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Abstract

The human brain generates a large repertoire of spatio-temporal patterns, which sup-
port a wide variety of motor, cognitive, and behavioral functions. The most accepted
hypothesis in modern neuroscience is that each of these representations is encoded in
different brain networks. From MRI, networks can be defined anatomically (“structural
connectivity”-SC) or functionally (“functional connectivity”-FC). Interestingly, while SC
is by definition pairwise (white matter fibers project from one region to another), FC is
not. In this thesis we have focused on the study of high-order interactions (HOI) that
occur in functional networks, beyond the existing statistical relationships in pairs of re-
gions. When evaluating the interacting n-plets, from triplets to order n, a novel type of
statistical interdependencies appear, namely the synergistic and redundant interactions,
which are inaccessible when evaluating interacting pairs. The study of these HOI in
the human brain in aging and neurodegeneration is the purpose of this thesis. Starting
from the O-Information formalism, we have systematically analyzed synergistic and re-
dundant interactions in functional networks of the human brain. In the first part of this
thesis, we have applied this formalism to the aging brain and have found a higher preva-
lence of redundant interdependences in older participants compared to younger ones,
and this effect occurs in all orders of interaction within regions located in the prefrontal
and motor areas, thus involving working memory, motor and executive functions. In
the second part of the thesis, we have built a neurobiological-realistic computational
model of the whole-brain that incorporates SC and FC data. Our model shows that,
related to aging, variations in functional patterns can be explained by changes in SC,
which neurodegenerate as we age. Based on this finding, we propose a simple nonlinear
neurodegeneration model that is representative of healthy (non-pathological) aging and
that reproduces the age variations that occur in the HOI structure of functional data.
Finally, in the last part of this thesis, we have applied our formalism to a clinical pop-
ulation, and in particular to a cohort of older patients with Frontotemporal Dementia
(FTD), comparing the redundant and synergistic patterns that occur in the HOI of
these brains, in comparison with a control group of healthy population, well matched
in age, sex and years of education with the FTD cohort. For this chapter, we have
developed a new statistical tool that allows us to detect clusters that are significantly
different between groups and where the interaction is predominantly synergistic or re-
dundant. For our particular case of FTD, redundant triplets were found in higher-order
vision networks, default mode, and salience network. Similarly, synergistic triplets were
found in the primary auditory cortex. Together, the results obtained in this thesis
pave an avenue of multiple possibilities in the study of HOI as informational markers
in the high-order functionality of the brain, and how its alterations could reveal new
organizational aspects of the human brain in health and disease.
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1
Introduction

1.1 Healthy aging and brain diseases

The study of aging from the perspective of neuroscience is of great importance from a
socio-economic point of view, as the number of older people is increasing dramatically
worldwide. Projections suggest that the percentage of people aged 60 or older will
increase from 900 million in 2015 to 2.1 billion in 2050 [1, 2]. Aging is a major risk
factor for late-onset brain disorders that accelerate cognitive and motor decline and
worsen the quality of life.
Several causes of systemic decline –across multiple scales– underlie the process of ag-
ing, involving biological, cognitive and psychosocial effects. For example, aging dis-
rupts circadian rhythms and sleep cycles [3], resulting in poor sleep quality, impair
cognitive performance such as information processing speed, working memory, execu-
tive functions, and reasoning [4], and increases mental health issues including anxiety
and depression [5].
In addition, it is important for many reasons to characterise the underlying cognitive
changes when a healthy brain age, and to distinguish between chronological brain age
and and the brain age estimated from the magnetic resonance imaging data of pa-
tients. First, this could help inform targeted care and treatment. Second, aging is
a significant risk factor for neurodegenerative diseases that impair cognition, such as
Alzheimer’s disease and Parkinson’s disease. Fortunately, advances in neuroimaging,
data preprocessing and machine learning have synergistically contributed to producing
better solutions to the problem of age prediction. [6].
These advances, leading to a deeper understanding of the healthy aging process, could
motivate new interventions or protective therapies against age-related deterioration or
neurodegenerative diseases [7, 8, 9, 10, 11].
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1.2 Neuroimaging

Several non-invasive neuroimaging techniques exist to measure brain activity in humans.
Magnetic resonance imaging (MRI) is a versatile technology for extracting very differ-
ent functional and structural information of the brain organization on a large scale.
There are many acquisition parameters in MRI, such as the intensity of the magnetic
field with which we interact, its direction, shape, and the number of pulse sequences for
changing magnetic gradients or their relaxation times. In particular, structural MRI al-
lows the study of anatomical tissues such as gray and withe matter, cerebrospinal fluid
(CSF) along the whole-brain including cortical, subcortical and deep structures such
as the brain stem or the striatum [12]. Diffusion magnetic resonance imaging (dMRI)
allows tracking the random 3D motion of water molecules in these tissues. This is rel-
evant because in gray matter and cerebrospinal fluid, for example, diffusion is highly
isotropic; while in white matter water molecules diffusion becomes highly anisotropic,
with some directions being more visited than others. After some computational strate-
gies for tracking reconstruction, dMRI provides a map of white matter tracts connecting
pairwise of regions within the entire brain at the millimeter resolution.
Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique
discovered in the early 90’s by Seiji Ogawa [13]. This technique relies on the magnetic
properties of blood, in particular, the in-and-out oxygenation cycles of hemoglobin in
blood. The normal diamagnetic oxyhemoglobin which not interacts with the magnetic
field becomes after oxygen consumption paramagnetic, increasing the signal contrast,
which receives the name of blood-oxygen level dependent (BOLD). The main hypothesis
on which fMRI relies is that if brain areas are somehow implicated in a specific task,
they will demand sustained neuronal activity, increasing oxygen consumption. In this
way, and very importantly, fMRI is an indirect measure of neuronal activity.
Neuroimaging advances in data acquisition have evolved hand in hand with innovation
and progress in image processing methodologies and tools [14, 15, 16, 17]. There are
several software and toolbox to preprocess and clean artifacts from the different MRI
modalities, such as FSL, ANTs, MRtrix3, SPM, AFNI, to name a few. It is important
to mention that these new neuroimaging techniques and preprocessing tools are leading
to great progress in quantitative clinical research.
Other techniques for whole brain neuronal activity are electroencephalography (EEG)
or magnetoencephalography (MEG), both of which rely on the electrical and magnetic
properties of the cellular excitability of brain cells. Although EEG and MEG have a
very good temporal resolution, even capable of capturing milliseconds neuronal activity
variations, their spatial localization is poor. In this PhD thesis, we will focus on the
MRI modalities of fMRI and dMRI.
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1.3 Structural connectivity

Several effects of aging on quantitative brain structural imaging have been described.
Along the lifespan, the total brain volume increases from childhood to adolescence by
approximately 25% on average, remains constant for the three following decades, and fi-
nally decays back to childhood size at late ages [18]. Additionally, it has been shown that
the amount of atrophy in aged brains is not homogeneous, as some anatomical regions
are more affected than others: well-known aging-targeted structures are the hippocam-
pus [19], prefrontal cortex [20] and basal ganglia [21, 22]. White matter degenerates
faster than gray matter along the lifespan, indicating that the overall connectivity is
diminished with age [23]. Moreover, a progressive decrease in many tract-integrity mea-
sures has been shown using diffusion imaging, which is more pronounced in subjects
above 60 years of age [7, 24].
Aging has also been studied in terms of an anatomical map of brain neural connections,
namely, structural connectivity (SC). Several researchers characterized the SC across
the lifespan following the seminal ideas introduced by Tononi, Sporns, and Edelman
(Tononi, et al., 1994), which postulate the integration and segregation concepts. The
latter enables brain areas to perform specialized tasks independently, whereas the former
allows brain areas to work together to perform goal-directed tasks [25, 26]. Remarkably,
several studies have described decreasing segregation and increasing integration across
a healthy lifespan [27, 28, 29]. However, the relationship between changes in brain
structure and function leading to age-related decline remains largely unknown [30, 31,
32, 24].

1.4 Functional connectivity

Another way to quantify age-related changes is to use pairwise functional interdependen-
cies. The functional correlations between two time series of brain activity are quantified
typically using the Pearson correlation. Those correlations are stored in a matrix called
functional connectivity (FC). Furthermore, several studies go beyond and also analyze
the changes of functional connectivity over time [33, 34, 35, 36, 37, 38].
Previous studies of functional connectivity along the lifespan during resting state have
shown that regions within the default mode network (DMN) become less functionally
connected with age [39, 8, 40, 32]. Additionally, the frontoparietal, dorsal attention, and
salience networks also show some degree of age-related decline, including reduced within-
network connectivity [41, 42, 43, 39]. In contrast, between-network connectivity increase
with age between the DMN, somatosensory, and the frontoparietal control networks. A
stronger connectivity between the frontoparietal and dorsal attention networks has been
reported as well [41, 44, 31, 45].
Taken together, these findings suggest a general loss of functional specificity or cir-
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cuit segregation across brain circuits [46]. Moreover, an increase in between-network
interactions is a dominant feature of aging brains. Albeit important progress in our
understanding of the effects of aging on brain function, these effects are less under-
stood than the effects on structural connectivity, which shows progressive age-related
disconnection.

1.5 High-order functional interactions

An important limitation of the previously described functional connectivity studies
is that their analysis is restricted to pairwise FC, ignoring possible higher order ef-
fects called high-order interactions or high-order interdependencies. High-order inter-
dependencies allow us to characterize the brain pattern organization, distinguishing
redundancy- and synergy-dominated interactions that play crucial roles in neural dy-
namics [47, 48, 49, 50, 51, 52]. Redundancy is understood here as an extension of the
conventional notion of the correlation between more than two variables, in which each
variable has “copy” of some common information shared with other variables [53]. By
contrast, synergy corresponds to statistical relationships that regulate the whole but
not the parts [54, 55, 56]. Synergy allows local independence and global cohesion to
coexist, a condition that is instrumental for higher order brain functions, while redun-
dancy – including highly synchronized situations like deep sleep or epileptic seizures –
would make brains less well-suited to this [26, 57].
A pioneer study of high-order interactions and aging showed significant changes in the
synergies and redundancies of triple interactions over the individual’s lifespan [58], as
well as a redundant role of the default mode network (DMN). However, the effects of
aging on interactions beyond triple relationships remain largely unexplored to the best
of our knowledge. This motivated our first thesis work.

1.6 Hypothesis and objectives

1.6.1 Hypothesis

“Functional redundancy and synergy are informational markers that describe the lifespan
changes in a healthy brain. Moreover, the variations in these functional higher-order
informational organizations could be explained by the changes of the brain’s anatomical
networks, which degenerate as we age. Differences in synergy and redundancy could
differentiate healthy brains with pathological neurodegenerative brains.”

1.6.2 Objectives

• To quantify the brain changes in the higher-order functional interdependences
across the lifespan in terms of redundancy and synergy, using fMRI data from
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participants between 10 to 80 years.

• To analyze if the variations in the high-order functional interdependences could
be led by the changes in the brain’s anatomical networks across the lifespan, using
a Dynamic mean field whole-brain modeling (DMF).

• To quanitfy the changes in the high-order functional interdependencies produced
by Frontotemporal Dementia.

1.7 Overview

This work is divided into five chapters:
Ch1. Introduction: We provide an overview of the PhD thesis, outline the research
topic and review the relevant literature for the development of this thesis.
Ch2. Materials and Methods: We introduce the main tools and strategies used in the
development of this thesis, including the global methodology used in this research. We
relate these methods to broader literature in this research field. Beyond the general
methodological scenario, the following three chapters have their specific methods.
Ch3. High-order in the aging brain: We investigate how the higher- order informa-
tional organization of the brain changes with age. We hypothesize that redundancy
and synergy are informational markers to describe the healthy lifespan changes in brain
activity. Our results show that older participants (from 60 to 80 years old) exhibit
higher predominance of redundant dependencies than younger participants. This effect
is evident for all interaction orders.
Ch4. High-order interdependencies in a whole-brain model: We combine functional
and diffusion MRI data with a Dynamic mean field whole-brain modeling (DMF) to
investigate the mechanisms underlying age variations in the structure and high-order
functional interactions. We hypothesize that the variations in functional patterns can
be explained by the changes of the brain’s anatomical networks, which degenerate as
we age. The DMF model successfully reproduces the increased redundancy-dominated
interdependencies of BOLD activity across brain areas in the older participants, and
across all interaction orders, in agreement with observations in chapter 3.
Ch5. High-order interactions applied to Frontotemporal Dementia: We analyzed high-
order interactions applied to Frontotemporal Dementia. We hypothesize that redun-
dancy and synergy are informational markers to describe the changes in brain activity
produced by Frontotemporal Dementia. Our third result shows a clustering of triplets
with unbalanced synergy and redundancy and with some regions participating only in
redundant or synergistic triplets.
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2
Materials and Methods

2.1 Information Theory

2.1.1 Shannon entropy

Definition 1 The entropy of a discrete random variable X with a probability mass
function p(x) is defined by:

H(X) = −
∑
x

p(x) log (p(x)).

Remarks:

• The entropy will be measured in bits if using the logarithm to base 2 or nats using
the natural logarithm.

• The entropy of X can also be interpreted as the expected value of the random
variable log(1/p(X)).

2.1.2 Differential entropy

Definition 2 The differential entropy of a continuous random variable X with PDF
f(x) is defined as:

H(X) = −
∫
χ
f(x) log (f(x)) dx,

where χ is the support of f .
The differential entropy is sometimes written as H(f) rather than H(X).

Definition 3 Let X be a random variable normally distributed with mean µ and stan-
dard deviation σ, denoted by X ∼ N(µ, σ2), then the differential entropy in nats of X
is defined by:

H(X) = ln
(
σ
√
2π e

)
.
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2.1.3 Mutual information

The Mutual Information (I) is an extension of Shannon entropy for two random vari-
ables, which quantify the information shared by two random variables, X and Y , and
is defined by:

I(X,Y ) = H(X) +H(Y )−H(X,Y ),

where H(X), H(Y ) are the marginal entropies, and H(X,Y ) is the joint entropy of X,
and Y . Mutual Information is a non-negative and symmetric quantity.

2.1.4 Interaction Information

The Interaction Information (II) is a generalization of the Mutual Information for three
or more random variables. We focus on the case of three random variables due to
the II sign has a relevant interpretation. If II > 0 the interaction is redundancy-
predominated, and II < 0 correspond to synergy-dominated value. Mathematically, for
any three random variables X,Y, Z,

II(X,Y, Z) = I(X,Y )− I(X,Y |Z),

= H(X) +H(Y )−H(X,Y )− (H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z))

= H(X) +H(Y ) +H(Z)− (H(X,Y ) +H(X,Z) +H(Y,Z)) +H(X,Y, Z),

where I(X,Y |Z) represents the the conditional mutual information between X and Y ,
conditioned to Z, and, I(X,Y |Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z).
Finally, notice that it does not matter which variable is conditioned in II because it is
symmetric.

2.1.5 Total Correlation and Dual Total Correlation

The total correlation (TC), and the dual total correlation (DTC), are defined by the
following formulas:

TC(Xn) =
n∑

i=1

H(Xi)−H(Xn) , (2.1)

DTC(Xn) = H(Xn)−
n∑

i=1

H(Xi | Xn
−i) . (2.2)

Here, H(·) represents the Shannon entropy, and Xn
−i represents the vector of n − 1

variables composed by all minus Xi i.e., (X1, . . . , Xi−1, Xi+1, . . . , Xn). Both TC and
DTC are non-negative generalizations of mutual information, meaning they are zero if
and only if all variables X1, . . . , Xn are statistically independent of one another.
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2.1.6 S-information and O-information

The O-information of a set of n random variables Xn = (X1, . . . , Xn) is calculated as

Ω (Xn) = TC (Xn)−DTC(Xn)

while their S-information is

Σ (Xn) = TC (Xn) +DTC(Xn)

We estimate the S-information and O-information for all the different subsets of brain
modules from three to twenty brain interactions. For each participant we computed
the average O-information and S-information in which the module m participate when
interacting with other n regions. We denote it by Ωm

n (k) and Σm
n (k) respectively. Ana-

lytically,

Ωm
n (k) =

1

Zn

∑
i1

· · ·
∑
in−1

Ω(k)(Xm, Xi1 , . . . , Xin−1) , (2.3)

Σm
n (k) =

1

Zn

∑
i1

· · ·
∑
in−1

Σ(k)(Xm, Xi1 , . . . , Xin−1) ., (2.4)

Above, k is the participant index and m is the module index, n interaction order, and

Zn ≡
(
M − 1

n− 1

)
is the total number of subsets of size n− 1 in an atlas of M modules.
Finally, the average O-information of order n is calculated averaging over the M mod-
ules.

Ωn(k) =
1

M

M∑
m=1

Ωm
n (k) , (2.5)

Σn(k) =
1

M

M∑
m=1

Σm
n (k) . (2.6)

2.1.7 Redundancy and Synergy

The O-information is a real-valued metric whose sign serves to discriminate between re-
dundant and synergistic groups of random variables: Ω > 0 corresponds to redundancy-
dominated interdependencies, and Ω < 0 characterizes synergy-dominated variables.
Moreover, the positive and negative values of the O-information are called for simplic-
ity ‘redundancy’ and ‘synergy,’ respectively.
Therefore, we split the O-information on positive and negative values using

Ω+ = max{Ω, 0} ; Ω− = −min{Ω, 0} , (2.7)
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so that Ω = Ω+ − Ω−. Using these quantities, we calculated the following proxies for
redundancy and synergy per subject k, module m, and interaction order n

Rm
n (k) =

1

N+
n,m

∑
i1

· · ·
∑
in−1

Ω+
(k)(Xm, Xi1 , . . . , Xin−1) , (2.8)

Sm
n (k) =

1

N−
n,m

∑
i1

· · ·
∑
in−1

Ω−
(k)(Xm, Xi1 , . . . , Xin−1) , (2.9)

where N+
n,m and N−

n,m represent the number of n-plets with positive and negative O-
information values, respectively.
Finally, the average of the redundancy and synergy over all subjects and modules is
calculated as

Rn(k) =
1

M

M∑
m=1

Rm
n (k) , (2.10)

Sn(k) =
1

M

M∑
m=1

Sm
n (k) . (2.11)

2.1.8 Gaussian Copula Estimation

We use Gaussian Copula Estimation to compute the O-information and S-information
values. This approach exploits the fact that the Mutual Information does not depend
on the marginal distributions and therefore, the different quantities can be conveniently
transformed into Gaussian random variables for which efficient parametric estimates of
high-order interactions exist [52].

The code to compute the metrics used in this thesis (Redundancy, Synergy, O-information,
and S-information) has been made publicly available at www.github.com/brincolab/

High-Order-interactions.

2.2 Statistical analyses

In this study, we compared the group of older participants (I4) with the combination
of the three other groups (I1, I2, I3). Different information-based measures were com-
pared using a non-parametric statistical Wilcoxon rank sum test. When appropriate,
significance levels for hypothesis testing were corrected for multiple comparisons by
controlling the false discovery rate (FDR) following a standard Benjamini-Hochberg
procedure [59].
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3
High-order interdependencies
in the aging brain

3.1 Introduction and hypothesis

Resting state functional magnetic resonance imaging or functional MRI (fMRI) has
shown that aging affects functional connectivity (FC) in extended brain networks, specif-
ically altering anterior and posterior regions like the superior and middle frontal gyrus
(MFG), posterior cingulate, middle temporal gyrus and the superior parietal region
[8, 60]. Other studies have shown that aging may also alter the FC between several
regions, possibly indicating compensation or pathological activation [41, 61, 62, 63].
An important limitation of such FC studies is that their analysis is restricted to pairwise
FC, ignoring possible higher order effects. Following recent works [64, 65], we assess
high-order interactions (beyond pairwise relations) to distinguish redundancy and syn-
ergy dominated interactions in neural dynamics [47, 48, 49, 50, 51, 52]. An initial
study of high-order interactions and aging showed significant changes in the synergies
and redundancies of triple interactions over the individual’s lifespan [58], as well as a
redundant role of the default mode network (DMN). However, the effects of aging on
interactions beyond triple relationships remain largely unexplored to the best of our
knowledge.
Here, we built on our previous studies [58] to examine the effects of aging on higher
order interactions in the human brain, paying special attention to the interdependencies
between four or more brain regions. We employed the recently proposed O-information
[54], which can be considered a revised version of the measure of neural complexity pro-
posed previously in the context of Partial Information Decomposition [26, 66]. More
specifically, O-information captures the balance between redundancies and synergies in
arbitrary sets of variables, thereby extending the properties of the interaction informa-
tion of three variables to larger sets [67]. Redundancy is understood here as an extension
of the conventional notion of the correlation between more than two variables, in which
each variable has a “copy” of some common information shared with other variables [53].
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An example of extreme redundancy is full synchronization, where the status of one sig-
nal allows one to predict the status of any other. By contrast, synergy corresponds to
statistical relationships that regulate the whole but not the parts [54, 55, 68]. Synergy
allows local independency and global cohesion to coexist, a condition that has been
recently found to be instrumental for higher order brain functions [56, 69], while re-
dundancy – including highly synchronized situations like deep sleep stages or epileptic
seizures – would make brains less well-suited to this [26, 57].
To investigate how the higher order informational organization of the brain changes
with age, we studied synergic and redundant interactions of different orders from fMRI
data obtained in the resting state from a cohort of 164 healthy volunteers aged 10 to
80 years old.
This approach is novel for two reasons. From a methodological perspective, we present
the first application of higher order statistical interdependencies in aging, beyond triplet
interactions, developing a formalism to apply the metrics previously presented to fMRI
data [54]. In addition, we investigate how aging alters the higher order interdependen-
cies among different brain regions, as inferred directly from fMRI data. In this way, we
obtained novel insights into brain aging, whereby the interdependencies in older partici-
pants appear to be more redundancy-dominated than those in younger participants, for
all interaction orders. When studying how these effects are distributed topographically
we found a “redundancy core” that was composed of brain regions that play key roles
in the most redundancy-dominated arrangements for all interaction orders.

3.2 Results

We analysed resting-state fMRI data from 164 healthy participants, measuring S-information
and the O-information in order to quantify high-order interactions between brain ar-
eas in terms of redundancy and synergy. A methodological sketch is shown in Figure
3.1. Participants were divided in four age groups (I1-I4) as described in Materials and
methods.
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Figure 3.1: Methodological scheme. A) 164 subjects were included in this study,
each represented by 2,514 time series of fMRI signals. Using The Brain Hierarchical
Atlas (BHA), the original time series was grouped into M=20 different ones. B) The
marginal and joint distributions for each subject were estimated from the data using the
Gaussian copula, from which the marginal and joint entropies were calculated. Next, the
total correlation (TC) and dual total correlation (DTC) were obtained, from which the
O- and S-information were finally computed. C) For each subject and interaction order,
we computed their O-information and S-information values for each n-plet, which were
then used for further analyses. D) The average O-information values of the participants
were also calculated for each n-plet for group-comparisons.

3.2.1 S-information and O-information along lifespan

We first measured the S-information and O-information per age group and interaction
order, Figure 3.2 shows that both the S-information and the O-information exhibit sig-
nificant differences between the old group and the younger ones after correcting with
FDR for multiple comparisons. The increase of S-information with age implies an in-
crease of interdependencies between the various brain regions. Interestingly, the increase
shown in the older population is significant at all orders, suggesting a widespread effect.
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The increase seen in the O-information suggest that the correlations seen in the older
population are in general redundancy-dominated, becoming stronger in large orders.
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Figure 3.2: High-order interdependencies in the aging brain. Average O-
information and S-information average over all modules m = {1, . . . , 20} from equations
5 and 6 for each subject, grouped as I1, I2, I3, I4. Both S-information (top panel) and
O-information (bottom panel) differentiated the higher order interdependencies in the
old brains (I4) relative to the younger ones (I1, I2 and I3). This is evident in the right
column, where the statistical significance is represented either for a uncorrected p-value
of 0.05 (red dashed line) or corrected by the FDR (represented by blue-filled squares
for the S-information and by black-filled circles for the O-information). The interaction
order is shown on the x-axis in all the plots.

3.2.2 A significant increase in redundancy in older participants

We split the interactions according to the sign of the O-information, adding the positive
ones as a measure of redundancy, and negative ones as synergy. Our results show differ-
ent patterns of redundancy and synergy as the interaction order increases (see Figure
3.3). While the synergy exhibits an inverted-U (concave) shape, redundancy mono-
tonically increases with the interaction order. Importantly, the redundancy values are
much larger than the synergistic ones. Moreover, the redundancy of I4 shows significant
differences from the group formed by (I1, I2, I3) for all interaction orders. In the case
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of synergy, while at some interaction orders the group I4 exhibits significant differences
from the rest of the population, these differences do not survive the multiple comparison
correction.
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Figure 3.3: A significant increase in redundancy in older participants across all
interaction orders. The average redundancy and synergy were obtained over modules
m = {1, . . . , 20} through the equations (2.10) and (2.11) for each subject grouped into
I1, I2, I3, I4. Note that when increasing the interaction order, and independent of age,
both redundancy and synergy curves have a completely different pattern (one increasing
linearly and the other following a bell-shaped curve). The right panel shows that the
group differences in redundancy (represented by diamonds) in older participants (I4)
were significantly different from those of the other groups combined (I1, I2, I3) for
all interaction orders. Regarding synergy (represented by circles), none of the values
survived a correction for multiple comparisons at any of the interaction orders. Both
the diamonds and circles are filled when the value of redundancy or synergy survived
correction for multiple comparisons.

3.2.3 Redundancy and synergy across the distinct brain areas

We quantified the redundancy across brain modules by taking into account all the
redundant interactions in which a given module participate, Figure 3.4 shows that
modules 1-3, 5, 13-15, 18-20 exhibit significant differences for all interaction orders,
while the others only exhibit significant differences for large orders. This suggests the
existence of a redundancy core, which was confirmed by later analyses. In contrast, the
pattern of synergy across brain areas is highly heterogeneous, with only modules 15, 17,
18 and 19 showing significant differences.
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Figure 3.4: Redundancy and Synergy across brain areas in the aging brain.
Differences between I4 and the I1, I2, I3 groups across the different brain modules, each
one anatomically represented by three representative views from left to right, sagittal,
coronal and axial. As in Figure 3, group differences in redundancy (blue diamonds)
and synergy (black circles) are represented as a function of the interaction order. When
the group differences survived FDR correction, both the diamonds and circles are filled.
In relation to redundancy, there are two “classes” of modules, those where redundancy
was significantly different for any order (such as modules 1-3, 5, 13-15 and 18-20) and
the remaining modules for which this did not happen. Synergy generally does not
differ widely between group I4 and the rest of the population across different brain
areas. Modules 15, 17, 18, and 19 showed a few interaction orders with values surviving
multiple comparisons. 16



3.2.4 Identification of the redundant and synergistic cores

To confirm the existence of a redundancy core, we studied the extreme values of the
O-information for various interaction orders. Figure 3.5 shows how modules 2, 5 and
13 participate in the most redundancy-dominated n-plets for all orders, suggesting that
they might be the basis of such a core. While a complete anatomical description of
these modules is available in Ref. [70, 71], it is important to emphasize that these three
modules have in common the middle frontal gyrus (MFG) and precentral gyrus (PG),
two important structures that have a very differentiated function. More specifically,
while MFG is part of the prefrontal cortex which mediates executive control and working
memory, PG is part of the primary motor cortex, and the two structures are well-known
to be affected by aging [4, 72, 73, 74].
It is important to emphasise that although the redundant role found in this study for the
interaction between MFG and PG was obtained from participants being at rest, poten-
tially it reflects the fact that older participants typically compensate motor behavioral
deficits by recruiting additional activation of the prefrontal cortex in synchronism with
their associated motor areas, while younger participants only activated motor areas to
perform the same tasks [75, 76, 77]. Similarly, it has also been shown that older partic-
ipants, but not young, recruit the prefrontal cortex while performing purely movement
tasks such as the inhibitory motor control, thus relying on more cognitive support for
the performance of a motor task that younger participants produce in a more automatic
manner, i.e., cognitive penetration into action [78].
Interestingly, the core existing in younger participants (I1, I2 , I3) seems to be broader
than the one in the older population, including modules 9, 10 and 16. The brain
structures supporting these modules are composed of the middle and superior frontal
gyri, posterior cingulate cortex and the precuneus, all part of the default mode network
(DMN), which is an important network of the human brain (see [79, 80] and references
therein). Despite the fact that other studies have found a lesser participation of the
precuneus into the DMN [81], our data confirmed its participation in agreement with
other studies [79, 82].
When comparing these results to the ones in Ref. [58], in which a redundant role of the
DMN was shown for n = 3 across the lifespan, it could happen that for high orders
of interaction such a role might break down in older participants, indicating network
re-adaptation or anticipation to damage, as it occurs at the onset of other pathologies
such as in the early stage of Alzheimer’s disease [83], after a concussion [84] or following
a multiorgan failure [85].
When looking at modules that participate in synergistic arrangements, i.e. at the n-
plets with smaller values of O-information, we found that modules that belong to the
redundant core tend not to be involved in very synergistic arrangements, with the
exception of modules 9 and 16, which are are present in all groups of ages. These
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two modules have in common the posterior cingulate and precuneus that, as explained
above, are part of the DMN. Based on these results, we might hypothesize a dual
redundant-synergistic role of the DMN, that, in older participants, it seems that the
redundant contribution gets impaired.
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Figure 3.5: Identification of the redundant and synergistic cores for the dif-
ferent interaction orders. Top row: As a function of the interaction ordern, we
rank the averaged O-information values of all the n-plets per group of participants, as
detailed in the Methods and illustrated in Figure 1 panel D. We plotted the highest
O-information value in which each module participates for each interaction order, nor-
malized to the n-plet with the highest O-information averaged in different groups of par-
ticipants. For each interaction order the n-plet with the highest values of O-information
are in black. The highest O-information values measure redundancy. Bottom row: As
above but plotting the lowest values of O-information. Because all were negative, they
corresponded to synergy. The two rows show similar plots for three different situations:
all subjects (left); pooling I1, I2, and I3 together (middle); and for the older group, I4
(right).
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3.3 Discussion

The present study assesses the high-order redundant and synergistic interactions among
brain regions of participants of various ages. Overall, an important increase in redun-
dant interdependencies in the older population was found for all interaction orders.
Additionally, a redundant core of brain modules was observed, which decreased in size
with age. Together, these two findings suggest a change in the balance of differentiation
and integration towards more synchronized arrangements.
It is important to emphasise that our analysis goes beyond traditional brain-network
approaches that focus on pairwise interactions, considering high-order interactions that
can assess redundant and synergistic effects. In doing so, we follow the seminal ideas
introduced by Tononi, Sporns, and Edelman [26], which posit that high brain functions
might depend on the co-existence of integration and segregation. Indeed, while the latter
enables brain areas to perform specialized tasks independently of each other, the former
serves to bind together brain areas towards an integrated whole for the purpose of goal-
directed task performance. A key insight put forward in Ref. [26] is that segregation and
integration can coexist, and that this coexistence is measurable by assessing the high-
order interactions of neural elements via approaches such as the one used in this study.
In the context of aging, it has been shown that the balanced segregation-integration
might break down as the inter-network connectivity increases in older people (reducing
segregation). However, this increment does not correspond to a better performance,
therefore indicating that the reduced segregation is related to neuronal disfunction,
possibly due to the reduced inhibitory function found in older adults [45].
It is worth noticing that our results related to increased redundancy in aging cannot
be cast in terms of pairwise interactions. Redundancy does not only implies that the
implied areas share information, but that they share the same information. Please note
that no (pairwise) network approach could discriminate this fact. Therefore, having
more redundancy in the brain does not imply mere higher connectivity: it says that
the same information is present in more than two places at the same time (the number
depending the redundancy order), which in turn suggest a lost of specificity and a
potential sub-optimal utilisation of resources.

3.4 Limitations and future work

The current study is based on the following methodological assumptions. First, the
accurate quantification of redundancy in large-scale brain networks remains an open
problem [86], but by using the Ω-measures of synergy-redundancy balance, we have
proposed different metrics as proxy estimators for synergy and redundancy. Second,
different brain parcellations can be used to explore high-order functional interactions in
the brain, however, a finer spatial resolution compromises the calculation of all of the
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n-plets to assess the O-information as the combinatorics becomes very large. Finally,
the fact that the values of the O-information themselves suggest a predominance of
redundancy might be heavily influenced by the nature of fMRI data, and other results
might be seen from other kinds of measurements (e.g. EEG or MEG). What is relevant
is the increase of O-information, which is clear evidence pointing towards a change of
differentiation-integration balance towards more redundant arrangements.

3.5 Materials and Methods

Participants

A cohort of N = 161 healthy volunteers with an age ranging from 10 to 80 years (mean
age 44.35 years, SD 22.14 years) were recruited in the vicinity of Leuven and Hasselt
(Belgium) from the general population by advertisements on websites, announcements
at meetings and provision of flyers at visits of organizations, and public gatherings. All
subjects were informed before study participation and signed the informed consent. For
minors, written informed consent was provided by their legal representative. The study
was approved by the local Medical Ethics Committee of KU Leuven (study number:
S60428) in accordance with the Declaration of Helsinki and its amendments (World-
Medical-Association 1964, 2008).
None of the participants had a history of ophthalmological, neurological, psychiatric,
or cardio-vascular diseases potentially influencing imaging measures. We grouped the
participants into four age groups Ii for i ∈ {1, . . . , 4}: I1 consists of N1 = 30 subjects
aged 10-20 years old; I2, N2 = 46 subjects 20-40 years old; I3, N3 = 29 subjects 40-60
years old; and I4 N4 = 59 subjects 60-80 years.

3.5.1 Image acquisition and preprocessing

Image acquisition was performed on a MRI Siemens 3T MAGNETOM Trio MRI scan-
ner with a 12-channel matrix head coil. The anatomical images were acquired with a 3D
magnetization prepared rapid acquisition gradient echo (MPRAGE) and the following
parameters: repetition time (TR) = 2,300 ms,echo time (TE) = 2.98 ms, voxel size =
1 × 1 × 1.1 mm3, slice thickness = 1.1 mm, field of view (FOV) = 256 × 240 mm2,
160 contiguous sagittal slices covering the entire brain and brainstem. The anatomical
images were then used for preprocessing of the functional data, here acquired with a
gradient echo-planar imaging sequence over a 10 min session using the following param-
eters: 200 whole-brain volumes with TR/TE = 3000/30 ms, flip angle = 90, inter-slice
gap = 0.28 mm, voxel size = 2.5×3×2.5 mm3, 80×80 matrix, slice thickness = 2.8 mm,
50 oblique axial slices, interleaved in descending order.
Functional imaging preprocessing was performed following a similar procedure to that
in Ref. [58]. The preprocessing pipeline included slice-time correction, head motion arti-
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facts removal, intensity normalization, regressing out of the average cerebrospinal fluid,
average white matter and average global signal, bandpass filtering between 0.01 and 0.08
Hz, spatial normalization to a template of voxel size of 3 × 3 × 3 mm3, spatial smooth-
ing, and scrubbing. This resulted in a total of 2514 time series of fMRI BOLD signal for
each participant, corresponding to the functional partition used in Ref. [70]. Moreover,
because for the calculation of high-order interactions at order n we have to deal with
n−plets of region combinations (for details see the following subsections), we reduced
complexity grouping the original 2514 regions into 20 final brain atlas regions, simply
by averaging the time series of all regions within a given atlas region. For this stage, we
made use of the Brain Hierarchical Atlas [70], that has been previously used [87, 88, 89].
The partition of 20 regions is the one that maximized the cross-modularity, a metric
that accounts for the triple optimization of the functional modularity, the structural
modularity and the similarity between structural and functional regions (for details see
Ref. [70]).
To obtain the structural connectivity matrices, we acquired diffusion weighted single
shot spin-echo echo-planar imaging (DTI SE-EPI) images with the following parame-
ters: TR = 8,000 ms, TE = 91 ms, voxel size = 2.2 × 2.2 × 2.2 mm3, slice thickness = 2.2
mm, FOV = 212 × 212 mm2, for each image, 60 contiguous sagittal slices were acquired
covering the entire brain and brainstem. A total number of 64 volumes were acquired
corresponding to different gradient directions with b=1000 s/mm2. One extra 3D diffu-
sion image was acquired for b = 0 s/mm2, needed for the diffusion imaging preprocessing.
Although full details are given in Ref. [90], the pipeline consisted in eddy current cor-
rection, motion correction, tensor estimation per voxel, fiber assignment, and functional
partition projection to the individual diffusion space. This resulted in SC matrices of
dimension 2514 × 2514, one per participant, and each matrix entry corresponding with
the number of white matter streamlines connecting that given region pair. Finally, we
reduced complexity of these matrices by grouping the 2514 × 2514 matrix into 20 ×
20 using the BHA, and averaging the BOLD signals of all regions within a given atlas
region. The BOLD signals and connectomes used in chapter 3 and 4 are available at
https://github.com/brincolab/High-Order-interactions/tree/master/dataset

3.5.2 Parcellation

We use the Brain Hierarchical Atlas (BHA), both functional and structural parcella-
tion, exploiting their intrinsic hierarchical modular organization. The algorithm behind
consists in a maximization of the quantity Cross-modularity. This measure is used to
define anallitically the relying principles by a function whose arguments are the func-
tional modularity, the structural modularity, and the similarity between the functional
and structural modules. The Cross-modularity has been calculated for brain partitions
of different sizes, from 1 (the entire brain is one big cluster) to 100 modules, and the
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optimum is around 20 modules.
It has to be noted that, compared to other parcellations that focus into the cerebral cor-
tex, the BHA encompasses the whole brain including brainstem, cerebellum, thalamus,
striatum, amygdala, hippocampus, and cerebral cortex.
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4
High-order interdependencies
in a whole-brain model

4.1 Introduction and hypothesis

Despite these considerable advances in understanding how the anatomical and functional
connectivity change along the lifespan, the relationship between changes in brain struc-
ture and function leading to age-related decline remains largely unknown [30, 31, 32, 24].
In the previous chapter of this thesis, using functional neuroimaging data, we have
shown that complex patterns of interactions between brain areas change along the lifes-
pan, exhibiting increased redundant interactions in the older population. However,
which mechanisms might underlie these functional differences is still unclear. Here, we
extended this work and hypothesized that the variations of functional patterns might
be explained by the changes of the brain’s anatomical networks, which are known to
degenerate as we age.
To bridge this important gap, we sought to investigate how age-related changes in brain
structure affect its function. We tackle this fundamental question via whole-brain com-
putational modeling, which is an emerging powerful tool to investigate the neurobiolog-
ical mechanisms that underlie macroscale neural phenomena [91, 92, 93]. Our approach
is based on the Dynamic Mean Field (DMF) model, which simulates mesoscale neural
dynamics using coupled stochastic differential equations incorporating realistic aspects
of neurophysiology [94, 95, 96]. DMF modeling can be used for systematically perturb-
ing connectome characteristics while assessing the resulting effects on macroscale brain
dynamics and function, thus opening the way to provide mechanistic modeling inter-
pretations to data obtained from lesion studies and aging [97, 98, 99]. Furthermore, the
different DMF inputs and biophysical parameters can be systematically altered in ways
that are beyond the capabilities of current experimental research, which makes whole-
brain computational modeling a privileged tool to investigate the causal mechanisms
that drive the brain’s organization and function [100, 101, 92, 102].
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4.2 Results

Our analyses are based on the DMF model, which uses structural and functional con-
nectivity matrices, (respectively SC and FC), to simulate the activity of various brain
regions wired with SC in presence of local excitatory and inhibitory neuronal popula-
tions. A biophysical haemodynamic model [103] is then used to transform the DMF
model’s firing rate dynamics into BOLD-like signals. The DMF is calibrated by op-
timising a free parameter, denoted by G, that allows the model to best approximate
pairwise functional activity [92]. This procedure is illustrated in Figure 4.1, and details
are provided in methods.
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Figure 4.1: Whole-brain Dynamic Mean Field Model. The DMF model used has
as inputs A) BOLD signals from fMRI data, B) a parcellation, in our case comprising
20 modules (or regions) and C) the connectome obtained from DTI. D) Applying the
parcellation to the fMRI and DTI data we obtain 20 signals and a 20 × 20 matrix
representing the connectome, respectively. E) BOLD-like signals are simulated using
the connectome and different values of the coupling parameter G. For each G, we
compare the simulated and empirical data using the Kolmogorov-Smirnov distance over
the histograms obtained from the FC matrices, and select the optimal G as the value
that minimizes this distance.
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4.2.1 DMF model reproduces empirical differences in redundancy

To study the effect of aging on brain dynamics, we used functional data from different
participants divided into four age groups, similar to previous work [104]: I1 (N1 = 28

participants, age 10-20 years), I2 (N2 = 46, 20-40 years), I3 (N3 = 29, 40-60 years) and
I4 (N4 = 58, 60-80 years). One DMF model was built for each age group, using the av-
erage SC within each group (Figure 4.2A). Next, each model was calibrated separately,
resulting in one G value per group (Figure 4.2B). For each model, we simulated the brain
activity using different random seeds, and the high-order interdependencies were calcu-
lated from these simulated data. In particular, we calculated the O-information [53],
which can be considered an extension of the neural complexity previously proposed
in [26] under the light of Partial Information Decomposition [105]. In essence, the
O-information captures the balance between redundancies and synergies in a set of
interacting variables [55, 68] (for further details see Methods).
We computed the O-information for all the subsets of brain regions of size 3 ≥ n ≥ 20,
where n represents the interaction order. For each order, n-plets with positive and
negative values of the O-information — called for simplicity ‘redundancy’ and ‘synergy,’
respectively — were calculated. Wilcoxon tests were performed to compare the average
values of redundancy and synergy in the older participants (I4) with the values obtained
from the groups of younger participants following previous work [104]. This is illustrated
in Figure 4.2C. The DMF model reproduced the age differences in redundancy and
synergy reported in [104]. Moreover, the differences in redundancy between I4 and
the rest of groups (I1,I2,I3) are statistically significant at all orders after the multiple
comparison correction of the false discovery rate. Interestingly, although the DMF
model was fitted only using pairwise FC values, the simulated dynamics captures similar
profiles of high-order statistics than our fMRI data.

4.2.2 A connectome-based model of brain aging

Motivated by the fact that the DMF model (connected with the average SC within each
age group) reproduced the high-order interaction patterns of redundancy and synergy
very precisely, we asked whether varying the SC of the young population was sufficient
to reproduce the high-order functional aspects in the older participants. We then stud-
ied the relationship between the weights of SC from the youngest group I1 and the
corresponding weights from the oldest group I4 through a parabolic fitting (for further
details see Methods). This second-order polynomial fitting revealed a non-linear re-
duction of the anatomical weights throughout the brain, in agreement with previous
work [39, 41, 24] (Figure 4.3A). Next, the fitted polynomial was used to simulate the
effects of aging in each of the young participants belonging to I1, thus resulting in an
“aged” version of their connectomes (Figure 4.3B). Each of these synthetic aged con-
nectomes was used to run a set of simulations using the DMF with the optimal value
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Figure 4.2: The DMF model reproduces redundancy differences across age
groups. A) First, we compute the average structural connectivity matrix for each age
group. B) Then, we find the optimal G value for each age group using the correspond-
ing connectomes as input to the DMF. C) We simulate brain activity representative
of each age group using the average connectome and the optimal value of G, compute
O-information, and separate sets of modules into redundant (positive O-information
values) and synergistic (negative O-information values). Here, redundancy and synergy
are estimated as the average O-information of redundant and synergistic sets, respec-
tively. The p-values of the Wilcoxon test to compare the I4 group versus the rest of
the population in redundancy and synergy. When the value of redundancy (or synergy)
survived the false discovery rate correction, the diamonds (or circles) are filled.

G4. Finally, the high-order interactions of the simulated time-courses were calculated
via separating the O-information into redundancy and synergy terms. Our results, il-
lustrated in Figure 4.3C, showed that the synthetically simulated aged participants also
reproduced the functional changes observed empirically, exhibiting significant (FDR-
corrected) increased redundancy at all orders, with statistic values ranging from RS =
14462 (pFDR < 0.001) to RS = 14264 (pFDR < 0.001). Moreover, and to ensure that the
good performance was not the result of simply taking G4 into the DMF model of the
younger group, the same analysis was repeated using the linear (rather than quadratic)
model of connectome degeneration (Fig. S1). The linear aging model did not reproduce
the redundancy differences observed between age groups, as they were not significant in
none of the interaction orders studied. These results confirm that nonlinear heterogene-
ity in age-related connectome degeneration is crucial in explaining the observed changes
in higher-order functional statistics. In the next section we delve into the topological
structure of these anatomical changes.
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Figure 4.3: Aging model based on the connectome: A) A polynomial fit of second
degree is made to link the weights of the average connectome of the group I1 denoted
w

(1)
ij and the weights of the average connectome of participants of the group I4 denoted

w
(4)
ij , preserving the position/topology of the connectome. B) first panel twenty-eight

empirical young connectomes. Second panel corresponds to applying the polynomial fit
of panel A) to each young connectome obtaining surrogate older connectomes. C) We
simulate the DMF model of the surrogate oldest connectomes and the optimal value
G4. The O-information is analyzed and separated into redundancy and synergy (first
and second panel). The third panel corresponds to the p-values of the Wilcoxon test
to compare the surrogate I4 group (Ĩ4) versus the youngest group (I1) in redundancy
and synergy. When the value of redundancy or synergy survived correction, both the
diamonds and circles are filled.

To ensure that the good performance was not the result of simply taking G4 in the
DMF modeling of the youngest group, the same analysis was repeated using a linear
(instead of quadratic) model of connectome degreneration. The linear aging model did
not reproduce the observed redundancy variations between age groups, confirming that
the non-linear heterogeneity in the age-related connectome degeneration is crucial to
explain the observed changes in the high-order functional statistics. In the following
section we dive deeper into the topological structure of these anatomical changes.
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4.2.3 Inhomogeneous neurodegeneration rates reveal two major com-
munities of age-related brain links

We have shown that our model of connectome degeneration based on a second degree
polynomial reproduces the statistically significant differences in the redundancy between
the oldest group and the rest in all interaction orders studied. Interestingly, non-linearity
implies that not all the links in the connectome age in the same way.
To further investigate the effects of age across brain regions, we evaluated the association
between SC weights and age in all participants in our cohort (N=161), calculating the
Spearman’s correlation r between the participant age and each link of the SC matrix.
This is illustrated in Fig. 4.4A. To study the aging process at the aggregate or module
level (beyond the relationship between weight with age at the single link level), using the
absolute correlation values as links of a new matrix (left panel in Fig. 4.4B), we applied
the Louvain’s community detection method obtaining three distinct link communities
(note that community detection was applied to the matrix of r values before the multiple
comparison correction). In addition, the different links within the three communities
that survived the Bonferroni correction have values of r ranging from -0.25 to -0.5, thus
showing a reduction in SC values with age. Regarding the stability of the Louvain’s
method to maximize network modularity, we varied the resolution parameter γ (see
Methods) and obtained the same three communities for values of γ ranging between 0.9
and 1.2, which shows the stability of our network partition in the three communities
found.
The first community only had two significant links (right panel in Fig. 4.4B), and for
this reason we considered it as a less relevant community. The second community was
dominated by interactions involving brain atlas regions 15 and 18 (Fig. S2), as these
two nodes had the highest values of node strength (here, calculated over the graph of
r absolute values). These regions encompass several subcortical structures, such as the
striatum, thalamus, brain stem, amygdala and the hippocampus (for a complete descrip-
tion of all regions in the atlas, see Refs. [70, 71]). In contrast, the third community, with
higher strength values for regions 6,9 and 20 of the atlas, was dominated by a common
structure present in these three regions, which is the cerebellum. Therefore, the two
communities exhibited age-induced reduction in within-community correlations, but in
one, the degeneration was centered around striatum and hippocampal connectivity, and
in the other around the cerebellum.
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Figure 4.4: Heterogeneity of the connectome degeneration: A: The non-
parametric Spearman’s rank-correlation r between age and individual weights wij of
the SC matrix was calculated across all the different participants (N=161). A correc-
tion for multiple comparisons was also applied. The final number of weights which
survived to multiple comparisons is represented in the right panel, with values ranging
from -0.25 to -0.50. B: We built a new connectivity matrix using as links the values of
r obtained for each weight (left panel). After applying the Louvain’s method of com-
munity detection to this matrix, three major communities were found (center), and the
communities had significant values of links (right). As an illustration, we showed one
arbitrary link within each of these communities (colored in green and pink).

4.3 Discussion

In this thesis we used a combination of functional and diffusion MRI data together with
DMF whole-brain modeling to investigate the mechanisms underlying age-variations
in the structure of high-order functional interactions. The DMF model successfully
reproduced the increased redundancy-dominated interdependencies of BOLD activity
across brain areas in the older participants, and across all interaction orders, in full
agreement with recent observations Ref. [104]. Furthermore, we provided evidence that
these high-order functional changes are driven by localized non-lineal processes of neu-
rodegeneration in the connectome. Leveraging this finding, we proposed a non-linear
connectome-based degeneration model of aging, which can be applied to young connec-
tomes to simulate age-induced changes in functional brain patterns.
Whole-brain models of neuronal activity have significantly increased our understanding
of how functional brain states emerge from their underlying structural substrate, and
have provided new mechanistic insights into how brain function is affected when other
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factors are altered such as neuromodulation [92, 106, 107], connectome disruption [102,
108], or external stimuli [109, 110]. Adding to these findings, the present results provide
a causal link between a localized connectome-based degeneration model of aging and
age-variations of high-order functional interdependencies. These results establish a first
step towards explaining how the reconfiguration of brain activity along the lifespan
intertwines with changes in the underlying neuroanatomy.
Our results revealed two communities with differentiated age-induced deteriorated con-
nectivity, one focused on the striatum and hippocampus, and the other on the cerebel-
lum. In relation to striatal connectivity, previous studies showed that the fronto-striato-
thalamic circuit was the most dominant for age prediction in healthy participants [90].
Moreover, age-related deterioration of striatal connectivity has also been associated
with reduced performance in rest [46] and action selection tasks [111], inhibitory con-
trol [112], and executive function [113]. In relation to hippocampus, a gold-standard
structure affecting memory-impaired degenerative diseases, is also affected in normal
aging [114], with implications in spatial and episodic memories processing [115]. In
relation to cerebellar connectivity, both sensorimotor and cognitive task performance in
the older population has been shown to be associated with cerebellar engagement with
the default mode network and striatal pathways [116]. The connectivity between cere-
bellum and striatum was also shown to be affected by age and exhibited relations with
motor and cognitive performance [117]. Therefore, our results provide further support
for the important behavioral implications that age-disconnection has on these circuits.

4.4 Limitations and future work

This work makes use of a brain parcellation of only 20 regions from the brain hierar-
chical atlas (BHA) [70]. It has to be noted that, compared to other parcellations that
focus into the cerebral cortex, the BHA encompasses the whole brain including brain-
stem, cerebellum, thalamus, striatum, amygdala, hippocampus, and cerebral cortex.
While this parcellation was shown to maximize the cross modularity index between the
functional and structural data, future work may also consider other brain parcellations
to elucidate the robustness of our results by studying if age related changes in SC can
also explain the differences high-order functional interactions in whole brain models.
Analogously, some variations in the MRI preprocessing pipeline could also affects our
results [118], as previous works have shown that affect pairwise FC studies [119].
In this article, we have fit the DMF model based on pairwise functional connectiv-
ity, reproducing the findings observed in Ref. [104] that the brain dynamics of older
participants were significantly more redundant than the rest of the participants at all
interaction orders studied. Furthermore, the use of quadratic connectome degeneration
dynamics in addition to the pairwise-fitted FC model was sufficient to reproduce these
high-order group differences, as pairwise-fitting with linear aging dynamics did not re-

30



produce these results. However, other findings were also reported in Ref. [104], such
as the existence of a redundant core specific to the older subject group that cannot be
reproduced by fitting only pairwise functional connectivity (results not shown). Several
causes could explain this; for instance, we have an average connectome per age group,
which provides a global parameter G per group used in all our simulations. It is possible
that fitting a different model for each participant could introduce more heterogeneity,
which could perhaps help improve the precise match between the actual data results
and our modeling approach. A radically different alternative could have been to build
models by fitting the structure of higher-order functional interactions beyond pairs,
which is of great interest to explore in future work, likely providing a better fit to the
data and perhaps also allowing the model to makes novel predictions, thus opening up
new and exciting possibilities.
Finally, our analyses assessing high-order functional interactions are based on some
specific metrics such as mean values of O-information at each interaction order. Fu-
ture studies may consider different algebraic or topological properties of the full O-
information hypergraph [120, 121, 122, 123, 124, 125], which may provide complemen-
tary insights. It is also worth noting that the reported values of the O-information
are not indicative of ‘pure’ synergy or redundancy, but correspond to the balance be-
tween them. The O-information was chosen because it is a convenient measure to
assess high-order effects up to relatively high orders. However, the O-information is a
whole-minus-sum type of measure, and hence its analysis does not fully discriminate e.g.
net increases in redundancy from decreases in synergy. Future studies could perform
more detailed analyses by employing partial information decomposition (PID) measures
[126, 127, 86, 128, 129, 130, 131, 132].

4.5 Materials and Methods

4.5.1 Neuroimaging

Please refer to the Materials and Methods section of the previous chapter.

4.5.2 Whole-Brain Dynamic Mean Field Model

To simulate neuronal activity we used a Dynamic Mean Field Model (DMF) [95, 92]. A
brain region is modelled by a node n composed of inhibitory (I) and excitatory (E) pools
of neurons interconnected, where the inhibitory currents I(I) are mediated by GABA-
A receptors, the excitatory synaptic currents I(E) are mediated by NMDA receptors.
The connectivity between two different nodes n, p is given by the Cn,p value of the
connectome (structural connectivity matrix C), the nodes are coupled by excitatory
currents.
The DMF consists of a coupled system of differential equations:
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where the synaptic gating variable of excitatory pools is denoted by S
(E)
n and the synap-

tic gating variable of inhibitory neurons population by S
(I)
n . The excitatory and in-

hibitory firing rates are denoted by r
(E)
n and r

(I)
n respectively. The feedback inhibitory

control weight, Jn, was adjusted for each node n such that the firing rate of the exci-
tatory pools r

(E)
n remains clamped at 3Hz, using the linear fitting proposed by Herzog

and colleagues [102]. The parameters used here are are listed in Table 4.1

Hemodynamic model

We used the excitatory firing rates r(E)
n to simulate BOLD-like signals from a generalized

hemodynamic model [133]. An increment in the firing rate r
(E)
n triggers a vasodilatory

response sn, producing blood inflow fn, changes in the blood volume vn and deoxyhe-
moglobin content qn. The corresponding system of differential equations is

dsn
dt

=0.5r(E)
n + 3− ksn − γ (fn − 1)

dfn
dt

=sn

τ
dvn
dt

=fn − vα
−1

n

τ
dqn
dt

=
fn(1− ρ)f

−1
n

ρ
− qnv

α−1

n

vn

(4.1)

where ρ is the resting oxygen extraction fraction, τ is a time constant and α represents
the resistance of the veins. The BOLD-like signal of node n, denoted Bn(t), is a non-
linear function of qn(t) (deoxyhemoglobin content) and vn(t) (blood volume):

Bn = V0 [k1 (1− qn) + k2 (1− qn/vn) + k3 (1− vn)] (4.2)
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Table 4.1: Dynamic Mean Field (DMF) model parameters

Symbol Parameter name Value

I0 External current 0.382 nA

WE Excitatory scaling factor for I0 1

WI Inhibitory scaling factor for I0 0.7

w+ Local excitatory recurrence 1.4

JNMDA Excitatory synaptic coupling 0.15 nA

I
(E)
thr Threshold for F (I

(E)
n ) 0.403 nA

I
(I)
thr Threshold for F (I

(I)
n ) 0.288 nA

gE Gain factor of F (I
(E)
n ) 310 nC−1

gI Gain factor of F (I
(I)
n ) 615 nC−1

dE Shape of F (I
(E)
n ) around I

(E)
thr 0.16 s

dI Shape of F (I
(I)
n ) around I

(I)
thr 0.087 s

γ Excitatory kinetic parameter 0.641

σ Amplitude of uncorrelated Gaussian noise vn 0.01 nA

τNMDA Time constant of NMDA 100 ms

τGABA Time constant of GABA 10 ms

where V0 represent the fraction of venous blood (deoxygenated) in resting-state, and
k1 = 2.77, k2 = 0.2, k3 = 0.5 are kinetic constants [133].
The system of differential equations (4.1) was solved with the Euler method, using an
integration step of 1 ms. The signals were band-pass filtered between 0.01 and 0.1 Hz
with a 3rd order Bessel filter.

Simulation

We use the DMF implementation in Matlab freely available at https://gitlab.com/

concog/fastdmf. The DMF equations are solved using the Euler scheme with inte-
gration step dt = 0.0001s and 500 simulation time-points removing the first 20. The
hemodynamic model is solved by the Euler method with an integration step dt = 0.001s

and subsampling each 3s. Finally, we obtain 160 time-points of BOLD signals corre-
sponding to 8 minutes.

Model fitting

We run the DMF model using the average connectome SCi consisting on the mean across
connectomes belonging to the age group Ii. The DMF model has one free parameter G,
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corresponding to the global coupling of neuronal populations. We fitted this parameter
once per age group, where Gi denotes the optimal G value for the group Ii, = {1, 2, 3, 4}.
To choose the simulations more alike to the empirical data, we compare them using the
Kolmogorov–Smirnov distance between the functional connectivity matrix distributions
built from the mutual information of the empirical and the simulated data. We swept
the parameter G between 1 and 3 with steps of size 0.1. For each G value, we run
112 simulations using different random seeds. We obtained a convex curve where the
x-axis represents the G values and the y-axis is the Kolmogorov–Smirnov distance. The
minimum G value in the curve represents the optimal model.

4.5.3 Connectome aging model

We consider the data set
{
(w

(1)
ij , w

(4)
ij )

}
1≤i<j≤20

as the edges in the upper triangular part
of the average structural connectivity corresponding to the youngest population SC1

and the average structural connectivity of the older population SC4, respectively, for two
different modules i, j. We propose a model for aging connectomes using a second-degree
polynomial f(w(1)

ij ) = a
(
w

(1)
ij

)2
+bw

(1)
ij , where a and b are fitted from the empirical data.

Then, we apply f on each edge of the twenty-eight empirical connectomes in the group
I1 to create a surrogate elder connectome for each young connectome, which means
w̃ij

4,s = f
(
w1,s
ij

)
with s = {1, . . . , 28}. Finally, we used the 28 surrogate connectomes

and the parameter G4 = 2.8 as inputs for the DMF. For each surrogate structural
connectivity, we run four simulations and obtained in total 112 whole-brain simulations
of the surrogate population.

Communities of age-related links

We first assessed the association for each individual connection and age. To do so,
we calculated the non-parametric Spearman’s rank-correlation between each entry of
the SC matrix and age, using the different participants as observations (N=161). To
find different communities of age-related brain links, we used the Louvain community
detection algorithm available in the Brain Connectivity Toolbox [25] applied to the
matrix of absolute values of the Spearman’s r values. The optimal partition of the
network corresponds to a subdivision of groups of nodes (or communities) that do not
overlap and that maximize the modularity of the network, a metric that increases or
decreases respectively when intra-community connectivity is high or intercommunity
connectivity is low. To check the stability of the communities found by the Louvain
method, we vary the resolution parameter γ (a hyperparameter that controls the trade-
off between the actual number of edges in a community and the expected number
of edges in the same community), and compute the partition integrity coefficient by
evaluating the Spearman rank correlation between the two solutions for γ = 1 and the
corresponding one for each of the different simulated values of γ. The network nodes
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were the 20 brain regions of the Brain Hierarchical Atlas [70], and the links were the
absolute value of the Spearman’s correlation coefficients. After applying the community
detection algorithm, we pruned the non-significant links using a Bonferroni correction.
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5
High-order interactions applied
to Frontotemporal Dementia

5.1 Introduction

The previous chapters have focused on describing high-order interdependencies in healthy
brain aging and explaining how the age-related structural changes affect these high-order
functional interactions using both data-driven and whole-brain computational model-
ing. This chapter analyzes and characterizes the changes in high-order interdependencies
between a healthy population and patients with Frontotemporal Dementia.
Dementia affects around 55 million people worldwide, and Alzheimer’s disease is the
most frequent form, accounting for 60 to 70 percent of cases [134], but another highly
prevalent form is Frontotemporal Dementia (FTD), primarily affecting the frontal and
temporal lobe [135, 136, 137]. FTD encompasses a clinical spectrum that includes
the behavioral variant FTD (bvFTD), semantic variant primary progressive aphasia
(svPPA), and non-fluent variant primary progressive aphasia (nfvPPA) [138]. The
bvFTD is characterized by changes in personality and/or a deterioration of cognitive
features [139], whereas the progressive aphasia (PPA) is typically associate with a
progressive disorder of language [140].
The bvFTD is the most common variant of FTD, and the best characterized. Many
studies on rs-fMRI in bvFTD have focused on pairwise functional correlations. While it
is true that some apparent contradictory findings have been found in the default mode
network, showing mixed effects as hyper- and hypo-connectivity in the DMN [141, 142],
thus emphasizing some of the heterogeneous aspects of this disease, a general finding
is the hypo-connectivity in the salience network (another well-known resting-state net-
work) [143]. However, up to date, there are no analyses of high-order interdependencies
assessing redundancy and synergy in FTD. Therefore, we quantifie higher-order inter-
dependencies for a brain parcellation with higher spatial resolution than in previous
chapters, and where explicit calculations at higher orders than n=3 were not compu-
tationally feasible. We hypothesize that redundancy and synergy at order three might
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be informational markers to describe the changes in brain activity produced by Fron-
totemporal Dementia.

5.2 Results

We analyzed resting state data publicly available from the NIFD database. The cohort is
composed of 40 healthy control (HC) and 35 FTD subjects. The two groups are balanced
in sex (p-val=0.20, ES=0.29), age (p-val=0.10, ES=0.37), and years of education (p-
val=0.07, ES=0.41) (Table 1).

Variable HC FTD t-val p effect-size
N 40 35
Age, years 67.29 (4.34) 65.77 (3.67) 1.62 0.10 0.37
Females, % 23 (57%) 15 (43%) 1.60 0.20 0.29
Education years 17.10 (1.75) 16.14 (2.76) 1.81 0.07 0.41

Table 5.1: Demographic variable of the HCs and FTD patients.

We first compared T1-weighted anatomical images at the voxel level, performing voxel-
based morphometry group comparison between HC and FTD. We found significantly less
volume in FTD (also known as atrophy) in the striatum (accumbens, caudate, putamen),
temporal pole (hippocampus, etorihinal, parahippocampal), amygdala and thalamus.
To analyze the effect of Frontotemporal Dementia on brain dynamics, we proposed an
analysis based on a redundancy and synergy count following the methodological scheme
of Figure 5.1. First, we reduced the whole-brain neural dynamics of each subject into 86
representative time series. The 86 regions of interests (ROIs) contain 68 cortical areas
from the Desikan-Killiany Atlas [144] and 18 subcortical regions. Then, for each subject,
we computed the O-information for all the triplets without repetition present in the 86
ROIs (Figure 5.1 B). We next performed a surrogate strategy to assess the significance
in the non-zero O-information values for each participant. In particular, a surrogate
time series consisted in a lag-shifted time series realization of the original one using
periodic boundary conditions. Next, for each triplet, we counted across participants
in the groups of HC and FTD, the number of positive and negative O-information
significant values, corresponding respectively to redundancy and synergy (Figure 5.1
C). Finally, we compared these numbers of redundant and synergistic counts between
the groups using the Chi-squared test test (χ2)(Figure 5.1 C) obtaining a p-value and
a Chi-squared statistic (χ2stat) per each triplet.
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Figure 5.1: Methodological scheme. 75 subjects’ fMRI data were extracted from the
publicly available NIFD database and grouped into healthy controls (HC) and Fron-
totemporal Dementia (FTD). B. We grouped the time series into 86 ROI’s, with 68
cortical regions from the Desikan-Killiany Atlas and 18 subcortical regions. Then, for
each subject, we estimated the O-information at order three. C. For each triplet (groups
of three ROIs), we count how many times the triplet was positive (redundancy count)
or negative (synergy count) across subjects in each group. Finally, we compared the
synergy and redundancy count between controls and patients using the Chi-squared test
for each triplet.

5.2.1 Significant redundant and synergistic differences between HC
and FTD after clustering correction

A total number of 102.340 Chi-squared tests were performed –coinciding with the num-
ber of triplets without repetition in the 86 ROIs– leading to a big multiple compari-
son problem. To overcome this issue, we followed a clustering method similar to the
threshold-free cluster enhancement (TFCE) [145]. In particular, we first fixed a thresh-
old τ and identified the triplets with χ2stat value higher than τ (Figure 5.2A). Next,
the survivor’s triplets were grouped together if they shared at least one ROI in common.
We next assigned a score to each cluster, corresponding to the sum of the χ2stat triplet
values within the same group (Figure 5.2A). Finally, we calculated a p-value for each
cluster using surrogates of random permutations of the labels HC and FTD (y-axis,
Figure 5.2B).
This strategy was repeated for different values of τ (5 ≤ τ ≤ 14). The "best" value
of τ , corresponding to the one with the lowest p value, occurred for τ = 10, depicted
in orange color in Figure 5.2B. For this value of τ , we found 54 statistically significant
different triplets. Moreover, 72 of the total 86 ROIs participated in at least one triplet.
Please note that in Figure 5.2A, we plotted a subset of the 102.340 triplets, and for this
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reason, we showed only three of the 54 triplets belonging to the cluster.
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Figure 5.2: Clustering correction method for HC vs. FTD. A. A clustering
method was performed for different thresholds τ . First, for each value τ we identified
the triplets with statistic value higher than τ . Next, the survivor’s triplets were grouped
in the same cluster if they shared at least one region. For clarification purposes, the
figure shows three triplets belonging to the same cluster. B. The clustering method
depicted in A was performed for several thresholds (x-axis). A p-value (y- axis) was
obtained for each cluster by comparing its size to clusters created from surrogate data.

5.2.2 Regions with unique redundant or synergistic participation

The cluster composed of 54 triplets with significant differences in redundancy and syn-
ergy between controls and patients contained two classes of triplets. The first one
corresponded to those triplets where FTD was more redundant than HC (left circle in
Figure5.3A) and the second one to those with HC more redundant than FTD (right
circle in Figure5.3A). Please note that the second class is equivalent to the situation
where FTD was more synergistic than HC. Indeed, as we compared only the subjects
with significant non-zero O-information, redundancy and synergy act as complemen-
tary measures. For instance, if a triplet had 80% of redundant values, it had a 20% of
synergy across a particular group (HC or FTD, Figure5.3A).
Then, we analyzed the ROIs belonging only to one of the two former classes to identify
those ROIs with exclusive redundant participation, exclusive synergistic participation,
or a combination of both, meaning that for some of the triplets those ROIs can have
a redundant role, and in other triplets, a synergistic one. The ROIs participating in
all significant triplets as redundant were the fusiform, posterior cingulate, and anterior
cingulate (Figure5.3B, brain in red color). Similarly, the exclusively synergistic regions
were the transverse temporal gyrus, also known as Heschl’s gyri (Figure5.3B, brain in
blue color). A third group of regions had a mixed participation, and their location
included almost the entire frontal lobe (middle, inferior, and superior frontal), the infe-
rior parietal, the isthmus of the cingulate gyrus, and the precentral cortex (Figure5.3B,
brain in green color). Very importantly, the differences in high-order interdependences
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were located in different regions of those altered at the morphological level, previously
obtained by voxel-based morphometry.
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Figure 5.3: Triplets visualization.A. Percentage of patients within the FTD group
that had a redundant interaction in a given triplet (y axis) as a function of the same
percentage but in the HC group (x axis). Only the triplets with significant group dif-
ferences in the redundancy/synergy ratio are depicted. B. Across all significant triplets,
ROIs that had exclusive redundant participation (red), exclusive synergistic participa-
tion (blue), and mixed participation (some of the triplets in which ROI participated
were redundant, and others were synergistic).

5.3 Discussion

Continuing with the previous chapters, we have focused on the characterization of HOIs
and, in particular, on their differences between a group of HC and a group of patients
with FTD. It is important to point out that, instead of averaging triplets within each
BHA module as was done in previous chapters, in this chapter and as a novelty in the
study of the high order interdependences, we chose to do the analysis at the level of
individual triplets. This is important, as frontotemporal dementia is known to neurode-
generate some regions more than others and, in particular, pronounced atrophies were
shown in frontal and temporal areas [135, 143, 136], striatum [146, 147], and thalamus
[148, 149]. In addittion, another study also showed disrupted frontolimbic connectivity
and elevated local connectivity within the prefrontal cortex [137].
In particular, the new methodology developed here compares between HC participants
and FTD patients, the redundancy and synergy at the triplet level, without any aver-
aging across the ROIs involved. A methodological consequence of this choice is having
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to correct for multiple existing comparisons due to the large number of triplets com-
pared between the two groups (for 86 regions, a total of 103,340 comparisons). To
overcome this problem, we have developed a clustering method similar to nonparamet-
ric threshold-free cluster enhancement (TFCE) [145]. Our clustering method, to our
knowledge never used in higher interdependences studies, is the main key methodolog-
ical contribution in this chapter.
At the morphological/structural level, we have found major significant atrophies in
striatum, temporal pole, thalamus and amygdala, in agreement with previous find-
ings [135, 143, 136, 146, 147, 148, 149]. On the other hand, at the level of high-order
interdependences, we have found 54 triplets that have significant differences between
controls and patients. Some of the ROIs in these triplets participated solely in redun-
dancy, synergy, or both. Very striking, it is important to emphasize that, in any of
the three cases, these ROIs were distributed throughout the brain specifically in dif-
ferentiated regions than those where the morphological group differences were found.
This suggests that our methodology, which addresses group differences in relation to
high-order interdependences, is complementary to other well-established techniques in
neuroimaging, such as group differences in morphological/structural MRI sequences,
since the results obtained by one of the strategies cannot been reproduced by the other.

5.4 Limitations and future work

Several methodological limitations and work in progress are worth mentioning. First,
we have analyzed higher-order interactions only at the triplet level due to the computa-
tional constraints of using an 86-region brain parcellation (higher orders require higher
computational resources). Future work on higher interaction orders would validate the
extent to which the results presented here at the triplet level are preserved at higher
orders. Second, we have developed a specific clustering method with a fixed number of
surrogate comparisons, but a systematic variation of this parameter and its effects on
our results is needed. Third, the small sample size in this study could affect the sensi-
tivity of the group differences found in the high order interdependences between DMF
and HC. For this reason, we have preferred not to separate the DFT group into the two
subgroups of svPPA and bvFTD, which, although clinically it might be interesting, a
further stratification of the group would provide an even smaller sample size, which we
preferred not to do that. Future work, in larger cohorts, could replicate our methodol-
ogy to understand the differences between these subtypes. Fourth, our study only have
focused on one fMRI preprocessing pipeline, with high international consensus in the
MRI preprocessing community for connectomics, although it is well known that varia-
tions here could affect the significance of our results. Finally, the proposed methodology
found a cluster of triplets with unbalanced synergy and redundancy between the two
groups. The ROIs that formed the triplets had either an exclusive redundant role, an
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exclusive synergistic role, or mixed participation, i.e., these ROIs were redundant in
some triplets and redundant in others. Different non-parametric clustering methods,
which can solve the problem of multiple comparisons in the number of triples, could be
used, and future work should explore these possibilities.

5.5 Materials and Methods

5.5.1 Neuroimaging

Participants

The participants were collected from Neuroimaging in Frontotemporal Dementia (NIFD/FLTDNI).
The participants enrolled in NIFD are assessed through interviews, physical examina-
tions, and cognitive testing to characterize if each person is affected by frontotemporal
lobar degeneration. We used the fMRI dataset from 75 subjects, 40 healthy controls,
and 35 FTD patients: 15 participants with the behavioral variant of Frontotemporal
Dementia (bvFTD), and 20 subjects with a semantic variant of a primary progressive
aphasia (svPPA).

Neuroimaging pre-processing

The functional imaging preprocessing followed a similar procedure to Ref. [150]. We
applied slice-time correction, and each volume was aligned to the middle volume to
correct for head motion artifacts. Then, we performed a intensity normalization. Next,
we regressed out 24 motion parameters, the average global signal, the average cere-
brospinal fluid (CSF), and white matter signal. We applied a band-pass filter between
0.01 and 0.08 Hz and removed linear and quadratic trends. Then, all voxels were
spatially smoothed with a 6 mm FWHM. Finally, we used FreeSurfer for brain segmen-
tation and cortical parcellation. A total of 86 regions were generated, with 68 cortical
regions from the Desikan-Killiany Atlas[144](34 in each hemisphere) and 18 subcortical
regions (left/right thalamus, caudate, putamen, pallidum, hippocampus, amygdala, ac-
cumbens, ventral DC and cerebellum). The parcellation for each subject was projected
to the individual functional data, and the mean functional time series of each region
was computed.

5.5.2 Redundancy and Synergy count across group

Similar to the previous chapters, we split the O-information on positive and negative
values using

Ω+ = max{Ω, 0} ; Ω− = −min{Ω, 0} ,
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so that Ω = Ω+ − Ω−. Using these quantities, we calculated the following proxies for
redundancy and synergy per subject, and triplet.

R(k)(Xi, Xj , Xl) = Ω+
(k)(Xi, Xj , Xl) (5.1)

S(k)(Xi, Xj , Xl) = Ω−
(k)(Xi, Xj , Xl) (5.2)

for {i, j, l} ∈ {1, . . . , 86}, and i ̸= j ̸= l.
Finally, we defined the following redundancy and synergy count proxies per group and
interaction order n = 3.

RG =
( NG∑
k=1

1(R(k)(X1, X2, X3), . . . ,

NG∑
k=1

1(R(k)(X84, X85, X86)
)

(5.3)

SG =
( NG∑
k=1

1(S(k)(X1, X2, X3), . . . ,

NG∑
k=1

1(S(k)(X84, X85, X86)
)

(5.4)

for G = {HC,FTD} denoting the groups, NHC = 25, NFTD = 35, and 1 the indicator
function,

1(x) =

1, if x ̸= 0

0, otherwise.

5.5.3 Statistical analyses

Significance of O-information values

For each subject, we first identified the values of O-information that were significantly
different from zero. To do this, we generate time-shifted surrogates of the original signal
with periodic boundary conditions, meaning that the tail shifting to the right of the
signal is moved to the beginning of the new surrogate signal. In this way, for each of
the surrogates, we preserve the mean and variance of the original signal. In particular,
we implemented the following strategy:

1. We randomly chose only 10 ROIs (from the total of 86), in order to reduce com-
putational cost.

2. For the signals corresponding to those 10 ROIs, surrogates were obtained, each
one with a different time shift (min value of 1, max value of 239).

3. The O-information for all the combinations of triplets without repetition was
calculated (a total of 120 combinations).

4. Steps 1-3 were repeated 100 times, obtaining the null distribution with a total
number of 120*100=12,000 values of surrogate O-information.

43



Finally, a value of O-information is said to be significant when it is higher than two
standard deviations in the null distribution, which for the Gaussian case, which is the
case of our surrogate distribution, is equivalent to having a p-value less than 0.05.

Differences in redundancy and synergy per triplet

To assess whether there was an imbalance between the redundancy and synergy count
of a given triplet in FTD as compared to HC, the Chi-square statistic was used. We
then got a χ2 statistic and its corresponding p-value per triplet.

Significance of clusters

Our strategy for addressing the significance of clusters resulting from the group com-
parisons is based on the non-parametric threshold-free cluster enhancement (TFCE)
method. In particular, we followed the strategy:

1. Define a threshold τ .

2. Choose those triplets with χ2 statistic value greater than τ .

3. Group the triplets selected in step 2 into different clusters. To do that, two triplets
belong to the same cluster if they share at least one ROI in common.

4. Assign a score to each of the clusters, corresponding to the sum of the χ2 statistic
values of all triplets belonging to each cluster.

5. Calculate a p-value for each cluster using surrogates by random permutations of
the labels HC and FTD. First, we calculated the surrogate χ2 statistic values for
each triplet resulting from the shuffled group comparison, and after, we repeated
steps 2-4 for the new surrogate clusters. This was performed N=100 times, build-
ing the null-distribution by counting how many times the actual score was higher
than the surrogate score.

This strategy was repeated for different values of τ . Our criteria for choosing the "best"
threshold was to choose the τ that provided, among all significant clusters, the one with
the lowest p value1.

1It is important to emphasize that, due to the precise way in which we build the clusters, it is
possible to obtain more than one cluster for large threshold values. However, for each threshold, we
identified the lowest p-value among all clusters, thus ensuring that at least one cluster was significant,
although in principle some of the other clusters might not be significant
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6
Conclusions

In this thesis, we have shown how redundancy and synergy might work as informa-
tional markers to characterize changes in the high-order interactions of brain activity
along the lifespan. We have used the recently proposed O-Information to quantify the
intrinsic statistical synergy and the redundancy in groups of three or more interacting
random variables that, in our case, were described by fMRI data. Our first result shows
that the BOLD signals of older participants exhibit higher predominance of redundant
interdependencies than younger participants, an effect that seems to be pervasive as is
exhibited at all orders of interaction. Additionally, while there is strong heterogeneity
across brain regions, we found a redundancy core at all interaction orders studied. This
core is constituted by the prefrontal and motor cortices, and thus, involves working
memory, executive and motor functions.
Next, to investigate the relationship between high-order functional interactions and
connnectomics, we have build a neurobiologically realistic whole-brain computational
model using both anatomical and functional MRI data. Our model shows that the
variations in functional patterns can be explained by changes in the brain anatomical
networks, which degenerate as we age. Thus, the differences in high-order functional in-
teractions between age groups can be largely explained by variations in the connectome.
Based on this finding, we propose a simple non-linear neurodegeneration model that is
representative of healthy physiological aging, and that reproduces the age-variations
that occur in the high-order structure of the functional data at all interaction orders,
in full agreement with the empirical observations in the previous chapter. These results
establish also a first step towards explaining how the reconfiguration of brain activity
along the lifespan intertwines with changes in the underlying neuroanatomy.
Finally, to assess the potential of redundancy and synergy as informational markers
in the pathological brain, we hypothesize that redundancy and synergy at order three
might work out to assess the changes in brain activity produced by Frontotemporal
Dementia. Unlike the previous chapters of this thesis, we have only focus on interaction
order equal to three, because regions in this study were defined through a fine-grained

45



parcellation, which makes an exhaustive analysis at all orders computationally imprac-
ticable. In this chapter, we have proposed a new methodology to tackle redundancy and
synergy group differences by assessing significance of clusters of triplets. As a result,
we found regions that only participated in redundant interactions, other regions that
only participated in synergistic interactions, and regions that participated redundantly
in some triplets and synergistically in others.
Overall, the results found in this thesis begin to disentangle the complex mechanisms by
which structural changes in the connectome lead to functional differences in the aging
brain. Moreover, we have developed a pioneer methodology for assessing differences
in the high-order interactions structure in the pathological brain. Redundancy does
not only imply that the interacting areas share information, but that they share the
same information. Note that no pairwise network approach could discriminate this fact.
Technically, it is important to note that our results are based on a specific fMRI prepro-
cessing pipeline, with high consensus in the international community, but nevertheless,
it could happen that some of these results could vary by changing the preprocessing
pipeline. Following this possibility, we are currently working on how some variations
in motion correction, part of preprocessing, affect the higher order interdependencies
of the aging brain. On the other hand, to advance in the topic of neuroimaging MRI
preprocessing, we are currently quantifying the integrity of the white matter tract in
critically ill patients with multiple organ failure.
To conclude, I believe that we have only beginning to scratch the surface of what
can be achieved with high order methods and ideas to understand the brain. In the
future, I would like to extend the methodology developed in this thesis in new clinical
challenges, including life expectancy, cognitive processes, neurodegenerative diseases,
and psychiatric disorders.

Perspectives

An abundance of new technological advancements has enriched and enlarged experimen-
tal datasets in humans and other species, in particular in fMRI. Additionally, a wealth
of novel mathematical and computational tools has emerged to help us to understand
those datasets, among them novel advances in high-order statistical interdependencies
among brain regions. One major factor motivating future research in high-order in-
teractions in the brain is the characterization of these statistical interdependencies in
different brain states and the understanding of the mechanistic basis of those inter-
dependencies. We believe that future research may help to clarify the relationship of
high-order interactions with our own mental capacities, perceptions, motor behavior,
both in health and disease, as these mental capacities are collective properties likely to
emerge beyond pairwise interactions, i.e., at high-order.
However, how best to deploy this growing experimental and analytic arsenal toward
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a science based mechanistic and causal understanding of the different forms of mental
functions in aging and neurodegeneration possess important challenges. It is still unclear
how to choose mathematical or computational tools to capture those mechanisms. There
is still a long way to go, both scientifically and transnationally to the clinics. Still few
new scientific discoveries are translated into more effective treatments of mental illness.
We hope that this thesis may motivate future research in this topic and novel effective
treatments of mental health.
This thesis and the tools we presented open up a range of possibilities for future research.
Here are some of them:

• How some variations in the movement correction of fMRI data affect the aging
brain’s high-order interdependencies: In this line, we are computing redundancy
and synergy in data obtained following different movement correction protocols.
For instance, this includes 24 head motion parameters, ICA-AROMA, both with
and without global signal regression.

• To further develop the neuroimaging MRI preprocessing, we are currently quanti-
fying the white matter tract integrity in critical patients with multiorgan failure.
This longitudinal study focused on the associations between imaging and neu-
ropsychological scores.

• Multiscale modelling and parcellations: Using different parcellations having dif-
ferent levels of resolution to assess high-order interdependencies.

• High order in different species: The core interest of fMRI studies to date have been
understanding the human brain in health and disease. However, a key source of
progress is likely to come from extending the methodology to non-human primate
and rodent brains. Developments in brain recording technology move faster in
animals than humans. There are openly available fMRI data for the macaque,
mouse, rat, and marmoset to apply our methodologies.

• Gaussian copula approach to estimate multivariate extensions of the mutual infor-
mation. In this line, we are testing different approaches to computing multivariate
extensions of the mutual information, namely the total and dual total correlation.
We focus our analysis on the Gaussian copulas approach.
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Appendix A: Supplementary figures

Figure S1: The linear aging model does not provide significant differences in
redundancy between age groups. Similar to Fig. 3C in the main text, but for a
synthetic I4 age group using a linear model (̃I4L) for aging instead of a quadratic one.
Redundancy (left) and synergy (middle) are plotted as a function of interaction order
and then, for each interaction order, Wilcoxon rank-sum test p-values are obtained after
comparing their values between the groups Ĩ4L and I1. If the p-values survived the FDR
multiple comparison correction, both the diamonds and the circles were filled in.
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Figure S2: Node strength values across different nodes communities (C) af-
fected by age. Nodes here are atlas regions. A: Rate degeneration matrix calculated
using the absolute values of r, and where all links in the matrix survived to Bonfer-
roni correction (a similar matrix was shown in the right panel of Figure 4 of the main
manuscript). B: Strength values for all atlas regions (nodes) calculated on the rate
degeneration matrix show in panel A. Node strength was calculated by summing over
all positive values in each row or column in the matrix. A,B: Colors blue (C1), orange
(C2) and black (C3) indicate different communities.
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Appendix B: Introductory probability concepts

Definition 4 Let Ω be a non-empty subset. A class of Ω subsets, denoted by F, is called
σ-algebra of Ω if satisfying:

1. ∅ ∈ F

2. If A ∈ F, then Ac ∈ F

3. If An ∈ F for all n ∈ N, then
∞⋃
n=1

An ∈ F.

Definition 5 The Borel σ-algebra of R, denoted by B(R), is the minor σ-algebra con-
taining all the open intervals of R.

Definition 6 Let Ω be a non-empty space and F a σ-algebra of Ω. Then, measurable
space is defined as the tuple (Ω,F).

Definition 7 Let (Ω,F) be a measurable space. G is called a sub-σ-algebra of F if G is
a σ-algebra of Ω and GF.

Definition 8 Let (Ω,F) be a measurable space. Then, µ : Ω → [0,∞] is called a
measure of (Ω,F) if it satisfies the following properties:

1. µ(∅) = 0.

2. For all A ∈ F, µ(A) ≥ 0.

3. (σ-additivity) For all sequence of disjoint sets Ai ∈ F, i ∈ N:

µ(

∞⋃
n=1

) =

∞∑
n=1

µ(An).

Definition 9 Let Ω be a non-empty space, F a σ-algebra of Ω, and µ a measure of
(Ω,F). Then, the triplet (Ω,F, µ) is called a measure space.

Definition 10 A probability space is a measure space (Ω,F,P), where the measure over
(Ω,F) satisfying P(Ω = 1).

The introductory mathematical concepts from measurement theory are in appendix A.

Definition 11 Let (Ω,F,P) be a probability space. A random variable X is a function
X : Ω → R such that X−1(A) ∈ F, for all A ∈ B(R). That is:

P{X ∈ A} = P(X−1(A)).
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Definition 12 The cumulative density function (CDF) F of the random variable
X is defined for any real number x by:

F (x) = P{X ≤ x} = P{X ∈ (−∞, x])}.

Then, F (x) := 1− F (x) = P{X > x}

Definition 13 A random variable X is said to be discrete if its set of possible values
is countable. Moreover, for discrete random variables

F (x) =
∑
x≤y

P{X = y} =
∑
x≤y

p(y),

where p is the probability mass function. Notice that, p is a function that gives the
probability that a discrete random variable is exactly equal to some value.

Definition 14 A random variable X is said to be continuous if there exists a function
f , called the probability density function (PDF), such that:

P{a ≤ X ≤ b} =

∫ b

a
f(x) dx.

Hence, if F is the CDF of X,

F (x) =

∫ x

−∞
f(s) ds,

and it follows f(x) = d
dxF (x) (fundamental theorem of calculus).

Definition 15 The expectation or mean of the random variable X, denoted by E[X],
is defined by:

E[X] =

∫ ∞

−∞
x dF (x)

=


∫∞
−∞ xf(x) dx if X is continuous,∑
x

xP{X = x} if X is discrete.

In general terms, for any function of X, say h(X):

E[h(X)] =

∫ ∞

−∞
x dFh(x),

where Fh(X) is the distribution function of the random variable h(X).
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Introducción

Envejecimiento saludable y enfermedades cerebrales

Estudiar en envejecimiento desde la perspectiva de la neurociencia es de gran interés
desde un punto de vista socioeconómico, dado que la cantidad de adultos mayores están
aumentando considerablemente a lo largo del mundo. Las proyecciones sugieren que el
porcentaje de personas sobre más de 60 años podría incrementar a 900 millones en el
año 2015, y a 2.1 billones para el año 2050 [1, 2]. El envejecimiento es el mayor factor
de riesgo para alteraciones cerebrales de alteración tardía, que aceleran el deterioro
cognitivo y motor, y empeoran la calidad de vida.
Diversas causas del declinamiento sistémico subyacen al proceso del envejecimiento,
involucrando efectos biológicos, cognitivos y fisiológicos. Por ejemplo, el envejecimiento
altera los ritmos circadianos y ciclos de sueño [3], resultando en una pobre calidad del
sueño, deteriora el rendimiento cognitivo, tal como la velocidad del procesamiento de
información, memoria de trabajo, funciones ejecutivas y razonamiento [4], e inclusive
aumenta los problemas de salud mental tales como ansiedad y depresión [5].
Adicionalmente, es importante por muchas razones caracterizar los cambios cognitivos
subyacentes al envejecimiento de un cerebro sano, y distinguir entre la edad cronológica
de un cerebro y la edad del cerebro estimada mediante los datos de resonancia mag-
nética de pacientes. Primero, esto podría ayudar a tratamientos y cuidados específicos.
Segundo, el envejecimiento es un considerable factor de riesgo para enfermedades neu-
rodegenerativas que afectan a la cognición, tales como las enfermedades de Alzheimer y
Parkinson. Afortunadamente, los avances en neuroimagen, preprocesamiento de datos y
machine learning han contribuido sinérgicamente a tener mejores soluciones al problema
de la predicción de edad [6]. Estos avances han llevado a un mejor entendimiento del
proceso de envejecimiento de un cerebro sano, podrían motivar a nuevas intervenciones
o prototipos de terapias que puedan contrarrestar los efectos neurodegenerativos o el
deterioro producto del envejecimiento [7, 8, 9, 10, 11]..

Neuroimagen

Existen diversas técnicas no invasivas de neuroimagen para medir actividad cerebral
en humanos. La imagen de resonancia magnética (MRI, por sus siglas en inglés) es
una tecnología versátil para extraer información a gran escala tanto funcional como
estructural de la organización cerebral. Existen diversos parámetros de adquisición de
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la MRI, tales como la intensidad del campo magnético su dirección, su forma, y el
número de secuencias de pulso para cambiar el gradiente del campo magnético o sus
tiempos de relajación. Particularmente, la MRI estructural nos permite el estudio de
tejidos anatómicos tales como la materia gris, blanca y fluido cerebroespinal (CSF) a
lo largo de todo el cerebro, e incluyendo estructuras corticales y subcorticales, inclusive
estructuras más internas como el tronco del encéfalo o el cuerpo estriado [12]. La imagen
de resonancia magnética de difusión (dMRI, por sus siglas en inglés) nos permite rastrear
el movimiento aleatorio tridimensional de las moléculas de agua en dichos tejidos. Esto
es relevante porque, por ejemplo, en la materia gris y CSF, la difusión es altamente
isotrópica, mientras que en la materia blanca la difusión de las moléculas de agua
es anisotrópica, con algunas direcciones más visitadas que otras. Luego de diversas
estrategias para reconstruir dichas trayectorias, dMRI proporciona un mapa de tractos
de materia blanca que conectan pared de regiones a lo largo del cerebro completo, y a
resolución de milímetros.
La imagen de resonancia magnética funcional (fMRI) es una técnica no invasiva des-
cubierta en los años 90 por Seiji Ogawa [13]. Esta técnica se basa en las propiedades
magnéticas de la sangre, en particular, en los ciclos de oxigenación y desoxigenación
de la hemoglobina en la sangre. La principal hipótesis de la fMRI es que si de alguna
forma el cerebro se encuentra envuelto en una tarea específica, demandará una actividad
neuronal sostenida, lo que en consecuencia aumentará el consumo de oxígeno. De este
modo, y muy importante, la fMRI es una medida indirecta de actividad neuronal.
Los avances de neuroimagen han evolucionado de la mano con la innovación y progreso
en las metodologías y herramientas de preprocesamiento de imágenes [14, 15, 16, 17].
Existen diversos software y toolbox para pre-procesar y limpiar artefactos de distin-
tas modalidades de MRI, tales como FSL, ANTs, MRtrix3, SPM, AFNI, por nombral
algunos. Es importante mencionar que estas nuevas técnicas de neuroimagen y pre-
procesamiento, están llevando a grandes progresos en la investigación cualitativa clínica.
Otra técnica para medir actividad cerebral en el cerebro completo es la electroencefalo-
grafía (EEG) o magneto electroencefalografía (MEG), donde ambas se basan en las
propiedades eléctricas y magnéticas de la excitabilidad celular de las células cerebrales.
Aunque tanto la EEG como la MEG tienen una gran resolución temporal, e inclusive
capaces de capturas variaciones de actividad neuronal en milisegundos, su resolución
espacial es pobre. En esta tesis doctoral, nos enfocaremos solamente en dos modalidades
de MRI, fMRI y dMRI.

Conectividad estructural

Cuantitativamente, se han descrito distintos efectos del envejecimiento en imágenes
cerebrales estructurales. A lo largo del envejecimiento, el volumen total del cerebro au-
menta desde la infancia hasta la adolescencia en aproximadamente un 25% en promedio,
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luego permanece constante durante las siguientes tres décadas, y finalmente decae al
tamaño de la infancia en edades más tardíass [18]. Adicionalmente, se ha mostrado que
la atrofia en cerebros envejecidos no es homogénea, y algunas regiones anatómicas están
más afectadas que otras: es bien sabido que dichas estructuras son el hipocampo [19], la
corteza prefrontal [20] y los ganglios basales [21, 22]. La materia blanca se degenera más
rápido que la materia gris a lo largo del envejecimiento, lo que indica que la conectivi-
dad total se ve disminuida con la edad [23]. Además, se ha mostrado un decrecimiento
progresivo en diversas medidas de integridad de tractos utilizando imágenes de difusión,
la cual es más pronunciada en sujetos sobre los 60 años de edad [7, 24].
El envejecimiento también ha sido estudiado en términos de mapas de conectividad de
actividad neuronal, denominados conectividad estructural (SC). Diversos investigadores
han caracterizado la SC a lo largo del envejecimiento, siguiendo las ideas seminales de
integración y segregación propuestas por Tononi, Sporns y Edelman, proponiendo los
conceptos de integración y segregación. La segregación le permite a las áreas cere-
brales realizar tareas específicas de forma independiente. Mientras que la integración le
permite a las áreas cerebrales trabajar de manera conjunta para efectuar tareas goal-
directed [25, 26]. Siguiendo esta línea, diversos estudios han mostrado un decrecimiento
de la segregación y un aumento de la integración a lo largo del envejecimiento [27, 28, 29].
Sin embargo, la relación entre los cambios en la estructura cerebral y su función causados
por el envejecimiento, sigue siendo en gran parte desconocida [30, 31, 32, 24].

Conectividad funcional

Otra forma de cuantificar los cambios producidos por la edad son las interdependen-
cias funcionales a pares. Las correlaciones funcionales entre dos señales temporales de
actividad cerebral son cuantificadas típicamente mediante la Correlación de Pearson.
Estas correlaciones se almacenan en una matriz denominada conectividad funcional
(FC). Además, diversos estudios han ido más lejos y han analizado los cambios de la
conectividad funcional a lo largo del tiempo [33, 34, 35, 36, 37, 38]. Estudios previos
de la conectividad funcional, en estado de reposo, a lo largo del envejecimiento han
mostrado que regiones dentro de la red neuronal por defecto (DMN) se vuelven menos
conectados funcionalmente, con el paso de la edad [39, 8, 40, 32]. Adicionalmente, las
redes fronto parietal, saliencia y red de atención dorsal también muestran un grado
de deterioro con la edad, en términos de reducción de la conectividad dentro de la
red [41, 42, 43, 39]. En contraste, la conectividad entre redes aumenta con la edad
entre las redes DMN, somatosensorial, y frontoparietal. En conjunto, los antecedentes
descritos sugieren una pérdida general de especificidad funcional o segregación a lo largo
de los circuitos cerebrales [46]. Aunque ha existido un importante aumento en el en-
tendimiento de los efectos del envejecimiento en la función cerebral, estos efectos son
menos entendidos que los efectos en la conectividad estructural, los cuales muestran una
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progresiva desconexión con la edad.

Interacciones de alto orden

Una importante limitación de las conectividades funcionales previamente descritas, es
que su análisis está restringido a conectividad a pares, ignorando los posibles efectos de
órdenes mayores llamados interacciones o interdependencias de alto orden. Las inter-
dependencias de alto orden nos permiten caracterizar la organización de los patrones
cerebrales, distinguiendo entre interacciones dominadas por redundancia o sinergia, las
que juegan un rol crucial en la dinámica neuronal [47, 48, 49, 50, 51, 52]. La redun-
dancia se puede entender como una extensión de la noción convencional de correlación
entre más de dos variables, donde cada variable contiene una ”copia” de la misma infor-
mación compartida con las otras variables [53]. En contraste, la sinergia corresponde
a las relaciones estadísticas que regulan el todo, pero no las partes [54, 55, 56]. La
sinergia permite que coexistan tanto la interdependencia local con la cohesión global,
una condición que es fundamental para las funciones cerebrales de alto orden, mientras
que la redundancia, incluye situaciones altamente sincronizadas como el sueño profundo
o convulsiones epilépticas, que harían que el cerebro fuese menos adecuado a dicha co-
existencia [26, 57]. Un estudio pionero en las interdependencias de alto orden y el
envejecimiento mostró cambios significativos en la sinergia y redundancia al nivel de
interacción de tripletas [58], así como también la existencia de un rol redundante, la
DMN. Sin embargo, los efectos del envejecimiento en interacciones más allá de tripletas
siguen en gran medida inexplorados, hasta donde sabemos.

Hipótesis y objetivos

Hipótesis

“La redundancia y sinergia son marcadores informacionales que describen los cambios
del envejecimiento de un cerebro sano. Más aún, las variaciones en la organización de
dichas interacciones funcionales de alto orden pueden ser explicadas por los cambios de
las redes anatómicas cerebrales, las cuales se degeneran con la edad. Las diferencias
en sinergia y redundancia podrían diferencias cerebros sanos de cerebros con patologías
neutodegenerativas. ”

Objetivos

• Cuantificar los cambios cerebrales en las interdependencias funcionales de alto
orden, en términos de redundancia y sinergia, utilizando datos de fMRI de par-
ticipantes entre 10 a 80 años.
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• Analizar si las variaciones en las interdependencias funcionales de alto orden
pueden explicarse por los cambios en las redes anatómicas del cerebro a lo largo
del envejecimiento, utilizando un modelo de cerebro completo del tipo Dynamic
mean field (DMF).

• Cuantificar los cambios en las interacciones funcionales de alto orden producidas
por la Demencia Frontotemporal.

Visión general de la tesis

Este trabajo está dividido en cinco capítulos:
C1. Introducción: Proporcionamos una visión general de la tesis Doctoral.
C2. Materiales y métodos: Introducimos las herramientas principales e ideas utilizadas
en el desarrollo de esta tesis, incluyendo la metodología global utilizada en esta investi-
gación. Relacionamos dichos métodos con la literatura en el área de investigación. Los
siguientes tres capítulos tienen sus propios métodos.
C3. Interdependencias de alto orden en el cerebro envejecido: Investigamos cómo la
organización informacional de alto orden del cerebro cambia con la edad. Hipotetizamos
que la redundancia y sinergia son marcadores informacionales que describen los cambios
en la actividad cerebral funcional de un cerebro sano durante el envejecimiento. Nuestros
resultados muestran que los participantes mayores (de 60 a 80 años) exhiben una mayor
predominancia de la redundancia que los sujetos más jóvenes. Este efecto se evidencia
en todos los órdenes de interacción.
C4. Interdependencias de alto orden en un modelo de dinámica de cerebro completo:
Combinamos datos de MRI funcional y estructural con un modelo de cerebro completo
del tipo Dynamic mean field (DMF) para investigar los mecanismos subyacentes a los
cambios del envejecimiento en la estructura e interacciones funcionales de alto orden.
Hipotetizamos que las variaciones en los patrones funcionales pueden ser explicadas
mediante los cambios en las redes anatómicas del cerebro, las cuales se degeneran con
la edad. El modelo del tipo DMF reproduce con éxito que los sujetos mayores poseen
una mayor redundancia que los sujetos más jóvenes, y para todo orden de interacción,
reproduciendo así los resultados empíricos observados en el capítulo 3.
C5. Interdependencias de alto orden aplicadas a Demencia Frontotemporal: Analizamos
las interacciones de alto orden en pacientes con Demencia Frontotemporal. Hipoteti-
zamos que la redundancia y sinergia son marcadores informacionales que describen
los cambios de actividad cerebral, producidos por la Demencia Frontotemporal. Nue-
stro tercer resultado muestra un clúster de tripletas con sinergia y redundancia desbal-
anceadas, y con algunas regiones participando de manera única en tripletas redundantes
o sinérgicas.
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