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ABSTRACT

This paper estimates a standard version of the New Keynesian Monetary
(NKM) model augmented with financial variables in order to analyze the
relative importance of stock market returns and term spread in the esti-
mated U.S. monetary policy rule. The estimation procedure implemented is
a classical structural method based on the indirect inference principle. The
empirical results show that the Fed seems to respond to the macroeconomic
outlook and to the stock market return but does not seem to respond to the
term spread. Moreover, policy inertia and persistent policy shocks are also
significant features of the estimated policy rule.
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1 INTRODUCTION

The analysis of how monetary policy reacts to financial markets news has
started to receive considerable attention in recent years. On the one hand,
there is a strand of literature (Gerlach-Kristen, 2004; Rudebusch and Wu,
2004; Ang, Dong and Piazzesi, 2005; and María-Dolores and Vázquez, 2005)
estimating monetary policy rules that include the term spread (or a long-term
interest rate) in addition to the traditional determinants (inflation and output
gap) using quarterly data.1 On the other hand, Rigobon and Sack (2003)
estimate the reaction of U.S. monetary policy to the stock market using daily
data whereas Rigobon and Sack (2004) study the impact of monetary policy
on stock prices.
The aim of this paper is to analyze the relative importance of term spread

and stock market returns in the characterization of the estimated U.S. mon-
etary policy rule. A major problem in estimating the reaction of monetary
policy to financial variables is that these variables are by nature endogenous
due to the simultaneous response of financial markets to policy decisions. As
pointed out by Rigobon and Sack (2003, 2004), the policy reaction is diffi-
cult to identify using traditional approaches for dealing with the endogeneity
problem such as instrumental variables because it is hard to find any good
instrument (i.e. an instrument very closely correlated with financial variables
without being correlated with monetary policy shocks). Rigobon and Sack
propose an identification scheme based on the heteroskedasticity of stock
market returns at the daily frequency. By contrast, this paper estimates the
U.S. policy rule using quarterly data to study the importance of financial vari-
ables in the policy rule. The sample frequency may matter when estimating
the monetary policy reaction functions for two reasons. First, financial vari-

1Two key aspects distinguish these papers: (i) the way term structure is introduced
and (ii) the structural econometric approach followed. Gerlach-Kristen (2004) uses a
maximum-likelihood approach to directly estimate a reduced form policy rule that in-
cludes the term spread in addition to the explanatory variables considered in a standard
Taylor rule. Rudebusch and Wu (2004) build upon a typical affine no-arbitrage term struc-
ture representation with two latent factors (level and slope) by linking, (admittedly) in an
ad-hoc fashion, these two factors to macroeconomic variables (inflation and output gap)
which are determined by a New Keynesian Monetary (NKM) model. They also follow a
maximum-likelihood approach. In a similar vein, using little macroeconomic structure,
Ang, Dong and Piazzesi (2005) consider a single latent factor interpreted as a transfor-
mation of Fed policy actions on the short rate. In their model, persistent policy shocks
are allowed but policy inertia is not. Ang et al. (2005) implement a Bayesian estimation
approach to estimate their macro-finance model of the term structure. In contrast to these
papers, María-Dolores and Vázquez (2005) introduce term structure by simply considering
a representative agent optimization problem allowing the agent to have access to bonds of
different maturities. Moreover, they follow an indirect inference estimation approach.
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ables may display quite different dynamics at alternative data frequencies.
For instance, Diebold (1988) has shown analytically that ARCH effects tend
to disappear as sample frequency decreases. Second, since the Federal Open
Market Committee (FOMC) meets every six weeks, the estimated monetary
policy rule based on quarterly data averages the policy decisions made at two
FOMC meetings and the estimated policy rule is expected to be smoother
as the sample frequency becomes smaller.
As noticed by Rigobon and Sack (2003), there is a recent debate in the

relevant literature on the Fed motivation for reacting to movements in stock
prices. On the one hand, Cecchetti, Genberg, Lipsky and Wadhwani (2000)
argue that the monetary authority should react to perceived stock price mis-
alignments in order to prevent stock market bubbles. On the other hand,
Bernanke and Gertler (2001) suggest that the Fed should react to stock
process just because they anticipate future movements in inflation and out-
put.
Closely related with this debate, there is another major problem in esti-

mating monetary policy rules that consider financial variables in addition to
the standard variables entering a Taylor rule: the issue of disentangling the
independent effect of financial variables on the policy rule from the indirect
effect of these variables through expected inflation and expected output gap.
One possible way of overcoming these problems is to specify and struc-

turally estimate a general equilibrium model in order to measure the reaction
of monetary policy to alternative financial variables. We consider a model
that builds upon the now-standard New-Keynesian Monetary (NKM) model
by considering that the representative agent can accumulate stocks and bonds
of different maturities. More precise, we build on the NKMmodel augmented
with term structure studied by María-Dolores and Vázquez (2005) to include
stock market returns. We also follow María-Dolores and Vázquez (2005) by
considering (i) a structural econometric approach based on the indirect in-
ference principle and (ii) three alternative specifications for the monetary
policy rule called the standard, forward-looking and backward-looking Tay-
lor rules. Considering these alternative policy specifications characterized
by different degrees of forward-looking behavior allows us to assess whether
monetary policy reacts independently to alternative financial variables or re-
acts to financial variables simply because these variables anticipate expected
movements in output and inflation.
Using U.S. data for the Greenspan period, the empirical results show that

the Fed seems to respond to the stock market excess return in addition to
the standard macroeconomic indicators in a standard Taylor rule.2 However,

2Given an investment horizon, the stock market excess return is defined in this paper
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the Fed does not seem to respond to the term spread, confirming the results
obtained by María-Dolores and Vázquez (2005). Moreover, the fact that the
excess return is significant under a backward-looking and standard Taylor
rule but not under a forward-looking rule suggests that the Fed may respond
to the information content of the excess return about future inflation and
real activity, but does not seem to respond independently to the excess re-
turn. Hence, the empirical results seem to support Bernanke and Gertler’s
(2001) argument that the Fed responds to stock market movements only to
the extent that they affect expectations about future inflation and output.
Furthermore, the empirical results show that policy inertia and persistent
policy shocks are also significant features of the estimated policy rule.
The rest of the paper is organized as follows. Section 2 introduces the log-

linearized approximation of a standard version of the NKM augmented with
term spread and stock returns. Section 3 describes the structural estimation
method used in this paper. Section 4 presents and discusses the estimation
results. Section 5 provides diagnostic tests and comovement analyses to
identify features of the data that the augmented NKM model does (not)
account for. Section 6 concludes.

2 ANEWKEYNESIANMONETARYMODEL
WITH FINANCIAL VARIABLES

The model analyzed in this paper is a now-standard version of the NKM
model augmented with financial variables (NKMMFV), which is given by
the following set of equations:

yt = Etyt+1 − τ(it −Etπt+1) + gt, (1)

yt = Etyt+4 − τ(i
{4}
t −Etπt+4) + ct, (2)

yt = Etyt+4 − τ(r
{4}
t − Etπt+4) + st, (3)

πt = βEtπt+1 + κyt + zt, (4)

it = ρit−1 + (1− ρ)[ψ1πt + ψ2yt + ψ3(i
{4}
t − it) + ψ4(r

{4}
t − i

{4}
t )] + vt. (5)

where y, π, i{4} and r
{4}
t denote the log-deviations from the steady states of

output, inflation, nominal interest rate associated with the four-period bond
and expected nominal return associated with a stock that is sold four periods

as the difference between the stock market return and the interest rate associated with a
Treasury bond.
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after its time of purchase (i.e. the expected payoff at time t+4), respectively.
Et denotes the conditional expectation based on the agents’ information set at
time t. g, c and s, denote aggregate demand shocks associated with the three
alternative IS-curves whereas z and v denote aggregate supply and monetary
policy shocks, respectively. Each of these shocks is further assumed to follow
a first-order autoregressive process

gt = ρggt−1 + gt, (6)

ct = ρcct−1 + ct, (7)

st = ρsst−1 + st, (8)

zt = ρzzt−1 + zt, (9)

vt = ρvvt−1 + vt, (10)

where gt, ct, st, zt and vt denote i.i.d. random shocks. We further allow
for correlation between gt, ct and st shocks.
As discussed by Ireland (2004), there is a long standing tradition (that

goes back at least to Sargent, 1989) of introducing additional disturbances
into dynamic stochastic general equilibrium models until the number of
shocks equals the number of data series used in the estimation. The rea-
son is that models of this type are quite stylized and introduce fewer shocks
than observable variables, which implies that models are stochastically sin-
gular. That is, the model implies that certain combinations of endogenous
variables are deterministic. If these combinations do not hold in the data,
any approach attempting to estimate the complete model will fail. To cope
with this stochastic singularity problem, we consider that the shocks are dif-
ferent due to measurement errors and the approximation error that results
from the log-linear approximation implemented.3

Equations (1) (2) and (3) are the log-linearized Euler conditions obtained
from the representative agent optimization plan associated with the one-
period bond rate, the four-period bond rate and the four-period stock return,
respectively. More precisely, for any asset i the agent optimal plan requires
the basic pricing equation to hold:

Et

·
βj

U 0(Ct+j)

U 0(Ct)
R
{j}
it

¸
= 1,

where j is the horizon of the payoff of asset i, Ct is consumption at t, and R
{j}
it

is the j-period realized return from t to t+ j of asset i. The parameter τ > 0

3See also Hamilton (1994, p.426) for a lucid discussion on the need to add error terms
to behavioral equations and its consequences on econometric identification.
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in equations (1)-(3) represents the intertemporal elasticity of substitution
obtained when assuming a standard constant relative risk aversion utility
function

U(Ct) =
1

1− 1
τ

C
1− 1

τ
t .

As shown by Andrés, López-Salido and Nelson (2004), implicitly in the
Euler equations associated with bond holdings at different maturities is a
term structure relationship linking the interest rates on short- and long-term
bonds. Similarly, by considering stock holdings in addition to bond holdings,
the set of asset pricing equations (1)-(3) is implicitly linking bond yields and
stock returns.4

Equation (2) is the new Phillips curve that is obtained in a sticky price à
la Calvo (1983) model where monopolistically competitive firms produce (a
continuum of) differentiated goods and each firm faces a downward sloping
demand curve for its produced good. The parameter β ∈ (0, 1) is the agent
discount factor and κ measures the slope of the New Phillips curve.5

Equation (5) is a standard Taylor-type monetary rule where the nominal
interest rate exhibits inertial behavior, captured by parameter ρ, for which
there are several motivating arguments in the relevant literature.6 Moreover,
the monetary policy rule (5) assumes that the nominal interest rate responds
to (i) current deviations of output and inflation from their respective steady
state values; (ii) term spread, i{4}t − it; and (iii) excess return of stocks r

{4}
t −

4Most papers in the relevant literature use the one-period asset pricing equation (1) to
derive recursively the prices of all assets in the economy by assuming that state variables
are log-normal instead of considering a set of asset pricing equations associated with al-
ternative financial assets. By considering a set of asset pricing equations, our approach
allows the researcher to deviate from the log-normality setup by applying high-order ap-
proximation techniques to solve the model. The disadventage is that the consideration of
long-term investment horizons implies that the number of state variables increases dra-
matically. For instance, if we consider the 10-year maturity bond rate Γ0 and Γ1 defined
below would be 90 × 90 matrices. Nevertheless, the approach carried out in this paper
is rather similar in practice to the one followed in the literature because state-variables
are also lognormal by construction: (i) a log-linear approximation is used for solving the
model and (ii) the shocks are assumed to follow normal distributions.

5See, for instance, Galí (2002) for a detailed analytical derivation of the New Phillips
curve.

6These arguments range from the traditional concern of central banks for the stability
of financial markets (see Goodfriend, 1991 and Sack, 1997) to the more psychological
argument posed by Lowe and Ellis (1997) that there might be a political incentive for
smoothing whenever policymakers are likely to be embarrassed by reversals in the direction
of interest-rate changes if they believe that the public may interpret them as repudiations
of previous actions. By contrast, a series of interest-rate changes in the same direction
looks like a well-designed programme, and that may give rise to the sluggish behavior of
the intervention interest rate.
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i
{4}
t . For the sake of simplicity we further assume that the one-period bond
and the policy interest rate are the same.7

Alternatively, we also consider a forward-looking Taylor rule

it = ρit−1+(1− ρ)[ψ1Etπt+1+ψ2Etyt+1+ψ3(i
{4}
t − it)+ψ4(r

{4}
t − i

{4}
t )]+ vt,

(11)
and a backward-looking Taylor rule

it = ρit−1+(1−ρ)[ψ1πt−1+ψ2yt−1+ψ3(i{4}t−1−it−1)+ψ4(r{4}t−1−i{4}t−1)]+vt. (12)

By considering alternative policy rule specifications, the term spread in the
estimated policy rule and a structural estimation procedure, we expect to
shed light on a relevant question: does the Fed respond only to the informa-
tion content of financial variables about future inflation and real activity, or
does it respond independently to them?
The use of a structural econometric strategy to estimate monetary policy

rules can be further motivated as follows. As pointed out by Clarida, Galí
and Gertler (1999), the forward-looking Taylor rule can be solved in order
to get a reduced-form for the interest rate in terms of predetermined vari-
ables. At first sight, this reduced-form looks like standard and backward-
looking Taylor rules, but the difference is that the coefficients associated
with the reduced-form of the forward-looking rule are cumbersome functions
linking structural and policy parameters. More precisely, the reduced-form
coefficients associated with the forward-looking rule must satisfy a set of
cross-equation restrictions imposed by the rational expectations assumption.
Therefore, alternative policy rules are not likely to be statistically identical
and a structural (system-based) econometric procedure is then required to
discriminate between alternative monetary policy rules. Later on, Section 5
provides evidence that the alternative policy rules lead to different dynamic
features in terms of persistence and the comovement dynamics exhibited by
pairs of variables.
The system of equations (1)-(10) (together with eight extra identities

involving forecast errors) can be written in matrix form as follows

Γ0Xt = Γ1Xt−1 +Ψ t +Πηt, (13)

7This assumption is not very harmful when using quarterly data since the 3-month T-
bill rate dynamics are similar to the Fed rate dynamics, which is the short-term rate used
by the Fed to monitor monetary policy. More precisely, the sample correlation between
these two interest rates is 0.994 during the Greenspan era.
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where8

Xt = (yt, πt, it, i
{4}
t , r

{4}
t , Etyt+1, Etyt+2, Etyt+3, Etyt+4, Etπt+1,

Etπt+2, Etπt+3, Etπt+4, gt, ct, st, zt, vt)
0

t = ( gt, ct, st, zt, vt)
0,

ηt = (yt −Et−1[yt], Et[yt+1]−Et−1[yt+1], Et[yt+2]−Et−1[yt+2],

Et[yt+3]−Et−1[yt+3], πt −Et−1[πt], Et[πt+1]−Et−1[πt+1],
Et[πt+2]− Et−1[πt+2], Et[πt+3]−Et−1[πt+3])0.

Equation (13) represents a linear rational expectations (LRE) system. It
is well known that LRE systems deliver multiple stable equilibrium solutions
for certain parameter values. Lubik and Schorfheide (2003) characterize the
complete set of LRE models with indeterminacies and provide a numerical
method for computing them that builds on Sims’ (2002) approach.9 In this
paper, we deal only with sunspot-free equilibria.10

3 ESTIMATION PROCEDURE

In order to estimate the structural and policy parameters of the NKMMFV,
we follow the indirect inference principle proposed by Gouriéroux, Monfort
and Renault (1993), Smith (1993), and Gallant and Tauchen (1996). Follow-
ing Smith (1993), an unrestricted VAR representation is considered as the
auxiliary model. More precisely, we first estimate a five-variable VAR with
four lags in order to summarize the joint dynamics exhibited by U.S. quar-
terly data on output gap, inflation, Fed funds rate, 1-year Treasury constant
maturity rate and 1-year ex-post Standard & Poor’s stock market returns.

8Appendix 1 displays the matrices Γ0, Γ1, Ψ and Π.
9The GAUSS code for computing equilibria of LRE models can be found on Frank

Schorfheide’s website.
10Lubik and Schorfheide (2003) deal with multiple equilibria by assuming that agents

observe an exogenous sunspot shock ζt, in addition to the fundamental shocks, t. Since
an LRE system such as (13) is linear, the forecast errors, ηt, can be expressed as a linear
function of t and ζt : ηt = A1 t + A2ζt, where A1 is 8 × 5 and A2 is 8 × 1 in this
model. There are three possible scenarios: (i) no stable equilibrium; (ii) a unique stable
equilibrium in which A1 is completely determined by the structural parameters of the
model and A2 = 0; and (iii) multiple stable equilibria in which A1 is not uniquely
determined by the structural parameters of the model and A2 can be non-zero. In this
last case, one can deal only with a stable sunspot-free equilibrium by imposing A2 = 0
and then the corresponding equilibrium can be understood as a sunspot equilibrium with
no sunspots.
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Second, we apply the simulated moments estimator (SME) suggested by Lee
and Ingram (1991) and Duffie and Singleton (1993) to estimate the underly-
ing structural and policy parameters of the NKMMFV.11

This estimation strategy is especially appropriate in this context for three
main reasons.12 First, we must emphasize that the NKMMFV is a highly
stylized model of a complex world. Therefore, maximum-likelihood (ML)
estimation of the model will impose strong restrictions which are not satis-
fied by the data and inference will be misleading. In the words of Cochrane
(2001, p. 293) “[ML] does the “right” efficient thing if the model is true. It
does not necessarily do the “reasonable” thing for “approximate” models.”
We believe that one of the main virtues of the indirect inference approach
is that the econometrician has in principle the possibility of choosing an
auxiliary model that imposes looser restrictions than those imposed by ML.
Second, we consider an unrestricted VAR instead of matching the struc-
tural impulse responses because a reduced form VAR does not require the
arbitrary identification of structural shocks. Moreover, applications of the
minimum distance estimator based on impulse response functions use a di-
agonal weighting matrix that includes the inverse of each impulse response’s
variance on the main diagonal. This weighting matrix delivers consistent
estimates of the structural parameters, but it is not asymptotically efficient
since it does not take into account the whole covariance matrix structure
associated with the set of moments.13 By considering the VAR coefficients
as the set of moments to implement the minimum distance estimator, an
estimator of the efficient weighting matrix is found to be straightforward.14

Finally, the unrestricted VAR auxiliary model nests the NKMMFV model
considered. As shown by Gallant and Tauchen (1996), if the auxiliary model
nests the structural model then the estimator is as efficient as ML. More-
over, the estimation approach based on the indirect inference principle may
help to identify which structural parameter estimates are forced outside the
economically reasonable support (for instance, the prior distribution support

11In this vein, Rotemberg andWoodford (1997), Amato and Laubach (2003), Christiano,
Eichenbaum and Evans (2005), and Boivin and Giannoni (2006) use a minimum distance
estimator based on impulse-response functions instead of VAR coefficients. See Gutiérrez
and Vázquez (2004), Ruge-Murcia (2003), María-Dolores and Vázquez (2005) for other
recent applications of this estimation strategy based on VAR coefficients.
12At this point, the reader may have the following three questions in mind. Why do we

not estimate the NKM model by maximum-likelihood directly? Why do we use a VAR as
the auxiliary model? What do we learn from the estimation of the NKM model based on
the indirect inference principle? This paragraph answers these three questions.
13Boivin and Giannoni (2006) indicate this drawback, but provide no alternative.
14See Duffie and Singleton (1993, p.939) for a discussion on the choice of a weighting

matrix in order to obtain asymptotic efficient estimates.
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used by Bayesian estimator applications) to achieve a better fit of the model.
The SME makes use of a set of statistics computed from the data set

used and from a number of different simulated data sets generated by the
model being estimated, i.e. the statistics used to carry out the SME are
the coefficients of the five-variable VAR with four lags, which is considered
as the auxiliary model in this paper. The lag length considered is fairly
reasonable when using quarterly data. To implement the method, we con-
struct a p×1 vector with the coefficients of the VAR representation obtained
from actual data, denoted by HT (θ0), where p in this application is 120,15

T denotes the length of the time series data, and θ is a k × 1 vector whose
components are the model parameters. The true parameter values are de-
noted by θ0. In the NKMMFV, the structural and policy parameters are
θ = (τ , β, ρ, κ, ψ1, ψ2, ψ3, ψ4, ρg, ρc, ρs, ρz, ρv, ρcg, ρsg, σg, σc, σs, σz, σε, π

∗) and
then k = 21. ρcg and ρsg denote the coefficients characterizing the noisy lin-
ear relationships between gt and ct shocks and between gt and st shocks,
respectively.16

As pointed out by Lee and Ingram (1991), the randomness in the esti-
mator is derived from two sources: the randomness in the actual data and
the simulation. The importance of the randomness in the simulation to the
covariance matrix of the estimator can be decreased by simulating the model
a large number of times. For each simulation a p × 1 vector of VAR co-
efficients, denoted by HN,i(θ), is obtained from the simulated time series
of output gap, inflation, interest rates and stock return generated from the
NKMMFV, where N = nT is the length of the simulated data. Averaging
the m realizations of the simulated coefficients, i.e. HN(θ) =

1
m

Pm
i=1HNi(θ),

we obtain a measure of the expected value of these coefficients, E(HNi(θ)).
The choice of values for n and m deserves some attention. Gouriéroux,

Renault and Touzi (2000) suggest that is important for the sample size of
synthetic data to be identical to T (that is, n = 1) to get identical size of
finite sample bias in estimators of the auxiliary parameters computed from
actual and synthetic data. After checking for robustness, we make n = 1 and
m = 500 in this application.
To generate simulated values of output gap, inflation, interest rates and

stock returns we need the starting values of these variables. For the SME
to be consistent, the initial values must have been drawn from a stationary
distribution. In practice, to avoid the influence of the starting values we
generate a realization from the stochastic processes of the five variables of

15We have 105 coefficients from a four-lag, five-variable system and 15 extra coefficients
from the non-redundant elements of the variance-covariance matrix of the VAR residuals.
16We have also allowed for correlation between gt shock and zt, but the correlation

parameter turns out to be non-significant.
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length 200 + T , discard the first 200 simulated observations, and use only
the remaining T observations to carry out the estimation. After two hundred
observations have been simulated, the influence of the initial conditions must
have disappeared.
The SME of θ0 is obtained from the minimization of a distance function

of VAR coefficients from actual and simulated data. Formally,

min
θ

JT = [HT (θ0)−HN(θ)]
0W [HT (θ0)−HN(θ)],

where W−1 is the covariance matrix of HT (θ0).
Denoting the solution of the minimization problem by θ̂, Lee and Ingram

(1991) and Duffie and Singleton (1993) prove the following results:

√
T (θ̂ − θ0)→ N

·
0,

µ
1 +

1

m

¶
(B0WB)−1

¸
,

µ
1 +

1

m

¶
TJT → χ2(p− k),

where B is a full rank matrix given by B = E(∂HNi(θ)
∂θ

).17

4 EMPIRICAL EVIDENCE

This section starts by briefly describing the data set considered, then goes
on to discuss the estimation results.

4.1 The data

We consider quarterly U.S. data for the output gap, the inflation rate ob-
tained for the implicit GDP deflator, the Fed funds rate, the 1-year Treasury
constant maturity rate and the 1-year ex-post return from the Standard &

17The objective function JT is minimized using the optimization package OPTMUM
programmed in GAUSS language. The Broyden-Fletcher-Glodfard-Shanno algorithm is
applied. To compute the covariance matrix we need to obtain B. Computation of B
requires two steps: first, obtaining the numerical first derivatives of the coefficients of
the VAR representation with respect to the estimates of the structural parameters θ for
each of the m simulations; second, averaging the m-numerical first derivatives to get B.
The GAUSS programs for estimating the NKMMFV are available from the author upon
request.
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Poor’s stock market indexes during the Greenspan era.18 We focus on the
Greenspan period for several reasons. First, it allows a more straightforward
comparison of the estimated monetary policy rules of Gerlach-Kristen (2004),
Rudebusch and Wu (2004) and María-Dolores and Vázquez (2005). Second,
the Taylor rule seems to fit better in this period than in the pre-Greenspan
era. Third, considering the pre-Greenspan era opens the door to many other
issues studied in the relevant literature, including the presence of macroeco-
nomic switching regimes and the existence of switches in monetary policy
(see for instance, Sims and Zha, 2004, and references therein). These issues
are outside the scope of this paper. Figure 1 shows the time series studied
in this paper.

4.2 Estimation results

Table 1 shows the estimation results under the standard, forward-looking and
backward-looking Taylor rules. The values of the goodness-of-fit statistic,¡
1 + 1

m

¢
TJT , which is distributed as a χ2(p − k),19 confirm the hypothesis

stated above that the NKMMFV is too stylized to be supported by actual
data. The best fit is obtained under a backward-looking Taylor rule.
At this point the reader may wonder why we should consider a model that

does not fit the data well. Moreover, he/she may wonder why it is of interest
to look at parameter estimates when the model is misspecified. I believe it is
a worthwhile econometric exercise to estimate misspecified models because
we can gain confidence on which parameters can be robustly estimated by
estimating the model under alternative specifications (for instance, under
alternative specifications of the policy rule).20

In order to discriminate between alternative policy rules it is also im-
portant to look at the parameters measuring shock persistence. Since the
estimation procedure forces the shock processes to be stationary, the find-
ing of a near-random walk process may indicate that the specified model is
flawed. Except for ρs, the coefficients measuring the persistence of shocks

18U.S. output gap is measured as the percentage deviation of GDP from the real po-
tential GDP time series constructed by the U.S. Congressional Budget Office. Appendix
2 describes the data sources.
19For the NKMMFV the goodness-of-fit statistic is distributed as a χ2(99) since the

number of VAR coefficients is p = 120 and the number of parameters being estimated is
k = 21.
20This econometric exercise is valuable for precisely the same reason that policy analysis

is believed to be worthwhile when performed in a misspecified framework. That is, one
gains confidence on the policy prescriptions implied by a misspecified model only if they
are fairly robust to alternative specifications.
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are significantly different from a stationary, but highly persistent, alternative
hypothesis (such as, ρi = 0.99 for i = g, c, z, v) at any standard significance
level under the backward-looking and forward-looking Taylor rules. However,
this is not the case for the monetary policy shock under the standard rule.
Focusing on the parameter estimates, we observe that (i) the relative

aversion parameter, τ , and the Phillips curve slope parameter, κ, are poorly
estimated for all three policy rule specifications since their standard errors
are large; (ii) the estimate of the discount factor, β, is reasonable (implying a
3% real interest rate) for all policy rules considered and significantly different
from one; (iii) the size of the policy response to inflation, output gap and
stock market excess return depend on the policy rule considered. Result (iii)
is not surprising at all since the Fed is reacting to different information sets
under the alternative policy rule specifications; (iv) the coefficients associated
with policy inertia (ρ) and the persistency of policy shocks (ρv) are significant
at any standard significance level. However, the coefficient associated with
the term spread (ψ3) is not significant under any policy rule; in fact the
point estimate is zero; (v) the fact that the excess return is significant under
backward-looking and standard Taylor rules but not under a forward-looking
rule suggests that the Fed may respond to the information content of the
excess return about future inflation and real activity, but does not seem
to respond independently to the excess return. Apart from the estimation
results related to the stock market return, the empirical results obtained
in this paper are qualitatively similar to those found by María-Dolores and
Vázquez (2005) for the NKM model augmented with term structure.

5 MODEL PERFORMANCE

Based on the J-Wald test, we have concluded above that the overall perfor-
mance of the alternative versions of the NKM considered is not good. This
result does not mean that the model fails in all interesting dimensions. In
this section, we consider diagnostic tests and comovement analysis to identify
features of the data that the NKMMFV does (not) account for.

5.1 Diagnostic tests

The components of the vector [HT (θ0)−HN(θ)] contain information on how
well the NKMMFV accounts for the estimates of the VAR (auxiliary) model.
Larger components point to the estimates of the auxiliary model that the
NKMMFV has trouble accounting for. As suggested by Gallant, Hsieh and
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Tauchen (1997) the following quasi-t-ratio diagnostic statistics can identify
sources for model failure:r
1 +

1

n

√
T
h¡
diag(W−1

T )
¢1/2
i

i−1
[HT (θ0)−HN(θ)]i for i = 1, ..., p, (14)

where WT is a consistent estimate of W ,
¡
diag(W−1

T )
¢
i
denotes the i-th ele-

ment of the diagonal of matrixW−1
T and [HT (θ0)−HN(θ)]i is the i-th element

of [HT (θ0)−HN(θ)]. In particular, a large i-th diagnostic statistic indicates
that the NKMMFV does a poor job of fitting the i-th coefficient of the VAR
model.
The second and third columns in Table 2 show the VAR estimates and

the corresponding standard errors, respectively. The remaining columns in
Table 2 show the corresponding quasi-t-ratio diagnostic statistic (14) for the
alternative policy rules studied. Looking at Table 2 three general conclu-
sions emerge. First, the qualitative results from the diagnostic statistics
are quite robust to alternative specifications of the policy rule. Second, the
NKMMFV has trouble in accounting for output gap, inflation, Fed rate and
the 1-year rate persistence since for each of these equations some of the diag-
nostic statistics associated with dependent variable lags are large. However,
the NKMMFV under the forward- and the backward-looking Taylor rule is
capable of capturing the persistent dynamics exhibited by the 1-year stock
return.

5.2 Comovement analysis

Den Haan (2000) proposes using correlations of VAR forecast errors at dif-
ferent horizons to analyze the comovement between pairs of variables. As
discussed by Den Haan (2000), this method has two main advantages. First,
variables need not be stationary for their comovement to be analyzed, so prior
filtering is not required. Second, it avoids the type of ad-hoc assumptions
necessary to compute impulse response functions. Since the comovement
between a pair of variables is an equilibrium outcome (that is, an outcome
resulting from the interaction between supply and demand shocks that is ob-
served in the data with no need for any identifying assumption) comovement
dynamics are good statistics for analyzing a model’s performance.
We apply the method suggested by Den Haan to analyze the comovement

between (i) the level of economic activity measured by the output gap and
inflation; and (ii) the Fed funds rate and the 1-year stock return. The goal is
to analyze the ability of the NKMMFV to replicate the type of comovement
between pairs of variables observed in U.S. data.
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Figures 2-4 show the comovement between output gap and inflation for
the NKMMFV under the standard, backward-looking and forward-looking
Taylor rules, respectively. Similarly, Figures 5-7 show the comovement be-
tween the Fed funds rate and the 1-year stock return under the standard,
backward-looking and forward-looking Taylor rules, respectively.21 In each
figure, the solid line represents the estimated correlations at different forecast
horizons using U.S. data, the lines with long dashes are 95% confidence bands
computed using bootstrap methods and the line with short dashes is the cor-
relation coefficients implied by the model. Figures 2-4 show the presence
of a weak comovement between output and inflation in the U.S. Moreover,
Figure 2 shows that the NKMMFV under the standard Taylor rule fails to
reproduce the weak negative comovement between output gap and inflation
at the short-term forecast horizons (up to six quarters). Figures 3-4 show
that results are much worse for the NKMMFV under the backward- and
forward-looking rules: the model generates a strong negative comovement
between output and inflation that is not displayed by actual U.S. data.
Figures 5-7 show a weak comovement between the Fed rate and the 1-

year stock return for the U.S. data at any forecast horizon that it is well
reproduced by the NKMMFV under the alternative policy rules.

6 CONCLUSIONS

This paper follows a system-based econometric approach to analyze the im-
portance of stock market returns in the characterization of the estimated
U.S. monetary policy rule. The framework considered is an NKM model
augmented with financial variables (NKMMFV) where the monetary policy
rule is one of the building blocks. A structural econometric approach based
on the indirect inference principle is implemented. In order to study the
robustness of the empirical results, three alternative specifications for the
monetary policy rule are considered, called standard, forward-looking and
backward-looking Taylor rules.
The paper also investigates the ability of the NKMMFV to reproduce

two features observed in U.S. data, namely the weak comovement between
output and inflation and the persistent dynamics exhibited by output gap,
inflation, interest rates and stock market returns.
The empirical results show that the Fed seems to respond to the stock

market excess return in addition to the macroeconomic indicators in a stan-
dard Taylor rule. However, the Fed does not seem to respond to the term

21See Den Haan (2000) for details on this method of analyzing comovement.
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spread, confirming the results obtained byMaría-Dolores and Vázquez (2005).
Moreover, the fact that the stock market excess return is significant under
backward-looking and standard Taylor rules but not under a forward-looking
rule suggests that the Fed may respond to the information content of stock re-
turns about future inflation and real activity, but does not seem to respond
independently to the stock return movements. The empirical results then
seem to support Bernanke and Gertler’s (2001) view that the Fed responds
to stock market movements only to the extent that they affect expectations
about future inflation and output. Furthermore, the empirical results show
that policy inertia and persistent policy shocks are also significant features
of the estimated policy rule.
Finally, we show that the NKMMFV under a standard Taylor rule is

able to reproduce well the weak comovement between output and inflation at
medium- and long-term forecast horizons but fails to mimic the weak negative
comovement at the short-term forecast horizons. Moreover, the model is able
to mimic the weak comovement between the Fed funds rate and the 1-year
stock return observed in actual data. Furthermore, diagnostic tests show that
the model fails to reproduce the highly persistent dynamics characterizing
U.S. output gap, inflation, Fed rate and 1-year rate time series, but it is able
to reproduce the persistent dynamics exhibited by the actual 1-year stock
market return.
Our empirical results should be interpreted with caution since the struc-

tural NKMMFV studied, like any other dynamic stochastic general equilib-
rium model, is likely to be misspecified in several dimensions. As is well
known (see, for instance, Lubik and Schorfheide, 2005), overall model speci-
fication is important since it may lead to biased estimates, prevent identifi-
cation of the true structural parameters and affect model selection. In spite
of these warnings, the estimation of the NKMMFV looks like a reasonable
approach for empirically analyzing the interaction between monetary policy,
the macroeconomy and financial markets.
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APPENDIX 1

This appendix shows the matrices involved in equation (13).

Γ0 =



1 0 τ 0 0 −1 0 0 0 −τ 0 0 0 −1 0 0 0 0
1 0 0 τ 0 0 0 0 −1 0 0 0 −τ 0 −1 0 0 0
1 0 0 0 τ 0 0 0 −1 0 0 0 −τ 0 0 −1 0 0
−κ 1 0 0 0 0 0 0 0 −β 0 0 0 0 0 0 −1 0
Γ510 Γ520 Γ530 Γ540 Γ550 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0



,

Γ1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ρg 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρc 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρs 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρz 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρv
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



,

18



Π =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



,

Ψ =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



,

where Γ510 = −(1 − ρ)ψ2, Γ
52
0 = −(1 − ρ)ψ1, Γ

53
0 = 1 + (1 − ρ)ψ3, Γ

54
0 =

−(1− ρ)(ψ3 − ψ4) and Γ550 = −(1− ρ)ψ4.
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APPENDIX 2

This appendix describes the time series considered.

Economic activity indexes:

• GDP: quarterly, seasonally adjusted data. Period: 1987:3-2004:3. Source:
U.S. Department of Commerce, Bureau of Economic Analysis.

• Real potential GDP: quarterly data. Period: 1987:3-2004:3. Source:
U.S. Congress, Congressional Budget Office.

Price level index:

• U.S. implicit price deflator of GDP: quarterly, seasonally adjusted data.
Period: 1987:3-2004:3. Source: U.S. Department of Commerce, Bureau
of Economic Analysis.

Interest rates and stock returns:

• Federal funds rate: monthly and quarterly data. Period: 1986:8-2004:6.
Source: Board of Governors of the Federal Reserve System.

• 1-year Treasury constant maturity rate: monthly and quarterly data.
Period: 1986:8-2004:6. Source: Board of Governors of the Federal
Reserve System.

• 1-year ex-post real return: monthly and quarterly data. Period: 1986:8-
2004:6. Source: Robert Shiller’s web-site.
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Table 1. Estimation results for the five-variable model
Backward-Looking Forward-Looking Standard Taylor rule

JT 5.7683 7.5223 7.1932
τ 0.9987 0.9991 0.9987

(0.2077) (0.3649) (0.3687)
β 0.9973 0.9924 0.9940

(0.0004) (0.0005) (0.0008)
ρ 0.9568 0.3297 0.3156

(0.0069) (0.0744) (0.0487)
κ 0.9987 0.9979 0.9988

(0.1396) (0.3426) (0.2992)
ψ1 0.0000 0.6017 0.9226

(0.1307) (0.1125) (0.0180)
ψ2 5.4196 0.6276 0.0725

(1.0130) (0.2210) (0.0200)
ψ3 0.0000 0.0000 0.0000

(0.0720) (0.0933) (0.0611)
ψ4 0.5614 0.0557 0.0645

(0.0849) (0.0415) (0.0094)
ρg 0.7826 0.8898 0.9158

(0.0510) (0.0501) (0.0169)
ρc 0.8655 0.9575 0.9388

(0.0325) (0.0249) (0.0148)
ρs 0.9921 0.9330 0.9384

(0.0016) (0.0335) (0.0135)
ρz 0.9231 0.9775 0.9820

(0.0117) (0.0091) (0.0061)
ρv 0.9702 0.9857 0.9999

(0.0127) (0.0142) (0.0080)
ρcg 0.9984 0.9987 0.6320

(0.1305) (0.2902) (0.0801)
ρsg 0.0000 0.0000 0.9992

(0.1163) (0.1988) (1.5819)

Note: Standard errors in parentheses.
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Table 1. (Continued)
Backward-Looking Forward-Looking Standard Taylor rule

σg 0.0151 0.0082 0.0238
(0.0053) (0.0044) (0.0103)

σc 0.0043 0.0106 0.0008
(0.0009) (0.0032) (0.0008)

σs 0.2079 0.1960 0.3920
(0.0467) (0.0825) (0.1654)

σz 0.1215 0.0618 0.0407
(0.0237) (0.0276) (0.0126)

σ 0.0003 0.0000 0.0000
(0.0009) (0.0019) (0.0009)

π∗ 0.8166 1.8865 1.9076
(0.1260) (0.1682) (0.2285)
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Table 2. VAR estimates and diagnostic tests
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)
Output gap equation

constant −0.5577∗ 0.3298 1.0718 1.2013 0.6857
outputgap(1) 1.1505∗∗∗ 0.1442 2.4783 1.3138 1.1124
outputgap(2) −0.0045 0.2163 −1.2023 −0.7821 −0.3292
outputgap(3) −0.4329∗∗ 0.1984 −2.2091 −2.2631 −2.2291
outputgap(4) 0.1641 0.1411 1.5381 1.6350 1.5600
inflation(1) 0.0849 0.0872 0.5680 0.7044 1.2905
inflation(2) −0.0695 0.0869 −2.9584 −2.2775 −0.8261
inflation(3) −0.0597 0.1004 −1.7138 −1.9282 0.3110
inflation(4) 0.0059 0.0975 −0.9845 −1.1844 −3.0503
Fed rate(1) 0.2030 0.2774 2.8705 2.7278 3.1931
Fed rate(2) −0.0787 0.3521 0.2981 −0.3064 −1.7936
Fed rate(3) −0.1264 0.3304 −0.5941 −0.5781 0.2562
Fed rate(4) −0.0673 0.1734 0.6173 0.7865 1.3604
1-year rate(1) −0.0129 0.1167 −1.9118 −2.0120 −2.1259
1-year rate(2) 0.0846 0.1496 −1.3682 −1.1704 −0.6162
1-year rate(3) −0.2174 0.1439 −3.2246 −3.3211 −2.1890
1-year rate(4) 0.2530 0.1521 1.5668 1.5259 0.4822
1-year return(1) 0.0246∗∗ 0.0093 2.3132 2.2350 3.3848
1-year return(2) 0.0000∗∗ 0.0000 −1.8376 −1.8469 −3.0197
1-year return(3) 0.0000∗∗ 0.0000 0.1572 0.1746 0.5017
1-year return(4) 0.0000 0.0000 2.2930 2.2730 1.6943
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Table 2. (Continued)
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)
Inflation equation

constant 1.2805∗∗ 0.5305 2.7724 2.9328 2.8030
outputgap(1) 0.2497 0.2320 1.5612 1.1983 0.8518
outputgap(2) −0.3147 0.3479 −0.5477 −0.2992 0.0077
outputgap(3) 0.2523 0.3192 −0.0431 0.0776 0.1465
outputgap(4) −0.1990 0.2269 −1.0222 −0.8727 −0.8482
inflation(1) 0.1698 0.1402 −3.8813 −2.3362 −1.8393
inflation(2) 0.0315 0.1398 −0.0451 −0.0253 0.3806
inflation(3) 0.0982 0.1616 0.51635 0.5131 1.0359
inflation(4) 0.3664∗∗ 0.1568 3.7835 4.0241 4.7389
Fed rate(1) −0.0810 0.4462 −0.8252 −1.6569 −2.1464
Fed rate(2) 0.1541 0.5664 0.5447 0.7045 1.2109
Fed rate(3) 0.6847 0.5314 1.8982 1.9706 1.6543
Fed rate(4) −0.1584 0.2789 −1.6697 −1.7270 −1.9915
1-year rate(1) 0.1793 0.1877 0.8605 1.4377 1.1608
1-year rate(2) −0.0678 0.2406 0.0577 0.3527 0.3843
1-year rate(3) −0.4307∗ 0.2315 −2.0861 −1.9690 −1.9217
1-year rate(4) −0.3032 0.2446 −1.7535 −1.6514 −1.5221
1-year return(1) −0.0220 0.0149 −2.6845 −2.7198 −2.7562
1-year return(2) 0.0000 0.0000 1.7414 1.7432 2.0363
1-year return(3) 0.0000 0.0000 0.0195 −0.0014 0.2760
1-year return(4) 0.0000 0.0000 −0.7452 −0.8857 −0.5783
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Table 2. (Continued)
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)
Fed rate equation

constant −0.3142∗ 0.1746 −0.9249 −3.7030 −1.0865
outputgap(1) 0.3308∗∗∗ 0.0764 2.8401 2.1388 −0.5706
outputgap(2) −0.0315 0.1145 −0.9737 −1.1862 2.1447
outputgap(3) −0.1294 0.1051 −1.2633 0.0352 −0.6109
outputgap(4) −0.0005 0.0747 −0.5855 −1.4568 −2.2931
inflation(1) 0.0409 0.0462 −0.7019 −0.1965 −1.8146
inflation(2) 0.1772∗∗∗ 0.0460 0.7378 1.6280 3.2193
inflation(3) 0.0655 0.0532 −2.1937 −0.8251 −1.6260
inflation(4) 0.0636 0.0516 0.0536 −2.2120 −0.9399
Fed rate(1) 0.8553∗∗∗ 0.1469 1.6169 −0.8624 −1.5248
Fed rate(2) −0.5025∗∗∗ 0.1865 −2.4207 −1.0849 −0.3978
Fed rate(3) 0.2447 0.1749 2.3847 2.1566 2.7193
Fed rate(4) −0.1901∗∗ 0.0918 −1.5658 −1.0142 −2.0646
1-year rate(1) 0.3363∗∗∗ 0.0618 0.3276 3.4774 2.2097
1-year rate(2) 0.1039 0.0792 0.3405 0.8791 0.7645
1-year rate(3) 0.1055 0.0762 1.1526 1.0840 0.7799
1-year rate(4) −0.0687 0.0805 −1.2198 −1.8478 −1.7009
1-year return(1) 0.0078 0.0049 3.4555 3.2396 −1.3947
1-year return(2) 0.0000∗∗ 0.0000 −3.8730 −4.1576 −0.8335
1-year return(3) 0.0000 0.0000 0.5421 0.6537 0.9184
1-year return(4) 0.0000 0.0000 0.8495 1.0766 0.0293
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Table 2. (Continued)
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)
1-year rate equation

constant 0.0454 0.4349 −0.5193 −3.5549 0.0857
outputgap(1) 0.3767∗ 0.1902 2.6564 2.1170 0.5319
outputgap(2) −0.0448 0.2852 −0.5695 −1.3088 0.3057
outputgap(3) −0.0954 0.2617 −1.1491 0.1320 −1.2290
outputgap(4) −0.1130 0.1860 −0.0792 −1.5115 −1.1446
inflation(1) −0.0217 0.1150 −0.0222 −2.0608 −2.9835
inflation(2) 0.2741∗∗ 0.1146 2.7634 3.6504 1.7924
inflation(3) 0.0098 0.1324 0.2616 1.9702 −1.0967
inflation(4) 0.0404 0.1286 0.3097 −0.8568 −1.3725
Fed rate(1) 0.2612 0.3658 0.5399 −0.1712 −0.0507
Fed rate(2) −0.5048 0.4643 −0.2586 0.4767 0.4746
Fed rate(3) 0.2355 0.4356 0.3410 0.0255 0.9785
Fed rate(4) −0.0777 0.2286 −0.0615 −0.1376 0.0447
1-year rate(1) 0.6209∗∗∗ 0.1539 −3.2290 −1.0660 −1.7187
1-year rate(2) 0.2818 0.1973 1.1362 1.1235 0.5304
1-year rate(3) 0.2434 0.1898 1.0227 1.1894 0.6306
1-year rate(4) −0.2232 0.2005 −1.5513 −2.0642 −2.1953
1-year return(1) 0.0067 0.0123 −0.7969 −0.5962 −3.8225
1-year return(2) 0.0000 0.0000 1.0339 0.6112 2.4048
1-year return(3) 0.0000 0.0000 −0.4701 −0.4939 −1.1270
1-year return(4) 0.0000 0.0000 1.2671 2.1028 0.7255
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Table 2. (Continued)
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)
1-year ex-post stock return equation

constant 9.9034∗∗ 4.3557 −1.7241 −1.0574 −1.1898
outputgap(1) −2.2855 1.9048 3.5257 3.6352 3.3730
outputgap(2) 2.4115 2.8560 −1.3039 −1.9294 −1.3599
outputgap(3) −1.7836 2.62039 −0.5502 −0.7805 −2.2802
outputgap(4) −0.0571 1.8632 1.6615 0.5983 2.3892
inflation(1) −0.6010 1.1513 0.6436 −1.0885 0.8559
inflation(2) −1.8431 1.1475 −0.1557 −1.9313 −2.6921
inflation(3) −0.9214 1.3264 4.0583 0.7764 2.2096
inflation(4) −1.5965 1.2876 2.3605 −0.1162 0.1340
Fed rate(1) 3.6430 3.6634 −1.5105 −0.4387 −0.7753
Fed rate(2) 2.7068 4.6502 1.2119 1.7381 2.0566
Fed rate(3) −1.9574 4.3626 −2.0874 −1.9007 −2.8735
Fed rate(4) 0.1942 2.2897 0.6565 0.6755 1.7482
1-year rate(1) −2.8936∗ 1.5409 −1.7778 −0.4172 −0.3054
1-year rate(2) −1.1741 1.9754 1.3615 0.8074 0.7094
1-year rate(3) −0.0050 1.9005 0.6977 −0.9629 −0.5232
1-year rate(4) 1.0486 2.0081 1.7899 1.1453 1.1866
1-year return(1) 0.5443∗∗∗ 0.1227 2.7688 1.2124 0.9940
1-year return(2) 0.0000∗∗ 0.0000 0.2782 −0.1389 −0.0622
1-year return(3) 0.0000 0.0000 −0.6836 −0.5474 −0.6501
1-year return(4) 0.0000 0.0000 −0.2778 −0.3397 −0.4484
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Table 2. (Continued)
Variable Estimate Standard Diag. stat. Diag. stat. Diag. stat.

error for (5) for (11) for (12)

VAR residuals variance matrix
s11 0.1399 0.1989 6.1782 6.2207 6.0996
s21 −0.0665 0.2303 −2.5969 −2.5280 −2.3833
s31 0.0144 0.0673 1.8330 1.8450 1.9093
s41 0.0366 0.1848 2.0302 1.5914 1.2939
s51 0.6242 2.2869 2.5840 2.4391 2.4311
s22 0.3438 0.4887 6.1051 6.1116 5.7093
s23 0.00755 0.1033 0.2425 1.1889 0.6136
s24 −0.0141 0.2843 0.4769 0.7220 1.3965
s25 −0.5996 3.4997 −1.0787 −1.4753 −1.5023
s33 0.0305 0.0434 4.5432 4.6280 5.9687
s34 0.0348 0.0916 4.6788 −0.5050 3.1506
s35 −0.2036 1.0477 −2.2076 −2.0436 −1.7111
s44 0.2321 0.3299 2.6926 0.2747 2.6323
s45 0.2382 2.8425 −2.4145 0.2520 0.2367
s55 4.2240 48.6414 1.7180 6.0083 1.6932

Note: ***,**,* denote that the corresponding coefficients are statistically sig-
nificant at the 1%, 5% and 10% levels, respectively.
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Figure 1: U.S. time series
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Figure 2: Comovement between output gap and inflation under the standard
Taylor rule
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Figure 3: Comovement between output gap and inflation under the
backward-looking Taylor rule
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Figure 4: Comovement between output gap and inflation under the forward-
looking Taylor rule

36



Figure 5: Comovement between Fed rate and 1-year stock return under the
standard Taylor rule

37



Figure 6: Comovement between Fed rate and 1-year stock return under the
backward-looking Taylor rule
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Figure 7: Comovement between Fed rate and 1-year stock return under the
forward-looking Taylor rule
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