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AN AXIOMATIZATION OF SUCCESS

M. JOSUNE ALBIZURI*, ANNICK LARUELLE|

Abstract. In this paper we give an axiomatic characterization of three fami-
lies of measures of success de�ned by Laruelle and Valenciano (2005) for voting
rules.
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1. Introduction

The aim of this paper is to provide an axiomatization of the measures of success
in voting rules. We look for a set of axioms, that is, assumptions that, whatever
their plausibility, have a clear meaning and make sense one by one, independently
of the others. What we obtain in this paper are the three families of measures of
success for voting rules de�ned by Laruelle and Valenciano (2005). These measures
are associated with probability distributions p over the set of all possible vote
con�gurations. Measure 
p, which is formalized in the following section, gives the
probability for a voter of having the result he voted for. Measure 
p+ gives the
probability for a voter of having the result he voted for conditioned on voting yes.
And measure 
p� gives the probability for a voter of having the result he voted for
conditioned on voting no.
In this paper we give three axiomatic characterizations. One for the family of

measures f
pgp2P , where P denotes the set of all the possible probability distribu-
tions. Other for the family of measures f
p+gp2P . And the last one for f
p�gp2P .
The axioms we employ are some common ones together with others which are
speci�c for each family.
In the following section we present the measures of success de�ned by Laruelle

and Valenciano (2005), and in Section 3, 4 and 5 we give the axiomatic characteri-
zations of the three families.

2. Background

We consider voting rules to make dichotomous choices (acceptance and rejection)
by a voting body. Let N = f1; 2; ::; ng denote the set of seats. If any vote di¤erent
from �yes�is assimilated into �no�, there are 2n possible vote con�gurations. Each
vote con�guration can be represented by the set S � N of �yes�voters. An N -voting
rule is fully speci�ed by the set WN of winning vote con�gurations, that is, those
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which lead to the acceptance of a proposal (the others would lead to the rejection
of the proposal):

WN = fS : S leads to a �nal �yes�g.
When N is obvious from the context, we omit the subscript�N�and writeW instead
of WN . In order to exclude unconsistent voting rules, we assume that the set W
satis�es the following conditions: (i): The unanimous �yes�leads to the acceptance
of the proposal: N 2 W ; (ii): The unanimous �no� leads to the rejection of the
proposal: ; =2W ; (iii): If a vote con�guration is winning, then any other con�gura-
tion containing it is also winning: If S 2 W , then T 2 W for any T containing S;
(iv): If one vote con�guration leads to the acceptance of a proposal, the opposite
con�guration will not: If S 2 W , then NnS =2 W . Let V RN denote the set of
voting rules with set of seats N . A voting rule can also be described by its set of
minimal winning con�gurations. A con�guration S is minimal winning if S 2 W
and for any i 2 S, S n i =2W . The set of minimal winning con�gurations of rule W
is denoted M(W ). A seat i is said to be a dictator seat if for all S we have S 2W
if and only if i 2 S. The T -unanimity rule, denoted WT , is the voting rule

WT = fS � N : S � Tg

The extreme cases are when T = N (unanimity) and T = fig (seat i is a dictator
seat). For any voting rule W 2 V RN such that W 6= UN , and any T 2M(W ), the
modi�ed voting rule W �

T is the voting rule such that W
�
T =W n fTg.

Let GN denote the set of transferable utility games with player set N . That
is, GN is formed by the mappings w from 2N into RN such that w (;) = 0. And
SGN denote the subset of GN formed by simple superadditive games such that the
worth of N is 1. That is, by the mappings w 2 GN such that w (S) 2 f0; 1g for
any S � N , w (N) = 1 and w (S [ T ) � w (S) +w (T ) whenever S \ T = ;. Notice
that superadditivity implies monotonicity, that is, w (T ) � w (S) whenever S � T .
Then we can obviously identify V RN with SGN , by associatingW 2 V RN with the
game w 2 SGN that satis�es w(S) = 1 if and only if S 2 W . We distinguish the
game and the procedure by using the small letter in the �rst case and the capital
letter in the second case.
Laruelle and Valenciano (2005) de�ne some measures of success. They consider

a probability distribution over the set of all possible vote con�gurations, which can
be interpreted as a �common prior�about the voters voting behavior. Let p denote
a probability distribution over the set of vote con�gurations, and let p(S) denote,
for each S � N , the probability of S being the vote con�guration. Let P denote
the set of all probability distributions. For a given p let

i(p) := Prob (i votes �yes�) =
X
S:i2S

p(S):

In the following we will assume that 0 < i(p) < 1.
A voter�s probability of being successful (having the result one voted for) for a

voter i is given by


pi (W ) = Prob (i is successful) =
X

S:i2S2W
p(S) +

X
S:i=2S=2W

p(S):

We will deal also with the following �interim�evaluations (i.e., conditional expec-
tations updated with the private information of each voter�s own vote) for which
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we use the following notation:


p+i (W ) = Prob (i is successful j i votes �yes�)

=

P
S:i2S2W

p(S)

i(p)

and


p�i (W ) : = Prob (i is successful j i votes �no�)

=

P
S:i=2S=2W

p(S)

1� i(p)
:

We will consider 
p;
p+ and 
p� as mappings from V RN into RN .

3. Characterization of f
pgp2P
The following axioms permit to characterize the family f
pgp2P . We represent

by � a mapping from V RN into RN in this section and the following ones.
Transfer axiom states that the impact on a voter�s index of deleting a minimal

winning coalition from the list of winning ones is the same whatever the voting
procedure in which the deleted coalition is minimal winning:

Transfer* (T*) : For all V;W 2 V RN ; and all S 2M(V )\M(W ) (S 6= N) :
�i(V )� �i(V �S ) = �i(W )� �i(W �

S) for all i 2 N:
This axiom was introduced by Laruelle and Valenciano (2001) for simple superad-

ditive games in order to characterize the Shapley-Shubik (1954) and Banzhaf (1965,
1966) indices. It was also employed by the same authors (2003) to characterize the
semivalues.
Contrary Gain-Loss states that the e¤ect of eliminating a minimal winning coali-

tion is just the opposite for a voter inside the coalition and for a voter outside it.

Contrary Gain-Loss (ConGL): For all W 2 V RN , all S 2 M(W ) (S 6=
N), and all i 2 S, j =2 S,

�i(W )� �i(W �
S) = �j(W

�
S)� �j(W ):

The following axiom is equivalent to �coalitional monotonicity� (Young, 1985)
in the domain of simple games. It postulates something about the e¤ects on the
voters� index of a minimal modi�cation of a voting procedure. Namely, when a
minimal winning coalition is deleted from the list of winning ones that speci�es it.
The elimination of a minimal winning coalition diminishes the index of the voters
within this coalition.

Coalitional Monotonicity* (CMon*): For all W 2 V RN , and all S 2
M(W ) (S 6= N):

�i(W ) � �i(W �
S) for all i 2 S:

The following axiom requires a dictator voter index to be equal to 1. Notice that
if we consider 
p; the index of any voter is less or equal than 1.

Dictator Seat Axiom (DS): If i is a dictator seat in W then �i(W ) = 1.

In the last axiom an upper bound is settled for the decrements associated with
deletions of minimal winning coalitions in voting procedures.
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Upper bound (UB): Let i 2 N: For all S  N; S 6= ;, let WS 2 V RN such
that S 2M

�
WS

�
. Then,X

S N
i2S

�
�i(W

S)� �i(
�
WS

��
S
)
�
+

X
S N

S 6=;;i=2S

�
�i(
�
WS

��
S
)� �i(WS)

�
� 1:

Observe that this axiom states an upper bound for the total amount of decre-
ments associated with deletions of all likely minimal winning coalitions containing
and not containing voter i.
These axioms characterize the family f
pgp2P : First we prove two lemmas. In

the �rst V RN is identi�ed with SGN .

Lemma 1. If � : V RN ! RN satis�es Transfer* then there exists a unique linear
mapping � : GN ! RN such that � (w) = � (W ) if W 2 V RN .

Proof. The proof is similar to the beginning of the proof in Theorem 2.4 (Einy,
1987). �

Lemma 2. 
p : V RN ! RN satis�es T*, ConGL, CMon*, DS and UB.

Proof. First of all notice that if W 2 V RN


pi (W )� 

p
i (W

�
S) =

�
p(S) if i 2 S
�p(S) if i =2 S:

This equality implies that 
p satis�es T*. It implies also ConGL since


pi (W )� 

p
i (W

�
S) = p(S) = � (�p(S)) = 


p
j (W

�
S)� 


p
j (W )

when i 2 S, j =2 S. CMon* is also satis�ed because if i 2 S

pi (W )� 


p
i (W

�
S) = p(S) � 0;

where the inequality is true since p is a probability distribution.
On the other hand, if i is a dictator seat in W then


pi (W ) =
X
S:i2S

p(S) +
X
S:i=2S

p(S) = 1;

where we have taken into account also that p is a probability distribution.
Finally, let i 2 N and for all S  N; S 6= ;, let WS 2 V RN such that S 2

M
�
WS

�
. ThenX

S N
i2S

�
�i(W

S)� �i(
�
WS

��
S
)
�
+

X
S N

S 6=;;i=2S

�
�i(
�
WS

��
S
)� �i(WS)

�
=
X
S N
S 6=;

p(S);

and this expression is smaller or equal than 1 since p is a probability distribution.
Therefore 
p satis�es UB. �

In the characterization theorem we employ the basis of GN formed by the games
uS , S � N , S 6= ;; de�ned by

uS (T ) =

�
1 if S = T
0 otherwise.

Theorem 3. A mapping � : V RN ! RN satis�es T*, ConGL, CMon*, DS and
UB if and only if there exists a probability distribution p on 2N such that � = 
p.
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Proof. We have proved in Lemma 2 that 
p satis�es T*, ConGL, CMon*, DS and
UB for all probablity distribution p.
Now let us prove the other implication. Let � : V RN ! RN which satis�es the

above axioms. By Lemma 1 there exists a linear mapping � : GN ! RN such that
� (w) = � (W ) when W 2 V RN .
Let w 2 GN . We have that

w =
X
S�N
S 6=;

w (S) � uS :

Since � is linear then
� (w) =

X
S�N
S 6=;

w (S) � � (uS) :

And taking into account Lemma 1, if W 2 V RN then

(2) � (W ) =
X
S�N
S 6=;

w (S) � � (uS) :

Let S  N , S 6= ;. Consider W 2 V RN such that S 2 M (W ) : If i; j 2 S,
ConGL and (2) imply

�i (uS) = �i (W )� �i (W �
S) = �j (W )� �j (W �

S) = �j (uS) :

So let

(3) cS = �i (uS) ;

where i 2 S. And let us prove that if k =2 S then
(4) �k (uS) = �cS :
Indeed, let i 2 S. ConGL and (2) imply

�k (uS) = �k (W )� �k (W �
S) = �i (W

�
S)� �i (W ) = �cS ;

and (4) is obtained.
We have that cS � 0: This inequality is implied by CMon*, (2) and (3) since

given i 2 S and W 2 V RN such that S 2M (W ),

cS = �i (uS) = �i (W )� �i (W �
S) � 0.

Let us �x now i 2 N . If we consider the voting rule W d in which i is a dictator
seat, then

(5) 1 = �i
�
W d
�
=
X
S�N
i2S

�i (uS) =
X
S N
i2S

cS +�i (uN ) ;

where the three equalities are implied by DS, (2) and (3) in the same order.
Besides, UB implies X

S N
S 6=;

cS � 1:

This inequality and (5) imply

1 � 1�
X
S N;

S 6=;;i=2S

cS +�i (uN ) :
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And therefore,

(6) �i (uN ) = c0 +
X
S N;

S 6=;;i=2S

cS ;

with c0 � 0.
Consider now W 2 V RN . The equalities (2), (3), (4) and (6) imply

�i (W ) = c0 +
X
S N
i2S

w (S) � cS +
X
S�N

S 6=;;i=2S

(1� w (S)) � cS :

Let a; b � 0 such that c0 = a+ b and de�ne

p (S) =

8<: cS if S 6= ;; N
a if S = N
b if S = ;:

Obviously, p is a probability distribution over the set of vote con�gurations.
Then the above expression turns into

�i (W ) =
X

S:i2S2W
p(S) +

X
S:i=2S=2W

p(S);

and the proof is complete. �

Remark 1. UB does not depend on T*, ConGL, CMon* and DS. Indeed, let N
be such that jN j � 2 , " > 0, and 	1i (W ) =

P
S:i2S2W

q(S) +
P

S:i=2S=2W
q(S) such that

q(N) = �"; q(;) = 0; q(i) = (1+ ")= jN j for all i 2 N and q(S) = 0 otherwise. This
mapping satis�es all these axioms except UB.

Remark 2. We can alternatively de�ne an index as a mapping from V RN into
[0; 1]

N
: Then, DS would require the index for a dictator seat to be the maximum

possible one, and UB would require the decrements to be bounded by this possible
maximum index.

4. Characterization of f
p+gp2P
Now we characterize the family f
p+gp2P .
We employ Transfer* (T*), Coalitional Monotonicity* (CMon*), Dictator Seat

Axiom (DS) and the following axioms.
According to the �rst one, the elimination of a minimal winning coalition does

not have any e¤ect on the index of the voters outside this winning coalition.

No-Gain-No-Loss Out (NGNL-OUT): For all W 2 V RN , and all S 2
M(W ) (S 6= N):

�i(W ) = �i(W
�
S) for all i 2 NnS:

If the elimination of a minimal winning coalition does not a¤ect on the index of
a voter in this coalition, then the index of the other agents in the minimal winning
coalition will not be a¤ected either. Moreover, if the index of a voter is zero in the
unanimity rule then the index of any voter is zero too. This is what the following
axiom requires.
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Symmetric Null Gain-Loss (SymNGL): Let W 2 V RN , S 2 M(W )
(S 6= N) and i 2 S such that �i(W ) � �i(W �

S) = 0. Then, �j(W ) �
�j(W

�
S) = 0 for all j 2 S. Moreover, if �i(UN ) = 0 then �j(UN ) = 0 for

all j 2 N:
We also require a proportionality axiom.

Proportionality (Prop): Let W 2 V RN , S1; S2; S3 2 M(W ) (S1; S2; S3 6=
N) and i1; i2; i3 2 N such that i1; i3 2 S1; i1; i2 2 S2; i2; i3 2 S3 . Then
�i1(W )� �i1(W �

S1
)

�i3(W )� �i3(W �
S1
)
=
�i1(W )� �i1(W �

S2
)

�i2(W )� �i2(W �
S2
)

�i2(W )� �i2(W �
S3
)

�i3(W )� �i3(W �
S3
)
;

whenever �i3(W )� �i3(W �
S1
) 6= 0, �i2(W )� �i2(W �

S2
) 6= 0 and �i3(W )�

�i3(W
�
S3
) 6= 0.

So the deletion of S1 a¤ects to i1 and i3 as the product of what a¤ects the
deletion of S2 to i1 and i2; by what a¤ects the deletion of S3 to i2 and i3.
Notice that if i3 = i2 and S2 = S3 (or S1 = S3), then i1; i2 2 S1 \ S2 and the

equality in this axiom turns into

�i1(W )� �i1(W �
S1
)

�i2(W )� �i2(W �
S1
)
=
�i1(W )� �i1(W �

S2
)

�i2(W )� �i2(W �
S2
)
:

That is, it requires the deletion of S1 and S2 to a¤ect in the same proportion to i1
and i2.
And the last axiom requires the index to be non negative in the unanimity rule.

Non-negativity for the unanimity rule (NNU):

�i(U
N ) � 0 for all i 2 N:

First let us prove that 
p+ satis�es these axioms.

Lemma 4. 
p+ satis�es T*, CMon*, DS, NGNL-OUT, SymNGL, Prop and NNU.

Proof. If W 2 V RN then


p+i (W )� 
p+i (W �
S) =

(
p(S)
i(p)

if i 2 S
0 if i =2 S:

This equality implies that 
p+ satis�es T* and Sym NGL. And if i 2 S then


p+i (W )� 
p+i (W �
S) =

p(S)

i(p)
� 0;

since p is a probability distribution. Hence, CMon* is also satis�ed.
If i is a dictator seat in W then


p+i (W ) =

P
S:i2S

p(S)

i(p)
= 1;

and therefore DS is satis�ed.
NGNL-OUT is satis�ed because for all i 2 NnS


p+i (W ) =

P
T :i2T2W

p(T )

i(p)
= 
p+i (W �

S);
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Prop is satis�ed because


p+i1 (W )� 

p+
i1
(W �

S1
)


p+i3 (W )� 

p+
i3
(W �

S1
)
=
i3(p)

i1(p)
=
i2(p)

i1(p)

i3(p)

i2(p)

=

p+i1 (W )� 


p+
i1
(W �

S2
)


p+i2 (W )� 

p+
i2
(W �

S2
)


p+i2 (W )� 

p+
i2
(W �

S3
)


p+i3 (W )� 

p+
i3
(W �

S3
)
:

And �nally NNU is satis�ed because if i 2 N


p+i (UN ) =
p(N)

i(p)
� 0:

�

Theorem 5. A mapping � : V RN ! RN satis�es T*, CMon*, DS, NGNL-OUT,
SymNGL, Prop and NNU if and only if there exists a probability distribution p on
2N such that � = 
p+:

Proof. We have proved in Lemma 4 that 
p+ satis�es T*, CMon*, DS, NGNL-
OUT, SymNGL, Prop and NNU for all probablity distribution p.
To prove the other implication, let � : V RN ! RN which satis�es the above

axioms. Applying Lemma 1, there exists a linear mapping � : GN ! RN such that
� (w) = � (W ) when W 2 V RN . And given w 2 GN we have that

� (w) =
X
S�N
S 6=;

w (S) � � (uS) :

Applying again Lemma 1,

(8) � (W ) =
X
S�N
S 6=;

w (S) � � (uS) :

NGNL-OUT implies that �i (uS) = 0 if i =2 S. Indeed, suppose that there exists
S � N; S 6= ;; such that i =2 S and �i (uS) 6= 0. And let W 2 V RN such that
S 2M (W ) : By expression (8) we have that

�i (W )� �i(W �
S) = �i (uS) ;

and therefore this di¤erence is not null. But by NGNL-OUT �i (W )��i(W �
S) = 0,

which is a contradiction. Hence,

(9) �i (W ) =
X
S�N
i2S

w (S) � �i (uS) :

Let us prove now that there exists fp (S) 2 R : S � N;S 6= ;g such that for all
i 2 N and for all S 3 i

�i (uS) �
X
T3i

p (T ) = p (S) :

Let us �x i 2 N and consider the folllowing system with unknowns
n
p (S)

i
: S 3 i

o
;

�i (uS) �
X
T3i

p (T )
i
= p (S)

i where S 3 i:
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This is an homogeneous system with in�nity solutions since DS and Lemma 1
imply X

S3i
�i (uS) = �i

 X
S3i

uS

!
= 1:

This equality also implies that there exists Si 3 i such that �i (uSi) 6= 0, and the
solutions of the system are

p (S)
i
=
�i (uS)

�i (uSi)
p (Si)

i where p (Si)
i 2 R.

Now let us prove that for all i; j 2 N we have that

(10) p (S)
i
= p (S)

j

for all S 3 i; j.
Let us �x i; j 2 N . Given S 3 i; j, we have equality p (S)i = p (S)j if

(11)
�i (uS)

�i (uSi)
p (Si)

i
=
�j (uS)

�j
�
uSj
�p (Sj)j :

If �i (uS) = 0, by (9) we have that �i (W ) � �i(W �
S) = 0 for some W 2 V RN

such that S 2M (W ). And by SymNGL we have that �j (W )��j(W �
S) = 0, that

is �j (uS) = 0, if we take into account (9) again. Therefore, in this case we have
p (S)

i
= 0 = p (S)

j
:

So suppose that �i (uS) 6= 0. In this case (11) can be rewritten as follows

(12) p (Si)
i
=
�i (uSi)

�i (uS)

�j (uS)

�j
�
uSj
�p (Sj)j ;

so we obtain this relation between p (Si)
i and p (Sj)

j .
Since (10) has to hold for any subset containing i and j; consider S0 3 i; j; with

S0 6= S. Equality p (S0)i = p (S0)j holds if

�i (uS0)

�i (uSi)
p (Si)

i
=
�j (uS0)

�j
�
uSj
�p (Sj)j ;

which is true if �i (uS0) = 0; and if �i (uS0) 6= 0 it will be true if

�i (uSi)

�i (uS)

�j (uS)

�j
�
uSj
� = �i (uSi)

�i (uS0)

�j (uS0)

�j
�
uSj
� ;

that is, if

�j (uS)�i (uS0) = �j (uS0)�i (uS) ;

and this equality holds by Prop. Just consider W 2 V RN such that S1 = S 2
M(W ); S2 = S3 = S

0 2M(W ), i1 = i, i2 = j and i3 = i2.
If there exists k 2 N such that there exists S� 3 j; k such that �k (uS�) 6= 0,

reasoning as above we take

(13) p (Sk)
k
=
�k (uSk)

�k (uS�)

�j (uS�)

�j
�
uSj
�p (Sj)j ;
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and we have to prove also that if there exists eS 3 i; k such that �k �ueS� 6= 0, then
p
�eS�i = p�eS�k ; that is

�i
�
ueS�

�i (uSi)
p (Si)

i
=
�k
�
ueS�

�k (uSk)
p (Sk)

k
:

Substituting expression (12) and (13) in this equality, it turns into

�i
�
ueS�

�i (uSi)

�i (uSi)

�i (uS)

�j (uS)

�j
�
uSj
�p (Sj)j = �k

�
ueS�

�k (uSk)

�k (uSk)

�k (uS�)

�j (uS�)

�j
�
uSj
�p (Sj)j :

Taking p (Sj)
j 6= 0 and simplifying,

�i
�
ueS��k (uS�)�j (uS) = �i (uS)�k �ueS��j (uS�) ;

which is true by Prop: consider W 2 V RN such that S1 = eS 2 M(W ); S2 = S� 2
M(W ); S3 = S 2M(W ); and i1 = i, i2 = j and i3 = k.

Hence we have proved that there exists fp (S) 2 R : S � N;S 6= ;g such that
for all i 2 N and for all S 3 i

�i (uS) �
X
T3i

p (T ) = p (S) :

And moreover that there exist disjoint sets N1; :::; Nk � N whose union is N such
that for every S � Nl; S 6= ; there exists cS 2 R with which p (S) = cSx (Nl).
N1 will be formed by players i1; j1; k1; ::: such that there exists S01 3 i1; j1 with
�i1

�
uS01
�
6= 0, there exists S�1 3 j1; k1 such that �j1

�
uS�1
�
6= 0, and so on, being

N1 as greater as possible. N2 will be formed by another players (if they exist)
i2; j2; k2; ::: such that there exists S02 3 i2; j2 with �i2

�
uS02
�
6= 0, there exists S�2 3

j2; k2 such that �j2
�
uS�2
�
6= 0, and so on, being N2 also as greater as possible. N3

would be formed similarly and so on. Notice that furthermore, x (Nl) can be any
real number.
By CMon* and (9) we have that �i (uS) � 0 if i 2 S and S 6= N; and by NNU

and (9) we have that �i (uN ) � 0 if i 2 N . Hence, cS � 0 since in the expressions
above �i (uS) with i 2 S are the real numbers which can appear as coe¢ cients of
x (Nl) :
Finally let us de�ne p (;) by means of the equality

p (;) = 1�
X
S�N
S 6=;

cSx (Nl) :

Since x (Nl) can be any real number we take them so as p (;) to be non negative.
And the proof is complete. �

Remark 3. Let N be such that jN j � 2. Mapping 
p satis�es T*, CMon*, DS,
SymNGL, Prop and NNU, but not NGNL-OUT. Hence this axiom is not implied
by the others.

Remark 4. SymNGL does not depend on T*, CMon*, DS, NGNL-OUT, Prop and
NNU. Let N be such that jN j � 2; i; j 2 N; i 6= j and two probability distributions
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p and pi over the set of vote con�gurations such that pi (ij) = 1 and p (S) = 0 if
jSj � 2. If we de�ne

	2k (W ) =

(

p

k+
k (W ) if k = i

p+k (W ) otherwise;

this mapping satis�es all the axioms but SymNGL.

Remark 5. Prop does not depend on T*, CMon*, DS, NGNL-OUT, SymNGL and
NNU. Let N be such that jN j � 3, i1; i2; i3 2 N such that i1 6= i2 6= i3; i1 6= i3
and S1; S2; S3  N such that i1; i3 2 S1; i1; i2 2 S2; i2; i3 2 S3: For each i 2 N
consider a probability distribution pi over the set of vote con�gurations satisfying
pi (S) 6= 0 for all S � N , pi1 (S1) = " = pi3 (S3), pi1 (S2) = 2" = pi3 (S1) and
pi2 (S2) = p

i2 (S3) for some " > 0: De�ne

	3i (W ) = 

pi+
i (W ) :

	3 satis�es all these axioms except Prop.

Remark 6. NNU does not depend on the other axioms. To prove this, let N be
such that jN j � 2; � < 1

jN j�1 and consider mapping

	4i (W ) =

P
S:i2S2W

q(S)

i(q)
;

where q(N) = ��, q(i) = 1+�
jN j and q(S) = 0 otherwise.

5. Characterization of f
p�gp2P
To obtain a characterization of the family f
p�gp2P we employ Transfer* (T*),

Upper Bound (UB) and the following axioms.
We consider a variation of CMon*. According to the new monotonicity axiom

the elimination of a minimal winning coalition increases the index of the voters
outside this coalition.

Coalitional Monotonicity�0 (CMon�0): For all W 2 V RN , and all S 2
M(W ) (S 6= N):

�i(W ) � �i(W �
S) for all i 2 NnS:

The following axiom is also a variation of NGNL-OUT considering now inside
voters instead of outside voters. Now, the elimination of a minimal winning coalition
does not have any e¤ect on the index of the voters inside this winning coalition.

No-Gain-No-Loss-In (NGNL-IN): For all W 2 V RN , and all S 2M(W )
(S 6= N):

�i(W ) = �i(W
�
S) for all i 2 S:

We have also a Symmetric Null Gain-Loss axiom considering outside voters in-
stead of inside voters.

Symmetric Null Gain-Loss0 (SymNGL0): Let W 2 V RN , S 2 M(W )
(S 6= N) and i 2 NnS such that �i(W �

S) � �i(W ) = 0. Then, �j(W �
S) �

�j(W ) = 0 for all j 2 NnS.
There is also a proportionality axiom with outside voters.
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Proportionality0 (Prop0): LetW 2 V RN , S1; S2; S3 2M(W ) (S1; S2; S3 6=
N) and i1; i2; i3 2 N such that i1; i3 =2 S1; i1; i2 =2 S2; i2; i3 =2 S3 . Then
�i1(W

�
S1
)� �i1(W )

�i3(W
�
S1
)� �i3(W )

=
�i1(W

�
S2
)� �i1(W )

�i2(W
�
S2
)� �i2(W )

�i2(W
�
S3
)� �i2(W )

�i3(W
�
S3
)� �i3(W )

;

whenever �i3(W
�
S1
)��i3(W ) 6= 0, �i2(W �

S2
)��i2(W ) 6= 0 and �i3(W �

S3
)�

�i3(W ) 6= 0.
We require any voter index to be equal to 1 in the voting procedure UN . Notice

that 
p� does not give greater value for any other procedure.
Unanimity rule axiom(URA):

�i(U
N ) = 1 for all i 2 N:

The following axiom relates decrements associated with di¤erent coalitions not
containing di¤erent voters.

Decrement equality (DE): For all S  N; S 6= ;, let WS 2 V RN such
that S 2M

�
WS

�
. Let T  N; T 6= ; and i; j =2 T such that �i(

�
WT

��
T
)�

�i(W
T ) 6= 0 6= �j(

�
WT

��
T
)� �j(WT ): Then,

1

�i((WT )
�
T )� �i(WT )

0BB@��i(UN ) + X
S N;

S 6=;;i=2S

�
�i(
�
WS

��
S
)� �i(WS)

�1CCA

=
1

�j((WT )
�
T )� �j(WT )

0BB@��j(UN ) + X
S N;

S 6=;;j =2S

�
�j(
�
WS

��
S
)� �j(WS)

�1CCA :
Observe that in this equality we can not withdraw N as a minimal winning

coalition so we just write �i(UN ) and �j(UN ).
We prove that 
p� satis�es these axioms.

Lemma 6. 
p� satis�es T*, CMon*0, NGNL-IN, SymNGL0, Prop0, URA, DE and
UB.

Proof. If W 2 V RN then


p�i (W )� 
p�i (W �
S) =

(
0 if i 2 S

�p(S)
1�i(p)

if i =2 S:

Hence, 
p� satis�es T* and Sym NGL0. And if i 2 NnS then


p�i (W )� 
p�i (W �
S) =

�p(S)
i(p)

� 0;

since p is a probability distribution. Therefore, CMon*0 is also satis�ed.
NGNL-IN is satis�ed because for all i 2 S


p�i (W ) =

P
T :i=2T =2W

p(T )

1� i(p)
= 
p�i (W �

S):

If i 2 N then


p+i (UN ) =

P
S:i=2S

p(S)

1� i(p)
= 1;
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and URA is implied. Prop0 is satis�ed because


p�i1 (W
�
S1
)� 
p�i1 (W )


p�i3 (W
�
S1
)� 
p�i3 (W )

=
1� i3(p)
1� i1(p)

=
1� i2(p)
1� i1(p)

1� i3(p)
1� i2(p)

=

p�i1 (W

�
S2
)� 
p�i1 (W )


p�i2 (W
�
S2
)� 
p�i2 (W )


p�i2 (W
�
S3
)� 
p�i2 (W )


p�i3 (W
�
S3
)� 
p�i3 (W )

:

For DE, for all S  N; S 6= ;, let WS 2 V RN such that S 2 M
�
WS

�
; T  N;

T 6= ; and i; j =2 T such that �i(
�
WT

��
T
)��i(WT ) 6= 0 6= �j(

�
WT

��
T
)��j(WT ):

Then,

1


p�i ((WT )
�
T )� 


p�
i (WT )

0BB@�
p�i (UN ) +
X
S N;

S 6=;;i=2S

�

p�i (

�
WS

��
S
)� 
p�i (WS)

�1CCA

=
1� i(p)
p(T )

0BB@�1 + X
S N;S 6=;

i=2S

p(S)

1� i(p)

1CCA =
1� i(p)
p(T )

�
�1 + 1� i(p)� p (;)

1� i(p)

�

=
�p (;)
p(T )

=
1


p�j ((WT )
�
T )� 


p�
j (WT )

0BB@�
p�j (UN ) +
X
S N;

S 6=;;j =2S

�

p�j (

�
WS

��
S
)� 
p�j (WS)

�1CCA :
And �nally UB is satis�ed. Let i 2 N . By NGNL-IN we have just to consider
S  N; S 6= ;; and WS 2 V RN such that S 2M

�
WS

�
with i =2 S. And,X

S N;
S 6=;;i=2S

�

p�i (

�
WS

��
S
)� 
p�i (WS)

�
=

X
S N;

S 6=;;i=2S

p(S)

1� i(p)

=
1� i(p)� p (;)

1� i(p)
� 1;

where in the inequality we take into account that p is a probability distribution. �

Theorem 7. A mapping � : V RN ! RN satis�es T*, CMon*0, NGNL-IN,
SymNGL0, Prop0, URA, DE and UB if and only if there exists a probability distri-
bution p on 2N such that � = 
p�:

Proof. In Lemma 6 it is proved that 
p� satis�es T*, CMon*0, NGNL-IN, SymNGL0,
Prop0, URA, DE and UB for all probablity distribution p.
For the other implication, let � : V RN ! RN which satis�es all the above

axioms. Applying also Lemma 1, there exists a linear mapping � : GN ! RN such
that � (w) = � (W ) when W 2 V RN . And

� (W ) =
X
S�N
S 6=;

w (S) � � (uS) :
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Let S 6= N: NGNL-IN implies that �i (uS) = 0 if i 2 S. If not, there exists S � N
with i 2 S such that �i (uS) 6= 0. If we consider W 2 V RN such that S 2M (W ) ;
by the above expression we have that

�i (W )� �i(W �
S) = �i (uS) 6= 0:

But by NGNL-IN �i (W )��i(W �
S) = 0, which is a contradiction. Hence, if i 2 N;

�i (W ) = �i (uN ) +
X
S�N;

S 6=;;i=2S

w (S) � �i (uS) :

And applying URA,

�i (W ) = 1 +
X
S�N;

S 6=;;i=2S

w (S) � �i (uS) :

Let us prove now that there exists fp (S) 2 R : S  Ng such that for all i 2 N and
for all S 6= ; such that i =2 S

�i (uS) �
X
T�N
i=2T

p (T ) = �p (S) :

Let us �x i 2 N and consider the folllowing system with unknowns
n
p (S)

i
: i =2 S

o
;

�i (uS) �
X
T�N
i=2T

p (T )
i
= �p (S)i where i =2 S:

This is an homogeneous system and therefore it has a solution.
We will see that this solution can be chosen as to be non null. If �i (uS) = 0 for

all S 6= ; such that i =2 S, then p (S)i = 0 for all S 6= ; such that i =2 S and p (;)i
can be any real number.
If there exists Si 6= ; such that i =2 Si such that �i (uSi) 6= 0, then the solutions

p (S)
i with S 6= ; of the system are

p (S)
i
=
�i (uS)

�i (uSi)
p (Si)

i where p (Si)
i 2 R.

Notice that this expression coincides with the one obtained in the proof of Theorem
5 for the solutions. Reasoning as in that proof, Prop0 guarantees di¤erent systems
to give the same solutions.
Moreover, in this case p (;)i is a solution of the system and

(14) p (;)i = �p (Si)i

�i (uSi)

0BB@
0BB@ X

T�N;
T 6=;;i=2T

�i (uT )

1CCA+ 1
1CCA :

We need p (;)i = p (;)j if i 6= j. This equality holds taking into account DE and
expression (12) if there exists S � N;S 6= ;; such that i; j =2 S and �i (uS) 6= 0. If
there is not such a subset S, then p (;)i = p (;)j will give p (Si)i as a function of
p (Sj)

j .
Similarly as in the proof of Theorem 5 we can take p (S) non negative when

S  N;S 6= ; (observe that in this case the expressions �i (uS) are non positive).
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NGNL-IN, UB and (14) imply p (;) � 0 and �nally p (N) can be de�ned by means
of the equality

p (N) = 1�
X
S N

p (S) ;

in such a way that p (N) � 0. �

Remark 7. Let N be such that jN j � 2. Mapping 	5i (W ) = 

p
i (W )�


p
i

�
WN

�
+1

satis�es T*, CMon*0, SymNGL0, Prop0, URA, DE and UB, but not NGNL-IN.
Therefore this axiom is not implied by the others.

Remark 8. SymNGL0 does not depend on T*, CMon*0, NGNL-IN, Prop0, URA,
DE and UB. Let N be such that jN j � 3, i; j 2 N , i 6= j and thwo probability
distributions p and pi over the set of vote con�gurations such that pi (k) = 1 for
some k 2 Nn fi; jg, p (S) = 0 for all S � N , S 6= ;, and p (;) 6= 0. If we de�ne

	6k (W ) =

(

p

k�
k (W ) if k = i

p�k (W ) otherwise,

this mapping satis�es all the axioms but SymNGL0:

Remark 9. Prop0 is not implied by T*, CMon*0, NGNL-IN, SymNGL0, URA, DE
and UB. Let N be such that jN j � 3, i1; i2; i3 2 N and S1; S2; S3 � N such that
i1; i3 =2 S1; i1; i2 =2 S2; i2; i3 =2 S3. For each i 2 N consider a probability distribution
pi over the set of vote con�gurations satisfying pi (S) 6= 0 for all S � N , S 6= ;,
pi (;) = 0, pi1 (S1) = " = pi3 (S3), pi1 (S2) = 2" = pi3 (S1) and pi2 (S2) = pi2 (S3)
for some " > 0: De�ne

	7k (W ) = 

pi�
i (W ) :

	7 satis�es all the axioms except Prop0:

Remark 10. DE does not depend on the other axioms either. Let N be such that
jN j � 3 and let us �x i 2 N . Consider two probability distributions p and pi over
the set of vote con�gurations such that p (;) 6= 0, pi (;) = 0, pi (S) = p (S) 6= 0 if
S  N , S 6= ;. Mapping

	8k (W ) =

(

p

i�
i (W ) if k = i

p�k (W ) otherwise,

satis�es all the axioms but DE.

Remark 11. UB is not implied by the other axioms. Let N be such that jN j � 2;
and q (S) ; S � N , such that q (;) = �� and q (S) > � for all S � N for some � � 0:
Then,

	9i (W ) =

P
S:i=2S=2W

q(S)P
S:i=2S

q(S)

satis�es all the axioms but UB.
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