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ABSTRACT

This paper employs the Conditional Value-at Risk, largely used in financial risk management, to specify the power reserve
capacity of a wind power plant (WPP) under a risk metric. Evidences are shown here that other popular, simpler measure,
the Value-at Risk, is inappropriate for that specification. Under this risk-based reserve metric, two programs are approached
to optimally distribute a reserve request in a WPP subject to a given confidence levelin the c o mmitment. The most
exhaustive of the two is a two-level formulation including a solution to the load power flow (LPF)in the WPP. By
solving these two programs, for comparison with interior-point and heuristic solvers, conclusions are drawn. Notably,
that a Pareto optimality occurs for stringent reserve requests; that putting off-line generators is financially more profitable
than partial curtailments to respond to low reserve requests; and that in these cases accounting for losses through LPF-based

optimization seems unnecessary.
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1. INTRODUCTION

The regulation of the frequency as an ancillary service is achieved through the response of economic markets and through
the deployment of reliability reserves. This regulation takes place in different time scales following the occurrence of
frequency changes derived from non-event or event processes. The non-event are related to the stochastic evolution of the
demand and generation balance, being part of the optimal dispatch [1]. Contrarily, an event-derived response occurs as an
unplanned contingency that moves the frequency away from its set-point.

In both processes, a common feature is precisely the emergence of an unbalance between generation and load. In the
past, this issue was related almost exclusively to the oscillations of the demand and markets and, more severely, to the
occurrence of N — 1 events. However, the increasing penetration of wind energy has being notably degrading the system
frequency, because in the end wind generation acts as a negative load with uncertain variability (see for instance the
calculations in [2]). Consequently, more reserves have been put into consideration to cope with this variability [3].

The responsibility of controlling this frequency events was in the past assigned to all those generators with ramping or
spinning capabilities; depending on the targeted reserve. But now, by way of compensation and in searching for a better
balance, system operators (ISO) are asking for mandatory provisions of power reserves from wind power plants (WPP) as
well [4], mainly targeting on FCR (frequency containment reserves) and possibly on FRR (frequency restoration reserves)
[5]. See [6] for a discussion about regulatory issues, or [7] for particularization of the need for reserves in insular systems.

The provision of these reserves entails a cost to the WPP operator, however, because the generator must be un-
loaded following a curtailment curve that modifies the nominal wind speed to power conversion. This is a change in
the conventional operation mode, in which the WPP produced at its maximum available power, following the maximum
power point tracking. By contrast, what is suggested is that WPP can be regulated to achieve other strategic goals, such as
the one presented on this paper; or, in general, favor the stable integration of sizable amount of wind energy in the system
by strategically reducing the output of the WPP (see for instance [8]). The curtailment can be performed in a variety of
ways: derated, relative spinning or percentage reserve, and absolute spinning or delta methods, are some [9, 10, 11, 12].
But in the end this assumes that the WPP will face a profit loss from curtailing its power production after obeying the the
ISO requests.

Research efforts have been done towards analyzing WPP contribution to frequency support (see [3] for a review),
also proposing different optimal algorithms that improve several aspects of the wind power conversion performance [13].
However, few works commit the sharing of power reserve among the turbines inside a WPP. In this sense, a reserve sharing

that reduces the turbine stresses is proposed in [14] by means of variable droop control in each one. Another two proposals
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[13, 15] have been found that perform a reserve sharing among the turbines in order to take advantage of the highest wind
speeds. Nonetheless, it is noticeable that these proposals do not deal with the cost that the power reserve involves to wind
power producers, nor with the uncertainty involved when using wind energy.

Differently, this paper addresses the question: What is the cost of curtailing power to the WPP under a risk metric, and
which factors do most affect the profit loss? In this regard, the first contribution of this paper to the existing literature
is the revision of wind power primary reserve capabilities of a WPP under a risk measure. Wind power production is
subject to uncertainty, and therefore the primary reserve cannot be firm. This is in contrast with the conventional thermal
generation, where the ISO is fundamentally concerned with the amount of available power reserve. Failure to provide it
from a committed generator is considered a contingency, for which appropriate rescheduling is in order. In the case of
wind power production, however, the ISO cannot rely on a WPP with high certainty, and it therefore seems reasonable
that it not only be informed about the WPP reserve levels but also about its reliability. In order to quantify that reliability,
in Section 2.1 the value-at-risk (VaR) will be investigated as a possible risk measure of the available power reserve. The
VaR concept is borrowed from the financial context, where it has been widely employed to quantify the risk of financial
loss of an investment. Our claim is that—as an upper percentil of a distribution—it can be equally employed to represent
the confidence in power availability upon a frequency event, and not only currency losses. (Yet, it will be made evident
that the confidence level has opposite meaning in the reserve problem to that of the financial framework.) Though easy
to understand and simple to use, we will move to argue in Section 2.2 that the VaR will prove to be a bad choice in
the reserve scheduling risk measurement, and that the conditional VaR (CVaR) is an acceptable “upgrade” that ensures
a more representative measure of risk over a wider range of reserve levels and reliabilities. We emphasize that the risk
measure is applied not to a financial context, on which it exists extensive literature, but to the specific characteristics of
power production by wind generators, which is largely biased towards extreme values. This bias produces a distinctive
distribution of probability [16], which makes it arguable the use of CVaR, as we defend in Section 2.2. We acknowledge
that other recent works have also employed the CVaR in the wind power generation context. However, the use of CVaR
has been again employed to measure the economic loss risk (as a weighted part of the objective function of an optimization
problem), as in financial contexts: see for instance [17, 18, 19]. Differently, we employ CVaR as a constraint to the power
reserve, to ensure a given generator output under a given confidence level.

A second contribution of this paper is the analysis of the optimality of the distribution of reserves in a WPP. Other recent
works have addressed the problem of wind power reserve optimization from the point of view of dispatching [20, 21] or

of reducing the deviation penalties [12], but without addressing the optimal internal scheduling in a WPP that leads to a
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economical loss minimization. Specifically, Section 2.3.1 features a lossless approach to find the optimal scheduling, which
is later upgraded (Section 2.3.2) to incorporate line losses through a two-level program including a non-derivative load
power flow (LPF). These two approaches serve to identify the optimal allocation of curtailed power in a WPP considering
wind speed profiles, energy conversion characteristics, and properly the WPP layout. In the end, the solutions of those
programs will be analyzed in Section 3 for a range of scenarios to reveal the existence of allocation patterns.

The results of Section 3 will show that in some cases the best (i.e., optimal) allocation of reserves inside a WPP will
entail putting one or more particular generator off-line. Consequently, these results must be analyzed with caution, because
this seems to not fit into the conventional regulation that the reserve should be spinning and automatic. To be consistent,
the ISO should have to accept quick start-up units for primary frequency regulation, which is not the established practice.
Nonetheless, we emphasize that the results shown in Section 3 are those that provide the optimal, ideal curtailment of every
individual generator belonging to a WPP. But also, this paper discusses the conceptual rules to find the sub-optimals, which
do not require putting generators off-line, and therefore would be acceptable under the current operational rules. Also, we
must note that this paper is based on the assumption that the wind speed distribution is known, either in parametric or in
non-parametric form. This would make the methodology discussed in the next sections useful for planning purposes, when
a WPP reserve capability is valued. But it is interesting to see that the same methodology can be applied to assessing the
value of a given forecast, when this is made in the form of a probability distribution. In such a case, of interest for the ahead
planning of the ISO, the translation of the concepts developed in this paper would be straightforward: under the forecast
distribution of wind speed, the program would give the necessary curtailment of each generator inside the WPP to achieve

an expected total power reserve at a given level of confidence.

2. METHODOLOGY

2.1. Value-at-risk

The a-VaR is an upper percentil of a loss distribution function, representing the upper estimate of losses that will not be
exceeded with a confidence level av. In a financial context, the VaR provides investors with an estimate of the maximum
losses they will face through a position in a financial portfolio, depending on the level of confidence they want.

The loss function is central to this risk assessment approach. In most financial settings it gives the profit loss associated
to a position in a given portfolio; hence its name. Similarly, this paper considers the reserved wind power as an opportunity

loss to the WPP operator, which can be therefore represented by a loss function f: RVX"G x R"G— R™ . To account
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Figure 1. Characteristic conversion curve of the 600-kW Enercon E40 (solid line). De-loaded characteristics for 20% power reserve

are also shown (dashed lines).

for the loss originated by the curtailment, this function maps wind speed and allocated curtailment following a de-loading

policy into loss power. Specifically:

nG
F&w) = 9w, 0) — g(ws, &)1, M

i=1
where w = (w1, ... , Wng ), and w; is the N-observation vector of wind speed at the i-th site, of the ng WPP turbines.
Vector € = (§1,...,&ng) determines the portion of power that is reserved in each generator—that is, it defines the

degree of power curtailment of every generator. Function g : RV X"G x R"G — RY maps wind speed into wind power,
considering the curtailment &;. Basically three options are reported in the literature to specify this function: delta, derated,
and percentage (Fig. 1). In this paper, only the delta function is considered, mindful that the application of the other two

approaches is straightforward. Particularly, the specification of g employed in this paper for each i-th generator is:

g(wi, &) = max{0, g(w;,0) — &}. (@)

If & = 0, the power curtailment is null and the power conversion follows the nominal characteristic of the turbine,
g(w;,0), as provided by the manufacturer. (In this paper we employed the 600-kW Enercon E40 turbine, with its
characteristic nominal curve represented in Fig. 1. The detailed piecewise specification of g(w;, 0) can be found in [22].)
On the other hand, entries of £ equal to one mean that the corresponding generators are separated from the grid, meaning
that all the available power is reserved.

For a particular reserve policy specified by a given &, the vectors of wind speed are mapped by the loss function (1) into
reserved power. Accordingly, because wind speed is a random variable, the reserved power, R, is also a random variable

with a VaR that is defined as

VaRy =min{r >0 : pr{R>r} <1—a}. (3)
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The previous definition of VaR is employed in financial contexts, but it has two major issues in the power reserve
problem approached in this paper. First, the interpretation of the confidence level is different. It is common practice in
financial analysis to set high confidence levels: for instance, o = 95% indicates that the investor will not incur in losses
greater than VaRgsg, with a 95% probability. However, the power reserve problem has two intervening agents, not one,
and this importantly varies the interpretation of the quantile. The power reserve is a loss to the WPP operator (the first
intervening agent), because that power cannot be sold. It is requested, however, by the ISO (the second agent). If in parallel
to the financial practice the ISO sets a high o« = 95%, it implies that the reserved power will not exceed VaRgsy, a 95%
of times. But statistically speaking this means that the reserved power might perfectly be zero 95% of times. However, for
reliability purposes the ISO will be surely willing that the reserved power be in excess of the requested reserve 95% of
times. Therefore, from the ISO viewpoint it is 8 = 1 — « the true confidence level. An a = 5%, meaning 3 = 95%, tells

the ISO that the reserve power will be in excess of VaR5¢ 95% of times.

2.2. CvaR

The second issue with VaR is related to some undesirable limiting characteristics when analyzing general distributions
[23, 24]. In the case of wind power production the limitations are so severe, indeed, that in what follows we argue that VaR
as a measure of reserved power problem is impractical; leading in fact to wrong assessments.

To show it, we processed the wind speed records of two adjacent wind sites. The data come from the NREL dataset in
[25]. Specifically, we employed the averaged 1-hour records of sites 25228 and 25194 of year 2006, with the frequency
distribution contrasted in Fig. 2a.

The mapping of wind speed into wind power is nonlinear and piecewise defined, as shown in Fig. 1. This produces
an uneven transformation of wind speed into wind power, with ensuing frequency distributions that typically exhibit two
visible “spikes”, at 0.0 and 1.0 p.u (Fig. 3b). The spike at 0.0 p.u. reveals the null power production when the wind speed
falls below the cut-in (2.5 m/s) or exceeds the cut-off (25 m/s) speeds (see Fig. 1). The spike at 1.0 p.u. is a consequence of
winds at speeds between the rated (15 m/s) and the cut-off wind speeds. Visibly, site 25194 with higher mean wind speed
produces a larger spike at 1.0 p.u. than site 25228.

If the loss function (1) is computed for every possible curtailment, represented by the pair (£25194, £25225 ), and the VaR
is computed through (3) for each realization of f, the result is similar to that in Fig. 3a. Variants occur when the confidence
level is varied (making more or less visible the plateau) or when other wind distributions are employed , but eventually

Fig. 3a proves to be a generic representation.
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Figure 2. Frequency comparison of random variables based on the evaluation of NREL datasets of sites id. 25228 and 25194. (a)
Wind speed. (b) Wind power after processing wind speed through the Enercon E40 conversion function of Fig. 1 (full conversion,

without reserved power). The markers are the sample means (J) and medians (o).

For general distributions it is known that VaR is non-convex [23, 24]; what can be readily observed in Fig. 3a with
specific regard to the reserve problem approached in this paper. Although this is an added complication in approaching
optimization problems, because it implies using global search algorithms, it does not pose an insurmountable difficulty.
(Indeed, later in this paper a global optimization procedure is proposed to investigate the occurrence of multiple solutions.)
The most relevant limitation, however, is that VaR only considers the risk at an a-percentile of the loss distribution, hence
disregarding the magnitude of the losses in the a-tail of the loss distribution. That is, it disregards the worst 1 — « portion
of scenarios; producing the visible plateau when the reserve request is relatively demanding. (An examination of the curves
of reserved power as a function of 3 shows that the plateau is a consequence of the discontinuity appearing at the maximum
power reserve, similar to that provoking the spikes at 1.0 p.u. in Fig. 3b.) Therefore, this implies that the VaR measure—
which is the value of power reserve of the WPP—does not depend on the degree of curtailment exceeding a given value.
Referring to Fig. 3a, for values of 25194 and 25228 greater than approximately 0.4, the obtained reserve will be always
around 0.5 p.u.; even if both generators are completely unloaded. This interpretation makes the VaR obviously impractical
in the power reserve context.

To overcome the shortcomings of VaR, Rockafellar and Uryasev developed the concept of conditional value-at-risk

(CVaR), based on the VaR, in [26]; gaining since wide acceptation in the financial framework. The CVaR is the weighted
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Figure 3. VaR (a) and CVaR (b) in p.u. under different curtailments of Enercon E40 wind power, subject to winds of sites 25228 and
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Because the CVaR averages VaR and exceeding reserves, it accounts not only for the lowest bound of reserves (as VaR
does), but also for the extent of reserves beyond the threshold provided by VaR. CVaR and VaR are equivalent when the
loss distribution is normal, but not so in other instances—as the one presented in this paper—where CVaR outperforms VaR
in tractability and coherence [27]. And more importantly, CVaR can be readily incorporated into minimization problems

in a simple manner, as discussed in [26], where the authors demonstrated that (4) can be inferred in discrete form as

: 1
CVaR, = ﬂ-el"%,lf-lnn VaRq + m kz;lmax{f({»w) —VaR,, 0} . 5)

Ultimately, the representation of CVaR is markedly different from that of VaR, as observed in Fig. 3. As commented
above, the reserve specification leading to Fig. 3 was selected as an instance where non-convexity and the VaR plateau

were evident For low valnee of A and recerve the VaR renrecentation wonld he eanivalent ta that of ("VaR (hath nanele
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of Fig. 3 would be identical). However, in the case presented in Fig. 3 both representations coincide only in a tiny portion
at the origin—where the curtailments of both generators are almost negligible. Beyond that domain, CVaR improves the

assessment of the reserves by eliminating the plateau and the non-convex area.

2.3. Optimal distribution of the reserve

2.3.1. Lossless approach

Once made a reserve request, it is the role of the WPP operator to self-schedule the power production. Because the
WPP consists of distributed generators of possibly different power outputs, the question faced by the operator is how to
distribute the reserve in the least costly way, provided that the required power and confidence levels are met.

The scheduling question can be easily cast into an optimization problem:

max &
3

e Zg(wz-,&)]

i=1

st. CVaRs > 7iso

& €0,1],i=1,...,nq, (6)

where C'VaR, is defined as in (5), employing the loss function (1); r1so is the reserve level agreed upon with the ISO at
a confidence level & = 1 — 3; 7 is the feed-in price at observation ¢; and &; is the statistical average over the sample.
The program (6) employs the wind speed samples at every i-th site as inputs. These ng samples are mapped into
reserved wind power through (2). The mapping depends on the decision vector & = (£1,...,&ng). Over the iterative
process, tentative sets of curtailments & are tested, producing different reserve profiles. The loss function (1) gathers the
N X ng reserved power samples into one sample of size N. This sample is employed to compute the CVaR and check
whether the inequality constraint holds—that is, whether the CVaR as risk-valued measure of power reserve exceeds the

ISO request. Ultimately, the optimal solution £* will maximize the WPP income by energy sales.

2.3.2. BFS-based approach

The program (6) incorporates the two conflicting interests: maximization of returns by energy sales (for the WPP
operator) and a reliable provision of a minimum reserve (for the ISO). It may be argued, however, that the solution to
the previous problem might not be the best. The obtained £* might well unload the generators nearest to the WPP grid
connection. This raises the concern that the generators providing the more line losses would be the most productive.

An alternative approach to (6) includes a more involved calculation of the objective function. Rather than computing

the economic profit as the sum of produced power at each generator (times the price of electricity), it does so through the
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solution of a power flow. This change in approach consequently entails important changes in the program work flow, as
discussed next.

Because the WPP is a radial system, algorithms of the backward-forward sweep (BFS) type seem appropriate. These
are derivative free algorithms that besides simple have proven to improve tractability in the power flow calculation of
radial systems, with fast convergence [28]. However, the solution method makes it necessary approaching the optimization
problem as a two-level program. The top level accounts for the curtailment calculation, with £ as decision variable; while
the bottom level, the BFS algorithm, provides the power flow solution for the prospective &’s. This two-level approach is
because BFS algorithm consists in making successive sweeps of the WPP network to eventually find a stable solution of
the node voltages. Over the backward sweep, the branch currents are computed from the node injected currents through
the use of KCL at each node, starting at the most remote ones. The injected currents are calculated assuming that the
node voltages are known and using the power injected by the generators, which are curtailed as dictated by the top-level
program. Over the forward sweep the voltages are updated starting from grid-connected node and assuming that the branch
currents—calculated over the backward sweep—are correct now.

We employed the algorithm described in the flowchart represented in Fig. 4. The key matrix in this approach is the
node-edge incidence matrix, I', of a directed graph that represents the distribution network. In a general case, it is a matrix
of size ny X np (number of nodes x number of branches). In the particular case analyzed in this paper, however, I' is
a square matrix of size (ny — 1) X (nx — 1), because (i) a purely radial system has one less branch than the number of
nodes, and (ii) the grid-interface node is left out of the sweeps. (This particularity of being square shows later to be crucial

to specify the compact formulation.) If I' = [v,;], the matrix has the following structure [29, p.37]:

m ;; = 1if branch j is incident at node 7 and is directed away from it.
m 7;; = —1 if branch j is incident at node ¢ and is directed towards it.

m 7;; = O if branch j is not incident at node i.

With this formulation about the grid structure, let I = (Io,...,L,y) be the vector of complex currents drawn
from the nx — 1 nodes (again the grid-interface is discarded). In [29, Sect. 2.2], Chen showed that I relates to the
branch current vector I = (I'f, ... ,IEN_l) through the incidence matrix: I = T*I®, where subscript ¢t means transpose.
Moreover, Chen showed that the same incidence matrix relates the voltage drops in the branches to voltage drops in
the nodes: AU’ = T7'UP, where AU = (AUy,...,AU,,) gathers the complex voltage drops in the nodes, and
Ut = (U'f, . 7UﬁN_l) are the voltage drops in the branches. If now Z is introduced as the vector of line impedances,

so that its elements are sorted in the same order as the branch voltages and currents in UP and 1P, it follows that U =

10
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Figure 4. BFS-based optimization approach.

Z ® I”; where the operator ® stands for the element-wise multiplication of two vectors: (a1, ..., an) ® (bi,...,bn) =
(a1b1, ce ,anbn).
The considerations above eventually allow, by rearranging and combining the previous components, producing the said

compact formula for the voltage deviations:
AU =T7'[Zo (T7'T)], ©)

where the superscript —¢ indicates inverse transpose.

1
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Figure 5. Isolines of ISO confidence level for CVaR = 0.4 p.u.

Clearly this second formulation is computationally more intensive than the original (6). Ultimately the difference resides
only in the specification of the objective and loss functions; but not in the problem structure. In (6) they are expressed in
closed form as the sums of incomes and power curtailment, respectively. Quite differently, in the second approach the
BFS algorithm is questioned about the available and reserved powers at the grid-connected node upon each iteration. And
though an implementation employing matrix algebra (we employed a variation of [30]) shows a marked improvement in

speed, still the need for several sweeps at each candidate £ considerably slows down this version of optimal program.

3. RESULTS AND DISCUSSION

3.1. Significance of 3 on the actual curtailment.

The introduction of a risk measure to specify the reserve reliability definitely complicates the reserve allocation among
generators. This is exemplified in Fig. 5. Low levels of confidence (in Fig. 5, 5 < 0.2) cause that the curtailments follow
the simple rule 25194 + &25228 = T1s0. There is no preference in such cases regarding the distribution of the total
curtailment—either generator 25194 or the 25228 can be indistinctly curtailed in 0.4 p.u.; or for instance the requested
reserve can be equally divided between both, 0.2 p.u. each. This easy rule changes, however, when in search of more
reliability 3 is increased. It then follows that {25194 + &25228 > 7150, implying that the loss of power production is more
than what nominally declares 71s0.

In fact, the excess of £25194 + £25228 over r1so depends on the reserve allocation policy. Generator 25228 has the
lowest capacity factor (CF) and consequently requires a relatively larger curtailment than generator 25194 to achieve the

reserve goal. This is so because the CF is indeed a measure of the statistical production of a given generator. When the

12
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of reserved power, CVaR, are indicated with labels. Also levels of profit from wind power sales are represented by the shaded areas

(the darkest shade corresponds to the highest profit). The requested reserve is (a) 0.625 p.u., (b) 0.469 p.u., and (c) 1.094 p.u.

CF 1s relatively high, 1t means that the generator spends relatively more hours a year in the production interval (with wind
speeds between cut-in and furling values). This in turn may be interpreted as a larger confidence in that generator if the
power reserve were requested. It ensues that the CF gives an easy indication about which are the generators more suitable
to provide an amount of reserve with higher confidence. But also it is noticeable that the curtailment is not linear in the
sense that it cannot be optimally distributed in inverse proportion to the CF. The curtailment is sensitive to the weight given
to each generator in building the reserve. Thus, if greater emphasis is put in the generator with lowest CF, the amount of
curtailment increases more than proportionally. This sensitivity is increased when § is also increased—as an amplification
of the lower confidence in generator 25228. (Clearly the sensitivity of the curtailment of one generator to changes in the
other is readily investigated through the slope of the isoline. Only for 3 < 0.2, where the isoline slope is constantly —1
are the curtailment increments equal. For larger 3 the slope is progressively reduced, indicating a larger sensitivity of
&25228 to changes in £25194.) In this respect it is noticeable that the generator 25194, with the largest CF, can give the
full requested reserve 0.4 p.u. individually, though incurring in an slight over-reserve: 25194 = 0.529 (8 = 0.8). Not so
the generator 25228 of lower CF, which is not capable of giving the reserve individually—it requires the support of the

other generator, with {25194 = 0.036 when £25228 = 1.000. The amount of curtailment over riso in this case is noticeable,

First indications are that the CVaR-based problem is convex and can be solved by for instance interior-point algorithms

(IPA). However, our preliminary tests showed inconsistent values of £*: slight changes in the reserve request at high 3

13
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would often produce drastically different £*. To further investigate this issue—namely the possibility of local maxima—
we resorted to a global optimization algorithm. Particularly, the differential evolution algorithm (DEA) published in [31]
seemed appropriate: importantly it allows not only the specification of bounds of &;, but also of complex constraints; and
reportedly it features improved accuracy. The use of this DEA would eventually prove to be valuable for validating and
illustrating the existence a Pareto front, justifying the inconsistence in the solutions offered by the IPA.

The panels of Fig. 6 provide insight on the optimal solution manifold through simple demonstrations of the performance
of the constrained DEA. Again we employed a two-dimensional approach based on the data presented in Fig. 3. The
first case (Fig. 6a) explores the convergence of the DEA in an “intermediate” reserve request: the combination of riso
and (8 is demanding, but not excessively. In this case, it is noticeable how the DEA progresses to the maximum of the
objective function by successively pruning the individuals with the lowest profit (those furthest to the northeast of the
CVaRop.4 = 0.625 p.u. line) and those infeasible individuals that violate the CVaR constraint (below the line). Eventually,
the optimal solution is found at the upper extreme of the CVaR line. This means that generator 25228 is left uncurtailed.
By contrast, when the 7150 is less demanding (Fig. 6b) the algorithm populations evolve towards the opposite extreme: the
optimal solution implies that the most profitable generator 25194 remains now uncurtailed.

The situation is quite different when the reserve requirements are high (Fig. 6¢). In such cases, the constraint and
objective isolines practically coincide. The constrained DEA requires comparatively a much larger number of iterations to
reach the solution. (In Fig. 6¢ after 12 generations, the individuals are still widely spread over the constraint. The algorithm
has already stripped the population from the least profitable individuals and from those violating the constraint; but it has
a difficult time discerning an optimal solution.) It is in these cases when the interior-point algorithms get stuck at points
close to the initial guesses. However, this analysis demonstrates that in any case those different solutions are all equivalent,
and hence Pareto-optimal; implying that an optimization program is indeed nonessential to distribute high reserve requests,

because ultimately the problem consists in finding any combination of £ that meets the CVaR constraint.

3.3. Extension to WPP

In what follows the analysis focuses on high-dimensional problems, also considering the spatial location of the generators.
For that purpose we defined a WPP using the 33-node system detailed in [32]. Except for the tie-node 1, we assumed
that each node had a wind generator, with wind speed profiles obtained from the NREL data base [25], with codes 24483

through 24499, 24430 through 24433, 24680 through 24682, and 24563 through 24570 (see also [33]). What comes next
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Table I. Capacity factors and Weibull scale (m/s) and shape of the wind speed profiles represented in Fig. 7a.

Node 1 2 3 4 5 6 7 8
CF 44.0% 43.8% 444% 441% 442% 438% 429% 42.3%
Scale 9.24 9.20 9.34 9.32 9.40 9.39 9.31 9.31

Shape  1.55 1.54 1.53 1.52 1.50 1.47 1.46 1.43

Node 9 10 11 12 13 14 15 16
CF 41.7% 402% 394% 37.6% 37.6% 36.6% 363% 362%
Scale 9.34 9.12 9.19 8.80 8.90 8.61 8.51 8.45

Shape 1.40 1.37 1.33 1.30 1.30 1.30 1.33 1.35

Node 17 18 19 20 21 22 23 24
CF 357% 409% 40.7% 40.4% 40.4% 49.6% 47.8% 49.8%
Scale 8.30 8.80 8.82 8.82 8.88 10.28 9.97 10.40

Shape 1.37 1.47 1.47 1.45 1.43 1.88 1.88 1.85

Node 25 26 27 28 29 30 31 32
CF 458% 44.5% 437% 424% 40.0% 385% 369% 36.6%
Scale 9.83 9.63 9.62 9.62 9.24 9.26 8.88 8.95

Shape 1.48 1.45 1.41 1.35 1.30 1.24 1.25 1.25

about the particularities of establishing optimal distributions of reserve requests is for a 24-hour wind profile described in

Fig. 7a and Table L.

3.3.1. Equivalences and discrepancies between algorithms

The tabulated results in Fig. 8 assess the convergence characteristics of the different optimization procedures discussed
previously. Listed top-down below each node are the values of curtailments obtained for scenarios 1 through 5 of Table
II. For clarity when a generator output is left uncurtailed, we have drawn a dash rather than writing 0.00. This seems to
improve the visibility of generators affected by curtailment. Exceptionally, the figures below node 1 (the grid-connection
node, devoid of wind generation) represent the sum of curtailments of each scenario, Zfiz &.

The first three rows show the curtailment obtained for a high confidence level (5 = 0.8). The first row is the best solution

produced by the constrained DEA after 5 x 10 fitness evaluations (as suggested in [31]); and second and third rows show
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Table Il. List of scenarios.

Scenario S rso (p.u.) e Algorithm  Return (€/MWh)
1 0.8 6.4 FiT DE + BFS -14.1
2 0.8 6.4 FiT 1P+ BFS -14.1
3 0.8 6.4 FiT IP+ BFS -14.1
4 0.6 12.8 FiT 1P+ BFS -10.0
5 0.6 12.8 FiT DE -12.4
6 0.2 6.4 FiT DE + BFS -16.6
7 0.4 6.4 FiT DE + BFS -16.2
8 0.6 6.4 FiT DE + BFS -15.2
9 0.8 6.4 FiT DE + BFS -14.1
10 0.6 12.8 FiT DE + BFS -10.1
11 0.8 12.8 FiT DE + BFS -8.5
12 0.8 32 FiT DE + BFS -16.4
13 0.8 32 Spot, 1724 DE + BFS -667.7
14 0.8 32 Spot, 1/25  DE + BFS -329.5

the solution to the same problem employing an IPA with different initial guesses. Though the contour conditions are the
same, the three scenarios yield different schedulings. For instance, full curtailment is exchanged between generators 18
and 28, depending on the IPA run. Also the sums of curtailments, 23’22 & under node 1, are slightly different. However,
essentially the three tests yield the same value of the objective function (14.1 €/MWh, Table II). On the whole the three
schedulings are equivalent; thus corroborating the hypothesis of existence of a Pareto front also in high-dimensional
problems under high reserve requirements.

In previous section it was raised the concern about possible differences in reserve allocations between the simple
program (6) and an expanded two-level, BFS-based program. This issue is investigated through scenarios 4 and 5 of
Table II, with the results in the last two rows of Fig. 8. (Now with a reduced § = 0.6 the solutions are unique, leading
to a fair comparison of reserve allocations between the two investigated programs.) The solutions are visibly different. To
account for the line losses and their impact on the reserve uncertainty, the BFS-based program returns a larger curtailment:

as shown by Zf’iz &; under node 1, it is 2.6 p.u. in excess of that produced by the simpler program (6). This entails that
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Figure 7. (a) Tukey's box plots of wind speed distributions of the 33-node WPP. Vertical lines demarcate the four sections or branches

Figure 8. Curtailment results under different algorithm comparisons, corresponding to scenarios 1 through 5 of Table Il.

the BFS-based program recruits two more generators in the lowest branch, in nodes 19 and 21, as well as in nodes 7 and
27. Because the reserve request in these two scenarios was so high (riso = 12.8 = 0.4 x 32 p.u.; hence requesting a 40%
reserve to each generator), the DEA had already committed a large part of the production to reserves, and the commitment
of additional generation produces a relevant loss of income. It must be stressed out, however, that this is an extreme case
designed to reveal an important discrepancy between both approaches. When contrarily riso is more moderate, our results

show that the discrepancy is not so relevant, and that therefore the less computationally intensive approach (6) can be
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Figure 9. Impact of reserve requirements, corresponding to scenarios 6 through 11 of Table II.

Table Ill. Even distribution of the reserve request in Table II.

Scenario 6 7 8 9 10 11

CVaR (p.u.) 640 637 6.06 557 11.62 10.77

Return (€/MWh) -14.1 -141 -141 -141 -10.1 -10.1

Table IV. Even distribution of the required curtailments to ensure proper confidence in Table Il (see node 1 of Fig. 9).

Scenario 6 7 8 9 10 11

CVaR (p.u.) 8.74 9.62 1051 1092 17.11 16.02

Return (€/MWh) -1348 -12.84 -11.79 -10.87 -7.10 -6.06

equivalently used. In a Intel(R) Core(TM) 17-3770 CPU machine, of 3.40 GHz, with 8§ GB RAM installed, the average

times for solving scenarios 4 and 5 are relevantly different: 1.7 and 29.7 seconds, respectively.

3.3.2. Significance of 5 and riso

Further insight on the impact of reserve requirements—power and confidence levels—on the optimal reserve allocation
is provided in Fig. 9. Results are ordered top-down from less to more demanding requirements (scenarios 6 through
11, Table II). As expected, the figures indicate that increasing [ again implies a larger estimate of the reserve. For
the less demanding reserve (first row, S = 0.2 and 7150 = 6.4 p.u.) the allocation follows the pattern discussed above:
generators are preferably put off-line, completely curtailed, to meet the power allotment. For the scenario with largest

reserve reliability (forth row, 8 = 0.8) the solution is Pareto optimal and partial curtailments are allowed.
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Figure 10. Price influence, corresponding to scenarios 12 through 14 of Table Il. Scenario 13 and 14 employ the prices of January

24 and 25, 2015, respectively (Fig. 7b).

The impact of an optimal distribution of the curtailment can be additionally investigated using the data in Tables
IIT and IV. Table III lists the value of the economical return when each of the 32 generators is curtailed by 0.2 p.u.
(scenarios 6 through 9, where the request is 32 x 0.2 = 6.4 p.u.) and by 0.4 p.u. (scenarios 10 and 11, where the request
is 32 x 0.4 = 12.8 p.u.). Because scenarios 6 through 11 are all evenly curtailed by a total 6.4 p.u., the only variable
changing is the confidence level. Clearly, when § rises from 0.2 to 0.8 the return is the same (same curtailment) but the
CVaR falls down below the requested 6.4 p.u., except in the least demanding scenario 6. The same reasoning can be applied
to scenarios 11 and 12.

Contrary to the data in Table III, where the reserve request is kept constant, and the validity of the solution is degraded
by the increasing level of confidence, in Table IV we ensured that the confidence 3 and CVaR were the required, by using
the results of curtailment plotted under node 1 in Fig. 9. We again divided the values evenly. Now, for instance, scenario
8 requiring a total curtailment of 13.49 p.u. to ensure r;so = 6.4p.u. under 8 = 0.6 was tested by curtailing each of the
32 generators 13.49/32 = 0.42 p.u. This yielded a CVaR equal to 10.51, which is higher than 71g0, but also than that
obtained by optimally allocating the reserves. As a consequence, the return drops from 15.20 to 11.79 €/MWh.

As for the “geographical” allocation of the reserves, also a pattern is revealed. Starting around the generators with
largest CF (nodes 14 and 33), the reserves are allocated by recruiting highly productive generators; which, as commented
above, are put off-line when £ is reduced. The progression of curtailments follows this pattern, and only for the most
demanding scenario 11 is a generator o branch 23-25 recruited (a possibility included in the Pareto optimal set for such a

high demand).

19



Risk-based Optimal Distribution of Power Reserves in Wind Power Plants G. Diaz et al.

3.3.3. Price policies

The previous analyses were made on the basis of a feed-in tariff (FiT) payment—a policy mechanism through which
the WPP receives a fixed price per produced MWh, stipulated at the start of the contract. (For simplicity we assumed
1 €/MWh.) In theses cases the time of day is irrelevant concerning the expected revenues. Contrarily, under a feed-in
premium (FiP) mechanism the WPP receives a payment composed of the spot price plus a stipulated premium on top
(which we will assume for simplicity to be zero). To conclude this section, the need to consider the price structure in the
objective function is corroborated through the results shown in Fig. 10. As shown in Fig. 10, the variability in prices makes
the curtailments again more extreme than in the FiT scheme to increase profitability. Also the clear difference between

both days prices makes it necessary to readjust the scheduling to improve profitability.

4. CONCLUSIONS

This paper has focused on the interpretation of power reserves in a WPP by elaborating an optimization approach, with a
valuation of the reserve capability under a risk metric.

We have shown that the confidence level, 3, has a fundamental relevance in the scheduling of reserves. When it is
low—meaning that the ISO cannot rely on the WPP for a firm reserve—it happens that (i) the total curtailment matches
the minimum ISO request, but (ii) only one specific curtailment pattern produces the financial optimality of the WPP.
This unique point consists in putting off-line generators rather than scheduling partial curtailments. Contrarily, when high
reliability in the reserve is offered to the ISO, it happens that (i) an over-reserve in the WPP is indicated, actually implying
an extra loss of profit to the WPP; and (ii) a Pareto optimality exists in the distribution of reserves for maximum profitability,
with solutions allowing partial curtailments of generators.

The previous conclusions also hold for high reserve requests. Particularly we can argue that either increasing the
curtailment or the confidence levels yields similar results; and thus the level of confidence can be treated as an extra
request of reserve, with direct economic interpretation.

Regarding the optimization programs proposed in this paper, we can conclude that fast interior-point algorithms are
adequate, remaining mindful that a Pareto front exists under high reserve requirements. As for the use of LPF algorithms
our results showed that, under the prevalence of the capacity factor as the driving criterion for distributing the reserve in

the WPP, the inclusion of line losses is not necessary except for high reserve demands.
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