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We study the approach to scaling in axion string networks in the radiation era, through measuring
the root-mean-square velocity v as well as the scaled mean string separation x. We find good evidence
for a fixed point in the phase-space analysis in the variables (x, v), providing a strong indication
that standard scaling is taking place. We show that the approach to scaling can be well described
by a two parameter velocity-one-scale (VOS) model, and show that the values of the parameters are
insensitive to the initial state of the network. The string length has also been commonly expressed
in terms of a dimensionless string length density ζ, proportional to the number of Hubble lengths
of string per Hubble volume. In simulations with initial conditions far from the fixed point ζ is still
evolving after half a light-crossing time, which has been interpreted in the literature as a long-term
logarithmic growth. We show that all our simulations, even those starting far from the fixed point,
are accounted for by a VOS model with an asymptote of ζ∗ = 1.20±0.09 (calculated from the string
length in the cosmic rest frame) and v∗ = 0.609± 0.014.

I. INTRODUCTION

The axion [1, 2] is a hypothetical pseudoscalar parti-
cle predicted in the Peccei-Quinn (PQ) mechanism [3, 4].
The PQ mechanism extends the Standard Model (SM) of
particle physics to solve the so-called strong-CP problem
of Quantum Chromodynamics by adding an extra spon-
taneously broken global U(1) symmetry, which is anoma-
lous. If the symmetry is broken at a high scale [5–8], the
particle is very weakly interacting and long-lived, and
becomes a well-motivated dark matter candidate [9–11].
The PQ symmetry can be spontaneously broken be-

fore or after inflation, leading to very different axionic
dark matter scenarios. If the symmetry is broken before
inflation, the Universe is filled by a homogeneous axion
field, which produces zero-momentum axions through the
vacuum realignment mechanism [9–11]. On the other
hand, in the post-inflationary PQ symmetry breaking,
the phase transition happens in the standard cosmol-
ogy, producing axionic cosmic strings [12, 13]. These de-
fects are a variety of global cosmic string [14, 15], which
live until the QCD confinement transition, when they
form hybrid string-wall composites and are annihilated
[12, 16, 17]. The strings formed in this last scenario are
the ones studied in this paper.
Axion strings release energy mainly into pseudo-

Goldstone radiation, both during their evolution as well
as in the string-wall system collapse. This radiation con-
stitutes an initially degenerate gas of axions with a non-
thermal distribution. The complicated non-linear dy-
namics at the QCD transition imprints density fluctu-
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ations which provide the seed for the axion minicluster
formation through early gravitational collapse [18–21].
These miniclusters could be detected by their distinctive
small-scale lensing signals [18, 21–23].

The evolution of axion strings and axion radiation is
governed by the classical field equations of the underlying
scalar field theory, and due to their non-linearities, lattice
simulations are required to go beyond order-of-magnitude
estimates. In recent years, several groups have studied
the evolution of axion strings and the production of ax-
ions using lattice simulations [24–42].

An accurate calculation of the total number density
of axions produced is essential for an accurate calcula-
tion of the axion energy density, which if matched to the
dark matter density today, gives a prediction for the ax-
ion mass. While the axion number density is not very
sensitive to the string density at the QCD transition (see
[43] for a discussion), high accuracy in the mass estimate
is required for resonant cavity searches, which are cur-
rently targeting axion masses appropriate for production
by vacuum realignment [44].

The prediction of the axion density depends on having
an accurate description of axion string evolution. As the
string evolution takes place from the PQ transition at
around 1010 GeV, to the QCD transition at 100 MeV (a
factor 1011), the results from numerical simulations must
be extrapolated.

It is important to have a physical basis for the extrapo-
lation. Such a physical model is the one-scale model [45]
and its velocity-dependent improvement [46–48], which
we discuss in more detail below. It predicts that the
string network should approach a scaling solution, where
the mean string separation grows in proportion to cosmic
time t, and the RMS velocity of the strings is constant.

By scaling we mean that at distances much larger than
the string width, network length scales such as the mean
string separation are proportional to the cosmic time t.
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In the standard scaling picture the dynamical evolution
of the network is independent of the string width and
tension. The justification is based on approximating the
string dynamics by the Nambu-Goto equations of motion,
in which the string tension drops out and the string width
plays no role.

The general picture of network evolution is that strings
are initially in a dense tangle of loops and infinite strings,
with mean separation set by the correlation length of the
field and the cooling rate [49, 50]. They decay by the
collapse of loops of string initially present, and chopped
off from the infinite strings. The mean separation grows,
until it becomes of order t, the cosmic time. This is
approximately as fast as causality allows. By this time
the temperature has dropped many orders of magnitude,
and friction with the cosmic plasma is negligible. Strings
evolve essentially in vacuum, in the background provided
by the the rest of the matter in the universe.

In a previous paper [40], we presented results on the
scaling dynamics of axion strings. We showed that the
network evolution was consistent with standard scaling,
and obtained an asymptotic value for the dimensionless
length density of axion string ζ, which is proportional to
the mean number of Hubble lengths of string per Hubble
volume, ζ∞ = 1.19 ± 0.20. This is consistent with, and
improves in accuracy, estimates in earlier works [24–30,
32]. Equivalently, the mean string separation ξ is always
about half a horizon length.

In [40] we also showed how the presence of the scaling
solution can be disguised, either by the choice of vari-
able to study, or by the choice of initial conditions. In
this light, claims of a slow or logarithmic growth in the
dimensionless length density [35–39, 41, 48] are to be
interpreted as an approach to scaling from initially low
values of ζ that it is not completed before the simulation
ends.

It is important to note that the only significant dif-
ference between the simulations of the different groups
is the method for preparing the initial conditions of the
field, which determines the initial string separation, and
that there are no significant differences in the subsequent
evolution of the string network. All but one group report
ζ ≲ 1 at the end of the simulation, consistent with our
estimate. The exception [38] explicitly discounts the reli-
ability of their high value, due to a non-standard string-
finding algorithm.

The initial configurations in this work start with
random fields with several different initial correlations
lengths lφ in order to cover a range of initial string sep-
arations, which tests the sensitivity of the system to the
initial conditions. The evolution of the system has been
carried out using both the true physical field equations,
and also using the Press-Ryden-Spergel (PRS) method
[51] to simulate strings with constant comoving width.
Simulating (a priori unphysical) strings with constant co-
moving width allows for a longer period of scaling, thus
giving insight into the long-term behaviour of a system
of strings.

We extend the study in [40] by analysing the root-
mean-square velocity v of the networks alongside the
mean string separation in units of cosmic time, x = ξ/t.
We demonstrate that the evolution of the simulations
at later stages of the simulation can be well described
by a two-parameter velocity-dependent one-scale (VOS)
model [46–48] where all simulations tend asymptotically
to a common point in the phase space (x∗, v∗), a fixed
point of the VOS dynamical system. The dynamical sys-
tems analysis predicts that the approach to the fixed
point is governed by a pair of complex exponents with
negative real parts, a stable spiral. We find good quan-
titative accord with the prediction near the fixed point,
where the model is supposed to be a good description.
Due to this good accord, we obtain a more precise es-

timate of the scaling density of strings than in our previ-
ous analysis [40]. We find that the physical and constant
comoving width systems have fixed points which are con-
sistent with each other.
Further away from the fixed point, the qualitative

agreement is good. The VOS model predicts that ini-
tially overdense (x < x∗) networks will accelerate, and
evolve towards an underdense (x > x∗) network as the
energy-loss mechanism (production and decay of string
loops) overcompensates. The approach to scaling from
the underdense side is a common feature of simulations.
The model also predicts that very underdense networks
take a long time to reach scaling, often longer than half-
box crossing time, consistent with the very underdense
simulations of Refs. [35, 41].

II. MODEL AND NETWORK PARAMETERS

A. Field dynamics

The simplest axion models include a singlet scalar field
with a U(1) symmetry, Φ, with action

S =

!
d4x

√
−g

"1
2
∂µΦ∂

µΦ− 1

4
λ(Φ2 − η2)2

#
, (1)

where we have written the field as a two-component vec-
tor, and the U(1) symmetry is realised as a rotation on
the vector.
In a FLRW metric, and when the field is coupled to a

thermal bath of weakly-coupled particles, the equations
of motion take the form

Φ′′ + 2
a′

a
Φ′ −∇2Φ = −a2λ(Φ2 − η2(T ))Φ, (2)

where a is the scale factor, a prime denotes differentiation
with respect to conformal time τ , and in the radiation era
a ∝ τ . The free energy of the system is minimised at the
field magnitude η(T ), where η2(T ) = d(T 2

c − T 2), Tc ≃ η
is the critical temperature of the PQ phase transition,
and d is a constant computable in perturbation theory.
For T ≫ Tc, it is energetically favourable for the field to
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fluctuate around Φ = 0. Well below the critical temper-
ature it is energetically favourable for the magnitude of
the field to take the value η, with a massless pseudoscalar
fluctuation mode (the axion) and a scalar mode of mass

msca =
√
2λη. During the phase transition, the direc-

tion in field space is chosen at random in uncorrelated
regions of the universe, with the result that the field is
forced to stay zero along lines [49]. These lines form the
cores of the axion strings [13]. The size of the core is
approximately w0 = m−1

sca.

B. Network parameters from field averages

The subsequent evolution of the string network can be
tracked by the string length ℓ and the RMS velocity v of
the strings.
A couple of estimators for ℓ are possible. We define the

winding length ℓw as the number of plaquettes pierced
by strings multiplied by the physical lattice spacing aδx,
corrected by factor of 2/3 to compensate for the Manhat-
tan effect [31]. Such plaquettes are identified calculating
the “winding” phase of the field around each plaquette of
the lattice [52]. This is an estimate of the length of string
measured in the “universe frame”, that is, observers co-
moving with the expansion of the universe.
Other measures of length are based on the observation

that the energy of a string configuration is proportional
to its length, and the estimators are constructed using
local functions of the fields. To simplify the discussion,
we will first neglect the expansion of the universe.
Consider a weighted total energy

E = Eπ + ED + EV (3)

with the functions

Eπ =
1

2

!
d3xΠ2W(Φ), (4)

ED =
1

2

!
d3x(∇Φ)2W(Φ), (5)

EV =

!
d3xV (Φ)W(Φ), (6)

where Π = (∂tΦ) and V (Φ) = 1
4λ(Φ

2−η2)2. The function
W(Φ) is a local function of the fields which is strongly
peaked near Φ = 0, and zero for |Φ| = η, so that it
picks out strings. We call the three functions defined
above the weighted kinetic, gradient and potential energy
respectively.
Suppose that all the energy in the volume V is in the

form of global strings, centered on the line X(σ, t). The

coordinate σ is chosen so that |X′| = (1 − Ẋ2)
1
2 , where

the prime represents the derivative with respect to σ, and
the dot the derivative with respect to t. We denote the
total rest-frame length of string

ℓr =

!
dσ. (7)

Writing local rest frame space coordinates xs, and fields
measured in the local rest frame with the subscript s, the
fields of a piece of string moving with orthogonal velocity
Ẋ are

Π(x, t) = γẊ ·∇Φs(xs), (8)

∇Φ(x, t) = γv̂(v̂ ·∇Φs(xs)) +∇⊥Φ(x, t), (9)

where v̂ is a unit vector in the direction of Ẋ, γ =

1/
$
1− Ẋ2 is the boost factor, and

∇⊥
i Φ(x, t) = (δij − v̂iv̂j)∇jΦ(x, t). (10)

Choosing the local rest frame so that the string is oriented
in the zs direction, a string moving with velocity Ẋ has
scalar kinetic energy

Eπ =
1

4

!
dxsdys(∇Φs)

2W(Φs)

!
dσẊ2 , (11)

gradient energy

ED =
1

4

!
dxsdys(∇Φs)

2W(Φs)

!
dσ

%
1 +

1

γ2

&
,(12)

and potential energy

EV =

!
dxsdysV (Φs)W(Φs)

!
dσ

1

γ2
. (13)

The total energy is therefore

E = µ(1− fV v
2)ℓr, (14)

where

µ =

!
dxsdys

'
1

2
(∇Φs)

2W(Φs) + V (Φs)W(Φs)

(
(15)

is the W-weighted mass per unit length of a static string,
with fV the fraction contributed by the potential energy
density, and we have defined an RMS velocity v through

v2 =
1

ℓr

!
dσẊ2. (16)

A convenient choice for the weight function is

W = V (Φ), (17)

for which µ = 0.892η2 and fV = 0.368.1

Besides the energy, we can also calculate the La-
grangian

L = Eπ − ED − EV , (18)

(19)

1 These numbers are obtained from a code implementing a relax-
ation method on the discretised radial energy functional, with
800 lattice points and lattice spacing ηdr = 0.01. The conver-
gence criterion was that the change in energy in an update should
be less than 10−5η.
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finding

L = −µ(1− v2)ℓr. (20)

Combining the total energy E and the Lagrangian esti-
mators, an estimate for both the rest-frame length ℓr and
the mean square velocity can be obtained

ℓr =
E + fV L

µ(1− fV )
, (21)

v2L =
E + L

E + fV L
, (22)

where the subscript L denotes the use of the Lagrangian
to obtain the estimate. An alternative way of estimating
the string velocity comes from the pressure,

pV = Eπ − 1

3
ED − EV , (23)

which depends on the rest frame length and RMS velocity
as

pV =
1

3
µℓr

)
(2v2 − 1)− fV (2− v2)

*
. (24)

It is then straightforward to derive another mean square
velocity estimator

v2ω =
1 + 3ω + 2fV
2 + fV (1 + 3ω)

, (25)

where ω = pV/E is the equation of state parameter of
the strings. A third estimate for the string velocity can
be constructed from the ratio of the kinetic to gradient
energies [53],

Rs =
Eπ

ED
, (26)

which can be rearranged to give

v2s =
2Rs

1 +Rs
. (27)

Given that we only have three independent underlying
quantities Eπ, ED, and EV , only three independent es-
timators can be derived from them: one length, and two
velocity estimators.
The winding length is not derived from the weighted

energies, and so is an independent length estimator. As
it is the ordinary Euclidean length of the curve traced by
the string, it can be represented as

ℓw =

!
dσ|X′| = ℓr

+
γ−1

,
. (28)

Note that the average of γ−1 is not in general equal to
(1− v2)1/2.
In a cosmological simulations one can express the

string length in terms of Hubble lengths per Hubble vol-
ume, or

ζ =
ℓt2

V . (29)

When investigating scaling in string networks, it is more
transparent to parametrise the string density by the
mean string separation, which is obtained from measures
of the string length via

ξ =

-
V
ℓ
. (30)

In this work we will use two length estimators, which
will define two different mean string separation estima-
tors: when the length estimator used is the rest-frame
estimator ℓr, we will define ξr; and when the length es-
timator used is the winding length estimator ℓw, we will
define ξw.
The above estimators were derived for a Minkowski

space-time. In an expanding background, one can view
the space-time coordinates as representing comoving po-
sition and conformal time, from which physical lengths
follow by multiplication by the scale factor a.

III. SIMULATIONS AND SCALING
OBSERVABLE RESULTS

We solve a discretised version of the equations of mo-
tion (2) on a cubic lattice with periodic boundary condi-
tions, evolving the system in conformal time t The results
we present in this section are extracted from the same set
of simulations analysed in [40], where lattices with 4096
sites per dimension were used with spatial resolution of
δxη = 0.5 and conformal time steps of δτη = 0.1. In
addition, we use a set of simulations with a larger initial
correlation length, but otherwise identical. In the follow-
ing lines we will only summarise the procedure and refer
the reader to [32, 40] for more detailed descriptions on
the method.
The field configuration is initiated at conformal time

τstart by setting the scalar field canonical momentum to
zero and the scalar field to be a Gaussian random field
with power spectrum PΦ(k) = A

)
1 + (klφ)

2
*−1

, were A

is chosen so that 〈Φ2〉 = η2 and lφ is the field correlation
length in comoving coordinates. We use different values
of lφ in order to cover a range of string separations in
the initial conditions. In order to allow the strings to
form, and to remove the energy excess in the field fluc-
tuations around the string configurations, we evolve this
configuration with a diffusion equation with unit diffu-
sion constant until conformal time τdiff . We then apply
the second-order time evolution equation (2).
Similarly to our previous paper, we extract data from

simulations with both fixed comoving string width and
fixed physical string width. We promote the scalar self-
coupling constant to be a time dependent parameter λ =
λ0/a

2(1−s) following the PRS method [51]. This makes
the comoving string width decrease with conformal time
as:

w(τ) =
w0

as(τ)
. (31)



5

The physical equation of motion, where the physical
string width remains constant at w0 = 1/

√
2λ0η, and

the comoving width decreases with time, corresponds to
s = 1. With s = 0 the comoving width is constant at w0

and the physical string width increases in time.
For the s = 1 case, it is difficult to avoid the string

width being larger than the Hubble length at early times,
which also means that the relaxation of the field to its
equilibrium value is longer than a Hubble time. In order
to speed up the string formation, we arrange the time-
dependence of the coupling so that strings are formed
and diffused with a constant comoving width, equal to
their final comoving width. At the end of the diffusion
period, the string width is much smaller than its physical
value w0. The string width is then allowed to grow by
setting s = −1 until τcg, which is when the string core
has expanded to its correct physical width w0. After
conformal time τcg, the physical evolution with s = 1
starts. We call this procedure core growth. Simulations
end at conformal time τend.
Table I contains all simulation parameter choices that

have been considered in the procedures described above.
Four simulations with different random number seeds
were carried out at each parameter choice, for a to-
tal of 28 runs. The data are analysed in cosmic time
t = (τ/τend)

2τend/2.

Model s = 1 s = 0

lφη (5,10,20,40) (5,10,20)

τstartη 50 50

τdiffη 70 70

scg -1 –

τcgη 271.11 –

τendη 1050 1050

TABLE I. Run parameters used in simulations. See text for
explanation.

Figure 1 shows the comparison of the evolution of the
mean string separation for ξr and ξw presented in the
previous section (30) for a single run with lφη = 5. The
upper panel is for simulations with s = 1 and the lower
panel for s = 0. Their growth is consistent with a linear
asymptote, as extensively studied in [40]. This is the ex-
pectation from the standard picture of scaling in axion
string networks [12, 45, 46]. Note that in [40], the wind-
ing length estimator ξw was used to establish the asymp-
totic linear growth; here we establish that the rest-frame
estimator also grows linearly, as expected.
The ratio of the winding length estimator ℓw to the rest

frame estimator ℓr is plotted in Fig. 2 (solid line), which
according to Eq. (28) is an estimate of

+
γ−1

,
, where γ is

the Lorentz factor of the string. For comparison, we plot
(1 − v2s )

1/2, using the scalar field estimator (27), whose
time-dependence in the simulations is discussed later in
this section. As pointed out in the previous section, the
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FIG. 1. Comparison of the mean string separation defined
from the winding length estimator ξw (solid black) and the
rest-frame estimator ξr (solid blue) as presented after Eq. (30),
from a single simulations with correlation length lφη = 5 and
s = 1 (upper panel) and s = 0 (lower panel). The dashed
black line corresponds to the winding estimator ξw modified
via Eq. (28).

two quantities are not necessarily equal, but empirically
we observe that they are close by the end of the simula-
tion.
The closeness of (1 − v2s )

1/2 to
+
γ−1

,
is also observed

in Fig. 1, where we show as a dashed line the winding
estimator multiplied by (1− v2s )

1/2. We choose ℓr as the
length estimator for the rest of this work, which is better
suited to the dynamical modelling we carry out. It can
be related to the winding length through the factor of
approximately 0.8 on show in Fig. 2.
The evolution of the mean string separation for all sim-

ulations is shown in Fig. 3. The solid line represents the
mean obtained by averaging over realisations and the
shaded regions the 1σ standard deviations. Uncertain-
ties are calculated by propagating the fluctuations in the
weighted energies (11), (12) and (13). We use black for
lφη = 5, red for lφη = 10, blue for lφη = 20, and green
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FIG. 2. Ratios of the winding length estimator ℓw to rest-
frame estimator ℓr (solid line) for different correlation lengths.
The lines correspond to a single simulations. In dashed, we
plot (1− v2s )

1/2.

for lφη = 40 (only in simulations with s = 1). The end
of the core growth period is shown as a vertical green
dashed line. These figures extend the results of Fig. 1 in
Ref. [40], which shows the winding length estimator only
for s = 1, and a subset of the initial correlation lengths.

We now turn to the velocity estimators. To establish
their consistency, we plot all three for the same run in
Fig. 4, with s = 1 in the top panel and s = 0 in the bot-
tom panel. As mentioned in the previous section, only
two are independent, but the fact that all three are so
close gives confidence that they are indeed estimating
a global translational velocity of a string-like solution,
rather than field fluctuations in regions where Φ is close
to zero, which is a potential contaminant of velocity es-
timators.

Uncertainties in velocities are calculated by propagat-
ing the fluctuations in the weighted energies (11), (12)
and (13). We find that the largest fluctuations are in the
weighted potential energy EV . We therefore choose the
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FIG. 3. Mean string separation ξr from simulations with
s = 1 (top panel) and s = 0 (bottom panel) with initial field
correlation lengths lφη = 5 (black), lφη = 10 (red), lφη = 20
(blue) and lφη = 40 (green - only for s = 1). The solid line
represents the mean over realisations of ξ at each time, with
the shaded regions showing the 1-σ variation. The vertical
green line corresponds to the end of the core growth period,
after which the system is evolved with the physical equations
of motion in the s = 1 case.

estimator vs derived from kinetic and gradient energies
only (27) as the mean square string velocity estimator,
and show the means and uncertainties in Fig. 5.

We see that after an initial period of acceleration, there
is a decreasing trend, approaching what appears to be a
constant value at the end of the simulations. The max-
imum velocity is larger for the fields with smaller cor-
relation length in the initial conditions, as is consistent
with string-like behaviour, where acceleration is propor-
tional to curvature. For the case of strings with constant
physical width (s = 1), the RMS velocity is approxi-
mately constant during the core growth phase, and then
approaches an asymptote more slowly than the s = 0
simulations.

Figures 3 and 5 show that, independently of the initial
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FIG. 4. Comparison of velocity estimators presented in
Sec. II B for a simulation with correlation length lφη = 5 and
s = 1 (upper panel) and s = 0 (lower panel). The values
of the scalar field velocity estimator vs (27), the equation of
state velocity estimator vω (25) and the Lagrangian-derived
velocity estimator vL (23) are shown in black, red and blue,
respectively.

field correlation length, all simulations are compatible,
i.e. all of them give separation and velocity data which
are within 1σ of each other. Moreover, the behaviour
of both estimators (ξ and v) qualitatively agrees with
the standard scaling, showing a tendency towards linear
growth in ξ and a constant RMS velocity.
There is a departure from standard scaling in the ear-

lier phases of the simulations, which needs to be under-
stood in order to improve the estimates of the asymptotic
behaviour of v and ξ, or more precisely the asymptotic
values of the scaled mean string separation,

x = ξ/t. (32)

In our previous paper [40], which studied scaling using
ξw only, we observed that the average slope ∆ξ/∆t con-
verged more quickly to a constant than ξ/t. We therefore
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FIG. 5. Velocities from scalar field estimator vs (27) from
simulations with s = 1 (top panel) and s = 0 (bottom panel)
with initial field correlation lengths lφη = 5 (black), lφη = 10
(red), lφη = 20 (blue) and lφη = 40 (green - only for s = 1).
The solid line represents the mean over realisations at each
time, with the shaded regions showing the 1-σ variation. The
vertical green line corresponds to the end of the core growth
period.

used the slope of the curve of ξ against t as our estimator
of the asymptotic value x∗. The linear fit can have a sig-
nificant constant term, which we parameterised in terms
of the intercept with the time axis, the time offset, t0.
The value of t0 has no physical importance, and instead
parametrises an effect of the initial conditions.
In this paper we make use of RMS velocity data, which

gives extra information about the approach to scaling,
and avoids the need for t0. We will see that in doing
so we improve the accuracy of the estimate of x∗, while
remaining consistent with our previous estimate.
In Fig. 6 we show the evolution of the network in the

phase space (x, v), where the scaled mean string sepa-
ration is measured with the rest frame string length xr

and the RMS velocity is measured using the scalar field
energies vs.
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FIG. 6. Phase space plot for vs and xr for s = 1 (top panel)
and s = 0 (bottom panel), and the same colour scheme corre-
spond to different initial correlation lengths, as the previous
figure. Larger dots are plotted every 20 cosmic time units,
starting at cosmic time tη = 4. As time increases, all curves
spiral in towards an apparent fixed point, analysed in Section
V.

The phase space representation shows clearly the dif-
ferent regimes in which the network evolves. At the end
of the diffusion period the strings are accelerated under
their curvature, and the RMS velocity increases rapidly
while the inter-string distance remains nearly constant.
For s = 1 simulations, the diffusive evolution is followed
by the core growth period, which is part of the prepa-
ration of the initial conditions. During the core growth
period, velocities remain approximately constant. The
scaled mean string separation, however, changes, and it
changes differently for different initial correlation lengths:
For correlation lengths lφη = 5, 10, the scaled mean
string separation grows, whereas for correlation lengths
lφη = 20, 40 it decreases. Finally, when the physical
equations of motion (2) are being solved, the system
starts to spiral towards an apparent common fixed point
for all simulations. Estimating the position of the fixed

point and hence the asymptotic values of x and v is the
subject of the next two sections.
It is interesting to note the qualitative difference in

the velocity evolution between the core growth era and
the physical equations of motion. In the core growth era
the velocity remains constant after the initial accelera-
tion: this constant depends on the initial conditions. It
is only after the physical evolution sets in that the veloc-
ity starts evolving towards its asymptote. Note that the
core growth era corresponds to evolution with the fixed
scale hierarchy msca/H explored in Ref. [39]. We will
discuss this observation in the final section.
The initial conditions of the field and the time at which

they are set determine the simulation’s starting point in
the phase space. Figure 6 shows that varying the initial
field correlation length one can choose whether to start
on the left hand side or on the right hand side of the
hypothetical fixed points, corresponding to strings being
either above or below their scaling density. As mentioned
before, the time offset t0 depends on the the initial condi-
tion, and for approaches to the fixed point from the right
corresponds to t0 < 0.

IV. PHASE SPACE ANALYSIS WITH THE VOS
MODEL

In this section we model our results as a dynami-
cal system. The model best adapted to a network of
strings is the velocity-dependent one-scale (VOS) model
[45, 46, 48]. This class of models assumes a statistical
distribution of string configurations and velocities which
has a universal form, parametrised by the string separa-
tion ξ (or equivalently the length ℓ in a volume V) and
RMS velocity v.
When applied to Nambu-Goto strings, the VOS model

describes “long” strings only, that is, either infinite
strings, or string loops with total length greater than
some threshold of order ξ. In our simulations, string
lengths and velocities are measured over the whole string
network, including loops. As a string network’s total
length is dominated by strings winding around the sim-
ulation’s periodic box, the distinction should not be im-
portant for a first approximation.
The movement of the long strings results causes a seg-

ment of string of length ξ to encounter others at a rate of
order v/ξ. The encounter causes the string to reconnect,
producing a loop. If this loop is smaller than ξ it radiates
and shrinks without further encounters, apart from self-
intersections. The net result is the loss of energy from the
string network into axions and massive scalar radiation.
The string motion is a balance between the accelera-

tion caused by the curvature, and the Hubble damping.
There can also be damping due to the preferential loss
of energy from fast-moving segments of string, which en-
counter others more rapidly: this effect is neglected in the
simplest models. There is also direct energy loss from
long string in the form of radiation, which we will not
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distinguish from energy loss via loops in our modelling.
The equations of motion for a system of Nambu-Goto

strings, and the assumptions above lead to the following
dynamical system,

dξ

dt
= Hξ(1 + v2) +

1

2
cv, (33)

dv

dt
= (1− v2)

%
k

ξ
− 2Hv

&
, (34)

where H is the Hubble parameter. The model has two
phenomenological parameters, k and c. The parameter
c describes the efficiency of the energy loss mechanism,
while the parameter k describes the correlation between
the string curvature vector and the velocity. For exactly
Nambu-Goto strings, k is a function of velocity. However,
as a first approximation, and because the strings we are
studying are not exactly Nambu-Goto, we will take k to
be a constant.
Using the dimensionless mean string separation vari-

able x (32), and taking, H = 1/2t as appropriate for a
radiation-dominated universe,

tẋ =
1

2
x
.
v2 − 1

/
+

c

2
v (35)

tv̇ =
.
1− v2

/%k

x
− v

&
(36)

This dynamical system has a fixed point in the relevant
region 0 ≤ x, 0 ≤ v < 1,

x∗ =
$
k(c+ k) v∗ =

0
k

(c+ k)
. (37)

From here, one can express the parameters c and k in
terms of the fixed point values,

k = x∗v∗, c =
x∗
v∗

(1− v2∗). (38)

Small perturbations (δx, δv) evolve to the fixed point ac-
cording to

t
d

dt

%
δx
δv

&
= M∗

%
δx
δv

&
, (39)

where

M∗ =

% 1
2 (v

2
∗ − 1) x∗

2v∗
(1 + v2∗)

v∗
x∗
(v2∗ − 1) v2∗ − 1

&
(40)

The eigenvalues of the matrix σ± are

σ± = −3

4
κ±

-
9

16
κ2 − κ

where κ = 1 − v2∗. Since 0 < κ < 1 the eigenvalues σ±
are complex, with negative real part. Therefore, the fixed
point is a stable spiral.
We plot flows in the phase diagram predicted by the

VOS model in Fig. 7 for the global best fit (x∗, v∗), along
with the mean values of selected (x, v) from the simu-
lations. The stable spiral form is clearly visible in the
streamlines. In the next section we explain the fitting
procedure from which the global best fit (x∗, v∗) was ob-
tained.

V. FITS AND ASYMPTOTIC BEHAVIOUR

In this section we measure the degree at which the
evolution dictated by the VOS model presented in the
previous section, Eqs. (33) and (34), is compatible with
our simulations, by performing a fitting analysis. We
compute the χ2 value for each set of runs with a given
(s, lφ) as

χ2 =
1

i

(Oi − Ei)
2

σ2
i

, (41)

where Oi is the observed value, Ei the expected value
on the basis of the model, and σi the uncertainty in the
observed value. In our case, the observed values are the
time series data (x, v) recorded from our simulations. We
use a bootstrapping method to create the time series for a
specific lφ. For each case we have four different runs, out
of which we create the bootstrapped time series by choos-
ing randomly a value at specific time step i. This proce-
dure is performed four times so that four different boot-
strapped time series are created. The observed values
and their uncertainties are then obtained by averaging
and computing the standard deviation from those boot-
strapped realisations. The expected value is the value
predicted by the VOS model, as described below. The
set of observations is taken in the time range [tfit, tend],
where the start of the fitting period is tfitη = 171.4 (con-
formal τfitη = 600). Note that the lφη = 40 case is
present only for s = 1.
We explore the two dimensional parameter space using

a grid of size 100 × 100, with the priors 0.35 < k < 0.7
and 0.6 < c < 1. These are set by preliminary analysis
of a wider parameter space.

s lφη k c x∗ v∗

0

5 0.474± 0.006 0.811± 0.010 0.780± 0.009 0.607± 0.002

10 0.486± 0.003 0.845± 0.017 0.805± 0.007 0.604± 0.004

20 0.497± 0.010 0.764± 0.010 0.792± 0.010 0.628± 0.005

Mean 0.487± 0.013 0.803± 0.032 0.793± 0.012 0.615± 0.012

1

5 0.459± 0.008 0.829± 0.016 0.768± 0.013 0.597± 0.003

10 0.485± 0.011 0.856± 0.032 0.806± 0.021 0.601± 0.004

20 0.519± 0.004 0.888± 0.020 0.854± 0.006 0.607± 0.005

40 0.521± 0.005 0.797± 0.015 0.829± 0.006 0.629± 0.005

Mean 0.494± 0.027 0.843± 0.039 0.814± 0.037 0.609± 0.014

TABLE II. Inferred best-fit values of model parameters c and
k, and asymptotic values of x and v for each correlation length
in s = 0 and s = 1. These values are obtained by fitting a set
of 20 bootstrap realisations for each correlation length, using
data with t > 171.4 (conformal time 600). The uncertainties
on the global means for s = 0 and s = 1 are the standard
deviations of the mean values for each correlation length.

The best-fit values of c and k, and asymptotic scaled
mean string separation and velocity (x∗ and v∗) for each
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(s, lφ) can be found in Table II, where fits were taken
with tfitη = 171.4. The final mean values for s = 0, 1 are
obtained by averaging over different values of lφ, and the
quoted uncertainties correspond to the resulting standard
deviations. The errors obtained by quadrature combina-
tion of bootstrap errors were systematically smaller than
the standard deviations. Mean values for the parameters
for other values of tfitη = 171.4 are shown in Table III.
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FIG. 7. Phase plane for s = 1 (top), s = 0 (bottom),
with stream lines of the best-fit values of the VOS model
parameters shown in Table III, with tfitη = 50. The colour
scheme is the same as in previous figures. The larger markers
correspond to the same points as in Fig. 6, with empty circles
denoting points with tfitη < 50.

Figure 7 shows the evolution of the simulations along-
side the streamlines of the VOS dynamical system cal-
culated using the inferred global mean values (x∗, v∗),
obtained by fitting with tfitη = 50, the earliest time from
which we start fitting (see Table III). It can be seen that
after an initial relaxation period, the simulation data fol-
low the spiral-like evolution towards the fixed point. A
key feature is that initial conditions with x < x∗ tend to
flow to states with v > v∗, and then around to x > x∗,

corresponding to string networks less dense than scaling.
For a more quantitative comparison between our simu-

lations and the VOS model, we show in Figure 8 the rel-
ative difference between the simulation time series data
and the VOS best-fit model for each (s, lφ), where the ini-
tial conditions for the integration of the VOS equations
are set at tfit. Shaded regions correspond to the uncer-
tainties propagated from simulation estimators. It can
be observed that the mean relative difference always lies
below 5% level of deviation, with zero deviation always
within the errors.

s tfitη k c x∗ v∗

0

50 0.486± 0.027 0.804± 0.008 0.793± 0.030 0.614± 0.011

100 0.487± 0.018 0.800± 0.018 0.792± 0.022 0.615± 0.007

150 0.484± 0.017 0.804± 0.034 0.790± 0.020 0.613± 0.010

171 0.486± 0.012 0.807± 0.041 0.792± 0.013 0.613± 0.013

233 0.478± 0.011 0.808± 0.053 0.783± 0.026 0.610± 0.010

305 0.450± 0.015 0.789± 0.077 0.746± 0.025 0.604± 0.022

386 0.450± 0.036 0.745± 0.115 0.732± 0.029 0.616± 0.040

1

50 0.493± 0.057 0.840± 0.013 0.810± 0.062 0.607± 0.024

100 0.493± 0.043 0.841± 0.015 0.811± 0.045 0.607± 0.020

150 0.498± 0.031 0.837± 0.021 0.815± 0.036 0.611± 0.012

171 0.496± 0.030 0.843± 0.039 0.814± 0.037 0.609± 0.014

233 0.492± 0.028 0.835± 0.046 0.808± 0.037 0.609± 0.013

305 0.484± 0.028 0.854± 0.083 0.804± 0.032 0.602± 0.026

386 0.483± 0.060 0.846± 0.102 0.799± 0.050 0.604± 0.045

TABLE III. Global mean values of model parameters c and
k, and asymptotic values of x and v, with different start times
for the fit tfit.

Table III contains the global mean values obtained ap-
plying the same bootstrap procedure as in the previous
analysis. The last four fit start times are those used for
the linear fitting procedure carried out in Ref. [40]. A re-
markably good agreement is obtained in the global means
when comparing early and late fits. Earlier fits have a
smaller scatter in c, but a larger scatter in k. This can
be related to the spread of velocities in the initial condi-
tions The spread is minimised for the intermediate times
tfit = 150, 171 and 233. We quote results from tfit = 171,
which is also the earliest fitting time from our previous
paper [40], meaning that a direct comparison of the meth-
ods can be made.
The simplest VOS model therefore gives a good quanti-

tative description of the joint evolution of the string sep-
aration and RMS velocity. We have experimented with
fitting for additional parameters q and d (with β = 1 and
r = 1) in the VOS model presented in Ref. [54]. but our
preliminary analysis shows that the preferred values for
these additional parameters are compatible with zero.
It is also interesting to study the network evolution

in terms of the length density parameter ζ (29), and by
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FIG. 8. Relative difference of the VOS prediction and the
simulation data of the dimensionless string separation x and
rms velocity v. The shaded bands represent errors propagated
from the simulations’ energy estimators.

plotting against the logarithm of time one can emphasise
the earlier times when the network is further away from
scaling. Fig. 9 shows our s = 1 rest-frame length data
plotted this way, along with the best-fit VOS models for
each correlation length, and their extrapolation to larger
values of time. The asymptotic ζr,∗ obtained from the
overall mean values of fit parameters in Table II is also
depicted, for which we obtain ζr,∗ = 1.50 ± 0.11. The
central value is shown as solid purple line and its corre-
sponding errors in shaded purple bands. Note that all
simulations approach the asymptotic ζ from below, and
are still slowly increasing at the end of the simulation,
but within 20% of its asymptotic value. The increase
is most noticeable for simulations which start very un-
derdense, and therefore have further to evolve to reach
scaling.

We also include the value of the asymptotic length
density parameter reported in our previous paper [40]
in dashed black with its corresponding uncertainty in
grey. In [40] the universe-frame string length ℓw was
used as the measure of the string length, and the value
of x∗ estimated by linear fits to ξw against t, from
which we obtained an estimate of the asymptotic value
ζ∗ = 1.19 ± 0.20. In this work we use the rest-frame
length estimator, the corresponding string density pa-
rameter is (28), for which ζr,∗ = ζ∗(1−v2∗)

−1/2, and gives
ζr,∗ = 1.51 ± 0.25. As the figure shows, the agreement
with our previous result is very good.
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FIG. 9. String network evolution expressed in terms of the
rest-frame length density parameter ζ and RMS velocity v,
plotted against log(tη), with VOS models (dotted line) that
correspond to best fit values for each lφ shown in Table II.
The prediction of the VOS model is plotted from tfit on. The
horizontal dashed black line and grey band in the top panel
show the mean and uncertainly obtained from our previous
analysis [40], translated from the universe-frame length used

in that paper by multiplying by (1−v2∗)
−1/2. The solid purple

line and shaded purple bands are the mean and uncertainly
obtained from the analysis in this work. The vertical green
dashed line marks the end of the core growth phase, and the
fit start time tfit is indicated by the vertical grey dashed line.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied axion string networks
in the radiation era by measuring the root-mean-square
velocity of the strings v and the mean string separation
ξ. The strings are modelled by a scalar field with two
real components with a spontaneously broken O(2) sym-
metry, simulated in periodic cubic lattices. Performing
a phase space analysis in the variables x = ξ/t and v,
we find good evidence for the existence of a fixed point,
which shows that the system reaches a scaling regime.
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These prompted us to continue the analysis in the frame-
work of the velocity-dependent one-scale (VOS) model.
The VOS model assumes a statistical distribution of

string positions and velocities which can be adequately
described by two parameters mentioned above. By as-
suming that the strings follow approximately Nambu-
Goto trajectories, that they reconnect with a fixed high
probability when they cross, and that the loops so formed
annihilate quickly, the VOS model reduces the network
evolution to a simple dynamical system, a pair of first or-
der non-linear ordinary differential equations. The equa-
tions have a fixed point (x∗, v∗), which describes a scaling
network, that is, one whose mean separation increases
linearly with time, and with constant RMS velocity.
We have fitted the results of a set of numerical simula-

tions in the radiation era to a two-parameter VOS model,
with initially random fields with several different initial
correlations lengths lφ, using both the true physical field
equations and the PRS approximation. In terms of the
core growth parameter s, the comoving string width be-
haves as w = w0a

−s. In this paper we have used s = 1,
which corresponds to the true physical case, and s = 0
which corresponds to a string with constant comoving
width.
We find that the two-parameter VOS model gives a

good qualitative and quantitative description of the net-
work evolution, with parameters given in Table II.
Qualitatively, the initial acceleration of the string net-

work results in a RMS velocity which overshoots the fixed
point v∗, as the Hubble length in our initial conditions
is larger than the string separation, meaning that the
dynamical system is underdamped. The higher velocity
results in more rapid loop formation, and hence an in-
crease in the mean string separation. This decreases the
acceleration, and hence the RMS velocity. The net result
is a curved approach to the fixed point in the (x, v) plane,
clearly visible in Fig. 7.
In assessing the quantitative success of the two-

parameter VOS model, we observe that the residuals to
the fits points in Fig. 8 are consistent with zero, and that
the fixed points given in Table II for differential initial
correlation lengths are remarkably similar. The fluctua-
tions between the fixed point estimates are slightly larger
than the bootstrap fitting errors would predict, which
suggests that the model could be tuned slightly, or that
the fitting errors have been underestimated. A prelim-
inary investigation shows that the more complex model
of Ref. [54] does not improve the fit. A more thorough
exploration of VOS models and a more accurate estimate
of the fixed point could be obtained with a wider range
of initial correlation lengths and initial times.
Translating the values of Table II to the universe-frame

length density parameter ζ, estimated in our previous
paper by linear fitting, we find

ζ∗ = 1.20± 0.09 (s = 1), (42)

ζ∗ = 1.25± 0.04 (s = 0). (43)

These values are consistent with our previous determina-

tion, with an improved accuracy arising from the joint fit
with the velocity data in the context of the VOS model.

An important consequence of the description in terms
of a dynamical system is that the approach to the fixed
point is determined by a pair of complex exponents σ±,
whose real part is − 3

4 (1−v2∗) ≃ −0.47. Hence, even when
close to the fixed point, the approach can be rather slow.

If the initial string separation ξi is chosen far away
from its scaling value x∗ti, it may not get within 1σ of
its scaling value (as determined by the VOS model) by
the end of the simulation, which has to be chosen as L/2
for a box of side L in systems like this one with degrees
of freedom propagating at the speed of light.

This is particularly noticeable for initial conditions
which are very underdense, i.e. with xi ≫ x∗. When
the length density parameter ζ is plotted against the log-
arithm of cosmic time log(tη), one sees a slow drift up
towards the fixed point value. Other groups have also
noticed this feature of underdense initial conditions [35–
39, 41]. As we have explained elsewhere [40] this does
not signal a breakdown of the standard scaling picture.
Our analysis in the framework of the VOS model shows
that slow approaches to the fixed point from values of
ζ less than its fixed point value are to be expected, and
indeed, nearly all simulations to date have final values of
ζ less than our estimated fixed point.

If the slow upward drift in ζ were an asymptotic fea-
ture of axion string networks, one would expect to see
final values of ζ significantly above the fixed-point value
in the largest simulations. However, the maximum value
of ζ obtained in the most recent (and therefore largest)
simulations are nearly all below value of ζ∗ computed in
this work. These values are (all of them measured in the
universe frame): ζ ≃ 0.9 in the physical case and ζ ≃ 1.2
using the PRS approximation in [41], ζ ≃ 1.1 in the phys-
ical case in [39] and ζ ≃ 1.4 using the PRS approximation
in [37]. In [36] the authors show the physical evolution
of ζ for three different ratios of the Hubble scale to the
string width at the time of the PQ phase transition, giv-
ing ζ ≃ 1.3, ζ ≃ 1.1 and ζ ≃ 0.9. In [38], the quoted
value ζ ≃ 4 is not consistent with other groups, but the
authors of that work caution that the method to detect
strings they use gives only a rough estimate of ζ. They
also suggest that a better method will render their results
comparable with the ones in [41], and therefore, also with
other groups.

In summary, our data and fits already show that the
straightforward and physically motivated picture pro-
vided by the simplest VOS model provides a good de-
scription of the evolution of the string network consistent
with the standard scaling picture, and an asymptotically
constant dimensionless length density and RMS velocity.
This gives confidence that our results can be extrapolated
over the many orders of magnitude required for predic-
tions of the axion number density. As pointed out in
Ref. [40], predictions from a scaling string network will
be around 50% higher than recent estimates [34].

We also comment on a suggestion that simulations with
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growing comoving string width shed light on the asymp-
totic behaviour of axion string networks [39]. If the string
width grows in proportion to the horizon (w ∝ τ), the
field equations have a scale symmetry, and it can be ar-
gued that a fixed point must exist. We use this growth in
width in the core growth phase of our s = 1 simulations,
where it can can be seen that this phase characterised
by a constant RMS velocity, but not a consistent one.
A smaller initial correlation length gives a larger RMS
velocity in the core growth phase (see the top panels in
Figs. 9 and 5). This is understandable in that the initial
acceleration is proportional to the curvature. However,
as the mean string separation increases, the RMS veloc-
ity of the strings does not decrease, as would be expected
from the decrease in the average acceleration. While it
seems that x is evolving towards a value x∗ ≃ 0.8, there
is little sign of a definite value of the RMS velocity. It
seems therefore that networks in the core growth phase
can be used to estimate the fixed point in x, but not the
RMS velocity.

As a final remark, we note that the asymptotic scal-
ing behaviour presented here can also be applicable to
generic global string networks, such as those in axion
models beyond the canonical QCD scenario [55]. A gen-
eral observational consequence of scaling in a system of
topological defects is a scale-invariant gravitational wave
power spectrum [56, 57] during radiation domination.
This suggests that recent claim that axion string net-
works produce a tilted gravitational wave spectrum [42],

based on an assumed logarithmic growth in the string
density throughout the radiation era, should be revisited.
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