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A B S T R A C T   

A system based on near-infrared (NIR) spectroscopy has been developed for the in-line control of the composition 
of the milk used as raw material for yoghurt production to control the content of protein and fat in the final 
product, and, therefore, to reduce variability in the production process. Firstly, after selecting the appropriate 
method for preprocessing NIR data, Partial Least Squares Regression models were built to predict fat and protein 
content in milk, obtaining good performances. The variance explained of y-block in prediction (R2P) was 0.99 
and 0.80, while the Root Mean Square Error of Prediction (RMSEP), was 0.26 and 0.16 for fat and protein, 
respectively. With those models, it was possible to determine the fat and protein contents in milk in real time, 
and therefore, the quantity of milk powder and cream added in the manufacturing process of yoghurt could be 
readjusted. The presented strategy allows the improvement of the homogeneity of the final product, reducing the 
variability of the nutritional values in more than 70% with respect to the traditional recipe, and also meet the 
target values according to yoghurt producers for fat and protein content, that is, 10% of fat and 5% of protein.   

1. Introduction 

Milk and its derivatives, such as yoghurt, are an essential part of the 
human diet, with a considerable increase in its global production over 
the years, according to the Food and Agriculture Organization of the 
United Nations (FAO) (FAO, 2022a). The worldwide estimated pro
duction has increased from 466000 million kilos in 1980 to around 
843000 million kilos in 2018, which has a considerable impact from an 
economic point of view. Due to its nutrient content, nutritional quality, 
and energy supply, milk is a key food in the diet at any age. Its nutri
tional relevance lies fundamentally in its lipidic and protein fraction (fat 
constitutes approximately 3% and 4% of cow milk while protein is 
around 3.5%) (FAO, 2022b). Therefore, among other parameters, fat 

and protein content in commercialized milk are essential since it will be 
decisive in its nutritional value. 

Milk has been analyzed for years using conventional methods such as 
the Gerber (AOAC Official Method, 2000; ISO 19662:2018, 2018) and 
Kjeldahl (ISO, 8968–1:2014|IDF 20–1:2014, 2014) methods for fat and 
protein content determination, respectively. The International Dairy 
Federation (IDF) and the International Organization for Standardization 
(ISO) have collaborated on all standardizations, relating these two 
methods of analysis and sampling for milk and its derivatives to improve 
consumer protection warranties. These reference methods have been 
proven extremely useful and continue to play a significant role in the 
dairy industry nowadays because of their good repeatability, among 
many other characteristics (Margolies and Barbano, 2018). Despite all of 
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that, their use is decreasing, as they are time-consuming, and they can 
determine just one parameter at a time compared with some other 
instrumental techniques. For instance, chromatographic techniques can 
be another option (Buzás et al., 2022; Delmonte et al., 2012; Sukhija and 
Palmquist, 1988). However, they usually involve long analysis times, 
due to the necessity of sample preparation steps like extraction and 
preconcentration, followed by a separation process, which significantly 
increases the time and the economic costs of the analysis (Nielsen, 
2010). 

In that sense, spectroscopic techniques can be the best option 
considering their easy and fast handling and the reduction of analysis 
time and use of chemical products, which imply environmental and 
economic advantages. Some of the most used spectroscopic techniques 
for measuring milk or derived dairy products are visible/near-infrared 
(Vis/NIR) spectroscopy (Aernouts et al., 2011; Melenteva et al., 2016; 
Surkova et al., 2019), Raman spectroscopy (Mazurek et al., 2015), 
middle-infrared (MIR) spectroscopy (Soyeurt et al., 2006), and 
near-infrared (NIR) spectroscopy (Bittante et al., 2022; Melfsen et al., 
2012; Růžičková and Šustová, 2006). In this work, a NIR spectrometer 
has been implemented, allowing the simultaneous and real-time deter
mination of fat and protein content in milk flow. 

NIR spectroscopy was accepted in 2007 as an official analysis 
method by AOAC to measure fat and protein content in certain types of 
foods, like meat (AOAC, 2007). Regarding milk and dairy, NIR has also 
been accepted by ISO to measure fat and protein contents in milk and 
dairy products (ISO 21543:2020, 2020). NIR enables non-destructive 
measurements with no sample preparation (which implies economic, 
temporary, and environmental advantages) and can be used in-line in 
reflectance mode, allowing the determination of multiple parameters 
simultaneously with no specific installation or derived stream as it is 
normally done by measuring in transmittance mode. In this way, 
real-time monitoring of milk quality parameters is achieved without 
altering the production line. As the NIR spectral bands are less defined, 
and their interpretation poses an extra difficulty, advanced multivariate 
analysis methods must be applied to quantify the abovementioned 
properties. In this regard, the workhorse regression method has been 
Partial Least Squares Regression (PLSR) (Geladi and Kowalski, 1986; 
Haaland and Thomas, 1988). Showing that the combination of NIR and 
chemometrics offered such good results in quantifying properties of the 
milk and dairy products, the International Standard ISO 21543:2020 
“Milk Products-Guidelines for the application of NIR spectrometry” (ISO 
21543:2020, 2020) establishes the performance criteria of this type of 
analysis with multivariate calibration techniques. 

Several studies proposed methods that predict fat and protein con
tent in milk using NIR and PLSR (Melendreras et al., 2022; Yang et al., 
2020). These investigations were focused on the reliable determination 
of some milk attributes or the optimization of portable devices. In this 
work, the determination of fat and protein in milk samples is proposed 
for the posterior improvement over the real-time control of the yoghurt 
manufacturing process. 

One of the objectives of dairy producers is to manufacture yoghurts 
with a final percentage of 10% of fat and 5% of protein. To do that with 
the usual recipe, the quantity of commercial cream (with a known fat 
content), milk powder (with a known protein content) and raw milk that 
needs to be mixed to get a final product with the aforementioned 
nutritional values has to be calculated based on the fat and protein 
contents of the raw milk. They used the fat and protein contents from the 
previous batches of raw milk to calculate those contents, getting a final 
product with considerable variability. As cow-milk nutritional values 
depend on a big variety of factors (such as food ingestion, lactation 
status, season of the year, age, illnesses…), and as the employed milk is a 
mixture coming from many individual animals, nutritional values of the 
used milk are likely not to be similar to those of the previous batch (FAO, 
2022b). This justifies the necessity of determining the fat and protein 
contents in real time in raw milk to adjust the quantities of the in
gredients and homogenize the final product. This is, to avoid large 

differences of fat and protein contents between yoghurt batches. In this 
work it was shown that the implementation of in-line NIR reflectance 
measurements in the milk supply chain leads to a substantial accuracy 
improvement in the homogenization of the final product. Therefore, a 
standardization in the manufacturing process of yoghurts is achieved, 
attaining a higher quality and reducing costs. 

2. Materials and methods 

2.1. Milk and yoghurt samples 

The experimental work of this investigation has been carried out in a 
dairy factory in Spain (Dulce Grado S.L). Milk supplies arrive daily to the 
factory, coming from different farms and different suppliers, and are 
then stored in tanks. As they have different origin, as mentioned in the 
introduction section, the nutritional value of these milk samples will 
vary according to that. The experimental milk measurements were made 
in-line in this factory in a five-month period, so the greatest possible 
variability between milk samples and their nutritional values could be 
explored and recorded as spectra. Table S1 in the supplementary ma
terial shows the number of samples measured each day during the five- 
month period. This was made to take into account the different condi
tions that could affect the final product. The fat content ranges in milk 
samples between 2.65% and 4.06%; while the protein content ranges 
between 3.17% and 3.46% (w/w). 

On the other hand, a total of 6 yoghurt samples were manufactured 
based on the amount of fat and protein calculated in-line with the 
models proposed below. Each batch of yoghurt implies 0.2 m3 of milk 
(tank volume). Three batches of yoghurt were manufactured taking two 
samples per batch and their corresponding spectra, which implies a total 
of 6 yoghurt samples, but 0.6 m3 of milk. By knowing the fat and protein 
content of milk in real time, the quantities of cream (to adjust the 
amount of fat) and milk powder (to adjust the the amount of protein) in 
the 6 yoghurts were modified, since they depend on the fat and protein 
of the raw milk. These yoghurts were sent to an external laboratory for 
their analysis, where the fat content was determined using the gravi
metric method and the amount of protein was calculated using the 
Kjeldahl method (ISO, 8968–1:2014|IDF 20–1:2014, 2014). 

2.2. NIR spectroscopy 

The procedure was made with the AONIR integrated solution for 
real-time NIR measurments (AOTECH, 2023), including a NIR sensor 
coupled to a control and model software platform, which allows 
recording the NIR diffuse reflectance spectra (from 908 to 1676 nm) of 
50 milk samples in real time. The sensor was configured in such a way 
that the best spectra were obtained with a spectrum reading interval of 
one second, and 50 readings per spectrum with an integration time of 

Fig. 1. Measuring and sampling system for milk samples. The NIR sensor (blue 
cylinder) and the outlet for sampling (indicated with a red circle) are installed 
in the pipe where the milk flows from the storage tank to the pasteuriza
tion system. 
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0.012 s. Each sample was measured in such a way that both sampling 
and NIR measurements were performed simultaneously without any 
specialized member. Fig. 1 represents the measurement and the sam
pling system whereas Figure S1 in the supplementary material shows the 
AONIR software output. Daily milk production is stored in large tanks, 
from which the milk flows through pipes to the pasteurization system. 
Through that flow, samples are collected and measured. Both the NIR 
sensor in Fig. 1 (blue cylinder) and the outlet for sampling (indicated 
with a red circle) are installed in the pipe. Once the pipe is filled, a NIR 
spectrum is manually recorded and immediately after that, 40 mL of 
milk is taken to an external laboratory to be analyzed with MILKOSCAN, 
a certified reference method by AOAC (AOAC, 2016) and ISO and IDF 
(ISO, 9622:2013|IDF 141:2013, 2013). On the other hand, Figure S1 
shows the output of the AONIR software, giving as an example one 
spectra of milk recorded during this work. 

With the 50 samples, calibration models were made to model the 
milk fat and protein content. Afterwards, six new samples were 
measured and used to make yoghurts whose fat and protein were also 
measured by certified laboratories. 

2.3. Multivariate regression models 

To make the reading of this paper easier, the elements that are going 
to be used in it are explained below. The relation between the collected 
NIR spectra (X) and the correspondent responses (fat and protein con
tent, y) is established using a PLSR. This algorithm builds linear com
binations of X and y, maximizing their covariance, and finding a new set 
of latent variables (LVs) in X-block and y-block maximally related to 
them (Geladi and Kowalski 1986). 

PLSR is especially useful when the predictors are highly collinear or 
when the number of predictors is higher than the number of observa
tions, being widely used in spectroscopic applications (Haaland and 
Thomas 1988). Nevertheless, to build an optimalmodel, data must be 
properly preprocessed to reduce as much unwanted variations as 
possible, such as instrumental or thermal noise, sample background or 
light scattering effects as these effects are more prominent in diffuse 
reflectance measurements than in transmittance measurements. The 
most widely used preprocessing methods can be divided in 
scatter-correction methods and spectral derivatives, (Chu et al., 2022; 
Mas et al., 2020; Rinnan et al., 2009; Schoot et al., 2020). Within the 
first, the Multiplicative Scatter Correction (MSC) and the Standard 
Normal Variate (SNV) were the ones used in this work, whereas 
Savitzky-Golay (S-G) derivative calculation was applied as the spectral 

derivative method. Data were also mean-centred (MC) before modelling. 
The SNV normalization is mainly used to correct light scattering 

effects and changes in the optical path on the NIR reflection spectra (Chu 
et al., 2022; Rinnan et al., 2009; Schoot et al., 2020) although it could be 
sensitive to noisy entries in the spectrum, since it does not involve a least 
square fitting in their parameter estimations. SNV mathematical details 
can be consulted in the references indicated above. 

The purpose of Multiplicative Scatter Correction (MSC) is practically 
the same as SNV, this is, to remove the effects of particle distribution and 
size. For a dataset formed by individual spectra X (1 x m), its average 
spectrum (X) is calculated. Next, a linear regression between each X and 
X is performed, obtaining b and b0 coefficients by least squares. Then, X 
is corrected by subtracting b0 and dividing by b. MSC is performed 
assuming independence from the wavelength and the variations in the 
composition of samples. It is proved to be correlated with SNV, in fact, 
the preprocessing results of both methods should be analogous (Chu 
et al., 2022). 

The S-G filter adjusts a polynomial to a moving window through the 
wavelength points of a spectrum using least squares, then, the central 
point of the window is predicted using the fitted equation, which can be 
mathematically derived before the prediction. As the equation does not 
fit perfectly to the data, this filter has a smoothing effect apart from the 
derivation. S-G can remove most of baseline interferences and back
ground noise, but proper selection of the window width, the derivative 
order and the degree of the polynomial must be made. If the window 
width is too small, the noise is augmented, but, if the difference width is 
too large, the spectrum becomes excessively smoothed, losing infor
mation on the peaks of interest (Chu et al., 2022; Rinnan et al., 2009). 

To selecting the appropriate number of LVs Venetian blinds cross- 
validation method was employed in every case considering the 
ordering of the samples, the number of objects and the presence of 
replicate samples in the dataset. The choice of the optimal number of 
LVs for each preprocessing was obtained by comparing the Root Mean 
Square Error in Calibration (RMSEC) and the Root Mean Square Error in 
Cross-validation (RMSECV). The optimal number of LVs was decided by 
a threshold in the rate of change of the RMSECV between two consec
utive ranks. 

Permutation tests are another way to help identify an overfit model 
as well as provide a probability that the given model is significantly 
different from one built under the same conditions but on random data 
(Tools: Permutation Test-Eigenvector Research Documentation, 2023). 
These tests involve repeatedly and randomly reordering the y-block, in 
such a way that the model is rebuilt after each reordering with the 

a) b)

Fig. 2. a) NIR spectra of 50 samples of milk. b) Preprocessed NIR spectra of 50 samples of milk using SNV and S-G with a window width of 11 points using a second- 
degree polynomial and a 2nd derivative. 
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current modelling settings. In this case, three tests were used, the Wil
coxon test, the signed test and the randomisation test. If the modeling 
conditions are over-fitted, they will often provide a fit to random data 
which is better than would be expected. If the p-value is greater that 
0.05, the model will be probably overfitted at a 95% confidence level. 

After the PLSR models were built, to demonstrate their veracity, the 
respective accuracy lines (the predicted content with the PLSR models 
versus the true concentrations) were built. On the one hand, for the case 
of protein, the slope is 0.9788 whereas the intercept is 0.0708, and 
syx= 0.0138. On the other hand, for the case of fat, the slope is 0.9598 
while the intercept is 0.1474, and syx= 0.0617. Knowing that the ideal 
situation of an unbiased model is when the slope is equal to one and the 
intercept zero, the centers of the ellipses, represent the value of the slope 
and the intercept of the models. The region defined within the ellipse 
corresponds to the confidence region calculated, in this work, at the 95% 
confidence level. 

2.4. Software 

PLS Toolbox v8.8.1 (Wise et al., 2022) for use with MATLAB 
(R2020b) (MATLAB, 2022) was employed for fitting the PLSR models. A 
homemade program on MATLAB was used for calculate the confidence 
ellipses. 

3. Results and discussion 

3.1. NIR spectra of milk 

The obtained spectra are represented in Fig. 2a. Related to water 
bands, in the milk spectra of the samples, three main bands were 
observed: one at around 980 nm, which corresponds to the second 
overtone of the symmetric and the asymmetric stretch of the water 
molecule, a second one at approximately 1200 nm, which corresponds 
to the first overtone of the symmetric stretch, the bending mode, and the 
asymmetric stretch, and the third one, at nearly 1450 nm, that corre
sponds to the first overtone of the symmetric and asymmetric stretch of 
the water molecule (Weyer, 2007). It can also be observed a small peak 
around 1300–1350 nm that correspond to the first overtone of the 
symmetric stretch of the water molecule. In the case of the protein 
content, the characteristic bands in NIR will be those associated with the 
functional groups that define the aminoacids that conform the proteins, 
such as the N-H and the -COOH groups. Therefore, the most relevant 
bands are those corresponding to the first and second overtones of N-H 
stretching (around 1500 nm and between 973 and 1020 nm, respec
tively). Also, the characteristic bands that correspond to the first N-H 
overtone of the symmetric and asymmetric combination stretch for 
primary amides (1470 nm) (Weyer, 2007). The band around 930 nm 
could indicate the third overtone of C-H stretch vibrations of tri
glycerides or the third overtone of the O-H bond (Aernouts et al., 2011). 

Fig. 2b shows the preprocessed spectra performing the SNV and the 
2nd derivative (as this is the optimal preprocessing for the models 
employed to predict fat and protein contents in milk). With this repre
sentation, the most important and previously mentioned bands are 
highlighted, and if they are really related to fat and protein content, 
should be similar to the peaks of the loading values that will be obtained 
with the final models used to predict fat and protein. 

3.2. PLSR calibration models for fat and protein 

The figures of merit obtained for the PLSR models built with each 
considered preprocessing method are summarized in Table 1. Consid
ering the previous reasoning in the Section 2.2, the selected pre
processing method was SNV combined with S-G with a window width of 
11 points using a second-degree polynomial and a 2nd derivative for 
both fat and protein. Data were mean-centred before modelling. The 
number of LVs was chosen using the venetian blinds cross-validation Ta
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procedure, with six LVs being optimal for the fat prediction model and 
nine for the protein. The global percentage of explained variance in the 
calibration set is 96% for fat and 98% for protein, while in the CV set are 
91% and 86%, respectively. The absence of overfitting has been evalu
ated by doing three permutation tests (50 iterations) using the residuals 
in CV and all p-values of the permutation test were lower that 0.05. 

Fig. 3a represents the accuracy line for protein model and Fig. 3b 
shows the correspondent loadings. Observing Fig. 3b, the LV with higher 
positive correlation with the diffuse reflectance NIR spectra are the first 
(73% of the X-block variance) and the second one (11% of the X-block 
variance). The first LV is more related with water content since the 
bands at aproximately 1150 nm and 1350 nm correspond to the first 
overtone of the symmetric stretch, the bending mode and the asym
metric stretch of the water molecule. In the second LV, a gentle peak is 
observed at approximately 980 nm, that, would correspond to the N-H 
stretch second overtone, surely related with the presence of proteins. 
The bands corresponding to the first and second overtones of N-H 
stretching can be seen around 1500 nm and, the characteristic bands 
that correspond to the first N-H overtone of the symmetric and asym
metric combination stretch for primary amides (1470 nm) (Weyer, 
2007). Besides, high negative loadings are observed at around 1450 nm 
in the second LV that emphasize that the second variable is not related 
with water content since that wavelength corresponds to the first 

overtone of the symmetric and asymmetric stretch of the water 
molecule. 

On the other hand, Fig. 3c represents the results for fat model. 
Observing Fig. 3d, the fat loadings for the first and second LV, explain 
34% and 30% of the X-block variance, respectively, being the most 
important ones. It appears that the loading weights that contribute most 
to the PLSR models are mainly positive. That indicates a positive cor
relation between fat composition and the diffuse reflectance of milk 
samples. 

Fig. 4 shows the confidence ellipses at a significant level of 95%, 
demonstrating the veracity of both regression models by means of the 
accuracy lines. As it can be seen, the confidence region includes one for 
the slope and zero for the intercept, respectively, so it can be affirmed 
that the model is not biased, neither in a proportional way nor in a 
constant way (slope=1). Also, it can be observed that the protein pre
diction model is more accurate than the the fat prediction model, 
because there is a larger residual standard deviation for fat (and there
fore, the ellipse is also larger). 

With all these results, it can be found the model built for the deter
mination of fat content had the best performance, while the variance 
explained by the protein model is lower. A possible explanation of this 
lies in the size of fat particles in milk, since it is similar to the wave
lengths of the spectra (around 1000 nm) (Bogomolov et al., 2013), the 

a) b)

c) d)

Fig. 3. a) Accuracy line for protein model. b) Loadings of the first two LVs of protein model. In blue the loadings of the first LV and, in orange the loadings of the 
second LV. c) Accuracy line for fat model. d) Loadings of the first two LVs of fat model. In green the loadings of the first LV and, in purple the loadings of the 
second LV. 
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fat particles will have stronger capacity to reflect light. On the other 
hand, since the size of protein micelles, like the casein present in the 
milk, is normally lower than 200 nm (Ruettimann and Ladisch, 1987), 
the scattering is dependent on the wavelength, therefore, the intensity 
will decrease with the energy of light. 

3.3. In-line validation of protein and fat content prediction models 

With the models proposed in the previous section, new measure
ments of fat and protein were made on six samples of flowing milk as a 
proof of concept. The results obtained for fat and protein in milk with 
AONIR along with the lab results using a reference method (FOSS Mil
koscan™ FT equipment) can be found in Table 2. With that data, fit or 
reference values to predicted values (R2) is similar to the cross- 
validation predictions for the fat model, while in the case of protein 
the external validation fit is a bit lower. 

3.4. Correction in the yoghurt manufacture 

As the measurements were made in-line and the results of fat and 
protein content were obtained in real time, yoghurt manufacturing was 
made according to those results instead of using the usual recipe, which 
uses values from previous batches. This made possible to reduce the 
variability in the manufacturing process and to obtain yoghurt with 
contents of fat and protein that are more in accordance with what is 

desired. 
Table 3 shows the mean values and the standard deviations for fat 

and protein content obtained with the reference method in six different 
samples using the traditional recipe, both for milk and yoghurt. As the 
relative standard deviations (RSD) show, the variaton of fat and protein 
contents in yoghurt is considerable. 

Considering these results, a solution has been proposed based in in- 
line NIR diffuse reflectance and PLSR models. Once the problem with the 
variations in fat and protein content of yoghurt obtained using the 
original recipe was found, it has been considered that a homogenization 
of the final product and its nutritional values is neccesary. For this 
purpose, a proof of concept was carried out using six samples. Table 4 
represents on the one hand, the fat and protein content in milk calcu
lated in-line using diffuse NIR reflectance combined with the PLSR 
models developed in Section 3.2. With those results, the quantities of the 
ingredients (cream and milk powder) that needed to be added to 
manufacture yoghurts with the correct contents of fat and protein were 
calculated. On the other hand, fat and protein contents for the manu
factured yoghurts (that were calculated by gravimetry and using the 
kjeldahl method, respectively) are also represented. If the mean values 
of yoghurts in Table 3 are compared with those in the Table 4, it can be 
seen that they are similar for the yogurths, nevertheless, observing the 
standard deviation and the RSD values, it is clear that in the second case, 
they are smaller. In this way, a homogenization of the final product was 
achieved, getting similar values of nutritional content in the six yoghurt 
samples reducing the variability in fat content by 72% and by 75% in the 
case of protein. 

With data from Tables 3 and 4, an interval-based test is applied to 
decide the non-inferiority of the mean value of the percentage of fat and 
protein in relation to a target value (as aforementioned, one of the ob
jectives of dairy procedures is to manufacture yoghurts with a final 
percentage of 10% of fat and 5% of protein) (Ortiz, 2020). 

The null hypothesis of this test is µ - T < ΔL, where µ is the sample 
mean, T the target value and, ΔL the lower equivalence differencial, that 
is, the difference allowed to asses the non-inferiority. This non- 
inferiority test is designed to demonstrate that the mean value ob
tained with a procedure (reference method or new procedure) is not 
lower than a target value (10% in the case of fat and 5% for protein). In 

Fig. 4. 95% confidence level ellipse for fat and protein PLSR models. The cir
cles represent the slope and the intercept for the PLSR models, and the ellipse, 
its confidecnce interval at a 95% confidence level, in red for protein and in 
green for fat. 

Table 2 
Proof of concept. Fat and protein percentage in milk samples using a reference 
method and using AONIR with PLSR models. RMSEP, Root Mean Square Error in 
Prediction (RMSEP); R2P, variance explained of y-block in prediction.  

Sample Reference fat 
content (%) 

Predicted fat 
content with 
AONIR (%) 

Reference 
protein 
content (%) 

Predicted 
protein content 
with AONIR (%) 

1 3.74 3.92 3.10 3.32 
2 3.74 3.84 3.11 3.32 
3 2.02 2.52 3.20 3.33 
4 2.73 3.03 3.19 3.33 
5 3.91 4.04 3.29 3.46 
6 3.92 3.90 3.28 3.46 
RMSEP 0.26 0.16 
R2P 0.99 0.80  

Table 3 
Mean and standard deviation values for fat and protein contents obtained with of 
the usual recipe of yoghurts.  

Sample Fat content 
in milk 

Protein 
content in 
milk 

Fat content in 
yoghurt 

Protein content 
in yoghurt 

Mean (%) 4.31 3.24 8.85 4.40 
Standard 

deviation 
1.69 0.07 0.91 0.54 

RSD (%) 39 2 10 12  

Table 4 
Fat and protein percentage in raw milk and in yogurths for six samples to 
calculate the standard deviation in the nutritional content of the final product.  

Sample Fat content 
in milk (%) 

Protein 
content in 
milk (%) 

Fat content in 
yoghurt (%) 

Protein content 
in yoghurt (%) 

1 3.92 3.32 8.80 4.20 
2 3.84 3.32 8.50 4.40 
3 2.52 3.33 8.50 4.50 
4 3.03 3.33 8.50 4.60 
5 4.04 3.46 9.10 4.40 
6 3.90 3.46 8.90 4.50 
Mean (%) 3.54 3.37 8.72 4.43 
Standard 

deviation 
0.62 0.07 0.26 0.14 

RSD (%) 18 2 3 3  
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both cases ΔL has been fixed at 15% of the target value (ΔL= − 1.5 for fat 
and ΔL= − 0.75 for protein). When using this test procedure, non- 
inferiority may only be asserted if the p-value is less than 0.05. As can 
be seen in Table 5, only when the new procedure is applied, the non- 
inferiority has been demonstrated. 

These results show that the proof of concept, that needed a total 
ammount of milk of approximately 0.6 m3, might provide a promising 
application for the homogenization of yoghurts as a final product and 
the standardization of the manufacturing process. This can be consid
ered as an initial approach to analyze more samples and verify industrial 
variability by using and implementing control charts with more concrete 
specifications. 

4. Conclusions 

In this work, a real-time methodology was developed to reduce the 
manufacturing variability of yoghurts by quantifying fat and protein 
contents of the raw milk used to produce them. With this new approach, 
which can be easily automated, the nutritional properties of the final 
product (yoghurt) are homogenised, improving the standard method 
without the necessity of qualified staff for analysing the samples. In 
addition, the feasibility of using a NIR spectrometer combined with 
PLSR for this purpose was proved. The applied chemometrics strategy 
allowed the determination of fat and protein in real time with good 
accuracy, nevertheless, the calibration ranges used in this work are 
reduced since they respond to real ranges of the industrial process 
because the production process is already established in an industry and 
the variability of analytical parameters of sequential batches is small. 
Therefore, for future calibration maintenance, these ranges should be 
increased to the maximum extent possible, as is usually done in the 
pharmaceutical industry. In the case of milk/yoghurt, it is possible to 
dilute the samples to obtain lower concentrations or to concentrate them 
(adding powdered milk to modify the amount of protein, or cream in the 
case of fat). In general, this could improve the precision of the calibra
tions. The external validation was carried out using six yoghurt samples 
as a proof of concept, so further measurements are needed to a stronger 
validation in a future work. Yoghurt manufacturing standardization was 
accomplished proving that the proposed method can be successfully 
implemented in the dairy industry since it has been possible to reduce 
the variability between batches of yoghurt by up to 70% and also meet 
the target values according to yoghurt producers for fat and protein 
content, which are 10% of fat and 5% of protein. 
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