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ABSTRACT 

 

The main objective of this paper is to analyse the value of information contained in 

prices of options on the IBEX 35 index at the Spanish Stock Exchange Market. The 

forward looking information is extracted using implied risk-neutral density functions 

estimated by a mixture of two-lognormals and three alternative risk-adjustments: the 

classic power and exponential utility functions and a habit-based specification that 

allows for a counter-cyclical variation of risk aversion. Our results show that at four-

week horizon we can reject the hypothesis that between October 1996 and March 2000 

the risk-neutral densities provide accurate predictions of the distributions of future 

realisations of the IBEX 35 index at a four-week horizon. When forecasting through 

risk-adjusted densities the performance of this period is statistically improved and we 

no longer reject that hypothesis. All risk-adjusted densities generate similar forecasting 

statistics. Then, at least for a horizon of four-weeks, the actual risk adjustment does not 

seem to be the issue. By contrast, at the one-week horizon risk-adjusted densities do not 

improve the forecasting ability of the risk-neutral counterparts.  

 

 

 

 

 

 

Key words: risk-adjustment, option-implied densities, forecasting performance, risk 

aversion, Ibex 35.  

JEL: G10, G12. 

 2



 

1. Introduction 

Prices of European exchange-traded options on stock indices implicitly contain the risk-

neutral density (RND hereafter) which is a key component for risk-neutral valuation. In 

this context, prices are the present value at the risk-free rate of their expected payoffs 

calculated under the RND. When the market is dynamically complete it is well known 

that the RND can be recovered from the corresponding option prices using the insights 

on Breeden and Litzenberger (1978). In particular, the RND is proportional to the 

second derivative of the option pricing function with respect to the exercise.  

 

Noting that option prices should capture forward-looking distributions of the underlying 

assets, academic researchers and central banks have used implied RNDs to proxy the 

market expectations of the distribution of the underlying asset or to forecast future 

outcomes. They have the advantage relative to other historical time-series data that they 

are taken from a single point in time when looking toward expiration. Hence, they 

should be more responsive to changing expectations than competing alternatives. 

Unfortunately, in practice, there is no a continuum of exercise prices. Neither very low 

nor high exercises are available and, in any case, they are set at discrete intervals by 

market officials. This complicates the estimation of RND and, not surprisingly, 

numerous alternative parametric and non-parametric methods have been proposed in 

literature. Moreover, the existence of risk aversion means that RNDs will probably 

differ from the actual density from which realizations of returns are drawn. 

 

Interestingly most of these papers are concerned with the estimation and the ex-post 

assessment of the alternative RNDs as a way of forecasting the actual realizations of the 

underlying asset at expiration. Bliss and Panigirtzoglou (2002) and Bondarenko (2003) 

compare several competing procedures and conclude that nonparametric methods based 

on either the smoothed (spline) implied volatility smile and the positive convolution 

approximation seem to dominate the two-lognormal approach and other parametric 

techniques when estimating RNDs. Moreover, Anagnou, Bedendo, Hodges and 

Tompkins (2003) for the UK option market, Craig, Glatzer, Keller and Scheicher (2003) 

for the German stock option data, Bliss and Panigirtzoglou (2004) for the US and the 

UK option data, and Alonso, Blanco and Rubio (2005) for the Spanish option prices 

conclude that the RND is not an unbiased estimator of actual probability density 
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function. This may not be surprising given the risk-neutrality embedded in these 

estimates. In other words, these papers suggest that the forecasting differences arise 

from the risk aversion of the representative investor. In fact, by imposing a stationary 

utility function (a stationary risk aversion parameter), Anagnou, Bedendo, Hodges and 

Tompkins (2003) and Bliss and Panigirtzoglou (2004) test whether either power or 

exponential utility functions are improved forecasters of future values of the underlying. 

In general, they are not able to reject the null that implied risk-adjusted densities are 

unbiased forecasts of future outcomes. However, Bliss and Panigirtzoglou obtain a 

disturbing result in the sense that the implicit risk aversion parameter they estimate 

increases as market risk declines. This suggests a misspecification of the utility 

functions imposed in their paper and, as in the asset pricing literature, it points out 

towards alternative utility functions with habit persistence and where the risk aversion 

parameter is not theoretically linked to the elasticity of intertemporal substitution.  

 

This paper investigates the forecasting power of RNDs for alternative horizons of one 

and four weeks using exchange data of the European future options contract on the 

Spanish IBEX-35 index. Given the previous evidence reported by Alonso, Blanco and 

Rubio (2005) in which the predicting ability of RNDs estimated either by a mixture of 

two log-normals or splines is indistinguishable, we only report results from the 

parametric log-normal case. Moreover, given the estimation of a RND from a cross-

section of option prices with a given maturity, this work obtains the implicit risk 

adjustment that makes the subjective density forecasts of the agents to be the best 

assessment of the objective or physical densities from which the realizations are actually 

drawn. We employ three competing utility functions. As in the previous two existing 

papers, we assume a constant relative risk aversion power utility function and an 

exponential utility function, and derive the implicit parameters assuming that their value 

is stationary over the sample period but using, of course, the time-varying RNDs 

estimated with our option pricing data. Additionally, as our key contribution to 

literature, we also impose a utility function that incorporates the possibility that the 

price of risk varies counter-cyclically over time, a key characteristic to explain both the 

cross-section of asset prices and the counter-cyclical variation of the expected equity 

risk premium. This is accomplished in a model where the representative investor 

displays habit-formation which means that a positive effect of today´s consumption on 

tomorrow´s marginal utility of consumption exists. 
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The utility function is a power function to maintain the property of scale-invariant1. In 

particular, it is a power function of the difference between consumption and habit, 

where habit is a slow-moving linear (nonlinear) average of past aggregate consumption. 

Our utility specification is based on the model proposed by Campbell and Cochrane 

(1999) where habit is external and reacts only gradually to changes in consumption2. 

The key idea is that this utility makes agents more risk-averse in bad times, when 

consumption is low relative to its past history, than in good times, when consumption is 

high relative to its past history. To obtain this time-varying risk aversion, Campbell and 

Cochrane model utility as the difference between consumption and habit, rather than 

taking the ratio between the two. Thus, the behavior of market volatility is explained by 

a small consumption risk, amplified by variable risk aversion, while the equity premium 

is explained by high market volatility, together with a high average level of risk 

aversion. Interestingly, their habit model is also able to keep low both the long-term 

mean and the volatility of interest rates. Following the literature on option implied risk-

adjustments we proxy consumption by the stock index level. 

 
The results of this paper show that between 1996 and 2004 we cannot reject the 

hypothesis that the RNDs provide accurate predictions of the distributions of future 

realizations of the IBEX 35 index at four-week horizon. However, tests based on the 

tails of the distribution show that RNDs significantly understated the right tail of the 

distribution. Moreover, this predicting ability is not robust by subperiods. More 

specifically, and using a four-week horizon, we find that RNDs are not able to 

consistently predict the realizations of returns from October 1996 to February 2000. 

These results suggest that the ability of RNDs to forecasts future realizations might 

possibly be improved if risk preference adjustments were introduced. Indeed, this is the 

case. Once risk-adjustments are made we are not able to reject the hypothesis that risk-

adjusted densities contain good predictions of the distributions of future realizations of 

the underlying index. Moreover, for the whole period and contrary to the RNDs, the 

risk-adjusted densities do not understate the right-tails of the distribution. Interestingly, 

this latter result is not maintained during the first sub-period. However, despite the fact 

                                                 
1 This basically means that the risk premium does not change over time as aggregate wealth and the scale 
of the economy increase. 
2 In the external habit models, habit depends on aggregate consumption which is unaffected by one 
agent´s decisions. 
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that the risk aversion estimates from the habit-based utility function is clearly counter-

cyclical and consistently higher than estimates from either power or exponential utility, 

the predicting ability of all three specifications are quite similar.  

 

The results using a one-week horizon are practically the same independently either 

employing RNDs or risk-adjusted densities. This probably makes sense. At high 

frequencies, it is well known from the first order condition of the optimization problem 

of the representative agent that pricing of risky assets may easily be consistent with a 

linear utility function or risk-neutralilty. Since consumption and risk aversion do not 

change much from week to week, we might expect that prices are well approximated as 

random walks. Of course, this result is very different once we allow for a longer 

investment horizon, where payoffs are scaled by the marginal rate of substitution of 

consumption. This is the intuition probably reflected in our empirical results. 

 

This paper is organized as follows. Section 2 briefly discusses how we estimate RNDs, 

while in Section 3 we present the testing procedures to assess the forecasting ability of 

our densities to check if they conform to the actual densities from which realisations are 

drawn. Section 4 discusses option-implied preferences adjustments, Section 5 contains 

the description of the data set used in the paper, and Section 6 reports the empirical 

results using alternative risk-neutral and risk-adjusted densities. Conclusions follow in 

Section 7.  

 
 
2. Estimating Risk-Neutral Densities 

Prices of European call options at time t on the underlying asset P with expiration at 

t τ+  and strike prices  are given by the well known expressionK 3: 

 

                              ( ) ( )( )r
t , t t t

K
c t , ,K e q P P K dPτ

τ τ ττ
∞

−
τ+ += ∫ +−

)

                                (1) 

 

where (t , tq Pτ τ+  is the risk-neutral probability density function for the value of the 

underlying asset at time t τ+ .  As pointed out by Breeden and Litzenberger (1978), if 

                                                 
3 The same reasoning can of course be done in terms of put options. 
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we differentiate twice (1) with respect to K we obtain the risk-neutral probability 

density function 

 

                                             
( ) (

2
r

t , t2
c t , ,K

e q P
K

τ )τ τ
τ −

+
∂

=
∂

                                          (2) 

 

Given the similarities found in our own previous empirical evidence with the Ibex 35 

index between parametric and non-parametric estimation methods, this paper employs 

the two-lognormal mixtures of Melick and Thomas (1997) as the way to estimate 

RNDs, 

 

               ( ) ( ) ( ) ( )t , t 1 1 t 2 2 tq P log N , ; P 1 log N , ; Pτ τ τθ α β θ α β+ += + − τ+

)

                 (3) 

 

where ( i i tlog N , ; P τα β +  is the  lognormal density with parameters thi iα  and iβ : 

 

                          2
i t i i i i

1ln P    ;      ;  i 1,2
2

α µ σ τ β σ τ⎛ ⎞= + − = =⎜ ⎟
⎝ ⎠

                          (4) 

 

and where iµ  and iσ  are, respectively, the mean and standard deviation of associated 

normal distributions, and the stochastic process is based on two states with different 

first and second moments, governed by the weights θ  and θ−1  for 10 ≤≤ θ . Thus, 

this is a flexible specification for the RND that is able to capture skewness and excess 

kurtosis and allows for a rich and wide range of shapes including bi-modal distributions, 

which would appear if, for example, market participants are placing a high weight on an 

extreme move in the underlying price but are unsure of its direction. 

 

Plugging this mixture of two-lognormals into equation (1) we can obtain theoretical prices 

for both calls and puts. Then, the numerical estimation of the five 

parameters, θβαβα ,,,, 2211 , is obtained by minimizing the squared pricing error as defined 

by the difference between the theoretical and observed option prices: 
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                       (5) 
{ }

( ) ( )
N Nj h2 2m m

j j j h h h, , , , j i h i1 2 1 2
min c t , ,K c p t , ,K p

α α β β θ
τ τ

= =

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡− + −⎨ ⎬⎣ ⎦ ⎣⎪ ⎪⎩ ⎭
∑ ∑ ⎤

⎦

 

subject to 10  and  0, 21 ≤≤> θββ , and where , ,  and  stand 

respectively for number of calls, number of puts, market price of call j and market price 

of put h

jN hN m
jc m

hp

4.  

 

 

3. Testing the Forecasting Performance of Probability Density Functions  

To study the predicting ability of estimated probability density functions (PDFs 

hereafter), both risk-neutral PDFs and risk-adjusted PDFs, we first employ a method 

based on the relationship between the data generating process (the true density 

function), (t , tf P )τ τ+ , and the estimated sequence of density forecasts, (t , tq P )τ τ+ , as 

related through the probability integral transform,  of the realization of the process 

taken with respect to the density forecast, where 

,z ,t τ

τ  represents the forecasting horizon. 

In other words, each cross-section of options at time t for a given time-to-expiration τ  

produces an estimated PDF, ( )t , tq Pτ τ+ . We want to test the hypothesis that our 

estimated (t , tq P )τ τ+  are equal to ( )t , tf Pτ τ+ . Note of course that we have an 

estimated PDF for a given expiration and only one realization, tP τ+ , is available on a 

given date and for that particular expiration. The probability integral transform is 

defined as 

 

                                          ( ) (
Pt

t , t , t , tz q u du Q P
τ

)τ τ τ
+

τ+
−∞

= =∫                                      (6) 

 

Hence,  is equal to the probability value of the estimated cumulative density 

function, , 

τ,tz

( ).Q ,t τ τ  days ahead at the realization of the underlying on day τ+t , tP τ+ . 

                                                 
4 Note that the mean of a RND is the future price. Some papers include in equation (5) the difference 
between the future price and the expected value of the underlying asset at t+τ. In our sample the impact 
on the estimated parameters of the introduction of this additional term is negligible. 
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We basically integrate up to the realization of the underlying at each date and 

statistically check if the resulting probabilities are drawn from the estimated PDFs. 

 

As shown by Diebold, Gunther and Tay (1998), under independence and if the forecasts 

and the true densities coincide, then the sequence of the probability integral transforms, 

, is uniformly distributed as τ,tz ( )1,0U  . Berkowitz (2001) proposes a parametric 

approach for jointly testing uniformity and independence. In particular, a further 

transformation, , of the inverse probability transform, , is defined using the 

inverse of the standard normal cumulative density function, 

τ,tx τ,tz

( ).N : 

 

                                ( ) ( )
Pt1 1

t , t , t ,x N z N q u du
τ

τ τ τ
+

− −

−∞

⎛ ⎞
⎜= =
⎜
⎝ ⎠
∫ ⎟

⎟
                                    (7) 

 

under the null, ( ) ( )t , t t , tq P f Pτ τ τ+ τ= t ,+ , x τ  has an independent and identically 

distributed N(0,1). In order to estimate the independence and standard normality of 

the , Berkowitz suggests the following autoregressive modelτ,tx 5

 

                                        ( ) τττ εµρµ ,t,1t,t xx +−=− −                                              (8) 

 

which is estimated using maximum likelihood and then testing the corresponding 

restrictions by a likelihood ratio test. The log-likelihood function, ( )ρσµ ,,L 2 , 

associated with the model in (12) is given by  

 

( ) ( ) ( )
( )[ ]

( ) ( ) ( )
( )

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−
−

−
−

−
−

−

−−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−=

=

−T

2t 2

2
,1t,t

2
22

2
,t

2

2
2

2

x)1(x
                                          

log
2

1n2log
2

1n
12

1x

1
log

2
12log

2
1,,L

σ

ρρµ

σπ
ρσ

ρµ

ρ
σπρσµ

ττ

τ

                                                                                                                                       (9) 

 
                                                 
5 Berkowitz (2001) shows that higher order autoregressive processes results in increasing the number of 
parameters and reduced power. Also, Bliss and Panigirtzoglou (2004) compares alternative tests and 
conclude that the Berkowitz tests is more reliable in small samples. 
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Note that, under the assumptions of the model, the parameters should be equal to 

0== ρµ  and . Then, the likelihood ratio statistic, ( ) 1,t
2 =τεσ

( ) ( )[ ]ρσµ ˆ,ˆ,ˆL0,1,0L2LR 2−−= ,  is distributed as  under the null hypothesis. ( )32χ

 

When the available data implies that we have to test overlapping forecasts, a potential 

rejection may be due to the overlapping nature of the data, which may produce 

autocorrelation. Berkowitz also proposes to test the independence assumption separately 

by the alternative likelihood ratio statistic given by ( ) ( ) ( )[ ]ρσµσµ ˆ,ˆ,ˆL0,ˆ,ˆL2iLR 22 −−=  

which is distributed as  under the null hypothesis.  ( )12χ

 

As explained by Bliss and Panigirtzoglou (2004), if LR rejects the hypothesis, failure to 

reject LR(i) provides evidence that the estimated PDFs are not producing accurate 

forecasts of the true density. However, if both LR and LR(i) reject, it is not possible to 

conclude if there is lack of predicting ability or serial correlation. Finally, failure to 

reject both LR and LR(i) would be consistent with forecasting capacity. 

 

Unlike most previous papers testing the forecasting ability of PDFs, we not only want to 

test the performance of the whole body of the distribution, but also analyze the 

performance of the tails of the distribution. We follow Anagnou, Bedendo, Hodges and 

Tompkins (2003) in employing the scoring rules based on the distance between the 

forecasted probability mass, , in a given tail and a binary variable, , which 

takes the value of 1 if the actual realization of the underlying falls in the tail, and 0 

otherwise. The so called Brier score is given by 

tail
,tq τ τ,tR

 

                                                ( )∑ −=
=

T

1t

2
,t

tail
,t Rq2

T
1B ττ                                               (10) 

 

which takes values between 0 and 2 and a better performance is captured by smaller 

values for the score. To test if it departs from its expected value, , the 

following statistic, suggested by Seillier-Moiseiwisch and Dawid (1993) is employed:  

( )∑ −
=

T

1t

tail
,t

tail
,t q1q ττ
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( )( )

( ) ( ) 2
1

T

1t

tail
,t

tail
,t

2tail
,t

T

1t

tail
,t,t

tail
,t

q1qq21

qRq21
ASN

⎥
⎦

⎤
⎢
⎣

⎡
∑ −−

∑ −−
=

=

=

τττ

τττ
                                    (11) 

 

which is asymptotically distributed as a standard normal. 

 

4. Option-Implied Preferences Adjustments 

Given the lack of consistently adequate forecasting ability of RNDs throughout the sub-

periods analyzed by Alonso, Blanco and Rubio (2005), and in order to incorporate risk 

aversion into the analysis along the lines of Bliss and Panigirtzoglou (2004), we first 

assume that the risk aversion function is characterized by either a power or an 

exponential utility functions. 

 

Given an estimation of a RND from a cross-section of option prices on the index, we 

look for the implied preferences that force the preference-adjusted density to be as close 

as possible to the distribution of realizations of the underlying as defined by the 

Berkowitz test statistic. In other words, we choose the preference parameters from the 

assumed utility function to maximize the predicting ability of the estimated density by 

maximizing over the p-value of the Berkowitz LR statistic. 

 

In contrast with previous papers, we also assume a habit-based utility function to extend 

the simple power and exponential utility functions employed in literature. In particular, 

we employ a utility function that allows us to separate the coefficient of relative risk 

aversion and the elasticity of intertemporal substitution. Moreover, and probably more 

relevant in our case, this utility function incorporates the possibility that the price of risk 

varies over time. This is accomplished in a model where agents displays habit-formation 

making investors more risk-averse in bad times, when consumption is low relative to its 

past history, than in good times, when consumption is high relative to its past history.  

 

 11



Under dynamically complete and frictionless markets, the objective density function, 

(t , tf P )τ τ+ , is related to the risk-neutral density function, ( )t , tq Pτ τ+ , by the marginal 

rate of substitution of the representative investor as discussed by Jackwerth (2000) and 

Aït-Sahalia and Lo (2000): 

 

                                   
( )
( )

( )
( ) (t , t t

t t
t , t t

f P U P
P ;P

q P U P
τ τ τ

τ
τ τ

λ ζ+ +
+

+

′
= ≡

′
)                                   (12) 

 

where λ  is a constant proportionality factor, and ( )tP τζ +  is the pricing kernel. This is 

a very useful result because, given any of the two functions, we may infer the third one.  

 

Given a utility function and some estimated RND, Bliss and Panigirtzoglou (2004) 

modify slightly equation (12) to solve for the implied subjective density function once is 

normalized to integrate to one: 

 

         ( )

( )
( )
( )

( )

( )
( ) ( )

( )
( ) ( )

( )
( )
( )
( )

t , t t , tt
t , t

t t t t
t , t

t

t

q P q PU P
q P

P ;P U P U P
f P

q y q yU P
dy dyq y dy

y;P U yU y

τ τ τ
τ τ

τ

τ τ τ
τ τ

ζ λ

ζ λ

+ +
+

+ +
+

+

′

′ ′
= = =

′
′′∫ ∫∫

                  (13) 

 

From the specific functional form of marginal utility, and given the estimated RND, we 

may estimate the preference parameters that maximize the forecasting ability of the 

subjective density. This also allows us to analyze the behaviour of the implied risk 

aversion estimates over time. 

 

In the empirical exercise below we assume the well known power utility function 

 

                                                 ( )
1
t

t
P

U P
1

1γ
τ

τ γ

−
+

+
−

=
−

                                                   (14) 

 

with marginal utility given by ( )t tU P P γ
τ τ

−
+ +′ = , where γ  is the constant relative risk 

aversion coefficient. 
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This utility function, although convenient, it is known to have serious problems in 

explaining both the temporal and cross-sectional behaviour of asset prices. Among other 

things, it seems that the assumption about the time-invariant behaviour of the risk 

aversion coefficient is not empirical reasonable. It is not surprising then, that the 

empirical evidence of implied risk aversion estimates of Bliss and Panigirtzoglou (2004) 

and Jackwerth (2000) is very controversial. As an example, Bliss and Panigirtzoglou 

report that the degree of risk aversion declines with the forecast horizon and is lower 

during periods of high market volatility. 

 

We also assume the exponential utility function  

 

                                                        
Pte γ τ

γ

− +
−                                                              (15) 

 

with marginal utility Pte γ τ− +  and relative risk aversion given by tP τγ + . It should be 

noted that this function has increasing relative risk aversion and constant absolute risk 

aversion. Together with the assumption of normal stock returns this is also a 

tremendously popular specification of preferences. However, as before, risk aversion 

seems to increase in periods of low market volatility and short horizons. 

 

Surprisingly, the option-implied risk aversion estimates have never been obtained by 

imposing utility functions which are known to be relevant in explaining the behaviour 

of asset prices. This may be a serious drawback of this literature and casts doubts on the 

implied parameters estimated implicitly through option data. 

 

In this study we also assume a habit-based utility function as proposed by Campbell and 

Cochrane (1999): 

 

                               ( ) ( )1t t
t t

P X
U P ,X

1

γ
τ τ

τ τ γ

−
+ +

+ +
1− −

=
−

                                      (16) 
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where tX τ+  is the level of habit, and the power coefficient γ  is not the relative risk 

aversion coefficient as in previous specifications. Utility is only defined when financial 

wealth, as represented by the stock market index level, exceeds habit. 

 

Our problem to incorporate a counter-cyclical time-varying risk aversion is to define a 

reasonable level of habit which should be by construction lower than the current level of 

the stock exchange index. The habit-based pricing models employ the so called surplus 

consumption ratio which is a recession variable defined as 

 

                                                t t
t

t

P X
S

P
τ τ

τ
τ

+ +
+

+

−
=                                                     (17) 

 

Then, under an external specification of habit, marginal utility is given by 

 

                           ( ) ( )t t t t t tU P ,X P X P Sγ γ γ
τ τ τ τ τ τ

− − −
+ + + + + +′ = − =                               (18) 

 

and the relative risk aversion is 

 

                                                       t
t

RRA
Sτ

τ

γ
+

+
=                                                      (19)                           

 

It is now the case that the local curvature of the utility function depends on how far the 

current market level is above the habit, as well as the powerγ . It is clear that tS τ+  

should be always positive independently of the level of the stock index. Hence, when 

habit is close to the actual level of financial wealth, which may be an indication of a 

bear market, investors become more risk averse. This is precisely the time-varying 

behaviour we need to capture in any reasonable utility function specification. In 

particular, we obtain a counter-cyclical behaviour of risk aversion over time. In fact, a 

low power coefficient γ  can still mean a high (and time-varying) risk aversion. 

 

In order to estimate the subjective density function, as given by expression (13) under 

the habit-based utility function of equation (16), we follow a paper by Chen and 
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Ludvigson (2004) on testing pricing models with consumption and habit. We may note 

first that habit seems reasonable to depend upon the past levels of financial wealth: 

 

                                                                            (20) (t t t 1 tX h P ,P ,....,Pτ τ τ τ+ + + − + −= )L

 

and it is also the case that the level of the stock exchange index is trending, so it is 

necessary to transform the model to use stationary observation on the stock index, such 

as observations on stock level growth. We assume that the unknown function h is 

homogeneous of degree one, and this allows us to write habit as 

 

                                 t 1 t L
t t

t t

P P
X P h 1, ,....,

P P
τ τ

τ τ
τ τ

+ − + −
+ +

+ +

⎛ ⎞
= ⎜

⎝ ⎠
⎟                                        (21) 

 

which can be redefined as 

 

                                  t 1 t L
t t

t t

P P
X P g ,....,

P P
τ τ

τ τ
τ τ

+ − + −
+ +

+ +

⎛ ⎞
= ⎜

⎝ ⎠
⎟                                         (22) 

 

According to our previous reasoning we need to ensure that t tX Pτ τ+ +< . A reasonable 

function would be the following: 

 

                                                     ( ) ( ) 1xe1x
−−+=ψ                                                     (23) 

 

where 2 Lt 1 t 2 t L

t t t

P P P
x ....

P P P
τ τ τ

τ τ
δ δ δ+ − + − + −

+ + +

⎛ ⎞
= + + +⎜ ⎟
⎝ ⎠τ

, and ( ) 1x0 ≤≤ψ . Therefore, 

independently of δ we have that t tX Pτ τ+ +< .  

 

To summarize, the habit specification is given by 
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1P P Pt 1 t 2 t L2 L....
P P Pt t t

t tX P 1 e
τ τ τδ δ δ
τ τ τ

τ τ

−
⎛ ⎞+ − + − + −− + + +⎜ ⎟

+ + +⎝ ⎠
+ +

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

                 (24) 

 

In the empirical exercise we impose 12L = , but we jointly estimate γ  and δ  by 

maximizing over the p-value of the Berkowitz LR statistic. 

 

 

5. Data 

In this research, we employ the European-style Spanish equity option contract on the 

IBEX-35 futures which is one of the largest options equity market within the euro area. 

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most liquid 

Spanish stocks traded in the continuous auction market system. The official derivative 

market for risky assets, which is known as MEFF, trades a futures contract on the 

IBEX-35, the corresponding option on the IBEX-35 futures contracts for calls and puts, 

and individual futures and option contracts for blue-chip stocks. The option contract on 

the IBEX-35 futures is a cash settled European option with trading over the three 

nearest consecutive months and the other three months of the March-June-September-

December cycle. The expiration day is the third Friday of the contract month. The 

multiplier is 1 € and the exercise prices are given by 50 index point intervals. Our 

database is comprised of settlement IBEX-35 index futures prices, the associated 

settlement prices of all call and put options traded on each day, and the implied 

volatility for each option. Moreover, for each option we also have the expiration date 

and the associated strike. At expiration, the options settle to the exchange delivery 

settlement future price determined by MEFF by calculating the arithmetic average 

between 16:15 and 16:45 taking an index value per minute. This series is employed to 

compute the payoffs of the future in this work. 

 

The options prices employed throughout our research are the MEFF-reported settlement 

prices. The implied volatility for all at-the-money options reflects the closing market 

price of each option. For the rest of strikes, MEFF linearly approximates the implied 

volatility by two segments. Two different slopes are employed for strikes corresponding 

to options in-the-money and out-of-the-money. The slopes are obtained according to the 
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closing market conditions of the market on each Friday which will be the day from 

which forecasts are made in our study. The settlement prices are calculated using 

Black´s (1976) formula, the underlying settlement price and the previous volatilities. 

Therefore, by construction all options reflect closing market conditions and are 

synchronous with the underlying asset price. The data cover the period from October 

1996 through December 2004; i.e., 99 months6.  

 

Option settlement prices are available for expirations from one week to one year. It is 

very important to point out that a target observation date in the study is determined one 

(four) weeks before every option expiration. The number of strikes ranges between 28 

(23) and 211 (211) with an average of 105 (103). Options with expires of less than three 

months, expire at monthly intervals. Hence, forecasts and realizations for horizons less 

than or equal to one month may be expected to be independent. The number of cross-

sections is 99 for forecasts horizons of either one or four weeks. This is similar to the 

cross-sections employed by Bliss and Panigirtzoglou (2004) in the case of their data on 

FTSE 100, and slightly more than half of the available cross-sections for options on the 

S&P 500.  

 

 

6. Empirical Results 

 

6.1 The Empirical Performance of Risk-Neutral Densities 

In order to determine whether there is evidence that the RNDs adequately forecast the 

distribution of ex-post realizations of the underlying index, we employ the Berkowitz 

test statistics discussed in Section 3. Table 1 shows the empirical results using the 

mixture of two lognormals as the estimation of RNDs for the Spanish stock IBEX-35 

index. For the whole sample period, we cannot reject the hypothesis that the RNDs 

provide accurate predictions of the distributions of future realizations of the IBEX-35 

index at the four-week horizon.  On the one hand, with a p-value of 0.27 for the LR test 

statistic, we do not support that the RND forecasts poorly the actual realizations. At the 

same time, by looking at the LR(i) statistics we cannot reject the hypothesis that the 

probability integral transforms are uncorrelated. Hence, we divide the whole sample 

                                                 
6 Before October 1996 MEFF computed settlement prices using constant implied volatilities. 
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period into two non-overlapping sub-periods from October 1996 to March 2000, and 

from April 2000 to December 2004. This allows us to check the robustness of the 

surprising results found for the complete sample. As reported in Table 1, in the first sub-

period the Berkowitz test rejects the hypothesis that the RNDs are good forecasts of 

future realizations of the IBEX-35 index. Moreover, the LR(i) shows that the reason for 

rejecting is not the violation of the independence assumption underlying the test 

statistic. This result is consistent with the intuition that RNDs are very unlikely to 

adequately capture the future behavior of equity prices. It seems reasonable to expect 

that the stock market prices risks7. This result also confirms that the Berkowitz test has 

sufficient power to reject the null hypothesis. Finally, as in the case of the complete 

sample, the LR statistic is not able to reject the good predictive performance of the 

RNDs during the second sub-period. This is interesting since the years of the second 

sub-period coincide with a continuous negative performance of the stock market, and 

the opposite occurred from October 1996 to March 2000. It seems that during the first 

sub-period, the high levels reached by the stock market make RNDs unable to place 

enough probability on the right tail of the distribution relative to actual realizations. 

This would explain the poor performance of the RNDs during the first half of the 

sample. We will investigate this potential explanation by analyzing the behaviour of the 

tails. 

 

As before, the results using a one-week horizon are not robust to alternative sub-

periods. Surprisingly, however, the rejection of the null is now associated with the 

second sub-period. With a very short forecasting horizon noise may be playing a 

distorting impact on the results. 

 

Table 2 contains the results from the tests designed to analyze the misspecification of 

the estimated RNDs and risk-adjusted densities on the tails of the distribution. For the 

right and left tails we compare the frequency with which realizations lie on those areas 

with the probability mass assigned by the estimated densities. We also report the test 

statistic given by equation (11). The tests indicate that, using the risk-neutral 

specification and for the four-week horizon, the probability mass assigned by our 

estimated RND to the right tail significantly underestimates the frequency of actual 

                                                 
7 See the recent evidence of Ghysels, Santa-Clara and Valkanov (2004). 
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realizations. In other words, the strikingly good performance of the stock market during 

the first sub-period is not adequately forecasted by the RNDs estimated from option 

prices. For the right tail of the distribution the same results is observed for the full 

sample period. These results are consistent with the evidence reported for the full body 

of the implied RNDs. There seems to be a good performance of RNDs from April 2000 

to December 2004, and a relatively bad performance of our estimated RND during the 

bull market of the first sub-period which may be explained by the high frequency of 

realizations on the right tail of the distribution. Of course, this would be expected since 

those differences may be arising from the risk aversion of the representative investor.  

 

By contrast, at the one-week horizon the probability mass assigned by our estimated 

RND to the right tail does not seem to understate the frequency of actual realizations, 

especially during the second sub-period. Interestingly, it seems that the probability with 

which realizations lie on both tails is overestimated. This evidence suggests that 

rejection that RNDs provide good forecasts at the one-week horizon during the second 

sub-period does not seem to be related to the implied risk-neutrality assumption.  

 

All in all the evidence presented in Tables 1 and 2, which of course is consistent to that 

reported in Alonso, Blanco and Rubio (2005), suggests that a risk premium adjustment 

might be needed at the four-week horizon to adequately forecast future outcomes but 

this does not seem to be the case for the one-week horizon. Section 6.2 investigates this. 

 

6.2 Risk-Adjusted Densities 

We first implicitly estimate the parameters and risk aversion of the three alternative 

utility functions. We employ a process of searching for the optimal level of γ  (for the 

power and exponential cases) and the optimal level of γ  and δ  (for the habit-based 

case) to maximize the predicting ability of the resulting risk-adjusted densities by 

maximizing over γ  (and δ when appropriate) the p-value of the Berkowitz statistics8.  

 

Panel A of Table 3 contains the estimated parameters for the three utility specifications 

employed. In all cases, the estimated parameters are lower when using a four-week 

                                                 
8 This process does not provide a measure of whether the resulting parameters are significantly different 
from zero. A Monte Carlo simulation must be employed to obtain the distribution of generated p-values. 
 

 19



horizon, a disturbing result also obtained by Bliss and Panigirtzoglou (2004). The 

optimal δ  coefficient in the habit-based preferences suggests that past levels of the 

underlying index tend to have a low impact on the current habit level. It seems to 

indicate a very low memory in establishing current levels of habit. As expected, the 

coefficient is higher for the shorter predicting horizon.  More interesting are the risk 

aversion estimates reported in Panel B of Table 3. The mean (median) of both power 

and exponential utility functions over the whole sample period are very similar. The 

implied risk aversion estimates for a one-week horizon are around 3.5 while they are 

close to 1.7 when a four-week horizon is imposed. Of course, as pointed out above, the 

relative risk aversion under the exponential utility function is tP τγ + . For this reason we 

provide a range for the risk aversion estimate over the sample period that depends on 

the associated values of the underlying.  

 

On the other hand, the average risk aversion estimates for the habit-based utility 

function are higher than either power or exponential utility functions. The mean risk 

aversion estimate is near 9.0 for a one-week horizon and 3.3 when the longer horizon is 

considered. In fact, by observing Figure 1, the risk aversion for the habit-based case is 

systematically above the risk aversion of the exponential utility. This might be expected 

by taking into account that the temporal dependency created by habit allows for high 

risk aversion with neither high average nor volatile interest rates. Both the power and 

exponential utility functions do not share these properties. At the same time, in the 

Campbell-Cochrane model, the surplus consumption ratio is strongly pro-cyclical and 

this characteristic magnifies the counter-cyclicality of marginal utility relative to the 

basic power utility function.  

 

Figure 1 clearly reflects the counter-cyclical property of risk aversion under habit 

formation for the one-week horizon. The highest risk aversion coefficient of 14.47 is 

obtained for September 2001. Moreover, the correlation coefficient between the annual 

market index  return  calculated  monthly  and  the estimate of risk aversion are  -0.45 

and -0.39 for one week and four weeks respectively. 

 

Figure 2 compares the estimated PDFs for two different expiration days at a four-week 

horizon. Panel A shows PDFs estimated with option prices of 24/8/2001, i.e. before the 
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terror attacks of 11 September. On that day, all PDFs have a similar shape. Of course, 

risk-adjusted PDFs appear (slightly) shifted to the right. Panel B shows PDFs estimated 

with option prices of 21/9/2001, which reflected the impact on market prices of the 

events of 11 September. Compared with panel A, the probability mass of the tails, and 

especially on the left tail, is much higher reflecting the higher uncertainty. Interestingly, 

risk-adjusted PDFs display lower skewness and kurtosis than those of the RND, 

suggesting that the latter distribution overstate these moments on stress periods. 

Moreover, habit-adjusted PDF departs significantly from the other two risk-adjusted 

PDFs. In particular, it displays the lowest skewness and kurtosis and the highest mean. 

Finally, this figure illustrates that the risk adjustments used in this paper is more subtle 

than a simple mean shift.  

 

Panels A, B and C of Table 4 present the Berkowitz tests using the power, exponential 

and habit-based utility functions respectively. The results are strikingly similar for all 

three specifications. As in the case of risk-neutral densities, for the whole period we 

cannot reject the hypothesis that risk-adjusted densities are good predictors of future 

realizations of the underlying index for both horizons. However, contrary to the RNDs 

case, the key evidence for the four-week horizon is that risk-adjusted densities also 

provide adequate forecasting ability for both sub-periods. The results are clearly 

consistent with the need for a risk premium adjustment. On the other hand, what is 

certainly surprising is that the specific risk-adjustment imposed does not seem to be 

relevant when trying to improve the forecasting ability of alternative risk-adjusted 

densities. This is even true for the habit-case where both the level and the behaviour of 

risk aversion over time are clearly different relative to more traditional utility functions. 

 

In any case, given the similarities in the forecasting power, and noting that the counter-

cyclical behaviour of risk aversion is easily conciliated with the counter-cyclical 

expected market risk premium over sufficiently long investment horizons, we put more 

confidence into risk aversion estimates around 8-9 than to the levels obtained under 

either power or exponential preference specifications. 

 

Finally, for the very short horizon of one-week, it is quite clear that risk-adjustments are 

not the issue when forecasting throughout either risk-neutral or risk-adjusted densities. 

As mentioned in the introduction, this should be expected. On the one hand, Figure 1 
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suggests that the volatility of the marginal rate of substitution is relatively more 

pronounced for one week than for a four-week horizon. Hence the price of risk seems to 

be more volatile in very short horizons. However, the quantity of risk embedded in one 

week is probably negligible compared to the quantity of risk for the four-week horizon. 

The results are identical independently of whether risk-adjustments are taken into 

account or not suggesting that rejection of the null during the second sub-period is not 

related to the risk-neutrality assumption.  

 

Table 5 contains the results from the tests designed to analyze the misspecification of 

the estimated risk-adjusted densities on the tails of the distribution. As before, the 

results reported in Panels A, B and C of Table 5 are the same independently of the 

actual preference specification employed. Hence, time-varying risk aversion needed to 

reflect the business cycle behaviour embedded in the stock market does not seem to be 

the issue in explaining the forecasting ability of risk-adjusted densities neither in the 

whole body of the distribution nor in the tails. 

 

However, risk-adjusted densities perform better than RNDs at the four-week horizon. In 

particular, for the complete sample period, the difference between the actual frequency 

observed on the right tail and the probability mass assigned by our estimated densities is 

not statistically significant. Again, by recognizing the existence of a risk premium we 

improve the forecasting ability of our estimated densities. However, for the bull market 

of the first sample period, the true distribution assigns more probability to high returns 

than the estimated risk-adjusted densities. Not even a risk-adjustment which 

incorporates the actual business cycle embedded in the stock market is able to 

adequately incorporate the seemingly optimistic view of investors during the first sub-

period.  

 

Finally, the results in the tails of the distribution for a one-week horizon are again quite 

similar independently of using RNDs or the risk-adjusted counterparts, although the 

right tail of the distribution is estimated even worst. 
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7. Conclusions 

Option prices provide information about how investors assess the likelihood of 

alternative outcomes for future market prices of underlying assets. The main objective 

of this paper is to analyse the value of information contained in prices of options on the 

IBEX 35 index at the Spanish Stock Exchange Market. The forward looking 

information is extracted using implied risk-neutral density functions estimated by a 

mixture of two-lognormals. Moreover, three alternative risk-adjustments are also 

considered. On the one hand, the classic power and exponential utility functions are 

analyzed. On the other, a habit-based specification that allows for a counter-cyclical 

variation of risk aversion is also discussed.  

 

Our results show that between 1996 and 2004, we cannot reject the hypothesis that the 

RNDs provide accurate predictions of the distributions of future realisations of the 

IBEX 35 index at both one-week and four-week horizons. Interestingly, when the whole 

period is divided into two sub-periods, we find that RNDs are not able to consistently 

predict the excellent behaviour of the stock market from October 1996 to March 2000 at 

the four-week horizon. In this period, option prices assign a low risk-neutral probability 

to large rises compared with realisations. On the other hand, RNDs are good predictors 

of realizations for the period between April 2000 and December 2004 at the same 

horizon. This suggests that the overall ability of RNDs as a forecasting device is just a 

consequence of two distinct sub-periods compensating each other.  

 

These results tend to confirm the necessity of risk premium adjustments at four-week 

horizons with a (probably) countercyclical risk aversion parameter, which seems to be 

especially relevant for bull markets. When forecasting through risk-adjusted densities 

the performance of the first sub-period is statistically improved. We cannot reject the 

hypothesis that risk-adjusted densities provide adequate predictions of the distributions 

of future realisations of the IBEX 35 index at a four-week horizon. What is more 

important, and contrary to the RNDs, the results are consistent throughout sub-periods. 

However, all risk-adjusted densities generate similar forecasting statistics. Then, at least 

for a horizon of four-weeks, the actual risk adjustment does not seem to be the issue. It 

is enough to recognize that the stock and option markets price risk. Of course, future 

research should be concentrated on the importance of risk-adjustments at longer 

investment horizons. 
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At the one-week horizon risk adjustments do not improve the forecasting ability of 

RNDs, suggesting that at very short horizons the assumption of risk-neutrality is 

reasonable.  
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Table 1 
Berkowitz Tests for Risk-Neutral Densities Estimated with a Mixture of Two Lognormals  

October 1996-December 2004 
The reported LR value is the Berkowitz likelihood ratio test for i.i.d. normality of the inverse-normal 
transformed inverse probability transforms of the realizations as given by LR = -2[L(0,1,0)-L(µ,σ,ρ)] 
which is distributed as a χ2(3). The LR(i) statistic is the Berkowitz likelihood ratio test for independence. 
Rejection of the test for independence suggests that rejection of the density as a good forecast may be due 
to serial correlation rather than poor forecasting performance. 
 

Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004 Forecast 
Horizon LR 

(p-value) 
LR(i) 

(p-value) 
LR 

(p-value) 
LR(i) 

(p-value) 
LR 

(p-value) 
LR(i) 

(p-value) 
            

1 week 

 
 

4.59 
(0.20) 

 
 

0.91 
(0.34) 

 

 
 

3.53 
(0.32) 

 

 
 

0.34 
(0.56) 

 

 
 

12.76 
(0.01) 

 

 
 

0.30 
(0.59) 

 
            

4 weeks 

 

 
 

3.92 
(0.27) 

 

 
 

1.31 
(0.25) 

 
 

9.45 
(0.02) 

 
 

0.83 
(0.36) 

 
 

0.41 
(0.94) 

 
 

0.02 
(0.89) 
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Table 2 

Brier´s Score Tail Tests for Risk-Neutral Densities Estimated with a Mixture of Two Lognormals  
October 1996-December 2004 

Tests of misspecification for tails of estimated densities. For the right tail and the left tail, the frequency 
with which actual observations fall in those areas and the probability mass assigned by the mixture of 
lognormals and splines are reported. The values of the ASN test statistic based on the Brier´s score are 
also reported. The statistic is asymptotically distributed as a standard normal distribution. 
 

Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004  
% Tails 
 

Freq. Prob. 
Forecast1

ASN Freq. Prob. 
Forecast 

ASN Freq. Prob. 
Forecast 

ASN 

1 week: 
Right Tail 

5% 

 
0.05 

 
0.08 

 
-0.94 

 
0.10 

 
0.08 

 
0.45 

 
0.02 

 
0.07 

 
-1.66 

1 week: 
Left Tail 

5% 

 
0.05 

 
0.09 

 
-1.42 

 
0.05 

 
0.09 

 
-1.01 

 
0.05 

 
0.08 

 
-1.00 

4 weeks: 
Right Tail 

10% 

 
0.12 

 
0.07 

 
2.06 

 
0.22 

 
0.08 

 
3.61 

 
0.05 

 
0.06 

 
-0.54 

4 weeks: 
Left Tail 

10% 

 
0.05 

 
0.09 

 
-1.29 

 
0.05 

 
0.10 

 
-1.16 

 
0.05 

 
0.08 

 
-0.68 
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Table 3 

Estimated Parameters from Alternative Utility Specifications and Estimates of Risk Aversion 
 

Panel A: Estimated Parameters from Alternative Utility Specifications 

  Power Exponential               Habit 

Horizon γ Γ γ δ 

1 week 3.54 0.000421 1.55 0.61 

4 weeks 1.70 0.000197 1.35 0.27 

Panel B: Risk Aversion Estimates 

 Power Exponential Habit 

Horizon  Range1/ Mean Median Range Mean Median 

1 week 3.54 1.84-5.23 3.50 3.47 7.08-14.47 8.91 8.72 

4 weeks 1.70 0.88-2.45 1.64 1.62 3.17-3-63 3.31 3.30 

1/ Risk aversion estimates over the whole sample  
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Table 4 

Berkowitz Tests for Power-, Exponential- and Habit-Utility-Adjusted Densities Estimated with a 
Mixture of Two Lognormals  

October 1996-December 2004 
The reported LR value is the Berkowitz likelihood ratio test for i.i.d. normality of the inverse-normal 
transformed inverse probability transforms of the realizations as given by LR = -2[L(0,1,0)-L(µ,σ,ρ)] 
which is distributed as a χ2(3). The LR(i) statistic is the Berkowitz likelihood ratio test for independence. 
Rejection of the test for independence suggests that rejection of the density as a good forecast may be due 
to serial correlation rather than poor forecasting performance. 

Panel A: Power Utility  
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004 Forecast 

Horizon LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

            

1 week 

 
 

2.99 
(0.39) 

 
 

1.00 
(0.32) 

 

 
 

1.78 
(0.62) 

 

 
 

0.35 
(0.55) 

 

 
 

12.49 
(0.01) 

 

 
 

0.41 
(0.59) 

 
            

4 weeks 

 
 

2.43 
(0.49) 

 

 
 

1.74 
(0.19) 

 
 

6.06 
(0.11) 

 
 

1.05 
(0.31) 

 
 

1.83 
(0.61) 

 
 

0.01 
(0.94) 

Panel B: Exponential Utility  
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004 Forecast 

Horizon LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

            

1 week 

 
 

3.00 
(0.39) 

 
 

1.19 
(0.28) 

 

 
 

1.99 
(0.58) 

 

 
 

0.44 
(0.51) 

 

 
 

12.42 
(0.01) 

 

 
 

0.52 
(0.47) 

 
            

4 weeks 

 
 

2.51 
(0.47) 

 

 
 

1.76 
(0.18) 

 
 

6.21 
(0.10) 

 
 

1.13 
(0.29) 

 
 

1.67 
(0.64) 

 
 

0.00 
(0.95) 

Panel C: Habit-Based Utility  
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004 Forecast 

Horizon LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

LR 
(p-value) 

LR(i) 
(p-value) 

            

1 week 

 
 

2.93 
(0.40) 

 
 

1.04 
(0.31) 

 

 
 

1.81 
(0.61) 

 

 
 

0.35 
(0.55) 

 

 
 

12.23 
(0.01) 

 

 
 

0.46 
(0.50) 

 
            

4 weeks 

 
 

2.49 
(0.48) 

 

 
 

1.76 
(0.18) 

 
 

6.17 
(0.10) 

 
 

1.05 
(0.30) 

 
 

1.79 
(0.62) 

 
 

0.01 
(0.93) 
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Table 5 

Brier´s Score Tail Tests for Power-, Exponential- and Habit-Utility-Adjusted Densities Estimated 
with a Mixture of Two Lognormals  

October 1996-December 2004 
Tests of misspecification for tails of estimated densities. For the right tail and the left tail, the frequency 
with which actual observations fall in those areas and the probability mass assigned by the mixture of 
lognormals and splines are reported. The values of the ASN test statistic based on the Brier´s score are 
also reported. The statistic is asymptotically distributed as a standard normal distribution. 

Panel A: Power Utility 
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004  

% Tails 
 

Freq. Prob. 
Forecast1

ASN Freq. Prob. 
Forecast 

ASN Freq. Prob. 
Forecast 

ASN 

1 week: 
Right Tail 

5% 

 
0.05 

 
0.10 

 
-1.48 

 
0.10 

 
0.10 

 
-0.02 

 
0.02 

 
0.09 

 
-1.97 

1 week: 
Left Tail 

5% 

 
0.05 

 
0.06 

 
-0.68 

 
0.05 

 
0.07 

 
-0.56 

 
0.05 

 
0.06 

 
-0.41 

4 weeks: 
Right Tail 

10% 

 
0.12 

 
0.09 

 
1.26 

 
0.22 

 
0.10 

 
2.93 

 
0.05 

 
0.08 

 
-0.98 

4 weeks: 
Left Tail 

10% 

 
0.05 

 
0.07 

 
-0.61 

 
0.05 

 
0.08 

 
-0.69 

 
0.05 

 
0.06 

 
-0.19 

Panel B: Exponential Utility 
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004  

% Tails 
 

Freq. Prob. 
Forecast1

ASN Freq. Prob. 
Forecast 

ASN Freq. Prob. 
Forecast 

ASN 

1 week: 
Right Tail 

5% 

 
0.05 

 
0.10 

 
-1.47 

 
0.10 

 
0.10 

 
-0.03 

 
0.02 

 
0.09 

 
-1.95 

1 week: 
Left Tail 

5% 

 
0.05 

 
0.07 

 
-0.72 

 
0.05 

 
0.07 

 
-0.53 

 
0.05 

 
0.06 

 
-0.48 

4 weeks: 
Right Tail 

10% 

 
0.12 

 
0.09 

 
1.26 

 
0.22 

 
0.10 

 
2.91 

 
0.05 

 
0.08 

 
-0.96 

4 weeks: 
Left Tail 

10% 

 
0.05 

 
0.07 

 
-0.66 

 
0.05 

 
0.08 

 
-0.70 

 
0.05 

 
0.06 

 
-0.26 

Panel C: Habit-Based Utility 
Oct. 1996-Dec. 2004 Oct. 1996-Mar. 2000 Apr. 2000-Dec. 2004  

% Tails 
 

Freq. Prob. 
Forecast1

ASN Freq. Prob. 
Forecast 

ASN Freq. Prob. 
Forecast 

ASN 

1 week: 
Right Tail 

5% 

 
0.05 

 
0.10 

 
-1.47 

 
0.10 

 
0.10 

 
-0.02 

 
0.02 

 
0.10 

 
-1.97 

1 week: 
Left Tail 

5% 

 
0.05 

 
0.06 

 
-0.64 

 
0.05 

 
0.07 

 
-0.55 

 
0.05 

 
0.06 

 
-0.36 

4 weeks: 
Right Tail 

10% 

 
0.12 

 
0.09 

 
1.28 

 
0.22 

 
0.10 

 
2.95 

 
0.05 

 
0.08 

 
-0.97 

4 weeks: 
Left Tail 

10% 

 
0.05 

 
0.07 

 
-0.61 

 
0.05 

 
0.08 

 
-0.69 

 
0.05 

 
0.06 

 
-0.19 

1/ The probability forecast is obtained as the average of probabilities from the estimated densities 
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Figure 1 
Risk Aversion Estimated from Power, Exponential and Habit-Based Utilities 
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Figure 2 
Estimated PDFs for Selected Days.  4-week Horizon 
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