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The first one for helping me with bureaucracy questions; the second one for shar-
ing with me her enriching experiences while developing our Dissertations.

Finally, I want to thank my family and friends for their support. In particular,
I want to offer my eternal gratitude to the three people that have been with me all
this way long. First, to my parents Mari Carmen and Michel. Thank you for all
your unconditional support and love, for teaching me the values that have made

ii



Acknowledgements

me who I am, and for encouraging me to pursue a Ph.D degree. Last but not
least, to my partner Amaia. She has consistently supported me when I needed
it: she was the serenity when I was stressed and the encouragement when I was
frustrated. Thank you for trusting me and for never ceasing to remind me that
I was capable of doing it. Zaila bada ez da ezinezkoa, zaila bada badago lortzea.

iii



Abstract

The Earth’s subsurface is formed by different materials, mainly porous rocks pos-
sibly containing minerals and filled with salty water and/or hydrocarbons. The
formations that these materials create are often irregular, appearing geometrically
abrupt forms with different properties that are mixed within the same layer.

One of the main objectives in geophysics is to determine the petrophysical
properties of the Earth’s subsurface. In this way, companies can discover hydro-
carbon reservoirs and maximize the production, and determine optimal locations
for hydrogen storage or CO2-sequestration. To achieve these goals, companies
often record electromagnetic measurements using Logging While Drilling (LWD)
instruments, which are able to record data while drilling. The recorded data is
processed to produce a map of the Earth’s subsurface. Based on the reconstructed
Earth model, the operator adjusts the well trajectory in real-time to further ex-
plore exploitation targets, including oil and gas reservoirs, and to maximize the
posterior productivity of the available reserves. This real-time adjustment tech-
nique is called geosteering.

Nowadays, geosteering plays an essential role in geophysics. However, it re-
quires the capability of solving inverse problems in real time. This is challenging
since inverse problems are often ill-posed.

There exist multiple traditional methods to solve inverse problems, mainly,
gradient-based or statistics-based methods. However, these methods have severe
limitations. In particular, they often need to compute the forward problem hun-
dreds of times for each set of measurements, which is computationally expensive
in three-dimensional (3D) problems.

To overcome these limitations, we propose the use of Deep Learning (DL)
techniques to solve inverse problems. Although the training stage of a Deep
Neural Network (DNN) may be time-consuming, after the network is properly
trained, it can forecast the solution in a fraction of a second, facilitating real-
time geosteering operations. In the first part of this dissertation, we investigate
appropriate loss functions to train a DNN when dealing with an inverse problem.

Additionally, to properly train a DNN that approximates the inverse solution,
we require a large dataset containing the solution of the forward problem for
many different Earth models. To create such dataset, we need to solve a Partial
Differential Equation (PDE) thousands of times. Building a dataset may be
time-consuming, especially for two and three-dimensional problems since solving
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Abstract

PDEs using traditional methods, such as the Finite Element Method (FEM), is
computationally expensive. Thus, we want to reduce the computational cost of
building the database needed to train the DNN. For this, we propose the use of
refined Isogeometric Analysis (rIGA) methods.

In addition, we explore the possibility of using DL techniques to solve PDEs,
which is the main computational bottleneck when solving inverse problems. Our
main goal is to develop a fast forward simulator for solving parametric PDEs. As
a first step, in this dissertation we analyze the quadrature problems that appear
while solving PDEs using DNNs and propose different integration methods to
overcome these limitations.
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Resumen

El subsuelo terrestre está formado por diferentes materiales, principalmente por
rocas porosas que posiblemente contienen minerales y están rellenas de agua sa-
lada y/o hidrocarburos. Por lo general, las formaciones que crean estos materiales
son irregulares y con materiales de diferentes propiedades mezclados en el mismo
estrato.

Uno de los principales objetivos en geof́ısica es determinar las propiedades
petrof́ısicas del subsuelo de la Tierra. De este modo, las compañ́ıas pueden de-
terminar la localización de las reservas de hidrocarburos para maximizar su pro-
ducción o descubrir localizaciones óptimas para el almacenamiento de hidrógeno o
el depósito de CO2. Para este propósito, las compañ́ıas registran mediciones elec-
tromagnéticas utilizando herramientas de Medición Durante Perforación (MDP),
las cuales son capaces de recabar datos mientras se lleva a cabo el proceso de
prospección. Los datos obtenidos se procesan para producir un mapa del sub-
suelo de la Tierra. Basándose en el mapa generado, el operador ajusta en tiempo
real la trayectoria de la herramienta de prospección para seguir explorando ob-
jetivos de explotación, incluidos los yacimientos de petróleo y gas, y maximizar
la posterior productividad de las reservas disponibles. Esta técnica de ajuste en
tiempo real se denomina geo-navegación.

Hoy en d́ıa, la geo-navegación desempeña un papel esencial en geof́ısica. Sin
embargo, requiere la resolución de problemas inversos en tiempo real. Esto supone
un reto, ya que los problemas inversos suelen estar mal planteados.

Existen múltiples métodos tradicionales para resolver los problemas inversos,
principalmente, los métodos basados en el gradiente o en la estad́ıstica. Sin
embargo, estos métodos tienen graves limitaciones. En particular, a menudo
necesitan calcular el problema inverso cientos de veces para cada conjunto de
mediciones, lo que es computacionalmente caro en problemas tridimensionales
(3D).

Para superar estas limitaciones, proponemos el uso de técnicas de Aprendizaje
Profundo (AP) para resolver los problemas inversos. Aunque la etapa de entre-
namiento de una Red Neuronal Profunda (RNP) puede requerir mucho tiempo,
una vez que la red está correctamente entrenada puede predecir la solución en
una fracción de segundo, facilitando las operaciones de geo-navegación en tiempo
real. En la primera parte de esta tesis, investigamos las funciones de pérdida
apropiadas para entrenar una RNP cuando se trata de un problema inverso.
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Resumen

Además, para entrenar adecuadamente una RNP que se aproxime a la solución
inversa, necesitamos un gran conjunto de datos que contenga la solución del
problema directo para muchos modelos terrestres diferentes. Para crear dicho
conjunto de datos, necesitamos resolver una Ecuación en Derivadas Parciales
(EDPs) miles de veces. La creación de un conjunto de datos puede llevar mucho
tiempo, especialmente para los problemas bidimensionales y tridimensionales, ya
que la resolución de la EDPs mediante métodos tradicionales, como el Método de
Elementos Finitos (MEF), es computacionalmente caro. Por lo tanto, queremos
reducir el coste computacional de la construcción de la base de datos necesaria
para entrenar la RNP. Para ello, proponemos el uso de métodos de Análisis Iso-
geométrico refinado (AIGr).

Además, exploramos la posibilidad de utilizar técnicas de AP para resolver
EDPs, que es la limitación computacional principal al resolver problemas inver-
sos. Nuestro objetivo principal es desarrollar un simulador rápido para resolver
EDPs paramétricas. Como primer paso, en esta tesis analizamos los problemas
de cuadratura que aparecen al resolver EDPs utilizando RNPs y proponemos
diferentes métodos de integración para superar estas limitaciones.
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1 Introduction

1.1 Motivation and Literature Review

The Earth’s subsurface is formed by different materials, mainly porous rocks
containing minerals and filled with salty water and/or hydrocarbons. The for-
mations that these materials create are often irregular, appearing abrupt forms
with peaks or breaks. Furthermore, each of the several layers that compose the
Earth is composed of various materials with different material properties. Figure
1.1 shows an example of a laminar subsurface formation.

Figure 1.1: Earth subsurface formation with different layers. Photo taken in
Sopela (Biscay, Spain).

Several fields demand a map of the subsurface in order to carry out their
activities, needed for: (a) minimize earthquake-induced damage, (b) enhance the
production of geothermal energy, (c) store different materials such as hydrogen
in subsurface reservoirs, and (d) maximize hydrocarbon recovery.

In this last application, companies often record electromagnetic (EM) measure-
ments using a Logging While Drilling (LWD) instrument. These tools incorpo-
rate different transmitters that generate an EM field. In the same way, several
receivers are placed along the tool in order to receive the emitted wave after re-
bounding in the surroundings of the borehole. Depending on the materials and/or
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1 Introduction

the formation of the surroundings, the received waves exhibit different properties.
Figure 1.2 shows an example of a conventional LWD instrument.
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Figure 1.2: Example of a conventional LWD instrument. This tool is equipped
with a pair of receivers (red) and two pairs of transmitters (black).

These tools have gained importance in the oil and gas industry in the last
decades due to their capability to record logging data during drilling. The
recorded data is processed to produce a map of the Earth’s subsurface nearby
the well. Based on the reconstructed Earth model, the operator adjusts the
well-trajectory in real-time to further explore exploitation targets, including oil
and gas reservoirs, and to maximize the posterior productivity of the available
reserves. This real-time navigation technique is called geosteering. As a con-
sequence of the tremendous productivity increase achieved with this technique,
nowadays geosteering plays an essential role in the oil and gas industry [40].

The main difficulty one faces when dealing with geosteering problems is to
obtain a map of the Earth’s subsurface. We must solve the following inverse
problem: given the measurements M recorded by the tool and the well trajec-
tory T , we want to obtain the subsurface properties ρ. In contrast, the forward
problem is the one that given the subsurface properties ρ and the well trajectory
T , it produces the measurements M recorded by the tool. Figure 1.3 presents a
schematic description of the forward and inverse problems.

Unfortunately, traditional inversion methods have severe limitations, which
force geophysicists to continuously look for new solutions to this problem (see,
e.g., [28, 41, 49, 64, 99, 128, 131, 156]). In particular, inverse problems are not
well-defined, that is, there may exist multiple outputs for a given input [141,
145]. Gradient-based methods require simulating the forward problem dozens of
times for each set of measurements. Moreover, these methods also estimate the
derivatives of the measurements with respect to the inversion variables, which is
often challenging and time consuming [141]. To alleviate the high computational
costs associated with these inversion methods, simplified 1.5-dimensional (1.5D)
methods are common (see, e.g., [64, 99, 133]). For the inversion of borehole
resistivity measurements, an alternative is to apply statistics-based methods [53,
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Subsurface
properties ρ

+
Well trajectory T

Measurements M

Measurements M
+

Well trajectory T
Subsurface
properties ρ

F

I

Forward:

Inverse:

Figure 1.3: Schematic description of forward and inverse problems.

85, 147]. The statistical methods also perform forward simulations hundreds of
times for each set of measurements. Both gradient and statistics-based methods
only evaluate the inverse operator. Thus, the entire inversion process is repeated
at each new logging position.

Deep Learning (DL) techniques seem apropiate to overcome the limitations
of traditional methods while solving inversion problems. The large amount of
research articles and industrial applications of DL algorithms in different areas –
computer vision [82], speech recognition [4, 5, 154], biometrics [16], self-driving
cars [54, 114], and healthcare [43, 108] to mention a few – are exponents of their
high performance and capability to solve all kind of problems.

In addition, in recent years there have been significant advances in the field of
DL, with the appearance of Residual Neural Networks (RNNs) [59], which prevent
gradient degeneration during the training stage, and Encoder-Decoder (sequence-
to-sequence) Deep Neural Networks (DNNs), which have improved the DL work
capability in computer vision applications [10]. Due to the high demand from
industry to use DNNs, dedicated libraries and packages such as Tensorflow [82],
Keras [29], and Pytorch [103] have been developed. These libraries facilitate the
use of DNNs across different industrial applications [39, 66, 83, 117, 132, 144,
157]. All these advances make DNNs one of the most powerful and fast-growing
Artificial Intelligence (AI) tools presently. The first main contribution of this
dissertation is to design a fast inversion method using DL techniques
to solve borehole measurement problems that allows the application of
geosteering techniques.

However, DNNs also face important challenges when applied to the inversion
of borehole resistivity problems. In particular, the training stage can be time-
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consuming. However, this is an offline cost incurred during the training stage.
Then, after the network is properly trained, it can forecast a solution in a frac-
tion of a second [131]. This feature allows real-time inversion, which facilitates
geosteering operations. Another limitation of DNN is that they require a large
dataset (also known as ground truth). In our case, it consists of the solution of
the forward problem for different Earth models [60, 130, 131].

To generate the database for DL inversion, we must solve the forward prob-
lem. Our forward problem – simulation of borehole measurements – is governed
by Partial Differential Equations (PDEs). In our case, we consider resistivity
measurements governed by a set of four time-dependent first-order PDE named
Maxwell’s equations [45]. Here, knowing some electrical properties (i.e., electri-
cal conductivities of the subsurface materials), we can obtain the corresponding
electric and magnetic fields (i.e., recorded measurements).

We solve the forward problem using numerical simulation methods such as the
Finite Element Method (FEM) [6, 11, 58, 69, 98, 115, 133] or the Finite Difference
Method (FDM) [35, 36, 77, 140]. Moreover, we need to optimally sample the
parameter space describing relevant Earth models. This process may be time-
consuming, especially for two and three-dimensional problems. In those cases,
it is common to reduce the Earth model dimensionality to two or one spatial
dimensions using a Fourier or a Hankel transform. These transformations lead
to the so-called 2.5D [3, 48, 92, 101, 135] and 1.5D [12, 99, 129] formulations,
respectively. In particular, 1.5D simulations are inaccurate when dealing with
geological faults.

Galerkin methods are effective for simulating well-logging problems (see, e.g., [24,
27, 84, 95, 97, 120, 146]). Isogeometric Analysis (IGA), introduced by [61], is a
widely used Galerkin method for solving PDEs. IGA has been successfully em-
ployed in various EM [20, 21, 93, 137, 138] and geotechnical [56, 134] applications.
IGA uses spline basis functions introduced in Computer-Aided Design (CAD) as
basis functions of FEM. These basis functions exhibit high continuity (up to
Cp´1, being p the polynomial order of spline bases) across the element interfaces.

When comparing IGA and FEM, the former provides smoother solutions for
wave propagation problems with a lower number of unknowns [31, 61]. However,
in contrast to the minimal interconnection of elements in FEM, high-continuity
IGA discretizations strengthen the interconnection between elements, leading to
an increase of the cost of matrix LU factorization per degree of freedom when
using sparse direct solvers [30]. In order to avoid this degradation and also benefit
from the recursive partitioning capability of multifrontal direct solvers, [47] devel-
oped a new method called refined Isogeometric Analysis (rIGA). This discretiza-
tion technique conserves desirable properties of high-continuity IGA discretiza-
tions, while it partitions the computational domain into blocks of macroelements
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weakly interconnected by low-continuity separators. As a result, the computa-
tional cost required for performing LU factorization decreases. The applicability
of the rIGA framework to general EM problems was studied by [46]. Compared to
high-continuity IGA, rIGA produces solutions of EM problems up to Opp2q faster
on large domains and close to Oppq faster on small domains. rIGA also improves
the approximation errors with respect to IGA since the continuity reduction of
basis functions increases the number of degrees of freedom [31] and enriches the
Galerkin space. Thus, as another contribution of this dissertation, we
propose the use of rIGA discretizations to generate databases for DL
inversion of 2.5D geosteering EM measurements.

Apart from the traditional methods, another option for solving PDEs is the
use of DL techniques. In the last years, DL algorithms have become popular
for solving PDEs – see, e.g., [15, 18, 81, 104, 118, 121, 123, 152]. DL techniques
present several advantages and limitations with respect to traditional PDE solvers
based on FEM [58], FDM [77], or IGA [94]. Among the advantages of DL, we
encounter the nonnecessity of generating a grid. In general, DL uses a dataset in
which each datum is independent from others. In contrast, in the linear system
that produces the FEM, there exists a connectivity between the nodes of the mesh.
In addition, DL allows the parallelization into Graphics Processing Units (GPUs)
for fast computations. Furthermore, DL provides the possibility of solving certain
problems that cannot be solved via traditional methods, like high-dimensional
PDEs [42, 57], some fractional PDEs [9, 96], and multiple nonlinear PDEs [62,
113]. Moreover, using DL techniques opens the door to rapidly solve parametric
PDEs.

However, DL also presents limitations when solving PDEs. For example,
in [148] they show that Fully-Connected Neural Networks suffer from spectral
bias [111] and exhibit different convergence rates for each loss component. In
addition, the convergence of the method is often assumed, under reasonable hy-
pothesis (see, e.g., [88]), since it cannot be rigorously guaranteed due to the
non-convexity of the loss function. Another notorious problem of DL methods
for solving PDEs is due to quadrature errors. In traditional mesh-based methods,
such as FEM, we first select an approximating solution space and then compute
the integrals over each element required to produce the stiffness matrix. With
DL, we first set a quadrature rule and then construct the approximated function.
Due to this, there is no proper quadrature rule for DNNs, as remarked in [71].

The most common method used in DL to approximate definite integrals is based
on Monte Carlo integration. This family of methods compute definite integrals
using randomly sampled points from a given distribution. Monte Carlo inte-
gration is suitable for high-dimensional integrals. However, for low-dimensional
integrals (1D, 2D, and 3D), convergence is slow in terms of the number of inte-
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gration points in comparison to other quadrature rules. This produces elevated
computational costs. Examples of existing DL works that follow a Monte Carlo
approach are [149] using a Deep Ritz Method (DRM), [139] using a Deep Galerkin
Method (DGM), and [86], where they employ the so-called Physics-Informed Neu-
ral Networks (PINNs) [112] that can be interpreted as a collocation method or as
a variational method using Dirac delta test functions. From the practical point
of view, at each iteration of the Stochastic Gradient Descent (SGD) [63], one
considers a mini-batch of randomly selected points to discretize the domain.

Another existing method to compute integrals in DNNs is the so-called auto-
matic integration [78]. In this method, the author approximates the integrand by
its high order Taylor series expansion around a given point within the integration
domain. Then, the integrals are computed analytically. The derivatives needed
in the Taylor series expansion are computed via automatic differentiation (a.k.a
autodiff ) [52]. Since the information of the derivatives is local, overfitting may
easily occur.

Another alternative quadrature rule is to use adaptive integration methods.
Examples where authors have selected these methods are the Deep Least Square
(DLS) method [23], where they employ an adaptive mid-point quadrature rule
using local error indicators. These indicators are based on the value of the residual
at randomly selected points, and the resulting quadrature error is unclear.

One can also use Gauss-type quadrature rules to evaluate integrals, as they do
in Variational Physics-Informed Neural Networkss (VPINNs) [71]. One limitation
of this method is the impossibility of selecting a priori an adequate quadrature
order because properties of the Neural Network approximation are unknown. In
addition, the use of fixed quadrature rules increases the chances of performing
overfitting. Therefore, as the third and last main contribution of this
dissertation, we analyze the problems associated with quadrature rules
in DL methods when solving PDEs, and we propose several alternatives
to overcome the quadrature problems.

1.2 Outline

The remainder of the dissertation is organized as follows. In Chapter 2 we study
adequate loss functions to solve inverse problems using DL and test them with
real examples. Chapter 3 proposes the use of rIGA to generate a database for
solving borehole inverse problems using DL. Chapter 4 analyzes the quadrature
problems that may arise when using inadequate integration methods in DL for
solving PDEs, and propose suitable alternatives. Chapter 5 is devoted to the
conclusions and future works and Chapter 6 provides a list of main achievements.
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2 Solving Inverse Problems using
Deep Learning

In this Section, we solve a borehole inversion problem using Deep Learning (DL)
techniques. We denote as inverse problem the one where having some measure-
ments recorded using a Logging While Drilling (LWD) instrument, we want to
recover a map of the Earth’s subsurface. In opposition, we have the forward
problem, where given the properties of the Earth’s subsurface, we want to obtain
the set of recorded measurements. Often, the forward problem is well-posed in
the sense of Hadamard [55].

Definition 2.1. Let X and Y be two normed spaces and A : X Ñ Y a mapping.
The problem defined by the equation Ax “ y is said to be well-posed if the
following conditions are satisfied:

• The solution of the problem exists: @y P Y ñ Dx P X : Ax “ y.

• The solution is unique: @y P Y ñ D!x P X : Ax “ y.

• The solution is stable: @pxnq Ă X with Axn Ñ Ax for n Ñ 8, it follows
that xn Ñ x for nÑ 8.

The problems that do not satisfy one of the above properties are called ill-posed.
Inverse problems are usually ill-posed. As we will see in this Section, borehole
inverse problems lack the uniqueness of the solution, which makes solving those
problems using DL a difficult task.

2.1 Problem Formulation

2.1.1 Forward Problem

We fix the measurement acquisition system s̃. Then, for a well trajectory t̃, and
an Earth model p̃, the forward problem consists of finding the corresponding
borehole resistivity measurements m̃. We denote by F̃ the associated forward
function. That is:

F̃pt̃, p̃q “ m̃, where t̃ P T̃, p̃ P P̃, m̃ P M̃. (2.1)
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In the above, we omit for convenience the explicit dependence of the function F̃
upon the fixed input variable s̃. P̃ “ tp̃ “ p̃px, y, zq P R3x3 : @px, y, zq P Ω Ă R3u

– the set of all possible resistivity tensors – and M̃ “ tm̃ P Rm, being m the
number of measurements u – the set of all possible measurements – are normed
vector spaces equipped with norms || ¨ ||P̃ and || ¨ ||M̃ , respectively. T̃ “ tt “
tpsq : tpsq P Ω @s P pa, bq Ă Ru – the set of all possible logging trajectories – is
also a vector space. Function F̃ consists of a boundary value problem governed
by Maxwell’s equations (see [133] for details).

2.1.2 Inverse Problem

In the inversion of borehole resistivity measurements, the objective is to determine
the subsurface properties p̃ corresponding to a set of measurements m̃ recorded
over a given trajectory t̃. Again, the measurement acquisition system s̃ is fixed.
We denote that inverse operator as Ĩ. Mathematically, we have:

Ĩpt̃, m̃q “ p̃, where t̃ P T̃, m̃ P M̃, p̃ P P̃. (2.2)

Again, we omit for convenience the explicit dependence of function Ĩ upon input
variable s̃. The governing physical equation of operator Ĩ is unknown. However,
we know that a given input may have multiple associated outputs. Thus, such
inverse operator is not well-defined.

2.1.3 Parameterization

We select a finite dimensional subspace of T̃ parameterized with nt real-valued
numbers. The corresponding vector representation of an element from that sub-
space is t P Rnt . We similarly parameterize a finite dimensional subspace of P̃ and
M̃ with np and nm real-valued numbers, respectively. The corresponding vector
representations of an element from those subspaces are denoted as p P Rnp and
m P Rnm , respectively.

The span of vector representations p and m constitute two subspaces of Rnp

and Rnm with norms || ¨ ||P and || ¨ ||M, respectively. Ideally, these norms should
be inherited from those associated with the original infinite dimensional spaces.
However, this is often a challenging task and an open area of research. We directly
employ some existing (typically l1 or l2) finite dimensional norms.

The function F associates a pair (t, p) (vector representations of pt̃,p̃)) with
m (vector representation of m̃) such that Fpt,pq “ m. We employ a similar
notation for its inverse I acting on vector representations.

To provide context and guidance for future developments, we introduce simple
examples that illustrate some of the shortcomings of the standard techniques
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when applied to these problems, and we explain how we seek to overcome the
associated challenges. The first problem seeks to predict the inverse of squaring
a number. The second example focuses on geosteering applications.

2.1.4 Example A: Model Problem with Known Analytical
Solution

We select nt “ 0, np “ nm “ 1. The forward function is given by Fppq “ p2,
while the inverse problem has two solutions (branches): Ipmq “ `

?
m, and

Ipmq “ ´?m, as described in Figure 2.1.
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(b) Inverse operator with two
branches

Figure 2.1: Model problem with known analytical solution.

This simple example contains a key feature exhibited by most inverse problems:
it has multiple solutions. Thus, it is useful to illustrate the behaviour of Deep
Neural Networks (DNNs) when considering different loss functions. Results are
enlightening and, as we show below, they provide clear guidelines to construct
proper loss functions for approximating inverse problems.

2.1.5 Example B: Inversion of Borehole Resistivity
Measurements

In geosteering applications, multiple oil and service companies perform inversion
assuming a piecewise 1D layered model of the Earth. In this case, there exist
semi-analytic methods that can simulate the forward problem in a fraction of
a second. Herein, we use the same approach. Thus, the evaluation of F is
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performed with a 1.5D semi-analytic code (see [80, 133]). As a result, at each
logging position, our inversion operator recovers the formation properties of a 1D
layered medium [64, 99].

In this work, as measurement acquistion system, we first consider a co-axial
LWD instrument equipped with two transmitters and two receivers (see Figure
2.2). H1

zz and H2
zz are the zz-couplings of the magnetic field measured at the

first and second receivers, respectively (the first and second subscripts denote the
orientation of the transmitter and receiver, respectively). Then, we define the
attenuation and phase difference as follows:

500 kHz
Tx1 Tx2Rx1 Rx2

0.40 m

1.8 m

Figure 2.2: Conventional LWD logging instrument. Txi and Rxi are the trans-
mitters and the receivers, respectively.

ln
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| H2
zz |
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phpH1
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2
zzq

˘

loooooooooooomoooooooooooon

ˆ
180

π
“:phase difference (degree)

,
(2.3)

where ph denotes the phase of a complex number. We then record the average of
the attenuations and phase differences associated with the two transmitters, and
we denote these values as LWD coaxial.

Then, we consider a short-spacing configuration corresponding to a deep az-
imuthal instrument equipped with one transmitter and one receiver, as shown
in Figure 2.3. In this logging instrument, the distance between transmitter and

10 kHz
Tx Rx

12 m

Figure 2.3: Short-spacing of a deep azimuthal logging instrument. Tx and Rx are
the transmitter and the receiver, respectively.
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receiver is significantly larger than that of the previously considered LWD instru-
ment. It also employs tilted receivers that are sensitive to the presence of bed
boundaries. We record several measurements with this logging instrument: (a)
the attenuation and phase differences, denoted as deep coaxial, computed using
Equation (2.3) with H2

zz “ 1, and (b) the attenuation and phase differences of a
directional measurement expressed as:

Geosignal “ ln
Hzz ´Hzx

Hzz `Hzx

“ ln
| Hzz ´Hzx |

| Hzz `Hzx |
loooooooomoooooooon

ˆ20 logpeq“:attenuation pdBq

`i pphpHzz ´Hzxq ´ phpHzz `Hzxqq
looooooooooooooooooooomooooooooooooooooooooon

ˆ
180

π
“:phase difference (degree)

.

(2.4)

These measurements exhibit a discontinuity as a function of the dip angle at 90
degrees. Indeed, such discontinuity is essential in the measurements if one wants
to discern between top and bottom of the logging instrument (see Figure 2.4).

Tx

RxTx

Rx

Tx

RxTx

Rx

100 
 ⋅ m

1 
 ⋅ m

100 
 ⋅ m

D
C

B
A

Figure 2.4: Illustration with four logging trajectories. By symmetry, measure-
ments recorded with trajectories A and D are identical. The same
occurs with trajectories B and C. If these measurements are contin-
uous with respect to the dip angle, then they coincide at 90 degrees,
which disables the possibility of identifying if a nearby bed boundary
is located above or below the logging instrument.

For our borehole resistivity applications, we consider a zero-thickness borehole
embedded in a three-layer medium (see Figure 2.5). A common practice in the
field is to characterize this medium with seven parameters, as described in Figure
2.5. In this work, to simplify the problem, we consider only five of them by
restricting the search to isotropic formations (ρv “ ρh) with zero dip angle (β “
0), as illustrated in Figure 2.6. Thus, np “ 5.

11



2 Solving Inverse Problems using Deep Learning
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Figure 2.5: Well trajectory in a 1D medium. The black circle indicates the last
trajectory position. ρh and ρv are the horizontal and vertical resis-
tivities of the host layer corresponding to the final logging position,
respectively. ρu and ρl are the resistivity values of the upper and lower
layers to the host layer, respectively. du and dl show the distance from
the final logging position to the upper and lower bed boundaries, re-
spectively.

t
du

dl

�u

�l

�ℎ

(a) Example B.1: trajectory with
1 logging positions

t
du

dl

�u

�l

�ℎ

(b) Example B.2: trajectory with
65 logging positions

Figure 2.6: Model problems corresponding to examples B.1 and B.2, respectively.

In this example, we consider two cases (see Figure 2.6) according with the
different numbers of logging positions we consider per data sample.

2.1.5.1 Example B.1: One Logging Position

In this case, each trajectory consists of a single logging position. Therefore, for
each sample, we record six real numbers (three attenuations and three phases),
i.e., nm “ 6. At each logging position, the trajectory is described by one number:
the trajectory dip angle. Thus, nt “ 1.

12
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2.1.5.2 Example B.2: Sixty-Five Logging Positions

In this case, the logging trajectory of each sample is formed by 65 logging positions
with a logging step size of 0.3048 m (see [130, 131] for further details). Thus,
for each Earth model p, we parametrize m with 6 ˆ 65 “ 390 real numbers
(nm “ 390). For this example, we assume that the variation of the dip angle at
a given logging position with respect to the previous one is constant. We denote
that constant dip angle variation as αv. Then, at the i-th logging position, the
trajectory dip angle is αi “ αini ` pi ´ 1qαv, where αini is the initial dip angle.
Hence, we have nt “ 2.

2.2 Data Space and Ground Truth

In this work, we employ a DNN to approximate the discrete inverse operator
I. Given a supervised database of n-pairs pmi, Ipti,miqq, i “ 1, ..., n, the DNN
builds an approximation of the unknown function I. This section describes the
construction of the supervised database.

We first select the number of samples, n, and two subspaces of Rnp and
Rnt , respectively. Then, we select the n samples in those subspaces, namely,
ppt1,p1q, ..., ptn,pnqq. To each of these samples, we apply the operator F . That
is, we compute pFpt1,p1q, ...,Fptn,pnqq. Finally, the n-pairs pmi, Ipti,miqq :“
pFpti,piq,piq, i “ 1, ..., n form our supervised database.

We denote by T P Rntˆn to the set of all trajectory samples pt1, ..., tnq. In
other words, T is a matrix with ti being its i-th column. Similarly, we define
M “ pm1, ...,mnq P Rnmˆn and P “ pp1, ...,pnq P Rnpˆn.

Example A: Simple model problem with known analytical solution. We select
n “ 103 uniformly spaced samples within the subspace r´33, 33s Ă R.

Example B: Inversion of borehole resistivity measurements. We select n “
106. Then, for the five parameters described in Section 2.1.5, we select random
samples of the following rescaled variables over the corresponding intervals form-
ing a subspace of R5:

logpρlq, logpρuq, logpρhq P r0, 3s

logpdlq, logpduq P r´2, 1s.
(2.5)

We consider arbitrary high-angle trajectories. For each model problem, we
randomly select the trajectory parameters within the following intervals:

αini P r830, 970s
αv P r´0.0450, 0.0450s (only for Example B.2).

(2.6)
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2.3 Data Preprocessing

Notation. For each output parameter of F and I, we denote by x “ px1, ..., xnq
the n-samples associated with that parameter. These xi are real scalar values
for i “ 1, ..., n. For example, in the borehole resistivity example, each variable x
contains n samples of each particular geophysical quantity such as resistivities,
distances, or given measurements (attenuations, phases, etc.). Each dimension
corresponds to a particular value (sample) of that variable, for example, the
geosignal attenuation recorded at a specific logging position. From the algebraic
point of view, the variable x denotes a row of either matrix M or P.

Data preprocessing algorithm. This algorithm consists of three steps.

1. Logarithmic change of coordinates. We introduce the following change
of variables:

Rlnpxq :“ plnx1, ..., lnxnq. (2.7)

For some geophysical variables (e.g., resistivity), this change of variables
ensures that equal-size relative errors correspond to similar-size absolute
errors. Thus, this change of variables allows us to perform local (within a
variable) comparisons.

2. Remove outlier samples. In practice, often outlier measurements are
present in the sample database. These outliers appear due to measurement
error or the physics of the problem. For example, in borehole resistivity
measurements, some apparent resistivity measurements approach infinity,
producing “horns” in the logs. When outlier measurements exists in any
particular variable of the i-th sample xi, then the entire sample should be
removed. Otherwise, outlier measurements affect the entire minimization
problem, leading to poor numerical results. The removal process may be
automated using statistical indicators, or decided by the user based on a pri-
ori physical knowledge about the problem. We follow this second approach
in this work.

3. Linear change of coordinates. We now introduce a linear rescaling
mapping into the interval r0.5, 1.5s. We select this interval since it has unit
length and the mean of a normal (or a uniform) distribution variable x is
equal to one. Let xmin :“ mini xi, xmax :“ maxi xi. We define

Rlinpxq :“

ˆ

x1 ´ xmin

xmax ´ xmin

` 0.5, ...,
xn ´ xmin

xmax ´ xmin

` 0.5

˙

, (2.8)

where the limits xmin and xmax are fixed for all possible approximations xapp.
This change of variables allows us to perform a global comparison between

14



2 Solving Inverse Problems using Deep Learning

errors corresponding to different variables since they all take values over the
same interval.

Remark: xmin and xmax could also be selected based on the physically valid
interval of each particular variable rather than on the training samples.

Variables classification. We categorize each input and output geophysical vari-
able x into two types: either linear (A) or log-linear (B). When necessary, we shall
indicate that a particular variable belongs to a specific category by adding the
corresponding symbol as subindex of the variable, e.g., xA. Table 2.1 describes
the domain of those variables as well as the rescaling employed for each of them.
Variables of type A only require a global rescaling while those of type B require
both a local and a global change of variables.

Geophysical Variables Category Domain Rescaling

Angles, attenuations, A Rn Rlinpxq
phases, and geosignals
Apparent resistivities, B pa,8qn RlinpRlnpxqq
resistivities, and distances a ą 0

Table 2.1: Categories for geophysical variables: types A or B. We apply a dif-
ferent rescaling to each of them.

For simplicity, we denote by R the result of the above rescalings, i.e., RpxAq :“
RlinpxAq, andRpxBq :“ RlinpRlnpxBqq. In general, given a variable x (of category
A or B), we represent xR :“ Rpxq. Given a matrix X P Rnxˆn, we abuse notation
and denote by XR :“ RpXq P Rnxˆn to the matrix that results from applying
operator R row-wise.

Remark: Substituting in Equation 2.7 the natural logarithm by the base ten
logarithm does not affect the definition of R. Results are identical.

2.4 Norms and Errors

We first introduce both the vector and the matrix norms that we use during the
training process.

Norms. We introduce a norm || ¨ ||X associated with the variable x. In general,
we employ the l1 or l2 vector norms and, for matrices, the l1 and Frobenius norms.
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Absolute and relative errors. Let xapp “ pxapp1 , ..., xappn q be an approximation
of x. We define the absolute error Ae between xapp and x in the || ¨ ||X norm as

AX
e px

app,xq :“ ||xapp ´ x||X. (2.9)

This error measure has limited use since it is challenging to select an absolute
error threshold that distinguishes between a good and a bad quality approxima-
tion. To overcome this issue, practitioners often employ relative errors. We define
the relative error Re in percent between xapp and x in the || ¨ ||X norm as:

RX
e px

app,xq :“ 100
||xapp ´ x||X
||x||X

. (2.10)

Error control. For a variable x and its approximation xapp, we want to control
the relative error of the rescaled variable, that is:

RX
e px

app
R ,xRq. (2.11)

The value B “ ||xR||X is expected to be similar for all variables x. Thus:

ÿ

xR

AX
e px

app
R ,xRq “

ÿ

xR

||xappR ´xR||X « B
ÿ

xR

||xappR ´ xR||X

||xR||X
“

B

100

ÿ

xR

RX
e px

app
R ,xRq.

(2.12)
Therefore, the minimum of the first and last terms of the above equation coincide.

2.5 DNN Architectures

To approximate the forward and inverse problems, we use DNN architectures
based on residual-type blocks [59, 110] with convolutional operators [60, 67, 74,
151]. This work does not discuss optimal data sampling techniques nor the
decision-making for the optimal selection of DNN architectures [89, 109]. In the
following, we first define the main operators of our DNN architectures, followed
by a description of the forward and inverse DNN architectures.

We denote by N to our nonlinear activation function. In our case, we em-
ploy the rectified linear unit (ReLU), defined component-wise for each entry x
as maxp0, xq [60]. We now introduce a 1D convolutional operator Cc,k

ψ , where
c is the filter size (output dimensionality), k the kernel size, and ψ the weights
[59, 60]. Then, we define the following block:

Bc,k
ψ :“

´

N ˝Cc,k
ψ1 ˝N ˝Cc,k

ψ2 `Cc,k
ψ3

¯

, (2.13)

where now ψ “ pψ1, ψ2, ψ3q are all weights associated to block Bc,k
ψ .
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2.5.1 Forward Problem DNN Architecture

Each input sample has dimension np`nt, and contains the variables representing
the material properties and the trajectory. We define our DNN architecture as:

FR,φ :“ N ˝Cc6,1
φ6
˝ L ˝U ˝Bc5,3

φ5
˝U ˝Bc4,3

φ4
˝ ¨ ¨ ¨ ˝U ˝Bc1,3

φ1
, (2.14)

where

• U is a 1D upsampling operator with upsampling factor equal to two (using
the TensorFlow routine upsampling1D [2, 102, 142]).

• L is a bilinear resampling operator with resampling factor equal to the
number of logging positions [102, 142], i.e., 1 for Example B.1 and 65 for
Example B.2.

• ci :“ 40i, for i “ 1, ¨ ¨ ¨ , 5 and c6 “ n1m “ 6, where n1m is the number of
evaluated measurements per logging position.

• φ “ tφi : i “ 1, ¨ ¨ ¨ , 6u is a set of all weights associated to the forward
DNN architecture.

L expands (in case of 65 logging positions) or shrinks (in case of one logging
position) its input dimension. The output of the mentioned bilinear resampling
is a matrix in which its first dimension is equal to the number of logging posi-
tions [102, 142]. All the resampling operators considered in the Equation 2.14
raise/shrink the dimension of their input gradually to avoid missing information
due to a sudden dimension change. The output is a matrix of dimension pnl, n

1
mq,

where nl is the number of logging positions.

2.5.2 Inverse Problem DNN Architecture

The input of the DNN is a matrix of dimension pnl, n
1
m`2q, where nl is the number

of logging positions. The first two columns of the aforementioned matrix are the
sine and cosine of the trajectory dip angle at each logging position. Analogously
to the forward problem, we consider the following architecture:

IR,θ :“ N ˝D
np
θ7
˝ S ˝Bc6,3

θ6
˝Bc5,3

θ5
˝Bc4,3

θ4
˝ ¨ ¨ ¨ ˝Bc1,3

θ1
, (2.15)

• Dn
θ is a fully-connected layer with n being its number of units and θ its

weights [2, 60].

• S is a flattening layer that receives a 2D matrix and outputs a 1D vector
[2].
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• ci :“ 40i, for i “ 1, ¨ ¨ ¨ , 5.

• θ “ tθi : i “ 1, ¨ ¨ ¨ , 7u is a set of all the weights associated to each block
and layer

D
np
θ7

performs the ultimate feature extraction and down-sampling. The output
of this DNN is a vector consisting of material properties.

2.6 Loss Function

In this section, we consider a set of weights θ P Θ and a function IR,θ that depends
upon the selected DNN architecture. Then, we introduce a loss function LpIR,θq.
We define the minimizer of the loss function over all possible weight sets θ as:

IR,θ˚ :“ arg min
θPΘ

LpIR,θq. (2.16)

Function Iθ˚ :“ R´1 ˝ IR,θ˚ ˝ R is the final DNN approximation of I. In the
following, we analyze the advantages and limitations associated with the use of
different loss functions.

2.6.1 Data Misfit

A simple loss function based on the data misfit is given by:

LpIR,θq :“ ||IR,θpTR,MRq ´PR||P . (2.17)

In the above equation, symbol || ¨ ||P indicates l1 or Frobenius norms introduced
in Section 2.4.

Example A: Model problem with known analytical solution. In this exam-
ple, np “ 1. Thus, matrix norms reduce to vector norms. Figure 2.7 illustrates
the results we obtain using the l1 and l2 norms, respectively. These disappoint-
ing results are expected. In the case of l2-norm, for a sufficiently flexible DNN
architecture the exact solution is Iθ˚ “ 0. We want to minimize

ÿ

iPI

pIR,θpmiq ´ piq
2 , (2.18)

where I “ t1, ..., nu denotes the training dataset. For every sample of the form
pmi,

?
miq, there exists another one pmi,´

?
miq, which is satisfied in our dataset
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by construction (see Section 2.2). Then, for a specific sample mi, the solution
that minimizes the loss must satisfy

pIR,θpmiq ´
?
miq

2
` pIR,θpmiq ´ p´

?
miqq

2. (2.19)

Taking the derivative of Eq. (2.19) with respect to IR,θpmiq and equaling it to
zero, we obtain

4 ¨ IR,θpmiq “ 0. (2.20)

Thus, for any sample mi, the function is minimized when the approximated value
is IR,θpmiq “ 0. We thus conclude that for l2-norm, the approximated solution
must be Iθ˚ “ 0.

In the case of l1-norm, any solution in between the two square root branches
is valid. We want to minimize

ÿ

iPI

|IR,θpmiq ´ pi|, (2.21)

where I “ t1, ..., nu denotes the training dataset. Then, for a specific sample mi

the solution that minimizes the loss must satisfy

|IR,θpmiq ´
?
mi| ` |IR,θpmiq ´ p´

?
miq|. (2.22)

By analyzing each possible case, we can express Eq. (2.22) as follows

$

&

%

´2 ¨ IR,θpmiq, if IR,θpmiq ă ´
?
mi,

2
?
mi, if ´

?
mi ď IR,θpmiq ď

?
mi,

2 ¨ IR,θpmiq, if IR,θpmiq ą
?
mi.

(2.23)

We see that the loss function for the exact solution attains its minimum at every
point Iθ˚pmiq P r´

?
mi,

?
mis. Moreover, our numerical solutions in Figure 2.7

confirm these simple mathematical observations. Thus, the data misfit loss func-
tion is unsuitable for inversion purposes.

2.6.2 Misfit of the Measurements

To overcome the aforementioned limitation, we consider the following loss func-
tion that measures the misfit of the measurements (see [68]):

LpIR,θq :“ }pFR ˝ IR,θqpTR,MRq ´MR}M , (2.24)

where FR :“ R ˝ F ˝ R´1, and || ¨ ||M indicates a matrix norm of the type
introduced in Section 2.4.
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Figure 2.7: Analytical solution vs DNN predicted solution evaluated over the test
dataset using the loss function based on the data misfit.
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Figure 2.8: Analytical solution vs DNN predicted solution evaluated over the test
dataset using the loss function based on the measurements misfit.

20



2 Solving Inverse Problems using Deep Learning

Example A: Model problem with known analytical solution. Figure 2.8 shows
the inversion results when using the misfit of the measurements. We recover one
of the possible solutions of the inverse operator. A regularization term could be
introduced to select one solution branch over the other.

Despite the accurate results exhibited for the above example, the proposed
loss function has some critical limitations that affect its performance. Namely,
during training, it is necessary to evaluate the forward problem multiple times.
Depending upon the size of the training dataset and number of iterations re-
quired to converge, this may lead to millions of forward function evaluations.
Solving the forward problem for such large number of times is time-consuming
even with a 1.5D semi-analytic simulator. Moreover, most forward solvers are
implemented for Central Processing Unit (CPU) architectures, while the training
of the DNN normally occurs on Graphics Processing Units (GPUs). This requires
a permanent communication between GPU and CPU, which further slows down
the training process. Additionally, porting the forward solver F to a GPU may
be complex to implement and bring additional numerical difficulties.

2.6.3 Encoder-Decoder

To overcome the aforementioned implementation challenges, we propose to ap-
proximate the forward function using another DNN Fφ˚ , where φ˚ P Φ are the
parameters associated to the trained DNN. With this approach, we simultane-
ously train the forward and inverse operators solving the following optimization
problem:

pFR,φ˚ , IR,θ˚q :“ arg min
φPΦ,θPΘ

t}pFR,φ ˝ IR,θqpTR,MRq ´MR}M

` }FR,φpTR,PRq ´MR}Mu,
(2.25)

Function Fφ˚ :“ R´1 ˝FR,φ˚ ˝R is the final DNN approximation to F . The first
term in the above loss function constitutes an Encoder-Decoder DNN architec-
ture [10] and ensures that function IR,θ˚ shall be a pseudo-inverse of FR,φ˚ . The
second term imposes that the forward DNN approximates the ground truth data.
In particular, it prevents situations in which both IR,θ˚ and FR,φ˚ approximate
the identity operator.

Example A: Model problem with known analytical solution. Figure 2.9 shows
the results obtained with the Encoder-Decoder loss function. We recover accurate
inversion results.
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Figure 2.9: Analytical solution vs DNN predicted solution evaluated over the test
dataset using the Encoder-Decoder loss function.

2.6.4 Two-step Approach

It is possible to decompose the above Encoder-Decoder based loss function into
two steps: the first optimization problem intends to approximate the forward
function, and the second one determines the inverse operator:

FR,φ˚ :“ arg min
φPΦ

}FR,φpTR,PRq ´MR}M ,

IR,θ˚ :“ arg min
θPΘ

}pFR,φ˚ ˝ IR,θqpTR,MRq ´MR}M .

(2.26a)

(2.26b)

Example A: Model problem with known analytical solution. Figure 2.10
shows the results of the inversion using the two-steps approach. We recover a
faithful approximation of the inverse operator.

Remark A: Based on the above discussion, it may seem that optimization
problems given by either Equations 2.25 or 2.26 are ideal to solve inverse problems.
However, there is a critical issue that needs to be addressed. In Equation 2.26a,
the forward DNN FR,φ is trained only for the given dataset samples. However, the
output of the DNN approximation of the inverse operator IR,θ will often deliver
data far away from the data space used to produce the training samples. This may
lead to catastrophic results. To illustrate this, we consider our model problem
with known analytical solution. If we consider a dataset with only positive values
of p, then the following approximations will lead to a zero loss function:

Fφ˚ppq “
"

p2 if p ą 0
ap2 if p ă 0

Iθ˚pmq “ ´
a

m{a, (2.27)
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Figure 2.10: Analytical solution vs DNN predicted solution evaluated over the
test dataset using the two-step based loss function.

for any a ą 0. However, if a ‰ 1, this approximation is far away from both our
original forward and inverse solutions. To prevent these undesired situations, one
should ensure that the output space of FR,θ˚ is sufficiently close to the space from
which we obtain the training samples. However, this is often difficult to control.

2.6.5 Regularization Term

Inverse problems often exhibit non-unique solutions. Thus, in numerical methods,
one introduces a regularization term to select a particular preferred solution out
of all the existing ones.

In DL applications, standard regularization techniques seek to optimize the
model architecture (e.g., by penalizing high-valued weights). Herein, we regu-
larize the system by adding the loss function of Equation 2.17 measured in the
l1-norm to either the optimization problem given by Equation 2.25 or 2.26b.
This extra term guides the solution towards the ones considered in the training
dataset, which may be convenient. Nevertheless, such a regularization term often
hides the fact that other different solutions of the inverse problem may coexist.
We study the advantages and limitations of including this regularization term in
detail in Section 2.8.

2.7 Implementation

To solve the forward problem, we employ a semi-analytic method [80] imple-
mented in Fortran 90. It employs a Hankel transform to reduce the original 3D
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Maxwell system to a sequence of uncoupled 1D problems, whose solutions are
analytical in the Hankel domain [143]. Then, we perform a numerical inverse
Hankel transform with an adaptive Andersson quadrature rule [8]. With it, we
produce a dataset containing one million samples (ground truth). Each sample
consists of a randomly selected 1D layered model (see Section 2.2 for details). We
use 80% of the samples for training the DNNs, 10% for validating them, and the
remaining 10% for testing.

We consider two DNN architectures to approximate F and I, respectively.
The forward function F is well-posed and continuous, while the inverse operator
I is not even well-defined. Thus, we employ a simpler DNN architecture to
approximate F than to approximate I. See Section 2.5 for details. We use the
l1 norm for the loss function.

We implement our DNNs using Tensorflow 2.0 [2] and Keras [29] libraries. To
train the DNNs, we use a NVIDIA Quadro GV100 GPU. Using this hardware
device, we require almost 70 hours to simultaneously train FR,φ˚ and IR,θ˚ . While
the training process is time-consuming, it is performed offline. Then, the online
part of the process consists of simply evaluating the DNN, which can deliver an
inverse model for thousands of logging positions in a few seconds. This low online
computational cost makes the DNN approach an excellent candidate to perform
inversion during geosteering operations in the field.

2.8 Numerical Results

We perform a three step evaluation process of the results:

1. We first study the evolution of each term in the loss function during the
training process. This analysis assesses the overall performance of the train-
ing process and, in particular, shows if any particular term of the loss func-
tion is driving the optimization procedure in detriment of other terms.

2. Second, we produce multiple cross-plots, which provide essential informa-
tion about the adequacy of the selected loss function and dataset. These
cross-plots indicate the possible non-uniqueness of the inverse problem at
hand.

3. Finally, we apply the trained networks to invert three realistic synthetic
models and analyze the overall success of the proposed DNN algorithm as
well as its limitations.

The above evaluation process provides a step-by-step assessment of the adequacy
of the proposed strategy for solving inverse problems.
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In most cases, we observe similar results when we consider the Encoder-Decoder
loss function given by Equation 2.25 and the two-step based loss function given
by Equation 2.26. For brevity, we mostly focus on the Encoder-Decoder results.
Additionally, we include one set of results using the two-step based loss function,
for which the observed behavior is essentially different from that of the Encoder-
Decoder process.

2.8.1 Evolution of the Loss Function

Figure 2.11 displays the evolution of the terms composing the Encoder-Decoder
loss function described in Equation 2.25 for Example B.1. Figure 2.12 displays
the corresponding results when we add the regularization term based on Equa-
tion 2.17. In both figures, we observe: (a) a proper reduction of the total loss
function, indicating that the overall minimization process is successful; (b) an ade-
quate balance between the loss contribution of the different terms composing each
loss function, suggesting that all terms of the loss functions are simultaneously
minimized; and (c) a satisfactory match between the loss functions corresponding
to the training and the validation data samples, which indicates we avoid overfit-
ting. We observe a similar behavior with Example B.2, which we skip for brevity.
We do not detail the results per variable since the applied rescaling of Section 2.3
guarantees a good balance between different variables.

2.8.2 Cross-plots

We consider the following types of cross-plots:

Cross-plot 1: F ˝ I vs Fφ˚ ˝ I
Cross-plot 2: F ˝ I vs Fφ˚ ˝ Iθ˚
Cross-plot 3: F ˝ I vs F ˝ Iθ˚
Cross-plot 4: I vs Iθ˚

(2.28)

In the above, F and I are the exact functions and they define the ground truth,
while the others are the predictions our DNNs deliver. In particular, in the first
three types of cross-plots the ground truth is simply the identity mapping. We
could display each type of cross-plot for the training, validation, and test data
samples and for each variable. In our Example B, this makes a total of 69 cross-
plots. In addition, we need to repeat them for each considered loss function. To
compress this information, we quantify each cross-plot with a single number: the
statistical measure R-squared (R2), which represents how much variation of the
ground truth is explained by the predicted value. When this value is close to 1,
indicating a perfect matching between the predicted value and the ground truth,
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Figure 2.11: Example B.1. Evolution of the different terms of the Encoder-
Decoder loss function given by Equation 2.25 without regularization.
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Figure 2.12: Example B.1. Evolution of the different terms of the Encoder-
Decoder loss function given by Equation 2.25 with the regularization
term prescribed by Equation 2.17.
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we can safely omit these cross-plots. Otherwise, cross-plots display interesting
information beyond what R2 provides.

The proper interpretation of the cross-plots (or alternatively, R2 factors) is of
utmost importance. Cross-plots of type 1 (Equation 2.281) indicate how well the
forward function is approximated over the given dataset. The cross-plots of type
2 (Equation 2.282) display how well the composition of the predicted forward
and inverse mappings approximate the identity. These two types of cross-plots
often deliver high R2 factors, since the corresponding approximations are directly
built into the Encoder-Decoder loss function given by Equation 2.25. Table 2.2
confirms those theoretical predictions for the most part.

An in-depth inspection of Table 2.2 reveals that for the the geosignal measure-
ments (both attenuation and phase) corresponding to the Example B.1 without
regularization, the cross-plots 2 exhibit significantly better R2 factors than those
corresponding to the cross-plots 1. Figure 2.13 shows the corresponding cross-
plots. The anti-diagonal grey line shown in cross-plots of type 1 corresponds to
dip angles of the logging instrument that are close to 90 degrees. At that an-
gle, the geosignal is discontinuous. Thus, it is not properly approximated via
DL algorithms, which approximate continuous functions. Cross-plots of type 2
seem to fix that issue by delivering higher R2 factors and apparently nicer fig-
ures. However, they amplify the problem. In reality, the DL approximation of
the inverse operator is inverting an incorrect forward approximation. Numerical
results below illustrate this problem.

Obtaining high R2 factors associated to cross-plots of type 3 (Equation 2.283) is
a challenging task as we discuss in Remark A of Section 2.6. Equation 2.27 shows
a simple example in which cross-plots of type 1 and 2 deliver perfect R2 marks
and results, while cross-plots of type 3 are disastrous. This is also the situation
that occurs in Example B.2. (see Table 2.3). While the original training dataset
is based on 1D Earth models, the one obtained after the predicted DNN inversion
is a piecewise 1D Earth model, for which Fφ˚ is untrained for. When this occurs,
the training database should be upgraded, either by increasing the space of the
data samples or by selecting a different parameterization (e.g., measurements) for
each sample. In our case, we choose to parametrize each sample independently
(the later stategy) and we move to Example B.1.

Table 2.3 shows mixed results for the Example B.1. Results without regular-
ization are unremarkable with the geosignal forecasts showing poor results. The
DNN inverse approximation accurately inverts for the outcome predicted by the
DNN forward approximation. Nevertheless, since the DNN predicts solutions
far from the true forward function, the predictions are poor. Again, this poor
forecasting occurs because the DNN inverse approximation encounters subsur-
face models for which the forward DNN approximation is untrained. As a result,
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Figure 2.13: Geosignal cross-plots for the Example B.1 without regularization
for the test dataset. First row: Cross-plots of type 1. Second row:
Cross-plots of type 2. First column: Attenuation. Second column:
Phase.
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Cross-plots 1

Atten. Atten. Atten. Phase Phase Phase
R2 factors LWD Deep Deep LWD Deep Deep

Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal
Example B.1
Training 0.9997 0.9992 0.9509 0.9996 0.9994 0.9468
Test 0.9995 0.9984 0.9531 0.9990 0.9991 0.9487
Without Reg.
Example B.1
Training 0.9998 0.9998 0.9897 0.9998 0.9998 0.9893
Test 0.9998 0.9998 0.9893 0.9998 0.9998 0.9890
With Reg.
Example B.2
Training 0.9959 0.9975 0.9872 0.9954 0.9980 0.9853
Test 0.9924 0.9960 0.9775 0.9920 0.9974 0.9765
Without Reg.

Cross-plots 2

Atten. Atten. Atten. Phase Phase Phase
R2 factors LWD Deep Deep LWD Deep Deep

Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal
Example B.1
Training 0.9997 0.9995 0.9998 0.9999 0.9996 0.9999
Test 0.9997 0.9994 0.9999 0.9999 0.9996 0.9999
Without Reg.
Example B.1
Training 0.9971 0.9980 0.9779 0.9970 0.9979 0.9798
Test 0.9970 0.9979 0.9785 0.9970 0.9978 0.9803
With Reg.
Example B.2
Training 0.9931 0.9958 0.9800 0.9933 0.9967 0.9821
Test 0.9890 0.9930 0.9701 0.9881 0.9944 0.9720
Without Reg.

Table 2.2: R2 factors for cross-plots of type 1 and 2 and Examples B.1 and B.2,
with and without regularization, for training and test datasets. Num-
bers below 0.96 are marked in boldface.
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both the forward and inverse DDN approximations depart strongly from the true
solutions. In other words, the inverse can only comply with their composition to
be close to the identity, which is not robust to deliver accurate and physically
relevant approximations.

Cross-plots 3

Atten. Atten. Atten. Phase Phase Phase
R2 factors LWD Deep Deep LWD Deep Deep

Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal
Example B.1
Without Reg. 0.9468 0.7406 0.0013 0.9383 0.9116 0.0167
With Reg. 0.9971 0.9979 0.9807 0.9969 0.9979 0.9856
Example B.2
Without Reg. 0.5721 0.8383 0.0253 0.4546 0.8611 0.0284
With Reg. 0.9010 0.9701 0.5901 0.8621 0.9618 0.5877

Table 2.3: R2 factors for cross-plots of type 3 and Examples B.1 and B.2, with
and without regularization, for the test dataset.

To partially alleviate the above problem, we envision three possible solutions.
First, we can increase the training dataset. This option is time-consuming and
often impossible to achieve in practice. For example, herein, we already employ
1,000,000 samples. Second, we can include regularization. Results with regular-
ization are of high quality (see Table 2.3). However, the regularization term may
hide alternative physical solutions of the inverse problem. Thus, the regulariza-
tion diminishes the ability to perform uncertainty quantification. Similarly, it
may induce on the user excessive confidence in the results. A third option is to
consider the two-step based loss function given by Equation 2.26. Following this
approach, we first adjust the forward DNN approximation before training the
DNN inverse approximation. Fixing the forward DNN often provides a proper
forecast even in areas with a lower rate of training samples before producing a
DNN approximation that approximates the inverse of the DNN forward approxi-
mation. Following this two-step approach without regularization, we obtain high
R2 factors for cross-plots of type 3: above 0.95 for the geosignal attenuation and
phase, and above 0.99 for the remaining measurements.

Finally, the R2 factors for the cross-plots of type 4 do not reflect on the accuracy
of the DNN algorithm, but rather on the nature of the inverse problem at hand.
Low R2 factors indicate there exist multiple solutions. A regularization term
(e.g., Equation 2.17) increases the R2 indicator. Figure 2.14 clearly illustrates
this fact. However, it is misleading to conclude that results without regularization
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are always worse. They may simply exhibit a different (but still valid) solution
of the inverse problem.
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Figure 2.14: Cross-plots of type 4 for Example B.1 without regularization for
the training dataset (first column), and with regularization for the
training dataset (second column) and the test dataset (third col-
umn). First row: distance to the upper layer. Second row: distance
to the lower layer. Third row: resistivity of upper layer. Fourth row:
resistivity of lower layer. Fifth row: resistivity of central layer.
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2.8.3 Inversion of Realistic Synthetic Models

We now consider three realistic synthetic examples to assess the performance of
the inversion process. In terms of log accuracy, we observe qualitatively similar
results for the attenuation and phase logs. Thus, in the following we only display
the attenuation logs and omit the phase logs.

2.8.3.1 Model Problem I

Figure 2.15 describes a well trajectory in a synthetic model problem. The model
has a resistive layer with a water-bearing layer underneath, and exhibits two
geological faults.
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Figure 2.15: Formation of model problem I.

For the DNNs produced with the Example B.2 (with input measurements corre-
sponding to 65 logging positions per sample), Figure 2.16 shows the corresponding
inverted models using the Encoder-Decoder DNN with and without regulariza-
tion. Results show inaccurate inversion results, specially for the case without
regularization. Moreover, the predicted logs are far from the true logs, as Fig-
ure 2.17, and as expected from cross-plots 3 (see Table 2.3). The DNN inversion
results are piecewise 1D models. However, the DNN approximation only trains
with 1D models, not for piecewise 1D models, which explains the poor approxi-
mations they deliver (see Remark A on Section 2.6).

In the remainder of this section, we restrict to DNNs produced with Example
B.1. That is, we parametrize all observations at one location using information
from that location alone. Figure 2.18 shows the corresponding inverted mod-
els. For the case of the Encoder-Decoder loss function without regularization,
we observe in Figure 2.18a an inverted model that is completely different from
the original one. The corresponding logs (see Figure 2.19) are also inaccurate, as
anticipated by the cross-plots results of type 3 shown in the previous subsection.
When considering the two-step based loss function without regularization, the
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(a) Without regularization
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(b) With regularization

Figure 2.16: Inverted formation of model problem I using the inversion strategy
of Example B.2, i.e., with input measurements corresponding to 65
logging positions per sample.
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(a) LWD coaxial measurement. Without regularization
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(b) LWD coaxial measurement. With regularization

Figure 2.17: Model problem I. Comparison between F ˝ I and F ˝ Iθ˚ using the
inversion strategy of Example B.2, i.e., with input measurements
corresponding to 65 logging positions per sample.
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recovered model (see Figure 2.18b) is still quite different from the original one.
Nonetheless, we observe a superb matching in the logs (see Figure 2.20), which
indicates the presence of a different solution for the inverse problem. This con-
firms that the given measurements are insufficient to provide a unique solution
for the inverse problem. For the case with regularization, inversion results (see
Figure 2.18b) match the original model, and the corresponding logs properly ap-
proximate the synthetic ones, see Figure 2.21. Figures 2.22 and 2.23 confirm that
our methodology delivers a proper training of the forward function approximation
and the composition Fφ˚ ˝ Iθ˚ , respectively.
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(a) Predicted formation using the Encoder-Decoder loss function without regularization
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(b) Predicted formation using the two-step based loss function without regularization
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(c) Predicted formation using the Encoder-Decoder loss function with regularization

Figure 2.18: Inverted formation of model problem I using the inversion strategy
of Example B.1, i.e., with input measurements corresponding to one
logging position per sample.
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(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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(c) Geosignal measurement

Figure 2.19: Model problem I. Comparison between F ˝ I and F ˝ Iθ˚ with-
out regularization using the Encoder-Decoder loss function and the
inversion strategy of Example B.1, i.e., with input measurements
corresponding to one logging position per sample.
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(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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(c) Geosignal measurement

Figure 2.20: Model problem I. Comparison between F ˝ I and F ˝ Iθ˚ using the
two-step based loss function without regularization and the inversion
strategy of Example B.1, i.e., with input measurements correspond-
ing to one logging position per sample.
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(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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Figure 2.21: Model problem I. Comparison between F˝I and F˝Iθ˚ with regular-
ization using the inversion strategy of Example B.1, i.e., with input
measurements corresponding to one logging position per sample.
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(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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Figure 2.22: Model problem I. Comparison between F˝I and Fφ˚˝I with regular-
ization using the inversion strategy of Example B.1, i.e., with input
measurements corresponding to one logging position per sample.
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(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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Figure 2.23: Model problem I. Comparison between F ˝ I and Fφ˚ ˝ Iθ˚ with
regularization using the inversion strategy of Example B.1, i.e., with
input measurements corresponding to one logging position per sam-
ple.
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2.8.3.2 Model Problem II

In this problem, we consider a 2.5m-thick conductive layer surrounded by two
resistive layers. A well trajectory with a dip angle equal to 87˝ crosses the for-
mation. Figure 2.24 displays the original and predicted models by DL. This
example illustrates some of the limitations of DNNs. In this case, the Earth
models associated with part of the trajectory are outside the model problems
considered in Section 2.1, which restrict to only one layer above and below the
logging trajectory. Thus, the DNN is untrained for such models, and results
cannot be trusted in those zones. Numerical results confirm these observations.
Nonetheless, inaccurate inversion results are simple to identify by inspection of
the logs (Figures 2.25 and 2.26).
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(a) Actual formation
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(b) Predicted formation using one logging position with regularization

Figure 2.24: Model problem 2. Comparison between actual and predicted for-
mations with regularization using the inversion strategy of Example
B.1, i.e., with input measurements corresponding to one logging po-
sition per sample.

43



2 Solving Inverse Problems using Deep Learning

0 20 40 60 80 100 120 140 160 180 200 220 240

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement
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(b) Deep coaxial measurement
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Figure 2.25: Model problem 2. Comparison between F ˝ I and F ˝ Iθ˚ with reg-
ularization using the inversion strategy of Example B.1, i.e., with
input measurements corresponding to one logging position per sam-
ple.
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Figure 2.26: Model problem 2. Comparison between F ˝ I and Fφ˚ ˝ I with reg-
ularization using the inversion strategy of Example B.1, i.e., with
input measurements corresponding to one logging position per sam-
ple.
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2.8.3.3 Model Problem III

We now consider a model formation exhibiting geological faults and two different
well trajectories. For well trajectory 1, Figure 2.27 shows the model problem, log-
ging trajectory, inversion results, and coaxial attenuation logs. Inversion results
are excellent. When considering the second well trajectory shown in Figure 2.28,
we observe good inversion results except at the proximity of points with horizon-
tal distance (HD) equals to 75m and 350m. These inaccurate inversion results
are easily identified by examination of the corresponding logs.
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Figure 2.27: Model problem III, trajectory 1. Comparison between actual and
predicted formations and the corresponding coaxial logs with reg-
ularization using the inversion strategy of Example B.1, i.e., with
input measurements corresponding to one logging position per sam-
ple.
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Figure 2.28: Model problem III, Trajectory 2. Comparison between actual and
predicted formations and the corresponding coaxial logs with reg-
ularization using the inversion strategy of Example B.1, i.e., with
input measurements corresponding to one logging position per sam-
ple.
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Deep Learning (DL) methods are fast, but require a massive training dataset. To
decrease the online computational time during field operations, we often produce
such a large dataset a priori (offline) using tens of thousands of simulations of
borehole resistivity measurements (see [75]). To generate the database for DL in-
version, we employ simulation methods to solve Maxwell’s equations with different
conductivity distributions (Earth models). Since 3D simulations are expensive
and possibly unaffordable when computing such large databases, it is common
to reduce the Earth model dimensionality to two or one spatial dimensions using
a Fourier or a Hankel transform. These transformations lead to the so-called
2.5D [3, 48, 92, 101, 135] and 1.5D [12, 100, 129] formulations, respectively. 1.5D
simulations are inaccurate when dealing with geological faults.

In this work, we focus on the efficient generation of a massive database using
2.5D simulations – as a preliminary stage for DL inversions. We propose the use
of refined Isogeometric Analysis (rIGA) discretizations to generate databases for
DL inversion of 2.5D geosteering electromagnetic (EM) measurements.

3.1 2.5D Variational Formulation of
Electromagnetic Measurements

3.1.1 3D Wave Propagation Problem

The two time-harmonic curl Maxwell’s equations describing the 3D wave propa-
gation in an isotropic medium are

∇ˆ E` iωµH “ ´iωµM
∇ˆH “ pσ ` iωεqE

(3.1)

where E is the electric field, H is the magnetic field, i is the imaginary unit,
σ is the electric conductivity, ε is the electric permittivity, µ is the magnetic
permeability, ω “ 2πf is the angular frequency, with f being the transmitter
frequency, and M is the time-harmonic magnetic source located at px0, y0, z0q

and given by

M “ δpx´ x0qδpy ´ y0qδpz ´ z0qrMx,My,Mzs P R3, (3.2)
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with δp¨q being the Dirac delta function defined as follows:

δpx´ x0q :“

"

8, x “ x0,
0, x ‰ x0.

(3.3)

To incorporate an integrable approximation of the Dirac delta function, we
consider a bell-like representation for the delta function. For example, in the x
direction, we approximate:

δpx´ x0q «
1

α
?
π

exp

„

´

´x´ x0

α

¯2


, (3.4)

where α is a positive value.
From Maxwell’s equations, we obtain the following reduced wave formulation

in terms of magnetic field H:

$

’

’

&

’

’

%

Find H “ rHx, Hy, Hzs, with H : Ω Ă R3 Ñ C3, such that:

∇ˆ
ˆ

1

σ ` iωε
∇ˆH

˙

` iωµH “ ´iωµM, in Ω,

Eˆ n “ 0, on BΩ,
(3.5)

where Ω is the domain of study and n is the unit normal (outward) vector on the
boundary BΩ. We define Ω as a tensor-product box:

Ω “ Ωx ˆ Ωy ˆ Ωz “
`

´ Lx{2, Lx{2
˘

ˆ
`

´ Ly{2, Ly{2
˘

ˆ
`

´ Lz{2, Lz{2
˘

,

being Lx,Ly, and Lz positive real constants.
To introduce the weak formulation of this problem, we first define the Hpcurl; Ωq-

conforming functional spaces

Hpcurl; Ωq :“ tW “ rWx,Wy,Wzs P pL
2pΩqq3 : ∇ˆW P pL2pΩqq3u ,

H0pcurl; Ωq :“ tW P Hpcurl; Ωq : W ˆ n “ 0on BΩu .
(3.6)

The Hpcurl; Ωq space is endowed with the inner product

pW,HqHpcurl;Ωq :“ p∇ˆW,∇ˆHqpL2pΩqq3 ` pW,HqpL2pΩqq3

:“

ż

Ω

p∇ˆWq
˚
¨ p∇ˆHqdΩ`

ż

Ω

W˚
¨HdΩ,

(3.7)

where ˚ is the conjugate transpose of complex vector space and ¨ denotes the
inner product.
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We build the weak formulation by multiplying Eq. (3.5) with an arbitrary func-
tion W P H0pcurl; Ωq, using Green’s formula, and integrating over the domain
Ω. The weak formulation is then

$

&

%

Find H P H0pcurl; Ωq, such that for every W P H0pcurl; Ωq,
ˆ

∇ˆW,
1

σ ` iωε
∇ˆH

˙

pL2pΩqq3
` iωµpW,HqpL2pΩqq3 “ ´iωµpW,MqpL2pΩqq3

(3.8)

3.1.2 2.5D Variational Formulation

Herein, we focus on the case when the material properties are homogeneous
along one spatial direction, e.g., y-axis. We denote the domain for this case
as Ω :“ Ωy ˆΩx,z. We perform a Fourier transform along the y-axis to repre-
sent the 3D problem as a sequence of uncoupled 2D problems, one per Fourier
mode. In this case, we define the magnetic field H as a series expansion using
the complex exponentials:

H :“
`8
ÿ

β“´8

Hβexppi2πβy{Lyq, (3.9)

where β is the Fourier mode number and Hβ “
“

Hβ
x , H

β
y , H

β
z

‰

with Hβ : Ωx,z Ă

R2 Ñ C3.
Fourier modes satisfy the following orthogonality relationships, where δi,j is the

Kronecker delta:

1

Ly

ż Ly{2

´Ly{2

exppi2πβ1y{Lyqexppi2πβ2y{Lyqdy “ δβ1,β2 . (3.10)

By employing a test function of the form

W :“
1

Ly
Wβexppi2πβy{Lyq, (3.11)

and defining the Hpcurlβ; Ωx,zq-conforming functional spaces

Hpcurlβ; Ωx,zq :“
 

Wβ “ rW
β
x ,W

β
y ,W

β
z s P pL

2pΩx,zqq
3 : Wβ

y P H1
pΩx,zq

and ∇ˆ rW β
x ,W

β
z s P pL

2pΩx,zqq
2
(

,

H0pcurlβ; Ωx,zq :“
 

Wβ P Hpcurlβ; Ωx,zq : Wβ ˆ n “ 0 on BΩ
(

.
(3.12)
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we build the following variational formulation from Eq. (3.5) by integrating over
Ωx,z:

$

’

’

&

’

’

%

Find H “
ř`8

β“´8Hβexppi2πβy{Lyq,Hβ P H0pcurl; Ωx,zq

such that for every β P Z and Wβ P H0pcurl; Ωx,zq,
ˆ

∇β ˆWβ,
1

σ ` iωε
∇β ˆHβ

˙

pL2pΩx,zqq3

` iωµpWβ,HβqpL2pΩx,zqq3 “ ´iωµpWβ,MβqpL2pΩx,zqq3 ,

(3.13)
where

∇β
ˆWβ :“

«

iβ
2π

Ly
W β
z ´

dW β
y

dz
,
dW β

x

dz
´
dW β

z

dx
,
dW β

y

dx
´ iβ

2π

Ly
W β
x

ff

, (3.14)

and Mβ is the time-harmonic magnetic source written in terms of the Fourier
transform as

Mβ “
1

Ly
δpx´ x0qδpz ´ z0qrMx,My,Mzsexppi2πβy0{Lyq. (3.15)

This formulation corresponds to the 2.5D variational formulation previously
described by, e.g., [27] and [120].

Remark 3.1. To solve the variational problem of Eq. (3.13), we require an appro-
priate space in Ωx,z over which Wβ, ∇ˆrWβ

x ,W
β
z s, and∇Wβ

y are integrable, i.e.,

rWβ
x ,W

β
z s P Hpcurl; Ωx,zq and Wβ

y P H
1pΩx,zq. Thus, we use the Hpcurlβ; Ωx,zq

solution space – equivalent to the Hpcurl; Ωx,zq ˆ H1pΩx,zq mixed space – that
fulfills the mentioned requirements.

3.2 Borehole Resistivity Measurement Acquisition
System

We consider the logging-while-drilling (LWD) instrument equipped with trans-
mitters (Txi) and receivers (Rxj) of Figure 3.1. This tool is sensitive to resistivities
within the range 0.2 „ 500 Ω ¨m (phase resistivity) and 0.2 „ 300 Ω ¨m (ampli-
tude resistivity) under an operating frequency between 0.1 and 2 MHz [79]. For
the sake of simplicity, herein, we restrict to two transmitters and two receivers
symmetrically located around the tool center (see Figure 3.1) at an operating
frequency of 2 MHz.

Triaxial logging instruments generate measurements for all possible orienta-
tions of the transmitter–receiver pairs. We follow the notation presented by [34]
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Tx2 Tx1Rx2 Rx1

lR

lT

Figure 3.1: A schematic LWD instrument with two transmitters and two receivers
located symmetrically around the tool center.

and [120] to denote the magnetic field. Thus, we write H
TxiRxj
ZZ P C as the coaxial

magnetic field in the borehole system of coordinates induced by transmitter Txi
and measured at receiver Rxj (i, j “ 1, 2). We use the magnetic fields measured
at Rx1 and Rx2 to compute the attenuation ratio and phase difference. We sym-
metrize the signal originating from Tx1 and Tx2 to obtain the quantity of interest
QZZ at each logging position as

QZZ :“
1

2

˜

log
H
Tx1Rx1
ZZ

H
Tx1Rx2
ZZ

` log
H
Tx2Rx2
ZZ

H
Tx2Rx1
ZZ

¸

. (3.16)

Then, we compute the attenuation ratio pAq and phase difference pP q, respec-
tively, as the real and imaginary parts of QZZ :

A :“ RepQZZq, (3.17)

P :“ ImpQZZq, (3.18)

We can then obtain the apparent resistivities based on the attenuation ratio
and phase difference (ρA and ρP , respectively) using a look-up table algorithm.
This algorithm obtains the apparent resistivities from the tool response in a
homogeneous isotropic medium, which is analytically known (see [7]).

3.3 Refined Isogeometric Analysis

In this work, we consider a multi-field EM problem and discretize the 2.5D
variational formulation of Eq. (3.13) using a B-spline generalization of a curl-
conforming space, introduced by [20]. We first review some basic concepts of
high-continuity Isogeometric Analysis (IGA) discretizations.
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3.3.1 High-continuity IGA Discretization

Given the parametric domain tξ, ζ P Ω̂x,z : p0, 1q2 Ă R2u, we introduce the spline
space Spx,pzkx,kz

as

Spx,pzkx,kz
:“ span

 

Bpx,pz
i,j

(nx´1,nz´1

i“0,j“0
, (3.19)

where n, p, and k with their indices are the number of degrees of freedom, polyno-
mial degree, and continuity of basis functions in x and z directions, respectively,
resulting in ne :“ n´ p number of elements in each direction. The bivariate basis
functions are

Bpx,pz
i,j :“ Bpx

i pξq bB
pz
j pζq, i “ 0, 1, ..., nx ´ 1, j “ 0, 1, ..., nz ´ 1, (3.20)

where the univariate bases are expressed by the Cox–De Boor recursion for-
mula [107] as

B0
i pξq “

"

1, ξi ď ξ ă ξi`1,
0, otherwise,

(3.21)

Bp
i pξq “

ξ ´ ξi
ξi`p ´ ξi

Bp´1
i pξq `

ξi`p`1 ´ ξ

ξi`p`1 ´ ξi`1

Bp´1
i`1 pξq, (3.22)

and spanned over the respective knot sequences in x and z directions, given by

Ξ “ r0, 0, ..., 0
looomooon

px`1

, ξpx`1, ξpx`2..., ξnx´1, 1, 1, ..., 1
looomooon

px`1

s, (3.23)

Z “ r0, 0, ..., 0
looomooon

pz`1

, ζpz`1, ζpz`2..., ζnz´1, 1, 1, ..., 1
looomooon

pz`1

s, (3.24)

We assume single multiplicities for all knots, providing maximum continuity k “
p´ 1 for the IGA discretization.

Figure 3.2 illustrates the Hpcurlq ˆ H1 IGA discrete space in Ωx,z along with
the univariate basis functions of the respective vector fields. For brevity, herein
and in the following, we exclude the superscript β in referring to the components
of the magnetic field.

We define the spaces in the parametric domain and introduce the appropriate
transformations to obtain the discretization on the physical domain. We start
with the set of discrete spaces in the parametric domain, given by

V̂curl
h pΩ̂x,zq :“Sp´1,p

k´1,k ˆ Sp,p´1
k,k´1, (3.25)

Q̂grad
h pΩ̂x,zq :“Sp,pk,k. (3.26)
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Figure 3.2: Example of the HpcurlqˆH1 space for a 2.5D formulation discretized
by Cp´1 IGA with uniform 8ˆ 8 elements in Ωx,z, polynomial degree
p “ 4, and continuity k “ 3. The univariate basis functions of Hx,
Hy, and Hz are shown in blue, red, and purple, respectively. Thin
gray lines in the mesh skeleton denote the high-continuity element
interfaces.

By defining F : Ω̂x,z Ñ Ωx,z as the geometric mapping from the parametric do-
main onto the physical domain, and DF as its Jacobian, we introduce the set of
discrete spaces in the physical domain:

Vcurl
h pΩx,zq :“

!

Hx,z “ rHx, Hzs P Hpcurl; Ωx,zq XH1
pΩx,zq : ιcurl

pHx,zq “ Ĥx,z P V̂curl
h pΩ̂x,zq

)

,

(3.27)

Qgrad
h pΩx,zq :“

!

Hy P H
1
pΩx,zq : ιgradpHyq “ Ĥy P Q̂grad

h pΩ̂x,zq

)

(3.28)

where we use the following curl- and grad-preserving pullback mappings [20, 46]:

ιcurl
pHx,zq :“pDFqT pHx,z ˝ Fq, (3.29)

ιgrad
pHyq :“Hy ˝ F. (3.30)
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Thus, by defining the discrete space

Hh,0pΩx,zq :“
!

Hβ,h P Vcurlh pΩx,zq ˆQgradh pΩx,zq : Hβ,h ˆ n “ 0 on BΩ
)

, (3.31)

we write the discrete form of Eq.(3.13) as follows (subscript h refers to discrete
solution):

$

’

’

&

’

’

%

Find Hh “
ř`8

β“´8Hβ,hexppi2πβy{Lyq,Hβ,h P Hh,0pΩx,zq

such that for every β P Z and Wβ,h P Hh,0pΩx,zq,
ˆ

∇β ˆWβ,h,
1

σ ` iωε
∇β ˆHβ,h

˙

pL2pΩx,zqq3

` iωµpWβ,h,Hβ,hqpL2pΩx,zqq3 “ ´iωµpWβ,h,MβqpL2pΩx,zqq3 ,

(3.32)

3.3.2 rIGA Discretization

The rIGA is a discretization technique that optimizes the performance of direct
solvers. In particular, rIGA preserves the optimal convergence order of the di-
rect solvers with respect to a fixed number of elements in the domain. [47] first
presented this strategy for H1 spaces and then extended it to Hpcurlq, Hpdivq,
and L2 spaces (see [46]). Starting from the high-continuity Cp´1 IGA discretiza-
tion, rIGA reduces the continuity of certain basis functions by increasing the
multiplicity of the respective existing knots. Hence, the computational domain is
subdivided into high-continuity macroelements interconnected by low-continuity
hyperplanes. These hyperplanes coincide with the locations of the separators
at different partitioning levels of the multifrontal direct solvers. Thus, rIGA
reduces the computational cost of matrix factorization when solving Partial Dif-
ferential Equation (PDE) systems in comparison to IGA and Finite Element
Method (FEM).

For multi-field problems discretized using Hpcurl; pΩx,zqqˆH
1pΩx,zq spaces, we

preserve the commutativity of the de Rham diagram [37] by reducing the conti-
nuity in k ´ 1 degrees. To achieve this, we use both C0 and C1 hyperplanes and
reduce the continuity across the interface between the subdomains (i.e., macroele-
ments). Figure 3.3 depicts the rIGA discretization of the Hpcurl; Ωx,zqˆH

1pΩx,zq

space of Figure 3.2 after one level of symmetric partitioning, which results in
macroelements containing 4ˆ 4 elements.

Previous works show rIGA discretizations provide significant improvements in
the solution time and memory requirements. In particular, the rIGA solution is
obtained up to Opp2q faster in large domains – and Oppq faster in small domains –
than the IGA solution. In comparison to traditional FEM with the same number
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Figure 3.3: Hpcurlq ˆH1 rIGA space in Ωx,z, associated with the 8 ˆ 8 domain
of Figure 3.2 with p “ 4 and k “ 3, after one level of symmetric
partitioning by the rIGA discretization that results in 4ˆ4 macroele-
ments. rIGA reduces the continuity of basis functions by k ´ 1 de-
grees across the macroelement separators (the low-continuity bases
are shown in black). Thin gray lines in the mesh skeleton denote the
high-continuity element interfaces, while thick black lines illustrate
the macroelement boundaries. We refer to the vertical and horizontal
separators as “vs” and “hs”, respectively.

of elements, rIGA provides even larger improvements. rIGA also reduces the
memory requirements since the rIGA LU factors have fewer nonzero entries than
the IGA LU factors. Finally, rIGA improves the approximation error with respect
to IGA since the continuity reduction of basis functions enriches the Galerkin
space (see [46, 47]).

3.4 Implementation Details

We implement discrete Hpcurl; pΩx,zqqˆH
1pΩx,zq spaces using PetIGA-MF [124],

a multi-field extension of PetIGA [33], a high-performance isogeometric analysis
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implementation based on PETSc (portable extensible toolkit for scientific com-
putation) [13]. PetIGA-MF allows the use of different spaces for each field of
interest and employs data management libraries to condense the data of multiple
fields in a single object, thus simplifying the discretization construction. This
framework also allows us to investigate both IGA and rIGA discretizations in our
2.5D problem with different numbers of elements, different polynomial degrees of
the B-spline spaces, and different partitioning levels of the mesh.

We use Intel MKL with PARDISO [105, 106] as our sparse direct solver package
to construct LU factors for solving the linear systems of equations. PARDISO
employs supernode techniques to perform the matrix factorization )see, e.g., [126,
127]. It provides parallel factorization using OpenMP directives [32] and uses the
automatic matrix reordering provided by METIS [70]. We executed all tests on
a workstation equipped with two Intel Xeon Gold 6230 CPUs at 2.10 GHz with
40 threads per CPU.

We employ a tensor-product mesh with variable element sizes (see Figure 3.4).
At each logging position, the computational mesh has a fine subgrid in the central
part of the domain with element size equal to hˆ h. This subgrid is surrounded
by another tensor-product grid whose element sizes grow slowly until reaching the
boundary. Let ne be the number of elements in each direction and nc ă ne is the
number of elements in each direction located at the central part of the domain.
We use the power function of Eq.(3.33) to model the geometrical progression of
the mesh. We follow the algorithm presented by [120] to find suitable values for
nc and growth rate r. Starting from the center point of a symmetric domain,
we obtain the size of the i-th element in each direction hi pi “ 1, 2, ..., ne{2q as
follows:

hi “

"

h, 1 ď i ď nc{2,

hrpi´nc{2q, nc{2 ă i ď ne{2.
(3.33)

Remark 3.2. For each logging position, we perform a single symbolic factor-
ization common to all Fourier modes, followed by a numerical factorization per
Fourier mode. Once we solve the system of equations for the first transmitter, we
update the right-hand side of Eq. (3.32) to solve for the magnetic field induced by
the second transmitter and use backward substitution. Hence, we perform only
one LU factorization per Fourier mode per logging position for both transmitters.

Remark 3.3. The convergence of the Fourier series leads to a fast decay of the
real and imaginary parts of HZZ for higher Fourier modes (see [119]). Thus,
we truncate the series of Eq. (3.9) when the magnetic field at the receivers is
sufficiently small, such that β P r´Nf , Nf s, being 2Nf ` 1 the total number of

58



3 Database Generation using IGA

z

x

l

l

h

h

L

L

Ωx,z

T2
R

2 R
1

T1
Tool Trajectory

Figure 3.4: A drawing of the computational domain Ωx,z and the tool trajectory.
The central subgrid bounded by a magenta box is composed of a set of
fine elements located in the proximity of the logging instrument. The
remaining elements grow smoothly in size until reaching the boundary.

Fourier modes. Due to the symmetry of the media along the y direction, we only
consider β P r0, Nf s.

3.5 Numerical Results

In this section, we first assess the accuracy of the rIGA approach in a homogeneous
medium. We also investigate the computational efficiency of the rIGA framework
in comparison with IGA and FEM approaches. Then, we consider two model
problems consisting of high-angle wells crossing spatially heterogeneous media
with multiple geological faults. Finally, we produce our synthetic training dataset
as a preliminary stage for DL inversion. In our simulations, we consider one
operational mode of a commercial logging tool [158] with lR “ 10.16 cm and
lT “ 56.8325 cm (see Figure3.1). We select the free space electric permittivity
and magnetic permeability as ε “ 8.85ˆ10´12 F ¨m´1 and µ “ 4πˆ10´7 N ¨A´2,
respectively. We also consider a transmitter frequency f “ 2 MHz.

3.5.1 Homogeneous Medium

We assume the logging instrument is placed in a homogeneous medium with
resistivity ρ “ 1{σ “ 100 Ω ¨ m. This high-resistivity case is numerically more
challenging than low-resistivity cases since it requires a larger number of Fourier
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modes and numerical precision. We consider a cube domain of length L “ 18 m
for our first case study.

3.5.1.1 Accuracy Assessment

To assess the accuracy and select certain discretization parameters, we compare
the numerical attenuation ratio, A, and phase difference, P , given by Eq.(3.17)
and Eq.(3.18), with the expected (i.e., exact) values, Ae and Pe, obtained from
ρe “ 1{σ. Figure 3.5 shows the numerical errors, i.e., |1´ A{Ae| and |1´ P {Pe|,
as a function of the number of Fourier modes when computing attenuation ratio
and phase difference in a homogeneous medium. Herein, we select a domain with
64 ˆ 64 elements to ensure a fast numerical solution for our measurements. We
compare the results of the high-continuity Cp´1 IGA with FEM and also with a
rIGA discretization that employs 8 ˆ 8 macroelements. This macroelement size
provides the fastest results for moderate size domains (see [47]). We consider
three different mesh sizes – h “ 0.025 m, 0.033 m, and 0.050 m– and different
polynomial degrees –p “ 3, 4, and 5. The best results correspond to h “ 0.025 m
(blue lines in the figure). We also observe that rIGA and FEM discretizations
deliver lower errors compared to their IGA counterparts –when the same number
of elements and polynomial degree are considered– taking into account that rIGA
provides solutions with higher computational efficiency (see Section 3.5.1.2).

To investigate the decay of the solution for each Fourier mode, we compare
numerical results with the analytical 2.5D solution in the homogeneous medium
presented by [120]. In particular, given Mz as the only nonzero component of
the magnetic source, it is possible to analytically determine the coaxial magnetic
field for each Fourier mode as follows:

HZZpβq “ ´iωµστβz `
B2τβz
Bz2

, (3.34)

with

τβz “
Mz

2π

1

Ly
K0pCRqexppi2πβy0{Lyq, (3.35)

where K0p¨q is the modified Bessel function of the second kind of order zero, and

C “ p2πβ{Lyq
2
` iωµσ, (3.36)

R “
a

px´ x0q
2 ` pz ´ z0q

2. (3.37)
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Figure 3.5: Numerical errors when computing attenuation ratio, A, and phase dif-
ference, P , in a homogeneous medium using IGA and rIGA discretiza-
tions, obtained by a 64ˆ64 element mesh with different element sizes
h and polynomial degrees p.

Figure 3.6 compares the decay of the numerical coaxial magnetic field HZZpβq
with its analytical counterpart for some Fourier modes. Using a domain with
64 ˆ 64 elements and h “ 0.025 m, we monitor the decay of the propagated
waves at distances within the interval r0.2, 1.0s m from the transmitters to ensure
that the solutions at both receivers properly approximate the analytical ones.
Results show that rIGA discretizations deliver increased accuracy for all tested
polynomial degrees.

3.5.1.2 Computational Efficiency

[46, 47] provide theoretical cost estimates of solving H1 and Hpcurlq discrete
spaces, respectively. Herein, we add these estimates to predict the cost of dis-
cretizing the Hpcurl; Ωx,zq ˆH

1pΩx,zq space appearing in our 2.5D EM problem.
We conclude that the cost of LU factorization of the rIGA matrix for this com-
bined space is between Oppq and Opp2q times smaller than that for IGA. Details
are omitted for the sake of simplicity.

To numerically assess the computational efficiency confirming the aforemen-
tioned theoretical results, we consider two different grids in Ωx,z with 64 ˆ 64
and 128 ˆ 128 elements, respectively. Using continuity reduction, we split the
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Figure 3.6: Comparison of the decay of the numerical and analytical coaxial mag-
netic fields for some Fourier modes, obtained in a grid of 64 ˆ 64
elements with h “ 0.025 m and different polynomial degrees.

mesh symmetrically into macroelements whose sizes are powers of two. In this
context, the maximum-continuity Cp´1 IGA discretization is composed of one
macroelement containing the entire grid, while C0 FEM with minimum continu-
ity across all element interfaces is composed of macroelements that contain only
one element. Figure 3.7 shows the number of FLOPs and time required to solve
the borehole resistivity problem for each Fourier mode per logging position. We
compare the computational costs for different polynomial degrees and different
continuity reduction levels of basis functions. The cost of rIGA reaches the min-
imum with 8 ˆ 8 macroelements almost in all cases, confirming the theoretical
estimates obtained from the results of [47].

Our numerical tests show that for a moderate size 2.5D problem, the reduction
in the number of FLOPs is Oppq with respect to IGA. When compared to FEM,
rIGA delivers larger improvement factors. These improvement factors in terms
of FLOPs also hold in terms of time when performing a sequential factorization.
In our parallel PARDISO solver, we observe a small degradation of the rIGA
improvement factors in terms of times in comparison to those obtained in terms
of FLOPs (see Table 3.1).
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Figure 3.7: Computational cost in terms of FLOPs and time for solving a 2.5D
borehole resistivity problem per logging position per Fourier mode.
We test rIGA discretizations with two different grids of 64 ˆ 64 and
128 ˆ 128 elements. The computational times correspond to the use
of parallel solver PARDISO using two threads.
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3.5.2 Heterogeneous Media

We further examine the accuracy of our rIGA approximation over two synthetic
heterogeneous model problems.

3.5.2.1 One Geological Fault

We consider the model problem of Figure 3.8 with a constant dip angle of 80˝. We
consider the Logging While Drilling (LWD) instrument described in Section 3.2
and simulate measurements recorded over 200 equally-spaced logging positions
throughout the well trajectory.

ρ = 50 Ω ·m

0.0
0.5
1.0
1.5
2.0

0.0 7.5 15.0

ρ = 3 Ω ·m

ρ = 1 Ω ·m

Figure 3.8: Model problem with a constant dip angle of 80˝ passing through a
geological fault and three different materials (well trajectory is high-
lighted by a red dashed line). Dimensions are in meters.

Figure 3.9 shows the apparent resistivities based on the attenuation ratio and
phase difference (ρA and ρP , respectively). We obtain the results using Nf “ 70
and a rIGA discretization with 64ˆ64 elements, p “ 4, and 8ˆ8 macroelements.
Results are in good agreement with those presented by [120].

3.5.2.2 Two Geological Faults and Inclined Layers

Figure 3.10 shows the second model problem containing two geological faults
and inclined layers. The logging trajectory starts from a sandstone layer with
a resistivity of ρ “ 3 Ω ¨ m, and passes through an oil-saturated layer with
ρ “ 100 Ω ¨ m. The tool trajectory also passes through a water-saturated layer
with ρ “ 0.5 Ω ¨m.

In particular, inclined layers produce the so-called staircase approximations [25].
This phenomenon occurs because the physical interfaces of the conductivity model
are not aligned with the element edges. Thus, the conductivity parameter takes
different values inside some elements of the mesh. To tackle this issue, discretiza-
tion techniques using nonfitting grids [26, 27] are available, but they have not
been considered here for simplicity.
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Figure 3.9: Apparent resistivities based on the attenuation ratio, ρA, and phase
difference, ρP , for the first model problem, compared with the real
(exact) resistivity, ρe. We obtain the results using a rIGA discretiza-
tion with 64ˆ 64 elements, p “ 4, and 8ˆ 8 macroelements.
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Figure 3.10: Second model problem with two geological faults and inclined layers.
The tool trajectory (red dashed line) has different dip angles and
passes through sandstone (yellow), oil-saturated (gray), and water-
saturated (green) layers. Dimensions are in meters.

Figure 3.11 shows the apparent resistivities based on the attenuation ration
and phase difference throughout the logging trajectory and compares their value
with the exact resistivity. We simulate the resistivities at 1,080 logging positions
with Nf “ 70. We use a rIGA discretization with 64 ˆ 64 elements, p “ 4, and
8ˆ 8 macroelements.

3.5.3 Database Generation for DL Inversion

To produce our synthetic training dataset for DL inversion, we consider hetero-
geneous medium containing three different layers and six varying parameters at
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Figure 3.11: Apparent resistivities based on the attenuation ratio, ρA, and phase
difference, ρP , for the second model problem, compared with the real
(exact) resistivity, ρe. We employ a rIGA discretization with 64ˆ64
elements, p “ 4, and 8ˆ 8 macroelements.

each logging position, as described in Figure 3.12 and Table 3.2. We select three
different electrical conductivities: σc for the central layer, and σu and σl for the
upper and lower layers, respectively. We assume the tool center is always within
the middle layer and has vertical distances of du and dl from the upper and lower
layers, respectively. The sixth varying parameter is the dip angle, ϕ, measured
from the vertical direction.

+

Tool center

du

dl

Tool trajectory

ϕ

σu

σc

σl

Figure 3.12: Varying parameters at each logging position when producing the
training dataset for DL inversion.

In here, we create a dataset of 100,000 samples and compute the apparent resis-
tivities obtained from random combinations within a given range of resistivities
ρ “ 1{σ P r1, 100s Ω ¨m (see Table 3.2). For generating the dataset, we use two
different types of parallelization. One parallelization is related to the parallel

67



3 Database Generation using IGA

Table 3.2: Varying parameters employed to generate the training dataset for DL
inversion.

Varying parameters Interval

Electrical conductivity of the central layer log10pσc) r´2, 0s
Electrical conductivity of the upper layer log10pσu) r´2, 0s
Electrical conductivity of the lower layer log10pσl) r´2, 0s
Distance of the tool center from the upper layer log10pdu) r´2, 1s
Distance of the tool center from the lower layer log10pdl) r´2, 1s
Dip angle between the tool and the layered media ϕ r80˝, 100˝s

factorization of the direct solver, and the other is the trivial parallelization based
on scheduling the solutions of independent Earth models onto different proces-
sors. Using 40 threads, we solve for 20 different Earth models, each executing
over two threads. Table 3.1 shows that the required time for matrix factoriza-
tion of the 2.5D EM problem using optimal rIGA discretization with 64 ˆ 64
grid, p “ 4, and 8 ˆ 8 macroelements is about 0.42 seconds per Fourier mode.
Considering Nf “ 70, and the additional time required for pre/postprocessing
and inter-thread communications, each set of independent runs (consists of 20
different Earth models) takes about 40 seconds. Thus, we perform 5,000 sequen-
tial runs to construct our 100,000 samples in about 56 hours. To create a larger
database, we could execute over a cluster of hundreds of CPUs/threads, expecting
a perfect parallel scalability. Figure 3.13a depicts the graphs of attenuation ra-
tio, A, versus phase difference, P , obtained from the 100,000 Earth models when
using rIGA discretization for generating the database. Since there is a strong
correlation between A and P , the data distribution on the plot follows an almost
straight line. We also display in Figure 3.13b the correlation between apparent
resistivities based on attenuation ratio and phase difference.
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Figure 3.13: (a) Attenuation ratio vs. phase difference, and (b) apparent resis-
tivity based on attenuation vs. apparent resistivity based on phase,
obtained for the 100,000 Earth models. We use rIGA discretization
with 64ˆ64 elements, p “ 4, and 8ˆ8 macroelements for generating
the database.

3.6 Discussions

Herein, we discuss some of the topics observed during the course of this research
about using IGA and rIGA for database generation for DL:

FEM vs. IGA and rIGA When using FEM, the solution space is characterized
by basis functions that have support over up to two elements in each spatial
direction. Considering ne as the number of elements in each direction, p as the
polynomial degree of basis functions, and d as the space dimension, we deal with
a linear system of equations that has O

`

pnepq
d
˘

unknowns. Whereas in IGA,
each basis function is spanned over p ` 1 elements. As a result, not only we
have smoother solution space using IGA (because of higher continuity of basis
functions), but also the system of equations has lower number of unknowns,
namely, O

`

pne ` pq
d
˘

, resulting in cheaper computations compared to FEM. In
practice, if we want to reduce the FEM computational cost, we may decrease
either the degree p or the number of elements ne. Either of these deteriorates the
solution accuracy. Herein, we propose to use the “refined IGA” (rIGA). Thus,
we conserve the desirable properties of IGA while reducing the solution cost of
direct solvers by decreasing the interconnection of elements in system matrices.
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Different types of parallelization One may consider different types of paral-
lelization, e.g., along the Fourier modes, parallel factorization using parallel direct
solvers, and the trivial parallelization based on independent Earth models. In this
work, we consider the latter two: parallelizations related to the parallel factor-
ization, and scheduling the solutions of independent Earth models onto different
processors. Since each new Earth model entails a new symbolic factorization,
the advantage of using these parallelizations lies in the fact that we can use one
symbolic factorization for all Fourier modes associated with the same processor.

2D Earth models for database generation Using more detailed 2D Earth
models do not affect the computational costs, but may affect the solution accuracy
if we deal with geological faults that are not aligned with the computational grid.
Thus, we need to align them or use some kind of numerical strategy, e.g., by using
nonfitting grids [26, 27], in order to improve the accuracy.
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4 Quadrature Rules when Solving
PDEs using Deep Learning

In traditional methods for solving inversion problems (such as gradient based or
statistics based methods), we need to solve the forward problem multiple times.
Moreover, to solve an inverse problem using Deep Learning (DL) techniques we
need to create a database, and to do so we also need to solve the forward problem
– governed by Partial Differential Equations (PDEs) – thousand of times.

Computational cost is one of the main limitations that traditional methods
to solve PDEs have (such as Finite Element Method (FEM), Finite Difference
Method (FDM) or Isogeometric Analysis (IGA)). The high computational cost
of using these methods thousands of times makes them inadequate for inversion
problems. As an alternative, we propose the use of DL techniques to solve para-
metric PDEs.

In the last decades, the use of DL techniques for solving PDEs has grown
exponentially. One of the most popular methods used to carry out this task is
based on Physics-Informed Neural Networks (PINNs) [22, 50, 65, 86, 87, 112, 122,
136, 153]. Here, we approximate the solution of a PDE via a Neural Network (NN)
that contains the physical information of the problem (more precisely, the loss
function contains information about the PDE that governs the problem and the
boundary conditions). There exist multiple PINN-based approaches, including:
Variational Physics-Informed Neural Networkss (VPINNs) [71], VarNets [73], hp-
VPINNs [72], or Deep Galerkin Method (DGM) [139].

While solving PDEs using NNs, we have realized that there exists a problem
when computing the integral that appears in the loss function. We must select
the quadrature rule to approximate the integral carefully. Otherwise, overfitting
may occur, which will result in a disastrous approximation of the PDE solution.

In this Chapter, we solve a simple 1D problem governed by Poisson’s equation
using the Deep Ritz Method (DRM) [149]. We show the problems that appear due
to the inadequate selection of the quadrature rule and propose several alternatives
to overcome this limitation.
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4.1 Model Problems

Let Ω Ă R be a computational domain, and ΓD and ΓN two disjoint sections of its
boundary, where ΓDYΓN “ BΩ and the subscripts D and N denote the Dirichlet
and Neumann bounds, respectively. We consider the following boundary value
problem:

$

’

&

’

%

´u2 “ f x P Ω,

u “ 0 x P ΓD,

u1 ¨ n “ g x P ΓN .

(4.1a)

(4.1b)

(4.1c)

In the above, n is the unit normal outward (to the domain) vector, and we
assume the usual regularity assumptions, namely, f P L2pΩq, g P H´1{2pΓNq, and
u P V “ H1

0 pΩq “ tv P H
1pΩq and v|ΓD “ 0u, where H1pΩq “ tv P L2pΩq, v1 P

L2pΩqu.
In this work we solve two different model problems to illustrate our numerical

results.

4.1.1 Model Problem 1

The solution of model problem 1 is upxq “ x0.7 and it satisfies Eq. (4.2).

$

&

%

´u2pxq “ 0.21x´1.3 x P p0, 10q,
up0q “ 0,

u1p10q “ 0.7
100.3

.
(4.2)

We select this problem because its solution exhibits a singularity (the deriva-
tives of upxq equal to infinity) at x “ 0.

4.1.2 Model Problem 2

The solution of model problem 2 is upxq “ x2 and it satisfies Eq. (4.3).

$

&

%

u2pxq “ 2 x P p0, 10q,
up0q “ 0,

u1p10q “ 20.
(4.3)

This problem has a smooth (C8) solution.
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4.2 Loss Functions

We introduce the following standard L2pΩq inner products:

pu, vq “

ż

Ω

u v and pg, vqΓN “

ż

ΓN

g v. (4.4)

In the following, we consider two methods: the Ritz Method [116], and the
Least Squares Method [91].

4.2.1 Ritz Method

Multiplying the PDE from Eq. (4.1a) by a test function v P V (where V “

H1
0 pΩq), integrating by parts and incorporating the boundary conditions, we ar-

rive at the variational formulation:

Find u P V such that pu1, v1q “ pf, vq ` pg, vqΓN @v P V. (4.5)

To introduce the Ritz method, we define the energy function FR : V ÝÑ R
given by

FRpvq “
1

2
pv1, v1q ´ pf, vq ´ pg, vqΓN . (4.6)

And we define to the following energy minimization problem:

u “ arg min
vPV

FRpvq. (4.7)

Theorem 4.1. Problems (4.1) and (4.7) are equivalent [69].

Proof. First, we show (4.1) ñ (4.5). Then, we prove (4.5) ô (4.7). To close the
equivalences, we see (4.5) ñ (4.1). Finally, we show that the solution is unique.

(4.1) ñ (4.5)

We multiply the PDE from (4.1) by an arbitrary test function v P V and we
integrate over Ω

´ p∆u, vq “ pf, vq. (4.8)

We integrate the left hand side by parts to obtain

p∇u,∇vq “ pf, vq ` pg, vqΓN @v P V. (4.9)

(4.5) ñ (4.7)
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Let u solve (4.5) and v P V . We set w “ v ´ u P V . We have

F pvq “ F pu` wq “
1

2
p∇u`∇w,∇u`∇wq ´ pf, u` wq ` pg, u` wqΓN “

“
1

2
p∇u,∇uq ´ pf, uq ` p∇u,∇wq ´ pf, wq ` 1

2
p∇w,∇wq

(4.10)

` pg, uqΓN ` pg, wqΓN .

Since u solves (4.5), we obtain that

1

2
p∇u,∇uq ´ pf, uq ` 1

2
p∇w,∇wq ` pg, uqΓN . (4.11)

Taking in care that p∇w,∇wq ě 0, we conclude that

F pvq ě
1

2
p∇u,∇uq ´ pf, uq ` pg, uqΓN “ F puq. (4.12)

(4.7) ñ (4.5)

Let u solve (4.7). Then, for any v P V and ε P R we have

F puq ď F pu` εvq “: Gpεq. (4.13)

Thus, the differentiable function Gpεq has a minimum at ε “ 0. Hence∇Gp0q “
0, i.e:

∇Gp0q “ p∇u,∇vq ´ pf, vq ` pg, vqΓN “ 0 @v P V. (4.14)

So, u is a solution of (4.5).
(4.5) ñ (4.1)

We assume that u P V satisfies (4.5)

p∇u,∇vq “ pf, vq`pg, vqΓN ñ
ż

Ω

∇u∇vdx´
ż

Ω

fvdx´

ż

ΓN

vpg ¨nqdx “ 0, @v P V.

(4.15)
We can integrate the first term by parts, obtaining

ż

ΓD

vp∇u¨nqdx`
ż

ΓN

vpg ¨nqdx´

ż

Ω

v∆udx´

ż

Ω

fvdx´

ż

ΓN

vpg ¨nqdx “ 0, @v P V.

(4.16)
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Simplifying terms we reach to

´

ż

Ω

vp∆u` fqdx “ 0, @v P V. (4.17)

With the assumption that p∆u ` fq is continuous that equality can only be
satisfied if

p∆u` fqpxq “ 0 x P Ω, (4.18)

and this means that u is solution of (4.1).
To finish the proof, we show that the solution of (4.5) is unique. Suppose that

u1 P V and u2 P V are solutions of (4.5),

p∇u1,∇vq “ pf, vq ` pg, vqΓN @v P V,
p∇u2,∇vq “ pf, vq ` pg, vqΓN @v P V.

(4.19)

Subtracting the equations from (4.19) and selecting v “ u1 ´ u2 we obtain

ż

Ω

p∇u1 ´∇u2q
2dx “ 0, (4.20)

which implies that

∇u1pxq ´∇u2pxq “ ∇pu1 ´ u2qpxq “ 0 @x P Ω. (4.21)

This implies that pu1´u2qpxq is constant on Ω, and with the boundary condition
u1pxq “ 0 for x P ΓD we reach to u1pxq “ u2pxq, @x P Ω.

4.2.2 Least Squares Method

Reordering the terms of Eq. (4.1a) and (4.1c), we define:

"

Gu :“ u2 ` f x P Ω,
Bu :“ u1 ¨ n´ g x P ΓN .

(4.22)

To introduce the Least Squares method, we define the function FLS : V ÝÑ R,
where the function v P V satisfies the Dirichlet conditions:

FLSpvq “ |pGv,Gvq| ` |pBv,BvqΓN |. (4.23)

We want to minimize the function FLSpvq subject to the essential (Dirichlet)
Boundary Conditions (BCs). We often find the minimum by taking the derivative
equal to zero and ending up with a linear system of equations. In the context of
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DL, we can simply introduce the above loss function FLSpvq directly in our NN.
Therefore, we want to find

u “ arg min
vPV

FLSpvq. (4.24)

4.3 Neural Network Implementation

We train a NN, named uNNpx; θq, with the following architecture. We define
the trainable part of our NN with learnable parameters θ. We call it uθ. It is
composed by:

1. An input layer. This layer receives the data in the form of a nˆ d matrix,
where n is the number of samples and d is the dimension of the data.

2. One hidden dense layer with m neurons and a sigmoid activation function.

3. An output layer that delivers uθ.

Then, we add non-trainable layers to our arquitecture in order to impose Equa-
tions (4.6) or (4.23). For that, we introduce:

4. A non-trainable layer to impose the Dirichlet boundary conditions. For
that, we select a function φpxq that satisfies the Dirichlet conditions of the
problem and its value is nonzero everywhere else [76]. In this work, we select
the following φpxq functions for 1D problems in the interval Ω “ ra, bs:

φpxq “
ź

xDPΓD

px´ xDq. (4.25)

Then, we generate a new output of the NN: uNNpx; θq “ φpxquθpxq that
strongly imposes the homogeneous Dirichlet boundary conditions.

5. A non-trainable layer to compute the loss function FR or FLS following
Eqs. (4.6) or (4.23). Within this layer, we evaluate the integrals and the
derivatives. We consider different quadrature rules, being the quadrature
points part of the input data of our NN, along with the physical points of the
domain. For computing the derivatives, we use automatic differentiation,
except in some specific cases, where we employ FDM. These cases are
explicitly indicated throughout the text.
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Figure 4.1 shows a schematic graph of the described NN architecture. Our
software is developed in Python and we use the library Tensorflow 2.0.

To train the NN, we replace in Equations (4.7) or (4.24) the search space V
by the manifold generated by our learnable parameters θ included in our NN.
The result of the minimization is a function uNNpx, θ̃q, where θ̃ are the optimal
learnable parameters encountered as a result of the training. For simplicity, in the
following we abuse notation and use the symbol uNN to denote also the solution
uNNpx, θ̃q of our minimization problem.

x ...
uθ uNN F(uNN )

Impose BC Define loss

Trainable

hidden layer

Figure 4.1: Sketch of the arquitecture of uNN .

4.4 Quadrature Rules

We approximate our integrals from Eqs. (4.6) and (4.23) using a quadrature rule
of the form

ż b

a

fpxqdx «
n
ÿ

i“0

ωifpxiq, (4.26)

where ωi are the weights and xi are the quadrature points. Examples of quadra-
ture rules that follow the above formula include trapezoidal rule and Gaussian
quadrature rules [90]. We classify these quadrature rules into two groups: (1)
those that only employ points from the interior of the interval; and (2) those that
evaluate the solution at one extreme point or more (a or b). Integration rules
within the later group (e.g., the trapezoidal rule) are inadequate for our mini-
mization problems because the integrand can be infinite at the boundary points
in the case of singular solutions (e.g. model problem 1). Thus, we focus on
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quadrature rules that only evaluate the solution at interior points of the domain,
with a special focus on Gaussian quadrature rules.

4.4.1 Illustration of Quadrature Problems in Neural Networks

4.4.1.1 Ritz Method

We consider the two model problems from Section 4.1. We approximate upxq
using the Ritz method. Thus, we search for a NN that minimizes the loss func-
tional given by Eq. (4.6). Our NN has one hidden layer with 10 neurons (31
trainable weights). We use automatic differentiation to compute the derivatives
and a three-point Gaussian quadrature rule to approximate the integrals within
each element. We select the Stochastic Gradient Descent (SGD) optimizer. For
model problem 1, we discretize our domain with four equal-size elements and
execute 40, 000 iterations during the optimization process. For model problem
2, we discretize our domain with ten equal-size elements and execute 200, 000
iterations during the optimization process.

Figures 4.2a and 4.2b describe the loss evolution of the training process. We
obtain a lower loss than the optimum loss computed analytically using the exact
solution (i.e., FRpuexactq). This has to be due to some numerical error, in this
case, quadrature errors.

100 101 102 103 104

8

−1.54

−15

Epoch

L
os
s

FR(uexact)

FR(uNN )

(a) Model problem 1.

100 101 102 103 104 105

0

−666.67
−800

Epoch

L
os
s

FR(uexact)

FR(uNN )

(b) Model problem 2.

Figure 4.2: Loss evolution of the training process for our two model problems.

Figures 4.3 and 4.4 compare the approximate and exact solutions. We observe
a disastrous NN approximation due to quadrature errors. Figures 4.3b and 4.4b
show that the gradient is (almost) zero at the training (quadrature) points of
the first interval. Therefore, this value minimizes the numerical approximation of
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pu1, u1q. This behavior allows the approximated solution to reach larger values in
the first interval, and consequently maximizing the term pf, uq, and minimizing
the total loss:

FRpuNNq “
1

2
pu1NN , u

1
NNq

looooomooooon

ř

qi
ωipu1NN q

2«0

´pf, uNNq
looomooon

«8

´pg, uNNqΓN » ´8

The described quadrature errors can be interpreted as overfitting over the
derivative of the solution.

0 2 4 6 8 10
0

20

40

x

u

uNN

uexact

(a) Exact and approximate solu-
tions.

0 1 2

20

30

40

50

Gauss
points

x

u

(b) Approximate solution in the
interval r0, 2.5s. The Gauss
quadrature points correspond-
ing to the first element are in-
dicated in blue.

Figure 4.3: Exact vs approximate Ritz method solutions of model problem 1 using
four elements for evaluating FRpvq and a NN with 31 weights.

4.4.1.2 Least Squares Method

We now consider the following one-dimensional problem:

"

´u2pxq “ 0 x P p0, 1q,
up0q “ u1p1q “ 0,

(4.27)

where the exact solution is upxq “ 0. We can easily construct an approximating
function uNN that satisfies Eq. (4.27) at the three considered Gaussian points
and minimizes Eq. (4.23), while still being a poor approximation of the exact
solution due to quadrature errors. Figure 4.5 shows an example.
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(a) Exact and approximate solu-
tions.
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(b) Approximate solution in the in-
terval r0, 1s. The Gauss quadra-
ture points corresponding to the
first element are indicated in
blue.

Figure 4.4: Exact vs approximate Ritz method solutions of model problem 2 using
ten elements for evaluation of FRpvq and a NN with 31 weights.

0 0.25 0.5 0.75 1
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uNN

uexact
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u

Figure 4.5: Exact (uexact “ 0) and approximated solution of a problem given by
Eq. (4.27) and solved with the Least Square (LS) method.
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4.5 Integral Approximation

We now describe four different methods to improve the integral approximations.

4.5.1 Monte Carlo Integration

We consider the following Monte Carlo integral approximation over a set of points
xi P pa, bq,

ż b

a

fpxqdx «
pb´ aq

n

n
ÿ

i“1

fpxiq, xi P pa, bq @i “ t1, ¨ ¨ ¨ , nu (4.28)

In the above, points xi are randomly selected [1]. While this method is useful for
high-dimensional integrals, for low dimensions (1D, 2D, 3D) the computational
cost is high since the value of the integral approximation converges as 1{

?
n [150].

4.5.2 Piecewise-polynomial Approximation

We replace the original NN uNN by a piecewise-polynomial approximation u˚NN,¨,
where ¨ represents the number of pieces of our piecewise-linear interpolator. This
approximation can be exactly differentiated (e.q., via FDM) and integrated (via
a Gaussian quadrature rule). Figure 4.6 shows an example when we train a NN
and we build a piecewise-linear approximation of the NN with four elements.

This method controls quadrature errors. However, it is inadequate for high-
dimensional problems as we need a mesh that is difficult to implement and inte-
gration becomes time consuming.

4.5.3 Adaptive Integration

We first consider a training dataset over the interval pa, bq by taking an equidis-
tant partition of n elements. Then, we define the validation set as a global
h-refinement of the training dataset. Figure 4.7 shows an example of a training
and the corresponding validation datasets. Then, for each element of the train-
ing mesh (e.g., E1 in Figure 4.7), we compare the numerical integral over that
element vs the sum of the integrals over the two corresponding elements on the
validation dataset (in our case, E1

1 ` E2
1). If the integral values differ by more

than a stipulated tolerance, we h-refine the training element, and we upgrade the
validation dataset so it is built as a global h-refinement of the training dataset.
This process is described in Algorithm 1. Figure 4.7 also shows a training and
the corresponding validation dataset after refining the first and third elements.

We are able to control the quadrature errors by adding new quadrature points
to the training dataset. However, the simplest way to implement such method is
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Figure 4.6: Neural Network approximation uNN and its piecewise-linear element
approximation u˚NN,4.

Algorithm 1: Adaptive integration method

Generate a training dataset;
Generate the corresponding validation dataset;
Set tolerance ε and maximum iteration number imax;
while i ă imax do

for j “ 1, ¨ ¨ ¨ , n do
Compute integral values Ij over the training dataset of elements
Ej;

Compute integral values I1
j ,I2

j over the validation dataset of

elements E1
j ,E

2
j ;

if |pI1
j ` I

2
j q ´ Ij| ą ε then

h-refine the Ej-th element of the training set;
h-refine the E1

j -th and E2
j -th elements of the validation set;

else
continue;

end

end
i “ i` 1;

end
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(a) Training set
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Figure 4.7: Black points (dots) correspond to the original (a) training/(b) valida-
tion partitions and blue points (circles) are the points added by the
refinement performed in the first and third elements.

by using meshes, which posses a limitation on high-dimensional integrals. As an
alternative to generating a mesh, one can randomly add points to the training
set. This entails difficulties when designing an adaptive algorithm.

In the same way that we propose an h-adaptive method, we can also work with
p-adaptivity [14] or a combination of them (e.g., hp-adaptivity [38]).

4.5.4 Regularization Methods

We now introduce a problem-specific regularizer designed to control the quadra-
ture error.

In a one-dimensional setting, we consider the integral functional FR as given
in (4.6), and its approximation via a midpoint rule, F̂R, given by

F̂Rpuq “
b´ a

N

N
ÿ

j“1

ˆ

1

2
|u1pxjq|

2
´ fpxjqupxjq

˙

` gpbqupbq ` gpaqupaq. (4.29)

We note that g “ 0, except where the Neumann condition is imposed. While we
focus on the Ritz method, a similar heuristic can be applied to the LS method.

We introduce a function R that depends on the learnable parameters θ of
a given Neural Network uNN , such that for any Neural Network with a given
architecture,

|FRpuNNq ´ F̂RpuNNq| ă Rpθq. (4.30)

If we then consider a loss function L given by

Lpθq “ F̂RpuNNq `Rpθq, (4.31)
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then we may be able to improve the approximation of the quadrature rule, as the
loss contains a term that by design controls the quadrature error.

For simplicity, we consider only the case of a single-layer network with a one-
dimensional input, and the midpoint rule for calculating the integral over a uni-
form partition of pa, bq. We consider a mid-point rule as in (4.29), and define the
interval length δ “ b´a

N
and intervals Ij “

`

δ
2
` xj, xj `

δ
2

˘

. We estimate the error
of the midpoint rule to integrate F as

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

F pxq dx´
N
ÿ

j“1

F pxjqδ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

ż xj`
δ
2

xj´
δ
2

pF pxq ´ F pxjqq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

i“1

ż xj`
δ
2

xj´
δ
2

|F pxq ´ F pxjq| dx

ď

N
ÿ

i“1

max
tPIj

|F 1ptq|

ż xj`
δ
2

xj´
δ
2

|x´ xj| dx

“
δ2

4

N
ÿ

i“1

max
tPIj

|F 1ptq|.

(4.32)

This estimate scales as Op 1
N
q for fixed F , and thus, for a large number of

integration points, we expect the estimate to be sufficiently accurate and to avoid
“overdamping” of the loss.

With (4.32) in mind, we estimate the local Lipschitz constants of the integrand
as in (4.6). The numerical estimation of the Lipschitz constants of NNs has
attracted attention, as they form a way of estimating the generalizability of a
Neural Network, and have been used in the training process as a way to encourage
accurate generalization [44, 51, 125]. As we are dealing with loss functions that
involve derivatives of the Neural Network, we however need estimates of higher
order derivatives of uNN . The approach that we employ is similar in spirit to the
work of [88] for obtaining a posteriori error estimates in PINNs.

Despite the arithmetic complications involved in calculating R, conceptually
the idea reduces to an application of Taylor’s theorem. On a single interval of
integration Ij, we have that for every x, there exists some ξx so that

|F 1pxq| “ |F 1pxiq ` px´ xiqF
2
pξxq| ď |F

1
pxiq| `

δ

2
||F 2||8. (4.33)

We then find R using a combination of local and global estimates for the
derivatives of the integrand corresponding to simple pointwise evaluations at the
integration points and global estimates involving the Neural Network weights.
The necessary steps are:
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1. Using the chain rule, we find global upper bounds for the derivatives of a
simple Neural Network in terms of the weights.

2. Via Taylor’s theorem with remainder and using the global estimates for
simple networks, we find local estimates of the derivatives of NNs with a
cutoff function to ensure a homogeneous Dirichlet condition.

3. Using local estimates for the derivatives of a NN, we find local Lipschitz
estimates for integrands corresponding to the Ritz method.

We tackle each of these estimations in the following subsections.

4.5.4.1 Global Estimates for Derivatives of a Single Layer Network

Let ûNN be a single layer Neural Network. We write it in the form

ûNNpxq “ b1
`

M
ÿ

i“1

A1
iσpA

0
ix` b

0
i q. (4.34)

for weights θ “ pb1, A1, b0, A0q and an activation function σ. We assume that σ
has globally bounded derivatives, so that ||σpnq||8 is finite for every n “ 0, 1, 2....

A simple application of the triangle quality and that σ is bounded gives that

|ûNNpxq| ď|b
1
| `

M
ÿ

i“1

|A1
iσpA

0
ix` b

0
i q|

ď|b1
| `

M
ÿ

i“1

|A1
i |||σ||8

(4.35)

The derivatives of ûNN are

û
pnq
NNpxq “

M
ÿ

i“1

A1
i pA

0
i q
nσpnqpA0

ix` b
0
i q, (4.36)

for n ě 1. Similarly, this gives the immediate estimate that

ˇ

ˇ

ˇ
û
pnq
NNpxq

ˇ

ˇ

ˇ
ď

M
ÿ

i“1

|A1
i ||A

0
i |
n
||σpnq||8. (4.37)

Thus, we define the global upper bounding function R1pθ;nq by

R1
pθ;nq “

$

’

’

&

’

’

%

|b1| ` ||σ||8
M
ř

i“1

|A1
i | n “ 0,

||σpnq||8
M
ř

i“1

|A1
i ||A

0
i |
n n ě 1,

(4.38)
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which gives the global upper bound
ˇ

ˇ

ˇ
û
pnq
NNpxq

ˇ

ˇ

ˇ
ď R1

pθ;nq (4.39)

for every x.

4.5.4.2 Local Derivative Estimation of a Single Layer Neural Network
With Cutoff Function

Next, we consider the commonly considered case where our Neural Network ad-
mits a cutoff function to ensure a Dirichlet boundary condition, and turn to the
case of local estimation. Explicitly, we take uNNpxq “ ûNNpxqφpxq, where φ is
zero at the homogeneous Dirichlet condition, and ûNN is as in (4.34). We pre-
sume that φ has bounded derivatives; i.e. ||φpkq||8 is finite for k “ 0, 1, .... Let x
be in the interval Ij “

`

xj ´
δ
2
, xj `

δ
2

˘

. Then, we have

u
pnq
NNpxq “u

pnq
NNpxjq ` px´ xjqu

pn`1q
NN pξxq

“u
pnq
NNpxjq ` px´ xjq

n`1
ÿ

k“0

ˆ

n` 1

k

˙

û
pkq
NNpξxqφ

pn`1´kq
pξxq

(4.40)

via Taylor’s theorem with remainder and the product rule for higher order deriva-
tives. Employing the global upper bounds R1pθ;nq from (4.38), we have that for
x P Ij,

ˇ

ˇ

ˇ
u
pnq
NNpxq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
u
pnq
NNpxjq

ˇ

ˇ

ˇ
`
δ

2

n`1
ÿ

k“0

ˆ

n` 1

k

˙

|û
pkq
NNpξxq||φ

pn`1´kq
pξxq|

ď

ˇ

ˇ

ˇ
u
pnq
NNpxjq

ˇ

ˇ

ˇ
`
δ

2

n`1
ÿ

k“0

ˆ

n` 1

k

˙

R1
pθ; kq||φpn`1´kq

||8.

(4.41)

Thus, we define the second intermediate regularizer as

R2
pθ; Ij, nq “

ˇ

ˇ

ˇ
u
pnq
NNpxjq

ˇ

ˇ

ˇ
`
δ

2

n`1
ÿ

k“0

ˆ

n` 1

k

˙

R1
pθ; kq||φpn`1´kq

||8, (4.42)

giving the estimate that for all x P Ij,
ˇ

ˇ

ˇ
u
pnq
NNpxq

ˇ

ˇ

ˇ
ď R2

pθ; Ij, nq. (4.43)

We note that via automatic differentiation, upnq may be evaluated at the training
data xj.
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4.5.4.3 Application to Integral Errors

Our aim is to estimate the error in the integral functional

FpuNNq “
ż b

a

1

2
|u1NNpxq|

2
´ fpxquNNpxq dx´ gpaquNNpaq ´ gpbquNNpbq, (4.44)

when approximated by a simple quadrature rule

N
ÿ

j“1

ˆ

1

2
|u1NNpxjq|

2
´ fpxjquNNpxjq

˙

δ ´ gpbquNNpbq ´ gpaquNNpaq. (4.45)

The boundary terms can be calculated in one dimension without quadrature error
and thus we ignore their contribution. We estimate the error for the quadrature
rule by obtaining Lipschitz bounds of the integrand via

ˇ

ˇ

ˇ

ˇ

d

dx

ˆ

1

2
|u1NNpxq|

2
´ fpxquNNpxq

˙
ˇ

ˇ

ˇ

ˇ

“ |u1NNpxqu
2
NNpxq ´ f

1
pxquNNpxq ´ fpxqu

1
NNpxq|

ď|u1NNpxq||u
2
NNpxq| ` |f

1
pxq||uNNpxq| ` |fpxq||u

1
NNpxq|.

(4.46)

Estimating the (local) Lipschitz constant of the integrand reduces to estimating
(locally) various derivatives of uNN . For x P Ij, we estimate the Lipschitz constant
of the integrand via

ˇ

ˇ

ˇ

ˇ

d

dx

ˆ

1

2
|u1NNpxq|

2
´ fpxquNNpxq

˙
ˇ

ˇ

ˇ

ˇ

ď R3
pθ; Ijq, (4.47)

where the regularizer R3pθ, Ijq is given by

R3
pθ; Ijq “

´

R2
pθ; Ij, 1qR2

pθ; Ij, 2q ` ||f ||8R2
pθ; Ij, 1q ` ||f

1
||8R2

pθ; Ij, 0q
¯

.

(4.48)
We define the final regularizer R by

Rpθq “ δ2

4

N
ÿ

j“1

R3
pθ; Ijq, (4.49)

which following (4.32) gives the estimate

|FpuNNq ´ F̂puNNq|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

1

2
|u1NNpxq|

2
´ fpxquNNpxq dx´

N
ÿ

j“1

ˆ

1

2
|u1NNpxjq|

2
´ fpxjquNNpxjq

˙

δ

ˇ

ˇ

ˇ

ˇ

ˇ

ďRpθq.
(4.50)
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4.6 Numerical Results

In this section, we study numerically some of the alternatives proposed in Section
4.5 to overcome the quadrature problems. Specifically, we solve the two model
problems from Section 4.1 using: (a) a piecewise-linear approximation of the NN,
and (b) an adaptive integration method. We also solve model problem 2 using
regularization methods.

For the cases of piecewise-linear approximation and adaptive integration, we
use a NN architecture composed of one hidden layer with ten neurons and a
sigmoid activation function. We select SGD as the optimizer. In the case of
regularization, we use a hyperbolic tangent activation function with the Adam
optimizer [155].

4.6.1 Piecewise-linear Approximation

We select a piecewise-linear approximation of the NN as our approximate solu-
tion. We compute the gradients using FDM and the integrals using a one-point
Gaussian quadrature rule (i.e., the midpoint rule). For model problem 1, we use
two different uniform partitions composed of four and ten elements, and execute
40, 000 iterations. For model problem 2, we use a uniform partition composed of
ten elements and execute 200, 000 iterations.

Figures 4.8a and 4.8b show that the loss converges to the loss of the exact
solution. We also observe better results as we increase the number of elements,
as physically expected. Figures 4.9a and 4.9b show the corresponding solutions,
which are consistent with the loss evolutions displayed in Figures 4.8a and 4.8b.

Table 4.1 shows the loss value of the exact solution, of the optimum piecewise-
/linear solution, and of the obtained Deep Neural Network (DNN) piecewise-
linear solution. Since we are solving a 1D Laplace problem, the best piecewise-
linear approximation of the solution is its interpolator at the vertex nodes. For
model problem 1, we observe that we do not obtain the best piecewise-linear
solution. For model problem 2, we reach the optimum piecewise-solution.

FRpuexactq FRpũ˚NN,4q FRpu˚NN,4q FRpũ˚NN,10q FRpu˚NN,10q

Model

problem 1
-1.54 -1.36 -1.31 -1.41 -1.38

Model

problem 2
-666.67 - - -665 -664.99

Table 4.1: Loss values of the exact solution FRpuexactq, optimum piecewise-linear
solution FRpũ˚NN,¨q (for a four and a ten equidistant element partition),
and piecewise-linear solution FRpu˚NN,¨q using a DNN.
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Figure 4.8: Loss evolution of the training process for our two model problems
when we use a piecewise-linear approximation of the NN.
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Figure 4.9: Ritz method solution when we use a piecewise-linear approximation
of the NN to solve the problem.

While the use of a piecewise-linear approximation overcomes the quadrature
problems, the convergence is limited to Ophq, where h is the element size [17].
To increase this speed, it is possible to consider different piecewise-polynomial
approximations, including the use of r -adaptive algorithms [19].
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4.6.2 Adaptive Integration

We compute the gradients using automatic differentiation and the integrals using
a three-point Gaussian quadrature rule. As in our previous examples, we start
the training with a uniform partition of four elements for model problem 1 and of
ten elements for model problem 2. We select a half-size partition of the training
dataset for validation. For model problem 1, we compare the integral values of the
training and validation sets (i.e., we execute Algorithm 1) every 1000 iterations,
with an error tolerance of 0, 01; for model problem 2, we compare every 10, 000
iterations, with an error tolerance of 10. The tolerance is selected as a small
percentage of the value of the loss. In both cases, we do not execute the adaptive
algorithm in the first 10, 000 iterations.

Figures 4.10a and 4.10b show that the loss converges to the optimum value. As
explained in Section 4.5, the adaptive integration algorithm refines the training
dataset. For model problem 1, the algorithm performs two refinements in the
first interval. For model problem 2, one refinement occurs in the first interval.
The adaptive integration algorithm automatically selects the first interval for re-
finement, where overfitting was taking place in Figures 4.3 and 4.4. Figures 4.11a
and 4.11b show the corresponding solutions. We observe that the approximate
solutions properly approximate the exact ones.
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Figure 4.10: Loss evolution of the training process for our two model problems
when using adaptive integration.

The extrapolation of this method to higher dimensions (2D or 3D) requires
higher-dimensional discretizations and quadrature rules.
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Figure 4.11: Ritz method solution when using adaptive integration.

4.6.3 Regularization Methods

We do not apply the regularization method to model problem 1 as the method
requires sufficient regularity in order to provide the necessary estimates in the
calculation of R. Since the solution is singular at x “ 0, the necessary Lipschitz
bounds on the integral functional cannot be obtained within this framework.
Instead, we aim to demonstrate that for problems that are sufficiently regular,
our technique can avoid overfitting, and leave open the question as to how one
may adapt the technique to singular problems for future work. We thus consider
model problem 2. We propose the loss defined via

Lpθq “ F̂RpuNNq `Rpθq. (4.51)

Explicitly,

F̂RpuNNq “
10

N

N
ÿ

j“1

1

2
|u1NNpxjq|

2
´ 2uNNpxjq ´ 20uNNp20q, (4.52)

where xj “
10
N

`

i´ 1
2

˘

.

4.6.3.1 Experiment 1

We consider N “ 50 points, and a single layer network with M “ 10 neurons.
We use the Adam optimizer with learning rate 10´2. We solve model problem 2
with two losses: with and without regularization. In both cases, we measure the
metrics L, R, and F̂R. For validation, we use an equidistant partition of p0, 10q
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with 49 points, so that we still use a midpoint rule but with different integration
points.
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Figure 4.12: The solution and training information for Experiment 1 without reg-
ularization.

Figure 4.12 shows the results without regularization. As expected, we see in
Figure 4.12a that the approximation is poor due to overfitting, which is most
notable around x “ 0 and attained within 5000 epochs. Via the provided plots
we can observe the beginning of overfitting in two distinct manners. First, we
observe in Figure 4.12c that the value of F̂R evaluated over the validation data
begins to diverge from the value on the training data, becoming apparent at
around 1000 epochs. We also see this behaviour reflected in the evolution of
R in Figure 4.12d, with its most dramatic increase beginning around the same
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Figure 4.13: The solution and training information for Experiment 1 with regu-
larization.

iteration. This rapid increase also provokes an increase in L, as seen in Figure
4.12b. This also indicates that even if R is not used as part of the training
process, its increase could be used as a metric to identify overfitting.

Figure 4.13 describes the results with regularization and we observe a different
behaviour. The approximation is generally good, and we do not see any signs
of overfitting within 105 epochs, as shown in Figure 4.13a. In particular, the
values of F̂R at the training and validation data remain consistent in Figure
4.13c. Throughout Figure 4.13 we see that within 105 epochs all metrics appear
to have converged to a limiting value. We obtain final values L « ´644.22,
F̂R « ´666.07, R « 24.8. We recall that the true energy of the exact solution
is FRpuexactq « ´666.667, which suggests the quadrature rule is accurate. Notice
that in the case without regularization, before overfitting became apparent, R
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had already attained values of around 1000, which is far larger than the value of
R at the obtained solution when regularization was used.

4.6.3.2 Experiment 2

We now consider a smaller N . As we expect R to scale as 1
N

, we anticipate
a more adverse effect when N is small. To view this, we consider the same
problem of Experiment 1, where we now select N “ 20 integration points. We
consider M “ 10 neurons and minimize our problem using the Adam optimizer
with a learning rate of 10´2. As before, we consider the cases with and without
regularization.
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Figure 4.14: The solution and training information for Experiment 2 without reg-
ularization.
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Figure 4.15: The solution and training information for Experiment 2 with regu-
larization.

Figure 4.14 presents the loss evolution without regularization. We observe
overfitting, which is accompanied by divergence of the loss on the validation
dataset, as well as a rapid increase in R, with these features visible within 5000
epochs.

Figure 4.15 presents the results with regularization. We observe no signs of
overfitting, with the validation and training loss remaining close in Figure 4.15b.
All metrics appear to have converged to a limiting value within 104 epochs. How-
ever, the large value of R at the found solution (approximately 140) has sub-
stantially changed the optimization problem so that the obtained minimizer is
far from the desired solution. The final value of F̂R is around ´622, which is far
from the desired value of ´666.67. This experiment highlights the fact that the
regularizer becomes more effective when a large number of integration points are
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used.
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5 Conclusions and Future Work

5.1 Conclusions

In this dissertation, we first focus on the use of Deep Neural Networks (DNNs)
for the inversion of borehole resistivity measurements for geosteering applications.
We analyze the strong impact that different loss functions have on the prediction
results. For this, we illustrate via a simple benchmark example that a traditional
data misfit loss function delivers poor results. As a remedy, we propose the use of
an Encoder-Decoder based or a two-step based loss function. These approaches
generate two DNN approximations: one for the forward function and another
one for the inverse operator. Then, we apply these two loss functions in a field
example with synthetic data, and we obtain adequate results.

To guarantee that the inverse DNN approximation provides meaningful results,
we need to ensure that the training dataset contains sufficient samples. Otherwise,
both forward and inverse DNN operators may provide incorrect solutions while
still ensuring the composition of both operators is close to the identity. Thus,
the approach is highly dependent on the existence of a sufficiently rich training
dataset, which facilitates the learning process of the DNNs.

To ensure that the inverse DNN approximation delivers significant results, we
find it highly beneficial to add a regularization term to the loss function based
on the existing training dataset. This reduces the richness we need to guaran-
tee within the training datasets. Nevertheless, such regularization terms may
hide alternative feasible solutions for the inverse operator, which may provide
overconfidence in the results. Another possibility is to consider a two-step based
loss function. Using this approach, we have shown that the inverse problem
considered in this work admits different solutions that are physically
feasible, a fact that was obscured when using the regularization term.

Other critical limitations of DNNs we encounter in this work are: (a) the lim-
ited approximation capabilities of DNNs to reproduce discontinuous functions,
(b) the need for a new dataset and trained DNN for each subsurface parametriza-
tion, and (c) the poor results they exhibit when they are evaluated over a sample
that is outside the training dataset space. More importantly, it is often difficult
to identify the source of poor results, which may include inadequate selections
of: (i) loss function, (ii) DNN architecture, (iii) regularization term, (iv) train-
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ing dataset, (v) optimization algorithm, (vi) rescaling operator and norms, (vii)
model parameterization, (viii) approximation capabilities of DNNs, or simply (ix)
the nature of the problem due to a lack of adequate measurements.

To deal with the afforementioned sources of errors, we propose a careful
step-by-step error control based on: (a) selecting adequate norms, (b) proper
rescaling of the variables, (c) selecting a well suited loss function possibly with a
regularization term, (d) analyzing the evolution of the different terms of the loss
function, (e) studying multiple cross-plots of different nature, and (f) performing
an in-depth assessment of the results over multiple realistic test examples.

We also show it is possible to obtain a good-quality inversion of geosteering
measurements with limited online computational cost, thus, suitable for real-time
inversion. Moreover, the quality of the inversion results can be rapidly evaluated
to detect its possible inaccuracies in the field and select alternative inversion
methods when needed.

As mentioned before, the DNN approximation of the inverse operator is highly
dependent on the existence of a sufficiently rich training dataset. In the case
of 1D layered formations, it is often feasible to produce the required dataset.
However, for more complicated cases, for example, in 2D and 3D geometries, a
direct extension may be limited due to the larger number of inversion variables
and the extremely time-consuming process of producing an exhaustive dataset.
Such a large database is essential for layer-by-layer estimation of the inverted
Earth models, which may be used for real-time adjustments of the well trajectory
during geosteering operations.

In the second part of this dissertation, we propose the use of refined Isoge-
ometric Analysis (rIGA) discretizations for generating a massive syn-
thetic database for Deep Learning (DL) inversion of 2.5D borehole
electromagnetic (EM) measurements. rIGA delivers computational savings
of up to Oppq compared to the high-continuity Isogeometric Analysis (IGA).
When compared to a traditional Finite Element Method (FEM) with the same
mesh size and polynomial degree, rIGA provides higher improvement factors.
At the same time, rIGA provides sufficiently accurate solutions for geosteering
purposes.

To create a dataset for DL inversion, we first selected certain discretization pa-
rameters based on the results of several homogeneous solutions. Then, we checked
the accuracy over homogeneous and heterogeneous media. Finally, we generated
a synthetic database composed of 100,000 Earth models with the corresponding
measurements in about 56 hours using a workstation equipped with two CPUs.

In the last part of this work, we focus on the use of Neural Networks (NNs)
for solving a Partial Differential Equation (PDE). We first illustrate via two
simple examples how quadrature errors can destroy the quality of the
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approximated solution when solving PDEs using DL methods. For this,
we solve two simple 1D problems based on Poisson’s equation using the Deep Ritz
Method (DRM) and a three-point Gaussian quadrature rule. Then, we propose
four different alternatives to overcome the quadrature problems, discuss
their advantages and limitations, and illustrate their performance.

In high dimensions, Monte Carlo integration methods are the best choice. Reg-
ularizer methods are another option, but they are problem dependent and they
need to be derived for each different architecture. Moreover, they require further
analysis for highly nonlinear integrands. Furthermore, they are limited only to
sufficiently smooth integral functionals. In addition, more complex NN architec-
tures (which should be needed in higher dimensions) will hinder the derivation of
R.

In low dimensions (three or below), Monte Carlo integration is not competitive
because of its low convergence speed. In these cases, adaptive integration exhibits
faster convergence. In the cases of piecewise-linear approximation and regulariz-
ers, we are also able to overcome the quadrature problems, but the convergence
speed is often slower and the accuracy is lower than with adaptive integration.

5.2 Future Work

There are several possible future research lines regarding this work. The first
one is to consider more complex Earth models, possibly containing geological
faults or other relevant subsurface features, and analyze the performance of the
Encoder-Decoder and two-step based loss functions.

Another line of research consists of reducing the dataset size required for solving
inverse borehole problems. Thus, decreasing the computational cost of creating
the dataset. For this, we use using Active Learning techniques. Another option
is to use Transfer Learning techniques for higher spatial dimensions, which can
also alleviate data requirements to train the corresponding DNN.

Concerning Chapter 4, one possible future work is to implement adaptive in-
tegration for 2D and 3D problems. In the same way, the piecewise-polynomial
approximation could be improved by implementing r -adaptivity to optimize the
grid.

Ultimately, we aim at solving parametric PDEs using NNs. By this, we will be
able to solve the forward problem corresponding to different Earth models using
NNs. Thus, we will be able to properly and efficiently create the dataset needed
to train our DNN that approximates the solution of inverse borehole problems.

99



6 Main Achievements

6.1 Scientific Achievements

In the first part of this dissertation, we investigate appropriate loss functions to
train a Deep Neural Network (DNN) when dealing with an inverse problem.

In the second part of this work, we propose the use of refined Isogeometric
Analysis (rIGA) discretizations to generate databases for DL inversion of 2.5D
geosteering electromagnetic (EM) measurements.

In the third part of this work, we analyze the problems associated with quadra-
ture rules in Deep Learning (DL) methods when solving Partial Differential Equa-
tions (PDEs), and we propose several alternatives to overcome quadrature prob-
lems.
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2021 J. A. Rivera, Á. J. Omella and D. Pardo. Deep Learning for solving
partial differential equations using Ritz method.
ICCS2021, Krakow, Poland.

2020 D. Pardo, M. Shahriari, C. Torres-Verd́ın, A. Hazra and J. A. Rivera. Deep
learning inversion of borehole resistivity measurements: algo-
rithms, uncertainty, and tool design.
Formation Evaluation Research Consortium 2020, Texas, USA.

2020 J. A. Rivera, D. Pardo and E. Alberdi. Design of Loss Functions for
Solving Inverse Problems using Deep Learning.
ICCS2020, Amsterdam, Netherlands.

2019 M. Shahriari, D. Pardo, C. Torres-Verd́ın, J. A. Rivera, A. Picon and J.
Del Ser. Design considerations for the deep-learning inversion of
borehole resistivity measurements.
Formation Evaluation Research Consortium 2019, Texas, USA.

2019 J. A. Rivera, E. Alberdi and D. Pardo. Zulaketa bidezko erresistibi-
tate neurketen simulazioa problema errealen ebazpenean.
IkerGazte: Nazioarteko ikerketa euskaraz Kongresua, Bayonne, France.

6.4 Seminars & Workshops

2022 J. A. Rivera, D. Pardo and E. Alberdi. Kuadratura erregelen er-
abilera ekuazio diferentzialak ebazteko ikasketa sakona erabiliz.
Matematikari Euskaldunen V. Topaketa, Eibar, Spain.

2021 J. A. Rivera. Solving Inverse Problems using Deep Learning. Sem-
inarium, Krakow, Poland. (Online)

2020 J. A. Rivera, D. Pardo and E. Alberdi. Galera-funtzioen diseinua
alderantzizko problemak ikasketa sakonaren bidez ebazteko. Matem-
atikari Euskaldunen IV. Topaketa, Eibar, Spain.

6.5 Research Stays

2021 Software Competence Center Hagenberg (SCCH), Linz (Austria)
Supervisor: Mostafa Shahriari
Date: 15 September 2021 - 21 December 2021 (98 days)
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[119] Á. Rodŕıguez-Rozas and D. Pardo. A priori Fourier analysis for 2.5D finite
elements simulations of logging-while-drilling (LWD) resistivity measure-
ments. Procedia Computer Science, 80:782–791, 2016. (cited in page(s)
58)
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