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MEANSP: How Many Channels Are Needed to
Predict the Performance of a SMR-Based BCI?

Tania Jorajuría, Vadim V. Nikulin, Nikolai Kapralov, Marisol Gómez and Carmen Vidaurre

Abstract—Predicting whether a particular individual
would reach an adequate control of a Brain-Computer
Interface (BCI) has many practical advantages. On the
one hand, participants with low predicted performance
could be trained with specifically designed sessions and
avoid frustrating experiments; on the other hand, plan-
ning time and resources would be more efficient; and
finally, the variables related to an accurate prediction
could be manipulated to improve the prospective BCI
performance. To this end, several predictors have been
proposed in the literature, most of them based on
the power estimation of EEG signals at the specific
frequency bands. Many of these studies evaluate their
predictors in relatively small datasets and/or using a
relatively high number of channels. In this manuscript,
we propose a novel predictor called MEANSP to predict
the performance of participants using BCIs that are
based on the modulation of sensorimotor rhythms. This
novel predictor has been positively evaluated using only
2, 3, 4 or 5 channels. MEANSP has shown to perform as
well as or better than other state-of-the-art predictors.
The best sets of different number of channels are also
provided, which have been tested in two different set-
tings to prove their robustness. The proposed predictor
has been successfully evaluated using two large-scale
datasets containing 150 and 80 participants, respec-
tively. We also discuss predictor thresholds for users
to expect good performance in feedback experiments
and show the advantages in comparison to a competing
algorithm.

Index Terms—Brain–computer interface (BCI), Sen-
sorimotor rhythms (SMRs), Cross-frequency coupling,
Performance predictor, BCI inefficiency.

I. Introduction

MOTOR Imagery (MI) is a mental process where an
individual simulates a motor action [1], [2]. This

process activates the primary sensorimotor area, similar to
what occurs during motor preparation of a real movement
[3], modulating the power of specific brain oscillations
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or sensorimotor rhythms (SMRs). These SMRs can be
captured by electroencephalography (EEG) and decoded
with a MI-based Brain-Computer Interface (BCI) [4]–[6],
to subsequently execute some pre-programmed actions.
Nevertheless, not every participant is able to control a
BCI, a phenomenon known as BCI inefficiency [7]–[10].

BCI inefficiency [11] is one of the reasons why it would
be desirable to know beforehand whether a specific indi-
vidual would be able to control a BCI. Such information
could support decisions related to the amount of research
resources employed in a study, the time planned to perform
experiments and the number of participants to be engaged.
However, predicting BCI performance could also be useful
to categorize participants beforehand. For example, re-
search questions might advise the engaging of particular
participant types, as for instance those exhibiting a low
SMR peak [12].

The literature shows several ways to relate BCI perfor-
mance with subject-specific metrics. In [13], a review about
performance variation in MI-based BCIs was presented,
focusing on aspects such as personal information of par-
ticipants [14], [15], their psychological state [16]–[18], and
physiological [19]–[22] or anatomical [23], [24] variables.

An example is the work of [21], where neurophysiolog-
ical differences between participants were studied using
recordings of non-task related states. There, a performance
potential factor (PPfactor) that combines power from four
different frequency bands in [4 − 70] Hz range was pro-
posed. PPfactor is a predictor calculated using the relative
power level of channels C3 and C4 after re-referencing
them with a 64-channel common average reference. This
factor achieved a correlation of r = 0.48 with hand MI BCI
performance obtained from 52 subjects. After including
9 more participants from a separate dataset, the authors
showed that this correlation increased to r = 0.59.

The authors in [20], on the other hand, proposed a SMR-
based neurophysiological predictor based on the signal-to-
noise ratio (SNR) of the µ and β bands, using C3 and
C4 Laplacian channels (amounting a total of 10 chan-
nels) from 2 minutes of resting-state EEG data in relax
condition with eyes open. They obtained a correlation of
r = 0.53 between the predictor value and BCI feedback
performance applied to 80 subjects. This predictor was
later tested in another dataset comprising 151 subjects
[25], using 2.5 minutes of resting-state data, obtaining
again a correlation of r = 0.53. Besides, the authors fitted
a linear regression model with the dataset analyzed in [20]
that estimates the BCI performance of new subjects from
their SMR-based predictor value. This regression model

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3339612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

was applied to the subjects studied in [25], obtaining
a correlation between real and estimated BCI feedback
accuracy of r = 0.53.

Suk and colleagues analyzed in [26] a probabilistic
framework called Bayesian Spatio-Spectral Filter Opti-
mization. They extracted subject-specific spectral charac-
teristics to cluster subjects into groups related to their
performance. This grouping was used to build a linear
regression model to predict BCI performance. They used
2 minutes of resting-state EEG data from 3 Laplacian
channels (C3, Cz, C4, involving 13 mounted channels)
from the same dataset as in [20], obtaining a correlation
coefficient of r = 0.58.

In another approach proposed by Zhang et al. [27], the
spectral entropy was presented as SMR-based BCI per-
formance predictor. The authors found that this predictor
calculated from 2 minutes of resting-state EEG data of
channel C3 in eyes-closed condition had a correlation of r
= 0.65 with the offline performance of hand MI BCI. It was
evaluated with 66 sessions, composed of 40 independent
subjects from whom 26 returned in a posterior session.
Besides, they also predicted inter-session performance for
these 26 participants who performed 2 sessions, achieving
an average classification accuracy up to 89%.

Other predictors have been defined using more complex
measures such as connectivity. For example, in [28] it
is described that the imaginary part of coherency, Im-
Coh [29], over the sensorimotor cortices in the µ band
was positively and significantly correlated with online
BCI performance. ImCoh is a connectivity metric robust
against zero-lag interactions including those caused by the
effect of volume conduction. It was computed using 61
channels from pre-stimulus data of offline MI recordings.
The authors suggested the up-regulation of (undirected)
functional connectivity as a possible tool to increase online
BCI performance.

Also in relation to connectivity, Lee et al. [30] calculated
the directed coupling strengths in resting-state between
brain regions, using a dynamic causal model implemented
from 56 EEG channels. They observed significant dif-
ferences between low- and high-MI performance groups.
They showed that the connectivity strength between the
supplementary motor area and the right dorsolateral pre-
frontal cortex was positively correlated with MI-based BCI
performance (r = 0.54 in session 1; r = 0.42 in session 2).
In their paper, MI performance was also predicted with
a linear regression model based on this connectivity (r-
squared = 0.31) with data from 54 subjects.

Contrary to other authors who only use one resting-
state condition (eyes-open or eyes-closed), Kwon et al.
[31] suggested that employing power estimates from both
brain states may lead to a more robust predictor of MI-
BCI performance. In their analyses with 15 subjects, they
obtained a correlation of r = 0.71 between this modified
predictor and MI-based BCI online performance, using
only two channels. However, these two channels were
selected among C3, C4 and Cz depending on the pair of
classes chosen for the online MI task. Thus, unless the pair

of tasks were fixed for every participant, task-related data
would be necessary to estimate the predictor in new users.

In summary, a number of different predictors described
in BCI literature are based on studies that use a relatively
high number of channels or a relatively low number of
participants, and even task information. More channels
translates into longer preparation for fixing the electrodes,
tiredness of the subjects and also, more expensive equip-
ment. On the other hand, using task information to obtain
a predictor value implies the need of performing BCI
experiments beforehand, which is a strong requirement
because predictors are usually studied to anticipate the
performance. Finally, correlation frameworks as the ones
presented in predictor studies need a high number of
participants to deliver robust and generalizable results.
Depending on the expected effect size, the number of
participants needed to obtain a significant result can
largely exceed the rule of thumb of “10 times the number
of independent variables”, suggested by Roscoe in [32].

As previously discussed, resting-state power of different
electrodes in different frequency bands is a very com-
mon choice to estimate predictors. The hypothesis behind
this choice is that people who exhibit high power peaks
computed over sensorimotor electrodes are more likely to
modulate them according to the task. However, power
computed at sensor level might originate from different
regions, and thus, it might not have exclusive sensorimotor
origin. In our paper we exploit that SMRs are non-
sinusoidal due to the synchrony between µ- and β-rhythms
[33], [34]. Other dominant EEG rhythms such as those of
occipital origin also exhibit α-β synchronization (note that
the α frequency range coincides with the µ band, but it
is only referred to as µ when its origin is sensorimotor).
However, although α power might be captured by sensors
over the sensorimotor cortices, the power of the occipital
β oscillations is too low to reach these channels. Thus,
extracted cross-frequency synchronized sources are likely
to have sensorimotor origin [35]. Therefore, our hypothesis
is that by finding µ-β synchronized sources from sensori-
motor electrodes, we can also reduce the influence of other
unrelated rhythms in the computation of EEG signatures,
and thus obtain a robust predictor with a low number of
channels.

Grounded on the aforementioned, we propose a novel
predictor named MEANSP for SMR-based BCI perfor-
mance. Our predictor is based on the Nonlinear Interaction
Decomposition (NID) [36] method to find spatial filters
that decompose multichannel EEG into non-linearly cou-
pled pairs of sources. Here, we used NID to obtain pairs
of sources that are 1:2 phase-coupled between µ and β
frequencies; that is, we aimed to extract pairs of sources of
sensorimotor origin, as their µ- and β-rhythms are sought
to be synchronized. After this, the SMR predictor from
[20] is performed and combined with the Phase-Locking
Value (PLV) [34], which measures the strength of this
synchronization.

In this work we show that the proposed predictor
achieved good results with very few channels. We also
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provide sets of standard electrode locations for 2, 3, 4 and
5 channels, obtained from two different initial montages to
demonstrate the robustness of the selection. We evaluated
MEANSP using 2 minutes of resting-state EEG data. The
correlation between MEANSP and the SMR-based BCI
performance in a MI paradigm was used for its validation.
A total of 230 participants belonging to two large datasets,
with 150 and 80 subjects, respectively, were employed
to test its robustness. Besides, we also suggest threshold
values for MEANSP that would allow researchers assessing
the BCI performance potential of a new subject.

We benchmarked our predictor against the SMR predic-
tor by Blankertz et al. [20], the PPfactor by Ahn et al. [21]
and the spectral entropy predictor presented by Zhang et
al. [27]. These predictors were selected for benchmarking
because they used a relatively low number of channels and
were based on power-related features. The results obtained
show that in all the evaluated settings, MEANSP predictor
achieved similar or significantly better results than the
benchmarked methods with a low number of channels,
showing that a setting composed of only C3 and C4 is
sufficient to obtain state-of-the-art results. In conclusion,
we present a novel predictor to estimate SMR-based BCI
performance of new subjects that can be quickly and
robustly computed because it requires very few spatially
unfiltered channels.

This paper is organized as follows: in section II we detail
the three state-of-the-art predictors used as benchmark.
Here, we also introduce our proposed predictor, MEANSP,
together with the details about the method we used to
select channels from an initial montage setting, and how
NID was applied. In section III, the experimental data are
described, together with the evaluation settings. Section
IV details the scores we used to validate and compare our
predictor with baselines, and in section V we explain the
statistical analysis done. In section VI, obtained results
are shown, which are discussed in section VII. Finally, a
brief conclusion of the study is presented in section VIII.

II. Methods
Our proposed predictor for SMR-based BCI perfor-

mance is inspired by the SMR predictor by Blankertz et
al. [20]. We chose this predictor as baseline because it is
easy to compute and its robustness was demonstrated with
two independent and large datasets. In addition, we also
compared MEANSP with two other different predictors,
since they can be computed using very few channels, are
also based on band power estimates and they showed to
outperform Blankertz et al. predictor in their respective
datasets. In this section we explain the details to calcu-
late all analyzed predictors. The BBCI Toolbox [37] of
MATLAB® was used to process EEG data and calculate
predictor values. We also used the EEGLAB [38] Toolbox
of MATLAB® to generate scalp plots.

A. Benchmarking
We compared our proposed predictor, MEANSP, with

the following state-of-the-art estimators.

(a) (b)

Fig. 1: Scalp plot of the electrode configurations used in:
a) SMR predictor from Blankertz to calculate C3 and C4
Laplacian channels, b) each initial montage setting for
our MEANSP predictor (M = 15 channels: all plotted
electrodes; M = 9 channels: bold-circled electrodes).

1) SMR predictor (SMR): Blankertz et al. defined for
the first time a SMR predictor in [20]. It is based on
the SNR estimation of the sensorimotor rhythm, using
two small Laplacian channels located over C3 and C4
(amounting a total of 10 electrodes, see Fig.1a). For more
information, please refer to section I-A of Supp. Material.

2) Performance potential factor (PPfactor): Ahn et al.
proposed a predictor named performance potential factor
(PPfactor) [21] that combines power from different bands.
Specifically, it computes spectral power of channels C3 and
C4, and then band power is calculated in θ (4-8 Hz), α (8-
13 Hz), β (13-30 Hz) and γ (30-70 Hz) frequency bands. In
this last frequency range we used the interval [30 − 50] Hz
because our data had been downsampled to 100 Hz, and
thus previously filtered to remove frequencies over 50 Hz.
For more information, see section I-B of Supp. Material.

3) Spectral entropy predictor (SH): Zhang et al. also
proposed a predictor for SMR-based BCI performance
based on the spectral entropy [27]. We followed the pro-
cedure explained in [27] to implement this predictor. For
more details, refer to section I-C of Supp. Material.

B. Our proposed approach: MEANSP

In this section we explain the details of our proposed
predictor (see Fig.2), named MEANSP, since it is calcu-
lated by averaging the SMR predictor from Blankertz and
PLV values.

a) EEG channels: The number of required electrodes
is directly related to the required EEG montage time.
Hence, one of the main goals of this study was to find
the smallest possible set that would still lead to at least
as good performance as other published predictors. To
achieve that, we studied different settings of number and
locations of channels, C (see section III-B). A Least
Absolute Shrinkage and Selection Operator (LASSO) re-
gression [39] was employed to determine the position of
a given number of channels C that would maximize the
correlation between BCI performance and the predictor in
each analyzed setting. It is known that LASSO regression
does not cope well with correlated predictors [40], so its
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Fig. 2: Pipeline of MEANSP predictor. M and C depend
on the evaluated setting. Note that P and Q components
illustrated here are narrow band, but the actual input to
calculate MEANSP predictor is broadband.

results might depend on the initially available channels.
Therefore, to avoid overfitting and obtain robust and sta-
ble results, we analyzed two different initial EEG montages
M with different amount and location of channels (see
section III-B), to which we applied LASSO regression.

LASSO performs a regression analysis including variable
selection to improve the correctness and interpretability
of the statistical model. The LASSO regression was com-
puted between the SMR predictor described in II-A1 of
each monopolar (not spatially filtered) channel and the
BCI performance, thereby also reducing the risk of over-
fitting because none of the channels were pre-processed as
in MEANSP. The code corresponding to LASSO regression
was part of the SpaSM Toolbox [41] of MATLAB®, which
is a variant of the LARS algorithm [42] with elements from
[43].

In particular, the procedure was as follows: we first
calculated the SMR predictor of each of the M channels
in the initial montage setting, for each of the N subjects
in the selected dataset (see section IV). Then, for each
analyzed setting, we performed a leave-one-subject-out
(LOSO) procedure to find a robust set of channels; in
each iteration, the previously calculated matrix of SMR
predictors, with dimensions [(N − 1) × M ] was column-
wise normalized and the performance vector [(N − 1) × 1]
was centered. The used toolbox allows directly selecting
the number of features to be kept. Thus, we specified
the desired number of non-zero variables that should be
returned by LASSO as the number of channels, C, that
should be retained in each evaluated setting. Then LASSO
regression was applied. Finally, a [N ×C] matrix with the
channels selected in each iteration of the LOSO procedure
was obtained. The electrodes that were more often selected
were chosen to form the final channel set.

b) Spatial filter: In this paper, we propose the use
of the Nonlinear Interaction Decomposition (NID) [36]
method to spatially filter a set C of selected channels.
We used the implementation of the NID Toolbox [36] in
MATLAB® to obtain the necessary spatial filters.

NID is a method for extracting non-linearly coupled
neural sources oscillating in two different frequency bands
from multichannel recordings of brain activity (i.e. non-
linear cross-frequency interaction). The main idea behind

NID is that the linear mixture of two narrow band os-
cillations, centered at fn and fm, respectively, will fol-
low a non-Gaussian distribution if they are non-linearly
coupled (alternatively, they will follow an approximately
normal distribution in case they are independent). There-
fore, by maximizing non-Gaussianity, NID extracts cross-
frequency coupled sources and returns spatial filters cor-
responding to the frequency bands of interest.

In the case of sensorimotor rhythm, µ and β components
are phase-to-phase synchronized [33], [34]. This non-linear
interaction can be extracted with NID as pairs of coupled
sources (P , Q). To achieve this goal, first Spatio-Spectral
Decomposition (SSD) [44] is applied to the multichannel
data. SSD is a method that calculates the spatial filters
that maximize the SNR of extracted oscillatory sources
at the frequency band of interest. It reduces to a general-
ized eigenvalue decomposition and thus it is very fast to
compute. For NID in particular, SSD is applied separately
at two narrow bands respectively centered at fn and fm
to extract neuronal oscillations in each band, resulting
in WSSD_P and WSSD_Q matrices of SSD spatial fil-
ters. Then, the two matrices of SSD components at fn
and fm are put together to form an augmented matrix,
on which a non-Gaussianity maximization decomposition
(NGMD) is applied. This method finds a subspace, given
by WNGMD_P and WNGMD_Q spatial-filter matrices,
that maximizes the non-Gaussianity of the linear mixtures
of the estimated SSD oscillatory sources. As a result of this
process, cross-frequency coupled oscillations are separated.
For more information about the use of the NID method,
we refer the reader to [36].

In this paper, NID was applied separately to each
subject, calculating their specific SSD and NGMD spatial
filters, and filtering the continuous broadband EEG data
with them to obtain pairs of coupled sources P and Q. We
only kept the first pair of sources to compute our novel
predictor MEANSP, which indicated the pair of sources
with the greatest synchronization index.

c) The MEANSP predictor: In order to obtain
MEANSP, we computed the phase-phase coupling between
µ and β components in SMR. We used synchronization in-
dex between the coupled pair of sources (P , Q) returned by
NID. This index consists in measuring the Phase-Locking
Value (PLV) [34] between the selected NID source pairs.
PLV is defined as |< ejψn,m(t) >|, where j is the imaginary
unit number and < · > represents the average over time
samples. The term ψn,m(t) = mϕn(t) − nϕm(t) stands for
the difference of the instantaneous phases ϕn and ϕm of
two oscillations with frequencies fn and fm = (m/n)fn,
n,m ∈ N. These oscillations are then said to be n : m
phase-coupled if | ψn,m(t) |< const. In this work we were
interested in 1 : 2 phase-coupling between µ and β, so
we selected fn = 11 Hz and fm = 22 Hz values as the
respective frequency centers of these bands. Note that NID
does not directly maximize PLV in phase-phase coupled
sources, but the non-Gaussianity of their linear mixture;
nonetheless, as a consequence, the PLV is also indirectly
maximized as shown with simulations and analytically
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[36].
Apart from the aforementioned PLV obtained with NID,

the final predictor value also included the SNR estimation
given by [20] (see section II-A1), which was shown to be
robust in two independent and large datasets [20], [25].

Thus, we used the SMR predictor computed on the first
pair of sources obtained with NID, together with the PLV
value of that pair. The final predictor value MEANSP was
then the average between SMR and PLV. Note here that
by definition, PLV values range between 0 and 1, but the
SMR predictor is not bounded. Therefore, SMR values
need to be normalized before averaging (we provide this
information in the results section, so that researchers can
estimate MEANSP in new participants). Hence, the final
MEANSP estimate carries information about the possible
facility for power modulation of the participant in the
SMR predictor and also an indication of the sensorimotor
origin of the SMR (through the amount of synchrony that
exists between µ and β rhythms).

III. Experimental Data
A. Data Description

We used two large datasets, which are described below.
a) Dataset 1: This dataset was presented in [25],

where the SMR predictor proposed in [20] was re-tested
in a large number of subjects. Specifically, 168 naive BCI
subjects participated in the study; among them, 17 partici-
pants were excluded for different reasons, leading to a total
of 151 analyzed subjects. We further had to discard one
of these subjects because their corresponding resting-state
data was not available, amounting a total of 150 subjects.
As explained in [25], brain activity was recorded from
64 electrodes with 1 kHz sampling frequency, referenced
to the left mastoid and grounded to the forehead. The
data were later filtered under 50 Hz and downsampled
to 100 Hz. During the BCI session, resting-state EEG
data was recorded in eyes closed condition for 15 seconds
and eyes open for another 15 seconds, repeating this
cycle 10 times in total. Afterwards, a co-adaptive MI-BCI
[11] was employed to provide feedback while the subjects
performed imaginary movements of right hand, left hand
or feet during four runs. The provided online feedback was
continuous. We refer reader to [25] for more details about
their experimental setup.

b) Dataset 2: This dataset was described and used
in the study by Blankertz et al. [20] to present their
SMR predictor, where 80 healthy novel BCI users took
part. EEG data were recorded from 119 electrodes in an
extended 10-20 system, with reference at nasion, 1 kHz
sampling rate and a band-pass filter from 0.05 Hz to
200 Hz. The data were later filtered under 50 Hz and
downsampled to 100 Hz. During the session, EEG artifacts
were first recorded (eye movements, blinking, ...). Then,
ten periods of 15 seconds were also recorded, using “relax
with eyes open” and “relax with eyes closed” alternating
tasks. Afterwards, subjects performed some MI tasks (left
hand, right hand, and right foot or feet movement, this last

one according to the participant’s preference) that were
used to calibrate a MI-based BCI. Later a BCI feedback
session took place. It consisted of three runs of 100 trials
each, where the MI continuous classification result of left
hand, right hand or foot classes were presented to the
participants. For more details about the experimental
setup regarding this dataset, please refer to [20].

The data employed to estimate MEANSP comprised
EEG signals recorded in resting-state and eyes open
condition from each subject in both datasets. Since in
these two large datasets less than half of the participants
improved their performance in the last run with respect
to the first one, the BCI performance of all feedback runs
was averaged to obtain the final BCI accuracy for each
participant. Note that had the majority of participants
exhibited performance improvement from beginning to
end of the session, one could also have considered using
the last run or last two runs to compute the final BCI
accuracy. Note that in these two datasets, the feedback
performance of each participant was obtained with the
pair of classes out of three possible that achieved the
best cross-validation accuracy in a calibration (offline)
recording performed previously to the feedback runs. We
used 120 seconds of resting-state eyes-open data to obtain
the predictors because for some participants the recording
was shorter than 150 s. MEANSP and also the other three
benchmarked state-of-the-art predictors were then com-
puted. In the case of the spectral entropy (SH) predictor
[27], the authors suggested its computation from resting-
state EEG data in the eyes closed condition. However, to
calculate it we used data in the eyes open condition since
the correlations obtained were higher.

B. Evaluation Settings
As explained in section II-B, we analyzed different set-

tings with different number of channels, C, whose location
was selected by LASSO regression from an initial EEG
montage containing a total of M electrodes.

a) Initial montage: It is known that LASSO regres-
sion is sensitive to correlated predictors [40]. In order to
at least partially reduce correlations between channels,
we selected initial montages that do not contain a large
number of closely adjacent electrodes. This correlation
reduction has the potential to enhance the effective in-
formation of the channel set so that NID can deliver
better decomposition results. In particular, we studied two
different initial montages (see Fig.1b), with a total number
of electrodes, M , equal to 9 and 15, respectively. Having
two initial sets also allowed us testing the stability of the
channel selection performed by LASSO.

b) Number of selected channels: For each of the two
initial montages, C channels were selected by LASSO
among the M total number of electrodes. Our goal was
to obtain number of channels C lower than 10, which is
the number of electrodes used in [20]. Also, C should be as
small as possible but should be larger than 1 to be able to
find NID sources. Thus, we investigated results obtained
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with 2, 3, 4 and 5 channels. Nevertheless, results with 10
channels selected by LASSO using the 15-channel montage
setting are also provided for further analysis, as well as the
result of the SMR predictor with two raw channels.

IV. Validation
In order to validate and compare our proposed predictor

with the benchmarked ones, we calculated the Pearson
correlation between predictors and BCI feedback accuracy,
as in [20], [25]. In the case of MEANSP, this correlation
was computed with the predictor values obtained in each
evaluated setting.

The larger dataset with 150 participants (Dataset 1)
was selected for performing channel selection with LASSO
in each evaluated setting. Also, the range limits for SMR
normalization were taken from this dataset (see section
II-B). Then, correlations were computed with Dataset 2,
which contains unseen data of 80 participants. We chose
to also show correlation results obtained with Dataset 1,
for the sake of comparison with those from Dataset 2.

Besides, in order to assess the ability of the predictors
to classify a new subject in terms of their online BCI
performance potential, we analyzed the precision-recall
curves. Precision in this context is the percentage of
participants correctly classified from those assigned by
the classifier to the good performers group. Recall is
the correctly classified subjects from those who actually
are good performers. There is a trade-off between them,
since when the precision increases, the recall decreases.
In the case of MEANSP, this was done for the best set
with the minimal number of channels. We compared these
results to the best benchmarked predictor, using both
datasets. The BCI accuracy threshold set to distinguish
between good and poor BCI performance was 70%. This
probability was experimentally established to distinguish
between random and voluntary control of a two class BCI
[45]. For specific precision values (80%, 85% and 90%), we
found the corresponding predictor thresholds and studied
the recall values obtained.

V. Statistical Analysis
The Meng’s z-test for dependent samples with overlap-

ping pairs of variables was used to compare correlation
coefficients by pairs [46]. The total number of compared
pairs was m=3: MEANSP vs. SMR, MEANSP vs. PPfactor
and MEANSP vs. SH. The correlation values of MEANSP
were obtained for each montage and number of channels.
Significance tests were one-tailed, being the alternative
hypothesis that the highest correlation was significantly
higher than the other one.

Besides, for Dataset 2 we also compared correlations
of MEANSP and BCI performance between the differ-
ent evaluated settings. In particular, for each number of
channels, we compared correlations achieved with the two
analyzed montage settings (m=2), and vice-versa; for each
initial montage setting, we compared correlations obtained
with each number of channels setting (m=6), by pairs. In

Fig. 3: Scalp plots showing the number of iterations (%)
in which each channel was selected during the LOSO
procedure for LASSO regression in each analyzed setting
(i.e. number of channels and initial montage).

this case significance tests were two-tailed, to check for
differences in correlation values.

Finally, in order to account for multiple comparisons
(m ≥ 3), obtained p-values were corrected with the
Holm-Bonferroni method. This correction procedure has
more power than Bonferroni correction and is also less
conservative [47].

VI. Results
In this section, we show the results achieved with our

proposed MEANSP predictor in each of the studied set-
tings (i.e. number of channels and initial montage set-
tings), as well as with all three benchmarked predictors.

A. Best channels selection
A LOSO procedure with LASSO regression was per-

formed to select the best channel combination for each
number of channels, in each initial montage setting. In
Fig.3, the number of iterations (in percentage) in which
each electrode was individually selected during cross-
validation is depicted.

In Tables I and II found in the Supp. Material, we also
show the percentage of iterations in which each electrode
was chosen by LASSO regression during LOSO procedure
for each number of channels and both the 9-ch and the 15-
ch montage settings, respectively. The electrodes that were
more often chosen by LASSO regression were then selected
to compose the best channel combination for each number
of channels. They are marked in bold in Tables I and II of
the Supp. Material.

It can be seen that for 2 and 3 channels, the selected
electrodes are the same for both initial montage settings.
Regarding the selected channels for groups of 4 and 5
electrodes, they differ only in one electrode.

B. Normalization limits and MEANSP computation steps
As aforementioned, SMR values need to be normalized

before computing the MEANSP predictor. In Table I
we provide the employed range limits for each analyzed
setting, taken from Dataset 1.
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TABLE I: Range limits taken from Dataset 1 to normalize
SMR values before computing the MEANSP predictor, for
each analyzed setting.

SMR ranges MIN MAX
9-ch 15-ch 9-ch 15-ch

2-ch 1.09 18.71
3-ch 1.44 19.12
4-ch 0.84 0.95 20.23 19.58
5-ch 0.85 0.98 20.76 20.65

The information presented in Table I can be used by
researchers to compute MEANSP in new data. Here we
enumerate the steps necessary to obtain the predictor.

1) Select one channel combination from Fig.3.
2) Run NID and obtain as outputs the spatial filters of

P and Q and also PLV.
3) Take the resting-state EEG broadband data and

spatially filter them with the NID filters.
4) Calculate the SMR predictor of the two resulting

NID sources and normalize it using the limits pre-
sented in Table I.

5) Average the normalized SMR predictor and the PLV
to obtain the MEANSP value.

The NID code can be found in [48] and the SMR code
is described in [20].

C. Validation with correlations between predictors and BCI
performances

Here, we present the correlation results obtained with
our MEANSP predictor in each analyzed setting and also
with the three benchmarked predictors.

In Fig.4 we show the obtained Pearson correlations
between predictors and BCI feedback performances. For
each channel combination (see section VI-A) and initial
montage (9 or 15 channels), we calculated MEANSP for
each subject. Then, we obtained a correlation value of the
predictor with BCI performance. This was done for each
of the two studied datasets, and correlation values were
compared against the ones obtained with the benchmarked
predictors.

As shown in Fig.4, the specific correlations obtained
with MEANSP in the 9-ch montage setting were 0.53, 0.50,
0.53 and 0.53, calculated with Dataset 1, and 0.53, 0.59,
0.55 and 0.59, in Dataset 2, for 2-, 3-, 4- and 5-channels,
respectively.

On the other hand, correlation results obtained in the
15-ch montage setting for MEANSP were 0.53, 0.50, 0.52
and 0.54 with Dataset 1, and 0.53, 0.59, 0.54 and 0.58 with
Dataset 2, using 2-, 3-, 4- and 5-channels, respectively.
Note that the correlation values obtained with the 9-
and 15-ch montages in the 2- and 3-channel settings were
identical when calculated over the same dataset, since the
selected channels in these two cases were the same.

The previous outcomes were obtained using fixed fre-
quency centers of the µ and β bands. However, when
the recorded data of each participant is sufficiently clean,
it is also possible to define subject-specific frequency

(a) Dataset 1. (b) Dataset 2.

Fig. 4: Correlations of predictors and BCI performances
in the two analyzed datasets: a) Dataset 1 (150 subjects),
b) Dataset 2 (80 subjects). Predictors are MEANSP in
each number of channels and montage setting, and SMR,
PPfactor and SH.

centers for both bands. These results are presented in
Table VI of Supp. Material. Our analyses showed slight
differences between both procedures, which however were
non-significant.

Regarding the results obtained with benchmarked pre-
dictors, SMR achieved a correlation value of 0.54 and 0.52,
PPfactor 0.31 and 0.25, and SH a correlation coefficient of
0.21 and 0.23, for Dataset 1 and Dataset 2, respectively.

As aforementioned, we compared the correlation coeffi-
cients calculated with MEANSP in each analyzed setting
to those obtained with each benchmarked predictor. The
results are presented in Tables III and IV in the Supp.
Material, which were obtained with the Meng’s z-test
by pairs and later corrected with the Holm-Bonferroni
method. Here we want to remark that the correction did
not affect the final results.

The correlation values achieved by SMR with Dataset
1 were quantitatively higher than with MEANSP. On
the contrary, MEANSP obtained greater correlation coef-
ficients than SMR with Dataset 2. However, in none of
these two cases one predictor was significantly better than
the other.

Regarding PPfactor and SH predictors, they both
achieved significantly worse results than MEANSP in every
evaluated setting, and for both datasets.

As aforementioned, we also compared correlations cal-
culated in Dataset 2 with MEANSP between different
settings. On the one hand, for each number of channels,
we compared correlation values obtained with the two
analyzed montage settings. Since the channels selected and
hence the calculated correlations in the 2- and 3-channels
settings were the same for the two montages, these two
cases were not compared. Regarding the 4- and 5-channels
settings, correlation coefficients were slightly higher for
the initial montage of 9-ch than for 15-ch. However, no
significant differences were found in any of these two cases
(p = 0.7675 and p = 0.7285 for 4- and 5-channel settings,
respectively).

On the other hand, for each montage setting we com-
pared correlations obtained with different number of chan-
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nels, using the Meng’s z-test by pairs. The results are
shown in Table V of the Supp. Material. They were
corrected for multicomparisons with the Holm-Bonferroni
method. As seen, none of the differences were found sig-
nificant. Again, the correction did not affect final results.

Besides, we also investigated the correlation obtained
after selecting 10 channels with LASSO, starting from
the initial 15-ch montage, since 10 channels were also
necessary in the SMR predictor. The obtained correlation
coefficients with MEANSP were 0.53 for Dataset 1, and
0.55 for Dataset 2 (respectively, SMR achieved 0.54 and
0.52). In order to find out whether results of MEANSP
and SMR were significantly different, we performed two
two-tailed Meng’s z-test, one for each dataset. The result
was that there were not significant differences between the
correlations (p = 0.9506 in Dataset 1 and p = 0.6783 in
Dataset 2).

Finally, and for the completion of the results, we also
calculated the correlation between SMR predictor and BCI
performance, with C3 and C4 raw channels (i.e. without
applying any spatial filtering). The resulting correlation
values were 0.41 with Dataset 1 and 0.22 with Dataset 2,
which were found to be significantly worse than MEANSP
with 2 channels (p = 0.0361 in Dataset 1 and p = 0.0011
in Dataset 2) after performing a two-tailed Meng’s z-test
for each dataset.

D. Analysis of spatial filters

Here we present results exploring the differences be-
tween Laplacian and NID filters as well as the results of
the NID optimization.

a) Laplacian vs. NID spatial filters: We explored how
NID helps in the enhancement of the SNR in µ and β
frequency bands, as well as the µ-β synchronization of
the sources found by the algorithm. In Fig.5 we show the
estimated PSDs of two illustrative subjects. On the one
hand, for C3 and C4 Laplacian channels. On the other
hand, for the coupled pair of sources (P , Q) extracted
with NID in the 2-channel setting. When computing SMR
predictor from C3 and C4 Laplacian channels, the result is
7.19 and 11.77 for these two subjects, whereas it becomes
9.47 and 14.88, respectively, when calculating it from the
sources returned by NID.

The SMR predictor values of Laplacian C3 and C4 chan-
nels were investigated for the 230 participants composing
Datasets 1 and 2. The mean and standard error of the
SMR using Laplacian channels was 7.4 ± 0.2, and the
same for NID sources extracted from two electrodes was
7.8 ± 0.2. A non-parametric Wilcoxon signed rank test re-
vealed a significant difference between them (p = 0.0068).

As expected, the PLV computed between P and Q
sources extracted with NID was also significantly higher
(using the same test as above) than that computed using
C3 and C4 Laplacian channels, with a p-value << 0.0001.
Mean and standard error were 0.046 ± 0.001 for Laplacian
channels and 0.091 ± 0.006 for NID sources.

(a) An illustrative subject where NID extracted two sources.

(b) An exemplary subject where NID extracted one source.

Fig. 5: PSDs estimated from C3 and C4 Laplacian chan-
nels of two exemplary subjects, and also from the coupled
pair of sources (broadband) returned by NID in the 2-
channel setting.

b) Number of NID sources: We analyzed spatial fil-
ters produced by NID in the 2-channel setting, aggregating
all participants from both datasets. The goal of this anal-
ysis was to understand whether the algorithm extracted
one source of highly pronounced non-sinusoidality (see
Fig.5b) or, rather, two different µ-β synchronized sources
(see Fig.5a). To this end, we computed the dot product
between the spatial filters returned by NID corresponding
to P and Q components. When the absolute value of
this product was greater than 0.9, we considered both
components to be the same. As a result, the spatial
filters of 77% of subjects were almost identical, thus, for
them NID returned a single source of non-sinusoidal SMR
rhythm. On the contrary, for the remaining subjects NID
extracted a pair of distinct non-linearly coupled sources.

E. Participant selection based on predictor values
As stated in section IV, we analyzed threshold val-

ues for predictors to select participants who can obtain
voluntary control of a BCI with high probability. Since
no significant differences were found between settings, we
only investigated MEANSP with 2 channels. Regarding
the benchmarked predictors, no significant differences were
found between SMR and MEANSP, so SMR was also
selected for this analysis.

In Fig.6 scatter plots of predictor values vs. BCI online
performances, together with precision-recall curves for
MEANSP in the 2-channel setting and SMR are shown.
Both studied datasets were employed for this analysis. BCI
accuracies under 70% were labeled as poor performance.
This figure shows the obtained predictor thresholds and re-
call values for specific precisions. In the case of MEANSP,

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3339612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
MEANsp predictor

40

50

60

70

80

90

100
B

C
I p

er
fo

rm
an

ce
 (

%
)

0
10
20
30
40
50
60
70
80
90
100

S
co

re
s 

(%
)

0.23

56.5

0.26

49.3

0.35

29
 Precision
 Recall

(a) MEANSP with 2 channels.
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Fig. 6: Scatter plots with predictor values and BCI online
performances (left y-axis), together with precision-recall
curves (right y-axis) for subjects in the two analyzed
datasets. Poor performance was labeled under 70% of
accuracy. Predictor threshold values and corresponding
recalls are labeled for each specified precision. Predictors:
a) MEANSP in 2-channel setting, b) SMR.

the obtained predictor thresholds were 0.23, 0.26 and 0.35,
and the recalls were 56.5%, 49.3% and 29%, for precision
values of 80%, 85% and 90% respectively. For the SMR
predictor, the thresholds were 7.51, 9.82 and 13.81, and
the recalls 57.2%, 34.8% and 8%, for the same precisions
respectively.

Here we see that for a precision of 80% both predictors
obtained similar recall values (a bit above 55%), whereas
as the precision increased, MEANSP outperformed SMR,
in terms of recall. In particular, for a precision of 90%,
the recall of SMR fell below 10%, which means that from
actual good performers, less than 10% were identified as
such. In contrast, MEANSP still captured around 30% of
those participants.

In Fig.6b, it is also visible that the precision suddenly
drops for high SMR predictor thresholds. This means
that there can be participants having a very high SMR
predictor indicator whose obtained performance is actually
below 70%. This is not the case of MEANSP, where the
precision steadily increases.

VII. Discussion
In this section, different aspects of the results are

discussed. Although correlation values of MEANSP were
quantitatively higher for Dataset 2 than for Dataset 1, all
statistical outcomes comparing MEANSP and the bench-
marked predictors are the same in both datasets.

A. MEANSP versus benchmarked predictors

MEANSP is a predictor based on power estimates and
the synchronization between µ and β rhythms, which is
one of the characteristics of oscillations with sensorimotor
origin. The other selected predictors are also based on
different power measures. The results presented in section
VI-C show that PPfactor and SH are significantly worse
than MEANSP in every evaluated setting (different num-
ber of channels and initial montage), including MEANSP
computed with only 2 channels.

A reason why PPfactor might have performed worse
in this paper than in the original one [21] might be
related to the actual number of channels employed. In
the original paper, the authors mention the need of only
two channels for calculating the predictor (C3 and C4).
However, they also mentioned a common average reference
(CAR) filter that required 64 channels. CAR also removes
spatial artifacts from data and might have helped to
obtain better results. However, our goal in this paper is
to test predictors using a low number of channels, thus we
computed PPfactor in C3 and C4 raw electrodes. Another
reason might be related to the fact that we could not use
the γ band up to 70 Hz as in [21], because our data was
filtered below 50 Hz.

In relation to SH, the reported correlation in [27] is
related to BCI offline performance instead of online per-
formance. However, online performance is the accuracy
that actually informs about the ability of a participant
to control a BCI system. Hence, we selected this online
assessement as the target of all predictors. In order to
account for the possible differences in visual input between
calibration and feedback settings, we tested SH in both
eyes-closed and eyes-open conditions and selected the most
favorable for SH (eyes-open). Nevertheless, the differences
between MEANSP and SH are still significant.

Besides, both PPfactor and SH were only correlated
with performance obtained classifying right vs. left hand
MI tasks in their respective papers, whereas in the datasets
selected in this work, any 2-class combination out of
the three MI tasks performed by the participants in a
calibration recording (left hand, right hand, feet/right foot
MI) were possible. Thus, PPfactor and SH might not cope
well with feet/right foot MI. Indeed, in the specific case of
SH, which is computed in just one channel, adding foot-
related tasks might affect its performance.

Regarding SMR, correlations of MEANSP and SMR
were not found significantly different in any case. However,
the number of channels needed by SMR is more than twice
the number of electrodes used in MEANSP. In particular,
MEANSP evaluated in just two channels is not significantly
different from SMR either. On the contrary, SMR com-
puted in two raw channels (C3 and C4) is significantly
worse than MEANSP.

One difference between SMR and MEANSP is related
to the spatial filter. The Laplacian derivations employed
in SMR are spatial filters with fixed weights [49] that aim
to reduce the volume conduction artifact of a channel by
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subtracting the activity of neighboring electrodes. Hence,
they need a relatively high number of sensors to obtain one
virtual channel. On the other hand, NID is a data-driven
method that can be computed even with two channels.
It finds spatial filters of synchronized oscillations between
different frequency bands. Thus, it can be used to assess
the phase-phase coupling observed between oscillations
in µ and β frequency bands of sensorimotor origin [33],
[34]. Furthermore, as shown in Fig.5 from section VI-D,
it also increases the SNR of the electrodes used in the
montage, facilitating the estimation of the SNR of senso-
rimotor rhythms which are known to include both µ and
β oscillations as well as interactions between them.

As seen in section VI-D, NID mostly extracts one µ-β
coupled single source. This might be seen as a limitation
of NID, because it cannot differentiate harmonics of the
same source from a cross-frequency interaction from two
different sources. However, in our work, it is not very rele-
vant whether the coupling comes from distinct sources or
not, as even the single source interaction is an evidence of
highly pronounced non-sinusoidal activity, again pointing
to the sensorimotor origin of the extracted sources.

Finally, our analyses were performed with fixed fre-
quency centers for µ and β bands, where the β oscillation
was placed at twice the frequency of the µ oscillation.
However, some participants might exhibit a β peak that
cannot be defined as a harmonic of the µ rhythm. Fur-
thermore, some individuals might not display a clear β
peak in sensor space. Regarding the first aspect, in our
additional analyses with subject-specific centers (see Table
VI of Supp. Material), the β peak frequency was indi-
vidually selected and NID modified accordingly. However,
no significant differences were found between fixed and
subject-specific frequency centers. Concerning the second
point, even though a β peak might not be visible in sensor
space, the oscillating source might still exist [44]. Thus,
approximating this oscillation using twice the µ frequency
is a robust approach, as shown by our results. Both
outcomes are related to the bandwidth used to decompose
µ and β oscillation within NID, which were 10 to 12 and
20 to 24 Hz, both covering a large proportion of the usual
µ (8 to 12) and β (16 to 24) frequency ranges [50].

B. Channel selection for MEANSP

The selection of channels for MEANSP was performed
with LASSO regression on the SMR predictor of single raw
channels. In order to test the robustness of the selection
method, two initial montages were employed from which
to select a predefined number of electrodes (from 2 to 5).
The specific electrodes selected in the settings of 2 and
3 channels were the same for both initial montages. In
regard to settings of 4 and 5 channels, they only differed
in one electrode comparing the selection done from 9-
and 15-channel initial montages. However, both differing
electrodes were immediately adjacent to each other (see
Fig.3), suggesting that results are stable across the initial
montages. In fact, no significant differences were found

between correlation results obtained with each of the
two initial montages for a specific number of channels
(see section VI-C). Hence, as correlations were in general
quantitatively higher with electrodes selected using the
9-channel montage, we recommend the channel combina-
tions shown in the top row of Fig.3.

Furthermore, the channels selected in each iteration of
the LOSO procedure were almost always the same. For
instance, C3 and C4 were selected every time in all settings
(see Tables I and II in Supp. Material), which is in line with
previous evidence [4]. In summary, the low variability in
the channel selection outcomes suggests that the results
are robust across subjects.

C. MEANSP with different number of channels
MEANSP was evaluated with different settings regard-

ing the number of channels used, specifically with 2, 3,
4 and 5 electrodes. No significant differences were found
across settings. This means that using 2 or 5 electrodes do
not provide a significantly different correlation result.

Besides, MEANSP was also tested with 10 channels,
selected by LASSO from the 15-ch montage. No signifi-
cant differences were found between this setting and the
SMR predictor (also computed on 10 electrodes). These
results show that NID on a low number of channels (2
to 5), as studied in this work, is sufficient to capture the
information provided by the SMR predictor on C3 and
C4 Laplacian derivations (needing a total of 10 channels).
This result suggests that 2 channels, in particular C3 and
C4, are enough to compute MEANSP, saving setup time.

D. Threshold to predict good performance
The scatter plots in Fig.6 show that for both MEANSP

and SMR predictors, poor performance classification is
unreliable, i.e. low predictor values are not representative
of poor performance. The reasons of low predictor values
for good accuracy are discussed in [20]. They suggest that
some participants can control BCI by means of the peri-
imagery Event-Related Synchronization phenomenon in-
stead of the Desynchronization effect, that is far more com-
mon. This would imply that a low SNR of the sensorimotor
rhythms could still allow obtaining good performances. In
our case, another reason might be related to a low SNR
of oscillations in either the µ or the β frequency bands,
underestimating the level of cross-frequency synchrony in
those participants (see Fig.5 of [36]).

Regarding the classification of subjects achieving more
than 70% of accuracy, in the same figure it is shown
that as the precision increases, MEANSP can retain better
recall percentages than the SMR predictor. This means
that good performers are better identified by MEANSP
rather than by the SMR indicator. Furthermore, very
high SMR values might also be obtained by subjects who
performed worse than 70% (see the precision drop in
Fig.6b caused by an outlier). It is apparent that adding
cross-frequency related information to the predictor helps
identifying good performers by ensuring the sensorimotor
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origin of the oscillations [35]. MEANSP might discard
artefactual signals (e.g. occipital oscillations), reducing the
occurrence of outliers for high predictor values.

Thus, although none of the two predictors can actually
predict whether a person will perform worse than 70% of
accuracy (low predictor values are not representative of
low accuracy), MEANSP is a better option than SMR to
select participants based on good predicted performance.

In general, the stratification of participants on the basis
of BCI predictors is important not only in the context of
BCI, but also when considering its clinical applications
(e.g. stroke [51]–[53]). In this case, motor rehabilitation
with BCI may require many sessions. Therefore, one can
primarily focus on patients who have a potential to use
and benefit from sensorimotor BCI. In particular, when
a system delivers complex neurofeedback by means of
robotic arms or exoskeletons, high predictor values would
indicate that the patient is likely to perform well. In the
case of low predictor values, the clinician may carry out
additional tests or specific training with simpler paradigms
before deciding whether the patient will benefit from a
complex BCI rehabilitation system. Furthermore, addi-
tional rehabilitation techniques such as non-invasive brain
stimulation can also be considered for these patients.

VIII. Conclusion
MEANSP is a novel predictor to assess SMR-based BCI

performance. It finds mixtures of µ-β synchronized chan-
nels, optimizing the sensorimotor origin of the estimated
SNR. It is easily calculated with just 2 minutes of data,
requiring only the provided SMR normalization limits,
together with the NID algorithm and the SMR predictor.

We evaluated MEANSP with two large-scale datasets in
different settings regarding the number of channels used.
For each of them, we provided the optimal location of
EEG electrodes. In all cases, MEANSP performed similar
or significantly better than other benchmarked predictors.
Moreover, MEANSP proved to be robust even when only
two channels were available, showing that C3 and C4
are sufficient to obtain reliable results. Lastly, we showed
that MEANSP can robustly detect good BCI performers.
The provided precision-recall curves of MEANSP allow the
selection of thresholds that can be used in future studies.

Acknowledgments
C.V. was supported by the Spanish Ministry of Research

and Innovation PID2020-118829RB-100, Diputacion Foral
de Gipuzkoa (DFG) Brain2Move project, DFG Neurocog
Project, and Ikerbasque. This research was also supported
by the Basque Government through the BERC 2022-
2025 program and Funded by the Spanish State Research
Agency through BCBL Severo Ochoa excellence accredi-
tation CEX2020-001010/AEI/10.13039/501100011033.

References
[1] M. Lotze and U. Halsband, “Motor imagery,” Journal of

Physiology-paris, vol. 99, no. 4-6, pp. 386–395, 2006.

[2] J. Decety, “The neurophysiological basis of motor imagery,”
Behavioural brain research, vol. 77, no. 1-2, pp. 45–52, 1996.

[3] G. Pfurtscheller and C. Neuper, “Motor imagery activates pri-
mary sensorimotor area in humans,” Neuroscience letters, vol.
239, no. 2-3, pp. 65–68, 1997.

[4] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. L. Da Silva,
“Mu rhythm (de) synchronization and EEG single-trial classifi-
cation of different motor imagery tasks,” NeuroImage, vol. 31,
no. 1, pp. 153–159, 2006.

[5] C. Park, D. Looney, N. ur Rehman, A. Ahrabian, and D. P.
Mandic, “Classification of motor imagery BCI using multi-
variate empirical mode decomposition,” IEEE Transactions on
neural systems and rehabilitation engineering, vol. 21, no. 1, pp.
10–22, 2012.

[6] H.-J. Hwang, K. Kwon, and C.-H. Im, “Neurofeedback-based
motor imagery training for brain–computer interface (BCI),”
Journal of neuroscience methods, vol. 179, no. 1, pp. 150–156,
2009.

[7] C. Vidaurre and B. Blankertz, “Towards a cure for BCI illiter-
acy,” Brain topography, vol. 23, no. 2, pp. 194–198, 2010.

[8] B. Z. Allison and C. Neuper, “Could anyone use a BCI?” in
Brain-computer interfaces. Springer, 2010, pp. 35–54.

[9] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and
G. Pfurtscheller, “How many people are able to operate an EEG-
based brain-computer interface (BCI)?” IEEE transactions on
neural systems and rehabilitation engineering, vol. 11, no. 2, pp.
145–147, 2003.

[10] M. C. Thompson, “Critiquing the concept of BCI illiteracy,”
Science and engineering ethics, vol. 25, no. 4, pp. 1217–1233,
2019.

[11] C. Vidaurre, C. Sannelli, K.-R. Müller, and B. Blankertz, “Co-
adaptive calibration to improve BCI efficiency,” Journal of
Neural Engineering, vol. 8, no. 2, p. 025009, 2011.

[12] C. Sannelli, C. Vidaurre, K.-R. Müller, and B. Blankertz, “A
large scale screening study with a SMR-based BCI: Categoriza-
tion of BCI users and differences in their SMR activity,” PLOS
ONE, vol. 14, no. 1, pp. 1–37, 01 2019.

[13] M. Ahn and S. C. Jun, “Performance variation in motor imagery
brain–computer interface: a brief review,” Journal of neuro-
science methods, vol. 243, pp. 103–110, 2015.

[14] A. B. Randolph, “Not all created equal: individual-technology
fit of brain-computer interfaces,” in 2012 45th Hawaii Interna-
tional Conference on System Sciences. IEEE, 2012, pp. 572–
578.

[15] A. B. Randolph, M. M. Jackson, and S. Karmakar, “Individual
characteristics and their effect on predicting mu rhythm modu-
lation,” Intl. Journal of Human–Computer Interaction, vol. 27,
no. 1, pp. 24–37, 2010.

[16] A. Vuckovic and B. A. Osuagwu, “Using a motor imagery
questionnaire to estimate the performance of a brain–computer
interface based on object oriented motor imagery,” Clinical
Neurophysiology, vol. 124, no. 8, pp. 1586–1595, 2013.

[17] W. Burde and B. Blankertz, Is the locus of control of rein-
forcement a predictor of brain-computer interface performance?,
2006, vol. 2006.

[18] E. M. Hammer, S. Halder, B. Blankertz, C. Sannelli, T. Dick-
haus, S. Kleih, K.-R. Müller, and A. Kübler, “Psychological
predictors of SMR-BCI performance,” Biological psychology,
vol. 89, no. 1, pp. 80–86, 2012.

[19] C. Sannelli, M. Braun, M. Tangermann, and K.-R. Müller,
“Estimating noise and dimensionality in BCI data sets: Towards
illiteracy comprehension,” 2008.

[20] B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler,
K.-R. Müller, G. Curio, and T. Dickhaus, “Neurophysiologi-
cal predictor of SMR-based BCI performance,” Neuroimage,
vol. 51, no. 4, pp. 1303–1309, 2010.

[21] M. Ahn, H. Cho, S. Ahn, and S. C. Jun, “High theta and
low alpha powers may be indicative of BCI-illiteracy in motor
imagery,” PloS one, vol. 8, no. 11, p. e80886, 2013.

[22] M. Ahn, S. Ahn, J. H. Hong, H. Cho, K. Kim, B. S. Kim, J. W.
Chang, and S. C. Jun, “Gamma band activity associated with
BCI performance: simultaneous MEG/EEG study,” Frontiers in
human neuroscience, vol. 7, p. 848, 2013.

[23] S. Halder, D. Agorastos, R. Veit, E. M. Hammer, S. Lee,
B. Varkuti, M. Bogdan, W. Rosenstiel, N. Birbaumer, and
A. Kübler, “Neural mechanisms of brain–computer interface
control,” Neuroimage, vol. 55, no. 4, pp. 1779–1790, 2011.

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3339612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12

[24] S. Halder, B. Varkuti, M. Bogdan, A. Kübler, W. Rosenstiel,
R. Sitaram, and N. Birbaumer, “Prediction of brain-computer
interface aptitude from individual brain structure,” Frontiers in
human neuroscience, vol. 7, p. 105, 2013.

[25] L. Acqualagna, L. Botrel, C. Vidaurre, A. Kübler, and
B. Blankertz, “Large-scale assessment of a fully automatic co-
adaptive motor imagery-based brain computer interface,” PloS
one, vol. 11, no. 2, p. e0148886, 2016.

[26] H.-I. Suk, S. Fazli, J. Mehnert, K.-R. Müller, and S.-W. Lee,
“Predicting BCI subject performance using probabilistic spatio-
temporal filters,” PloS one, vol. 9, no. 2, p. e87056, 2014.

[27] R. Zhang, P. Xu, R. Chen, F. Li, L. Guo, P. Li, T. Zhang, and
D. Yao, “Predicting inter-session performance of SMR-based
brain–computer interface using the spectral entropy of resting-
state EEG,” Brain topography, vol. 28, no. 5, pp. 680–690, 2015.

[28] C. Vidaurre, S. Haufe, T. Jorajuría, K.-R. Müller, and V. V.
Nikulin, “Sensorimotor functional connectivity: A neurophysio-
logical factor related to BCI performance,” Frontiers in Neuro-
science, vol. 14, 2020.

[29] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hal-
lett, “Identifying true brain interaction from EEG data using
the imaginary part of coherency,” Clinical neurophysiology, vol.
115, no. 10, pp. 2292–2307, 2004.

[30] M. Lee, J.-G. Yoon, and S.-W. Lee, “Predicting motor imagery
performance from resting-state EEG using dynamic causal mod-
eling,” Frontiers in human neuroscience, vol. 14, p. 321, 2020.

[31] M. Kwon, H. Cho, K. Won, M. Ahn, and S. C. Jun, “Use
of both eyes-open and eyes-closed resting states may yield a
more robust predictor of motor imagery BCI performance,”
Electronics, vol. 9, no. 4, p. 690, 2020.

[32] J. T. Roscoe, Fundamental research statistics for the behavioral
sciences [by] John T. Roscoe, 1975.

[33] H. Carlqvist, V. V. Nikulin, J.-O. Strömberg, and T. Brismar,
“Amplitude and phase relationship between alpha and beta
oscillations in the human electroencephalogram,” Medical and
Biological Engineering and Computing, vol. 43, no. 5, pp. 599–
607, 2005.

[34] V. V. Nikulin and T. Brismar, “Phase synchronization between
alpha and beta oscillations in the human electroencephalo-
gram,” Neuroscience, vol. 137, no. 2, pp. 647–657, 2006.

[35] N. Schaworonkow and V. V. Nikulin, “Spatial neuronal syn-
chronization and the waveform of oscillations: Implications for
EEG and MEG,” PLoS Computational Biology, vol. 15, no. 5,
p. e1007055, 2019.

[36] M. J. Idaji, K.-R. Müller, G. Nolte, B. Maess, A. Villringer,
and V. V. Nikulin, “Nonlinear interaction decomposition (NID):
A method for separation of cross-frequency coupled sources in
human brain,” NeuroImage, vol. 211, p. 116599, 2020.

[37] B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli,
S. Haufe, C. Maeder, L. E. Ramsey, I. Sturm, G. Curio et al.,
“The berlin brain–computer interface: non-medical uses of BCI
technology,” Frontiers in neuroscience, p. 198, 2010.

[38] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including independent
component analysis,” Journal of neuroscience methods, vol. 134,
no. 1, pp. 9–21, 2004.

[39] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[40] M. Hebiri and J. Lederer, “How correlations influence lasso
prediction,” IEEE Transactions on Information Theory, vol. 59,
no. 3, pp. 1846–1854, 2012.

[41] K. Sjöstrand, L. H. Clemmensen, R. Larsen, G. Einarsson,
and B. K. Ersbøll, “SpaSM: A MATLAB toolbox for sparse
statistical modeling,” Journal of Statistical Software, vol. 84,
no. 10, 2018.

[42] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least
angle regression,” The Annals of statistics, vol. 32, no. 2, pp.
407–499, 2004.

[43] S. Rosset and J. Zhu, “Piecewise linear regularized solution
paths,” The Annals of Statistics, pp. 1012–1030, 2007.

[44] V. V. Nikulin, G. Nolte, and G. Curio, “A novel method for
reliable and fast extraction of neuronal EEG/MEG oscillations
on the basis of spatio-spectral decomposition,” NeuroImage,
vol. 55, no. 4, pp. 1528–1535, 2011.

[45] A. Kübler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinter-
berger, and N. P. Birbaumer, “Brain-computer communication:

self-regulation of slow cortical potentials for verbal communica-
tion,” Archives of physical medicine and rehabilitation, vol. 82,
no. 11, pp. 1533–1539, 2001.

[46] X.-L. Meng, R. Rosenthal, and D. B. Rubin, “Comparing cor-
related correlation coefficients.” Psychological bulletin, vol. 111,
no. 1, p. 172, 1992.

[47] S. Holm, “A simple sequentially rejective multiple test proce-
dure,” Scandinavian journal of statistics, pp. 65–70, 1979.

[48] M. J. Idaji, “NID,” 2021. [Online]. Available:
https://github.com/minajamshidi/NID/

[49] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wol-
paw, “Spatial filter selection for EEG-based communication,”
Electroencephalography and clinical Neurophysiology, vol. 103,
no. 3, pp. 386–394, 1997.

[50] C. Vidaurre, J. Pascual, A. Ramos-Murguialday, R. Lorenz,
B. Blankertz, N. Birbaumer, and K.-R. Müller, “Neuromuscular
electrical stimulation induced brain patterns to decode motor
imagery,” Clinical Neurophysiology, vol. 124, no. 9, pp. 1824–
1834, 2013.

[51] M. Sebastián-Romagosa, W. Cho, R. Ortner, N. Murovec,
T. Von Oertzen, K. Kamada, B. Z. Allison, and C. Guger, “Brain
computer interface treatment for motor rehabilitation of upper
extremity of stroke patients—a feasibility study,” Frontiers in
Neuroscience, vol. 14, p. 591435, 2020.

[52] M. A. Cervera, S. R. Soekadar, J. Ushiba, J. d. R. Millán,
M. Liu, N. Birbaumer, and G. Garipelli, “Brain-computer in-
terfaces for post-stroke motor rehabilitation: a meta-analysis,”
Annals of clinical and translational neurology, vol. 5, no. 5, pp.
651–663, 2018.

[53] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan,
T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas et al.,
“Think to move: a neuromagnetic brain-computer interface
(BCI) system for chronic stroke,” Stroke, vol. 39, no. 3, pp. 910–
917, 2008.

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3339612

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


