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To Gurea and our extended family





Perhaps I can best describe my experience
of doing mathematics in terms of a journey
through a dark unexplored mansion. You
enter the first room of the mansion and it’s
completely dark. You stumble around bumping
into the furniture, but gradually you learn
where each piece of furniture is. Finally,
after six months or so, you find the light
switch, you turn it on, and suddenly it’s all
illuminated. You can see exactly where you
were. Then you move into the next room and
spend another six months in the dark. So
each of these breakthroughs, while sometimes
they’re momentary, sometimes over a period
of a day or two, they are the culmination of -
and couldn’t exist without - the many months of
stumbling around in the dark that precede them.

- Sir Andrew John Wiles

Faster, stronger, higher. You need to improve
always.

- An olympic games proverb
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Chapter 1

Introduction

This chapter serves to put into context the results presented in this thesis. We point out the im-
portance of carbon nanostructures on today’s science and technology. We give a brief overview
on their structural and electronic properties. We start by presenting the graphene layer in 2D
and it is followed by carbon nanotubes where the layer is rolled up into a quasi-1D structure.
The electronic and scattering properties are affected by defects such as impurities and adsor-
bates, which can also generate magnetism. Finally the outline of the remaining part of the
thesis is given.

1.1 Carbon

"Life exists in the universe only because the carbon atom possesses certain exceptional prop-
erties". Even said long time ago by Sir James Jeans, this sentence still contains an enormous
amount of information about carbon if just some imagination and thinking are applied. Dur-
ing the industrial revolution in 19th century, carbon became one of the key elements for the
development of new technologies in the modern world (railway, steel, chemical industries,
etc). Nowadays, carbon is expected to be determinant for the next technological revolution
coming soon. Like Silicon in the 20th century, which allowed the semiconductor industry to
develop the current high performance electronics in less than eighty years, the hopes are that
carbon and its new allotropes will allow for a similar development in a much shorter period
of time. The reasons to look for alternatives to Silicon are that its physical characteristics
that are useful for electronics will reach their limits in the nearly future [1]. For instance, the
Complementary Metal-Oxide Semiconductor (CMOS) transistor would be close to its funda-
mental limits of a charge-based switch around 2024. In the meantime, it has become custom to
change our notebook, digital camera, mobile phone, etc for a faster and better updated version
at a timescale ranging from months to a few years. Therefore, other alternatives should be
considered to process the ever increasing amount of data and information that nowadays life
requires. The alternative in this context is to go to a nanometer scale or to a nanotechnology
approach which has the carbon nanostructures as a model for new advances [2].

In his famous speech "There is plenty of room at the bottom" [3], Feynmann predicted the
direct manipulation on the atomic scale as the novel challenge to be faced by the scientific
community. In particular, he thought about the possibility of making electronic components
on this lenght scale. The realization hereof can be boiled down to Moore’s law which states
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14 Chapter 1. Introduction

that the transistor density on integrated circuits (IC) doubles every two years [4]. As pointed
out in the Los Angeles Times, if the same rate of performance improvement versus cost held
for airlines, a flight from New York to Paris would cost one cent and will take less than a
second. This has been made possible by the great advances in lithography which allowed
ever denser and more complex IC. In agreement with Moore, IC and scaling are "the cheap
way to do electronics" [5]. Even with large increases in lithography tool cost to fabricate
microscale silicon-based transistors, the cost per transistor has decreased by many orders of
magnitude during the last forty years. Conversely, at the same period of time, the cost of
lithography equipment increased from $10,000 to $35 millions as shown in Figure 1.1 and
is likely to remain increasing in the next near future. Nevertheless, this device scaling and
performance enhancement can not continue forever. A number of limitations of fundamental
scientific as well as technological nature place limits on the ultimate size and performance of
silicon devices. This calls for new approaches such as the use of carbon nanomaterials as the
key components of the device (e.g. conducting channel), for which the term carbon electron-
ics has been coined. There are many reasons that highlight the role of carbon nanomaterials
as the next paradigm for Moore’s law. To cite some of them: Temperature tolerance and
stability, carbon has higher thermal conductivity than conventional CMOS structures which
could improve the operation temperature reducing it considerably; Speed, in the recently dis-
covered graphene, electrons and holes can move through its structure ballistically, travelling
for micrometers up to 2000 times faster than in silicon; Size , carbon nanostructures have the
potential to dramatically extend the miniaturisation that has driven the density and speed ad-
vantages of the IC phase of Moore’s law; Power, at the very small size scales needed to create
ever denser device arrays, silicon generates too much resistance to electron flow, creating more
heat than can be dissipated and consuming too much power. On the other hand, graphene, for
instance, has no such restrictions [6]. Thus, these emerging carbon-based materials seem to
offer new possibilities for future technologies that go beyond those of the CMOS applications.
In the following sections we study some of the carbon nanostructures giving more details on
their electronic and structural properties.

1.2 Carbon and its allotropes

Carbon exists in many allotropic forms. This is a signature of the very rich chemistry of
carbon, the central materials for life on earth. Recently, some of the carbon allotropes have
attracted a large amount of research and interest. This is partly driven by the promise of new
technological applications, some of which have been already demonstrated in the laboratories.
To cite some carbon allotropes, the sp2 (graphene, nanotubes, fullerenes) and sp3 (diamond)
hybridised carbon networks are of particular interest because they have remarkable proper-
ties compared to other materials. Some of these properties include high hardness, mechanical
resistance, resistance to radiation damage, anomalous quantum Hall effect, excellent thermal
conductivity, biocompatibility and superconductivity. The recent discovered graphene, for ex-
ample, has uncommon electronic and transport properties such as a high carrier mobility. The
electrons in graphene can move without collisions over great distances, even at room temper-
ature. Consequently, graphene has the ability to conduct electrical currents 10 to 100 times
greater than conventional silicon-based semiconductors with very small head dissipation. In
particular, this is one of the many features that makes graphene a promising candidate for
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Figure 1.1: Lithography tool cost and transistor cost versus years. Reproduced from Ref. [5].

future electronic applications and has attracted a great interest in science and technology re-
search. The number of papers in this field is growing exponentially as shown in Figure 1.2.
The field has already two Nobel prizes: one in chemistry given to Curl, Kroto and Smalley in
1996 "for the discovery of fullerenes"; and another in physics, to Geim and Novoselov in 2010
"for groundbreaking experiments regarding the two-dimensional material graphene"; and still
waiting for the third one in nanotubes (Iijima and Bethune?); this research community does
not seem to stop growing up for the next few years and beyond. Furthermore, part of this
growth is reflected by an acceleration of the increase in the upward slope of the number of
publication of the graphene curve as shown in Figure 1.2 and in the number of researchers
that are entering the field. It is also noteworthy that although the nanocarbon community had
grown rapidly from the discovery of fullerenes in 1985, and later by nanotube-based research
in 1991, graphene itself did not attract much attention until the 2004 publications of Geim and
Novoselov [7].

The concept of graphene has been around for a long time since 1947 when P. R. Wallace
published the first tight-binding model for a single graphite sheet [9]. He showed the un-
usual semimetallic behavior in this material and obtained the linear E(k) dispersion around
the K point of the Brillouin zone. However, at that time the interest in carbon nanostructures
was minuscule and the only carbon material that had some relevance was graphite. In the
years following Wallace’s paper, graphene played an important role since it made the theo-
retical framework for understanding the electronic structure of other carbon allotropes that
were progressively discovered (see Figure 1.3). For instance, fullerenes can be generated
from graphene by introducting pentagons that create positive curvature defects, and hence,
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Figure 1.2: Record of publications from ISI Web of Knowledge with "carbon nanotube(s)" or "graphene(s)"
or "fullerene(s)" in the topic. Insets from: The Nobel Foundation (nobelprize.org), Microscopy Society
of America (www.microscopy.org), Metrolic (www.metrolic.com), NANOid (www.nanoid.co.uk), and IBM
(domino.research.ibm.com).

fullerenes can be thought as a 0D nanocarbon. Although this idea seems to be simple, the
experimental route to form these carbon cages from a flat graphene sheet is still a topic of
research [10,11]. Fullerene formation is based on four critical steps in a top-down mechanism
starting from graphene flakes as is seen in Figure 1.4. Carbon nanotubes, in its turn, are ob-
tained by rolling graphene along certain directions and connecting the carbon bonds as shown
in Figure 1.5. Thus carbon nanotubes have only hexagons and can be thought as a 1D.

In the following, we shall describe the main properties of graphene and carbon nanotubes
(CNT) with the focus on the electronic and structural features that will be important for this
thesis.

1.3 Electronic Structure

1.3.1 Graphene

The peculiar electronic structure of graphene allows us to understand the quantum properties
of other carbon nanostructures. The band structure of graphene at low energies, was first
deduced by Wallace in 1947 [9] and can analytically be obtained within the π-orbital tight-
binding approximation. This approximation treats just the pz electron in each C atom as
the main state relevant for describing the full electronic structure. C possesses four valence
electrons, three of them form covalent σ bonds with the neighbours in the plane, and the fourth
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Figure 1.3: Graphene is the building block of all graphitic materials. It is considered as the basis for graphite,
carbon nanotube and fullerenes (buckyballs). Reproduced from Ref. [8].

electron (π) is assumed to be located at the orbital perpendicular to the surface. Thus, for the
flat layer the π-state is decoupled from the other C σ-states by symmetry (odd under inversion
in the plane) and it can be calculated separately. With the help of Bloch theorem applied to
the two-dimensional periodic lattice shown in Figure 1.6, the Hamiltonian in reciprocal space
is a 2×2 matrix dependent on the k-vector:

H(k) = εoI − γo

(
0 1 + e−ik·a1 + e−ik·a2

1 + eik·a1 + eik·a2 0

)
(1.1)

where the hopping energy for nearest neighbors is γo = 2.7 eV. This equation has two eigen-
values symmetric around εo:

E(k) = εo ± γo|1 + eik·a1 + eik·a2| (1.2)

In cartesian coordinates the lattice vectors can be written as a1,2 = a(
√

3ex ± ey)/2 with
a =

√
3dC−C (see Figure 1.6), where dC−C is the distance C-C, and the energies can be

expressed as:
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Figure 1.4: Quantum simulations and Transmission Electron Microscopy (TEM) experiments shed light on crit-
ical stages of fullerene formation from a graphene flake. The process begins with the loss of C atoms at the edge
(a, b-insets), followed by the formation of pentagons (b, c) that curve the flake (c, d) and leading to zipping the
flake edges (d, e) which results in the fullerene C60. The reader can look at [10] for more details. Reproduced
from Ref. [10].

E(k) = εo ± γo|1 + ei(a/2)(
√

3kx+ky) + ei(a/2)(
√

3kx−ky)|

= εo ± γo

√
1 + 4 cos(

√
3kxa/2) cos(

√
kya/2) + 4 cos2(

√
kya/2) (1.3)

The characteristic shape of the resulting band structure E(k) is displayed in Figure 1.7. There
are two symmetric bands coming from the eigenvalues E(k). They touch at six points, where
E(k) = 0, but only two of them are inequivalent. Henceforth they will be called Dirac points
with momenta K and K

′ , respectively. This band structure is symmetrical with respect to
the Dirac points, and since there is one electron per atom, a neutral graphene sample will
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Figure 1.5: The structure of graphene and carbon nanotubes. A nanotube can be formed by rolling a ribbon
of graphene along a lattice vector, Ch, defined by two integers, (n,m), such as the (4,2) lattice vector show
here. Specifically, (n, n) nanotubes (armchair) are always metallic, and (n,m) nanotubes with n − m = 3j,
where j = 1, 2, 3, ..., are nearly metallic. Tubes with n − m ̸= 3j are semiconductors. Insets for nanotubes are
reproduced from WikiCommons.
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Figure 1.6: The honeycomb structure of graphene along with its first Brillouin zone in reciprocal space. The
lattice vectors a1 and a2 have an angle of 60o and a length a =

√
3dC−C ∼ 2.46 Å. The reciprocal lattice vectors

bi (i = 1, 2), defined by bi · bj = 2πδij form an angle of 120o and have a length of ai = 4π/
√

3dC−C ∼ 5.11
Å−1.

be at half-filling (π bands), i.e. Dirac points also form the Fermi surface of neutral graphene.
Corrections by considering next nearest neighbors and orbital overlaps can break this electron-
hole symmetry [12]. As shown in Figure 1.7, the dispersion relation close to the Dirac points
can be linearised. Let us take one of the Dirac points, say K, and make an expansion around
it, k = K + q, for small q compared to K we find:

E(K + q) = E(q) ≈ ±vF h̄|q| (1.4)

where vF =
√

3aγo/2h̄ is called the Fermi velocity. By replacing numerical values, we
find vF ≈ 106 m/s. A similar result can be obtained for K ′, where another valley exists.
This result implies that the speed of electrons in graphene is constant, despite of any k− or
energy−dependence. This behaviour is similar to that of photons. Notice that a plot of the
dispersion relation, as shown in Figure 1.7, has a peculiar shape of two opposed cones whose
tips touch at the Dirac point. This is the reason why the upper band and the lower band are
commonly called Dirac cones. Thus, for graphene samples whose chemical potential is placed
near the neutrality point, that corresponds to the upper cone empty and the lower cone full,
then its low-energy excitations have a linear dispersion relation. Moreover, this conical form
mimicks the dispersion of a relativistic, massless, Dirac particles. This is by far one of the
most striking property of graphene.
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Figure 1.7: Band structure of graphene monolayer obtained by a π-orbital tight-binding approximation (Eq.1.3).
The Fermi surface is reduced to Fermi points at the corners of the hexagonal Brillouin zone (K and K ′). Figure
done with the MATHEMATICA program.

1.3.2 Carbon Nanotubes
The electronic structure of CNT’s is usually discussed starting from the band structure of
graphene and using the zone folding approximation. As already commented, the CNT can be
formed by rolling a strip of graphene in a cylinder as seen in Figure 1.5. Thus, the electri-
cal properties of carbon nanotubes have their origins in the electronic structure of graphene.
Depending on the way that the graphene sheet is rolled up, carbon nanotubes can display a
different set of electronic properties. Figure 1.5 also illustrates the common types of carbon
nanotubes that can be formed in this process: zigzag, chiral and armchair. Their structures are
specified by a pair of integers (n,m) that defines the lattice vector Ch = na1 + ma2, that
describes the nanotube circumference (Ch = πdCNT , where dCNT is the tube diameter), and
the translational periodicity along the axis is given by the vector T = 2m+n

gcd(2n+m,2m+n)
a1 −

2n+m
gcd(2n+m,2m+n)

a2, which is perpendicular to Ch. The factor gcd(a, b) determines the greatest
common divisor of the two integers a and b (see Ref. [13] for more details). For a given (n,m)
nanotube index the graphene electronic band structure is then sectioned along the directions
given by the nanotube Brillouin zone, whose spacing and lenght are related to (n,m). The
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general form of the energy dispersion for any CNT is given by:

E(µ, kz) = Eg(µK1 + kz
K2

|K2|
) with µ = 0, · · · , N − 1 and − π

T
≤ kz <

π

T
(1.5)

where Eg is the graphene dispersion relation, N is the number of graphene unit cells inside
the CNT unit cell, and K1 and K2 are the basis wavevectors in CNT Brillouin zone and are
defined as follows: K1 · T = 0, K1 · Ch = 2π; and K2 · T = 2π, K2 · Ch = 0.

The zone folding approximation is based on the constraint that any electronic wave func-
tion of graphene must obey the condition ψ(r + Ch) = ψ(r). In reciprocal space, this leads
to a selection criterion for allowed k vectors based on the relation Ch · k = 2πµ, where µ is
an integer. This shows the periodic boundary condition of quantum confinement around the
nanotube circumference, which means that only stationary states having an integer number µ
of wavelengths with period k = 2π/|Ch| are allowed around the circumferential perimeter.
On the other hand, the linear momentum kz changes continuously along the tubes axis as a
result of the translational periodic boundary condition.

The K point at the corner of the Brillouin zone can be expressed as K = (2b1 + b2)/3
leading to a simple rule that determines whether this point belongs to the set of allowed k
vectors in the rolled up system:

Ch · K
2π

=
(na1 +ma2) · (2b1 + b2)/3

2π
=

2n+m

3
(1.6)

what can also be expressed as

2n+m = 3µ (1.7)
n−m+ n+ 2m = 3µ

(2n+m) − (2m+ n) = n−m

which is equivalent to the condition for n −m to be an integer multiple of 3. Whenever this
condition holds, the K point fulfills the periodic boundary conditions, so that the Fermi energy
(EF ) of graphene is in the spectrum of the CNT, i.e. the CNT is metallic1. In other cases, the
closest lines of allowed k vectors miss the Fermi point by δk = 2/3dCNT . Within the linear
approximation at the K points, this results in a gap of ∆Egap = 2vF h̄δk = 4vF h̄

3dCNT
. These

concepts can be seen straightforwardly in Figure 1.8 that shows the two-dimensional Brillouin
zone of graphene but with the cutting lines superposed.

Generally, the zone-folding approximation works reasonably well for large diameter CNTs
but breaks down in thin CNTs due to curvature effects. In armchair CNTs this does not have
much qualitative effects, because the bands crossing at the charge neutrality point are strictly
protected by the intrinsic supersymmetry of the system [14]. In thin "metallic" zigzag and
chiral CNTs, however, the calculation with more refined tight-binding parametrisation reveals
a tiny gap opening at the Fermi energy [15,16], which has also been confirmed experimentally
[17].

1In other words, a CNT is metallic if a cutting line passes through a Dirac point K or K
′
, otherwise is

semiconductor.
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Figure 1.8: Two-dimensional Brillouin zone of graphene (kx, ky) displayed in terms of equi-energy lines with
the Dirac points K or K

′
at the vertices of the hexagon and with the Γ point at the center. Red lines denote

allowed wavevectors when graphene is folded to form (a) a (5,5) and (b) a (8,0) single-wall carbon nanotube.
Figure done with the MATHEMATICA program.

This quantisation rule leads to the formation of metallic or semiconducting nanotubes
depending on the structural details of the tubes. These two properties are by far the most
important reasons for carbon nanotubes to be explored in the context of an alternative to
Si-technology for electronics. However, the controllable synthesis of carbon nanotubes de-
lays progress. Until now, the microscopic growth process of carbon nanotubes remains un-
clear. Some models take into account the kinetics of carbon atoms on the surface of metallic
nanoparticle (e.g. Fe) and look for migration barriers and the dependence on the different
paths for diffusion. Although the results point that the shape or facet of the nanoparticle sur-
face play an important role on the active sites for the diffusion of carbon during the growing
nanotube, open questions still remain [18]. The growth of defect-free nanotubes continuously
up to macroscopic lenghts and the extreme sensitivity of nanotube electronic features on the
structural parameters are significant challenges for the future of this field [19].

1.4 Structural properties

1.4.1 Graphene as a two-dimensional crystal

Another striking property of graphene is its two dimensional character with a thickness of
one-atom. Purely two-dimensional systems with long-range order, like a two-dimensional
crystal, were supposed not to exist either because they had never been found in nature, and
because there were reasonable theoretical arguments supporting this absence. The explanation
was given by Landau and Peierls [21, 22] and later Mermin [23]. It is fundamentally based
on the Mermin-Wagner theorem, that states that in dimensions d ≤ 2, continuous symmetries
cannot be spontaneously broken at finite temperature in systems with sufficiently short-range
interactions. This means that no matter how low the temperature is, the energy cost associated
with the creation of long-range fluctuations is small and outweighed by the entropy gain.
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Figure 1.9: Two dimensional crystals that are one-atom to few-atoms thick. Single-layer of: a Boron Nitrite seen
by atomic force microscopy (AFM); b MoS2, by optical microscope; c Bi2Sr2CaCu2Ox, by scanning electron
microscopy (SEM); d NbSe2, by AFM; and finally e graphene, by scanning-electron micrograph which shows
the zigzag and armchair edges, which are indicated by blue and red lines and also displayed in the inset. Adapted
from Refs. [7, 8, 20].
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There are some examples that could be used to show this feature, for instance, in the two-
dimensional Ising model [24]. With a Hamiltonian given by:

H = −J
∑

<i,j>

Si · Sj (1.8)

with nearest neighbour coupling J and spins Si, the average magnetization can be calculated
as < S1st >= 1 − (1/2)

∑
α
< σα2 >, where

∑
α

< σα2(0) >=
1

βJ

∫ 1/a d2k

(2π)2

1

k2
(1.9)

where a is the lattice spacing, σ and α the field fluctuations, or low energy excitations. The
integral above has a term proportional to∫ 1/a

k−1 dk (1.10)

which is logarithmically divergent. This means that low energy excitations at low temperatures
lead already to deviations from the ground state. This argument explains why no thermally
stable magnetic order occurs in two dimension (and even on one).

We now translate these concepts to graphene theory and formulate the problem in terms
of vibrations or phonons: The thermal fluctuations of phonon modes lead to displacements
of atoms that become comparable to interatomic distances at any finite temperature. In fact,
the melting temperature of thin films rapidly decreases with decreasing thickness, and they
become unstable (separate into islands or decompose) at a thickness of, typically, dozens
of atomic layers [25]. For this reason, atomic monolayers have so far been known only as
an integral part of larger three-dimensional structures, usually grown epitaxially on top of
monocrystals with matching crystal lattices.

Two dimensional materials were assumed not to exist until 2004. However, new experi-
ments were able to isolate graphene [7] and other free-standing two-dimensional crystals [20],
for example, single-layer boron nitride, NbSe2 and MoS2, as seen in Figure 1.9. Graphene
is a two-dimensional crystal living in a three-dimensional world, and the latter can provide a
mechanism to stabilize the in-plane stretching fluctuations by coupling them to out-of-plane
bending modes. Real samples would be crumpled, something that was experimentally con-
firmed [26]. In those experiments, graphene on a scaffold geometry developes some "ripples"
which have static undulations of typical sizes ∼ 5 − 10 nm and height variation ∼ 0.5 nm.

1.4.2 Ripples at free-standing graphene
However, the origin of the observed corrugation in graphene is still controversial, since de-
pending on the particular experiment is not clear whether ripples are formed spontaneously or
induced by corrugations from the substrate, or by some chemical agent present in the environ-
ment. In the case of graphene on top of SiO2, there are experimental evidences indicating that
the corrugations come from the substrate, because a clear correlation between both of them
was observed [27,28]. However, in the case of suspended graphene spontaneous formation of
ripples after heating and cooling the samples has also recently been reported [29].
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First attempts to answer why graphene crumples are given by soft-condensed matter the-
ory. A continuous model of the membranes embedded in three dimensions [30] showed that
although mostly flat membranes exist, they are not perfectly flat, but they have intrinsic ripples.
In fact, corrugations of graphene flakes have been observed [26, 31] recently by Transmission
Electron Microscopy (TEM) and diffraction techniques which somehow agree with this the-
ory [30]. Those experiments are summarised in Figure 1.10. The flat graphene sheet in real
space (Fig.1.10(a)) and its 3D Fourier transform (Fig.1.10(c)) consist of a set of rods perpen-
dicular to the reciprocal hexagonal lattice. For that graphene, the intensity of diffraction peaks
could vary with the tilt angle, but without broadening. If the peaks become wider with increas-
ing tilt angle it indicates that the rods move around their average direction (Fig. 1.10(d)-(i))
and form cones indicating that the sheet is slightly corrugated (Fig. 1.10(b)). Such roughness
results in a diffraction pattern formed for an ensemble of two-dimensional crystallites with
different orientations in relation to the average plane. Figure 1.10(e)-(f) show the diffraction
patterns for 0o and 14o tilt angles, respectively. The broadening of the diffraction peaks is large
for the latter pattern and it is marked by the arrows. This behaviour vanishes for an increasing
number of layers as we can see in Figure 1.10(g). The peak broadening can also be seen in
Figure 1.10(h) which illustrates the evolution of the peak width for different tilt angles. The
peaks are sharp at normal incidence and their width increases almost linearly with tilt angle.

1.5 Magnetism in Carbon-Based Materials

The observation of magnetism in, until a few years ago, so considered non-magnetic materials
is receiving much attention, both experimental and theoretically [32]. Materials that already
possess attractive properties, such as low density, biocompatibility, plasticity, capacity to form
diverse structures, and that, in principle, could develop magnetic features have stimulated the
field of magnetism based in light-elements. Among all candidates, carbon-based systems are
currently gaining special importance [33]. Carbon-based magnetic materials would greatly
extend the limits of technologies relying on the magnetism of d and f elements or diluted
magnetic semiconductors. Room temperature metal-free magnets could find applications in
medicine, nanotechnology and telecommunications, and give the prospect for carbon-based
electronics as already described in the previous sections. Additionally, carbon-based materials
are quite promising for spintronics and related applications due to their long spin relaxation
and decoherence times owing to the low intrinsic spin-orbit interaction and the low hyperfine
interaction of the electron spins with the carbon nuclei [34–37]. Therefore, to find alternative
routes to create pristine magnetic carbon is an important research topic and it will be the
subject of the next section.

1.5.1 Radiation-induced defect formation and ferromagnetism

Graphite in its ideal pristine form is diamagnetic. Nevertheless, several experimental groups
recently reported the occurrence of ferromagnetic signals of different strengths in graphite
samples after proton irradiation [38, 39], chemical modification, electron bombardment, or
hydrogen plasma treatment [33], even at room temperatures. The presence of magnetic metals
as dopants was experimentally excluded (or it was present only at negligible level), indicating
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Figure 1.10: Graphene monolayer at a (a) flat and (b) rippled geometry. (c) The reciprocal space for a flat
graphene sheet, in which the diffraction intensities form a sharp set of rods (red). (d) Similar to panel (c) but
for the corrugated graphene where the diffracted intensities are obtained by a superposition of many rods with
slightly different orientation. (e),(f) Electron diffraction patterns from a graphene monolayer under incidence
angles of 0o and 14o, respectively. The tilt axis is horizontal. (g) Full widths at half maxima (FWHM) for some
diffraction peak in monolayer, bilayer and graphite as a function of the tilt angle. The dashed lines are the linear
fits yielding the average roughness. (h) Peak profiles reflection for different incidence angles (black line) and
Gaussian fits (red curve), with an offset that corresponds to the tilt angle in degrees. A cone that connects the
curves at approximately their FWHM is drawn as guide to the eye. (i) Side view of the peak broadening for
different diffraction beams which turns the rods into cone-shaped volume. Thus, the the diffraction spots become
blurred at large angles what is indicated by the dotted lines. Adapted from Ref. [26, 31].
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that magnetism should come from the graphite itself. Although the origin of magnetic order
in pure carbon is only poorly understood, some guesses have been considered.

Radiation damage of matter is governed by the displacement of atoms from their equi-
librium positions due to electronic excitations and direct collisions of high-energy particles
with the nuclei. In metals and narrow band gap semiconductors electronic excitations quench
instantaneously, leaving collisions with nuclei as the main mechanism responsible for the cre-
ation of defects in graphite and related carbon materials [40]. If the kinetic energy transferred
from a high-energy electron or ion to the nucleus is higher than the displacement threshold
Td, a carbon atom can leave its initial position to form a metastable defect structure on a sub-
picosecond time scale. Such events are called knock-on displacements. For highly anisotropic
layered carbon materials the threshold of the off-plane displacement is T⊥

d ∼ 15− 20eV [41],
while the creation of a defect due to the in-plane knock-on collision requires higher transferred
energies T ∥

d ≥ 30eV . Possible defects produced by radiation damage include separated and
intimate pairs (Frenkel-pairs) [42, 43] of interstitial atoms and vacancies, and in-plane topo-
logical defects involving non six-membered rings, e.g. Stone-Wales defect [44]. Thus, it is
believed that the appearance of bound states due to lattice disorder is one of the main driving
forces for a decrease in the diamagnetism and an increase in the spin density in graphite [33].

Several theoretical studies have also suggested that the intrinsic magnetism is due to
the presence of undercoordinated carbon orbitals originated by impurities, boundaries or de-
fects [45,46]. All these defects produce also quasilocalized states close to the EF and can give
rise to a net magnetic moment. It is worth noting that these states extend over several nanome-
ters around the defects and, in the case of vacancies, can form a characteristic superstructure
recognised as (

√
3 ×

√
3)R30o in STM images. By analysing the position and the orientation

of the superstructures, one can locate the defect and determine the sublattice to which the va-
cancy belongs [47]. The fact that quasilocalized states lie at EF suggests that magnetism can
be induced by electronic exchange. It has been argued recently, that Stoner ferromagnetism
with high Curie temperatures Tc can be expected for sp electron systems [48]. Furthermore,
the narrow impurity band is an essential ingredient for the ferromagnetism observed in those
systems. However, one should take care of the inhomogeneous spatial distribution of defects
in the system in order to obtain good estimates of Tc [48].

1.6 Vacancy-induced magnetism

1.6.1 π−Vacancy

As we mentioned in the previous section, several experiments have reported the observation of
magnetism in carbon materials. The main explanation is due to the presence of defects, such
as vacancies, cracks, or edges, that change the coordination of the carbon atoms and generate
spin polarized states in the defective region, with energies close to the EF . Defects and edges
are therefore crucial to explain the magnetic properties. Based on that, the mechanism leading
to ferromagnetism in carbon structures can be understood intuitively by means of the Hubbard
model for the honeycomb lattice which we now introduce.

Magnetism is a physical property that is directly related to electron-electron interactions.
The Hubbard model [49] helps to add the effects of electron-electron interactions to systems
whose bare band structure is well described by a tight-binding model. The model assumes
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that the Coulomb interaction is screened, so that it can be represented by an on-site repulsion
term of strength U . The Hamiltonian for the model reads:

H = −t
∑

<i,j>,σ

c†iσcjσ + U
∑
i,σ

ni↑ni↓ (1.11)

where< i, j > stands for nearest neighbors of the honeycomb lattice and σ for the spin degree
of freedom (↑ , ↓). The first term in Eq. (1.11) corresponds to the one-orbital per site pz tight-
binding model that is obtained as the interactions are switched off. An approximate value of
the Hubbard coupling U in graphene can be estimated in several ways from first principles
calculations. The values obtained usually lie in the range U/t ≈ 1 − 2 [50], but higher values
have also been quoted [12]. Due the exponential growth of the Hilbert space dimension with
the number of sites N a standard way to solve the Hubbard model is by means of a mean-
field theory. A direct exact diagonalization of the Hubbard model (1.11) at half-filling is only
possible for systems until about 20 sites [51]. Thus, in order to treat problem with more than
just few atoms Eq.1.11 is approximated by:

HMF = −t
∑

<i,j>,σ

c†iσcjσ + U
∑
i,σ

(⟨ni↑⟩ni↓ + ni↑⟨ni↓⟩ − ⟨ni↑⟩⟨ni↓⟩) (1.12)

where i and j runs over all lattice sites and t ∼ 2.5 eV.
Graphene is an example of a bipartite lattice, i.e. a lattice consisting on two different

sublattices A and B where atoms A are only linked to atoms B and vice-versa. Concerning the
ground state of a Hubbard model in such a lattice, Elliott Lieb [52] proved a useful theorem for
a repulsive value of the Hubbard interaction U , the ground state of the half-filled lattice is non-
degenerate and has a total spin equal to half the number of unbalanced atoms 2S = NA −NB.
This rule has been confirmed recently in a number of studies of graphene with vacancies,
edges or larger defects [53–55], and in the graphene bilayer [56]. As a result, Lieb’s theorem
has become a paradigm for magnetic studies in graphene clusters and nanographite [50]. The
major part of these works have an imbalance between the two sublattices, NA ̸= NB. For
instance, a vacancy removes an atom of a given site. An additional complication beyond the
scope of Lieb’s theorem has to be taken into account. When an atom is removed, two scenarios
are possible. Either the disrupted bonds remain as dangling bonds or the structure undergoes
a bond reconstruction with several possible outcomes (we will come to this point in the next
sections). In both cases, a local distortion of the lattice is expected.

In the following discussion, however, it is assumed that, as first approximation, the cre-
ation of a vacancy has the effect of removing a pz orbital at a lattice point, together with its
conduction band electron. This is the so-called a π-vacancy2. In this sense, the physics of the
conduction band electrons is still described by Eq. 1.12, where now the hopping to the vacancy
sites is forbidden. If the distribution of vacancies is uneven between the two sublattices, zero
energy levels or quasilocalized states will necessarily appear at EF . In other words, whenever
the two sublattices are not balanced with respect to their number of atoms, there will appear
NA − NB states with energy E = EF and localized at the majority sublattice [12, 52]. The
ground state at half-filling has either a spin up or spin down occupying the localized state at

2We have used vacancies to exemplify this rule, but it holds as well as for a hydrogen atom on top of a
graphene atom as we will see in the next section.
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E = EF , so a net magnetic moment localizes around the vacancy for an arbitrarily small value
of the Coulomb interaction U [57]. In Figure 1.11(a) we show a typical spin density around
a vacancy in a π-tight binding model. It can be seen that short-range ferrimagnetic order is
induced around the vacancy site. The spin density on the opposite sublattice to the vacancy is
larger than that on the same sublattice.

We now consider two vacancies at the same sublattice (e.g. (A,A)). In this situation, the
ground state is degenerate at U = 0 with four degenerate states appearing at EF as seen in
Figure 1.11(b). Without the Coulomb interaction, singlet and triplet states are degenerate and
Lieb’s theorem guarantees that the triplet state becomes the ground state in the presence of
a Hubbard U (> 0). At finite U a local moment is induced around both vacancies and they
couple ferromagnetically. Figure 1.11(c) also shows the weak modification of the local spin
moment M local

t as a function of U for different distances lmax from the vacancy site.
When two vacancies are at different sublattices (e.g. (A,B)) the problem becomes different.

Now, the eigenvalues generated by the vacancies do not vanish in general (see Figure 1.11(d)).
When the distance r between them is large, the energy position of the vacancy state goes to
zero [53, 55, 57]. This means that vacancies interact: a vacancy at sublattice A creates a state
with a wavefunction which is only finite on sublattice B, and vice-versa, and sites of type A
and B are connected by the electronic Hamiltonian. This results in a splitting between the
two quasilocalized states associated with the vacancies on different sublattices and they move
from E = EF (see inset (II) in Figure 1.11(b)). At any value of U , two of the quasilocalized
states are now occupied and the total moment vanishes. This still agrees with the Lieb’s
theorem [52], but it is possible to have a non-zero local magnetic moment at each vacancy site.
Figure 1.11(e) shows the behaviour of the total sublattice magnetization M s

tot as a function of
the distance r between two vacancies located at different sublattices. When the distance is
small between them, r/a ≤ 6, no local magnetic moment appears. However, when they
are far away from each other, a local moment is induced around each vacancy. In this case,
the induced net moments at the defect sites are antiparallel. This can be understood as a
consequence of the antiferromagnetic tendency of the half-filled honeycomb lattice. In fact,
the net moments induced around defects are also equal in magnitude. In Figure 1.11(c) we
see that a critical value of Ucr is needed to create a finite moment in the system. Although we
have only focus on vacancies in an infinite graphene layer, the results discussed here also hold
for ribbons [54] and other carbon geometries [50]. It is noteworthy that the quasilocalized
states around EF have a strong directional character, as we can see in Figure 1.11(f) for two
monovacancies in an armchair graphene nanoribbon. Depending on the alignment between
the two vacancies, their magnetic coupling is not invariant against the exchange of positions
because the quasilocalized states could hybridise differently [54]. In the inset of Figure 1.11(f)
the splitting energy differs when both vacancies are positioned in a tail-tail (B + A) or head-
head (A+B) configuration. The physics of a π-vacancy in graphenic nanostructures is thus a
rich topic which will have an important place in the next parts of the present thesis. Therefore,
the interpretations and arguments exposed in this section will be used below.

1.6.2 Real carbon vacancy
So far, we have focused on the electronic properties of a π-vacancy in graphenic nanostruc-
tures. However, the vacancy in the real word reconstructs due to the other sp electrons that are
not considered explicitly in the Hubbard Hamiltonian Eq.(1.12). The vacancy can thus display
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Figure 1.11: (a) Spin density around a vacancy in graphene using a pz-tight binding model. The area of the
circles is proportional to the magnitude of the spin density at each lattice point. Empty and filled circles repre-
sent positive and negative magnetic moments, respectively. (b) Spin configuration at the ground state with two
vacancies (I) at the same sublattice and (II) at the opposite one. In panel (I), when U = 0 four levels appear
at the EF , with two levels per spin channel. At finite U (> 0), the degeneracy is split up with two states being
occupied of spin up. In panel (II), despite of the value of U , two of the states are occupied and the total moment
always vanishes. (c) Local spin moment M local

t as a function of U for a lattice L×L. The value Ucr denotes the
critical value of U when a finite moment appears. The value lmax is the distance between the vacancy sites. (d)
Energy E of a vacancy state created by two vacancies at different sublattices as a function of the distance r. (e)
Total sublattice magnetization Ms

tot as a function of the distance r between two vacancies in different sublattices.
The lattice constant is a = 2.46. (f) DOS for an armchair ribbon of W = 7a with two vacancies in different
orientations. The solid lines correspond to the B + A case (left lower inset) and the dashed lines correspond to
the A + B case (left upper inset). Right inset: Bonding-antibonding energy splitting as a function of the distance
between vacancies for two different alignments. Adapted from Refs. [54, 55, 57].
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Figure 1.12: (a)-(c) High resolution-TEM (HRTEM) image sequence of a monovacancy in a graphene mono-
layer: (a) original image of the defect and (b) with the atomic configuration superimposed on top (a pentagon
is marked in green); (c) relaxation to unperturbed lattice after 4 s. (d) Structure of a symmetric D3h vacancy in
graphene with the missed C atom drawn with dashed lines. (e) and (f) are the top and the side views, respec-
tively, to the optimised structures of the distorted Cs vacancy. The distances are given in Å by the number in the
figures. The atoms 1 and 2 suffered a Jahn-Teller distortion that reduce the energy of the system and formed the
pentagon-like bonding structure. (g) Calculated spin density projection on the graphene plane around the vacancy
defect. (h) Density of states (DOS) for spin-up and spin-down channels after the creation of the monovacancy.
The dashed line shows the DOS of graphene. Labels indicate the character of the defect states. Adapted from
Refs. [58–60].
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new electronic and geometric features beyond those present in a pz tight-binding model. In
the following, we shall address the experimental observation of a monovacancy in graphene
and also its basic electronic and magnetic properties.

For graphene, several experiments have observed vacancies and more complex defects
[59, 61–63]. Those experiments irradiate the sample for some time using a focused electron
beam. Similar to proton irradiation in graphite (as seen in Section 1.5.1) but now with a
subnanometer spot (e.g. ∼ 1 − 3 Å). Vacancies can be created with atomic precision at
predefined positions. For instance, we show a sequence of HRTEM images taken at room
temperature of a reconstructed monovacancy in a single-layer graphene in Figure 1.12 (a)-(c).
The vacancy is observed by the formation of a pentagon-like bond (see Figure 1.12(b)). After
a few seconds the missing atom is replaced by a mobile adatom on the graphene surface as is
seen in Figure 1.12(c). The monovacancy reconstructs in a geometry of Cs symmetry different
from the D3h structure displayed in Figure 1.11(a). The D3h vacancy undergoes a Jahn-Teller
distortion. This effect is shown by first principles calculations [60] which predict an energy
lowering of about 0.20 eV, divided into two parts: (i) the in-plane and symmetry preserving
distortion with 0.09 eV, and (ii) the out-of-plane and symmetry lowering with 0.11 eV. The
reconstructed geometries are plotted in Figure 1.12(e)-(f). For the symmetric D3h vacancy
(Figure 1.12(d)), the bond length between the first nearest neighbour atoms to the vacancy and
the next-nearest neighbours is shortened to 1.37 Å while the nearest-neighbour bond length in
perfect graphene is ∼ 1.42 Å. This distortion preserves the symmetry and lowers the energy
by ∼0.09 eV. Other bond lengths are only slightly changed. For the ground-state Cs, the
distortion forms a pentagon-like structure with a bond length of ∼2.1 Å.

The bond formation that accompanies the symmetry lowering lowers the energy by ∼0.10
eV. Atom 3 suffers an out-of-plane displacement. This can be explained because the paired
electrons in the new bond between atoms 1 and 2 in Figure 1.12(e) repel the electron on the
opposite atom 3, so that the easiest direction for moving is an out-of-plane displacement of
few tenths of an Angstrom [60]. We show the spin density projection on the graphene surface
generated by the reconstructed monovacancy in Figure 1.12(g). Most of the spin moment
of the vacancy (∼1.04 µB) is due to atom 3, with a resulting spin pattern that only follows
approximately the original bipartite character of the graphene lattice. The bipartite character
is actually broken by the 1 − 2 bond.

Although this description of the monovacancy seems to be detailed, substantially, as we
will see in Chapter 5, this picture is still incomplete in order to fully understand the magnetism
of monovacancies in graphene. There are more ingredients that determine the stability of spin
solutions in a vacancy and its interplay with the global structure can create novel effects.

1.7 Impurities in graphene
To exploit the unique electronic properties of graphene requires to understand the effects of
impurities in this material. Impurities are inevitable sources of electron scattering left from the
production process and they may limit electron transport in graphene to a substantial extent.
However, apart from being just undesirable, impurities provide a powerful tool for controlling
the electronic properties of graphene. In solid state materials, a clear application of impurity
states is the doping of semiconductor. In addition, impurities in graphene allow us to address
fundamental questions: for instance, impurity states in this material are directly related to
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Figure 1.13: (a) Geometry of a H atom chemisorbed on top of a C atom in graphene. (b) Spin density projection
around the H atom. (c) The resulting density of states (DOS) for spin-up and spin-down states after the doping.
The dashed line shows the DOS of the ideal graphene. Labels indicate the character of the defect states. (d)
Structure of the full hydrogenated graphene monolayer, graphane, in the chair conformation. The panel shows
the hexagonal carbon network with carbon in the sp3 hybridization. (e) Geometry of half-hydrogenated graphene
monolayer (graphone) that was predicted to display magnetic behaviour. (f) Band structure of graphane with a
clear band gap. Adapted from Refs. [58, 64–67].
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Figure 1.14: (a) Schematic structure of a back-gated CNT-FET device. (b) AFM image of the device: CNT
with a backgate made by SiO2 and source (S) and drain (D) electrodes. (c) Chemical gating effects in the semi-
conducting CNT. Current versus gate voltage curves before (circles) and after NO2(triangles) or NH3 (squares)
exposures. The measurements with NH3 and NO2 were carried out successively after sample recovery. Adapted
from Refs. [72, 73].

scattering of relativistic quasiparticles [68–71]. In this section we describe how adsorbates
and impurities modify the electronic properties of graphenic nanostructures. We describe how
magnetism can be generated by using H atoms chemisorbed on graphene and we give some
examples of experiments where adsorbates can modify the electron transport. Later we shall
describe our own investigation on the effect of substitutional metallic impurities in graphene
and CNTs, taking into account recent experimental observations.

1.7.1 H atoms chemisorbed on graphene

In the previous section we have seen how missing atoms can create a magnetic order in
graphene monolayers. Despite of being a quite different defect from a vacancy, chemisorbed
molecules and atoms on graphene, in particular H atoms, could also generate magnetism. Here
we describe the main electronic and magnetic properties caused by this kind of functionaliza-
tion in order to understand the magnetism generated by more complex adsorbates in Chapter
4.
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A H atom chemisorbed on top of a C forms a σ-bond and makes the sp2 configuration to
change into an approximately sp3 configuration, as shown in Figure 1.13(a). This removes a
pz-orbitals from the π− π∗ band system and generates a spin density (Figure 1.13(b)), similar
to that from a monovacancy in a π-tight-binding model of graphene (see Figure 1.12(g)). If
more than one H is adsorbed, the graphene sublattice will play a role: for adsorption at A-
sublattice, the spin-density localises at B sublattice, and vice-versa3. When a H atom has been
adsorbed on the surface, an unpaired electron is left on the neighbouring C atoms, which due to
its resonant character is shared with the nearest neighbours. In fact, the nearest C neighbours
contain most of the 1.0 µB magnetization. It is important to remark that there is one defect
state for each spin channel. The degeneracy is lifted when the exchange-correlation effects
are taken into account leading to separation of the graphene bands for spin-up and spin-down
states with a magnetic moment of 1.0 µB per defect and exchange splitting 0.23eV at 0.5% H
concentration [58] (see Figure 1.13(c)).

A recently reported material that could be seen as a fully hydrogenated version of graphene
is the so-called graphane [74] which is shown in Figure 1.13(d). As graphene, pure graphane
consists of a hexagonal lattice of carbon atoms, however, with atoms in a sp3 hybridization.
In addition to the three neighboring carbon atoms, each carbon atom is covalently bonded to
H atoms on alternate sides of the graphene surface. Graphane, as well as graphene, can be
viewed as a crystal consisting of two surfaces without an interlayer. It is thus not surprising
that this material is very sensitive to its environment. By attaching H atoms only to one
graphene side as shown in Figure 1.13(e) one can create a new material based on graphene.
Theoretically predicted to be magnetic, this half-hydrogenated graphene or graphone [65] is
seen as an alternative way to create a magnetic material based completely in light atoms. On
the other hand, graphane presents a non-magnetic semiconducting behaviour [75] as seen in
Figure 1.13(f).

In general, by adding functional groups to graphene its properties can be significantly
changed and turned to a particular application. We will have the opportunity to discuss this
fascinating problem more extensively in another chapter, being one of the topics selected for
this thesis.

1.7.2 Molecular adsorption on graphene and carbon nanotubes

Other important issue of the chemistry of graphene and CNT’s as well is the molecular ad-
sorption, in addition to light atoms as H, of molecules, radicals, polymers, etc, which is also
called functionalization. Similar to organic chemistry in which functional groups are added to
an organic molecule in order to change its properties, the same principles also hold for carbon-
based materials. By attaching functional groups to the graphitic structure, both chemical and
physical features can be tailored.

Experiments showed that adsorbates on graphene and related materials can strongly af-
fect, apart from the magnetic properties, charge transport by doping and causing scattering of
electrons. Since 2000, CNT based gas sensors have been reported [72, 73, 77]. They place a
semiconducting CNT on a SiO2/Si substrate and make contacts with normal metallic elec-
trodes. By using Si as a back gate, a field effect transistor (FET) is constructed as shown in
Figure 1.14(a)-(b). The gate voltage Vg between tube and Si substrate is used to charge the

3The Lieb’s theorem also holds for this situation.
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Figure 1.15: (a) Response in the resistivity ρ of single graphene layer devices to NO2, H2O, NH3 and CO in
concentrations of 1 ppm in He at atmospheric pressure. The positive (negative) sign of changes in ρ were added
to indicate electron (hole) doping. (b) Examples of changes in Hall resistivity observed near the neutrality point
during adsorption of strongly diluted NO2 (blue curve) and its desorption in vacuum at 50 oC (red curve). The
green curve is a reference of the same device thoroughly annealed and then exposed to pure He. The curves are
for a three-layer device in B = 10 T. The grid lines correspond to changes in ρxy caused by adding one electron
charge. Adapted from Ref. [76].

CNT and to tune the chemical potential inside it. The current through such CNT-FET turns
out to be sensitive to gas exposure. Kong et al. [72] found a shift of the current vs. gate volt-
age curves in different directions upon NH3 and NO2 exposure (Figure 1.14(c)). Similarly,
CNT-FETs are affected by other adsorbates including H2O [73], K and O2 .

Such setup in graphene is strongly sensitive to gas exposure [7]: the resistance R of a
graphene multilayer device has been measured upon H2O, NH3 and C2H5OH adsorption. R
drops down upon exposure to water, while ethanol and ammonia exposure as well as placement
in vacuum increase it. Later experiments [76] studied the sensitivity of graphene based devices
to active gases in more detail. Combining measurements of the longitudinal and the Hall
resistivity (ρxx and ρxy, respectively) the chemically induced charge carrier concentrations
∆n and their signs were determined. The measurements shown in Figure 1.15(a) demonstrate
that NO2 and H2O act as acceptors, while NH3 and CO are donors. For NO2, the adsorption
of single molecules seems detectable as the height of steps occurring in Hall resistance ρxy

(Figure 1.15(b)). This corresponds to the removal or addition of one electron to the graphene
sample [76]. Such steps occur only, when the sample is exposed to NO2 or annealed after
exposure but not, e.g., for a clean sample in He flow. Moreover, no such steps have been
detected for H2O, NH3 or CO adsorbing on graphene. In general, the response of graphene and
CNT devices to gas exposure can be different or caused by different mechanisms: for CNT
devices Schottky barriers can control the response [79], whereas for graphene the Schottky
effect is suppressed due to the vanishing gap.

Impurities are indeed local perturbations and to understand their effects we must investi-
gate the induced change in the electronic properties. In the next section, we shall explore the
electronic structure of graphene (and CNTs) substitutionally doped by metallic impurities. In
fact, this will introduce the main subject of the thesis, which will be studied in the chapters of
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Figure 1.16: TEM image of a graphene monolayer with Pt atoms at a substitutional site. An enlarged view of the
area arrowed in the left panel is seen on right inset. Adapted from Ref. [78].

results.

1.7.3 Graphene and carbon nanotubes with substitutional transition met-
als

We commented in the previous sections that defects and dopants severely affect some the
properties of graphenic systems and can be used to tune their response. Here we focus on
substitutional impurities in graphene, in which a single metal atom substitutes one or several
carbon atoms in the layer. Direct experimental evidence of the existence of these kind of
defects has been recently provided by Gan et al. [78]. Using HRTEM, these authors were
able to visualise individual Au and Pt atoms incorporated into a very thin graphitic layer
probably consisting of one or two graphene layers as we shown in Figure 1.16. From the
real-time evolution and temperature dependence of the dynamics they obtained information
about the diffusion of these atoms. Large diffusion barriers (∼2.5 eV) were observed for
in-plane migration, which indicates the large stability of these defects and the presence of
strong carbon-metal bonds. These observations indicate that the atoms occupy substitutional
positions.

In another experiment using double-wall CNT (DWCNT) [63], Fe atoms were trapped
at vacancies likewise that observed in graphene layers. Figure 1.17(A)-(B) shows the STEM
images before and after the electron beam was directed onto a predefined position and kept sta-
tionary for few seconds in order to create a lattice defect4. After irradiation, a bright spot in the
dark-field image was observed. A quantitative analysis showed an increase of the scattered in-

4Fe atoms were previously deposited on the nanotube surface before the defect formation
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Figure 1.17: STEM images of a DWCNT at a finite temperature (475 oC) showing the trapping of Fe atoms at
the irradiated area marked with an arrow. Panels (A) and (B) show the surface of the DWCNT covered with
Fe nanoparticles before and after the irradiation, respectively. Panels (C) and (D) display the intensity profiles
along lines perpendicular to the tube axis, respectively, from the unmodified and the irradiated DWNT areas.
The dashed lines show the expected intensity levels for one and four carbon layers and for one Fe layer (just one
atom). Images were obtained using dark field microscopy technique with different illuminations on the sample:
Bright field (BF) and dark field (DF). Adapted from Ref. [63].

tensity at the irradiated position (Figure 1.17(D)) relative to the center of the pristine DWCNT
(Figure 1.17(C)). We expect an intensity proportional to the atomic number, I ∼ Z1.7 [63].
The large peak in Figure 1.17(D) demonstrates that in the defect position, on the top or bottom
side of the DWNT, a Fe atom is trapped.

Recent evidence reported substitutional Ni impurities in single-walled carbon nanotubes
(SWCNT) [80] and graphitic particles (see Figure 1.18) [81]. Ushiro et al. [80] showed that
Ni substitutional defects were present in SWCNT samples even after careful purification. Ac-
cording to their analysis of X-ray absorption data (XANES), the most likely configuration has
a Ni atom replacing a carbon atom, as shown in Figure 1.18(b).

The presence of substitutional defects can have important implications for the interpre-
tation of some experimental evidence. For example, substitutionals of magnetic transition
metals are expected to strongly influence the magnetic properties of graphenic nanostructures.
Interestingly, transition metals like Fe, Ni or Co are among the most common catalysts used
for the production of SWCNT [82]. Furthermore, the experiments by Rodriguez-Manzo and
Banhart [83] have demonstrated how to create individual vacancies at desired locations in
carbon nanotubes using electron beams. This experiment, by combination with the observed
stability of substitutional impurities, opens a route to fabricate new devices incorporating sub-
stitutional impurities in certain locations or arranged in particular ways. Such devices would
allow for experimental verification of some of the unusual magnetic interactions mediated by
the graphenic carbon network that have been predicted recently. [84, 85] In spite of this, the
magnetic properties of substitutional transition-metal impurities in graphenic systems have not
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Figure 1.18: (a) Calculated Ni K-edge XANES spectra for the substitutional models taking in account a monomer
and dimmer of Ni and the comparison with the observed spectrum after purification process. (b) Calculated Ni
K-edge XANES spectra of a armchair CNT with Ni located outside and inside the tube wall. Adapted from
Ref. [80].
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been studied in detail. Few calculations have considered the effect of this kind of doping on
magnetic properties of the graphenic materials and this will be one of the main goals of this
thesis.

1.8 Thesis outline
Chapter 2 address a basic introduction to the treatment of the many-body problem us-

ing Density Functional Theory (DFT). Its implementation in the SIESTA code was mainly
used through this thesis. Basic concepts on pseudopotentials, localized basis set, and periodic
boundary conditions are briefly introduced. We show how some technical parameters used in
the calculations have been optimised in order to obtain a compromise between accuracy and
efficiency. In particular, the convergence tests include k-points sampling, electronic smearing
σ, pseudopotential radius rl and basis set. Some results for the bulk-phase of several elements
and pristine graphene are presented.

Chapter 3 deals with the structural, electronic and magnetic properties of 3d transition
metals, noble metals and Zn atoms interacting with carbon monovacancies in graphene. We
propose a model based on the hybridization between the states of the metal atom, particularly
the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. The
predictions of this model are in good agreement with the calculated DFT band structures. With
this model, we can easily understand the non-trivial behavior found for the binding energy and
for the size and localization of the spin moment as we increase the number of valence elec-
trons in the impurity.

Chapter 4 deals with the magnetism induced by metallic impurities and organic adsor-
bates on graphene monolayers and SWCNTs. We have found magnetism associated with
substitutional Co atoms and organic adsorbates (e.g. polymers, nucleobases, diazonium salts,
sugar, etc) chemisorbed on graphene through a single C-C bond. Co atoms adsorbed at car-
bon vacancies can be regarded as a physical realization of a simplified model of defective
graphene: the π-vacancy. The analogy is even more direct between the π−vacancy and the
covalent functionalization. Following this analogy, the complicated magnetic properties found
in our calculations are easily understood. However, the magnetic couplings between metallic
impurities as well as between organic adsorbates on graphene are complex. These exchange
energies are analysed in terms of a RKKY model to extract their distance dependence.

Chapter 5 focus on the interplay between elastic and magnetic properties of defects in
graphenic nanostructures. It is shown that magnetism of defects, such as in vacancies and
magnetic impurities in nanotubes and graphene, can be manipulated using strain. We find
that the magnetic moment of Ni-doped graphene can be controlled by applying tensile strain.
The spin magnetic moments are greatly enhanced. Such deformation breaks the hexagonal
symmetry of the layer as in carbon nanotubes due to curvature but in a controllable way. We
also found that monovacancies in graphene can show a very rich phase diagram of spin solu-
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tions and geometric configurations under a biaxial strain. The moment of the monovacancy
increases with stretching while compression reduces or even kills the magnetic signal. The
transition to a non-magnetic solution is linked to the rippling of graphene.

Finally, a summary and outlook are provided in Chapter 6.



Chapter 2

Electronic Structure Methods

A successful scheme dealing with the many-body problem is Density Functional Theory
(DFT). In this Chapter, some essentials are given concerning the DFT basic theory and other
technical concepts that we will used in this thesis, for instance pseudopotentials, k-point sam-
pling, basis set, etc. A description of the main code that was used to perform all electronic
structure calculations will be also given: SIESTA. The Chapter ends with a discussion of some
tests on the convergence of the physical properties (e.g. magnetic moment, band structure, ...)
studied in this thesis respect to several computational parameters.

2.1 Density Functional Theory
DFT is one of the most widely used methods for electronic structure calculations in condensed
matter. Since it is an ab initio method, i.e., no fitting parameters are needed, DFT is very
powerful for the research of novel materials including nano-structured systems. With today
computer resources, system sizes of about a thousand atoms can be studied with many DFT
methods.

2.1.1 The many-body problem
The starting point of the description of a system containing electrons and nuclei is the Hamil-
tonian:
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where lower case subscripts denote electrons, and upper case subscripts denotes nuclei. ZI

and MI are the charge and mass of the nuclei. The inverse of the nuclear masses, 1/MI , can be
regarded as such small quantities that the nuclear kinetic energy can be ignored. Alternatively,
one can argue that the large difference in mass between the electrons and the nuclei effectively
means that electrons react almost instantaneously to changes in the nuclear positions, and the
nuclei can be regarded as static. This is the so-called Born-Oppenheimer approximation [86].
The relevant Hamiltonian for electronic structure calculations is thus

43
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Ĥ = T̂ + V̂ext + V̂int + EII (2.2)

where T̂ = −1
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accounts for the electron-electron in-

teractions. EII is the constant energy of the nucleus-nucleus interactions. The Hamiltonian
in Eq. (2.2) is essentially determined by the external potential V̂ext (i.e., the nuclear coordi-
nates, which also determine EII) because T̂ and V̂int are the same for any electron problem.
The properties of the interacting system with N electrons are in principle obtainable from the
time-independent Schrödinger equation:

ĤΨi(r1, r2, ..., rn) = EiΨi(r1, r2, ..., rn) (2.3)

Solving Eq. (2.3) for a realistic system containing many electrons and nuclei is difficult for
more than a few atoms. The Physics Nobel Prize winner Walter Kohn had already pointed out
that traditional wave-function methods are in general limited to molecules with a small total
number of chemically active electrons [87]. For N particles, the full N particle wavefunction
Ψi(r1, r2, ..., rN ) has 3N variables and using a description with p parameters yields a space
of dimension

M = p3N (2.4)

The total energy has to be minimised in the space of these M parameters. If we setup a
maximum value of M , m, that can be calculated with our best computers we can have an
estimation of our limits to calculate the electronic properties from wave-function methods. As
an example, if m = 109 parameters, and p = 3, for example, we can see from Eq.(2.4) that

lnm = ln(p3N) (2.5)
N = 1

3
ln m
ln p

N = 1
3

9
0.48

= 6

what means that could only treat a system of 6 particles. This is what Walter Kohn has de-
scribed as the exponential wall concept and essentially it reflects the interconnectedness of
Ψi(r1, r2, ..., rN ) in the 3N -dimensional configuration space defined by all rl being inside
the 3D region containing the particles [87]. Hohenberg and Kohn’s famous theorem is a (par-
tial) solution to this problem and we will discuss in the following section.

2.1.2 Foundations of the Density Functional Theory
The theoretical foundation of DFT was made by Hohenberg and Kohn [88] who showed that
there is a one-to-one correspondence between the ground state density of a system and the
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external potential. In other words, two external potentials differing by more than a constant
lead to two different ground state densities. Since the Hamiltonian in Eq.(2.2) is uniquely
determined by the external potential, it follows that all properties, including excited states, of
the system can be regarded as functionals of the ground state density. Specifically, the total
energy can be considered as a functional of the density:

E[ρ] = T [ρ] + Vint[ρ] + Vext[ρ] = T [ρ] + Vint[ρ] +
∫
ρ(r)vext(r) dr (2.6)

The minimum energy is found for the ground state density ρo which can be obtained by us-
ing the variational principle. Considering the three-dimensional density instead of the 3N-
dimensional wavevectors as the independent variable is a worth simplification, nevertheless
the progress is still mostly formal. The problem is that the universal functionals T [ρ] and
Vint[ρ] of the kinetic and electron-electron interaction energies are unknown [89].

2.1.3 Kohn-Sham formulation
Almost any practical use of DFT rely on the work of Kohn and Sham (KS) from the late
60’s [90]. KS theory is based on a basic ansatz, namely that the ground state density, ρ(r), of
an interacting system is also the ground state density of a non-interacting system with an effec-
tive potential veff (r). The electron density is determined from a single-particle Schrödinger
equation:

ĥψi(r) = ϵiψi(r)

(−1

2
∇2 + veff (r))ψi(r) = ϵiψi(r) (2.7)

where ψi(r) are the single electron KS orbitals giving the density:
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where the sum is over the occupied states. The effective potential veff (r) is given by:
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where the latter term is called the exchange-correlation term. The KS energy functional that
needs to be calculated is:

E[ρ(r)] = Ts[ρ(r)] +
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2
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The set of equations (2.7) - (2.9) is solved self-consistently in an iterative process. For in-
stance, we start by a guess of the density ρ(r), calculate veff (r), solve Eq.(2.7) to obtain
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ψi(r), calculate the new density ρ′
(r) and compare it to the initial guess. Upon convergence,

the ground state energy is found from the energy functional of Eq.(2.10). The exchange and
correlation term Exc[ρ(r)] contains all the many-body effects not included in the Hartree term

VH [ρ] = 1
2

∫ ∫ ρ(r)ρ(r
′
)

|r−r′ | dr dr
′ . It is composed by

Exc[ρ(r)] = Tc[ρ(r)] + Vx[ρ(r)] + Vc[ρ(r)] (2.11)

where Tc[ρ] comes from the split of the kinetic energy T [ρ] (Eq. (2.6)) in two parts: T [ρ(r)] =

Ts[ρ(r)] + Tc[ρ(r)], where Ts[ρ(r)] = −1
2

N∑
i

∫
ψ∗

i (r)∇2ψi(r) is the kinetic energy of non-

interacting particles. The remaining of the interacting kinetic energy, Tc[ρ(r)], is included by
approximations. Similarly, the electron-electron interaction energy splits into a simple and
complicated part: Vint[ρ(r)] = VH [ρ(r)] + Vx[ρ(r)] + Vc[ρ(r)], where Vx[ρ] is the exchange
energy, and the correlation term Vc[ρ] is due to electron-electron correlations not captured in
the Hartree term.

The validity of any KS-DFT calculation relies on a good approximation to Exc. A widely
used approximation for Exc is the local density approximation (LDA) where the contribution
of each volume element to the total exchange correlation energy is taken to be that of an
element of a homogeneous electron gas with the density corresponding to that point:

ELDA
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where ϵhomo.
xc [ρ(r

′
)] is the exchange-correlation energy density of a homogeneous electron gas,

which is known with high accuracy [91]. The LDA has proven to give remarkably good results
for many systems [89]. On the other hand, other approximations include the gradient of the
density and the functional Exc has the form:

EGGA
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Most of the calculations in this thesis were performed using the Perdew-Burke-Ernzerhof
(PBE) parametrisation of GGA [92].

It is, however, important to realise that the KS eigenvalues, ϵi are not the true energy levels
of the interacting system, Eq. (2.2). The density ρ(r) is one of the few physical quantities
that can be strictly obtained, at least in principle, from KS formalism. In particular, the total

energy given by Eq. (2.10) is not equal to the sum of KS eigenvalues, EKS[ρ(r)] ̸=
N∑
i
ϵi [89].

ĥ, the KS Hamiltonian, is an effective one-electron Hamiltonian that introduces the effects of
electron-electron interactions in a mean-field approach. In this work, we adopt a pragmatic
view and, in lack of better alternatives, we take the eigenvalues of ĥ as a starting point of
our analysis, having in mind that they are only an approximate description of the one-electron
excitations in the real system obtained from a mean-field approach.

Although not exact, the KS eigenvalues (ϵKS) have proven to be a reasonable starting point
to understand the electronic structure of real systems. There are, however, well known (and
well understood) limitations in the KS band structure. In this context, it is important to mention
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that the fundamental band gap (Eg) of a semiconductor or insulator is only approximately
predicted using the LDA or GGA exchange-correlation functionals. One of the reasons for that
in the KS approach the gap, EKS , is defined as the difference between the lowest unoccupied
(ϵlumo

KS ) and highest occupied (ϵhomo
KS ) eigenvalues which differs from the definition of the gap

Eg. The latter is defined as Eg = I −A, where I is the ionisation potential and A the electron
affinity. The relation between Eg and EKS is given by Eg = EKS + δxc, where δxc is the
derivative discontinuity, i.e., a finite kink that the exchange-correlation potential exhibits as the
particle number crosses the integer number of particles N in the system [93]. In some cases
δxc can be small but numerical investigations show that it is usually not negligible [94–96].
Therefore, this can limit the prediction of the fundamental gap Eg from the eigenvalues ϵKS

even if the exact energy functional would be known.

2.2 The SIESTA method

Here we briefly mention some important aspects of the SIESTA method that were used in this
thesis. This code was chosen due to its widespread use and efficiency. A detailed description
of the SIESTA code can be found in Ref. [97]. SIESTA is an ab initio pseudopotential method
which employs a linear combination of atomic orbitals as a basis set. Due to the use of atomic
orbitals as a basis set, it seems to be similar to a tight binding technique [98] but in fact it
strongly differs: the single-particle Hamiltonian is obtained by projecting the KS-DFT Hamil-
tonian (Eq. 2.10) onto this basis set of atomic orbitals; thus, it is not a set of fitting parameters
like in empirical tight-binding methods. Many approximations necessary to solve the one-
particle Hamiltonian in SIESTA as for instance the pseudopotential approach, the treatment of
exchange and correlation explicitly by means of approximate functionals (e.g. LDA, GGA)
and the already cited Born-Oppenheimer approximation are also commom to other ab initio
methods. Apart from that, the method is also characterised by a set of parameter that controls
the accuracy of the self-consistent KS solution. Just to cite some of them: the size (number of
atomic basis orbitals) and range (radius of the basis orbitals) of the basis set, the fineness of
real-space integration grid, the non-linear core correction to treat exchange-correlation inter-
action between core and valence states, etc.

2.2.1 Periodic boundary condition

In order to solve the KS differential equations one needs to specify the boundary conditions
(BCs) for the problem. In the SIESTA method one uses periodic BCs within the supercell
approach [89]. This is the natural choice for bulk crystals, which in reality are periodic. The
supercell approach can also be applied to non-periodic structures if a sufficient amount of vac-
uum is included in the supercell, to effectively separate the objects. In this way molecules,
wires, and surfaces can be studied by including vacuum in three, two, or one directions, re-
spectively.

Since the supercell is periodic, Bloch’s theorem applies and the wavefunctions can be
written as

ψnk(r) = unk(r)eik·r (2.14)
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Figure 2.1: Sketch of the all-electron and pseudo potentials and their corresponding wave functions. The radius
at which all-electron and pseudo potentials match is displayed as rc. Adapted from [99].

where unk(r) has the periodicity of the supercell, k is a wave vector in the first Brillouin
zone (BZ), and n is the band index. Equation (2.14) allows mapping the KS equations to the
reciprocal space, where they are solved for each different k and the size of the problem is
restricted to the number of orbitals in the supercell. The expectation value of some operator,
Â, is found as

⟨Â⟩ =
1

VBZ

∫
BZ

A(k) dk ≈
∑
k

ωkA(k) (2.15)

where the integral is approximated by a sum over a number of k-points with weight, ωk. If
the supercell is large, the corresponding BZ is small, and few k-points are needed. In the
non-periodic directions only the Γ-point (ki = 0) is usually included.

SIESTA uses fast Fourier transform (FFT) to compute the Hartree potential. The FFT algo-
rithm computes the discrete Fourier transform and its inverse which is in principle a periodic
function. This allows to solve Poisson’s equation and find VH in an easy way.
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2.2.2 Pseudopotentials

In many DFT implementations, the external potential Vext(r) is replaced by pseudopotentials
(PPs). The idea is that the core electrons which are tightly bound to the nucleus are chemically
inert and can be ignored. This leaves only the valence electrons to be considered. PPs are
typically generated for free atoms, but can be applied to solids and molecules since the core
states almost remain the same (see Figure 2.1). In SIESTA one typically uses norm-conserving
PPs of the Troullier-Martins type [100].

It is also worth noting that all the interactions between the core and valence electrons must
be transferred to the pseudopotential. This separation core-valence implies a linearisation of
the interaction which is an approximation for the exchange-correlation energies. Note that
the exchange-correlation energies are explicitly non-linear. If the valence ρval and core ρc(r)
charge densities are well separated, as is often the case, this will introduce no serious errors.
However, if there is a significant overlap between both densities, this approximation will lead
to systematic errors in the total energy and reduces the transferability of the pseudopotential.
In particular, this is the case for many magnetic systems, like transition metals, and they
need the explicit consideration of the non-linear dependence of the energy on the core charge
density. To overcome this difficulty, it was proposed that the full core charge density ρc(r)
could be replaced by a partial core charge density which is identical to the true charge density
outside some radius rc [101]. This procedure apparently simple has improved the description
of materials in which the overlap between core and valence charge densities is large, e.g. many
magnetic materials [89].

2.2.3 Basis set

In the numerical solution to the KS equations one expands the wave functions in terms of a
basis set:

ψn(r) =
∑
m

cnmϕm(r) (2.16)

This is exact, if the basis set {ϕm} is complete. Otherwise, the expansion is an approximation.
In SIESTA the basis orbitals are localized functions centered on the atoms. At an atomic
position RI , the set of orbitals are

ϕI,lmn(r) = ϕln(|rI |)Ylm(r̂I) (2.17)

where rI = (r) − RI , ϕln is a radial function, and Ylm are the real spherical harmonics with
angular momentum labeled by l, m. For each value of l one can have multiple radial functions
labeled by n. A single-ζ (SZ) basis set have n = 1, double-ζ have n = 1, 2, etc. In the case
of carbon, the minimal basis set (SZ), consists of a single s−orbital (l = 0, m = 0) and three
p−orbitals (l = 1, m = 1, 0, 1), corresponding to the four valence electrons. This basis can
be expanded by five polarization d−orbitals (l = 2, m = 2,−1, 0,+1,+2), and is denoted
single-zeta-polarized (SZP). If n = 2 the basis is denoted double-zeta-polarized (DZP) which
is generally considered as the standard basis set in SIESTA. The radial functions have a finite
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range and are strictly zero beyond a cutoff radius. The strict localization of the basis orbitals
implies that the Hamiltonian matrices become very sparse.

Given the basis set, one obtains the Hamiltonian and overlap matrices:

Hµ,ν = ⟨ϕµ|ĤKS|ϕν⟩ =
∫
drϕ∗

µ(r)
(
− 1

2
∇2 + veff (r)

)
ϕν(r) (2.18)

Sµ,ν = ⟨ϕµ|ϕν⟩ =
∫
drϕ∗

µ(r)ϕν(r) (2.19)

where the index µ = {I, lmn} and ν = {I ′
, l

′
m

′
n

′} includes atom and orbital indices. The
KS differential equation (2.7) now becomes a generalized eigenvalue equation

Hci = ϵiSci (2.20)

Equation (2.20) if often used to determine the band structure of the system.

2.3 Convergence of Parameters

2.3.1 K point sampling and smearing of the electronic occupation

During this thesis some parameters used in the simulations have shown to be critical to obtain
good physical and chemical properties. The convergence respect to some of these parameters
(e.g. k-point sampling, smearing temperature, tolerance force, pseudopotentials, basis set, etc)
have to be calibrated in due time. As a result, the influence of all relevant parameters used
in this thesis was checked prior to performing final production calculations, what guaranteed
the accuracy and transferability desired. In order to give some examples of the convergence
studies performed, Figure 2.2 shows the convergence of the magnetic moment (M(µB)) and
total energy (ET ) as a function of the k-sampling. The sample system utilized was a metallic
(5, 5) SWCNT with one Ni impurity replacing a C atom in the graphenic lattice. The DZP
basis set, a smearing temperature (Fermi-Dirac occupation function) of 21 meV and a mesh
cutoff of 180.0 Ry was utilized1. It can be seen that using a low k-sampling there is some
"noise" in both curves of M(µB) and ET . This means that values lower than ∼12 k-points
in this relative large supercell (80 atoms) do not guarantee an accurate value of the magnetic
moment, even if the energy is roughly already converged. A well converged M(µB) is observed
only from ∼31 k points on. This dense k point sampling turned to be vital to converge many
of the magnetic properties of the studied defects and dopants2.

For Nisub in a (5, 5) SWCNT, Figure 2.3 shows the dependence of M(µB) and ET as a
function of the smearing temperature σ. It shows that using small values of σ, the system

1The smearing temperature and the mesh cutoff values were previously optimised in additional studies.
2In Chapter 5 we will describe the results for Ni substitutional atoms in carbon nanotubes, but in brief, the

convergence is specially cumbersome because Ni 3d and C 2sp, 2pz defect bands exist close to the Fermi energy
(EF ). Therefore, a large number of k-points are required to sample the band structure. Moreover, the low stability
of the spin moment associated with the defects strongly depends on the tube curvature and the relative positions
of the metal atoms.
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Figure 2.2: Convergence of the magnetic moment (left axis) and total energy (right axis) as a function of the
k points. The system chosen for the convergence study is shown in the inset: it consists of a (5,5) single wall
carbon nanotubes (SWCNT) with a lenght of 9.97 Å, 80 atoms and one Ni atom at a substitutional position in
the graphenic lattice.

converges to a magnetic solution with M∼ 0.50µB. However, with larger smearing, a non-
magnetic solution is obtained even if a very fine k-point mesh is used. Therefore, this means
that M(µB) is sensitive to the parameter σ chosen in the calculation. How can I find then a
good criterion to pick a correct value for σ? In words of Kresse and Furthmüller [102]: The
parameter σ has to be chosen with great care. The difficulty is easy to understand. Different
magnitudes must be averaged over the Brillouin-zone. For example, the band structure energy
has the expression

∑
n

∫
ΩBZ

ϵnkΘ(ϵnk − EFnk) d
3k (2.21)

where Θ(ϵnk −EFnk) is the step function, EF the Fermi-energy and ϵnk are the energy eigen-
values. For materials with completely filled bands, for example semiconductors and insula-
tors, no discontinuity at the occupation function exists and the integral for the band struc-
ture (Eq.(2.21)) can be calculate accurately using a relatively small set of Monkhorst-Pack
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Figure 2.3: Convergence of the magnetic moment (upper panel) and total energy (bottom panel) as a function of
the smearing temperature σ. The system chosen was the same as in Figure 2.2 and a k-point sampling consisting
of 1x1x31 k-points was utilized. Other parameters (basis set, mesh cutoff, etc) were fixed as in the previous
convergence study. The dashed line markes the point in which σ was assumed to converge both magnetic moment
and total energy.

k-points3. However, in the case of metals, this integral converges very slowly with the number
of k-points because the occupancy change abruptly between 0 and 1 at the EF . The con-
vergence in principle can be improved by using other type of function, insteat of Θ(ϵnk −
EF ), with a smoother behaviour, for instance the Fermi-Dirac functional f( ϵnk−EFnk

σ
) =

1
exp((ϵnk−EFnk)/σ)+1

. Where σ = kBT and might be "interpreted" as a finite-temperature.
Strictly speaking σ does not correspond to a temperature in the ab initio calculations but a
finite broadening of the energy states in order to evaluate the integral in Eq.(2.21) more easily.
This is a technical parameter that can play an important role in the convergence of magnetic
calculations. In fact, a well chosen σ can be used as a tool to reduce the necessary k-sampling
to calculate the electronic structure of metallic systems. In this case, an good choice of σ can
be obtained only by comparing results for different k-point meshes and different values of σ
which for this thesis was done.

2.3.2 Pseudopotentials and basis orbital radii
The pseudopotentials used in this thesis were constructed using the Troullier-Martins receipt
[100]. For this goal a set of pseudization radii rl for each relevant angular momentum channel

3The Monkhorst-Pack k-points correspond to a special set of k points equally spaced in the Brillouin zone
[103]
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Table 2.1: Cutoff radii (in Bohrs) used for the generation of the Troullier-Martins [100] norm-conserving pseu-
dopotentials used in the SIESTA calculations. rl stands for the cut-off radius used for the l channel, while rcore is
the matching radius used for the construction of pseudocores in order to include non-linear core corrections for
exchange and correlation [101].

Valence rs (ao) rp (ao) rd (ao) rcore

Sc [Ar]4s13d2 3.30 3.30 1.44 0.89
Ti [Ar]4s13d3 2.96 2.96 1.45 0.72
V [Ar]4s13d4 2.40 2.79 1.46 0.69
Cr [Ar]4s13d5 2.51 2.80 1.46 0.65
Mn [Ar]4s13d6 2.51 2.77 1.45 0.60
Fe [Ar]4s13d7 2.10 2.10 1.68 0.67
Co [Ar]4s23d7 2.37 2.48 1.68 0.67
Ni [Ar]4s23d8 1.85 1.95 1.45 0.53
Cu [Ar]4s13d10 2.33 2.30 1.79 0.53
Ag [Kr]5s14d10 2.45 2.58 2.00 0.83
Au [Xe,4f 14]6s15d10 2.55 2.68 2.20 0.93
Zn [Ar]4s23d10 2.04 2.21 1.66 0.49
Li [He]2s1 2.25 2.10 2.05 –
Be [He]2s2 2.10 1.80 1.75 –
B [He]2s22p1 1.40 1.40 1.75 –
C [He]2s22p2 1.25 1.25 1.25 –
N [He]2s22p3 1.25 1.25 1.25 –
O [He]2s22p4 1.14 1.14 1.14 –
F [He]2s22p5 1.19 1.19 1.19 –
Al [Ne]3s23p1 1.89 1.89 1.89 –
Si [Ne]3s23p2 1.89 1.89 1.89 –
P [Ne]3s23p3 1.85 1.85 1.85 1.65
S [Ne]3s23p4 1.60 1.85 1.75 1.45
Cl [Ne]3s23p5 1.40 1.65 1.75 1.25
Ge [Ar]4s24p2 1.90 2.20 3.00 1.65
Sn [Kr]5s25p2 1.90 2.20 3.15 1.90
Pb [Xe]6s26p2 1.98 2.80 3.51 1.50
H 1s1 1.25 1.25 – –

Table 2.2: Cutoff radii (in Bohrs) of the numerical atomic orbitals (NAOs) used in SIESTA as a basis set. The
radii used for the s and polarization p shell are equal.

rNAO
sp (ao) rNAO

d (ao)
Co 8.00 4.73
Ni 10.94 6.81
Cu 8.87 5.52
Ag 10.48 6.52
Au 8.63 6.08
Zn 9.24 5.33
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Figure 2.4: Brillouin zone for the face-centered cubic lattice (fcc), hexagonal closed-packed (hcp) and body-
centered cubic lattice (bcc). Calculations of the band structures of 3d transition metals obtained using the norm-
conserving pseudopotentials constructed in this thesis.
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have to be used. Table 2.1 summarises all the information related to rl. The pseudopotentials
for the metal atoms also include nonlinear core corrections [101] in which the pseudocore
radii (rcore) have been optimised for each element.

For most elements, the shape and radii of the basis sets of numerical atomic orbitals
(NAOs) used with SIESTA were determined automatically by the code using an energy shift
parameter of 50 meV. [97,104] However, for some transition metal atoms the binding energies
where slightly overestimated using these basis sets, mainly due to the confinement of the free
atom. For those atoms we enlarged the radii of the basis orbitals (using smaller values of the
energy shift parameter) until the binding energies were converged within a few tens of meV.
Here, the reference calculations were those using plane-waves and projector-augmented wave
potentials (PAW) as implemented in the VASP code [105, 106]. The largest radius for each
element and l channel is shown in Table 2.2. Notice that the double-ζ polarized (DZP) basis
of these transition metals include a p shell. In this case the radii of the p orbitals is taken equal
to that of the s shell.

2.3.3 Benchmark systems: transition metals in bulk phases and graphene
In order to give some benchmarks of our calculation procedure, we present here the band
structures of some transition metal atoms in bulk phases and graphene. Figure 2.4 shows the
results for Ti, V, Cr, Mn, Fe, Co, Ni in body-centered cubic (bcc), hexagonal close-packed
(hcp) and face-centered cubic crystals (fcc). The majority and minority spin bands are dis-
played in green and red curves, respectively, and EF is set to zero. These band structures
are in quite good agreement with previously published results using different methodologies
and also recover, taking into account the limitations of GGA calculations, the main trends
observed in photoemission experiments.

In these type of calculations, apart from k-sampling, basis set, smearing, mesh cutoff, etc,
commented above, one of the major factors that should be considered with care is the func-
tional utilized. In many cases a very accurate description of magnetic materials goes beyond
DFT. Early calculations of elemental ferromagnets (Fe, Co, Ni) demonstrated that GGA is
rather successful in the prediction of the magnetic moments when compared with Local Spin
Density Approximation (LSDA). GGA calculations lead to reliable lattice constants and spin
moments as we can see in Table 2.3, in which a comparison between calculations perfomed
using LSDA/GGA and some experiments is also presented. We can see the very favourable
comparison of our calculations using SIESTA and pseudopotentials with experiments and pre-
vious calculations using all-electron methods.

Figure 2.5 shows the band structure of graphene calculated with the pseudopotential of C
presented in Table 2.1. The unit cell consists of two atoms at a distance of 1.44 Å, and a com-
parison between DZ (green curves) and DZP (black curves) basis set is also presented. The
two curves agree quite well for states around the Fermi level and occupied states4. However,
some deviation is observed for states higher that ∼7 eV above EF which is due to the lower

4DZ basis set was observed to describe quite well, in comparison with the more complete basis set (DZP),
many of the structural and electronic properties of systems in which carbon is the only element present (e.g.
vacancies in graphene monolayers). Therefore, one of strategies used in this thesis was to perform the struc-
tural relaxations with a smaller DZ basis, while the final results for the electronic and magnetic properties were
obtained using a more expensive DZP basis. This becomes instrumental to treat systems with more than ∼200
atoms in the supercell.
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Table 2.3: Spin magnetic moments (mspin) in µB per atom and lattice constants (ao) in of ferromagnetic elements
(Fe, Co, Ni) in the bulk phase. The experimentally determined total magnetic moment (MTotal) is composed
of spin and orbital components. 1Reproduced from Refs. [107–109]. 2This thesis using pseudopotentials as
described in Table 2.1.

Property Source Fe (bcc) Co (fcc) Ni (fcc)
mspin LSDA1 2.15 1.56 0.59
mspin GGA1 2.22 1.62 0.62
mspin GGA2 2.27 1.60 0.68
mspin Experiment1 2.12 1.57 0.55
MTotal Experiment1 2.22 1.71 0.61
ao LDA1 2.73 3.41 3.47
ao LSDA1 2.76 3.47 3.47
ao GGA1 2.83 3.55 3.55
ao GGA2 2.89 3.55 3.55
ao Experiment1 2.86 3.53 3.53

variational flexibility (e.g. angular) of the DZ basis set. Some authors have also considered
the inclusion of diffuse 3s orbitals in the valence electrons as a way to improve the electronic
spectrum of graphene above 3 eV [110]. This inclusion resulted in an improvement of the de-
scription of some optical properties of graphene and carbon nanotubes as well. More details
about the basis sets used in SIESTA and, in particular, about the effect of the use of diffuse
orbitals in the band structure can be found in Refs. [97, 104, 110, 111].
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Figure 2.5: Band structure of graphene with two C atoms in the unit cell. The black and green curves show,
respectively, the calculation using a DZP and DZ basis set. The Fermi energy is set to zero. Around the Fermi
energy the states are classified according to the carbon orbitals that composed them: σ, σ∗, π and π∗. It is noted
that bands with the σ and π character cross each other as a result of the different symmetries displayed by sp and
pz carbon states. An usual feature observed in the previous sections is the crossing of the π and π∗ bands at the
K point of the Brillouin zone. The bonding σ and σ∗ bands are well separated in energy with a gap of about ∼
12 eV at Γ.
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Chapter 3

Substitutional Metallic Impurities in
Graphene: Structural, Electronic and
Magnetic Properties

This chapter is devoted to the study of the basic structural, electronic and magnetic properties
of 3d metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene.
We pay special attention to the electronic and magnetic properties of these substitutional im-
purities and found that they can be fully understood using a simple model based on the hy-
bridization between the states of the metal atom, particularly the d shell, and the defect levels
associated with an unreconstructed D3h carbon vacancy.

The chapter is divided as follows: we present a summary of the structure, energetics and
magnetic properties of all the studied elements in Sec. 3.1. In this section we also indicate
the general ideas behind our model of the metal-carbon hybridization in these systems. The
electronic structure of the unreconstructed D3h carbon vacancy in graphene is presented in
Sec. 3.2. This is one of the key ingredients to understand the binding and electronic structure
of substitutional impurities in graphene. The electronic structure of the different groups of im-
purities is described in Sec. 3.3. In Sec. 3.4 the Zn substitutional impurity with its Jahn-Teller
distortion is described. A full section (Sec. 3.5) is devoted to describe the special role of Fe at
the border between two different regimes. Finally, we close with some general conclusions.

3.1 The main properties of substitutional transition metals
in graphene

We review in this section our results for the structure, binding, and spin moments of substitu-
tional 3d transition metals, noble metals and Zn in graphene.

3.1.1 Geometry and structural parameters
The typical geometry of the systems studied in this chapter is presented in Fig. 3.1. The metal
atom appears always displaced from the carbon layer. The height over the plane defined by
its three nearest carbon neighbors is in the range 1.7-0.9 Å. These three carbon atoms are also
displaced over the average position of the graphene layer by 0.3-0.5 Å. The total height (hz)

59
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z
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Figure 3.1: Typical geometry of transition and noble substitutional metal atoms in graphene. The metal atom
moves upwards from the layer and occupies, in most cases, an almost perfectly symmetric three-fold position
with C3v symmetry.

of the metal atom over the graphene plane is the sum of these two contributions and ranges
between 1.2-1.8 Å, as shown in panel (c) of Fig. 3.2. In most cases the metal atom occupies an
almost perfect symmetric configuration with C3v symmetry. Exceptions are the noble metals,
that are slightly displaced from the central position, and Zn that suffers a Jahn-Teller distortion
in its most stable configuration. However, we have found that it is also possible to stabilize a
symmetric configuration for Zn with a binding energy only ∼150 meV smaller. This configu-
ration was overlooked in a recently published study on these systems [112] and we will refer
to it as ZnC3v throughout the chapter.

Figures 3.2 presents a summary of the structural parameters of substitutional 3d transition
metals, noble metals and Zn in graphene. Solid circles correspond to calculations using the
SIESTA code with pseudopotentials and a basis set of atomic orbitals, while open squares stand
for VASP calculations using plane-waves and PAW potentials. The agreement between both
sets of calculations is quite remarkable. Data in these figures correspond to calculations using
a 4×4 supercell of graphene. For several metals we have also performed calculations using
a larger 8×8 supercell and find almost identical results. This is particularly true for the total
spin moments, which are less dependent on the size of the supercell, but require a sufficiently
dense k-point sampling to converge. In the following we will mainly discuss the results ob-
tained with the smaller cell since the plots of the band structures are easier to interpret in that
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case. Finally, as already mentioned, noble metals and Zn present a distorted configuration.
A detailed description of the structural parameters in these cases will be given below, here
we only present the averaged structural data for noble metals and those corresponding to the
ZnC3v case.

The data in Fig. 3.2 are basically consistent with those reported by Krasheninnikov et al. in
Ref. [112]. The behavior of the metal-carbon bond length and the height (hz) of the impurity
over the layer reflects approximately the size of the metal atom. For transition metals these
distances decrease as we increase the atomic number, with a small discontinuity when going
from Mn to Fe. The carbon-metal bond length reaches its minimum for Fe (dC−Fe=1.76 Å),
keeping a very similar value for Co and Ni. For Cu and Zn the distances increase reflecting
the fully occupied 3d shell and the large size of the 4s orbitals. Among the noble metals
we find that, as expected, the bond length largely increases for Ag with respect to Cu, but
slightly decreases when going from Ag to Au. The latter behavior can be understood from the
compression of the 6s shell due to scalar relativistic effects.

3.1.2 Binding energies
The binding energies of the studied substitutional metal atoms in graphene can be found in
panel (d) of Fig. 3.2. In general, the behavior of the binding energies can be correlated with
that of the carbon-metal bond length, although the former is somewhat more complicated.
Binding energies for transition metals are in the range of 8-6 eV. Ti presents the maximum
binding energy, which can be easily understood since for this element all the metal-carbon
bonding states (see Sec. 3.3.1) become fully occupied. One could expect a continuous decrease
of the binding energy as we move away from Ti along the transition metal series and first the
non-bonding 3d, and later the metal-carbon antibonding levels become populated. However,
the behavior is non-monotonic and the smaller binding energies among the 3d transition metals
are found for Cr and Mn, while a local maximum is observed for Co. This complex behavior
is related to the simultaneous energy down-shift and compression of the 3d shell of the metal
as we increase the atomic number. This will become more transparent when discussing in
detail the metal-carbon hybridization levels. In brief, the behavior of the binding energies of
the substitutional 3d transition metal comes from two competing effects:

(i) as the 3d shell becomes occupied and moves to lower energies the hybridization with
the carbon vacancy states near the Fermi energy (EF ) is reduced, which decreases the binding
energy;

(ii) the transition from Mn to late transition metals is accompanied by a shift of the metal-
carbon bond length of ∼0.1 Å, which increases the carbon-metal interaction and, correspond-
ingly, the binding energy.

Binding energies for noble metals are considerably smaller than for transition metals and
mirror the reverse behavior of the bond lengths: 3.69, 1.76 and 2.07 eV, respectively, for Cu,
Ag and Au. The smallest binding energy (∼1 eV) among the metals studied here is found for
Zn, with filled s-d electronic shells.

3.1.3 Spin moments
The spin moments of substitutional transition and noble metals in graphene are shown in
Fig. 3.3. Again they are in agreement with the results of Ref. [112]. However, we advance a
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Figure 3.2: Structural parameters and binding energies of substitutional transition and noble metals in graphene.
Bond lengths and angles have been averaged for the noble metals. The data presented for Zn correspond to the
high-spin solution with C3v symmetry, and are very close to the averaged results for the most stable distorted
solution.
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Figure 3.3: Spin moment of substitutional transition and noble metals in graphene as a function of the number of
valence electrons (Slater-Pauling-type plot). Black symbols correspond to the most stable configurations using
GGA. Results are almost identical using SIESTA and VASP codes. Three main regimes are found as explained
in detail in the text: (i) filling of the metal-carbon bonding states gives rise to the non-magnetic behavior of Ti
and Sc; (ii) non-bonding d states are filled for V, Cr and Mn giving rise to high spin moments; (iii) for Fe all
non-bonding levels are occupied and metal-carbon antibonding states start to be filled giving rise to the observed
oscillatory behavior for Co, Ni, Cu and Zn. Open and gray (red online) symbols correspond, respectively, to
calculations of Fe using GGA+U and artificially increasing the height of the metal atom over the graphene layer
(see the text). Symbol marked as ZnC3v corresponds to a Zn impurity in a high-spin symmetric C3v configuration.

simple model to understand the observed behavior which was not presented in that reference.
One of the fundamental results of our study is a detailed model of the bonding and electronic
structure of substitutional transition metals in graphene. As we will see below, the evolution
of the spin moment can be completely understood using such model. In brief, we can dis-
tinguish different regimes according to the filling of electronic levels of different (bonding,
non-bonding and antibonding) character:

(i) all the carbon-metal bonding levels are filled for Sc and Ti and, correspondingly, the
spin-moment is zero;

(ii) non-bonding 3d levels become populated for V and Cr giving rise to a spin moment of,
respectively, 1 and 2 µB with a strong localized d character;

(iii) for Mn one additional electron is added to the antibonding dz2 level and the spin
moment increases to 3 µB;

(iv) finally, for Fe and heavier atoms all the non-bonding 3d levels are occupied and the
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Figure 3.4: (a) Spin-compensated calculation of the band structure of an unrelaxed carbon vacancy (D3h sym-
metry) in a 4×4 supercell of graphene. Symbols indicated those bands with larger weight on the carbon atoms
around the vacancy (solid symbols for bands with sp character and open symbols for a band with pz character).
The electronic structure near EF is dominated by a fully symmetric pz level (A pz) and two defect levels with
E symmetry and sp character (E sp). Notice that, due to the strong hybridization with the rest of the graphene
layer, it is not possible to identify well defined defect levels with E symmetry and pz character. (b) Approximate
scheme of the electronic structure of the spin-compensated D3h C vacancy indicating the character and symmetry
of the different levels and their occupations. Signal associated with the E pz level extends over the whole valence
and conduction band.

spin moment oscillates between 0 and 1 µB as the antibonding metal-carbon levels become
occupied.

The sudden decrease of the spin moment from 3 µB for Mn to 0 µB for Fe is charac-
terized by a transition from a complete spin-polarization of the non-bonding 3d levels to a
full occupation of those bands. However, this effect depends on the ratio between the ef-
fective electron-electron interaction within the 3d shell and the metal-carbon interaction (see
Sec. 3.5). As we will see below, if the hybridization with the neighboring atoms is artificially
reduced, for example by increasing the Fe-C distance, Fe impurities develop a spin moment
of 2 µB. Our results also show that it is also possible to switch on the spin moment of Fe
by changing the effective electron-electron interaction within the 3d shell. This can be done
using the so-called GGA+U method. For a large enough value of U (in the range 2-3 eV), Fe
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impurities develop a spin moment of 1 µB. This will be also explained in detail in Sec. 3.5.
For the time being we just point out that this behavior is unique to Fe: using similar values of
U for other impurities does not modify their spin moments.

At the level of the GGA calculations Fe constitutes the border between two different char-
acters of the spin moment associated with the substitutional metal impurities in graphene: 3d
magnetism for V-Mn and a “defective-carbon” -like magnetism for heavier atoms. For Co,
Ni, the noble metals and Zn the electronic levels close to the EF have a stronger contribution
from the carbon nearest-neighbors and resemble the levels of the isolated D3h carbon vacancy.
In particular, Mulliken population analysis show that the spin moment of the noble metals
impurities has a dominant contribution for the three nearest carbon neighbors (see Table 3.1).
For Zn two electrons occupy a two-fold degenerate level reminiscent of the E sp level of the
unreconstructed carbon vacancy (see Sec. 3.2). As a consequence, the system suffers a Jahn-
Teller distortion and has a zero spin moment. However, it is possible to stabilize a symmetric
configuration (ZnC3v ) with a moment of 2 µB and only slightly higher in energy.

3.2 Unreconstructed D3h carbon vacancy
We have seen in the previous summary of results that, as substitutional impurities in graphene,
most of the metal atoms studied here present a threefold symmetrical configuration. For this
reason we have found particularly instructive to analyse their electronic structure as the result
of the hybridization between the atomic levels of the metal atoms with the electronic levels
associated with an unrelaxed D3h symmetrical carbon vacancy.

Figure. 3.4 (a) shows the electronic structure of a spin-compensated D3h carbon vacancy
as calculated using 4×4 graphene supercell, while panel (b) presents a simplified scheme that
highlights the defect levels associated with the vacancy and indicates their different character
and symmetry. The actual D3h vacancy shows a considerable spin polarization, however, here
we only consider the spin-compensated case since the purpose of this calculation is to find the
symmetries and approximate energy positions of the different energy levels. The defect levels
of the D3h vacancy can be easily classified according to their sp or pz character and whether
they transform according to A or E-type representations. Close to the EF we can find a fully
symmetric A pz level (thus belonging to the A′′

2 irreducible representation) and two degenerate
(at Γ) defect levels with E symmetry and sp character (E′ representation). Approximately 4 eV
below EF we find another defect level with A sp character (A′

1 representation).
It is interesting to note that it is not possible to identify any localized defect level with

E pz (E′′) character. This is due to the strong coupling with the delocalized states in the
graphene layer and contrasts to the case of the A pz level. The A pz level lies very close to EF ,
where the density of states is low, and due to its A symmetry cannot appreciably couple to the
delocalized pz states of graphene in that energy range. On the contrary, the E pz combinations
present a very strong hybridization with the rest of the states of the graphene layer. Indeed, an
inspection of the Projected Density of States (PDOS) (see the scheme in Fig. 3.4 (b)) reveals
that the spectral weight associated with such E-symmetry linear combinations of pz orbitals
of the carbon atoms surrounding the vacancy extends over the whole valence and conduction
band of graphene. It is important to take the last observation into account when developing a
model of the electronic structure for the metal substitutionals in graphene. Note that we need
to have the correct number of electrons from carbon available for forming localized (covalent)
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bonds.
The three carbon atoms around the vacancy provide three unpaired electrons associated

with the unsaturated sp lobes and three electrons coming from the pz orbitals. As shown in
Fig. 3.4 (b), two of these electrons stay in pz states delocalized over the graphene layer while
the other four electrons fill the A sp and A pz levels localized at the vacancy.

3.3 Analysis of the electronic structure
We now turn to the problem of the electronic structure of 3d transition and noble metal atoms
as substitutional impurities in graphene. We first present a model of the hybridization between
carbon and metal levels and, subsequently, we show that this model allows to understand in
detail the band structures obtained in our calculation for all the metals.

3.3.1 Sc and Ti: filling the vacancy-metal bonding levels
Figure 3.5 (a) presents a schematic representation of the hybridization of the 3d levels of Ti
with those of an unreconstructed D3h carbon vacancy. We only consider explicitly the 3d states
of the metal atom since our calculations show that, for transition metals, the main contribution
from 4s orbitals appears well above EF . Due to the symmetric position of the metal atom over
the vacancy the system has a C3v symmetry and the electronic levels can still be classified
according to the A or E irreducible representations of this point group. Of course, metal and
carbon vacancy states only couple when they belong to the same irreducible representation.
Thus, occupied A pz and A sp vacancy levels can only hybridize with the 3dz2 orbitals (A1

representation), while all the other 3d metal orbitals can only couple to the unoccupied E sp
vacancy levels.

With these simple rules in mind and taking into account the previous trends in the relative
energy position of carbon and metal levels, that changes as we move along the transition
metal series, we can propose a model of the electronic structure of substitutional transition
metals in graphene as represented in Fig. 3.5 (a) and (b). Some parameters in the model can
be approximated from calculations. For example, a rough estimate of the position of the 3d
shell of the metal atom respect to the graphene EF can be obtained from the positions of the
atomic levels and the relative strengths of the different carbon-metal hoppings can be estimated
from those of the corresponding overlaps. With such information it is already possible to
obtain most of the features of the model in Fig. 3.5. However, some uncertainties remain,
particularly concerning the relative position of levels with different symmetry. To solve these
uncertainties the simplest approach is to compare with our first-principles calculations and this
is what we have done here. The details of the model presented in Fig. 3.5 have been obtained
from a thorough analysis of our calculated band structures. In particular, we have used the
projection of the electronic states into orbitals of different symmetry as an instrumental tool
to classify the levels and to obtain the rational that finally guided us to the proposed model.
However, it is interesting to note that some features that derive from our way to understand the
electronic structure of these defects are very robust and can actually be guessed without direct
comparison with the calculated band structures. For example, the fact that for V we start to fill
the non-bonding 3d states and, therefore, that this impurity, as well as Cr and Mn, develops a
spin moment, can be argued from simple symmetry and electron-counting arguments.
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Figure 3.5: (a) Scheme of the hybridization between the 3d levels of Ti and the localized impurity levels of the
D3h C vacancy. Only d levels of Ti are represented since our calculations show that, at least for transition metals,
the main contribution from s levels appears well above EF . Levels with A symmetry are represented by gray
(green) lines, while those with E symmetry are marked with black lines. The region close to EF is highlighted
by a (red) square. (b) Schematic representation of the evolution of the electronic structure near EF for several
substitutional transition metals in graphene. The spin moment (S) is also indicated. Substitutional Sc impurities
act as electron acceptors, causing the p-doping of the graphene layer.
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According to our model there are three localized defect levels with A1 character and three
twofold-degenerate levels with E character. Two of these E levels correspond to bonding-
antibonding sp-d pairs, while the third one corresponds to 3d non-bonding states. For Sc-Mn
the three A1 levels can be pictured as a low lying bonding level with A sp-dz2 character and a
bonding-antibonding pair with A pz-dz2 character.

Therefore, as shown in Fig. 3.5 we have four metal-vacancy bonding levels (two A and
one doubly-degenerate E levels) that can host up to eight electrons. Ti contributes with four
valence electrons, and there are four electrons associated with the localized carbon-vacancy
levels. Thus, for Ti the bonding states are completely occupied. Consequently, Ti presents the
highest binding energy among all 3d transition metals and has a zero spin moment.

The situation for Sc ought to be discussed in detail. As Sc has three valence electrons, in
principle we could expect an incomplete filling of the metal-vacancy bonding levels and a spin
moment of ∼1 µB. However, in our model the highest bonding state (with A pz-dz2 character)
appears below EF and the Sc impurity can act as an acceptor impurity. Our calculations show
that this is indeed the case. The Sc-vacancy pz-dz2 impurity level captures an electron from
the extended states of the graphene layer which becomes p-doped. In total, the substitutional
Sc-graphene system does not show any spin polarization.

We can now contrast the expectations from our model with actual calculations. Figure 3.6
shows the band structure of Sc (a) and Ti (b) close to the EF . As expected, the main contri-
bution from the 3d shell is found above EF . Below EF we find one defect band with pz-dz2

character and two bands (degenerate at Γ) with sp-d character. These bands are in close cor-
respondence with the bonding A and E levels appearing in our model. In the case of Ti the
EF is located inside a gap of ∼0.5 eV that opens at K point in the Brillouin zone. This gap
appears due to the relatively small 4×4 supercell used in these calculations and is reduced
when larger supercells are used. Thus, the filling of the graphene extended bands is not appre-
ciably changed by substitutional doping with Ti. For Sc the situation is different. As shown in
Fig. 3.6 (a) EF moves away from the K point, the Sc-vacancy complex captures one electron
and the graphene layer becomes doped with holes.

Regarding the unoccupied bands, the 3d contribution for Sc above EF appears quite broad-
ened due to the strong hybridization with the graphene states. Indeed, the defect levels are
somewhat difficult to identify and to correlate with our model. One exception is a flat band
with strong dz2 character appearing at ∼1.5 eV that, due to its symmetry, does not couple
so efficiently with the host states. The case of Ti is much easier to interpret in terms of the
simplified model presented in Fig. 3.5 (a). In particular, we can find two bands at ∼0.6 eV
with strong dxy and dx2−y2 contribution that correspond with the non-bonding d impurity lev-
els, and one band with dz2 character at ∼0.8 eV corresponding with the A pz-dz2 antibonding
level. Around 2.6 eV we can also find the two E sp-d antibonding defect levels, although in
this case much more hybridized with the host.

3.3.2 V, Cr and Mn: 3d magnetism
As we have seen above, the metal-vacancy bonding levels are completely filled for substitu-
tional Sc and Ti and, as a consequence, the spin moment associated with these impurities is
zero. However, following our model in Figures 3.5 (a) and (b), as we move along the transition
metal series the number of valence electrons increases and the non-bonding 3d impurity states
start to become occupied. Hence, due to the strong atomic character and localization of these
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Figure 3.6: Calculated band structure of substitutional Sc (a) and Ti (b) impurities in 4×4 supercell of graphene.
Open circles indicate the contribution from 3dz2 orbitals of the metal atom and C 2pz orbitals of the neighboring
C atoms. Solid circles indicate contributions from the rest of the 3d orbitals and C 2px and 2py orbitals. Energies
are referred to the Fermi energy.
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Figure 3.7: Calculated band structure of substitutional V (panels (a) and (b)), Cr ((c) and (d)) and Mn ((e) and (f))
impurities in a 4×4 supercell of graphene. Open and filled circles indicate, respectively, the contribution from
3dz2 and the rest of the 3d orbitals of the metal and, therefore, also indicates levels with A and E symmetries.
Energies are referred to the Fermi energy
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Table 3.1: Mulliken population analysis of the spin moment in the central metal impurity (SM ) and the carbon
nearest neighbors (SC) for different substitutional impurities in graphene. Stot is the total spin moment in the
supercell.

SM (µB) SC (µB) Stot (µB)

V 1.21 -0.09 1.0
Cr 2.53 -0.20 2.0
Mn 2.91 -0.10 3.0
Co 0.44 0.06 1.0
Cu 0.24 -0.03, 0.31, 0.31 1.0
Ag 0.06 -0.31, 0.54, 0.54 1.0
Au 0.16 -0.28, 0.50, 0.50 1.0
ZnC3v 0.23 0.37 2.0

states, the system develops a non-zero spin moment.
Figure 3.7 shows the calculated band structures for V, Cr and Mn impurities in a 4×4 su-

percell of graphene. The full calculations and the predictions of our simplified model agree
remarkably, at least in the neighborhood of EF . For V and Cr this correspondence is partic-
ularly evident: one and two electrons, respectively, occupy the degenerate non-bonding E d
levels. These non-bonding levels have a dominant contribution from the 3dxy and 3dx2−y2

orbitals of the metal atoms. As expected, the spin moments associated with these impurities
are, respectively, 1 and 2 µB. The strongly localized character of these spin moments is cor-
roborated by the Mulliken population analysis shown in Table 3.1. This analysis indicates that
the spin moment is mainly localized at the metal impurity. The contribution from the neigh-
boring carbon atoms is much smaller and has the opposite sign. The localized character of the
moment is also consistent with the relatively large values of the spin splitting of the impurity
bands. From Figure 3.7 we calculate a spin splitting of ∼0.9 eV for V and almost 2 eV for Cr
for the E d levels at EF . These splittings are comparable to those of d-electrons in magnetic
bulks, in the order of 1 eV.

Figure 3.7 (e) and (f) show the majority and minority spin band-structures for Mn sub-
stitutionals in graphene. In addition to the non-bonding 3d levels, the antibonding A pz-dz2

defect level also becomes occupied and spin-polarized. This level has an important contribu-
tion from the 3dz2 state of Mn (given by open symbols). Therefore, it is relatively localized
within the Mn atom and presents a significant tendency towards spin polarization. Indeed, our
calculations show that Mn substitutions in graphene give rise to a spin moment of 3 µB. The
Mulliken decomposition for Mn in Table 3.1 confirms again the localized character of this
spin moment. However, some differences respect to V and Cr are also found. In those cases,
the moment associated with the metal atoms was always larger that the total moment and the
only significant additional contributions came from the nearest carbon neighbors. However,
for Mn the atomic moment is somewhat smaller (2.91) than the total moment (3.0). Taking
into account the contribution from the nearest carbon neighbors (-0.3), a moment of ∼0.4 µB

is assigned to carbon atoms that are further away from the defect. This indicates a slightly
more delocalized character of the spin moment of Mn, since for V and Cr the "long range"
contribution was smaller than 0.1 µB. From the band structures in Fig. 3.7 (e) and (f) we
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obtain a spin splitting of ∼2.1 eV for the non-bonding d levels of the Mn impurity , similar
to the case of Cr. The spin splitting for the antibonding A pz-dz2 state has a smaller value of
∼1.5 eV, indicative of its larger spatial extension.

From the simple scheme presented in Fig. 3.5 (a) we cannot completely determine the
value of the spin moment of the Mn impurity. It can be 3 µB as found in our first principles
calculations and schematically depicted in Fig. 3.5 (b). However, a magnetic moment of 1 µB

is also a possible answer. In the latter case, the additional electron in Mn with respect to Cr
could populate one of the minority-spin non-bonding d impurity levels instead of the anti-
bonding A pz-dz2 level. In such situation, the spin moment is determined by a delicate balance
between the on-site exchange energy within the 3d shell, and the energy cost (∆ϵAd) to pro-
mote one electron from the non-bonding d levels to the higher energy antibonding A pz-dz2

state. Note that the electron-electron repulsion is also reduced when the electron moves into
the less localized A pz-dz2 level. An estimate of the exchange energy can be obtained from
the spin splitting (∆S) of the defect levels nearby EF . The relative position of the 3d states
respect to the A pz level of the carbon vacancy and the interaction matrix element between
these levels determine ∆ϵAd. Thus, within our GGA-DFT calculations we can expect the high
spin solution to be favoured approximately when ∆S > ∆ϵAd. From the band structures in
Fig. 3.7 (e) and (f) we obtain ∆ϵAd ∼ 1.0 eV, which is smaller than the values of ∆S discussed
previously and, therefore, is consistent with the calculated moment of 3 µB for Mn. Fe impu-
rities considered below in detail present a similar situation where two spin configurations are
possible. However, in the case of Fe the low spin (spin compensated) solution is preferred at
the level of DFT-GGA calculations as a result of the stronger metal-carbon hybridization.

In short, both the results of the calculations and the expectations based on our model
of the metal-vacancy bonding point towards a very strong 3d character of the defect levels
appearing nearby of EF for V, Cr and Mn substitutional impurities in graphene. The filling of
these localized levels favours high spin solutions in accordance with the first Hund’s rule of
atomic physics. Thus, we can picture the appearance of spin polarization for V, Cr and Mn
substitutionals in graphene as "standard" d-shell magnetism.

3.3.3 Fe, Co, Ni: strong contribution from the carbon vacancy levels
As we have seen in the previous section the defect levels appearing in the neighborhood of
EF associated with the presence of V, Cr and Mn substitutional impurities in graphene have
a strong 3d character. Consequently, these impurities exhibit large spin moments. However,
when increasing the atomic number along the transition series, the atomic 3d levels move to
lower energies and we enter a different regime: the defect states nearby EF have a predominant
contribution from the carbon atoms neighboring the metal impurity. For 3d late transition
metals heavier than Fe, the noble metals and Zn we can establish a strong link between the
electronic structure of these impurities around EF and that of the unreconstructed D3h carbon
vacancy.

A detailed scheme of the hybridization of the Ni 3d states with those of the carbon va-
cancy, and the resulting electronic structure, is presented in Fig. 3.8 (a). All the bonding and
non-bonding metal-vacancy states are filled in this case and the levels appearing closer to EF

have antibonding character and a strong contribution from the three carbon nearest-neighbors.
Closely below EF we find a level with A character and a strong C 2pz contribution and a
smaller weight in the Ni 3dz2 state. Above EF there are two degenerate levels with E charac-
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(red) circle. (b) Scheme of the levels close the EF for Fe, Co, Ni, noble metals and Zn. For Fe, in addition to the
antibonding metal-vacancy levels, we have also included the non-bonding d levels that also appear quite close to
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ter mainly coming from the C 2sp lobes and hybridized with the Ni 3dxz and 3dyz orbitals. The
resulting electronic structure strongly resembles that of the isolated D3h (unreconstructed) car-
bon vacancy as can be checked by comparing the band structures in Fig. 3.4 (a) and Fig. 3.9 (d).
The main difference stems from the slightly higher position of the unoccupied E levels in the
case of the Ni impurity. This upward shift is due to the antibonding interaction with the d
states of Ni and contributes to the stability of the C3v spin-compensated solution. In the case
of the D3h carbon vacancy, the E C 2sp levels lie closer to EF and make the system unstable
against spin and structural distortions. This clear connection between the electronic structure
of Ni and that of the D3h vacancy was already emphasized in Ref. [113].

Thus, our GGA calculations predict Ni substitutional to be a closed shell system with zero
spin moment. One could expect that a better description of the electron-electron interaction
within the 3d shell would enhance any tendency of the system towards a magnetic instability.
For this reason we have performed GGA+U calculations (using the VASP code) with values
of U up to 4.5 eV. However, Ni substitutional impurities in flat graphene always remain non-
magnetic in the calculations.

In Ref. [113] we proposed a different way to switch on the magnetism of Ni substitution-
als: the possibility of spin-moments induced by curvature. The idea consists in lifting the
degeneracy of the two unoccupied E sp-d levels by applying a structural distortion. If the
distortion is large enough one of these levels close to EF becomes partially populated and, due
to its small band width, spin polarized. We have checked that the curvature of the carbon layer
in (n,n) nanotubes with n ranging between 4 and 8 induces spin moments as large as 0.8 µB

per Ni substitutional impurity. The spin moment in these substitutionally Ni-doped nanotubes
is strongly dependent, not only on the layer curvature, but on the density and arrangement of
defects in the tube. We have recently demonstrated that a similar switching of the magnetic
moment can be obtained in flat Ni-doped graphene by applying adequate structural distortions,
thus providing a simple way to control the spin of this system. [114]

As suggested by our scheme in Fig. 3.8 (b), we can now try to understand the electronic
structure of Co and Fe impurities from that of the Ni substitutional but removing, respectively,
one and two electrons. According to this image Co substitutionals should present a spin mo-
ment of 1 µB, while Fe substitutionals should be non-magnetic. This is indeed confirmed by
our GGA calculations.

Figures 3.9 (b) and (c) show, respectively, the majority and minority spin band structures
of the Co impurity. In the neighborhood of EF we find a spin-polarized band associated with
the antibonding A pz-dz2 impurity level. The spin splitting of this band is ∼0.5 eV. The hy-
bridization character of this level is confirmed by the Mulliken analysis in Table. 3.1. Only
a contribution of 0.44 µB to the total spin moment comes from the Co atom. The relatively
delocalized character of the A pz-dz2 level also becomes evident. Only a moment of 0.18 µB

comes from the three carbon nearest neighbors, while 0.38 µB comes from carbon atoms at
larger distances. The slow distance decay of the A pz-dz2 defect level translates into quite
strong and long-range magnetic interactions between moments associated with neighboring
Co defects [115]. Indeed, the peculiar electronic structure of the Co impurities has important
consequences for the magnetism of this system: couplings show a complex dependence with
distance and direction, while the total spin-moment is determined by the number of Co substi-
tutions in each sublattice of the graphene layer [115]. We refer the interested reader to Chapter
4 (Section 4.3.1).

Figure 3.9 (a) presents the GGA band structure for a Fe substitutional defect in a 4×4



76
Chapter 3. Substitutional Metallic Impurities in Graphene: Structural, Electronic and

Magnetic Properties

Table 3.2: Structural parameters for substitutional noble metals in graphene.

dC−M(Å) hz(Å) θ (◦)

Cu 1.93, 1.90, 1.90 1.40 88.9, 88.9, 95.2
Ag 2.23, 2.19, 2.19 1.84 71.7, 71.7, 76.7
Au 2.09, 2.12, 2.12 1.71 78.0, 78.0, 81.6

supercell of graphene. Similar results are found using a larger 8×8 supercell. This band
structure is again in reasonable agreement with the simple model presented in Fig. 3.8. The
non-bonding d levels are completely filled and appear ∼0.4 eV below EF in the vicinity of Γ.
The A pz-dz2 level is mostly unoccupied and close to 0.2 eV above EF near Γ. However, we
can see that nearby the K point the pz-dz2 band becomes partially occupied, indicating a small
charge transfer from the dispersive π bands of graphene to the defect. Mulliken analysis also
reflects a small charge accumulation of ∼0.16 electrons in Fe. In spite of this small partial
population, the spin compensated solution is the most stable for Fe substitutionals at the GGA
level.

As already pointed out in Sec. 3.1.3, the magnetic behavior of the Fe impurity is a conse-
quence of a delicate balance between the on-site electron-electron interaction and the metal-
carbon hybridization. For this reason, we devote a whole Section below (Sec. 3.5) to explore
how the band structure and spin moment of Fe substitutionals are modified when these fac-
tors are independently controlled by changing the Fe-C bond length and using the GGA+U
approximation to describe the effects of the electron-electron repulsion within the d-shell.

3.3.4 Noble metals
In the previous sections we have seen that some of the traditional ferromagnets, like Fe and
Ni, become non-magnetic as substitutional impurities in graphene. Also quite surprisingly,
we find here that substitutional impurities of noble metals are magnetic with a spin moment of
1 µB. The reason for this behavior becomes clear once the electronic structure of these defects
is understood.

The band structures can be found in Fig. 3.9 (e) and (f) for Cu and in Fig. 3.10 for Ag
and Au. In agreement with the predictions of our simplified model in Fig 3.8, we can see
that in the case of the noble-metal impurities the two-fold degenerate E sp-d antibonding
levels [116] are now occupied with one electron. The system undergoes a small structural
distortion that removes the degeneracy of these levels and the unpaired electron becomes spin
polarized. Therefore, substitutional impurities of the noble metals in graphene exhibit a spin
moment of 1 µB. Relativistic effects are known to be much more important for Au than
for Ag and Cu. Although we have not included spin-orbit coupling in our calculations, scalar
relativistic effects are taken into account in the construction of the pseudopotentials. However,
the similarities between the electronic structure of all three noble metals are evident, which
indicates that bonding and magnetic behavior is mainly dictated by the number of valence
electrons.

Structural parameters for all noble metals impurities can be found in Table 3.2. For Cu
and Ag one of the metal-carbon bond lengths is slightly larger than the other two, whereas for
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Figure 3.10: Like Fig. 3.7 for Ag and Au. The similarities with the band structure of Cu in Fig. 3.9 are evident.
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Table 3.3: Structural parameters and binding energies for substitutional Zn impurities in graphene for the sym-
metric C3v and most stable distorted configurations.

EB (eV) dC−M (Å) hz (Å) θ (◦)

ZnC3v 0.91 1.99 1.67 87.9
Zn 1.07 2.06, 1.89, 1,89 1.54 88.3 88.3 103.9

Au one is shorter than the others. However, the distortions are rather small with variations of
the bond lengths smaller than 2 %. The differences introduced by the larger scalar relativistic
effects of Au mainly reflect in the slightly smaller metal-carbon bond length for this metal as
compared with Ag.

Table 3.1 shows the distribution of the spin moment among the metal atom and the nearest
carbon neighbors. We can see that the contribution from the metal atom is almost negligible,
particularly in the case of Ag. This can be expected from the lower energy position of the d
shell in the case of the noble metals as compared with transition metals. Although slightly
hybridized with the p shell of the metal impurity, the defect states nearby EF in this case
are mainly coming from the carbon neighbors. Still the spin moment is rather localized in
the complex formed by the metal atom and its three nearest neighbors, which for Cu and Ag
contributes with a moment of 0.83 µB, and up to 0.88 µB for Au. The contribution from the
rest of the graphene layer is much smaller than, for example, in the case of Co. This reflects
the dominant contribution from the relatively localized carbon sp lobes in the description of
the defect states nearby EF for these impurities. This analysis reinforces the link with the
electronic structure of the unreconstructed D3h carbon vacancy in graphene as presented in
Sec. 3.3.3. In fact, we can picture the main role of late transition- and noble-metals substitu-
tionals in graphene as to stabilize the structure of the carbon monovacancy, that otherwise will
severely reconstruct, and to change its charge state.

3.4 Jahn-Teller distortion of substitutional Zn

For Zn impurities a second electron is added to the two-fold degenerate E sp-d shell. Under
these circumstances two scenarios are possible: (i) a non-magnetic solution in which the sys-
tem has undergone a Jahn-Teller-like distortion, or (ii) a high-spin solution that maintains the
symmetric C3v geometry of the defect. The relative energy of both solutions depends on the
balance between the energy gain associated with the distortion and the exchange energy of the
electrons. Both types of solutions are obtained in our density functional calculations for Zn
substitutional impurities in graphene.

The details of the structure and the binding energies of the Zn impurity are presented in
Table 3.3 as calculated with SIESTA. Very similar results are obtained for both configurations
using VASP. The distorted configuration presents one larger Zn-C bond (by ∼3.5%) and two
shorter bonds (∼5%) compared with the bond length (1.99 Å) of the undistorted geometry.
The distorted configuration is more stable by 160 meV (120 meV using VASP). This rather
small energy difference between the two configurations might point to the appearance of non-
adiabatic electronic effects at room temperature.
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Figure 3.11: Scheme of the electronic levels near EF for Mn and Fe substitutionals in graphene as deduced from
our model of bonding and GGA calculations. ∆ϵAd is the energy cost to promote an electron to the antibonding
A pz-dz2 hybridization level from the non-bonding 3d states. The magnitude of ∆ϵAd, relative to that of the
spin-splitting ∆S of these defect levels, is crucial to determine the spin state of these impurities.

The band structure for both configurations of Zn substitutionals can be found in Fig. 3.9.
Again they confirm the model presented in Fig. 3.8. The distorted Zn [Fig. 3.9 (g)] breaks the
degeneracy of the E sp-d levels: one of them appears fully occupied ∼0.8 eV below EF , while
the other appears a few tenths of eV above EF . For the C3v Zn impurity both E sp-d bands
are degenerate and the splitting between majority and minority levels is ∼0.71 eV. Table 3.1
shows the Mulliken population analysis of the spin moment for the C3v Zn systems. As in the
case of the noble metals the contribution from the three nearest carbon neighbors is the most
important. However, the contribution of Zn is somewhat larger and the total spin moment is
more delocalized with a contribution form the rest of the graphene layer of ∼0.66 µB. We
should note that here we have one additional electron as compared to the noble metal systems.

3.5 Fe substitutionals: competition between intra-atomic in-
teractions and metal-carbon hybridization

We have already pointed out that Fe substitutionals in graphene occupy a rather special place
at the border between two well defined regimes (see Fig. 3.3): (i) the strong 3d character of the
defect levels nearby EF and large spin moments found for V, Cr and Mn impurities, and (ii)
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Figure 3.12: Panel (a) shows the spin moment of a substitutional Fe impurity in graphene as a function of the
C-Fe bond length. Equilibrium position corresponds to dC−Fe=1.78 Å. Panels (b) and (c) show the band structure
for dC−Fe=2.08 Å. Symbol code similar to that of Fig. 3.7. Energies referred to the Fermi level (indicated by a
dashed line).
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the larger carbon character of those electronic levels and the small oscillatory spin-moments
of Co, Ni and the noble metals. GGA calculations [Fig. 3.9 (a)] locate Fe impurities within the
second group, with all the 3d non-bonding levels fully occupied and non-magnetic. Thus, the
spin moment drops from 3 µB for Mn impurities to zero for Fe, showing a quite discontinuous
behavior as a function of the number of valence electrons. In analogy with the standard Slater-
Pauling rule for transition metals, one could expect to find a more gradual decrease of the spin
moment as the number of valence electrons is increased, i.e. Fe would have a moment of 2 µB.
In the present section we study in detail why the non-magnetic solution is more stable for Fe.

3.5.1 Key parameters: metal-carbon hopping and intra-atomic Coulomb
interactions

Figure 3.11 shows a scheme of the electronic structure of both Mn and Fe defects. Depending
on how electrons are arranged among the A pz-dz2 antibonding level and the non-bonding 3d
states, Mn can exhibit spin moments of 3 µB or 1 µB, while Fe can have a moment of 2 µB

or can be non-magnetic. At the GGA level Mn prefers the high-spin configuration, while the
low-spin one is more stable for Fe. As commented in the Section 3.3.2, the relative stability
of the different spin states depends on the balance between the effects of Coulomb repulsion
and exchange within the 3d levels and the relative energy position of the impurity levels given
by ∆ϵAd (see Fig. 3.11). The hybridization with the neighboring C atoms is crucial in this
interplay since it influences (i) the degree of localization of the defect levels and the screening
of Coulomb interactions, which modify the spin splitting of the electronic levels ∆S , and (ii)
the value of ∆ϵAd through the effective hopping parameter between the 3d states and the A pz

carbon vacancy level. Next, we shall deal with both aspects for substitutional Fe in graphene.

Changing Fe-graphene hopping with distance.

By tuning the interaction with the host structure it should be possible to change the spin mo-
ment of these impurities. We can modify the hopping by artificially changing Fe-graphene
distance. The results of such calculation are shown in Fig. 3.12 (a). While maintaining the
three-fold symmetry of the system, we have performed a series of calculations by progres-
sively increasing the height of the Fe atom over the graphene layer. Increasing the C-Fe bond
length by ∼9% we observe an abrupt jump of the spin moment from zero to 1.5 µB. The
spin moment continues to rise and saturates at a value of 2.0 µB for dC−Fe∼2.07 Å. This
convincingly shows that the metal-carbon hybridization is the key parameter to explain the
non-magnetic state of Fe substitutional impurity in graphene. When increasing the C-Fe dis-
tance we mainly decrease ∆ϵAd. Thus, we reduce the energy penalty for promoting electrons
from the non-bonding d to the A pz-dz2 defect levels. At the same time we also increase the
atomic character of the non-bonding d states and reduce the effect of the screening due to the
electrons in the graphene layer. This ∆ϵAd reduction promotes the electron-electron repulsion
within the 3d states of Fe and, eventually, stabilizes the solution with 2.0 µB.

Figures 3.12 (b) and (c) present the band structure for the high-spin state of Fe, where
the C-Fe bond length has been elongated up to 2.08 Å. We notice the differences with the
spin-compensated ground state in Fig. 3.9 (a). On the one hand, one electron is promoted
from the non-bonding d states to the more delocalized antibonding A pz-dz2 impurity level in
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Figure 3.13: Projected density of states (PDOS) and total density of states (DOS) for a Fe substitutional impu-
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order to reduce the effect of electron-electron repulsion. On the other hand, the spin moment
is maximized in accordance with Hund’s first rule.

Therefore, we have seen that the non-magnetic character of the Fe substitutionals in the
GGA calculations is due to the larger interaction with the graphene layer, as compared for
example with the Mn impurity. This is consistent with the fact that Fe, together with Co and
Ni, presents the smaller carbon metal bond length among the whole series of 3d transition
metals. Fe impurities also have one of the largest binding energies. By artificially reducing
this interaction it could be possible to obtain magnetic Fe substitutional impurities in graphene.

Changing intra-atomic Coulomb interaction U.

Another route to explore would be to increase the size of intra-atomic electron-electron inter-
actions. We have done so by using the so-called GGA+U methodology in which a Hubbard
term is explicitly added to the DFT Hamiltonian and solved within the mean-field approxi-
mation. Our results indicate that with a reasonable value of U (∼2 eV or larger) we obtain a
magnetic solution for Fe substitutionals. However, contrary to our initial expectation this solu-
tion does not correspond to the 2 µB high-spin solution discussed above, but to a new solution
with 1 µB. The key reason to understand this behavior is the partial occupation of the Fe 3dz2

state at the level of GGA calculations. The dz2 state is strongly coupled to the delocalized A
pz vacancy level appearing nearby EF and both, this hybridization and the population of the
atomic orbital, are strongly modified when the value of U is increased.

Figure 3.13 shows the results of the electronic structure of Fe impurities calculated using
GGA+U with U=2.4 eV and compared with those with U=0. The two upper panels show the
projected density of states (PDOS) onto the dxy orbital (the projection onto the dx2−y2 orbital
is identical by symmetry), the two middle panels show the PDOS onto the dz2 orbital of Fe
and the two lower panels the total density of states. At the level of GGA, with U=0, there
is a very well defined peak closely below EF in the dxy PDOS corresponding to the position
of the non-bonding d states. The spectral weight coming from the dz2 orbital is more spread:
presents some broad structure around −1.5 eV corresponding to the bonding A pz-dz2 defect
level interacting with the valence band of graphene, and a narrower peak near EF with origin
in the slightly occupied antibonding A pz-dz2 impurity state. Therefore, from the Fe 3d states
appearing nearby EF we can picture the dxy and dx2−y2 states as fully occupied and the dz2 as
partially occupied due to the larger interaction with the carbon neighbors.

For a sufficiently large value of U the C 2pz-3dz2 hybridization is overcome by the ten-
dency of the electrons to have an integer population within the localized 3d shell. Thus,
the 3dz2 localizes one electron and, as a consequence, the system develops a 1 µB spin-
polarization. This changes can be appreciated in Fig. 3.13. The majority-spin 3dz2 PDOS
shifts downwards, while a strong unoccupied peak appears around 1.5 eV in the 3dz2 minority
spin PDOS. Simultaneously, a more delocalized level mostly coming from the 2pz orbitals of
the neighboring C atoms appears half-filled at EF . Note that other levels, such as the dxy, do
not suffer such strong modifications since they are already almost fully occupied with U=0. It
is also interesting to note that, due to symmetry considerations, they couple with the graphene
layer very differently from the dz2 level.
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3.5.2 Relevance for recent experiments of Fe implantation in graphite

There are recent reports on the paramagnetism of iron-implanted graphite that indicate the
existence of local magnetic moments associated with the implanted Fe atoms. [117,118] This
would be in contradiction with the present GGA results if we assume that the Fe atoms are
incorporated to the graphene layer as substitutionals. However, the final geometry of the
implanted atoms in these experiments is not known. Furthermore, a considerable amount of
defects is created during the implantation process. Although it has been argued that a large
part of the damage is healed by vacancy-interstitial recombination [118], the influence of
these defects, specially interstitials and big voids, on the observed magnetic response can be
determinant.

Therefore, it is not fully clear if we can compare our calculations for Fe substitutional
impurities in an otherwise perfect graphene layer with these experimental data. However,
as we have shown in detail in this section, Fe substitutionals are very close to a transition
and, depending on the details of the calculations, it is possible to obtain a magnetic ground
state. In particular, Fe substitutionals develop a spin moment of 1 µB at the level of GGA+U
calculations for reasonable values of the U parameter. This might be an indication that the
non-magnetic ground state found in GGA calculations is a consequence of the limitations of
the used functionals.

3.6 Conclusions

We have presented a DFT study of the structure, energetics, and electronic and magnetic prop-
erties of several metal atoms as substitutional impurities in graphene, i.e., bound to a carbon
monovacancy in the layer. We have considered the cases of all 3d transition metals, noble
metals and Zn. We have paid special attention to their electronic and magnetic properties and
develop a simple model to understand the observed trends. Our model is based on the hy-
bridization of the states of the metal atoms with those of an unreconstructed carbon vacancy.
The main ingredients of the model are the assumption, after our calculations, of a three-fold
symmetric bonding configuration and the approximate knowledge of the relative energy posi-
tions of the levels of the carbon monovacancy and the d shell of the metal impurity as we move
along the transition series. With this model we can understand the observed the variations of
the electronic structure of the defect, the size and localization of the spin moment, and the
binding energy. We have identified three different regimes corresponding to filling of carbon-
metal hybridization shells with different character: bonding, non-bonding and antibonding.

In more detail:
(i ) Most substitutional metal impurities present an almost perfectly symmetric three-fold

configuration with C3v symmetry. Noble metals slightly depart from this perfect configuration.
Only Zn presents a considerable structural distortion.

(ii) For Sc and Ti the metal-carbon bonding shell is completely filled. Therefore, these
impurities present the highest binding energies and zero spin moments. Sc substitutionals act
as p-dopants for graphene: each Sc impurity localizes one extra electron from the carbon layer.

(iii) The non-bonding d shell becomes partially populated for V, Cr and Mn, which develop
a very localized spin-moment of 1, 2 and 3 µB, respectively. The binding energy decreases
slightly as the d shell moves to lower energies, thus reducing its hybridization with the higher
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carbon vacancy levels.
(iv) For Co, Ni, the noble metals and Zn, the metal-carbon levels are progressively popu-

lated. This gives rise to a oscillatory behavior of the spin moment between 0 and 1 µB. The
spin moments are more delocalized than those found for V, Cr and Mn and present a consider-
able contribution from the carbon atoms around the impurity. The binding energy presents a
local maximum for Co, but suddenly drops for the noble metals and has its minimum for Zn.

(v) The electronic structure, nearby EF , of substitutional impurities of Co, Ni, the noble
metals and Zn has a strong resemblance to that of the unreconstructed D3h carbon monova-
cancy. We can draw an analogy between the electronic structure of these impurities and that
of the unreconstructed D3h carbon monovacancy with different number of electrons (charge
states). The spin moment of these impurities can be fully understand exploiting this equiv-
alence. In particular, the result that noble metals develop a spin moment of 1 µB emerges
naturally within this picture.

(vi) For the Co impurity, the equivalence can be pushed a step further and we can draw an
analogy with the electronic structure of a π-vacancy in a simple π-tight-binding description of
graphene. This can be used to explain the peculiar behavior found for the magnetic couplings
between Co substitutionals in graphene. [115]

(vii) Fe impurities occupy a distinct position at the border between two different regimes.
Their magnetic behavior stems from the competition between the carbon-metal hybridization
and the electron-electron interaction within the 3d shell. As a result, although Fe impurities
are non-magnetic at the GGA level, GGA+U calculations with moderate values of U (above
∼2 eV) produce a spin-moment of 1 µB.

(viii) We have found that the unexpected result that Au substitutionals [112,119] present a
spin moment of 1µB also holds for all noble metals, i.e., also Ag and Cu present a 1 µB spin
moment.

(ix) We have found that the ground state of the Zn substitutional is non-magnetic due to
a Jahn-Teller distortion. Yet, it is possible to stabilize a symmetric configuration with a spin
moment of 2µB with a very small energy penalty of ∼150 meV.

Substitutional impurities of metals in graphene present some interesting magnetic and elec-
tronic properties and, therefore, can provide an interesting route to add functionalities or to
tune the response of devices based on graphenic materials. Furthermore, recent experiments
by Rodriguez-Manzo and Banhart [83] have demonstrated the possibility to create individ-
ual vacancies at desired locations in carbon nanotubes using electron beams. This ability, in
combination with the high stability of substitutional impurities, can open a route to fabricate
ordered arrays of these impurities at predefined locations. Such devices would allow, among
other applications, the experimental verification of the theoretical predictions of unusual mag-
netic interactions mediated by graphene. [84, 85, 115]
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Chapter 4

Real Systems that Behave Like
π-Vacancies: Co Doping and Covalent
Functionalization

The peculiar electronic and magnetic properties of graphene monolayers have recently at-
tracted much attention. New types of electronic and, particularly, spintronic devices based
on graphene have been proposed [7, 12, 20, 120]. These graphene structures also drive an
increasing interest to study defects, which are always expected in real-life devices. Intrin-
sic defects have been already widely studied [12, 33, 45, 54, 121] and extrinsic defects, like
substitutional atoms studied in the previous chapter, are presently under intense research.
[53, 113, 115, 122–124]

In this chapter, we extend further our study of defects in graphene. We will explore other
alternatives to generate magnetism in graphene and carbon nanotubes using defects. We will
also examine the mechanisms of magnetic coupling between the spin moments linked to de-
fects, giving details of the exchange interaction and its distance decay. We also extent the
analysis to organic and inorganic molecules chemisorbed on graphene and carbon nanotubes
(CNTs). We show that all these calculations can be understood on the basis of a simple model
presented in the Chapter 1, the so-called π−vacancy (see Section 1.6.1). This model captures
the main features of the defects and the physics behind in a simple way. The present chapter
is divided into four main sections: In Section 4.1 we introduce the π−vacancy model in the
context of a graphene monolayer substitutionally doped with Co (Cosub) atoms. We observe
that there is a one-to-one correspondence between the expected behavior for single vacancies
in a simple π-tight binding model of graphene and that found for the Cosub defects. The elec-
tronic structure of the Cosub defect at the Fermi energy (EF ) is dominated by a level with a
strong contribution from the pz orbitals of the neighboring C atoms. Moreover, each Cosub

defect shows a spin moment of 1.0 µB, partly divided between the metallic impurity and the
C-neighbours. In sections 4.2 and 4.3 we focus on chemisorbed molecules on top of C in
graphene and nanotubes, respectively. We demonstrate that when a single covalent C-C bond
is established between an adsorbate and a carbon atom in the graphitic structure, a spin mag-
netic moment of 1.0 µB is induced in the system. This moment is largely independent of the
particular adsorbate. This effect occurs for organic and inorganic molecules.

In the fourth part, Section 4.4, we consider magnetic couplings. This is an important is-
sue because it deals with the possibility to create spin order in graphene based on defects.

87
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We start by studying the magnetic coupling between Cosub defects sited either in the op-
posite or same sublattice. Our calculations show the dependence of the couplings on the
crystalline direction and relative position of the defects. The results derived from the Lieb’s
theorem for π−vacancies are used as a reference, and a RKKY-like model is used to fit the ex-
change energies. For the case of molecules covalently bonded to graphene and nanotubes, we
have also studied the alignment of neighboring moments. We found that either in graphene
or in nanotubes (metallic and semiconducting), the spin moments of the adsorbates at the
same(opposite) sublattice do (do not) align ferromagnetically.

Furthermore, in the case of graphene we found that if the two molecules are located at
the same sublattice (e.g. AA), the ferromagnetic (FM) configuration is more stable than the
antiferromagnetic (AFM) one. In the FM case the total spin magnetization integrates to 2.00
µB, with a local spin population that remains nearly constant at every defect site. The exchange
coupling falls off very slowly with the adsorbate position, roughly proportional to ∼ |rij|−(1+ϵ)

with |ϵ| ∼ 0.20. Conversely, if the two molecules are located at the different sublattices
(e.g. AB), we could not stabilize any magnetic solution, and the system converges to a spin
compensated solution with no local spin moment.

In the case of metallic nanotubes, adsorbates at the same sublattice exhibit FM behaviour
over non-magnetic solutions. Semiconducting tubes have almost degenerate FM and AFM
spin solutions and consequently the effective exchange interaction between adsorbates is neg-
ligible. Other important result is that adsorption of molecules at different sublattices is always
more stable than in the same sublattice.

In all the studied cases, the bipartite graphene lattice plays an important role in the sta-
bilization of these solutions and the observed phenomenology is very close to that found for
vacancies in a simple π-tight-binding description of graphene. The chapter ends with the
conclusions in Section 5.4.

4.1 Co substitutional impurities in graphene: Realization of
single π-vacancies

In Chapter 3 we studied the structural, electronic and magnetic properties of substitutional
transition metals in graphene. There, we explored the main features of the doping, moment
formation, and we constructed simple diagrams for understanding the bonding between the
impurities and the unreconstructed D3h carbon vacancy. Here, we examine in detail an analogy
that can be established for Cosub defects in graphene with a simple model. The Cosub impurity
is analogous to the toy model system presented in section 1.6.1 for the π−vacancy. We begin
by looking at the spin-polarization induced by a Cosub impurity as shown in Figure 4.1 (a).
The spin polarization induced in the carbon atoms has a pz-like shape and decays slowly as we
move away from the impurity. The sign of the spin polarization follows the bipartite character
of graphene: the polarization aligns parallel (antiparallel) to the spin moment located in the
Co impurity for carbon atoms in the opposite (same) sublattice. The value of the total spin
moment is 1.0 µB per defect. Using Mulliken population analysis, a value of 0.44 µB is
assigned to the Co atom; 0.18 µB, to the three first carbon neighbors; and 0.38 µB, delocalized
in the rest of the layer. Therefore, both Co and carbon orbitals contribute to the spin moment
formation, as already seen in Section 3.3.3.
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Figure 4.1: (a) Isosurface of the spin density induced by a Cosub defect. Positive and negative spin densities
correspond to light and dark surfaces with isovalues of ±0.008 e−/Bohr3, respectively. Panel (b) presents the
spin-unpolarized band structure of an unreconstructed D3h carbon vacancy. Panel (c) and (d) show, respectively,
the band structure of majority and minority spins for a Cosub defect in a similar cell. The size of filled symbols
in panel (b) indicate the contribution of the pz orbitals of the C atoms surrounding the vacancy, whereas empty
symbols correspond to the sp2 character. In panels (c) and (d), the filled and empty circles denote the contribution
of hybridised Co 3dz2-C 2pz and Co 3d-C 2sp2 characters, respectively. EF is set to zero.

To understand the origin of this spin polarization, we now analyse in detail the band struc-
ture. Figures 4.1 (c) and (d) present the results for a Cosub defect in a 4×4 graphene su-
percell. Similar results are obtained using a 8×8 cell. For comparison, panel (b) shows the
spin-compensated band structure of a single unreconstructed D3h carbon vacancy (see Section
3.2). For the D3h vacancy, three defect states appear in a range of ∼0.7 eV around the Fermi
energy (EF ). Two states appearing at 0.3 eV above EF have a large contribution from the
sp2 lobes of the C atoms surrounding the vacancy. Another state at 0.35 eV below EF shows
a predominant pz contribution. This last level corresponds with the defect state at EF for a
vacancy in a simplified π-tight-binding description.

For a Cosub, the defect states of the vacancy described above hybridise with the Co 3d states
of Co. The two 2sp2 defect bands, now an antibonding combination of Co 3d and the original
C 2sp2 vacancy levels, are pushed at higher energies, ∼1.0 eV above EF (see Fig. 4.1 (c) and
(d)). The singly occupied pz state, now hybridised mainly with the Co 3dz2 orbital, remains at
the EF and becomes almost fully spin-polarized. The Cosub impurity becomes thus analogous
to a vacancy in the π-tight binding model of graphene.

This pz C band at the Fermi energy brings our results concerning magnetic moments into
contact with Lieb’s theorem, where spin polarization is an intrinsic property of the defective
bipartite lattice. However Lieb’s theorem is global referring to the total system magnetization
and does not enter into the local description of the magnetic interaction, which is going to be
described in the following sections taking into account several Cosub defects in the cell.

The connection between Co substitutionals in graphene and a simple π-vacancy is not re-
stricted to this system. Other systems do show a similar trend as well. In the next section, we
see that complex adsorbates chemisorbed on graphene generate magnetism and that the spin
moment due to such doping displays a π-vacancy behaviour similar to Cosub. Some concepts
already used here will be again invoked to explain the main features of the magnetism associ-
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ated with these defects, leading to an universal magnetic behaviour in graphene independent
of the particular adsorbate.

4.2 Organic adsorbates chemisorbed on graphene: Univer-
sal spin moment

Chemical functionalization of graphene will play an increasingly important role in graphene
based technologies. For instance, new derivatives can be synthesised by addition of foreign
radicals or molecules at the carbon surface and they could offer a way to control the electronic
structure of graphene. These chemical changes are of great interest in many potential appli-
cations such as electronics. In the following, we study covalently functionalized graphene,
focusing on the spin moment induced by the adsorption. We later calculate the electronic
structure for long CNTs containing chemisorbed adsorbates.

4.2.1 Geometry and structural parameters

We first calculate the geometry with the different molecules chemisorbed on top of a car-
bon in the graphene monolayer. Figure 4.2(a) represents the C1-X bond and its three C2-
nearest neighbors. The adsorbate X is either a C atom as in CH3, C2H5, C6H11, C6H5,
C6H4F, C6H4NO2, C6H4OCH3, toluene, C6H4NH2, CONH2, COOH, poly(methyl methacry-
late) (Pmma), poly(tetrafluoroethylene) (PTFE), Adenine group (C5H4N5C3H3ON), D-glucose
group (C6H11O6), polystyrene ((C8H8)2CH3), polyacetylene (C2H2)4H) or a different atom
such as H, N, O, F when considering H, NH2, OH and F as adsorbates. All the adsorbates
that form a single covalent bond with the graphene layer adsorb on top of a carbon atom
(C1). The C1 atom displace vertically and keeps a symmetric three-fold structure. Table 4.1
gives the distance dX , between adsorbates X(C) and the carbon C1 as well as the atomic
angles ΘX and Θ2, which determines the bonding geometry. The adsorption induces geo-
metrical changes that can be explained by a slight modification of the hybridization at a local
level towards a certain sp3-like character [125]. The angles ΘX and Θ2 are in a range of
102.13o − 106.76o and 112.02o − 115.70o, respectively. These values are half-way when
compared with those in a pure sp2-bonded layer, ΘX = 90o and Θ2 = 120o, or in a pure
sp3-bonded solid, ΘX = Θ2 = 109.5o. The largest sp3-bonding character among the stud-
ied adsorbates with C-C bonds is for the Pmma and other polymers. For systems where the
bond is C-X(X= H,N,O, F ) only minor deviations with respect to the behaviour commented
above are observed.

4.2.2 Spin polarization and electronic structure

We would like to understand the origin of the magnetic moment in the functionalized mono-
layer and we look at the spin polarization of some adsorbates chemisorbed on top of a car-
bon atom in a 8×8 graphene supercell. In Table 4.1 we summarise the main results for the
all studied adsorbates. The energy gain with respect to the paramagnetic solution (EM =
EPM −EFM ) gives ∼45.10 meV in average. As examples of adsorbates forming a single C-C
bond with the layer, Figure 4.2(f) and 4.2(g) show the band structure for an Adenine group and
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Figure 4.2: (a) The structure of C-X bond in graphene: bond length dX between the adsorbate X and the C1 atom
and the bond angles Θ2 and ΘX . Panels (b)-(e) show the isosurfaces for the magnetization density induced by
adenine group, CH3, Pmma and PTFE on the carbon surface. The cutoff is at ±0.0191431 e−/bohr3. Positive
and negative spin densities correspond respectively to light and dark surfaces. Spin alternates on graphene atoms
in different sublattices and has long decay length. Spin polarized band structures for a 8×8 graphene supercell
with a (f) single adenine group and (g) a CH3 molecule are also shown. The black (dark) and red (lighter) lines
denote the majority and minority spin bands, respectively. EF is set to zero.



92
Chapter 4. Real Systems that Behave Like π-Vacancies: Co Doping and Covalent

Functionalization

Table 4.1: Results of the structural parameters (bond length dX , atomic angles ΘX and Θ2) and energetic and
electronic data (magnetic stabilization energy EM , spin moment S, spin splitting δEs) for all studied systems.
The results are for 8×8 graphene supercell with a single molecule. The numbers in parentheses are using FSM
method.

X = C dX(Å) ΘX(o) Θ2(o) EM (meV) S(µB) δEs(eV)
CH3 1.59 104.5 113.9 48.6 1.00 0.23
C2H5 1.59 105.0 114.0 48.0 1.00 0.23
C6H11 1.67 105.9 112.5 47.3 1.00 0.23
C6H5 1.59 105.7 112.9 46.1 1.00 0.23
C6H4F 1.61 106.5 112.1 45.5 1.00 0.23
C6H4NO2 1.60 106.9 111.8 32.2 1.00 0.20
C6H4OCH3 1.59 106.9 111.9 38.4 1.00 0.21
C6H4CH3 1.61 106.6 112.1 46.6 1.00 0.23
C6H4NH2 1.60 106.5 112.3 42.8 1.00 0.22
CONH2 1.65 104.9 113.6 43.1 1.00 0.21
COOH 1.60 104.5 113.6 41.6 1.00 0.22
Pmma 1.67 106.7 112.0 47.1 1.00 0.23
PTFE 1.67 105.8 112.8 64.8 1.00 0.19
Adenine 1.65 104.7 113.7 42.5 1.00 0.23
D-Glucose 1.64 105.1 113.5 41.4 1.00 0.21
Polystyrene 1.60 106.8 111.9 40.0 1.00 0.21
Polyacetylene 1.58 105.0 113.5 50.1 1.00 0.24
X = H,N,O, F
H 1.12 102.6 115.3 46.5 1.00 0.24
NH2 1.52 105.2 113.3 27.7 0.89 0.20
OH 1.52 103.6 114.5 8.4 0.56 0.12
F 1.55 102.1 115.7 0.0 0.0 0.0

(-24.1) (1.00) (0.16)

a CH3 molecule, respectively. The magnetic moment comes from a very narrow defect state
that is pinned at the Fermi level (EF ). This state shows a predominant pz contribution from
the nearest C2 neighbors of the defect site, with a much smaller component from the adsorbate
itself. The small dispersion of this pz-defect band combined with its partially filled character
favours the spin-uncompensated solutions. Under these conditions, the splitting energy be-
tween majority and minority spin pz-defect bands (δEs) gives a common value of ∼0.20 eV
at the Γ point. This value is observed for all adsorbates anchored with a single C-C bond as
displayed in Table 4.1. We can see in Figs. 4.2(f)-(g) that other bands also suffer a splitting
due to the spin polarization induced by the defect, although it is smaller than for the pz defect
state close to EF .

The observed spin moment is localized in graphene and, therefore, it is mainly derived
from the electronic states of the carbon layer. However, the spin moment is induced by the
adsorption of the studied non-magnetic molecules. These adsorbates saturate a pz state in the
layer and create a defect which is analogous to a π-vacancy. Still, according to the results
in the Table 4.1, another important ingredient seems to be the polarity of the bond formed
between graphene and the adsorbate. When the ionic character of the bond between graphene
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and the adsorbate increases we observe a smooth transition from a magnetic to a non-magnetic
system that in part reflects the partial polarization of the covalent bond between the carbon host
and the adsorbate (charge transfer). In order of increasing electronegativity, the C-X(N, O, F)
bonds (see Table 4.1) show an increasing polar behaviour compared to the C-C bond. Thus, H
or N bonds that do not have a considerable difference in electronegativities respect to C present
spin-uncompensated solutions and an electronic structure quite similar to the C-C bond; but for
C-O and mainly C-F bonds, where the latter has the largest difference in electronegativity, the
system suffers a drastic reduction of the spin moment or even reaches a non-magnetic ground
state. Nevertheless, careful calculations using fixed spin moment method (FSM), indicated in
parentheses in Table 4.1, show that the energy penalty needed to develop a spin solution is
small even for our most polar bond (EM = −24.1 meV for C-F).

Therefore, this indicates that the C-F bond could easily be polarized by an external per-
turbations (e.g. magnetic field), so that graphene covalently functionalized with F can show a
strong magnetic susceptibility1 .

To visualise the spin polarization induced by the adsorbates on the graphene lattice, we plot
the magnetization density in Figure 4.2: (b) Adenine group, (c) CH3, (d) Pmma polymer chain
and (e) PTFE. It is remarkable to observe that in all the panels a molecule bound to the carbon
surface is stabilising a spin pattern in the neighboring carbon atoms with a clear pz-like shape.
The sign of the spin polarization follows the bipartite character of the graphene lattice: carbon
spins polarize parallel (antiparallel) respect to the C atom that binds to the surface when sitting
in the opposite (same) sublattice. The total spin moment is 1.0 µB and a Mulliken analysis
assigned to 0.34 µB in the three first C2 nearest-neighbors (see Fig. 4.2(a)), -0.13 µB in the
next nearest-neighbors, to 0.26 µB in the third-neighbors, and to 0.40 µB integrated over larger
distances. The saturated carbon atom (C1) in graphene and the carbon atom in the adsorbate
that bonds to the layer, show a local spin polarization smaller than ∼0.10 µB.

We now look at Figure 4.3 which shows the calculated density of states (DOS) per spin
channel for different chemisorbed adsorbates at the graphene surface. Despite of the curves
have been shifted and smoothed with a Lorentzian broadening, the data over the whole energy
range collapse onto a single pattern. This confirms the universality of the origin of the spin
moment in covalently functionalized graphene, independently of the particular type of adsor-
bate. Chemisorbed H also shows the same DOS. Variations from these collapsed curves can
be observed for adsorbates with different bond character from a single covalent C-C bond (not
shown in Figure 4.3). These results point out the analogy between a C-H bond and a C-C bond
of adsorbates, which in principle, is not an obvious behaviour.

It is interesting to note that notwithstanding the biological and chemical activity, different
adsorbates present several common points that are worth mentioning in Table 4.1 and Figure
4.3: (i) All the molecules induce a spin moment of 1.0 µB that is fairly independent of the
supercell size and is mainly localized at the graphene layer; (ii) The origin of the spin polar-
ization corresponds to the pz-defect state, as was explained above by analysing band structure
for two of them; (iii) The δEs varies in a small range 0.19-0.24 eV, what really points to a very
similar localization of the defect states on all the studied systems.

1In particular for C-F bond, the FSM calculations indicate an energy cost of less than ∼2.0 meV to create a
spin moment of 0.50 µB in a 8×8 graphene supercell. This tiny energy value reaches the accuracy limit of the
calculation which means that a spin polarized solution is equally possible even at the ground state.
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Figure 4.3: Spin polarized density of states for a graphene monolayer with a single chemisorbed molecule on
top of a C atom. For clarity, the curves for different adsorbates have been vertically shifted and smoothed with
a Lorentzian broadening of 0.12 eV. The Fermi energy (EF ) is marked by the dashed line and is set to zero.
The shaded regions represent the density of states of a pristine graphene monolayer. These results are for a 8×8
graphene supercell.
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Figure 4.4: Spin polarized band structure and density of states for (a)-(b) (5,5) and (c)-(d) (10,0) SWNTs with
a single adsorbate of different types chemisorbed on top of a carbon atom. In panels (a) and (c), the blue (dark)
and red (bright) lines denote the majority and minority spin bands, respectively. For clarity, the curves in panel
(b) and (d) have been shifted and smoothed with a lorentzian broadening of 0.12 eV. Fermi energy is marked by
the dashed lines and is set to zero in all panels.

4.3 Sidewall spin functionalization in carbon nanotubes

Similar to graphene, when a single C-C covalent bond is attached to the nanotube wall, a uni-
versal spin moment of 1.0 µB is created. In order to understand the origin of this common
spin moment, the spin polarized band structure of a CH3 molecule chemisorbed on top of a C
atom is shown in Figure 4.4 for (a) (5,5) and (b) (10,0) SWNTs. In both cases, a defect state



96
Chapter 4. Real Systems that Behave Like π-Vacancies: Co Doping and Covalent

Functionalization

appears pinned at the Fermi level (EF ) with full spin polarization. This state is mainly com-
posed by pz orbitals of the C neighbors to the saturated site, with almost no contribution from
the adsorbate. In fact, a detailed Mulliken analysis of this pz-defect state assigns a small con-
tribution of the spin moment to the adsorbate. This indicates that the adsorbate has a primary
role in creating the bond with the nanotube, and the associated defect level, but it does not
appreciably contribute to the spin moment. More complex adsorbates, notwithstanding their
biological and chemical activity (e.g. alkanes, polymers, diazonium salts, aryl and alkyl radi-
cals, nucleobases, amido and amino groups, acids), show a similar behaviour. This is observed
in the density of states (DOS) per spin channel for metallic (5,5) and semiconducting (10,0)
SWNTs shown in Figure 4.4(c) and 4.4(d), respectively. Several common points are worth
mentioning: (i) All molecules induce a spin moment of 1.0 µB localized at the carbon surface;
(ii) The origin of the spin polarization corresponds to the pz-defect state as explained above for
the CH3 molecule; (iii) The DOS around EF follows the same pattern in all cases. This match
demonstrates that the spin moment induced by the covalent functionalization is independent
of the particular type of adsorbate. These results also point out the complete analogy between
a single C-H bond with more complex adsorbates that link to graphene through a single C-C
bond. This complete similarity is far from obvious and could not be easily anticipated.

Next we study the spin polarization texture induced by the adsorbates on the carbon nan-
otube wall. The analysis of local magnetic moments for all the adsorbates assigns general
trends to both SWNTs. The C atoms that participate directly in the bond formation, at either
the molecule or the surface, show a local spin moment smaller than ∼ 0.10µB. However, the
wall carbon atoms contribute with 0.40 µB in the three first C nearest-neighbors, -0.10 µB

in the next nearest-neighbors, 0.20 µB in the third-neighbors. The adsorbate removes a pz

electron from the adsorption site, and leaves the pz states of the nearest carbon neighbours
uncoordinated. This gives rise to a defect state localized in the carbon layer, reminiscent of
that of a vacancy in a π-tight-binding model of graphenic nanostructures. The carbon spins
polarize parallel (antiparallel) respect to the C atom that binds to the surface when sitting in
the opposite (same) sublattice. Figure 4.5 shows the magnetization density in semiconducting
(10,0) and metallic (5,5) SWNTs for several molecules: (a) Pmma polymer chain [126], (b)
Adenine group nucleobase [127], (c) CH3 molecule [128] and (d) C6H4F salt [129]. The spin
density in the metallic (5,5) (Figure 4.5(c) and 4.5(d)) is more spread over the whole surface
than in the semiconducting (10,0) (Figure 4.5(a) and 4.5(b)). This indicates that the electronic
character of the nanotube wall plays a role in determining the localization of the defects states
and, most probably, in mediating the interaction between adsorbates. We will confirm this role
in subsequent sections.

4.4 Magnetic coupling between defects in graphene

4.4.1 Co impurities in graphitic carbon

We consider next the magnetic couplings between Cosub defects in a large 8×8 supercell
with two Cosub impurities. We calculate the energy difference between spin alignments as
a function of the relative position of the defects. Figure 4.6 shows the results along with a
schematic representation of our notation. Positive values indicate FM spin alignment while
negative values are AFM ones. Several observations from spin couplings in Fig. 4.6 can
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Figure 4.5: Isosurface of the magnetization density induced by some adsorbates at the SWNT surface: (a) Pmma
and (b) Adenine group in a (10,0); and (c) CH3 and (d) C6H4F in a (5,5). Majority and minority spin densities
correspond respectively to light and dark surfaces, which alternate on the honeycomb lattice with a long decaying
order in all cases. The cutoff is at ±0.0133 e−/bohr3.

be made: (i) when the impurities are located in the same sublattice (AA systems) the FM
configuration is more stable than the AFM one; (ii) if the Co atoms are in opposite sublattices
(AB systems) it is very difficult to reach a FM solution, 2 instead the system finds either a
spin-compensated (PM) or an AFM solution; (iii) at short distances (< 3.0 Å) the systems
always converge to spin compensated solutions.

In the FM cases of Fig. 4.6, the total spin magnetization integrates to 2.00 µB. The spin
population on every Co atom remains almost constant ∼0.50 µB and it is ∼0.30 µB for the
three C-nearest neighbors. In other cases the total spin is zero. Thus, the total magnetic
moment of the system follows the equation S = |NA

sub − NB
sub|, where NA(B)

sub is the number
of Cosub defects in the A(B) sublattices. Our total moment is consistent with Lieb’s theorem
for bipartite lattices [52]. This supports our analogy between the electronic structure of Cosub

defects and single vacancies in a simplified π-tight-binding description of graphene.
The spin magnetization density for some selected configurations is plotted in Fig. 4.7. Al-

2When we could stabilize a FM solution, it lies at higher energy, around 0.2 eV above the PM one.
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Figure 4.6: (a) Schematic representation of the geometry used to calculate the relative stability of FM, AFM and
spin compensated (PM) solutions as a function of the positions of two Cosub impurities. Sublattices A and B are
indicated by squares and triangles, respectively. One of the impurities is fixed in a central A-type site, whereas
the other is moved along the (b) (n, n) and (c) (n, 0) directions. The empty circles represent spin compensated
solutions and the full circles correspond to a fit with a Heisenberg model (see text). Positive values indicate FM
spin alignment while negative values are AFM ones.
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Figure 4.7: (a) Spin densities for configurations (a) (1, 1)AA, (b) (2, 2)AB and (c) (−4,−4)AB(see Fig. 4.6(a) for
the nomenclature). Positive and negative spin densities are indicated by light (gray) and dark (blue) isosurfaces
corresponding to ±0.001 e−/Bohr3, respectively.
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though the spin is fairly localized on the Co atom and the neighboring C atoms, the presence
of the defect also causes a delocalized magnetization density with alternated signs in the two
sublattices. The triangular pattern, that reflects the three-fold symmetry of the layer, shows
different orientations for A and B substitutions. This explains the very anisotropic AB in-
teraction along the (n, n) direction seen in Fig. 4.6 (b): the energy difference between AFM
and PM solutions for (n, n)AB configurations strongly depends on the relative position of the
impurities, showing such a directionality. Similar patterns have already been observed exper-
imentally [47, 130–132] in point defects on graphene by STM techniques and also theoreti-
cally discussed for π-vacancies. [53,54,133] For Cosub in graphene, similar STM experiments
should display the topology of the spin densities given in Fig. 4.7.

We have also investigated the magnetic interactions within the framework of a classical
Heisenberg model:

H =
∑
i<j

JAA/AB(rij)SiSj (4.1)

where Si is the local moment for a Cosub impurity at site i. The expression for the rij depen-
dence of the exchange has been taken from analytical RKKY coupling given in Ref. [134],
except for the exponent of the distance decay, which is fitted to our ab initio results. The ex-
change interaction for AA systems can be fitted with a |rij|−2.43 distance dependence (see
the full circles in Fig.4.6 (b) and (c)). This distance dependence is in reasonable agree-
ment with the |rij|−3 behavior obtained with analytical models for substitutional defects and
voids [134, 135]. In the case of AB systems a simple RKKY-like treatment fails to satis-
factorily describe the interactions, at least for the relatively short distances between defects
considered in our calculations.

Next, we explain the appearance of PM solutions in Fig. 4.6. The appreciable interaction
between defect levels in neighboring impurities for AB systems opens a bonding-antibonding
gap in the pz defect band 3 and, thus, contributes to the stabilization of PM solutions. For AA
systems, however, the bipartite character of the graphene lattice makes the interaction between
defects much smaller. This explains why AA configurations show a local spin polarization.
At very short distance between impurities, a larger defect-defect interaction opens a large
gap and, in consequence, stabilises the PM configurations. It is interesting to point out that
similar behaviours have been observed for vacancies in ribbons of graphene described within
a π-tight-binding model (see Section 1.6.1). [54, 57, 133]

4.4.2 Chemisorbed molecules in graphene
Concerning the magnetic couplings between adsorbates at low concentrations, we use H or
CH3 as examples of chemisorbed molecules at the graphitic surface. In a 8×8 supercell,
we calculate the energy difference (∆E) between ferromagnetic (FM) and antiferromagnetic
(AFM) spin alignments as a function of the distance between defects, the so-called exchange
coupling. The geometries used in these calculations are shown in the insets of Figure 4.8 (a)-
(b). We made several observations: (i) if the two molecules are located at the same sublattice

3For the AB systems, we find bonding-antibonding gaps in the bands ranging from 0.3 eV to 0.9 eV for
(1, 1)AB and (−1,−1)AB configuration, respectively. These values are similar to the ∼0.5 eV spin-splitting of
the Cosub defect. In fact, all those AB systems with gaps larger than 0.4 eV converge to PM solutions.
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Figure 4.8: Exchange coupling as a function of the position for two adsorbates, H and CH3, chemisorbed on top
of a C atom in a 8×8 graphene supercell. One of the molecules is moved along the (a) armchair and (b) zigzag
directions and the other remains at the origin. The filled and empty squares correspond, respectively, to H and
CH3 at the same sublattice (AA) and the triangles correspond to both adsorbates at different sublattices (AB).
The circles correspond to the best fit to a Heisenberg model for the AA sites.

(AA), the FM configuration is most stable than the AFM one. In the FM case, the total spin
magnetization integrates to 2.00 µB for both H and CH3, with a local spin population that
remains nearly constant at every defect site; (ii) if both molecules are located at different
sublattices (AB), we could not stabilize any magnetic solution, and the system converge to a
spin compensated solution with no local moment; (iii) at short distances (< 5.0 Å) the system
with chemisorbed CH3 molecules converges to FM solutions, while it was not possible to
stabilize any AFM spin order.

The above magnetic behaviour for adsorbates at different sublattices can be rationalised
as follows. When the molecules are located at opposite sublattice the interaction between
defect levels in neighboring adsorbates is appreciable. Similar to what we have already seen
for Cosub impurities, and in close analogy to the behaviour observed for π-vacancies [54], this
interaction opens a bonding-antibonding gap in the pz defect bands which contributes to the
stabilization of spin compensated solutions. If the gap is larger than the splitting δEs of the
majority and minority spin defect bands around EF the system will be non-magnetic [115]. A
detailed analysis of the band structure for both adsorbates fully confirms this interpretation. It
is noteworth that a similar behavior was also observed for hydrogen [136] and vacancies [57].
All of them have thus an electronic structure similar to that of H in graphene, which in turn is



102
Chapter 4. Real Systems that Behave Like π-Vacancies: Co Doping and Covalent

Functionalization

equivalent to the simple π-vacancy toy model.
We have also investigated the magnetic interactions within the framework of a classical

Heisenberg model using Eq. (4.1), where now Si is the local moment induced by H or
CH3 at the adsorption sites i. We find that the magnetic interaction between chemisorbed
molecules is long range and falls off slowly with the distance. It is roughly proportional to
JAA(rij) ∼ |rij|−(1+ϵ) with |ϵ| ∼ 0.20, as can be seen by the circles in Fig.4.8 (b) and (c). This
distance decay differs from that of substitutional Co impurities [115] in graphene monolayer
(∼ |rij|−2.43) as shown above. However, it agrees with a recent theoretical study [137] where
the interactions of the adatoms on graphene, using a π-tight-binding model, is an inverse func-
tion of the distance.

4.4.3 Adsorbates in nanotubes
Now we address the energy stability of the different magnetic solutions when two molecules
are adsorbed in the walls of CNTs. We focus on a chemisorbed molecule at the nanotube sur-
face by looking at H as an example. For the metallic (5,5) and semiconducting (7,0) single wall
CNTs, we calculate the variation of the total energy for several spin alignments as a function
of the distance between the adsorbates. The used geometry along the tubes is schematically
shown in the insets of Figure 4.9(a) and 4.9(b). One H is sited at the origin; and another, in
different positions along of the tube axis (see background pictures). Several observations can
be first made on the stability when two adsorbates are located at the same sublattice (AA con-
figurations). In the metallic (5,5), the FM configuration is most stable than the non-magnetic
one (PAR). The energy difference between these two spin solutions along the tube axis oscil-
lates and no AFM solution could be stabilized at all. In the semiconducting (7,0), the FM and
AFM solutions are almost degenerate, with a small energy difference (exchange coupling).

If the two molecules are now located at different sublattices (AB configurations), we were
not able to stabilize any magnetic solution for both nanotubes. Instead the systems is more
stable without a local spin moment. This behaviour for adsorbates at opposite sublattices can
be traced back to the interaction between the defect levels. While for AA configurations the
interaction is negligible, for AB ones this interaction opens a bonding-antibonding gap around
EF in the pz defect band and, thus, contributes to the stabilization of PAR solutions. If the gap
is larger than the spin splitting of the majority and minority spin defect bands the system will
be non-magnetic [54, 115]. In fact, our detailed analysis of the band structure fully confirmed
this explanation. However, it is worth noting that AB adsorption seems to be always more
stable in our calculations. This indicates that if the adsorption takes place at random sites, the
magnetic solutions will only be stable for low density functionalization.

4.5 Conclusions
This chapter deals with the spin moment induced by several defects that can be understood
in terms of the simple model provided by the π-vacancy. We also consider the magnetic cou-
plings between those defects in graphenic structures. We focus on substitutional Co atoms
as well as on chemisorbed molecules in graphene and carbon nanotubes. Cosub defects show
many similarities with the fictitious π-vacancy in graphene. The spin density generated by a
Cosub defect shows maxima in those C atoms that occupy the opposite sublattice to that where
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Figure 4.9: Variation of total energy with the H positions for the distinct magnetic solutions in the two graphitic
sublattices (AA and AB). One of the molecules is moved along the axis of a (a) (5,5) and a (b) (7,0) SWNT; and,
the other remaining at the origin (see background pictures). The empty and filled squares correspond to PAR spin
solutions at AB and AA sublattices, respectively. The circles and triangles indicate the FM and AFM solutions,
respectively, at the same sublattice.

Co sites, following the bipartite character of the graphene lattice. For two Co substitutionals,
we distinguish between AA and AB positions. For AA cases, the induced moments align fer-
romagnetically and the strength of the couplings depends on the relative distance as |rij|−2.43.
The total moment follows Lieb’s theorem similarly to a collection of π-vacancies. For AB
cases, the band structures around Fermi energy show the opening of antibonding-bonding
gaps between defect levels in neighboring defect sites, which suggests large interactions be-
tween them. The alignments of the magnetic moments are AFM or PM, a trend that is also
similar to that found for π-vacancies [54, 57, 133]. To end this part we ought to remark that
the origin of the spin moments and the sign of the couplings stem from the bipartite lattice of
graphene.

The analysis of the magnetic properties induced by chemisorbed molecules in graphene
and carbon nanotubes was conducted using many types of adsorbates: polymers, diazonium
salts, aryl and alkyl radicals, nucleobases, amide and amine groups, sugar, organic acids. A
spin moment of 1.00 µB is induced at the carbon surface always that a single C-C bond is
formed between an adsorbate and the graphenic layer. This moment was observed to be in-
dependent of the supercell size, and it is stabilized by several tenths of meV respect to the
non-magnetic phase. AA adsorption always leads to FM alignment. AB adsorption, how-
ever, always stabilises non-magnetic solutions. The global spin moment follows again the
Lieb’s theorem. Similarly to Co impurities, a RKKY-like model was used to fit the calculated
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magnetic interactions. The interactions decay slowly in the bipartite lattice, being roughly
proportional to the inverse of distance.

Metallic carbon nanotubes behave similarly to graphene. For molecules chemisorbed at
the same sublattice (AA adsorption) we could only stabilize FM or PM configurations. The
FM solutions are more stable than the PM ones. In semiconducting nanotubes, FM and AFM
solutions are almost degenerate even for AA adsorption, with a small energy difference along
the tube axis. For two molecules in different sublattices (AB adsorption), we could not stabi-
lize any magnetic solution and the system is more stable without a local spin moment.



Chapter 5

Effect of Strain on the Electronic and
Magnetic Properties of Defects in Carbon
Nanostructures

This chapter contains a study of the structural, electronic and magnetic properties of several
defects in carbon nanostructures under an external applied strain. We will address how the
presence of strain can be used to modify the electronic and structural properties of vacancies
and substitutional metals in carbon nanostructures, and how the interplay between magnetism
and mechanical perturbations can play an important role in this class of systems. The chapter
is divided as follows:

Sec. 5.1 considers monovacancies in a graphene sheet. We find that the applied strain
can modify the properties of a monovacancy, so that the defect could show a very rich spin
and geometric phase diagram. Stretching increases the size of the spin moment in different
phases while compression reduces or even kills the magnetic signal. The transition to non-
magnetic solution is linked to changes in the global structure of graphene that are associated
with the formation of long range ripples. For compressions slightly greater than 3%, this
rippling leads to the formation of a heavily reconstructed vacancy structure at saddle point
positions that consists of two twisted hexagons and pentagons. We propose that the control of
defect-induced magnetism in graphenic structures is feasible by mechanical deformations.

Sec. 5.2 shows that substitutional metallic impurities in carbon nanotubes can display a
different magnetic behaviour from that observed in a flat graphene monolayer. We use Ni
dopants as an example and we demonstrate that the intrinsic curvature already present in the
SWCNT’s can be used to switch on the magnetism of Ni substitutionals. Ni substitutionals
are non-magnetic in flat graphene. A strong dependence of the spin moment on the impurity
distribution, tube metallicity and diameter of the nanotube is also observed. A simple model
taking account the curvature-induced anisotropy of the hopping between Ni and the first three
C neighbours is presented and qualitatively explains all features observed in the ab initio
calculations.

Finally, Sec. 5.3 focus on calculations on the effect of uniaxial strain applied to Ni doped
graphene. We show that besides the curvature, the application of a uniaxial strain can also be
used to induce and control the magnitude of spin moment in a practical way. In a short range
of applied strain the spin moment changes from zero at equilibrium up to 1.9 µB at ∼7.0%
strain. This strong variation can be traced back to modifications of the local structure of the
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defect. These structural changes can be related to those of the unreconstructed carbon vacancy
in graphene under strain which presents strong similarities with Ni substitutionals impurities.

The chapter ends with the conclusions in Sec. 5.4.

5.1 A general spin-strain phase diagram for a monovacancy
in graphene

In this section we study the effect of isotropic strain on the electronic structure of vacancies
in graphene. The interplay between global and local structures reflects directly in the simul-
taneous observation of new types of spin solutions, defect reconstruction and corrugation on
the whole system. The 2D-character of graphene combined with its intrinsic rippled geometry
provide the necessary framework for this new kind of effects. We focus on carbon monova-
cancy, and find that it shows a rich structural and spin phase diagram as a function of strain.

5.1.1 Structure versus strain

We start taking a look at Figure 5.1 which illustrates the relaxed geometry of one of our mod-
els of a free-standing defective graphene layer under a 1.2 % isotropic compression. While
under tension the layer remains perfectly flat, and small compression produces the sponta-
neous rippling of graphene with a characteristic deformation around the vacancy. At zero
strain, the monovacancy tends to undergo a Jahn-Teller–like distortion that lowers its energy
by ∼200 meV: atoms of type 1 (see the inset of Fig. 5.1) reconstruct to form a pentagon with
the neighboring atoms, while atom 2 is left with the dangling bond responsible for the spin
polarization. Although we herein consider a non-planar structure under strain, our findings
at low compressions are similar to results previously obtained for flat graphene [42, 121].
However, atom 2 in our rippled structure is progressively lifted from the graphene surface by
as much as ∼1.0 Å for strains slightly below 3%, just before the occurrence of a strong va-
cancy reconstruction. The data of Figure 5.1B reveal a particularly striking result. In contrast
to 2D vacancy, for which previous authors invariably described a ’pentagon-goggles’ struc-
ture, our own calculations show that the vacancy is strongly reconstructed under rippling. For
compressive strains greater than 3%, an altogether new defect structure is produced consisting
of two heavily distorted hexagons and pentagons and resembling the transition states for the
movement of a planar monovacancy. We shall now focus on the description of this region of
transition for compression of up to 2.8%.

Figure 5.2A shows the maximum amplitude of the rippling h as a function of strain for
defective graphene (shown by the solid symbols). We removed the defects from each rip-
pled structure by adding carbon atoms to the vacancy sites and relaxing the structure. We
obtained rippled pristine graphene with maximum amplitudes as shown in Figure 5.2A (open
symbols). The amplitudes and the topographic patterns (insets in Figure 5.2A) show little
difference between pristine or defective graphene, particularly for compressive strains greater
than ∼1%. It seems that even for large supercells, the main determinant to observe ripples is
the applied strain. However, the structural patterns that occurs in defective graphene define a
preferential direction and break the up-down symmetry that exits perpendicular to the layer.
This preferential direction and the symmetry breaking are explained by the presence of the
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Figure 5.1: (A) Graphene with vacancies under an isotropic compression of 1.2%. As an example we use the
10×10 unit cell (highlighted). The inset shows the geometry of the vacancies and the atomic labels. The local
bending at the vacancies is described by the angle θ12 between the pentagon and the plane defined by three C
atoms around the vacancy, i.e. two equivalent atoms labeled 1 and a third atom labeled 2. Note the rippling
of the graphene sheet with the vacancies at the saddle points. (B) A different vacancy structure for a higher
compression slightly under 3%. It has two distorted hexagons and pentagons, while the central C atom shows a
sp3 hybridization.

reconstructed vacancies. The vacancy breaks the hexagonal symmetry of graphene with their
goggles-pentagon structure and thus play a key role in determining the shape and symmetry
of the global deformation patterns of graphene.

We simultaneously characterise the local curvature at the vacancies and the height of atom
2 above the local tangent-plane in terms of the bending angle θ12, as defined in Figure 5.1.
In Figure 5.2B, we plot the bending angle for both defective and pristine graphene. Under
moderate compression (1-2%), the local bending angle for defective graphene is about three
times greater than that of pristine graphene and the graphene rippling is clearly favoured by
the presence of the vacancies. The dependence of θ12 on the size of the supercell, as shown
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Figure 5.2: (A) Maximum amplitude h(Å) of rippling for 10×10 graphene supercells versus strain in units of the
equilibrium lattice constant ao. The filled circles denote defective graphene, while the empty circles denote the
pristine layer that has been recovered by adding a carbon atom to the vacancy. The insets show the corrugation
patterns: the bright/yellow (dark/green) areas indicate the higher (lower) regions. (B) Bending angle θ12 (see
definition in Figure 5.1) as a function of strain. The inset shows the behavior of the bending angles with size
of supercell for different values of strain. The local induced deformation clearly depends on the presence of
vacancies and on the size of the supercell.

in the inset of Fig.5.2B, further demonstrates the coupling between the local geometry of the
defect and the global deformation. For example, for a 4 × 4 supercell, a strain larger than
1.0% is required to obtain an increase in θ12 and to allow the corrugation of the layer to begin.
However, for larger supercells, much smaller strains cause appreciable deformations around
the vacancies.

5.1.2 Energetics
It is worth mentioning that the range of applied strain used here (a few percent) is comparable
to that present in experiments in which an appreciable corrugation of graphene was reported
for supported layers [138–140], chemically functionalized graphene [141] , or defective lay-
ers [142]. As a result of the imposed periodicity and the finite-sizes used in our calculations,
long-wavelength deformations appear primarily to be related to the strain, i.e. vacancies do
not create significant corrugation in the relaxed geometry at the equilibrium lattice constant.
However, we observe that for the range of strain considered here, the system is compressed
and thereby assumes a rippled configuration at an energy between two and three times lower
for defective graphene than for the pristine layer. For a 10x10 supercell, the energy required
to create ripples for a compression of 3% is reduced to almost half its value in the presence
of vacancies, as seen in Figure 5.3A. This difference in energy is consistent with the proposed
role of vacancies as a source of ripples in recent experiments [142].

5.1.3 Magnetism versus strain: several spin solutions
Earlier we commented on the fact that isotropic strain can be used to tune the vacancy structure
and the curvature of the layer at the site of the defect. We now focus on the influence of these
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Figure 5.3: Variation in total energy per atom (A), spin moment (B), and bond length (C) versus strain for three
different configurations of vacancy in the 10×10 supercell: high-spin flat (triangles), low-spin flat (squares)
and low-spin rippled (circles). The inset in panel (a) details the change in total energy with respect to the
low-spin solutions at about zero strain. The filled and empty symbols in panel (C) represent the 1-2 and 1-1
distances, respectively (see the inset of Figure 5.1 for atomic labels). The marks given by stars refer to the
average distances as the geometry departs from the usual vacancy to the structure in Figure 5.1B. Note that the
magnetism disappears at a strain of ∼2% when allowing for out-of-plane deformations.

structural changes on the magnetic and electronic properties of the vacancies. We first consider
the case of zero strain, i.e. at the equilibrium lattice constant. The usual reconstruction [42,
121] is accompanied by a decrease in the 1-1 distance in Figure 5.1 and an increase in the
1-2 distances. The two dangling bonds in the type 1 atoms are thus saturated while atom 2
remains uncoordinated. It is the polarization of the corresponding dangling bond that is the
main reason behind the appearance of a spin moment of ∼1.5µB associated with the carbon
monovacancy. However, we were able to stabilize another reconstruction characterized by
a different structural distortion, in which the 1-2 distance decreases, while the 1-1 distance
increases [see the local structures and distances in Fig.5.3B,C]. This structure has a larger spin
moment of ∼1.82µB. We refer to this latter structure as the high-spin (HS) configuration, and
to the former as the low-spin (LS) configuration. At zero strain the LS structure is more stable
than the HS by around 250 meV.
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(a)

(b)

Ni

Figure 5.4: (a) Relaxed geometry of a substitutional Ni (Nisub) impurity in a (5,5) SWCNT, and (b) isosur-
face (±0.004 e−/Bohr3) of the magnetization density with light (gray) and dark (blue) surfaces corresponding,
respectively, to majority and minority spin.

The behavior of these two structures as a function of strain is summarised in Figure 5.3.
When applying tension to the layer, both the HS and LS structures remain flat and almost
become degenerate. In both cases the spin moments show a slight increase. Conversely, when
the layer is compressed, the HS structure becomes unstable. Indeed, it is only possible to sta-
bilize the HS configuration under compression provided that the layer is constrained to remain
flat. Even for flat graphene, the energy difference between the HS and LS states increases
significantly with compression, and for strains greater than 1.5% the HS configuration spon-
taneously transforms into LS-flat (i.e. low-spin constrained to be flat). In both structures,
the spin moments decrease as the layer is compressed. The change is greater for the LS-flat
configuration, which varies from 1.98 µB for a +3% deformation to 1.15 µB at −3%. A more
dramatic reduction in the spin moment is seen if ripples are allowed to form in the graphene
layer. Figure 5.3B shows that the spin moment of the LS-rippled (i.e. low-spin free to ripple)
vacancy decreases sharply when the compressions exceeds 0.5%. In fact, the ground state of
the monovacancy becomes non-magnetic for compressive strains in the range of 1.5-2%.

The changes in the spin moments of vacancies may be understood by analysing their elec-
tronic structure. When carbon atom 2 is restricted to remain in the plane, the spin moment
is mainly associated with the 2sp2 dangling bond, and the contribution from the 2pz states
is smaller. The strain-induced deformation of the vacancy and subsequent out-of-plane dis-
placement of atom 2 gives rise to the hybridization between the out-of-plane 2pz states and
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Figure 5.5: (a) Schematic representation of the electronic structure of a Nisub impurity in graphene. Panel (b)
shows the calculated band structure for a Nisub impurity in a 4×4 graphene supercell. The size of the circles
and squares corresponds to the amount of Ni 3d and 4s character respectively. Energies are referred to the Fermi
energy.

the in-plane 2sp2 states. For flat graphene the spin-polarized impurity level associated with
the vacancy therefore has a strong 2sp2 character and remains essentially decoupled from the
delocalized electronic levels of graphene due to their different symmetries. For the rippled
layer, these two types of electronic states are strongly hybridized. This hybridization results
in the delocalization of the defect levels which eliminate the magnetism and explains why the
LS-rippled configuration has a lower spin moment. In other words, the rippling is believed
to transform the hybridization of the C vacancy atoms in 2sp3, thereby removing the cause of
local magnetism, as seen at the higher compression of the case of Figure 5.1B.

Rippling of the graphene layer occurs in many cases. One such case is where graphene is
deposited on substrates, in which there is a significant mismatch between lattice parameters.
For example, ripples have been observed for graphene deposited on Ru(0001) [140], as well
as on other metallic substrates. Strain can also be applied and controlled by placing exfoliated
graphene on flexible substrates, as recently reported [143, 144]. Then, it may be possible
to create defects in regions of different curvature using a focused electron beam as already
demonstrated [83].

5.2 Ni doped graphene and carbon nanotubes
Similar to what we have observed with monovacancies under the application of strain, in
which the total spin moment is sensitive to the presence of mechanical deformations, for sub-
stitutional defects created in graphene the magnetic properties depend on the deformations
and/or induced curvature on the sheet. So far, we have studied substitutional transition metals
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(TMsub) only at a flat graphene surface. However, as already mentioned in Chapter 1, the first
experimental evidence of TMsub doped carbon nanostructures was observed in a cylindrical
carbon onion [81] and latter on in single wall carbon nanotubes [63, 78, 80]. Therefore, the
study of the electronic and magnetic properties of TMsub in single wall carbon nanotubes is
a relevant issue. Now we will examine in detail the effect of Nisub defects in armchair and
zigzag SWCNTs of different diameters 1.

5.2.1 Geometry and magnetization density

As we have already seen in Chapter 3, Nisub impurities are non-magnetic in flat graphene.
However, their magnetic moment can be switched on by applying curvature to the structure.
To understand why, we will begin taking a look at the equilibrium structure of Nisub in the case
of a (5,5) SWCNT. The Ni atom appears displaced ∼0.9 Å from the carbon plane. Although
both outward and inward displacements can be stabilized, the outward configuration is always
more stable. The calculated Ni-C distances (dNi−C) are in the range 1.77-1.85 Å in agreement
with experiment [80, 81]. Armchair tubes exhibit two slightly shorter and one larger values
of dNi−C , the opposite happens for (n, 0) tubes, whereas for graphene we obtain a threefold
symmetric structure with dNi−C=1.78 Å. Ni adsorption inhibits the reconstruction [121] of the
carbon vacancy. Furthermore, we have checked that a symmetric structure is obtained even
when starting from a relaxed vacancy.

Figure 5.4 (b) shows the magnetization density for a Nisub defect in a (5,5) metallic nan-
otube at large dilution (0.3 % Ni concentration). The total magnetic moment of this system
is 0.5 µB. The magnetization comprises the Ni atom and its C neighbors. However, it also
extents considerably along the tube, particularly in the direction perpendicular to the tube axis.
This indicates the polarization of some of the delocalized electronic states in the nanotube. In-
deed, as we clarify below, the magnetism in substitutionally Ni-doped SWCNTs only appears
associated with the curvature and the metallicity of the host structure.

5.2.2 Electronic structure of Nisub impurities in graphene and nanotubes

Figure 5.5 (a) shows a scheme of the electronic structure of Nisub in graphene, while Fig. 5.5 (b)
presents the calculated band structure using a 4×4 supercell. Very similar results were already
presented in Chapter 3 for larger supercells. Here, we will use this electronic structure as a ba-
sis to understand the main modifications that appear when curvature is present in the structure
around the defect. Several levels with Ni-C bonding character and a strong Ni 3d contribution
can be found between 2 and 6 eV below the Fermi energy (EF ). This considerable band width
is a signature of the strong Ni-C interaction. As a consequence of the bonding interaction the
Ni 3d band is stabilized and can be pictured as fully occupied. Close to EF we find three levels
with Ni-C antibonding character. One of them is occupied and appears around 0.7 eV below
EF close to Γ. This level comes from a fully symmetric linear combination of the 2pz orbitals
(z-axis normal to the layer) of the nearest C neighbors interacting with the 3dz2 orbital of Ni.
Two levels coming from the hybridization of the in-plane sp lobes of the carbon neighbors
with the Ni 3dxz and 3dyz orbitals appear ∼0.5 eV above EF .

1The reason to choose Ni atoms among all other metals is that it was the first metal experimentally detected
by TEM, STM and EXAFS experiments as a substitutional impurity in graphenic nanostructures.
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Figure 5.6: Band structure of a (5,5) nanotube containing a Ni impurity every 4 unit cells (Nisub-Nisub distance
of ∼9.8 Å) for (a) a paramagnetic calculation, and for (b) majority and (c) minority spins. Circles and triangles
correspond respectively to the amount of Ni 3dyz and 3dxz character. X-axis is parallel to the tube axis and
y-axis is tangential.

The basic picture described above is still valid for the electronic structure of the Nisub

impurity in SWCNTs. However, the modifications that appear due to the curvature of the
carbon layer are responsible for the appearance of a magnetic moment. Figure 5.6 (a) shows
the band structure of a paramagnetic calculation of a (5,5) SWCNT with a Nisub impurity
every four unit cells. Here the distance between neighboring Nisub impurities is similar to that
of the graphene layer in Fig. 5.5 (b), although the Ni concentration is 2.5 times lower (1.3 %).
Comparing these two Figures we can appreciate the effects of curvature. The degeneracy
between dxz and dyz states is removed (x-axis taken along the tube axis and y-axis along the
tangential direction at the Ni site). The dyz contribution is stabilized by several tenths of eV
and a quite flat band with strong dyz character is found pinned at EF close to the Brillouin-
zone boundary. Under these conditions the spin-compensated solution becomes unstable and a
magnetic moment of 0.48 µB is developed. Figures 5.6 (b) and (c) show, respectively, the band
structure for majority and minority spins. The exchange splitting of the dyz level is ∼0.4 eV
and the energy gain with respect to the paramagnetic solution is 32 meV.

In general, whenever a flat impurity with appreciable Ni 3d character becomes partially
filled we can expect the appearance of a magnetic moment. The population of such an impurity
level occurs at the expense of the simultaneous depopulation of some of the delocalized carbon
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Figure 5.7: Effect of curvature (anisotropic strain) on Nisub in (n,n) tubes. The electronic structure of Nisub is
similar to that of the unreconstructed carbon vacancy. One of the impurity levels with antibonding C 2sp-Ni 3d
character is shifted downwards and, for large enough curvatures, becomes partially populated and spin-polarized.

2pz levels of the host structure. For this reason the development of a magnetic moment is more
likely for Nisub impurities in metallic structures like the armchair tubes. The crucial role of
the host states also explains the delocalized character of the magnetization density depicted
in Fig. 5.4 (b). However, it is important to stress that the driving force for the formation of
a magnetic moment associated with the Nisub impurity in a SWCNT is the local curvature
of the carbon layer that shifts the energy position of one of the impurity levels downwards
until it crosses EF . A schematic representation of this phenomenon can be found in Fig. 5.7
where we also emphasize the similarities between the levels of the Nisub defect and those of
the unreconstructed carbon vacancy. At large tube diameters we must recover the limit of flat
graphene with zero magnetic moment.

For semiconducting tubes the situation is somewhat different. The dxz and dyz derived lev-
els will remain unoccupied unless their energies are shifted by a larger amount that pushes one
of them below the top of the valence band. Therefore, if the tube has a large enough gap the
magnetic moment will be zero irrespective of the tube diameter. We have explicitly checked
that a zero magnetic moment is obtained for (8,0) and (10,0) semiconducting tubes for Ni con-
centrations ranging from 1.5% to 0.5%. The different magnetic behavior of Nisub impurities
depending on the metallic and semiconducting character of the host structure provides a route
to experimentally identify metallic armchair tubes.

5.2.3 Oscillations of the spin moment
Figure 5.8 displays the magnetic moment per Nisub atom for Ni-doped armchair tubes of dif-
ferent diameters. All of them present a magnetic moment that oscillates as a function of the
tube diameter and the size of the supercell used in the calculation, i.e., the Nisub-Nisub dis-
tance. For (4,4), (5,5) and (6,6) tubes the first supercell showing a non-zero magnetic moment
contains four unit cells. For (7,7) and (8,8) tubes this minimum length increases up to eight
and six unit cells, respectively. The appearance of a complex oscillatory pattern as a function
of the Nisub-Nisub distance is easily understood if we recall that the magnetic moment criti-



5.2. Ni doped graphene and carbon nanotubes 115

5 10 15 20 25 30 35 40
Ni separation (    )

0.0

0.2

0.4

0.6

0.8

M
ag

ne
tic

 M
om

en
t (

µ Β
)

(4,4)
(5,5)
(6,6)
(7,7)
(8,8)

A
o

3 6 9 12 15

Figure 5.8: Magnetic moment per Ni impurity for different (n,n) tubes as a function of the distance between
periodic images of the impurity, i.e., the length of the supercell. The vertical lines and the numbers at the top
indicate the number of unit cells in a supercell of a given length.

cally depends on the energy position of a particular impurity level nearby EF and the strong
hybridization of this level with the delocalized states of the nanotube. Another consequence of
this hybridization is the long range of the interaction between Nisub impurities: for example,
the magnetic moment in (5,5) and (4,4) tubes still presents strong oscillations in a range of
Nisub-Nisub distances between 20 and 40 Å. Unfortunately, a meaningful exploration of larger
distances between impurities requires a methodology different from the ab initio supercell
approach used here.

Finally, we have examined the magnetic coupling between Nisub impurities in the (5,5)
tube. We have doubled some of the simulation cells considered above, so they contain two
Ni atoms, and calculated ferromagnetic (FM) and antiferromagnetic (AFM) arrangements.
Only when the two Nisub impurities shared a common C neighbour the AFM arrangement was
favoured by a few meV. FM configurations were the most stable in all other cases. Although
more work is necessary to accurately determine the size and distance dependence of the ef-
fective exchange interaction (probably using model calculations similar to those in Ref. [85]),
our results indicate that Nisub impurities in small diameter metallic nanotubes, where they de-
velop a magnetic moment, can exhibit relatively large FM couplings that slowly decay with
distance. For example, for Nisub impurities at distances of 10 Å in a (5,5) tube we estimate a
Jeff of ∼9 meV. This FM interactions can have important implications for the experimental
detection of the curvature dependent magnetism of the Nisub impurities described in this work
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and its influence in the observation of magnetism in carbon nanotube samples.

5.3 Uniaxial strain in Ni doped graphene

In this section we study the effect of uniaxial strain on the electronic structure of Nisub defects
in graphene. We find that the magnetic moment of Ni-doped graphene can be controlled by
applying a tensile strain along the zigzag and armchair direction. The spin moment of the
system and its stability is greatly enhanced. At zero strain, Nisub defects are non-magnetic
[113], but develop a spin moment that increases nearly linearly as a function of the uniaxial
strain. The changes are more dramatic when graphene reaches a critical strain (∼7.0%) around
which an abrupt increase of the spin moment is observed. This magnetoelastic effect can be
utilized to design a strain-tunable spin device based on defective graphene. We also propose an
experimental set up based on a scanning tunneling microscopy with a magnetic tip and using a
flexible substrate on top of which graphene is deposited, allowing for the direct measurement
of the observed magnetic switch effect.

5.3.1 Effect of uniaxial strain on the spin moment

Figures 5.9 (a)-(b) show the spin moment of a Nisub defect as a function of applied strain along
the (n, n) and (n, 0) directions, respectively. The curves with filled squares show simulations
using geometries from a non-spin polarized calculation with a DZ basis set. The spin moment
and electronic structure are always calculated using a DZP basis. The open squares indicate
systems that were calculated using the previous procedure, i.e. a DZ basis, but the geome-
tries have been obtained from spin-polarized calculations. The triangles display calculations
with DZP basis set for both geometry and spin moment. At zero strain the Nisub defect is
non-magnetic as was previously analyzed in previous sections (Section 5.2). As the uniaxial
tension is applied, the system starts to deform. We see that at ∼3.5% strain the system becomes
magnetic with a magnetic moment that evolves nearly linearly with the uniaxial strain up to
values of ∼ 0.30−0.40 µB at ∼6.0%. In spite of using different basis set (see caption in Figure
5.9), all calculations present a very similar behaviour. At ∼6.8% the spin moment increases
sharply from ∼0.40 µB to ∼1.9 µB. The transition is similar for both directions, although it is
somewhat more abrupt along the (n, n) direction (Figure 5.9(a)) where no intermediate steps
are observed. This suggest that the local defect geometry and the defect orientation relative
to the applied strain play an important role to have magnetic properties. The insets I and II
in Figure 5.9(a)-(b) present the local defect geometry. When the strain is applied, the triangle
formed by the three C neighboring atoms to the Ni impurity deforms. C-C distances along
the strain direction increase, whereas distances along the perpendicular direction decrease in
response to such elongation. The distance of the Ni atom to the first carbon neighbours also
increases, but this bond lenght changes for the studied strains are less than ∼5.0% (average on
both strain directions) in comparison with ∼20.0% for the C-C distances. We can conclude
that there is a strong interaction between the carbon neighbours and the central Ni impurity,
which is also reflected in the high stability of the defect. The formation energy for the Nisub

defect was observed to be highly favourable, with 7.9 eV binding energy to the vacancy.
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Figure 5.9: Spin moment as a function of applied strain(ϵ) along the (a) (n, n) and (b) (n, 0) directions with a
schematic illustration of the structure at the right side. In panels (a) and (b), filled squares indicate results obtained
using geometries from a non-spin polarized calculation using a DZ basis. The spin moment and electronic
structure is calculated using a DZP basis using such geometry. Open squares indicate a similar calculation, but
the geometries have been obtained from a spin-polarized calculation. The triangles represent full calculations
(geometry and spin moment) with DZP basis set. The insets I and II in panels (a) and (b) show the results for
the structural parameters (bond length between carbons C1 and C2: d12,22; and bond lenght between Ni and C
atoms: dNi−C1,Ni−C2) as a function of applied strain calculated with DZ basis set.
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Figure 5.10: (a) Spin-unpolarized DOS of the Nisub defect under 0.0%, 2.25%, 5.30% and 7.26% strains along
the (n, n) direction. Symbols A and E indicate the character and symmetries of the defect states, with large
weight of Ni hybridized with C states. A corresponds to Ni 3dz2−C 2pz and E represents Ni 3dxz, 3dyz−C
2sp. (b) Spin polarized DOS showing the spin splitting observed at strains of 5.3% and 7.2%. The open squares
(green curve) represents the spin up channel and filled squares (red curve) the spin down. For clarity, the curves
in panels (a) and (b) have been shifted. The Fermi energy is marked by the dashed (gray) line and is set to zero.
(c) Spatial representation of the A-, and lowest E-state at a strain of 5.3% with an isovalue of ±0.002 e−/Bohr3.

5.3.2 Electronic structure of Nisub defects under strain

In order to understand the origin of the tunable magnetic moment in Nisub defects, the density
of states (DOS) of the spin-unpolarized calculations under strains of 0.0%, 2.2%, 5.3% and
7.2% are shown in Figure 5.10(a). The strain is along the (n, n) direction although the qualita-
tive behaviour is similar if we consider other directions. We can see several defect levels with
Ni and C mixed character around the Fermi energy (EF ). We will only consider explicitly the
3d states of the metal atom since our calculations show that the main contribution from the 4s
orbitals appears well above EF (see Chapter 3 and previous section). Due to the symmetric
position of the metal atom over the vacancy, the system has a C3v symmetry at zero strain and
the electronic levels can be classified according to A or E irreducible representations of this
point group. Essentially three defect states and their evolution as a function of the applied
strain determine all the observed physics.

One of them with A character is occupied and appears around ∼0.50 eV below EF at zero
strain. This level comes from a fully symmetric linear combination of the 2pz orbitals (z-axis
normal to the layer) of the nearest C neighbors interacting with the 3dz2 orbital of Ni. The
other twofold-degenerate levels with E character, coming from the hybridization of the in-
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plane sp lobes of the carbon neighbors with the Ni 3dxz and 3dyz orbitals, appear at 0.50 eV
above EF at zero strain. As a consequence of this electronic structure, with the Ni 3d states
far from EF and no flat bands crossing EF , the magnetic moment of the Nisub impurity in
graphene is zero. Interestingly, these three levels appearing close to EF in Figure 5.10(a) are
reminiscent of those found for the unreconstructed carbon vacancy in graphene (see Chapter
3).

As we will see below the energy position of these three levels shifts as a function of the
applied strain. When the strain is applied, the degeneracy between 3dxz − 2sp and 3dyz − 2sp
states is removed and a gradual shift towards EF of one of them is observed. This level
becomes partially populated and the system starts to develop a magnetic moment. The Ni
3dz2−C 2pz state also change its positions approaching EF . As a result, around a 7% strain
both the 3dz2 − 2pz and the 3dxz,yz − 2sp levels become fully polarized and the system de-
velopes a moment close to 2.00 µB. The spatial distribution of A and E states can be seen in
Figure 5.10(c).

Figure 5.10(b) shows the resulting spin up and spin down DOS at 5.3% and 7.2% strain.
The exchange splitting of the 3dxz and 3dyz levels is, respectively, ∼0.29 eV and ∼0.13 eV at
5.3% and increases with the magnitude of the tensile strain and the simultaneous increment of
the spin moment. Likewise the energy gain with the respect to the non-magnetic solutions en-
hances from 13.9 meV at 5.3% to 184.1 meV at 7.26%. This means that a moderate variation
of the applied strain on the graphene layer induces a great change of the magnetic moment
and the stability of the defect-induced magnetism. An important consequence of these results
is that, if the applied strain on the graphene layer can be controlled, as shown in recent experi-
ments [143,144], it would be possible to turn on and off the Ni-doped graphene to a magnetic
state, likewise switches used in magnetoelastic devices, however with no applied magnetic
field. It suggests a sensitive and effective way to control the magnetic properties of graphene
which is interesting for its possible applications in nanoscale devices.

5.3.3 Magnetization density and an experiment proposal
Figure 5.11(a)-(b) displays the spin magnetization patterns induced by the presence of a Nisub

defect under two different magnitudes of uniaxial strain applied along the (n, n) direction.
The spin polarization is induced in the neighboring carbon atoms with shape and contribution
depending sensitively on the strain intensity. At 5.30% the spin density is mainly localized
at the Ni impurity and at the C atom that makes the bond directly oriented along the strain
direction. The anti-bonding character of the E defect state that originates the magnetization is
also notorious (see the node along the bond direction). The 2sp-like shape of the spin density
at this C atom should be contrasted with that at 7.26% strain, in which apart of the 2sp-like
shape, a 2pz component is clearly observed. Other neighboring-carbons also contribute to the
spin density, however this additional contribution has a dominate 2pz character. The origin of
the modification of the spin polarization patterns as a function of strain corresponds to a larger
contribution of the Ni 3dz2−C 2pz-defect state at EF for a strain above ∼7%, as was explained
in the previous section using the DOS.

Figure 5.12 shows the proposed experimental setup that could be used to test our pre-
dictions. This is similar to a mechanically controlled break junction setup with an elastic
substrate [143, 144]. Graphene is deposited on the center of such substrate in order to ob-
tain a uniform strain. Bending or stretching the substrate causes an expansion of the surface
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Figure 5.11: (a)-(b) Spin densities for Nisub defects at strains of 5.30% and 7.26% along the (n, n) direction. The
strain direction is marked by the red arrows in both panels. The isovalue cutoff at (a) and (b) panels is ±0.035
and ±0.060 e−/Bohr3.

and the deposited graphene will follow this deformation. In principle, the modifications on
the electronic structure can be detected using a scanning tunneling microscope (STM) since
the defect levels that are involved are localized around the Fermi energy. If the magnetic
anisotropy of the defect is high enough, at sufficiently low temperatures, a preferential ori-
entation of the moment would be stabilized and, therefore, a STM with a spin polarized tip
(Spin-STM) could allow to monitor the evolution of the magnetic properties of the Ni-doped
graphene with strain. Instead, an external magnetic field may be used to align the magnetic
moment of the defects and define the hard/easy axis of the system. It is noteworth that the
break junction-like setup has already been successfully used [145], and the STM capabilities
for the single-atom manipulation make the fabrication of the tip ending with magnetic atoms
feasible.

5.4 Conclusions
In the present chapter, we have analyzed in detail the effect of different mechanical deforma-
tions (isotropic strain, curvature and uniaxial strain) on the structural and magnetic properties
of two types of defects, carbon monovacancies and Ni substitutional impurities in graphenic
structures. We have seen that mechanical deformations have a strong influence on the mag-
netic properties of these defects. In some cases, like a Nisub impurity in graphene under
uniaxial strain, this can be used to turn on and off the spin moment and can be of use in future
spintronic devices.

We have presented a first-principles density functional theory study of the carbon mono-
vacancy in graphene under an applied strain. The stress was observed to play an important
role in determining the electronic, geometrical and magnetic properties of this system. We
have shown that the magnetic and structural properties of the carbon monovacancy exhibit
a strong dependence on the local curvature of the graphene layer at the defect position. This
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Figure 5.12: Experimental setup proposed to measure the effect of strain on the magnetic properties of Ni-doped
graphene. The layer is deposited on a stretchable substrate which keeps a large lenght-to-width ratio in order to
obtain a uniform tensile strain on the graphene film. A STM device is also coupled to the system and it has a spin
polarized tip which is sensitive to the presence and orientation of a magnetic moment at the defect site. When
the strain field is switch on, the modifications on the magnetic structure of Ni-doped graphene could be observed
by means of the spin-polarized tunneling that will appear between tip and sample.
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curvature, along with the global rippling pattern, can be controlled by straining the layer. With
a compression of the layer up to 2% we can tune the spin moment of the vacancy between 0
and 1.5 µB. This range of deformations can be accessible experimentally, and are comparable
to those found for a graphene layer deposited on several substrates. From a more general per-
spective, our results suggest that the magnetism induced in graphene by the presence of point
defects can be controlled using isotropic strain and other mechanical deformation.

An important consequence of these results is that, due to the two dimensional character
of graphene and thus prompt to undergo bending and other deformations, it is difficult to talk
about the intrinsic electronic and magnetic properties of point defects like the monovacancy.
To have a complete characterisation of the defect is necessary either to specify the local curva-
ture of the layer at the defect position or to consider explicitly the stresses applied to the layer.
This is in clear contrast to the case of three dimensional crystals, where elastic deformations
are typically much smaller.

Regarding our study of Nisub defects in graphene and SWCNT’s, the main conclusions for
this study are:

(i) the magnetic moment of substitutionally Ni-doped graphene can be controlled by ap-
plying mechanical deformations that break the hexagonal symmetry of the layer, like curva-
ture does. As we have already seen in Chapter 3, Nisub impurities are non-magnetic in flat
graphene. However, their magnetic moment can be switched on by applying curvature to the
structure. For metallic carbon nanotubes the curvature of the carbon layer around the de-
fect can drive the transition of the Nisub impurities to a magnetic state. For semiconducting
tubes, the Nisub impurities remain non-magnetic irrespective of the tube diameter. Therefore,
the magnetic or non-magnetic character of Nisub impurities in metallic carbon nanostructures
can be controlled by the local curvature. This surprising result can be fully understood and
rationalised from the electronic structure of the Nisub defect;

(ii) We have analyzed in detail the origin and distribution of the magnetic moment. We
found that the formation of the magnetic moment associated with Nisub impurities is accompa-
nied by the polarization of the delocalized electronic states of carbon layer. Furthermore, the
magnetic moment of Nisub also becomes a signature of the metallicity of the structure: only
metallic tubes develop a moment that depends on the tube diameter and Ni concentration;

(iii) The magnetic moment for armchair nanotubes as a function of the concentration of
Nisub impurities shows a complex oscillatory behavior, which points to very long-range inter-
actions between Nisub defects. We have also analyzed the magnetic couplings between Nisub

impurities in a (5,5) tube and found that they are predominantly ferromagnetic for the set of
structures studied;

(iv) We found that Ni atoms have a very large affinity for carbon vacancies. Therefore,
deposited Ni atoms on a graphene layer or carbon nanotube will present a strong tendency
to attach to existent carbon vacancies. This opens a route to fabricate structures where the
phenomenology presented in this work can be experimentally explored in a controlled way.

(v) The electronic and magnetic structure of the Nisub defect strongly depends on uniaxial
strain. We observe that stretching the layer by a few percents along different crystalline direc-
tions is enough to turn the non-magnetic ground state of Ni atoms embedded in graphene to a
magnetic state.

(vi) The magnetic moment increases its magnitude and energetic stability with the applied
strain. At a critical strain value of 6.8%, a transition is observed in the magnitude of spin
moment which is weakly dependent on the orientation of the applied strain. A detailed analysis
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indicates that this strain-tunable magnetic moment is the result of changes in the position of
three defect levels around Fermi energy which are antibonding combinations of the Ni 3d
states and the 2pz and 2sp orbitals of the neighboring C atoms.

(vii) The tunable magnetism observed in Nisub defects and its stability via strain control
may play an interesting role in flexible spintronics devices. We also propose an experimental
setup to measure this dependence based on a flexible substrate where graphene is deposited
on top and a spin polarized STM device is used.

Our work predicts a complex magnetic behavior for Nisub impurities in carbon nanotubes
and graphene. This investigation is highly relevant for the interpretation of experimental re-
sults since it has been proposed that appreciable amounts of metal atoms can be incorporated
into the carbon network, forming this type of substitutional defects, during synthesis and are
very difficult to eliminate afterwards. Furthermore, our results point to the existence of a large
coupling between the magnetic and elastic response in Ni-doped carbon nanostructures. This
can be of fundamental and technological interest and might be verified experimentally.
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Chapter 6

Summary and outlook

Graphenic nanostructures represent an important research subject in the fields of nanoscience
and nanotechnology. These materials possess extraordinary properties which are supposed to
revolutionise the performance of electronic components in the next generation of electronic
devices. Several applications within electronics, materials science, condensed matter physics,
etc, have been predicted or are already available [146]. The study of graphene has changed
in recent years from a theoretical topic to a field where experimental and theoretical advances
go hand in hand. In particular, the theoretical studies shown in this thesis are either linked or
directly motivated by new experiments.

This thesis focuses on the modeling electronic and magnetic properties of defects in car-
bon nanostructures. The SIESTA method, based on density functional theory (DFT), was used
as the main tool to compute all chemical and physical properties of the studied systems. Other
ab initio method was also used in the simulations, the VASP code, which using a different
methodology based on plane waves and projector-augmented wave potentials (PAW), allows
us to check the possible limitations of the pseudopotentials and localized basis set used in
SIESTA. Remarkably, the agreement between both set of calculations is excellent. Other
programs were also utilized to analyze and treat the huge amount of data obtained in the sim-
ulations. From simple programs in AWK, PYTHON, FORTRAN, up to sophisticated graphical
packages used to create some figures displayed in this thesis.

Our results have shown in Chapter 3, how the electronic (and mainly magnetic) proper-
ties of a graphene monolayer can be modified by doping with substitutional transition metals
(Msub). Some results of this chapter are the following:

• We have developed a model based on the hybridization between the states of the metal
atom, particularly the d shell, and the defect levels associated with an unreconstructed
D3h carbon vacancy. This allowed us to have a simple way to understand the trends
observed for the bonding, energetics, and electronic and magnetic properties of several
metal impurities in graphene.

• Using the previous model, we identified three different regimes associated with the oc-
cupation of different carbon-metal hybridized electronic levels and we use them to clas-
sify the substitutional dopants in graphene: bonding states (Sc, Ti), non-bonding states
(V, Cr, Mn) and antibonding states (Fe, Co, Ni, Cu, Ag, Au, Zn).

• Consequently, Sc and Ti do not show a spin moment. On the contrary, V, Cr and Mn
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display spin moments of increasing size with a strong 3d component. Co, Ni, the noble
metals and Zn present an oscillatory behaviour of the spin moment between 0 and 1
µB. The spin moment for these later impurities has a strong contribution from the C
neighbours in the layer.

• The Fe defect occupies a special position between the non-bonding and antibonding
regimes. Their magnetic behavior stems from the competition between the carbon-
metal hybridization and the electron-electron interaction within the 3d shell. Although
Fe impurities are non-magnetic at the GGA level, GGA+U calculations with moderate
values of U (above ∼2 eV) produce a spin-moment of 1 µB.

• Substitutional Zn atoms also display a peculiar behaviour because Jahn-Teller-like dis-
tortions end in a zero spin moment. A symmetric configuration with a spin moment of
2µB and a very small energy penalty of ∼150 meV has also been identified.

Many of the interesting results shown in this chapter are still waiting for experimental veri-
fication. Some of these observations are consistent with the experimental data in the literature.
For example, our energetic and structural analysis agree with recent experiments [63, 78, 80].
The analysis shown here might be important to understand the doping by transition metals in
other carbon nanostructures.

In Chapter 4 we have studied the electronic structure and magnetic properties, including
exchange couplings, of several defects in graphene. These can be approximately mapped
onto a monovacancy in graphene calculated by a π-tight-binding model. Such systems are
Co substitutional impurities (Cosub), several adsorbates chemisorbed on graphene through a
single covalent C-C bond.

The main results of this chapter can be summarised in the following:

• At either Cosub orC−X defects, the observed magnetic behaviour follows that observed
for a single π-vacancy in a simple tight-binding model of graphene. The electronic
structure of both defects nearby the Fermi energy is dominated by a single level with a
strong contribution from the pz orbitals of the neighboring C atoms.

• The Cosub or C − X isolated defects show a spin moment of 1.0 µB. When several
defects are present, the spin moment follows closely Lieb’s theorem for bipartite lattices
and depends on the number of defects in each sublattice.

• The magnetic couplings are predominantly (anti)ferromagnetic for Cosub defects sited
in the (opposite) same sublattice. However, some differences for C − X defects were
observed and adsorbates at different sublattices always converge to non-magnetic solu-
tions.

• A RKKY-like model was used to fit the magnetic interactions obtained from DFT calcu-
lations for both Cosub and C −X defects. This model pointed out that the dependence
of the exchange constants on the distance between defects differ for Co atoms and ad-
sorbed molecules. The interaction between chemisorbed molecules on top of a C atom
in graphene surface is long range and falls off slowly with the distance, roughly pro-
portional to JAA(rij) ∼ |rij|−(1+ϵ) with |ϵ| ∼ 0.20, where JAA(rij) are the exchange
constant for defects at the same graphenic sublattice. For Cosub defect the magnetic
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interactions decay faster and have a distance dependence given by JAA(rij) ∼ |rij|−2.43.
This means that although the spin moment for both defects has a similar origin, the 3d
component of the Co dopants and slightly more localized character modifies the inter-
actions.

• For Cosub impurities it is possible to stabilize antiferromagnetic solutions for A-B con-
figurations. Exchange couplings for such configurations show a complex behaviour with
a strong anisotropy, dependent on the relative positions of the dopants, along certain
crystalline directions.

In Chapter 5 we have studied the effect of strain on the electronic and magnetic properties
of substitutional Ni impurities (Nisub) and vacancies in graphenic nanostructures. One of the
main results of this part is that mechanical deformations (similar to those induced by substrates
when graphene is deposited on top of them or the curvature present in carbon nanotubes)
can be used to control the magnetism of defects in graphene. The proposed models take
into account the interplay of corrugations, defect formation and magnetism. They open new
opportunities for engineering carbon material properties using strain and defects. We believe
that strain will play a key role in flexible electronics, in which graphene is one of the main
candidates.

In more detail, we found that:

• Biaxial strain applied to monovacancies in graphene was observed to play an important
role in determining the electronic, geometrical and magnetic properties of this system.
We have shown that the magnetic and structural properties of the carbon monovacancy
exhibit a strong dependence on the local curvature of the graphene layer at the defect
position. This local curvature is strongly coupled to the global structure rippling of the
layer.

• Phase diagrams of the spin solutions and geometric configurations as a function of strain
are presented for a monovacancy in graphene.

• Stretching increases the moment of different spin solutions and compression reduces
or even kills the magnetic polarization. The transition to a non-magnetic solution is
linked to changes in the local structure of the defect which are driven by modifications
in the global structure of graphene that are associated with the formation of long range
ripples. For compressions slightly greater than 3%, this rippling leads to the formation
of a heavily reconstructed vacancy structure at a saddle point position consisting of two
twisted hexagons and pentagons.

• For metallic carbon nanotubes the curvature of the carbon layer around the defect can
drive the transition of the Nisub defect to a magnetic state (Nisub defects are non-magnetic
in flat graphene). For semiconducting tubes, however, the Nisub impurities remain non-
magnetic irrespective of the tube diameter.

• Therefore, the magnetic or non-magnetic character of Nisub impurities in metallic carbon
nanostructures can be controlled by the local curvature. This surprising result can be
fully understood and rationalised from the electronic structure of the Nisub defect.
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• The different magnetic behavior of Nisub dopants depending on the metallic and semi-
conducting character of the host structure might provide a route to experimentally iden-
tify metallic armchair tubes.

• The magnetic moment for armchair nanotubes as a function of the concentration of Ni
atoms shows a complex oscillatory behavior, which points to very long-range interac-
tions between Nisub defects. We have analyzed the magnetic couplings between Ni
impurities in a (5,5) tube and found that they are predominantly ferromagnetic for the
studied structures.

• The effect of uniaxial strain on Nisub shows that the magnetic moment can be controlled
by applying a tensile strain.

• At zero strain, Nisub defects are non-magnetic but develop a spin moment that increases
nearly linear as a function of uniaxial strain. The changes are more dramatic when a
critical strain value (∼6-7%) is reached, around which an abrupt transition of the spin
moment is observed.

• This magnetoelastic-like effect can be utilized to design a strain-tunable spin devices
based on Ni-doped graphene.

6.1 Outlook
While the major part of this thesis has focused on the analysis of defects and their interaction
with the host material, which we believe is relevant for many theoreticians and experimen-
talists, part of the physical results and interpretations have not been experimentally validated
to date. We believe, however, that this will happen sooner rather than later due to the rapid
advances in the field.

In fact, day-by-day better experimental control of precise and reproducible doping, sur-
face and defect engineering, and growth process will enable a closer comparison between
experiments and our theoretical models. The recent developments of graphene, pushed ahead
by observed, expected, and hoped new physics, is the great driving force for research in this
branch of carbon nanoscience. For example, in the last few months before the end of this
manuscript we have found experimental evidences of one of our predictions: The direct mea-
surement of spin signal, at room temperature, in partially hydrogenated graphene samples
using a superconducting quantum interference devices (SQUID) [147]. The realization of
such ferromagnetic order in purely sp−based materials will be of importance in many areas
related to spintronics, even more if the other adsorbates, as pointed out in this thesis, present
a similar behaviour.

The immediate continuation of the work presented in this thesis should include the elec-
tron and phonon transport properties under the presence of substitutional metals defects in
graphene as well as in carbon nanotubes. In particular, a collaboration with Prof. Mads
Brandbyge at Danish Technical University (DTU), in Lyngby, Denmark, has been stablished
in order to calculate the scattering properties of such metal impurities in graphenic structures
and the results will be published elsewhere [148].
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Another field of research in which the interplay of strain, the presence of defects and mag-
netism will play a role is in spin transport. Due to the low spin-orbit coupling in C, long
spin-coherence times are expected, which might be of importance for spin polarized currents
generated by carbon defects or adsorbates in graphenic nanostructures. If strain could be used
to polarize an electric current when it interacts with a localized spin moment in the carbon
host, it would avoid using expensive ferromagnetic/antiferromagnetic leads in order to obtain
polarized currents and could provide a simple way to obtain spin-transport control.

At the same time, the effect of an external gate voltage on substitutional defects would be
particularly relevant. For practical purposes, the use of electric fields would be desirable as
their high-frequency generation is more readily achieved than for magnetic fields. Therefore,
the ability to electrically control spin dynamics in defects makes it one of the most promising
platforms for solid-state spin devices based on carbon [148].
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