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Abstract

In this paper we empirically investigate which are the structural characteristics
that can help to predict the complexity of NK-landscape instances for estimation
of distribution algorithms. To this end, we evolve instances that maximize the esti-
mation of distribution algorithm complexity in terms of its success rate. Similarly,
instances that minimize the algorithm complexity are evolved. We then identify
network measures, computed from the structures of the NK-landscape instances,
that have a statistically significant difference between the set of easy and hard in-
stances. The features identified are consistently significant for different values of
N and K.
keywords: EBNA, EDAs, NK-landscapes, network measures, problem difficulty

1 Introduction

One of the questions that have traditionally occupied researchers in the evolutionary
computation (EC) community is how to characterize, and predict if possible, the difficulty
that a given instance poses for an evolutionary algorithm (EA) [3, 4, 11, 21, 26]. Different
fitness measures have been proposed [12, 22, 13] that quantify a variety of elements related
to the behavior of the EAs.

Frequently underestimated, the question of how to generate a set of representative
instances with controlled complexity is also relevant for the study of EA behavior [7].
Usually, a set of instances is randomly generated according to a number of parameters
that influence their complexity, and then EAs are tested on them. Although instances
generated according to a given parametrization are expected to share a number of char-
acteristics, there is usually a wide variability among them and the behavior of the EA
can be also considerably variable for instances of the same class. This is so because
parametrizations may be not sufficiently fine to capture the characteristics that make the
problem easy or hard.

One way to characterize instances of a given problem for which a putative structure of
the interactions between its variables is known is by computing a detailed description of
its underlying topology. This can be done by computing network measures that capture
different salient features of the way variables interact. The structural description of a
problem is not sufficient to characterize its complexity. Problems of different difficulty



may share a common structure. However, in some situations an analysis of the structural
description can be used as a first stage to predict the problem difficulty.

In this paper we propose an approach for the empirical analysis of problem difficulty
in instances of the NK-landscape [14] problem that comprises three main steps. Firstly, to
evolve the instance structures, keeping the parametrical part intact and with the aim to
maximize, or minimize, the instance complexity. Secondly, to extract from each evolved
instance a detailed characterization in terms of networks measures. Finally, use statistical
analysis to identify which instance features have a different distribution between the set
of easy and hard instances.

We apply this procedure to an original set of 9000 instances of the N K-landscape
model that were proposed and studied in previous works [25, 26, 27]. The statistical
analysis detected two network measures that were consistently and significantly different
between easy and hard instances across different values of N and K. This type of finding
would allow researchers a better characterization of N K-landscape instances and could
serve as the basis for the conception of the measures of instance problem difficulty.

The rest of the paper is organized as follows. In the next section, we review the NK-
landscape model and explain the main components of the approach to evolve complex
NK-landscape instances. Section 3 explains the network measures used for extracting
structural information from the evolved instances. Work related to our proposal is re-
viewed in Section 4. The experiments, the results of the statistical tests and the relevant
features identified are presented in Section 5. The conclusions of the paper are discussed
in Section 6.

2 Evolving complexity

2.1 NK fitness landscape model

The NK fitness landscape model is a parametrized model of a fitness landscape that allows
to explore the way in which the neighborhood structure and the strength of interactions
between neighboring variables determine the ruggedness of the landscape. For given
parameters, it consists of finding the global maximum of the function.

An NK fitness landscape [14] is defined by the following components:

e Number of variables, V.
e Number of neighbors per variable, K.
e A set of K neighbors I1(X;) for X;, i € {1,...,n}.

e A subfunction f; defining a real value for each combination of values of X; and
(X)), ie{l,...,n}.

The objective function fyx to maximize is defined as:
Frr() =Y filwi T(x,)). (1)
i=1

The complexity of the NK fitness landscape problem depends on all its components.
For K > 1 it is NP-complete. This problem is particularly suitable to investigate the



use of network measures since it has been extensively analyzed to study EAs and other
heuristic algorithms [1, 18, 25, 36, 37].

2.2 Measuring complexity

We will measure the instance complexity in terms of the success rate needed by an
estimation of distribution algorithm (EDA) [15, 17, 20] to solve it. The Estimation of
Bayesian networks algorithm (EBNA) [6] enhanced by a local optimization algorithm
described in [25] is used for this purpose. For a given NK-landscape instance we assume
that the optimum value is known and run EBNA 100 times to determine how many times
the optimum is found. This number of times is the fitness f(G) associated to instance
G.

Pseudocode for EBNA is shown in Algorithm 1. The selection method used by our
EBNA is truncation selection and the T' = 50% best percentage of the population (highest
objective values) is selected. Learning of the Bayesian network structure from the selected
set of solutions is done using the BIC metric. Learning of the parameters is done applying
maximum likelihood estimation. To sample the solutions from the network, probabilistic

logic sampling is used.
Algorithm 1: EBNA

1 Generate an initial population Dy of individuals and evaluate them

2 t<1

3 do {

4 D?¢, « Select N individuals from D;_; using a selection procedure

5 Using D?¢, as the data set, apply local search to find one BN structure that
optimizes the scoring metric

6 Calculate the parameters of the BN using Dy°, as the data set

7 D; <~ Sample M individuals from the BN and evaluate them

8 t o t+1

9 } until Stopping criterion is met

2.3 Instance generation

To find the optimal instances, we used a random hill climbing algorithm (RHC) that
starts from a random instance and randomly modifies its neighborhood structure. The
numerical values describing the function potentials are not modified. If the optimiza-
tion function is improved, then the new instance is accepted, otherwise another possible
modification of the neighborhood structure is proposed. The RHC pseudocode is shown
in Algorithm 2 for the case where the goal is minimizing the instance complexity (i.e.
maximizing the success rate of EBNA). The maximum number of evaluations allowed to
RHC was set to 50.
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Figure 1: Evolution of the RHC algorithm during the search of easy and hard instances.

Algorithm 2: Random Hill Climbing

7 Run EBNA 100 times on instance G and compute the success rate of the algorithm
f(G)

2 do {

Randomly select an arc (j, k) from instance G

Select a vertex [ such that (j,1) is not in G

G'=aG

Replace (4, k) by (7,1) in G

Run EBNA 100 times on instance G’ and compute the success rate of the

algorithm f(G")

8 If f(G") > f(G) then G =G’

9 } until Maximum number of evaluations is achieved
10 Return G.

KX DY v

EBNA is used in steps 1 and 7 of Algorithm 2 to evaluate the complexity of the
instances but not to evolve them. Figure 1 shows two typical RHC runs in the search of
easy and hard instances. Notice that both runs start from the same initial instance.

To generate our benchmark, we used an initial dataset of 9000 instances, 1000 for
every possible combination of n € {20,28,34} and K € {4,5,6}. All instances were
solved using a branch-and-bound algorithm as described in [25]. The branch-and-bound
algorithm! guarantees that the optimal solutions are found but since it is a complete
algorithm its complexity grows exponentially fast and solving large NK instances with
this algorithm rapidly becomes intractable [25]. Every time a new instance is generated
using RHC we need to run the branch-and-bound algorithm to compute the new optimum
of the NK fitness landscape function. This was necessary in order to identify the number

"'We use the implementation by the author of [25], available from http://medal.cs.umsl.edu/
software.php



of successful runs by EBNA. Starting from each of the 9,000 instances we generated two
additional instances, one easy and one hard instance. The final benchmark comprises
these additional 18,000 instances.

3 Network measures and characterization of instances

It is clear that some structural characteristics of the NK-landscape instances influence
the problem difficulty. For example, for a fixed N, K determines the network density
and has a direct influence on the problem complexity. Nevertheless, for fixed values of N
and K there is a wide variability in the complexity of the instances. In this context, it
makes sense to produce a more detailed structural characterization of the instances that
may help to identify features that are good complexity descriptors. This is the approach
we follow. First, we compute for each instance a large set of network measures that
serve as topological descriptors. Then, we apply a statistical test to each of the features
to identify those that have a significantly different distribution between easy and hard
instances.

3.1 Network measures

Network measures are computed from the original directed graph of NK-instances, where
the direction of the arc goes from the vertex to its neighbor. Some network measures
were also computed from the associated undirected graph where directions are dropped.
We extract measures from both representations to maximize the amount of extracted
structural information.

Table 1 describes the topological measures extracted from the NK-landscape struc-
tures. The second column in the table gives pnemotecnic name for the measure and the
third columns describes how many values where computed. Some network measures are
global and a single value is computed for the network, other measures are associated
to the vertices (e.g. indegree) or edges (e.g. distance between vertices). In some cases
we computed the average of some of the measures defined on the edges connected to
the same vertices. The computation of the number of structural and functional motifs
was implemented using the brain connectivity toolbox [33]. The meaning of some of the
measures shown in Table 1 is straightforward, a brief explanation of the other measures
follows.

The assortativity coefficient is a correlation coefficient for the degree of nodes that
are joined by an arc (linked nodes). The edge betweenness centrality is the fraction of all
shortest paths in the network that traverse a given edge [2]. The mean distance (defined
as the length of the shortest path between two vertices) between each node and the rest
of vertices. Disconnected vertices are assigned a very high, unattainable, distance value.
The characteristic path length of a graph is the average shortest path length between
every pair of reachable vertices in the graph.

Node eccentricity is the maximal shortest path length between a node and any other
node. Network radius is the minimum eccentricity and network diameter is the maximum
eccentricity.

The clustering coefficient is the ratio of actually existing connections between the node
neighbors and the maximal number of such possible connections. The range g;; of an arc



Id Property | Feature Number
1 degree N
2 indegrees N
3 outdegree N
4 density und. 1
5t density dir. 1
6 assortativity und. 1
7 assortativity dir. 1
8 betweenness N
9 mean reachability N

10 mean distance N

11 | characteristic path length 1

12 eccentricity N

13 radius 1

14 diameter 1

15 clustering coefficient N

16 shortcuts prob. N-(N-1)

17 range vertex N-(N-1)

18 mean edge range 1

19 fraction shortcuts 1

20 | mean motif number Z = 3 13

21 | vertex motif number Z = 3 13N

22 Newmann modularity 1

23 node part. coefficient N

Table 1: Topological measures extracted from the NK-landscape structures.

e;j [38] is the length of the shortest path from j to ¢ after arc e;; has been removed from
the graph. Shortcuts are arcs which significantly reduce the characteristic path length.
If gi; > 2, then the arc forms a shortcut from j to i. A module is generally associated
to a densely connected subset of nodes that is only sparsely linked to the remaining
network. Score functions are defined to measure the degree of network modularity. In
this paper we use the Newmann’s spectral algorithm [16] for community detection in
large networks. Node participation coefficient: The participation coefficient [8] defines
how well distributed the links of a node are between different modules. It is close to 1 if
the links are uniformly distributed among the modules and 0 if all the links fall within
one module. The same modules used to compute the maximum modularity value have
been employed to compute the node participation coefficient.

A structural motif of size Z [19, 34] is a connected graph with Z vertices. For each
Z there is a limited set of distinct structural motifs which are called motif classes.

A motif frequency spectrum records the number of occurrences of each motif of a
given class for a size Z. To compute the motif frequency, the network is inspected and
all occurrences of the given motif are counted. Motif number is the total number of all
motifs of all classes (for a given size Z) encountered in a network. The motif number is
obtained as the sum over the motif frequency spectrum. One can view motif analysis as
a kind of generalization of the clustering coefficient [29]. Figure 2 shows all structural
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Figure 2: All structural motifs for Z = 3.

motifs for a motif class of size Z = 3. For computational reasons, we constrained our
analysis to motifs of Z = 4.

4 Related work

Before presenting the experimental results we discuss some related work on the analysis
of the NK-landscape model and the use of network measures to investigate different issues
related to EAs’ behavior.

Recently [23, 35, 37|, network measures have been used to analyze an inherent net-
work describing the fitness landscape of the NK-model for small instances. The inherent
network is the graph where the vertices are all the local maxima and edges mean basin ad-
jacency between two maxima. Edges were weighted according to the probability to move
between basins of attractions. The networks were exhaustively extracted for a number
of representative instances and some network descriptors were computed. In [37], the
clustering coefficient, the disparity measure and the shortest path were considered. An
interesting finding presented in [37] is that the clustering coefficient decreases with the
degree of epistasis K while, for a fixed K, it tends to increase with increasing locality.
One important difference with the work presented in this paper is that we consider as
network the original structure of the problem. Therefore, in our approach each network
serves to characterize the instance and not its fitness landscape. Another relevant differ-
ence with the work presented in [23, 35, 37] is that we consider in the analysis a more
extensive set of network descriptors.

In a number of works [10, 28, 26, 27| different issues related to the behavior of EDAs
and GAs for NK-landscapes have been analyzed. In [26], random instances of the NK-
landscape are used to evaluate the behavior of the hierarchical BOA [24] enhanced by a



local optimization algorithm. As problem difficulty measures the fitness distance corre-
lation, the correlation coefficient, the distance of local and global optima, and the escape
rate are used. All these distances, that in some cases do not provide a clear indication
of what problem instances are difficult and what instances are easy [26, 27|, require the
computation of the fitness values, at least for a number of points, i.e. they are not
structural characteristics of the problem.

In [5, 4], authors investigate the impact that different network topological characteris-
tics have, both in the hardness of the problem and in the performance of different EDAs.
The selected functions are defined in network topologies such as grids, small-world net-
works and random graphs. The clustering coefficient and the characteristic path length
are used in order to quantify the topological properties of the function structure and
analyze their relation with the behavior of EDAs. Network measures are also used in
[32, 31] in the context of extracting structural information from probabilistic models
learned during the evolution. This type of information can be used to characterize the
complexity of the instances that are being optimized but its accuracy is influenced by
other factors like the population size, selection method, etc.

5 Experiments

The objective of the experiments is to determine whether the network measures extracted
from the evolved instances capture the differences between the sets of easy and hard
instances.

In order to identify the set of significant features, we applied, for each feature, a
statistical test to determine whether there exists significant difference between the easy
and hard instances for the given feature. The statistical test of choice was the Wilcoxon
rank sum test of equal medians and the parameter a = 0.05 was fixed for all the statistical
tests. The test outputs the p-value corresponding to the statistics and we use these values
to further characterize the differences between the features.

All experiments were computed in a cluster of over 240 cores and we use C++ imple-
mentations of the NK fitness model [25], EBNA [6], and of the brain connectivity toolbox
[30].

5.1 Numerical results for EBNA

Table 2 shows, for each of the network measures described in Table 1 whether it was
identified as significant for any combination of N and K. When groups of features
were considered, the table shows how many of the variables in the group were detected
as significant. It can be seen in Table 2 that out of all possible statistical tests only
statistical differences between the groups of easy and hard instances are found only 26
times for 8 network measures. There are two coincidences for the clustering coefficient
(row number 15) and the node participation coefficient (row number 23) respectively but
in every case, only one test of N (there is one coefficient for every node in the network)
found significant differences. Therefore 2 tests out of 9(20 + 28 + 34) = 738 tests might
be due to multiple testing.

A different scenario arises for the motif number (row number 20) for which two motif
classes were identified as relevant for all combinations of N and K. These row comprises
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Figure 3: P-values obtained from the application of the statistical test for the mean motif
number.

13 different features, one for each of the motifs shown in Figure 2. To compute this
feature, the motif frequency spectrum of every node is computed and then the mean
is computed. Of the 13 motifs, there were two motifs classes that were respectively
identified as significant 8 and 9 times. These two motifs, whose frequencies significantly
change between easy and hard instances, correspond to motifs a) and b) in Figure 2.

Figure 3 shows the p-values obtained from the application of the statistical test to
the 13 motif features for all combinations of K and N. The p-values for these two
motifs are so small that they can only be appreciated for N = 34, k = 5. Also p-values
corresponding to motifs d) and e) in Figure 2 are very small but they do not satisfy the
threshold to be considered significant. Interestingly, motif d) is the result of adding an
arc to motif a). Similarly, motif e) can be obtained by adding an arc to motif a) or motif
b).

In the next step we investigate the sign of the differences between the means for
all the motifs features. We focus on motifs a), b), ¢) and d). The mean frequencies
corresponding to the easy instances are subtracted from the means frequencies computed
for the hard instances. These results are shown in Figure 4. The results clearly indicate
that there is an increase in the frequencies of these motifs in the hard instances. We have
not been able to find a causal relationship between the increase in complexity for EBNA
and the unequal distribution of these motifs.

5.2 Numerical results for GA

In this section we present preliminary results for a similar analysis done for a simple
GA. We applied the same experimental protocol but instead of using EBNA to compute
the fitness of the instances in Algorithm 2, we used a simple GA as described in [25].
The GA uses binary tournament selection, two-point crossover, and bit-flip mutation.
New candidate solutions are incorporated into the original population using restricted
tournament replacement [9]. Here we present results for N = 20 and N = 34.

The experimental results are very similar to those obtained using EBNA although
there are some differences. The only network measures for which statistical differences
are found in 5 of the 6 comparison were motifs a) and b). The p-values computed for
all motifs are shown in Figures 5 and 6 for N = 20 and N = 28, respectively. It can
be seen in Figure 5 that for K = 4 many other motifs were below the 0.05 significance
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Table 2: Relevant features identified by the application of the statistical test.

threshold. On the other hand, for K = 6 none of the motifs was found to be significantly
different. More extensive experimentation is needed to try to find an explanation to this
variability.

6 Conclusions

In this paper we have introduced an empirical method for investigating some factors
that could predict differences in the complexity of NK-landscape instances for EAs. Our
method is based on the direct evolution of easy and hard instances using the success rate
of an evolutionary algorithm to estimate the instance complexity. Although the evolved
instances are not guaranteed to be easy or hard, the evolutionary process guarantees that
the evolved instance will be “easier” or “harder” than the initial instance. Therefore, if
for each random instance in the dataset we apply evolution in the two directions of
difficulty we can guarantee that the two final sets will differ in terms of complexity with
respect to the original set, and more significantly, between them.

We have focused on the analysis of EBNA, an advanced EDA that learns Bayesian

10
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Figure 5: Easy and hard instances for the GA. P-values obtained from the application
of the statistical test for the mean motif number.

networks but we have also presented preliminary results for a simple GA. These prelim-
inary results show the existence of similarities between the detected factors that have
been identified to have a different distribution between easy and hard distances. Our
approach can be extended to investigate other EAs and other optimization algorithms in
general.

Concerning the application of these results to predict the instance difficulty, we do not
expect that a single structural feature could be used with a high accuracy to predict the
complexity of an instance. One reason is that the structural description of the problem
does not capture all the complexity aspects. However, a more detailed instance char-
acterization, joining structural descriptions in the form of several network measures to
fitness-difficulty measures as those traditionally applied in EAs [12, 22, 13] could improve
the prediction capability of current methods. By investigating the correlation between
some topological characteristics (e.g. motif frequencies) and measures of difficulty defined
for EAs, we could determine which patterns of interactions are likely to pose a challenge
for EAs. Furthermore, topological measures could serve to compare different classes of

11
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Figure 6: Easy and hard instances for the GA. P-values obtained from the application
of the statistical test for the mean motif number.

problems, and not only instances, in terms of their structural similarity. This would
in turn contribute to facilitate the transference of information and solution strategies
between different problem classes.
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