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Abstract 

 
In this paper, the influence on corrugation of the most significant track parameters has been examined. After 

this parametric study, the optimization of the track parameters to minimize the undulatory wear growth has been 

achieved. Finally, the influence of the dispersion of the track and contact parameters on corrugation growth has 

been studied. A method has been developed to obtain an optimal solution of the track parameters which minimizes 

corrugation growth, thus ensuring that this solution remains optimum despite dispersion of track parameters and 

wheel-rail contact uncertainties. This work is based on the computer application RACING (RAil Corrugation 

INitiation and Growth) which has been developed by the authors to predict rail corrugation features.  

Keywords:  rail corrugation, track dynamics, curved track, discrete support, railway vehicle, wheel-rail contact, 

wear 

1. Introduction 

Rail corrugation is a periodic undulatory wear that frequently appears on the rolling surface of the rail. In Fig. 

1, a particular case of corrugation studied in the surroundings of Bilbao can be observed [1, 2]. This undulatory 

wear provokes, apart from high dynamic loads between wheel and rail and components degradation, high levels of 

noise and vibrations.  

 

Fig. 1  Corrugation observed on the rail. 
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Since the first mention of rail corrugation in scientific literature (in reference to the Cincinnati tramways, in 

1895) many explanations of this problem have been published in connection with metallurgical, dynamical and 

tribological factors. Corrugation is still a major problem for many railway administrations, and continues to be an 

active field of research [3, 4, 5, 6]. 

Rail corrugation can generate high levels of vibrations and fast degradation of track and train components. The 

effects of undulatory wear can be significant, especially at high speeds, when corrugation reaches a certain 

amplitude. From the dynamic point of view, corrugation produces important high frequency impulses, and thus as 

trains move over the rails corrugation generates vibrations in the track and in the unsprung mass. 

Additionally, apart from degradation of ballast and other components and high dynamic loads between wheel 

and rail, noise levels also increase due to corrugation. In fact, rail corrugation is one of the most serious wheel/rail 

contact noise problems in passenger transport systems. The noise caused by this kind of wear is irritating, and can 

even be harmful to the workers of a metropolitan system. 

In 1993 Grassie and Kalousek published an article that reviewed 42 references and compiled the work 

accomplished from 1970 to 1990 [7]. In this comprehensive article corrugation is classified into six different types 

depending on the wear mechanism and wavelength fixing mechanism. These six types of corrugation and their 

wavelengths are: (1) heavy haul (200-300 mm); (2) light rail (500-1,500 mm); (3) booted sleepers (45-60 mm); 

(4) contact fatigue (150-450 mm); (5) rutting (50 mm in trams, 150-450 mm in trains) and (6) roaring rail (25-80 

mm). Although not all authors agree with this classification, the basic idea of distinguishing the two mechanisms 

still applies [8]. The corrugations studied in this article have elements that would fall within the booted sleepers 

category. 

Methods to predict the appearance of corrugation have been developed [9]. Some researchers have followed a 

linear method for this prediction, with theories formulated in the frequency domain [10, 11, 12]. Others have 

developed non-linear methods based on the time domain [13, 14, 15]. These methods assume that track 

parameters are constant, equal to the nominal values. This paper, however, takes account of the dispersion of the 

track and contact parameters. 

The work presented in this paper is based on a linear model developed by the authors to explain short pitch 

corrugation [16, 17]. The formation of short pitch corrugation is analysed using a feedback process combining 

wheelset and track dynamics, contact mechanics and wear. The track and wheelset dynamics are introduced into 

the global model by using receptances. The track model comprised in RACING takes advantage of both Periodic 
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Structure Theory and the Finite Strip Method [18, 19]. The contact quasi-static forces and creepages are obtained 

through DINATREN, a theoretical model for vehicle and bogie curving developed by the authors [20]. The rail 

and wheel profiles are defined with spline curves. Shen, Hedrick and Elkins’ contact theory has been implemented 

in the model [21]. 

Two vehicle models have been compared. The first one consists of one bogie with the yaw and lateral 

displacement degrees of freedom, and two wheelsets with their own yaw and lateral displacement degrees of 

freedom. The primary vertical, lateral and longitudinal suspensions have been taken into account. The second 

model consists of one whole vehicle with the two bogies previously described connected to the to the car box 

through the secondary suspensions. All the contact parameters have been obtained for each of the eight wheels of 

the first model and compared to the ones obtained for each of the four wheels of the second model. For the 

particular cases studied along this paper, the slight differences that appear in the contact parameters have a small 

significance, and do not change the corrugation results obtained. However, for other situations different to the 

ones analyzed in this paper (speeds, curve radii, cant, etc.), different results could be found. 

Using this model a parametric study is carried out to ascertain which variables have most influence on 

corrugation. An optimization process then leads to the combination of track parameters which provides the lowest 

probability of corrugation growth. The parameters have lower and upper limits, and so optimization is developed 

as a problem of constrained variables. Finally, track parameter dispersion and contact uncertainties have been 

taken into account. 

2. Corrugation model: RACING 

In the model developed by the authors of this paper [17], an infinitesimal roughness in the profile of the rail 

rolling surface unleashes a feedback which generates undulatory wear on the head of the rail. This initial 

roughness causes infinitesimal variation of the variables which define contact between wheel and rail. 

Subsequently, for each excitation frequency, the variation is transmitted to the vehicle and the track, and the 

variation exerts its influence on dynamic behaviour.  

The corrugation problem is a complex phenomenon which involves different aspects. In this model 

corrugation is analysed as a feedback process between the existing irregularities on the rail surface, characterised 

by a random wavelength; the dynamic structure of the vehicle and track; and the contact mechanics between the 

wheel and rail which increase wear through the existing forces in the contact. This is why the model consists of 

various related modules, which have been developed up to a certain degree of accuracy.  
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The major modules related to the phenomenon are shown in Fig. 2. The model requires the quasi-static 

wheel/rail contact values obtained from the DINATREN programme while negotiating a bend. An explanation of 

how DINATREN works can be found in [20].  

 

 

 

 

 

Fig. 2  Feedback cycle that generates the corrugation development. 

 

The modular structure makes it possible to incorporate improvements in an independent way to each of the 

aspects contributing to corrugation. It is, moreover, possible to identify the limitations of a module and estimate 

its real contribution to the observed corrugation in relation to the rest of the modules. As the output of the 

application, the corrugation growth function, G(f), provides the predisposition to appearance of corrugation 

depending on frequency in Hz [22]. RACING allows calculations of this function everywhere on the rail: at 

midspan, over sleeper and at every intermediate point. For this particular case the worst situation is at midspan, 

and for this reason most of the figures show results at midspan. Nevertheless, in Section 6 calculations are shown 

both at midspan and over sleeper in combination. 
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The structural model to obtain the vehicle receptances consists of a 3D Finite Element model of the wheelset, 

brake disc and wheel boxes. The wheels have a diameter of 850 mm. 

The track model which has been used is illustrated in Fig. 3. It is important to note that the stiffness and the 

damping of the pad and the ballast as well as the sleeper mass are modelled in RACING in the vertical, the lateral 

and the longitudinal directions, although, as it is known, the longitudinal parameters have a small influence in the 

final results and are difficult to ascertain with accuracy. This model first obtains the free waves of the rail without 

support. Next, the support model is taken into account in the system, and the characteristic waves which propagate 

through the track with support are obtained. When the characteristic waves are calculated, the model obtains the 

vertical, lateral and longitudinal track receptances.  

 

 Fig. 3  Track model.  

3.  Parametric study 

Recently, some authors have analysed the corrugation growth rate sensitivity to several railway parameters 

[23]. The current paper shows the corrugation growth functions in the frequency domain, and it has studied 

different parameters to those considered in the article by Meehan et al. 

From the particular case of corrugation studied in Bilbao mentioned above [1, 2] and shown in Fig. 1, the 

wavelength was 62.1 mm, the train speed was 13.8 m/s and by implication the frequency was 222 Hz. Corrugation 

grew in the inner rail and most at midspan. The curve radius was 180 m and the normal loads were 45.1 kN per 

wheel. RACING studies the corrugation produced by each of the four wheels of the bogie. In this particular case, 

and using the application RACING, a parametric study has been developed. This study allows the influence on 

corrugation of the 14 most significant track parameters to be evaluated. These parameters are:  

• Distance between sleepers, which can vary from 0.6 to 1 m, starting with a nominal value of 1m. 

• Half sleeper mass, with characteristic values between 90 and 140 kg, starting with 96.69 kg. 

One span 

Pad 

Sleeper 

Ballast 
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• Pad stiffness and damping in longitudinal, lateral and vertical direction. The stiffness ranges from 

5·10
7
 to 10

9
 N/m, while the damping factor can take values between 0.1 and 0.8. Pad vertical stiffness 

starting with 10
9
 N/m. 

• Ballast or boot stiffness and damping in the longitudinal, lateral and vertical direction. The stiffness 

is of the order of 10
8
 N/m, while the damping factor can take values between 0.1 and 0.8. 

Notice that the pad stiffness high limit is rather large. It was decided to keep this value because it was 

obtained from the track studied in the surroundings of Bilbao. 

With the parametric study it has been concluded that the five most important parameters are: distance between 

sleepers, sleeper mass, pad vertical stiffness, pad lateral stiffness and ballast vertical stiffness. The influence on 

G(f) of the first, second and third parameter is shown in Figs. 4, 5 and 6. A high value of G(f) at a certain 

frequency means a high tendency of corrugation growth at that frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  The growth function at midspan for different distances between sleepers (L).             L = 1 m.  

           L = 0.8 m.             L = 0.6 m. 

 

 

Fig. 4 shows the growth function at midspan for different distances between sleepers. Between 200 and 400 

Hz the maximum peak of the G(f) function is different for each sleeper spacing, both in amplitude and in 

frequency. As it will be explained later in Section 5, this high peak is the result of a lateral resonance and a 

vertical antiresonance in the rail receptances. For the three values of distance between sleepers considered in the 
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figure, it can be concluded that the smaller the distance between sleepers, the lower is the maximum peak of 

corrugation. Therefore, according to this tendency, the optimum distance between sleepers would be the smallest 

value, i.e. 0.6 m. However, this is not what it is observed in the optimization study as it will be shown below. 

From this figure it can also be concluded that the smaller the distance between sleepers, the higher the frequency 

of the major corrugation peak. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  The growth function at midspan for different half mass sleepers (Ms).              Ms = 145 kg.  

            Ms = 122 kg.            Ms = 96.69 kg 

 

Fig. 5 shows how the frequency at which the maximum peak of the growth function appears diminishes as the 

half sleeper mass (Ms) increases. It is not clear which is the optimum sleeper mass value from the parametrical 

study. This value has been determined in the optimization study, as will be observed in section 4.3.  

In Fig. 6, the G(f) function at midspan is depicted for three values of pad stiffness in the vertical direction. As 

it can be observed, the growth function changes notably in the 200-350 Hz range of frequency, when the pad 

stiffness in the vertical direction is changed. The lower the pad stiffness, the lower the corrugation peak becomes 

in these frequencies. The change in the frequency of the peak is of only 20 Hz from the lowest stiffness to the 

highest one. It is interesting to note that the distance between sleepers is 1 m. If the span length was 0.6 m, the 

variation of the peak frequency would be more significant reaching up to 80 Hz. Above 800 Hz, more peaks 

appear in G(f), but due to the frequency range where usually experimentally observed corrugation takes place, 

these variations at high frequency are not considered in this study. 
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Fig. 6  The growth function at midspan for different pad vertical stiffnesses (kzp).               kzp = 10
9
 N/m.             

             kzp = 6·10
8
 N/m.              kzp = 2·10

8
 N/m. 

 

4. Optimization study 

As a conclusion of the parametric study, from the first five most important parameters, the three which have 

the main influence have been selected to carry out the optimization study. The optimal combination of the selected 

parameters that gives the smallest value for the maximum peak of G(f) is now obtained. 

Since RACING works in the frequency domain, the optimization process takes less computational time than 

using models formulated in the time domain. Moreover, since RACING avails itself of the Periodic Structure 

Theory and the Finite Strip Method, it is much more direct for optimization of the distance between sleepers (for 

example) than a model operating with finite elements in 3 dimensions. This is because optimization using such a 

model must overcome the linkages problem between the sleeper and the pad, and because it must maintain the 

aspect ratio of the 3D elements. If the length of the span changes, either the 3D elements will be distorted or it will 

be necessary to change the rail-sleeper linkages individually.  

This model does not work in terms of pad stiffness per unit length nor sleeper mass per unit length. On the 

contrary it works with the pad stiffness per railseat and the half actual sleeper mass. Therefore, changes in sleeper 

spacing do not affect pad stiffness nor sleeper mass, making more straightforward the optimization process. 
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Several frequency ranges and resolution have been used along this optimization work. However, in most cases 

the frequency range is from 100 Hz to 400 Hz, and the frequency resolution is 5 Hz. 

4.1. Nelder-Mead optimization 

The optimization has been performed using the Nelder-Mead method [24], a direct-search algorithm which 

uses function values (it does not require derivatives, so it is useful for this problem) and handles non-smooth 

functions. It is a numerical method for minimizing an objective function in a multi-dimensional space. The 

method uses the concept of a simplex, which is a polytope of N+1 vertices in N dimensions; a line segment on a 

line, a triangle on a plane, a tetrahedron in three-dimensional space, and so forth. The method finds a locally 

optimal solution to a problem with N variables when the objective function varies smoothly. 

The Nelder-Mead method is implemented in Matlab [25]. The computational time required to obtain each of 

the optima is 36 hours, in a standard Pentium IV with 2 Gbytes of RAM memory. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  The G(f) function at midspan obtained using the Nelder-Mead method and using the Genetic 

Algorithm.              Genetic Algorithm              Nelder-Mead. 

 

4.2. Genetic Algorithms 

The Nelder-Mead optimization has several disadvantages, mainly that it does not explore the whole solution 

region and that it may find local minima. For these reasons, in this paper Genetic Algorithms (GA) have been 
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for the optimization of this problem, that has many local maxima and minima. The optimization with the genetic 

algorithms has proved to be more effective than with the Nelder-Mead method, as it can be seen in Fig. 7. For this 

particular case, the optimizations were carried out in order to obtain a G(f) function in which the maximum peak 

between 0 and 400 Hz was the lowest one. As it can be seen in the figure, from 0 to 400 Hz and especially above 

200 Hz the solution obtained using GA is better than the one obtained using the Nelder-Mead method.  

4.3 Results from the optimization 

The combination of the three main parameters that lead to the lowest maximum peak of G(f) is considered as 

the optimum. Table 1 shows four optimum solutions, coming from different runs of the optimization process. 

Both Genetic Algorithms and the Nelder-Mead method have been used to obtain these solutions, and four 

important results have been selected to show them in the table, disregarding the method used to obtain them. As it 

can be observed in this table, the optimization study shows that three minima of the highest peak for the growth 

function appear when the mass of half a sleeper is around 135 kg, and another minimum around 97 kg. 

 Table 1  Combination of parameters giving the lowest maximum peak of G(f). 

Optimum 

solution 

Distance between 

sleepers (m) 

Half a sleeper mass 

(kg) 

Pad vertical 

stiffness(N/m) 

Maximum peak of G(f) 

function 

1 0.75 96.72 5×10
7
 4.03×10

-6 

2 0.76 133.32 5×10
7 

3.32×10
-6
 

3 0.92 135.35 7.4×10
7 

3.17×10
-6
 

4 0.99 138.97 7.8×10
7 

3.13×10
-6
 

 

The optimization study has shown that the tendencies observed in the parametric study are not valid when all 

the possible combinations of parameters are taken into account. Namely, the parametric study shows that the 

smallest distance between sleepers gives the minimum for G(f). However, as it can be observed in the second 

column of Table 1, none of the values is 0.6 m. Something similar occurs for the pad vertical stiffness: the 

parametric study suggested that the lowest stiffness would be the optimal one, but as it can be checked in the 

fourth column of Table 1, two of the optimum solutions are higher than 5·10
7
 N/m (the lowest stiffness). It must 

be highlighted that those two pad stiffness are still close to the lowest one and are very soft. 

Therefore, by means of the parametric study it is known which are the most important parameters, but in 

order to obtain the best parameter combination, the optimization study is necessary.  

Another result which can be obtained from table 1 is the combination of parameters which give the lowest 

maximum peak of the growth function: distance between sleepers 0.99 m; half a sleeper mass 138.97 kg, and pad 

vertical stiffness 7.8·10
7
 N/m. Besides, the other four optimum solutions are of the same order. Fig. 8 shows the 
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frequency spectrum of the best and the worst optima of G(f). The maximum value of the growth function is 

similar in both optimizations. It can be concluded from this graph that all the optima shown in Table 1 are very 

similar in terms of corrugation growth. 

 

 

 

 

 

 

 

 

Fig. 8  G(f) at midspan for the best and the worst optimization.             Best optimization.             Worst 

optimization. 

 

However, the difference in G(f) between the initial data and the data that comes from the optimization is 

remarkable (Fig. 9). Therefore, the combination of parameters obtained from the optimization leads to an 

important corrugation decrease.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  G(f) at midspan for the initial parameters and for the best optimized parameters.             Initial data 
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5. Track parameter dispersion and contact parameter uncertainties 

Due to the tolerances that appear during the track assembly, there is a dispersion in the track parameters and 

therefore in the dynamic properties. In conventional railways variations in the span length of +/-5% are 

acceptable. In the sleeper mass it is necessary to distinguish between the monobloc and bibloc sleeper. 

Infrastructure administrations accept a tolerance in the weight of monobloc sleepers of +/- 5.5%, whereas in the 

bibloc sleeper the upper tolerance is 4.3% and the lower tolerance is around 3% [26]. The pad stiffness in the 

vertical direction can vary around the nominal value by +/-10%. 

These uncertainties of the track parameters lead to differences in the track receptances as can be observed in 

Fig. 10. If the distance between sleepers (L) is increased by 5%, the sleeper mass is changed by less than 5% and 

the pad vertical stiffness (kzp) by 10%, the track vertical and lateral receptances in midspan change significantly. 

It must be mentioned that these changes are applied in the model for the whole track, i.e. all pads are made stiffer 

or softer, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Changes in track receptances, (a) vertical and (b) lateral, due to a change of 5 % in distance between 

sleepers  (L), of less than 5 % in the half sleeper mass (Ms) and of 10% in the pad vertical stiffness (kzp).             L = 1 

m, Ms = 96.69 kg, kzp = 10
9
 N/m;              L = 0.95 m, Ms = 95.5 kg, kzp = 9·10

8
 N/m 

 

In Fig. 10, the peak in the vertical receptance at midspan which appears at around 450 Hz is due to the 

pinned-pinned mode. The peak that appears in the same graph at around 100 Hz is due to the ballast. Finally, the 

antirresonance obtained at around 230 Hz in vertical receptance and the corresponding peak at approximately the 
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same frequency in lateral receptance, due to the lateral pinned-pinned, work together to give the maximum peak in 

the corrugation growth function according to RACING. This can be checked by observing figures 4 to 6 and 

noting how the highest peak of the growth function (for L =1 m, Ms = 96.69 kg and kzp = 10
9
 N/m) appears 

around that frequency of 230 Hz.  

Variations in train speeds give rise to uncertainties in the contact parameters of each wheel. There have been 

estimated changes of 10 % in the semi-axes of the contact ellipse, in the lateral and longitudinal creepages and in 

the contact normal forces. This estimation is based on calculations made with the program DINATREN to obtain 

the contact values while negotiating a bend [20]. 

As has been shown, the track parameters have a considerable dispersion which significantly influences track 

receptances, and there are also major uncertainties in the contact parameters. Therefore, the corrugation growth 

tendencies are affected. Thus, although there is always a theoretical optimum solution, small changes in the track 

and in the contact values due to this dispersion could introduce an important peak in the growth function, and this 

would signify a tendency towards corrugation growth (Fig. 11). In this figure a major increase in the growth 

function may be observed above 600 Hz, as a consequence of the change of the parameters shown in table 2. 

These changes are less than the abovementioned acceptable limits of +/-5% and +/-10% in the track and contact 

parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 Important change in the growth function due to dispersion of the contact and track parameters. 
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Table 2. Combination of parameters next to the optimum that cause an important change in the growth function 

 Track parameters Contact parameters 

 

Distance 

between 

Sleepers 

(m) 

Sleeper 

Mass 

(Kg) 

Pad 

Vertical 

Stiffness 

(N/m) 

Semi-axes 

a (mm) 

Semi-axes 

b (mm) 

Normal 

Force 

(N) 

Lateral 

creepage 

Longitudinal 

creepage 

Optimum 0.96 95 7.81x10
7
 5.27 4.19 44929 -0.0084 0.0055 

Next to    

optimum 
0.91 96.5 7.42x10

7
 4.74 4.39 49420 -0.0087 0.0050 

 

To overcome this problem a method has been developed to find an optimum of the growth function which 

remains an optimum when the track and contact parameters change slightly due to the abovementioned dispersion. 

The solution to the problem may be observed in the flow chart shown in Fig. 12:  

 

 

 

 

 

 

 

 

Fig. 12  Method developed to prevent a high growth function for a combination of parameters close to those of an  

optimum solution. 

 

- The programme starts with the initial values of the distance between sleepers (L), the sleeper mass (Msleeper) 

and the pad vertical stiffness (kzp).  An optimization process is carried out, and a first optimum solution of the 

growth function is obtained, together with the values of L, Msleeper and kzp that lead to it. 
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- Each of the track and main contact parameters is discretized along their dispersion ranges, and a mesh is 

created with all the combinations of discretized parameters. The growth function is calculated for each 

combination, and it is checked if any of these new growth functions has high peaks. The computation time 

required for this step is very low, compared to that of the optimization process. 

-If none of these new growth functions have high peaks, or if all these functions are extremely plain, the 

optimum solution values of track parameters L, Msleeper and kzp that had been obtained are accepted as the final 

solution. These values will remain optimum despite any possible changes in the dispersion range of the track and 

contact parameters. 

- However, if one or more of these new growth functions have high peaks, it is necessary to run again the 

optimization process. The GA optimization will lead, in general, to an optimum solution different from the one 

obtained the previous time in step 1. Steps 2 to 4 are repeated until the growth functions of all the combinations of 

track parameters (centred around the optimum solution) and of contact parameters, discretized along their 

dispersion ranges, remain plain. 

6. Optimum at midspan and above a sleeper 

Before a new line project is accomplished, or whenever a corrugation problem needs to be solved, it is 

necessary to ascertain a combination of track parameters leading to an optimum of the growth function both above 

a sleeper and at midspan. For this purpose, an auxiliary function A(f) has been used which is the sum of the 

positive values of the growth functions at midspan and over a sleeper.  

As may be observed in Fig. 13 at midspan (left), optimization was extremely good before using the auxiliary 

function, but above a sleeper (right) there was a peak which disappears when optimized using the auxiliary 

function, A(f), and taking into account both midspan and above a sleeper. 
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Fig. 13 Optimized growth function at midspa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Optimized growth function at midspan (a) and over sleeper (b), for a combination of track parameters that 

optimize corrugation at midspan compared to global optimization at both midspan and sleeper, A(f). 

             Optimized at midspan.            Optimized both above a sleeper and at midspan, using the auxiliary function A(f). 

 

7. Conclusions 

In this paper a computational application developed by the authors (RACING) has been used to study the 

corrugation growth. This application obtains track and wheelset receptances and considers corrugation as a 

complex feedback determined also by contact parameters.  

The tool developed has been used to carry out a parametric study in order to find the influence of the 14 main 

parameters. Among the track parameters, the following five have more influence on the corrugation: distance 

between sleepers, sleeper mass, pad vertical stiffness, pad lateral stiffness and ballast vertical stiffness. The 

optimization study has been carried out focusing the attention on the first three parameters.  

From the optimization work, combinations of parameters are obtained which give an optimum G(f) function, 

this is, the lowest maximum peak of G(f). Two optimization techniques have been used to obtain a combination of 

parameters which lead to an optimum in the growth function. Optimization using Genetic Algorithms has proved 

to be more effective than using the Nelder-Mead method. The improvement obtained with the optimization is very 

significant. 

It has been considered that the distance between sleepers as well as the sleeper mass and the pad vertical 

stiffness have a physical dispersion that cannot be neglected. Because of this dispersion, changes appear in the 
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track receptances. Taking this dispersion into account, and also the uncertainties in the contact parameters, 

changes appear in the corrugation growth function. 

A method has been developed to obtain an optimal solution of the track parameters which minimizes 

corrugation growth, making sure that this solution remains an optimum, taking into account the track parameters 

dispersion and the uncertainties of the contact parameters.  

Using the auxiliary function A(f) it is possible to complete global optimization at both midspan and sleeper. 
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