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A B S T R A C T   

Active flow control is a widespread practice for airfoil aerodynamic performance enhancement. Within active 
flow control, reactive strategies are very effective, but the adequate design of these strategies is often complex. 
This study proposes a reactive control strategy based on a Reinforcement Learning (RL) agent to effectively 
govern the motion of a rotating flap implemented on a NACA0012 airfoil. With this objective, first different 
Computational Fluid Dynamics (CFD) simulations are conducted to gather data about the tested case. Then, a 
numerical model based on Artificial Neural Networks (ANN) is developed to model the discussed case. Finally, 
the RL agent is trained and tested under different conditions. The results show that the trained RL agent is able to 
provide a fast and reliable response for every tested condition, setting the adequate position of the flap and 
obtaining an appropriate aerodynamic performance of the airfoil for all the tested conditions. In comparison with 
the optimum conditions, the absolute error in the position of the flap set by the agent is below 2.2 ◦ for all the 
angles of attack, resulting in an aerodynamic performance very close to the optimum, being only 0.39%–3.05% 
lower, depending on the case.   

1. Introduction 

Wind energy, in combination with other renewable energies, is 
becoming one of the main sources of energy around the world, gaining 
more and more importance in the global energy mix every year (IRENA, 
2023). The reason behind this is that wind energy is a clean energy 
source without fossil fuel consumption and without greenhouse gas 
emissions during its operation. Nevertheless, in order to compete against 
traditional energy sources in terms of energy production and associated 
costs, an improvement of turbine performance is still required. 

A widespread practice for wind turbine performance enhancement is 
the implementation of flow control devices. Flow control devices can be 
divided into two main groups, passive devices, which remain motion
less, and therefore, external energy is not required for their operation; 
and active devices, which move depending on the established operating 
conditions, and hence, require an external energy source. Aramendia 

et al. (Aramendia-Iradi et al., 2016; Aramendia et al., 2017) provided an 
extensive review of both active and passive flow control devices, 
focusing on their application on wind turbine blades. 

Several authors have used different active and passive flow control 
devices techniques in airfoils. The addition of passive flow control de
vices is a widespread practice, as these devices can significantly improve 
aerodynamic performance in a simple way and without requiring an 
external power source. For example, Fernandez-Gamiz et al. (2017) 
added microtabs on the Trailing Edge (TE) of a DU91W(2)250 airfoil, 
Aramendia et al. (2019) added Gurney flaps on the same airfoil, and 
Tunio et al. (2020) implemented a spanwise waviness on a NACA0021 
airfoil. Due to the complexity of their design and the need of an external 
power source, active devices are less popular than passive devices. 
However, there are many studies in which active devices are used, as the 
achievable aerodynamic improvements are much higher. For example, 
Anzalotta et al. (2020) used plasma actuators for controlling the flow 
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through the tip gap of a NACA0065 airfoil, Julian et al. (2022) proposed 
a co-flow jet for improving the aerodynamic performance of a 
NACA0015 airfoil, Spens et al. (2023) added curved fluidic oscillators on 
the leading edge of a NACA0018 airfoil and Anılır et al. (Anılır et al.) 
used TE flaps on a NACA0012 airfoil, with a predetermined oscillation. 

Among active techniques, two main strategies exist, depending on 
the behavior of the flow control device. When the behavior of the flow 
control device is previously defined, the device is considered to be 
predetermined. On opposite, when the behavior of the flow control 
device depends on the instantaneous flow state, the device is considered 
to be reactive. Predetermined strategies are very common, due to their 
simplicity in their design and implementation. However, due to their 
adaptation to the flow state, reactive strategies provide a greater aero
dynamic improvement capability, see Gad-el- Hak (1996). Nevertheless, 
there are cases in which the development of reactive strategies may be 
overly complex, such as in systems affected by many parameters or 
where data acquisition is very complex. 

In last years, with the growth in the knowledge in Artificial Intelli
gence and the increase in the capacity of computers, data-driven 
methods are becoming increasingly popular for fluid dynamics prob
lem solving. This kind of methods provide a very fast and accurate so
lution of the analyzed case, avoiding the problems related with 
traditional experimental tests and Computational Fluid Dynamics (CFD) 
simulations, such as the influence of the user for setting up the case. 

Many authors have implemented data-driven methods, mostly Deep 
Learning (DL) methods, for fluid dynamics problem solving. In areas 
related with wind turbines and airfoils, Sekar et al. (2019) proposed a 
two-step-consistent approach based on a Multi-Layer Perceptron (MLP) 
and a Convolutional Neural Network (CNN) for flow field prediction 
over an airfoil. Thuerey et al. (2020) approximated the velocity and 
pressure fields obtained by Reynolds-Averaged Navier-Stokes (RANS)-
based Spalart and Allmaras (1992) turbulence model around different 
airfoils shapes. Zhang et al. (2018) and Chen et al. (2020) used CNN 
architectures for aerodynamic coefficient prediction of airfoils; and Hui 
et al. (2020) used a CNN architecture for pressure distribution predic
tion of airfoils. Kim and Yoon (2022) improved the aerodynamic per
formance of different NACA airfoils by a geometric modification 
performed by a CNN. 

Other authors focused their efforts on flow control devices. For 
example, Portal-Porras et al. (2022) developed a CNN for velocity and 
pressure field prediction around airfoils with different flow control de
vices. Aramendia et al. (2019) and Rodriguez-Eguia et al. (2020) used 
Artificial Neural Networks (ANN) to model aerodynamic coefficients of 
airfoils with Gurney flaps and TE flaps, considering different geomet
rical modifications on those devices. 

As reviewed by Vinuesa et al. (2022) and Ren et al. (2020), there are 
several data-driven methods for flow control device optimization, such 
as, Genetic Programming (GP) (Koza, 1992) or Bayesian regression 
based on Gaussian processes (Rasmussen et al., 2004). Among 
data-driven methods, Deep Reinforcement Learning (DRL) is a very 
promising option for control strategy formulation because of the two 
main reasons stated by Vinuesa et al. (2022). The first reason is that with 
DRL methods assumptions of the properties of the system are not made; 
and the second reason is that it uses Neural Networks for the decision 

making, which are very accurate for representing complex nonlinear 
functions. Although these techniques are very effective, they have 
certain limitations, such as the complexity of modeling the environment, 
or the time and computational resources required for their training. 

In the pioneer work conducted by Rabault et al. (2019) the vortex 
shedding behind a cylinder at moderate Reynolds number (Re), Re =

100, is reduced by two jets located on top and bottom sides of the cyl
inder, which are controlled through DRL. Following that study, Ren 
et al. (2021) used DRL methods to control the vortex shedding on the 
same case at turbulent flow regime, Re = 1000. In both studies a 
remarkable drag reduction is achieved, around 8% and 30%, respec
tively. Fan et al. (2020) used DRL to control the rotation-rate of two 
small rotational cylinders located downstream and parallel to a cylinder, 
maximizing the power gain efficiency by selecting the proper rotational 
speed; and Han et al. (2022) defined a control strategy for vortex 
shedding suppression on the wake behind a rotational cylinder, whose 
rotational speed is controlled through DRL, achieving a significant 
reduction of the drag. Other authors have used these tools in airfoils and 
wind turbines. For example, Wang et al. (2023) optimized the geomet
rical parameters of the blade in a wind turbine by two DRL models. 

In this study, a DRL-based reactive strategy is proposed for control
ling a rotating flap on a NACA0012 airfoil. With this objective, firstly 
various CFD simulations are conducted to gather data on the evaluated 
case under different conditions. Next, ANNs are employed to model the 
problem and obtain fast and reliable results of drag (CD) and lift (CL) 
aerodynamic coefficients. Finally, a DRL agent is trained to develop a 
control strategy that determines the optimal angle of the flap for each 
Angle of Attack (AoA) of the flow. 

The following of the manuscript is divided as follows: Section 2 
provides a detailed explanation of the tested case, the methodology 
followed to set up and conduct the CFD simulations and the design and 
training methodology of the ANN-based model and the DRL agent; 
Section 3 shows the obtained results, testing the DRL agent with 
different AoA signals; and Section 4, summarizes the main findings of 
this study. 

2. Methodology 

2.1. Case 

In this study a rotating active flap on a NACA0012 airfoil is analyzed. 
The front part of the airfoil is defined as the fixed part, which remains 
motionless; and the back side of the airfoil is defined as the rotating flap, 
which may rotate with a defined angular velocity (ω). The angle of this 
flap (α) can change between α = − 30◦ and = 30◦ . The chord length (c) 
of the studied airfoil is equal to 1 m, and the rotation axis of the flap is 
located at 3c/4 from the Leading Edge (LE) of the airfoil. The flow hits 
the airfoil with an Angle of Attack (AoA) between AoA = − 10◦ and =
10◦ . Fig. 1 provides a schematic view of the tested case. 

α is defined as positive when the flap is above the axis of the airfoil, 
and as negative when the flap is below the axis of the airfoil; and ω is 
defined as positive when the flap rotates counterclockwise and as 
negative when the flap rotates clockwise. 

The aerodynamic performance of the airfoil is directly related with 

Fig. 1. Tested case.  
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the position of the flap and the AoA of the flow. Therefore, this paper 
aims to train a Reinforcement Learning (RL) agent that controls the flap 
depending on the AoA of the flow, in order to optimize the aerodynamic 
performance of the airfoil. 

2.2. CFD setup 

Different CFD simulations of the tested case are conducted, in order 
to obtain data for training the RL agent. For running the simulations 
StarCCM + v2019.1 commercial code was used. 

As the analyzed case requires modeling the motion of the flap, the 
Overset Mesh technique has been considered for the meshing of the 
simulations. This technique consists of preparing two different regions, 
one with the stationary geometry (Background Region, fixed part of the 

airfoil) and another with the moving geometry (Overset Region, the 
flap). The Overset Mesh technique has been widely used for motion 
modelling on airfoils. Boudis et al. (2019) simulated a flapping airfoil by 
means of the Overset Mesh, Hu et al. (2021, 2022) successfully applied 
this meshing technique for active TE flap modelling and Chandar et al. 
(2018) proved the accuracy of the Overset Mesh on airfoils, showing 
good agreements of the results with experimental data. 

For the Background Region an O-shaped domain is designed, with a 
radius equal to R = 16⋅c. In this region, the outer contour is set as free 
stream, and no-slip wall conditions are assigned to the fixed part of the 
airfoil. A rectangular domain is designed with the Overset Region. In this 
region, an Overset interface is defined with the outer sides, in order to 
couple both regions. No-slip wall conditions are also assigned to the flap. 

With these regions two different structured meshes are generated. 
The mesh of the Background Region consists of around 360000 cells and 
the mesh of the Overset Region contains around 80000 cells. Fig. 2 
shows the generated meshes. 

Once the meshes are generated, both regions are coupled by means of 
the Overset Mesh interface. Finally, a suitable mesh is generated, which 
combines both meshes. This mesh is updated in each time step, 
depending on the instantaneous position of the Overset Region. Fig. 3 
provides an example of the mesh when α = 0◦ and = − 30◦ . 

Regarding the fluid physics, a constant free stream velocity of u∞ =

30 m/s was set for all the cases. The air density was set at ρ =

1.18415 kg/m3, and the dynamic viscosity at μ = 1.85508⋅10− 5 Pa⋅s. 
Therefore, the Reynolds number (Re) for the tested cases is around 
1.9⋅106, according to Equation (1). 

Re=
u∞⋅c⋅ρ

μ (1) 

For modelling the turbulence, RANS-based k-ω Shear Stress Trans
port (SST) model introduced by Menter (1994) is selected. This model 
combines the k-ω model for the near-wall zones and k-ε for the regions 
far from walls. 

Unsteady-state RANS (URANS) equations comprise the continuity 
(Equation (2)) and momentum (Equation (3)) equations. 

∂ρ
∂t

+
∂(ρUi)

∂xi
= 0 (2)  

∂(ρUi)

∂t
+

∂
(
ρUiUj

)

∂xj
= −

∂p
∂xi

+
∂
(
τij − ρUiUj

)

∂x
(3)  

where the viscous tensor (τij) is defined as detailed is Equation (4). 

τij = μ
(

∂Uj

∂xi
+

∂Ui

∂xj
−

2
3
δij

∂Ui

∂xi

)

(4) 

Transport equation for turbulent kinetic energy (k) and specific 
dissipation rate (ω) are defined as shown in Equations (5) and (6), 
respectively. 

∂(ρk)
∂t

+
∂(ρuik)

∂xi
=Pk +Dk +

∂
∂xi

[

(μ+ σkμt)
∂k
∂xi

]

(5)  

∂(ρω)

∂t
+

∂(ρuiω)

∂xi
=Pω +Dω +

∂
∂xi

[

(μ+ σωμt)
∂ω
∂xi

]

(6)  

where the production terms (Pk and Pω) are defined in Equations (7) and 
(8), respectively, and destruction terms (Dk and Dω) are defined in 
Equations (9) and (10), respectively. 

Pk = μtSij
2
−

2
3

ρk
∂(ui)

∂xi
−

2
3
μt

(
∂(ui)

∂xi

)2

(7)  

Pω = ργSij
2
−

2
3

ργω ∂(ui)

∂xi
−

2
3

ργ
(

∂(ui)

∂xi

)2

(8) 

Fig. 2. Generated structured meshes. (a) Background Region; (b) Over
set Region. 

Fig. 3. Overset mesh. (a) α = 0◦ ; (b) α = − 30◦ .  
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Dk = − ρβ∗kω (9)  

Dω = − ρβω2 (10)  

where the term Sij is defined in Equation (11), and σk, σω, β and β∗ are 
model coefficients. 

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(11) 

Each case was simulated for 10 s, with a time step of 10− 3 s, which is 
considered to be small enough for obtaining a good residual conver
gence and properly capturing the movement of the flap and the changes 
in lift and drag coefficients. Pressure-velocity coupling was performed 
by UpWind algorithm, and mesh discretization by a linear upwind 

second order scheme. 
Ten different CFD simulations were conducted with the purpose of 

obtaining a diverse dataset. In all of them the AoA changes according to 
Equation (12). Regarding the flap, in 7 simulations the flap is stationary 
throughout the whole simulation, at α = − 30◦, − 20◦, − 10◦,0◦,10◦,20◦

,and 30◦. In the other 3 simulations, the flap oscillates with a constant 
frequency (f) of 1 Hz, 0.5 Hz and 0.2 Hz, which is equivalent to a 
reduced frequency (k) of 0.1047, 0.0524 and 0.0209, respectively. 
Equation (13) specifies the instantaneous flap angle for cases with flap 
oscillation. 

AoA(t)= 10⋅sin (0.2πt) (12)  

α(t) = π
6

⋅sin (2πft) (13) 

In order to verify sufficient mesh resolution, the Richardson 
Extrapolation method (Richardson and Gaunt, 1927) has been applied to 
CD and CL with α = 0◦. This method estimates the value of a parameter 
when the cell amount tends to infinity. For using this method, a mini
mum of three meshes are required. In this case, a coarse mesh (90000 
cells in the Background Region and 20000 cells in the Overset Region), a 
medium mesh (180000 and 40000 cells) and a fine mesh (the explained 
mesh, 360000 and 80000 cells) are used, which means that the refine
ment between meshes is equal to 2. Additionally, in order to validate the 
simulations, the obtained results are compared with the experimental 
data from Sheldahl and Klimas (1981). In that study the NACA0012 
airfoil is tested under different AoA and a Reynolds number Re =

1.76⋅106. For making the comparison an upstroke cycle is considered, 
with the AoA going from AoA = − 10◦ to AoA = 10◦. Table 1 shows the 
results of the mesh dependency study for CD and Table 2 for CL. 

As detailed in Tables 1 and 2, the convergence condition (R), which 
should be between 0 and 1 to ensure monotonic convergence, is fulfilled 
for all the cases. Additionally, the results of the aerodynamic coefficients 
obtained with the fine mesh show very similar values in comparison 

Table 1 
Mesh study for CD.  

AoA [
◦
] DRL Agent Experimental Richardson Extrapolation 

Coarse Medium Fine R p RE 

− 10 0.019 0.0177 0.0172 0.0182 0.3846 1.3785 0.0169 
− 8 0.0176 0.0161 0.0155 0.015 0.4 1.3219 0.0151 
− 6 0.015 0.0136 0.0127 0.0115 0.6429 0.6374 0.0111 
− 4 0.0119 0.0102 0.0096 0.009 0.3529 1.5025 0.0093 
− 2 0.0104 0.0087 0.0077 0.007 0.5882 0.7655 0.0063 
0 0.0094 0.0079 0.007 0.006 0.6 0.737 0.0057 
2 0.009 0.0076 0.0067 0.0058 0.6429 0.6374 0.0051 
4 0.0097 0.0081 0.0072 0.0065 0.5625 0.8301 0.006 
6 0.0113 0.0092 0.0088 0.008 0.1905 2.3923 0.0087 
8 0.0132 0.0121 0.0116 0.011 0.4545 1.1375 0.0112 
10 0.0151 0.0141 0.0138 0.0132 0.3 1.737 0.0137  

Table 2 
Mesh study for CL.  

AoA [
◦
] DRL Agent Experimental Richardson Extrapolation 

Coarse Medium Fine R p RE 

− 10 − 0.931 − 0.983 − 1.005 − 1.01 0.4231 1.241 − 1.0211 
− 8 − 0.919 − 0.895 − 0.885 − 0.85 0.4167 1.263 − 0.8779 
− 6 − 0.878 − 0.768 − 0.701 − 0.62 0.6091 0.7153 − 0.5966 
− 4 − 0.654 − 0.541 − 0.476 − 0.41 0.5752 0.7978 − 0.388 
− 2 − 0.302 − 0.251 − 0.224 − 0.21 0.5294 0.9175 − 0.1936 
0 0.049 0.018 0.005 0 0.4194 1.2538 − 0.0044 
2 0.487 0.338 0.271 0.22 0.4497 1.1531 0.2163 
4 0.768 0.624 0.533 0.46 0.6319 0.6621 0.3768 
6 0.929 0.81 0.73 0.65 0.6897 0.5361 0.5522 
8 0.993 0.934 0.916 0.9 0.3051 1.7127 0.9081 
10 1.077 1.048 1.03 1.05 0.6207 0.6881 1.0005  

Fig. 4. Sketch of the designed ANN.  
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with experimental data, following a nearly equal trend. Therefore, the 
simulations are considered to be suitable for the tested case. 

2.3. Case modelling 

A numerical model of the tested case is created, in order to simplify 
and speed up the training process of the DRL agent. This numerical 
model consists of two ANN, one for the prediction of each aerodynamic 
coefficient. Due to their properties and advantages, this networks are 
exceptional tools for modelling a wide variety of systems, see Lopez-
Guede et al. (2016; 2017)) and Ugarte-Anero et al. (2022). For designing 
and training the ANNs MATLAB 2023a (MATLAB) and its Deep Learning 
Toolbox (Deep Learning Toolbox Available online) were used. 

The designed networks have three inputs, ω, α and AoA; and a single 
output, either CD or CL, depending on the network. Between input and 
output layers, the network contains a hidden layer. This network rep
resents the typical configuration of Multilayer Perceptron with Back
propagation (BP-MLP). Fig. 4 provides a schematic view of the designed 
network. 

The aerodynamic coefficient (C, either CD or CL), is calculated by 
Equation (14), and the hidden layers follow a sigmoid function, defined 
in Equation (15). The postsynaptic value hi of each neuron i is calculated 
using the linear combination defined in Equation (16). 

C=
∑i=Nhidden

i=1
ωi ⋅ gi( x→)+ θi (14)  

gi( x→)=
1

1 + e− hi
(15)  

hi( x→)=
∑j=Ninputs

j=1
ω′

ij ⋅ xj + θ′
j (16)  

where ωi and ωij represent the weights of the output layer and input 
hidden layer, respectively; and θ the weighted biases. 

For training the network, data has been split into 70% training, 20% 
validation and 10% testing. Matrices (17–20) contain the values of the 
input layer weights (ωij), output layer weights (ωi) and weighted biases 
(θj and θi). 

ωij(CD)=

⎡

⎢
⎣

− 20.4753 287.1933 − 0.0665
− 0.7966 − 2.1957 0.7091
− 0.8332 − 1.8335 0.7383

⎤

⎥
⎦

ωij(CL)=

⎡

⎢
⎣

0.1982 − 0.2339 − 0.4057
0.2067 − 0.2655 − 0.4024
1.2235 − 3.4269 1.254

⎤

⎥
⎦

(17)  

ωi(CD)= [ − 42.7014 − 1.0479 1.1116 ]
ωi(CL)= [ − 20.0648 19.3885 0.1671 ]

(18)  

θj(CD)=

⎡

⎣
290.6186
2.4582
− 2.3067

⎤

⎦ θj(CL)=

⎡

⎣
0.0059
0.0055
0.0083

⎤

⎦ (19)  

θi(CD)= [43.8302] θi(CL)= [0.0085] (20) 

To evaluate the accuracy of the networks, the correlation coefficient 
(R-value) is analyzed, which quantifies the relation between the ground- 
truth values and the predicted values. Hence, to ensure the reliability of 
the networks, this coefficient should be as close to 1 as possible. For this 
analysis the cases of the test-set are analyzed, shown in Fig. 5. In this 
case, the R-value is equal to 0.96591 for CD, and 0.99788 for CL. 
Therefore, the predictions of the ANNs are reliable. Additionally, larger 
errors appear on the peaks, but the trend is precisely followed, which 
means that the optimum operation conditions are correctly predicted. 

2.4. RL agent 

Reinforcement Learning (RL) is a Machine Learning (ML) paradigm 
for decision-making, see Sutton and Barto (2018) and Bertsekas (2012). 
In RL an agent finds its optimal behavior by exploring an unknown 

Fig. 5. ANN testing correlation coefficients. The vertical axis shows the predictions of the ANN and the horizontal axis the CFD data. (a) CD; (b) CL.  

Fig. 6. Sketch of how RL works.  
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environment. The optimal behavior is learned by interacting with the 
environment and receiving observations of how it responds. 

Firstly, the agent receives different observations from the environ
ment. In this case, the observations are the instantaneous AoA of the air, 
lift-to-drag ratio (CL/CD) and flap angle (α). Depending on those ob
servations, the agent performs an action, in this case, it sets the angular 
velocity (ω) of the flap. The decision taken by the agent causes different 
consequences in the environment. In the studied case, the flap velocity 
changes the flap angle; and therefore, the lift-to-drag ratio. These 
changes are sent back to the agent by means of the previously mentioned 
observations. Additionally, the agent gets a reward based on the envi
ronment. The agent, throughout the training process, learns the actions 
that maximize the reward. Fig. 6 provides a sketch of how this process 
works. 

In this case, the reward is set according to Equation (21). As the main 
objective of flow control devices is to enhance the lift-to-drag ratio, the 
agent gets a positive reward proportional to this value. Nonetheless, in 
order to avoid sharp movements of the flap, specially under constant 
conditions, a negative reward is defined, proportional to the angular 
velocity difference between time steps (Δω). Since the flap should only 
move between α = − 30◦ and α = 30◦, if the agent moves the flap out of 
this range, he receives a penalty (Stop, which is a boolean value that can 
only be equal to 0 or 1, depending on whether the flap is inside the 
mentioned range or not, respectively). 

Reward = 0.1⋅
CL

CD
− 0.02⋅Δω − 100⋅Stop (21) 

The agent is designed and trained with MATLAB 2023a (MATLAB), 
Simulink (Simulink) and its Reinforcement Learning Toolbox (Rein
forcement Learning Toolbox Available online). For this case a Deep 
Deterministic Policy Gradient (DDPG) agent (Lillicrap et al., 2019) is 
selected, since it is considered to be simple and accurate for continuous 
action spaces. This agent is an actor-critic RL agent that tries to maxi
mize the expected cumulative long-term reward by searching for an 
optimal policy. 

DDPG combines policy gradient methods and Q-learning (Watkins 
and Dayan, 1992). Q-learning agents consist of a critic that estimates the 
future reward of each possible decision for the given observations. These 
estimations are known as the Q-value. Considering the estimations of the 
critic, the agent selects the action that maximizes the reward. Since 
Q-learning algorithms consider all the possible actions for each decision, 
they rely on discrete and small dimension action selection, being 
infeasible to find the optimal action in continuous spaces, as the one of 
this study. In DDPG, since it is an actor-critic agent, two models are 
combined, the actor and the critic. The actor is a policy network that 
decides the continuous action that should be taken based on the obser
vations; and the critic is a Q-value network, which informs the actor 
about how good the taken action has been and how it could be 
improved, taking the state and the decided action as inputs and 
providing the Q-value as output. 

For the training process, a random and constant AoA is established. α 
is also set as random at t = 0 s, with the objective of training the agent 
under different conditions. The training is conducted until the average 
reward converges at a maximum value. 

3. Results and discussion 

With the objective of evaluating the capacity of the agent to operate 
under different conditions, various signals are considered for the AoA. 

3.1. Constant values 

Firstly, the agent is tested with constant AoA signals, with the 
objective of evaluating the agent at stationary conditions. For this case, 
as the flap remains stationary (ω = 0) after reaching the optimum po

Table 3 
Comparison between the angle set by the DRL agent and the optimum angle for 
each AoA, calculated iteratively.  

AoA [
◦
] DRL Agent Optimum 

α [
◦
] CL/CD α [

◦
] CL/CD 

− 10 − 28.0807 17.4741 − 26.3363 17.8491 
− 8 − 24.6085 26.4739 − 22.4324 27.3077 
− 6 − 21.188 35.833 − 19.0691 36.8597 
− 4 − 17.8591 45.0181 − 16.006 45.9831 
− 2 − 14.662 53.5791 − 13.1231 54.3643 
0 − 11.5852 61.2766 − 10.3604 61.8739 
2 − 8.6001 68.0942 − 7.5375 68.5471 
4 − 5.6837 74.1854 − 4.7748 74.5488 
6 − 2.8075 79.802 − 2.012 80.1269 
8 0.0422 85.2221 0.8709 85.5542 
10 2.8591 90.6838 3.6937 91.0655  

Fig. 7. Flap angle set by the agent for an AoA defined by a stair sequence.  

K. Portal-Porras et al.                                                                                                                                                                                                                          



Ocean Engineering 287 (2023) 115775

7

sition, the decisions of the agent can be simply compared with the op
timum values obtained with the ANN. These optimum values are ob
tained iteratively. Table 3 summarizes the α defined by the agent and the 
optimum α obtained iteratively with the ANNs. 

The results show that the α set by the agent for all the AoA s is 
adequate, being very close to the optimum positions. The absolute α 
errors are between 0.7955 ◦ (for AoA= 6◦) and 2.1761 ◦ (for AoA = −

8◦). In general, the largest errors appear for negative AoA s. Neverthe

Fig. 8. Velocity profiles during a step. (a) t = 1 s; (b) t = 1.05 s; (c) t = 1.1 s; (d) t = 1.15 s; (e) t = 1.2 s; (f) t = 1.5 s.  

Fig. 9. Flap angle set by the agent for an AoA defined by a ramp sequence.  
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less, even if the α set by the agent is not the optimum one, these errors 
have almost no impact on the aerodynamic performance of the airfoil, as 
the relative CL/CD differences are between 0.39% (for AoA = 8◦) and 
3.05% (for AoA = − 8◦). 

3.2. Stair sequence 

In order to test the capability of the agent for adapting to sudden 
changes, a stair sequence of random values is considered for the AoA. 
Fig. 7 shows the response of the agent for this signal. As the results 
demonstrate, the agent is able to rapidly adapt to the AoA change, 
setting the optimum α for each case, and then, remaining static until the 
next AoA change. For all the tested cases, when the AoA changes, the 
agent sets a high ω; and then, as the flap approaches the optimum α, the 
agent decreases the ω. The CL/CD is kept high though the whole 
sequence, being the values close to the previously displayed optimum 
ones. 

In order to provide a better understanding of flow phenomena during 
the step sequence, Fig. 8 shows the velocity profiles for the first step. 

Initially, at t = 1 s (Fig. 8a), the AoA is still − 5.11◦, and the flap remains 
stationary at α = − 18.54◦. Immediately afterwards, the AoA changes to 
9.06◦, causing the flap to move. In the initial moments after the change, 
the flap moves at high speed, leading to the generation of a vortex on the 
wake behind the airfoil, which can be seen at instant t = 1.05 s (Fig. 8b). 
As the flap approaches the desired angle, its velocity is gradually 
reduced, avoiding the generation of these vortexes. Finally, approxi
mately at t = 1.4 s, the flap reaches the desired angle, α = 1.53◦, and 
remains static until the next AoA step, as in t = 1.5 s (Fig. 8f). 

3.3. Ramp sequence 

The RL agent is tested with an AoA defined by a sequence of ramps to 
test the agent under continuously changing conditions. The values of the 
ramps are randomly defined. Fig. 9 shows the response of the agent for a 
ramp sequence. The results show that the agent continuously rotates the 
flap, adapting to the instantaneous AoA, and keeping the CL/CD high in 
all the cases. When the slope of the ramp changes, the agent changes the 
ω gradually, avoiding abrupt changes in α. 

Fig. 10. Velocity profiles during the ramp sequence. (a) t = 2 s; (b) t = 2.25 s; (c) t = 2.5 s; (d) t = 2.75 s; (e) t = 3 s; (f) t = 3.25 s; (g) t = 3.5 s; (h) t = 3.75 s.  
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Fig. 10 shows the velocity profiles during the ramp sequence be
tween t = 2 s and t = 3.75 s, showing the results for an upward (from 
AoA = 9.45◦ to AoA = − 3.81◦, between t = 2 s and t = 3 s) and 
downward (from AoA = − 3.81◦ to AoA = 0.11◦, between t = 3 s and 
t = 3.75 s) AoA ramp. Velocity profiles show that, as the flap is 
continually rotating to adapt to each AoA, the changes on the wake 
behind the airfoil are slight. In contrast with the steps, as the rotation 
velocities are low, no vortex generation is observed on the wake. 

3.4. Random sequence 

A random AoA signal is defined to test the network under different 
conditions. This signal is composed of several different signals, such as 
ramps, steps, exponential signals, etc. Additionally, a slight noise signal 
is added through the whole simulation. Fig. 11 shows the response of the 
agent for this signal. 

The results show that the agent is able to correctly respond to all the 
considered signals, keeping the CL/CD high. In addition, the agent ig
nores the noise, avoiding sharp changes of the flap angle. This occurs 
because of the penalty that has been added in the reward formula 
defined in Equation (21), which is proportional to the change in angular 
velocity. 

4. Conclusions 

The present paper aims to propose a reactive strategy based on a RL 
agent for controlling a rotating flap on a NACA0012 airfoil. To achieve 
this goal, firstly data about the evaluated case under various conditions 
is collected by means of CFD simulations. Then, two different ANNs are 
designed for aerodynamic coefficient prediction, in order to develop a 
fast and accurate model of the evaluated problem. Finally, a RL agent is 
trained, which determines the optimal angle of the rotating flap for each 
AoA. 

The results demonstrate that the agent is able to adapt to all the AoA 
signals considered in this study. For constant AoAs, the α set by the agent 
is nearly equal to the optimum α, which is calculated iteratively with the 
designed ANNs. The main differences appear for negative AoAs. 
Nevertheless, the decisions made by the agent are considered adequate 
for all the cases; since, in the least favorable case, the CL/ CD obtained by 
the agent, is only 3.05% below the optimum. With a step sequence, the 
agent rapidly changes the α, setting the optimum position; and with a 

ramp sequence, the agent constantly rotates the flap, establishing the 
optimum position for each instant. The agent is also tested with a 
random signal composed by various different signals, including a noisy 
signal. The agent is proven to be able to appropriately respond to all 
signals. With regards to the noisy signal, the agent is able to ignore it, 
avoiding abrupt changes in the angular velocity. 

Therefore, the trained RL agent is able to provide a fast and accurate 
response for every type of AoA signal, rotating the flap to achieve a high 
CL/CD, and consequently, an appropriate aerodynamic performance of 
the airfoil in all conditions. 

Although this study demonstrates the capability of RL-based 
methods for active flow control, only the AoA of the flow is being 
considered. For that reason, further research should focus on more 
complex systems, with more parameters that difficult the decision 
making of the agent. In addition, the vast majority of studies using RL for 
fluid mechanics focus on active flow control. However, fluid mechanics, 
and especially CFD, has many more areas where RL could be applicable, 
such as iterative parameter setting, and many others. 
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Nomenclature and abbreviations 

ANN Artificial Neural Network 
CFD Computational Fluid Dynamics 
CNN Convolutional Neural Network 
DDPG Deep Deterministic Policy Gradient 
DL Deep Learning 
DRL Deep Reinforcement Learning 
GP Genetic Programming 
LE Leading Edge 
ML Machine Learning 
MLP Multi-Layer Perceptron 
RANS Reynolds-Averaged Navier-Stokes 
RL Reinforcement Learning 
SST Shear Stress Transport 
TE Trailing Edge 
AoA Angle of Attack 
α Position of the flap 
c Chord length 
CD Drag Coefficient 
CL Lift Coefficient 
CL/CD Lift-to-drag ratio 
f Flap oscillation frequency 
R Radius of the mesh 
R-value Correlation coefficient 
Re Reynolds number 
ρ Density 
u∞ Freestream velocity 
μ Dynamic viscosity 
ω Angular velocity of the flap 
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Rabault, J., Kuchta, M., Jensen, A., Réglade, U., Cerardi, N., 2019. Artificial neural 
networks trained through Deep reinforcement learning discover control strategies 
for active flow control. J. Fluid Mech. 865, 281–302. https://doi.org/10.1017/ 
jfm.2019.62. 

Rasmussen, C.E., 2004. Gaussian processes in machine learning. February 2 - 14, 2003, 
Tübingen, Germany, August 4 - 16, 2003, Revised Lectures. In: Bousquet, O., von 
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