
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Neurocomputing 171, 1576-1590 (2016), copyright© 2016 Elsevier. To access the final edited and published work
see https://doi.org/10.1016/j.neucom.2015.07.078

Undirected Cyclic Graph Based Multiclass Pair-wise Classifier: classifier
number reduction maintaining accuracy

I. Mendialduaa,∗, G. Echegarayb, I. Rodrigueza, E. Lazkanoa, B. Sierraa

aDepartment of Computer Science and artificial Intelligence
University of the Basque Country UPV/EHU

Donostia-San Sebastian 20018, Spain.
bApplied Mathematics Department

University of the Basque Country UPV/EHU
Donostia-San Sebastian 20018, Spain.

Abstract

Supervised Classification approaches try to classify correctly the new unlabelled examples based on a set of well-
labelled samples. Nevertheless, some classification methods were formulated for binary classification problems and
has difficulties for multi-class problems. Binarization strategies decompose the original multi-class dataset into mul-
tiple two-class subsets. For each new sub-problem a classifier is constructed. One-vs-One is a popular decomposition
strategy that in each sub-problem discriminates the cases that belong to a pair of classes, ignoring the remaining ones.
One of its drawbacks is that it creates a large number of classifiers, and some of them are irrelevant. In order to reduce
the number of classifiers, in this paper we propose a new method called Decision Undirected Cyclic Graph. Instead
of making the comparisons of all the pair of classes, each class is compared only with other two classes; evolution-
ary computation is used in the proposed approach in order to obtain suitable class pairing. In order to empirically
show the performance of the proposed approach, a set of experiments over four popular Machine Learning algorithms
are carried out, where our new method is compared with other well-known decomposition strategies of the literature
obtaining promising results.

Keywords: Machine Learning, Supervised Classification, Decomposition Strategies, One-vs-One

1. Introduction

In supervised classification the goal is to build a classifier which given a new case, makes a prediction about the
class to which the new observation belongs. To do so, the supervised classification paradigms requires a training set,
i.e. a collection of well classified samples. Let TR = {xi, θi}

N
i=1 be the training set of N well labeled examples, where

xi represents i-th individual feature vector, and θi is the class the individual belongs to. Based on the training set
the supervised classification builds a general rule, also called as classifier, that is used to predict the class of the new
unlabelled case.

Although many real world problems are multi-class problems, some kind of approaches, such as SVM, has dif-
ficulties to build a classifier to distinguish between more than two classes. In order to solve this problem Class
Binarization strategies were proposed. Class Binarization strategies decompose the original multi-class problem into
many binary classification sub-problems. In each sub-problem the classes are decoded with 3 possible values {-1,0,+1}
and a classifier is constructed to differentiate between positive and negative values; normally the same base classifier
is used in all the sub-problems. These techniques are two-step methods: in the first step a classifier is learned for
each binary sub-problem, and in the second step the outputs of these binary classifiers are combined to obtain the final
prediction.

∗Corresponding author at: Robotics and Autonomous System Research Group, University of the Basque Country UPV/EHU, Donostia-San
Sebastian 20018, Spain

Email address: inigo.mendialdua@ehu.es (I. Mendialdua)

1

In the specialized literature three main Class Binarization strategies can be found: ”One vs One” (OVO), ”One vs
All” (OVA) and “Error Correcting Output Codes” (ECOC).

• One vs All (OVA) [1]: In each sub-problem one class is compared with the rest of classes.

• One vs One (OVO) [12]: In each sub-problem only the cases belonging to two classes are compared between
them, ignoring the remaining ones.

• Error Correcting Output Codes (ECOC) [8]: In each sub-problem all the classes are grouped into two groups,
and the two groups are compared between them.

Among these three strategies OVO is which more attention has received in the literature. Some proposals try to
improve the combination of the outputs, while other approaches try to solve some of the disadvantages of OVO. One
of its main drawbacks is the number of sub-problems that OVO needs. Many of the binary classifiers are irrelevant
and are forced to give wrong answers for many instances, because each binary classifier must classify every pattern
with one of the two classes used in its training set. If a pattern belongs to class i, all the classifiers that are not trained
to differentiate this class will cast wrong votes

In this paper our aim is to present a novel strategy which reduces the number of classifiers in OVO in the classifi-
cation phase. Instead of being compared with all the other classes, each class is only compared with other 2 classes.
We represent our method as an undirected cyclic graph or a list, that is why we call it Decision Undirected Cyclic
Graph (DUCG). In order to find the best ordering of the list we have used an evolutionary computation approach
obtained from the state-of-the-art called Edge Histogram-Based Sampling Algorithm (EHBSA) [35]. To show the
behaviour of our proposal, we have compared it with other Class Binarization strategies over 27 UCI databases. We
have carried out these experiments over 4 well known Machine Learning methods: SVM, C4.5 Decision Tree, Ripper
and Multilayer Perceptron. Two performance measures have been used to evaluate the results: Classification rate and
Cohen’s Kappa. The obtained results show competitive performance of our proposal, specially in the problems with a
large number of classes.

The rest of the paper is organized as follows. In Section 2 we review the decomposition techniques, with special
attention to OVO and OVA strategies. Section 3 describes the proposed approach and Section 4 shows the experimental
results obtained. Finally, Section 5 states the conclusions of our work and future research lines.

2. Class Binarziation

Class Binarization is performed in two steps: decomposition and combination.
The decomposition step consists of dividing the K class problem into several binary sub-problems. The most

popular strategy is to divide the classes into two groups; in this way the binary classifier distinguishes the classes of
one group with the classes of the other group. Commonly the code-matrix is used to represent how the classes are
grouped.

Figure 1 illustrates a code-matrix example: each row represents a class and each column represents a binary
classifier. Each class takes values in the set {-1,0,+1}, where +1 indicates the classes associated to the positive-class,
-1 indicates the classes associated to the negative-class and 0 indicates that the class is ignored for this binary problem.
Figure 1 illustrates an example of a decomposition of a 5-class problem {θ1,θ2,θ3,θ4,θ5} into 6 binary sub-problems
{ f1, f2, f3, f4, f5, f6}. For instance, it can be seen that the classifier f1 is constructed in such a manner that the cases
belonging to θ1 and θ2 are grouped in class +1 and the cases belonging to θ3 and θ5 in class -1. So this classifier
compares θ1 and θ2 classes with θ3 and θ5, while the cases that belong to θ4 are ignored.

In classification time, each binary classifier returns a prediction. So the combination step consists of combining
these predictions. Therefore, once the decomposition strategy is fixed, it is crucial to select a proper combination of
the outputs in order to make the final prediction.

Different decomposition strategies have been developed. Two of the most popular are OVA and OVO, which are
described next.

2

classi f iers︷ ︸︸ ︷
f1 f2 f3 f4 f5 f6

classes



θ1
θ2
θ3
θ4
θ5


+1 0 −1 −1 0 +1
+1 +1 −1 −1 +1 0
−1 +1 +1 −1 0 0
0 −1 0 +1 0 +1
−1 −1 0 −1 −1 −1



f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5
f6 → θ1, θ4 vs θ5

Figure 1: Example of a code matrix

2.1. One Vs All (OVA)

OVA decomposition scheme divides a K class multi-class problem into K two-class problems, where in each
binary sub-problem a single class is separated from all other classes.

In Figure 2(a) OVA’s code matrix for 4 classes can be seen: in each classifier one class is represented as positive
class while all the other 3 classes are represented as negative-class.

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1


(a) One Vs All


+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


(b) One Vs One

Figure 2: OVA and OVO code-matrix

One of the disadvantages of OVA is that most of the binary sub-problems are unbalanced. As one class is compared
with all the other classes, it is common that all sub-problems return a class-negative prediction, hence is obtained a tie
between all the classes when the majority vote is used. Due to that problem, it is common to select the class with the
highest confidence level as a final prediction.

2.2. One Vs One (OVO)

In OVO the original K class multi-class problem, θ1, ..., θK , is divided into K(K − 1)/2 two-class sub-problems. In
each sub-problem a classifier is learnt using only the cases that belong to a pair of classes (θi,θ j), where θi , θ j; the
remaining cases are ignored.

Figure 2(b) illustrates a code-matrix of OVO for 4 classes: in each classifier one class is represented as +1 class,
another one is represented as -1 and the remaining two classes are represented as 0.

Different aggregations of OVO are proposed in the literature to combine the outputs of the sub-problems. The
simplest combination strategy is the majority vote, where each output gives a vote for a class and that class which
obtains the largest number of votes is returned [12] [11]. An immediate extension is the Weighted Voting strategy: to
use the confidence level of each base classifier as a vote [23]. Hastie and Tibshirani [20] present another combination
where they try to find the best approximation of the class posterior probabilities given the posterior probabilities of
the pairwise sub-problems. Wu et al. [36] also estimate the posterior probabilities of each class, but the optimization
formulation is different from [20].

One of the disadvantages of OVO is the number of sub-problems that it creates. It is worth mentioning that
most of them are irrelevant and they return wrong answers for many instances: if an instance belongs to class θi,
all the classifiers that are not trained to differentiate θi will return wrong predictions. On the other hand, one of the
advantages of OVO is that these sub-problems are constructed with fewer examples and thus has more freedom for
fitting a decision boundary between two classes.

3

2.3. Related Works

Various popular machine learning techniques, such as Support Vector Machines (SVM), were originally conceived
for the solution of two-class classification problems. As a consequence, they were not able to solve multi-class
problems. Therefore, in order to deal with this problem the first Class Binarization problems were proposed, and due
to the promising results obtained, this strategies has been extended to other kind of classifiers, like Ripper [12] and
C4.5 [8].

In several works different Class Binarization strategies have been compared. Some of them conclude that OVO is
significantly better than OVA[12] [22]. However, Rifkin and Klautau [33] suggest that when the binary classifiers are
well-tuned, OVA performs as well as the other strategies. Recently two empirical studies have appeared concerning
to this question [13] [17]. Galar et al. [13] compare different OVO and OVA strategies. While Garcı́a-Pedrajas and
Ortiz-Boyer [17] compare the different Class Binarization strategies among them. They consider that OVO is the best
choice when weak classifiers are used, while ECOC is recommended with powerful learners. Moreover, they show
that when ECOC uses the same number of classifiers as OVO (K(K − 1)/2), OVO obtains a slight advantage.

Among the Class Binarization strategies, OVA is which less attention has received in the literature, and there are
not many aggregations. Hong et al. [21] propose integrate Naive Bayes in OVA to order dynamically the sequence of
the classifiers. On the other hand, Kumar and Gopal [26] propose a method where they reduce the number of samples
of the classifier discarding the instances that are out of a established region.

2.4. Reducing the number of classifiers

Some works try to reduce the number of sub-problems in OVO. Among those works one of the most popular
method is the Decision Directed Acyclic Graph (DDAG) [29]. This method constructs a rooted binary acyclic graph.
In each level a classifier discriminates between two classes and the selected class is compared with another class in
the next level. In this way they reduce the number of sub-problems to K − 1. One of the disadvantages of this method
is that the classes compared in the first level are less likely to be predicted than the classes compared in the last levels.
Various versions of this method have been proposed in the literature; one of the most famous is the so called ADAG
[24].

Other techniques also are based on a hierarchical structure: Fei and Liu [9] introduce a binary tree where in each
node two or more classes are distinguished, Lorena and Carvalho [28] propose to use 4 different separability criteria
and they use Kruskal algorithm to generate a tree of binary classifiers, Pujol et. al. [31] use Mutual Information for
class separation, Ghaffari and Yazdi [18] use divisive clustering for class partitioning and Kumar et. al. [27] also
use clustering, at the same time in each node a feature extractor is applied in order to maximize the discrimination
between meta-classes.

Garcı́a-Pedrajas and Ortiz-Boyer [16] and Ko [25] present independently a combination of OVA and OVO. Firstly
they apply OVA. Next they select the two classes with the highest confidence level. And finally OVO is applied with
these two classes. Then only K + 1 classifiers have to be used in the classification process. This method is called
All-And-One (A&O).

On the other hand Galar et. al. [14] and Bagheri et. al [2] present a similar idea: they suggest to use the dynamic
classifier selection for OVO in order to avoid the non-competent classifiers. The K nearest neighbors of the instance
to be classified are obtained and the classes that appear in this neighborhood are considered as the probable classes.
With these most probable classes OVO is applied ignoring the remaining ones.

Bautista et. al. [3] propose to create the minimal ECOC. They try to find the minimal ECOC using Evolutionary
Computation, at the same time they try to find the best parameters of each classifier.

3. Proposed Approach: Decision Undirected Cyclic Graph (DUCG)

As mentioned in previous sections one of the disadvantages of OVO is the large amount of classifiers that it builds.
In order to avoid it, DDAG method was proposed, but this algorithm implies another problem: the classes that are
compared first are less likely to be predicted because they have to be selected in all the comparisons.

In order to avoid these weaknesses we propose a new method called Decision Undirected Cyclic Graph (DUCG),
where the classes are compared in pairs, as in OVO, but instead of performing all the comparisons, each class is
compared only with other two classes. This way permits to reduce the amount of binary classifiers and the same

4

chance is given to all the classes. Although the use of all pair comparisons seems to be more effective, our believe is
that selecting the proper comparisons the accuracy can be improved.

DUCG can be represented as a cycle graph: a single graph where the number of nodes and edges are the same and
every node has degree 2. Figure 3 shows an illustrative example of 6 classes where each node corresponds to a class
and the edges denote the pairwise comparisons of the classes. It can be seen that our method compares only 6 pair of
classes, ignoring the remaining comparisons.

θ1 θ3

θ6

θ1vsθ6

θ4

θ2

θ6vsθ2

θ1vsθ4 θ4vsθ3

θ3vsθ5

θ2vsθ5
θ5

Figure 3: Example of the structure of DUCG for a 6-class problem

It is worth mentioning that as in our method is common to be ties (each class obtains at most 2 votes), DUCG is
applied recursively considering only the tie-classes.

In order to give a better explanation of how DUCG works, in Figure 4 an example of a 10-class problem is
illustrated. Firstly our method creates the graph to decide the pairwise comparisons. Each sub-problem returns a
prediction and then the number of votes that each class receives are computed. It can be seen in the example that there
are 4 classes that receive 2 votes (the maximum they can receive). In order to break the ties, our method repeats the
process only considering those 4 classes. The new graph is created, the sub-problems return the predictions and the
votes are counted. This time there is only one class that receives 2 votes, thus DUCG assigns this class to the new
instance.

0

0

2

0

2

0

2

1

1

Create Graph

Repeat process for tie−breaking

Calculate Predictions Count Votes

Create Graph Calculate Predictions Count Votes

Predicted Class

Prediction

Sub−Problem Prediction

Class Votes

Class Votes

1

2

0

1

Sub−Problem

θ3vsθ6
θ6vsθ5
θ5vsθ9
θ9vsθ4

θ2vsθ8
θ8vsθ7
θ7vsθ1

θ4vsθ2

θ1vsθ10

θ10vsθ3 θ10

θ6
θ6
θ9
θ4
θ4
θ8
θ8
θ1
θ10

θ6vsθ4

θ8vsθ10

θ4vsθ8
θ4
θ4
θ8

2

θ1
θ2
θ3

θ5
θ6
θ7
θ8
θ9

θ4

θ10

θ3

θ6

θ5

θ9

θ4

θ1

θ7

θ8

θ2

θ4

θ10 θ6

θ8 θ4

θ10

θ10

θ6

θ4

θ8

θ10vsθ6

θ10

Figure 4: Illustrative example of DUCG for a 10-class problem

5

S1 = (θ1, θ2, θ3, θ4, θ5)
S2 = (θ4, θ2, θ5, θ1, θ3)
S3 = (θ4, θ5, θ1, θ3, θ2)
S4 = (θ3, θ4, θ2, θ1, θ5)
S5 = (θ4, θ2, θ1, θ3, θ5)
S6 = (θ5, θ2, θ3, θ4, θ1)

(a) Permutations


0 3.1 3.1 1.1 5.1

3.1 0 3.1 4.1 2.1
3.1 3.1 0 4.1 2.1
1.1 4.1 4.1 0 3.1
5.1 2.1 2.1 3.1 0


(b) EHM Adjacency


− 0.25 0.25 0.09 0.41

0.25 − 0.25 0.33 0.17
0.25 0.25 − 0.33 0.17
0.09 0.33 0.33 − 0.25
0.41 0.17 0.17 0.25 −


(c) EHM Normalized

Figure 5: Example of Edge Histogram Matrix

3.1. Build the graph

The pairwise organization of the classifiers can also be seen as a list where each class is compared with the classes
that are next to it. Moreover, comparing the last class with the first in the list a cyclic solution is obtained, for instance
(θ1, θ4, θ3, θ5, θ2, θ6) is equivalent to the graph of Figure 3. Since our aim is to find the best ordering of classes we treat
our problem as a permutation-based problem.

There exist many combinational problems whose solutions can be naturally represented as permutations. However,
the meaning of these permutations can vary throughout the problems. In our particular case, our problem can be
considered similar to the Travelling Salesman Problem (TSP). TSP is a problem where the solutions are cyclic and
the relevant information is given by the relative ordering of the classes in the permutation. The information drawn
from the absolute positions of each class is not meaningful. For instance, σ = (θ1, θ3, θ2, θ4) and σ′ = (θ2, θ3, θ1, θ4)
represent the same solution since both make the same classes comparisons: [θ1vsθ3, θ1vsθ4, θ2vsθ3, θ2vsθ4]. Thus, the
search space of the solutions is reduced from K! to K!/2K.

As we mentioned before, the base classifier can have difficulties to differentiate some pairs of classes, so our
aim is to avoid them. So in a validation phase we try to find the best combination of two-class comparisons. If the
number of classes is low, the treatment of all the candidate-solutions is possible, but while the number of classes
increases the computational cost is higher and it could become unaffordable. Because of that fact, this problem can
be considered as an optimization design process. One promising strategy for this optimization issue is to use an
evolutionary algorithm-based approach. Recently, some of the most well-known evolutionary algorithms used for
the permutation problems are based on the Estimation of Distribution Algorithms (EDA). EDAs combine statistical
learning with population-based search in order to automatically identify and exploit certain structural properties of
optimization problems.

Recently, Ceberio et al. [5] have carried out a review of state-of-the-art EDAs applied to permutation-based
problems and they concluded that Edge Histogram-Based Sampling Algorithm (EHBSA) [35] is the most successful
proposal to solve the TSP.

3.1.1. Edge Histogram-Based Sampling Algorithm (EHBSA)
Given a sample of solutions, EHBSA estimates a bi-variate probabilistic model which learns the pairwise adja-

cency of the items within the permutation.
The algorithm starts by generating a random population of samples and the best solutions are selected. In the next

step, an Edge Histogram Matrix (EHM) for the selected solutions is constructed. Based on EHM, new solutions are
generated. Some of the old solutions are replaced by the new ones and the process is repeated until the termination
criteria is met.

EHM counts the number of times that two items are next to each other in the given sample of solutions. In Figure
5 an example of the construction of an EHM given 6 permutations of 5 classes θ1, θ2, θ3, θ4, θ5 is illustrated. In order
to avoid probability 0, in Figure 5(b) an ϵ value is added to the sum of the adjacency. Normalizing the rows of Figure
5(b) the probabilities of adjacency are obtained, which are shown in Figure 5(c).

Based on EHM, EHBSA generates new solutions following the next procedure:

1. The class of the first position is fixed randomly.
2. To sample the next positions

(a) Discard previously sampled classes of EHM

6

S ′ = (θ4,)
− 0.25 0.25 0.09 0.41

0.25 − 0.25 0.33 0.17
0.25 0.25 − 0.33 0.17
0.09 0.33 0.33 − 0.25
0.41 0.17 0.17 0.25 −


(a) Step 1

S ′ = (θ4, θ3)
− 0.27 0.27 − 0.45

0.37 − 0.37 − 0.25
0.37 0.37 − − 0.25
− − − − −

0.55 0.22 0.22 − −


(b) Step 2

S ′ = (θ4, θ3, θ5)
− 0.38 − − 0.62

0.60 − − − 0.40
− − − − −
− − − − −

0.71 0.29 − − −


(c) Step 3

S ′ = (θ4, θ3, θ5, θ1, θ2)
− − − − −
− − − − −
− − − − −
− − − − −
− − − − −


(d) Step 4

Figure 6: Example of sampling a permutation from Edge Histogram Matrix. Circled areas are used to sample the class of the next position

(b) Normalize the rows of EHM
(c) Sample next class using the row of EHM that correspond to the class sampled in the previous position.

3. If the list is not finished, go to step 2.
4. Obtain the final list.

In order to explain it better, we illustrate step by step in Figure 6 how EHBSA generates a new solution based on
the EHM shown in Figure 5.

Step 1 (Figure 6(a)): Let consider that θ4 is selected in the first position. The row that correspond to θ4 is used to
sample the class in position 2.

Step 2 (Figure 6(b)): Let consider that θ3 is sampled. In the EHM of Step 2 we discard the row and column that
correspond to θ4 and we normalize the rows of EHM. The row that correspond to θ3 is used to sample the class
in position 3.

Step 3 (Figure 6(c)): Let consider that θ5 is sampled. Again we actualize EHM discarding the row and column that
correspond to θ3 and normalizing the rows, and the row that correspond to θ5 is used to sample the class in
position 4.

Step 4 (Figure 6(d)): Let consider that θ1 is sampled. As only θ2 is left we sample it at the last position and we obtain
the new solution: S ′ = (θ4, θ3, θ5, θ1, θ2).

3.2. Evaluation of samples
In order to select the best samples in EHBSA, we evaluate each sample as follows: in a validation process, for

each binary sub-problem the number of well classified instances is calculated. Thus, given a permutation sample, its
fitness is the sum of the number of instances well classified in each binary sub-problem. In Figure 7 we illustrate how
two individuals are evaluated in a 4 class problem. In the left side it is shown the number of well classified instances
for each sub-problem in the validation phase; in the right side two graph samples are shown and how their fitnesses
are obtained: summing the number of well classified instances in those sub-problems that are taken into account in
the samples.

4. Experiments

In this section we explain the experimental setup of the empirical study we have carried out in order to analyse
the performance of DUCG method. We have compared DUCG with several state-of-the-art methods and discuss the
obtained results.

4.1. Datasets
In order to evaluate the performance of the proposed approach 27 datasets have been selected from the UCI

repository [10]. Table 1 summarizes their properties. In order to complete the information, Table 2 shows the number
of instances per class in each database. For the databases with more than 10 classes, in the column denoted as ”Mean
rest” the mean number of instances of the remaining classes is indicated. Moreover, the last two columns show the
mean number of instances and the standard deviation per class.

7

11

3

12

11

5

8

15

15

39

41

Evaluation of two samples

Number of well classified

instances in each sub−problem

θ1 θ3

θ2θ4

θ4 θ3

θ2θ1 ∑

∑
θ3vsθ4 = 8

θ2vsθ4 = 3

θ2vsθ3 = 11

θ1vsθ4 = 15

θ1vsθ3 = 12

θ1vsθ2 = 5

Figure 7: Example of the evaluation of samples

4.2. Base Classifiers
To carry out the experiments, we have used 4 well known supervised classification algorithms from a software

package for Machine Learning called WEKA [19].

• J48 (C4.5 clone)[32], decision tree algorithm. It makes a post-pruning phase, based on error based pruning
algorithm.

• SMO (SVM clone)[29], kernel methods. It creates a hyperplane where the categories are divided by a clear gap
that is as wide as possible.

• JRip (Ripper clone)[7], rule induction classifier. It builds a rule-set by repeatedly adding rules to an empty
rule-set until all positive examples are covered.

• Multilayer Perceptron[34], an artificial neural network. It is a feedforward network of neurons which maps
input vectors to output vectors.

In recent reviews, [13] and [17] show that the performance of the different Class Binarization strategies varies
depending on the base classifier. Viewing that, in order to give a real perspective, we have selected classifiers with
different approaches. As we treat the classifiers as black boxes we have used the default parameters of the classifiers.

4.3. Strategies summarized
In this sub-section we briefly describe the Class Binarization strategies that are used for the comparison.
State-of-the-art methods:

• One-vs-All (OVA): Each sub-problem compares one class with the rest of classes. The class with the highest
confidence level is selected.

• One-vs-One (OVO) [12, 11]: Each sub-problem compares two classes between them, ignoring the rest. And
the majority vote is used to take the final decision.

• Decision Directed Acyclic Graph (DDAG) [30]: The DDAG is equivalent to operating on a list. A list is
initialized with all the classes. In each step a classifier discriminates between two classes selected from the list,
and the class which is not selected is eliminated. The DDAG terminates when only one class remains in the list.

• All-And-One (A&O) [16, 25]: Combination of OVA and OVO. First OVA is applied and the two classes with
the highest confidence level are selected. A classifier that discriminates between the selected classes is built and
the result of the classifier is the final decision.

Our proposals:

8

Domain #Instances #Attrib #Classes
Car 1728 6 4
Vehicle 846 18 4
Annealing 798 38 5
Gesture 9873 32 5
Nursery 12960 8 5
Page-blocks 5473 10 5
Autouniv 25000 45 6
Dermatology 366 33 6
Flare 1066 11 6
Glass 214 9 6
Satimage 6435 36 6
Winequality Red 1599 10 6
Image Segmentation 2310 19 7
Shuttle 58000 9 7
Winequality White 4898 10 7
Zoo 101 16 7
Ecoli 336 7 8
Optdigits 5620 64 10
Pendigits 10992 16 10
Yeast 1484 8 10
Pokerhand 25010 10 10
Vowel 990 12 11
Arrhythmia 452 279 13
Chess 28056 6 18
Soybean 683 35 19
Letters 20000 16 26
Abalone 4177 8 28

Table 1: The main characteristics of the 27 databases

• DUCG-Rand: Algorithm proposed in Section 3 where the order of the list is decided randomly.

• DUCG-EHBSA: Algorithm proposed in Section 3 where the order of the list is decided with EHBSA.

To see the performance of the proposed approach we have compared our algorithm with other state-of-the-art
methods. Moreover, in our method we propose to use EHBSA in order to select the proper order of the classes;
however, we have considered suitable to compare it with DUCG-Rand to remark the obtained benefits of the used
strategy.

4.4. Performance measures

Several performance measures can be found in the literature. Due to its simplicity, the Classification Rate is the
most commonly used metric for calculating the accuracy of classifiers. However, Ben-David [4] showed that several
hits can be attributed to chance, in order to compensate the random hits he proposed to use Cohen’s Kappa metric [6].
Following Galar’s et. al overview [13] both metrics are used in this paper.

• Classification rate: Also is called accuracy. Among all the classified instances, it calculates the proportion of
well classified ones.

• Cohen’s Kappa [6]: This metric tries to calculate the portion of hits that can be attributed to the classifier itself
and are not obtained by chance.

kappa =
P0 − Pc

1 − Pc
(1)

where P0 is the total agreement probability and Pc is the agreement probability that is due to chance.

Cohen’s Kappa also can be easily illustrated through use of a confusion matrix, and Equation 1 is equivalent to
this one:

kappa =
n
∑K

i=1 hii −
∑K

i=1 TriTci

n2 −
∑K

i=1 TriTci
(2)

9

Domain C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Mean rest Mean σ
Car 1210 384 69 65 432.0 ±539.8
Vehicle 218 217 212 199 211.5 ±8.7
Annealing 608 88 60 34 8 159.6 ±252.4
Gesture 2950 2741 2097 1087 998 1974.6 ±907.7
Nursery 432 426 405 32 1 259.2 ±222.1
Page-blocks 4913 329 115 88 28 1094.6 ±2137.6
Autouniv 8345 7981 3309 1987 1813 1565 4166.7 ±3156.0
Dermatology 112 72 61 52 49 20 61.0 ±30.4
Flare 331 239 211 147 95 43 177.7 ±104.2
Glass 76 70 29 17 13 9 35.7 ±29.7
Satimage 1533 1508 1358 707 703 626 1072.5 ±436.5
Winequality Red 681 638 199 53 18 10 266.5 ±312.3
Image Segmentation 330 330 330 330 330 330 330 330.0 ±0.0
Shuttle 45580 9004 3191 159 46 11 9 8285.7 ±16772.2
Winequality White 2198 1457 880 175 163 20 5 699.7 ±852.3
Zoo 41 20 13 10 8 5 4 14.4 ±12.9
Ecoli 143 77 52 35 20 5 2 2 42.0 ±48.7
Optdigits 572 571 568 566 562 558 558 557 554 554 562.0 ±6.8
Pendigits 1144 1144 1143 1143 1142 1056 1055 1055 1055 1055 1099.2 ±46.4
Yeast 463 429 244 163 51 44 37 30 20 5 148.6 ±173.5
Pokerhand 10599 12493 1206 513 93 54 36 6 5 5 2501 ±4802.7
Vowel 90 90 90 90 90 90 90 90 90 90 90 90 ±0.0
Arrhythmia 245 50 44 25 22 15 15 13 9 5 3 34.8 ±64.9
Chess 4553 4194 3597 2854 2796 2166 1985 1712 1433 683 260.38 1558.7 ± 1503.2
Soybean 92 91 91 88 44 44 20 20 20 20 17 35.9 ±30.2
Letters 813 805 803 796 792 789 787 786 783 783 753.94 769.2 ±23.2
Abalone 689 634 568 487 391 267 259 203 115 103 19.71 150.0 ±214.8

Table 2: Class distribution, mean and standard deviation of the 27 databases

where n is the number of examples, K is the number of class labels, hii is the number of true positives for each
class (elements of the main diagonal) and Tri and Tci are the total sum of the i-th row and column, respectively
(Tri =

∑m
j=1 hi j, Tci =

∑m
j=1 h ji).

Cohen’s Kappa ranges from -1 (total disagreement) through 0 (random classification) to 1 (perfect agreement).
However, most classifiers do at least as good as random, so by definition they score kappa higher than 0.

4.5. Experimental setup

In the experimental phase 5x2 fold cross-validation has been used. As the proposed approach needs the best order
to be fixed, a pre-process step is applied in each fold. It consists on a five times repeated hold-out in which 70% of
the cases are used as validation and the remaining 30% are used to tune the order candidates.

4.6. Obtained results

In this sub-section the accuracy and Cohen’s Kappa results obtained with the different base classifiers are shown.
In order to illustrate better the obtained results, they are shown in tables where the databases are ordered by the number
of classes. Moreover, each table is divided into 3 sections: in the first section the results are shown, in the second
section the average results and average ranking for each method are shown and in the third section are shown the
average results and average ranking for each method only considering the 10 databases with more than 9 classes. In
all these tables we will show that OVO and DUCG-EHBSA obtain the most promising results.

Tables 3 and 4 show the accuracies and kappa results obtained with SVM. The results follow similar pattern in
both tables and it can be seen that DUCG-EHBSA gets the best result in the majority of the cases: 15 in Table 3
(accuracy) and 12 in Table 4 (kappa). Furthermore, in both cases DUCG-EHBSA achieves the best mean and rank. It
can be seen also that DUCG-EHBSA obtains interesting results in databases with high number of classes; it obtains
the best mean, rank and the best results in 6 of those databases. On the other hand, OVA receives the worst results.
The reason of this fact is that for some instances all the outputs are negative, with 1.0 confidence level, hence all
classes are tied, and in this case the most represented class is returned.

Tables 5 and 6 show the accuracies and kappa results achieved with Ripper. Taking into account only the accuracy
(Table 5), it can be observed that OVO gets the best results: it obtains the best result in the majority of the cases (in 12
databases) and also it obtains the best mean and rank values. Moreover, it can be seen that in the databases with more

10

Table 3: Classification accuracies of different methods using SVM
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 73.218 83.484 83.264 82.280 83.299 83.484
Vehicle 52.931 71.749 71.797 71.820 71.655 71.891
Annealing 83.408 84.009 83.831 85.011 83.987 83.942
Gesture 29.879 45.318 45.330 45.293 45.224 45.678
Nursery 78.244 90.909 90.909 90.253 90.909 90.909
PageBlocks 91.891 93.506 93.689 92.721 93.674 93.528
Autouniv 47.960 53.754 54.648 52.601 54.365 55.454
Dermatology 95.519 97.268 97.268 97.486 97.268 97.268
Flare 38.574 60.525 60.619 60.469 60.563 60.619
Glass 44.673 52.430 52.336 52.897 52.710 52.897
Satimage 73.445 86.692 86.670 85.949 86.667 86.645
WineRed 45.641 57.386 57.411 57.448 57.373 57.386
ImgSeg 77.680 92.823 92.831 92.571 92.814 92.814
Shuttlle 84.081 97.189 97.087 96.744 97.101 97.203
WineWhite 47.162 51.940 51.935 51.940 51.940 51.940
Zoo 90.297 93.663 92.277 92.871 92.871 92.871
Ecoli 65.357 81.488 81.845 81.190 81.726 81.667
OptDig 92.285 97.972 97.890 97.431 97.886 98.000
Pendig 86.619 97.698 97.575 96.090 97.706 97.775
Yeast 38.598 55.849 55.822 55.836 55.970 55.889
Pokerhand 49.952 49.952 49.952 49.952 49.952 49.952
Vowel 14.505 67.354 67.535 66.182 67.495 68.101
Arrhythmia 65.310 67.345 66.593 68.274 66.858 66.770
Chess 16.349 35.086 34.376 33.960 34.472 35.075
Soybean 91.567 92.152 91.654 93.353 92.328 92.592
Letters 32.062 82.328 81.867 80.507 82.035 82.384
Abalone 16.495 25.142 25.229 25.085 25.186 25.238
Mean 60.137 72.778 72.676 72.452 72.742 72.888
Rank 5.91 2.85 3.22 3.72 3.09 2.20
Mean>9Class 50.374 67.088 66.849 66.667 66.989 67.178
Rank>9Class 5.75 2.85 3.75 3.95 2.85 1.85

Table 4: Cohen’s Kappa results of different methods using SVM. When ”*” appears before a database name, it indicates that for this database the
accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
*Car 0.20750 0.60973 0.61059 0.57835 0.61093 0.60977
Vehicle 0.38171 0.62425 0.62475 0.62525 0.62290 0.62605
Annealing 0.43214 0.47855 0.47503 0.52090 0.47813 0.47722
Gesture 0.00000 0.23477 0.23585 0.23436 0.23440 0.24197
Nursery 0.67687 0.86603 0.86603 0.85559 0.86603 0.86603
PageBlocks 0.33417 0.55207 0.57426 0.44683 0.57429 0.56889
Autouniv 0.22310 0.34002 0.36181 0.31140 0.35407 0.37706
Dermatology 0.94345 0.96574 0.96574 0.96848 0.96574 0.96574
Flare 0.12802 0.48630 0.48790 0.48503 0.48714 0.48761
Glass 0.21449 0.31885 0.32023 0.32736 0.32520 0.32865
Satimage 0.66162 0.83498 0.83479 0.82540 0.83474 0.83442
WineRed 0.06683 0.27504 0.27571 0.27605 0.27483 0.27504
ImgSeg 0.74025 0.91624 0.91634 0.91331 0.91614 0.91614
Shuttlle 0.37492 0.92047 0.91783 0.90661 0.91820 0.92090
WineWhite 0.05774 0.18940 0.18936 0.18940 0.18941 0.18940
Zoo 0.86738 0.91550 0.89754 0.90525 0.90552 0.90536
Ecoli 0.46162 0.73910 0.74455 0.73418 0.74263 0.74168
OptDig 0.91429 0.97746 0.97655 0.97145 0.97651 0.97777
Pendig 0.85127 0.97442 0.97305 0.95654 0.97450 0.97527
Yeast 0.13314 0.41504 0.41609 0.41408 0.41762 0.41640
Pokerhand 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Vowel 0.07474 0.64139 0.64325 0.62871 0.64283 0.64947
Arrhythmia 0.36811 0.46341 0.46259 0.46308 0.46429 0.46234
*Chess 0.00177 0.26695 0.26100 0.25170 0.26176 0.26727
Soybean 0.90733 0.91381 0.90833 0.92703 0.91578 0.91869
Letters 0.29371 0.81620 0.81140 0.79726 0.81315 0.81678
Abalone 0.00000 0.13315 0.13464 0.13198 0.13414 0.13453
Mean 0.38208 0.58774 0.58834 0.57947 0.58892 0.59076
Rank 5.91 3.19 2.87 3.94 2.74 2.35
Mean>9Class 0.35444 0.56018 0.55869 0.55418 0.56006 0.56185
Rank>9Class 5.75 3.05 3.35 4.25 2.65 1.95

11

classes OVO obtains the best results. However, in Table 6 the results are not so differential. This time, OVO gets the
best result in 8 databases and is nearly followed by DUCG-EHBSA which obtains the best results in 6. Furthermore,
the means of both methods are similar, slightly better the OVO’s one. It can be observed that the rank is in favour of
DUCG-EHBSA. OVO continues having the the best mean for databases with more classes, but the rank is equal for
OVO and DUCG-EHBSA.

Table 5: Classification accuracies of different methods using Ripper
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 92.940 94.005 93.935 94.363 93.900 93.808
Vehicle 68.463 67.069 66.950 67.470 67.234 67.305
Annealing 93.742 94.165 93.541 93.363 93.697 93.808
Gesture 46.871 51.417 50.815 46.703 51.123 50.990
Nursery 98.744 97.802 97.785 97.744 97.779 97.798
PageBlocks 96.722 96.726 96.653 96.722 96.715 96.781
Autouniv 63.682 65.687 65.697 65.690 65.648 65.654
Dermatology 90.328 94.645 94.863 94.098 94.754 94.536
Flare 56.323 59.456 59.362 59.756 59.287 59.362
Glass 60.467 65.140 64.486 61.589 65.140 65.047
Satimage 85.246 86.782 86.151 85.815 86.427 86.567
WineRed 57.674 57.123 56.748 57.486 56.898 56.923
ImgSeg 93.671 94.251 94.286 94.398 94.390 94.554
Shuttlle 99.957 99.951 99.948 99.950 99.951 99.951
WineWhite 53.018 54.447 53.859 53.744 54.087 54.390
Zoo 90.693 87.723 88.317 90.297 88.515 88.713
Ecoli 77.738 81.250 81.071 80.179 80.714 81.369
OptDig 89.349 92.865 90.068 91.085 91.327 91.278
Pendig 94.256 96.021 95.093 94.914 95.482 95.639
Yeast 54.299 56.685 56.199 55.849 56.442 56.321
Pokerhand 55.212 55.640 55.750 55.701 55.764 56.122
Vowel 58.404 66.747 63.717 61.576 65.293 66.101
Arrhythmia 65.929 67.168 65.088 68.009 66.372 66.770
Chess 41.433 63.763 60.769 47.411 62.017 62.824
Soybean 88.404 90.249 88.960 89.693 89.370 90.307
Letters 82.283 88.816 83.745 83.866 86.032 86.391
Abalone 18.937 26.579 25.765 21.350 26.215 26.411
Mean 73.140 76.006 75.171 74.401 75.577 75.767
Rank 4.80 2.20 4.20 3.87 3.39 2.54
Mean>9Class 64.851 70.453 68.515 66.945 69.431 69.816
Rank>9Class 5.90 1.60 4.40 4.10 2.90 2.10

Tables 7 and 8 show the accuracies and kappa results obtained with C4.5. The patterns of these tables are similar
to those obtained with Ripper. In Table 7 the results are in favour of OVO. It gets the best results in 15 databases. Fur-
thermore, it can be seen that OVO obtains the best results specially with databases with more classes. Nevertheless, as
in Ripper, the results in kappa are slightly different. Although OVO continues obtaining the best mean, the difference
is lower and DUCG-EHBSA’s one is close to it. Moreover, DUCG-EHBSA acquires the best rank and the superiority
of OVO in databases with more classes is decreased since the mean difference is low and DUCG-EHBSA achieves
better rank.

Finally Tables 9 and 10 show the accuracies and kappa results obtained with Multilayer Perceptron. In Table 9
OVA gets the best accuracy in the majority of the cases and is closely followed by OVO. OVO achieves the best mean
and rank, but these values are nearly from those obtained by DUCG-EHBSA. In this table it can be appreciated that
our proposed approach DUCG-EHBSA achieves the best results for the databases with more classes. On the other
hand, in Table 10, the best kappa results are more distributed. In this case, it is DUCG-EHBSA which obtains the best
mean and rank. Furthermore, in this time also, DUCG-EHBSA achieves the best results for the databases with more
classes.

Summarizing the results obtained from this analysis we conclude that OVO and DUCG-EHBSA are the most
robust approaches, OVO performs better with C4.5 and Ripper whereas DUCG-EHBSA performs better with SVM
and Multilayer Perceptron. In fact, Multilayer Perceptron is the base classifier that obtains the best results among the
base classifiers. Besides, it can be seen that when kappa is considered DUCG-EHBSA achieves interesting results.
We want to emphasize also the results obtained by DUCG-RAND, where in most of the cases it obtains better mean
and rank than OVA, DDAG and A&O. In addition to this, it can be seen that in almost all the methods there is a
considerable difference between the mean of OVO, DUCG-EHBSA and DUCG-RAND, and the remaining methods,

12

Table 6: Cohen’s Kappa results of different methods using Ripper . When ”*” appears before a database name, it indicates that for this database
the accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.84428 0.87061 0.86975 0.87794 0.86886 0.86659
Vehicle 0.57928 0.56166 0.55944 0.56586 0.56316 0.56438
Annealing 0.83758 0.84995 0.83541 0.83287 0.83920 0.84179
*Gesture 0.26626 0.34259 0.34310 0.27525 0.34755 0.34449
Nursery 0.98158 0.96779 0.96754 0.96691 0.96745 0.96772
PageBlocks 0.81750 0.82641 0.82491 0.82504 0.82793 0.83050
*Autouniv 0.50419 0.52775 0.53151 0.52584 0.53074 0.52839
Dermatology 0.87911 0.93296 0.93572 0.92613 0.93439 0.93163
Flare 0.43428 0.47710 0.47744 0.47797 0.47658 0.47707
*Glass 0.44605 0.50776 0.50711 0.45663 0.51537 0.51387
Satimage 0.81837 0.83639 0.82898 0.82500 0.83232 0.83400
WineRed 0.31107 0.30165 0.30153 0.29717 0.30514 0.29993
ImgSeg 0.92613 0.93292 0.93331 0.93462 0.93453 0.93645
Shuttlle 0.99878 0.99861 0.99853 0.99858 0.99862 0.99861
*WineWhite 0.23372 0.27723 0.27842 0.24210 0.27788 0.27794
Zoo 0.87685 0.83801 0.84572 0.87267 0.84842 0.85134
Ecoli 0.69311 0.73605 0.73502 0.72473 0.72985 0.73911
OptDig 0.88166 0.92072 0.88963 0.90094 0.90363 0.90307
Pendig 0.93615 0.95577 0.94546 0.94348 0.94979 0.95153
Yeast 0.39506 0.43398 0.43129 0.41293 0.43227 0.43060
Pokerhand 0.14100 0.16611 0.17137 0.16690 0.16965 0.17656
Vowel 0.54131 0.63479 0.60106 0.57695 0.61848 0.62730
*Arrhythmia 0.43117 0.45464 0.45904 0.49025 0.47652 0.48317
Chess 0.33332 0.59368 0.56207 0.40113 0.57557 0.58391
Soybean 0.87223 0.89277 0.87870 0.88647 0.88318 0.89344
Letters 0.81576 0.88368 0.83094 0.83222 0.85472 0.85846
*Abalone 0.04142 0.16163 0.15930 0.07362 0.16144 0.16263
Mean 0.62360 0.66234 0.65564 0.64112 0.66012 0.66202
Rank 5.0 2.76 3.74 4.11 2.93 2.46
Mean>9Class 0.53891 0.60978 0.59289 0.56849 0.60252 0.60707
Rank>9Class 6.00 2.00 4.40 4.10 2.90 2.00

Table 7: Classification accuracies of different methods using C4.5
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 95.972 95.914 95.799 96.215 95.787 95.741
Vehicle 68.251 68.251 67.825 68.983 68.203 68.298
Annealing 92.116 92.227 91.960 92.272 91.893 92.183
Gesture 49.618 53.202 51.105 50.609 51.881 52.302
Nursery 98.647 98.622 98.608 98.603 98.608 98.622
PageBlocks 96.642 96.824 96.810 96.645 96.835 96.850
Autouniv 61.777 64.727 64.379 61.370 64.499 64.519
Dermatology 91.530 95.574 95.355 94.262 95.301 95.410
Flare 56.023 59.962 59.812 60.225 59.606 59.887
Glass 60.374 63.084 61.682 60.748 61.589 62.710
Satimage 83.708 85.946 85.442 84.525 85.678 85.803
WineRed 58.649 57.486 57.198 57.899 57.298 57.286
ImgSeg 94.251 95.030 94.857 94.563 95.100 95.299
Shuttlle 99.949 99.944 99.945 99.960 99.946 99.948
WineWhite 53.973 54.924 53.748 54.904 54.079 54.892
Zoo 90.693 90.297 90.693 92.673 90.297 90.693
Ecoli 78.571 81.726 81.190 79.048 81.548 81.429
OptDig 87.434 92.295 89.288 89.356 90.669 90.751
Pendig 94.039 95.941 94.985 94.649 95.298 95.486
Yeast 55.418 56.267 55.755 55.984 56.253 56.132
Pokerhand 49.730 49.895 50.138 49.483 50.026 50.625
Vowel 66.121 71.434 67.556 68.768 69.939 70.141
Arrhythmia 63.496 65.885 62.788 61.460 65.133 64.867
Chess 54.569 63.669 61.008 58.308 62.635 62.735
Soybean 86.559 90.893 89.136 88.316 90.015 90.571
Letters 83.181 89.002 83.595 84.398 86.199 86.587
Abalone 18.793 24.946 24.228 20.062 24.870 25.310
Mean 73.707 76.073 74.996 74.603 75.525 75.744
Rank 4.87 2.02 4.31 3.89 3.41 2.43
Mean>9Class 65.934 70.023 67.848 67.078 69.104 69.321
Rank>9Class 5.70 1.40 4.30 4.80 2.80 2.00

13

Table 8: Cohen’s Kappa results of different methods using C4.5. When ”*” appears before a database name, it indicates that for this database the
accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.91185 0.91117 0.90882 0.91745 0.90861 0.90752
Vehicle 0.57654 0.57854 0.57228 0.58756 0.57741 0.57822
Annealing 0.79060 0.79565 0.78992 0.79622 0.78915 0.79527
Gesture 0.48860 0.37119 0.35682 0.34830 0.36608 0.36912
Nursery 0.98017 0.97981 0.97961 0.97955 0.97961 0.97981
PageBlocks 0.81941 0.82825 0.82905 0.82270 0.82986 0.83023
*Autouniv 0.48259 0.51600 0.51736 0.47977 0.51882 0.51740
Dermatology 0.89396 0.94451 0.94182 0.92808 0.94118 0.94251
Flare 0.42048 0.48183 0.48078 0.48044 0.47794 0.48135
*Glass 0.46057 0.48535 0.47544 0.46890 0.47482 0.48558
Satimage 0.79860 0.82593 0.82019 0.80893 0.82305 0.82448
WineRed 0.33021 0.30979 0.31267 0.31821 0.31498 0.30888
ImgSeg 0.93291 0.94201 0.93998 0.93655 0.94281 0.94514
Shuttlle 0.99856 0.99842 0.99846 0.99887 0.99849 0.99853
*WineWhite 0.27633 0.29874 0.29432 0.30170 0.29791 0.30038
Zoo 0.87754 0.87118 0.87658 0.90327 0.87137 0.87661
Ecoli 0.70339 0.74637 0.74100 0.71067 0.74558 0.74386
OptDig 0.86037 0.91439 0.88097 0.88172 0.89631 0.89722
Pendig 0.93375 0.95488 0.94427 0.94053 0.94775 0.94983
Yeast 0.41296 0.42735 0.42423 0.42209 0.42880 0.42703
Pokerhand 0.06596 0.05349 0.06139 0.06021 0.05881 0.06863
Vowel 0.62748 0.68599 0.64299 0.65629 0.66932 0.67158
*Arrhythmia 0.45228 0.42685 0.43234 0.42938 0.45915 0.45592
Chess 0.33497 0.59191 0.56382 0.53112 0.58155 0.58226
Soybean 0.85171 0.89983 0.88058 0.87131 0.89017 0.89634
Letters 0.82508 0.88561 0.82938 0.83773 0.85646 0.86050
Abalone 0.04087 0.13551 0.13541 0.05793 0.13849 0.14335
Mean 0.63510 0.66150 0.65298 0.64724 0.65868 0.66065
Rank 4.59 2.65 4.13 3.93 3.31 2.39
Mean>9Class 0.54054 0.59758 0.57954 0.56883 0.59268 0.59527
Rank>9Class 5.30 2.35 4.20 4.60 2.65 1.90

Table 9: Classification accuracies of different methods using Multilayer Perceptron
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 95.162 95.868 95.845 95.660 95.764 95.856
Vehicle 80.449 79.196 79.574 80.236 79.314 79.551
Annealing 98.040 98.151 98.129 98.062 98.151 98.151
Gesture 50.793 51.255 50.511 50.957 51.062 50.888
Nursery 98.119 99.466 99.469 99.255 99.468 99.474
PageBlocks 96.079 96.397 96.371 96.401 96.357 96.357
Autouniv 61.338 60.026 58.811 61.191 59.318 59.227
Dermatology 96.066 96.995 96.995 96.995 96.995 96.995
Flare 59.568 58.780 58.856 58.949 58.630 58.874
Glass 65.234 64.579 64.112 64.206 64.206 63.738
Satimage 89.330 89.551 89.483 89.650 89.532 89.629
WineRed 58.487 57.836 57.674 58.186 57.799 57.736
ImgSeg 96.052 96.554 96.563 96.433 96.623 96.528
Shuttlle 99.647 99.771 99.766 99.705 99.764 99.778
WineWhite 54.153 53.699 53.018 53.173 53.499 53.687
Zoo 93.663 94.059 93.465 93.069 93.663 94.455
Ecoli 86.190 85.179 84.762 85.774 85.060 85.119
OptDig 97.890 97.886 97.801 97.954 97.886 97.989
Pendig 95.213 99.010 98.956 95.122 98.983 98.997
Yeast 58.693 57.480 57.264 57.642 57.224 57.453
Pokerhand 53.525 52.300 52.450 52.457 52.385 52.830
Vowel 85.071 88.646 88.505 85.212 89.091 89.071
Arrhythmia 65.575 68.319 67.168 67.434 67.965 68.230
Chess 58.926 62.546 60.716 60.979 61.459 62.054
Soybean 92.943 91.332 91.157 91.654 91.742 91.567
Letters 86.467 93.084 91.865 86.750 92.710 92.828
Abalone 26.052 26.220 25.564 26.517 25.746 26.004
Mean 77.731 78.303 77.957 77.764 78.163 78.262
Rank 3.76 2.76 4.48 3.43 3.63 2.94
Mean>9Class 72.035 73.682 73.145 72.172 73.519 73.702
Rank>9Class 3.80 2.75 4.90 3.50 3.55 2.50

14

Table 10: Cohen’s Kappa results of different methods using Multilayer Perceptron. When ”*” appears before a database name, it indicates that for
this database the accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.89512 0.91024 0.90995 0.90596 0.90827 0.91005
Vehicle 0.73917 0.72220 0.72711 0.73603 0.72365 0.72679
Annealing 0.95064 0.95330 0.95279 0.95123 0.95329 0.95329
*Gesture 0.34651 0.34724 0.34391 0.35040 0.35104 0.34815
Nursery 0.97232 0.99218 0.99222 0.98909 0.99220 0.99229
PageBlocks 0.76714 0.79907 0.79928 0.80122 0.79885 0.79875
Autouniv 0.47417 0.45137 0.44608 0.47249 0.45169 0.44872
Dermatology 0.95070 0.96232 0.96232 0.96232 0.96232 0.96232
Flare 0.48135 0.47356 0.47565 0.47647 0.47222 0.47541
Glass 0.51690 0.51257 0.51020 0.51028 0.51056 0.50399
Satimage 0.86804 0.87074 0.87003 0.87207 0.87066 0.87175
*WineRed 0.32796 0.32486 0.32836 0.33254 0.32897 0.32581
ImgSeg 0.95392 0.95979 0.95988 0.95837 0.96059 0.95948
Shuttlle 0.99004 0.99353 0.99338 0.99166 0.99335 0.99374
*WineWhite 0.28690 0.26485 0.26412 0.26470 0.26669 0.26579
Zoo 0.91563 0.92105 0.91347 0.90796 0.91590 0.92600
Ecoli 0.80797 0.79426 0.78900 0.80296 0.79279 0.79364
OptDig 0.97655 0.97651 0.97556 0.97726 0.97651 0.97766
Pendig 0.94679 0.98900 0.98839 0.94578 0.98870 0.98886
*Yeast 0.46408 0.44286 0.44272 0.44795 0.44117 0.44390
Pokerhand 0.11204 0.08084 0.09086 0.08476 0.08698 0.09389
Vowel 0.83571 0.87508 0.87347 0.83725 0.87992 0.87971
*Arrhythmia 0.43798 0.48585 0.48418 0.48592 0.48635 0.49054
Chess 0.53974 0.57988 0.56085 0.56284 0.56907 0.57516
Soybean 0.92257 0.90481 0.90292 0.90842 0.90935 0.90744
Letters 0.85924 0.92807 0.91539 0.86219 0.92418 0.92541
*Abalone 0.15764 0.16152 0.15943 0.16444 0.15943 0.16176
Mean 0.68507 0.69176 0.69006 0.68750 0.69166 0.69260
Rank 4.0 3.28 4.20 3.41 3.28 2.83
Mean>9Class 0.62523 0.64244 0.63938 0.62768 0.64217 0.64443
Rank>9Class 4.10 3.25 4.65 3.60 3.30 2.10

and this difference is increased when the databases with 10 or more classes are considered.
However, we can not obtain any meaningful conclusion without using a statistical test. Hence, in the next sub-

section, we carry out an statistical analysis in order to find whether significant differences among the results obtained
exist or not.

4.6.1. Statistical analysis
As we have several methods to compare, according to Garcı́a et al. [15], we have used the Iman-Davenport test

to detect statistical differences among the different strategies. If the difference exists, we apply the Shaffer post-hoc
test in order to find out which algorithms are distinctive among them. We show the most relevant p-values obtained
in the pairwise comparisons in tables, where ”+” symbol implies that the first algorithm is statistically better than the
confronting one, whereas ”=” means that there are not significant differences between them.

With respect to SVM, the results of the statistical analysis reject the null hypothesis that all the methods are equiv-
alent, since the p-values returned by the Iman-Davenport test are lower than our α-value (0.1) for both performance
measures. In Table 11 we show the most relevant p-values obtained with Shaffer post-hoc test. In both cases all
the strategies outperform significantly OVA, mainly because OVA obtains the worst result in all the databases. This
fact makes to be more difficult to find more statistical differences since the p-value is re-adjusted after each pairwise
comparison in Shaffer post-hoc test. However, DUCG-EHBSA also outperforms A&O in both tables. Viewing these
results we consider that DUCG-EHBSA is the most suitable method for SVM.

Considering Ripper, the Iman-Davenport test returns p-values lowers than 0.0001 for both cases, so we execute
the Shafer post-hoc test. The obtained p-values can be seen in Table 12. The accuracy results show that OVO and
DUCG-EHBSA outperform significantly OVA, DDAG and A&O, whereas DUCG-RAND outperforms OVA. The
Kappa results are similar since OVO and DUCG-EHBSA get significantly better results than OVA and A&O. Seeing
these results we conclude that OVO and DUCG-EHBSA are equivalent between them and they perform better than
other approaches for Ripper.

Concerning C4.5, this time again the obtained p-values in Iman-Davenport test are very low, lower than 0.0001.

15

Table 11: Shaffer test for SVM base classifier
Accuracy
DUCG-EHBSA vs OVA +(5.2E-12)
OVO vs OVA +(1.9E-8)
DUCG-RAND vs OVA +(3.2E-7)
DDAG vs OVA +(1.3E-6)
A&O vs OVA +(1.8E-4)
DUCG-EHBSA vs A&O +(0.0286)
DUCG-EHBSA vs DDAG =(0.3183)
DUCG-EHBSA vs DUCG-RAND =(0.5660)
OVO vs A&O =(0.6117)

Kappa
DUCG-EHBSA vs OVA +(4.3E-11)
DUCG-RAND vs OVA +(5.0E-9)
DDAG vs OVA +(2.5E-8)
OVO vs OVA +(9.0E-7)
A&O vs OVA +(0.0012)
DUCG-EHBSA vs A&O +(0.0176)
DUCG-RAND vs A&O =(0.1265)
DDAG vs A&O =(0.2443)
DUCG-EHBSA vs OVO =(0.7119)
OVO vs A&O =(0.8155)

Table 12: Shaffer test for Ripper base classifier
Accuracy
OVO vs OVA +(5.3E-6)
DUCG-EHBSA vs OVA +(9.1E-5)
OVO vs DDAG +(8.6E-4)
OVO vs A&O +(0.0106)
DUCG-EHBSA vs DDAG +(0.0106)
DUCG-RAND vs OVA +(0.0571)
DUCG-EHBSA vs A&O +(0.0618)
OVO vs DUCG-RAND =(0.1395)
A&O vs OVA A&O =(0.4829)
DUCG-EHBSA vs DUCG-RAND =(0.5660)
DUCG-RAND vs DDAG =(0.5660)
DDAG vs OVA =(0.9780)

Kappa
DUCG-EHBSA vs OVA +(9.4E-6)
OVO vs OVA +(1.1E-4)
DUCG-RAND vs OVA +(4.6E-4)
DUCG-EHBSA vs A&O +(0.0121)
OVO vs A&O +(0.0793)
DUCG-EHBSA vs DDAG =(0.1209)
DDAG vs OVA =(0.1209)
DUCG-RAND vs A&O =(0.1395)
OVO vs DDAG =(0.3773)
A&O vs OVA =(0.4851)
DUCG-RAND vs DDAG =(0.4851)

In Table 13 we show the results obtained with Shaffer pos-hoc test. The p-values obtained in accuracy indicate that
OVO outperforms OVA, DDAG, A&O and DUCG-RAND. DUCG-EHBSA also obtains interesting results since it
overcomes OVA, DDAG and A&O. And DUCG-RAND outperforms OVA. The Kappa results, however, show that
DUCG-EHBSA continues outperforming OVA, DDAG and A&O, but OVO only obtains significant improvements
against OVA and DDAG. Viewing that, we conclude that OVO and DUCG-EHBSA are equivalent and are the most
robust strategies.

Finally, we apply the statistical test to the results obtained with Multilayer Perceptron. The Iman Davenport
test rejects the null hypothesis of equivalence of accuracy (p-value 0.026), but it does not reject the null hypothesis
for kappa (p-value 0.113). We execute Shaffer post-hoc for accuracy and the results are shown in Table 14. Once
again, OVO and DUCG-EHBSA perform better than the other approaches. On the other hand, although there are no
statistical differences among methods in kappa, the p-value is very low and regarding the mean and rank results we
may stress the good behaviour of DUCG-EHBSA.

Viewing all these results, we conclude that the most robust strategies are OVO and DUCG-EHBSA. They show

16

Table 13: Shaffer test for C4.5 base classifier
Accuracy
OVO vs OVA +(3.2E-7)
DUCG-EHBSA vsOVA +(1.6E-5)
OVO vs DDAG +(6.5E-5)
DUCG-EHBSA vs DDAG +(0.0021)
OVO vs A&O +(0.0024)
OVO vs DUCG-RAND +(0.0406)
DUCG-EHBSA vs A&O +(0.0406)
DUCG-RAND vs OVA +(0.0446)
DUCG-EHBSA vs DUCG-RAND =(0.2672)
A&O vs OVA =(0.3234)
DUCG-RAND vs DDAG =(0.4068)

Kappa
DUCG-EHBSA vs OVA +(2.3E-4)
OVO vs OVA +(0.0013)
DUCG-EHBSA vs DDAG +(0.0063)
DUCG-EHBSA vs A&O +(0.0254)
OVO vs DDAG +(0.0362)
DUCG-RAND vs OVA =(0.1209)
OVO vs A&O =(0.1209)
DUCG-EHBSA vs DUCG-RAND =(0.4829)
DUCG-RAND vs DDAG =(0.7668)

Table 14: Shaffer test for Multilayer Perceptron base classifier
Accuracy
OVO vs DDAG +(0.0108)
DUCG-EHBSA vs DDAG +(0.0254)
A&O vs DDAG =(0.3817)
OVO vs OVA =(0.4953)
OVO vs DUCG-RAND =(0.8738)
DUCG-RAND vs DDAG =(0.9433)
DUCG-EHBSA vs OVA =(0.9433)

better behaviour and in almost all the experiments they get significant improvements comparing with the other meth-
ods. We also want to emphasize the results achieved by DUCG-RAND, since several times shows better behaviour
than OVA, DDAG and A&O.

4.6.2. Computational Load
In order to complete the experimental study we have performed another comparison analysing the computational

cost of each method. To do so, we have calculated the testing time (Table 15) and the number of classifiers (Table
16) that each method needs using Multilayer Perceptron as base classifier. Among all the base classifiers, Multilayer
Perceptron has been the selected one because it obtains the best accuracy and kappa results. Nevertheless, the obtained
conclusion can be extended to the remaining base classifiers.

The results obtained in Tables 15 and 16 show that OVA, DDAG and A&O are the fastest methods and which need
less classifiers. DUCG-RAND needs slightly more time and classifiers. On the other hand, OVO requires the most
testing time and uses the most classifiers. Finally, in the case of DUCG-EHBSA, although it needs few number of
classifiers, the testing time that it spends is between OVO and the rest methods.

4.7. Discussion
Regarding the obtained results, we emphasize the following:

• OVO and the proposed method DUCG-EHBSA obtain the best results. In the majority of the cases the best result
of each database is obtained by one of these methods and they always achieve the best rank and mean. Their
improvement is more clear for the databases with more classes. Moreover, the statistical analysis reinforces
these conclusions.

• Considering only the accuracy, OVO performs quite well with all base classifiers, however, when kappa is con-
sidered, DUCG-EHBSA offers better results. After we have analysed the obtained results in several databases,

17

Table 15: Comparison of the testing time of 6 methods (in milliseconds)
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 10.1 14.8 8.7 11.1 10.1 12.8
Vehicle 54.3 54.2 49.2 50.7 53.1 51.8
Annealing 71.1 122.7 59.6 82.9 77.1 80
Gesture 6301 6548.1 6262.3 6360.5 6363.3 6363.8
Nursery 1350.1 1445.8 1342.7 1379.6 1376.3 1375.4
PageBlocks 895.5 918.6 900.6 906.6 908.2 892.9
Autouniv 10803.1 13010.3 10685.4 11063.6 11084.3 11373.2
Dermatology 22.5 42.1 20.6 31 25.3 25.9
Flare 20.4 37.6 20 22.5 21.7 23.3
Glass 2.3 4.7 3.3 2.7 2.7 3.1
WineRed 90.8 107.7 88.7 91.5 92.1 93.5
Satimage 4517.8 4878.8 4511.4 4573.4 4584.1 4630
ImageSeg 315.6 390.1 313.7 323.1 328.6 325
Shuttle 52334.5 53063.4 51657.7 52150.8 51913.3 51908
WineWhite 812.6 892.5 812.4 820.7 826.9 823
Zoo 1.6 4 1.4 1.9 2 2
Ecoli 6 10.3 6.6 8.8 6 6.3
Optdig 4030.5 7241 3976.9 4135.8 4366 4495.9
Pendig 2995 3764.3 2994.2 3027.5 3099.9 3128.9
Yeast 48.2 101.2 47.6 49.1 54.3 60.3
Pokerhand 13555.7 14727.4 13534.9 13649.3 13642.7 13922.9
Vowel 48.6 116 49.4 49.5 59.2 62.7
Arrhythmia 1916.5 10039.3 1763.3 2046 2541.8 2835.1
Chess 2552 16383.8 2723.9 2662.6 3736.1 13103.4
Soybean 366.6 3720.8 399.8 387.7 544.2 714.1
Letters 11047.8 30520.8 11399.1 10950 12810.5 25233.9
Abalone 520.2 3067.5 571.4 530.9 773.4 5527.4
Mean 4247.8 6341.8 4229.8 4273.0 4418.6 5447.2

Table 16: Number of classifiers used by different methods
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 4 6 3 5 4.15 4.84
Vehicle 4 6 3 5 4.28 4.52
Annealing 5 10 4 6 5.66 5.64
Gesture 5 10 4 6 5.71 5.84
Nursery 5 10 4 6 5.45 5.68
PageBlocks 5 10 4 6 5.54 5.93
Autouniv 6 15 5 7 6.99 7.22
Dermatology 6 15 5 7 7.26 7.42
Flare 6 15 5 7 6.96 7.77
Glass 6 15 5 7 7.04 8.32
WineRed 6 15 5 7 6.99 7.97
Landsat 6 15 5 7 6.98 8.03
ImageSeg 7 21 6 8 8.65 9.13
Shuttle 7 21 6 8 8.57 8.86
WineWhite 7 21 6 8 9.03 9.89
Zoo 7 21 6 8 8.77 8.88
Ecoli 8 28 7 9 9.56 10.31
Optdig 10 45 9 11 13.27 13.92
Pendig 10 45 9 11 13.16 14.01
Yeast 10 45 9 11 13.13 14.58
Pokerhand 10 45 9 11 13.11 15.60
Vowel 11 55 10 12 14.81 15.81
Arrhythmia 13 78 12 14 17.21 18.88
Chess 18 153 17 19 25.06 28.70
Soybean 19 171 18 20 26.18 27.65
Letters 26 325 25 27 36.80 38.31
Abalone 28 378 27 29 36.11 41.56
Mean 9.44 59.04 8.44 10.44 12.09 13.16

we conclude that selecting the best pairwise comparison is beneficial for the unbalanced problems. One indica-
tive of this behaviour is that in several unbalanced databases OVO obtains better accuracy than DUCG-EHBSA,
while it obtains worst result in kappa. These databases are indicated with ”*” in the Tables 4, 6, 8 and 10. The
reason of this fact is that trying to select the best class order, the minority classes are more likely to be compared
with those classes that are easier to distinguish.

18

• Depending on the base classifier the results vary. Although the majority of the papers in the literature use
an unique base classifier (usually SVM) we use other extra base classifiers in order to obtain a better view
of the proposed approach. In fact, the results show that when SVM is used, our approach, DUCG-EHBSA,
shows the best performance. On the other hand, for Multilayer Perceptron DUCG-EHBSA and OVO are the
most remarkable strategies. Finally, for Ripper and C4.5 base classifiers, the statistical tests also conclude that
DUCG-EHBSA and OVO are the most robust ones, however, it is worth mentioning that OVO obtains the best
mean and the best result in the majority of the databases with these base classifiers.

• Although OVO and DUCG-EHBSA are the strategies that need more classification time, as the results are
considerably in favour of them, we consider that their good performance compensates their computational cost.
However, if Occam razor’s principle (in equal conditions simplest model is selected) is used for tie-breaking,
DUCG-EHBSA would be selected since it needs less testing time and classifiers than OVO.

• The achieved results show the importance to sort the classes in the proper order since DUCG-EHBSA shows
better performance than DUCG-RAND. DUCG-EHBSA obtains better results in most of the databases and it
outperforms DUCG-RAND in the mean and rank of all the experiments.

• DUCG-RAND obtains interesting results since it obtains better rank and mean than OVA, DDAG and A&O in
almost all the experiments, besides several statistical tests show its better performance. Moreover, with SVM it
obtains better kappa mean and rank than OVO and in Multilayer Perceptron it obtains the same kappa rank.

• The state-of-the-art approaches that try to reduce the number of classifiers in OVO obtain poor results. We
refer to DDAG and A&O. Not considering OVA, they obtain the worst mean and rank result in almost all the
experiments. Moreover, they are significantly improved several times by other methods. Although they obtain
competitive results with the databases with less classes, they show a worst tendency in the databases with high
number of classes where they obtain considerable worse mean than OVO and DUCG-EHBSA.

5. Conclusion

In this work, we have presented a new method called Decision Undirected Cyclic Graph that reduces the number
of classifiers in OVO. We have carried out our experiments for four different Machine Learning algorithms and we
have compared the obtained results with those obtained with several state-of-the-art methods. We have carried out
this experiments using two different metrics to calculate the accuracy.

We conclude that DUCG-EHBS is a promising decomposition strategy, since the experimental results show that
OVO and DUCG-EHBSA are the most robust methods. We show that the best aggregation within a problem depends
on the base classifier that is considered, since SVM works better when DUCG-EHBSA decomposition is used, and in
Ripper, C4.5 and Multilayer Perceptron both decomposition strategies are equivalent. Moreover, we also have shown
that DUCG-EHBSA obtains better performance than OVO for kappa metric.

We have obtained several interesting conclusions, one of the most important one is the good behaviour of DUCG-
EHBSA in problems with large amount of classes, where it performs as well as OVO, whereas other state-of-the-art
strategies that attempt to reduce the number of classifiers show their weakness. Moreover, the new proposal needs
less testing time and less classifiers to take the final decision than OVO.

As we present a novel strategy to reduce the number of classifiers it gives the possibility for future works. One
option is to try to reduce the classification time using other faster strategies, such as genetic algorithms or Kruskal
graph constructor algorithm, to obtain the class order. Other option is to calculate the class order fitness using different
strategies, for example class separability measures. And another option is to observe the performance of this strategy
incrementing the number of edges in each node.

Acknowledgements

The authors gratefully acknowledge J. Ceberio for his assistance during the work. The work described in this
paper was partially conducted within the Basque Government Research Team Grant IT313-10. I. Mendialdua holds a
Grant from Basque Government.

19

References

[1] Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S., 1995. Efficient classification for multiclass problems using modular neural networks.
Neural Networks, IEEE Transactions on 6, 117–124.

[2] Bagheri, M.A., Gao, Q., Escalera, S., 2012. Efficient pairwise classification using local cross off strategy, in: Advances in Artificial Intelli-
gence. Springer, pp. 25–36.

[3] Bautista, M.Á., Escalera, S., Baró, X., Radeva, P., Vitriá, J., Pujol, O., 2012. Minimal design of error-correcting output codes. Pattern
Recognition Letters 33, 693 – 702.

[4] Ben-David, A., 2007. A lot of randomness is hiding in accuracy. Engineering Applications of Artificial Intelligence 20, 875–885.
[5] Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A., 2012. A review on estimation of distribution algorithms in permutation-based combi-

natorial optimization problems. Progress in Artificial Intelligence 1, 103–117.
[6] Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46.
[7] Cohen, W.W., 1995. Fast effective rule induction, in: In Proceedings of the Twelfth International Conference on Machine Learning, Morgan

Kaufmann. pp. 115–123.
[8] Dietterich, T.G., Bakiri, G., 1995. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence

Research 2.
[9] Fei, B., Liu, J., 2006. Binary tree of svm: a new fast multiclass training and classification algorithm. Neural Networks, IEEE Transactions

on 17, 696–704.
[10] Frank, A., Asuncion, A., 2011. Uci machine learning repository, 2010. URL http://archive. ics. uci. edu/ml .
[11] Friedman, J., 1996. Another approach to polychotomous classifcation. Technical Report. Technical report, Stanford University, Department

of Statistics.
[12] Fürnkranz, J., 2002. Round robin classification. The Journal of Machine Learning Research 2, 721–747.
[13] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., 2011. An overview of ensemble methods for binary classifiers in

multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 44, 1761–1776.
[14] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., 2013. Dynamic classifier selection for one-vs-one strategy: Avoiding

non-competent classifiers. Pattern Recognition 46, 3412 – 3424.
[15] Garcı́a, S., Fernández, A., Luengo, J., Herrera, F., 2010. Advanced nonparametric tests for multiple comparisons in the design of experiments

in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180, 2044–2064.
[16] Garcia-Pedrajas, N., Ortiz-Boyer, D., 2006. Improving multiclass pattern recognition by the combination of two strategies. Pattern Analysis

and Machine Intelligence, IEEE Transactions on 28, 1001–1006.
[17] Garcı́a-Pedrajas, N., Ortiz-Boyer, D., 2011. An empirical study of binary classifier fusion methods for multiclass classification. Information

Fusion 12, 111–130.
[18] Ghaffari, H.R., Yazdi, H.S., 2013. Multiclass classifier based on boundary complexity. Neural Computing and Applications , 1–9.
[19] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The weka data mining software: an update. ACM

SIGKDD Explorations Newsletter 11, 10–18.
[20] Hastie, T., Tibshirani, R., 1998. Classification by pairwise coupling. The annals of statistics 26, 451–471.
[21] Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B., 2008. Fingerprint classification using one-vs-all support vector machines dynamically ordered

with naı¨ ve bayes classifiers. Pattern Recognition 41, 662–671.
[22] Hsu, C.W., Lin, C.J., 2002. A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on 13,

415–425.
[23] Hüllermeier, E., Vanderlooy, S., 2010. Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation

to weighted voting. Pattern Recognition 43, 128–142.
[24] Kijsirikul, B., Ussivakul, N., 2002. Multiclass support vector machines using adaptive directed acyclic graph, in: Neural Networks, 2002.

IJCNN’02. Proceedings of the 2002 International Joint Conference on, IEEE. pp. 980–985.
[25] Ko, J., Byun, H., 2003. Binary classifier fusion based on the basic decomposition methods, in: Proceedings of the 4th international conference

on Multiple classifier systems, Springer. pp. 146–155.
[26] Kumar, M.A., Gopal, M., 2011. Reduced one-against-all method for multiclass {SVM} classification. Expert Systems with Applications 38,

14238 – 14248.
[27] Kumar, S., Ghosh, J., Crawford, M.M., 2002. Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis &

Applications 5, 210–220.
[28] Lorena, A.C., de Carvalho, A.C., 2010. Building binary-tree-based multiclass classifiers using separability measures. Neurocomputing 73,

2837 – 2845.
[29] Platt, J.C., 1999. Fast training of support vector machines using sequential minimal optimization, in: Schölkopf, B., Burges, C.J.C., Smola,

A.J. (Eds.), Advances in kernel methods. MIT Press, pp. 185–208.
[30] Platt, J.C., Cristianini, N., Shawe-Taylor, J., 2000. Large margin dags for multiclass classification. Advances in neural information processing

systems 12, 547–553.
[31] Pujol, O., Radeva, P., Vitria, J., 2006. Discriminant ecoc: A heuristic method for application dependent design of error correcting output

codes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1007–1012.
[32] Quinlan, J.R., 1993. C4. 5: programs for machine learning. volume 1. Morgan kaufmann.
[33] Rifkin, R., Klautau, A., 2004. In defense of one-vs-all classification. The Journal of Machine Learning Research 5, 101–141.
[34] Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations by error propagation. Technical Report. DTIC

Document.
[35] Tsutsui, S., 2002. Probabilistic model-building genetic algorithms in permutation representation domain using edge histogram, in: Parallel

Problem Solving from Nature—PPSN VII. Springer, pp. 224–233.

20

[36] Wu, T.F., Lin, C.J., Weng, R.C., 2004. Probability estimates for multi-class classification by pairwise coupling. The Journal of Machine
Learning Research 5, 975–1005.

21

