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In this thesis, we try to alleviate some of the weaknesses of the
current approaches to dialogue modelling, one of the most chal-
lenging areas of Arti�cial Intelligence. We target three di�erent
types of dialogues (open-domain, task-oriented and coaching ses-
sions), and use mainly machine learning algorithms to train dia-
logue models.

One challenge of open-domain chatbots is their lack of response
variety, which can be tackled using Generative Adversarial Net-
works (GANs). We present two methodological contributions in
this regard. On the one hand, we develop a method to circumvent
the non-di�erentiability of text-processing GANs, which enables
a gradient-based optimisation. On the other hand, we extend the
conventional task of discriminators, which often operate at a sin-
gle response level, to the batch level. Our proposed discriminators
process and evaluate a set of responses, which makes them more
robust and stable.

Meanwhile, two crucial aspects of task-oriented systems are their
understanding capabilities because they need to correctly inter-
pret what the user is looking for and their constraints), and the di-
alogue strategy. We propose a simple yet powerful way to improve
spoken understanding and adapt the dialogue strategy by explic-
itly processing the user’s speech signal through audio-processing
transformer neural networks. We show that this improves the
system’s performance, especially with noisier Automatic Speech
Recognisers.

Finally, coaching dialogues share properties of open-domain and
task-oriented dialogues. They are somehow task-oriented because
there are some tasks to be completed, such as detecting the user’s
objective or identifying which obstacles are not letting them ful�l
their goal. However, there is no rush to complete the task, and it is
more important to calmly converse with the user and make them
aware of their own problems, obstacles and goals. In this context,
on the one hand, we describe our collaboration in the EMPATHIC
project, where a Virtual Coach capable of carrying out coaching
dialogues about nutrition was built, using a modular Spoken Dia-
logue System. On the other hand, we model such dialogues with
an end-to-end system based on Transfer Learning, for which we
present two contributions. First, we show that learning dialogue



��

phase embeddings is a simple way for the model to generate more
relevant (candidate) responses. Second, we build a deep learning
system to rank these candidates according to their relevance and
coherence, given the entire history of the dialogue. We show that
combining these methods has a positive e�ect according to auto-
matic and human evaluation metrics.
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Language is one of the most complex, distinctive, intriguing and interesting
aspects of the human being. Arguably, it is the most important evolutionary
capability developed by any species over the last few million years (Nowak,
2000). There is no other tool as e�cient as language for us to exchange infor-
mation. Using language, we can easily talk about the past, describe the present
and make plans for the future. We can share our thoughts about the world
surrounding us, produce explanations and �nd solutions collectively. We can
teach and learn from each other, express our feelings and build strong social
relationships.

Thus, it is unsurprising that language and dialogue modelling are some of
the most challenging research areas within Arti�cial Intelligence (AI). A hu-
man dialogue can be as simple as asking the other’s name and brie�y presenting
ourselves, but also as complex as discussing about the origin of life, or trying
to convince another about certain political positions. In order to understand
or take part in a conversation, a large amount of factual information about the
topic is desirable, but also the cultural and social context, the particular situa-
tion of each partner, as well as everyone’s objective in the dialogue. Evolution
has provided humans with a powerful brain with dedicated parts to understand
and produce language. This way, we are able to keep such conversations al-
most e�ortlessly. However, despite recent technological and methodological
advances in Natural Language Processing (NLP), AI systems still struggle with
this task. For instance, many chatbots are known to produce repetitive and
not-very-informative responses in some cases, they struggle to keep long-term
coherence and to carry out long and complex dialogues, and Spoken Dialogue
Systems (SDSs) are unable to capture all the information present in the users’
speech. In this thesis, we analyse some of the most novel and promising trends
in dialogue modelling, and propose several methods to improve their perfor-
mance and avoid, or at least attenuate, some of the aforementioned drawbacks.
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With this we hope to bridge the gap, even if slightly, between the conversational
skills of humans and machines.

Throughout this dissertation, we focus on di�erent aspects of dialogue mod-
elling, from the perspective of the dialogue goal, the modelling techniques and
the input modality. Regarding the dialogue itself, we study conventional open-
domain (Chapter 2) and task-oriented (Chapter 5) dialogues, as well as novel
(in terms of dialogue modelling) coaching sessions (Chapters 3 and 4), which
share some properties of open-domain and task-oriented dialogues.

In open-domain dialogues or chit-chats, there is no speci�c topic to talk about
or task to carry out, the only goal is to generate appropriate and meaningful
responses given a dialogue context and to keep the user engaged. One challenge
of open-domain chatbots is their lack of response variety. As a consequence of
the large number of topics they need to be able to talk about, they often learn
to produce generic but dull responses. We tackle this problem in Chapter 2.

Meanwhile, task-oriented dialogue systems are often developed to provide
the user with information or services that they request as soon as possible,
such as hotel booking. This scenario is much closer to real-life applications of
SDS, and therefore the dialogues are often spoken, and not text-based. Two cru-
cial aspects of such systems are their understanding capabilities (because they
need to correctly interpret what the user is looking for and their constraints),
and the dialogue strategy. We propose a simple yet powerful way to improve
user understanding and adapt the dialogue strategy at the same time through
cutting-edge audio embeddings in Chapter 5.

Finally, coaching dialogues have peculiarities that do not allow to easily clas-
sify them into the aforementioned categories. As we explain more in-depth in
Chapters 3 and 4, they are somehow task-oriented because there are some tasks
to be completed, such as detecting the user’s objective or identifying which ob-
stacles are not letting them ful�ll their goal. However, the dialogue is de�nitely
not carried out in a conventional task-oriented manner. There is no rush to
complete the task, and it is more important to calmly converse with the user
and make them aware of their own problems, obstacles and potential goals they
want to achieve. In this sense, coaching is also related to open-domain dia-
logues. However, coaching dialogues follow a clear and well-structured strat-
egy. Constraining open-domain dialogue models to follow such a structured
strategy while ful�lling the goals of the conversation is our main research ques-
tion in this regard.

As for themodelling techniques, wemostly exploremachine learning or data-
driven approaches (Chapters 2, 4 and 5) as opposed to classical modular SDS
architectures (Chapter 3). Classical SDSs still present some advantages, espe-
cially for commercial and industrial applications, where greater control over
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the behaviour of the system is critical. However, data-driven methodologies
represent a more promising and attractive research approach.

Among the multiple options to develop statistical dialogue models, such as
POMDPs (Young, 2000) or attributed bi-automata (Torres, 2013), we have opted
for the popular and contemporary neural network/deep learning paradigm (Le-
Cun et al., 2015) as our main research tool. We examine three main frameworks
to train them: Generative Adversarial Networks (GANs) (Chapter 2) for open-
domain, Transfer Learning (Chapter 4) for coaching sessions and Reinforcement
Learning (RL) (Chapter 5) for task-oriented. Additionally, we employ Super-
vised Learning (SL) as a baseline for comparison purposes in some experiments.

Last, we experiment with both text-based and spoken dialogue systems. Dur-
ing the last few years, most research has been carried out with text-based di-
alogue models, due to most corpora not including audio and also because it is
just simpler and there are less issues to cope with. Nonetheless, SDSs are still
of big interest, because text-based interactions are not feasible or desirable in
many situations. The dialogue models developed in Chapters 2 and 4 use text as
input, whereas the dialogue systems presented in Chapters 3 and 5 are spoken.

Having presented an overview of the work carried out, let us present the
contributions and structure of the rest of thesis, roughly in chronological order,
and from more open to closer domain dialogue modelling:

Chapter 2 presents two methodological contributions for dialogue gener-
ating GANs. On the one hand, we develop a method to circumvent the non-
di�erentiability of text-processing GANs, which enables a gradient-based opti-
misation. On the other hand, we extend the conventional task of discriminators,
which operate at a single response level, to the batch level. Our proposed dis-
criminators process and evaluate a set of responses, which makes them more
robust. Consequently, batch-level GANs o�ers more varied responses and a
more stable learning process than SL and response-level GAN baselines.

Chapter 3 introduces the European project EMPATHIC, the framework for
Chapters 3 and 4. The main goal of this project was to develop a Virtual Coach
(VC) (a SDS) to improve independent healthy-life-years of the elderly. After pre-
senting the target coaching dialogues to be modelled, Chapter 3 describes our
contributions to the Natural Language Generation (NLG) and Dialogue Man-
ager (DM) modules of the VC, and analyses their behaviour. On the other hand,
we describe the acquisition and labelling of a corpus of coaching dialogues,
which is used in Chapter 4 to develop a data-driven end-to-end coaching dia-
logue system.

Chapter 4 shows how to leverage transfer learning for the EMPATHIC
coaching task. Fine-tuning large pretrained language models is an attractive
and relatively powerful approach to end-to-end dialogue modelling (Wolf et al.,
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2019). It yields models that are often coherent in the short term, but which
struggle to model long-term dialogue strategies. This is not a problem for short
conversations, but the target coaching sessions are relatively long and a con-
cise structure needs to be followed. We overcome or alleviate this issue with
two main proposals. First, we show that learning dialogue phase embeddings
is a simple way for the �ne-tuned model to generate more relevant (candidate)
responses. Second, we build a deep learning system to rank these candidates
according to their relevance and coherence, given the entire history of the dia-
logue. We show that combining these methods has a positive e�ect according
to automatic and human evaluation metrics.

Chapter 5 focuses on data-driven task-oriented SDSs. One input source on
which these systems base their decisions are user speech signals. Speech sig-
nals are often mapped into words �rst via an Automatic Speech Recogniser
(ASR), and then NLP techniques are applied to understand the user and act ac-
cordingly. However, this approach is highly dependent on the ASR providing a
correct transcription, which might not be the case in noisy environments, or if
the user is non-native or has an uncommon accent (Litman et al., 2018). More
importantly, it ignores important information in users’ speech, such as their
emotional mood, prosody, or the noise level of the environment, which could
be key to carry out a better dialogue strategy. We explore how to include this
information in end-to-end SDSs via cutting-edge audio embeddings. We show
(with automatic and human evaluations) that they signi�cantly improve SDS
performance, especially if a noisier ASR is employed. Audio embeddings lead
to a better user understanding, and they can also be used to determine when an
ASR output is not too reliable.

Finally, Chapter 6 presents our concluding remarks. Subsequently, we pro-
vide the List of publications produced throughout the PhD.
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Open-domain dialogue systems or chatbots are systems deployed to interact
with humans o�ering coherent responses according to the dialogue history.
Unlike task-oriented dialogue systems, there is no speci�c goal to be achieved
by any party during the interaction. The system’s only goal is to generate ap-
propriate, relevant, meaningful and human-like utterances.

This area of research has gained an increasing amount of interest from the
community since the advent of sequence-to-sequence neural network models
(Sutskever et al., 2014). These neural networks are capable of processing and
generating sequences of data of arbitrary length, which makes them very suit-
able for this research (Vinyals and Le, 2015; Sordoni et al., 2015). The task of
open-domain dialogue generation can easily be cast as a sequence transduction
problem, where the input is the sequence of words corresponding to the last
user’s utterance(s), and the output are the words of the system’s response.

Such neural models have usually been learnt from corpora composed of dia-
logue context-response pairs, via SL minimising the token-level cross-entropy
loss, a method often calledMaximumLikelihood Estimation (MLE) (Vinyals and
Le, 2015). Movies subtitles, Twitter or online forums can be used as the source
of these data. In this framework, the neural network is trained to minimise a
distance between the generated response and the desired one. Although inter-
esting performances can be obtained with this procedure, it frequently yields
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models that tend to generate dull and safe responses, which appear frequently
in the corpus, such as I don’t know or I’m sorry (Vinyals and Le, 2015; Serban
et al., 2016; Li et al., 2016a). Even if much bigger training corpora are used,
this phenomenon can only be alleviated slightly (Holtzman et al., 2019; Welleck
et al., 2020; Li et al., 2020). One important problem of this methodology is that
it does not take into account the one-to-many property of conversational input-
output pairs (Tuan and Lee, 2019), i.e. the fact that many (and potentially very
diverse) responses may be valid given the same context. For instance, there are
countless valid and informative replies to the question “What are you doing to-
morrow?”. However, the cross-entropy loss function only considers one valid
response at a time. Every time the same (or very similar) input appears in the
training corpus, the new correct output will be a new (and potentially di�er-
ent) one. Thus, this kind of chatbots converges to producing generic responses
that often appear as responses to many outputs. A more in-depth analysis of
the causes of this lack of variety in the responses can be found in Jiang and
de Rijke (2018).

One of the �rst e�orts to alleviate this issue consisted in approaching the
problem with GANs (Goodfellow et al., 2014), as these had shown promising
results in many data generation tasks. Other alternatives are discussed in the
related work in Section 2.2. GANs allow many correct outputs, which makes
muchmore sense for dialogue generation. The learning methodology for GANs
involves training two neural networks, a generator and a discriminator, in an
adversarial fashion. The generator tries to learn a data distribution, while the
discriminator learns whether a given sample corresponds to the training data
or has been generated by the generator. In the context of dialogue systems,
the generator would be the sequence-to-sequence model, and the discriminator
would act as a kind of automatic Turing Test. We give an overview of this
framework in Section 2.3.

GANswere �rst successful in image generation tasks (Goodfellow et al., 2014;
Denton et al., 2015). Text-related problems, such as machine translation (Wu
et al., 2017), text generation (Yu et al., 2017; Xu et al., 2018) or image caption-
ing (Shetty et al., 2017) were also tackled within this framework later. GANs
have been applied in the research of dialogue systems too, yet only on a re-
duced amount of occasions. For instance, Bowman et al. (2015) and Kannan
and Vinyals (2017) experimented with training discriminators that could mea-
sure the quality of the utterances generated by chatbots. On the other hand, Li
et al. (2017) andHori et al. (2019) went a step further and trained neural dialogue
systems using adversarial learning.

However, gradient-based optimisation methods are not directly applicable
for text-based GANs, which hardens their implementation and stability. In
short, in order to adversarially optimise the generator, the output of the discrim-
inator has to be minimised. Therefore, the input of the discriminator should
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be di�erentiable with respect to the output of the generator and its parame-
ters. However, the output of the generator are discrete (and therefore non-
di�erentiable) tokens, and the input of the discriminator the word vectors cor-
responding to those tokens. Thus, those word vectors cannot be directly used
during training unless approximate derivatives are constructed. This di�eren-
tiability issue is explained more in-depth in Section 2.4, in Section 2.4.1 more
precisely.

In this context, our �rst contribution is a novel methodology to avoid this
non-di�erentiability: approximated di�erentiable word vectors produced by a
top-k softmax. In a nutshell, we show that the weighted average of the word
vectors of the most probable tokens at each generation step are similar enough
to the most likely one. In fact, the nearest neighbour of the averaged (or ap-
proximated) word vector corresponds to the most probable token 98% of the
time, but with the advantage that they are di�erentiable. This methodology for
allowing GANs to be trained is simpler than most of the alternatives found in
the literature such as (Straight-Through) Gumble-softmax, RL or soft-argmax
(see a comparison in Section 2.2.2); and we show that it is valid to train more di-
verse and semantically coherent generators than MLE baselines in the English
version of the OpenSubtitles corpus (Lison and Tiedemann, 2016; Lison et al.,
2019). Section 2.4 shows our proposal in detail.

Our second contribution is an extension of the role of the discriminator in
GANs for dialogue generation. To the best of our knowledge, all the discrim-
inators in related works operate at the response level. That is, they evaluate
how appropriate a single response is given a dialogue context. We propose to
provide the discriminators with a wider view of the generator’s behaviour. We
name our proposal batch-level discriminators. They evaluate a set of responses
given a set of dialogue contexts. Thus, they are less sensitive to complex yet
repetitive or not very informative responses. We give a detailed explanation
and present the model in Section 2.5, and we show that they outperform both
the MLE baseline and the response-level GAN in our experiments, in Sections
2.6 and 2.7.

Finally, we would like to mention that the work carried out in this chap-
ter is an extension of the research presented in López Zorrilla et al. (2021a),
where the top-K softmax procedure was introduced. We also showed that this
methodology could be used for languages with fewer resources, such as Basque
(López Zorrilla et al., 2019, 2020). The idea of batch-level discriminators is de-
scribed in López Zorrilla et al. (2023), currently under revision.

The rest of the chapter is organised as follows. We describe related works
in Section 2.2. Before getting into the details of our contributions, we give an
overview of the GAN framework for dialogue generation in Section 2.3. We ex-
plain the di�erentiability problem and how the proposed approximated word
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vectors via a top-K softmax address the issue in Section 2.4. In Section 2.5 we
introduce the batch-level GANs. Section 2.6 presents the experimental frame-
work used to validate our proposals, as well as the training and implementation
details. We provide the results of these experiments in Section 2.7, and end with
some concluding remarks in Section 2.8.

2.2 | R������ ����

Let us discuss how our research relates to other works in the literature.
We describe alternative approaches to increase the variety of sequence-to-
sequence dialogue models in Section 2.2.1, analyse how others tackle the non-
di�erentiability of text-based GANs in Section 2.2.2, and comment some related
works regarding batch-level GANs in Section 2.2.3.

2.2.1 | I��������� ��� ������� �� �����������
������� �������� ������

The lack of variety and the non-informativeness of neural dialoguemodels have
been tackled in several ways besides using GANs. A family of solutions can be
the methods consisting in modifying the training objective to avoid the limita-
tions of MLE. The work by Li et al. (2016a) was one of the �rst proposals in this
regard, where using Maximum Mutual Information as the objective function
was explored. Zhao et al. (2017) proposed a bag-of-words loss for dialogue gen-
eration with Variational Autoencoders (VAEs). Frequency-aware losses were
proposed by Jiang et al. (2019) and Li et al. (2020) to alleviate the low variety
problem. Negative training (i.e. explicitly discouraging non-desired behaviours
during training) has also been employed to this end (He and Glass, 2020; Li et al.,
2022b). More complex training schemes, such as backward reasoning (training
the system to predict the dialogue context given its generated response), have
been proposed too (Li et al., 2021).

Another hypothesis of why sequence-to-sequence models often end up pro-
ducing generic and dull responses holds that the dialogue history alone might
not be su�cient for producing informative responses. Thus, a set of research
works focus on providing neural dialogue systems with more information and
context rather than improving the training procedure. For example, some au-
thors have tried to give their models some kind of consistent personality (Li
et al., 2016b; Zhang et al., 2018; Zheng et al., 2020; Cao et al., 2022). Others have
included additional information about the topic of the conversation (Xing et al.,
2016, 2017; Wu et al., 2020, 2021a) or generated dialogues based on knowledge
of movies (Sun et al., 2020). More ambitiously, Ghazvininejad et al. (2018); Di-
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nan et al. (2018) aim at enhancing neural dialogue models with the capability
of reading and retrieving information from Wikipedia or similar sources, and
conditioning responses based on it. In the same vein, Komeili et al. (2022) pro-
pose to learn Internet search queries given the dialogue context, and generate
the response based on the search results.

Somehow related to these approaches, we can �nd the popular transfer learn-
ing methodology that relies on �ne-tuning large pretrained Language Models
(LMs) such as GPT (Radford et al., 2018), GPT-2 (Budzianowski and Vulic, 2019)
or BERT (Devlin et al., 2019) on conversational data. Since these LMs are trained
on large corpora with information about many topics, the resulting dialogue
models still retain some of that knowledge, which contributes to generating
more informative responses. Additionally, this approach is simpler in terms
of implementation, which has contributed to its popularity. Furthermore, it has
been shown that the transfer learningmethodology is suitable for both open do-
main (Wolf et al., 2019; Zhang et al., 2020b; Roller et al., 2020) and task-oriented
dialogue (Ham et al., 2020; Hosseini-Asl et al., 2020; Peng et al., 2020). In fact, we
adopt this framework for the neural dialogue systems developed in Chapters 4
and 5.

2.2.2 | D������ ���� ��� ���������������������
�� ���� GAN�

Besides our proposed top-K softmax and approximated word vectors approach
to allow the di�erentiability of text GANs, there are other alternatives that can
be found in the literature. The most widely used one is the RL approach pro-
posed by Yu et al. (2017), which has been the basis for many related works (Li
et al., 2017; Lin et al., 2017; Hori et al., 2019; Tuan and Lee, 2019; Nabeel et al.,
2019). The main idea behind this approach is to use the discriminator’s out-
put as the reward function to train the generator. In other words, the gradient
fed to the generator is a function of the discriminator’s output. Thus, outputs
that contributed to a good evaluation are reinforced, whereas negatively eval-
uated sequences are discouraged. One problem with this is that all the actions
(sampling of the tokens) are assigned the same reward, which may not be ap-
propriate, because a subsequence could be right while another part of the re-
sponse could be inappropriate. Some authors have proposed someworkarounds
to provide independent rewards for each token (Li et al., 2017; Su et al., 2018;
Tuan and Lee, 2019), which improve the performance of the generators, but are
either more complex or less computationally e�cient. In our approach, each
token (its approximated word vector, more precisely) is naturally assigned a
di�erent gradient. Moreover, each of the top-K tokens at each generation step
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gets a di�erent gradient, which should stabilise and improve the training. We
explain this in detail in Section 2.4.

Other works (Kusner and Hernández-Lobato, 2016) tackle this problem with
the concrete or Gumbel-softmax distribution (Maddison et al., 2016; Jang et al.,
2016) in one way or another. This is a continuous relaxation of discrete random
variables. In short, it transforms a probability distribution into a relaxed one-
hot vector corresponding to a randomly taken sample from that distribution.
That relaxed vector is di�erent from the result of the top-K softmax in two im-
portant aspects. First, it is nondeterministic, which could be interesting but also
unnecessary for our application. Second, all its elements are nonzero, which
means that approximating a word vector as a weighted average according to
those probabilities would imply mixing all the word vectors in the vocabulary,
which again seems inadequate or excessive for our application.

A discrete version of this transformation is the Straight-Through Gumbel-
softmax estimator (Bengio et al., 2013; Jang et al., 2016), which was employed
by Lu et al. (2017) and Shetty et al. (2017). It serves to approximate the gradi-
ents of a one-hot vector sampled according to a probability distribution. Thus,
it avoids the problem of averaging over all the word vectors, but it is still non-
deterministic and non-di�erentiable. Nonetheless, this method provides an es-
timation of the gradients in this scenario. The main drawback is that it could be
unstable due to the discrepancies between the forward and backward passes, as
stated in the original work (Jang et al., 2016).

Last, we would like to mention some more alternatives to dealing with the
di�erentiability issue of text GANs. Gulrajani et al. (2017) proposed to use the
raw softmax outputs of the generator as the input to the discriminator, without
word embeddings. However, they only applied this method to a toy example,
so it is unsure whether it could serve in real-world scenarios. On the other
hand, Zhang et al. (2016) uses a soft-argmax transformation, which is probably
the closest to our work. First, they force all the logits to be greater than 1 (or
equal to 0), then they multiply them by a constant, compute the softmax and
generate averaged word vectors. This method is similar to ours with the k in
the top-K softmax equal to the vocabulary size. Nonetheless, our experiments
(see Section 2.7.1) indicate that the lower values of k result in a much better
approximation of the most probable word vectors.

2.2.3 | B���������� GAN�

Batch or minibatch discrimination was �rst proposed by Salimans et al. (2016),
although in a very di�erent form than our proposal. They compute/learn a
set of handcrafted batch-level statistics and include it in a layer at the end
of the discriminator. Karras et al. (2018) propose a similar strategy; to com-
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pute the standard deviation of input features and feed it to the last discrimi-
nator layer. However, these two discriminators still work over single samples,
rather than batches. Closer to our GAN architecture, Lucas et al. (2018) present
a permutation-invariant discriminator architecture that processes sets of in-
stances. They propose to train their discriminator with mixed batches of real
and fake samples, and to predict the ratio of real instances. These works show
the potential of batch-level discrimination in the image generation task. Never-
theless, we are not aware of any similar work for dialogue –or, in general, text–
applications.

2.3 | T�� GAN ���������

Let us present the GAN framework for dialogue generation. We �rst introduce
the two neural networks that are trained adversarially in Section 2.3.1, and then
explain the optimisation procedure in Section 2.3.2.

2.3.1 | C���������

2.3.1.1 | G��������

In the GAN framework for dialogue, the generator is in charge of generating the
system or bot’s response given the dialogue history. Since we are interested in
end-to-end dialogue modelling, both the dialogue history and the response are
represented as a sequence of tokens or words. In our experiments, we restrict
the dialogue history to the last turn, because we found it challenging enough
to make the GANs converge this way. Our generator is a Recurrent Neural
Network (RNN) sequence-to-sequence network with attention (Bahdanau et al.,
2014), as depicted in Figure 2.1.

The network produces a response as follows. Given an input sequence of
length T of discrete integer tokens x = x1, x2, ..., xT , the corresponding se-
quence of vectorial word representations v = v1,v2, ...,vT can be obtained via
the word vector matrix W, just by taking the corresponding row vi = W[xi]
per each token xi. The size of W is V ⇥ D, where V is the vocabulary
size and D the dimension of each word vector. The encoder takes this se-
quence of vectors and produces another sequence of vectors of the same length
h = h1,h2, ...,hT = encoder (v). In our work, the encoder is a deep bidirec-
tional Long Short Term Memory (LSTM) RNN (Hochreiter and Schmidhuber,
1997).

To proceed with the generation of the output sequence y = y1, y2, ..., y⌧ ,
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Figure 2.1.: A diagram of the chosen sequence-to-sequence network: blue trans-
formations refer to the encoder, orange to the attention mechanism,
purple to the word matrix, and red to the decoder. For simplicity,
only the time step t of the decoding is shown.

a global attention mechanism is applied as in (Luong et al., 2015). At the time
step t of generation, the decoder is fed with the discrete integer token generated
at the previous time step, yt�1. Then the corresponding word vector W[yt�1]
is used as input to the decoder’s RNN, which returns ot. Of course, due to
the architecture of RNNs, ot is conditioned, though implicitly, not only to yt�1
but also to all the previously generated tokens. In our experiments this neural
network is also a deep LSTM. ot is then transformed to õt via a Multilayer
Perceptron (MLP), named MLP2, that takes as input ot and also ct, the context-
vector produced by the attention mechanism at time step t. ct is a weighted
average of the encoder’s output vectors:

ct =
TX

j=1

ajthj , (2.1)

where ajt is the score between hj and ot, i.e., how much attention should be
put on the output of the encoder at the encoding time step j on the time step
t of the decoding phase. ajt is a softmax-normalised scalar output of another
MLP, MLP1, that takes as input hj and ot, and outputs ajt. With the softmax
normalisation, we ensure that all the scores at time step t are positive and sum
one:

ajt =
exp (ajt)PT

j0=1 exp(aj0t)
(2.2)
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Finally, õt is linearly projected to a vector of dimension V : ft = linear(õt).
This vector represents an unnormalised probability distribution over all possi-
ble words in the vocabulary. A softmax normalisation is then applied to ft to
get pt = softmax(ft), the normalised version of ft. The output token at time
step t, yt, can be sampled from pt taking the argument of the maxima:

yt = argmax
i

(pt[i]) (2.3)

The generation stops at time ⌧ , when the end-of-sequence token is output.

2.3.1.2 | B������� D������������

The typical task of the discriminator is to judge how natural or human a re-
sponse is given the dialogue history. As aforementioned, one of our contribu-
tions is to rede�ne or extend this concept to the batch-level, and perform this
evaluation based on a set of input-outputs, rather than just one. However, let
us �rst explain the idea of typical discriminators for dialogue modelling. We
describe our proposal in more detail later in Section 2.5.

Our baseline discriminator is composed of two deep bidirectional LSTMs, as
illustrated in Figure 2.2. One is devoted to process the dialogue history x, and
the other one, the response r. The integer sequences x and r are converted
to word vector sequences via the same word vector matrix W as the genera-
tor. Then, the last outputs of the encoders are concatenated and processed by a
standard MLP. Last, a scalar between 0 and 1 is output (using a sigmoid activa-
tion function), which indicates the probability of r being produced by a bot. In
other words, it should output values closer to 0 if r was present in the corpus,
and closer to 1 otherwise.

2.3.2 | T������� ���������

Before getting into the details of the loss functions to train the neural networks
(Section 2.3.2.1) and the training loop (Section 2.3.2.2), we provide an overview
of the training procedure (Section 2.3.2.3) of dialogue GANs.

2.3.2.1 | O�������

The methodology to train a dialogue system in the GAN framework involves it-
eratively updating the generator and the discriminator. The generator is trained
to fool the discriminator and make it predict that its responses are human-like,
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Figure 2.2.: The architecture of the baseline discriminator for dialogue GANs.

and in contrast the discriminator is trained to distinguish between human and
bot responses. In most AI areas, this is done with two optimisation procedures:
1) the discriminator is trained to discriminate between samples generated by
the generator and sampled from a corpus; and 2) the generator is trained to
minimise the output of the discriminator (assuming that lower discriminator
outputs correspond to samples of the corpus). This process is illustrated in Fig-
ure 2.3.

(a) Optimisation of the discrimina-
tor.

(b) Optimisation of the generator.

Figure 2.3.: Main two steps for the GAN optimisation procedure. The lock in-
dicates when the parameters of the networks are frozen.

Additionally and speci�cally for the dialogue task, a third optimisation step
is usually introduced in order to make the whole optimisation process more
stable. It consists of performing a MLE of the parameters of the generator to
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predict the response in the corpus, as represented in Figure 2.4. This approach
has been adopted in many works, such as Li et al. (2017); Hori et al. (2019).

Figure 2.4.: MLE of the parameters of the generator via SL.

2.3.2.2 | L��� ���������

Before getting into the details of the training loop and its implementation, let
us de�ne the loss functions corresponding to the aforementioned three optimi-
sation procedures.

A MLE of the parameters of the generator is carried out by minimising the
token-level cross-entropy loss LMLE (Figure 2.4):

LMLE =
1

|BMLE |
X

x,s2BMLE

1

|s|

|s|X

t=1

�log pt[st] , (2.4)

where BMLE is a batch composed of pairs of inputs x and desired outputs s
sampled from the training data, st each of the words in s, and pt[st] the output
of the network in the t-th time step corresponding to the token st. We omit the
output’s dependence on x to keep the notation simple. We employ the teacher
forcing strategy, i.e., in the t-th step of the decoding we feed the ground true
token st�1 to the decoder’s RNN instead of the prediction yt�1. We experi-
mented with other sampling techniques, such as scheduled sampling (Bengio
et al., 2015), but did not �nd any improvement.

Regarding the optimisation of the discriminator (Figure 2.3a), its parameters
are updated to minimise a binary cross-entropy loss:

LD =
1

|BD|
X

x,r,l2BD

� [l · log a+ (1� l) · log (1� a)] , (2.5)

where BD is a batch composed of tuples of input utterances x, responses r, and
Boolean labels l indicating whether r was sampled from the corpus (l = 0) or
generated by the generator (l = 1), and a the output of the network given x
and r.
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Last, the adversarial loss for the generator is the output of the discriminator
(Figure 2.3b), after the latter is fed with a batch of input utterances and the
responses of the generator to those same input utterances:

LG =
1

|BG|
X

x2BG

a , (2.6)

where BG is a batch composed of input utterances x. a is the output of the
discriminator given x.

2.3.2.3 | T������� ����

The idea of GANs is to carry out the three aforementioned optimisation pro-
cesses iteratively. However, it is common to �rst pretrain the generator and
then discriminator to prevent, once again, the GAN from diverging. We also
pretrain the word vector matrix in the same corpus, using fastext (Busta et al.,
2015). The generator is pretrained according to the MLE criteria (Equation 2.4),
and the discriminator with the responses generated by the pretrained generator
and with responses from the corpus. In order to stabilise the rest of the training
process and to avoid the catastrophic forgetting phenomenon of the discrimi-
nator, we sample responses of the generator to a given input periodically, and
add them to a corpus of generator’s turns denoted as CD . Thus, the discrimi-
nator is fed with outputs of di�erent versions of the generator, but the outputs
of the most recent ones are selected with a higher probability. Additionally, we
also employ a heuristic to �lter good bot responses that may not serve well as
negative examples, as explained in more detail in Section 2.6.4.

Then, the main training loop starts, and the generator and discriminator are
trained adversarially for many iterations. An iteration starts by training the
generator to minimise the output of the discriminator according to Equation
2.6 during a number of iterations. This optimisation process is not trivial and
we focus on it later in Section 2.4. After the optimisation of the generator we
expand the corpus CD with the current state of the generator, and train the dis-
criminator during another number of iterations. We �nally repeat this process
by training the generator, adding samples to CD and training the discriminator,
but this time training the corpus according to the MLE criteria.

The whole procedure is summarised in Algorithm 1.
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Algorithm 1: An Adversarial Training Strategy for Neural Dialogue Models.

Require: Generator G, Discriminator D, Corpus C, training hyper-parameters.
Pretrain word vector matrixW on C.
Pretrain G minimising LMLE (Equation 2.4).
Initialise CD with G’s responses.
Pretrain D minimising LD (Equation 2.5).
for the number of total iterations, and with a decaying learning rate do

Update G minimising LG on inputs x in C (Equation 2.6).
Add (x, y) pairs to CD using G.
Update D minimising LD .

Update G minimising LMLE on C.
Add (x, y) pairs to CD using G.
Update D minimising LD .

2.4 | T���K S������ ��� ������������
���� �������

Let us get into the details of the di�erentiability problem of text-generating
GANs (Section 2.4.1) and explain our proposal to avoid this issue (Section 2.4.2).

2.4.1 | T�� ����������������� �������

It is straightforward to optimise the parameters of the discriminator to min-
imise the loss function LD (Equation 2.5, Figure 2.3a), and also the generator’s
parameters to minimise the MLE loss (Equation 2.4, Figure 2.4). The losses are
di�erentiable with respect to the parameters of the corresponding networks,
and therefore standard SL gradient-based methods can be employed to opti-
mise the models according to Algorithm 1.

However, it is not possible to di�erentiate the output of the discrimina-
tor, or LG (Equation 2.6, Figure 2.3b), with respect to the parameters of the
generator. This happens because the sequence of token probability distribu-
tions of the generator output are transformed into discrete–and therefore not
di�erentiable– tokens, so their word vectors can be processed by the discrim-
inator. This is done via a (non-di�erentiable) argmax operation. Additionally,
selecting the word vector corresponding to a discrete token is not di�erentiable
either, as represented in Equation 2.7, and later in Figure 2.6a.
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ft
softmax����!
 �

pt
argmax����!
6 �

yt
W[yt]���!
6 �

ut , (2.7)

where ft is the unnormalised probability distribution over all possible words in
the vocabulary in step t of the generation, pt the softmax-normalised version of
ft, yt the argument of the maxima of pt, and ut is the word vector correspond-
ing to token yt. Note that this notation is the same as the one used to present
the GAN framework in Section 2.3. Green arrows indicate that an operation is
di�erentiable, whereas red arrows that it is not. Thus, ut is not di�erentiable
with respect to the generator’s parameters, and therefore neither is the discrim-
inator’s output (because it is a function of ut), which makes the optimisation
procedure not straightforward.

2.4.2 | A �������������� GAN ������� ��� ����K
�������

Figure 2.5.: On the left, a graphical example of the softmax normalisation of a
ft distribution. The rest of the plots show the top-K softmax nor-
malisations of ft for di�erent values of k.

We present a strategy to circumvent this di�erentiability issue and allow the
adversarial optimisation of the generator. More precisely, we propose a compu-
tation path that approximates ut, the word vector according to the most prob-
able token at a generation step t, in a fully di�erentiable manner. This allows
the generator to be trained with very convenient gradient-based methods. The
idea behind this path is to generate a word vector ũt, hopefully similar to ut, as
a weighted average of the word vectors of the k most probable words accord-
ing to ft. k � 2 is an integer parameter of the transformation. In short, the
di�erentiable computation path is as follows:

ft
top-K���!
 �

kt, f̃t
softmax����!
 �

kt, p̃t

P
i p̃t[i]·W[kt[i]]����������!
 �

ũt (2.8)

The �rst operation in Equation 2.8 performs a selection of the top-K elements
in ft. It outputs kt and f̃t. kt are the indices corresponding to the k elements
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in ft with the highest values, and f̃t are those values. In other words, kt repre-
sents the k most probable words, whereas f̃t their unnormalised probabilities.
The second operation is just a softmax normalisation of these k probabilities.
It converts f̃t into p̃t. At this point, the probabilities corresponding to all the
tokens in the vocabulary are zero (they are not in p̃t), except for the k most
probable tokens, which probabilities sum up to 1. See Figure 2.5 for a graphical
example of the top-K softmax. Finally, the approximated word vector that will
be fed to the discriminator’s RNN is computed as the weighted average of the
word vectors corresponding to tokens kt, where the weights are the probabili-
ties p̃t:

ũt =
kX

i=1

p̃t[i] ·W[kt[i]] (2.9)

Thus, each element in ũt is di�erentiable with respect to each probability p̃t,
and the partial derivative is just the associated word vector value:

@ũt[j]

@p̃t[i]
= W[kt[i]][j] (2.10)

where j is an arbitrary index from 1 to the size of the word vectors. In the
same manner, p̃t[i] is di�erentiable with respect to the top-K elements of ft,
since the transformation (a softmax) is di�erentiable. The computation path is
summarised and compared to the non-di�erentiable baseline in Figure 2.6.

Our results in Section 2.7.1 show that ũt is a good approximation of ut, espe-
cially when k is small. In fact, ut is the nearest neighbour of ũt the 98% of the
times with k = 2. Not only that, we also show that the proposed computation
path serves its purpose of allowing fruitful adversarial learning of sequence-
to-sequence neural dialogue models, as models trained with this methodology
generate more diverse responses (Section 2.7).

2.5 | B���������� GAN�

2.5.1 | I����� �� �������������� ��������������

The discriminator explained in Section 2.3.1.2 and most of the discriminators
found in the literature work at the response-level, i.e. they evaluate how ad-
equate a response is given the dialogue context. Although this approach has
been shown to be valid and useful to build more diverse open-domain dialogue
models, it still presents some drawbacks. We have noticed that, sometimes,
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(a) Baseline. (b) Proposal.

Figure 2.6.: Comparison of (a) the baseline non-di�erentiable computation path
for obtaining the word vectors corresponding to the generator’s
output, and (b) our proposed di�erentiable path based on the top-K
softmax.

generators are able to minimise the discriminator’s output by generating only
a handful of slightly long and complex sentences, almost regardless of the input.
One such response we have found in our experiments is: you have no choice but
to leave him, and you will never forgive him for that, and you will never forgive
me. This e�ect only lasts a few iterations, until the discriminator is trained to
recognise those sentences as not human. However, it often happens again in
other stages of the training, with di�erent responses, which results in a more
unstable and less e�ective learning process than desired, as we show in Section
2.7.

This issue is related to the discriminator evaluating only one response at
a time. This implies that it has no way to recognise whether the generator
is generating some sentence many times (in the same training stage). It can
only analyse if a response makes sense or not given the dialogue history. The
generator can take advantage of it and learn to produce long and complex, but
general sentences which are only slightly coherent with the dialogue history.
This sporadic e�ect is similar to the one observed after a commonMLE training,
but with longer sentences rather than very short ones.
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2.5.2 | B���������� �������������

Wepropose to extend the idea of response-level discriminators to the batch level
(López Zorrilla et al., 2023). Our proposed batch-level discriminators combine
the response-level predictions of the previously explained baseline discrimina-
tor (Section 2.3.1.2) with batch-level predictions that provide a bigger picture
of the behaviour of the generator (or the nature of the real data distribution).
In other words, while response-level discriminators only aim at answering the
question of “how good is this response given this previous turn?”, batch-level dis-
criminators also tackle the question of “how does this set of context/response pairs
look like?”. In this way, the generator should have more di�culties in fool-
ing the discriminator with long and complex but similar responses. Intuitively,
the batch-level discriminator could easily see that many responses in the input
batch are complex but similar, and should identify that batch as generated or
non-human. We show that using such discriminators improves the variability
in the responses of the generator and stabilises the training.

Figure 2.7.: Diagram of the proposed batch-level discriminator.

Figure 2.7 shows a diagram of the proposed architecture for the batch-level
discriminator. All the response-level discriminators (the Discriminative RNN
in the �gure) are the same network, i.e. they share the same parameters. The
response-level contribution to the output (denoted as a1response in the diagram) is
computed in the same way as in the baseline discriminator (Section 2.3.1.2). Re-
garding the batch-level contribution abatch, it is computed from the representa-
tions of a set ofn dialogue context-response pairs. In our experiments, we found
that n = 8 is a good enough value to produce interesting results. For simplicity
and e�ciency, these representations are obtained with the response-level dis-
criminator; they are the output of the MLP in the discriminator, see Figure 2.2
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for more details. The sentence-level representations are processed by a stan-
dard Transformer encoder (Vaswani et al., 2017) without position embeddings
so that its output is not a�ected by the order of the sequence of representations.
This cannot be done easily with RNNs, and therefore a Transformer network
is proposed to be used instead. The Transformer encoder produces n output
vectors, one per input, which are averaged out. Lastly, a linear layer is used
to compute abatch, which is added to the response-level contribution; and the
sigmoid function is applied to this sum to provide the discriminator’s output.
We would like to note that, within each batch of n samples the response-level
contribution is di�erent for every sample, whereas the batch-level contribution
is the same.

2.6 | E����������� ����� ��� ��������
�������

We carry out three sets of experiments to validate and analyse the proposed
methodologies. First, we analyse the quality of the approximated word vectors
presented in Section 2.4. Second, we compare the MLE baseline and the two
GAN architectures (response-level and batch-level) in terms of: the variability
of the generated responses, the similarity with (multiple) ground truth refer-
ences (explained next in Section 2.6.4), and also regarding the accuracy of the
discriminators. Last, we provide the results of a preliminary human evaluation
and some examples of sentences generated by the di�erent models.

In this section, we provide all the details of those experiments. We describe
the corpus and its preprocessing in Section 2.6.1, the details of the choices for
the neural network and the optimisation parameters in Sections 2.6.2 and 2.6.3
respectively, and a heuristic to evaluate the performance of the generators as
well as to stabilise the training procedure in Section 2.6.4.

2.6.1 | C����� ��� �������������

The experiments were carried out with the English version of the OpenSubti-
tles2018 corpus (Lison and Tiedemann, 2016; Lison et al., 2019), which is com-
posed of around 400M utterances frommovie subtitles. As proposed in (Vinyals
and Le, 2015), since the turns are not clearly indicated, we treat each utterance
as the desired output for the previous one. However, we do not consider that
a utterance follows the previous one when the time di�erence between them
is higher than three seconds. After this process, 241M input-output pairs were
formed.
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As for the text preprocessing, we removed uncommon and non-informative
symbols and characters. We employed a Byte-Pair Encoding (BPE) tokeniser
(Sennrich et al., 2016) to tokenise the clean text. This way, the most common
words are represented as a single token while the less frequent ones are broken
down into several subword tokens. The selected size for the vocabulary was
30000. We pretrained 300-dimensional word vectors of these tokens (subwords)
in the corpus, with FastText (Bojanowski et al., 2016), and kept optimising them
throughout the training. We also tried randomly initialising the word vectors,
but experienced a slower learning.

Last, we would like to note that we did not split the corpus into any train/test
partition, because the amount of training examples we process during training
is signi�cantly lower than examples in the corpus (241M examples in the cor-
pus vs. 77M examples sampled once during training). Thus, every example
processed by any component of the GAN is new during training; there are no
repeated examples. All the metrics we report are computed with training ex-
amples because no over�tting should be possible.

2.6.2 | D������ �� ��� ������ ������� ���������
�����

Let us now give details about the architecture of the sequence-to-sequence gen-
erator. The deep bidirectional RNN encoder is made of two LSTM networks
(one per direction) of 4 layers, 512 cells each. On the other hand, the decoder’s
LSTM has 4 layers of 1028 cells. The MLP that converts ot and ct into õt (see
Section 2.3.1.1 for more details) has one leaky-ReLU layer. The size of õt is 500.
The MLP that computes the attention score has two layers. The �rst one is a
250-sized hyperbolic tangent layer, and the second is a linear output layer that
computes the scalar score. A dropout probability of 0.1 is used after each RNN
layer during training.

Regarding the discriminator, the deep bidirectional encoders in charge of pro-
cessing the input and response share the same architecture: they are bidirec-
tional LSTM networks of 3 layers, 512 cells each, similar to the generator’s en-
coder. The last output vector is then fed to a MLP of two layers: a leaky-ReLU
layer of size 256 followed by a single sigmoidal unit. The transformer of the
batch-level discriminator takes as input the output of the �rst MLP layer. Thus,
the size of the transformer layers is 256 too. It is made of two layers, with four
heads each. A dropout probability of 0.1 is used after each RNN and transformer
layer during training.
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2.6.3 | GAN O����������� ����������������

The most promising hyper-parameters we have found for the training proce-
dure presented in Algorithm 1 are summarised next. We provide details about
the pretraining �rst, and then about the adversarial training loop.

We pretrained the generator during 200.000 iterations with a �xed learning
rate of 0.001. AdamW (Loshchilov and Hutter, 2017) was used in all optimi-
sation processes. We sampled 12.800 responses from that generator (256 ev-
ery 4000 iterations). The discriminator was then pretrained during 2000 itera-
tions, with the same learning rate. All the batches fed to the discriminator were
balanced: there was a human example per each generator’s example. Human
and generator’s example were uncorrelated; they did not share the input. The
batches for the batch-level discriminator were split into subsets of 8 samples
to compute the batch-level response evaluations. All instances in the subsets
belong to the same category (corpus or generated).

The adversarial learning loop was run 250 times. The initial learning rate
was 0.001 with a decaying factor of 0.996 when training the discriminator and
the generator with the MLE criteria. It was ten times smaller when training
the generator to minimise the output of the discriminator. Inside the loop, ev-
ery generator optimisation step was run during 200 iterations, including both
the MLE and adversarial learning optimisation. After each of these steps, 5000
input-response pairs were sampled from the generator, and the discriminator
was trained during 100 iterations. The chosen value for the k parameter of the
top-K softmax was 2.

It is worth mentioning that we did not vary the architectural hyper-
parameters much during our experiments. They are similar to many other
sequence-to-sequence networks in the literature. On the other hand, we no-
ticed that selecting good and stable training hyper-parameters is challenging.
This requires a deeper and more speci�c research that we leave for future work.

2.6.4 | R������� ���������� ��� ���������

We measure the semantic adequacy of the generated responses via LaBSE sen-
tence embedding similarity (Feng et al., 2022). In particular, this is de�ned as
the cosine product between the sentence embedding of the produced and tar-
get responses. Additionally, we also try to take into account the fact that many
responses can be valid given the same dialogue history, even if they are not
semantically similar. In order to �nd other valid responses, we �rst search for
similar inputs in the corpus, using LaBSE embeddings too. We consider the re-
sponses to these similar inputs as valid responses to the original input of the
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generator, and compare its output to them. We consider the maximum value
among all the comparisons as the measure of the quality of the generated re-
sponse. We use a threshold of 0.8 to �nd similar inputs. We found that this
value represents a good balance for keeping the quality of the comparisons,
while being �exible enough to �nd a number of similar inputs. We report the
percentage of responses whose semantic similarity with the best reference is
higher than the threshold (0.8). Figure 2.8 illustrates the reference search in
a hypothetical two-dimensional sentence embedding space. The green points
correspond to the original input and the ground truth. Points in purple and
pink represent pairs close in the input space, and whose outputs could be valid
responses given the original input. The sentences are close in the input space,
but could be very far in the output space.

Figure 2.8.: Illustration of the search for additional output references in the cor-
pus given an input.

We take advantage of this metric to develop a heuristic to further improve
the training process of GANs. We propose to slightly modify a step on the main
training loop of GANs, Section 2.3.2.3. As aforementioned, in order to train the
discriminator, a set of generator responses are sampled every time it is updated,
and these responses will later be fed into the discriminator as non-human–
and therefore bad or non convenient– responses. However, there are cases,
especially after the generator has been trained for a while, where the responses
it produces might be completely acceptable. Using this input-output pairs as
negative examples can therefore deteriorate and slow down the training. We
propose to �lter responses with high scores in the semantic similarity metric
(>0.8) from the corpus of generator’s responses used to train the discriminator.
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2.7 | R������

Let us now present the results of the three sets of experiments aforementioned
in Section 2.6.

2.7.1 | ������ �� ��� ���������������� �������

In order to measure the quality of the approximated word vectors, we com-
puted which was the closest word vector to each approximated one according
to the euclidean distance, for di�erent values of k. To this end, we selected 1000
random input sentences from the corpus, fed them to a trained generator, and
analysed the probability distribution of each of the generated tokens.

With k = 2, the closest word vector was the correct one–i.e., the one with
the highest probability– 98% of the times if we consider all the produced tokens,
and 97% if we do not consider repetitions. These two percentages decrease to
83%/69% respectively with k = 3, and to 74%/60% with k = 4. Figure 2.9 shows
this statistic for more values of k. We therefore conclude that the proposed
method to make the output of the discriminator di�erentiable with respect to
the generator’s parameters is appropriate, especially with k = 2, the value used
in our experiments.

Figure 2.9.: Frequency of the most likely word vector being the nearest neigh-
bour of the approximated word vector produced by the top-K soft-
max, for di�erent values of k.

2.7.2 | R������� �������

The main goal of dialogue GANs is to increase the variety of responses of
sequence-to-sequence generators. We measure the variety throughout the
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training process (both the MLE pretraining and the two GAN optimisation
processes) with the distinct-1 (Dist-1), distinct-2 (Dist-2), distinct-3 (Dist-3) and
distinct-sentences (Dist-S) metrics, proposed in Li et al. (2016a) and still in use
currently (Luo and Chien, 2021; Li et al., 2022b). Dist-1, Dist-2 and Dist-3 are the
number of distinct unigrams, bigrams and three-grams (at the token level) in
generated responses. The values are normalised by total number of generated
tokens to avoid favouring long sentences. On the other hand, Dist-S is the ratio
of di�erent responses. We computed the metrics with batches of 256 random
inputs, and averaged them over 8 independent training runs.

Figure 2.10.: Evolution of the Dist-1 metric throughout MLE pretraining and
adversarial learning.

The results in terms of Dist-1, Dist-2, Dist-3 and Dist-S are shown in Figures
2.10, 2.11, 2.12 and 2.13, respectively. The x-axis of these plots is broken in two.
The �rst half (iterations from 0 to 200K) corresponds to the MLE pretraining,
while the second half (iterations 200K to 350K) to the adversarial learning, with
the two proposed GANmodels. In addition to the average values after 8 training
runs, we also illustrate the �rst and second tertiles (the 33th and 67th percentiles)
as shaded areas, to provide information about the statistical variability of the
results.

The four plots follow a similar pattern. During the �rst 50K iterations of the
MLE pretraining stage, the variety of the responses increases highly. Then it
stabilises and the improvement is less notorious until iteration 200K, when the
pretraining is complete. The variety sharply drops right after the adversarial
learning begins, with both sentence-level and batch-level GANs. But then the
GANs rapidly stabilise and start producing more and more varied responses. It
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Figure 2.11.: Evolution of the Dist-2 metric throughout MLE pretraining and
adversarial learning.

Figure 2.12.: Evolution of the Dist-3 metric throughout theMLE pretraining and
adversarial learning.

is interesting that the improvement is much higher in the response-level GANs
as opposed to the batch-level one. This is due to the response-level discrimina-
tor being much simpler: it can be trained faster, but because of its limitations
(see Section 2.5.1) its peak is lower and it even diverges (the results deteriorate
with time). That is, after around 25K adversarial learning iterations (225K itera-
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Figure 2.13.: Evolution of the Dist-Smetric throughout theMLE pretraining and
adversarial learning.

tions in total), its performance starts to decrease and it ends up with a response
variety similar to or lower than the MLE baseline, with a greater variance. On
the other hand, the batch-level discriminator processes more information and
thus it takes longer to train the GAN. However, it keeps improving throughout
the 150K adversarial learning iterations, and its peak is higher than the MLE
baseline and the response-level GAN.

To sum up, both GAN models provide more varied responses than the MLE
baseline according to the four implemented metrics. This improvement is
higher and the training is more stable with batch-level GAN than with the
response-level GAN. This validates the top-K softmax approach to build fully
di�erentiable GANs as well as our proposed batch-level discriminator.

2.7.3 | P���������� – ���������� �� �������� ���
�������

As aforementioned, we also report the percentage of good responses not in-
cluded as negative examples for the discriminator according to the methodol-
ogy presented in Section 2.6.4. The evolution of this metric is shown in Figure
2.14.

This result further validates our proposal, especially the batch-level GAN.
Not only does it lead to more varied responses than the MLE baseline, but it
does so without hurting the quality of the responses. In fact, these are also se-
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Figure 2.14.: Evolution of the percentage of good responses not included as neg-
ative examples for the discriminator throughout theMLE pretrain-
ing and adversarial learning.

mantically more adequate, even though only slightly, according to this metric.
On the other hand, the response-level GAN performs slightly worse than the
MLE baseline. Once again, this might be due to the intrinsic limitations of such
GANs: the generator can easily minimise the discriminator’s output by pro-
ducing long and complex sentences, but these are not necessarily semantically
appropriate given the dialogue context.

2.7.4 | D������������ ��������

The last automatic metric we tracked was the discriminators’ accuracy. This is
shown in Figure 2.15. The accuracy is already fairly high from the beginning
because the discriminators were pretrained with responses from the MLE base-
line before starting to compute the accuracy. The accuracy was computed with
instances unseen during training.

This plot is alignedwith the learning curves shown previously. The response-
level discriminator learns faster, i.e. it is able to obtain a higher accuracy in the
�rst 50K to 100K iterations (250K to 300K iterations if we start counting from
the beginning of the training process, as shown in the plot). Nonetheless, the
accuracy improves only slightly after the pretraining. The batch-level discrimi-
nator, as expected, takes longer to train, but it ends with a higher accuracy than
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Figure 2.15.: Evolution of the accuracy of the discriminators throughout adver-
sarial learning.

the response-level one. This rati�es once again that this kind of discriminator
has a greater potential.

2.7.5 | P���������� ����� ����������

Let us show a preliminary human comparison between the MLE baseline dia-
logue model and the response-level GAN. 10 human evaluators, mostly Ph.D.
students or postdoctoral researchers on Electronics or Computer Science, took
part in this experiment. Their average age was 26.9, and the gender distribution
was 30% females, 70% males.

The evaluators were asked to to interact freely with the two models for a
few minutes, �rst with the MLE baseline, and then with response-level GAN.
These interactions were text-based, and a simple app was developed to this end.
The judges were also told to carry out similar dialogues with the two system
to avoid any bias in this regard. On average, the resulting dialogues were 25
exchanges long. Then, they �lled a short questionnaire made of three ques-
tions: “Which model o�ered a bigger variety of responses?”, “Which model’s
responses were more coherent with your turns/questions?”, and “Which model
was more informative?”.

7 out of the 10 evaluators opined that the �nal system was more variate and
informative, and there was a draw (5-5) in terms of coherence. This result is
aligned with the conclusions drawn from the automatic metrics.
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2.7.6 | G��������� ��������

Finally, we would like to show some responses that showcase the aforemen-
tioned discussed behaviour of the di�erentmodels. Table 2.1 contains responses
of four instances of theMLE baseline, response-level GAN and batch-level GAN
to the same four input utterances. Each response has been generated by inde-
pendent models; we use four of the eight trained models to obtain the auto-
matic metric results to this end. We have picked responses generated after the
training �nished for the MLE baseline and for the batch-level GAN. As for the
response-level GAN, the responses correspond to earlier stages of training, be-
fore the GAN slightly diverges, according to the automatic metrics.

The di�erence in the variability of the responses is quite noticeable in these
examples. The MLE baseline produces generic or dull responses much more
frequently than both GAN models, which tend to produce more complex and
informative sentences. Furthermore, the MLE responses to the same input are
more similar. This is especially visible in the case of the �rst input Yesterday I
saw you in the mountains, where the four instances produced extremely similar
outputs. We would also like to mention the phenomenon of the occasionally
repetitive long and complex outputs of the response-level GAN. The third in-
stance (third row) responded withWhat do you want me to say, huh? to the �rst
and second inputs. We have noticed that this kind of behaviour occurs at many
stages during training, as previously discussed. Batch-level GANs reduce this
issue signi�cantly.

2.8 | C����������

We have presented a novel methodology to allow text-generating models to
be trained in the GAN framework, the top-k softmax, as well as batch-level
discriminators that address some of the issues of the commonly used response-
level GANs. We have shown that good approximations of the word vector cor-
responding to each of the generated tokens can be obtained with the top-k soft-
max. Furthermore, GAN models trained using the top-k softmax provide more
varied responses than the MLE baseline in our experiments. As for the future,
it would be good to directly compare this methodology with other alternatives
to circumvent the di�erentiability problem, such as RL or the Gumble-softmax
approach (see Section 2.2.2), to quantitatively analyse its pros and cons. In any
way, the obtained improvement is higher and the training is more stable with
batch-level GAN than with the response-level GAN. This validates the top-k
softmax approach to build fully di�erentiable GANs as well as our proposed
batch-level discriminators.
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Table 2.1.: Responses of four instances of the MLE baseline and the two GAN
models to the same inputs.

Input utterance: Yesterday I saw you in the mountains.
MLE baseline Response-level GAN Batch-level GAN

I was in the woods. You were in the mountains? You saw me, didn’t you?
I was in the mountains. You were the one who was

there.
You know, you can’t see me.

I was in the woods. What do youwant me to say,
huh?

I was in the woods.

I saw you in the woods. I saw you in the mountains. You know, I’ve been trying
to call you all day long.

Input utterance: Could you repeat that, please?
MLE baseline Response-level GAN Batch-level GAN

I’m sorry. I’m sorry I didn’t get a
chance to say goodbye.

You’re a man of respect for
the truth.

I’m not sure. It’s a good idea. I’m not a doctor anymore,
but I’m a writer.

I’m not going to let you do
this.

What do youwant me to say,
huh?

And I’m sorry about your
mother’s death.

I’m not sure. I’m sorry about what hap-
pened last night.

You can do better than that,
sir.

Input utterance: Tell me, what do you like?
MLE baseline Response-level GAN Batch-level GAN

I like to think you’re a good
man.

I like theway you look atme. I like the way you look at
them.

I don’t know. I don’t know what I like
about you, but I like it.

What do you like?

I like to eat. I don’t know, man, I don’t
think you understand, man,
but...

I like to be alone.

I like theway you look atme. I like your hair. I like to be a little more com-
fortable.

Input utterance: Could you come with us to that place?
MLE baseline Response-level GAN Batch-level GAN

I’m not sure. I’ll see if I’ll have a drink
with you.

What are we going to do?

I’ll be right there. Yes, of course. I’m not going anywhere,
dad.

I’m going to go. I don’t think you understand
how many people you have.

I’ll be right here.

I’m not sure. I don’t want to see that. I don’t want to go.

Last, we would like to conclude by noting that, even if GANs are still widely
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used for applications such as (conditional) image generation (Li et al., 2022a;
Hu et al., 2021; Sauer et al., 2021; Yu et al., 2021), their popularity for dialogue-
related tasks has dropped recently. This is probably due to more attractive and
simpler alternatives having been proposed recently, such as transfer learning
from large pretrained LMs. However, we believe that our research (especially
batch-level discriminators) is still relevant because many other NLP systems,
such as GPT-2-based dialogue managers (see Chapter 4, Section 4.4.4) or BERT-
based question answering systems (Devlin et al., 2019), use discriminators that
could potentially bene�t from our proposals.
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C������������ �� ���
EMPATHIC �������

3.1 | I�����������

Let us introduce the European H2020 Project EMPATHIC1 (López Zorrilla et al.,
2018; Torres et al., 2019; Brinkschulte et al., 2021), which is the framework
adopted in this chapter and the next one. It was aimed to research, innovate,
explore and validate new interaction paradigms and platforms for future gener-
ations of personalised Virtual Coaches (VCs) to improve independent healthy-
life-years of the elderly. EMPATHIC presented a multidisciplinary consortium
made of research groups from European universities, health-related institu-
tions and technological companies. Namely, experts from the University of the
Basque Country UPV/EHU, University of Barcelona, Institut Mines-Télécom,
Università degli Studi della Campania Luigi Vanvitelli, Oslo University Hospi-
tal, OSATEK, e-Seniors Association, Tunstall Healthcare, Intelligent Voice and
Acapela Group took part in the project.

The technical development of the EMPATHIC VC consisted of four main
stages (depicted in Figure 3.1): a data acquisition stage (Stage I) where human-
computer dialogues were acquired through a Wizard of Oz (WoZ) technique;
the labelling, annotation, and structuring of these data to form the EMPATHIC
corpus (Stage II); the actual development of the modules for the VC prototype
(Stage III); and its validation with the target population (Stage IV). All data ac-
quisition and validation experiments were carried out in Spain, France and Nor-
way, leading to a multilingual and multicultural corpus and prototype. In this
chapter, we describe these four stages, focusing on our contributions, which are

1http://www.empathic-project.eu/

http://www.empathic-project.eu/
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Figure 3.1.: Schema of the organisation of this chapter.

a result of collaborative work with colleagues of the project. Our main contri-
butions are summarised next:

I. In the data acquisition process through the WoZ technique:

• Design of the scenarios used to simulate the system behaviour.

II. In the labelling and annotation of the acquired corpus:

• Design of the semantic labelling taxonomy and annotation proce-
dure.

• Analysis of the results of the semantic labelling.

III. In the development of the VC prototype:

• Design of the dialogue strategy, speci�ed through dialogue trees.
• Design of the NLG post-processing.

IV. Additionally, and aside from the collaboration with members of the con-
sortium:

• Analysis of the interactions of the VC prototypewith the target pop-
ulation.

Mind that the EMPATHIC VC is not fully data-driven, which is a di�erence to
the dialogue systems presented in the rest of the chapters. The EMPATHIC cor-
pus was also used to develop an end-to-end dialogue model, which is presented
in Chapter 4, as represented in the schema in Figure 3.1.

This chapter is organised as follows. Section 3.2 provides an overview of the
target dialogues of EMPATHIC–coaching sessions. Then, Sections 3.3, 3.4, 3.5
and 3.6 present the contributions of the four stages in Figure 3.1. In Section
3.3 the designed WoZ scenarios corresponding to Stage I are described. Section
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3.4 presents the EMPATHIC corpus: big numbers �rst, and then a more thor-
ough description of the semantic labelling taxonomy, procedure and results (i.e.,
Stage II). Section 3.5 includes an overview of the EMPATHIC VC developed in
Stage III, then a more in-depth analysis of our contributions to its DM and NLG.
Section 3.6 contains the analysis of the interactions between the target popula-
tion of EMPATHIC and the VC prototype (Stage IV). Last, Section 3.7 presents
some concluding remarks.

3.2 | GROW �������� ���������

The main purpose of acquiring a corpus of dialogues within the EMPATHIC
project was to generate high-quality data to train and/or design the modules
that would make up the VC. This VC was intended to carry out coaching di-
alogues in Spanish, French and Norwegian; and therefore the acquired corpus
should also contain this kind of conversations. According to the International
Coaching Community, the essence of coaching is “to help a person change in
the way they wish and helping them go in the direction they want to go2”. It is
important to remark that when coaching someone it is the coachee who has
the answers, not the coach. Thus, the goal of the coach is to make the coachee
re�ect and help them �nd these answers, not to just tell them what they should
do.

Experts use several coaching techniques to try to make the coachees3 realise
how they could improve their habits or reach their goals. For EMPATHIC, the
GROW coaching model (Whitmore, 1992) was selected, since it was suggested
by experts in the area, on the grounds that the GROW dialogues are much more
structured than in other coaching methodologies (Justo et al., 2020). Thus, the
GROWmodel should be very suitable for both the data acquisition process and
the dialogue modelling for the automatic prototype.

In short, a full GROW coaching session consists of four main phases: Goals
or objectives, Reality, Options, and Will or action plan. During the �rst phase,
the agent aims to get explicit objectives from the user, for instance, increas-
ing the daily fruit intake or reducing the amount of sugar in their diet. During
the Reality phase, the coach and the user analyse the user’s personal context
and try to detect potential obstacles that currently hinder the achievement of
the previously established objectives. As for the Options phase, the goal is to
generate and �nd options and tools that the user may use to face the aforemen-
tioned obstacles and achieve their objectives. In the last phase, the objective is
to specify an action plan for the user to carry out in order to advance towards
their objective.
2https://internationalcoachingcommunity.com/what-is-coaching/
3We often refer to the coachee as the user, because they use the SDS.

https://internationalcoachingcommunity.com/what-is-coaching/
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For instance, Table 3.1 shows a representative fragment from a �ctional
GROW session corresponding to the Reality and Options phases, where the
coach provokes a clear re�ection on the user. This example is part of a number
of examples written by an expert coach to assist in the development of EM-
PATHIC (Sayas, 2018a,b,c).

Table 3.1.: A fragment of a coaching session extracted from our corpus.
Agent: So, Pablo, have you ever eaten consistently 2 or 3 pieces of fruit?
User: When my wife was healthier, she used to take care of buying the fruit. Thus it

was easier for me to eat it.
Agent: And at any other time of your life?
User: Long time ago, when I lived alone, I used to take care of buying the fruit myself,

and I ate it more frequently.
Agent: What does this information suggest to you about your objective?
User: Well... That it’s something that basically depends on me.
Agent: So, can you see anything you could do to get closer to your objective?
User: Uhmm... I should start thinking how I am going to organise to buy the fruit.

Each phase of the GROWmodel is also characterised by the type of questions
employed by the coach, as depicted in Figure 3.2. Goal Set Questions (GSQs) try
to identify and clarify the goal and commitment to it. Motivational Questions
(MQs) are also used in the �rst phase of the conversation, to motivate the user
by making them realise the potential bene�ts of achieving their goal. Reality
Questions (RQs) and Obstacle Questions (OQs) are the main types of question
for the Reality phase. RQs assess the current situation of the user with respect
to the objective, while OQs aim at exploring the user’s internal obstacles and
blocks limiting their progression. OQs are also used in the Options phase along
with Option Generation Questions (OGQs). These focus on making the user
aware of the options or possibilities that could be used to get closer to the goal.
Last, the Will phase is characterised by Plan Action Questions (PAQs), which
are aimed at specifying an action plan to reach, or get closer to the goal. Ad-
ditionally, the coach can also employ Follow-up Questions (FQs) to check the
progress after a coaching session and Warning Questions (WQs) to assess risk
situations related to the health status of the user. Besides all the GROW-like
questions, non-domain speci�c responses such as con�rmations, backchannels
or greetings, might also be used in every phase of the session by the coach.

3.3 | D��� ����������: W�Z ���������

After establishing the coaching methodology to be used and modeled in EM-
PATHIC, the next step was to plan a data acquisition procedure to generate a
corpus of human-computer GROW sessions. This corpus would help to train
and design many modules of the EMPATHIC prototype, but also to provide a
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Figure 3.2.: Question types per GROW phase.

better understanding of how independent elderly users would react to virtual
and automatic coaching sessions (Esposito et al., 2021).

A WoZ technique (Dahlbäck et al., 1993; Riek, 2012) was used to acquire the
data, since it allows to collect conversations similar to the target ones. This
method consists in asking participants to interact with a system that they be-
lieve to be autonomous, but which is actually controlled by a human expert–the
wizard. Thus, the participants should act as they would when facing a real au-
tomatic system; they will often talk more slowly or express themselves more
concisely, for instance. In EMPATHIC, GROW coaching sessions needed to be
implemented in the WoZ trials. While in-person coaching sessions often last
between 30 and 60 minutes, the EMPATHIC GROWWoZ sessions were decided
to be around 10 minutes long. The reason for this is that longer conversations
may be too hard to model, and that participants (healthy elderly) may not be
willing to interact with a VC for longer.

Two separate scenarios (dialogue types) were planned for the WoZ sessions.
First, we designed an introductory scenario that was used to engage the user
and make them feel comfortable in the interaction with the system. In this sce-
nario, the system (controlled by the wizard) presents itself and brie�y describes
the coaching methodology it will be following. Afterwards, it talks with the
user about their hobbies, such as travelling, music and reading, but always with
coaching in mind. In fact, the introductory dialogue can already be considered
(the beginning of) a coaching session, since the wizard uses a coaching lan-
guage trying to make the user re�ect whenever possible. Second, a (partial)
GROW session on nutrition was simulated. The 10 minutes limit was generally
enough to complete the �rst phase of the GROW structure, the Goals. Some-
times, the conversation was very �uid, and more phases were completed. The
nutrition topic was selected because it is a key factor in healthy ageing. Ac-
cording to the World Health Organization, “good nutrition can help to preserve
cognitive function, delay care dependency, and reverse frailty" when ageing4.

The EMPATHIC WoZ platform was based on the one developed by Schlögl

4https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
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et al. (2010). The wizard could respond to the user’s audio/video using and
modifying prede�ned candidates or composing a response if none of the pre-
de�ned ones were suitable. Our main contribution in this aspect was to de�ne
and arrange the sets of prede�ned responses, so that health professionals, the
wizards, could carry out GROW-like dialogues. First, a set of general, non-
domain-speci�c responses was designed, which could be used in any scenario
or phase. A total number of 37 sentences were designed, which can be found in
Appendix A. These were always visible to the wizard, as seen in the right-hand
side of Figure 3.3.

Figure 3.3.: Interface for the wizard in theWoZ trials of EMPATHIC. The abbre-
viations for the question types are in Spanish, as English was only
used as an intermediate language for translating the scenarios.

As for the introductory dialogue, four sets of sentences were designed: an
introduction to the project (made of 31 prede�ned turns), travelling (16), music
(17) and goodbye (5). The wizard can select which set of questions to use in the
interface so only the more relevant candidates appear on the screen, as shown
in the bottom left of Figure 3.3. Using the introductory set of questions, the
system presents itself and the project and asks some general questions about
the potential hobbies of the user. Then, depending on how the �rst phase de-
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veloped, the system and the participant talk about one of the user’s hobbies,
preferably travelling or music (or both), because the set of prede�ned questions
was only designed for these topics. Last, the system thanks the user for their
time and says goodbye with the last set.

Regarding the GROW session about nutrition, the sets of questionsmatch the
ones in Figure 3.2 adapted to the nutrition topic. Four greetings were included,
15 GSQs, 14 MQs, 8 RQs, 7 OQs, 10 OGQs, 7 PAQs and 3 goodbye turns. Note
that WQs were not included in the platform, because experts recommended
against generating health alerts in the system, and FQs are also missing because
they onlymake sense for a secondGROWsession. The sets of questions for both
the introductory and GROW nutrition scenarios can be found in Appendix A.

We instructed six wizards (two in Spain, two in France and two in Norway)
to use this platform and these scenarios to carry out GROW dialogues. The
wizards were sta� of the end-user partners of EMPATHIC, namely OSATEK,
e-Seniors Association and Oslo University Hospital. We also showed them how
to modify the scenarios, so that they could adapt them throughout the WoZ
trials. Thus, the �nal sets of questions vary slightly between countries.

The �rst WoZ acquisition process was carried out successfully, and later the
second round of experiments, named WoZ+, was prepared. In this case, two
dialogues per user were developed too, but the topics di�ered: the �rst one
was still the GROW session about nutrition, but the second one was a GROW
session about physical activity. This time, and after the experience gained in
the �rst round of data acquisition, the wizards were responsible for building the
physical activity scenario from scratch.

3.4 | EMPATHIC ������

Let us now summarise the statistics of the acquired dialogues and their anno-
tation (Section 3.4.1), focusing on the semantic labelling, where we contributed
the most (Section 3.4.2).

3.4.1 | S������

The EMPATHIC corpus contains the data gathered in both WoZ and WoZ+
trials. The WoZ data was collected with the scenarios we designed, and it has
been fully annotated, including the semantic labelling that we explain next in
Section 3.4.2. It is also the basis of the data-driven dialogue model explained
in the next chapter. In the case of WoZ+ trials (Section 3.4.1.2), dialogues were
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not labelled. The EMPATHIC corpus is available at: http://catalog.elra.info/

en-us/repository/browse/ELRA-S0414/.

3.4.1.1 | W�Z ������

A total number of 153 participants took part in the WoZ trials. Table 3.2 shows
their demographic information (gender and average age) divided by country.
We also provide information about their quality of life via WHOQOL-BREF
questionnaire (World Health Organization et al., 1996) (in a 0-100 scale), and
about their depression level via the Geriatric Depression Scale (GDS) question-
naire (Sheikh and Yesavage, 1986) (in a 0-30 scale). WHOQOL-BREF scores
lower than 45 indicate a poor quality of life, values between 45 and 65 a moder-
ate quality of life, and values above 65 a relatively high quality of life (Bani-Issa,
2011). On the other hand, GDS scores lower than 10 are normal, values between
10 and 20 indicate mild depression, and values above 20 correspond to severe
depression.

Table 3.2.: Demographic data of the participants of the WoZ experiments.
Spain France Norway

Number of participants 78 44 31
Gender 24 M, 54 F 16 M, 28 F 10 M, 21 F
Average age 69.5 73.5 74.8
Avg. WHOQOL-BREF score 72.1 70.1 69.0
Avg. GDS score 4.8 4.4 5.7

The statistics of this partition are summarised in Table 3.3. The number of
videos or audios does not exactly match the number of transcribed dialogues
due to some technical issues. Since almost every participant interacted with
the WoZ in the �rst two scenarios, around half of the corpus corresponds to
introductory sessions and the other half to GROW sessions on nutrition.

Table 3.3.: WoZ corpus summary (ann. stands for di�erent annotators).
Spain France Norway

Video/audio �les 142 76 68
Time 23:11:06 11:04:06 8:57:31
Transcribed dialogues 142 68 60
User dialogue act annotation �les 142 68 60
System dialogue act annotation �les 142 68 60
Emotion annotation from audio �les 134⇥3 ann. 76⇥2 ann. 60⇥2 ann.
Emotion annotation (crowd) from audio chunks 4521⇥5 ann. - -
Emotion annotation from video �les 134⇥2 ann. 76⇥2 ann. 60⇥2 ann.
Biometry annotation �les 134 - -

http://catalog.elra.info/en-us/repository/browse/ELRA-S0414/
http://catalog.elra.info/en-us/repository/browse/ELRA-S0414/
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The recordings of the sessions were manually transcribed, and the system
and user turns were labeled semantically. The users’ audio, video and text
were also labeled in terms of emotions (Letaifa and Torres, 2021; de Velasco
et al., 2022). Besides the data annotation, a number of questionnaires were
administered to the participants: before the interaction, the aforementioned
WHOQOL-BREF and GDS questionnaires were administered; and the Virtual
Agent Acceptability Questionnaire (VAAQ) questionnaire for the acceptance
of the automatic system (Esposito et al., 2018), System Usability Questionnaire
(SUS) questionnaire for its usability (Brooke, 1996) and a self-annotation of their
emotions, after the interaction.

Additionally, the transcriptions of the dialogues were translated into the
three target languages to increase the amount of data. English was used as
an intermediary language to ease the translation procedure. As a result, the
corpus of dialogues is available in English too. Table 3.4 shows a comparison
between the original amount of data and the data after the translations.

Table 3.4.: General statistics of the corpus of WoZ (translated) dialogues.
Original data Total after translations

Spanish French Norwegian (same for all languages)

Number of dialogues 142 68 62 272
Number of system turns 4813 1776 1324 7913
System turns per dialogue 33.9 26.1 21.4 29.1

3.4.1.2 | W�Z+ ������

On the other hand, the second WoZ experiments, the so-called WoZ+ trials,
contain GROW sessions about nutrition and physical activity. Table 3.5 shows
demographic data as well as the average quality of life and depression level for
the 101 participants, while Table 3.6 summarises the statistics for this partition.
In this case, the dialogues were not labeled in terms of semantics or emotions,
and were not translated into the other target languages either, due to budget
limitations. Anyway, the same questionnaires as in the WoZ trials were admin-
istrated this time.

3.4.2 | S������� ����� �������� ��� ��� ��������
������������� ����

As aforementioned, the WoZ partition of the EMPATHIC corpus was labelled
semantically and in terms of emotions. We focused on the semantics of the
users, described in depth inMontenegro et al. (2019a). The design of the (user’s)
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Table 3.5.: Demographic data of the participants of the WoZ+ experiments.
Spain France Norway

Number of participants 26 12 63
Gender 10 M, 16 F 4 M, 8 F 31 M, 32 F
Average age 70.0 75.8 72.6
Avg. WHOQOL-BREF score 70.1 71.4 74.1
Avg. GDS score 6.7 5.2 4.0

Table 3.6.: WoZ+ corpus summary.
Spain France Norway

Video/audio �les 52 24 131
Time 8:45:42 4:17:24 22:50:04
Transcribed dialogues 52 - 126

semantic label taxonomy in a SDS is essential because it de�nes the input space
for the DM. TheDMperforms actions based on this representation, so it must be
informative enough to allow the DM to execute the desired dialogue strategy, a
GROW coaching strategy in this case. On the other hand, the taxonomy should
not be too complex or open, because otherwise the Natural Language Under-
standing (NLU) module may have a hard time correctly classifying the user
utterances. Considering these constraints, we proposed a multidimensional hi-
erarchical taxonomy with four types of labels: Topic, Intent, Polarity, and Entity
labels.

3.4.2.1 | D��������� �� ��� ��������

We propose a hierarchical structure for the Topic and Intent labels. This means
that an utterance is labeled by multiple tags that can be ordered from more
general to more speci�c. Such labelling can be graphically represented using a
tree (see Figures 3.4 and 3.5). In this structure, the closer a label is to the root, the
more general it is; while the closer to the leaves, themore speci�c. The rationale
behind the use of hierarchical labels is to allow the DM to receive more �ne-
grain information when possible, and less re�ned labels when no other choice
is available. In addition, the NLU module also bene�ts from this, because it can
be less precise at the time of making predictions in those situations in which the
con�dence is not high enough to discriminate between a set of labels, selecting
the parent label.

The Topic label classi�es the utterance to determine the general context in
which the conversation is framed. Figure 3.4 shows the topic label tag set organ-
ised as a tree. Four main groups can be recognised: sport and leisure, nutrition,
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family and other, which are further split into more detailed categories. The �rst
two groups were designed mainly for introductory and nutrition dialogues, and
the other label for those generic sentences such as greetings or con�rmations
that cannot be related to any topic. The family group was intended to be used
in later stages of the project, but �nally dialogues about social activity were not
recorded.

The Intent label classi�es the utterance in classes related to the user’s commu-
nicative intentions (e.g. question, inform, etc.). Figure 3.5 shows the hierarchical
structure for the Intent tags. General purpose intents such as greetings, doubts
or thanking, are grouped under the Generic and Question labels, and were in-
spired in the DIT++ taxonomy of general-purpose communicative functions
(Bunt, 2009). These aim at providing the DM with some basic understanding.
On the other hand, we also de�ned a set of task-speci�c labels related to the
GROW model of coaching, aimed at helping the DM to detect Goals, Realities,
Obstacles and Wills of the topics of interest.

The Polarity label aims at representing the sentiment associated with the
semantics of the user turn, which can be very relevant to provide exploitable
information to DM. We distinguish between three levels of polarity: positive,
neutral and negative.

The Entity label classi�es particular elements of user turns that provide spe-
ci�c semantic information. Table 3.7 shows the selected entities for the EM-
PATHIC project.

Table 3.7.: List of name entity categories.
People Quantities Objects/Utensils Films/TV Series Nature
Actions Frequencies Ordinal numbers Nationalities Emotions
Books Music/Bands Cardinal numbers Relative dates Diseases
Family Sport/Leisure Places/Buildings/Organizations Meteorology
Food Time amount Paintings/Sculpture/Art Absolute dates

In Figure 3.6, a labelling example is illustrated. This fragment of a dialogue
has been labeled by a human, and it can be seen that sometimes it is not possible
to reach the tree leaves of the Topic or Intent dimensions. For instance, the topic
of the third user turn is clearly nutrition, but it’s not about regularity, quantity
or variety.

3.4.2.2 | S������� ���������� ��������� ��� �������

In order to semantically label the user turns of theWoZ dialogues, we instructed
some annotators about the labels, the GROWmodel, and the context of the EM-
PATHIC project, in Spain, France and Norway. Each annotator labeled roughly
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Figure 3.4.: Topic label tree.



EMPATHIC ������ 47

Figure 3.5.: Intent label tree.

the same number of dialogues per country, corresponding to both the introduc-
tion and the nutrition scenarios. Each dialogue was labelled by one annotator
only. Nevertheless, all the annotators worked together to deal with doubts and
disagreements, under close supervision, resulting in a collaborative annotation
task.
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Figure 3.6.: Semantic labelling example.

Since more than one intent and/or topic may appear per turn, the annotators
divided each turn into subsentences that roughly correspond to uttered clauses,
so unique intent and topic labels can be assigned to each of these subsentences.
To do so and to carry out the annotation procedure, we developed an annotation
tool that provides a simple command-line interface. Annotators took around an
hour to label each dialogue, on average.

In total, 7,842 user turns were labeled aggregating the results of the three
countries. The turns were split in 15,661 subsentences, and 19,108 name en-
tities were identi�ed. The size of the corpus is the same in Spanish, French,
Norwegian and English, due to the translations. Tables 3.8 and 3.9 show the
number of subsentences labeled with each topic and intent label, respectively,
and also the frequency of these labels. For the sake of clarity, we only show
labels up to depth 2 labels in the trees. The numbers include the sum of all the
sublabels below those. The sets marked with the symbol * refer to the rest of
non mentioned sublabels. Table 3.10 contains the number of subsentences and
frequencies corresponding to the three possible polarity levels. Last, Table 3.11
shows the number of identi�ed name entities per category, and also divided by
the number of user turns.

Regarding the frequency of the topic labels in Table 3.8. TheOther label is the
most frequent label, which is selected 66.0% of the time, and comprises generic
utterances such as a�rmations or greetings. The number of subsentences la-
beled with Nutrition (15.6%) or Sport and leisure (17.5%) labels is very similar.
An interesting di�erence between the Nutrition and Sport and leisure annota-
tions is that the Nutrition label alone, without any other sublabel, is much more
frequently selected than the Sport and leisure one. This means that the de�ned
sublabels under the Sport and leisure node in Figure 3.4 cover almost entirely the
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Table 3.8.: Frequencies and number of subsentences corresponding to the most
frequent topic labels.
Frequent topic labels Number of subsentences Frequency

Family and caregivers 131 0.8%
Nutrition (only) 1387 8.9%
Nutrition - Quantity 456 2.9%
Nutrition - Regularity 374 2.4%
Nutrition - Variety 233 1.5%
Sport and leisure (only) 172 1.1%
Sport and leisure - Travelling 1064 6.8%
Sport and leisure - Music 294 1.9%
Sport and leisure - Hobbies 770 4.9%
Sport and leisure - * 608 3.9%
Other 10344 66.0%

Table 3.9.: Frequencies and number of subsentences corresponding to the most
frequent intent labels.
Frequent intent labels Number of subsentences Frequency

Generic - Agreement 3127 20.0%
Generic - Disagreement 560 3.6%
Generic - Evaluation/opinion 3599 23.0%
Generic - Doubt 453 2.9%
Generic - Greeting 653 4.2%
Generic - * 671 4.3%
GROW inform - Habit 2514 16.1%
GROW inform - Plan 406 2.6%
GROW inform - Goal 255 1.6%
GROW inform - Obstacle 266 1.7%
GROW inform - * 438 2.8%
Question 548 3.5%
Other 2171 13.8%

spectrum of possible topics in the WoZ experiments. On the other hand, this is
not often the case when the participant talks about nutrition. This is because
the three Nutrition sublabels are quite speci�c, and not always necessary to un-
derstand the user. For example, a simple utterance such as “I like apples" would
only be labeled as Nutrition, but the meaning of the whole sentence could be in-
ferred from the intent (General-Opinion-Positive), polarity (Positive) and entity
(Food{apples}) labels. We analyse the relationship between the di�erent dimen-
sions of the semantic labels at the end of the section.

As for the intent label distribution of Table 3.9, generic communicative in-
tents are prevalent, especially agreements and opinions. Among the opinions,
around 55% of them were positive, only 9% negative, and the rest were not la-
beled as positive or negative. The fact that agreements and positive opinions are
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Table 3.10.: Frequencies of the polarity labels.
Polarity labels Number of subsentences Frequency

Positive 3134 20.0%
Neutral 12075 77.1%
Negative 452 2.9%

Table 3.11.: Distribution of name entities.
Entity labels Number of entities Entities per user turn (⇥10�2)

Absolute dates 267 3.4
Actions 4022 51.3
Books 63 0.8
Cardinal numbers 691 8.8
Emotions 378 4.8
Family 296 3.8
Films/TV series 30 0.4
Food 3762 48.0
Frequencies 954 12.2
Diseases 113 1.4
Meteorology 54 0.7
Music/Bands 204 2.6
Nationalities 181 2.3
Nature 35 0.4
Objects/Utensils 518 6.6
Ordinal numbers 91 1.2
Paintings/Sculpture/Art 30 0.4
People 864 11.1
Places/Buildings/Organizations 1845 23.5
Quantities 2159 27.5
Relative dates 1151 14.7
Sport/Leisure 926 11.8
Time amount 474 6.0

much more frequent than disagreements and negative opinions, respectively,
points out a certain positive attitude of the participants towards the WoZ sys-
tem. This can also be seen in the polarity label distribution (Table 3.10), which
indicates that only 2.9% of the subsentenceswere negative. In respect of the sub-
sentences labeled as GROW inform, the majority referred to habits. This shows
that the wizard spent a lot of time analysing the participants’ routines. Last,
it can also be seen clearly that, as planned, the participants did not ask many
questions to the system. Instead, the sessions consisted of the wizard asking
and the users talking, which is a big di�erence from many health-related di-
alogue systems that focus more on question answering than on having actual
conversations.

The main identi�ed name entities were, as shown in Table 3.11, Actions,
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Food, Quantities, Places/Buildings/Organizations, Relative dates, Frequencies,
Sport/Leisure and People; which makes sense for an introductory dialogue and
for a GROW coaching session for nutrition.

Let us now analyse the relationship between the topic, intent and entity la-
bels through Sankey diagrams, in Figures 3.7, 3.8 and 3.9. In these �gures, the
most representative sets of labels of two dimensions face each other. The �ows
that connect the labels from one side with the other, represent the number of
subsentences that are labeled with the two connected labels.

Figure 3.7.: Relation between intent (left) and topic (right) labels.

Figure 3.8.: Relation between topic (left) and entity (right) labels.

Let us start with the Sankey diagram for the intent and topic modalities, in
Figure 3.7. The �rst thing that can be seen is that the labels of the GROW In-
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Figure 3.9.: Relation between intent (left) and entity (right) labels.

form family (in blue) mostly relate to the Nutrition and Sport and leisure topics.
At �rst sight, it may seem unexpected that coaching responses appear when
talking about Sport and leisure, because this is the main topic in the introduc-
tory sessions, where the GROW coaching session is not being carried out. The
reason is that, as aforementioned, most of GROW Inform turns are about the
participants’ habits, and the wizard often asked about habits even in the in-
troductory dialogue, to get to know the user better and to potentially detect
improvable routines. On the other hand, there was no identi�able topic for
most of the subsentences labeled with Generic intents (in green), as expected.
The only signi�cant exception happens with the Evaluation/opinion sublabel
(highlighted in dark green), which also covers more complex turns where the
user gives opinions, for instance, about their nutrition, hobbies, or some food.
Similar to the rest of Generic intents, general Questions (in orange) are mostly
related to the Other topic too.

The relations of the topic and intent labels with the identi�ed name entities
are represented in Figures 3.8 and 3.9, respectively. In this case, the width of
the �ow depicts the number of name entities identi�ed in subsentences labelled
with a given topic or intent. This is why the widths of the �ows of the entity
and intent labels di�er from the ones in Figure 3.7. In Figure 3.8, for example,
the width of the Nutrition or Sport and leisure sets of labels are equal or higher
than the Other topic label, even if the 66.0% of sublabels were labelled as Other.
This is due to much fewer entities appearing in subsenteces labelled as Other.
Likewise, in Figure 3.9, the �ow corresponding to GROW Inform subsentences
is wider than the Generic one, even though there are fewer GROW Inform sub-
sentences than Generic subsentences, because GROW Inform turns are much
longer and more informative, and therefore contain more name entities.
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The �ows between the entities and the labels of the other modalities are con-
sistent with the analysis so far, and with the expected relations. For instance,
Food entities are mostly detected in subsentences about Nutrition and with
GROW Inform communicative intent, and Sport/Leisure and Places/Buildings/Or-
ganizations entities in subsentences about Sport and leisure. Interestingly,Quan-
tities, Frequencies and Relative dates entities are quite related to GROW Inform
subsentences, which indicate that, as aforementioned, these turns are very in-
formative and contain a lot of information that can be exploited by a VC.

3.5 | C������������ �� ��� EMPATHIC
V������ C���� ���������

Besides the EMPATHIC corpus, another important outcome of the project was
the development of a VC capable of carrying out GROW coaching sessions
about nutrition. We collaborated on the design of the dialogue strategy (Section
3.5.2), and on the design and validation of the NLG post-process (Section 3.5.3).
Before presenting our contributions, we provide a general description of all the
modules that make up the VC in Section 3.5.1.

3.5.1 | O�������

The VC consists of a multimodal automatic dialogue system whose users can
interact with through any device that has a web browser (PCs, Tablets or Smart-
phones, for example). This audiovisual interaction is based on the analysis of
the voice and the images obtained from the microphone and camera available
on the devices. In addition, the system allows the user to enter text when re-
quired. Figure 3.10 shows a senior interacting with the system. The picture has
been extracted from a video of the EMPATHIC experiments in France, which is
accessible at Olaso et al. (2021), subtitled in English.

Figure 3.11 shows the main components of the VC, where the modules we
contributed to are highlighted. The NLU is highlighted too due to the de�nition
of the taxonomy of the semantic labels. The system architecture mainly follows
the conventional structure of SDSs, with the addition of some less conventional
components to provide the system with additional capabilities. Each of the
components is described as follows:

• ASR. The ASR was developed by the EMPATHIC partner Intelligent
Voice5. It processes the user’s voice and transforms it into a sequence

5https://intelligentvoice.com
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Figure 3.10.: A senior interacting with the EMPATHIC VC.

Figure 3.11.: EMPATHIC system schema. Green boxes highlight the compo-
nents we mainly contributed to.

of words for each target language (López Zorrilla et al., 2016). It allows
choosing between several speech recognition engines.

• NLU. The purpose of the NLU is to obtain the semantic representation
(meaning) of the sequence of words obtained by the ASR. This meaning
is represented with the dialogue act taxonomy explained back in Section
3.4.2 (Montenegro et al., 2019a). It also detects the end of the user turns
(Montenegro et al., 2021).

• DM. It is responsible for determining what action the system should take
in reaction to the user’s turn. To this end, the DM takes into account the
state of the dialogue as well as the input from several components, as
shown in Figure 3.11. The proposed DM and the designed dialogues are
fully explained in Section 3.5.2 (Vázquez et al., 2023) and its behaviour is
analysed in Section 3.6.

• Natural Language Generation. This module is in charge of building and
generating the language of the VC interventions. It transforms the DM
output into a sequence of words. The proposed NLGmethodology is fully
explained in Vázquez (2019); Vázquez et al. (2023). In Section 3.5.3 we
analyse more deeply our contribution to the EMPATHIC NLG.

• Text To Speech (TTS). It converts the text provided by the NLG into voice
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and thus generates the oral response to be provided by the VC. The TTS,
developed by Acapela6, can generate male and female emotional voices
for the three target languages.

• Emotion Analysis. One of the additional features of the VC is the ability
to analyse user emotions. The emotion analysis is carried out from three
sources: from the speech signal (Justo et al., 2020; Letaifa and Torres, 2021;
Greco et al., 2021; de Velasco et al., 2022), from facial expressions (Nasri
et al., 2020; Greco et al., 2021), and the gaze and eye position (Palmero
et al., 2018). The output of these modules is fused to get a more accurate
estimate of the user’s emotional status (Huang et al., 2020), which is then
provided to the DM.

• Biometry. In order to get access to the system, users have to undergo an
authentication process. To this end, the system implements facial biom-
etry from the analysis of the video sequences (Hmani et al., 2021).

• Intelligent Coach (IC). This component is responsible for live monitoring
the conversations. It can take decisions about the ongoing dialogue such
as redirecting the dialogue �ow, e.g. changing the dialogue topic, when
needed. In addition, this component can provide information extracted
from external resources to the DM when requested. Some use cases for
this component are described in Section 3.5.2.

• Visual Agent. The system communicates with the user through a talking
3D animated character7. It can implement di�erent voices aligned with
the movement of the lips as well as perform some head and facial ges-
tures. Some of its movements are adapted to the semantic meaning of
the system’s utterances.

3.5.2 | D������� ��������

In this section, we �rst describe the proposed methodology for the DM in Sec-
tion 3.5.2.1. Then, Sections 3.5.2.2 and 3.5.2.3 describe the task speci�cation
trees proposed to implement the introductory and coaching dialogues, respec-
tively.

3.5.2.1 | D������� �������

For the management of the EMPATHIC dialogues, we grounded our design on
a planning-based DM, RavenClaw (Bohus and Rudnicky, 2009). It is �exible
and scalable enough to address domains needing di�erent planning and com-
munication skills. However, the tasks previously addressed are quite simple,

6https://www.acapela-group.com
7The avatar was provided by Institut Mines Télécom Paris.
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mainly consisting of information-access (Raux et al., 2005; Ghigi et al., 2014;
Olaso and Torres, 2017; Serras et al., 2019b) or scheduling (Olaso et al., 2016),
which strongly di�er from the coaching sessions that the VC has to manage in
EMPATHIC. We show that more complex dialogue strategies can also be imple-
mented in this framework (Vázquez et al., 2023).

RavenClaw develops a management structure based on distributed software
agents that �rst specify the dialogue task at the design level and then execute
the dialogue �ow at the running time, as follows:

• Dialogue task speci�cation. It follows a hierarchical plan that is de�ned
by a tree of dialogue agents, where each agent is responsible formanaging
a speci�c subtask. Two di�erent kinds of agents can be found in the tree:

– Internal agents or non-terminal nodes, represented as blue nodes
in Figures 3.12 to 3.18, are used to encapsulate subsections of the
dialogues and control the execution of their children agents.

– Terminal nodes, represented in red in the aforementioned �gures,
are responsible for implementing precise actions. For instance, In-

form nodes produce an output, Request nodes ask for some in-
formation from the user, and Expect nodes continuously listen for
some information without requesting it. Last, green nodes in Fig-
ure 3.12 represent Execute nodes connected to other modules of
the SDS or external resources.

• Dialogue management. The DM executes a given dialogue task speci�-
cation tree traversing it in Depth First order. However, this order can
be altered under speci�c preconditions, triggers or success/failure crite-
ria of the internal agents, as well as by external triggers. A dashboard
that stores relevant information is used to keep the consistency of the
dialogue when travelling the trees.

3.5.2.2 | I����������� ��������

Figure 3.12 shows the dialogue task speci�cation tree of the introductory dia-
logue. In a similar fashion to the �rst session of the WoZ experiments, it deals
with user-friendly topics aimed to get basic information about the users, and
also provides some context about coaching and the EMPATHIC project.

The session starts with the Execute CheckFirstUse node, which is used to
select the IsFirstUse or IsNotFirstUse agents, based on the user ID. This al-
lows the DM to behave di�erently if it is the �rst time a given user interacts
with it or not, and provides the functionality of stopping in the middle of a ses-
sion and continuing later from the same dialogue state. If IsFirstUse agent is
selected, the Biometry module (see Figure 3.11) is triggered by the green agent
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Figure 3.12.: Task speci�cation tree for the introductory dialogue.

Biometry Enrollment to create a user pro�le from the video frames. If the
user had already talked to the system, the Biometry module would authenticate
them. The Inform Welcome terminal red note prompts a message to welcome
the user, whereas Inform AgentName gets the name of the agent from the
dashboard and then retrieves it in a message. In the same way, Request User-

name requests the user’s name and stores it in the dashboard when provided.
Next, the Info Weather green node is a good example of how the IC can be con-
sulted by the DM to obtain information that can enrich the dialogues by adapt-
ing them to external conditions. This node provides weather forecasts to the
user, based on their location. The remaining of the tree in Figure 3.12 provides
information about the project via Inform EmpathicInfo, inspects whether the
user is familiar with coaching methods (Request KnowCoaching), provides
some more information in this regard (Inform WhatCoachingIs), gently asks
the user to be patient with the system (Inform BePatient), and saves all the
information acquired so far (Execute SaveUserData).

Additionally, the IC module in Figure 3.11 is live-monitoring the conversa-
tions and might redirect the dialogue �ow. As a proof of concept for this ca-
pability, we added an agent that is able to provide users with culinary recipes
(not shown in Figure 3.12). If the IC detects that a particular food has been
mentioned several times during the conversation, it sends to the DM an order
to provide the user with a recipe related to that food. Similarly, another agent
was added to provide weather information when required.

3.5.2.3 | C������� ��������� ��� ��� ��������� ��������

The nutrition dialogue design was based on the GROW coaching methodol-
ogy (Section 3.2) and also took into account the user behaviours shown in the
collected corpus of EMPATHIC (Section 3.4).

Figure 3.13 shows the task speci�cation tree for the nutrition scenario. The
children of the nutrition agent are highly connected to the GROW model
phases. Following coaching experts’ advice, a motivation phase (M in Figure
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Figure 3.13.: Task speci�cation tree for the Nutrition agent.

3.13), was additionally integrated by the nutrition agent to explore the poten-
tial motivations leading the users to change their nutritional habits. The GROW
phase is preceded by an introductory nutrition dialogue (Nutrition Introduc-

tion). Mind this is not the introductory dialogue described in the previous sec-
tion. Instead, it is designed to seek potential inappropriate habits by examining
users’ intake routines in their daily meals, namely breakfast, lunch and dinner.

Figure 3.14.: Nutrition dialogues: speci�cation for the Goal phase.

The Goal (G) subtree shown in Figure 3.14 is aimed at getting a nutrition goal
from the user. We developed three strategies to this end. The main one starts
by providing an analysis of the previously discussed users’ nutritional habits.
The VC enumerates detected potential issues, and asks the user if they would
like to select a goal related to any of these issues. If this is not successful, the
VC explicitly asks the user to specify what they wish to change regarding their
nutritional habits. Last, if the system is still unable to detect the user’s goal, it
traverses some prede�ned user goals trying to set the one the user would like
to solve.

Figure 3.15.: Nutrition dialogues: speci�cation for the Motivation phase.

Figure 3.15 shows a Motivation phase (M) aimed at: 1) evaluating the level of
the user’s motivation in relation to the objective, 2) increasing this motivation
by discussing some potential bene�ts of the behavioural change, and/or 3) at
exploring the nearness of the goal.

The purpose of the Reality (R) phase in Figure 3.16 is to �nd out which are the
main obstacles the user has to achieve their goal. In particular, the system tries
to detect possible obstacles based on the information obtained in the previous
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Figure 3.16.: Nutrition dialogues: speci�cation for the Reality phase.

phases. Some possible obstacles could be: a lack of regularity in the main meals,
excess of salt, sugar or carbohydrate intake, or an inappropriate environment
for meals such as the workplace, among others.

Figure 3.17.: Nutrition dialogues: speci�cation for the Options phase.

The Options (O) subagent in Figure 3.17 explores the users’ options to make
some steps towards the completion of their goal. It focuses on three nutrition
aspects, namely quantity, regularity and variety. If the goal is bound to one
of these categories, the reduction of salt intake for example, the system goes
ahead to the following subagent. Otherwise, the VC proposes a set of options
related to their main issues. If the user does not select any of them, the system
explicitly asks the user for a proposal.

Figure 3.18.: Nutrition dialogues: speci�cation for the Will phase.

The Will (W) phase, in Figure 3.18, is aimed to obtain a speci�c action plan
that users should execute to achieve their goal. Potential action plans explored
by the system and detailed by the user could be: increasing or decreasing the
quantity of a given food, adding a new food to the user’s diet, substituting some
foodwith another, modifying the frequency of eating a speci�c food, or de�ning
a regular timetable for having breakfast, lunch and/or dinner.

Finally and before closing the session, the system performs a summary with
the main points and decisions taken, validates the users’ commitment with the
goals, and repeats the next steps to achieve them.

The proposed dialogue strategy is validated and evaluated in Section 3.6,
where the behaviour of the EMPATHIC VC, guided by this DM, is analysed.
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3.5.3 | D����� ��� ������� ���������� �� ��� NLG
������������

The EMPATHICNLG is amultilingual template-based language generation sys-
tem. As any template-based system, it maps conceptual (non-linguistic) repre-
sentations (i.e. dialogue acts output by the DM) to a template or set of templates.
Templates are linguistic structures with possible slots that are �lled to obtain
well-formed sentences. These slot values are mostly name entities detected by
the NLU and selected by the DM. However, not every template is appropriate
for the selected slot values, because the resulting sentence could be grammati-
cally incorrect or semantically incoherent. For example, let us say that the NLU
detects the entity dates, which is a fairly common one. Table 3.12 shows two
cases where only one of the two template candidates is correct. In these cases,
the correctness is determined by the verb tense.

Table 3.12.: Examples of correct and incorrect NLG templates depending on the
slot value.

Attribute value Template Generated sentence Correct?

date=yesterday
What are you going to do
date?

What are you going to do
yesterday? No

What did you do date? What did you do yester-
day? Yes

date=Mondays
What are you going to do
date?

What are you going to do
Mondays? No

What are you going to do
on date?

What are you going to do
on Mondays? Yes

In some cases, the correct template can be selected after analysing some
grammatical aspects of the slot values, such as the number, gender or countabil-
ity, depending on the language. Nevertheless, in other cases, an ad hock analy-
sis would be too complex. For instance, potential errors may arise from wrong
verb conjugations, wrong or lack of determinants and pronouns (in Spanish or
French), wrong prepositions and their position in the sentence in Norwegian,
or semantically incoherent verbs given some food (such as drink meat or eat
water).

3.5.3.1 | NLG ��������������

Consequently, our contribution to the EMPATHIC NLG is the proposal of using
a LM of the target language to select a correct option among the set of candi-
dates. The NLG selects the candidate for which the LM estimates the highest
probability. We have employed the GPT-2 neural LM architecture, which has
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been adopted and proved to be successful in many natural language process-
ing tasks (Radford et al., 2019). However, the publicly available GPT-2 models
are mainly developed for the English language, but we are interested in French,
Spanish and Norwegian. Thus, we trained these networks from scratch for the
three target languages.

For this purpose, the Spanish, French and Norwegian versions of Wikipedia
and OpenSubtitles (Lison and Tiedemann, 2016) corpora were selected. This
choice is based on the availability of the corpora for the three target lan-
guages. Wikipedia contains information about millions of topics, and Open-
Subtitles mainly consists of conversations. A fraction of the Norwegian version
of the OSCAR text corpus (Ortiz Suárez et al., 2020) was also included since the
amount of data for Norwegian was much lower than for Spanish and French.
OSCAR is a subset of Common Crawl, and thus it is made of web-scrapped text
from the Internet. Table 3.13 shows some statistics of our training data for each
language. Apart from the NLG postprocessing, these GPT-2 models were also
employed to train a fully end-to-end coaching model, described later in Chapter
4.

Table 3.13.: Statistics of the corpora used to pretrain the GPT2model in Spanish,
French and Norwegian. In Norwegian, values in brackets refer to
the data before the addition of a fraction of the OSCAR corpus.

Spanish French Norwegian

Amount of raw text 10 GB 7 GB 5 GB (1 GB)
Number of sentences 230M 121M 30M (14M)
Running words 1.7B 1.3B 750M (150M)

We also tested the well-known statistical N-grams approach. But as Section
3.5.3.2 shows, its performance was clearly worse than the one obtained by the
transformer-based LMs, due to the di�culty of the task.

3.5.3.2 | P������������� �����������

Webuilt 10 tests tomeasure the performance of the trained GPT-2 networks and
N-grams LMs. Each test contains several tuples of sentences related to the task
where only one is correct. We built the tests manually after analysing errors of
previous versions of the NLG. We measured the percentage of the times each
LM selected the correct candidate, i.e. the accuracy. Table 3.14 summarises the
task to be carried out in each test. The beginning of the test name indicates
which language it has been designed for.

The accuracies at selecting the correct candidate in the di�erent tasks are
shown in Table 3.15. The N-gram model is a 3-gram model, and we show two
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results for each GPT-2 model in each language, which correspond to models
trained after 1 and 2 epochs, respectively. Table 3.15 demonstrates that the
GPT-2 models outperform the N-gram model in all the tasks, validating the
inclusion of this kind of transformer models in the NLG. It is particularly inter-
esting that even though in Spanish and French training the models during two
epochs improved the results compared to only one, this did not happen in Nor-
wegian, where the 1-epoch GPT-2 model was the best performing LM. This is
probably due to the less amount of good quality data available in that language,
which may have caused the neural network to slightly over�t.

3.6 | A������� ��� ���������� �� ��� ���
������� �� ��� EMPATHIC VC

Last, we present an analysis of the results of the interaction tests between the
EMPATHIC VC and the target population, which were carried out at the end of
the project. We compare the outcome of these experiments with previous WoZ
and WoZ+ trials whenever possible, in order to understand how far (or close)
our automatic system is from human-operated ones.

We begin the analysis by presenting the experimental conditions in Section
3.6.1. Then, Section 3.6.2 o�ers a �rst glimpse of the conversations carried out
with the system, with some statistics about dialogue and turn lengths. We com-
pare thosemetrics with theWoZ experiments. Subsequently, in Section 3.6.3 we
analyse the dialogue �ow followed by the VC to check if its behaviour was the
desired one, i.e. the strategy speci�ed through dialogue trees. Section 3.6.4 pro-
vides information about task completion. In our case, this metric indicates how
many phases of the GROWmodel users completed per session. Afterwards, we
measure the online NLG performance in Section 3.6.5. Finally, we analyse the
human acceptance of the VC prototype and compare it with the WoZ system.

3.6.1 | E����������� ���������� ��� ����

In total, 79 elderly participants took part in these tests: 31 in Spain, 22 in France
and 26 in Norway. Due to the Covid-19 pandemic, the trials were carried out
remotely. Each participant carried out a coaching session about nutrition, of-
ten split into two parts to let them take a break if they desired to. Demographic
information about the participants is shown in Table 3.16, along with informa-
tion about their quality of life (measured in a 0-100 scale via the WHOQOL-
BREF questionnaire (World Health Organization et al., 1996)) and depression
level (measured in a 0-30 scale via the GDS questionnaire (Sheikh and Yesav-
age, 1986)). More information on how to interpret these scores can be found in
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Table 3.14.: Summary of the tasks to analyse the LMs’ performance at selecting
correct templates. In the examples, the attribute is underlined.

Name Nb. of
tuples

Nb. of
options Brief description Correct sentence

example
Incorrect sentence
example

es_verb_time 1000 2 The verb has to match
the adverbial of time. ¿Y qué ha sucedido ayer? ¿Y qué sucederá ayer?

es_verb_num 45 2
The verb conjugation
has to match the number
of the subject.

¿Cómo va a ser de
momento el desayuno?

¿Cómo van a ser de
momento el desayuno?

es_det 250 4
The determinant, if
necessary, has to match
the attribute.

¿Qué vas a hacer con
el vino?

¿Qué vas a hacer con
los vino?

es_det_verb 240 6 es_verb_num and es_det
tasks combined.

Así que me dices que te
gusta la natación.

Así que me dices que te
gustan los natación.

es_food 40 8

es_det task with the
additional condition that
the selected verb makes
sense with the attribute.

¿Cuántas manzanas te
gustaría comer?

¿Cuánta manzanas te
gustaría beber?

fr_verb_time 1400 2 The verb has to match
the adverbial of time.

Et qui était avec vous
autrefois?

Et qui sera avec vous
autrefois?

fr_verb_num 120 2
The verb conjugation
has to match the
number of the subject.

Que vous ont apporté
les vins?

Que vous a apporté
les vins?

fr_det_pron 1640 8

The determinant and
pronoun, if necessary,
have to match the
attribute.

Dans quelle mesure ce
deuxième plat vous
rapproche-t-il pour
atteindre votre objectif?

Dans quelle mesure
les ce deuxième plat
vous rapprochent-elles
pour atteindre votre
objectif?

fr_food 567 4
Distinguish between
countable and
uncountable food names.

Quelle quantité de sucre? Combien de sucre?

no_verb_prep 104 4

The attribute has to �t
with the verb and the
preposition. Its
placement has to be
correct as well.

Ønsker du å spise nå? Ønsket du å spise i nå?

Table 3.15.: Template selection accuracies. The models are di�erent for each
language. Since the number of candidates also di�ers across tasks,
the performance of a random classi�er is provided as a reference.

Accuracy Random classi�er N-grams (N=3) GPT-2 (1 epoch) GPT-2 (2 epochs)

es_verb_time 50.00 52.86 63.93 80.75
es_verb_num 50.00 55.56 77.78 86.87
es_det 25.00 26.55 49.09 96.00
es_det_verb 16.67 29.26 60.37 98.15
es_food 12.50 30.00 10.00 60.00
fr_verb_time 50.00 59.69 58.44 68.94
fr_verb_num 50.00 50.00 64.17 82.50
fr_det_pron 12.50 12.50 36.85 44.80
fr_food 25.00 36.79 39.26 53.33
no_verb_prep 25.00 26.47 76.94 73.86
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Section 3.4.1.1. Table 3.17 contains a summary of the amount of data recorded.
These data are also distributed along with the EMPATHIC corpus (Section 3.4).

Table 3.16.: Data about the participants that interactedwith the EMPATHICVC.
Spain France Norway

Number of participants 31 22 26
Female participants 17 M, 14 F 10 M, 12 F 18 M, 8 F
Avg. age 71.6 68.4 73.4
Avg. WHOQOL-BREF score 68.6 65.1 75.2
Avg. GDS score 4.2 6.8 3.7

Table 3.17.: Summary of the data acquired from the interactions with the EM-
PATHIC VC.

Spain France Norway

Video/audio �les 108 86 91
Time 7:50:54 6:57:56 6:01:36
Transcribed dialogues 106 - 51

The number of videos is higher than twice the number of users because some-
times the system got stuck and had to be restarted. These are also distributed
because they could be used for research purposes. Besides manual transcrip-
tions (in Spanish and Norwegian), automatic ASR transcriptions of all sessions
are provided too, as well as NLU outputs and NLG inputs. The results of the
same questionnaires as in the WoZ trials are distributed too.

3.6.2 | D������� ��� ���� �������

In this section, we present some statistics of the dialogues carried out between
the participants and the SDS. Figures 3.19 and 3.20 show that the system was
able to keep long conversations, both in terms of the number of turns and total
time. On average, the dialogues lasted 16.5 minutes in Spanish, 19.9 in French
and 20.4 in Norwegian, without including the duration of the break. In terms of
the number of turns, the dialogues in Spanish were 27.7 turns long on average,
35.0 in French and 37.2 in Norwegian. The main reason the system was able
to hold signi�cantly longer conversations in French and Norwegian is that the
Spanish tests were the �rst to be carried out. Consistently, the DM was im-
proved to address major prototype issues that had occurred during the tests in
Spain8. Therefore, the French and Norwegian versions were more stable and
8We would like to note that despite these small stability improvements, the dialogue strategy
and language generation were virtually equal in the three languages. The main di�erences
in the rest of the modules were due to the di�erent amounts of external training data.
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fewer dialogues had to end prematurely. However, an additional reason for the
longer conversations in French and especially in Norwegian, is the lower ASR
performance. In these languages, users had to repeat some information more
frequently until the system correctly understood it.

Figure 3.19.: Histogram of the number of turns per dialogue in the human eval-
uation of the �nal prototype.

Figure 3.20.: Distribution of the time (in minutes) the dialogues lasted per lan-
guage in the human evaluation of the �nal prototype.

Let us now pay close attention to the number of words per user turn. This
metric is very relevant because longer responses often correlate with higher
user engagement (Ghandeharioun et al., 2019). Intuitively, if the users are com-
fortable talking to a system and they feel they are being understood correctly
and responded to coherently, they are much more likely to be more talkative
and provide more information. On the other hand, if the system is having trou-
ble understanding what the user is saying and makes them repeat information
frequently, chances are that they will answer with much fewer words so that
the system understands them better. Figure 3.21 shows a histogram of the num-
ber of words per user turn, divided per language, while Table 3.18 compare the
average results with the WoZ experiments. In the table, the star symbol (*)
indicates when a result is signi�cantly better than its counterpart. More specif-
ically, it means that p-value0.05 usingWelch’s t-test, which tests whether two
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populations have equal means, without assuming equal variances. We use such
a statistical test and p-value threshold in all the comparisons in this chapter.

Figure 3.21.: Histogram of the number of words per user turn in the human
evaluation of the �nal prototype.

Table 3.18.: Average number of words per user turn in WoZ and automatic VC
experiments. The mark * indicates statistical signi�cance.

WoZ and WoZ+ combined VC prototype

Spanish 12.9* 9.5
French 18.2* 7.6
Norwegian 17.9* 5.4

The distribution shown in Figure 3.21 indicates that even though the dia-
logues were quite long, not all the user turns were so. Many turns were made
of very few words, but a few of them were really long. As aforementioned, this
depends on the willingness of the user to interact with the system, but also on
the system’s questions. In any case, longer responses were produced in Span-
ish, then in French, and the shortest were in Norwegian. Shorter responses in
Norwegian were conditioned by worse performing ASR9 and NLU, caused by
the lesser amount of language resources for that languages. On the other hand,
the di�erence between Spanish and French might be due to Spanish being the
mother tongue of the main developers, and thus the system was tested mostly
in this language, leading to fewer understanding errors. Cultural aspects of the
users could also be a potential explanation.

In any case, the user engagement level was signi�cantly lower in the tests
with the automatic VC than in the WoZ trials, as expected. This is shown in
Table 3.18 in terms of turn lengths, and further validated later in Section 3.6.6
with human questionnaires. Even if the di�erence could be partly explained

9The Word Error Rate (WER) achieved by the selected ASRs was 24.69 for Spanish, 30.41 for
French and 43.34 for Norwegian.
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by the conversational style of the wizards (which may use more open ques-
tions than the automatic prototype), it still indicates that users are much more
talkative when talking to humans (or, for that matter, to a WoZ system) than
to automatic systems. Last, a potential reason to explain why the number of
words per user turn is lower in Spanish than in French and Norwegian could
be the more direct conversational style of the Basque culture.

3.6.3 | D������� ����

The dialogue �ow followed in the test dialogues can be helpful to better un-
derstand the task, its complexity and to validate the behaviour of the DM, de-
scribed in Section 3.5.2. Figure 3.22 shows this dialogue �ow in the form of a
directed graph. The system turns are grouped into di�erent nodes depending
on their dialogue act. The arrows represent signi�cant transitions, i.e., an arrow
from a node A to a node B indicates that system turns grouped in node B have
followed turns grouped in node A many times. The arrows are drawn if the
corresponding transition happened at least 10% of the time node A was visited.
This is done to keep the graph clearer and more representative. The nodes are
coloured according to the dialogue phase they belong to. The arrows’ width
indicates the number of times a path was taken; wider arrows represent more
common transitions.

First of all, the sequential nature of the automatic GROW sessions can clearly
be seen in Figure 3.22, which alsomeans that the implementation and the design
of the DMwere correct and that the system acted as expected. In the graph, the
nodes corresponding to the same dialogue phase are clustered together, and
they only precede nodes of the same phase or the next one. Themain exceptions
are premature endings of the session, and jumping from the Reality phase to
the Will phase skipping the Options phase. Premature endings happen when
the user and the system do not successfully agree on some aspects needed to
proceed. For example, the sessionmight �nish in the Goal phase if the user does
not have any goal, in the Options phase if the system is not able to understand
the next steps the user proposes to achieve their goal, or in the Will phase if the
system and the user are not able to specify an action plan.

Another interesting behaviour can also be recognised in Figure 3.22 via the
cycles within the dialogue phase. On the one hand, self-loops (a node with a
transition to itself) are due to the nature of the nodes of the graph: they are
not system turns, but groups of them. The turns are grouped according to the
semantics of the dialogue acts. For instance, the self-loop in request user name
happens because after the system asks for the user name, it asks for con�rma-
tion in the next turn, but these two turns are gathered in the same node. The
other loops that often appear in the graph are transitions from the last nodes



68 C������������ �� ��� EMPATHIC �������

Figure 3.22.: Dialogue �ow graph obtained from the interactions between users
and the �nal prototype of the VC. The nodes are groups of sys-
tem turns that are triggered at a given point of the dialogue, and
the arrows indicate common transitions in these interactions. The
colours indicate the dialogue phase the grouped turns belong to.

of a GROW phase to the �rst. This happens in the Goal phase (see the tran-
sitions from tree goals or user goals to goal opening), in the Motivation phase
(from is goal close to motivation opening), in the Options phase (from user op-
tions to options opening) and in the Will phase in many occasions. These cycles
are due to the system stopping and then restarting again. As aforementioned,
since the conversations are typically long, the system was prepared to o�er the
participants some rest, and it could also stop if the user desired to do so at any
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moment. After the break, the dialogue is restarted from the beginning of the
GROW phase the conversation was at, and keeping track of all the previously
discussed topics and decisions.

Finally, we would also like to mention the behaviour of the retrieve recipe
node. It is not coloured because it does not belong to any dialogue phase in-
trinsically; it is activated only when the user repeats the name of a given food.
In this case, the system provides healthy recipes related to it in the middle of
the dialogue, which could be useful to the participant. As expected, these sys-
tem turns are triggered mostly in the Nutrition Introduction phase, where the
participant tells the system about their nutrition routine.

In summary, the dialogue �ow validates the design of our dialogue engine–
and also of the system, in general. This dialogue �ow corresponds to a success-
ful implementation of the dialogue trees designed in Section 3.5.2.

3.6.4 | T��������������

Task-oriented dialogue systems’ performance is usually measured via task-
completion metrics, if the task is relatively simple, such as retrieving some in-
formation or booking restaurants. For instance, in the case of restaurant reser-
vation, the task completion would indicate the percentage of dialogues where
the system successfully books a restaurant satisfying the user constraints. How-
ever, our task is far more complex and therefore it cannot be easily measured
when the task is completed, or to what extent. In order to provide an idea of
how well the system is doing at carrying out the GROW sessions, we analyse
the percentage of the dialogue phases successfully �nished throughout the di-
alogue with end-users. This is shown in Figure 3.23.

Figure 3.23.: Percentage of dialogue phases the system completed on average,
per language.

Let us �rst highlight that the task completion is higher in Norwegian and
French than in Spanish, especially in the later phases of the conversation. This
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is related to the aforementioned initial bugs in the Spanish version, which some-
times made the sessions end prematurely, or did not allow the system to restart
correctly after the break.

We would like to remark the task-completion percentage at the Goal phase.
It is 100% in Norwegian, very close to that number in French, and almost 80%
in Spanish. This is already a very successful result, since establishing a goal the
user would like to accomplish is the longest and most complex task in these
dialogues. In fact, in previous Wizard of Oz experiments within the project, the
dialogues where a user goal was found were considered successful (Justo et al.,
2020). However, due to the length of the dialogues and the complexity of this
�rst stage, many users were tired at this point and this is the reason why the
principal drop in the task-completion is found in the fourth phase (Motivation).
In some cases, the users considered there was no need to change their nutri-
tion habits, so the session did not go further. The consequent drops are mostly
caused by the system not being able to ful�l the objectives of each phase.

In the end, around 65% of the participants in Norway and French were able
to establish not only a goal but also a plan to get closer to it in the near future,
while around 25% of the participants in Spain were able to do so. This suggests
that our proposal is valid to produce long and complex dialogues which can
potentially improve nutrition-related habits, especially after the improvements
of the VC implemented in Norwegian and French.

3.6.5 | NLG �����������

As in Laranjo et al. (2018), we have computed the ratio of user turns labelled as a
repetition request by the NLU as a measure of the quality of the NLG: the more
repetition request from the users, the more likely the NLG is producing not-
understandable sentences. Note that this metric is a lower bound of the actual
NLG performance; it may happen that the user does not understand the system
due to inaccuracies in other modules, such as the TTS, for example. The repeti-
tion request ratios obtained are shown in Table 3.19. Since the average number
of turns per dialogue is 32.9, there is roughly only one repetition request per
dialogue, which points out that the sentences produced by the NLG are highly
comprehensible.

Table 3.19.: NLG errors measured as the percentage of repetition request turns
by the user per dialogue.

Spanish French Norwegian

3.4% 3.5% 5.0%
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3.6.6 | H���� ����������

Finally, wemeasure participants’ perception of the VC prototype as well as their
perception of the conversation �ow, using an extended version of the VAAQ (Es-
posito et al., 2018), which can be found in Appendix B. In addition to the four
subquestionnaires of the VAAQ, a short questionnaire about the agent’s intelli-
gibility was included too. In short, the users were asked about their perception
of the system about the following qualities:

• Pragmatic qualities, which focus on the usefulness, usability, and accom-
plishment of the tasks of the proposed system, in this case, the GROW
session.

• Hedonic qualities (identity), which are related to the system’s personality.
• Hedonic qualities (feelings), which focus on how captivating the system
is, and how the users felt while conversing with it.

• Attractiveness, which focuses on how tempting and attractive the inter-
action with the agent is.

• Intelligibility, which refers to the system’s output, including the gener-
ated language and voice.

The questions are formulated to be answered on a 5-point Likert scale, which
allows computing the score of each subquestionnaire easily, between 0 and 100
in this case. The results, in terms of average score and 95% con�dence interval,
are shown in Tables 3.20, 3.21 and 3.22; for Spanish, French and Norwegian,
respectively. For comparison purposes, we also show the results of these ques-
tionnaires for the WoZ and WoZ+ experiments aggregated.

Table 3.20.: VAAQ average score and 95% con�dence interval (in square brack-
ets) per subquestionnaire for WoZ and WoZ+ experiments aggre-
gated, and for the VC prototype, in Spanish. The mark * indicates
statistical signi�cance.

WoZ (+) VC prototype

Pragmatic qualities 63.03, [60.20, 65.86] 58.47, [52.32, 64.62]
Hedonic qualities (identity) 71.67*, [68.86, 74.49] 65.44, [60.05, 70.84]
Hedonic qualities (feelings) 62.45*, [59.15, 65.75] 52.50, [44.42, 60.58]
Attractiveness 64.69, [62.08, 67.31] 61.36, [54.15, 68.57]
Intelligibility 70.97, [64.16, 77.77] 63.61, [58.02, 69.20]

According to the three result tables, the system obtains mostly positive re-
sults (>50), which indicates a correct behaviour of the integrated VC and con-
�rms the good design of the DM and NLG in this very challenging task. How-
ever, due to the complexity of developing automatic GROW sessions, there is
still room for improvement, as shown by the di�erence between the automatic
VC and WoZ results.
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Table 3.21.: VAAQ average score and 95% con�dence interval (in square brack-
ets) per subquestionnaire for WoZ and WoZ+ experiments aggre-
gated, and for the VC prototype, in French. The mark * indicates
statistical signi�cance.

WoZ (+) VC prototype

Pragmatic qualities 60.79, [56.11, 65.47] 51.81, [43.42, 60.21]
Hedonic qualities (identity) 76.99, [72.38, 81.61] 71.38, [64.52, 78.23]
Hedonic qualities (feelings) 64.36*, [58.47, 70.25] 45.65, [36.11, 55.19]
Attractiveness 66.89, [62.99, 70.79] 61.78, [54.04, 69.51]
Intelligibility 62.50, [49.68, 75.32] 67.75, [61.48, 74.02]

Table 3.22.: VAAQ average score and 95% con�dence interval (in square brack-
ets) per subquestionnaire for WoZ and WoZ+ experiments aggre-
gated, and for the VC prototype, in Norwegian. The mark * indi-
cates statistical signi�cance.

WoZ (+) VC prototype

Pragmatic qualities 57.17, [53.73, 60.62] 47.50, [37.57, 57.43]
Hedonic qualities (identity) 70.88, [67.75, 74.00] 66.99, [58.35, 75.62]
Hedonic qualities (feelings) 56.93, [52.88, 60.98] 48.88, [38.30, 59.45]
Attractiveness 57.34, [54.17, 60.51] 50.80, [41.74, 59.86]
Intelligibility 64.85, [61.11, 68.60] 63.62, [55.62, 71.62]

If we compare the results obtained in the three countries, the human percep-
tion of the Spanish system is similar to the French one, and better than the Nor-
wegian one. This correlates well with conclusions extracted from turn lengths
(in Section 3.6.2), and once again emphasises the in�uence of other modules be-
sides the DM in SDSs, which are probably the cause of these di�erences, as pre-
viously explained. On the other hand, and as expected, VAAQ scores are once
higher for WoZ experiments than for the automatic system. Nonetheless, the
di�erences are signi�cant only in three cases, as opposed to the previous com-
parison in terms of turn length (see Figure 3.18). This indicates that even if the
WoZ system is notoriously more engaging and makes the users more talkative,
their perception of the VC prototype is not signi�cantly worse in many aspects.

To provide a more detailed view of the user’s perception of the system, we
also show the score corresponding to seven speci�c questions related to the
NLG and DMmodules, in Table 3.23. These questions can help us gain a deeper
insight into the positive points of the system, and also into its drawbacks. Ques-
tions marked with a dagger (†) ask about potential negative opinions on the sys-
tem, but higher scores always mean higher performance. On the other hand,
it is also necessary to say that the questionnaire was administered in the three
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languages, and that sometimes the results are not completely comparable due
to subtle di�erences in the connotation of the employed words.

Table 3.23.: Scores of seven VAAQ questions for WoZ and WoZ+ experiments
aggregated, and for the VC prototype. The mark * indicates statisti-
cal signi�cance. All the scores are in the range of 0-100, and higher
scores always indicate better performance.

WoZ(+)/VC proto. Spanish French Norwegian

I think that communicating with the
agent is simple and easy.

72.3/66.7 53.1/57.6 66.0/53.8

I think that communicating with the
agent is useless.†

70.0/66.7 67.9/62.0 63.3/54.8

I think the agent is very human. 48.7*/34.2 57.7*/40.2 48.9/46.2
I think that communicating with the
agent is enjoyable.

54.7/63.3 60.3/63.0 45.1/38.5

I think that communicating with the
agent is engaging.

69.6*/56.9 72.3*/48.9 60.1/52.9

I think that communicating with the
agent is stressful.†

76.0/78.3 85.3/87.0 67.1/55.8

The agent can be easily understood. 88.0/82.5 75.0/82.6 82.3/82.7

With scores between 50 and 75, depending on the country, the participants
considered that communicating with the agent was rather simple and easy, and
that this communication was not useless. In other words, the users were, in
general, able to take advantage of the virtual GROW sessions. In comparison
with the WoZ system, the biggest di�erence happens with the Norwegian sys-
tem, due to the aforementioned reasons.

The next four questions evaluate other aspects of our system: it is not very
human, and the communication, even though useful and enjoyable (in Spanish
and French), it is not particularly engaging. This indicates that the interaction
with the system is far from perfect, but since our work represents one of the
�rst steps in building complex coaching systems, we �nd it acceptable. It is
noteworthy that users �nd the VC prototype slightly more enjoyable than the
WoZ system in Spanish and French, even if not signi�cantly. We hypothesise
that this might be due to the increased delay of the WoZ system, produced by
the wizard having to think and (sometimes) write the next response. Regarding
how engaging the automatic VC is, the di�erence with the WoZ is once again
notable (as in Section 3.6.2). This also suggests that using the turn length as an
engagement metric can be appropriate.

When the participants were asked whether the communication was stressful,
the French and Spanish answered quite strongly that it is not–even less than
the WoZ system. According to the rest of our analysis, Norwegian users found
it more stressful. Finally, the last question con�rms the good performance of
the NLG: the users in the three countries thought that the agent can easily be
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understood, which could not be possible had the NLG produced grammatically
or semantically incorrect sentences.

3.7 | C����������

The EMPATHIC project has been one of the �rst big e�orts to explore how VCs
may improve independent healthy-life-years of elderly. Besides the technical
aspects discussed in this chapter (and the ones to be discussed in the next one),
EMPATHIC has provided an interesting inside into how the target population
behaves when interacting with this kind of automatic systems. This behaviour
is re�ected in the data recollected through the WoZ trials and labelled, among
others, according to the proposed semantic label taxonomy; as well as on the
experiments with the automatic VC. User impressions are also documented in
the administered questionnaires. All of this information is included in the re-
leased EMPATHIC corpus, which should be useful for future research in this
area.

On the methodological side, we would like to note that the modules of the
EMPATHIC prototype, and particularly the DM and NLG, have been developed
using rather conventional or classical methodologies, instead of cutting-edge
data-driven approaches. While the performance of fully data-driven models
has remained unmatched in many areas of AI for many years already, such as
image recognition (Deng et al., 2009) or machine translation (Sutskever et al.,
2014; Bahdanau et al., 2014; Vaswani et al., 2017), this has not yet been the case
for dialogue management or language generation. The main reason for this is
the little or no control over their behaviour once they have been trained, and the
potential lack of domain-speci�c data at the beginning of research or industrial
projects. Even if statistical models produced the desired responses many times,
the fact that their behaviour cannot easily be controlled is a big issue for NLG
and particularly for DM. This underlines that there is still a need for future
work if data-driven dialogue models want to be employed regularly in real-life
applications. Also, hybrid models of data-driven and rule-based DMs (Williams
et al., 2017; Griol and Callejas, 2019) may be an interesting alternative to this
issue, which could bene�t from the best of both worlds.

Last, and regarding the transferability of the EMPATHIC VC, it is the basis
of the SDS of the project GO-ON (Tainta et al., 2022). This SDS will be used in
a clinical study about dementia to assess whether such systems (together with
other tools) could be helpful to delay or prevent Alzheimer’s disease.
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4.1 | I�����������

This chapter presents an end-to-end coaching chatbot for the nutrition domain,
developed with the corpus gathered within the EMPATHIC project. We present
several methods to allow open-domain dialogue techniques to be applicable in
tasks typically tackled with rule-based dialogue systems.

The application of chatbots in healthcare and well-being is a rapidly grow-
ing research area. These conversational agents aim at improving some or many
aspects of the users’ health. For instance, they may be used to help diagnose,
treat or prevent diseases like asthma (Kadariya et al., 2019) or cancer (Bel�n
et al., 2019; Siglen et al., 2022), monitor health-related parameters (Richards and
Caldwell, 2017), prevent and treat mental health disorders (Saha et al., 2021; Ab-
dulrahman et al., 2022; Callejas et al., 2020), or to provoke re�ection (Kocielnik
et al., 2018) and motivate healthy behaviour changes (Olafsson et al., 2020) to,
e.g., increase the amount of fruit (Bickmore et al., 2013), control weight (Huang
et al., 2018, 2021) or cease smoking (Dubosson et al., 2017; Alphonse et al.,
2022). These tasks di�er considerably from the classical application domains
of dialogues systems (Tenorio-Laranga et al., 2019; Olaso et al., 2021), which
have often been devoted just to providing some information or service to the
user, such as checking the weather or restaurant booking, or just chit-chatting.
From the perspective of the dialogue strategy, there is a big di�erence between
providing information or simple services and trying to, for instance, provoke
behavioural changes. In the latter there is no rush to complete any task; it is
more important to calmly converse with the user and make them aware of their
problems, obstacles and potential goals they may want to achieve. The objec-
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tive of the health-related conversational agents being so di�erent and delicate,
the employed methodologies are also signi�cantly di�erent. Some works pro-
pose simple user interfaces such as multiple choice inputs for their system or
just question-answering systems. Even among those which allow a dialogue via
(spoken or text-based) natural language interface, the dialogue strategy is al-
most always implemented by a hand-crafted strategy or at least non fully data-
driven approaches, such as �nite state or frame-based management (Laranjo
et al., 2018). On the other hand, some of the most promising chatbots in open-
domain dialogue modelling are solely based on machine learning and are fully
data-driven (Bao et al., 2022; Adiwardana et al., 2020; Roller et al., 2020), which is
radically di�erent from the aforementioned dialogue management approaches.
In this chapter, we aim at bridging this gap, applying state-of-the-art AI tech-
niques to develop a conversational agent capable of carrying out coaching ses-
sions. We propose several improvements to adapt open domain dialogue mod-
elling techniques to the needs of behavioural change models and being able to
e�ectively apply a dialogue strategy from the perspective of planned behaviour
(Ajzen et al., 1991).

Unlike rule-based conversational agents which are often implemented taking
into account the consideration of experts, such as the one presented in Chap-
ter 3, this time we try to learn and model directly their professional coaching
strategy. To this end, we use the data acquired within the EMPATHIC project
in Spanish, French and Norwegian, and also the English translations1. The fact
that the corpus is multilingual already poses a major challenge. The deep learn-
ing system we propose in this chapter is only word-based, i.e., we try to model
professional coaches without using any type of symbolic turn representation
like dialogue acts or name entities. While this ensures that our approach can
be easily replicated in other contexts and that it does not require expensive la-
belling, it hinders our task, especially when working with very low-resource
languages like Norwegian. The second challenge to overcome is to build a con-
versational agent based on this technology that is capable of modelling complex
conversations with long-term dialogue strategy like coaching sessions. This is
especially di�cult because deep learning approaches similar to the one pro-
posed in this chapter have been mainly employed in very short dialogue tasks
(Wolf et al., 2019), or in open domain dialogue modelling where the long-term
structure of the dialogue has been completely ignored (Komeili et al., 2022; Adi-
wardana et al., 2020), even though even social dialogues have an underlying
structure (Gilmartin et al., 2018).

To address these challenges we build upon a transfer learning approach,
which has been adopted and proved to be successful in many dialogue mod-
elling tasks (Wolf et al., 2019; Gunasekara et al., 2020; Komeili et al., 2022). This

1The EMPATHIC corpus is available at: http://catalog.elra.info/en-us/repository/
browse/ELRA-S0414/.

http://catalog.elra.info/en-us/repository/browse/ELRA-S0414/
http://catalog.elra.info/en-us/repository/browse/ELRA-S0414/
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methodology has turned out to be very handy and attractive in NLP in general,
mostly due to big research teams releasing very large and pretrained neural
LMs such as T5 (Ni et al., 2022), PaLM (Chowdhery et al., 2022), GPT-3 (Brown
et al., 2020), GPT-2 (Radford et al., 2019) or BERT (Devlin et al., 2019). These
transformer (Vaswani et al., 2017) neural networks have shown to have a great
generalization ability, and can be �ne-tuned and converted into up-and-running
generative conversational agents. In fact, experts in coaching have pointed out
that it is necessary to research the applicability of these giant neural network
models in well-being-related tasks (Zhang et al., 2020a). However, these models
are mainly developed for the English language. Thus, we propose to pretrain
such neural LMs on big open domain text corpora available in many languages,
such as OpensSubtitles or Wikipedia, and then �ne-tune them on our smaller
and multilingual EMPATHIC coaching corpus.

On the other hand, the main point to be taken into account is that the target
dialogues are coaching sessions. These, in contrast to open domain conversa-
tions, have a long-term structure that cannot be ignored, and therefore needs
to be learnt. The open-domain dialogue systems that we take as baselines of-
ten take a local dialogue history only as input, and therefore, are unable to
keep long-term coherence. Thus, we propose two substantial methodologies
to further adapt the models to our task. Our �rst improvement comes in the
�ne-tuning stage of the generative model. We propose to learn embeddings
that indicate the model at which dialogue phase it is and which kind of coach-
ing session is being carried out, so the generated responses are more coherent.
Second, we propose to build an additional deep learning system that is used to
take into account the whole history of the conversation, i.e. the dialogue his-
tory. We name it the Whole Dialogue History (WDH) system. The two models,
i.e. the �ne-tuned neural LM and the WDH system, cooperate to produce a
response as suitable as possible in the coaching environment.

The �ne-tuned neural LM acts as a generative model which produces a set of
candidate responses given the partial dialogue history. Thus, we also refer to
it as the short-term generative model. Ideally, if the training process has been
successful, these candidates should be coherent short-term. They should take
into account the current topic of the dialogue and the last information the user
has provided. However, it may well happen that not all of the candidates are
coherent long-term too. For example, the user and the agent might be talking
about the user’s dinner routine. Only taking into account that context, it might
be reasonable to ask the user whether they take fruit at dinner time. However,
the agent and the user might already have discussed about the fruit intake ear-
lier in the dialogue in a way that it makes no sense to select this candidate as
the �nal response. This is where the WDH system comes into play. It anal-
yses (the contextual sentence embedding corresponding to) each turn in the
dialogue history and computes a score measuring how suitable each generated
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candidate is. Following our example, this system would see that the agent and
the user have already been discussing about fruit, so it would assign a very low
score to that candidate, whereas other, more relevant and coherent candidates
would be ranked much higher. Moreover, not only does theWDH system avoid
repetitions, but it should also select, in general, candidates that follow more
precisely the coaching dialogue strategy appearing in the corpus.

Additionally, we also show that the WDH system can be a powerful tool to
understand and explain on what basis the decisions of the dialogue system are
taken, which is an emerging concern in neural network-based systems. In fact,
we show that the unsupervised representations learnt by the WDH system are
closely related to conventional dialogue acts, but with the advantage that no
costly annotations are needed to develop them.

Finally, wemeasure the impact of each of our proposals in terms of automatic
metrics and human evaluation of the generated responses. We also provide an
analysis of interaction experiments with our system in the four languages.

Thus, in summary, these are our contributions:

• We develop a novel coaching conversational agent by directly modelling
professionals. Our proposal is trained purely on text, no dialogue acts
are used, which makes it more general and applicable in other domains.
Additionally, it is multilingual, i.e., it is capable of carrying out coaching
sessions in English, Spanish, French and Norwegian.

• We describe a novel approach to improve the quality and relevance of the
candidates the �ne-tuned neural LM generates. On the one hand, we use
scenario embeddings to specify which scenario the model should carry
out. On the other hand, we explain how to build dialogue phase embed-
dings, a simple and powerful resource to enhance a more �uid dialogue
�ow.

• We propose and validate a novel mechanism, theWhole DialogueHistory
system, to take into account the whole dialogue context to ensure the
coaching model is coherent long-term.

• We also show that this system can be a valuable tool in terms of explain-
able Arti�cial Intelligence; it allows to visually analyse on what basis the
system takes its decisions. To this end, we compare the learnt represen-
tations with dialogue acts too.

• Finally, we discuss the potential impact and acceptance the described sys-
tem would have on real users, based on automatic and human evaluation
of the system.

The rest of the chapter is organised as follows. Section 4.2 presents the re-
lated work. Section 4.3 provides information about the dialogues to be modeled
and gives a top-level overview of the proposed system. Section 4.4 describes
the short-term generative model. There we present our proposals for the �ne-
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tuning stage, i.e. how to train scenario and dialogue phase embeddings. Section
4.5 describes the WDH system in depth. In Section 4.6, we give more details
about the experimental setup; including information about the pretraining and
�ne-tuning of the generative model and training details of the WDH system’s
modules. We also describe the automatic metrics and human evaluation pro-
cedures. In Section 4.7 we report the results of these evaluations. Finally, in
Section 4.8 we present the visual analysis to better understand the decisions
taken by the system and present a comparison with dialogue acts. We conclude
with a discussion of our �ndings and with some �nal remarks in Section 4.9.
The research presented in this chapter has been published in López Zorrilla and
Torres (2022).

4.2 | R������W���

4.2.1 | C������� �������������� ������

Many diverse machine-assisted coaching systems, conversational agents and
apps have been proposed in the last few years, forming a wide spectrum in
terms of the employed technologies, implemented coaching methodologies and
their area of application. In fact, besides healthcare and well-being, coaching
systems with AI (coaching AIs, in short) have recently targeted other domains
such as leadership (e.g. PocketCon�dant2) or employee training (Luo et al.,
2021). On the other hand, the coaching strategy also varies greatly. In this re-
gard, it is important tomention that not all the coachingAIs in themarket or the
literature make use of an NLP interface, and even fewer incorporate a conversa-
tional agent. Some, like HabitBull3 or Remente4, just track the user progress in
one or many habits, and provide them with data analysis, motivational videos
or interactive guides to motivate them to reach their goals. Others, such as
Quenza5 or Coach.me6, also act as mediators between users and professional
human coaches, allowing face-to-face online coaching sessions. However, since
our work involves the design of a conversational agent, we are most interested
in coaching AIs that approach coaching as a conversation between the coach
and the coachee, or that at least contain a dialogue module inside them. We
�rst discuss some of the coaching chatbots that can be found in the market and
then the works in the literature.

2https://pocketconfidant.com/
3http://www.habitbull.com/
4https://www.remente.com/
5https://quenza.com/
6https://www.coach.me/

https://pocketconfidant.com/
http://www.habitbull.com/
https://www.remente.com/
https://quenza.com/
https://www.coach.me/
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4.2.1.1 | C������� �������� �� ��� ������

The so-called leadership bots, which aim at strengthening leadership skills, im-
proving communication and developing self-con�dence, have gained interest
from many companies. Among this kind of coaching chatbots, we can �nd
PocketCon�dent7, ROCKY8 or LEADx Coach Amanda9. According to their
websites, PocketCon�dant engages individuals in personal, private and mean-
ingful conversations to get unstuck, develop and reinforce human competence;
ROCKY provokes re�ection routines asking questions to help you re�ect or pre-
pare on your day, which vary every morning and evening and get more per-
sonalised over time thanks to machine learning behind; and the LEADx Coach
Amanda can provide leadership tips and answers to employee problems. It
seems to perform some kind of user customization too: because the Coach
Amanda HR chatbot knows your personality, she’ll personalise your manager
training down to the sentence level.

Naturally, there are also coaching chatbots designed for health care and well-
being-related matters. Wysa10 is one of the most notable chatbots in this regard.
It has been awarded as the best health care app by ORCHA, and its e�ective-
ness has been validated through clinical studies (Inkster et al., 2018; Sinha et al.,
2022). Wysa is able to keep relatively long dialogues with a mix of natural lan-
guage and multiple-choice input, and uses cognitive-behavioral techniques to
reduce the levels of depression and stress; �ght frustration, loneliness, or isola-
tion; and improve mental health in general. It has also been the �rst AI mental
health app to meet clinical safety standards, more precisely, the NHS UK’s DCB
0129 Standard of Clinical Safety. Youper11 is another app for mental health that
includes a conversational agent. It is designed to help the users overcome anx-
iety and depression, applying behavioral coping skills, and monitoring mental
health symptoms. Youper has been listed among the top ten behavioral apps in
terms of real-world stickiness and engagement (Carlo et al., 2020). Last, it is
interesting to mention Replika12, which acts more as a companion chatbot than
an actual coaching system. It is most popular among young people (its main
users are aged between 18 and 25), and the authors claim that it can help to
manage emotions, and reduce anxiety and sleeping issues.

7https://pocketconfidant.com/about/
8https://www.rocky.ai/chatbot
9https://leadx.org/hr-ai-chatbot-coach/
10https://www.wysa.io
11https://www.youper.ai/
12https://replika.ai/

https://pocketconfidant.com/about/
https://www.rocky.ai/chatbot
https://leadx.org/hr-ai-chatbot-coach/
https://www.wysa.io
https://www.youper.ai/
https://replika.ai/
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4.2.1.2 | C������� �������������� ������ �� ��� ����������

On the other hand, similar coaching systems have also been proposed in the
literature. Even if they include a conversational agent, most of them are more
focused on the tracking and goal-setting parts of the coaching rather than on
motivational conversations. Additionally, the described dialogue engines are
not end-to-end. For example, Fadhil et al. (2019) implement a chatbot, CoachAI,
which acts as a task scheduler and tracker to promote physical activity. To this
end, it includes a dialogue engine that guides the user through a series of steps to
achieve their daily goal. However, in contrast to the dialogue model presented
in this work, theirs is not a data-driven one. Instead, its core is a structured
�nite state machine. Another work that presents a coach AI to promote regular
aerobic exercise is Mohan et al. (2020). The users can set their weekly goals,
and the system keeps track of them, schedules exercises, and o�ers future goals
depending on their progress. However, this chatbot does not use any complex
conversational system to interact with the user: it relies on rule-based heuris-
tics to drive the coach’s reasoning. Gaydhani et al. (2020) present ongoing work
on building a conversational agent to perform conversations about daily living
to determine their degree of independence and assess them. While they men-
tion their intention of building end-to-end dialogue models in the future, the
described conversational agent relies on rule-based dialogue policies due to the
lack of training data. Beun et al. (2017) describe an interesting coaching sys-
tem for insomnia therapy made of two modules, a conversational agent and a
module in charge of data acquisition, analysis and visualization. The dialogue
system, however, is rather simple and it is based on multiple-choice inputs.
Abdulrahman et al. (2022) present an embodied conversational agent to help
students manage their study stress. They focus on understanding the users’
goal and provide explanations about one of four prede�ned behaviour change
procedures.

Closer to our domain of interest, nutrition, Casas et al. (2018) describe a
coaching chatbot to help people improve their food lifestyle. It o�ers two goal
possibilities to the user: reduce their meat consumption or increase the amount
of vegetables and fruit they take. Besides tracking the user’s situation with
respect to their goal, it also o�ers the possibility to have guided conversations
with the coaching chatbot about some prede�ned topics. The agent can provide
the user with relevant images, videos and links to illustrate its remarks. The
dialogue manager is built with the Chatfuel13 service, which allows to man-
ually design dialogues using a graphical interface. Interestingly, this chatbot
was deployed in French rather than English. Maher et al. (2020) describe the
results of a single-arm pre-post study carried out to test the e�cacy of a vir-
tual health coach focusing (Mediterranean) diet and exercise. They show that

13https://chatfuel.com/

https://chatfuel.com/
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the use of the Paola chatbot was able to reduce the weight of the participants
and highly increase their Mediterranean diet score (Schröder et al., 2011). IBM
Watson Virtual Assistant arti�cial intelligence software was used to design and
implement the dialogue system, which allows the chatbot to converse with a
natural language interface. This module, in contrast to our approach, is based
on intent and entity detection to provide an appropriate response from a set of
prede�ned options. Kettle and Lee (2021) deploy a SMS-based conversational
agent using Rasa conversational AI software. This chatbot performs daily well-
ness checks, asks the participants to choose daily goals, and also allows them
to freely talk to the system, which records their concerns but without respond-
ing. Last, Yan and Nakashole (2021) present a system that performs medical
grounded question answering using machine learning. This is, they focus on
solving users’ doubts and concerns rather than on making them re�ect through
conversations.

Thus, our proposal is one of the very few works that describes a conversa-
tional agent capable of carrying relatively long dialogues with natural language
input. Moreover, to the best of our knowledge, this is the �rst attempt to build
a fully data-driven end-to-end coaching conversational agent.

Last, we would like to note that, after developing our research, some similar
or related works have also been published. Mainly, Saha et al. (2021) describe
an end-to-end model based on sequence-to-sequence neural networks to carry
out motivational conversations for patients with depression.

4.2.2 | M����������� �� ����E������ ����������
�������� �������

There have been diverse attempts to build multilingual or non-English dialogue
systems, yet the number of works describing end-to-end14 dialogue models
based on neural networks is rather scarce. Due to the lack of conversational data
in many languages, some authors tackle this problem using automatic transla-
tion systems to convert the input message into English, then use an English
chatbot to generate a response and �nally translate it back into the original
language (Ralston et al., 2019). Nonetheless, there are also a few examples of
end-to-end neural dialogue systems trained directly in other languages. For
example, (Chen et al., 2019) presented a chatbot in Chinese and a multilingual
version of it in Chinese and English based on memory networks. Generative
Adversarial Networks have been used to train multilingual response selection

14The term end-to-end is used with slightly di�erent connotations by the machine learning com-
munity. In this work, with end-to-end we mean dialogue systems which produce a response
based solely on the text corresponding to the dialogue history without using any kind of turn
representations like dialogue acts or name entities.
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systems (Sano et al., 2018) or response generation models in very low resource
languages like Basque (López Zorrilla et al., 2020). Closer to our transfer learn-
ing approach, (Lin et al., 2020b) built a multilingual transformer capable of in-
teracting in six languages other than English, trained on a multilingual version
of the Persona-chat database.

Nonetheless, multilingual end-to-end dialogue systems are de�nitely a grow-
ing area of research. For example, many authors have targeted some cross-
lingual and dialogue-related tasks, such as dialogue breakdown detection (Lin
et al., 2020a), intent detection and slot �lling (Bhathiya and Thayasivam,
2020), topic classi�cation (Montenegro et al., 2019b), or language understanding
(Müller et al., 2021).

More recently, there has been a notable rise in the amount of transformer-
based LMs pretrained in many languages, such as GPT-3 (Brown et al., 2020) or
mT5 (Xue et al., 2020). These allow to apply transfer learning (or even zero-shot
learning) for dialogue modelling in other languages, Arabic for example (Fuad
and Al-Yahya, 2022). Nonetheless, it is still worth mentioning that such models
still underperform compared to their English counterparts, especially for very
low-resource languages (Ebrahimi et al., 2021).

4.2.3 | M��������� �� ���������� ��� ���������
��������� �� ���������� �������� �������

The task of keeping track of the dialogue context has been tackled since the
early task-oriented dialogue systems. When the objective of the dialogue is to
ful�ll a goal of the user, it is necessary to know how close to that goal the di-
alogue is. To this end, goal-oriented dialogue systems have since then used a
dialogue state tracking module. At �rst, a set of hand-crafted rules were nor-
mally used to track the dialogue state. Afterwards, with the advent of POMDPs
(Williams and Young, 2007), probabilistic methods, such as dynamic Bayesian
networks or attributed bi-automata (Serras et al., 2019b), gained popularity also
for dialogue state tracking. Since the revolution of deep learning, a variety of
approaches to track the dialogue state and/or to take into account the whole di-
alogue history have been proposed in task-oriented settings. Hybrid Code Net-
works (Williams et al., 2017), dialogue policies to specify actions plans (Heday-
atnia et al., 2020), or, in general, pipelines that include a dialogue state tracking
module have been proposed (Wang et al., 2022; Ham et al., 2020; Goel et al., 2019;
Liu and Lane, 2018), among others. However, in all these cases the dialogue state
and �ow are controlled mainly or at least partially via dialogue acts extracted
from the previous system and/or user turns. Therefore, all the methodologies
require an annotated corpus (or hand-crafted rules) at some point to predict the
dialogue acts. Our proposal does not.
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Other works have tried to make use of the whole dialogue history in a similar
manner to our approach, but often with di�erent goals. Bayer et al. (2017) used
a recurrent neural network on top of turn embeddings to improve the dialogue
act prediction. Ganhotra et al. (2021) employ BERT embeddings of the dialogue
history’s utterances for Spoken Language Understanding. Tomashenko et al.
(2020) integrate the whole spoken dialogue history using a variety of sentence
embeddings for a semantic slot-�lling task. Ortega et al. (2019) present a dialog
act classi�cation system on automatically generated transcriptions that com-
bines convolutional neural networks and conditional random �elds for context
modelling. Liu et al. (2017); Wu et al. (2021b) also perform a dialogue act clas-
si�cation via a hierarchical deep learning model that takes into account the
dialogue context. Wang et al. (2020) keep track of the dialogue history with a
dual dynamic memory network and use it to make queries to a knowledge base
in a task-oriented setting. In the context of the Alexa prize, Chi et al. (2021)
use a module to smoothly switch from one topic to another, and also employ a
neural entity linker to keep coherence throughout the dialogue. The work pre-
sented in Rodríguez-Cantelar et al. (2020) has been particularly inspiring for
us. They propose to model the dynamics of turn embeddings to automatically
evaluate the quality of the dialogue in the long run.

Last, we would like to underline that processing the whole (or a very large)
dialogue history was previously explored with sequence-to-sequence (but not
transformer) neural networks, such as hierarchical sequence-to-sequence net-
works (Serban et al., 2016; Li et al., 2022c) or deep RL chatbots (Cuayáhuitl
et al., 2019). However, this is much harder to do with novel transformer-based
dialogue systems, since their high (GPU) RAM memory requirements makes it
infeasible to input long sequences of text, unless expensive dedicated hardware
is available. Thus, our contribution alleviates this drawback of the powerful
pretrained transformer networks.

4.2.4 | C����������� ��� ������ �� ����������
��������

In respect of our proposal to learn scenario and dialogue phase embeddings, we
can �nd related works in the literature that condition the output of generative
networks in several ways, and with several purposes. Some examples include
using Reinforcement Learning to control the repetitiveness (Saleh et al., 2019) or
politeness (Mishra et al., 2022) of a model or di�erent approaches to assigning
the model a �xed personality (Zhang et al., 2018; Huang et al., 2022). Condi-
tioning the output of a generative model is very related to the area of stylised
response generation too. For instance, (Gao et al., 2019) propose a chatbot that
generates responses in a similar style to a non-conversational corpus. A similar
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approach has also been used to ensure a certain level of politeness in the system
responses (Niu and Bansal, 2018; Firdaus et al., 2022), and to generate system
turns that express given emotional status (Zhou et al., 2018; Firdaus et al., 2021).
However, none of these works use a strategy similar to the one presented in this
work, to the best of our knowledge.

4.3 | O�������

4.3.1 | GROW �������� ��������� ��� ������

The corpus used to �ne-tune the neural LMs is the EMPATHICWoZ corpus pre-
viously described in Chapter 3 (Section 3.4). It is made of WoZ conversations
with elderly people in Spain, France and Norway. All the dialogues are trans-
lated into English and into the rest of the target languages. Thus, the amount
data is the same for the four languages. The dialogues are GROW coach-
ing sessions (Whitmore, 1992) (see Section 3.2 in Chapter 3), which present
a clear long-term structure. Mind that, in this work, we refer to coaching as
behavioural change model which tries to make the coachees realise how they
could improve their habits, not as an instructor or trainer who explicitly tells
them what to do. Two di�erent scenarios were designed for the WoZ interac-
tions. First, we designed an introductory scenario, which was used to engage
the user and make them feel comfortable in the interaction with the system.
Secondly, a (partial) GROW session on nutrition was simulated.

A summary of the big numbers of the corpus are shown in Table 4.1 (more
information about how this corpus was acquired can be found back in Chap-
ter 3). Each dialogue was approximately 10 minutes long, which resulted in an
average of roughly 29 turns per dialogue. The corpus is the same in the four
languages, but some values di�er due to the di�erences across languages. Even
if the corpus has been annotated in terms of semantics and emotions, we will be
using none of these in this study, since we are most interested in working with
unlabeled data and developing end-to-end neural dialogue systems. Hence, our
research should also be potentially more general and helpful to others too, be-
cause not always corpora are labeled neither do the labeled ones use the same
label taxonomy.

Mind that the coaching dialogue structure and strategy do fall into any of
the two broad categories conversational agents are often classi�ed in: task-
oriented, and open-domain. In the �eld of open-domain dialogue modelling
there is no topic to talk about or task to carry out, the only goal is to gener-
ate appropriate and meaningful responses given a dialogue context. On the
other hand, task-oriented dialogue systems are often developed to provide the
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Table 4.1.: General statistics of the corpus of WoZ (translated) dialogues.
Total (same for every language)

Number of dialogues 272
Number of system turns 7913
Avg. turns per dialogue 29.2

Spanish French Norwegian English

Avg. nb. of words per system turn 8.9 9.5 9.1 9.5
Avg. nb. of words per user turn 17.7 19.9 18.1 18.7
Total running words 208K 228K 213K 221K
Vocabulary size (system) 2.9K 3.1K 2.7K 2.4K
Vocabulary size (user) 7.9K 7.7K 7.4K 6.2K
Vocabulary size (aggregated) 8.7K 8.6K 8.1K 6.6K

user with some information or service they request as soon as possible, such as
hotel booking. On the contrary, GROW coaching dialogues have peculiarities
that do not allow us to easily classify them as transactional nor social. They are
somehow task-oriented because there are some tasks to be completed, such as
getting the user’s objective or identifying which obstacles are not letting them
ful�ll their goal. However, the dialogue is not carried out in a conventional task-
orientedmanner. There is no rush to complete the task, and it is more important
to calmly converse with the user and make them aware of their problems, ob-
stacles and potential goals they want to achieve. In this sense, coaching is also
related to open-domain dialogues, where there is no task and the only objec-
tive is to converse about di�erent topics. However, coaching dialogues follow a
clear and well-structured strategy. These di�erences in the properties of the di-
alogues are the main reason why novel approaches and techniques are needed
to model them.

4.3.2 | S����� ��������

We propose a dialogue system that can e�ectively model the described long-
term dialogue strategies while dealing only with unlabeled text. A diagram
of the system is shown in Figure 4.1. The proposed system is made of two
important parts: a short-term generative model which creates some response
candidates given a local dialogue history, and a global module that ranks the
candidates according to their relevance given the whole dialogue history. We
name this module the WDH system. Before getting into the details of both
parts of the system and proposed novelties, we provide a top-level view of the
system’s functioning.

The short-term generative model is a �ne-tuned neural language model, a
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Figure 4.1.: The diagram of the proposed conversational agent.

GPT-2 transformer more precisely. It is trained in a transfer learning fashion
to produce responses similar to what a coach would, given the local dialogue
history made of the last turns of the conversation. The responses are generated
via a top-K sampling decoding, which allows the generation of many di�erent
candidates given the same local context. However, since the local history that
themodel sees is not large enough to take into account the coaching strategywe
aim at modelling, some of the generated responses are likely to be non-relevant
or inappropriate. In Section 4.4, we propose some control mechanisms that can
be included in the �ne-tuning stage to alleviate this problem.

Nonetheless, we �rmly believe that, in any case, it is necessary to take into
account the whole dialogue history to successfully carry out complex dialogues
like coaching sessions. If the model responses are produced only given the local
context, repetitions might occur and in general non-consistent turns can appear
very easily. Since with the current hardware it is not possible to include all the
dialogue in the generative model’s input due to memory limitations, we pro-
pose to build another system, the aforementionedWDH system. This evaluates
how coherent each of the candidates proposed by the short-term generative
model is, given the whole dialogue history. The main idea behind the WDH
system is to model the long-term dynamics of the dialogue and include them
in the decision-making stage. More precisely, we model the path the dialogues
follow in the abstract semantic space of sentence or turn embeddings. To this
end, the embeddings are grouped into clusters, with the assumption that turns
inside each cluster should share some semantics and their role in the dialogue
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should not be too di�erent. In fact, we later show (in Section 4.8.2) that there
is a strong correlation between the cluster a turn has been assigned to and the
corresponding dialogue act. Figure 4.2 shows a bidimensional projection of the
turn embeddings and the resulting clusters. For the sake of simplicity, the num-
ber of clusters shown in the image is lower than the actual one. For instance,
the purple cluster in the �gure contains introductory turns, such as greetings
or system presentations; the black cluster turns about food routine; the green
one is travelling related, and the light blue contains turns about music.

Hi again.
Welcome!
Nice to meet you. My name is Natalia.

Do you know what coaching is?
No problem, what do you think coaching is?
Before we get into it, tell me, which are your hobbies?

United States, I see. When was that?
What did you like the most about Japan?
And do you usually travel alone?

Do you like music?
I see you are very interested on it.
Do you like to dance while you listen to music?

Figure 4.2.: A bidimensional projection of turn embeddings, coloured by the
cluster they have been assigned to.

The turn embedding space seems to be organised enough to provide valuable
information in the decision-making stage. We discuss this space more in-depth
in Section 4.8. Note that, if we group each turn into a cluster, the dialogues in
the corpus can be represented as sequences of clusters. Since the dialogues in
the corpus follow certain patterns and strategies, these sequences should follow
them too. We try to model the sequences of clusters and produce a system
response that belongs to a cluster that is likely given a certain cluster sequence.
A diagram of the whole system is shown in Figure 4.1. In the diagram, the GPT-
2 score represents the score that the generative model assigns to each candidate
via a reranking procedure (more about this score in Section 4.4.4).

In addition to its relevance in the decision-making stage, the WDH system
can be employed to analyse and visualise the dialogues in the corpus. It also
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helps to explain and understand the system’s decisions. We show it at the end
of this study, in Section 4.8.

4.4 | A����� ���������� �� ��� ������
���� ���������� �����

In this section, we focus on the short-term generative model that can be seen in
Figure 4.1. The neural network trained to produce candidate responses given a
local dialogue history is a sequence-to-sequence transformer model (Vaswani
et al., 2017). We start with a pretrained GPT-2 LM (Radford et al., 2019), and
convert it into a response generation model applying transfer learning. In order
to apply this methodologymost e�ectively, it is key to exploit all the capabilities
of the pretrained model. In the case of the GPT-2 transformer models, (Wolf
et al., 2019) have already proved that adding information in form of additional
embeddings to the input representation can be very useful.

Thus, taking their work as a baseline, we introduce two modi�cations to
the input representation to improve its performance and adapt it to the needs
of a motivational conversation model. As we explain in Sections 4.4.1, 4.4.2
and 4.4.3, this proposal consists in learning di�erent embeddings to control the
behaviour of the network in one way or another. A diagram of an example of a
complete input to our transformer can be found in Figure 4.3, where only two
input turns are shown for simplicity. In Section 4.4.1 we explain our baseline
model (BL), in Section 4.4.2 the scenario embeddings (SC), and in Section 4.4.3
the dialogue phase embeddings (PH). Finally, in Section 4.4.4, we give further
details about the generative model.

4.4.1 | B������� (BL)

In our baseline, the input is represented with two parallel sequences of em-
beddings15. Since the �rst layer of the transformer takes only one sequence of
vectors as input, the embeddings corresponding to each time step are added be-
fore being fed into the transformer. Let us describe the task of each embedding.

The �rst sequence corresponds to the word embeddings of the word/tokens
of the last turns of the dialogues. In our experiments, we use the last �ve turns in
the dialogue history, and concatenate them using special tokens as separators.
This sequence of embeddings is the �rst row in the example shown in Figure

15Of course, positional encoding embeddings are also used throughout the whole work, but
they are omitted here for the sake of simplicity, because they are common to almost all the
transformer networks (Vaswani et al., 2017).
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Figure 4.3.: An example of the proposed input representation to �ne-tune the
GPT-2 transformer network. The actual input to the transformer
is the sum of all the embeddings in each time step. The segment
embeddings (Section 4.4.2) indicate that the system is performing
a nutrition dialogue, and the dialogue phase embeddings (Section
4.4.3) that it is the third phase of the dialogue.

4.3. The second one is used to segment the input into some categories. In our
baseline, these segment embeddings indicate which input tokens correspond to
the system’s turns and which ones to the user’s: <spk1> and <spk2>. This is
themost straightforwardway of applying transfer learning to convert a LM into
a chatbot. While it might be interesting and appropriate for small conversations
or just chit-chatting, in our case we need to ensure the overall robustness and
coherence of the model if we want it to handle coaching sessions.

4.4.2 | S������� ������� ���������� (SC)

First of all, we have to take into account that our task requires the dialogue
model to be able to carry out two di�erent kinds of dialogues: an introductory
dialogue and a partial GROW session about nutrition. Thus, we certainly need
the option to specify which scenario to carry out to the model. It is also neces-
sary that it does not arbitrarily jump from one scenario to the other. While we
could train two di�erent models for each scenario to avoid these issues, this ap-
proach would not allow each model to bene�t from the conversational patterns
appearing in the other half of the corpus. We consider that training a single
model with the whole corpus in a multitask fashion is highly advantageous in
this situation where the amount of data is not very high.

We propose to substitute the segment embeddings of the baseline with four
di�erent segment embeddings, in order to indicate which type of dialogue to
carry out to the model: <spk1_int>, <spk1_nut>, <spk2_int> and <spk2_-
nut>. These now indicate who the user is, but also the scenario. For instance, in
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the second row of Figure 4.3 the embeddings indicate that the selected scenario
is the nutrition one.

The scenario segment embeddings provide consequently a way of control-
ling the topic the system will talk about with the user: if at the beginning of a
dialogue we feed the nutrition segment embeddings, the model will then talk
about nutrition. If, conversely, we use the introductory segment embeddings,
the machine will carry out an introductory conversation. Furthermore, note
that this idea can be easily implemented in many other multitask frameworks
other than ours.

4.4.3 | D������� ����� ���������� (PH)

Finally, motivated by the empirical fact that the addition of (high-dimensional)
embeddings is an appropriate technique to mix several pieces of information
(Wolf et al., 2019), we decided to add a third set of embeddings: the dialogue
phase embeddings. This is devoted to enhancing a dynamic progress of the
conversation (without repetitions or loops) and a controlled ending. The phase
embeddings tell the system at which point of the conversation it is, i.e., which
proportion of the dialogue has been completed. For dialogues with lengths be-
tween 20 and 30 turns, we found that learning four dialogue phase embeddings
was enough to lead to big improvements in terms of controlling the �ow and
limiting the length of the dialogue. Once a phase embedding is selected in func-
tion of the turn number and the desired length of the dialogue, it is added to all
the input embeddings, as Figure 4.3 shows. Let us describe when each of the
embeddings is used and which is its task, intuitively:

• The <phase_1> embedding is used in the �rst 20% of the dialogue. It
tells the system that the conversation is starting, and thus when this em-
bedding is added to each of the word embeddings, the system tends to
produce opening sentences or greetings.

• The <phase_2> embedding is used from the 20% of the dialogue until
the 50%. It corresponds to the rest of the �rst half of the dialogue, where
the system tries to �nd an appropriate topic of conversation, asking the
user some open questions.

• The <phase_3> embedding is used from the 50% of the dialogue until
the 90%. In this phase, the system and the user mostly discuss about the
topic they started in the second phase.

• Finally, the<phase_4> embedding is used within the last 10% of the dia-
logue. The system ends the discussion held in the previous phase, closes
the conversation, and says goodbye to the user.

We also investigated and tested other smoother designs for these embed-
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dings, such as using di�erent embeddings per each turn. Nonetheless, we ended
up discarding this option because our corpus (as many others) includes dia-
logues of very diverse lengths: sometimes the conversation ends at turn 15
whereas other times at turn 15 the user is still starting to talk about their nu-
trition habits. This can de�nitively lead to these embeddings not being trained
precisely, and hence we opted for the relative phase embeddings approach.

This one, besides being more suitable in this case, also introduces the option
of manually selecting the desired length of a conversation once the model is
trained. This control, albeit not extraordinarily versatile, is enough to tweak
the �ow of the dialogue, which is very useful when dealing with end-to-end
neural dialogue models, where controlling the system responses is often a very
tough task.

4.4.4 | D������� �� ��� ���������� ����������
����� ��� GPT�2 ��������� ���������

In this section, we give details about how the short-term model generates can-
didates, also referred to as decoding. We also explain how the GPT-2 score
for each generated candidate is computed. In Figure 4.1, the described input
embeddings can be associated to the input arrow to the short-term generative
model block, the decoding refers to its output arrow. The GPT-2 score is shown
in the bottom right purple block, where the total score for each candidate is
computed.

Decoding details: Neural dialogue systems have been well known to gen-
erate too generic and repetitive. This problem has been tackled with many
approaches, such as modifying the loss function (Li et al., 2016a) or using ad-
versarial training (Li et al., 2017; López Zorrilla et al., 2021a). Lately, making use
of a proper decoding procedure has proved to be essential for generative mod-
els to produce good quality non-generic responses (Kulikov et al., 2018; Golo-
vanov et al., 2019). We adopt the nucleus sampling strategy (Holtzman et al.,
2019) to prevent the system from generating dull or generic responses as much
as possible. This technique consists of sampling only from a subset of tokens at
each generation step. This subset is composed of the tokens whose cumulative
probability is greater than or equal to a threshold. We set this threshold to 0.9.
Additionally, before computing the aforementioned subset of candidate tokens
at each generation step, we also apply some temperature (Ackley et al., 1985;
Ficler and Goldberg, 2017) to the logits to control the diversity of the responses.
For our application, we found that temperatures ranging from 0.65 to 0.8 led to
very interesting responses. The value we set for the �nal experiments is 0.7.
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Candidate reranking via the GPT-2 score: GPT-2 models are often trained
both to generate candidates given a context and also to predict the next utter-
ance given a set of possible ones (Wolf et al., 2019; Ham et al., 2020). More
precisely, they are trained to predict whether a certain candidate is the correct
response given the context or not. This binary prediction is done by a linear
classi�er that takes as input the hidden state of the transformer after process-
ing the last token of the candidate. The output of this linear layer, i.e., the
unnormalised probability of a candidate being the correct next utterance, is the
GPT-2 reranking score. Intuitively, this score should be high when a candidate
is informative and coherent with the local context; whereas non-relevant can-
didates or candidates containing grammatical errors should be assigned a low
GPT-2 score. Mind that this idea of training a response generator and a response
selector/discriminator jointly is very close to the philosophy of GANs (previ-
ously employed in the research presented in Chapter 2). In this case, however,
the generator and the discriminator share all the parameters except for the last
layer, which is much more stable, and the fake responses are not generated by
the generator but sampled from the corpus instead.

4.5 | R�������� ����� ��� ����� ����
����� ������� (WDH)

Let us now present the WDH system in depth. It is composed of four modules.
The �rst one’s function is to produce sentence embeddings of each system turn.
The second one carries out a dimension reduction of the previously computed
sentence embeddings. The third one is a clustering module which assigns a
cluster to the lower-dimensional embedding. These �rst three modules corre-
spond to the clustering block in Figure 4.1. Finally, the last module produces
an (unnormalised) probability distribution over all the possible clusters given
the sequence of clusters that represents the dialogue history. This probability
is the WDH score. In Figure 4.1, this fourth module is the block shown in the
top right, and the resulting WDH score can be found in the bottom right.

4.5.1 | C��������� ���� ����������

There are several techniques to produce sentence embeddings, and each of them
has shown strengths andweaknesses depending on theNLP task they have been
employed in. In preliminary experiments, we compared generic sentence em-
bedding methods, such as multilingual universal sentence encoders (Yang et al.,
2019), sentence transformers (Reimers and Gurevych, 2020), or a weighted aver-
age of word vectors (Arora et al., 2019). However, the embeddings produced by
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the short-term generative GPT-2 models performed better in our experiments.
The embeddings are the hidden state of the transformer after processing the
last token of the sentence.

Using the short-term model for computing these sentence embeddings not
only simpli�es the system’s pipeline, but it also provides additional bene�ts.
First of all, since the model takes as input a partial dialogue history, the embed-
ding it outputs contains information about both the user and system turns. This
should de�nitely be considered an asset, because it allows packing the informa-
tion of the user’s turn in the system’s contextual embedding. Otherwise, if a
non-contextual embeddingmethodwere to be used, it would require computing
and processing two di�erent embeddings, one for the user and another one for
the system. The second bene�t of using a �ne-tuned model is that the resulting
embeddings are domain speci�c too, which is key for better performance.

Since we want the sentence embeddings to include the scenario and dialogue
phase scenario information mentioned in Section 4.4, we include this informa-
tion in the dimensionality reduction stage, described next.

4.5.2 | D������������� ���������

We apply a dimensionality reduction technique prior to the clustering method
to avoid the curse of dimensionality (Bellman, 1966), since it is known to
improve the quality of the clustering methods when these are distance or
similarity-based (Steinbach et al., 2004).

We tried many methodologies such as PCA to carry out this dimensionality
reduction, but we ended up building an autoencoder (Kramer, 1991). The reason
for this is that, as aforementioned, we can easily incorporate supervision in the
dimension reduction process, in a similar fashion to Le et al. (2018). The most
straightforward way of training autoencoders is to optimise a recovery loss
from a space with a lower dimension than the original space. In addition to the
recovery loss, we minimise two classi�cation losses, computed after a linear
transformation of the low dimensional space. These correspond to the scenario
and dialogue phase classi�cation.

A summary of the structure of the autoencoder can be found at Figure 4.4.
It takes as input a sentence embedding x, and after applying some non-linear
layers with successively less output size, it ends up transforming it into h, the
low-dimensional representation of x. This is the vector used at the clustering
stage. Then additional layers transform h into x0, the reconstructed version
of x. Thus, h contains as much information of x as possible. Furthermore,
two linear layers perform two classi�cations from h. After respective softmax
normalizations, yscenario and yphase are produced, the probability distributions
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over the possible scenarios and dialogues phases. These two classi�cations en-
sure that the low-dimensional representation of the turn embeddings maintains
as much information as possible about the scenario and dialogue phase, which
are key properties of the turns.

Figure 4.4.: A diagram of the proposed supervised autoencoder to reduce the
dimension of turn embeddings.

Therefore, the training objective for this autoencoder is a combination of
three losses, as shown in Equation 4.1. We tried some weighted sums of the
losses instead of the unweighted one, but we found no improvement. The re-
construction loss is the euclidean distance between x0 and x. On the other
hand, Lscenario and Lphase are cross-entropy losses for classi�cation.

Lautoencoder = Lreconstruction + Lscenario + Lphase (4.1)

4.5.3 | C��������� ��� ���� ����������

After the sentence embeddings corresponding to the system turns are com-
puted and dimensionally reduced, we propose to group them into clusters, in
an unsupervised fashion. Intuitively, system turns that are close to each other
in the low dimensional embedding space should be semantically close, and they
should also share key dialogue information, such as the scenario and dialogue
phase.

There are many techniques to perform unsupervised clustering, for which
the superior one is often a matter of the use case (Saxena et al., 2017). We tried
and compared various methods, such as DBSCAN (Ester et al., 1996), Birch
(Zhang et al., 1996), OPTICS (Ankerst et al., 1999) and K-Means (MacQueen
et al., 1967). After an inspection of the turns inside each cluster, we decided to
stick to the K-Means, because we found no improvement with the more sophis-
ticated methods. Additionally, the K-Means algorithm provides two substantial
bene�ts in our case. First, it takes the number of clusters as a parameter, which
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is very valuable for our application: we want enough clusters so that each of
them represents a di�erent state in the dialogue; but if the number is too large
compared to the number of dialogues in our corpus, the task of learning the
probability of the next cluster would not be feasible. A detailed analysis of the
e�ect of the number of clusters is provided in Section 4.8.2. The second bene�t
is that, in contrast to many other clustering algorithms, it allows us to predict
the cluster corresponding to a new sample in a very simple way. This is neces-
sary when interacting with the system, because it is not possible to know the
cluster a given turn corresponds to beforehand. Instead of having to train an
additional classi�er that learns to map from turn embeddings to clusters, the
distance from the new sample to the cluster centroids can be measured, and the
argument of the minimum will be the corresponding cluster.

4.5.4 | L������� ������� ������� ���������������
���������

We cast the task of learning the next cluster probability as a sequencemodelling
problem. Given a set of vocabulary of m clusters V = {v1, v2, ..., vm}, and a
sequence of clusters corresponding to a dialogue history c1, c2, ..., cn, the ob-
jective is to compute the discrete probability distribution of each cluster being
the next one in the sequence (Equation 4.2).

P (cn+1 = vi | c1, c2, ..., cn), 8vi 2 V (4.2)

This task is very similar to a language modelling task, but having clusters in-
stead of words. Therefore, we considered classical language modelling method-
ologies to tackle this problem. Even though N-gram models are simple mod-
els and have broadly been used to this end, recurrent neural networks, Gated
Recurrent Units (GRUs) (Cho et al., 2014) more precisely, were our �nal choice.
The main problem with N-grams is that they are based on the Markov Assump-
tion, which assumes that the probability of the next cluster can be computed
based only on the last few clusters. We really want the WDH system to take
into account the whole dialogue history, so the N-grammodels were �nally dis-
carded. On the contrary, GRUs process the whole cluster sequence. We show
at the end of Section 4.8.3, indeed, taking into account the whole sequence is
highly bene�cial, since GRUs outperform the N-gram models in terms of accu-
racy and top N accuracy.

The objective function used to train the GRU was the negative log-likelihood
at the cluster level:
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LGRU =
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i=1

�log P (ci+1 | c1, c2, ..., ci�1) (4.3)

where C is the training corpus made of sequences of clusters c, each of them
corresponding to a dialogue. The probability of ci+1 being the next cluster given
the partial sequence c1, c2, ..., ci�1 is computed by a softmax normalization on
top of a linear classi�er given the last hidden state of the GRU after processing
the cluster sequence.

4.5.5 | C�������� ��� ����� ����� ��� ���� ������
����

The GPT-2 score and the WDH system’s score are fused in a simple way. The
total score is a weighted both scores, as shown in Equation 4.4. This Equation
is also shown in the bottom right of Figure 4.1. A detailed analysis of the cho-
sen value for the hyperparameter ↵ and its role in the system’s performance is
shown in Section 4.7.1.

Total score = GPT-2 score+ ↵ · Cluster score (4.4)

4.6 | T������� ������� ��� ������������
�����

In this section, we give more details about our implementation and introduce
the experimental setup that was used to produce the results we present and
discuss in Section 4.7. According to our proposal, we train and compare six
models:

• The baseline model (BL). This refers to the model presented in Section
4.4.1, without any reranking. I.e., here we only use the short-term gener-
ativemodel, without theWDH system. This generates just one candidate,
which will be used as the system response.

• The baseline model with scenario embeddings (BL+SC). In this model, we
add the scenario embeddings (Section 4.4.2) to the baseline model.

• The baseline model with dialogue phase embeddings (BL+PH). Here we
add the dialogue phase (Section 4.4.3) to the baseline model, but without
the scenario embeddings.

• The full generative model (FM). This one includes both the scenario and
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dialogue phase embeddings. But still, there is no reranking, i.e., it outputs
the �rst utterance it generates.

• The full model with just GPT-2 reranking (FM+RR). In order to check the
in�uence of the WDH system, we �rst include a reranking process with
only the GPT-2 score. We generate and rank 10 candidates.

• The full model with both the GPT-2 reranking and the WDH reranking
(FM+WDH). This model includes all our proposals. The number of can-
didates is the same as in the FM+RR model, 10.

We �rst explain the process of pretraining the GPT-2 neural LMs in Spanish,
French and Norwegian. Thenwe get into the �ne-tuning details of thesemodels
with the EMPATHIC corpus. Finally, we give details about theWDH system and
introduce the experiments and the evaluation procedures.

4.6.1 | P���������� ���������

We are dealing with a multilingual corpus in Spanish, French, Norwegian and
English. However, most of the big pretrained neural LMs are only available
in English. After some preliminary experiments using multilingual pretrained
transformers such as XLM (Conneau and Lample, 2019), we found that �ne-
tuning these did not result in great dialogue models. Thus, we ended up pre-
training GPT-2 models from scratch in Spanish, French and Norwegian, and
using the pretrained and freely available GPT-2 models in English.

There are four di�erent GPT-2 architectures (Radford et al., 2019), which
mainly di�er in the number of layers and their size. We selected the small
GPT-2 transformer architecture for all of our experiments in Spanish, French
and Norwegian, which has 124 million parameters. This selection was made
to meet two important criteria: the model should be large enough to be ca-
pable of learning our task, but small enough to �t into standard GPUs and be
pretrained in a reasonable amount of time. As for English, we compared the
small model with the medium, which has 324 million parameters. The latter
one worked much better already since the �rst experiments, as shown in Sec-
tion 4.7.1. Therefore, unless it is mentioned explicitly, the results for the English
system were achieved with the medium GPT-2.

We used the Spanish, French and Norwegian versions of Wikipedia and
OpenSubtitles (Lison et al., 2019) to pretrain each language model. The reason
for choosing these corpora is that both are available in the target languages, and
that both include valuable information which could improve the �nal perfor-
mance of the coaching dialogue model. Wikipedia contains information about
millions of topics, and OpenSubtitles is made of conversations mainly, which
hopefully helps the model learning dialogue skills. Since the amount of data
in Norwegian was much lower, we also included a fraction of the Norwegian
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version of the OSCAR text corpus (Ortiz Suárez et al., 2020). OSCAR is a subset
of Common Crawl, and thus it is made of web-scrapped text from the Internet.
Mind that, therefore, this corpus may not be as related to our task as OpenSub-
titles or Wikipedia. Table 3.13 in Chapter 3 shows a summary of the data used
for pretraining after cleaning lines containing irrelevant characters, urls, and
so on.

We �rst trained a BPE tokeniser (Sennrich et al., 2016) in each language with
this data. This tokeniser is used during the pretraining and �ne-tuning steps.
We selected a vocabulary of 10K subwords in each language. This number
is lower than the pretrained tokeniser in English, which has a vocabulary of
around 50K subwords. Using a reduced vocabulary size also reduces memory
consumption and training time.

We then trained each GPT-2 model from scratch, throughout two complete
epochs on each dataset. We set the maximum number of input tokens to 512,
which we consider enough since it allows us to afterwards include 5 turns of
dialogue history in the �ne-tuning step. We used the ADAM optimiser (Kingma
and Ba, 2014) with a linearly decaying learning rate from 1e-5 to 5e-4, and a
batch size of 4, the maximum that �tted in our GPU. We clipped the gradients
at a maximum absolute value of 1. Each training procedure took around 2-3
weeks in total to be completed in a single Nvidia Titan Xp GPU. Besides in this
application, the trained LMs were also used in the EMPATHIC NLG (Section
3.5.3, Chapter 3).

4.6.2 | F���������� ��� GPT�2 ���������� �����
�� ��� EMPATHIC ������

After pretraining the LMs, we �ne-tuned them on our dialogue corpus to con-
vert them into dialogue models. We �ne-tuned each model with combinations
of the three input representations explained in Section 4.4, for comparison pur-
poses. We trained the baseline, the baseline with scenario embeddings, the
baseline with dialogue phase embeddings, and �nally the full generative model
with both scenario and dialogue phase embeddings. All the systems were also
trained to predict the end of the dialogue. To this end, an end-of-dialogue token
was inserted in the last system turn of every dialogue. The number of turns se-
lected for the local dialogue history was �ve: three user turns and two system
turns. To measure the e�ect of not pretraining, we also trained a GPT-2 model
from scratch with our corpus in Spanish.

We split the data into train (85%) and test (15%) partitions. These proportions
were kept when splitting the original dialogues in each language and also the
dialogues translated from the remaining two languages. Each partition also
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contains the same number of introductory and nutrition dialogues. Since most
of the users interacted with the system in both scenarios, we also made sure
that all the dialogues corresponding to a given user only appeared in one of the
partitions.

Training details: Following previous works, we optimise a linear combina-
tion of two loss functions during the �ne-tuning step (Radford et al., 2018; Wolf
et al., 2019; Budzianowski and Vulic, 2019): the language modelling loss and
the next turn prediction loss. The second one also enables the possibility of
using the GPT-2 score described in Section 4.5.5. We set the weight of the LM
loss to be the double of the next turn prediction one. We used 10 candidates
for the next turn prediction loss, the actual ground truth, 3 system turns from
the previous dialogue history (but not appearing in the local history), 3 system
turns that occurred later in the dialogue, and 3 random turns sampled randomly
from the training set. The combined loss function was minimised throughout 4
epochs via the AdamW optimiser (Loshchilov and Hutter, 2017). The learning
rate was linearly decreased from 6e-5 to zero, gradients were clipped at their
absolute value of 1 and a weight decay of 0.01 was used. We could only �t one
training example at a time in the GPU during the training process, but we still
experimented with greater virtual batch sizes, accumulating the gradients for
some steps. We found that a virtual batch size of 4 led to the most consistent
results.

Additional details: The desired length of the dialogues was �xed to 20 system
turns. As for the systems that use reranking (BL+RR and BL+WDH), in the
decoding step we generated and ranked 10 candidates.

4.6.3 | WDH ������ �������

As mentioned in Sections 4.5.1, 4.5.2 and 4.5.3, we considered many strategies
and algorithms to compute the sentence embeddings, dimension reduction and
clustering. The �nal choice for each module in the pipeline was decided af-
ter an inspection of the resulting clusters. We checked that the turns grouped
in the same clusters were in fact semantically close, and that it would make
sense to use them in similar dialogue contexts. Finally, the baseline short-term
generative model was used to produce sentence embeddings, a supervised au-
toencoder for dimension reduction and the K-Means algorithm for clustering.
In Section 4.8, we provide a more insightful analysis of the results of the clus-
tering pipeline.

Let us now give the details about the architecture and hyperparameter selec-
tion in the WDH modules. The turn embeddings were computed with the BL
model. As for the autoencoder, its input and output size is the same as the turn
embeddings. In the case of the Spanish, French and Norwegian systems this
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was 768, and in the case of English 1024, due to the use of the medium GPT-2
architecture instead of the small one. The autoencoder’s encoder and decoder
are symmetrical. They are made of three fully connected layers of sizes 200,
50 and 5. The hyperbolic tangent was used as the activation function. Thus
the low dimensional embedding space is of dimension 5. The two classi�cation
layers take as input this embedding and linearly classify the scenario and dia-
logue phase. The autoencoder was trained with the sentence embeddings of the
training set of the corpus during four epochs via the Adam optimiser. A batch
size of 4 and a learning rate of 1e-4 were used.

As for the clustering, the Elkan’s variation of the K-Means algorithm was
used (Elkan, 2003), with the euclidean distance in the low dimensional em-
bedding space. After analysing its impact on di�erent metrics, the number of
clusters was set to 60. As shown in Section 4.8.2, this value represents a nice
compromise between a balanced number of turns per cluster and the perfor-
mance of the WDH system at the next utterance classi�cation task (which we
introduce next in Section 4.6.4). Additionally, it is also a value that permits a
good mapping from cluster index to dialogue act, as explained in Section 4.8.2,
where the correlation between the clustering and dialogue act classi�cation is
explored.

Once the clustering pipeline was �xed and trained, we proceeded with the
cluster sequence modelling experiments via GRUs. The hyperparameters of
the recurrent neural network were tuned in a development partition within the
training set to preserve the train-test independence. The input size of the clus-
ter sequence modelling GRUwas set to 5. Namely, each cluster was represented
by a �ve-dimensional vector. We tried initialising them in terms of the turn em-
beddings but got no improvement, so they were randomly initialised and learnt
in the process. Two GRU layers of hidden size 60 were then used, followed by a
softmax layer of size 60 to output the probability distribution over the possible
60 clusters. The GRUwas trained during 3 epochs via the Adam optimiser, with
a batch size of 4 and a learning rate of 1e-4.

4.6.4 | A�������� ��� ����� ����������

Once the models were trained on the train partition of the corpus in all the
languages, we evaluated each of them according to their responses in the test
partition. On the one hand, we computed some automatic metrics to measure
the similarity of the generated response to the ground truth and the accuracy of
the rerankingmethodologies. On the other hand, experts in coaching compared
the responses of di�erentmodels and selected themost appropriate one. Finally,
these experts also interacted with the best model and evaluated the resulting
dialogues.
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Automatic metrics: Automatic evaluation of dialogue models is a very ac-
tive and complex research area. In the last few years, many authors have been
seeking metrics that measure the quality of the responses, and that correlate as
much as possible with human evaluation in terms of, e.g. relevance, semantical
appropriateness or informativeness. On the one hand, there are word overlap
metrics such as BLEU (Papineni et al., 2002), which measure how the generated
response and the ground truth resemble at the word level. More recently, this
similarity has also been measured via word or sentence embeddings (Zhang
et al., 2019). There are even authors who propose unsupervised metrics which
do not rely on ground truth responses (Mehri and Eskenazi, 2020; Nedelchev
et al., 2020).

In this chapter, we use two of the o�cial metrics proposed in The Conver-
sational Intelligence Challenge 2 (Dinan et al., 2020): the accuracy at selecting
the correct next utterance among a set of 10 candidates or next utterance clas-
si�cation accuracy, and the F1 score between the set of words of the response
generated by the system and the ground truth. Additionally, we include the
BLEU score as an additional measure of how similar the ground truth and the
generated response are.

The next utterance selection accuracy is particularly interesting in our case,
since much of our work focuses on improving the selection of good responses
given a set of candidates. Note that this metric does not directly evaluate the
response generation task. Instead, it focuses on the ability of the di�erent mod-
els on selecting the correct response from a set of candidates sampled from the
corpus. This selection is done via the aforementioned GPT-2 reranking mod-
ules (Section 4.4.4), and also with theWDH system in the case of the FM+WDH
model. In any case, this metric should be a nice indicator of the systems’ per-
formance when interacting with real users. The only di�erence is that in that
case the set of candidates is not sampled from the corpus, but generated by
the generative model. In the original metric of the Conversational Intelligence
Challenge 2 (Dinan et al., 2020), the set of candidates is made of randomly sam-
pled responses entirely. However, in our case, 6 out of the 10 candidates are
system turns that are part of the same dialogue, which makes the task more
challenging since many candidates are probably closer semantically. Among
the remaining candidates, 3 are randomly sampled from the corpus, and the
last one is the ground truth.

Human evaluation: On the other hand, we carried out two series of human
evaluation processes to validate our methodologies in the task of coaching.
Since coaching is not a simple topic and expertise is needed to evaluate how
good a system would be in this area, the selected human evaluators were the
same professionals that carried out or participated in the Wizard of Oz experi-
ments to acquire the corpus. This is very important, because it maywell happen
that a non-expert human considered that the interaction with the system has
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been good for example, but that would not ensure that the system is actually
performing any type of coaching.

In the �rst series of evaluations, we evaluate the response quality of the dif-
ferent versions of our model. In order to measure the impact of each proposal,
we incrementally compare them, through a sequence of pairwise comparisons.
We start comparing the BL with the BL+SC to check the in�uence of the sce-
nario embeddings. We do the same with the dialogue phase embeddings, com-
paring the BLwith the BL+PH. Then the in�uence of adding both embeddings is
measured via the comparison of the BLwith the FM. Afterwards, we analyse the
impact of the candidate reranking with two comparisons, FM vs. FM+RR and
FM+RR vs. FM+WDH. Finally, to give a grasp of the absolute quality of the re-
sponses, we compare the FM+WDHwith the ground truth (GT hereinafter), i.e.,
the human response found in the test set. Note that reason behind the choice
of carrying out these incremental comparisons pairwise instead of, e.g. via a
Likert-score based evaluation per model, is that the results would be harder to
compare, due to the potential evaluator bias when selecting the score in the
Likert scale, as discussed in (Li et al., 2019). Some annotators might be more
generous and while others might tend to stick to more neutral responses. That
bias is reduced in a pairwise setup, because the evaluators should only select
which answer is better (or whether they are equal), but not to what extent. The
biggest drawback of pairwise comparisons is that it might be di�cult to aggre-
gate the results if the comparisons are not incremental. In our case, this only
happens with the BL vs. BL+SC and BL vs. BL+PH. This is why we also perform
the BL vs. FM comparison.

In the second series of human evaluations, we focus on the usability and po-
tential impact of the best system. We asked each coaching expert to interact
with the model in each scenario and then to �ll out two questionnaires. Even
though the system is planned to be used with a spoken interface, it was tested
on a text-based interface to avoid potential biases created by third modules.
The �rst questionnaire is the Chatbot Usability Questionnaire (CUQ) (Holmes
et al., 2019). This novel questionnaire is similar to the classical SUS (Brooke,
1996) for human-computer interfaces, but adapted to the particular domain of
chatbots, taking into account their peculiarities. On the other hand, the second
questionnaire is based on the standardised questionnaire AttrakDi� (Hassen-
zahl et al., 2003). AttrakDi� was designed to measure the user experience in
human-machine interaction in four axes: pragmatic attractiveness and three
hedonic qualities. Esposito et al. (2018) adapted this questionnaire for the eval-
uation of virtual agents. In this study, we use the questionnaire related to one of
the hedonic qualities axes, to the hedonic quality stimulation or feelings, more
precisely. It aims at identifying the feelings that may arise in the user when
interacting with the system. This is particularly important to assess the usabil-
ity and potential consequences of a health-care-related conversational agent. A
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system that gives rise to negative feelings in the user would never be acceptable,
for instance. We refer to this questionnaire as Hedonic Feelings Questionnaire
(HFQ) (Hedonic Feelings Questionnaire). Both questionnaires can be found in
Tables C.1 and C.2 in Appendix C. The responses were arranged in a �ve-level
Likert scale ranging from Strongly agree to Strongly disagree. Since both ques-
tionnaires ask about positive qualities of the system in even questions and about
negative in odd ones, a score for each questionnaire can be easily calculated. A
score of 100 would be obtained if an evaluator would Strongly agree with all the
positive questions and Strongly disagree with all the negative ones, and a 0 in
the opposite case.

4.7 | R������

In this section, we present and discuss the automatic and human evaluations of
our proposal.

4.7.1 | A�������� ����������

Let us now show the results of the automatic metrics. We start discussing the
performance of the models in terms of the next utterance selection accuracy
among 10 candidates (Table 4.2), since it provides the most consistent results
across all languages. As aforementioned in Section 4.6.4, these three candi-
dates are not generated by the short-term model, they are sampled from the
corpus instead. Afterwards, we provide results about the quality of generated
responses, in terms of F1 and BLEU scores.

Table 4.2.: Next utterance classi�cation accuracy among a set of 10 candidates
obtained by all the models in the four languages in the test partition
of the corpus.

Next utterance classi�cation accuracy
English Spanish French Norwegian

BL no pretraining - 0.251 - -
BL small 0.461 - - -
BL 0.482 0.374 0.404 0.350
BL+SC 0.488 0.379 0.402 0.343
BL+PH 0.488 0.388 0.417 0.366
FM 0.494 0.401 0.421 0.375
FM+RR 0.494 0.401 0.421 0.375
FM+WDH 0.518 0.412 0.435 0.388

Next utterance classi�cation accuracy: First of all, we can see that there is
a big gap between not pretraining the baseline and pretraining it in the Span-
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ish model. Given this big gap, we did not consider trying with non pretrained
baselines in the other languages. In English, there is also an improvement if
we consider the medium GPT-2 architecture (BL) or the small one (BL small).
Therefore, the rest of the experiments were carried out with the medium archi-
tecture.

Including the scenario embeddings does not seem to in�uence this accuracy
as much as including the dialogue phase embeddings do. This is probably due
to the nature of the candidates to be ranked: among the 10 candidates, 6 are
system turns of the same dialogue. This can probably confuse the BL and the
BL+SC more than the BL+PH model, because the candidates share the scenario
and potentially the topic, but the phase embeddings might be able to capture
that they are out of position given the status of the dialogue. The FM further
improves over both BL+SC and BL+PH, proving that combining both embed-
dings leads to better performance. In respect of the FM+RR, note that the next
utterance accuracy is the same as the FM model. This is because these models
are essentially the same; they only di�er in the decoding stage: the FM gen-
erates just one response, whereas the FM+RR generates some candidates and
then selects the best according to the GPT-2 score. But in this case, since the set
of candidates is given, there is no big di�erence. Finally, the full model with the
WDH reranking method obtains the best results across all the languages. This
clearly shows that the proposed reranking method helps to improve the can-
didate selection criteria. Consequently, it also reinforces our initial hypothesis
that it is necessary to process the whole dialogue history to improve the overall
quality of end-to-end neural dialogue systems. This is even more critical when
no dialogue acts or dialogue state tracker are being used; and also when the
application, such as coaching, requires the dialogues to be well structured.

Let us further show the in�uence of the WDH system in the next utterance
classi�cation accuracy. As explained in Section 4.5.5 and Equation 4.4, the total
score for a response candidate is a weighted sum of the GPT-2 score and the
WDH score, where ↵ is the weight of WDH score. We performed a grid search
with values of di�erent orders of magnitude for this weight. The results are
shown in Figure 4.5.

In general, the behaviour of the metric as a function of the cluster score is
the expected one. When the next cluster score is 0, the model is equivalent to
the FM+RR, and so the next utterance selection accuracy is the same shown in
Table 4.2 for the FM+RR models. On the other hand, the accuracy peaks when
the next cluster score is between 0.1 and 0.3. The maximum values (the ones
corresponding to the optimal WDH score per language) are the ones shown
in Table 4.2. If we increase the weight of the cluster score way more than its
optimal value, the accuracy decreases drastically. This means that the WDH
system should be used only as an addition to the GPT-2 score, not as a substitute.
The reason for this is that the GPT-2 score takes into account properties that
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Figure 4.5.: Next utterance selection accuracy depending on the WDH score’s
weight. Note that the x-scale is equally spaced between the tested
values.

the WDH does not, and vice versa. The GPT-2 score focuses on short-term
coherence, but also on grammatical appropriateness, since it evaluates the turn
embedding. On the other hand, the WDH is not aware of the system turn itself,
only of the cluster it belongs to. Therefore it may assign a very high score to a
candidate that belongs to a very relevant cluster given the dialogue history, but
is grammatically incorrect, for example.

Not only does the next utterance accuracy reveal di�erences between mod-
els, but also across languages. There seems to be a big correlation between this
accuracy and the quality of the pretrained language model. First, the English
models outperform the models in lower-resource languages. If we then com-
pare the remaining three languages, Spanish and French are one step ahead of
Norwegian. The GPT-2 model in English was pretrained and released by Open
AI. 40 GB of cleaned and processed data was used. In comparison, we only used
10GB, 7GB and 5GB used to pretrain the Spanish, French and Norwegian mod-
els, respectively. Additionally, we also believe that the OSCAR corpus used to
increase the amount of data in Norwegian is not as bene�cial for our domain
as Opensubtitles and Wikipedia, due to its nature. Since it is made of web-
scrapped text from the Internet, it may contain many sentences that are not
related to our task at all, hindering the �ne-tuning procedure.

Word overlapping metrics: While the next utterance classi�cation score
seems to be very aligned with the expected behaviour of our proposal, the F1
and BLEU score do not seem to be that correlated. Table 4.3 shows the obtained
results. Nonetheless, there are still some conclusions to be made.

First of all, the two metrics behave in a very similar manner, which makes
sense because both are measures of how the produced system response resem-
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Table 4.3.: F1 and BLEU scores obtained by all the models in the four languages
in the test partition of the corpus..

English Spanish French Norwegian
F1 BLEU F1 BLEU F1 BLEU F1 BLEU

BL no pretraining - - 0.198 0.096 - - - -
BL small 0.303 0.143 - - - - - -
BL 0.305 0.139 0.229 0.109 0.250 0.119 0.297 0.147
BL+SC 0.299 0.140 0.248 0.122 0.257 0.124 0.274 0.123
BL+PH 0.283 0.132 0.259 0.130 0.241 0.111 0.297 0.141
FM 0.302 0.143 0.272 0.145 0.259 0.122 0.309 0.149
FM+RR 0.315 0.150 0.288 0.150 0.275 0.135 0.317 0.158
FM+WDH 0.303 0.142 0.296 0.159 0.276 0.131 0.322 0.164

bles the ground truth sentence found in the corpus. Second, if we compare the
results of the di�erent models, we can see that including the scenario or phase
embeddings does not consistently yield better results. There does not seem to
be any di�erence between the small and medium models in English. On the
other hand, not pretraining the baseline in Spanish again produces worse re-
sults. Interestingly, applying a reranking process does improve the result in
both metrics across the four languages. This shows that the reranking method-
ologies play an important role in our system, and that are capable of selecting
the responses which are closer to the ones produced by human experts. Finally,
we would also like to mention that in this case the results on di�erent languages
should not be compared too in-depth, because the four languages are morpho-
logically di�erent and therefore the di�erences might well be due to language
particularities instead of performance discrepancies. In any case, many authors
have argued that word overlapping metrics are not highly correlated with the
actual quality of the responses (Liu et al., 2016), because a response that does not
share any words with the ground truth reference could indeed be completely
appropriate. Thus, we now provide a human evaluation to further validate our
proposals.

4.7.2 | H���� ���������� �� ��� ���������

The quality of the generated responses wasmeasured by coaching experts. Four
di�erent experts per language participated in this evaluation. They compared
pairs of responses from di�erent models. Per each language and model pair,
40 pairs of responses were ranked twice. Every evaluator assessed the same
number of instances per model pair, where each instance consisted of a local
dialogue history made of the last 5 turns, and two possible continuations for the
system. The dialogue histories were di�erent for eachmodel pair in order not to
bias the evaluators. Four options were presented to the evaluators. According
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to their criteria in the context of coaching and the project, they had to select
whether the �rst response was better, the second one was better, both of them
were equally valid to continue the dialogue, or none of them was acceptable.
We considered using more �ne-grain level metrics, such as the ones used in
Xu et al. (2017), but we decided to stick to the simpler approach because: 1)
since the evaluators are experts, they should be able to weight the di�erent
aspects of the responses and reckon which is more appropriate for the task,
2) the models to be compared should not vary drastically in the style of the
responses, because they are di�erent versions of similarmethodologies, and 3) it
is, therefore, more cost-e�cient; the additional costs would not compensate the
potential bene�ts of a more detailed evaluation, owing to the aforementioned
reasons. Additionally, in Section 4.7.3, we perform a detailed evaluation of the
best model, which shows the strengths and weaknesses of our conversational
agent in depth.

Before presenting the results, we would like to show some examples of the
evaluation task to provide a feeling of the kind of dialogues that were carried
out. Tables 4.4, 4.5, 4.6 and 4.7 show dialogue contexts and the continuation
of the FM+WDH system and the ground truth (GT) in English, where, respec-
tively, the two responses were valid, the GT response was better, the FM+WDH
system’s response was better, and none of the responses was good enough, ac-
cording to the evaluators.

Table 4.4.: Evaluation example in English where both the GT and FM+WDH
system’s responses were valid, according to the evaluators.

Dialogue
history

U: I’m fromPoland. It was very interesting to spend time [laugh] especially
in Warsaw [laugh] but a lot of time at the airport.
S: All right. I’m really jealous. And when was that?
U: On Sunday, a week ago.
S: Do you usually travel accompanied?
U: Yes, but sometimes alone too. But I almost always make friends there,
yes.

FM+WDH
response

Who organizes the trips?

GT response Imagine that you are in Poland, in these busy streets. How do you feel?
How do you imagine it?

Table 4.8 shows the results of the comparison of the models and the ground
truth, combined in all the languages. Additionally, Tables 4.9, 4.10, 4.11 and
4.12 show these results divided by language; in English, Spanish, French and
Norwegian, respectively. Binomial tests of signi�cance were carried out in the
global comparison of the models shown in Table 4.8, since it contains more
samples and it is therefore more appropriate. The p-value was computed taking
into account the decisive comparisons only: A is better versus B is better.
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Table 4.5.: Evaluation example in English where both the FM+WDH system’s
response was better than the GT, according to the evaluators.

Dialogue
history

U: Yes.
S: and I detect that you intend to accomplish.
U: That’s right, because it’s hard to lose weight over the years. It’s very
di�cult, it costs a lot more. You have to be very constant, a lot of willpower,
and that is also lost over the years.
S: and create habits
U: Create habits, that is, you have to create habits, once the habit is created,
it’s easier.

FM+WDH
response

I understand you’re talking about habits.

GT response Unambiguous good.

Table 4.6.: Evaluation example in English where both the GT response was bet-
ter than the FM+WDH system’s continuation, according to the eval-
uators.

Dialogue
history

U: Yes yes yes I like it. I’m rather sweet as they say that salty so I like
pastries and desserts very much.
S: Alright. It’s good that you’re trying to be careful at least at home.
U: [laugh] That’s right.
S: And do you think you eat �ve fruits and vegetables per day?
U: Five no, probably not, but three or four yes I think.

FM+WDH
response

So you’d have to eat a lot of fruit to get it.

GT response That’s a good start.

Table 4.7.: Evaluation example in English where neither the GT or FM+WDH
system’s responses were appropriate, according to the evaluators.

Dialogue
history

U: I think I’m a pretty healthy eater, so for me it’s �ne.
S: Pefect!
U: But maybe you’ll teach me how to eat even better.
S: I hope so! Do you pay attention to the quantities you take?
U: Not especially. Well, yeah, no, it depends.

FM+WDH
response

You think you’re eating right?

GT response It depends on what you like, you mean?

In general, the obtained results are coherent with our proposal and with the
automatic evaluation, especially with the next utterance classi�cation accuracy.
While only including one of the proposed embeddings to control the dialogue
not always results in a better model according to this evaluation, including both
signi�cantly improves the quality of the responses compared to the baseline.
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Table 4.8.: Results of the pairwise response quality evaluation combined in the
four target languages. Models in bold indicate that they are signi�-
cantly better than their counterparts (p<0.05).

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 17.50 26.25 30.00 26.25
BL BL+PH 18.75 27.81 28.38 24.06
BL FM 17.81 24.38 35.00 22.81
FM FM+RR 20.63 18.75 31.56 29.06
FM+RR FM+WDH 17.50 21.88 31.87 28.75
FM+WDH GT 7.50 19.06 50.94 22.50

Table 4.9.: Results of the pairwise response quality evaluation in English.
Model A Model B Neither A nor B A is better B is better Both A and B

BL BL small 12.50 41.25 17.50 28.75

BL BL+SC 11.25 33.75 23.75 31.25
BL BL+PH 12.50 27.50 30.00 30.00
BL FM 11.25 21.25 32.50 35.00
FM FM+RR 13.75 13.75 38.75 33.75
FM+RR FM+WDH 13.75 25.00 32.50 28.75
FM+WDH GT 10.00 30.00 42.50 17.50

The e�ect of the reranking using just the GPT-2 score is particularly interest-
ing. Even if, in general, it is signi�cantly better than not using it, there are
some di�erences if we compare the results across languages. It improves the
quality of the responses in English themost, followed by French and Spanish. In
Norwegian slightly worsens the quality of the responses. This could be closely
related to the next utterance classi�cation accuracy, which was shown in Table
4.2. In English, the next utterance accuracy is the highest of all languages, and
therefore the model selects candidates which are often closer to what a human
would select. French and Spanish are next, and so their improvement is not
as big as in the English model in this case. Finally, the worst accuracy is ob-

Table 4.10.: Results of the pairwise response quality evaluation in Spanish.
Model A Model B Neither A nor B A is better B is better Both A and B

BL BL no pretrain. 26.25 37.50 18.75 17.50

BL BL+SC 13.75 20.00 32.50 33.75
BL BL+PH 13.75 31.25 30.00 25.00
BL FM 16.25 23.75 33.75 26.25
FM FM+RR 18.75 20.00 31.25 30.00
FM+RR FM+WDH 15.00 26.25 33.75 25.00
FM+WDH GT 5.00 10.00 52.50 32.50
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Table 4.11.: Results of the pairwise response quality evaluation in French.
Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 22.50 27.50 25.00 25.00
BL BL+PH 23.75 23.75 26.25 26.25
BL FM 22.50 30.00 36.25 11.25
FM FM+RR 25.00 13.75 36.25 25.00
FM+RR FM+WDH 15.00 17.50 31.25 36.25
FM+WDH GT 3.75 22.50 60.00 13.75

Table 4.12.: Results of the pairwise response quality evaluation in Norwegian.
Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 22.50 23.75 38.75 15.00
BL BL+PH 25.00 28.75 31.25 15.00
BL FM 21.25 22.50 37.50 18.75
FM FM+RR 25.00 27.50 20.0 27.50
FM+RR FM+WDH 26.25 18.75 30.00 25.00
FM+WDH GT 11.25 13.75 48.75 26.25

tained in Norwegian, which may well indicate that the GPT-2 score by itself
is not reliable for successfully selecting good candidates. Moreover, if we now
focus on the in�uence of adding the WDH score instead of using only the GPT-
2 score, we can see that it consistently improves the quality of the responses.
This de�nitely makes sense since it already showed an improvement in terms of
next utterance accuracy, as shown in Figure 4.5. However, it is important to re-
mark that in this case the reranking is carried out over a set of model-generated
candidates, while in the previous study of the next utterance accuracy, the can-
didates were human responses from the corpus. This indicates that the WDH
system is robust no matter if the candidates are sampled from the corpus or
generated by the model. Finally, our full proposal (FM+WDH) was compared
with the ground truth responses of the corpus. As expected, the ground truth
signi�cantly outperforms our model in all languages. Additionally, we believe
that in most of these cases where the models produced better responses than
the ground truth might be due to the corpus containing a large number of trans-
lations. Even if these were automatic and manually corrected, there may still
be cases where some translations are not completely accurate or grammatically
correct, as previously shown in Table 4.5. In any case, the margin between the
ground truth and the generated response is remarkably small in English, which
shows that better pretraining is key to developing end-to-end dialogue models.

In this regard, an additional comparison was carried out to measure the ef-
fect of not pretraining the baseline model in Spanish (�rst row in Table 4.10).
It underlines the fact that a pretrained LM is essential to enhance the posterior
performance of the dialogue model. A similar study was carried out in English.
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In this case, we compared the small andmedium pretrained GPT-2 architectures
(�rst row in Table 4.9). The medium architecture showed its superiority, as it
has done in many other NLP tasks (Radford et al., 2019). We were not able to
pretrain medium models for the other languages due to the lack of computa-
tional and corpus resources.

4.7.3 | H���� ����������� ����������

Let us introduce the results of the human interaction with the FM+WDH sys-
tem. The same four evaluators per language that evaluated the responses were
the ones interacting with the system. Additionally, some of the non-English
evaluators but �uent in English also tested the English system. Thus, the En-
glish system was evaluated by 12 experts, and the rest of the systems by 4. Each
evaluator carried out two dialogues with the corresponding system, �rst the
introductory dialogue into coaching, and afterwards the �rst part of a GROW
nutrition session. On average, the dialogues were roughly 40 turns long (20
user turns + 20 system turns). This value was controlled via the dialogue phase
embeddings. After interacting in the two scenarios, the evaluators �lled out
the aforementioned CUQ and HFQ questionnaires (Section 4.6.4, Appendix C).
Table 4.13 shows the mean and 95% con�dence intervals of the score achieved
in these two questionnaires for each language.

Table 4.13.: CUQ and HFQ mean scores and 95% con�dence intervals (in square
brackets), per language.

Language CUQ score HFQ score

English 69.1, [61.0, 77.3] 63.1, [51.7, 74.4]
Spanish 62.1, [41.8, 82.4] 62.5, [37.1 ,87.9]
French 68.7, [56.6, 80.9] 61.9, [41.2, 82.5]
Norwegian 39.1, [18.8, 59.4] 43.8, [16.5, 71.0]

The English, Spanish and French models achieved am average score higher
than 50 in both tests, which means that on average the evaluators tended to
agree on the positive aspects of the system and disagree on the negative ones.
On the contrary, this was not the case for the Norwegian system, which shows
that there is still a signi�cant performance gap to be closed for systems in lan-
guages with very few resources. The English model achieved the best results
once again, but interestingly enough, the French and Spanish models were un-
expectedly close in terms of HFQ score, and the French one was very close in
the CUQ score too. This might be because the pretraining of the GPT-2 models
a�ects mostly in the candidate generation stage, whereas the WDH system is
only (except the turn embeddings) learnt on our coaching corpus. The WDH
reranking is a key aspect of the whole pipeline, since it is the main responsible
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for keeping coherence in the dialogue, which greatly in�uences the user ex-
perience. This is even more important when dealing with coaching dialogues
where the long-term strategy is so valuable. Thus, we hypothesise that future
improvements in this direction would result in more structured, and therefore
better-rated, dialogues. In the case of the Norwegian, however, the main issue
might be that, overall, the generated candidates lack quality due to the worse
pretraining of the GPT-2 generative model. If this were the case, improving the
quality of multilingual transformers or better pretraining in low-resource lan-
guages would be essential to improve the usability and emotional in�uence of
this kind of models in the future.

Let us now focus on the speci�c answers to each questionnaire. Figures 4.6
and 4.7 show the average results and their standard deviation for each question
in the CUQ and HFQ, respectively. Even if some questions ask about negative
aspects of the system, in the �gures a standardised score between 0 and 1 is
shown, where the higher the value is, the better the performance is too. The
values have been computed with the combination of the questionnaires in the
four target languages.

Figure 4.6.: Results of the Chatbot Usability Questionnaire.

Figure 4.7.: Results of the Hedonic Feelings Questionnaire.

As for the usability, the responses to questions ranging from CUQ-3 to CUQ-
6 indicate that the dialogue system presents itself correctly and that indicates
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well its purpose. More exactly, this means that the user understands that a ses-
sion of coaching is about to be carried out, and that to this end they �rst talk
about the user’s hobbies before getting into the nutrition GROW session. Re-
sponses to CUQ-7, CUQ-8, CUQ-15 and CUQ-16 indicate that the interaction
with the system is rather simple and easy, which is an important point for fu-
ture interactions with real users. In general, the performance is not that great
in terms of understanding the user and acting accordingly, as re�ected in the
results of questions from CUQ-9 to CUQ-12. In this regard, it is important to
recall that the proposed methodology does not make use of any explicit knowl-
edge representation like entities, ontologies or dialogue acts. It purely learns
from the text transcription of dialogues. This makes it possible to develop a
dialogue system more easily and a�ordably, but it also has its limitations. The
system is less likely to react to user turns that contain some relevant informa-
tion than if a Natural Language Understanding module was used, for example.
CUQ-13 and CUQ-14 refer to the ability of the system to recover from errors. It
seems that the system can recover from errors sometimes, but that other times
it fails to do so. This is de�nitely an interesting and open topic of research, and
we plan to use theWDH system to detect dialogue breakdowns, and avoid them
if possible. Finally, responses to CUQ-1 and CUQ-2 indicate that the system is
engaging to some degree, but that it is also quite robotic.

On the other hand, the HFQ provides useful information to measure the po-
tential impact the system may have on the user, at least short term. Very im-
portantly, experts strongly agree that the interaction with the system is neither
depressing nor stressful (HFQ-8 and HFQ-10). This is a good starting point,
because at least the system does not seem to give rise to very negative feel-
ings. It does not seem to be boring either (HFQ-2). On the other hand, the HFQ
also reveals that there is much progress to be done, since the system could be
much more stimulant (HFQ-7). Coaching is about stimulating the user to help
them to achieve their own goals. Thus we would really like to improve in this
aspect. Nonetheless, experts do not think the communication is not stimulant
either, which also means that we are not completely away from our objective.
Apart from this, experts feel the system is quite innovative (HFQ-3) and do not
agree nor disagree on the fact that the communication with the system is ex-
traordinary (HFQ-1), disappointing (HFQ-4), thrilling (HFQ-5), trivial (HFQ-6)
or reassuring (HFQ-9). Being able to produce dialogues even more coherent
long-term would likely result in improvements on these aspects.

In summary, these results indicate that, in general, our proposals are head-
ing in the right direction, but also that improvements are probably needed to
systematically use our coaching system with end users.
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4.8 | T��WDH ������ �� � ���� �� �������
��� ��������� �� ��� ��������������
�����

The WDH system has shown to improve the response quality of the system by
integrating the whole dialogue history into the decision-making stage. Addi-
tionally, it can also be a powerful tool to understand on what basis these deci-
sions have been taken. In this section, we �rst analyse the distribution of turn
embeddings in the low-dimensional space. This can help us understand how
the turns are clustered, and intuitively validate those, also by comparing them
to dialogue acts. Additionally, we arrange the clusters and dialogue acts into
graphs to visualise the paths the system is more likely to take and understand
why. Moreover, we believe this kind of analysis could be taken one step be-
yond, and be used not only to analyse but also to improve the behaviour of the
system. We leave this interesting research topic for future work.

4.8.1 | L�� ����������� ���� ��������� �����

In all the presented experiments the low-dimensional turn embedding space has
been of size 5. Empirically, it has been a good choice to provide interesting re-
sults and to make the WDH system work. However, we can also choose to con-
vert the high dimensional turn embeddings into bidimensional, and therefore
visualizable, vectors. While this can be done by projecting the �ve-dimensional
vectors into two dimensions with another dimension reduction technique, we
have opted to train a second supervised autoencoder. We believe that this way
the distribution of the points (system turns) in the bidimensional space should
be more similar to the one in the �ve-dimensional one.

For example, this way we can see the clusters the turns are grouped in. We
have shown this distribution back in Section 4.3, in Figure 4.2. There, the num-
ber of clusters is 20, lower than the actual 60 used in our experiments, for the
sake of clarity. They correspond to the English version of the corpus. In that
�gure, some grouped turns have been highlighted. This manual inspection al-
ready suggests that turns clustered together share semantic information. Addi-
tionally, much more patterns can easily be detected. For instance, we can also
group the system turns according to the scenario or dialogue phase they belong
to, as shown in Figure 4.8.

The groups in this case make a lot of sense. For instance, we can see that the
systems turns corresponding to the two scenarios are well separated. Nonethe-
less, there are two areas where these are much closer. If we check the dialogue
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(a) Scenario. (b) Dialogue phase.

Figure 4.8.: Bidimensional turn embeddings grouped by the scenario and dia-
logue phase they belong to. These experiments were carried out
with the English corpus.

phase distribution, we see that these areas correspond to the �rst and last dia-
logue phases. This seems very much reasonable, because the greetings and the
goodbyes are similar in both scenarios, or at least much less di�erent than the
rest of the system turns.

There are also other properties of the corpus that become visible in this space.
For example, we can take advantage of our corpus being labeled (Vázquez, 2019),
even if we have not used these labels at any stage of the development of the
dialogue system. We can check the distribution of the turns according to their
labels. This is shown in Figure 4.9.

For sake of simplicity, we are only showing the turns corresponding to a
subset of the labels, and some labels have been merged for better visualization
(some di�erent types of questions about nutrition are merged into justNutrition
question, for example). For example, Figure 4.9 shows that the turns labelled
as Hello are placed in the same place as the ones corresponding to the �rst
dialogue phase, and the same applies for the Goodbye and the last dialogue
phase turns. Turns labelled as System introduction occupy the same space as the
introductory scenario turns of the �rst and second dialogue phase, suggesting
that the system presents itself at the beginning of the �rst scenario. Travelling
and Music/hobbies are very close in the bidimensional space, roughly in the
place of the second and third phase of the introductory scenario. These are
actually two of the topics the system usually covers to make the user feel more
comfortable.

On the right-hand side of the space, we can �nd the turns categorised as Ob-
jective and Nutrition question, which correspond to the GROW session about
nutrition. They seem to be in a very similar region. This could be due to the
dimension reduction being too drastic, and they could perfectly be better sepa-
rated in a higher dimensional space. Additionally, the Nutrition question turns
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Figure 4.9.: Bidimensional turn embeddings divided according to the dialogue
act labels. These experiments were carried out with the English
corpus.

seem to be a bit more widespread than the Objective. This is coherent with the
GROW coaching strategy: the system asks questions about nutrition in many
situations, but only focuses on the objective once the user has con�rmed that
there is something they would like to achieve.

There are also turns labelled as Con�rmation, which are to be found all over
the place in both scenarios. This de�nitely makes sense; the system may have
to con�rm whatever the user asks at any point. Finally, we have Change topic
turns, which are located in both scenarios but only in a few areas. These corre-
spond to utterances where the system and the user �nish talking about a given
topic, and the system or the user suggests a new one.
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4.8.2 | C��������� �� �� ������������ ��� ��
�������� �������� ����

The fact that this low-dimensional turn embedding space is so structured also
validates the proposed methodology from a more intuitive point of view: if the
turns that are close in the low-dimensional space share semantic information,
can often be labeled with the same dialogue act and are used in similar sit-
uations in the dialogue, then the resulting clusters should also represent that
information. Therefore, might clustering be considered an unsupervised way of
learning dialogue acts to a certain extent? To answer this question, we perform
dialogue act classi�cations from turn embeddings and from cluster indexes. If
clusters act as unsupervised dialogue acts, both classi�cations should produce
similar or at least comparable results.

To this end, we employed a bigger set of dialogue acts than the one shown
in Figure 4.9. For example, the Nutrition question label was subdivided Motiva-
tional question, Resources or Obstacles question, and so on. As a result, a set of
26 dialogue acts were �nally used as the classi�cation targets. These are listed
and described in Appendix D.We perform three series of experiments. First, we
attempt the dialogue act classi�cation task from turn embeddings, via a simple
two-layer feed-forward neural network. Second, we do the same, but from the
low dimensional embeddings, which were the input to the clustering method in
order to avoid the curse of dimensionality issue, as mentioned back in Section
4.5.2. Thus the comparison might be fairer, since the clustering module and the
classi�er have exactly the same input. Third, we try to predict the dialogue act
only from the cluster a system turn has been assigned to. To do so, we learn a
mapping from cluster indexes to dialogue acts in the training partition of the
corpus, applying a (multi-start) local search heuristic optimisation to maximise
the F1 score. Speci�cally, a �rst improvement heuristic was employed, and two
mappings were considered neighbours if and only if they only di�ered in one
value, i.e. if one and only one cluster was mapped to a di�erent dialogue act.
Table 4.14 shows the F1 scores of the three classi�cation methods in the test
partition of the corpus in the four target languages.

Table 4.14.: F1 scores of the three classi�cation methods in the test partition of
the corpus in the four target languages.

F1 Score at dialogue act classi�cation English Spanish French Norwegian

From turn embeddings 0.505 0.498 0.483 0.473
From dimensionally reduced turn embeddings 0.328 0.293 0.299 0.292
From cluster index 0.287 0.279 0.285 0.285

In general terms, the F1 scores are reasonable, considering that this challeng-
ing task involves a classi�cation between 26 quite imbalanced classes, where
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the majority class is around 26.4 more frequent than the minority class. Mind
that a random classi�er obtains an F1 score of around 0.03. The results follow
the same pattern across the four languages. The best results are achieved, as
expected, with the whole turn embeddings. Then the F1 score drops around
two tenths if the lower dimensional embeddings are used. However, interest-
ingly, the di�erence between the classi�cation from the low dimensional turn
embeddings and the cluster indexes is rather marginal. This comparison is very
important, since both algorithms take as input the same dimensionally reduced
embeddings. Therefore, it seems that clustering is able to extract almost the
same information about dialogue acts from those embeddings as a classi�er
trained speci�cally to do so. Thus, it seems reasonable to say that, indeed, clus-
tering works as an unsupervised way of learning dialogue acts. At least, there
seems to be a strong correlation between the learnt clusters and the dialogue
acts.

To gain a deeper insight into this correlation, it is especially interesting to
analyze how the F1 score of the cluster to dialogue mapping changes depend-
ing on the number of clusters. This is shown in Figure 4.10, it is the purple
line in the plot. The F1 score grows a lot from 10 clusters to 50, but from 60
clusters on it stabilises. Thus, the optimal number of clusters (around 60), is
quite higher than the number of dialogue acts, the double approximately. This
indicates that if the number of clusters is too low, some of the clusters con-
tain turns with many di�erent dialogue acts. After splitting them, when the
optimal number of clusters is reached, there are multiple clusters mapped to
the same dialogue act. The turns within these clusters probably di�er in the
context they are used: since the low-dimensional turn embeddings are learnt
in a way that they contain information about the scenario and the dialogue
phase, the clustering might make some distinctions where the dialogue acts do
not. For example, if we consider the system turns “I understand that you have
a healthy eating routine" and “I understand, you really love travelling", it may
perfectly happen that they are assigned to di�erent clusters, one that contains
mainly similar sentences about nutrition and the other one into a cluster more
related to travelling or to the introductory scenario. However, regarding the
dialogue act, both would be labelled as I understand. Last, if we increase the
number of clusters even more, the F1 score does not notably change anymore.
This is probably due to some clusters being divided, but then being mapped to
the same dialogue act. Thus, the classi�cation results are very similar.

Figure 4.10 also shows the relation between the selected number of clusters
and the coe�cient of variation of the number of turns per cluster, the WDH
system’s accuracy at the next utterance classi�cation task. The coe�cient of
variation of the number of turns per cluster (the ratio of the standard deviation
to the mean) indicates how balanced the number of turns per cluster is; a lower
coe�cient of variation implies that the clusters are more balanced, i.e., that they
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Figure 4.10.: Di�erent metrics in terms of the selected number of clusters. On
top, the coe�cient of variation of the number of turns per cluster.
At the bottom, the next utterance classi�cation accuracy in blue
(the scale is on the left), and the F1 score of dialogue act classi�ca-
tion from clusters in purple (the scale is on the right).

include amore similar number of turns each; whereas larger values indicate that
some clusters are very populated while others contain very few turns inside.
Lower values are therefore preferred, since they should allow better modelling
of the cluster �ow, as this data set would be more balanced. In our case, there
is a �rst and very notorious local minimum at around 25-30 clusters. Then the
values go up at 40 clusters and they are reduced again, even though slightly at
around 60-70 clusters. We decided to select 60 instead of 25 or 30 due to the
behaviour of the other metrics.

Last, the next utterance classi�cation accuracy is the noisiest metric. Any-
way, it is worse with fewer clusters (10-30), and then it improves after 40, with
the maximum at 60. Thus we believe that the choice of 60 clusters represents a
good balance between all these three metrics.

4.8.3 | C������ ��� �������� ��� ��������

This relation between dialogue acts and clusters is also visible if we analyse
the dialogue �ow. This can be done by arranging the clusters or dialogue acts
into a graph that shows the number of transitions between each of them. We
show such graphs for clusters in Figures 4.11 and 4.13, and for dialogue acts
in Figures 4.12 and 4.14. These have been built with the English version of the
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Figure 4.11.: A graph where nodes represent clusters, and their colours the sce-
nario of the system turns they gather. These experiments were
carried out with the English corpus.
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Figure 4.12.: A graph of system dialogue acts, coloured according to the sce-
nario they were used in. These experiments were carried out with
the English corpus.
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Figure 4.13.: A graph where nodes represent clusters, and their colours the di-
alogue phase of the system turns they gather. These experiments
were carried out with the English corpus.



124 E��������� EMPATHIC ��������� �������� �������

Figure 4.14.: A graph of system dialogue acts, coloured according to the dia-
logue phase they were used in. These experiments were carried
out with the English corpus.
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corpus. In all the diagrams, node -1 is the source, i.e. the nodes that come after
it represents the cluster/act of the �rst system utterance in a dialogue. On the
other side, node -2 is a sink; it represents the end of a dialogue. To keep the
graphs as informative as possible, we skip some minor transitions: we do not
show edges that correspond to less than �ve percent of the total transitions
from one cluster/act to another. This is the reason why some nodes have no
edges in their direction in the �gures.

In Figure 4.11, the clusters have been coloured according to the scenario of
the turns they gather. The brown nodes refer to clusters that mainly contain
turns used in the introductory scenario. Alternatively, the greener ones corre-
spond to clusters related to the GROW session about nutrition. The same colour
scheme has been applied in Figure 4.12, but for dialogue acts. If we focus on Fig-
ure 4.11, it is interesting that, while most of the clusters are one-sided, there are
a few that share introductory and nutrition turns. These often include generic
turns like con�rmations or backchannels. In general, we can see that the graph
can be split into two major regions: the browner one that corresponds to intro-
ductory dialogues, and a greener one that unravels the structure of the coaching
sessions about nutrition. The two regions merge almost exclusively at the end
of the dialogues, when the system bids farewell to the user. However, the dia-
logue act graph in Figure 4.12 is not so split. Even though many dialogue acts
clearly correspond to one scenario, many others are coloured in white, such as,
Thanking, I understand, Neg. feedback or Clarify. As aforementioned, the clus-
ters corresponding to these acts have probably been broken into several di�er-
ent clusters. Another dialogue act that is probably divided into many clusters is
Current situation, which is a very central node in the graph, meaning that it is
used in di�erent contexts. This makes sense, since it is necessary to analyse the
user’s current situation to establish a goal and carry out the coaching session
accordingly.

On the other hand, the graphs shown in Figures 4.13 and 4.14, where the
nodes are coloured in terms of the dialogue phase, show similar patterns. For
example, in this case we can deduce that the Topic label has also been divided
into multiple clusters. On the one hand, it is coloured in blue/green which
means that it contains many turns used when the dialogue is quite advanced;
but there is also an arrow from -1 to it, denoting that there are many dialogues
that start with that dialogue act. This makes sense, because the Topic dialogue
act groups utterances that open, close or choose a new topic. This distinction
has probably been learnt in the clustering, but is not shown in the dialogue act
graph.

Last, as expected, the �ow of the clusters is best modeled with GRUs as op-
posed to N-gram models. Table 4.15 shows the accuracy and top-N accuracy
(with N=3) on the test set for each language.
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Table 4.15.: Accuracy and top-N accuracy (with N=3) obtained by the cluster
sequence modelling models across the four languages on the test
set.

English Spanish French Norwegian
Acc. Top-N acc. Acc. Top-N acc. Acc. Top-N acc. Acc. Top-N acc.

GRU 0.350 0.581 0.346 0.567 0.327 0.592 0.356 0.616
2-gram 0.243 0.479 0.247 0.475 0.248 0.535 0.231 0.522
3-gram 0.183 0.352 0.188 0.376 0.177 0.413 0.173 0.396
4-gram 0.147 0.304 0.155 0.299 0.151 0.349 0.146 0.323

4.9 | C����������

Let us summarise the most notable �ndings of our research and their implica-
tions for developing intelligent conversational agents.

Bridging the gap between state-of-the-art Arti�cial Intelligence techniques and
current coachingmodels. If we compare the dialogue technologies used in coach-
ing agents found in the literature and the market and the ones employed in the
most novel and prominent chatbots, there is a big disparity. This is valid for
most of the health-care-related conversational systems too. In a nutshell, pro-
fessional dialogue strategies in health-care-related conversational agents are of-
ten implemented, at least partially, via hand-crafted policies. On the other hand,
state-of-the-art dialogue models are fully data-driven, and thus do not require
carefully designed policies, these are learnt from the data. We have shown that
it is possible to adapt and modify these novel technologies to develop complex
coaching conversations. This provides major bene�ts. First, it simpli�es the
whole design process. Second, the resulting dialogue models might potentially
perform better and for more domains than rule-based models, which can only
be programmed for a limited amount of situations. Nonetheless, there are still
limitations to this attractive approach. Its main drawback is a consequence of
the models being fully data-driven. It may happen that, for instance, the system
makes an error at some point in the dialogue, as a result of a non-completely
successful training; or there might also be some inconsistencies with the name
entities, because the system is not able to automatically coherently keep track
of them. While those errors could be solved in a rule-based system easily, they
have no direct solution in a fully data-driven model. Our proposals help allevi-
ate this issue by enhancing coherent responses, but they do not ensure errors
will not happen. Other research ideas, such as neural entity linking (Chi et al.,
2021), could be used to further improve in this area.

These methodologies are language agnostic. Classical modular dialogue sys-
tems require the development of some very language-dependent modules, such
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as the NLU or NLG modules, which often multiply the e�ort needed to develop
the conversational system in an additional language. In contrast, our models
in English, Spanish, French and Norwegian require just the same engineering
e�ort, which is encouraging. The only limitation is the pretraining step of the
generative model. In this regard, we have shown that pretraining the GPT-2
model on languages like French or Spanish with open domain corpora leads to
only slightly worse results than the ones obtained with the o�cial pretrained
English model. However, the experts evaluated the Norwegian system as much
poorer, due to fewer data being available for the pretraining. In any case, with
more and more research targeting non-English languages, we believe that the
di�erence in performance of conversational agents and other NLP models in
English and other languages should attenuate soon (Jiang et al., 2022), and that
therefore language-agnostic approaches like ours might gain popularity and
perform even better.

Improved response generation by conditioning the generative network using sce-
nario and dialogue phase embeddings. Our �rst methodological contributions
are the scenario and dialogue phase embeddings, which have led to better re-
sponse generation, as shown in Table 4.8. Learning this kind of embeddings
is very simple and very �exible too. As aforementioned, scenario embeddings
could be used in multi-task or multi-domain environments, which have gained
a lot of interest from the dialogue community (Eric et al., 2019; Rastogi et al.,
2020). Apart from enabling the use of a single system for all the domains, the
learnt embeddings could also provide information about each task and serve
as a tool for comparing them. We have not carried out such an analysis here
because there are only two domains in our corpus, but it would be interesting
to research in this topic in the future. As for the dialogue phase embeddings,
for the moment we have prede�ned when a dialogue phase starts and when it
ends, based on a manual inspection of our data. However, we believe that this
approach could be further enhanced, probably with mechanisms that learn the
beginning and the end of a phase in an unsupervised way. We think that the
WDH system could be useful to this end.

Improved long-term coherence via the WDH system and unsupervised dialogue
act learning. The proposed WDH system has shown great potential. It has im-
proved the performance of our baselinemodels in automatic and human evalua-
tion in the four target languages, showing that dialogue models actually require
long-term context information to keep more coherent conversations. There-
fore, this approach could also improve the performance of many dialogue mod-
els, especially in tasks where dialogues are longer and more structured. Tasks
requiring to process shorter dialogue histories (like the one presented next in
Chapter 5) would not bene�t much of the WDH system, especially if the whole
dialogue history can be used as input to the generative model.

Additionally, we have analysed the clustering process inside this long-term
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context system, and a strong correlation with dialogue acts has been found.
More precisely, as the experiments carried out in Section 4.8.2 indicate, the
clusters the system turns have been grouped in share to a certain extent the
dialogue act they were assigned in a manual labelling. In other words, cluster-
ing system turns and then mapping the corresponding cluster into a dialogue
act is almost as e�ective as directly applying supervised learning from the low-
dimensional turn embeddings, and not exceedingly worse than classifying the
whole turn embedding. Thus, we hypothesise that building a similar system
that uses dialogue acts would not outperform our proposal by a big margin.
This is important, since many conversational agents rely on dialogue act rep-
resentations, which involve costly and time-consuming annotations. We hope
that our e�orts to �nd alternatives will trigger other researchers’ interest in
alternative (and potentially unsupervised) turn representations, which could
simplify the process of building and designing conversational systems.
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5.1 | I�����������

Recent advances in self-supervised speech representation learning have opened
the door to new ways of including acoustic information in AI systems. Moti-
vated by the success of similar approaches in NLP, these speech representa-
tions are learnt by transformer-based neural networks using unlabeled data
only. They have demonstrated to be really powerful. State-of-the-art results
(or close to that) can be obtained relatively easily in a variety of audio-related
tasks using them, even if small domain speci�c data is available (Baevski et al.,
2020; Pepino et al., 2021; Seo et al., 2021).

Nonetheless, the application of such audio embeddings in SDSs remains yet
largely unexplored. SDSs are inherently devoted to process the users’ audio
signal and to provide the most convenient response given the dialogue con-
text. But due to the di�culties of working directly with audio signals, these are
often mapped into words using an ASR, and then NLP techniques are applied
to understand the user and act accordingly. This approach is very dependent
on the ASR providing a correct transcription, which might not be the case in
noisy environments, or if the user is non-native or has an uncommon accent
(Litman et al., 2018). Moreover, this approach ignores important information
in the users’ speech, such as their emotional mood, prosody, or the noise level
of the environment, which could be key to carry out a better dialogue strat-
egy. This argument is supported by previous studies with young adults that
have compared video chat, audio chat and text-based chat, where the latter has
shown lower levels of bonding than the other forms of interaction (Sherman
et al., 2013).
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In this chapter, we study how audio embeddings can be used to include this
kind of information in dialogue policies, and yield better dialogues policies. We
propose a transformer-based DM capable of processing both the text dialogue
history and the audio signal of the last user’s turn. We compare it against a
version of itself that does not explicitly process audio, in a variety of conditions
and with di�erent learning algorithms. We also compare three of the latest
audio embedding models (Wav2Vec2 (Baevski et al., 2020), HuBERT (Hsu et al.,
2021) and UniSpeech-SAT (Chen et al., 2021)) and two di�erent methodologies
to extract the speech representations from the user turns. Automatic metrics,
human evaluation and manual inspection in the DSTC2 dataset are in favour of
our hypothesis: audio embeddings help to learn better dialogue policies.

We analyse the e�ects of adding audio embeddings to dialogue policies com-
bined with text representations obtained from two ASRs’ output (of di�erent
qualities) and manual transcription. Regarding training algorithms, we experi-
ment with SL and two policy gradient-based RL algorithms. Consequently, we
identify under which conditions audio embeddings help to learn better dialogue
policies: they help the most with noisy ASRs, especially when the policies are
learnt via Supervised Learning. Whilst speech representations allow a better
user understanding in many occasions (e.g. identify what kind of information
is being requested), they are also able to indicate the system that a turn has been
noisy and that the ASR transcription might not be very reliable in some cases.
We have also found that the improvements are higher when learning policies
via SL as opposed to RL, because RL policies adapt better to the uncertainty in
the ASR output.

Additionally, and in order to carry out this experimentation, we extend the
conventional pipeline for dialogue simulations. The simulations are needed to
train RL policies and also to evaluate the performance of the policies in terms of
task completionmetrics. Such pipelines include a UserModel (UM)module that
simulates the behaviour of the users, by outputting dialogue acts or generating
text. In those cases, the e�ect of the dialogue being spoken is usually simulated
by introducing arti�cial errors to the UM output. However, for our research
the audio signal corresponding to the user’s turn needs to be fed into the DM.
Thus, we propose an additional contribution: a novel User Audio Sampler. This
module is capable of sampling audio turns that correspond to the output of
the UM from the corpus. Sampling probabilities are adjusted depending on
the last user dialogue act, the turn number in the dialogue, and the number of
repetitions of the corresponding dialogue act.

The rest of the chapter describes related works in Section 5.2, our proposed
approach for audio-based policy learning in Section 5.3, the User Audio Sam-
pler in 5.4, our experimental framework (corpus, simulation pipeline, evaluation
metrics and learning algorithms) in Section 5.5, experimental results and analy-
sis (automatic evaluation, audio embedding comparison, human evaluation and
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a manual inspection of the models) in Section 5.6, and Section 5.7 presents our
conclusions. A preliminary version of the research described in this chapter
has been presented in a conference paper at ASRU 2021 (López Zorrilla et al.,
2021b), and the complete version has been be published in the TASLP journal
(López Zorrilla et al., 2022).

5.2 | R������W���

The inconveniences caused by relying only on ASR outputs to make decisions
have been previously treated in di�erent ways in SDSs and related areas. Some
classical approaches to deal with this problem have focused on extracting as
much information as possible from the ASR at hand. For example, a conven-
tional methodology to build more robust SDSs consists of processing the topN
hypotheses of the ASR rather than just the main output (He and Young, 2003).
Some other alternatives make decisions based on ASR word con�dence scores
(Hakkani-Tur and Riccardi, 2003) or word confusion networks (Hakkani-Tür
et al., 2006; Justo et al., 2011), which were proposed around two decades ago
and are still in use nowadays (Swarup et al., 2019) in SDSs and in Spoken Lan-
guage Understanding (Weng et al., 2020; Ganesan et al., 2021). In the same vein
and though hard to scale up, POMDP-based dialogue managers (Williams and
Young, 2007) were developed to cope with the uncertainties related to SDSs, in-
cluding ASR outputs. Other e�orts to include information present in the users
audio signals but absent in the ASR transcription can be found in the area of
emotion aware dialogue systems (Pittermann and Pittermann, 2006; Olaso et al.,
2021). This kind of systems often include a module devoted to emotion recog-
nition from audio, whose output is employed by the dialogue manager in the
decision making step. However, none of the methods presented in these works
explicitly process speech representations and make decisions based on them.

Closer to our work, we can �nd the research area of end-to-end spoken
language understanding, where an audio is mapped into semantic labels di-
rectly. The encoder-decoder approach was the �rst way to tackle this problem
(Haghani et al., 2018). Lately Wav2Vec2, one of the audio embedding networks
that we use in this study, has also been used to this end (Seo et al., 2021), show-
ing the potential of this transformer network. But these studies focus on classi-
fying audio signals, not on making decisions based on them, which is a notable
di�erence when comparing them to our investigation.

The number of previous works describing dialogue systems that process the
users’ audio directly (without an ASR) is rather scarce. Nguyen et al. (2018)
and Le et al. (2019) present sequence-to-sequence models that process audio
features in the context of audio visual scene-aware dialogue (AlAmri et al., 2019,
2018), where the system has to answer a number of questions related to an
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audio visual scene. However, the audio to be analysed is not the users’ audio,
but the scenes’ one. Closer to our approach is Shi and Yu (2018), who explore
the inclusion of user sentiments in end-to-end dialogue systems. They train
a dialogue policy that takes some audio features as input via SL. They found
however that using the output of an external sentiment classi�er worked better
than the raw features. They also �ne-tuned their DM using RL, but without
including audio features.

Thework presented in Young et al. (2020) is probably the closest to ours. They
investigate the inclusion of users’ audio in an LSTM-based encoder-decoder
network for response generation in open-domain dialogue using SL only, not
RL. To this end, they �rst train word-level audio embeddings in a response se-
lection task and then concatenate those to traditional word embeddings to form
the input to the network. In contrast to their work, our approach is simpler in
terms of implementation, we use novel audio embedding networks which re-
quire no further pretraining, and we apply it to task-oriented dialogue data.
In addition, the audio representations used in Young et al. (2020) were trained
without taking into account the word order in the turns, which could miss valu-
able audio information such as prosody.

In this chapter we also show that our dialogue policies can be easily �ne-
tuned using both SL and RL. Even though (deep) RL has established method-
ologies to train di�erent types of dialogue systems (Casanueva et al., 2018;
Cuayáhuitl et al., 2017; Takanobu et al., 2019; Williams and Zweig, 2016), the
user simulators employed in previous works only generate either words or di-
alogue acts—not audio. In contrast, we present a novel User Audio Sampler
capable of providing audio-based dialogue turns. We refer the readers to (Latif
et al., 2021) for a more-in-depth analysis of RL in spoken dialogue systems.

5.3 | A�����A���� D�������M���������

Tomeasure the impact of including speech representations in DMs, we compare
policies that make decisions based on text-based dialogue history only against
policies that process the history in the exact same way but also include audio
embeddings to represent the last user’s turn audio signal. We use a simple
but contemporary architecture for our dialogue managers, see Figure 5.1. First,
�xed-length representations from the dialogue history and the last user’s turn
audio are obtained with di�erent architectures of transformer networks. Then,
a linear predictor is used to compute the unnormalised probability distribution
of the system’s next dialogue act. Dialogue acts (as meanings of utterances) are
used as output because they facilitate the integration of a user model and the
policy optimisation with RL.
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Figure 5.1.: Proposed dialogue manager architecture using audio-textual fea-
tures.

Text dialogue history. A pretrained GPT-2 transformer network (Radford
et al., 2019) is used to process the text dialogue history and is �ne-tuned dur-
ing the training process. This approach has shown great success in both open
domain (Roller et al., 2020) and goal oriented (Ham et al., 2020) dialogue man-
agement. Each turn in the dialogue history is represented as raw text, i.e. no
dialogue acts or named entities are used as input to the policies—to keep our
approach as simple as possible. The sequence of turns are processed with a
pretrained BPE tokeniser before being fed to the GPT-2 network. We employ a
strategy similar to Wolf et al. (2019) to build the input to the GPT-2 network;
three sequences of embeddings are added before being fed to the transformer,
as represented in the example of Figure 5.2. First, the sequence of token em-
beddings is generated by concatenating the text of the turns in the dialogue
history and processing it with a pretrained BPE tokeniser (�rst row in Figure
5.2). Dialogue turns are separated with special tokens (<sys> or<user>) that
indicate when system or user turns start. The second input sequence is made of
segment/speaker embeddings, and is devoted to underline whose turn is (sec-
ond row in Figure 5.2). The aforementioned <sys> and <user> tokens are
used to this end. Last, the position embeddings provide the notion of order, as
in most transformer networks (Radford et al., 2019) (third row in Figure 5.2).
A <DA_pred> token is appended to the token and segment embeddings to
indicate that the input sequences are complete and the dialogue act prediction
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should be made. In the example, the <API_call> and <no_DB_result>
are used to log database searches in the dialogue history, as explained later in
Section 5.5.2.

Figure 5.2.: Example set of inputs as part of the ’text dialogue history’ in Figure
5.1 showing how it is represented in the proposed dialoguemanager
architecture.

Last user’s turn audio. We combine text with speech-based representations
of the last user’s dialogue turn. We compare three audio embedding mod-
els trained with self-supervised learning: Wav2Vec2 (W2V2 in short) (Baevski
et al., 2020), HuBERT (Hsu et al., 2021) or UniSpeech-SAT (also referred to as
‘UniS.’) (Chen et al., 2021). Even though each model is trained in a particu-
lar manner and has unique features, they all share a similar neural network
architecture: a Convolutional Neural Net to digest the raw audio signal, and
a multi-layer transformer on top of it to produce representations at di�erent
levels of abstraction, depending on the layer.

We keep the audio embedding models frozen during training, as recent stud-
ies (Yang et al., 2021) have shown that great success can be achieved in a num-
ber of tasks via linear predictions from the audio embeddings only, without
any need of �ne-tuning. The three audio embedding models employ a 12-layer
transformer with a hidden size of 768. Thus, they output 768⇥12 values per
time frame. They output 50 sets of vectors per second, and so the total is too
high to directly perform predictions from them. In order to reduce the size of
the representations to enhance our training procedure, we average the output
of each layer in the time dimension, as suggested by Yang et al. (2021) and Chen
et al. (2021). We further reduce the dimensionality of the speech representations
by selecting the output of a subset of layers. We do not just use the last layer
because its representations might well not be the best (Yang et al., 2021), de-
pending on the task. In Section 5.6.2, we study which are the best layers for
each model in our case.

Furthermore, we also explored the option of �ne-tuning the audio transform-
ers instead of keeping them frozen, in Section 5.6.2. However, we obtained
poorer results, and therefore the experiments presented in this chapter are car-
ried out without �ne-tuning the audio embedding models.



U��� A���� S������ 135

5.4 | U��� A���� S������

User simulations often output a dialogue act corresponding to the next user
turn, which is then converted to text via a user NLG. This approach, however,
is not appropriate in the proposed framework because of the requirement of an
audio signal corresponding to that text.

In order to optimise the chance of �nding an audio corresponding to the
output of the UM, we do not use any NLG. Instead, we directly search for turns
labeled with the same dialogue act and associated slots in the corpus of real
dialogues. Multiple user turns are found in most cases, unless the UM generates
dialogue act-slot combinations not appearing in the corpus. From the set of
candidates, any turn should already be valid and its audio and transcription (if
needed) could be provided to the next module in the dialogue system. However,
we consider a couple of factors that make some candidates potentially more
suitable than others.

First, we take into account the turn number of the current simulated dialogue
compared to the turn number of a given candidate. The justi�cation is as fol-
lows. Assume that a dialogue is taking too long and the user starts to feel tired
of the interaction. The user may speak in a di�erent way than in the �rst few
turns (when the user �rst met the system). We assume that selecting a turn that
occurred in a similar situation (turn number-wise) of the dialogue to the one
the simulation is in should lead to more realistic simulated dialogues, and with
potentially more relevant audio information.

The second factor is the number of repetitions of the dialogue act output
by the UM in the dialogue, and its reasoning is the following. Assuming that a
given dialogue act/slot combination has been usedmore than once in a dialogue,
it is probably due to the system not understanding it correctly and requesting
the same information again. When such a situation happens in a dialogue, users
tend to get upset on the one hand, and to speak louder and slower on the other
hand. This information should also be re�ected in the audio signal and could
be exploited to improve dialogue policies.

Thus, the sampling probability of the candidate user turns is computed as
follows. First, we compute a score for each candidate in terms of the aforemen-
tioned two criteria according to:

si =
1

|ti � td|+ ✏
+

1

|ri � rd|+ ✏
,

where si is the score obtained by the i-th candidate, ti is the turn number of
the candidate in the original dialogue in the corpus, td is the turn number of
the simulated dialogue, ri is the number of repetitions of the dialogue act/slot
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combination in the original dialogue until the appearance of the candidate, rd is
the number of repetitions of the dialogue act/slot combination in the simulated
dialogue so far, and ✏ a small constant to prevent divisions by zero.

The scores are then converted into probabilities by dividing them by the sum
of all the scores.

5.5 | E����������� ���������

5.5.1 | C�����

Recent dialogue corpora released in the last few years (e.g. MultiWOZ
(Budzianowski et al., 2018), STAR (Mosig et al., 2020) or SGD (Rastogi et al.,
2020)) have focused on text based dialogue modelling and do not include audio.
Some of the largest spoken dialogue corpora are the DSTC 1, 2 and 3 datasets
(Williams et al., 2013; Henderson et al., 2014a,b). Among these, the DSTC2
dataset (Henderson et al., 2014a) is by far the most used corpus for research
in spoken dialogue technology and therefore we use this corpus in this work,
which also allows us to more easily develop the whole dialogue pipeline due to
the publicly available modules for this task.

DSTC2 contains 3235 human-machine dialogues in the domain of restaurant
search, acquired with three di�erent dialogue systems. The corpus makes use
of 8 slot types: area, food type, restaurant name, price range, address, phone,
postcode and signature. All the slots are requestable, which means that users
can ask for information about any of those. For example, they may ask about
the phone number of a given restaurant. In contrast, only the �rst 4 slot types
are informable, i.e. they can be used to constraint in the restaurant search. This
means that users can look for restaurants by area, food type or price range, but
not by postcode for example. The corpus is split into three partitions: train, dev
and test, which contain 1612, 506 and 1117 dialogues respectively. Wemerge the
original dev and test partitions to build our testing data. In that way the training
and test partitions have the same amount of data. This is important because the
module in charge of sampling user audios—the User Audio Sampler presented
in Section 5.4—is sensitive to the number of available audio turns to sample
from. This is done to prevent biased user behaviour.
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5.5.2 | D������� �������� ��� �����������

We use dialogue simulations to evaluate the performance of our dialogue poli-
cies and to train them using RL. The simulation pipeline is illustrated in Fig-
ure 5.3. The remaining of this subsection describes its components.

Figure 5.3.: Complete simulation pipeline. Our contributions are related to the
modules highlighted in purple.

Dialogue Manager Details. Our dialogue polices use the publicly avail-
able small pretrained GPT-2 architecture and the so-called Base one for the
Wav2Vec2, HuBERT and UniSpeecch-SAT networks. Our dialogue states take
into account a dialogue history truncated to the last 9 turns to avoid excessive
GPU memory consumption. Our dialogue actions use composite dialogue acts
to support multiple dialogue acts in a single dialogue turn (e.g. confirm | area

+ request | food), similarly to the procedure in DeepPavlov DSTC2 (Burtsev
et al., 2018). The reward function and learning algorithms used for selecting the
best dialogue act in each state are described in Section 5.5.4.

Database. Although no database was released as part of DSTC2, database
calls can be inferred from the data to form a large enough dataset to perform di-
alogue simulations with it. Our policies are thus able to make database queries.
In order to log this activity in the text dialogue history, every time a database
query is made, the token <API_call> is added to the dialogue history. If the
query is successful, the token<DB_result> is added. The token<no_DB_-

result> is concatenated otherwise. When multiple restaurants are retrieved,
only one is selected (randomly). Thus, all information that the system may
provide in subsequent dialogue turns would correspond to that result. If new
user constraints are detected and the dialogue manager makes a new successful
API call, the information retrieved from that point onwards would correspond
to the latest search result.



138 S����������� ������ �������� ����������

Named Entity Recogniser. Since our dialogue policies output dialogue acts
containing one or a few slots, we use a Named Entity Recogniser (NER) to
extract named entities from user turns to �ll the slots of the dialogue acts.
Our Name Entity Recogniser (NER) component, based on fuzzy matching, is
a slightly improved version of DeepPavlov’s NER for this task.

Slot Filler and NLG. We use a rule-based slot �ller to select the slot val-
ues associated to a dialogue act. As a dialogue progresses, we keep track of
the recognised named entities by the NER module and the output of database
searches. Depending on the dialogue act, we �ll the slots with the last values
produced by the NER or database modules. Our NLG module produces text
corresponding to the system turns given a pair of dialogue act and selected
slots using prede�ned templates. Since the user model works at the dialogue
act level, the generated text is only used to �ll the dialogue history. The slot
�ller is also in charge of selecting the search criteria for the database searches,
based on the last entities recognised from the user. For instance, in the previ-
ously shown example of Figure 5.2, the only recognised entity would be Basque.
Therefore, the only condition in the consequent database search would be that
the food type is Basque, and there would not be any constraint regarding the
area or the price range.

User Model (UM). Our UM is based on Attributed Probabilistic Finite State
Bi-Automata (Serras et al., 2019a; Serras, 2021; Torres, 2013). It is data-driven
and works at the dialogue act level, and its goal is selected at the beginning
of the simulations according to the goal probability distribution found in the
corpus. We built a UM with the training data to learn RL policies, and a UM
with the test data to evaluate the performance of all policies. It may happen
that the dialogue act/slot combination output by the UM is not present in the
corpus. In this case no audio signal can be sampled by the User Audio Sampler,
and the simulation ends prematurely. This happens in 20% of the dialogues,
but fortunately the sampling errors occur in the very �rst user turn almost
exclusively (96% of the times), due to the constraint combination of the user
goal not appearing in the dataset. This means that only very rarely computation
time is wasted without adverse e�ects, in 0.8% of the simulations.

ASR/Transcription. Our experiments use three types of textual inputs:
Manual transcriptions (TRSs), and two automatic speech recognition systems
of di�erent quality. The noisiest ASR (ASR 1) is based on a Wav2Vec2 network,
where the wav2vec2-base-960h checkpoint was �ne-tuned using 960 hours of
Librispeech (Baevski et al., 2020). It achieved a Character Error Rate (CER) of
24.5 in the DSTC2 corpus, and a WER of 45.8. For the second and better per-
forming ASR (ASR 2) we chose the best English model provided in the Vosk
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toolkit1, the vosk-model-en-us-0.22 model. The CER and WER errors were
lower for this ASR, 10.1 and 21.0 respectively.

5.5.3 | A�������� ���������� �������

Our dialogue policies are evaluated automatically via simulated dialogues us-
ing the test user model. Their performance is measured with three common
task-completion metrics bounded between 0 and 1 (Serras, 2021; Kreyssig et al.,
2018).

User Request Score (URS) indicates whether the system answers to the user in
focus. It is the ratio between user informs answering a user request and user
requests. For example, this score is high if the system provides an address after
the user has requested it. This metric does not take into account, however,
whether that address is correct or not, i.e., if it corresponds to the restaurant
they are talking about or not. Whenever the user does not explicitly request
any information, this score is not computed. This typically happens when the
system provides information without the user requesting it.

System O�ered Valid Venue (SOVV) indicates the correctness of system in-
forms. It is the ratio between system informs that satisfy the constraints of
the user and the total informs.

Can’t Help Score (CHS) is only computed in a small fraction of the dialogues,
about 20% approximately. Sometimes the UM has unreachable goals; for exam-
ple, a user may want to �nd a Basque restaurant in the west of town, but there
is none. In that case, the system should inform that there is no way to �nd
such a restaurant. This score is 1 if the system provides this information, and 0
otherwise.

For simplicity and completeness, we use a combination of the three scores,
which we call Evaluation score. Instead of de�ning it as the average of the three
scores, we perform a weighted average with a lower weight for URS because it
is a simpler task in which all the policies achieve close to perfect (>0.95) results.
Lowering the URSweight gives more importance to the other two scores, which
di�er more across policies. In this way, the evaluation score aims to re�ect more
clearly the di�erences between policies. It is de�ned as:

Evaluation score = 0.2 · URS+ 0.4 · SOVV+ 0.4 · CHS.

If any of the three scores above is not computed, the weights of the remaining

1https://alphacephei.com/vosk/models.

https://alphacephei.com/vosk/models
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scores are increased proportionally to keep the score bounded between 0 and
1.

5.5.4 | E���������� ��������

We carry out three sets of experiments. First, a detailed study of the e�ects of
adding di�erent audio embeddings to dialogue policies in di�erent setups. We
experiment with two ASRs and manual transcription for the text part of the
network, and with three learning algorithms. We report the results in terms
of automatic metrics in Section 5.6.1. Second, we compare di�erent ways to
add audio embeddings to dialogue policies, in Section 5.6.2. Third, in Section
5.6.3 we perform a human evaluation to further validate the results obtained
in the �rst experiment, particularly the models that bene�ted the most by the
inclusion of audio embeddings. Last, in Section 5.6.4, we inspect some of the
resulting dialogue policies to further understand in which cases the decisions
led by the audio part of the networks result in more successful dialogues.

5.5.4.1 | T������� ���������

The automatic metrics are computed and averaged after a number of indepen-
dent training runs to provide statistically meaningful results. The procedure
followed to train and evaluate the di�erent SL and RL policies is as follows:

I. We start by training text-only baselines for each input type (2 ASRs and
TRS). For each input type, we train 6 di�erentmodels and provide average
results. Each model is evaluated with 5K dialogues with the test UM.

II. For each text-only SL model, we train each audio embedding part 5 in-
dependent times using SL. Thus, 30 (6⇥5) models are trained for each
input type and audio embedding transformer (Wav2Vec2, HuBERT and
UniSpeech-SAT). The GPT-2 network is kept intact in this stage to di-
rectly measure the impact of audio embeddings. Each model is evaluated
with 1K dialogues with the test UM.

III. For each text-only SLmodel, run REINFORCE (Williams, 1992) andActor-
Critic (Konda and Tsitsiklis, 1999) RL algorithms 5 times without includ-
ing any speech representations. As a result, 30 models are trained per text
input type and RL algorithm. Each model is evaluated with 1K dialogues.

IV. Finally, re-train every output model of step two using REINFORCE and
Actor-Critic and evaluate its performance with 1K dialogues. In this case,
both the text and audio parts are trained jointly.

Thus, for each combination of learning algorithm, text input type, and audio
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embedding model or just text input, 30K test dialogues are obtained in total (6
models ⇥ 5K dialogues for the text-only baselines, 30 models ⇥ 1K dialogues
otherwise). We also attempted training the RL policies from scratch without
a SL baseline, but it was much harder to make them converge and the results
were a lot poorer.

5.5.4.2 | S��������� L������� �������

We use 4 epochs of SL training for the text only baselines, and 2 epochs when
training the audio part only. A batch size of 4 is used throughout all the exper-
iments, and the cross-entropy loss at the dialogue act level is minimised using
the Adam optimiser with a learning rate of 5e-5.

5.5.4.3 | R������������ L������� �������

REINFORCE and Actor-Critic are policy gradient RL algorithms that learn a set
of weights ✓ in order select action a in state s according to policy ⇡✓(a|s). We
designed three reward functions, two sparse ones (Rs1 and Rs2) and a dense
one (Rd), as follows:

Rs1 =

(
100 · score if end of dialogue,
�1 otherwise,

Rs2 =

(
100 · score if end of dialogue,
�0.1 otherwise,

Rd =

8
><

>:

100 · score� 50 · (1� score) if end of dialogue,
50 · score� 25 · (1� score) if score is updated,
�0.1 otherwise,

where score is the evaluation score described in Section 5.5.3. While the jus-
ti�cation of Rs2 is due to dialogue optimisation with less weight on dialogue
length, Rd is motivated by using denser rewards as opposed to sparse ones.
Preliminary experiments presented in Section 5.6.2.4 Rd clearly indicate that
Rd is the most suitable reward function. We therefore used this one in almost
all the experiments, and we will refer to it just as the reward unless otherwise
stated.

A discount factor of 0.95 and the Adam optimiser were used with a learning
rate of 5e-6 in all the RL experiments. In the case of the Actor-Critic algorithm,
the Actor (policy) and the Critic (estimated value function) use separate net-
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works initialised with the resulting weights after the SL stage, except the linear
predictor. We experienced some convergence problems with the actor-critic al-
gorithm, which were solved by implementing two separate losses (one for the
actor and the other for the critic). In addition to that, we used gradient clipping
to prevent gradient exploding.

5.6 | R������

5.6.1 | A�������� ���������� �� ��� ��������
��������

(a) ASR 1, evaluation score. (b) ASR 1, cumulative reward.

(c) ASR 2, evaluation score. (d) ASR 2, cumulative reward.

(e) TRS, evaluation score. (f) TRS, cumulative reward.

Figure 5.4.: Performance of dialogue policies on the test UM after Supervised
Learning, REINFORCE and Actor-Critic with di�erent audio em-
bedding models.
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Table 5.1 and Figure 5.4 show the performance of our learnt policies using
the test UM according to evaluation scores and cumulative rewards. The bot-
tom half of Table 5.1 shows results broken down into the three task completion
metrics used to compute the evaluation score. The star symbol (*) indicates
that values obtained using audio embeddings are signi�cantly better than the
ones corresponding to text only policies. More speci�cally, they mean that p-
value0.05 using the Welch’s t-test, which tests whether two populations have
equal means, without assuming equal variances. We use such a statistical test
and p-value threshold in all the comparisons in this chapter. In addition to the
above, Table 5.1 shows results of our dialogue policies using manual transcrip-
tions (see values in grey)—n.b. those policies do not compete against the ones
processing ASR outputs because they do not make decisions based on noisy in-
puts. The values in purple in this table correspond to the policies in the human
evaluation described in Section 5.6.3.

These metrics show that including speech representations can help to learn
better dialogues policies. But that depends on the learning algorithm and the
quality of the text input. Regarding learning algorithms, SL policies clearly
bene�t the most by the inclusion of audio embeddings. This can be noted in SL
policies including speech representations generated with either of the three au-
dio embedding models, which signi�cantly improve their performance. This is
especially accurate for ASR 1, which suggests that audio embeddings are more
bene�cial in the case of noisier ASRs. Analysing the results per task completion
metric, URS consistently improves signi�cantly when using speech representa-
tions, SOVV in the case of ASR 1 and manual transcription, and CHS only with
ASR 1-based text input.

RL-based policies do not bene�t as much from audio embeddings as SL poli-
cies. The biggest improvement happens with REINFORCE and ASR 1 text in-
puts, where the evaluation score improves signi�cantly by adding the speech in-
formation generated by UniSpeech-SAT, and so do the cumulative reward (with
both Wav2Vec2 and UniSpeech-SAT embeddings) and URS (with UniSpeech-
SAT and HuBERT). The improvements in Actor-Critic policies are much more
scarce. Despite some exceptions, adding audio embeddings does not seem to
help much. In fact, the absolute better results in terms of cumulative reward
are obtained by polices that do not use audio embeddings—but the di�erences
between policies using and not using audio embeddings are not signi�cant. This
is in contrast with REINFORCE, where the better results were always obtained
with policies processing audio embeddings in addition to the text input (with
some exceptions in the CHS metric), even though the di�erences in perfor-
mance were not always statistically signi�cant.

Why do audio embeddings help more when learning policies via SL instead
of RL, especially with the noisier ASR? A dialogue policy trained via SL mimics
the behaviour of the system in the corpus. Its performance is thus highly in�u-
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enced by the information available at the decision making stage. If the training
data contains a decision based on information that the learning policy lacks, it
would hardly be able to imitate that action. Information can be lost, for instance,
due to a poor ASR performance. Additionally, the ASRs employed to acquire
the DSTC2 provided a top N list of hypotheses, which could also provide some
information about the environmental noise (if the hypotheses di�er greatly, for
example). This lost information could be provided by the audio embeddings,
and that could be the reason of the better performance of the SL policies that
use them. In fact, as shown later in our study (see Table 5.7), the speech rep-
resentations contribute to a better user understanding, which is re�ected in a
signi�cantly lower amount of user requests per dialogue. This can also be seen
in Table 5.1, which shows big improvements in the URS score in SL. Similarly,
audio embeddings also encode information about the noise present in the user’s
audio signal, which can lead to relevant system requests of repetition that avoid
misunderstandings.

In contrast, policies trained via RL learn their behaviour through interac-
tion with the UM. This allows them to develop alternative strategies to avoid
misunderstandings and deal with the input’s noise. In general, such strategies,
particularly the Actor-Critic ones, are more conservative than the SL policies.
Brie�y, the RL policies perform more con�rms and ask the user to repeat their
constraints more (oneway or another) before trying to look for a suitable venue.
Thus, these polices are less sensitive to the input noise (whether environmen-
tal or introduced by the ASR), and therefore bene�t less from the inclusion of
speech representations. We discuss this topic further in Section 5.6.3.

Figure 5.5.: Learning curves of dialogue policies with/without audio embed-
dings.

Figure 5.5 shows the evolution of the rolling average (over windows of 300
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dialogues) of cumulative reward throughout the training process. It shows the
learning curves corresponding to the ASR 1 text input and the UniSpeech-SAT
audio embedding model—the same policies used in the human evaluation. Note
that during SL the cumulative reward is not optimised explicitly. Instead, we
minimise the dialogue act level cross entropy loss. But we show it for clarity
and completeness. On the left hand side of the �gure, we can clearly see the
impact of adding audio embeddings during SL (blue vs. red curve). After the
�rst two epochs of SL with only text input, the performance of that policy only
improves slightly, indicating that there is not much more room for improve-
ment. The audio part of the dialogue manager is then added after the fourth
epoch is �nished. Since the audio part of the linear predictor is randomly ini-
tialised, a drop in performance can be seen at the beginning of the �fth epoch,
the �rst with audio embeddings. Shortly after that drop, the bene�ts of adding
speech representations appear. The policy recovers its performance and im-
proves much quicker than in the third or fourth epochs. At the end of epoch
six, the cumulative reward was ⇠10 points higher than epoch four. This is
worth noting because the text part of the policy was kept untouched during
the last two epochs. Thus, the improvements obtained in this period are due to
the inclusion of audio embeddings only.

On the right hand side of Figure 5.5, we can see that RL policies on top of
SL policies improve steadily their performance. But the di�erences between
policies using and not using audio embeddings are largely reduced in RL. After
several hundreds dialogues, the di�erences in the Actor-Critic policies vanish—
this e�ect is not so sudden with REINFORCE. It can be seen that REINFORCE is
more unstable than Actor-Critic, and only in the middle of the training process
the policies using ASR 1 output only level up, on average. In the second half of
training, the policies combining this inputwith the UniSpeech-SAT embeddings
keep improving, though slightly, whereas the text only policies seem to have
converged.

5.6.2 | A���� ��������� ��� ������ ��������
����������

5.6.2.1 | W���� ����� ��������� ����� �� ����?

To answer this question Table 5.2 summarises the results shown in Table 5.1, but
averaged over the algorithms and input types. It can be seen that UniSpeech-
SAT performs slightly better than HuBERT and Wav2Vec2 respectively, as one
could expect from previous comparison studies between these networks (Yang
et al., 2021; Chen et al., 2021) applied to other tasks. But there are no statistically
signi�cant di�erences across these models in our task.
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Table 5.2.: Performance comparison of audio embeddings in our task based on
average results from Table 5.1.

Wav2Vec2 UniSpeech-SAT HuBERT

Evaluation score 0.892 0.893 0.892
Cumulative reward 135.1 135.8 135.4

Nevertheless and even if the three models perform similarly in our task, the
best way to extract the audio dense vectors from those models can be further
explored. To address that, we compared the cumulative reward obtained us-
ing the test UM when selecting di�erent layers (or set of layers) from those
models. As aforementioned, the output vectors of each selected layer were av-
eraged over the time dimension to obtain easy-to-handle �xed-length vectors.
We compared the output of each of the 12-layer transformers individually, and
two combinations of 2 and 4 layers. The results are shown in Figure 5.6 with
average rewards over three text input types on SL policies.

Figure 5.6.: Dialogue reward per neural layer of three audio embedding models.

It is worthmentioning that every combination of output layer and embedding
model outperforms the results obtained with text only. Besides, HuBERT and
UniSpeech-SAT follow a similar pattern, which is reasonable since UniSpeech-
SAT was trained inspired by the methodology used to create HuBERT (Chen
et al., 2021). In both cases the worst results are obtained with shallow layers,
and the best ones with the last �ve layers. Moreover, the tested combinations
of layers work quite well, presumably because they include layers that worked
well individually in both cases. In contrast, Wav2Vec2 has a clear drop in the
performance from layer 9 onwards. Consequently, the combinations of layers
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we tested did not perform too well because they include the last layer. This
comparison was performed at the beginning of our experimentation to select
the output layers for each model according to Figure 5.6, and kept them un-
changed during the rest of experiments presented in this work. Speci�cally, the
8th layer was selected for Wav2Vec2; the combination of the 6th and 12th layers
for HuBERT and the set of the 3rd, 6th, 9th and 12th layers for UniSpeech-SAT.

Table 5.3.: Performance of SL dialogue policies using the test UM after �ne-
tuning the audio embedding models.

Wav2Vec2 UniSpeech-SAT HuBERT

Fine-
tuned Frozen Fine-

tuned Frozen Fine-
tuned Frozen

Evaluation score

ASR 1 0.780 0.790* 0.778 0.792* 0.779 0.795*
ASR 2 0.933 0.935 0.933 0.932 0.936 0.937
TRS 0.940 0.951* 0.940 0.947* 0.941 0.948*
Cumulative reward

ASR 1 85.6 89.5* 85.0 90.4* 85.5 91.4*
ASR 2 137.8 140.3* 137.0 141.1* 138.0 141.6*
TRS 140.3 147.0* 140.4 147.4* 140.8 146.1*

5.6.2.2 | H�� ����� ����������� ��� ����� ��������� ����
��� ������� �� ������� ���� ������?

Throughout this chapter so far, the audio embedding models have been kept
frozen and only the linear predictors on top of them have been trained. As an
additional experiment, also using SL only, we explored an alternative method-
ology that consists of using the last output vector (in the time dimension) of
the last transformer layer as a summary of the whole input. Since this vector
should contains less information than over all the time steps, the transformer is
�ne-tunedwhile training. This way it should learn to include all the relevant in-
formation in that �nal vector. Table 5.3 shows performance results compared to
those described in Table 5.1. It can be observed that transformers with frozen
layers outperform the �ne-tuned ones. Nonetheless, we should remark that
even if this alternative strategy seems to be worse than the main one, the re-
sults obtained with it are still better than with a text input only. This means
that the alternative strategy can be valid, but the main one seems to be better
in this experimental setup. We hypothesise that the better performance of the
frozen audio embedding models might be due to the following reasons: 1) the
last output vector in the time dimension contains notoriously less information
than the average over time, and a simple �ne-tuning with a small amount of
data is not enough to train the network e�ectively to encode all the necessary
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information in that vector; and 2) �ne-tuning involves the training of an ex-
ponentially larger amount of parameters, which could cause training problems
such as over�tting, especially due to the limited amount of training data.

5.6.2.3 | A���� ���������� ������ ASR ����������

We hypothesise that dialogue policies bene�t from speech representations in
two main ways. First, they allow a better semantic understanding of the user
in many occasions, i.e. they can help to recognise what kind of information is
being requested. This is supported by the experiments and examples we discuss
below in Section 5.6.4 (Figure 5.9a). Second, audio embeddings also provide in-
formation about the intelligibility of audios, and thus should be able to inform
the system when a turn has been noisy and the ASR transcription might not be
very reliable. This information can also be introduced in the system via ASR
con�dence scores. In fact, if we substitute audio embeddings by the average
and standard deviation of the character level ASR con�dence (for ASR 1) in SL
policies, an evaluation score of 0.780 can be obtained. This value is higher than
for the text only baseline (0.771, Table 5.1), but is still far from the best results
obtained with audio embeddings (0.795, Table 5.1). This suggests that speech
representations not only include information about the potential ASR uncer-
tainty, but also additional semantic information that allows dialogue policies to
perform even better. Future works could con�rm this result in other scenarios,
tasks or datasets.

5.6.2.4 | R����� �������� ����������

We also explored three di�erent reward functions for RL, as aforementioned in
Section 5.5.4.3. Table 5.4 shows the evaluation score obtained in the test user
model for 4 policies trained with REINFORCE and using the three reward func-
tions. Since this experiment was carried out in an early stage of the research
project (López Zorrilla et al., 2021b), the policies take as input the ASR 1 output
or the manual transcription, and use (or not) the Wav2Vec2 embeddings (�ne-
tuned). The values were computed using one text baseline only. As expected,
the best results were obtained with the dense reward function, and therefore
this function was the one used in the rest of the experiments.

5.6.3 | H���� ����������

We further validated the results obtained in Section 5.6.1 via a human evalua-
tion. Since these results indicate that audio embeddings help the most with the
noisiest ASR, ASR 1, we compared policies using ASR 1 transcriptions without
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Table 5.4.: Evaluation score obtained after training REINFORCE policies with
three reward functions.

ASR 1 +W2V2 (�ne-tuned) TRS +W2V2 (�ne-tuned)

Rs1 0.769 0.780 0.895 0.892
Rs2 0.770 0.786 0.895 0.925
Rd 0.787 0.807 0.922 0.935

and with audio embeddings. The latter are based on UniSpeech-SAT due to
better performance, see Table 5.2. We thus compare 3 pairs of policies: a policy
processing only the ASR 1 versus another that also uses UniSpeech-SAT speech
representations after training them via SL, REINFORCE and Actor-Critic. We
do not compare other combinations because a human evaluation is much more
costly than an automatic one.

Six judges (knowledgeable in the area of SDSs) evaluated 82 dialogues eval-
uated for each of our six policies—resulting in 492 dialogues each judge, 2952
dialogues in total. The evaluation was carried out using the CrowdZientzia
platform (Justo et al., 2016). Both the manual and ASR 1 transcriptions were
shown in each of the users turn to allow the judges to assess the dialogues
properly, similar to the examples in Figure 5.9, which we analyse in Section
5.6.4. The judges were not aware of which policy had carried each dialogue to
avoid any bias. After reading and analysing a dialogue, judges were asked to
�ll the multiple-choice 3-question questionnaire shown in Table 5.5, adapted
from (Keizer et al., 2021). In the questionnaire, Q1 is related to the SOVV and
CHS scores described in Section 5.5.3, Q2 to the URS score, and Q3 is the most
subjective question regarding dialogue naturalness. Table 5.5 also shows the
possible answers to each question, as well as their conversion to scalar ratings.

Table 5.6 shows the averaged results of the human evaluation. We measured
the inter-rater reliability with the Krippendor�’s Alpha coe�cient (Krippen-
dor�, 2018), with the interval metric (Krippendor�, 2011) as the di�erence func-
tion. The values were ↵Q1 = 0.715, ↵Q2 = 0.802, and ↵Q3 = 0.742, which
indicate a high agreement among the judges. Overall, the human evaluation
supports and complements the conclusions drawn from the automatic evalua-
tion. First, the greatest improvements come after SL, as expected from previous
analysis: the policy using UniSpeech-SAT speech representations obtains a sig-
ni�cantly higher score in the three questions, and also on average. Second and
in the case of policies trained via REINFORCE, the policy using audio embed-
dings improves too—but in this case the di�erences are not signi�cant. Some-
thing similar happened with the automatic metrics, where only in some cases
(with some audio embedding models) the cumulative reward or the evaluation
score improved signi�cantly. This indicates again that audio embeddings help
in REINFORCE, but not always. Last and unsurprisingly, the gap is even nar-
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Table 5.5.: Questionnaire used by judges in the human evaluation.
Q1: The system o�ered a restaurant satisfying the user con-

straints, or correctly informed that there were no such
restaurants.

• Yes. (1)
• No. (0)

Q2: The system provided the information the user was look-
ing for (phone number, post code, address...).

• Yes. (1)
• Partially. (0.5)
• No. (0)
• None–if there are no user requests.

Q3: The conversation felt natural.
• Strongly agree. (1)
• Agree. (0.75)
• Neither agree nor disagree. (0.5)
• Disagree. (0.25)
• Strongly disagree. (0)

Table 5.6.: Human evaluation results.
# Algo. Input Q1 Q2 Q3 Avg.

1 SL ASR1 0.656 0.848 0.535 0.629
2 SL ASR1+UniS. 0.760* 0.902* 0.601* 0.716*

3 REINF ASR1 0.730 0.892 0.637 0.716
4 REINF ASR1+UniS. 0.762 0.901 0.632 0.721

5 AC ASR1 0.761 0.919 0.605 0.718
6 AC ASR1+UniS. 0.789 0.907 0.585 0.719

rower when using Actor-Critic as the learning algorithm. In this case, the dif-
ferences are rather marginal, as happened when measuring their performance
with automatic metrics.

Table 5.6, on the other hand, also helps to gain a deeper insight into some
other aspects of the policies, especially if we focus on Q3. While Q1 and Q2
focus on task completion, Q3 has more to do with how naturally they complete
the task. If we rank the policies only in terms of Q1 and Q2, the ranking is very
similar to the one obtained with the automatic evaluation:

• the Actor-Critic policies are the best,
• then REINFORCE with audio embeddings,
• then the SL policy with audio embeddings and the REINFORCE policy
processing only text, and �nally

• the SL policy based only on the ASR 1 output.

But in terms of naturalness, Actor-Critic policies are worse than the REIN-
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FORCE ones, and AC+ASR1+UniS. is even less natural than SL+ASR1+UniS.
This is due to Actor-Critic being a better RL algorithm in this task. The re-
sulting policies thus exploit the UM as much as possible, leading to dialogue
strategies that are not perceived as so natural. Some of these behaviours can be
inferred from Figure 5.7, which shows the average and standard deviation of the
frequency of each dialogue act per dialogue. Note that some dialogue acts have
been grouped to make the �gure clearer. For example and since ASR 1 is noisy,
Actor-Critic policies learn to extract as much information as possible from the
UM, making it repeat the constraints multiple times. The more frequent use of
the Repeat dialogue act also leads to less (but more accurate) API calls.

Figure 5.7.: Dialogue act histogram (with std) comparing six dialogue policies.

The fact that Actor-Critic dialogue policies con�rm information provided by
the usermultiple times to reducemisunderstandings (evenwith text input only),
suggests that other factors (such as amount of repetitions) should be considered
in the employed reward function—or the use of learnt rewards. These sugges-
tions could help to realise the full potential of audio embeddings for RL-based
dialogue policies in the future.

5.6.4 | M����� ����������

In this section, we aim at identifying how and when audio embeddings lead
to better performance. To this end, we generated and analysed a number of
simulated dialogues with policies that share the text processing part. There-
fore, if they select a di�erent dialogue act given the same context, it is only due



R������ 153

Figure 5.8.: Evaluation score of SL policies depending on the maximum turn
CER (Character Error Rate) per dialogue.

to the audio embeddings. In many cases, dialogue strategies develop similarly
whether they use policies with or without speech representations. This hap-
pens especially when the ASR transcriptions are more accurate. But in cases
where the ASR output is poor, audio embeddings provide crucial information
absent in the ASR transcription, allowing the policies perform better. This can
be seen in Figure 5.8, where the correlation between the evaluation score of SL
policies and the maximum turn CER per dialogue is plotted. The higher the
CER, the more the policies bene�t from audio embeddings. Figure 5.9 shows
two simulated dialogues with poor ASR outputs where audio embeddings help
to perform better actions.

The �rst example (Figure 5.9a) is particularly representative, where we can
see a typical conversation between the UM and the dialogue manager. The dia-
logue goes quite smoothly until a breaking point occurs when the UM requests
the post code of the o�ered venue, in a rather noisy turn where the ASR 1 out-
puts “hirst". The text only policy (red box) performs an additional API call, and
after some repetitions �nally provides a post code, but it corresponds to the sec-
ond restaurant it searched. Conversely, the policy processing the user’s audio
via the UniSpeech-SAT network (green box) is able to understand the user’s in-
tent even after the “hirst" turn, successfully providing the post code of the �rst
venue it had o�ered. Thus, the dialogue ends in a much more natural manner.
Additionally, Figure 5.9a shows the continuation of a policy that uses the ASR
con�dence as input (commented in Section 5.6.2.3). The low ASR con�dence in
the noisy turn prevents the policy from performing an API call, and it performs
a safe inform instead. After another two post code requests, the system �nally
retrieves the desired information.
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(a) Two SL policies, with exactly the same text processing part.

(b) Two REINFORCE policies, based on the same text SL baseline.

Figure 5.9.: Sample dialogues where the policy including speech representa-
tions carries out a more successful dialogue. The context is the same
for both policies.

The second example compares the two REINFORCE policies judged in the
human evaluation. Although both policies were trained on top of the same SL
baseline, the two policies do not share completely the text processing part (be-
cause both the text and audio processing parts of the dialogue managers were
trained jointly in RL experiments with audio embeddings). The example is still
illustrative nonetheless. The initial user’s message is not clear, due to a stut-
tering. After that, the text only REINFORCE policy performs an API call, but
the found venue does not satisfy the user’s requisites, because that �rst turn
was not clear enough. Eventually the system corrects itself and �nds a suitable
venue, but the conversation is more messy than the continuation of the policy
using audio embeddings. This one does not make an API call immediately, in-
stead, it asks the user to repeat the sentence, because it is probably aware that
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the user turn was not understood. In addition to that, the text only policy is
not able to understand that the user requests the phone after the ASR 1 tran-
scription “falg in", and the user is forced to ask for it again. The policy with
audio embeddings, on the other hand, is able to provide the address after the
turn with ASR 1 output of “aga", which further consolidates the hypothesis that
the speech representations lead to a better understanding.

Such a better understanding can be measured by the average number of re-
quests by the UM per dialogue. As shown in Table 5.7, including audio embed-
dings leads to less number of requests per dialogue, especially after SL, where
the di�erence is statistically signi�cant. This stays on-track with the rest of the
results obtained in our work: including audio embeddings helps the most when
training the policies via SL.

Table 5.7.: Request repetitions by the UM per dialogue with the policies used in
the human evaluation, averaged over 1K dialogues.

ASR 1 + UniSpeech-SAT

Supervised Learning 1.420 1.258*
REINFORCE 1.411 1.315
Actor-Critic 1.183 1.175

Last but not least, we analyse the audio embedding layers’ contribution to
select the dialogue act in the examples in Figure 5.9. Since UniSpeech-SAT
was used, the output of four layers is taken into consideration: the 3rd, 6th, 9th
and 12th, as explained in Section 5.6.2. We can easily compute how much each
layer contributed to take the �nal decision. To this end, we take the output of
the linear predictors that process the averaged embeddings of each layer, and
select the value corresponding to the predicted dialogue act. This value is the
layer’s contribution to the unnormalised probability of taking that action. The
contributions are shown in Figure 5.10.

Figure 5.10.: Layer contribution to the decision taken in the example conversa-
tions.

In the �rst example, where the system correctly understands that the user is
requesting a post code, the last layer has the biggest contribution, the two inter-
mediate ones contribute less, and the shallower 3rd only in�uences the action
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barely. The layer contribution is di�erent in the second example, in which the
system informs the user that it cannot hear correctly. In this case, the biggest
contributions come from the 3rd and last layers. This makes sense since shallow
layers operating closer to the audio signal are known to learn mostly speaker
and environmental information, while the last layers contextualise more to
learn content and semantic information (Chen et al., 2021). Therefore andwhilst
a greater contribution of the intermediate and last neural layers are related to
a better understanding, a greater contribution of the shallow neural layers can
be interpreted as the system being aware of some anomalies at the signal level
such as those exhibited by noise or stuttering (among others).

5.7 | C��������� ��� ������ ����

We present an in-depth study to analyse under which conditions speech rep-
resentations (via audio embeddings) help to learn better dialogue policies in
the context of the DSTC2 corpus. They help to understand the user better or
to inform the system when the user might not be well understood—especially
with the noisier ASR prone to providing inaccurate transcriptions. This e�ect is
clearer when training the policies with supervised learning, because reinforce-
ment learning algorithms are able to exploit the UM better and learn strategies
to deal with the uncertainty in the text input more successfully.

We hypothesise that our approach could be very helpful in other demanding
spoken dialogue tasks where the user is di�cult to understand, even with very
high quality ASRs. Some examples include noisy industrial environments (Ac-
eta et al., 2022), SDSs integrated in cars (Schmidt et al., 2019), and also systems
that interact with non-native users or users with strong local accents (Litman
et al., 2018). These are target domains for the dialogue community, and we
hope that our �ndings can help to develop SDSs of higher quality in the future
in these areas.

Finally, other potential future works could take advantage of the latest ad-
vances in Speech Synthesis to continue our research with modern—and only
text-based—dialogue corpora. The proposed User Audio Sampler could be re-
placed by a high-quality TTS module. This has been successfully attempted
in end-to-end Spoken Language Understanding recently (Lugosch et al., 2020).
Not only would it allow to test our approach on more challenging dialogue
tasks, but it could also further validate our conclusions if user responses could
be simulated taking into account speci�c background noise, local accents,
backchannels, and/or emotions. In those cases, the speech representations
should contain information absent in the ASR output and substantially boost
the performance of SDSs.



C������ 6

C���������� ��� ������ ����

We have presented several improvements to alleviate some of the issues of neu-
ral dialogue models, in di�erent tasks and frameworks. At the end of each
chapter, we have discussed the implications, bene�ts, limitations and potential
future work related to each proposal in depth. Next, we summarise our main
contributions and conclusions.

6.1 | C����������

In open-domain dialogue generation, we have addressed lack of variety in the
generated responses in Chapter 2, with a novel methodology to train text-based
GANs, and extension of conventional response-level GANs to the batch level.
The idea of batch-level discriminators should be relevant to other GAN archi-
tectures and tasks, not only to dialogue-related GANs. In general, many NLP
systems that use any kind of discriminators could also bene�t from our pro-
posals, such as GPT-2 based dialogue managers (see Chapter 4) or BERT-based
question answering systems (Devlin et al., 2019).

We have taken part in the EMPATHIC project (Chapter 3), where a modu-
lar VC capable of carrying out coaching sessions has been developed. Even if
data-driven methodologies for the DM and NLGwere considered initially, these
modules were �nally developed with mostly rule-based approaches. This high-
lights that the lack of control inherent to statistical models is something that
needs attention in the future, especially for commercial or industrial applica-
tions.

The WDH system presented in Chapter 4 has shown to be a nice method
to provide neural dialogue models with a higher capability of implementing
long-term dialogue strategies. Even if we have carried out our experiments in
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the context of coaching, this strategy is generic enough to be implemented for
any task where dialogues follow a speci�c structure. The positive e�ects of ap-
plying this methodology in other tasks should be clearer the more structured
and longer the target dialogues are. Additionally, our proposal could be easily
combined with the newest transformers for language (and therefore, dialogue)
generation, such as GPT-3 (Brown et al., 2020) or PaLM (Chowdhery et al., 2022).
These powerful transformers could improve the candidates that the WDH sys-
tem ranks, but also enhance theWDH system itself by providing more accurate
sentence embeddings.

Last, the idea of including audio processing pretrained transformers in the
pipeline of task-oriented SDSs has shown to be bene�cial for dialogue policy
learning. The improvement has been signi�cantly higher in the cases where
the ASR transcription is not too accurate (Chapter 5), and when using SL as
opposed to RL to train the policies. Thus, our �ndings open a new research
direction, which could be particularly important for SDSs in situations where
ASRs do not work so well, such as noisy environments, when the users have
uncommon accents, or when working with low resource languages.

6.2 | F����� ����

Partly due to having explored many research ideas about dialogue modelling,
our proposals have been evaluated and analysed only in one task each. Thus,
despite our results supporting the potential of these contributions, future works
should ratify our conclusions in more experimental conditions and comparing
to a larger number of state-of-the-art models. Next, we detail potential future
works to further validate our proposals and discuss some research possibilities
related to our studies.

Future works for dialogue generating GANs (see Chapter 2) could compare
our top-k softmax approach to circumvent the di�erentiability problem of text
GANs with other alternatives that can be found in the literature, such as the
(Straight-Through) Gumbel-softmax or RL rewards at the token level. This
way, not only could we conclude that the top-k softmax is a valid approach
to train dialogue GANs, but also understand better its upsides and downsides.
As for the batch-level discriminator, it would be interesting to compare it to the
permutation-invariant discriminator proposed by Lucas et al. (2018). Instead of
using a batch of samples to predict whether they are real or fake, their mini-
batches contain a variable proportion of real and fake samples, and they train
their discriminator to predict this proportion.

On the other hand, the EMPATHIC VC (in Chapter 3) has also shown great
potential according to human evaluations. However, even though end-users
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found it useful (with scores of 66.7/100 in Spanish, 62.0/100 in French and
54.8/100 in Norwegian), its actual impact on the target population was not mea-
sured. Future experiments (maybe with a more advanced system) should anal-
yse the evolution of health and well-being-related metrics of the participants
over time. To this end, a system capable of carrying out multiple coaching
sessions would be needed, which would probably require a larger engineering
e�ort.

Other potential future works are also related to our contributions to EM-
PATHIC. The end-to-end coaching chatbot described in Chapter 4 uses scenario
embeddings that indicate which kind of dialogue has to be carried out. The
EMPATHIC corpus showcases two scenarios (introduction and coaching about
nutrition), but other corpora such as MultiWOZ (Budzianowski et al., 2018) or
SGD (Rastogi et al., 2020) include 7 and 16 domains, respectively. Using such
embeddings in these tasks may lead to higher performance gains. Addition-
ally, the dialogue phase embeddings and, more importantly, the WDH system
could also boost the performance of dialogue models in many tasks besides EM-
PATHIC. A comprehensive study analysing in which tasks these contributions
help the most and how the quality of the candidates and the sentence embed-
dings a�ect the performance would be really interesting. Furthermore, future
works could also determine in which kind of dialogue states the WDH’s e�ect
is more relevant. Possibly, more structured dialogue stages could bene�t more
from our proposal, whereas the performance in more open sections might not
improve so much. This could be measured with metrics such as the sentence
selection accuracy (see Section 4.7.1), among others.

Regarding our proposed approach for speech-aware dialogue policy learning
using audio embeddings, potential future works could take advantage of the
latest advances in Speech Synthesis to continue our research with larger—and
only text-based—dialogue corpora. The proposed User Audio Sampler could
be replaced by a high-quality TTS module (Soltau et al., 2022). This has been
successfully attempted in end-to-end Spoken Language Understanding recently
(Lugosch et al., 2020). Not only would it allow us to test our approach on more
challenging dialogue tasks, but it could also further validate our conclusions
if user responses could be simulated taking into account speci�c background
noise, local accents, backchannels, and/or emotions. In those cases, the speech
representations should contain information absent in the ASR output and sub-
stantially boost the performance of SDSs.

Finally, we would like to remark the di�culty of evaluating dialogue sys-
tems, which a�ects a big part (if not all) of the research presented in this thesis.
On the one hand, the information provided by automatic metrics is limited and
they do not always correlate with the actual performance of the system. On
the other hand, human evaluation is much more reliable, but also costly and/or
time-consuming at the same time. This is why we have tried to present sev-
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eral automatic metrics to test each of our proposals: four variety metrics plus
a semantic similarity metric in Chapter 2, two word-overlapping metrics plus
the next sentence selection accuracy in Chapter 4, and three task completion
metrics in Chapter 5. The selection of these metrics has been strongly related to
the task and to the proposals that we have evaluated. However, it would be use-
ful to further increase the number of metrics in related future works, or re�ne
them. For example, the next sentence selection accuracy (in Chapter 4) could
be complemented with a semantic similarity metric to assess howmuch each of
the models selects sentences with similar meanings to the ground truths. This
highlights the importance of research in dialogue evaluation, both human and
automatic. More e�cient human evaluation procedures could reduce their cost
and thus allow a more signi�cant number of evaluations; and better and more
robust automatic metrics would reduce the dependence on human evaluations
and indirectly lead to better dialogue policy learning, at the same time.

With this, we hope that this thesis represents a step towards bridging the gap
between the conversational skills of humans and those of machines.
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Table A.1.: Set of prede�ned general purpose turns for both the introductory
and nutrition dialogues.

Yes. That’s it.
No. Not really.
Please. Why?
Uummm... Ups...
Yeah Sure.
Sorry for that. I see
Really? I can’t believe it.
Tell me more about that. I’m listening.
Turn up the microphone volume, please. Lower the microphone volume, please.
Speak louder, please. Speak lower, please.
Very interesting. We’ll talk about that later.
Fantastic. Awesome.
Can’t believe it. Well, I’m glad.
How good. That is something only you know.
What a pity. I’m sorry.
It does not always rain to everyone’s taste. You know that better than me.
That question is too di�cult. I can not an-
swer it.

Think a little, and I’m sure you can come out
with of something.

No hurry. Good, I think we are moving forward.
I do not feel comfortable talking about that.



166 W����� �� O� S��������

A.2 | I����������� ��������

Table A.2.: Set of prede�ned turns for the system presentation in the introduc-
tory dialogue.

Hi, how are you doing?
Good morning
Good afternoon.
Good evening.
What’s your name?
Could you please spell your name?
Could you please spell it?
Have I pronounced it correctly?
How are you?
How are you NAME?
I’m Natalie, nice to meet you.
I’m learning to talk to people. Please be patient.
I’m a system that is learning coaching tasks.
I am a virtual agent under development.
I am a virtual agent under development.
I’m part of the EMPATHIC project, in which universities, public centers and companies
from several countries, mainly from Europe, collaborate.
Spain, France, United Kingdom, Italy, Norway, Belgium and Israel.
Do you know what coaching is?
What do you think coaching is?
If I have not already mentioned it to you, I am learning coaching, but before getting into
this, I would like to get to know you a little more.
What made you come and talk to me?
Which are your main hobbies?
What do you enjoy doing in your free time?
Do you like travelling?
Do you like music?
Do you like eating?
And do you do it often?
I’m specially interested in music and travelling.
Which of these topics do you prefer to chat about?
Which of these topics do you like the most?
Perfect, I also wanted to talk about it!
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Table A.3.: Set of prede�ned turns about travelling in the introductory dialogue.
As you can imagine, I do not travel much. I have to settle for what you tell me.
Since I live on the web, I’ve been around the world, but I can not see many things, only
what you show me on the webcam.
So, do you like to travel?
What has been the place you liked the most?
What struck you the most?
When was that?
What envy are you giving me.
Do you usually travel in company?
I am usually alone. But I’ve got used to it and I’m well.
Imagine that you are there, in those busy streets. What do you feel? How do you imagine?
Imagine that you are once again surrounded by all that peace. How you feel?
Sorry to be a little gossip, do you have something you like to do whenever you go on
vacation?
Come on, tell me some anecdote about it.
Interesting, could you tell me any anecdote?
Do you have a new trip in mind?
Where?

Table A.4.: Set of prede�ned turns about music in the introductory dialogue.
Since I am always on the Internet, I can listen to all the music I want, it’s the good thing
about being a virtual system.
And why have you chosen to talk about music?
Why do you prefer to talk about music?
So, you like music, don’t you?
Right, why do you like it so much?
Do you like many styles, or you just prefer one?
I’m specially concerned about current commercial music. What do you think?
I also prefer more alternative genres.
Well, you really convinced me. The important thing is something that encourages us.
Do you usually dance when listening to music?
Have you been at any concert or musical event lately?
Did you watch Eurovision?
What do you think about it?
I think ABBA times were better. Do you know that they have met again?
I see you are very interested in music, do you play any instrument?
Have you been playing it for a long time?
In my free time I compose music. It’s digital, as you could imagine, haha.

Table A.5.: Set of prede�ned turns to say goodbye in the introductory dialogue.
It’s been a pleasure talking to you, we’ve had a good time, right?
Well, rest a bit and in a few minutes we will start the nutrition coaching session.
I already told you I’m in the testing phase, so take it easy, please.
Goodbye!
Bye bye!
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Table A.6.: Set of prede�ned turns for the system presentation for the GROW
dialogue about nutrition.

How are you?
Hello again.
What’s up?
Everything ready for a new session? This time we will talk about your nutrition habits.

Table A.7.: Set of GSQs for the GROW dialogue about nutrition.
You like to eat?
Do you think you eat well?
Can you tell me your usual meal routine?
Tell me how you eat on any given day.
Tell me about your meals on any given day.
Would you like to change that?
How can I help you?
What do you want to achieve?
Could you specify your goal in a few words?
Speci�cally, what do you hope to obtain from this conversation?
Speci�cally, what do you hope to obtain from this conversation about your goal?
What would be the best you could extract from this conversation regarding your goal?
How close would that approach your goal?
When do you want to reach your goal?
How much are you willing to get involved to get it?

Table A.8.: Set of MQs for the GROW dialogue about nutrition.
Do you want to change that?
What would you contribute?
Why do you want to achieve the goal you mentioned?
What would be the ideal situation?
What could you gain by achieving it?
How would it bene�t you to get it?
How would it a�ect your environment that you achieve it?
What do you think you’re going to feel when you’ve reached it?
Imagine that you have already achieved it, how do you see yourself?
What resources have you needed to reach that vision?
What did you have to do to get there?
What qualities do others see in you?
What advantages do others believe you have to achieve it?
What bene�ts would you get if you could change your way of eating according to the goal?
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Table A.9.: Set of RQs for the GROW dialogue about nutrition.
What is currently happening in relation to your goal?
How far is your current situation from your objective?
What are you doing now in relation to what you want to achieve?
Has anything that you have done worked for you?
What has not worked for you?
What will you do to avoid what makes it di�cult for you to reach the goal?
What things can help you at this time?
How would you like to feel?

Table A.10.: Set of OQs for the GROW dialogue about nutrition.
What obstacles are you encountering?
At what times do these obstacles appear?
What resources do you already have, would you need to overcome them?
What other resources would you need to �nd?
What skills do you have that could be useful to you?
What have those skills taught you at other times?
What should you improve to get over them and get closer to your goal?

Table A.11.: Set of OGQs for the GROW dialogue about nutrition.
What actions can you take in relation to the stated objective?
What could you do to take another step towards your goal?
What could you do to get a little closer to achieving your goal?
If there were no obstacles, what more options would you come up with to reach your goal?
If an expert in this type of objectives faced this situation, what do you think would do?
Which of the actions you have thought is the one you like the most?
What characteristics does that action have that makes you like it?
What other actions that you have not considered still share those characteristics?
Which one would bring you closer to your goal?
What is the most realistic to implement at the current time?

Table A.12.: Set of PAQs for the GROW dialogue about nutrition.
What will you choose to do?
What are you going to do?
When are you doing it?
What will you do tomorrow? And next week?
How much time are you going to spend on it?
Where will you do it?
How does this plan approach your goal?
What problems could you �nd to carry out this plan?
How are you going to solve the problems that you might encounter?
Who should you report?

Table A.13.: Set of goodbye turns in the GROW dialogue about nutrition.
It’s been a pleasure talking to you, we’ve had a good time, right?
Goodbye!
Bye bye!
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Table B.1.: Pragmatic qualities (in a 5-point likert scale).
I think that communicating with the agent is a decisive support in everyday activity.
I think that communicating with the agent is simple and easy.
I think that communicating with the agent is unmanageable.
I think that communicating with the agent is arti�cial.
I think that communicating with the agent is useless.
I think that communicating with the agent is qualifying.

Table B.2.: Hedonic qualities identity (in a 5-point likert scale).
I think the agent is friendly.
I think the agent is displeasing.
I think the agent is very human.
I think the agent is threatening.
I think the agent is reassuring.
I think the agent is untrustworthy.

Table B.3.: Hedonic qualities feelings (in a 5-point likert scale).
I think that communicating with the agent is extraordinary.
I think that communicating with the agent is boring.
I think that communicating with the agent is thrilling.
I think that communicating with the agent is trivial.
I think that communicating with the agent is stimulating.
I think that communicating with the agent is disconcerting.
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Table B.4.: Attractiveness (in a 5-point likert scale).
I think that communicating with the agent will help to enhance my knowledge.
I think that communicating with the agent can be taken for granted.
I think that communicating with the agent is enjoyable.
I think that communicating with the agent is demotivating.
I think that communicating with the agent is engaging.
I think that communicating with the agent is stressful.

Table B.5.: Intelligibility (in a 5-point likert scale).
The agent express very appropriately feelings while communicating.
The agent’s way of expressing himself is cold and impersonal.
The agent can be easily understood.
It is hard to grasp what the agent says.
Speaking with the agent is natural and e�ortless.
The agents speaks in an atypical way.
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Table C.1.: Chatbot Usability Questionnaire.
Question code Question

CUQ-1 The chatbot’s personality was realistic and engaging.
CUQ-2 The chatbot seemed too robotic.
CUQ-3 The chatbot was welcoming during initial setup.
CUQ-4 The chatbot seemed very unfriendly.
CUQ-5 The chatbot explained its scope and purpose well.
CUQ-6 The chatbot gave no indication as to its purpose.
CUQ-7 The chatbot was easy to navigate.
CUQ-8 It would be easy to get confused when using the chatbot.
CUQ-9 The chatbot understood me well.
CUQ-10 The chatbot failed to recognise a lot of my inputs.
CUQ-11 Chatbot responses were useful, appropriate and informative.
CUQ-12 Chatbot responses were not relevant.
CUQ-13 The chatbot coped well with any errors or mistakes.
CUQ-14 The chatbot seemed unable to handle any errors.
CUQ-15 The chatbot was very easy to use.
CUQ-16 The chatbot was very complex.



174 C������ U�������� ��� H������ F��������������������

Table C.2.: Hedonic Feelings Questionnaire.
Question code Question

HFQ-1 I think the communication with the agent was extraordinary.
HFQ-2 I think the communication with the agent was boring.
HFQ-3 I think the communication with the agent was innovative.
HFQ-4 I think the communication with the agent was disappointing.
HFQ-5 I think the communication with the agent was thrilling.
HFQ-6 I think the communication with the agent was trivial.
HFQ-7 I think the communication with the agent was stimulant.
HFQ-8 I think the communication with the agent was depressing.
HFQ-9 I think the communication with the agent was reassuring.
HFQ-10 I think the communication with the agent was stressful.
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Table D.1.: Abbreviations and descriptions of the simpli�ed EMPATHIC dia-
logue acts.

Dialogue act Description

Hello Hello, salutation.
Ask name Ask about the user’s name and spelling.
Patience request Patience request.
Self-intro The system presents itself.
Know coaching? Ask about the user’s knowledge about coaching.
Echo Repeat something said by the user, to transmit empathy and understanding.
Open Q An open question about the user.
Yes/no Q A yes/no question about the user.
Music A question/statement about music.
Travel A question/statement about travelling.
Other hobbies A question/statement about a hobby that is not music nor travelling.
I understand Explicitly tell the user that their message has been understood.
Clarify Ask for a clari�cation.
Neg feedback Disagree with the user or show a negative/non-positive opinion.
Pos feedback Show a positive opinion.
Agreement Agree with the user.
Topic Open, close or choose a new topic.
Current situation Questions about the current situation of the user regarding their goal.
GSQ-IS Goal Setting Question - Ideal Situation. Ask the user which would be the ideal

situation in connection with their goal.
GSQ-Obj Goal Setting Question - Objective. Ask the user to de�ne their goal.
MQ Motivational Question.
ORQ Obstacles/Resources Question. Questions to �nd out which obstacles that hin-

der the achievement of the goal, and the possible resources to overcome them.
PAQ Plan Action Question. Question to de�ne a plan that brings the user closer to

their goal.
Thanking Thank the user.
Farewell Say goodbye.
Other A system turn that was not classi�able as any of the aforementioned dialogue

acts.
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