing feature F. Consequently, the test sample belongs
to the group ‘0’ if (xiF − c0F )2 − (xiF − c1F )2 < 0.

As depicted in Figure 7, all the test samples stay closer to the centroid ‘0’
for the feature P3 18. Therefore, based on such feature, K-means algorithm545

classifies all the test samples as normal samples (group ‘0’) with only a 40.741%
of classification accuracy.

4.3. Industrial Application: Knowledge Extracted from the Soft-sensor
This section illustrates the knowledge extraction from the selected

soft-sensor, K-means with MM·P, during the real operation of the industrial550
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Basque petroleum refinery plant.
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Figure 8: Normalized absolute difference between the centroids ‘0’ and ‘1’ of each feature for
the dataset MM·P.

With that purpose, Figure 8 depicts the normalized absolute differences
ndifcj = |c0j − c1j |/max(|c0 − c1|) between the centroid ‘0’ and ‘1’ of each
feature j ∈ {1, ..., 94}. Note that the features with high ndifc are the most
contributing ones in the Euclidean distance calculations. In this case, the555

darkest cells in Figure 8 correspond to features [C 13, C 12, C 10, C 11], which
present a normalized distance between the centroids higher than 0.9 respect to
the maximum one. Furthermore, it can be noticed that the mentioned features
correspond to the second, first, sixth and third most relative important features,
respectively, according to Pearson FW method (Figure 5). Given that (a) the560

selected soft-sensor provides the highest accuracy and precision among all the
K-means based soft-sensors, and (b) the most relevant features emerged from
both MM and MM·P methods, it can be concluded that the features [C 13,
C 12, C 10, C 11] impact significantly on the outcoming quality.

From the process perspective, C 13, C 12, C 10 and C 11 correspond to two565

compositional properties from the previous analysis of the input crude properties
shown in Section 2. More specifically, they are parameters corresponding to the
distilled streams of atmospheric residue and vacuum residue, respectively, which,
at the same time, are relevant measures to infer the penetration quality standard
of the bottom product of the vacuum distillation unit. Thus, the predominance570

of these features in the soft-sensor resulting from the two-stage methodology
and the high precision reached by the model demonstrate the reliability of the
soft-sensor for its applicability.

5. Conclusion

In this paper, a soft-sensor able to classify the quality of the bottom product575

of the vacuum distillation unit based on the input crude properties and the
operational conditions of the system is presented. In the preprocessing step,
a novel two-stage methodology which intelligently transforms the input space
to a most representative one that accounts for the relative importance of each
feature for estimating the output value is proposed. Then, the transformations580

yielded by the application of this methodology are analyzed with different
ML algorithms: K-means, K-NN, RFc, SVC and MLP. In order to select the
final soft-sensor, the performance of the ML algorithms is evaluated in terms
of accuracy, generalization capability, memory and computational resources,
interpretability and precision scores.585
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The novelties and advantages presented in this research are: (1) An analysis
of the effect of both, normalization and feature weighting methods, and their
implication in the Euclidean distance calculations; (2) The successful application
of the proposed two-stage methodology respect to the traditional normalization
methods for improving the accuracy of the algorithms; (3) the proposed adapted590

Pearson correlation coefficient as a novel supervised FW method to estimate
the relative importance of the features respect to categorical labels, (4) the
soft-sensor ability to classify the samples according to the penetration quality
standard, based on the crude properties and the operational conditions, with
high accuracy and precision, and (5) the validity of the proposed methodology595

over a real petrochemical industry case study.
Experiments show that the proposed K-means with MM·P soft-sensor

approach outperforms its ML counterparts for this case study. In addition,
the explainability of the K-means algorithm is preferred for the soft-sensor
deployment. Moreover, its precision of 0.938 proves a high reliability about600

the correct classification of the non-desired quality.
Future work will delve into including a confidence-based learning system

to the proposed soft-sensor. Moreover, further analysis about the temporal
information retrieval of both labeled and unlabeled samples for improving the
classification accuracy and providing a high accurate long-term forecasting will605

be performed.
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[12] I. Mohler, Ž. Ujević Andrijić, N. Bolf, Soft sensors model optimization650

and application for the refinery real-time prediction of toluene content,
Chemical Engineering Communications 205 (2018) 411–421.

[13] R. Zhang, Q. Jin, Design and implementation of hybrid modeling and pfc
for oxygen content regulation in a coke furnace, IEEE Transactions on
Industrial Informatics 14 (2018) 2335–2342.655

[14] R. Parvizi Moghadam, Online monitoring for industrial processes quality
control using time varying parameter model, International Journal of
Engineering 31 (2018) 524–532.

[15] L. Pater, Application of artificial neural networks and genetic algorithms
for crude fractional distillation process modeling, arXiv preprint660

arXiv:1605.00097 (2016).

[16] J. J. Macias, P. Angelov, X. Zhou, A method for predicting quality of the
crude oil distillation, in: 2006 International Symposium on Evolving Fuzzy
Systems, IEEE, pp. 214–220.

20

186



[17] D. Wang, J. Liu, R. Srinivasan, Data-driven soft sensor approach for665

quality prediction in a refining process, IEEE Transactions on Industrial
Informatics 6 (2009) 11–17.

[18] C. Zhou, Q. Liu, D. Huang, J. Zhang, Inferential estimation of kerosene
dry point in refineries with varying crudes, Journal of Process Control 22
(2012) 1122–1126.670

[19] P. Bernus, O. Noran, Data rich–but information poor, in: Working
Conference on Virtual Enterprises, Springer, pp. 206–214.

[20] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, H. Liu,
Feature selection: A data perspective, ACM Computing Surveys (CSUR)
50 (2018) 94.675

[21] X. Xu, Q. Liu, J. Ding, Gasoline dry point prediction of fractionation
processes using dynamic inner partial least squares, in: 2017 11th Asian
Control Conference (ASCC), IEEE, pp. 1438–1442.

[22] X. Zhang, Y. Zou, S. Li, S. Xu, A weighted auto regressive lstm based
approach for chemical processes modeling, Neurocomputing 367 (2019)680

64–74.

[23] C. Li, D. Zhao, Y. Liu, J. Li, C. Wang, X. Gao, Research on the soft-sensing
modeling method for the naphtha dry point of an atmospheric tower, in:
2018 37th Chinese Control Conference (CCC), IEEE, pp. 8060–8066.

[24] Y. Fan, B. Tao, Y. Zheng, S.-S. Jang, A data-driven soft sensor based on685

multilayer perceptron neural network with a double lasso approach, IEEE
Transactions on Instrumentation and Measurement (2019).
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Abstract: Refineries are complex industrial systems that transform crude oil into more valuable
subproducts. Due to the advances in sensors, easily measurable variables are continuously monitored
and several data-driven soft-sensors are proposed to control the distillation process and the quality
of the resultant subproducts. However, data preprocessing and soft-sensor modelling are still
complex and time-consuming tasks that are expected to be automatised in the context of Industry
4.0. Although recently several automated learning (autoML) approaches have been proposed, these
rely on model configuration and hyper-parameters optimisation. This paper advances the state-of-
the-art by proposing an autoML approach that selects, among different normalisation and feature
weighting preprocessing techniques and various well-known Machine Learning (ML) algorithms,
the best configuration to create a reliable soft-sensor for the problem at hand. As proven in this
research, each normalisation method transforms a given dataset differently, which ultimately affects
the ML algorithm performance. The presented autoML approach considers the features preprocessing
importance, including it, and the algorithm selection and configuration, as a fundamental stage of the
methodology. The proposed autoML approach is applied to real data from a refinery in the Basque
Country to create a soft-sensor in order to complement the operators’ decision-making that, based on
the operational variables of a distillation process, detects 400 min in advance with 98.925% precision
if the resultant product does not reach the quality standards.

Keywords: pentanes; classification; autoML; soft-sensor; normalisation; feature weighting

1. Introduction

Refineries are complex industrial systems that transform crude oil into more valuable
subproducts, i.e., Liquefied Petroleum Gas (LPG), gasoline or petrol, kerosene, jet fuel,
diesel oil and fuels oils. One of their primary concerns is to ensure high-quality final
subproducts that meet the rigorous government regulations to achieve the maximum profit
for commercialising them. In this context, due to the advances in sensing, easy-to-measure
variables are continuously monitored, and several data-driven soft-sensors are proposed
to control the distillation process and the quality of the resultant subproducts. In this
research line, there are several works for monitoring and controlling different processes
of the refinery. Among them is the work proposed in [1] for estimating oxygen content in
a coke furnace, and the soft-sensor for predicting MAE and SWA acid gases in a sulphur
recovery unit or for butane concentration in a debutanizer column [2,3].

Nevertheless, a common issue reported in real industrial applications is that the
datasets are generally “data rich but information poor” [4]. Therefore, there is a con-
siderable need to devise intelligent strategies for selecting informative data that extract
valuable knowledge. Some researches include preprocessing methods for identifying or
even discarding samples that may worsen the model output. For instance, the authors
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of [5] improve the gasoline dry point prediction accuracy by removing the influence of
outliers of the operation data. In the research presented by [6], a Robust Partial Least
Square (PLS) method is employed to identify multivariate anomalies, and a Dynamic PLS
selects and optimises the input samples that best estimate the naphtha dry-point in an at-
mospheric vacuum distillation tower. In line with the data selection, authors of [7] include
a Gaussian process-based samples selection strategy in order to add informative samples
for a dynamical adaptation of the model to present an online adaptive model that infers
different propane and ethane quality measurements in the top of a depropanizer column.

Following the same research line, other related works take a step forward by utilising
Feature Selection (FS) approaches. In this way, only the relevant input features are selected
for creating the model. Authors of [8] include a Genetic Algorithm strategy into their PLS-
based soft-sensor to select the most relevant variables for operation and quality control of
the ASTM 90% distillation temperature (D90) in a crude distillation unit. Similarly, in order
to extract relevant features to estimate the flow rate and the yield of some resultant sub-
products (gasoline, diesel oil, coke and LPG) in a Fluid Catalytic Cracking unit, the authors
of [9] employ a Recurrent Denoising Auto Encoder and a Cumulative Percent Variance.
Another example can be found in [10] where, aiming at selecting the most sensitive features
concerning the output value avoiding redundancy problems with correlated features, a
double LASSO algorithm integrated into an MLP model is presented to predict the kerosene
D95 in a crude distillation unit. Feature selection based on correlation analysis is employed
by the authors of [11] for estimating H2S and SO2 acid gases concentration in a Sulphur
Recovery Unit and also in the soft-sensor presented in [12] for toluene content estimation.

In the above-mentioned FS approaches, a weight equal to one is assigned to the
selected features and zero to the discarded ones. As widely known, a further step is done
by the employment of feature weighting (FW) approaches in which a weight between zero
and one is assigned in order to represent the degree of relative importance each feature
gathers concerning the output label or class. This approach is applied in [13], where the
authors include feature weights calculated as the correlation between each feature and the
output variable to estimate the butane concentration at the bottom of a debutanizer column.

As observed in the state-of-the-art highlighted above, recent works rely on the con-
text of Industry 4.0, digitising industrial processes [14,15] by proposing soft-sensors that
integrate feature preprocessing and ML algorithms. Another hot topic in both industry
and academia is automated Machine Learning (autoML) [16–20], which aims at enabling
domain experts to build ML applications automatically [21]. As stated in [22], the ideal
autoML approach involves data preprocessing, model generation, and model evaluation.
Despite data preprocessing being the first task typically in ML approaches, autoML systems
have focused on model selection and hyper-parameter searches [23], while data prepro-
cessing still requires considerable human intervention [24]. Aiming at advancing in the
automation of learning systems in the context of Industry 4.0, this research presents an
autoML approach that searches for the best configuration among well-known normalisa-
tion and FW preprocessing techniques as well as among popular ML algorithms in order
to create a soft-sensor that complements and supports the operators’ decision-making by
classifying the percentage of pentanes in the butane obtained at the end of a debutanizer
column, according to the product specifications. The quality of butane is dependent on
the percentage of pentanes present in the gas. If the rate exceeds a certain threshold, the
product must be reprocessed, and additional costs are incurred. Therefore, several works
are devoted to solving this open challenge. Ito et al. [25], based on data obtained from a
gas processing plant simulation, infer in an online fashion the concentration of pentanes in
a debutanizer column by combining a physical model with heuristic rules. Similarly, the
authors of [26] present a NARMAX-based soft-sensor for estimating the pentanes content
in butane. The authors utilise data from a real refinery plant where the time tag difference
between the input and the output lies in a range of 20–60 min approximately.

In contrast to [25,26], this work aims at predicting 400 min in advance if the percentage
of pentanes in butane at the end of the debutanizer column will fulfil the quality standards.
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Thus, the operators can adjust the process immediately and avoid distilling a product
that will not meet the specifications for more than six hours. With that purpose, this
work utilises real data from a refinery of the Basque Country, and process variables of
the top of the stabilising naphtha towers are employed to create the soft-sensor. The
autoML preprocessing phase design and development are based on a novel two-stage
methodology that combines normalisation and feature weighting to intelligently transform
the input data to reflect each feature’s relative importance for classifying the resulting
quality. In order to configure the soft-sensor from the two-stage methodology, in the
model generation and evaluation phase, seven well-known classification algorithms are
considered [27]: Quadratic Discriminant Analysis (QDA), K-Nearest Neighbours (KNN),
Support Vector Classification (SVC), Ridge Regression (RID), Logistic regression (LOG),
MultiLayer Perceptron (MLP) and Stochastic Gradient Descent (SGD). Since the purpose
of the resulting soft-sensor is to complement the operator decision-making, the model
that maximises the classification performance in terms of precision is selected, aiming at
maximising the operator’s reliability in the model’s results when performing operational
changes in the system.

The remainder of the paper is structured as follows: Section 2 presents an outline
of the analysed distilling process. Section 3 describes the methodology proposed for the
design and development of the autoML approach that searches for the best configuration
of the soft-sensor for class prediction of the percentage of pentanes in butane at the end
of the debutanizer unit. Classification results, analysis of the developed soft-sensor and
the profit obtained by applying the proposed approach are shown in Section 4. Finally,
Section 5 depicts the conclusions and future work.

2. Problem Description

In this work, real data from a refinery allocated in the Basque Country are utilised.
Figure 1 depicts a high-level diagram of the analysed unit chain, in which crude oil is
converted into high-quality gas subproducts.

Figure 1. High-level diagram of the analysed process.

Columns C1 and C2 in Figure 1 represent two different stabilising naphtha towers.
After a refining process of the raw crude, stabilised naphtha and Liquefied Petroleum
Gas (LPG) are obtained at the bottom and the top of the columns C1 and C2, respectively.
The resulting LPG is then pumped from the top of columns C1 and C2 to Merox, a gas
sweetening unit in which the sulphur is removed. Finally, the sweetened gases pass to the
debutanizer column, where propane and butane are separated. The estimated duration of
the described unit chain, from stabilising naphtha columns to the end of the debutanizer
column, is 400 min.

In order to fulfil the specification standards [28], the resultant butane must not exceed
a certain threshold of the percentage of pentanes (1.5%). According to the mentioned
threshold, the refinery’s interest is to classify the percentage of pentanes in butane as
adequate (class 0) or improvable (class 1). Currently, a Dynamic Matrix Control (DMC)
control algorithm optimises the distillation process in columns C1 and C2 by adjusting
temperature and reflux from the top of the columns according to an estimation of the
number of pentanes in the feed. Furthermore, currently, the percentage of pentanes in
butane at the end of the debutanizer column is measured online. However, despite the
suitability of the DMC, there are some episodes in which pentanes escape from the top of
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columns C1 and C2. In such scenarios, the deviation from the requirements is detected
at the end of the debutanizer column. Then, aiming at estimating the percentage of
pentanes in butane 400 min in advance, in this work, the classification is conducted based
on the refining process of C1 and C2. With that purpose, from the top of C1 and C2, 31
(C1_1:C1_31) and 22 (C2_1:C2_22) features are collected, respectively. These features at
each column gather information about flow, temperature and pressure from operational
variables and DMC. The number of features of each column regarding each of these
properties are presented in Figure 1 with bold, italic and underlined text, respectively. The
process variables information and the pentanes percentage output were recorded every ten
minutes for 465 days, from 24 October 2017 to 31 January 2019. Thus, the dataset consists
of 66, 847 samples described by the 53 features described above.

3. Methodology

As mentioned above, this research proposes an autoML approach that selects the best
configuration among well-known preprocessing techniques and different ML algorithms.
The final objective is to create, based on the process condition in the top of the naphtha
stabiliser columns, a reliable soft-sensor that performs the offline model training and the
posterior online validation for classifying the percentage of pentanes in butane at the end
of the debutanizer column 400 min in advance. This section describes the methodology
employed to analyse the dataset and the stages of the autoML approach.

3.1. Dataset Evaluation

Figure 2 depicts the procedure proposed for evaluating the dataset and extracting
the key information from the data. This section thoughtfully details such procedure and,
hence, the mathematical tests proposed for determining the optimal train and test sets for
modelling the algorithm. Finally, the analysis of the relationship between the input features
and the real labels is detailed, and how the result of such study determines the latter ML
algorithms application is explained.

Figure 2. Dataset evaluation diagram.

3.1.1. Time Domain Feature Evaluation

In order to extract information from the historical data to predict the future, it is
desirable that the data collected over time is representative of current conditions, i.e., it
reflects stable equilibrium. This property is called stationary, and this work proposes to
check it by means of considering the features of the dataset as time series.

A time series [29,30] is an ordered sequence of observations, and it is defined as a
function of three major components: seasonality, trend and random noise. Seasonality and
trend are sources of non-stationarity, which means their identification and removal from
the time series can result in a clearer relationship between input features X and output Y. In
addition, if the random noise component of the time series is not stationary, the statistical
properties of the time series evolve over time. In such setting, a shorter sampling interval
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may be needed to capture key characteristics of the population. With the aim of checking
the time series stationarity to select the optimal set (X train) to train the model, seasonality,
trends and stationarity of the time series are analysed. The time domain feature evaluation
is completed by the analysis of the rolling statistics of the time series.

- Seasonality refers to the repeating variation at regular intervals of time. The data are
considered seasonal if a significant autocorrelation [31] coefficient exists at a given
lag [32]. The autocorrelation function measures the linear correlation between a
time series and a delayed version of itself searching for repeating patterns. Auto-
correlation values range between [−1, 1], where 1 and −1 values represent total
positive or negative correlations between two time series, respectively.

- Trend refers to the general tendency of the features (upward or downward); the
Mann–Kendall (MK) test [33] is utilised to ascertain the absence of a trend in the time
series. Thus, the null hypothesis H0 assumes that there is no trend in the time series
and the MK test analyses the sign differences between samples of different moments
to discard increasing or decreasing measurements in the time series.

- Stationarity analyses the random development around a constant average of the time
series. Augmented Dickey–Fuller (ADF) [34] and Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) [35] non-parametric tests were applied with the aim of examining if
the time series is stationary and the statistics are consistent over time. The null
hypothesis H0 of the ADF test states the presence of a unit root, i.e., the series is non-
stationary, while the alternative hypothesis assumes the weak stationary. Concretely,
ADF states that if a unit root exists, the lagged version of the time series does not
provide information for predicting changes in the current value of such time series.
In contrast, KPSS test’s H0: (1) assumes that the time series is stationary around
the trend, and (2) it expresses the time series as the sum of the deterministic trend,
random walk and stationary error. Since the possible source of non-stationarity in this
expression is the random walk, KPSS checks that the random walk has zero variance,
i.e., it does not evolve over time.

- Rolling statistics, such as mean and standard deviation, were also analysed in order
to check the stability of the time series over time, as well as to detect changes in the
statistical properties of the time series. Thus, if changes are detected with the rolling
statistics analysis, the window size selection is conducted considering the frequency
of such changes.

3.1.2. Label Evaluation

Considering the real labels Y of the dataset, two analysis are conducted: (1) the
frequency of each class occurrence over time is computed in order to select a representative
sample population of each class for training (X train, Y train) and testing (X test, Y test) the
model, and (2) the discriminative ability of the features can be adverted in the box-plot and
hence, the existence/absence of a linear relationship between the input features and the
output label will determine the selection of the most appropriate ML algorithm to create
the soft-sensor.

3.2. Optimal Dataset Split Selection

In order to create a reliable model and to reproduce the offline training and online
quality prediction practice, the dataset split is done respecting the temporal order of the
data. As determined in Section 3.1.1, if the time series is not stationary, employing all
available historical data can disturb the prediction ability of the model due to the evolving
time series statistical properties over time. In such scenario, the window length for the
training set must be selected in order to capture the variability of the input data and, thus,
the current properties of the time series. Likewise, as described in Section 3.1.2, the training
set (X train, Y train) is selected in such a way that all classes are represented.

Furthermore, note that in online environments, the moment in which the statistical
properties will change with respect to the current condition is not known in advance. Con-
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sequently, for the train/test window size selection, a conservative approach is conducted,
which considers the possibility of statistical properties drift in the test set.

3.3. AutoML Approach Description

This Section describes all the stages of the autoML approach that selects the best
configuration among different well-known preprocessing methods and ML algorithms in
order to create the soft-sensor for supporting the decision-making. Figure 3 illustrates a
high-level diagram of the proposed autoML approach.

Figure 3. High-level diagram of the proposed autoML approach.

3.3.1. Two-Stage Methodology

The Two-stage methodology is applied in order to transform the original raw dataset
X ⊂ Rn×m into a new transformed one, denoted by X̃Norm

FW ⊂ Rn×m, based on normalisation
and feature weighting, for representing the relative importance, each feature j = {1, . . . , m}
gathers for classifying the samples i = {1, . . . , n} among the different classes.

(1) Normalisation. It is thought that normalisation equalises the contribution of each
feature in the ML algorithm calculations [36]. This is why normalisation methods are
commonly applied during the preprocessing step in order to avoid the over-contribution
of a set of features due to the magnitudes difference. However, each normalisation method
transforms the dataset differently. In addition, each feature is compressed or expanded
depending on the normalisation method and its statistical values [37], which ultimately
can condition the features’ influence on the ML algorithm calculations and its performance.
Since there is no specific normalisation method suitable for all the problems, three of the
most commonly employed approaches are selected in this work. All of them are linear
transformations based on position and dispersion statistics.

• Standardisation (ST): X̃ST
j =

(
Xj − Xj

)
/σj ∀j ∈ {1, . . . , m}. The resultant features are

centred around the mean with a standard deviation equal to 1.
• Min–max normalisation (MM): X̃MM

j =
(
Xj −min(Xj)

)
/range(Xj), ∀j ∈ {1, . . . , m}

where range(Xj) = max(Xj)−min(Xj). The samples of the resulting features take
values between [0, 1].

• Median Absolute Deviation normalisation (MAD): X̃MAD
j =

(
Xj −Me(Xj)

)
/MAD(Xj),

∀j ∈ {1, . . . , m}. In contrast to the other techniques, MAD normalisation is considered
a robust transformation [38] as the calculation of the median Me is not affected by the
presence of outliers.

Since each normalisation method (ST, MM and MAD) depends on different statistics,
and given that each feature is transformed differently depending on its statistical charac-
teristics, it is expected that a different subset of features predominate for each normalised
dataset (X̃ST , X̃MM and X̃MAD). Then, in this work, the range of the features is employed
as an indicator of the influence of each feature in the algorithm performance [39]. To facili-
tate the comparison between features of the same dataset, the ranges are divided by the
maximum range of the dataset range(X̃Norm

j )/max({range(X̃Norm
j )|j = {1 . . . , m}}). This

way, the most influencing features, i.e., with a range close to the maximum one, present a
normalised range close to 1. In contrast, features that present range value much lower than
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the maximum one, being, in comparison, insignificant ranges, will present a normalised
range close to 0.

(2) Feature Weighting. Feature weighting methods transform the features of the
dataset to be representative of the relative information each gathers for estimating the
output. This transformation is conducted by a vector w of feature weights, where the
components represent the relative importance of each feature. Note that each weight has
a value in the range from 0 to 1, so the sum of wj for all j = {1, . . . , m} is 1. Among the
FW methods, the filter approaches calculate the feature weights independently from the
ML algorithm. If information on the labels is employed for computing the weights, the
FW approach is considered supervised. Three supervised filter FW methods are applied
in this research: two well-known methods, Random Forest and Mutual Information, both
based on Information Theory and the Adapted Pearson correlation [37], a statistical-
based method previously proposed by these authors. Random Forest calculates the feature
weights conjointly, while Mutual Information and Adapted Pearson correlation estimate the
weights for each feature in an independent manner, i.e., without considering the remaining
ones. The three FW methods are briefly described below:

- Adapted Pearson correlation (P): this statistical-based FW method is an adaptation of
the Pearson correlation coefficient for handling categorical and continuous features. It
aims at estimating the relative importance of each feature for separating the classes in
classification problems. With that purpose, the proposal presented in [37] utilises the
labels of the dataset to separate the samples according to the class. Thus, the labels
are encoded as the centroid of the samples that correspond to such label. Then, for
each component of the vector of weights, the absolute value of the Pearson correlation
coefficient is estimated between each feature and the corresponding component of the
encoded label. Finally, the weights vector is divided by the sum of their components
to obtain the vector of weights wP, so ∑m

j=1 wP
j = 1.

- Random Forest classifier (RF): Random Forest [40] is a decision tree-based ensemble-
learning ML algorithm utilised for different tasks, such as classification or regression
problems. In addition, it is also widely employed for calculating the relevance of
the features for estimating the output, according to their contribution in the trees
employed for creating the forest. Each tree in the ensemble employs bootstrapping,
which, together with an elevated number of trees and the tree splitting strategy, are
randomness sources that decrease the variance of the estimations. Thus, in this work,
the RF employed as the FW method is constructed by 100 decision trees. The final
feature weight vector wRF is calculated as the mean of the features importance of
30 RF-based models. Thus, in total, 3000 decision trees are considered. Each decision
tree is constructed from a random subset of features of length equal to the square
root of the total number of features of the dataset. A leaf node requires a minimum of
one sample, while all the nodes with more than one sample are considered internal
nodes. The sub-sample set employed for training each tree presents the same size as
the original dataset, but, with bootstrap, this set is drawn with replacement. Once the
algorithm is trained, the relative importance of each feature is calculated by the Mean
Decrease Gini [41], which computes the mean of the weighted impurity decrease of
all the nodes of all the trees where the feature is used. In this work, the scikit-learn
package [42] of python has been used for the estimation of wRF.

- Mutual Information (MI): this FW method measures the degree of mutual relatedness
between a feature and the labels, which can be interpreted as the amount of shared
information between them. MI employs joint and marginal probability distributions
to compute the calculations, which are generally unknown in real problems. Again,
the scikit-learn package of python is utilised [42], which adds a small amount of noise
to continuous variables in order to remove repeated values, and employs a nearest
neighbour method [43,44] for estimating the MI. In this work, the number of neigh-
bours k is set to 3, since small k reduces systematic errors [43,44]. For each feature,
the weight ranges from 0 to 1, and, the higher the values, the higher the relationship
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between the feature and the labels. In order to be the sum of the components of the
vector of weights wMI equal to 1, the estimated weights are divided by the sum of
the feature weights.

The feature weights wP, wRF and wMI along with the normalisation approaches
above-described are employed for creating the transformed dataset X̃Norm

FW , as it will be
explained next.

(3) Transformed Dataset Calculation. As depicted in Figure 3, the two-stage methodol-
ogy lies in combining both normalisation and feature weighting to intelligently transform
the raw dataset. By this means, normalisation acts over the magnitude differences among
the features in order to extol the resulting importance of the representativity of the features.

Then, the two-stage based transformation results from multiplying each normalised
feature by the corresponding feature weight, (X̃ST

P )j = wP
j · (X̃ST)j, . . . , (X̃MAD

MI )j = wMI
j ·

(X̃MAD)j, respectively, for j ∈ {1, . . . , m}.
This transformation can be expressed in matrix notation as follows: given the nor-

malised dataset X̃Norm and the diagonal matrix diag(w∗1 , . . . , w∗m) formed by the elements
of the vector of weights w∗, the transformed dataset is calculated as,

X̃Norm
FW = X̃Norm · diag(w∗1 , . . . , w∗m) =




x̃11 x̃12 . . . x̃1m
x̃21 x̃22 . . . x̃2m

...
...

...
...

x̃n1 x̃n2 . . . x̃nm


 ·




w∗1 0 . . . 0
0 w∗2 . . . 0
...

...
. . .

...
0 0 . . . w∗m.


 (1)

The matrix resultant from Equation (1) contains in each column the normalised
weighted feature. Thus, in this work, from the combination of each of the three selected
normalisation methods (ST, MM, MAD) represented by X̃Norm in Equation (1), with each of
the feature weights vectors w∗ ∈ {wP, wRF, wMI} generated by the three FW approaches
(P, RF, MI), a total of nine transformed datasets are obtained: X̃ST

P , X̃MM
P , X̃MAD

P ,X̃ST
RF, X̃MM

RF ,
X̃MAD

RF , X̃ST
MI , X̃MM

MI and X̃MAD
MI .

3.3.2. Machine Learning Algorithms

Once the original data have been intelligently transformed by Equation (1) and the
datasets with features representative of their relative importance for discriminating the
class labels have been obtained, different ML classification algorithms are applied.

Specifically, seven ML classification algorithms [27] from scikit-learn [42] are em-
ployed: Quadratic Discriminant Analysis (QDA), K-Nearest Neighbours (KNN), Support
Vector Classification (SVC), Ridge Regression (RID), Logistic Regression (LOG), MultiLayer
Perceptron (MLP) with one hidden layer and Stochastic Gradient Descent (SGD).

QDA utilises a quadratic decision surface to separate the classes assuming that each
class density function follows a multivariate Gaussian distribution. It calculates different co-
variance matrices for each class, which are regularised by the hyper-parameter reg_param.
The algorithm KNN classifies each sample based on the class membership of its k neigh-
bours, i.e., the k closest samples measured in terms of Euclidean distance. In contrast, SVC
creates a hyper-plane, allocated between the supporting vectors, for separating the samples
of both classes. It includes a soft-margin hyper-parameter C for controlling the misclassi-
fication cost. In addition, the SVC relies on the kernel trick, which allows operating in a
higher dimension through inner product between pairs of data, and its hyper-parameter
γ regulates the influence of samples selected by the model as support vectors. The RID
algorithm is a regularised version of the Ordinary Least Squares regression model, where
α is a regularisation hyper-parameter for controlling the regression parameters. In the
case of the LOG algorithm, it employs the logistic function to classify the samples, and
like SVC, it includes a hyper-parameter C. The MLP employed in this work is a feedfor-
ward artificial neural network with a hidden layer composed of a user-defined number
of neurons. Each neuron applies an activation function to a weighted linear summation of
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the input values, and the final output is a weighted sum. Finally, SGD is an optimisation
algorithm for minimising a loss function implemented to regularise linear models, where
the hyper-parameter α controls the strength of the regularisation.

Once the employed algorithms and their hyper-parameters have been described, a
grid search (GS) algorithm is employed to select the hyper-parameters that maximise the
score in terms of the selected performance metric described in Section 3.3.3. Table 1 collects
the hyper-parameters employed in the GS for each ML algorithm and the total number of
possible combinations.

Table 1. Parameters employed in the grid search for each ML algorithm and the corresponding total
number of combinations (Comb) considered in the grid search.

ML Hyper-Parameters Comb

QDA reg_param∈ {{1, 5} × 10−5, {1, 5} × 10−4, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1, 1} 11

KNN neighbours∈ {5, 6, 7, . . . , 60} 55

SVC
C∈ {0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1, 5, 1, 10}

γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}
kernel ∈ {linear, rbf, sigmoid}

180

RID α ∈ {0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1, 1, 2, 4, 5, 7, 10} 13

LOG C∈ {0.0001, 0.005, 0.001, 0.5, 0.01, 0.5, 0.1, 1, 5, 10} 10

MLP
activation ∈ {identity, logistic, relu}

neurons∈ {1, 2, 3, . . . , 10} 30

SGD
loss∈ {modified_huber, hinge, squared_hinge, perceptron}

α ∈ {0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1, 1} 44

Some of the selected algorithms, i.e., MLP and SGD, are stochastic and depend on
the initialisation. Hence, 10 random initialisations are launched per combination of hyper-
parameters, and the mean performance measure value is calculated. Then, the hyper-
parameters with highest mean value are selected for the ML algorithm configuration.
Similarly, once the optimal hyper-parameters have been selected, the results for the ML al-
gorithms are given by the maximum, mean, standard deviation and minimum performance
values from 30 random initialisations.

In order to validate the suitability of the two-stage methodology, the classification
results of the nine transformed datasets resulting from the two-stage methodology (X̃ST

P ,
X̃MM

P , X̃MAD
P ,X̃ST

RF, X̃MM
RF , X̃MAD

RF , X̃ST
MI , X̃MM

MI and X̃MAD
MI ) are compared with those from the

original and the normalised datasets (X, X̃ST , X̃MM and X̃MAD).

3.3.3. Precision Analysis

After the application of the ML algorithms described in Section 3.3.2 to the nine
resultant datasets from the two-stage methodology and to the raw and the normalised
ones, the performance of the algorithms over each dataset is evaluated for comparison
purposes. The classification ability of each model can be visualised through the confusion
matrix; it reflects the relationship between the predicted classes and the real ones. Thus, in
the diagonal, the number of samples correctly predicted as class 0 or 1 are collected, which
are also known as true negative (TN) and true positive (TP), respectively. In contrast, the
elements out of the diagonal represent the samples wrongly classified. More concretely,
the cell (0,1) collects the number of samples classified as 1 with 0 their real label, known as
false positive (FP) samples; and the cell (1,0) presents the false negative (FN) cases, those
erroneously classified as 0 when they really belong to the class 1. The sum of the elements
of the confusion matrix TP+TF+FP+FN=N is the total number of classified samples.

From the elements of the confusion matrix, different metrics are utilised for performance
evaluation. A commonly employed performance metric is the accuracy (TP + TN)/N,
defined as the proportion of samples correctly classified. However, it is not recommended
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for imbalanced datasets, since a high overall accuracy can be reached by compromising
the minority class. Thus, there are other metrics especially designed for measuring the
classification performance in terms of class 1, such as precision = TP/(TP + FP) and
recall = TP/(TP + FN). Precision measures the proportion of samples the model predicts
with label 1 that really correspond to such class. Thus, the higher the precision value, the
lower the number of samples belonging to class 0 the are misclassified as 1. In contrast,
recall represents the proportion of samples of class 1 detected by the model. Then, a low
recall value corresponds to a model with poor ability for recognising the samples of class 1.

The main interest of the refinery is to complement the operators decision making with
a highly-reliable predictor that detects when an improvable quality subproduct (class 1)
is resulting from the process, with the minimum false alarms, so high-cost operational
changes are avoided. Then, for the automatic soft-sensor creation, in the autoML approach,
the precision is selected as the principal performance measure.

4. Results

In this section, the results obtained from the inspection of the dataset and the appli-
cation of the methodology described in Section 3 are collected. Thereafter, an analysis
of the profit the refinery would obtain from the application of the developed soft-sensor
is presented.

4.1. Dataset Evaluation

An analysis of the dataset was conducted based on points remarked in Section 3.1.

4.1.1. Time Domain Feature Evaluation

The obtained properties that characterise the temporal behaviour of the features are
analysed below:

- Seasonality: Figure 4 depicts the auto-correlation of each feature with respect to itself
considering a maximum lag of 6480 samples (45 days, determined by expert knowl-
edge). As it can be observed in Figure 4a–ba, the auto-correlation values decrease
with the lag increment. In most (50 out of 53) of the time series, the auto-correlation
coefficient rapidly decreases to values lower than 0.4, except for Figure 4i,z,aj. In the
latter cases, the auto-correlation coefficients decrease slowly with the lag increase,
but the values are lower than 0.8. Then, from the auto-correlation plots no seasonality
is observed.

- Trend: the p-values obtained from applying the non-parametric Mann–Kendall test
are shown in Table 2. It can be observed that 17 time series (C1_1:C1_4,C1_6:C1_9,C1_11,
C1_17, C1_24, C2_3, C2_9:C2_10,C2_13:C2_14) present p-values lower than 0.05; for
those features, H0 can be rejected. In the rest of the cases, there is no evidence for
rejecting the hypothesis of no tendency. Thus, in 36 out of 53 time series, no trend
is observed.

- Stationarity: stationarity is checked through the non-parametric ADF and KPSS
tests, respectively. The obtained p-values for the ADF test are shown in Table 3. In
30 out of the 53 time series, the p-values marked with italic text in Table 3 range
between [0.05, 0.488], so in these cases (and considering a significance level of 0.05)
the null hypothesis can not be rejected and, consequently, they are non-stationary.
Accordingly, H0 can be rejected for the rest of the cases that have obtained p-values
between [0, 0.048].

Moreover, the p-values resulting from the KPSS test are depicted in Table 4.
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(a) C1_1 (b) C1_2 (c) C1_3 (d) C1_4 (e) C1_5

(f) C1_6 (g) C1_7 (h) C1_8 (i) C1_9 (j) C1_10

(k) C1_11 (l) C1_12 (m) C1_13 (n) C1_14 (o) C1_15

(p) C1_16 (q) C1_17 (r) C1_18 (s) C1_19 (t) C1_20

(u) C1_21 (v) C1_22 (w) C1_23 (x) C1_24 (y) C1_25

(z) C1_26 (aa) C1_27 (ab) C1_28 (ac) C1_29 (ad) C1_30

(ae) C1_31 (af) C2_1 (ag) C2_2 (ah) C2_3 (ai) C2_4

(aj) C2_5 (ak) C2_6 (al) C2_7 (am) C2_8 (an) C2_9

(ao) C2_10 (ap) C2_11 (aq) C2_12 (ar) C2_13 (as) C2_14

(at) C2_15 (au) C2_16 (av) C2_17 (aw) C2_18 (ax) C2_19

(ay) C2_20 (az) C2_21 (ba) C2_22

Figure 4. Auto-correlation plots of each feature of the dataset with lags up to 45 days.
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Table 2. p-values obtained for the Mann–Kendall test.

C1_1 C1_2 C1_3 C1_4 C1_5 C1_6 C1_7 C1_8 C1_9 C1_10 C1_11 C1_12 C1_13 C1_14

p-value 0.000 0.000 0.002 0.001 0.328 0.016 0.007 0.006 0.000 0.464 0.000 0.0513 0.004 0.373

C1_15 C1_16 C1_17 C1_18 C1_19 C1_20 C1_21 C1_22 C1_23 C1_24 C1_25 C1_26 C1_27 C1_28

p-value 0.003 0.296 0.001 0.529 0.880 0.716 0.192 0.445 0.0661 0.001 0.220 0.686 0.201 0.196

C1_29 C1_30 C1_31 C2_1 C2_2 C2_3 C2_4 C2_5 C2_6 C2_7 C2_8 C2_9 C2_10 C2_11

p-value 0.597 0.619 0.351 0.123 0.123 0.000 0.996 0.702 0.656 0.109 0.127 0.003 0.024 0.501

C2_12 C2_13 C2_14 C2_15 C2_16 C2_17 C2_18 C2_19 C2_20 C2_21 C2_22

p-value 0.390 0.009 0.0001 0.364 0.448 0.443 0.728 0.725 0.983 0.445 0.952

Table 3. p-values obtained for the Augmented Dickey–Fuller test.

C1_1 C1_2 C1_3 C1_4 C1_5 C1_6 C1_7 C1_8 C1_9 C1_10 C1_11 C1_12 C1_13 C1_14

p-value 0.000 0.008 0.028 0.241 0.185 0.100 0.087 0.006 0.340 0.083 0.176 0.275 0.397 0.000

C1_15 C1_16 C1_17 C1_18 C1_19 C1_20 C1_21 C1_22 C1_23 C1_24 C1_25 C1_26 C1_27 C1_28

p-value 0.346 0.936 0.341 0.318 0.227 0.032 0.455 0.013 0.180 0.006 0.000 0.631 0.018 0.018

C1_29 C1_30 C1_31 C2_1 C2_2 C2_3 C2_4 C2_5 C2_6 C2_7 C2_8 C2_9 C2_10 C2_11

p-value 0.011 0.011 0.014 0.023 0.023 0.015 0.014 0.050 0.488 0.019 0.021 0.012 0.080 0.028

C2_12 C2_13 C2_14 C2_15 C2_16 C2_17 C2_18 C2_19 C2_20 C2_21 C2_22

p-value 0.327 0.015 0.048 0.311 0.032 0.030 0.010 0.002 0.010 0.001 0.002

Table 4. p-values obtained for the KPSS test.

C1_1 C1_2 C1_3 C1_4 C1_5 C1_6 C1_7 C1_8 C1_9 C1_10 C1_11 C1_12 C1_13 C1_14

p-value <0.01 <0.01 <0.010 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.100

C1_15 C1_16 C1_17 C1_18 C1_19 C1_20 C1_21 C1_22 C1_23 C1_24 C1_25 C1_26 C1_27 C1_28

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.047 <0.01 <0.01 <0.01

C1_29 C1_30 C1_31 C2_1 C2_2 C2_3 C2_4 C2_5 C2_6 C2_7 C2_8 C2_9 C2_10 C2_11

p-value 0.049 0.033 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

C2_12 C2_13 C2_14 C2_15 C2_16 C2_17 C2_18 C2_19 C2_20 C2_21 C2_22

p-value <0.01 <0.01 0.010 <0.01 <0.01 0.010 <0.01 <0.01 <0.01 <0.01 0.100

Based upon the significance level of 0.05, there is evidence for rejecting H0, and hence
defining as non-stationary 51 out of the 53 time series—marked with bold text in Table 4.
C1_14 and C2_2 are the only ones with p-value = 0.1 > 0.05.

All in all, it can be concluded from the p-values collected in Tables 3 and 4 that the time
series are non-stationary, and from Figure 4 and Tables 2 and 4 that such non-stationarity is
not caused by seasonal or tendency components.

- Rolling statistics: the evolving behaviour of the series over time is depicted in
Figures 5 and 6 where rolling mean and standard deviation are estimated, based
on expert recommendation, with a window of length 24, i.e, 4 h. (Aiming at preserv-
ing the confidentiality of the data, Figures 5 and 6 have been scaled.)
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(a) C1_1 (b) C1_2 (c) C1_3 (d) C1_4 (e) C1_5

(f) C1_6 (g) C1_7 (h) C1_8 (i) C1_9 (j) C1_10

(k) C1_11 (l) C1_12 (m) C1_13 (n) C1_14 (o) C1_15

(p) C1_16 (q) C1_17 (r) C1_18 (s) C1_19 (t) C1_20

(u) C1_21 (v) C1_22 (w) C1_23 (x) C1_24 (y) C1_25

(z) C1_26 (aa) C1_27 (ab) C1_28 (ac) C1_29 (ad) C1_30

(ae) C1_31 (af) C2_1 (ag) C2_2 (ah) C2_3 (ai) C2_4

(aj) C2_5 (ak) C2_6 (al) C2_7 (am) C2_8 (an) C2_9

(ao) C2_10 (ap) C2_11 (aq) C2_12 (ar) C2_13 (as) C2_14

(at) C2_15 (au) C2_16 (av) C2_17 (aw) C2_18 (ax) C2_19

(ay) C2_20 (az) C2_21 (ba) C2_22

Figure 5. Rolling mean with a window of size 24.

203



Sensors 2021, 21, 3991 14 of 25

(a) C1_1 (b) C1_2 (c) C1_3 (d) C1_4 (e) C1_5

(f) C1_6 (g) C1_7 (h) C1_8 (i) C1_9 (j) C1_10

(k) C1_11 (l) C1_12 (m) C1_13 (n) C1_14 (o) C1_15

(p) C1_16 (q) C1_17 (r) C1_18 (s) C1_19 (t) C1_20

(u) C1_21 (v) C1_22 (w) C1_23 (x) C1_24 (y) C1_25

(z) C1_26 (aa) C1_27 (ab) C1_28 (ac) C1_29 (ad) C1_30

(ae) C1_31 (af) C2_1 (ag) C2_2 (ah) C2_3 (ai) C2_4

(aj) C2_5 (ak) C2_6 (al) C2_7 (am) C2_8 (an) C2_9

(ao) C2_10 (ap) C2_11 (aq) C2_12 (ar) C2_13 (as) C2_14

(at) C2_15 (au) C2_16 (av) C2_17 (aw) C2_18 (ax) C2_19

(ay) C2_20 (az) C2_21 (ba) C2_22

Figure 6. Rolling standard deviation with a window of size 24.

Figure 5a,ba reflect that no seasonality—in terms of repeating patterns—are observed
over time, which is in accordance with the results shown in the auto-correlation plots in
Figure 4. In terms of trend, as concluded from values depicted in Table 2, there was no
evidence for rejecting the tendency test except for 17 time series. In the presence of trend,
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the mean values of the time series would decrease or increase with time. However, in
Figure 5, no stable decay or increase in the mean value is observed, except in Figure 5e,z for
the period of September 2018 to 2019. Therefore, despite in Table 2, the trend hypothesis
can not be rejected according to the MK test for 36 of the time series as the rolling mean
does not show such trend in 34 out of those 36 time series.

Finally, Figure 6 collects the rolling standard deviation of the time series. As explained
in Section 3.1, a stationary time series is developed around a constant point over time,
presenting stable statistics, i.e., constant mean and standard deviation values over the time
series arise. However, in Figure 6a,ba, it is observed that the rolling standard deviation
presents significant peaks over time. In cases like Figure 6v,w, most of the peaks are of
similar height and they appear at almost constant periods of time, but in the rest of the
time series, the peaks in the rolling standard deviation are not so uniform. The variations
detected over time in the rolling standard deviations values from Figure 6 reinforce the
conclusions about the non-stationarity of the time series obtained with ADF and KPSS tests.
Furthermore, in Figure 6c,q,r,s,ac,aj,ao, it can be observed that the values with the highest
standard deviation values are found with a varying time separation of 1.5 to 4 months.

Therefore, considering (1) the results in Tables 3 and 4 regarding the non-stationarity
of the time series, (2) the aforementioned non-uniformity of the rolling standard deviation
along the time series, (3) expert knowledge advice, and (4) the conservative strategy, the
conclusion obtained is that the window for selecting the optimal train and test set must be
3 months.

4.1.2. Label Evaluation

Regarding the class samples distribution, the analysis determines that the dataset
is highly imbalanced as just 15% of the samples belong to class 1. In addition, the dis-
tribution of the classes varies over time, as it can be observed in Figure 7, where up to
four consecutive months with less than 1.255% of samples belonging to class 1 are found.
Consequently, such periods do not fulfil the class distribution required for training the
model; the samples selected for both training and testing must be representative of both
classes. As stated in Section 4.1.1, the optimal window comprises 3 consecutive months
of historical data. Consequently, the train/test set are obtained from consecutive periods,
where approximately 15% of the samples belong to class 1.

Figure 7. Percentage of samples belonging to each class by month in the recorded time.

Conversely, Figure 8 depicts a class-based box-plot. The bottom of the lower whisker
and top of the upper whisker represent the minimum and maximum values, respectively
and the points above or below the whisker are outliers. The top, medium and bottom
of the box depict 75, 50 and 25 percentiles (Q3, Q2 and Q1), respectively. In Figure 8,
it can be observed that, for each feature, if comparing the interquartile range, the box
representing the samples of class 0 overlaps with the box of class 1. Q1 and Q3 estimated
for class 0, and the values of class 1 are the same in features C1_22, C1_23 and C2_22.
The box representing class 1 is totally contained in the values that the box representing
class 0 takes in features C1_4 and C1_11. Similarly, in C1_6, C1_9, C1_10, C1_14, C1_16,
C1_21, C1_25, C1_29, C1_31, C2_3, C2_6, C2_7, C2_9, C2_10, C2_19, the box representing
class 0 is totally overlapped with the box of class 1. Thus, the overlapping level between
the samples from Q1 to Q3 from one class with respect to the other class is up to 100%.
The lowest overlapping proportion of the interquartile range of class 1 contained in the
interquartile range of class 0, 12.095%, is found in C2_5, but in this feature, the 69.494% of
the interquartile range of class 0 overlaps the interquartile range of class 1. Then, the classes
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are not linearly separable in any of the features. Based on these results, ML algorithms that
handle the non-linearity of the features are considered in the autoML approach for creating
the soft-sensor.

Figure 8. Box-plot of the features distinguishing between class membership of the samples.

4.2. Optimal Dataset Split

As explained in Section 3.1, if the time series are not stationary, the employment of
the whole historical data can disturb the ability of the model for predicting the next time
steps. Thus, a chronologically ordered subset of samples from the dataset is selected for
modelling the problem. Then, based on (1) the results obtained in Section 4.1.1 about
the evolution of the statistical properties of the time series over time, and (2) the results
in Section 4.1.2 about the class distribution over time, the conservative period from 17
December 2017 to 15 March 2018 is selected. For the offline model training, the first two
months are employed as X train and Y train, while the following one is utilised for the
posterior online validation (X test, Y test).

4.3. AutoML Approach Results

In the following, the results of the application of the two-stage methodology described
in Section 3.3.1 are presented.

4.3.1. Normalisation

As described in Section 3.3.1, three different normalisation methods are employed in
this work. Aiming at comparing the effect of each normalisation method, the normalised
ranges of training sets of the raw X and the normalised datasets X̃ST , X̃MM and X̃MAD,
respectively, are depicted in each row of Figure 9.

Figure 9. Normalised ranges of the features of the raw and the normalised dataset (X, X̃ST , X̃MM

and X̃MAD).

As Figure 9 shows, the dominating feature for each dataset is different depending
on the normalisation method employed, and they do not match with those from the raw
dataset X. The two dominant features in X̃ST and X̃MAD are C1_23 and C2_22, but in the
X̃ST dataset, other features also take values higher than 0.4, while, in X̃MAD, the contri-
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bution of the remaining features, in terms of range, are insignificant in comparison with
C1_23 or C2_22. Therefore, from Figure 9, it is observed that the features’ dominance
varies depending on the selected normalisation method. That being so, the normalisa-
tion method selection affects the features’ contribution and, therefore, conditions the ML
algorithm performance.

4.3.2. Feature Weighting

Figure 10 depicts the weights wP, wRF and wMI estimated for each feature with respect
to the label output by the three FW methods P, RF and MI, respectively, as described in
Section 3.3.1.

Figure 10. Feature weights estimated by each feature weighting method.

The horizontal line in Figure 10 refers to the weight each feature would have if all of
them presented the same relative importance (1/m) for estimating the output. In contrast, it
is observed that the relative importance value assigned to each feature by each FW method
varies. The standard deviation measures, with respect the mean, the general deviation
of the weights assigned by a FW method. In the case of equal weights, the standard
deviation of the weight values is zero. However, the standard deviation of the proportional
weight values—the estimated weights divided by the maximum one’s value—estimated
for each FW method is higher than 0.2. Thus, from the dispersion of each FW method and
Figure 10, it is observed that each feature is assigned a different weight value. In addition,
as Figure 10 depicts, for a given feature, the computed feature weights vary depending on
the FW method employed for their calculation, such as in feature C2_17, where the weight
assigned by RF is 55.734% of the weight value assigned by P.

Table 5 collects the most relevant features according to each FW method, whereas
Table 6 gathers the features with weight values lower than 1/m for any FW method. Note
that in Figure 10, the weight value of the most influencing features estimated by P and MI
FW methods are closely followed by the weight values of other features. In contrast, the
weights estimated by RF present a higher difference between the most influencing features
and the rest.

Table 5. Most relevant features according to each FW method.

FW Most Relevant Features

P C2_6, C2_14, C1_13
RF C1_13, C1_15, C1_16, C1_8
MI C1_29, C1_15 C1_13, C2_6

Table 6. Features with weight value <1/m despite the FW method.

C1_2:C1_5, C1_7
C1_9:C1_12, C1_14

C1_15, C1_18, C1_19
C1_21:C1_26, C1_30, C2_11, C2_22
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This work proposes to quantitatively measure the distribution of the weights as the
difference between the maximum weight calculated with respect to the mean of the weights
max(w∗j )−w∗. In addition, the cumulative absolute difference (CAD) ∑m

j=1 |w∗j − 1/m| be-
tween the weights and the ideal weight (1/m) is presented as a measure of the discriminant
power of each FW method.

In the first row of Table 7, RF presents the highest difference between the central
tendency weights value and the maximum one. In contrast, the obtained values for P and
MI are similar. In terms of CAD, it is observed that the weights obtained with the Pearson
FW method are those that most differ from the ideal ones (1/m). Therefore, according to
this method for the analysed dataset, the Pearson FW method is the most discriminant one
for assigning weights to the features.

Table 7. Difference between the maximum and the mean weight values for each FW method.

P RF MI

max(w∗j )−w∗ 0.0175 0.0346 0.0168
∑m

j=1 |w∗j − 1/m| 0.608 0.416 0.395

4.3.3. Two-Stage Methodology

Figure 9 shows in each row the normalised ranges of the training sets of the resulting
transformed datasets from the two-stage methodology described in Section 3.3.1.

The proposed two-stage methodology states that the influence of the features for each
transformed dataset is computed from the combination of each normalisation method with
the weights estimated by each FW method. Such influence can be observed in Figure 11, and
it is clearly proven that it varies considerably for each transformed dataset as both the normal-
isation method and the weight estimation clearly determines the dataset transformation.

Figure 11. Normalised ranges of the features of the resulting dataset after applying the proposed
two-stage methodology.

Regarding the application of the weights wP estimated with Pearson, similarly to
Figure 10 where the features of column C2 present higher values than C1, in the three first
rows of Figure 11, the normalised ranges of various features regarding C1 (C1_4, C1_12,
C1_21, C1_22, C1_27, C1_28, C1_30) are close to zero. In contrast, the cells corresponding
to the transformation conducted by RF and MI methods show that, except for C1_23, the
features of C1 present a range value of at least 10% of the value of the maximum feature of
the dataset.
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Furthermore, in Figure 10, the weights estimated by the three FW methods for C2_22
and C1_23 are approximately zero. In Figure 11, C2_22 presents a normalised range of
zero, while, due to the high normalised range X̃MAD in C1_23, this feature presents a
higher or equal normalised range than features that presented higher weight in Figure 10,
such as C1_27, C1_28 or C2_11. Similarly, recall that in Table 5, the most important
features according to each FW method are collected. However, in Figure 9, it can be
observed that, after the joint employment of weights estimated with P or RF and ST
or MAD normalisation methods, or MI combined with MAD normalisation, the feature
with the highest contribution in terms of the range is C2_10—which does not appear in
Table 5—but in Figure 9, it represents the third highest value in terms of ranges in ST and
MAD. Thus, it can be concluded that the FW weights can be significantly disturbed by the
normalisation methods.

4.3.4. Machine Learning Algorithms and Performance Analysis

Once the transformed datasets have been obtained through the proposed two-stage
methodology, the ML algorithm is applied, as described in Section 3.3.2. The precision
results obtained over the entire month that comprise the test sets by each ML algorithm
with the optimal hyper-parameters selected by the GS are collected in Table 8.

Table 8. Precision reached by each ML algorithm over the raw, normalised and transformed datasets.

Algorithm
Raw Normalisation Proposed Methodology

X X̃ST X̃MM X̃MAD X̃ST
P X̃MM

P X̃MAD
P X̃ST

RF X̃MM
RF X̃MAD

RF X̃ST
MI X̃MM

MI X̃MAD
MI

QDA 24.414 62.304 64.286 61.340 0.000 38.506 40.909 53.548 72.973 47.689 90.000 0.000 100

KNN 27.551 23.192 40.554 26.359 41.429 39.370 42.529 24.724 38.998 43.416 35.057 32.113 37.956

SVC 56.897 0.000 7.368 0.000 22.562 16.068 20.564 52.250 16.333 65.079 21.914 16.071 24.145

RID 81.507 38.517 86.957 51.598 22.938 98.734 54.028 20.511 100 51.598 21.807 96.000 51.835

LOG 90.164 92.029 0.000 100 97.872 0.000 85.714 80.000 100 90.698 92.381 0.000 75.000

MLP

Max 100 82.178 84.647 83.974 88.587 93.878 77.500 78.599 100 75.646 85.976 91.509 75.954
Mean 34.595 51.622 68.631 58.136 80.558 82.055 73.460 71.364 95.180 71.675 76.591 73.593 72.384

std 36.386 20.673 11.569 19.943 4.064 5.892 2.066 2.014 3.809 2.049 3.601 6.334 2.106
Min 0.000 18.171 38.836 18.825 74.717 72.549 69.283 68.910 87.500 65.549 72.852 66.997 68.506

SGD

Max 26.606 46.868 18.929 75.862 71.795 0.000 81.022 41.640 0.000 44.660 23.343 0.000 30.334
Mean 8.013 42.328 13.236 41.045 34.554 0.000 42.824 37.842 0.000 41.662 18.144 0.000 26.709

std 6.171 2.028 1.850 13.979 13.019 0.000 10.755 1.365 0.000 1.465 2.359 0.000 1.245
Min 0.000 38.636 10.304 17.804 15.139 0.000 24.967 35.431 0.000 39.130 12.405 0.000 24.194

As described throughout this paper, each normalisation method transforms a given
dataset differently. In addition, the application of weights calculated by a particular FW
method is affected by the normalisation factors employed to normalise the dataset. Then,
in order to experimentally validate it, Table 8 collects the precision reached by different ML
algorithms from the raw and the normalised datasets as well as from the application of the
two-stage methodology. As depicted in Table 8 and remarked with bold text, the proposed
two-stage methodology outperforms, in every selected ML algorithm, the obtained results
by the raw and normalised datasets. For example, in QDA the precision increases from
64.286% to 90% and 100% with X̃ST

MI and X̃MAD
MI , respectively. In the case of MLP, from

a mean precision value of 68.631% in X̃MM, the two-stage methodology obtains mean
precision values higher than 71% for all the combinations, reaching 95.180% of the mean
precision value with the X̃MAD

RF dataset. Regarding the results obtained from applying
the two-stage methodology by different FW methods, the RF method obtains the best
precision results for KNN, SVC, RID, LOG and MLP algorithms. These obtained values
are closely followed by the reached ones with the P FW method in KNN, RID and LOG
ML algorithms. In contrast, the P FW method reaches the maximum precision value
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only for the SGD ML algorithm, and the MI FW method uniquely outperforms in the
QDA ML algorithm compared to the results obtained by the other two FW methods. As
described in Section 3.3.1, RF is the only FW method included in this work that considers
all the features conjointly, while P and MI independently calculate each feature’s relative
importance. Furthermore, note that the FW methods that obtain better and worst results
for this problem are RF and MI, respectively, being both information theory-based methods.
In contrast, the statistical-based method P reaches similar precision values to RF. That being
so, due to the intrinsic characteristics of the FW methods formulation, P, RF and MI are
considered the most suitable ones to include in the autoML approach.

The autoML approach presented in this paper selects the best configuration among
different well-known normalisation and FW preprocessing methods and various commonly
used ML algorithms to create a reliable soft-sensor in terms of precision. More concretely,
the models with precision values higher than 95% are preselected for further analysis. Thus,
QDA with X̃MAD

MI , RID with X̃MM
P , X̃MM

RF and X̃MM
MI datasets, and LOG with X̃ST

P and X̃MM
RF

datasets are chosen as possible soft-sensors. Table 9 collects the percentage of precision
and recall reached by each selected model for different time horizons from the month that
comprises the test set.

Table 9. Percentage of precision and recall obtained by each preselected approach for increasing
temporal horizons.

Prediction Horizon Prediction Horizon

1 W 2 W 3 W 4 W 1 W 2 W 3 W 4 W

Precision 0 100 100 100 Precision 96.667 98.734 98.734 98.734
Recall 0 0.277 0.161 0.154 Recall 21.168 21.607 12.52 11.982

(a) QDA for XMAD
MI (b) RID for XMM

P

Prediction Horizon Prediction Horizon

1 W 2 W 3 W 4 W 1 W 2 W 3 W 4 W

Precision 0 100 100 100 Precision 95.833 96 96 96
Recall 0 3.601 2.087 1.997 Recall 16.788 26.593 15.409 14.747

(c) RID for XMM
RF (d) RID for XMM

MI

Prediction Horizon Prediction Horizon

1 W 2 W 3 W 4 W 1 W 2 W 3 W 4 W

Precision 97.872 98.925 98.925 97.872 Precision 100 100 100 100
Recall 33.577 25.485 14.767 14.132 Recall 1.46 11.634 6.742 6.452

(e) LOG for XST
P (f) LOG for XMM

RF

Table 9 shows that, for the different time horizons, the preselected approaches reli-
ably predict the samples that do not fulfil the specification requirements. Hence, these
approaches provide a high degree of confidence to the operator when changing the process
operation. However, from the second week of test sets, Table 9 displays a significant decay
in the percentage of recall estimated by the preselected approaches. In fact, after two
weeks, they all start failing to detect more than 85% of the samples of class 1. The time
series non-stationarity stated in Section 4.1 justifies the performance loss along the time
and the need of adaptive methods that retrain the model with respect to the drifts in the
process. Then, despite the conservative strategy described in Section 4.2 for the train/test
set window length selection of a maximum of three months, the following analyses focus
on the first two weeks of the test set before the drift.

Figure 12 depicts the graphical representation of the models with recall higher than
20% from Table 9. The grey vertical lines represent the False Negative (FN) samples, and
the black vertical lines represent the True Positives (TP) samples. Finally, the vertical
red dash-dotted lines, with a length of 1.2, are the False Positive (FP) samples that the
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soft-sensor expects to minimise. Thus, Figure 12 displays the reliability of the model
for correctly classifying samples from class 1, in spite of not being able to detect all the
improvable samples.

The refinery’s main interest is to complement the operators’ decision-making with
a soft-sensor that reliably detects samples of class 1 to adjust the process if necessary,
minimising the operational changes when the refinery is correctly processing samples that
fulfil the specifications requirements. Then, from Table 9 and Figure 12, the model resulting
from the LOG ML algorithm over the X̃ST

P transformed dataset is selected for creating the
soft-sensor as it has a good trade-off between precision and recall.

(a) RID with X̃MM
P dataset.

(b) RID with X̃MM
MI dataset.

(c) LOG with X̃ST
P dataset.

Figure 12. Classification results of the selected models.

Notice that the soft-sensor estimates a new virtual measurement every 10 min given
the dynamics of the change of the percentage of pentanes from adequate (class 0) to
improvable (class 1). However, once the percentage of pentanes transits to class 1, from
the domain expert’s perspective, the required operational changes would be applied
(1) under an improvable regime persisting during a significant period of time, as next
detailed in Section 4.4; or (2) under the operator’s consideration based on the operational
variables information analysis after the first alarm from the soft-sensor. This is consistent
with the decision of using the precision metric in the training process of the proposed
autoML approach.

In Figure 12, the resultant subproduct that does not meet the constraints (class 1)
regime in 15 February 2018 persists for 11 h and 50 min. In this case, the selected soft-sensor
creates the first alarm 130 min after the first improvable level occurs, which results in an
improvement of 270 min with respect to the systems that currently operate in the refinery.
Similarly, on 17, 19 and 26 February 2018 it takes only 80, 40 and 120 min, respectively,
for the mentioned soft-sensor to detect the subproduct quality deviation. Then, given the
high reliability of the presented soft-sensor, the operator can confidently apply high-cost
operational changes in order to reduce the disturbances due to an improvable percentage
of pentanes.

4.4. Profit per Hour Provided by the Soft-Sensor

The logistic regression algorithm applied to the data set transformed by the two-stage
methodology based on ST and P is selected for the soft sensor. Although the recall obtained
for a two-week time horizon is only 25.485%, the precision is 98.925%. Therefore, the
soft sensor is highly reliable in reporting that a sample does not meet the specification
requirements. The soft-sensor is created based on the operational information from the
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top of columns C1 and C2, as depicted in Figure 1, recorded 400 min before the refining
process ends. Thus, the operators can early react early by adjusting the process at Merox or
at the debutanizer column in order to recover the resultant subproduct quality.

The refineries operate with a high quantity of material. Thereupon, even a deviation
of the requirements for a short time involves a high impact on the refinery profit. Next, the
economic profit derived from the soft-sensor detection of butane that does not fulfil the
specification requirements is calculated.

The grey line in Figure 13 depicts the total amount of butane per hour resulting
from the distilling process described in Section 3 that does not fulfil the specification
requirements. The black area of Figure 13 represents the amount of butane that does
not meet the specifications correctly detected by the soft-sensor. The quantity of butane
resulting from the distilling process is calculated based on data from the refinery. For the
units conversion, from the m3/l of butane flow measured at the end of the unit chain to the
tons of butane (Figure 13) utilised to calculate the final profit, a product density value equal
to 0.575 kg/L is employed according to the refinery’s laboratory analysis conducted on real
data from February of 2018. As observed in Figure 13, in some hours, up to 14.56 tons of
butane does not meet the specification requirements, which forces the refinery to re-inject
such subproduct in the distillation process until fulfilling the specification, which ultimately
results in a decrease in the amount of butane to sell. However, a prompt prediction of the
butane quality in terms of percentage of pentanes allows to readjust the process and reduce
the profit losses.

Figure 13. Tons of butane per hour that do not fulfil the specification requirements.

Due to the time-frame needed to reach the new operation point, and considering a
conservative approach, only the benefit over 80% of the correctly detected improvable
butane is calculated. Thus, in the analysed period and discarding 20% of the detected
improvable butane, 258.22 tons of butane that do not fulfil the specification requirements
are correctly detected by the proposed soft-sensor. Furthermore, each refinery sets its own
sale price for each subproduct. In the refinery from where the data come, the sale price of a
ton of butane in February of 2018 was 459.74$. Thus, in the studied two weeks, the profit
derived from the online prediction of the subproduct quality with the proposed soft-sensor
would be a total of 111, 939.35$.

5. Conclusions

This work employs real data from a refinery of the Basque Country, and it proposes
a soft-sensor to complement the operators’ decision making model by classifying the
percentage of pentanes in butane in the bottom of the debutanizer column 400 min in
advance based on process information from the top of two naphtha stabilisers columns.
The analysis of the different configurations of preprocessing and modelling methods
to create a soft-sensor is difficult and time-consuming. Thus, this work proposes an
autoML approach that automatically searches for the best configuration among different
normalisation, FW preprocessing methods, and commonly employed ML algorithms to
select the best configuration among different combinations of methods for a given dataset.
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The autoML approach’s preprocessing step employs a novel two-stage methodol-
ogy that combines normalisation and feature weighting to transform the input space
intelligently. The two-stage methodology aims at avoiding features dominance through
normalisation methods. FW methods account for the relative importance each feature
presents at estimating the real label for improving the classification performance. As
proven through this work, the selection of a normalisation method conditions the feature
weighting values’ impact at transforming the features, which ultimately conditions the
ML algorithm results. Then, three widely utilised normalisation methods, standardisation
(ST), min–max normalisation (MM) and median absolute deviation normalisation (MAD),
are considered for the two-stage methodology. Two information-theory-based approaches,
Random Forest (RF) and Mutual Information (MI), and one statistical method, the Adapted
Pearson correlation (P), are applied regarding the feature weighting methods.

As “no free lunch theorem” states, there is no one model that works best for every
problem. Thus, for the modelling stage of the autoML approach, seven well-known
classification algorithms (QDA, KNN, SVC, RID, LOG, MLP and SGD) are included,
among which we select the most appropriate one for the problem at hand.

The autoML approach presented in this work selects the configuration among dif-
ferent preprocessing techniques and ML algorithms that create the most reliable model.
For the analysed industrial case, the ST normalisation method with Adapted Pearson
correlation-based feature weights and the Logistic regression ML algorithm is selected
by the autoML approach as the best configuration to create the soft-sensor. With such
configuration, the soft-sensor obtains a precision of 98.925% at predicting the resultant
product of improvable quality.

In addition to the classification results obtained at testing the model over two chrono-
logically followed weeks, the estimated profit from applying the developed soft-sensor is
presented. Thus, a saving of 111, 939.35$ would have resulted from the next two weeks’
classification results.

Along with the promising results obtained by the interpretable proposed approach
of combining the two-stage methodology with shallow ML algorithms, in the future,
adaptive techniques for online concept drift detection and automatic adaptation of the
classification model will be investigated. Furthermore, for the problem at hand, due to
the non-stationarity of the time series and the need of selecting a subset of data for the
training set, there is no need to remove trend and seasonality. However, as future work, in
the case of stationary time series, trend and seasonality removal will be included in the
autoML approach. In addition, the proposed autoML has been designed for supervised
scenarios. However, in some industrial problems, the labels are difficult to obtain. Thus,
in future works, the authors aim to investigate a new approach to handle processes with
scarce labels.
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